WorldWideScience

Sample records for 3d surface imaging

  1. Nonlaser-based 3D surface imaging

    Lu, Shin-yee; Johnson, R.K.; Sherwood, R.J. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    3D surface imaging refers to methods that generate a 3D surface representation of objects of a scene under viewing. Laser-based 3D surface imaging systems are commonly used in manufacturing, robotics and biomedical research. Although laser-based systems provide satisfactory solutions for most applications, there are situations where non laser-based approaches are preferred. The issues that make alternative methods sometimes more attractive are: (1) real-time data capturing, (2) eye-safety, (3) portability, and (4) work distance. The focus of this presentation is on generating a 3D surface from multiple 2D projected images using CCD cameras, without a laser light source. Two methods are presented: stereo vision and depth-from-focus. Their applications are described.

  2. Performance assessment of 3D surface imaging technique for medical imaging applications

    Li, Tuotuo; Geng, Jason; Li, Shidong

    2013-03-01

    Recent development in optical 3D surface imaging technologies provide better ways to digitalize the 3D surface and its motion in real-time. The non-invasive 3D surface imaging approach has great potential for many medical imaging applications, such as motion monitoring of radiotherapy, pre/post evaluation of plastic surgery and dermatology, to name a few. Various commercial 3D surface imaging systems have appeared on the market with different dimension, speed and accuracy. For clinical applications, the accuracy, reproducibility and robustness across the widely heterogeneous skin color, tone, texture, shape properties, and ambient lighting is very crucial. Till now, a systematic approach for evaluating the performance of different 3D surface imaging systems still yet exist. In this paper, we present a systematic performance assessment approach to 3D surface imaging system assessment for medical applications. We use this assessment approach to exam a new real-time surface imaging system we developed, dubbed "Neo3D Camera", for image-guided radiotherapy (IGRT). The assessments include accuracy, field of view, coverage, repeatability, speed and sensitivity to environment, texture and color.

  3. 3D Surface Imaging of the Human Female Torso in Upright to Supine Positions

    Reece, Gregory P.; Merchant, Fatima; Andon, Johnny; Khatam, Hamed; Ravi-Chandar, K.; Weston, June; Fingeret, Michelle C.; Lane, Chris; Duncan, Kelly; Markey, Mia K.

    2015-01-01

    Three-dimensional (3D) surface imaging of breasts is usually done with the patient in an upright position, which does not permit comparison of changes in breast morphology with changes in position of the torso. In theory, these limitations may be eliminated if the 3D camera system could remain fixed relative to the woman’s torso as she is tilted from 0 to 90 degrees. We mounted a 3dMDtorso imaging system onto a bariatric tilt table to image breasts at different tilt angles. The images were va...

  4. Exact surface registration of retinal surfaces from 3-D optical coherence tomography images.

    Lee, Sieun; Lebed, Evgeniy; Sarunic, Marinko V; Beg, Mirza Faisal

    2015-02-01

    Nonrigid registration of optical coherence tomography (OCT) images is an important problem in studying eye diseases, evaluating the effect of pharmaceuticals in treating vision loss, and performing group-wise cross-sectional analysis. High dimensional nonrigid registration algorithms required for cross-sectional and longitudinal analysis are still being developed for accurate registration of OCT image volumes, with the speckle noise in images presenting a challenge for registration. Development of algorithms for segmentation of OCT images to generate surface models of retinal layers has advanced considerably and several algorithms are now available that can segment retinal OCT images into constituent retinal surfaces. Important morphometric measurements can be extracted if accurate surface registration algorithm for registering retinal surfaces onto corresponding template surfaces were available. In this paper, we present a novel method to perform multiple and simultaneous retinal surface registration, targeted to registering surfaces extracted from ocular volumetric OCT images. This enables a point-to-point correspondence (homology) between template and subject surfaces, allowing for a direct, vertex-wise comparison of morphometric measurements across subject groups. We demonstrate that this approach can be used to localize and analyze regional changes in choroidal and nerve fiber layer thickness among healthy and glaucomatous subjects, allowing for cross-sectional population wise analysis. We also demonstrate the method's ability to track longitudinal changes in optic nerve head morphometry, allowing for within-individual tracking of morphometric changes. This method can also, in the future, be used as a precursor to 3-D OCT image registration to better initialize nonrigid image registration algorithms closer to the desired solution. PMID:25312906

  5. DART : a 3D model for remote sensing images and radiative budget of earth surfaces

    Gastellu-Etchegorry, J.P.; Grau, E.; Lauret, N.

    2012-01-01

    Modeling the radiative behavior and the energy budget of land surfaces is relevant for many scientific domains such as the study of vegetation functioning with remotely acquired information. DART model (Discrete Anisotropic Radiative Transfer) is developed since 1992. It is one of the most complete 3D models in this domain. It simulates radiative transfer (R.T.) in the optical domain: 3D radiative budget and remote sensing images (i.e., radiance, reflectance, brightness temperature) of vegeta...

  6. Optimal Image Stitching for Concrete Bridge Bottom Surfaces Aided by 3d Structure Lines

    Liu, Yahui; Yao, Jian; Liu, Kang; Lu, Xiaohu; Xia, Menghan

    2016-06-01

    Crack detection for bridge bottom surfaces via remote sensing techniques is undergoing a revolution in the last few years. For such applications, a large amount of images, acquired with high-resolution industrial cameras close to the bottom surfaces with some mobile platform, are required to be stitched into a wide-view single composite image. The conventional idea of stitching a panorama with the affine model or the homographic model always suffers a series of serious problems due to poor texture and out-of-focus blurring introduced by depth of field. In this paper, we present a novel method to seamlessly stitch these images aided by 3D structure lines of bridge bottom surfaces, which are extracted from 3D camera data. First, we propose to initially align each image in geometry based on its rough position and orientation acquired with both a laser range finder (LRF) and a high-precision incremental encoder, and these images are divided into several groups with the rough position and orientation data. Secondly, the 3D structure lines of bridge bottom surfaces are extracted from the 3D cloud points acquired with 3D cameras, which impose additional strong constraints on geometrical alignment of structure lines in adjacent images to perform a position and orientation optimization in each group to increase the local consistency. Thirdly, a homographic refinement between groups is applied to increase the global consistency. Finally, we apply a multi-band blending algorithm to generate a large-view single composite image as seamlessly as possible, which greatly eliminates both the luminance differences and the color deviations between images and further conceals image parallax. Experimental results on a set of representative images acquired from real bridge bottom surfaces illustrate the superiority of our proposed approaches.

  7. 3D surface scan of biological samples with a Push-broom Imaging Spectrometer

    Yao, Haibo; Kincaid, Russell; Hruska, Zuzana; Brown, Robert L.; Bhatnagar, Deepak; Cleveland, Thomas E.

    2013-08-01

    The food industry is always on the lookout for sensing technologies for rapid and nondestructive inspection of food products. Hyperspectral imaging technology integrates both imaging and spectroscopy into unique imaging sensors. Its application for food safety and quality inspection has made significant progress in recent years. Specifically, hyperspectral imaging has shown its potential for surface contamination detection in many food related applications. Most existing hyperspectral imaging systems use pushbroom scanning which is generally used for flat surface inspection. In some applications it is desirable to be able to acquire hyperspectral images on circular objects such as corn ears, apples, and cucumbers. Past research describes inspection systems that examine all surfaces of individual objects. Most of these systems did not employ hyperspectral imaging. These systems typically utilized a roller to rotate an object, such as an apple. During apple rotation, the camera took multiple images in order to cover the complete surface of the apple. The acquired image data lacked the spectral component present in a hyperspectral image. This paper discusses the development of a hyperspectral imaging system for a 3-D surface scan of biological samples. The new instrument is based on a pushbroom hyperspectral line scanner using a rotational stage to turn the sample. The system is suitable for whole surface hyperspectral imaging of circular objects. In addition to its value to the food industry, the system could be useful for other applications involving 3-D surface inspection.

  8. 3D structural analysis of proteins using electrostatic surfaces based on image segmentation

    Vlachakis, Dimitrios; Champeris Tsaniras, Spyridon; Tsiliki, Georgia; Megalooikonomou, Vasileios; Kossida, Sophia

    2016-01-01

    Herein, we present a novel strategy to analyse and characterize proteins using protein molecular electro-static surfaces. Our approach starts by calculating a series of distinct molecular surfaces for each protein that are subsequently flattened out, thus reducing 3D information noise. RGB images are appropriately scaled by means of standard image processing techniques whilst retaining the weight information of each protein’s molecular electrostatic surface. Then homogeneous areas in the protein surface are estimated based on unsupervised clustering of the 3D images, while performing similarity searches. This is a computationally fast approach, which efficiently highlights interesting structural areas among a group of proteins. Multiple protein electrostatic surfaces can be combined together and in conjunction with their processed images, they can provide the starting material for protein structural similarity and molecular docking experiments.

  9. Modeling Images of Natural 3D Surfaces: Overview and Potential Applications

    Jalobeanu, Andre; Kuehnel, Frank; Stutz, John

    2004-01-01

    Generative models of natural images have long been used in computer vision. However, since they only describe the of 2D scenes, they fail to capture all the properties of the underlying 3D world. Even though such models are sufficient for many vision tasks a 3D scene model is when it comes to inferring a 3D object or its characteristics. In this paper, we present such a generative model, incorporating both a multiscale surface prior model for surface geometry and reflectance, and an image formation process model based on realistic rendering, the computation of the posterior model parameter densities, and on the critical aspects of the rendering. We also how to efficiently invert the model within a Bayesian framework. We present a few potential applications, such as asteroid modeling and Planetary topography recovery, illustrated by promising results on real images.

  10. Quantitative roughness characterization and 3D reconstruction of electrode surface using cyclic voltammetry and SEM image

    Area measurements from cyclic voltammetry (CV) and image from scanning electron microscopy (SEM) are used to characterize electrode statistical morphology, 3D surface reconstruction and its electroactivity. SEM images of single phased materials correspond to two-dimensional (2D) projections of 3D structures, leading to an incomplete characterization. Lack of third dimension information in SEM image is circumvented using equivalence between denoised SEM image and CV area measurements. This CV-SEM method can be used to estimate power spectral density (PSD), width, gradient, finite fractal nature of roughness and local morphology of the electrode. We show that the surface morphological statistical property like distribution function of gradient can be related to local electro-activity. Electrode surface gradient micrographs generated here can provide map of electro-activity sites. Finally, the densely and uniformly packed small gradient over the Pt-surface is the determining criterion for high intrinsic electrode activity.

  11. Quantitative roughness characterization and 3D reconstruction of electrode surface using cyclic voltammetry and SEM image

    Dhillon, Shweta; Kant, Rama, E-mail: rkant@chemistry.du.ac.in

    2013-10-01

    Area measurements from cyclic voltammetry (CV) and image from scanning electron microscopy (SEM) are used to characterize electrode statistical morphology, 3D surface reconstruction and its electroactivity. SEM images of single phased materials correspond to two-dimensional (2D) projections of 3D structures, leading to an incomplete characterization. Lack of third dimension information in SEM image is circumvented using equivalence between denoised SEM image and CV area measurements. This CV-SEM method can be used to estimate power spectral density (PSD), width, gradient, finite fractal nature of roughness and local morphology of the electrode. We show that the surface morphological statistical property like distribution function of gradient can be related to local electro-activity. Electrode surface gradient micrographs generated here can provide map of electro-activity sites. Finally, the densely and uniformly packed small gradient over the Pt-surface is the determining criterion for high intrinsic electrode activity.

  12. Land surface temperature from INSAT-3D imager data: Retrieval and assimilation in NWP model

    Singh, Randhir; Singh, Charu; Ojha, Satya P.; Kumar, A. Senthil; Kishtawal, C. M.; Kumar, A. S. Kiran

    2016-06-01

    A new algorithm is developed for retrieving the land surface temperature (LST) from the imager radiance observations on board geostationary operational Indian National Satellite (INSAT-3D). The algorithm is developed using the two thermal infrared channels (TIR1 10.3-11.3 µm and TIR2 11.5-12.5 µm) via genetic algorithm (GA). The transfer function that relates LST and thermal radiances is developed using radiative transfer model simulated database. The developed algorithm has been applied on the INSAT-3D observed radiances, and LST retrieved from the developed algorithm has been validated with Moderate Resolution Imaging Spectroradiometer land surface temperature (LST) product. The developed algorithm demonstrates a good accuracy, without significant bias and standard deviations of 1.78 K and 1.41 K during daytime and nighttime, respectively. The newly proposed algorithm performs better than the operational algorithm used for LST retrieval from INSAT-3D satellite. Further, a set of data assimilation experiments is conducted with the Weather Research and Forecasting (WRF) model to assess the impact of INSAT-3D LST on model forecast skill over the Indian region. The assimilation experiments demonstrated a positive impact of the assimilated INSAT-3D LST, particularly on the lower tropospheric temperature and moisture forecasts. The temperature and moisture forecast errors are reduced (as large as 8-10%) with the assimilation of INSAT-3D LST, when compared to forecasts that were obtained without the assimilation of INSAT-3D LST. Results of the additional experiments of comparative performance of two LST products, retrieved from operational and newly proposed algorithms, indicate that the impact of INSAT-3D LST retrieved using newly proposed algorithm is significantly larger compared to the impact of INSAT-3D LST retrieved using operational algorithm.

  13. 3D Imaging of Water-Drop Condensation on Hydrophobic and Hydrophilic Lubricant-Impregnated Surfaces

    Tadashi Kajiya; Frank Schellenberger; Periklis Papadopoulos; Doris Vollmer; Hans-Jürgen Butt

    2016-01-01

    Condensation of water from the atmosphere on a solid surface is an ubiquitous phenomenon in nature and has diverse technological applications, e.g. in heat and mass transfer. We investigated the condensation kinetics of water drops on a lubricant-impregnated surface, i.e., a micropillar array impregnated with a non-volatile ionic liquid. Growing and coalescing drops were imaged in 3D using a laser scanning confocal microscope equipped with a temperature and humidity control. Different stages ...

  14. 3D Surface Realignment Tracking for Medical Imaging: A Phantom Study with PET Motion Correction

    Olesen, Oline Vinter; Paulsen, Rasmus Reinhold; Jensen, Rasmus Ramsbøl;

    2011-01-01

    is equipped with a near infrared diode and uses phase-shift interferometry to compute 3D representations of the forehead of the patient. These 3D point clouds are progressively aligned to a reference surface and thereby giving the head pose changes. The estimated pose changes are used to reposition a......We present a complete system for motion correction in high resolution brain positron emission tomography (PET) imaging. It is based on a compact structured light scanner mounted above the patient tunnel of the Siemens High Resolution Research Tomograph PET brain scanner. The structured light system...

  15. Parallel Imaging of 3D Surface Profile with Space-Division Multiplexing

    Hyung Seok Lee

    2016-01-01

    Full Text Available We have developed a modified optical frequency domain imaging (OFDI system that performs parallel imaging of three-dimensional (3D surface profiles by using the space division multiplexing (SDM method with dual-area swept sourced beams. We have also demonstrated that 3D surface information for two different areas could be well obtained in a same time with only one camera by our method. In this study, double field of views (FOVs of 11.16 mm × 5.92 mm were achieved within 0.5 s. Height range for each FOV was 460 µm and axial and transverse resolutions were 3.6 and 5.52 µm, respectively.

  16. Parallel Imaging of 3D Surface Profile with Space-Division Multiplexing

    Lee, Hyung Seok; Cho, Soon-Woo; Kim, Gyeong Hun; Jeong, Myung Yung; Won, Young Jae; Kim, Chang-Seok

    2016-01-01

    We have developed a modified optical frequency domain imaging (OFDI) system that performs parallel imaging of three-dimensional (3D) surface profiles by using the space division multiplexing (SDM) method with dual-area swept sourced beams. We have also demonstrated that 3D surface information for two different areas could be well obtained in a same time with only one camera by our method. In this study, double field of views (FOVs) of 11.16 mm × 5.92 mm were achieved within 0.5 s. Height range for each FOV was 460 µm and axial and transverse resolutions were 3.6 and 5.52 µm, respectively. PMID:26805840

  17. 3D Imaging of Dielectric Objects Buried under a Rough Surface by Using CSI

    Evrim Tetik

    2015-01-01

    Full Text Available A 3D scalar electromagnetic imaging of dielectric objects buried under a rough surface is presented. The problem has been treated as a 3D scalar problem for computational simplicity as a first step to the 3D vector problem. The complexity of the background in which the object is buried is simplified by obtaining Green’s function of its background, which consists of two homogeneous half-spaces, and a rough interface between them, by using Buried Object Approach (BOA. Green’s function of the two-part space with planar interface is obtained to be used in the process. Reconstruction of the location, shape, and constitutive parameters of the objects is achieved by Contrast Source Inversion (CSI method with conjugate gradient. The scattered field data that is used in the inverse problem is obtained via both Method of Moments (MoM and Comsol Multiphysics pressure acoustics model.

  18. Automated and Accurate Detection of Soma Location and Surface Morphology in Large-Scale 3D Neuron Images

    Cheng Yan; Anan Li; Bin Zhang,; Wenxiang Ding; Qingming Luo; Hui Gong

    2013-01-01

    Automated and accurate localization and morphometry of somas in 3D neuron images is essential for quantitative studies of neural networks in the brain. However, previous methods are limited in obtaining the location and surface morphology of somas with variable size and uneven staining in large-scale 3D neuron images. In this work, we proposed a method for automated soma locating in large-scale 3D neuron images that contain relatively sparse soma distributions. This method involves three step...

  19. New Virtual Cutting Algorithms for 3D Surface Model Reconstructed from Medical Images

    WANG Wei-hong; QIN Xu-Jia

    2006-01-01

    This paper proposes a practical algorithms of plane cutting, stereo clipping and arbitrary cutting for 3D surface model reconstructed from medical images. In plane cutting and stereo clipping algorithms, the 3D model is cut by plane or polyhedron. Lists of edge and vertex in every cut plane are established. From these lists the boundary contours are created and their relationship of embrace is ascertained. The region closed by the contours is triangulated using Delaunay triangulation algorithm. Arbitrary cutting operation creates cutting curve interactively.The cut model still maintains its correct topology structure. With these operations,tissues inside can be observed easily and it can aid doctors to diagnose. The methods can also be used in surgery planning of radiotherapy.

  20. Fusion and display of 3D spect and MR images registered by a surface fitting method

    Since 3D medical images such as SPECT and MRI are taken under different positioning and imaging parameters, interpretation of them, as reconstructed originally, dose not provide an easy and accurate understanding of similarities and differences between them. The problem becomes more crucial where a clinician would like to map accurately region of interest from one study to the other, by which some surgical or therapeutical planning may be based. the research presented here is an investigation into the problems of the registration and display of brain images obtained by different imaging modalities. Following the introduction of an efficient method some clinical useful application of the registration and superimposition were also defined. The various widely used registration algorithms were first studied and their advantages and disadvantages of each method were evaluated. In this approach, an edge-based algorithm (called surface fitting), which are based on a least-square-distance matching, were suggested for registering of brain images. This algorithm minimizes the sum of square-distances between the two surfaces obtained from two modalities. The minimization is performed to find a set of six geometrical transformation parameters (3 shifts and 3 rotations) which indicate how one surface should be transformed in order to match with the other surface

  1. REGION-BASED 3D SURFACE RECONSTRUCTION USING IMAGES ACQUIRED BY LOW-COST UNMANNED AERIAL SYSTEMS

    Z. Lari

    2015-08-01

    Full Text Available Accurate 3D surface reconstruction of our environment has become essential for an unlimited number of emerging applications. In the past few years, Unmanned Aerial Systems (UAS are evolving as low-cost and flexible platforms for geospatial data collection that could meet the needs of aforementioned application and overcome limitations of traditional airborne and terrestrial mobile mapping systems. Due to their payload restrictions, these systems usually include consumer-grade imaging and positioning sensor which will negatively impact the quality of the collected geospatial data and reconstructed surfaces. Therefore, new surface reconstruction surfaces are needed to mitigate the impact of using low-cost sensors on the final products. To date, different approaches have been proposed to for 3D surface construction using overlapping images collected by imaging sensor mounted on moving platforms. In these approaches, 3D surfaces are mainly reconstructed based on dense matching techniques. However, generated 3D point clouds might not accurately represent the scanned surfaces due to point density variations and edge preservation problems. In order to resolve these problems, a new region-based 3D surface renostruction trchnique is introduced in this paper. This approach aims to generate a 3D photo-realistic model of individually scanned surfaces within the captured images. This approach is initiated by a Semi-Global dense Matching procedure is carried out to generate a 3D point cloud from the scanned area within the collected images. The generated point cloud is then segmented to extract individual planar surfaces. Finally, a novel region-based texturing technique is implemented for photorealistic reconstruction of the extracted planar surfaces. Experimental results using images collected by a camera mounted on a low-cost UAS demonstrate the feasibility of the proposed approach for photorealistic 3D surface reconstruction.

  2. Region-Based 3d Surface Reconstruction Using Images Acquired by Low-Cost Unmanned Aerial Systems

    Lari, Z.; Al-Rawabdeh, A.; He, F.; Habib, A.; El-Sheimy, N.

    2015-08-01

    Accurate 3D surface reconstruction of our environment has become essential for an unlimited number of emerging applications. In the past few years, Unmanned Aerial Systems (UAS) are evolving as low-cost and flexible platforms for geospatial data collection that could meet the needs of aforementioned application and overcome limitations of traditional airborne and terrestrial mobile mapping systems. Due to their payload restrictions, these systems usually include consumer-grade imaging and positioning sensor which will negatively impact the quality of the collected geospatial data and reconstructed surfaces. Therefore, new surface reconstruction surfaces are needed to mitigate the impact of using low-cost sensors on the final products. To date, different approaches have been proposed to for 3D surface construction using overlapping images collected by imaging sensor mounted on moving platforms. In these approaches, 3D surfaces are mainly reconstructed based on dense matching techniques. However, generated 3D point clouds might not accurately represent the scanned surfaces due to point density variations and edge preservation problems. In order to resolve these problems, a new region-based 3D surface renostruction trchnique is introduced in this paper. This approach aims to generate a 3D photo-realistic model of individually scanned surfaces within the captured images. This approach is initiated by a Semi-Global dense Matching procedure is carried out to generate a 3D point cloud from the scanned area within the collected images. The generated point cloud is then segmented to extract individual planar surfaces. Finally, a novel region-based texturing technique is implemented for photorealistic reconstruction of the extracted planar surfaces. Experimental results using images collected by a camera mounted on a low-cost UAS demonstrate the feasibility of the proposed approach for photorealistic 3D surface reconstruction.

  3. 3D Surface Realignment Tracking for Medical Imaging: A Phantom Study with PET Motion Correction

    Olesen, Oline Vinter; Paulsen, Rasmus Reinhold; Jensen, Rasmus Ramsbøl; Keller, Sune H.; Sibomana, Merence; Højgaard, Liselotte; Roed, Bjarne; Larsen, Rasmus

    2011-01-01

    is equipped with a near infrared diode and uses phase-shift interferometry to compute 3D representations of the forehead of the patient. These 3D point clouds are progressively aligned to a reference surface and thereby giving the head pose changes. The estimated pose changes are used to reposition a...

  4. 3D Surface Realignment Tracking for Medical Imaging: A Phantom Study with PET Motion Correction

    Olesen, Oline Vinter; Paulsen, Rasmus Reinhold; Jensen, Rasmus Ramsbøl;

    2013-01-01

    structured light system is equipped with a near infrared diode and uses phase-shift interferometry (PSI) to compute 3D point clouds of the forehead of the patient. These 3D point clouds are progressively aligned to a reference surface, thereby giving the head pose changes. The estimated pose changes are used...

  5. 3D Surface Realignment Tracking for Medical Imaging: A Phantom Study with PET Motion Correction

    Olesen, Oline Vinter; Paulsen, Rasmus Reinhold; Jensen, Rasmus Ramsbøl; Keller, Sune H.; Sibomana, Merence; Højgaard, Liselotte; Roed, Bjarne; Larsen, Rasmus

    structured light system is equipped with a near infrared diode and uses phase-shift interferometry (PSI) to compute 3D point clouds of the forehead of the patient. These 3D point clouds are progressively aligned to a reference surface, thereby giving the head pose changes. The estimated pose changes are used...

  6. 3D Imaging of Water-Drop Condensation on Hydrophobic and Hydrophilic Lubricant-Impregnated Surfaces.

    Kajiya, Tadashi; Schellenberger, Frank; Papadopoulos, Periklis; Vollmer, Doris; Butt, Hans-Jürgen

    2016-01-01

    Condensation of water from the atmosphere on a solid surface is an ubiquitous phenomenon in nature and has diverse technological applications, e.g. in heat and mass transfer. We investigated the condensation kinetics of water drops on a lubricant-impregnated surface, i.e., a micropillar array impregnated with a non-volatile ionic liquid. Growing and coalescing drops were imaged in 3D using a laser scanning confocal microscope equipped with a temperature and humidity control. Different stages of condensation can be discriminated. On a lubricant-impregnated hydrophobic micropillar array these are: (1) Nucleation on the lubricant surface. (2) Regular alignment of water drops between micropillars and formation of a three-phase contact line on a bottom of the substrate. (3) Deformation and bridging by coalescence which eventually leads to a detachment of the drops from the bottom substrate. The drop-substrate contact does not result in breakdown of the slippery behaviour. Contrary, on a lubricant-impregnated hydrophilic micropillar array, the condensed water drops replace the lubricant. Consequently, the surface loses its slippery property. Our results demonstrate that a Wenzel-like to Cassie transition, required to maintain the facile removal of condensed water drops, can be induced by well-chosen surface hydrophobicity. PMID:27040483

  7. 3D Imaging of Water-Drop Condensation on Hydrophobic and Hydrophilic Lubricant-Impregnated Surfaces

    Kajiya, Tadashi; Schellenberger, Frank; Papadopoulos, Periklis; Vollmer, Doris; Butt, Hans-Jürgen

    2016-04-01

    Condensation of water from the atmosphere on a solid surface is an ubiquitous phenomenon in nature and has diverse technological applications, e.g. in heat and mass transfer. We investigated the condensation kinetics of water drops on a lubricant-impregnated surface, i.e., a micropillar array impregnated with a non-volatile ionic liquid. Growing and coalescing drops were imaged in 3D using a laser scanning confocal microscope equipped with a temperature and humidity control. Different stages of condensation can be discriminated. On a lubricant-impregnated hydrophobic micropillar array these are: (1) Nucleation on the lubricant surface. (2) Regular alignment of water drops between micropillars and formation of a three-phase contact line on a bottom of the substrate. (3) Deformation and bridging by coalescence which eventually leads to a detachment of the drops from the bottom substrate. The drop-substrate contact does not result in breakdown of the slippery behaviour. Contrary, on a lubricant-impregnated hydrophilic micropillar array, the condensed water drops replace the lubricant. Consequently, the surface loses its slippery property. Our results demonstrate that a Wenzel-like to Cassie transition, required to maintain the facile removal of condensed water drops, can be induced by well-chosen surface hydrophobicity.

  8. Using the 3D-SMS for finding starting configurations in imaging systems with freeform surfaces

    Satzer, Britta; Richter, Undine; Lippmann, Uwe; Metzner, Gerburg S.; Notni, Gunther; Gross, Herbert

    2015-09-01

    As the scientific field of the freeform optics is newly developing, there is only a small number of approved starting systems for the imaging lens design. We investigate the possibility to generate starting configurations of freeform lenses with the Simultaneous Multiple Surface (SMS) method. Surface fit and transfer to the ray tracing program are discussed in detail. Based on specific examples without rotational symmetry, we analyze the potential of such starting systems. The tested systems evolve from Scheimpflug configurations or have arbitrarily tilted image planes. The optimization behavior of the starting systems retrieved from the 3D-SMS is compared to classical starting configurations, like an aspheric lens. Therefore we evaluate the root mean square (RMS) spot radius before and after the optimization as well as the speed of convergence. In result the performance of the starting configurations is superior. The mean RMS spot diameter is reduced about up to 17.6 % in comparison to an aspheric starting configuration and about up to 28 % for a simple plane plate.

  9. Computer-aided interactive surgical simulation for craniofacial anomalies based on 3-D surface reconstruction CT images

    We developed a computer-aided interactive surgical simulation system for craniofacial anomalies based on three-dimensional (3-D) surface reconstruction CT imaging. This system has four functions: 1) 3-D surface reconstruction display with an accelerated projection method; 2) Surgical simulation to cut, move, rotate, and reverse bone-blocks over the reference 3-D image on the CRT screen; 3) 3-D display of the simulated image in arbitrary views; and 4) Prediction of postoperative skin surface features displayed as 3-D images in arbitrary views. Retrospective surgical simulation has been performed on three patients who underwent the fronto-orbital advancement procedures for brachycephaly and two who underwent the reconstructive procedure for scaphocephaly. The predicted configurations of the cranium and skin surface were well simulated when compared to the postoperative images in 3-D arbitrary views. In practical use, this software might be used for an on-line system connected to a large scale general-purpose computer. (author)

  10. Frontonasal dysmorphology in bipolar disorder by 3D laser surface imaging and geometric morphometrics: Comparisons with schizophrenia

    Hennessy, Robin J.; Baldwin, Patrizia A; Browne, David J.; Kinsella, Anthony; Waddington, John L.

    2010-01-01

    Any developmental relationship between bipolar disorder and schizophrenia engenders continuing debate. As the brain and face emerge in embryological intimacy, brain dysmorphogenesis is accompanied by facial dysmorphogenesis. 3D laser surface imaging was used to capture the facial surface of 13 male and 14 female patients with bipolar disorder in comparison with 61 male and 75 female control subjects and with 37 male and 32 female patients with schizophrenia. Surface images were analysed using...

  11. Matching Images to Models: Camera Calibration for 3-D Surface Reconstruction

    Morris, Robin D.; Smelyanskiy, Vadim N.; Cheeseman. Peter C.; Norvig, Peter (Technical Monitor)

    2001-01-01

    In a previous paper we described a system which recursively recovers a super-resolved three dimensional surface model from a set of images of the surface. In that paper we assumed that the camera calibration for each image was known. In this paper we solve two problems. Firstly, if an estimate of the surface is already known, the problem is to calibrate a new image relative to the existing surface model. Secondly, if no surface estimate is available, the relative camera calibration between the images in the set must be estimated. This will allow an initial surface model to be estimated. Results of both types of estimation are given.

  12. Novel 3D imaging techniques for improved understanding of planetary surface geomorphology.

    Muller, Jan-Peter

    2015-04-01

    Understanding the role of different planetary surface formation processes within our Solar System is one of the fundamental goals of planetary science research. There has been a revolution in planetary surface observations over the past decade for Mars and the Moon, especially in 3D imaging of surface shape (down to resolutions of 75cm) and subsequent correction for terrain relief of imagery from orbiting and co-registration of lander and rover robotic images. We present some of the recent highlights including 3D modelling of surface shape from the ESA Mars Express HRSC (High Resolution Stereo Camera), see [1], [2] at 30-100m grid-spacing; and then co-registered to HRSC using a resolution cascade of 20m DTMs from NASA MRO stereo-CTX and 0.75m DTMs from MRO stereo-HiRISE [3]. This has opened our eyes to the formation mechanisms of megaflooding events, such as the formation of Iani Vallis and the upstream blocky terrain, to crater lakes and receding valley cuts [4]. A comparable set of products is now available for the Moon from LROC-WA at 100m [5] and LROC-NA at 1m [6]. Recently, a very novel technique for the super-resolution restoration (SRR) of stacks of images has been developed at UCL [7]. First examples shown will be of the entire MER-A Spirit rover traverse taking a stack of 25cm HiRISE to generate a corridor of SRR images along the rover traverse of 5cm imagery of unresolved features such as rocks, created as a consequence of meteoritic bombardment, ridge and valley features. This SRR technique will allow us for ˜400 areas on Mars (where 5 or more HiRISE images have been captured) and similar numbers on the Moon to resolve sub-pixel features. Examples will be shown of how these SRR images can be employed to assist with the better understanding of surface geomorphology. Acknowledgements: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under PRoViDE grant agreement n° 312377

  13. Heterodyne 3D ghost imaging

    Yang, Xu; Zhang, Yong; Yang, Chenghua; Xu, Lu; Wang, Qiang; Zhao, Yuan

    2016-06-01

    Conventional three dimensional (3D) ghost imaging measures range of target based on pulse fight time measurement method. Due to the limit of data acquisition system sampling rate, range resolution of the conventional 3D ghost imaging is usually low. In order to take off the effect of sampling rate to range resolution of 3D ghost imaging, a heterodyne 3D ghost imaging (HGI) system is presented in this study. The source of HGI is a continuous wave laser instead of pulse laser. Temporal correlation and spatial correlation of light are both utilized to obtain the range image of target. Through theory analysis and numerical simulations, it is demonstrated that HGI can obtain high range resolution image with low sampling rate.

  14. Carotid artery lumen segmentation in 3D free-hand ultrasound images using surface graph cuts.

    Lorza, Andrés M Arias; Carvalho, Diego D B; Petersen, Jens; van Dijk, Anouk C; van der Lugt, Aad; Niessen, Wiro J; Klein, Stefan; de Bruijne, Marleen

    2013-01-01

    We present a new approach for automated segmentation of the carotid lumen bifurcation from 3D free-hand ultrasound using a 3D surface graph cut method. The method requires only the manual selection of single seed points in the internal, external, and common carotid arteries. Subsequently, the centerline between these points is automatically traced, and the optimal lumen surface is found around the centerline using graph cuts. To refine the result, the latter process was iterated. The method was tested on twelve carotid arteries from six subjects including three patients with a moderate carotid artery stenosis. Our method successfully segmented the lumen in all cases. We obtained an average dice overlap with respect to a manual segmentation of 84% for healthy volunteers. For the patient data, we obtained a dice overlap of 66.7%. PMID:24579183

  15. 3D active surfaces for liver segmentation in multisequence MRI images.

    Bereciartua, Arantza; Picon, Artzai; Galdran, Adrian; Iriondo, Pedro

    2016-08-01

    Biopsies for diagnosis can sometimes be replaced by non-invasive techniques such as CT and MRI. Surgeons require accurate and efficient methods that allow proper segmentation of the organs in order to ensure the most reliable intervention planning. Automated liver segmentation is a difficult and open problem where CT has been more widely explored than MRI. MRI liver segmentation represents a challenge due to the presence of characteristic artifacts, such as partial volumes, noise and low contrast. In this paper, we present a novel method for multichannel MRI automatic liver segmentation. The proposed method consists of the minimization of a 3D active surface by means of the dual approach to the variational formulation of the underlying problem. This active surface evolves over a probability map that is based on a new compact descriptor comprising spatial and multisequence information which is further modeled by means of a liver statistical model. This proposed 3D active surface approach naturally integrates volumetric regularization in the statistical model. The advantages of the compact visual descriptor together with the proposed approach result in a fast and accurate 3D segmentation method. The method was tested on 18 healthy liver studies and results were compared to a gold standard made by expert radiologists. Comparisons with other state-of-the-art approaches are provided by means of nine well established quality metrics. The obtained results improve these methodologies, achieving a Dice Similarity Coefficient of 98.59. PMID:27282235

  16. Technical validation of the Di3D stereophotogrammetry surface imaging system

    Winder, R.J.; Darvann, Tron Andre; McKnight, W.;

    2008-01-01

    The purpose of this work was to assess the technical performance of a three-dimensional surface imaging system for geometric accuracy and maximum field of view. The system was designed for stereophotogrammetry capture of digital images from three-dimensional surfaces of the head, face, and neck. A...

  17. EXAMINATION ABOUT INFLUENCE FOR PRECISION OF 3D IMAGE MEASUREMENT FROM THE GROUND CONTROL POINT MEASUREMENT AND SURFACE MATCHING

    T. Anai

    2015-05-01

    Full Text Available As the 3D image measurement software is now widely used with the recent development of computer-vision technology, the 3D measurement from the image is now has acquired the application field from desktop objects as wide as the topography survey in large geographical areas. Especially, the orientation, which used to be a complicated process in the heretofore image measurement, can be now performed automatically by simply taking many pictures around the object. And in the case of fully textured object, the 3D measurement of surface features is now done all automatically from the orientated images, and greatly facilitated the acquisition of the dense 3D point cloud from images with high precision. With all this development in the background, in the case of small and the middle size objects, we are now furnishing the all-around 3D measurement by a single digital camera sold on the market. And we have also developed the technology of the topographical measurement with the air-borne images taken by a small UAV [1~5]. In this present study, in the case of the small size objects, we examine the accuracy of surface measurement (Matching by the data of the experiments. And as to the topographic measurement, we examine the influence of GCP distribution on the accuracy by the data of the experiments. Besides, we examined the difference of the analytical results in each of the 3D image measurement software. This document reviews the processing flow of orientation and the 3D measurement of each software and explains the feature of the each software. And as to the verification of the precision of stereo-matching, we measured the test plane and the test sphere of the known form and assessed the result. As to the topography measurement, we used the air-borne image data photographed at the test field in Yadorigi of Matsuda City, Kanagawa Prefecture JAPAN. We have constructed Ground Control Point which measured by RTK-GPS and Total Station. And we show the results

  18. 3D Imager and Method for 3D imaging

    Kumar, P.; Staszewski, R.; Charbon, E.

    2013-01-01

    3D imager comprising at least one pixel, each pixel comprising a photodetectorfor detecting photon incidence and a time-to-digital converter system configured for referencing said photon incidence to a reference clock, and further comprising a reference clock generator provided for generating the re

  19. A parallelized surface extraction algorithm for large binary image data sets based on an adaptive 3D delaunay subdivision strategy.

    Ma, Yingliang; Saetzler, Kurt

    2008-01-01

    In this paper we describe a novel 3D subdivision strategy to extract the surface of binary image data. This iterative approach generates a series of surface meshes that capture different levels of detail of the underlying structure. At the highest level of detail, the resulting surface mesh generated by our approach uses only about 10% of the triangles in comparison to the marching cube algorithm (MC) even in settings were almost no image noise is present. Our approach also eliminates the so-called "staircase effect" which voxel based algorithms like the MC are likely to show, particularly if non-uniformly sampled images are processed. Finally, we show how the presented algorithm can be parallelized by subdividing 3D image space into rectilinear blocks of subimages. As the algorithm scales very well with an increasing number of processors in a multi-threaded setting, this approach is suited to process large image data sets of several gigabytes. Although the presented work is still computationally more expensive than simple voxel-based algorithms, it produces fewer surface triangles while capturing the same level of detail, is more robust towards image noise and eliminates the above-mentioned "staircase" effect in anisotropic settings. These properties make it particularly useful for biomedical applications, where these conditions are often encountered. PMID:17993710

  20. LEAF AREA INDEX ESTIMATION IN VINEYARDS FROM UAV HYPERSPECTRAL DATA, 2D IMAGE MOSAICS AND 3D CANOPY SURFACE MODELS

    I. Kalisperakis; Stentoumis, Ch.; L. Grammatikopoulos; K. Karantzalos

    2015-01-01

    The indirect estimation of leaf area index (LAI) in large spatial scales is crucial for several environmental and agricultural applications. To this end, in this paper, we compare and evaluate LAI estimation in vineyards from different UAV imaging datasets. In particular, canopy levels were estimated from i.e., (i) hyperspectral data, (ii) 2D RGB orthophotomosaics and (iii) 3D crop surface models. The computed canopy levels have been used to establish relationships with the measured ...

  1. Methods for comparing 3D surface attributes

    Pang, Alex; Freeman, Adam

    1996-03-01

    A common task in data analysis is to compare two or more sets of data, statistics, presentations, etc. A predominant method in use is side-by-side visual comparison of images. While straightforward, it burdens the user with the task of discerning the differences between the two images. The user if further taxed when the images are of 3D scenes. This paper presents several methods for analyzing the extent, magnitude, and manner in which surfaces in 3D differ in their attributes. The surface geometry are assumed to be identical and only the surface attributes (color, texture, etc.) are variable. As a case in point, we examine the differences obtained when a 3D scene is rendered progressively using radiosity with different form factor calculation methods. The comparison methods include extensions of simple methods such as mapping difference information to color or transparency, and more recent methods including the use of surface texture, perturbation, and adaptive placements of error glyphs.

  2. 3D vector flow imaging

    Pihl, Michael Johannes

    The main purpose of this PhD project is to develop an ultrasonic method for 3D vector flow imaging. The motivation is to advance the field of velocity estimation in ultrasound, which plays an important role in the clinic. The velocity of blood has components in all three spatial dimensions, yet...... conventional methods can estimate only the axial component. Several approaches for 3D vector velocity estimation have been suggested, but none of these methods have so far produced convincing in vivo results nor have they been adopted by commercial manufacturers. The basis for this project is the Transverse...... on the TO fields are suggested. They can be used to optimize the TO method. In the third part, a TO method for 3D vector velocity estimation is proposed. It employs a 2D phased array transducer and decouples the velocity estimation into three velocity components, which are estimated simultaneously based on 5...

  3. Evaluation of the Accuracy of a 3D Surface Imaging System for Patient Setup in Head and Neck Cancer Radiotherapy

    Purpose: To evaluate the accuracy of three-dimensional (3D) surface imaging system (AlignRT) registration algorithms for head-and-neck cancer patient setup during radiotherapy. Methods and Materials: Eleven patients, each undergoing six repeated weekly helical computed tomography (CT) scans during treatment course (total 77 CTs including planning CT), were included in the study. Patient surface images used in AlignRT registration were not captured by the 3D cameras; instead, they were derived from skin contours from these CTs, thereby eliminating issues with immobilization masks. The results from surface registrations in AlignRT based on CT skin contours were compared to those based on bony anatomy registrations in Pinnacle3, which was considered the gold standard. Both rigid and nonrigid types of setup errors were analyzed, and the effect of tumor shrinkage was investigated. Results: The maximum registration errors in AlignRT were 0.2° for rotations and 0.7 mm for translations in all directions. The rigid alignment accuracy in the head region when applied to actual patient data was 1.1°, 0.8°, and 2.2° in rotation and 4.5, 2.7, and 2.4 mm in translation along the vertical, longitudinal, and lateral axes at 90% confidence level. The accuracy was affected by the patient’s weight loss during treatment course, which was patient specific. Selectively choosing surface regions improved registration accuracy. The discrepancy for nonrigid registration was much larger at 1.9°, 2.4°, and 4.5° and 10.1, 11.9, and 6.9 mm at 90% confidence level. Conclusions: The 3D surface imaging system is capable of detecting rigid setup errors with good accuracy for head-and-neck cancer. Further investigations are needed to improve the accuracy in detecting nonrigid setup errors.

  4. Heat Equation to 3D Image Segmentation

    Nikolay Sirakov

    2006-04-01

    Full Text Available This paper presents a new approach, capable of 3D image segmentation and objects' surface reconstruction. The main advantages of the method are: large capture range; quick segmentation of a 3D scene/image to regions; multiple 3D objects reconstruction. The method uses centripetal force and penalty function to segment the entire 3D scene/image to regions containing a single 3D object. Each region is inscribed in a convex, smooth closed surface, which defines a centripetal force. Then the surface is evolved by the geometric heat differential equation toward the force's direction. The penalty function is defined to stop evolvement of those surface patches, whose normal vectors encountered object's surface. On the base of the theoretical model Forward Difference Algorithm was developed and coded by Mathematica. Stability convergence condition, truncation error and calculation complexity of the algorithm are determined. The obtained results, advantages and disadvantages of the method are discussed at the end of this paper.

  5. Evaluation of patellar cartilage surface lesions: comparison of CT arthrography and fat-suppressed FLASH 3D MR imaging

    Daenen, B.R.; Ferrara, M.A.; Marcelis, S.; Dondelinger, R.F. [Department of Medical Imaging, University Hospital Sart-Tilman, Liege (Belgium)

    1998-07-01

    The aim of this study was to evaluate the sensitivity and specificity of fat-suppressed fast low-angle shot (FLASH) 3D MR imaging in the detection of patellar cartilage surface lesions in comparison with CT arthrography. Fifty patients, with or without symptoms of chondromalacia, were prospectively examined by CT arthrography and fat-suppressed 3D gradient-echo MR imaging. All MR examinations were evaluated by three observers, two of them reaching a consensus interpretation. The lesions were graded according to their morphology and their extent. The CT arthrography was considered as the reference examination. For both sets of observers, the final diagnosis of chondromalacia was obtained in 92.5 %. The specificity was 60 % on a patient-by-patient basis. Fissures were missed in 83 and 60 %, respectively, but were isolated findings only in 2.5 % of the cases. Considering ulcers involving more than 50 % of the cartilage thickness, 65 and 88 %, respectively, were recognized. Fat-suppressed FLASH 3D is an adequate pulse sequence for the detection of patellar cartilage ulcers. It can be applied on a routine clinical basis, but it does not show as many fissures as CT arthrography and is less precise for grading of lesions. (orig.) With 4 figs., 3 tabs., 21 refs.

  6. Recognition methods for 3D textured surfaces

    Cula, Oana G.; Dana, Kristin J.

    2001-06-01

    Texture as a surface representation is the subject of a wide body of computer vision and computer graphics literature. While texture is always associated with a form of repetition in the image, the repeating quantity may vary. The texture may be a color or albedo variation as in a checkerboard, a paisley print or zebra stripes. Very often in real-world scenes, texture is instead due to a surface height variation, e.g. pebbles, gravel, foliage and any rough surface. Such surfaces are referred to here as 3D textured surfaces. Standard texture recognition algorithms are not appropriate for 3D textured surfaces because the appearance of these surfaces changes in a complex manner with viewing direction and illumination direction. Recent methods have been developed for recognition of 3D textured surfaces using a database of surfaces observed under varied imaging parameters. One of these methods is based on 3D textons obtained using K-means clustering of multiscale feature vectors. Another method uses eigen-analysis originally developed for appearance-based object recognition. In this work we develop a hybrid approach that employs both feature grouping and dimensionality reduction. The method is tested using the Columbia-Utrecht texture database and provides excellent recognition rates. The method is compared with existing recognition methods for 3D textured surfaces. A direct comparison is facilitated by empirical recognition rates from the same texture data set. The current method has key advantages over existing methods including requiring less prior information on both the training and novel images.

  7. Advanced 3-D Ultrasound Imaging

    Rasmussen, Morten Fischer

    been completed. This allows for precise measurements of organs dimensions and makes the scan more operator independent. Real-time 3-D ultrasound imaging is still not as widespread in use in the clinics as 2-D imaging. A limiting factor has traditionally been the low image quality achievable using...... and removes the need to integrate custom made electronics into the probe. A downside of row-column addressing 2-D arrays is the creation of secondary temporal lobes, or ghost echoes, in the point spread function. In the second part of the scientific contributions, row-column addressing of 2-D arrays...... was investigated. An analysis of how the ghost echoes can be attenuated was presented.Attenuating the ghost echoes were shown to be achieved by minimizing the first derivative of the apodization function. In the literature, a circular symmetric apodization function was proposed. A new apodization layout...

  8. Frontonasal dysmorphology in bipolar disorder by 3D laser surface imaging and geometric morphometrics: comparisons with schizophrenia.

    Hennessy, Robin J

    2010-09-01

    Any developmental relationship between bipolar disorder and schizophrenia engenders continuing debate. As the brain and face emerge in embryological intimacy, brain dysmorphogenesis is accompanied by facial dysmorphogenesis. 3D laser surface imaging was used to capture the facial surface of 13 male and 14 female patients with bipolar disorder in comparison with 61 male and 75 female control subjects and with 37 male and 32 female patients with schizophrenia. Surface images were analysed using geometric morphometrics and 3D visualisations to identify domains of facial shape that distinguish bipolar patients from controls and bipolar patients from those with schizophrenia. Both male and female bipolar patients evidenced significant facial dysmorphology: common to male and female patients was overall facial widening, increased width of nose, narrowing of mouth and upward displacement of the chin; dysmorphology differed between male and female patients for nose length, lip thickness and tragion height. There were few morphological differences in comparison with schizophrenia patients. That dysmorphology of the frontonasal prominences and related facial regions in bipolar disorder is more similar to than different from that found in schizophrenia indicates some common dysmorphogenesis. Bipolar disorder and schizophrenia might reflect similar insult(s) acting over slightly differing time-frames or slightly differing insult(s) acting over a similar time-frame.

  9. Quantitative Assessment of Variational Surface Reconstruction from Sparse Point Clouds in Freehand 3D Ultrasound Imaging during Image-Guided Tumor Ablation

    Shuangcheng Deng

    2016-04-01

    Full Text Available Surface reconstruction for freehand 3D ultrasound is used to provide 3D visualization of a VOI (volume of interest during image-guided tumor ablation surgery. This is a challenge because the recorded 2D B-scans are not only sparse but also non-parallel. To solve this issue, we established a framework to reconstruct the surface of freehand 3D ultrasound imaging in 2011. The key technique for surface reconstruction in that framework is based on variational interpolation presented by Greg Turk for shape transformation and is named Variational Surface Reconstruction (VSR. The main goal of this paper is to evaluate the quality of surface reconstructions, especially when the input data are extremely sparse point clouds from freehand 3D ultrasound imaging, using four methods: Ball Pivoting, Power Crust, Poisson, and VSR. Four experiments are conducted, and quantitative metrics, such as the Hausdorff distance, are introduced for quantitative assessment. The experiment results show that the performance of the proposed VSR method is the best of the four methods at reconstructing surface from sparse data. The VSR method can produce a close approximation to the original surface from as few as two contours, whereas the other three methods fail to do so. The experiment results also illustrate that the reproducibility of the VSR method is the best of the four methods.

  10. Neural Network Based 3D Surface Reconstruction

    Vincy Joseph

    2009-11-01

    Full Text Available This paper proposes a novel neural-network-based adaptive hybrid-reflectance three-dimensional (3-D surface reconstruction model. The neural network combines the diffuse and specular components into a hybrid model. The proposed model considers the characteristics of each point and the variant albedo to prevent the reconstructed surface from being distorted. The neural network inputs are the pixel values of the two-dimensional images to be reconstructed. The normal vectors of the surface can then be obtained from the output of the neural network after supervised learning, where the illuminant direction does not have to be known in advance. Finally, the obtained normal vectors can be applied to integration method when reconstructing 3-D objects. Facial images were used for training in the proposed approach

  11. Measurement of surface area of biological structures, based on 3D microscopic image data

    Kubínová, Lucie; Janáček, Jiří

    Vol. 1. Berlin : Springer, 2008 - (Luysberg, M.; Tillman, K.; Weirich, T.), s. 785-786 ISBN 978-3-540-85154-7. [European Microscopy Congress EMC 2008 /14./. Aachen (DE), 01.09.2008-05.09.2008] R&D Projects: GA MŠk(CZ) LC06063; GA AV ČR(CZ) IAA600110507; GA AV ČR(CZ) IAA100110502; GA AV ČR(CZ) IAA500200510 Institutional research plan: CEZ:AV0Z50110509 Keywords : surface area * stereology * confocal microscopy Subject RIV: EA - Cell Biology

  12. 3D Membrane Imaging and Porosity Visualization

    Sundaramoorthi, Ganesh

    2016-03-03

    Ultrafiltration asymmetric porous membranes were imaged by two microscopy methods, which allow 3D reconstruction: Focused Ion Beam and Serial Block Face Scanning Electron Microscopy. A new algorithm was proposed to evaluate porosity and average pore size in different layers orthogonal and parallel to the membrane surface. The 3D-reconstruction enabled additionally the visualization of pore interconnectivity in different parts of the membrane. The method was demonstrated for a block copolymer porous membrane and can be extended to other membranes with application in ultrafiltration, supports for forward osmosis, etc, offering a complete view of the transport paths in the membrane.

  13. Optimizing an SEM-based 3D surface imaging technique for recording bond coat surface geometry in thermal barrier coatings

    Creation of three-dimensional representations of surfaces from images taken at two or more view angles is a well-established technique applied to optical images and is frequently used in combination with scanning electron microscopy (SEM). The present work describes specific steps taken to optimize and enhance the repeatability of three-dimensional surfaces reconstructed from SEM images. The presented steps result in an approximately tenfold improvement in the repeatability of the surface reconstruction compared to more standard techniques. The enhanced techniques presented can be used with any SEM friendly samples. In this work the modified technique was developed in order to accurately quantify surface geometry changes in metallic bond coats used with thermal barrier coatings (TBCs) to provide improved turbine hot part durability. Bond coat surfaces are quite rough, and accurate determination of surface geometry change (rumpling) requires excellent repeatability. Rumpling is an important contributor to TBC failure, and accurate quantification of rumpling is important to better understanding of the failure behavior of TBCs. (paper)

  14. 3D Image Synthesis for B—Reps Objects

    黄正东; 彭群生; 等

    1991-01-01

    This paper presents a new algorithm for generating 3D images of B-reps objects with trimmed surface boundaries.The 3D image is a discrete voxel-map representation within a Cubic Frame Buffer (CFB).The definition of 3D images for curve,surface and solid object are introduced which imply the connectivity and fidelity requirements.Adaptive Forward Differencing matrix (AFD-matrix) for 1D-3D manifolds in 3D space is developed.By setting rules to update the AFD-matrix,the forward difference direction and stepwise can be adjusted.Finally,an efficient algorithm is presented based on the AFD-matrix concept for converting the object in 3D space to 3D image in 3D discrete space.

  15. 3D Chaotic Functions for Image Encryption

    Pawan N. Khade

    2012-05-01

    Full Text Available This paper proposes the chaotic encryption algorithm based on 3D logistic map, 3D Chebyshev map, and 3D, 2D Arnolds cat map for color image encryption. Here the 2D Arnolds cat map is used for image pixel scrambling and 3D Arnolds cat map is used for R, G, and B component substitution. 3D Chebyshev map is used for key generation and 3D logistic map is used for image scrambling. The use of 3D chaotic functions in the encryption algorithm provide more security by using the, shuffling and substitution to the encrypted image. The Chebyshev map is used for public key encryption and distribution of generated private keys.

  16. SU-E-J-55: End-To-End Effectiveness Analysis of 3D Surface Image Guided Voluntary Breath-Holding Radiotherapy for Left Breast

    Purpose To evaluate the effectiveness of using 3D-surface-image to guide breath-holding (BH) left-side breast treatment. Methods Two 3D surface image guided BH procedures were implemented and evaluated: normal-BH, taking BH at a comfortable level, and deep-inspiration-breath-holding (DIBH). A total of 20 patients (10 Normal-BH and 10 DIBH) were recruited. Patients received a BH evaluation using a commercialized 3D-surface- tracking-system (VisionRT, London, UK) to quantify the reproducibility of BH positions prior to CT scan. Tangential 3D/IMRT plans were conducted. Patients were initially setup under free-breathing (FB) condition using the FB surface obtained from the untaged CT to ensure a correct patient position. Patients were then guided to reach the planned BH position using the BH surface obtained from the BH CT. Action-levels were set at each phase of treatment process based on the information provided by the 3D-surface-tracking-system for proper interventions (eliminate/re-setup/ re-coaching). We reviewed the frequency of interventions to evaluate its effectiveness. The FB-CBCT and port-film were utilized to evaluate the accuracy of 3D-surface-guided setups. Results 25% of BH candidates with BH positioning uncertainty > 2mm are eliminated prior to CT scan. For >90% of fractions, based on the setup deltas from3D-surface-trackingsystem, adjustments of patient setup are needed after the initial-setup using laser. 3D-surface-guided-setup accuracy is comparable as CBCT. For the BH guidance, frequency of interventions (a re-coaching/re-setup) is 40%(Normal-BH)/91%(DIBH) of treatments for the first 5-fractions and then drops to 16%(Normal-BH)/46%(DIBH). The necessity of re-setup is highly patient-specific for Normal-BH but highly random among patients for DIBH. Overall, a −0.8±2.4 mm accuracy of the anterior pericardial shadow position was achieved. Conclusion 3D-surface-image technology provides effective intervention to the treatment process and ensures

  17. SU-E-J-55: End-To-End Effectiveness Analysis of 3D Surface Image Guided Voluntary Breath-Holding Radiotherapy for Left Breast

    Lin, M; Feigenberg, S [University of Maryland School of Medicine, Baltimore, MD (United States)

    2015-06-15

    Purpose To evaluate the effectiveness of using 3D-surface-image to guide breath-holding (BH) left-side breast treatment. Methods Two 3D surface image guided BH procedures were implemented and evaluated: normal-BH, taking BH at a comfortable level, and deep-inspiration-breath-holding (DIBH). A total of 20 patients (10 Normal-BH and 10 DIBH) were recruited. Patients received a BH evaluation using a commercialized 3D-surface- tracking-system (VisionRT, London, UK) to quantify the reproducibility of BH positions prior to CT scan. Tangential 3D/IMRT plans were conducted. Patients were initially setup under free-breathing (FB) condition using the FB surface obtained from the untaged CT to ensure a correct patient position. Patients were then guided to reach the planned BH position using the BH surface obtained from the BH CT. Action-levels were set at each phase of treatment process based on the information provided by the 3D-surface-tracking-system for proper interventions (eliminate/re-setup/ re-coaching). We reviewed the frequency of interventions to evaluate its effectiveness. The FB-CBCT and port-film were utilized to evaluate the accuracy of 3D-surface-guided setups. Results 25% of BH candidates with BH positioning uncertainty > 2mm are eliminated prior to CT scan. For >90% of fractions, based on the setup deltas from3D-surface-trackingsystem, adjustments of patient setup are needed after the initial-setup using laser. 3D-surface-guided-setup accuracy is comparable as CBCT. For the BH guidance, frequency of interventions (a re-coaching/re-setup) is 40%(Normal-BH)/91%(DIBH) of treatments for the first 5-fractions and then drops to 16%(Normal-BH)/46%(DIBH). The necessity of re-setup is highly patient-specific for Normal-BH but highly random among patients for DIBH. Overall, a −0.8±2.4 mm accuracy of the anterior pericardial shadow position was achieved. Conclusion 3D-surface-image technology provides effective intervention to the treatment process and ensures

  18. 3D Reconstruction of NMR Images

    Peter Izak; Milan Smetana; Libor Hargas; Miroslav Hrianka; Pavol Spanik

    2007-01-01

    This paper introduces experiment of 3D reconstruction NMR images scanned from magnetic resonance device. There are described methods which can be used for 3D reconstruction magnetic resonance images in biomedical application. The main idea is based on marching cubes algorithm. For this task was chosen sophistication method by program Vision Assistant, which is a part of program LabVIEW.

  19. 3D ultrafast ultrasound imaging in vivo

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra—and inter-observer variability. (fast track communication)

  20. Computer Modelling of 3D Geological Surface

    Kodge, B G

    2011-01-01

    The geological surveying presently uses methods and tools for the computer modeling of 3D-structures of the geographical subsurface and geotechnical characterization as well as the application of geoinformation systems for management and analysis of spatial data, and their cartographic presentation. The objectives of this paper are to present a 3D geological surface model of Latur district in Maharashtra state of India. This study is undertaken through the several processes which are discussed in this paper to generate and visualize the automated 3D geological surface model of a projected area.

  1. Computer Modelling of 3D Geological Surface

    Kodge B. G.

    2011-02-01

    Full Text Available The geological surveying presently uses methods and tools for the computer modeling of 3D-structures of the geographical subsurface and geotechnical characterization as well as the application of geoinformation systems for management and analysis of spatial data, and their cartographic presentation. The objectives of this paper are to present a 3D geological surface model of Latur district in Maharashtra state of India. This study is undertaken through the several processes which are discussed in this paper to generate and visualize the automated 3D geological surface model of a projected area.

  2. 3D Reconstruction of NMR Images

    Peter Izak

    2007-01-01

    Full Text Available This paper introduces experiment of 3D reconstruction NMR images scanned from magnetic resonance device. There are described methods which can be used for 3D reconstruction magnetic resonance images in biomedical application. The main idea is based on marching cubes algorithm. For this task was chosen sophistication method by program Vision Assistant, which is a part of program LabVIEW.

  3. Multiplane 3D superresolution optical fluctuation imaging

    Geissbuehler, Stefan; Godinat, Aurélien; Bocchio, Noelia L; Dubikovskaya, Elena A; Lasser, Theo; Leutenegger, Marcel

    2013-01-01

    By switching fluorophores on and off in either a deterministic or a stochastic manner, superresolution microscopy has enabled the imaging of biological structures at resolutions well beyond the diffraction limit. Superresolution optical fluctuation imaging (SOFI) provides an elegant way of overcoming the diffraction limit in all three spatial dimensions by computing higher-order cumulants of image sequences of blinking fluorophores acquired with a conventional widefield microscope. So far, three-dimensional (3D) SOFI has only been demonstrated by sequential imaging of multiple depth positions. Here we introduce a versatile imaging scheme which allows for the simultaneous acquisition of multiple focal planes. Using 3D cross-cumulants, we show that the depth sampling can be increased. Consequently, the simultaneous acquisition of multiple focal planes reduces the acquisition time and hence the photo-bleaching of fluorescent markers. We demonstrate multiplane 3D SOFI by imaging the mitochondria network in fixed ...

  4. Miniaturized 3D microscope imaging system

    Lan, Yung-Sung; Chang, Chir-Weei; Sung, Hsin-Yueh; Wang, Yen-Chang; Chang, Cheng-Yi

    2015-05-01

    We designed and assembled a portable 3-D miniature microscopic image system with the size of 35x35x105 mm3 . By integrating a microlens array (MLA) into the optical train of a handheld microscope, the biological specimen's image will be captured for ease of use in a single shot. With the light field raw data and program, the focal plane can be changed digitally and the 3-D image can be reconstructed after the image was taken. To localize an object in a 3-D volume, an automated data analysis algorithm to precisely distinguish profundity position is needed. The ability to create focal stacks from a single image allows moving or specimens to be recorded. Applying light field microscope algorithm to these focal stacks, a set of cross sections will be produced, which can be visualized using 3-D rendering. Furthermore, we have developed a series of design rules in order to enhance the pixel using efficiency and reduce the crosstalk between each microlens for obtain good image quality. In this paper, we demonstrate a handheld light field microscope (HLFM) to distinguish two different color fluorescence particles separated by a cover glass in a 600um range, show its focal stacks, and 3-D position.

  5. ICER-3D Hyperspectral Image Compression Software

    Xie, Hua; Kiely, Aaron; Klimesh, matthew; Aranki, Nazeeh

    2010-01-01

    Software has been developed to implement the ICER-3D algorithm. ICER-3D effects progressive, three-dimensional (3D), wavelet-based compression of hyperspectral images. If a compressed data stream is truncated, the progressive nature of the algorithm enables reconstruction of hyperspectral data at fidelity commensurate with the given data volume. The ICER-3D software is capable of providing either lossless or lossy compression, and incorporates an error-containment scheme to limit the effects of data loss during transmission. The compression algorithm, which was derived from the ICER image compression algorithm, includes wavelet-transform, context-modeling, and entropy coding subalgorithms. The 3D wavelet decomposition structure used by ICER-3D exploits correlations in all three dimensions of sets of hyperspectral image data, while facilitating elimination of spectral ringing artifacts, using a technique summarized in "Improving 3D Wavelet-Based Compression of Spectral Images" (NPO-41381), NASA Tech Briefs, Vol. 33, No. 3 (March 2009), page 7a. Correlation is further exploited by a context-modeling subalgorithm, which exploits spectral dependencies in the wavelet-transformed hyperspectral data, using an algorithm that is summarized in "Context Modeler for Wavelet Compression of Hyperspectral Images" (NPO-43239), which follows this article. An important feature of ICER-3D is a scheme for limiting the adverse effects of loss of data during transmission. In this scheme, as in the similar scheme used by ICER, the spatial-frequency domain is partitioned into rectangular error-containment regions. In ICER-3D, the partitions extend through all the wavelength bands. The data in each partition are compressed independently of those in the other partitions, so that loss or corruption of data from any partition does not affect the other partitions. Furthermore, because compression is progressive within each partition, when data are lost, any data from that partition received

  6. Volume-Rendering-Based Interactive 3D Measurement for Quantitative Analysis of 3D Medical Images

    Yakang Dai; Jian Zheng; Yuetao Yang; Duojie Kuai; Xiaodong Yang

    2013-01-01

    3D medical images are widely used to assist diagnosis and surgical planning in clinical applications, where quantitative measurement of interesting objects in the image is of great importance. Volume rendering is widely used for qualitative visualization of 3D medical images. In this paper, we introduce a volume-rendering-based interactive 3D measurement framework for quantitative analysis of 3D medical images. In the framework, 3D widgets and volume clipping are integrated with volume render...

  7. Acquisition and applications of 3D images

    Sterian, Paul; Mocanu, Elena

    2007-08-01

    The moiré fringes method and their analysis up to medical and entertainment applications are discussed in this paper. We describe the procedure of capturing 3D images with an Inspeck Camera that is a real-time 3D shape acquisition system based on structured light techniques. The method is a high-resolution one. After processing the images, using computer, we can use the data for creating laser fashionable objects by engraving them with a Q-switched Nd:YAG. In medical field we mention the plastic surgery and the replacement of X-Ray especially in pediatric use.

  8. 3D camera tracking from disparity images

    Kim, Kiyoung; Woo, Woontack

    2005-07-01

    In this paper, we propose a robust camera tracking method that uses disparity images computed from known parameters of 3D camera and multiple epipolar constraints. We assume that baselines between lenses in 3D camera and intrinsic parameters are known. The proposed method reduces camera motion uncertainty encountered during camera tracking. Specifically, we first obtain corresponding feature points between initial lenses using normalized correlation method. In conjunction with matching features, we get disparity images. When the camera moves, the corresponding feature points, obtained from each lens of 3D camera, are robustly tracked via Kanade-Lukas-Tomasi (KLT) tracking algorithm. Secondly, relative pose parameters of each lens are calculated via Essential matrices. Essential matrices are computed from Fundamental matrix calculated using normalized 8-point algorithm with RANSAC scheme. Then, we determine scale factor of translation matrix by d-motion. This is required because the camera motion obtained from Essential matrix is up to scale. Finally, we optimize camera motion using multiple epipolar constraints between lenses and d-motion constraints computed from disparity images. The proposed method can be widely adopted in Augmented Reality (AR) applications, 3D reconstruction using 3D camera, and fine surveillance systems which not only need depth information, but also camera motion parameters in real-time.

  9. 3D Reconstruction in Magnetic Resonance Imaging

    Mikulka, J.; Bartušek, Karel

    Cambridge : The Electromagnetics Academy, 2010, s. 1043-1046. ISBN 978-1-934142-14-1. [PIERS 2010 Cambridge. Cambridge (US), 05.07.2010-08.07.2010] R&D Projects: GA ČR GA102/09/0314 Institutional research plan: CEZ:AV0Z20650511 Keywords : 3D reconstruction * magnetic resonance imaging Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  10. Feasibility of 3D harmonic contrast imaging

    Voormolen, M.M.; Bouakaz, A.; Krenning, B.J.; Lancée, C.; Cate, ten F.; Jong, de N.

    2004-01-01

    Improved endocardial border delineation with the application of contrast agents should allow for less complex and faster tracing algorithms for left ventricular volume analysis. We developed a fast rotating phased array transducer for 3D imaging of the heart with harmonic capabilities making it suit

  11. 3D ultrasound imaging for prosthesis fabrication and diagnostic imaging

    Morimoto, A.K.; Bow, W.J.; Strong, D.S. [and others

    1995-06-01

    The fabrication of a prosthetic socket for a below-the-knee amputee requires knowledge of the underlying bone structure in order to provide pressure relief for sensitive areas and support for load bearing areas. The goal is to enable the residual limb to bear pressure with greater ease and utility. Conventional methods of prosthesis fabrication are based on limited knowledge about the patient`s underlying bone structure. A 3D ultrasound imaging system was developed at Sandia National Laboratories. The imaging system provides information about the location of the bones in the residual limb along with the shape of the skin surface. Computer assisted design (CAD) software can use this data to design prosthetic sockets for amputees. Ultrasound was selected as the imaging modality. A computer model was developed to analyze the effect of the various scanning parameters and to assist in the design of the overall system. The 3D ultrasound imaging system combines off-the-shelf technology for image capturing, custom hardware, and control and image processing software to generate two types of image data -- volumetric and planar. Both volumetric and planar images reveal definition of skin and bone geometry with planar images providing details on muscle fascial planes, muscle/fat interfaces, and blood vessel definition. The 3D ultrasound imaging system was tested on 9 unilateral below-the- knee amputees. Image data was acquired from both the sound limb and the residual limb. The imaging system was operated in both volumetric and planar formats. An x-ray CT (Computed Tomography) scan was performed on each amputee for comparison. Results of the test indicate beneficial use of ultrasound to generate databases for fabrication of prostheses at a lower cost and with better initial fit as compared to manually fabricated prostheses.

  12. 3D surface analysis and classification in neuroimaging segmentation.

    Zagar, Martin; Mlinarić, Hrvoje; Knezović, Josip

    2011-06-01

    This work emphasizes new algorithms for 3D edge and corner detection used in surface extraction and new concept of image segmentation in neuroimaging based on multidimensional shape analysis and classification. We propose using of NifTI standard for describing input data which enables interoperability and enhancement of existing computing tools used widely in neuroimaging research. In methods section we present our newly developed algorithm for 3D edge and corner detection, together with the algorithm for estimating local 3D shape. Surface of estimated shape is analyzed and segmented according to kernel shapes. PMID:21755723

  13. The effect of spatial micro-CT image resolution and surface complexity on the morphological 3D analysis of open porous structures

    Pyka, Grzegorz, E-mail: gregory.pyka@mtm.kuleuven.be [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 – PB2450, B-3001 Leuven (Belgium); Kerckhofs, Greet [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 – PB2450, B-3001 Leuven (Belgium); Biomechanics Research Unit, Université de Liege, Chemin des Chevreuils 1 - BAT 52/3, B-4000 Liège (Belgium); Schrooten, Jan; Wevers, Martine [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 – PB2450, B-3001 Leuven (Belgium)

    2014-01-15

    In material science microfocus X-ray computed tomography (micro-CT) is one of the most popular non-destructive techniques to visualise and quantify the internal structure of materials in 3D. Despite constant system improvements, state-of-the-art micro-CT images can still hold several artefacts typical for X-ray CT imaging that hinder further image-based processing, structural and quantitative analysis. For example spatial resolution is crucial for an appropriate characterisation as the voxel size essentially influences the partial volume effect. However, defining the adequate image resolution is not a trivial aspect and understanding the correlation between scan parameters like voxel size and the structural properties is crucial for comprehensive material characterisation using micro-CT. Therefore, the objective of this study was to evaluate the influence of the spatial image resolution on the micro-CT based morphological analysis of three-dimensional (3D) open porous structures with a high surface complexity. In particular the correlation between the local surface properties and the accuracy of the micro-CT-based macro-morphology of 3D open porous Ti6Al4V structures produced by selective laser melting (SLM) was targeted and revealed for rough surfaces a strong dependence of the resulting structure characteristics on the scan resolution. Reducing the surface complexity by chemical etching decreased the sensitivity of the overall morphological analysis to the spatial image resolution and increased the detection limit. This study showed that scan settings and image processing parameters need to be customized to the material properties, morphological parameters under investigation and the desired final characteristics (in relation to the intended functional use). Customization of the scan resolution can increase the reliability of the micro-CT based analysis and at the same time reduce its operating costs. - Highlights: • We examine influence of the image resolution

  14. 3-D Reconstruction From Satellite Images

    Denver, Troelz

    1999-01-01

    The aim of this project has been to implement a software system, that is able to create a 3-D reconstruction from two or more 2-D photographic images made from different positions. The height is determined from the disparity difference of the images. The general purpose of the system is mapping of......, where various methods have been tested in order to optimize the performance. The match results are used in the reconstruction part to establish a 3-D digital representation and finally, different presentation forms are discussed....... treated individually. A detailed treatment of various lens distortions is required, in order to correct for these problems. This subject is included in the acquisition part. In the calibration part, the perspective distortion is removed from the images. Most attention has been paid to the matching problem...

  15. Backhoe 3D "gold standard" image

    Gorham, LeRoy; Naidu, Kiranmai D.; Majumder, Uttam; Minardi, Michael A.

    2005-05-01

    ViSUAl-D (VIsual Sar Using ALl Dimensions), a 2004 DARPA/IXO seedling effort, is developing a capability for reliable high confidence ID from standoff ranges. Recent conflicts have demonstrated that the warfighter would greatly benefit from the ability to ID targets beyond visual and electro-optical ranges[1]. Forming optical-quality SAR images while exploiting full polarization, wide angles, and large bandwidth would be key evidence such a capability is achievable. Using data generated by the Xpatch EM scattering code, ViSUAl-D investigates all degrees of freedom available to the radar designer, including 6 GHz bandwidth, full polarization and angle sampling over 2π steradians (upper hemisphere), in order to produce a "literal" image or representation of the target. This effort includes the generation of a "Gold Standard" image that can be produced at X-band utilizing all available target data. This "Gold Standard" image of the backhoe will serve as a test bed for future more relevant military targets and their image development. The seedling team produced a public release data which was released at the 2004 SPIE conference, as well as a 3D "Gold Standard" backhoe image using a 3D image formation algorithm. This paper describes the full backhoe data set, the image formation algorithm, the visualization process and the resulting image.

  16. A full-field and real-time 3D surface imaging augmented DOT system for in-vivo small animal studies

    Yi, Steven X.; Yang, Bingcheng; Yin, Gongjie

    2010-02-01

    A crucial parameter in Diffuse Optical Tomography (DOT) is the construction of an accurate forward model, which greatly depends on tissue boundary. Since photon propagation is a three-dimensional volumetric problem, extraction and subsequent modeling of three-dimensional boundaries is essential. Original experimental demonstration of the feasibility of DOT to reconstruct absorbers, scatterers and fluorochromes used phantoms or tissues confined appropriately to conform to easily modeled geometries such as a slab or a cylinder. In later years several methods have been developed to model photon propagation through diffuse media with complex boundaries using numerical solutions of the diffusion or transport equation (finite elements or differences) or more recently analytical methods based on the tangent-plane method . While optical examinations performed simultaneously with anatomical imaging modalities such as MRI provide well-defined boundaries, very limited progress has been done so far in extracting full-field (360 degree) boundaries for in-vivo three-dimensional DOT stand-alone imaging. In this paper, we present a desktop multi-spectrum in-vivo 3D DOT system for small animal imaging. This system is augmented with Technest's full-field 3D cameras. The built system has the capability of acquiring 3D object surface profiles in real time and registering 3D boundary with diffuse tomography. Extensive experiments are performed on phantoms and small animals by our collaborators at the Center for Molecular Imaging Research (CMIR) at Massachusetts General Hospital (MGH) and Harvard Medical School. Data has shown successful reconstructed DOT data with improved accuracy.

  17. Metrological characterization of 3D imaging devices

    Guidi, G.

    2013-04-01

    Manufacturers often express the performance of a 3D imaging device in various non-uniform ways for the lack of internationally recognized standard requirements for metrological parameters able to identify the capability of capturing a real scene. For this reason several national and international organizations in the last ten years have been developing protocols for verifying such performance. Ranging from VDI/VDE 2634, published by the Association of German Engineers and oriented to the world of mechanical 3D measurements (triangulation-based devices), to the ASTM technical committee E57, working also on laser systems based on direct range detection (TOF, Phase Shift, FM-CW, flash LADAR), this paper shows the state of the art about the characterization of active range devices, with special emphasis on measurement uncertainty, accuracy and resolution. Most of these protocols are based on special objects whose shape and size are certified with a known level of accuracy. By capturing the 3D shape of such objects with a range device, a comparison between the measured points and the theoretical shape they should represent is possible. The actual deviations can be directly analyzed or some derived parameters can be obtained (e.g. angles between planes, distances between barycenters of spheres rigidly connected, frequency domain parameters, etc.). This paper shows theoretical aspects and experimental results of some novel characterization methods applied to different categories of active 3D imaging devices based on both principles of triangulation and direct range detection.

  18. 3D IMAGING USING COHERENT SYNCHROTRON RADIATION

    Peter Cloetens

    2011-05-01

    Full Text Available Three dimensional imaging is becoming a standard tool for medical, scientific and industrial applications. The use of modem synchrotron radiation sources for monochromatic beam micro-tomography provides several new features. Along with enhanced signal-to-noise ratio and improved spatial resolution, these include the possibility of quantitative measurements, the easy incorporation of special sample environment devices for in-situ experiments, and a simple implementation of phase imaging. These 3D approaches overcome some of the limitations of 2D measurements. They require new tools for image analysis.

  19. 3D Surface Analysis and Classification in Neuroimaging Segmentation

    Žagar, Martin; Mlinarić, Hrvoje; Knezović, Josip

    2011-01-01

    This work emphasizes new algorithms for 3D edge and corner detection used in surface extraction and new concept of image segmentation in neuroimaging based on multidimensional shape analysis and classification. We propose using of NifTI standard for describing input data which enables interoperability and enhancement of existing computing tools used widely in neuroimaging research. In methods section we present our newly developed algorithm for 3D edge and corner detection, togeth...

  20. 3D Human cartilage surface characterization by optical coherence tomography

    Brill, Nicolai; Riedel, Jörn; Schmitt, Robert; Tingart, Markus; Truhn, Daniel; Pufe, Thomas; Jahr, Holger; Nebelung, Sven

    2015-10-01

    Early diagnosis and treatment of cartilage degeneration is of high clinical interest. Loss of surface integrity is considered one of the earliest and most reliable signs of degeneration, but cannot currently be evaluated objectively. Optical Coherence Tomography (OCT) is an arthroscopically available light-based non-destructive real-time imaging technology that allows imaging at micrometre resolutions to millimetre depths. As OCT-based surface evaluation standards remain to be defined, the present study investigated the diagnostic potential of 3D surface profile parameters in the comprehensive evaluation of cartilage degeneration. To this end, 45 cartilage samples of different degenerative grades were obtained from total knee replacements (2 males, 10 females; mean age 63.8 years), cut to standard size and imaged using a spectral-domain OCT device (Thorlabs, Germany). 3D OCT datasets of 8  ×  8, 4  ×  4 and 1  ×  1 mm (width  ×  length) were obtained and pre-processed (image adjustments, morphological filtering). Subsequent automated surface identification algorithms were used to obtain the 3D primary profiles, which were then filtered and processed using established algorithms employing ISO standards. The 3D surface profile thus obtained was used to calculate a set of 21 3D surface profile parameters, i.e. height (e.g. Sa), functional (e.g. Sk), hybrid (e.g. Sdq) and segmentation-related parameters (e.g. Spd). Samples underwent reference histological assessment according to the Degenerative Joint Disease classification. Statistical analyses included calculation of Spearman’s rho and assessment of inter-group differences using the Kruskal Wallis test. Overall, the majority of 3D surface profile parameters revealed significant degeneration-dependent differences and correlations with the exception of severe end-stage degeneration and were of distinct diagnostic value in the assessment of surface integrity. None of the 3D

  1. 3D Model Assisted Image Segmentation

    Jayawardena, Srimal; Hutter, Marcus

    2012-01-01

    The problem of segmenting a given image into coherent regions is important in Computer Vision and many industrial applications require segmenting a known object into its components. Examples include identifying individual parts of a component for process control work in a manufacturing plant and identifying parts of a car from a photo for automatic damage detection. Unfortunately most of an object's parts of interest in such applications share the same pixel characteristics, having similar colour and texture. This makes segmenting the object into its components a non-trivial task for conventional image segmentation algorithms. In this paper, we propose a "Model Assisted Segmentation" method to tackle this problem. A 3D model of the object is registered over the given image by optimising a novel gradient based loss function. This registration obtains the full 3D pose from an image of the object. The image can have an arbitrary view of the object and is not limited to a particular set of views. The segmentation...

  2. Image based 3D city modeling : Comparative study

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2014-06-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing rapidly for various engineering and non-engineering applications. Generally four main image based approaches were used for virtual 3D city models generation. In first approach, researchers were used Sketch based modeling, second method is Procedural grammar based modeling, third approach is Close range photogrammetry based modeling and fourth approach is mainly based on Computer Vision techniques. SketchUp, CityEngine, Photomodeler and Agisoft Photoscan are the main softwares to represent these approaches respectively. These softwares have different approaches & methods suitable for image based 3D city modeling. Literature study shows that till date, there is no complete such type of comparative study available to create complete 3D city model by using images. This paper gives a comparative assessment of these four image based 3D modeling approaches. This comparative study is mainly based on data acquisition methods, data processing techniques and output 3D model products. For this research work, study area is the campus of civil engineering department, Indian Institute of Technology, Roorkee (India). This 3D campus acts as a prototype for city. This study also explains various governing parameters, factors and work experiences. This research work also gives a brief introduction, strengths and weakness of these four image based techniques. Some personal comment is also given as what can do or what can't do from these softwares. At the last, this study shows; it concluded that, each and every software has some advantages and limitations. Choice of software depends on user requirements of 3D project. For normal visualization project, SketchUp software is a good option. For 3D documentation record, Photomodeler gives good result. For Large city

  3. PLOT3D- DRAWING THREE DIMENSIONAL SURFACES

    Canright, R. B.

    1994-01-01

    PLOT3D is a package of programs to draw three-dimensional surfaces of the form z = f(x,y). The function f and the boundary values for x and y are the input to PLOT3D. The surface thus defined may be drawn after arbitrary rotations. However, it is designed to draw only functions in rectangular coordinates expressed explicitly in the above form. It cannot, for example, draw a sphere. Output is by off-line incremental plotter or online microfilm recorder. This package, unlike other packages, will plot any function of the form z = f(x,y) and portrays continuous and bounded functions of two independent variables. With curve fitting; however, it can draw experimental data and pictures which cannot be expressed in the above form. The method used is division into a uniform rectangular grid of the given x and y ranges. The values of the supplied function at the grid points (x, y) are calculated and stored; this defines the surface. The surface is portrayed by connecting successive (y,z) points with straight-line segments for each x value on the grid and, in turn, connecting successive (x,z) points for each fixed y value on the grid. These lines are then projected by parallel projection onto the fixed yz-plane for plotting. This program has been implemented on the IBM 360/67 with on-line CDC microfilm recorder.

  4. Micromachined Ultrasonic Transducers for 3-D Imaging

    Christiansen, Thomas Lehrmann

    Real-time ultrasound imaging is a widely used technique in medical diagnostics. Recently, ultrasound systems offering real-time imaging in 3-D has emerged. However, the high complexity of the transducer probes and the considerable increase in data to be processed compared to conventional 2-D...... ultrasound imaging results in expensive systems, which limits the more wide-spread use and clinical development of volumetric ultrasound. The main goal of this thesis is to demonstrate new transducer technologies that can achieve real-time volumetric ultrasound imaging without the complexity and cost...... capable of producing 62+62-element row-column addressed CMUT arrays with negligible charging issues. The arrays include an integrated apodization, which reduces the ghost echoes produced by the edge waves in such arrays by 15:8 dB. The acoustical cross-talk is measured on fabricated arrays, showing a 24 d...

  5. 3D Tongue Motion from Tagged and Cine MR Images

    Xing, Fangxu; Woo, Jonghye; Murano, Emi Z.; Lee, Junghoon; Stone, Maureen; Prince, Jerry L.

    2013-01-01

    Understanding the deformation of the tongue during human speech is important for head and neck surgeons and speech and language scientists. Tagged magnetic resonance (MR) imaging can be used to image 2D motion, and data from multiple image planes can be combined via post-processing to yield estimates of 3D motion. However, lacking boundary information, this approach su ers from inaccurate estimates near the tongue surface. This paper describes a method that combines two sources of information...

  6. Application of 3D Scanned Imaging Methodology for Volume, Surface Area, and Envelope Density Evaluation of Densified Biomass

    Measurement of surface area, volume, and density is an essential for quantifying, evaluating, and designing the biomass densification, storage, and transport operations. Acquiring accurate and repeated measurements of these parameters for hygroscopic densified biomass are not straightforward and on...

  7. 3-D SAR image formation from sparse aperture data using 3-D target grids

    Bhalla, Rajan; Li, Junfei; Ling, Hao

    2005-05-01

    The performance of ATR systems can potentially be improved by using three-dimensional (3-D) SAR images instead of the traditional two-dimensional SAR images or one-dimensional range profiles. 3-D SAR image formation of targets from radar backscattered data collected on wide angle, sparse apertures has been identified by AFRL as fundamental to building an object detection and recognition capability. A set of data has been released as a challenge problem. This paper describes a technique based on the concept of 3-D target grids aimed at the formation of 3-D SAR images of targets from sparse aperture data. The 3-D target grids capture the 3-D spatial and angular scattering properties of the target and serve as matched filters for SAR formation. The results of 3-D SAR formation using the backhoe public release data are presented.

  8. Method for 3D Rendering Based on Intersection Image Display Which Allows Representation of Internal Structure of 3D objects

    Kohei Arai

    2013-01-01

    Method for 3D rendering based on intersection image display which allows representation of internal structure is proposed. The proposed method is essentially different from the conventional volume rendering based on solid model which allows representation of just surface of the 3D objects. By using afterimage, internal structure can be displayed through exchanging the intersection images with internal structure for the proposed method. Through experiments with CT scan images, the proposed met...

  9. 3D Buildings Extraction from Aerial Images

    Melnikova, O.; Prandi, F.

    2011-09-01

    This paper introduces a semi-automatic method for buildings extraction through multiple-view aerial image analysis. The advantage of the used semi-automatic approach is that it allows processing of each building individually finding the parameters of buildings features extraction more precisely for each area. On the early stage the presented technique uses an extraction of line segments that is done only inside of areas specified manually. The rooftop hypothesis is used further to determine a subset of quadrangles, which could form building roofs from a set of extracted lines and corners obtained on the previous stage. After collecting of all potential roof shapes in all images overlaps, the epipolar geometry is applied to find matching between images. This allows to make an accurate selection of building roofs removing false-positive ones and to identify their global 3D coordinates given camera internal parameters and coordinates. The last step of the image matching is based on geometrical constraints in contrast to traditional correlation. The correlation is applied only in some highly restricted areas in order to find coordinates more precisely, in such a way significantly reducing processing time of the algorithm. The algorithm has been tested on a set of Milan's aerial images and shows highly accurate results.

  10. 3D evaluation of the surface roughness using stereo images made in sem - influence on osteoblast cell growth

    Douděrová, M.; Starý, V.; Tolde, Z.; Bačáková, Lucie

    2006-01-01

    Roč. 9, č. 58-60 (2006), s. 13-14. ISSN 1429-7248 R&D Projects: GA ČR(CZ) GA101/06/0226 Institutional research plan: CEZ:AV0Z50110509 Keywords : bone tissue engineering * carbon composites * surface modification Subject RIV: EI - Biotechnology ; Bionics

  11. 3DSEM++: Adaptive and intelligent 3D SEM surface reconstruction.

    Tafti, Ahmad P; Holz, Jessica D; Baghaie, Ahmadreza; Owen, Heather A; He, Max M; Yu, Zeyun

    2016-08-01

    Structural analysis of microscopic objects is a longstanding topic in several scientific disciplines, such as biological, mechanical, and materials sciences. The scanning electron microscope (SEM), as a promising imaging equipment has been around for decades to determine the surface properties (e.g., compositions or geometries) of specimens by achieving increased magnification, contrast, and resolution greater than one nanometer. Whereas SEM micrographs still remain two-dimensional (2D), many research and educational questions truly require knowledge and facts about their three-dimensional (3D) structures. 3D surface reconstruction from SEM images leads to remarkable understanding of microscopic surfaces, allowing informative and qualitative visualization of the samples being investigated. In this contribution, we integrate several computational technologies including machine learning, contrario methodology, and epipolar geometry to design and develop a novel and efficient method called 3DSEM++ for multi-view 3D SEM surface reconstruction in an adaptive and intelligent fashion. The experiments which have been performed on real and synthetic data assert the approach is able to reach a significant precision to both SEM extrinsic calibration and its 3D surface modeling. PMID:27200484

  12. DATA PROCESSING TECHNOLOGY OF AIRBORNE 3D IMAGE

    2001-01-01

    Airborne 3D image which integrates GPS,attitude measurement unit (AMU),sca nning laser rangefinder (SLR) and spectral scanner has been developed successful ly.The spectral scanner and SLR use the same optical system which ensures laser point to match pixel seamlessly.The distinctive advantage of 3D image is that it can produce geo_referenced images and DSM (digital surface models) images wi thout any ground control points (GCPs).It is no longer necessary to sur vey GCPs and with some softwares the data can be processed and produce digital s urface models (DSM) and geo_referenced images in quasi_real_time,therefore,the efficiency of 3 D image is 10~100 times higher than that of traditional approaches.The process ing procedure involves decomposing and checking the raw data,processing GPS dat a,calculating the positions of laser sample points,producing geo_referenced im age,producing DSM and mosaicing strips.  The principle of 3D image is first introduced in this paper,and then we focus on the fast processing technique and algorithm.The flight tests and processed r esults show that the processing technique is feasible and can meet the requireme nt of quasi_real_time applications.

  13. Photogrammetric 3D reconstruction using mobile imaging

    Fritsch, Dieter; Syll, Miguel

    2015-03-01

    In our paper we demonstrate the development of an Android Application (AndroidSfM) for photogrammetric 3D reconstruction that works on smartphones and tablets likewise. The photos are taken with mobile devices, and can thereafter directly be calibrated using standard calibration algorithms of photogrammetry and computer vision, on that device. Due to still limited computing resources on mobile devices, a client-server handshake using Dropbox transfers the photos to the sever to run AndroidSfM for the pose estimation of all photos by Structure-from-Motion and, thereafter, uses the oriented bunch of photos for dense point cloud estimation by dense image matching algorithms. The result is transferred back to the mobile device for visualization and ad-hoc on-screen measurements.

  14. 3D object-oriented image analysis in 3D geophysical modelling

    Fadel, I.; van der Meijde, M.; Kerle, N.;

    2015-01-01

    Non-uniqueness of satellite gravity interpretation has traditionally been reduced by using a priori information from seismic tomography models. This reduction in the non-uniqueness has been based on velocity-density conversion formulas or user interpretation of the 3D subsurface structures (objects......) based on the seismic tomography models and then forward modelling these objects. However, this form of object-based approach has been done without a standardized methodology on how to extract the subsurface structures from the 3D models. In this research, a 3D object-oriented image analysis (3D OOA......) approach was implemented to extract the 3D subsurface structures from geophysical data. The approach was applied on a 3D shear wave seismic tomography model of the central part of the East African Rift System. Subsequently, the extracted 3D objects from the tomography model were reconstructed in the 3D...

  15. Handbook of 3D machine vision optical metrology and imaging

    Zhang, Song

    2013-01-01

    With the ongoing release of 3D movies and the emergence of 3D TVs, 3D imaging technologies have penetrated our daily lives. Yet choosing from the numerous 3D vision methods available can be frustrating for scientists and engineers, especially without a comprehensive resource to consult. Filling this gap, Handbook of 3D Machine Vision: Optical Metrology and Imaging gives an extensive, in-depth look at the most popular 3D imaging techniques. It focuses on noninvasive, noncontact optical methods (optical metrology and imaging). The handbook begins with the well-studied method of stereo vision and

  16. Progress in 3D imaging and display by integral imaging

    Martinez-Cuenca, R.; Saavedra, G.; Martinez-Corral, M.; Pons, A.; Javidi, B.

    2009-05-01

    Three-dimensionality is currently considered an important added value in imaging devices, and therefore the search for an optimum 3D imaging and display technique is a hot topic that is attracting important research efforts. As main value, 3D monitors should provide the observers with different perspectives of a 3D scene by simply varying the head position. Three-dimensional imaging techniques have the potential to establish a future mass-market in the fields of entertainment and communications. Integral imaging (InI), which can capture true 3D color images, has been seen as the right technology to 3D viewing to audiences of more than one person. Due to the advanced degree of development, InI technology could be ready for commercialization in the coming years. This development is the result of a strong research effort performed along the past few years by many groups. Since Integral Imaging is still an emerging technology, the first aim of the "3D Imaging and Display Laboratory" at the University of Valencia, has been the realization of a thorough study of the principles that govern its operation. Is remarkable that some of these principles have been recognized and characterized by our group. Other contributions of our research have been addressed to overcome some of the classical limitations of InI systems, like the limited depth of field (in pickup and in display), the poor axial and lateral resolution, the pseudoscopic-to-orthoscopic conversion, the production of 3D images with continuous relief, or the limited range of viewing angles of InI monitors.

  17. 3D Micro-topography of Transferred Laboratory and Natural Ice Crystal Surfaces Imaged by Cryo and Environmental Scanning Electron Microscopy

    Magee, N. B.; Boaggio, K.; Bancroft, L.; Bandamede, M.

    2015-12-01

    Recent work has highlighted micro-scale roughness on the surfaces of ice crystals grown and imaged in-situ within the chambers of environmental scanning electron microscopes (ESEM). These observations appear to align with theoretical and satellite observations that suggest a prevalence of rough ice in cirrus clouds. However, the atmospheric application of the lab observations are indeterminate because the observations have been based only on crystals grown on substrates and in pure-water vapor environments. In this work, we present details and results from the development of a transfer technique which allows natural and lab-grown ice and snow crystals to be captured, preserved, and transferred into the ESEM for 3D imaging. Ice crystals were gathered from 1) natural snow, 2) a balloon-borne cirrus particle capture device, and 3) lab-grown ice crystals from a diffusion chamber. Ice crystals were captured in a pre-conditioned small-volume (~1 cm3) cryo-containment cell. The cell was then sealed closed and transferred to a specially-designed cryogenic dewer (filled with liquid nitrogen or crushed dry ice) for transport to a new Hitachi Field Emission, Variable Pressure SEM (SU-5000). The cryo-cell was then removed from the dewer and quickly placed onto the pre-conditioned cryo transfer stage attached to the ESEM (Quorum 3010T). Quantitative 3D topographical digital elevation models of ice surfaces are reported from SEM for the first time, including a variety of objective measures of statistical surface roughness. The surfaces of the transported crystals clearly exhibit signatures of mesoscopic roughening that are similar to examples of roughness seen in ESEM-grown crystals. For most transported crystals, the habits and crystal edges are more intricate that those observed for ice grown directly on substrates within the ESEM chamber. Portions of some crystals do appear smooth even at magnification greater than 1000x, a rare observation in our ESEM-grown crystals. The

  18. Computer-based image analysis in radiological diagnostics and image-guided therapy 3D-Reconstruction, contrast medium dynamics, surface analysis, radiation therapy and multi-modal image fusion

    Beier, J

    2001-01-01

    This book deals with substantial subjects of postprocessing and analysis of radiological image data, a particular emphasis was put on pulmonary themes. For a multitude of purposes the developed methods and procedures can directly be transferred to other non-pulmonary applications. The work presented here is structured in 14 chapters, each describing a selected complex of research. The chapter order reflects the sequence of the processing steps starting from artefact reduction, segmentation, visualization, analysis, therapy planning and image fusion up to multimedia archiving. In particular, this includes virtual endoscopy with three different scene viewers (Chap. 6), visualizations of the lung disease bronchiectasis (Chap. 7), surface structure analysis of pulmonary tumors (Chap. 8), quantification of contrast medium dynamics from temporal 2D and 3D image sequences (Chap. 9) as well as multimodality image fusion of arbitrary tomographical data using several visualization techniques (Chap. 12). Thus, the softw...

  19. 3D VSP imaging in the Deepwater GOM

    Hornby, B. E.

    2005-05-01

    Seismic imaging challenges in the Deepwater GOM include surface and sediment related multiples and issues arising from complicated salt bodies. Frequently, wells encounter geologic complexity not resolved on conventional surface seismic section. To help address these challenges BP has been acquiring 3D VSP (Vertical Seismic Profile) surveys in the Deepwater GOM. The procedure involves placing an array of seismic sensors in the borehole and acquiring a 3D seismic dataset with a surface seismic gunboat that fires airguns in a spiral pattern around the wellbore. Placing the seismic geophones in the borehole provides a higher resolution and more accurate image near the borehole, as well as other advantages relating to the unique position of the sensors relative to complex structures. Technical objectives are to complement surface seismic with improved resolution (~2X seismic), better high dip structure definition (e.g. salt flanks) and to fill in "imaging holes" in complex sub-salt plays where surface seismic is blind. Business drivers for this effort are to reduce risk in well placement, improved reserve calculation and understanding compartmentalization and stratigraphic variation. To date, BP has acquired 3D VSP surveys in ten wells in the DW GOM. The initial results are encouraging and show both improved resolution and structural images in complex sub-salt plays where the surface seismic is blind. In conjunction with this effort BP has influenced both contractor borehole seismic tool design and developed methods to enable the 3D VSP surveys to be conducted offline thereby avoiding the high daily rig costs associated with a Deepwater drilling rig.

  20. Surface reconstruction of 3D objects in computerized tomography

    This paper deals with the problem of surface reconstruction of 3D objects from their boundaries in a family of slice images in computerized tomography (CT). Its mathematical formulation is first given, in which it is considered as a problem of functional minimization. Next, the corresponding Euler partial differential equation is derived and it is then solved by the finite difference method. Numerical solution can be found by using the iterative method

  1. Perception of detail in 3D images

    Heyndrickx, I.; Kaptein, R.

    2009-01-01

    A lot of current 3D displays suffer from the fact that their spatial resolution is lower compared to their 2D counterparts. One reason for this is that the multiple views needed to generate 3D are often spatially multiplexed. Besides this, imperfect separation of the left- and right-eye view leads t

  2. 3D SURFACE GENERATION FROM AERIAL THERMAL IMAGERY

    B. Khodaei

    2015-12-01

    Full Text Available Aerial thermal imagery has been recently applied to quantitative analysis of several scenes. For the mapping purpose based on aerial thermal imagery, high accuracy photogrammetric process is necessary. However, due to low geometric resolution and low contrast of thermal imaging sensors, there are some challenges in precise 3D measurement of objects. In this paper the potential of thermal video in 3D surface generation is evaluated. In the pre-processing step, thermal camera is geometrically calibrated using a calibration grid based on emissivity differences between the background and the targets. Then, Digital Surface Model (DSM generation from thermal video imagery is performed in four steps. Initially, frames are extracted from video, then tie points are generated by Scale-Invariant Feature Transform (SIFT algorithm. Bundle adjustment is then applied and the camera position and orientation parameters are determined. Finally, multi-resolution dense image matching algorithm is used to create 3D point cloud of the scene. Potential of the proposed method is evaluated based on thermal imaging cover an industrial area. The thermal camera has 640×480 Uncooled Focal Plane Array (UFPA sensor, equipped with a 25 mm lens which mounted in the Unmanned Aerial Vehicle (UAV. The obtained results show the comparable accuracy of 3D model generated based on thermal images with respect to DSM generated from visible images, however thermal based DSM is somehow smoother with lower level of texture. Comparing the generated DSM with the 9 measured GCPs in the area shows the Root Mean Square Error (RMSE value is smaller than 5 decimetres in both X and Y directions and 1.6 meters for the Z direction.

  3. 3D Image Reconstruction from Compton camera data

    Kuchment, Peter

    2016-01-01

    In this paper, we address analytically and numerically the inversion of the integral transform (\\emph{cone} or \\emph{Compton} transform) that maps a function on $\\mathbb{R}^3$ to its integrals over conical surfaces. It arises in a variety of imaging techniques, e.g. in astronomy, optical imaging, and homeland security imaging, especially when the so called Compton cameras are involved. Several inversion formulas are developed and implemented numerically in $3D$ (the much simpler $2D$ case was considered in a previous publication).

  4. An automated 3D reconstruction method of UAV images

    Liu, Jun; Wang, He; Liu, Xiaoyang; Li, Feng; Sun, Guangtong; Song, Ping

    2015-10-01

    In this paper a novel fully automated 3D reconstruction approach based on low-altitude unmanned aerial vehicle system (UAVs) images will be presented, which does not require previous camera calibration or any other external prior knowledge. Dense 3D point clouds are generated by integrating orderly feature extraction, image matching, structure from motion (SfM) and multi-view stereo (MVS) algorithms, overcoming many of the cost, time limitations of rigorous photogrammetry techniques. An image topology analysis strategy is introduced to speed up large scene reconstruction by taking advantage of the flight-control data acquired by UAV. Image topology map can significantly reduce the running time of feature matching by limiting the combination of images. A high-resolution digital surface model of the study area is produced base on UAV point clouds by constructing the triangular irregular network. Experimental results show that the proposed approach is robust and feasible for automatic 3D reconstruction of low-altitude UAV images, and has great potential for the acquisition of spatial information at large scales mapping, especially suitable for rapid response and precise modelling in disaster emergency.

  5. 3D tongue motion from tagged and cine MR images.

    Xing, Fangxu; Woo, Jonghye; Murano, Emi Z; Lee, Junghoon; Stone, Maureen; Prince, Jerry L

    2013-01-01

    Understanding the deformation of the tongue during human speech is important for head and neck surgeons and speech and language scientists. Tagged magnetic resonance (MR) imaging can be used to image 2D motion, and data from multiple image planes can be combined via post-processing to yield estimates of 3D motion. However, lacking boundary information, this approach suffers from inaccurate estimates near the tongue surface. This paper describes a method that combines two sources of information to yield improved estimation of 3D tongue motion. The method uses the harmonic phase (HARP) algorithm to extract motion from tags and diffeomorphic demons to provide surface deformation. It then uses an incompressible deformation estimation algorithm to incorporate both sources of displacement information to form an estimate of the 3D whole tongue motion. Experimental results show that use of combined information improves motion estimation near the tongue surface, a problem that has previously been reported as problematic in HARP analysis, while preserving accurate internal motion estimates. Results on both normal and abnormal tongue motions are shown. PMID:24505742

  6. Design Application Translates 2-D Graphics to 3-D Surfaces

    2007-01-01

    Fabric Images Inc., specializing in the printing and manufacturing of fabric tension architecture for the retail, museum, and exhibit/tradeshow communities, designed software to translate 2-D graphics for 3-D surfaces prior to print production. Fabric Images' fabric-flattening design process models a 3-D surface based on computer-aided design (CAD) specifications. The surface geometry of the model is used to form a 2-D template, similar to a flattening process developed by NASA's Glenn Research Center. This template or pattern is then applied in the development of a 2-D graphic layout. Benefits of this process include 11.5 percent time savings per project, less material wasted, and the ability to improve upon graphic techniques and offer new design services. Partners include Exhibitgroup/Giltspur (end-user client: TAC Air, a division of Truman Arnold Companies Inc.), Jack Morton Worldwide (end-user client: Nickelodeon), as well as 3D Exhibits Inc., and MG Design Associates Corp.

  7. 3D acoustic imaging applied to the Baikal neutrino telescope

    Kebkal, K.G. [EvoLogics GmbH, Blumenstrasse 49, 10243 Berlin (Germany)], E-mail: kebkal@evologics.de; Bannasch, R.; Kebkal, O.G. [EvoLogics GmbH, Blumenstrasse 49, 10243 Berlin (Germany); Panfilov, A.I. [Institute for Nuclear Research, 60th October Anniversary pr. 7a, Moscow 117312 (Russian Federation); Wischnewski, R. [DESY, Platanenallee 6, 15735 Zeuthen (Germany)

    2009-04-11

    A hydro-acoustic imaging system was tested in a pilot study on distant localization of elements of the Baikal underwater neutrino telescope. For this innovative approach, based on broad band acoustic echo signals and strictly avoiding any active acoustic elements on the telescope, the imaging system was temporarily installed just below the ice surface, while the telescope stayed in its standard position at 1100 m depth. The system comprised an antenna with four acoustic projectors positioned at the corners of a 50 m square; acoustic pulses were 'linear sweep-spread signals'-multiple-modulated wide-band signals (10{yields}22 kHz) of 51.2 s duration. Three large objects (two string buoys and the central electronics module) were localized by the 3D acoustic imaging, with an accuracy of {approx}0.2 m (along the beam) and {approx}1.0 m (transverse). We discuss signal forms and parameters necessary for improved 3D acoustic imaging of the telescope, and suggest a layout of a possible stationary bottom based 3D imaging setup. The presented technique may be of interest for neutrino telescopes of km{sup 3}-scale and beyond, as a flexible temporary or as a stationary tool to localize basic telescope elements, while these are completely passive.

  8. 3D acoustic imaging applied to the Baikal neutrino telescope

    A hydro-acoustic imaging system was tested in a pilot study on distant localization of elements of the Baikal underwater neutrino telescope. For this innovative approach, based on broad band acoustic echo signals and strictly avoiding any active acoustic elements on the telescope, the imaging system was temporarily installed just below the ice surface, while the telescope stayed in its standard position at 1100 m depth. The system comprised an antenna with four acoustic projectors positioned at the corners of a 50 m square; acoustic pulses were 'linear sweep-spread signals'-multiple-modulated wide-band signals (10→22 kHz) of 51.2 s duration. Three large objects (two string buoys and the central electronics module) were localized by the 3D acoustic imaging, with an accuracy of ∼0.2 m (along the beam) and ∼1.0 m (transverse). We discuss signal forms and parameters necessary for improved 3D acoustic imaging of the telescope, and suggest a layout of a possible stationary bottom based 3D imaging setup. The presented technique may be of interest for neutrino telescopes of km3-scale and beyond, as a flexible temporary or as a stationary tool to localize basic telescope elements, while these are completely passive.

  9. 3D spatial resolution and spectral resolution of interferometric 3D imaging spectrometry.

    Obara, Masaki; Yoshimori, Kyu

    2016-04-01

    Recently developed interferometric 3D imaging spectrometry (J. Opt. Soc. Am A18, 765 [2001]1084-7529JOAOD610.1364/JOSAA.18.000765) enables obtainment of the spectral information and 3D spatial information for incoherently illuminated or self-luminous object simultaneously. Using this method, we can obtain multispectral components of complex holograms, which correspond directly to the phase distribution of the wavefronts propagated from the polychromatic object. This paper focuses on the analysis of spectral resolution and 3D spatial resolution in interferometric 3D imaging spectrometry. Our analysis is based on a novel analytical impulse response function defined over four-dimensional space. We found that the experimental results agree well with the theoretical prediction. This work also suggests a new criterion and estimate method regarding 3D spatial resolution of digital holography. PMID:27139648

  10. Automatic 2D-to-3D image conversion using 3D examples from the internet

    Konrad, J.; Brown, G.; Wang, M.; Ishwar, P.; Wu, C.; Mukherjee, D.

    2012-03-01

    The availability of 3D hardware has so far outpaced the production of 3D content. Although to date many methods have been proposed to convert 2D images to 3D stereopairs, the most successful ones involve human operators and, therefore, are time-consuming and costly, while the fully-automatic ones have not yet achieved the same level of quality. This subpar performance is due to the fact that automatic methods usually rely on assumptions about the captured 3D scene that are often violated in practice. In this paper, we explore a radically different approach inspired by our work on saliency detection in images. Instead of relying on a deterministic scene model for the input 2D image, we propose to "learn" the model from a large dictionary of stereopairs, such as YouTube 3D. Our new approach is built upon a key observation and an assumption. The key observation is that among millions of stereopairs available on-line, there likely exist many stereopairs whose 3D content matches that of the 2D input (query). We assume that two stereopairs whose left images are photometrically similar are likely to have similar disparity fields. Our approach first finds a number of on-line stereopairs whose left image is a close photometric match to the 2D query and then extracts depth information from these stereopairs. Since disparities for the selected stereopairs differ due to differences in underlying image content, level of noise, distortions, etc., we combine them by using the median. We apply the resulting median disparity field to the 2D query to obtain the corresponding right image, while handling occlusions and newly-exposed areas in the usual way. We have applied our method in two scenarios. First, we used YouTube 3D videos in search of the most similar frames. Then, we repeated the experiments on a small, but carefully-selected, dictionary of stereopairs closely matching the query. This, to a degree, emulates the results one would expect from the use of an extremely large 3D

  11. Discrete Method of Images for 3D Radio Propagation Modeling

    Novak, Roman

    2016-09-01

    Discretization by rasterization is introduced into the method of images (MI) in the context of 3D deterministic radio propagation modeling as a way to exploit spatial coherence of electromagnetic propagation for fine-grained parallelism. Traditional algebraic treatment of bounding regions and surfaces is replaced by computer graphics rendering of 3D reflections and double refractions while building the image tree. The visibility of reception points and surfaces is also resolved by shader programs. The proposed rasterization is shown to be of comparable run time to that of the fundamentally parallel shooting and bouncing rays. The rasterization does not affect the signal evaluation backtracking step, thus preserving its advantage over the brute force ray-tracing methods in terms of accuracy. Moreover, the rendering resolution may be scaled back for a given level of scenario detail with only marginal impact on the image tree size. This allows selection of scene optimized execution parameters for faster execution, giving the method a competitive edge. The proposed variant of MI can be run on any GPU that supports real-time 3D graphics.

  12. System and method for generating 3D images of non-linear properties of rock formation using surface seismic or surface to borehole seismic or both

    Vu, Cung Khac; Nihei, Kurt Toshimi; Johnson, Paul A.; Guyer, Robert A.; Ten Cate, James A.; Le Bas, Pierre-Yves; Larmat, Carene S.

    2016-06-07

    A system and method of characterizing properties of a medium from a non-linear interaction are include generating, by first and second acoustic sources disposed on a surface of the medium on a first line, first and second acoustic waves. The first and second acoustic sources are controllable such that trajectories of the first and second acoustic waves intersect in a mixing zone within the medium. The method further includes receiving, by a receiver positioned in a plane containing the first and second acoustic sources, a third acoustic wave generated by a non-linear mixing process from the first and second acoustic waves in the mixing zone; and creating a first two-dimensional image of non-linear properties or a first ratio of compressional velocity and shear velocity, or both, of the medium in a first plane generally perpendicular to the surface and containing the first line, based on the received third acoustic wave.

  13. Combining different modalities for 3D imaging of biological objects

    A resolution enhanced NaI(Tl)-scintillator micro-SPECT device using pinhole collimator geometry has been built and tested with small animals. This device was constructed based on a depth-of-interaction measurement using a thick scintillator crystal and a position sensitive PMT to measure depth-dependent scintillator light profiles. Such a measurement eliminates the parallax error that degrades the high spatial resolution required for small animal imaging. This novel technique for 3D gamma-ray detection was incorporated into the micro-SPECT device and tested with a 57Co source and 98mTc-MDP injected in mice body. To further enhance the investigating power of the tomographic imaging different imaging modalities can be combined. In particular, as proposed and shown, the optical imaging permits a 3D reconstruction of the animal's skin surface thus improving visualization and making possible depth-dependent corrections, necessary for bioluminescence 3D reconstruction in biological objects. This structural information can provide even more detail if the x-ray tomography is used as presented in the paper

  14. Combining Different Modalities for 3D Imaging of Biological Objects

    Tsyganov, E; Kulkarni, P; Mason, R; Parkey, R; Seliuonine, S; Shay, J; Soesbe, T; Zhezher, V; Zinchenko, A I

    2005-01-01

    A resolution enhanced NaI(Tl)-scintillator micro-SPECT device using pinhole collimator geometry has been built and tested with small animals. This device was constructed based on a depth-of-interaction measurement using a thick scintillator crystal and a position sensitive PMT to measure depth-dependent scintillator light profiles. Such a measurement eliminates the parallax error that degrades the high spatial resolution required for small animal imaging. This novel technique for 3D gamma-ray detection was incorporated into the micro-SPECT device and tested with a $^{57}$Co source and $^{98m}$Tc-MDP injected in mice body. To further enhance the investigating power of the tomographic imaging different imaging modalities can be combined. In particular, as proposed and shown in this paper, the optical imaging permits a 3D reconstruction of the animal's skin surface thus improving visualization and making possible depth-dependent corrections, necessary for bioluminescence 3D reconstruction in biological objects. ...

  15. Phase Sensitive Cueing for 3D Objects in Overhead Images

    Paglieroni, D W; Eppler, W G; Poland, D N

    2005-02-18

    A 3D solid model-aided object cueing method that matches phase angles of directional derivative vectors at image pixels to phase angles of vectors normal to projected model edges is described. It is intended for finding specific types of objects at arbitrary position and orientation in overhead images, independent of spatial resolution, obliqueness, acquisition conditions, and type of imaging sensor. It is shown that the phase similarity measure can be efficiently evaluated over all combinations of model position and orientation using the FFT. The highest degree of similarity over all model orientations is captured in a match surface of similarity values vs. model position. Unambiguous peaks in this surface are sorted in descending order of similarity value, and the small image thumbnails that contain them are presented to human analysts for inspection in sorted order.

  16. Stereo vision calibration procedure for 3D surface measurements

    Vilaça, João L.; Fonseca, Jaime C.; Pinho, A. C. Marques de

    2006-01-01

    In reverse engineering, rapid prototyping or quality control with complex 3D object surfaces, there is often the need to scan a complete 3D model using laser digitizers. Those systems usually use one camera and one laser,- using triangulation techniques; complex 3D objects can cause information gaps in the model obtained. To overcome this problem, another camera can be used. Traditional calibration procedures for those systems normally result in a full 3D camera calibration, involving indi...

  17. A 3D image analysis tool for SPECT imaging

    Kontos, Despina; Wang, Qiang; Megalooikonomou, Vasileios; Maurer, Alan H.; Knight, Linda C.; Kantor, Steve; Fisher, Robert S.; Simonian, Hrair P.; Parkman, Henry P.

    2005-04-01

    We have developed semi-automated and fully-automated tools for the analysis of 3D single-photon emission computed tomography (SPECT) images. The focus is on the efficient boundary delineation of complex 3D structures that enables accurate measurement of their structural and physiologic properties. We employ intensity based thresholding algorithms for interactive and semi-automated analysis. We also explore fuzzy-connectedness concepts for fully automating the segmentation process. We apply the proposed tools to SPECT image data capturing variation of gastric accommodation and emptying. These image analysis tools were developed within the framework of a noninvasive scintigraphic test to measure simultaneously both gastric emptying and gastric volume after ingestion of a solid or a liquid meal. The clinical focus of the particular analysis was to probe associations between gastric accommodation/emptying and functional dyspepsia. Employing the proposed tools, we outline effectively the complex three dimensional gastric boundaries shown in the 3D SPECT images. We also perform accurate volume calculations in order to quantitatively assess the gastric mass variation. This analysis was performed both with the semi-automated and fully-automated tools. The results were validated against manual segmentation performed by a human expert. We believe that the development of an automated segmentation tool for SPECT imaging of the gastric volume variability will allow for other new applications of SPECT imaging where there is a need to evaluate complex organ function or tumor masses.

  18. Effective 3-D surface modeling for geographic information systems

    K. Yüksek

    2013-11-01

    Full Text Available In this work, we propose a dynamic, flexible and interactive urban digital terrain platform (DTP with spatial data and query processing capabilities of Geographic Information Systems (GIS, multimedia database functionality and graphical modeling infrastructure. A new data element, called Geo-Node, which stores image, spatial data and 3-D CAD objects is developed using an efficient data structure. The system effectively handles data transfer of Geo-Nodes between main memory and secondary storage with an optimized Directional Replacement Policy (DRP based buffer management scheme. Polyhedron structures are used in Digital Surface Modeling (DSM and smoothing process is performed by interpolation. The experimental results show that our framework achieves high performance and works effectively with urban scenes independent from the amount of spatial data and image size. The proposed platform may contribute to the development of various applications such as Web GIS systems based on 3-D graphics standards (e.g. X3-D and VRML and services which integrate multi-dimensional spatial information and satellite/aerial imagery.

  19. Effective 3-D surface modeling for geographic information systems

    Yüksek, K.; Alparslan, M.; Mendi, E.

    2016-01-01

    In this work, we propose a dynamic, flexible and interactive urban digital terrain platform with spatial data and query processing capabilities of geographic information systems, multimedia database functionality and graphical modeling infrastructure. A new data element, called Geo-Node, which stores image, spatial data and 3-D CAD objects is developed using an efficient data structure. The system effectively handles data transfer of Geo-Nodes between main memory and secondary storage with an optimized directional replacement policy (DRP) based buffer management scheme. Polyhedron structures are used in digital surface modeling and smoothing process is performed by interpolation. The experimental results show that our framework achieves high performance and works effectively with urban scenes independent from the amount of spatial data and image size. The proposed platform may contribute to the development of various applications such as Web GIS systems based on 3-D graphics standards (e.g., X3-D and VRML) and services which integrate multi-dimensional spatial information and satellite/aerial imagery.

  20. 3D Surface Reconstruction and Automatic Camera Calibration

    Jalobeanu, Andre

    2004-01-01

    Illustrations in this view-graph presentation are presented on a Bayesian approach to 3D surface reconstruction and camera calibration.Existing methods, surface analysis and modeling,preliminary surface reconstruction results, and potential applications are addressed.

  1. Development of 3D microwave imaging reflectometry in LHD (invited).

    Nagayama, Y; Kuwahara, D; Yoshinaga, T; Hamada, Y; Kogi, Y; Mase, A; Tsuchiya, H; Tsuji-Iio, S; Yamaguchi, S

    2012-10-01

    Three-dimensional (3D) microwave imaging reflectometry has been developed in the large helical device to visualize fluctuating reflection surface which is caused by the density fluctuations. The plasma is illuminated by the probe wave with four frequencies, which correspond to four radial positions. The imaging optics makes the image of cut-off surface onto the 2D (7 × 7 channels) horn antenna mixer arrays. Multi-channel receivers have been also developed using micro-strip-line technology to handle many channels at reasonable cost. This system is first applied to observe the edge harmonic oscillation (EHO), which is an MHD mode with many harmonics that appears in the edge plasma. A narrow structure along field lines is observed during EHO. PMID:23126965

  2. 3-D reconstruction of skin surface from photometric stereo images with specular and inter reflections; Kyomen hansha sogo hansha wo koryoshita hifu hyomen bisai keijo no sanjigen saikosei

    Matsumoto, A.; Saito, H.; Ozawa, S. [Keio University, Tokyo (Japan)

    1997-08-20

    This paper describes a new method for reconstructing the structure of a skin surface replica from three shading images taken from three different lightings. Since the shading images include specular and inter reflections, the conventional photometric stereo method is not suitable for reconstructing its surface structure. In the proposed method, the evaluation function of the surface shape is defined, then the structure is reconstructed by optimizing the evaluation using simulated annealing. The experimental results from both synthetic images and real images demonstrate that proposed method is more effective for shape reconstruction from shading images which include specular and inter reflections. 15 refs., 15 figs., 1 tab.

  3. Light field display and 3D image reconstruction

    Iwane, Toru

    2016-06-01

    Light field optics and its applications become rather popular in these days. With light field optics or light field thesis, real 3D space can be described in 2D plane as 4D data, which we call as light field data. This process can be divided in two procedures. First, real3D scene is optically reduced with imaging lens. Second, this optically reduced 3D image is encoded into light field data. In later procedure we can say that 3D information is encoded onto a plane as 2D data by lens array plate. This transformation is reversible and acquired light field data can be decoded again into 3D image with the arrayed lens plate. "Refocusing" (focusing image on your favorite point after taking a picture), light-field camera's most popular function, is some kind of sectioning process from encoded 3D data (light field data) to 2D image. In this paper at first I show our actual light field camera and our 3D display using acquired and computer-simulated light field data, on which real 3D image is reconstructed. In second I explain our data processing method whose arithmetic operation is performed not in Fourier domain but in real domain. Then our 3D display system is characterized by a few features; reconstructed image is of finer resolutions than density of arrayed lenses and it is not necessary to adjust lens array plate to flat display on which light field data is displayed.

  4. The 3D-index and normal surfaces

    Garoufalidis, Stavros; Hoffman, Neil; Rubinstein, Hyam

    2016-01-01

    Dimofte, Gaiotto and Gukov introduced a powerful invariant, the 3D-index, associated to a suitable ideal triangulation of a 3-manifold with torus boundary components. The 3D-index is a collection of formal power series in $q^{1/2}$ with integer coefficients. Our goal is to explain how the 3D-index is a generating series of normal surfaces associated to the ideal triangulation. This shows a connection of the 3D-index with classical normal surface theory, and fulfills a dream of constructing topological invariants of 3-manifolds using normal surfaces.

  5. 3D Imaging with Structured Illumination for Advanced Security Applications

    Birch, Gabriel Carisle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dagel, Amber Lynn [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kast, Brian A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Smith, Collin S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Three-dimensional (3D) information in a physical security system is a highly useful dis- criminator. The two-dimensional data from an imaging systems fails to provide target dis- tance and three-dimensional motion vector, which can be used to reduce nuisance alarm rates and increase system effectiveness. However, 3D imaging devices designed primarily for use in physical security systems are uncommon. This report discusses an architecture favorable to physical security systems; an inexpensive snapshot 3D imaging system utilizing a simple illumination system. The method of acquiring 3D data, tests to understand illumination de- sign, and software modifications possible to maximize information gathering capability are discussed.

  6. Autonomous Planetary 3-D Reconstruction From Satellite Images

    Denver, Troelz

    1999-01-01

    A common task for many deep space missions is autonomous generation of 3-D representations of planetary surfaces onboard unmanned spacecrafts. The basic problem for this class of missions is, that the closed loop time is far too long. The closed loop time is defined as the time from when a human...... of seconds to a few minutes, the closed loop time effectively precludes active human control.The only way to circumvent this problem is to build an artificial feature extractor operating autonomously onboard the spacecraft.Different artificial feature extractors are presented and their efficiency...... is discussed.Based on such features, 3-D representations may be compiled from two or more 2-D satellite images. The main purposes of such a mapping system are extraction of landing sites, objects of scientific interest and general planetary surveying. All data processing is performed autonomously onboard...

  7. Fully Automatic 3D Reconstruction of Histological Images

    Bagci, Ulas; Bai, Li

    2009-01-01

    In this paper, we propose a computational framework for 3D volume reconstruction from 2D histological slices using registration algorithms in feature space. To improve the quality of reconstructed 3D volume, first, intensity variations in images are corrected by an intensity standardization process which maps image intensity scale to a standard scale where similar intensities correspond to similar tissues. Second, a subvolume approach is proposed for 3D reconstruction by dividing standardized...

  8. Automatic structural matching of 3D image data

    Ponomarev, Svjatoslav; Lutsiv, Vadim; Malyshev, Igor

    2015-10-01

    A new image matching technique is described. It is implemented as an object-independent hierarchical structural juxtaposition algorithm based on an alphabet of simple object-independent contour structural elements. The structural matching applied implements an optimized method of walking through a truncated tree of all possible juxtapositions of two sets of structural elements. The algorithm was initially developed for dealing with 2D images such as the aerospace photographs, and it turned out to be sufficiently robust and reliable for matching successfully the pictures of natural landscapes taken in differing seasons from differing aspect angles by differing sensors (the visible optical, IR, and SAR pictures, as well as the depth maps and geographical vector-type maps). At present (in the reported version), the algorithm is enhanced based on additional use of information on third spatial coordinates of observed points of object surfaces. Thus, it is now capable of matching the images of 3D scenes in the tasks of automatic navigation of extremely low flying unmanned vehicles or autonomous terrestrial robots. The basic principles of 3D structural description and matching of images are described, and the examples of image matching are presented.

  9. Method for 3D Rendering Based on Intersection Image Display Which Allows Representation of Internal Structure of 3D objects

    Kohei Arai

    2013-06-01

    Full Text Available Method for 3D rendering based on intersection image display which allows representation of internal structure is proposed. The proposed method is essentially different from the conventional volume rendering based on solid model which allows representation of just surface of the 3D objects. By using afterimage, internal structure can be displayed through exchanging the intersection images with internal structure for the proposed method. Through experiments with CT scan images, the proposed method is validated. Also one of other applicable areas of the proposed for design of 3D pattern of Large Scale Integrated Circuit: LSI is introduced. Layered patterns of LSI can be displayed and switched by using human eyes only. It is confirmed that the time required for displaying layer pattern and switching the pattern to the other layer by using human eyes only is much faster than that using hands and fingers.

  10. 3D augmented reality with integral imaging display

    Shen, Xin; Hua, Hong; Javidi, Bahram

    2016-06-01

    In this paper, a three-dimensional (3D) integral imaging display for augmented reality is presented. By implementing the pseudoscopic-to-orthoscopic conversion method, elemental image arrays with different capturing parameters can be transferred into the identical format for 3D display. With the proposed merging algorithm, a new set of elemental images for augmented reality display is generated. The newly generated elemental images contain both the virtual objects and real world scene with desired depth information and transparency parameters. The experimental results indicate the feasibility of the proposed 3D augmented reality with integral imaging.

  11. 3D Interpolation Method for CT Images of the Lung

    Noriaki Asada

    2003-06-01

    Full Text Available A 3-D image can be reconstructed from numerous CT images of the lung. The procedure reconstructs a solid from multiple cross section images, which are collected during pulsation of the heart. Thus the motion of the heart is a special factor that must be taken into consideration during reconstruction. The lung exhibits a repeating transformation synchronized to the beating of the heart as an elastic body. There are discontinuities among neighboring CT images due to the beating of the heart, if no special techniques are used in taking CT images. The 3-D heart image is reconstructed from numerous CT images in which both the heart and the lung are taken. Although the outline shape of the reconstructed 3-D heart is quite unnatural, the envelope of the 3-D unnatural heart is fit to the shape of the standard heart. The envelopes of the lung in the CT images are calculated after the section images of the best fitting standard heart are located at the same positions of the CT images. Thus the CT images are geometrically transformed to the optimal CT images fitting best to the standard heart. Since correct transformation of images is required, an Area oriented interpolation method proposed by us is used for interpolation of transformed images. An attempt to reconstruct a 3-D lung image by a series of such operations without discontinuity is shown. Additionally, the same geometrical transformation method to the original projection images is proposed as a more advanced method.

  12. Preliminary comparison of 3D synthetic aperture imaging with Explososcan

    Rasmussen, Morten Fischer; Hansen, Jens Munk; Ferin, Guillaume; Dufait, Remi; Jensen, Jørgen Arendt

    2012-01-01

    Explososcan is the 'gold standard' for real-time 3D medical ultrasound imaging. In this paper, 3D synthetic aperture imaging is compared to Explososcan by simulation of 3D point spread functions. The simulations mimic a 32x32 element prototype transducer. The transducer mimicked is a dense matrix phased array with a pitch of 300 μm, made by Vermon. For both imaging techniques, 289 emissions are used to image a volume spanning 60 in both the azimuth and elevation direction and 150mm in depth. ...

  13. 3D Interest Point Detection using Local Surface Characteristics with Application in Action Recognition

    Holte, Michael Boelstoft

    2014-01-01

    In this paper we address the problem of detecting 3D inter- est points (IPs) using local surface characteristics. We con- tribute to this field by introducing a novel approach for detec- tion of 3D IPs directly on a surface mesh without any require- ments of additional image/video information. The...... proposed Difference-of-Normals (DoN) 3D IP detector operates on the surface mesh, and evaluates the surface structure (curvature) locally (per vertex) in the mesh data. We present an exam- ple of application in action recognition from a sequence of 3-dimensional geometrical data, where local 3D motion de......- scriptors, Histogram of Optical 3D Flow (HOF3D), are ex- tracted from estimated 3D optical flow in the neighborhood of each IP and made view-invariant. Experiments on the pub- licly available i3DPost dataset show promising results....

  14. Preliminary examples of 3D vector flow imaging

    Pihl, Michael Johannes; Stuart, Matthias Bo; Tomov, Borislav Gueorguiev;

    2013-01-01

    This paper presents 3D vector flow images obtained using the 3D Transverse Oscillation (TO) method. The method employs a 2D transducer and estimates the three velocity components simultaneously, which is important for visualizing complex flow patterns. Data are acquired using the experimental...... ultrasound scanner SARUS on a flow rig system with steady flow. The vessel of the flow-rig is centered at a depth of 30 mm, and the flow has an expected 2D circular-symmetric parabolic prole with a peak velocity of 1 m/s. Ten frames of 3D vector flow images are acquired in a cross-sectional plane orthogonal...... acquisition as opposed to magnetic resonance imaging (MRI). The results demonstrate that the 3D TO method is capable of performing 3D vector flow imaging....

  15. Highway 3D model from image and lidar data

    Chen, Jinfeng; Chu, Henry; Sun, Xiaoduan

    2014-05-01

    We present a new method of highway 3-D model construction developed based on feature extraction in highway images and LIDAR data. We describe the processing road coordinate data that connect the image frames to the coordinates of the elevation data. Image processing methods are used to extract sky, road, and ground regions as well as significant objects (such as signs and building fronts) in the roadside for the 3D model. LIDAR data are interpolated and processed to extract the road lanes as well as other features such as trees, ditches, and elevated objects to form the 3D model. 3D geometry reasoning is used to match the image features to the 3D model. Results from successive frames are integrated to improve the final model.

  16. Ice shelf melt rates and 3D imaging

    Lewis, Cameron Scott

    Ice shelves are sensitive indicators of climate change and play a critical role in the stability of ice sheets and oceanic currents. Basal melting of ice shelves plays an important role in both the mass balance of the ice sheet and the global climate system. Airborne- and satellite based remote sensing systems can perform thickness measurements of ice shelves. Time separated repeat flight tracks over ice shelves of interest generate data sets that can be used to derive basal melt rates using traditional glaciological techniques. Many previous melt rate studies have relied on surface elevation data gathered by airborne- and satellite based altimeters. These systems infer melt rates by assuming hydrostatic equilibrium, an assumption that may not be accurate, especially near an ice shelf's grounding line. Moderate bandwidth, VHF, ice penetrating radar has been used to measure ice shelf profiles with relatively coarse resolution. This study presents the application of an ultra wide bandwidth (UWB), UHF, ice penetrating radar to obtain finer resolution data on the ice shelves. These data reveal significant details about the basal interface, including the locations and depth of bottom crevasses and deviations from hydrostatic equilibrium. While our single channel radar provides new insight into ice shelf structure, it only images a small swatch of the shelf, which is assumed to be an average of the total shelf behavior. This study takes an additional step by investigating the application of a 3D imaging technique to a data set collected using a ground based multi channel version of the UWB radar. The intent is to show that the UWB radar could be capable of providing a wider swath 3D image of an ice shelf. The 3D images can then be used to obtain a more complete estimate of the bottom melt rates of ice shelves.

  17. Diffractive optical element for creating visual 3D images.

    Goncharsky, Alexander; Goncharsky, Anton; Durlevich, Svyatoslav

    2016-05-01

    A method is proposed to compute and synthesize the microrelief of a diffractive optical element to produce a new visual security feature - the vertical 3D/3D switch effect. The security feature consists in the alternation of two 3D color images when the diffractive element is tilted up/down. Optical security elements that produce the new security feature are synthesized using electron-beam technology. Sample optical security elements are manufactured that produce 3D to 3D visual switch effect when illuminated by white light. Photos and video records of the vertical 3D/3D switch effect of real optical elements are presented. The optical elements developed can be replicated using standard equipment employed for manufacturing security holograms. The new optical security feature is easy to control visually, safely protected against counterfeit, and designed to protect banknotes, documents, ID cards, etc. PMID:27137530

  18. 3D-CT imaging processing for qualitative and quantitative analysis of maxillofacial cysts and tumors

    The objective of this study was to evaluate spiral-computed tomography (3D-CT) images of 20 patients presenting with cysts and tumors in the maxillofacial complex, in order to compare the surface and volume techniques of image rendering. The qualitative and quantitative appraisal indicated that the volume technique allowed a more precise and accurate observation than the surface method. On the average, the measurements obtained by means of the 3D volume-rendering technique were 6.28% higher than those obtained by means of the surface method. The sensitivity of the 3D surface technique was lower than that of the 3D volume technique for all conditions stipulated in the diagnosis and evaluation of lesions. We concluded that the 3D-CT volume rendering technique was more reproducible and sensitive than the 3D-CT surface method, in the diagnosis, treatment planning and evaluation of maxillofacial lesions, especially those with intra-osseous involvement. (author)

  19. 3-D capacitance density imaging system

    Fasching, G.E.

    1988-03-18

    A three-dimensional capacitance density imaging of a gasified bed or the like in a containment vessel is achieved using a plurality of electrodes provided circumferentially about the bed in levels and along the bed in channels. The electrodes are individually and selectively excited electrically at each level to produce a plurality of current flux field patterns generated in the bed at each level. The current flux field patterns are suitably sensed and a density pattern of the bed at each level determined. By combining the determined density patterns at each level, a three-dimensional density image of the bed is achieved. 7 figs.

  20. Phase Sensitive Cueing for 3D Objects in Overhead Images

    Paglieroni, D

    2005-02-04

    Locating specific 3D objects in overhead images is an important problem in many remote sensing applications. 3D objects may contain either one connected component or multiple disconnected components. Solutions must accommodate images acquired with diverse sensors at various times of the day, in various seasons of the year, or under various weather conditions. Moreover, the physical manifestation of a 3D object with fixed physical dimensions in an overhead image is highly dependent on object physical dimensions, object position/orientation, image spatial resolution, and imaging geometry (e.g., obliqueness). This paper describes a two-stage computer-assisted approach for locating 3D objects in overhead images. In the matching stage, the computer matches models of 3D objects to overhead images. The strongest degree of match over all object orientations is computed at each pixel. Unambiguous local maxima in the degree of match as a function of pixel location are then found. In the cueing stage, the computer sorts image thumbnails in descending order of figure-of-merit and presents them to human analysts for visual inspection and interpretation. The figure-of-merit associated with an image thumbnail is computed from the degrees of match to a 3D object model associated with unambiguous local maxima that lie within the thumbnail. This form of computer assistance is invaluable when most of the relevant thumbnails are highly ranked, and the amount of inspection time needed is much less for the highly ranked thumbnails than for images as a whole.

  1. 3D-LSI technology for image sensor

    Recently, the development of three-dimensional large-scale integration (3D-LSI) technologies has accelerated and has advanced from the research level or the limited production level to the investigation level, which might lead to mass production. By separating 3D-LSI technology into elementary technologies such as (1) through silicon via (TSV) formation, (2) bump formation, (3) wafer thinning, (4) chip/wafer alignment, and (5) chip/wafer stacking and reconstructing the entire process and structure, many methods to realize 3D-LSI devices can be developed. However, by considering a specific application, the supply chain of base wafers, and the purpose of 3D integration, a few suitable combinations can be identified. In this paper, we focus on the application of 3D-LSI technologies to image sensors. We describe the process and structure of the chip size package (CSP), developed on the basis of current and advanced 3D-LSI technologies, to be used in CMOS image sensors. Using the current LSI technologies, CSPs for 1.3 M, 2 M, and 5 M pixel CMOS image sensors were successfully fabricated without any performance degradation. 3D-LSI devices can be potentially employed in high-performance focal-plane-array image sensors. We propose a high-speed image sensor with an optical fill factor of 100% to be developed using next-generation 3D-LSI technology and fabricated using micro(μ)-bumps and micro(μ)-TSVs.

  2. 3D Reconstruction in Magnetic Resonance Imaging

    Mikulka, J.; Bartušek, Karel

    2010-01-01

    Roč. 6, č. 7 (2010), s. 617-620. ISSN 1931-7360 R&D Projects: GA ČR GA102/09/0314 Institutional research plan: CEZ:AV0Z20650511 Keywords : reconstruction methods * magnetic resonance imaging Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  3. 3D/3D registration of coronary CTA and biplane XA reconstructions for improved image guidance

    Dibildox, Gerardo, E-mail: g.dibildox@erasmusmc.nl; Baka, Nora; Walsum, Theo van [Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus Medical Center, 3015 GE Rotterdam (Netherlands); Punt, Mark; Aben, Jean-Paul [Pie Medical Imaging, 6227 AJ Maastricht (Netherlands); Schultz, Carl [Department of Cardiology, Erasmus Medical Center, 3015 GE Rotterdam (Netherlands); Niessen, Wiro [Quantitative Imaging Group, Faculty of Applied Sciences, Delft University of Technology, 2628 CJ Delft, The Netherlands and Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus Medical Center, 3015 GE Rotterdam (Netherlands)

    2014-09-15

    Purpose: The authors aim to improve image guidance during percutaneous coronary interventions of chronic total occlusions (CTO) by providing information obtained from computed tomography angiography (CTA) to the cardiac interventionist. To this end, the authors investigate a method to register a 3D CTA model to biplane reconstructions. Methods: The authors developed a method for registering preoperative coronary CTA with intraoperative biplane x-ray angiography (XA) images via 3D models of the coronary arteries. The models are extracted from the CTA and biplane XA images, and are temporally aligned based on CTA reconstruction phase and XA ECG signals. Rigid spatial alignment is achieved with a robust probabilistic point set registration approach using Gaussian mixture models (GMMs). This approach is extended by including orientation in the Gaussian mixtures and by weighting bifurcation points. The method is evaluated on retrospectively acquired coronary CTA datasets of 23 CTO patients for which biplane XA images are available. Results: The Gaussian mixture model approach achieved a median registration accuracy of 1.7 mm. The extended GMM approach including orientation was not significantly different (P > 0.1) but did improve robustness with regards to the initialization of the 3D models. Conclusions: The authors demonstrated that the GMM approach can effectively be applied to register CTA to biplane XA images for the purpose of improving image guidance in percutaneous coronary interventions.

  4. Acoustic 3D imaging of dental structures

    Lewis, D.K. [Lawrence Livermore National Lab., CA (United States); Hume, W.R. [California Univ., Los Angeles, CA (United States); Douglass, G.D. [California Univ., San Francisco, CA (United States)

    1997-02-01

    Our goals for the first year of this three dimensional electodynamic imaging project was to determine how to combine flexible, individual addressable; preprocessing of array source signals; spectral extrapolation or received signals; acoustic tomography codes; and acoustic propagation modeling code. We investigated flexible, individually addressable acoustic array material to find the best match in power, sensitivity and cost and settled on PVDF sheet arrays and 3-1 composite material.

  5. Reconstruction of High Resolution 3D Objects from Incomplete Images and 3D Information

    Alexander Pacheco

    2014-05-01

    Full Text Available To this day, digital object reconstruction is a quite complex area that requires many techniques and novel approaches, in which high-resolution 3D objects present one of the biggest challenges. There are mainly two different methods that can be used to reconstruct high resolution objects and images: passive methods and active methods. This methods depend on the type of information available as input for modeling 3D objects. The passive methods use information contained in the images and the active methods make use of controlled light sources, such as lasers. The reconstruction of 3D objects is quite complex and there is no unique solution- The use of specific methodologies for the reconstruction of certain objects it’s also very common, such as human faces, molecular structures, etc. This paper proposes a novel hybrid methodology, composed by 10 phases that combine active and passive methods, using images and a laser in order to supplement the missing information and obtain better results in the 3D object reconstruction. Finally, the proposed methodology proved its efficiency in two complex topological complex objects.

  6. A 3D Model Reconstruction Method Using Slice Images

    LI Hong-an; KANG Bao-sheng

    2013-01-01

    Aiming at achieving the high accuracy 3D model from slice images, a new model reconstruction method using slice im-ages is proposed. Wanting to extract the outermost contours from slice images, the method of the improved GVF-Snake model with optimized force field and ray method is employed. And then, the 3D model is reconstructed by contour connection using the im-proved shortest diagonal method and judgment function of contour fracture. The results show that the accuracy of reconstruction 3D model is improved.

  7. 3D Motion Parameters Determination Based on Binocular Sequence Images

    2006-01-01

    Exactly capturing three dimensional (3D) motion information of an object is an essential and important task in computer vision, and is also one of the most difficult problems. In this paper, a binocular vision system and a method for determining 3D motion parameters of an object from binocular sequence images are introduced. The main steps include camera calibration, the matching of motion and stereo images, 3D feature point correspondences and resolving the motion parameters. Finally, the experimental results of acquiring the motion parameters of the objects with uniform velocity and acceleration in the straight line based on the real binocular sequence images by the mentioned method are presented.

  8. Morphometrics, 3D Imaging, and Craniofacial Development.

    Hallgrimsson, Benedikt; Percival, Christopher J; Green, Rebecca; Young, Nathan M; Mio, Washington; Marcucio, Ralph

    2015-01-01

    Recent studies have shown how volumetric imaging and morphometrics can add significantly to our understanding of morphogenesis, the developmental basis for variation, and the etiology of structural birth defects. On the other hand, the complex questions and diverse imaging data in developmental biology present morphometrics with more complex challenges than applications in virtually any other field. Meeting these challenges is necessary in order to understand the mechanistic basis for variation in complex morphologies. This chapter reviews the methods and theory that enable the application of modern landmark-based morphometrics to developmental biology and craniofacial development, in particular. We discuss the theoretical foundations of morphometrics as applied to development and review the basic approaches to the quantification of morphology. Focusing on geometric morphometrics, we discuss the principal statistical methods for quantifying and comparing morphological variation and covariation structure within and among groups. Finally, we discuss the future directions for morphometrics in developmental biology that will be required for approaches that enable quantitative integration across the genotype-phenotype map. PMID:26589938

  9. Software for 3D diagnostic image reconstruction and analysis

    Recent advances in computer technologies have opened new frontiers in medical diagnostics. Interesting possibilities are the use of three-dimensional (3D) imaging and the combination of images from different modalities. Software prepared in our laboratories devoted to 3D image reconstruction and analysis from computed tomography and ultrasonography is presented. In developing our software it was assumed that it should be applicable in standard medical practice, i.e. it should work effectively with a PC. An additional feature is the possibility of combining 3D images from different modalities. The reconstruction and data processing can be conducted using a standard PC, so low investment costs result in the introduction of advanced and useful diagnostic possibilities. The program was tested on a PC using DICOM data from computed tomography and TIFF files obtained from a 3D ultrasound system. The results of the anthropomorphic phantom and patient data were taken into consideration. A new approach was used to achieve spatial correlation of two independently obtained 3D images. The method relies on the use of four pairs of markers within the regions under consideration. The user selects the markers manually and the computer calculates the transformations necessary for coupling the images. The main software feature is the possibility of 3D image reconstruction from a series of two-dimensional (2D) images. The reconstructed 3D image can be: (1) viewed with the most popular methods of 3D image viewing, (2) filtered and processed to improve image quality, (3) analyzed quantitatively (geometrical measurements), and (4) coupled with another, independently acquired 3D image. The reconstructed and processed 3D image can be stored at every stage of image processing. The overall software performance was good considering the relatively low costs of the hardware used and the huge data sets processed. The program can be freely used and tested (source code and program available at

  10. BM3D Frames and Variational Image Deblurring

    Danielyan, Aram; Egiazarian, Karen

    2011-01-01

    A family of the Block Matching 3-D (BM3D) algorithms for various imaging problems has been recently proposed within the framework of nonlocal patch-wise image modeling [1], [2]. In this paper we construct analysis and synthesis frames, formalizing the BM3D image modeling and use these frames to develop novel iterative deblurring algorithms. We consider two different formulations of the deblurring problem: one given by minimization of the single objective function and another based on the Nash equilibrium balance of two objective functions. The latter results in an algorithm where the denoising and deblurring operations are decoupled. The convergence of the developed algorithms is proved. Simulation experiments show that the decoupled algorithm derived from the Nash equilibrium formulation demonstrates the best numerical and visual results and shows superiority with respect to the state of the art in the field, confirming a valuable potential of BM3D-frames as an advanced image modeling tool.

  11. 3D imaging of aortic aneurysma using spiral CT

    The use of 3D reconstructions (3D display technique and maximum intensity projection) in spiral CT for diagnostic evaluation of aortic aneurysma is explained. The data available showing 12 aneurysma of the abdominal and thoracic aorta (10 cases of aneurysma verum, 2 cases of aneurysma dissecans) were selected for verification of the value of 3D images in comparison to transversal displays of the CT. The 3D reconstructions of the spiral CT, other than the projection angiography, give insight into the vessel from various points of view. Such information is helpful for quickly gathering a picture of the volume and contours of a pathological process in the vessel. 3D post-processing of data is advisable if the comparison of tomograms and projection images produces findings of nuclear definition which need clarification prior to surgery. (orig.)

  12. 3D Reconstruction of virtual colon structures from colonoscopy images.

    Hong, DongHo; Tavanapong, Wallapak; Wong, Johnny; Oh, JungHwan; de Groen, Piet C

    2014-01-01

    This paper presents the first fully automated reconstruction technique of 3D virtual colon segments from individual colonoscopy images. It is the basis of new software applications that may offer great benefits for improving quality of care for colonoscopy patients. For example, a 3D map of the areas inspected and uninspected during colonoscopy can be shown on request of the endoscopist during the procedure. The endoscopist may revisit the suggested uninspected areas to reduce the chance of missing polyps that reside in these areas. The percentage of the colon surface seen by the endoscopist can be used as a coarse objective indicator of the quality of the procedure. The derived virtual colon models can be stored for post-procedure training of new endoscopists to teach navigation techniques that result in a higher level of procedure quality. Our technique does not require a prior CT scan of the colon or any global positioning device. Our experiments on endoscopy images of an Olympus synthetic colon model reveal encouraging results with small average reconstruction errors (4.1 mm for the fold depths and 12.1 mm for the fold circumferences). PMID:24225230

  13. From 2D slices to 3D volumes: Image based reconstruction and morphological characterization of hippocampal cells on charged and uncharged surfaces using FIB/SEM serial sectioning

    3D imaging at a subcellular resolution is a powerful tool in the life sciences to investigate cells and their interactions with native tissues or artificial objects. While a tomographic experimental setup achieving a sufficient structural resolution can be established with either X-rays or electrons, the use of electrons is usually limited to very thin samples in transmission electron microscopy due to the poor penetration depths of electrons. The combination of a serial sectioning approach and scanning electron microscopy in state of the art dual beam experimental setups therefore offers a means to image highly resolved spatial details using a focused ion beam for slicing and an electron beam for imaging. The advantage of this technique over X-ray μCT or X-ray microscopy attributes to the fact that absorption is not a limiting factor in imaging and therefore even strong absorbing structures can be spatially reconstructed with a much higher possible resolution. This approach was used in this study to elucidate the effect of an electric potential on the morphology of cells from a hippocampal cell line (HT22) deposited on gold microelectrodes. While cells cultivated on two different controls (gold and polymer substrates) did show the expected stretched morphology, cells on both the anode and the cathode differed significantly. Cells deposited on the anode part of the electrode exhibited the most extreme deviation, being almost spherical and showed signs of chromatin condensation possibly indicating cell death. Furthermore, EDX was used as supplemental methodology for combined chemical and structural analyses. -- Research highlights: → FIB/SEM is utilized as a tool to investigate morphological changes in cells. → Tomography of individual cells was achieved by a sequential slice and image approach. → Different detectors were reviewed for their applicability on biological material. → The influence of an electrical potential on neuronal cells was investigated.

  14. 3D Image Modelling and Specific Treatments in Orthodontics Domain

    Dionysis Goularas

    2007-01-01

    Full Text Available In this article, we present a 3D specific dental plaster treatment system for orthodontics. From computer tomography scanner images, we propose first a 3D image modelling and reconstruction method of the Mandible and Maxillary based on an adaptive triangulation allowing management of contours meant for the complex topologies. Secondly, we present two specific treatment methods directly achieved on obtained 3D model allowing the automatic correction for the setting in occlusion of the Mandible and the Maxillary, and the teeth segmentation allowing more specific dental examinations. Finally, these specific treatments are presented via a client/server application with the aim of allowing a telediagnosis and treatment.

  15. Critical bifurcation surfaces of 3D discrete dynamics

    Michael Sonis

    2000-01-01

    Full Text Available This paper deals with the analytical representation of bifurcations of each 3D discrete dynamics depending on the set of bifurcation parameters. The procedure of bifurcation analysis proposed in this paper represents the 3D elaboration and specification of the general algorithm of the n-dimensional linear bifurcation analysis proposed by the author earlier. It is proven that 3D domain of asymptotic stability (attraction of the fixed point for a given 3D discrete dynamics is bounded by three critical bifurcation surfaces: the divergence, flip and flutter surfaces. The analytical construction of these surfaces is achieved with the help of classical Routh–Hurvitz conditions of asymptotic stability. As an application the adjustment process proposed by T. Puu for the Cournot oligopoly model is considered in detail.

  16. Fast 3D T1-weighted brain imaging at 3 Tesla with modified 3D FLASH sequence

    Longitudinal relaxation times (T1) of white and gray matter become close at high magnetic field. Therefore, classical T1 sensitive methods, like spoiled FLASH fail to give a sufficient contrast in human brain imaging at 3 Tesla. An excellent T1 contrast can be achieved at high field by gradient echo imaging with a preparatory inversion pulse. The inversion recovery (IR) preparation can be combined with a fast 2D gradient echo scans. In this paper we present an application of this technique to rapid 3-dimensional imaging. New technique called 3D SIR FLASH was implemented on Burker MSLX system equipped with a 3T, 90 cm horizontal bore magnet working in Centre Hospitalier in Rouffach, France. The new technique was used for comparison of MRI images of healthy volunteers obtained with a traditional 3D imaging. White and gray matter are clearly distinguishable when 3D SIR FLASH is used. The total acquisition time for 128x128x128 image was 5 minutes. Three dimensional visualization with facet representation of surfaces and oblique sections was done off-line on the INDIGO Extreme workstation. New technique is widely used in FORENAP, Centre Hospitalier in Reuffach, Alsace. (author)

  17. Computational ghost imaging versus imaging laser radar for 3D imaging

    Hardy, Nicholas D

    2012-01-01

    Ghost imaging has been receiving increasing interest for possible use as a remote-sensing system. There has been little comparison, however, between ghost imaging and the imaging laser radars with which it would be competing. Toward that end, this paper presents a performance comparison between a pulsed, computational ghost imager and a pulsed, floodlight-illumination imaging laser radar. Both are considered for range-resolving (3D) imaging of a collection of rough-surfaced objects at standoff ranges in the presence of atmospheric turbulence. Their spatial resolutions and signal-to-noise ratios are evaluated as functions of the system parameters, and these results are used to assess each system's performance trade-offs. Scenarios in which a reflective ghost-imaging system has advantages over a laser radar are identified.

  18. Optical 3D watermark based digital image watermarking for telemedicine

    Li, Xiao Wei; Kim, Seok Tae

    2013-12-01

    Region of interest (ROI) of a medical image is an area including important diagnostic information and must be stored without any distortion. This algorithm for application of watermarking technique for non-ROI of the medical image preserving ROI. The paper presents a 3D watermark based medical image watermarking scheme. In this paper, a 3D watermark object is first decomposed into 2D elemental image array (EIA) by a lenslet array, and then the 2D elemental image array data is embedded into the host image. The watermark extraction process is an inverse process of embedding. The extracted EIA through the computational integral imaging reconstruction (CIIR) technique, the 3D watermark can be reconstructed. Because the EIA is composed of a number of elemental images possesses their own perspectives of a 3D watermark object. Even though the embedded watermark data badly damaged, the 3D virtual watermark can be successfully reconstructed. Furthermore, using CAT with various rule number parameters, it is possible to get many channels for embedding. So our method can recover the weak point having only one transform plane in traditional watermarking methods. The effectiveness of the proposed watermarking scheme is demonstrated with the aid of experimental results.

  19. Mono- and multistatic polarimetric sparse aperture 3D SAR imaging

    DeGraaf, Stuart; Twigg, Charles; Phillips, Louis

    2008-04-01

    SAR imaging at low center frequencies (UHF and L-band) offers advantages over imaging at more conventional (X-band) frequencies, including foliage penetration for target detection and scene segmentation based on polarimetric coherency. However, bandwidths typically available at these center frequencies are small, affording poor resolution. By exploiting extreme spatial diversity (partial hemispheric k-space coverage) and nonlinear bandwidth extrapolation/interpolation methods such as Least-Squares SuperResolution (LSSR) and Least-Squares CLEAN (LSCLEAN), one can achieve resolutions that are commensurate with the carrier frequency (λ/4) rather than the bandwidth (c/2B). Furthermore, extreme angle diversity affords complete coverage of a target's backscatter, and a correspondingly more literal image. To realize these benefits, however, one must image the scene in 3-D; otherwise layover-induced misregistration compromises the coherent summation that yields improved resolution. Practically, one is limited to very sparse elevation apertures, i.e. a small number of circular passes. Here we demonstrate that both LSSR and LSCLEAN can reduce considerably the sidelobe and alias artifacts caused by these sparse elevation apertures. Further, we illustrate how a hypothetical multi-static geometry consisting of six vertical real-aperture receive apertures, combined with a single circular transmit aperture provide effective, though sparse and unusual, 3-D k-space support. Forward scattering captured by this geometry reveals horizontal scattering surfaces that are missed in monostatic backscattering geometries. This paper illustrates results based on LucernHammer UHF and L-band mono- and multi-static simulations of a backhoe.

  20. Fully Automatic 3D Reconstruction of Histological Images

    Bagci, Ulas

    2009-01-01

    In this paper, we propose a computational framework for 3D volume reconstruction from 2D histological slices using registration algorithms in feature space. To improve the quality of reconstructed 3D volume, first, intensity variations in images are corrected by an intensity standardization process which maps image intensity scale to a standard scale where similar intensities correspond to similar tissues. Second, a subvolume approach is proposed for 3D reconstruction by dividing standardized slices into groups. Third, in order to improve the quality of the reconstruction process, an automatic best reference slice selection algorithm is developed based on an iterative assessment of image entropy and mean square error of the registration process. Finally, we demonstrate that the choice of the reference slice has a significant impact on registration quality and subsequent 3D reconstruction.

  1. Surface 3-D reflection seismics - implementation at the Olkiluoto site

    Posiva Oy takes care of the final disposal of spent nuclear fuel in Finland. In year 2001 Olkiluoto was selected for the site of final disposal. Construction of the underground research facility, ONKALO, is going on at the Olkiluoto site. The aim of this work was to study the possibilities for surface 3-D seismics and to review experiences for design before field work. The physical parameters and geometric properties of the site, as well as efficient survey layout and source arrangements, were considered in this work. Reflection seismics is most used geophysical investigation method in oil exploration and earth studies in sedimentary environment. Recently method has also been applied in crystalline bedrock for ore exploration and nuclear waste disposal site investigations. The advantage of the method is high accuracy combined with large depth of investigation. The principles of seismic 2-D and 3-D soundings are well known and advanced. 3-D sounding is a straightforward expansion of 2-D line based surveying. In investigation of crystalline bedrock, the high frequency wave sources and receivers, their right use in measurements and careful processing procedure (refraction static corrections in particular) are important. Using the site parameters in 2-D numerical modeling, two cases of faulted thin layer at depths of 200, 400 and 600 meters were studied. The first case was a layer with vertical dislocation (a ramp) and the other a layer having limited width of dislocated part. Central frequencies were 100, 200, 400 and 700 Hz. Results indicate that 10 - 20 m dislocation is recognizable, but for depths greater than 600 m, over 20 meters is required. Width of the dislocated part will affect the detectability of vertical displacement. At depths of 200 m and 400 m 10 - 50 m wide parts appear as point-like scatterers, wider areas have more continuity. Dislocations larger than 20 m can be seen. From depth of 600 m over 100 m wide parts are discernible, narrower are visible

  2. Segmented images and 3D images for studying the anatomical structures in MRIs

    Lee, Yong Sook; Chung, Min Suk; Cho, Jae Hyun

    2004-05-01

    For identifying the pathological findings in MRIs, the anatomical structures in MRIs should be identified in advance. For studying the anatomical structures in MRIs, an education al tool that includes the horizontal, coronal, sagittal MRIs of entire body, corresponding segmented images, 3D images, and browsing software is necessary. Such an educational tool, however, is hard to obtain. Therefore, in this research, such an educational tool which helps medical students and doctors study the anatomical structures in MRIs was made as follows. A healthy, young Korean male adult with standard body shape was selected. Six hundred thirteen horizontal MRIs of the entire body were scanned and inputted to the personal computer. Sixty anatomical structures in the horizontal MRIs were segmented to make horizontal segmented images. Coronal, sagittal MRIs and coronal, sagittal segmented images were made. 3D images of anatomical structures in the segmented images were reconstructed by surface rendering method. Browsing software of the MRIs, segmented images, and 3D images was composed. This educational tool that includes horizontal, coronal, sagittal MRIs of entire body, corresponding segmented images, 3D images, and browsing software is expected to help medical students and doctors study anatomical structures in MRIs.

  3. Preliminary comparison of 3D synthetic aperture imaging with Explososcan

    Rasmussen, Morten Fischer; Hansen, Jens Munk; Ferin, Guillaume;

    2012-01-01

    Explososcan is the 'gold standard' for real-time 3D medical ultrasound imaging. In this paper, 3D synthetic aperture imaging is compared to Explososcan by simulation of 3D point spread functions. The simulations mimic a 32x32 element prototype transducer. The transducer mimicked is a dense matrix...... phased array with a pitch of 300 μm, made by Vermon. For both imaging techniques, 289 emissions are used to image a volume spanning 60 in both the azimuth and elevation direction and 150mm in depth. This results for both techniques in a frame rate of 18 Hz. The implemented synthetic aperture technique...... cystic resolution, which expresses the ability to detect anechoic cysts in a uniform scattering media, at all depths except at Explososcan's focus point. Synthetic aperture reduced the cyst radius, R20dB, at 90mm depth by 48%. Synthetic aperture imaging was shown to reduce the number of transmit channels...

  4. Advanced 3-D Ultrasound Imaging.:3-D Synthetic Aperture Imaging and Row-column Addressing of 2-D Transducer Arrays

    Rasmussen, Morten Fischer; Jensen, Jørgen Arendt

    2014-01-01

    The main purpose of the PhD project was to develop methods that increase the 3-D ultrasound imaging quality available for the medical personnel in the clinic. Acquiring a 3-D volume gives the medical doctor the freedom to investigate the measured anatomy in any slice desirable after the scan has been completed. This allows for precise measurements of organs dimensions and makes the scan more operator independent. Real-time 3-D ultrasound imaging is still not as widespread in use in the clinic...

  5. 3D surface reconstruction multi-scale hierarchical approaches

    Bellocchio, Francesco; Ferrari, Stefano; Piuri, Vincenzo

    2012-01-01

    3D Surface Reconstruction: Multi-Scale Hierarchical Approaches presents methods to model 3D objects in an incremental way so as to capture more finer details at each step. The configuration of the model parameters, the rationale and solutions are described and discussed in detail so the reader has a strong understanding of the methodology. Modeling starts from data captured by 3D digitizers and makes the process even more clear and engaging. Innovative approaches, based on two popular machine learning paradigms, namely Radial Basis Functions and the Support Vector Machines, are also introduced

  6. Enhanced 3D fluorescence live cell imaging on nanoplasmonic substrate

    Gartia, Manas Ranjan [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois, Urbana, IL 61801 (United States); Hsiao, Austin; Logan Liu, G [Department of Bioengineering, University of Illinois, Urbana, IL 61801 (United States); Sivaguru, Mayandi [Institute for Genomic Biology, University of Illinois, Urbana, IL 61801 (United States); Chen Yi, E-mail: loganliu@illinois.edu [Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801 (United States)

    2011-09-07

    We have created a randomly distributed nanocone substrate on silicon coated with silver for surface-plasmon-enhanced fluorescence detection and 3D cell imaging. Optical characterization of the nanocone substrate showed it can support several plasmonic modes (in the 300-800 nm wavelength range) that can be coupled to a fluorophore on the surface of the substrate, which gives rise to the enhanced fluorescence. Spectral analysis suggests that a nanocone substrate can create more excitons and shorter lifetime in the model fluorophore Rhodamine 6G (R6G) due to plasmon resonance energy transfer from the nanocone substrate to the nearby fluorophore. We observed three-dimensional fluorescence enhancement on our substrate shown from the confocal fluorescence imaging of chinese hamster ovary (CHO) cells grown on the substrate. The fluorescence intensity from the fluorophores bound on the cell membrane was amplified more than 100-fold as compared to that on a glass substrate. We believe that strong scattering within the nanostructured area coupled with random scattering inside the cell resulted in the observed three-dimensional enhancement in fluorescence with higher photostability on the substrate surface.

  7. 3D SEM for surface topography quantification – a case study on dental surfaces

    3D analysis of surface topography is becoming a more used tool for industry and research. New ISO standards are being launched to assist in quantifying engineering surfaces. The traditional optical measuring instrumentation used for 3D surface characterization has been optical interferometers and confocal based instrumentation. However, the resolution here is limited in the lateral dimension to the wavelength of visible light to about 500 nm. The great advantage using the SEM for topography measurements is the high flexibility to zoom from low magnifications and locating interesting areas to high magnification of down to nanometer large surface features within seconds. This paper presents surface characterization of dental implant micro topography. 3D topography data was created from SEM images using commercial photogrammetric software. A coherence scanning interferometer was used for reference measurements to compare with the 3D SEM measurements on relocated areas. As a result of this study, measurements emphasizes that the correlation between the accepted CSI measurements and the new technology represented by photogrammetry based on SEM images for many areal characterization parameters are around or less than 20%. The importance of selecting sampling and parameter sensitivity to varying sampling is high-lighted. Future work includes a broader study of limitations of the photogrammetry technique on certified micro-geometries and more application surfaces at different scales

  8. Transaction rules for updating surfaces in 3D GIS

    Gröger, Gerhard; Plümer, Lutz

    2012-04-01

    Three-dimensional surface models representing the terrain and the outer hull of objects such as buildings and bridges support important 3D GIS applications, for example telecommunication planning and noise emission simulation. Updates of surface models often introduce errors which violate basic assumptions of users and their applications. The notion of geometric-topological consistency covers many of these assumptions. It guarantees that objects do not penetrate mutually or that objects completely cover other objects. Assuring that updates do not violate geometric-topological consistency constitutes a major challenge for 3D GIS which has not been satisfactorily met so far. This article presents a solution which is based on efficient transaction rules for updating 3D surface models. We show that these rules are safe (consistency is preserved by any rule application) and complete (any consistent surface model can be generated by successive rule applications). For both properties rigorous mathematic proofs are given.

  9. Recovering 3D human pose from monocular images

    Agarwal, Ankur; Triggs, Bill

    2006-01-01

    We describe a learning-based method for recovering 3D human body pose from single images and monocular image sequences. Our approach requires neither an explicit body model nor prior labeling of body parts in the image. Instead, it recovers pose by direct nonlinear regression against shape descriptor vectors extracted automatically from image silhouettes. For robustness against local silhouette segmentation errors, silhouette shape is encoded by histogram-of-shape-contexts descriptors. We eva...

  10. 3D Medical Image Segmentation Based on Rough Set Theory

    CHEN Shi-hao; TIAN Yun; WANG Yi; HAO Chong-yang

    2007-01-01

    This paper presents a method which uses multiple types of expert knowledge together in 3D medical image segmentation based on rough set theory. The focus of this paper is how to approximate a ROI (region of interest) when there are multiple types of expert knowledge. Based on rough set theory, the image can be split into three regions:positive regions; negative regions; boundary regions. With multiple knowledge we refine ROI as an intersection of all of the expected shapes with single knowledge. At last we show the results of implementing a rough 3D image segmentation and visualization system.

  11. Segmentation of Carotid Arteries from 3D and 4D Ultrasound Images

    Mattsson, Per; Eriksson, Andreas

    2002-01-01

    This thesis presents a 3D semi-automatic segmentation technique for extracting the lumen surface of the Carotid arteries including the bifurcation from 3D and 4D ultrasound examinations. Ultrasound images are inherently noisy. Therefore, to aid the inspection of the acquired data an adaptive edge preserving filtering technique is used to reduce the general high noise level. The segmentation process starts with edge detection with a recursive and separable 3D Monga-Deriche-Canny operator. To r...

  12. A new approach towards image based virtual 3D city modeling by using close range photogrammetry

    S. P. Singh; K. Jain; V. R. Mandla

    2014-01-01

    3D city model is a digital representation of the Earth's surface and it’s related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing day to day for various engineering and non-engineering applications. Generally three main image based approaches are using for virtual 3D city models generation. In first approach, researchers used Sketch based modeling, second method is Procedural grammar based m...

  13. 3D Image Display Courses for Information Media Students.

    Yanaka, Kazuhisa; Yamanouchi, Toshiaki

    2016-01-01

    Three-dimensional displays are used extensively in movies and games. These displays are also essential in mixed reality, where virtual and real spaces overlap. Therefore, engineers and creators should be trained to master 3D display technologies. For this reason, the Department of Information Media at the Kanagawa Institute of Technology has launched two 3D image display courses specifically designed for students who aim to become information media engineers and creators. PMID:26960028

  14. A near field 3D radar imaging technique

    Broquetas Ibars, Antoni

    1993-01-01

    The paper presents an algorithm which recovers a 3D reflectivity image of a target from near-field scattering measurements. Spherical wave nearfield illumination is used, in order to avoid a costly compact range installation to produce a plane wave illumination. The system is described and some simulated 3D reconstructions are included. The paper also presents a first experimental validation of this technique. Peer Reviewed

  15. Hybrid segmentation framework for 3D medical image analysis

    Chen, Ting; Metaxas, Dimitri N.

    2003-05-01

    Medical image segmentation is the process that defines the region of interest in the image volume. Classical segmentation methods such as region-based methods and boundary-based methods cannot make full use of the information provided by the image. In this paper we proposed a general hybrid framework for 3D medical image segmentation purposes. In our approach we combine the Gibbs Prior model, and the deformable model. First, Gibbs Prior models are applied onto each slice in a 3D medical image volume and the segmentation results are combined to a 3D binary masks of the object. Then we create a deformable mesh based on this 3D binary mask. The deformable model will be lead to the edge features in the volume with the help of image derived external forces. The deformable model segmentation result can be used to update the parameters for Gibbs Prior models. These methods will then work recursively to reach a global segmentation solution. The hybrid segmentation framework has been applied to images with the objective of lung, heart, colon, jaw, tumor, and brain. The experimental data includes MRI (T1, T2, PD), CT, X-ray, Ultra-Sound images. High quality results are achieved with relatively efficient time cost. We also did validation work using expert manual segmentation as the ground truth. The result shows that the hybrid segmentation may have further clinical use.

  16. Investigation of the feasability for 3D synthetic aperture imaging

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2003-01-01

    This paper investigates the feasibility of implementing real-time synthetic aperture 3D imaging on the experimental system developed at the Center for Fast Ultrasound Imaging using a 2D transducer array. The target array is a fully populated 32 × 32 3 MHz array with a half wavelength pitch. The...

  17. First images and orientation of fine structure from a 3-D seismic oceanography data set

    T. M. Blacic

    2010-04-01

    Full Text Available We present 3-D images of ocean fine structure from a unique industry-collected 3-D multichannel seismic dataset from the Gulf of Mexico that includes expendable bathythermograph casts for both swaths. 2-D processing reveals strong laterally continuous reflections throughout the upper ~800 m as well as a few weaker but still distinct reflections as deep as ~1100 m. We interpret the reflections to be caused by reversible fine structure from internal wave strains. Two bright reflections are traced across the 225-m-wide swath to produce reflection surface images that illustrate the 3-D nature of ocean fine structure. We show that the orientation of linear features in a reflection can be obtained by calculating the orientations of contours of reflection relief, or more robustly, by fitting a sinusoidal surface to the reflection. Preliminary 3-D processing further illustrates the potential of 3-D seismic data in interpreting images of oceanic features such as internal wave strains. This work demonstrates the viability of imaging oceanic fine structure in 3-D and shows that, beyond simply providing a way visualize oceanic fine structure, quantitative information such as the spatial orientation of features like fronts and solitons can be obtained from 3-D seismic images. We expect complete, optimized 3-D processing to improve both the signal to noise ratio and spatial resolution of our images resulting in increased options for analysis and interpretation.

  18. Surface classification and detection of latent fingerprints based on 3D surface texture parameters

    Gruhn, Stefan; Fischer, Robert; Vielhauer, Claus

    2012-06-01

    In the field of latent fingerprint detection in crime scene forensics the classification of surfaces has importance. A new method for the scientific analysis of image based information for forensic science was investigated in the last years. Our image acquisition based on a sensor using Chromatic White Light (CWL) with a lateral resolution up to 2 μm. The used FRT-MicroProf 200 CWL 600 measurement device is able to capture high-resolution intensity and topography images in an optical and contact-less way. In prior work, we have suggested to use 2D surface texture parameters to classify various materials, which was a novel approach in the field of criminalistic forensic using knowledge from surface appearance and a chromatic white light sensor. A meaningful and useful classification of different crime scene specific surfaces is not existent. In this work, we want to extend such considerations by the usage of fourteen 3D surface parameters, called 'Birmingham 14'. In our experiment we define these surface texture parameters and use them to classify ten different materials in this test set-up and create specific material classes. Further it is shown in first experiments, that some surface texture parameters are sensitive to separate fingerprints from carrier surfaces. So far, the use of surface roughness is mainly known within the framework of material quality control. The analysis and classification of the captured 3D-topography images from crime scenes is important for the adaptive preprocessing depending on the surface texture. The adaptive preprocessing in dependency of surface classification is necessary for precise detection because of the wide variety of surface textures. We perform a preliminary study in usage of these 3D surface texture parameters as feature for the fingerprint detection. In combination with a reference sample we show that surface texture parameters can be an indication for a fingerprint and can be a feature in latent fingerprint detection.

  19. Studies of the 3D surface roughness height

    Avisane, Anita; Rudzitis, Janis; Kumermanis, Maris [Institute of Mechanical Engineering, Riga Technical University, Ezermalas str. 6k, Riga (Latvia)

    2013-12-16

    Nowadays nano-coatings occupy more and more significant place in technology. Innovative, functional coatings acquire new aspects from the point of view of modern technologies, considering the aggregate of physical properties that can be achieved manipulating in the production process with the properties of coatings’ surfaces on micro- and nano-level. Nano-coatings are applied on machine parts, friction surfaces, contacting parts, corrosion surfaces, transparent conducting films (TCF), etc. The equipment available at present for the production of transparent conducting oxide (TCO) coatings with highest quality is based on expensive indium tin oxide (ITO) material; therefore cheaper alternatives are being searched for. One such offered alternative is zink oxide (ZnO) nano-coatings. Evaluating the TCF physical and mechanical properties and in view of the new ISO standard (EN ISO 25178) on the introduction of surface texture (3D surface roughness) in the engineering calculations, it is necessary to examine the height of 3D surface roughness, which is one of the most significant roughness parameters. The given paper studies the average values of 3D surface roughness height and the most often applied distribution laws are as follows: the normal distribution and Rayleigh distribution. The 3D surface is simulated by a normal random field.

  20. Triangulation of 3D Surfaces Recovered from STL Grids

    D. Rypl; Bittnar, Z.

    2004-01-01

    In the present paper, an algorithm for the discretization of parametric 3D surfaces has been extended to the family of discrete surfaces represented by stereolithography (STL) grids. The STL file format, developed for the rapid prototyping industry, is an attractive alternative to surface representation in solid modeling. Initially, a boundary representation is constructed from the STL file using feature recognition. Then a smooth surface is recovered over the original STL grid using an inter...

  1. Surface modelling in 3D city information system

    Igor Petz

    2009-10-01

    Full Text Available Geographical information systems deal with terrain, cartographical and urban information; these systems allow gathering, maintaining and presentation of the included data. The approach of combininggeographical information systems with visualization methods of virtual reality is presented in this article. Virtual 3D City Information System is a project which purpose is to model parts of the city to 3D graphics using polygonal modelling for modelling objects by representing their surfaces using polygons. Realappearance is provided by using textures. Usually 3D exterior contains large data set of polygons. Presented system contains three parts: editor (modelling part, database and visualisation part. Thesystem is controlled by script (Python language using too. In conclusion are described some results of visualization of 3D scene that is represented as Košice city part.

  2. MR imaging in epilepsy with use of 3D MP-RAGE

    The patients were 40 males and 33 females; their ages ranged from 1 month to 39 years (mean: 15.7 years). The patients underwent MR imaging, including spin-echo T1-weighted, turbo spin-echo proton density/T2-weighted, and 3D magnetization-prepared rapid gradient-echo (3D MP-RAGE) images. These examinations disclosed 39 focal abnormalities. On visual evaluation, the boundary of abnormal gray matter in the neuronal migration disorder (NMD) cases was most clealy shown on 3D MP-RAGE images as compared to the other images. This is considered to be due to the higher spatial resolution and the better contrast of the 3D MP-RAGE images than those of the other techniques. The relative contrast difference between abnormal gray matter and the adjacent white matter was also assessed. The results revealed that the contrast differences on the 3D MP-RAGE images were larger than those on the other images; this was statistically significant. Although the sensitivity of 3D MP-RAGE for NMD was not specifically evaluated in this study, the possibility of this disorder, in cases suspected on other images, could be ruled out. Thus, it appears that the specificity with respect to NMD was at least increased with us of 3D MP-RAGE. 3D MP-RAGE also enabled us to build three-dimensional surface models that were helpful in understanding the three-dimensional anatomy. Furthermore. 3D MP-RAGE was considered to be the best technique for evaluating hippocampus atrophy in patients with MTS. On the other hand, the sensitivity in the signal change of the hippocampus was higher on T2-weighted images. In addition, demonstration of cortical tubers of tuberous sclerosis in neurocutaneous syndrome was superior on T2-weighted images than on 3D MP-RAGE images. (K.H.)

  3. MR imaging in epilepsy with use of 3D MP-RAGE

    Tanaka, Akio; Ohno, Sigeru; Sei, Tetsuro; Kanazawa, Susumu; Yasui, Koutaro; Kuroda, Masahiro; Hiraki, Yoshio; Oka, Eiji [Okayama Univ. (Japan). School of Medicine

    1996-06-01

    The patients were 40 males and 33 females; their ages ranged from 1 month to 39 years (mean: 15.7 years). The patients underwent MR imaging, including spin-echo T{sub 1}-weighted, turbo spin-echo proton density/T{sub 2}-weighted, and 3D magnetization-prepared rapid gradient-echo (3D MP-RAGE) images. These examinations disclosed 39 focal abnormalities. On visual evaluation, the boundary of abnormal gray matter in the neuronal migration disorder (NMD) cases was most clealy shown on 3D MP-RAGE images as compared to the other images. This is considered to be due to the higher spatial resolution and the better contrast of the 3D MP-RAGE images than those of the other techniques. The relative contrast difference between abnormal gray matter and the adjacent white matter was also assessed. The results revealed that the contrast differences on the 3D MP-RAGE images were larger than those on the other images; this was statistically significant. Although the sensitivity of 3D MP-RAGE for NMD was not specifically evaluated in this study, the possibility of this disorder, in cases suspected on other images, could be ruled out. Thus, it appears that the specificity with respect to NMD was at least increased with us of 3D MP-RAGE. 3D MP-RAGE also enabled us to build three-dimensional surface models that were helpful in understanding the three-dimensional anatomy. Furthermore. 3D MP-RAGE was considered to be the best technique for evaluating hippocampus atrophy in patients with MTS. On the other hand, the sensitivity in the signal change of the hippocampus was higher on T{sub 2}-weighted images. In addition, demonstration of cortical tubers of tuberous sclerosis in neurocutaneous syndrome was superior on T{sub 2}-weighted images than on 3D MP-RAGE images. (K.H.)

  4. Quantifying the surface chemistry of 3D matrices in situ

    Tzeranis, Dimitrios S.; So, Peter T. C.; Yannas, Ioannis V.

    2014-03-01

    Despite the major role of the matrix (the insoluble environment around cells) in physiology and pathology, there are very few and limited methods that can quantify the surface chemistry of a 3D matrix such as a biomaterial or tissue ECM. This study describes a novel optical-based methodology that can quantify the surface chemistry (density of adhesion ligands for particular cell adhesion receptors) of a matrix in situ. The methodology utilizes fluorescent analogs (markers) of the receptor of interest and a series of binding assays, where the amount of bound markers on the matrix is quantified via spectral multi-photon imaging. The study provides preliminary results for the quantification of the ligands for the two major collagen-binding integrins (α1β1, α2β1) in porous collagen scaffolds that have been shown to be able to induce maximum regeneration in transected peripheral nerves. The developed methodology opens the way for quantitative descriptions of the insoluble microenvironment of cells in physiology and pathology, and for integrating the matrix in quantitative models of cell signaling. α

  5. Optimized 3D watermarking for minimal surface distortion.

    Bors, Adrian G; Luo, Ming

    2013-05-01

    This paper proposes a new approach to 3D watermarking by ensuring the optimal preservation of mesh surfaces. A new 3D surface preservation function metric is defined consisting of the distance of a vertex displaced by watermarking to the original surface, to the watermarked object surface as well as the actual vertex displacement. The proposed method is statistical, blind, and robust. Minimal surface distortion according to the proposed function metric is enforced during the statistical watermark embedding stage using Levenberg-Marquardt optimization method. A study of the watermark code crypto-security is provided for the proposed methodology. According to the experimental results, the proposed methodology has high robustness against the common mesh attacks while preserving the original object surface during watermarking. PMID:23288337

  6. 3D Modeling from Multi-views Images for Cultural Heritage in Wat-Pho, Thailand

    Soontranon, N.; Srestasathiern, P.; Lawawirojwong, S.

    2015-08-01

    In Thailand, there are several types of (tangible) cultural heritages. This work focuses on 3D modeling of the heritage objects from multi-views images. The images are acquired by using a DSLR camera which costs around 1,500 (camera and lens). Comparing with a 3D laser scanner, the camera is cheaper and lighter than the 3D scanner. Hence, the camera is available for public users and convenient for accessing narrow areas. The acquired images consist of various sculptures and architectures in Wat-Pho which is a Buddhist temple located behind the Grand Palace (Bangkok, Thailand). Wat-Pho is known as temple of the reclining Buddha and the birthplace of traditional Thai massage. To compute the 3D models, a diagram is separated into following steps; Data acquisition, Image matching, Image calibration and orientation, Dense matching and Point cloud processing. For the initial work, small heritages less than 3 meters height are considered for the experimental results. A set of multi-views images of an interested object is used as input data for 3D modeling. In our experiments, 3D models are obtained from MICMAC (open source) software developed by IGN, France. The output of 3D models will be represented by using standard formats of 3D point clouds and triangulated surfaces such as .ply, .off, .obj, etc. To compute for the efficient 3D models, post-processing techniques are required for the final results e.g. noise reduction, surface simplification and reconstruction. The reconstructed 3D models can be provided for public access such as website, DVD, printed materials. The high accurate 3D models can also be used as reference data of the heritage objects that must be restored due to deterioration of a lifetime, natural disasters, etc.

  7. Triangulation of 3D Surfaces Recovered from STL Grids

    D. Rypl

    2004-01-01

    Full Text Available In the present paper, an algorithm for the discretization of parametric 3D surfaces has been extended to the family of discrete surfaces represented by stereolithography (STL grids. The STL file format, developed for the rapid prototyping industry, is an attractive alternative to surface representation in solid modeling. Initially, a boundary representation is constructed from the STL file using feature recognition. Then a smooth surface is recovered over the original STL grid using an interpolating subdivision procedure. Finally, the reconstructed surface is subjected to the triangulation accomplished using the advancing front technique operating directly on the surface. The capability of the proposed methodology is illustrated on an example. 

  8. AUTOMATIC 3D MAPPING USING MULTIPLE UNCALIBRATED CLOSE RANGE IMAGES

    M. Rafiei

    2013-09-01

    Full Text Available Automatic three-dimensions modeling of the real world is an important research topic in the geomatics and computer vision fields for many years. By development of commercial digital cameras and modern image processing techniques, close range photogrammetry is vastly utilized in many fields such as structure measurements, topographic surveying, architectural and archeological surveying, etc. A non-contact photogrammetry provides methods to determine 3D locations of objects from two-dimensional (2D images. Problem of estimating the locations of 3D points from multiple images, often involves simultaneously estimating both 3D geometry (structure and camera pose (motion, it is commonly known as structure from motion (SfM. In this research a step by step approach to generate the 3D point cloud of a scene is considered. After taking images with a camera, we should detect corresponding points in each two views. Here an efficient SIFT method is used for image matching for large baselines. After that, we must retrieve the camera motion and 3D position of the matched feature points up to a projective transformation (projective reconstruction. Lacking additional information on the camera or the scene makes the parallel lines to be unparalleled. The results of SfM computation are much more useful if a metric reconstruction is obtained. Therefor multiple views Euclidean reconstruction applied and discussed. To refine and achieve the precise 3D points we use more general and useful approach, namely bundle adjustment. At the end two real cases have been considered to reconstruct (an excavation and a tower.

  9. First images and orientation of internal waves from a 3-D seismic oceanography data set

    T. M. Blacic

    2009-10-01

    Full Text Available We present 3-D images of ocean finestructure from a unique industry-collected 3-D multichannel seismic dataset from the Gulf of Mexico that includes expendable bathythermograpgh casts for both swaths. 2-D processing reveals strong laterally continuous reflectors throughout the upper ~800 m as well as a few weaker but still distinct reflectors as deep as ~1100 m. Two bright reflections are traced across the 225-m-wide swath to produce reflector surface images that show the 3-D structure of internal waves. We show that the orientation of internal wave crests can be obtained by calculating the orientations of contours of reflector relief. Preliminary 3-D processing further illustrates the potential of 3-D seismic data in interpreting images of oceanic features such as internal wave strains. This work demonstrates the viability of imaging oceanic finestructure in 3-D and shows that, beyond simply providing a way to see what oceanic finestructure looks like, quantitative information such as the spatial orientation of features like internal waves and solitons can be obtained from 3-D seismic images. We expect complete, optimized 3-D processing to improve both the signal to noise ratio and spatial resolution of our images resulting in increased options for analysis and interpretation.

  10. 3D Petrography - Serendipitous Discovery of Magmatic Vapor Deposition of Anhydrite at Mount Pinatubo by SEM Imaging of Outer Crystal Surfaces

    Fournelle, J. H.; Jakubowski, R. T.; Welch, S.; Swope, R. J.

    2003-12-01

    , significantly prior to eruption, with geochemical modeling supporting this hypothesis (Jakubowski et al, 2002, Am. Min 87, 1029; download from www.geology.wisc.edu/ ˜~johnf/Ryan.pdf) As demonstrated here, a polished thin section can entirely miss critical petrographic information present upon the outer crystal surface. Consequently, additional sample preparation may be necessary, including careful separation of minerals or clumps of minerals and matrix, followed by imaging by SEM. We suggest that one impact may be in the study of volcanic materials, where there may have been a vapor present at depth prior to eruption, and where magmatic vapor deposition processes may have left evidence on the surfaces of crystals.

  11. 3D interfractional patient position verification using 2D-3D registration of orthogonal images

    Reproducible positioning of the patient during fractionated external beam radiation therapy is imperative to ensure that the delivered dose distribution matches the planned one. In this paper, we expand on a 2D-3D image registration method to verify a patient's setup in three dimensions (rotations and translations) using orthogonal portal images and megavoltage digitally reconstructed radiographs (MDRRs) derived from CT data. The accuracy of 2D-3D registration was improved by employing additional image preprocessing steps and a parabolic fit to interpolate the parameter space of the cost function utilized for registration. Using a humanoid phantom, precision for registration of three-dimensional translations was found to be better than 0.5 mm (1 s.d.) for any axis when no rotations were present. Three-dimensional rotations about any axis were registered with a precision of better than 0.2 deg. (1 s.d.) when no translations were present. Combined rotations and translations of up to 4 deg. and 15 mm were registered with 0.4 deg. and 0.7 mm accuracy for each axis. The influence of setup translations on registration of rotations and vice versa was also investigated and mostly agrees with a simple geometric model. Additionally, the dependence of registration accuracy on three cost functions, angular spacing between MDRRs, pixel size, and field-of-view, was examined. Best results were achieved by mutual information using 0.5 deg. angular spacing and a 10x10 cm2 field-of-view with 140x140 pixels. Approximating patient motion as rigid transformation, the registration method is applied to two treatment plans and the patients' setup errors are determined. Their magnitude was found to be ≤6.1 mm and ≤2.7 deg. for any axis in all of the six fractions measured for each treatment plan

  12. Automated curved planar reformation of 3D spine images

    Traditional techniques for visualizing anatomical structures are based on planar cross-sections from volume images, such as images obtained by computed tomography (CT) or magnetic resonance imaging (MRI). However, planar cross-sections taken in the coordinate system of the 3D image often do not provide sufficient or qualitative enough diagnostic information, because planar cross-sections cannot follow curved anatomical structures (e.g. arteries, colon, spine, etc). Therefore, not all of the important details can be shown simultaneously in any planar cross-section. To overcome this problem, reformatted images in the coordinate system of the inspected structure must be created. This operation is usually referred to as curved planar reformation (CPR). In this paper we propose an automated method for CPR of 3D spine images, which is based on the image transformation from the standard image-based to a novel spine-based coordinate system. The axes of the proposed spine-based coordinate system are determined on the curve that represents the vertebral column, and the rotation of the vertebrae around the spine curve, both of which are described by polynomial models. The optimal polynomial parameters are obtained in an image analysis based optimization framework. The proposed method was qualitatively and quantitatively evaluated on five CT spine images. The method performed well on both normal and pathological cases and was consistent with manually obtained ground truth data. The proposed spine-based CPR benefits from reduced structural complexity in favour of improved feature perception of the spine. The reformatted images are diagnostically valuable and enable easier navigation, manipulation and orientation in 3D space. Moreover, reformatted images may prove useful for segmentation and other image analysis tasks

  13. DICOM for quantitative imaging research in 3D Slicer

    Fedorov, Andrey; Kikinis, Ron

    2014-01-01

    These are the slides presented by Andrey Fedorov at the 3D Slicer workshop and meeting of the Quantitative Image Informatics for Cancer Research (QIICR) project that took place November 18-19, 2014, at the University of Iowa.

  14. Robust Adaptive Segmentation of 3D Medical Images with Level Sets

    Baillard, Caroline; Barillot, Christian; Bouthemy, Patrick

    2000-01-01

    This paper is concerned with the use of the Level Set formalism to segment anatomical structures in 3D medical images (ultrasound or magnetic resonance images). A closed 3D surface propagates towards the desired boundaries through the iterative evolution of a 4D implicit function. The major contribution of this work is the design of a robust evolution model based on adaptive parameters depending on the data. First the step size and the external propagation force factor, both usually predeterm...

  15. Automatic landmark annotation and dense correspondence registration for 3D human facial images

    Guo, Jianya; Mei, Xi; Tang, Kun

    2012-01-01

    Background Traditional anthropometric studies of human face rely on manual measurements of simple features, which are labor intensive and lack of full comprehensive inference. Dense surface registration of three-dimensional (3D) human facial images holds great potential for high throughput quantitative analyses of complex facial traits. However there is a lack of automatic high density registration method for 3D faical images. Furthermore, current approaches of landmark recognition require fu...

  16. Practical pseudo-3D registration for large tomographic images

    Liu, Xuan; Laperre, Kjell; Sasov, Alexander

    2014-09-01

    Image registration is a powerful tool in various tomographic applications. Our main focus is on microCT applications in which samples/animals can be scanned multiple times under different conditions or at different time points. For this purpose, a registration tool capable of handling fairly large volumes has been developed, using a novel pseudo-3D method to achieve fast and interactive registration with simultaneous 3D visualization. To reduce computation complexity in 3D registration, we decompose it into several 2D registrations, which are applied to the orthogonal views (transaxial, sagittal and coronal) sequentially and iteratively. After registration in each view, the next view is retrieved with the new transformation matrix for registration. This reduces the computation complexity significantly. For rigid transform, we only need to search for 3 parameters (2 shifts, 1 rotation) in each of the 3 orthogonal views instead of 6 (3 shifts, 3 rotations) for full 3D volume. In addition, the amount of voxels involved is also significantly reduced. For the proposed pseudo-3D method, image-based registration is employed, with Sum of Square Difference (SSD) as the similarity measure. The searching engine is Powell's conjugate direction method. In this paper, only rigid transform is used. However, it can be extended to affine transform by adding scaling and possibly shearing to the transform model. We have noticed that more information can be used in the 2D registration if Maximum Intensity Projections (MIP) or Parallel Projections (PP) is used instead of the orthogonal views. Also, other similarity measures, such as covariance or mutual information, can be easily incorporated. The initial evaluation on microCT data shows very promising results. Two application examples are shown: dental samples before and after treatment and structural changes in materials before and after compression. Evaluation on registration accuracy between pseudo-3D method and true 3D method has

  17. 3D wavefront image formation for NIITEK GPR

    Soumekh, Mehrdad; Ton, Tuan; Howard, Pete

    2009-05-01

    The U.S. Department of Defense Humanitarian Demining (HD) Research and Development Program focuses on developing, testing, demonstrating, and validating new technology for immediate use in humanitarian demining operations around the globe. Beginning in the late 1990's, the U.S. Army Countermine Division funded the development of the NIITEK ground penetrating radar (GPR) for detection of anti-tank (AT) landmines. This work is concerned with signal processing algorithms to suppress sources of artifacts in the NIITEK GPR, and formation of three-dimensional (3D) imagery from the resultant data. We first show that the NIITEK GPR data correspond to a 3D Synthetic Aperture Radar (SAR) database. An adaptive filtering method is utilized to suppress ground return and self-induced resonance (SIR) signals that are generated by the interaction of the radar-carrying platform and the transmitted radar signal. We examine signal processing methods to improve the fidelity of imagery for this 3D SAR system using pre-processing methods that suppress Doppler aliasing as well as other side lobe leakage artifacts that are introduced by the radar radiation pattern. The algorithm, known as digital spotlighting, imposes a filtering scheme on the azimuth-compressed SAR data, and manipulates the resultant spectral data to achieve a higher PRF to suppress the Doppler aliasing. We also present the 3D version of the Fourier-based wavefront reconstruction, a computationally-efficient and approximation-free SAR imaging method, for image formation with the NIITEK 3D SAR database.

  18. Calculated surface-energy anomaly in the 3d metals

    Aldén, M.; Skriver, Hans Lomholt; Mirbt, S.;

    1992-01-01

    Local-spin-density theory and a Green’s-function technique based on the linear muffin-tin orbitals method have been used to calculate the surface energy of the 3d metals. The theory explains the variation of the values derived from measurements of the surface tension of liquid metals including th...... pronounced anomaly occurring between vanadium and nickel in terms of a decrease in the d contribution caused by spin polarization....

  19. Determining the surface roughness coefficient by 3D Scanner

    Karmen Fifer Bizjak

    2010-01-01

    Currently, several test methods can be used in the laboratory to determine the roughness of rock joint surfaces.However, true roughness can be distorted and underestimated by the differences in the sampling interval of themeasurement methods. Thus, these measurement methods produce a dead zone and distorted roughness profiles.In this paper a new rock joint surface roughness measurement method is presented, with the use of a camera-typethree-dimensional (3D) scanner as an alternative to curren...

  20. Extracting 3D Layout From a Single Image Using Global Image Structures

    Z. Lou; T. Gevers; N. Hu

    2015-01-01

    Extracting the pixel-level 3D layout from a single image is important for different applications, such as object localization, image, and video categorization. Traditionally, the 3D layout is derived by solving a pixel-level classification problem. However, the image-level 3D structure can be very b

  1. Holoscopic 3D image depth estimation and segmentation techniques

    Alazawi, Eman

    2015-01-01

    This thesis was submitted for the award of Doctor of Philosophy and was awarded by Brunel University London Today’s 3D imaging techniques offer significant benefits over conventional 2D imaging techniques. The presence of natural depth information in the scene affords the observer an overall improved sense of reality and naturalness. A variety of systems attempting to reach this goal have been designed by many independent research groups, such as stereoscopic and auto-stereoscopic systems....

  2. Efficient reconfigurable architectures for 3D medical image compression

    Afandi, Ahmad

    2010-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. Recently, the more widespread use of three-dimensional (3-D) imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), and ultrasound (US) have generated a massive amount of volumetric data. These have provided an impetus to the development of other applications, in particular telemedicine and teleradiology. In thes...

  3. A novel 3D stitching method for WLI based large range surface topography measurement

    Lei, Zili; Liu, Xiaojun; Zhao, Li; Chen, Liangzhou; Li, Qian; Yuan, Tengfei; Lu, Wenlong

    2016-01-01

    3D image stitching is an important technique for large range surface topography measurement in White-Light Interferometry (WLI). However, the stitching accuracy is inevitably influenced by noise. To solve this problem, a novel method for 3D image stitching is proposed in this paper. In this method, based on noise mechanism analysis in WLI measurement, a new definition of noise in 3D image is given by an evaluation model for difference between the practical WLI interference signal and the ideal signal. By this new definition, actual noises in 3D image are identified while those practical singular heights on surface will not be wrongly attributed to noise. With the definition, a binary matrix for noise mark corresponding to 3D image is obtained. Then, the matrix is devoted, as an important component, to establish a series of new algorithms of capability for suppressing the adverse effects of noises in each process of the proposed stitching method. By this method, the influence of the noises on stitching is substantially reduced and the stitching accuracy is improved. Through 3D image stitching experiments with noises in WLI, effectiveness of the proposed method is verified.

  4. Projective 3D-reconstruction of Uncalibrated Endoscopic Images

    P. Faltin

    2010-01-01

    Full Text Available The most common medical diagnostic method for urinary bladder cancer is cystoscopy. This inspection of the bladder is performed by a rigid endoscope, which is usually guided close to the bladder wall. This causes a very limited field of view; difficulty of navigation is aggravated by the usage of angled endoscopes. These factors cause difficulties in orientation and visual control. To overcome this problem, the paper presents a method for extracting 3D information from uncalibrated endoscopic image sequences and for reconstructing the scene content. The method uses the SURF-algorithm to extract features from the images and relates the images by advanced matching. To stabilize the matching, the epipolar geometry is extracted for each image pair using a modified RANSAC-algorithm. Afterwards these matched point pairs are used to generate point triplets over three images and to describe the trifocal geometry. The 3D scene points are determined by applying triangulation to the matched image points. Thus, these points are used to generate a projective 3D reconstruction of the scene, and provide the first step for further metric reconstructions.

  5. 1024 pixels single photon imaging array for 3D ranging

    Bellisai, S.; Guerrieri, F.; Tisa, S.; Zappa, F.; Tosi, A.; Giudice, A.

    2011-01-01

    Three dimensions (3D) acquisition systems are driving applications in many research field. Nowadays 3D acquiring systems are used in a lot of applications, such as cinema industry or in automotive (for active security systems). Depending on the application, systems present different features, for example color sensitivity, bi-dimensional image resolution, distance measurement accuracy and acquisition frame rate. The system we developed acquires 3D movie using indirect Time of Flight (iTOF), starting from phase delay measurement of a sinusoidally modulated light. The system acquires live movie with a frame rate up to 50frame/s in a range distance between 10 cm up to 7.5 m.

  6. 3D Medical Image Interpolation Based on Parametric Cubic Convolution

    2007-01-01

    In the process of display, manipulation and analysis of biomedical image data, they usually need to be converted to data of isotropic discretization through the process of interpolation, while the cubic convolution interpolation is widely used due to its good tradeoff between computational cost and accuracy. In this paper, we present a whole concept for the 3D medical image interpolation based on cubic convolution, and the six methods, with the different sharp control parameter, which are formulated in details. Furthermore, we also give an objective comparison for these methods using data sets with the different slice spacing. Each slice in these data sets is estimated by each interpolation method and compared with the original slice using three measures: mean-squared difference, number of sites of disagreement, and largest difference. According to the experimental results, we present a recommendation for 3D medical images under the different situations in the end.

  7. Helical CT scanner - 3D imaging and CT fluoroscopy

    It has been over twenty years since the introduction of X-ray CT. In recent years, the topic of helical scanning has dominated the area of technical development. With helical scanning now being used routinely, the traditional concept of the X-ray CT as a device for obtaining axial images of the body in slices has given way to that of one for obtaining images in volumes. For instance, the ability of helical scanning to acquire sequential images in the direction of the body axis makes it ideal for creating three dimensional (3-D) images, and has in fact led to the use of 3-D images in clinical practice. In addition, with helical scanning, imaging of organs such as the liver or lung can be performed in several tens of seconds, as opposed to a few minutes that it used to take. This has resulted not only in reduced time for the patient to spend under constraint for imaging but also to changes in diagnostic methods. The question, 'Would it be possible to perform reconstruction while scanning and to see resulting images in real time ?' is another issue which has been taken up, and it has been answered by CT Fluoroscopy. It makes it possible to see CT images in real time during sequential scanning, and from this development, applications such as CT-guided biopsy and CT-navigated surgery has been investigated and have been realized. Other possibilities to create a whole new series of diagnostic methods and results. (author)

  8. A new approach towards image based virtual 3D city modeling by using close range photogrammetry

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2014-05-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing day to day for various engineering and non-engineering applications. Generally three main image based approaches are using for virtual 3D city models generation. In first approach, researchers used Sketch based modeling, second method is Procedural grammar based modeling and third approach is Close range photogrammetry based modeling. Literature study shows that till date, there is no complete solution available to create complete 3D city model by using images. These image based methods also have limitations This paper gives a new approach towards image based virtual 3D city modeling by using close range photogrammetry. This approach is divided into three sections. First, data acquisition process, second is 3D data processing, and third is data combination process. In data acquisition process, a multi-camera setup developed and used for video recording of an area. Image frames created from video data. Minimum required and suitable video image frame selected for 3D processing. In second section, based on close range photogrammetric principles and computer vision techniques, 3D model of area created. In third section, this 3D model exported to adding and merging of other pieces of large area. Scaling and alignment of 3D model was done. After applying the texturing and rendering on this model, a final photo-realistic textured 3D model created. This 3D model transferred into walk-through model or in movie form. Most of the processing steps are automatic. So this method is cost effective and less laborious. Accuracy of this model is good. For this research work, study area is the campus of department of civil engineering, Indian Institute of Technology, Roorkee. This campus acts as a prototype for city. Aerial photography is restricted in many country

  9. Quantitative 3-D imaging topogrammetry for telemedicine applications

    Altschuler, Bruce R.

    1994-01-01

    The technology to reliably transmit high-resolution visual imagery over short to medium distances in real time has led to the serious considerations of the use of telemedicine, telepresence, and telerobotics in the delivery of health care. These concepts may involve, and evolve toward: consultation from remote expert teaching centers; diagnosis; triage; real-time remote advice to the surgeon; and real-time remote surgical instrument manipulation (telerobotics with virtual reality). Further extrapolation leads to teledesign and telereplication of spare surgical parts through quantitative teleimaging of 3-D surfaces tied to CAD/CAM devices and an artificially intelligent archival data base of 'normal' shapes. The ability to generate 'topogrames' or 3-D surface numerical tables of coordinate values capable of creating computer-generated virtual holographic-like displays, machine part replication, and statistical diagnostic shape assessment is critical to the progression of telemedicine. Any virtual reality simulation will remain in 'video-game' realm until realistic dimensional and spatial relational inputs from real measurements in vivo during surgeries are added to an ever-growing statistical data archive. The challenges of managing and interpreting this 3-D data base, which would include radiographic and surface quantitative data, are considerable. As technology drives toward dynamic and continuous 3-D surface measurements, presenting millions of X, Y, Z data points per second of flexing, stretching, moving human organs, the knowledge base and interpretive capabilities of 'brilliant robots' to work as a surgeon's tireless assistants becomes imaginable. The brilliant robot would 'see' what the surgeon sees--and more, for the robot could quantify its 3-D sensing and would 'see' in a wider spectral range than humans, and could zoom its 'eyes' from the macro world to long-distance microscopy. Unerring robot hands could rapidly perform machine-aided suturing with

  10. A New Approach for 3D Range Image Segmentation using Gradient Method

    Dina A. Hafiz

    2011-01-01

    Full Text Available Problem statement: Segmentation of 3D range images is widely used in computer vision as an essential pre-processing step before the methods of high-level vision can be applied. Segmentation aims to study and recognize the features of range image such as 3D edges, connected surfaces and smooth regions. Approach: This study presents new improvements in segmentation of terrestrial 3D range images based on edge detection technique. The main idea is to apply a gradient edge detector in three different directions of the 3D range images. This 3D gradient detector is a generalization of the classical sobel operator used with 2D images, which is based on the differences of normal vectors or geometric locations in the coordinate directions. The proposed algorithm uses a 3D-grid structure method to handle large amount of unordered sets of points and determine neighborhood points. It segments the 3D range images directly using gradient edge detectors without any further computations like mesh generation. Our algorithm focuses on extracting important linear structures such as doors, stairs and windows from terrestrial 3D range images these structures are common in indoors and outdoors in many environments. Results: Experimental results showed that the proposed algorithm provides a new approach of 3D range image segmentation with the characteristics of low computational complexity and less sensitivity to noise. The algorithm is validated using seven artificially generated datasets and two real world datasets. Conclusion/Recommendations: Experimental results showed that different segmentation accuracy is achieved by using higher Grid resolution and adaptive threshold.

  11. Large distance 3D imaging of hidden objects

    Rozban, Daniel; Aharon Akram, Avihai; Kopeika, N. S.; Abramovich, A.; Levanon, Assaf

    2014-06-01

    Imaging systems in millimeter waves are required for applications in medicine, communications, homeland security, and space technology. This is because there is no known ionization hazard for biological tissue, and atmospheric attenuation in this range of the spectrum is low compared to that of infrared and optical rays. The lack of an inexpensive room temperature detector makes it difficult to give a suitable real time implement for the above applications. A 3D MMW imaging system based on chirp radar was studied previously using a scanning imaging system of a single detector. The system presented here proposes to employ a chirp radar method with Glow Discharge Detector (GDD) Focal Plane Array (FPA of plasma based detectors) using heterodyne detection. The intensity at each pixel in the GDD FPA yields the usual 2D image. The value of the I-F frequency yields the range information at each pixel. This will enable 3D MMW imaging. In this work we experimentally demonstrate the feasibility of implementing an imaging system based on radar principles and FPA of inexpensive detectors. This imaging system is shown to be capable of imaging objects from distances of at least 10 meters.

  12. Estimation of shape model parameters for 3D surfaces

    Erbou, Søren Gylling Hemmingsen; Darkner, Sune; Fripp, Jurgen; Ourselin, Sébastien; Ersbøll, Bjarne Kjær

    surfaces using distance maps, which enables the estimation of model parameters without the requirement of point correspondence. For applications with acquisition limitations such as speed and cost, this formulation enables the fitting of a statistical shape model to arbitrarily sampled data. The method is......Statistical shape models are widely used as a compact way of representing shape variation. Fitting a shape model to unseen data enables characterizing the data in terms of the model parameters. In this paper a Gauss-Newton optimization scheme is proposed to estimate shape model parameters of 3D...... applied to a database of 3D surfaces from a section of the porcine pelvic bone extracted from 33 CT scans. A leave-one-out validation shows that the parameters of the first 3 modes of the shape model can be predicted with a mean difference within [-0.01,0.02] from the true mean, with a standard deviation...

  13. 3D CT Imaging Method for Measuring Temporal Bone Aeration

    Objective: 3D volume reconstruction of CT images can be used to measure temporal bene aeration. This study evaluates the technique with respect to reproducibility and acquisition parameters. Material and methods: Helical CT images acquired from patients with radiographically normal temporal bones using standard clinical protocols were retrospectively analyzed. 3D image reconstruction was performed to measure the volume of air within the temporal bone. The appropriate threshold values for air were determined from reconstruction of a phantom with a known air volume imaged using the same clinical protocols. The appropriate air threshold values were applied to the clinical material. Results: Air volume was measured according to an acquisition algorithm. The average volume in the temporal bone CT group was 5.56 ml, compared to 5.19 ml in the head CT group (p = 0.59). The correlation coefficient between examiners was > 0.92. There was a wide range of aeration volumes among individual ears (0.76-18.84 ml); however, paired temporal bones differed by an average of just 1.11 ml. Conclusions: The method of volume measurement from 3D reconstruction reported here is widely available, easy to perform and produces consistent results among examiners. Application of the technique to archival CT data is possible using corrections for air segmentation thresholds according to acquisition parameters

  14. A non-contact 3D method to characterize the surface roughness of castings

    Nwaogu, Ugochukwu Chibuzoh; Tiedje, Niels Skat; Hansen, Hans Nørgaard

    2013-01-01

    A non-contact technique using a 3D optical system was used to measure the surface roughness of two selected standard surface roughness comparators used in the foundry industry. Profile and areal analyses were performed using scanning probe image processor (SPIP) software. The results show that the...

  15. Determining the surface roughness coefficient by 3D Scanner

    Karmen Fifer Bizjak

    2010-12-01

    Full Text Available Currently, several test methods can be used in the laboratory to determine the roughness of rock joint surfaces.However, true roughness can be distorted and underestimated by the differences in the sampling interval of themeasurement methods. Thus, these measurement methods produce a dead zone and distorted roughness profiles.In this paper a new rock joint surface roughness measurement method is presented, with the use of a camera-typethree-dimensional (3D scanner as an alternative to current methods. For this study, the surfaces of ten samples oftuff were digitized by means of a 3D scanner, and the results were compared with the corresponding Rock JointCoefficient (JRC values. Up until now such 3D scanner have been mostly used in the automotive industry, whereastheir use for comparison with obtained JRC coefficient values in rock mechanics is presented here for the first time.The proposed new method is a faster, more precise and more accurate than other existing test methods, and is apromising technique for use in this area of study in the future.

  16. A high-level 3D visualization API for Java and ImageJ

    Longair Mark

    2010-05-01

    Full Text Available Abstract Background Current imaging methods such as Magnetic Resonance Imaging (MRI, Confocal microscopy, Electron Microscopy (EM or Selective Plane Illumination Microscopy (SPIM yield three-dimensional (3D data sets in need of appropriate computational methods for their analysis. The reconstruction, segmentation and registration are best approached from the 3D representation of the data set. Results Here we present a platform-independent framework based on Java and Java 3D for accelerated rendering of biological images. Our framework is seamlessly integrated into ImageJ, a free image processing package with a vast collection of community-developed biological image analysis tools. Our framework enriches the ImageJ software libraries with methods that greatly reduce the complexity of developing image analysis tools in an interactive 3D visualization environment. In particular, we provide high-level access to volume rendering, volume editing, surface extraction, and image annotation. The ability to rely on a library that removes the low-level details enables concentrating software development efforts on the algorithm implementation parts. Conclusions Our framework enables biomedical image software development to be built with 3D visualization capabilities with very little effort. We offer the source code and convenient binary packages along with extensive documentation at http://3dviewer.neurofly.de.

  17. 3D Imaging of a Cavity Vacuum under Dissipation

    Lee, Moonjoo; Seo, Wontaek; Hong, Hyun-Gue; Song, Younghoon; Dasari, Ramachandra R; An, Kyungwon

    2013-01-01

    P. A. M. Dirac first introduced zero-point electromagnetic fields in order to explain the origin of atomic spontaneous emission. Since then, it has long been debated how the zero-point vacuum field is affected by dissipation. Here we report 3D imaging of vacuum fluctuations in a high-Q cavity and rms amplitude measurements of the vacuum field. The 3D imaging was done by the position-dependent emission of single atoms, resulting in dissipation-free rms amplitude of 0.97 +- 0.03 V/cm. The actual rms amplitude of the vacuum field at the antinode was independently determined from the onset of single-atom lasing at 0.86 +- 0.08 V/cm. Within our experimental accuracy and precision, the difference was noticeable, but it is not significant enough to disprove zero-point energy conservation.

  18. Automated Recognition of 3D Features in GPIR Images

    Park, Han; Stough, Timothy; Fijany, Amir

    2007-01-01

    A method of automated recognition of three-dimensional (3D) features in images generated by ground-penetrating imaging radar (GPIR) is undergoing development. GPIR 3D images can be analyzed to detect and identify such subsurface features as pipes and other utility conduits. Until now, much of the analysis of GPIR images has been performed manually by expert operators who must visually identify and track each feature. The present method is intended to satisfy a need for more efficient and accurate analysis by means of algorithms that can automatically identify and track subsurface features, with minimal supervision by human operators. In this method, data from multiple sources (for example, data on different features extracted by different algorithms) are fused together for identifying subsurface objects. The algorithms of this method can be classified in several different ways. In one classification, the algorithms fall into three classes: (1) image-processing algorithms, (2) feature- extraction algorithms, and (3) a multiaxis data-fusion/pattern-recognition algorithm that includes a combination of machine-learning, pattern-recognition, and object-linking algorithms. The image-processing class includes preprocessing algorithms for reducing noise and enhancing target features for pattern recognition. The feature-extraction algorithms operate on preprocessed data to extract such specific features in images as two-dimensional (2D) slices of a pipe. Then the multiaxis data-fusion/ pattern-recognition algorithm identifies, classifies, and reconstructs 3D objects from the extracted features. In this process, multiple 2D features extracted by use of different algorithms and representing views along different directions are used to identify and reconstruct 3D objects. In object linking, which is an essential part of this process, features identified in successive 2D slices and located within a threshold radius of identical features in adjacent slices are linked in a

  19. Improvements in quality and quantification of 3D PET images

    Rapisarda,

    2012-01-01

    The spatial resolution of Positron Emission Tomography is conditioned by several physical factors, which can be taken into account by using a global Point Spread Function (PSF). In this thesis a spatially variant (radially asymmetric) PSF implementation in the image space of a 3D Ordered Subsets Expectation Maximization (OSEM) algorithm is proposed. Two different scanners were considered, without and with Time Of Flight (TOF) capability. The PSF was derived by fitting some experimental...

  20. 3D imaging of semiconductor components by discrete laminography

    Batenburg, Joost; Palenstijn, W.J.; Sijbers, J.

    2014-01-01

    X-ray laminography is a powerful technique for quality control of semiconductor components. Despite the advantages of nondestructive 3D imaging over 2D techniques based on sectioning, the acquisition time is still a major obstacle for practical use of the technique. In this paper, we consider the application of Discrete Tomography to laminography data, which can potentially reduce the scanning time while still maintaining a high reconstruction quality. By incorporating prior knowledge in the ...

  1. Super pipe lining system for 3-D CT imaging

    A new idea for 3-D CT image reconstruction system is introduced. For the network has very important improvement in recently years, it realizes that network computing replace the traditional serial system processing. CT system's works are carried in a multi-level fashion, it will make the tedious works processed by many computers linked by local network in the same time. So greatly improve the reconstruction speed

  2. 3D reconstruction of multiple stained histology images

    Yi Song

    2013-01-01

    Full Text Available Context: Three dimensional (3D tissue reconstructions from the histology images with different stains allows the spatial alignment of structural and functional elements highlighted by different stains for quantitative study of many physiological and pathological phenomena. This has significant potential to improve the understanding of the growth patterns and the spatial arrangement of diseased cells, and enhance the study of biomechanical behavior of the tissue structures towards better treatments (e.g. tissue-engineering applications. Methods: This paper evaluates three strategies for 3D reconstruction from sets of two dimensional (2D histological sections with different stains, by combining methods of 2D multi-stain registration and 3D volumetric reconstruction from same stain sections. Setting and Design: The different strategies have been evaluated on two liver specimens (80 sections in total stained with Hematoxylin and Eosin (H and E, Sirius Red, and Cytokeratin (CK 7. Results and Conclusion: A strategy of using multi-stain registration to align images of a second stain to a volume reconstructed by same-stain registration results in the lowest overall error, although an interlaced image registration approach may be more robust to poor section quality.

  3. Underwater 3d Modeling: Image Enhancement and Point Cloud Filtering

    Sarakinou, I.; Papadimitriou, K.; Georgoula, O.; Patias, P.

    2016-06-01

    This paper examines the results of image enhancement and point cloud filtering on the visual and geometric quality of 3D models for the representation of underwater features. Specifically it evaluates the combination of effects from the manual editing of images' radiometry (captured at shallow depths) and the selection of parameters for point cloud definition and mesh building (processed in 3D modeling software). Such datasets, are usually collected by divers, handled by scientists and used for geovisualization purposes. In the presented study, have been created 3D models from three sets of images (seafloor, part of a wreck and a small boat's wreck) captured at three different depths (3.5m, 10m and 14m respectively). Four models have been created from the first dataset (seafloor) in order to evaluate the results from the application of image enhancement techniques and point cloud filtering. The main process for this preliminary study included a) the definition of parameters for the point cloud filtering and the creation of a reference model, b) the radiometric editing of images, followed by the creation of three improved models and c) the assessment of results by comparing the visual and the geometric quality of improved models versus the reference one. Finally, the selected technique is tested on two other data sets in order to examine its appropriateness for different depths (at 10m and 14m) and different objects (part of a wreck and a small boat's wreck) in the context of an ongoing research in the Laboratory of Photogrammetry and Remote Sensing.

  4. Towards magnetic 3D x-ray imaging

    Fischer, Peter; Streubel, R.; Im, M.-Y.; Parkinson, D.; Hong, J.-I.; Schmidt, O. G.; Makarov, D.

    2014-03-01

    Mesoscale phenomena in magnetism will add essential parameters to improve speed, size and energy efficiency of spin driven devices. Multidimensional visualization techniques will be crucial to achieve mesoscience goals. Magnetic tomography is of large interest to understand e.g. interfaces in magnetic multilayers, the inner structure of magnetic nanocrystals, nanowires or the functionality of artificial 3D magnetic nanostructures. We have developed tomographic capabilities with magnetic full-field soft X-ray microscopy combining X-MCD as element specific magnetic contrast mechanism, high spatial and temporal resolution due to the Fresnel zone plate optics. At beamline 6.1.2 at the ALS (Berkeley CA) a new rotation stage allows recording an angular series (up to 360 deg) of high precision 2D projection images. Applying state-of-the-art reconstruction algorithms it is possible to retrieve the full 3D structure. We will present results on prototypic rolled-up Ni and Co/Pt tubes and glass capillaries coated with magnetic films and compare to other 3D imaging approaches e.g. in electron microscopy. Supported by BES MSD DOE Contract No. DE-AC02-05-CH11231 and ERC under the EU FP7 program (grant agreement No. 306277).

  5. High-resolution, real-time simultaneous 3D surface geometry and temperature measurement.

    An, Yatong; Zhang, Song

    2016-06-27

    This paper presents a method to simultaneously measure three-dimensional (3D) surface geometry and temperature in real time. Specifically, we developed 1) a holistic approach to calibrate both a structured light system and a thermal camera under exactly the same world coordinate system even though these two sensors do not share the same wavelength; and 2) a computational framework to determine the sub-pixel corresponding temperature for each 3D point as well as discard those occluded points. Since the thermal 2D imaging and 3D visible imaging systems do not share the same spectrum of light, they can perform sensing simultaneously in real time: we developed a hardware system that can achieve real-time 3D geometry and temperature measurement at 26 Hz with 768 × 960 points per frame. PMID:27410608

  6. Large Scale 3D Image Reconstruction in Optical Interferometry

    Schutz, Antony; Mary, David; Thiébaut, Eric; Soulez, Ferréol

    2015-01-01

    Astronomical optical interferometers (OI) sample the Fourier transform of the intensity distribution of a source at the observation wavelength. Because of rapid atmospheric perturbations, the phases of the complex Fourier samples (visibilities) cannot be directly exploited , and instead linear relationships between the phases are used (phase closures and differential phases). Consequently, specific image reconstruction methods have been devised in the last few decades. Modern polychromatic OI instruments are now paving the way to multiwavelength imaging. This paper presents the derivation of a spatio-spectral ("3D") image reconstruction algorithm called PAINTER (Polychromatic opticAl INTErferometric Reconstruction software). The algorithm is able to solve large scale problems. It relies on an iterative process, which alternates estimation of polychromatic images and of complex visibilities. The complex visibilities are not only estimated from squared moduli and closure phases, but also from differential phase...

  7. Simplified generation of biomedical 3D surface model data for embedding into 3D portable document format (PDF files for publication and education.

    Axel Newe

    Full Text Available The usefulness of the 3D Portable Document Format (PDF for clinical, educational, and research purposes has recently been shown. However, the lack of a simple tool for converting biomedical data into the model data in the necessary Universal 3D (U3D file format is a drawback for the broad acceptance of this new technology. A new module for the image processing and rapid prototyping framework MeVisLab does not only provide a platform-independent possibility to create surface meshes out of biomedical/DICOM and other data and to export them into U3D--it also lets the user add meta data to these meshes to predefine colors and names that can be processed by a PDF authoring software while generating 3D PDF files. Furthermore, the source code of the respective module is available and well documented so that it can easily be modified for own purposes.

  8. 3D-imaging using micro-PIXE

    Ishii, K.; Matsuyama, S.; Watanabe, Y.; Kawamura, Y.; Yamaguchi, T.; Oyama, R.; Momose, G.; Ishizaki, A.; Yamazaki, H.; Kikuchi, Y.

    2007-02-01

    We have developed a 3D-imaging system using characteristic X-rays produced by proton micro-beam bombardment. The 3D-imaging system consists of a micro-beam and an X-ray CCD camera of 1 mega pixels (Hamamatsu photonics C8800X), and has a spatial resolution of 4 μm by using characteristic Ti-K-X-rays (4.558 keV) produced by 3 MeV protons of beam spot size of ˜1 μm. We applied this system, namely, a micron-CT to observe the inside of a living small ant's head of ˜1 mm diameter. An ant was inserted into a small polyimide tube the inside diameter and the wall thickness of which are 1000 and 25 μm, respectively, and scanned by the micron-CT. Three dimensional images of the ant's heads were obtained with a spatial resolution of 4 μm. It was found that, in accordance with the strong dependence on atomic number of photo ionization cross-sections, the mandibular gland of ant contains heavier elements, and moreover, the CT-image of living ant anaesthetized by chloroform is quite different from that of a dead ant dipped in formalin.

  9. Fully automatic plaque segmentation in 3-D carotid ultrasound images.

    Cheng, Jieyu; Li, He; Xiao, Feng; Fenster, Aaron; Zhang, Xuming; He, Xiaoling; Li, Ling; Ding, Mingyue

    2013-12-01

    Automatic segmentation of the carotid plaques from ultrasound images has been shown to be an important task for monitoring progression and regression of carotid atherosclerosis. Considering the complex structure and heterogeneity of plaques, a fully automatic segmentation method based on media-adventitia and lumen-intima boundary priors is proposed. This method combines image intensity with structure information in both initialization and a level-set evolution process. Algorithm accuracy was examined on the common carotid artery part of 26 3-D carotid ultrasound images (34 plaques ranging in volume from 2.5 to 456 mm(3)) by comparing the results of our algorithm with manual segmentations of two experts. Evaluation results indicated that the algorithm yielded total plaque volume (TPV) differences of -5.3 ± 12.7 and -8.5 ± 13.8 mm(3) and absolute TPV differences of 9.9 ± 9.5 and 11.8 ± 11.1 mm(3). Moreover, high correlation coefficients in generating TPV (0.993 and 0.992) between algorithm results and both sets of manual results were obtained. The automatic method provides a reliable way to segment carotid plaque in 3-D ultrasound images and can be used in clinical practice to estimate plaque measurements for management of carotid atherosclerosis. PMID:24063959

  10. Lymph node imaging by ultrarapid 3D angiography

    Purpose: A report on observations of lymph node images obtained by gadolinium-enhanced 3D MR angiography (MRA). Methods: Ultrarapid MRA (TR, TE, FA - 5 or 6.4 ms, 1.9 or 2.8 ms, 30-40 degrees) with 0.2 mmol/kg BW Gd-DTPA and 20 ml physiological saline. Start after completion of injection. Single series of the pelvis-thigh as well as head-neck regions by use of a phased array coil with a 1.5 T Magnetom Vision or a 1.0 T Magnetom Harmony (Siemens, Erlangen). We report on lymph node imaging in 4 patients, 2 of whom exhibited benign changes and 2 further metastases. In 1 patient with extensive lymph node metastases of a malignant melanoma, color-Doppler sonography as color-flow angiography (CFA) was used as a comparative method. Results: Lymph node imaging by contrast medium-enhanced ultrarapid 3D MRA apparently resulted from their vessels. Thus, arterially-supplied metastases and inflammatory enlarged lymph nodes were well visualized while those with a.v. shunts or poor vascular supply in tumor necroses were poorly imaged. Conclusions: Further investigations are required with regard to the visualization of lymph nodes in other parts of the body as well as a possible differentiation between benign and malignant lesions. (orig.)

  11. The application of camera calibration in range-gated 3D imaging technology

    Liu, Xiao-quan; Wang, Xian-wei; Zhou, Yan

    2013-09-01

    Range-gated laser imaging technology was proposed in 1966 by LF Gillespiethe in U.S. Army Night Vision Laboratory(NVL). Using pulse laser and intensified charge-coupled device(ICCD) as light source and detector respectively, range-gated laser imaging technology can realize space-slice imaging while restraining the atmospheric backs-catter, and in turn detect the target effectively, by controlling the delay between the laser pulse and strobe. Owing to the constraints of the development of key components such as narrow pulse laser and gated imaging devices, the research has been progressed slowly in the next few decades. Until the beginning of this century, as the hardware technology continues to mature, this technology has developed rapidly in fields such as night vision, underwater imaging, biomedical imaging, three-dimensional imaging, especially range-gated three-dimensional(3-D) laser imaging field purposing of access to target spatial information. 3-D reconstruction is the processing of restoration of 3-D objects visible surface geometric structure from three-dimensional(2-D) image. Range-gated laser imaging technology can achieve gated imaging of slice space to form a slice image, and in turn provide the distance information corresponding to the slice image. But to inverse the information of 3-D space, we need to obtain the imaging visual field of system, that is, the focal length of the system. Then based on the distance information of the space slice, the spatial information of each unit space corresponding to each pixel can be inversed. Camera calibration is an indispensable step in 3-D reconstruction, including analysis of the internal structure of camera parameters and the external parameters . In order to meet the technical requirements of the range-gated 3-D imaging, this paper intends to study the calibration of the zoom lens system. After summarizing the camera calibration technique comprehensively, a classic calibration method based on line is

  12. Improving 3D Wavelet-Based Compression of Hyperspectral Images

    Klimesh, Matthew; Kiely, Aaron; Xie, Hua; Aranki, Nazeeh

    2009-01-01

    Two methods of increasing the effectiveness of three-dimensional (3D) wavelet-based compression of hyperspectral images have been developed. (As used here, images signifies both images and digital data representing images.) The methods are oriented toward reducing or eliminating detrimental effects of a phenomenon, referred to as spectral ringing, that is described below. In 3D wavelet-based compression, an image is represented by a multiresolution wavelet decomposition consisting of several subbands obtained by applying wavelet transforms in the two spatial dimensions corresponding to the two spatial coordinate axes of the image plane, and by applying wavelet transforms in the spectral dimension. Spectral ringing is named after the more familiar spatial ringing (spurious spatial oscillations) that can be seen parallel to and near edges in ordinary images reconstructed from compressed data. These ringing phenomena are attributable to effects of quantization. In hyperspectral data, the individual spectral bands play the role of edges, causing spurious oscillations to occur in the spectral dimension. In the absence of such corrective measures as the present two methods, spectral ringing can manifest itself as systematic biases in some reconstructed spectral bands and can reduce the effectiveness of compression of spatially-low-pass subbands. One of the two methods is denoted mean subtraction. The basic idea of this method is to subtract mean values from spatial planes of spatially low-pass subbands prior to encoding, because (a) such spatial planes often have mean values that are far from zero and (b) zero-mean data are better suited for compression by methods that are effective for subbands of two-dimensional (2D) images. In this method, after the 3D wavelet decomposition is performed, mean values are computed for and subtracted from each spatial plane of each spatially-low-pass subband. The resulting data are converted to sign-magnitude form and compressed in a

  13. Laser scanning confocal microscopy for 3D surface mapping

    Lapšanská, Hana; Schovánek, Petr

    Rožnov pod Radhoštěm : TECON Scientific, s.r.o., 2010 - (Vojtěchovský, K.), s. 435-440 ISBN 978-80-254-7361-0. [Scientific and Business Conference SILICON 2010 /12./. Rožnov pod Radhoštěm (CZ), 02.11.2010-05.11.2010] R&D Projects: GA AV ČR KAN301370701 Institutional research plan: CEZ:AV0Z10100522 Keywords : laser scanning * 3D surface mapping Subject RIV: BM - Solid Matter Physics ; Magnetism

  14. 3D integration of sub-surface photonics with CMOS

    Jalali, Bahram; Indukuri, Tejaswi; Koonath, Prakash

    2006-02-01

    The integration of photonics and electronics on a single silicon substrate requires technologies that can add optical functionalities without significantly sacrificing valuable wafer area. To this end, we have developed an innovative fabrication process, called SIMOX 3-D Sculpting, that enables monolithic optoelectronic integration in a manner that does not compromise the economics of CMOS manufacturing. In this technique, photonic devices are realized in subsurface silicon layers that are separated from the surface silicon layer by an intervening SiO II layer. The surface silicon layer may then be utilized for electronic circuitry. SIMOX 3-D sculpting involves (1) the implantation of oxygen ions into a patterned silicon substrate followed by (2) high temperature anneal to create buried waveguide-based photonic devices. This process has produced subterranean microresonators with unloaded quality factors of 8000 and extinction ratios >20dB. On the surface silicon layers, MOS transistor structures have been fabricated. The small cross-sectional area of the waveguides lends itself to the realization of nonlinear optical devices. We have previously demonstrated spectral broadening and continuum generation in silicon waveguides utilizing Kerr optical nonlinearity. This may be combined with microresonator filters for on-chip supercontiuum generation and spectral carving. The monolithic integration of CMOS circuits and optical modulators with such multi-wavelength sources represent an exciting avenue for silicon photonics.

  15. Weakly supervised automatic segmentation and 3D modeling of the knee joint from MR images

    Amami, Amal; Ben Azouz, Zouhour

    2013-12-01

    Automatic segmentation and 3D modeling of the knee joint from MR images, is a challenging task. Most of the existing techniques require the tedious manual segmentation of a training set of MRIs. We present an approach that necessitates the manual segmentation of one MR image. It is based on a volumetric active appearance model. First, a dense tetrahedral mesh is automatically created on a reference MR image that is arbitrary selected. Second, a pairwise non-rigid registration between each MRI from a training set and the reference MRI is computed. The non-rigid registration is based on a piece-wise affine deformation using the created tetrahedral mesh. The minimum description length is then used to bring all the MR images into a correspondence. An average image and tetrahedral mesh, as well as a set of main modes of variations, are generated using the established correspondence. Any manual segmentation of the average MRI can be mapped to other MR images using the AAM. The proposed approach has the advantage of simultaneously generating 3D reconstructions of the surface as well as a 3D solid model of the knee joint. The generated surfaces and tetrahedral meshes present the interesting property of fulfilling a correspondence between different MR images. This paper shows preliminary results of the proposed approach. It demonstrates the automatic segmentation and 3D reconstruction of a knee joint obtained by mapping a manual segmentation of a reference image.

  16. Detection of Connective Tissue Disorders from 3D Aortic MR Images Using Independent Component Analysis

    Hansen, Michael Sass; Zhao, Fei; Zhang, Honghai;

    2006-01-01

    A computer-aided diagnosis (CAD) method is reported that allows the objective identification of subjects with connective tissue disorders from 3D aortic MR images using segmentation and independent component analysis (ICA). The first step to extend the model to 4D (3D + time) has also been taken....... ICA is an effective tool for connective tissue disease detection in the presence of sparse data using prior knowledge to order the components, and the components can be inspected visually. 3D+time MR image data sets acquired from 31 normal and connective tissue disorder subjects at end-diastole (R......-wave peak) and at 45\\$\\backslash\\$% of the R-R interval were used to evaluate the performance of our method. The automated 3D segmentation result produced accurate aortic surfaces covering the aorta. The CAD method distinguished between normal and connective tissue disorder subjects with a classification...

  17. Utilization of multiple frequencies in 3D nonlinear microwave imaging

    Jensen, Peter Damsgaard; Rubæk, Tonny; Mohr, Johan Jacob

    2012-01-01

    The use of multiple frequencies in a nonlinear microwave algorithm is considered. Using multiple frequencies allows for obtaining the improved resolution available at the higher frequencies while retaining the regularizing effects of the lower frequencies. However, a number of different challenge...... at lower frequencies are used as starting guesses for reconstructions at higher frequencies. The performance is illustrated using simulated 2-D data and data obtained with the 3-D DTU microwave imaging system....... arise when using data from multiple frequencies for imaging of biological targets. In this paper, the performance of a multi-frequency algorithm, in which measurement data from several different frequencies are used at once, is compared with a stepped-frequency algorithm, in which images reconstructed...

  18. 3D IMAGING OF INDIVIDUAL PARTICLES: A REVIEW

    Eric Pirard

    2012-06-01

    Full Text Available In recent years, impressive progress has been made in digital imaging and in particular in three dimensional visualisation and analysis of objects. This paper reviews the most recent literature on three dimensional imaging with a special attention to particulate systems analysis. After an introduction recalling some important concepts in spatial sampling and digital imaging, the paper reviews a series of techniques with a clear distinction between the surfometric and volumetric principles. The literature review is as broad as possible covering materials science as well as biology while keeping an eye on emerging technologies in optics and physics. The paper should be of interest to any scientist trying to picture particles in 3D with the best possible resolution for accurate size and shape estimation. Though techniques are adequate for nanoscopic and microscopic particles, no special size limit has been considered while compiling the review.

  19. Effective classification of 3D image data using partitioning methods

    Megalooikonomou, Vasileios; Pokrajac, Dragoljub; Lazarevic, Aleksandar; Obradovic, Zoran

    2002-03-01

    We propose partitioning-based methods to facilitate the classification of 3-D binary image data sets of regions of interest (ROIs) with highly non-uniform distributions. The first method is based on recursive dynamic partitioning of a 3-D volume into a number of 3-D hyper-rectangles. For each hyper-rectangle, we consider, as a potential attribute, the number of voxels (volume elements) that belong to ROIs. A hyper-rectangle is partitioned only if the corresponding attribute does not have high discriminative power, determined by statistical tests, but it is still sufficiently large for further splitting. The final discriminative hyper-rectangles form new attributes that are further employed in neural network classification models. The second method is based on maximum likelihood employing non-spatial (k-means) and spatial DBSCAN clustering algorithms to estimate the parameters of the underlying distributions. The proposed methods were experimentally evaluated on mixtures of Gaussian distributions, on realistic lesion-deficit data generated by a simulator conforming to a clinical study, and on synthetic fractal data. Both proposed methods have provided good classification on Gaussian mixtures and on realistic data. However, the experimental results on fractal data indicated that the clustering-based methods were only slightly better than random guess, while the recursive partitioning provided significantly better classification accuracy.

  20. Ultra-realistic 3-D imaging based on colour holography

    Bjelkhagen, H. I.

    2013-02-01

    A review of recent progress in colour holography is provided with new applications. Colour holography recording techniques in silver-halide emulsions are discussed. Both analogue, mainly Denisyuk colour holograms, and digitally-printed colour holograms are described and their recent improvements. An alternative to silver-halide materials are the panchromatic photopolymer materials such as the DuPont and Bayer photopolymers which are covered. The light sources used to illuminate the recorded holograms are very important to obtain ultra-realistic 3-D images. In particular the new light sources based on RGB LEDs are described. They show improved image quality over today's commonly used halogen lights. Recent work in colour holography by holographers and companies in different countries around the world are included. To record and display ultra-realistic 3-D images with perfect colour rendering are highly dependent on the correct recording technique using the optimal recording laser wavelengths, the availability of improved panchromatic recording materials and combined with new display light sources.

  1. Image-Based 3D Face Modeling System

    Vladimir Vezhnevets

    2005-08-01

    Full Text Available This paper describes an automatic system for 3D face modeling using frontal and profile images taken by an ordinary digital camera. The system consists of four subsystems including frontal feature detection, profile feature detection, shape deformation, and texture generation modules. The frontal and profile feature detection modules automatically extract the facial parts such as the eye, nose, mouth, and ear. The shape deformation module utilizes the detected features to deform the generic head mesh model such that the deformed model coincides with the detected features. A texture is created by combining the facial textures augmented from the input images and the synthesized texture and mapped onto the deformed generic head model. This paper provides a practical system for 3D face modeling, which is highly automated by aggregating, customizing, and optimizing a bunch of individual computer vision algorithms. The experimental results show a highly automated process of modeling, which is sufficiently robust to various imaging conditions. The whole model creation including all the optional manual corrections takes only 2∼3 minutes.

  2. Extracting 3D layout from a single image using global image structures.

    Lou, Zhongyu; Gevers, Theo; Hu, Ninghang

    2015-10-01

    Extracting the pixel-level 3D layout from a single image is important for different applications, such as object localization, image, and video categorization. Traditionally, the 3D layout is derived by solving a pixel-level classification problem. However, the image-level 3D structure can be very beneficial for extracting pixel-level 3D layout since it implies the way how pixels in the image are organized. In this paper, we propose an approach that first predicts the global image structure, and then we use the global structure for fine-grained pixel-level 3D layout extraction. In particular, image features are extracted based on multiple layout templates. We then learn a discriminative model for classifying the global layout at the image-level. Using latent variables, we implicitly model the sublevel semantics of the image, which enrich the expressiveness of our model. After the image-level structure is obtained, it is used as the prior knowledge to infer pixel-wise 3D layout. Experiments show that the results of our model outperform the state-of-the-art methods by 11.7% for 3D structure classification. Moreover, we show that employing the 3D structure prior information yields accurate 3D scene layout segmentation. PMID:25966478

  3. Evaluation of cartilage surface injuries using 3D-double echo steady state (3D-DESS): Effect of changing flip angle from 40 deg to 90 deg

    Background. In magnetic resonance imaging (MRI) with 3D-double-echo steady-state (3D-DESS) sequences, the cartilage-synovial fluid contrast is reported to be better with a flip angle of 90 deg than with the conventional flip angle of 40 deg, and the detection rate of knee cartilage injury may be improved. Purpose. To compare the diagnostic performance and certainty of diagnosis with 3D-DESS images made using two flip angle settings, 40 deg and 90 deg, for knee cartilage surface lesions of Grade 2 or above confirmed by arthroscopy. Material and Methods. Images were obtained with 3D-DESS flip angles of 40 deg and 90 deg at 1.0T in 13 consecutive patients (2 men, 11 women, age range 18-68 years) evaluated for superficial cartilage injury by arthroscopy. Two radiologists classified the presence or absence of cartilage damage of ≥Grade 2 as 'positive (p)' or 'negative (n)', respectively. The rate of agreement with arthroscopic diagnosis was then examined, and the diagnostic performance compared. Diagnostic confidence was assessed scoring the presence or absence of cartilage damage into three categories: 3 = can diagnose with absolute confidence; 2 = can diagnose with a level of certainty as probably present or probably absent; and 1 = cannot make a diagnosis. Results. In a comparison of the rate of agreement between diagnosis by 3D-DESS images and arthroscopy, the rate of agreement was significantly higher and diagnostic performance was better in 90 deg images for the medial femoral condyle only. Diagnostic confidence was significantly better with 90 deg flip angle images than with 40 deg flip angle images for all six cartilage surfaces. Conclusion. In evaluating knee cartilage surface lesions with 3D-DESS sequences, a flip angle setting of 90 deg is more effective than the conventional setting of 40 deg

  4. Evaluation of cartilage surface injuries using 3D-double echo steady state (3D-DESS): Effect of changing flip angle from 40 deg to 90 deg

    Moriya, Susumu; Yokobayashi, Tsuneo; Ishikawa, Mitsunori (Ishikawa Clinic, Kyoto (Japan)), email: smoyari@yahoo.co.jp; Miki, Yukio (Dept. of Radiology, Osaka City Univ. Graduate School of Medicine, Osaka (Japan)); Kanagaki, Mitsunori; Yamamoto, Akira (Dept. of Diagnostic Imaging and Nuclear Medicine, Kyoto Univ., Kyoto (Japan)); Okudaira, Shuzo (Dept. of Orthopaedics, Kyoto Police Hospital, Kyoto (Japan)); Nakamura, Shinichiro (Center for Musculoskeletal Research, Univ. of Tennessee, Knoxville, TN (United States))

    2011-12-15

    Background. In magnetic resonance imaging (MRI) with 3D-double-echo steady-state (3D-DESS) sequences, the cartilage-synovial fluid contrast is reported to be better with a flip angle of 90 deg than with the conventional flip angle of 40 deg, and the detection rate of knee cartilage injury may be improved. Purpose. To compare the diagnostic performance and certainty of diagnosis with 3D-DESS images made using two flip angle settings, 40 deg and 90 deg, for knee cartilage surface lesions of Grade 2 or above confirmed by arthroscopy. Material and Methods. Images were obtained with 3D-DESS flip angles of 40 deg and 90 deg at 1.0T in 13 consecutive patients (2 men, 11 women, age range 18-68 years) evaluated for superficial cartilage injury by arthroscopy. Two radiologists classified the presence or absence of cartilage damage of >=Grade 2 as 'positive (p)' or 'negative (n)', respectively. The rate of agreement with arthroscopic diagnosis was then examined, and the diagnostic performance compared. Diagnostic confidence was assessed scoring the presence or absence of cartilage damage into three categories: 3 = can diagnose with absolute confidence; 2 = can diagnose with a level of certainty as probably present or probably absent; and 1 = cannot make a diagnosis. Results. In a comparison of the rate of agreement between diagnosis by 3D-DESS images and arthroscopy, the rate of agreement was significantly higher and diagnostic performance was better in 90 deg images for the medial femoral condyle only. Diagnostic confidence was significantly better with 90 deg flip angle images than with 40 deg flip angle images for all six cartilage surfaces. Conclusion. In evaluating knee cartilage surface lesions with 3D-DESS sequences, a flip angle setting of 90 deg is more effective than the conventional setting of 40 deg

  5. 3D imaging of neutron tracks using confocal microscopy

    Gillmore, Gavin; Wertheim, David; Flowers, Alan

    2016-04-01

    Neutron detection and neutron flux assessment are important aspects in monitoring nuclear energy production. Neutron flux measurements can also provide information on potential biological damage from exposure. In addition to the applications for neutron measurement in nuclear energy, neutron detection has been proposed as a method of enhancing neutrino detectors and cosmic ray flux has also been assessed using ground-level neutron detectors. Solid State Nuclear Track Detectors (or SSNTDs) have been used extensively to examine cosmic rays, long-lived radioactive elements, radon concentrations in buildings and the age of geological samples. Passive SSNTDs consisting of a CR-39 plastic are commonly used to measure radon because they respond to incident charged particles such as alpha particles from radon gas in air. They have a large dynamic range and a linear flux response. We have previously applied confocal microscopy to obtain 3D images of alpha particle tracks in SSNTDs from radon track monitoring (1). As a charged particle traverses through the polymer it creates an ionisation trail along its path. The trail or track is normally enhanced by chemical etching to better expose radiation damage, as the damaged area is more sensitive to the etchant than the bulk material. Particle tracks in CR-39 are usually assessed using 2D optical microscopy. In this study 6 detectors were examined using an Olympus OLS4100 LEXT 3D laser scanning confocal microscope (Olympus Corporation, Japan). The detectors had been etched for 2 hours 50 minutes at 85 °C in 6.25M NaOH. Post etch the plastics had been treated with a 10 minute immersion in a 2% acetic acid stop bath, followed by rinsing in deionised water. The detectors examined had been irradiated with a 2mSv neutron dose from an Am(Be) neutron source (producing roughly 20 tracks per mm2). We were able to successfully acquire 3D images of neutron tracks in the detectors studied. The range of track diameter observed was between 4

  6. Recovery and Visualization of 3D Structure of Chromosomes from Tomographic Reconstruction Images

    Babu, S; Liao, P; Shin, M C; Tsap, L V

    2004-04-28

    The objectives of this work include automatic recovery and visualization of a 3D chromosome structure from a sequence of 2D tomographic reconstruction images taken through the nucleus of a cell. Structure is very important for biologists as it affects chromosome functions, behavior of the cell and its state. Chromosome analysis is significant in the detection of deceases and in monitoring environmental gene mutations. The algorithm incorporates thresholding based on a histogram analysis with a polyline splitting algorithm, contour extraction via active contours, and detection of the 3D chromosome structure by establishing corresponding regions throughout the slices. Visualization using point cloud meshing generates a 3D surface. The 3D triangular mesh of the chromosomes provides surface detail and allows a user to interactively analyze chromosomes using visualization software.

  7. 3D Additive Construction with Regolith for Surface Systems

    Mueller, Robert P.

    2014-01-01

    Planetary surface exploration on Asteroids, the Moon, Mars and Martian Moons will require the stabilization of loose, fine, dusty regolith to avoid the effects of vertical lander rocket plume impingement, to keep abrasive and harmful dust from getting lofted and for dust free operations. In addition, the same regolith stabilization process can be used for 3 Dimensional ( 3D) printing, additive construction techniques by repeating the 2D stabilization in many vertical layers. This will allow in-situ construction with regolith so that materials will not have to be transported from Earth. Recent work in the NASA Kennedy Space Center (KSC) Surface Systems Office (NE-S) Swamp Works and at the University of Southern California (USC) under two NASA Innovative Advanced Concept (NIAC) awards have shown promising results with regolith (crushed basalt rock) materials for in-situ heat shields, bricks, landing/launch pads, berms, roads, and other structures that could be fabricated using regolith that is sintered or mixed with a polymer binder. The technical goals and objectives of this project are to prove the feasibility of 3D printing additive construction using planetary regolith simulants and to show that they have structural integrity and practical applications in space exploration.

  8. Quantitative 3D Optical Imaging: Applications in Dosimetry and Biophysics

    Thomas, Andrew Stephen

    Optical-CT has been shown to be a potentially useful imaging tool for the two very different spheres of biologists and radiation therapy physicists, but it has yet to live up to that potential. In radiation therapy, researchers have used optical-CT for the readout of 3D dosimeters, but it is yet to be a clinically relevant tool as the technology is too slow to be considered practical. Biologists have used the technique for structural imaging, but have struggled with emission tomography as the reality of photon attenuation for both excitation and emission have made the images quantitatively irrelevant. Dosimetry. The DLOS (Duke Large field of view Optical-CT Scanner) was designed and constructed to make 3D dosimetry utilizing optical-CT a fast and practical tool while maintaining the accuracy of readout of the previous, slower readout technologies. Upon construction/optimization/implementation of several components including a diffuser, band pass filter, registration mount & fluid filtration system the dosimetry system provides high quality data comparable to or exceeding that of commercial products. In addition, a stray light correction algorithm was tested and implemented. The DLOS in combination with the 3D dosimeter it was designed for, PREAGETM, then underwent rigorous commissioning and benchmarking tests validating its performance against gold standard data including a set of 6 irradiations. DLOS commissioning tests resulted in sub-mm isotropic spatial resolution (MTF >0.5 for frequencies of 1.5lp/mm) and a dynamic range of ˜60dB. Flood field uniformity was 10% and stable after 45minutes. Stray light proved to be small, due to telecentricity, but even the residual can be removed through deconvolution. Benchmarking tests showed the mean 3D passing gamma rate (3%, 3mm, 5% dose threshold) over the 6 benchmark data sets was 97.3% +/- 0.6% (range 96%-98%) scans totaling ˜10 minutes, indicating excellent ability to perform 3D dosimetry while improving the speed of

  9. Mutual information as a measure of image quality for 3D dynamic lung imaging with EIT

    We report on a pilot study of dynamic lung electrical impedance tomography (EIT) at the University of Manchester. Low-noise EIT data at 100 frames per second were obtained from healthy male subjects during controlled breathing, followed by magnetic resonance imaging (MRI) subsequently used for spatial validation of the EIT reconstruction. The torso surface in the MR image and electrode positions obtained using MRI fiducial markers informed the construction of a 3D finite element model extruded along the caudal-distal axis of the subject. Small changes in the boundary that occur during respiration were accounted for by incorporating the sensitivity with respect to boundary shape into a robust temporal difference reconstruction algorithm. EIT and MRI images were co-registered using the open source medical imaging software, 3D Slicer. A quantitative comparison of quality of different EIT reconstructions was achieved through calculation of the mutual information with a lung-segmented MR image. EIT reconstructions using a linear shape correction algorithm reduced boundary image artefacts, yielding better contrast of the lungs, and had 10% greater mutual information compared with a standard linear EIT reconstruction. (paper)

  10. Midsagittal plane extraction from brain images based on 3D SIFT

    Midsagittal plane (MSP) extraction from 3D brain images is considered as a promising technique for human brain symmetry analysis. In this paper, we present a fast and robust MSP extraction method based on 3D scale-invariant feature transform (SIFT). Unlike the existing brain MSP extraction methods, which mainly rely on the gray similarity, 3D edge registration or parameterized surface matching to determine the fissure plane, our proposed method is based on distinctive 3D SIFT features, in which the fissure plane is determined by parallel 3D SIFT matching and iterative least-median of squares plane regression. By considering the relative scales, orientations and flipped descriptors between two 3D SIFT features, we propose a novel metric to measure the symmetry magnitude for 3D SIFT features. By clustering and indexing the extracted SIFT features using a k-dimensional tree (KD-tree) implemented on graphics processing units, we can match multiple pairs of 3D SIFT features in parallel and solve the optimal MSP on-the-fly. The proposed method is evaluated by synthetic and in vivo datasets, of normal and pathological cases, and validated by comparisons with the state-of-the-art methods. Experimental results demonstrated that our method has achieved a real-time performance with better accuracy yielding an average yaw angle error below 0.91° and an average roll angle error no more than 0.89°. (paper)