#### Sample records for 3d stokes flow

1. 3D Topology optimization of Stokes flow problems

Gersborg-Hansen, Allan; Dammann, Bernd

energy efficient devices for 2D Stokes flow. Creeping flow problems are described by the Stokes equations which model very viscous fluids at macro scales or ordinary fluids at very small scales. The latter gives the motivation for topology optimization problems based on the Stokes equations being a model......The present talk is concerned with the application of topology optimization to creeping flow problems in 3D. This research is driven by the fact that topology optimization has proven very successful as a tool in academic and industrial design problems. Success stories are reported from such diverse...

2. Topology optimization of 3D Stokes flow problems

Gersborg-Hansen, Allan

test problems only. The motivation for considering topology optimization in 3D Stokes flow originates from micro fluidic systems. At small scales the Stokes equations are a reasonable mathematical model to use for the fluid behavior. Physically Stokes flow is an exotic inertia free flow, which in...... setting of standard analysis software which enables a credible performance check relevant before design manufacturing. Note that this requires a proper interpretation of a computed design used to generate a body fitted mesh. In addition issues related to the parallel solution of the linear algebra...

3. SALE-3D, 3-D Fluid Flow, Navier Stokes Equation Using Lagrangian or Eulerian Method

1 - Description of problem or function: SALE-3D calculates three- dimensional fluid flows at all speeds, from the incompressible limit to highly supersonic. An implicit treatment of the pressure calculation similar to that in the Implicit Continuous-fluid Eulerian (ICE) technique provides this flow speed flexibility. In addition, the computing mesh may move with the fluid in a typical Lagrangian fashion, be held fixed in an Eulerian manner, or move in some arbitrarily specified way to provide a continuous rezoning capability. This latitude results from use of an Arbitrary Lagrangian-Eulerian (ALE) treatment of the mesh. The partial differential equations solved are the Navier-Stokes equations and the mass and internal energy equations. The fluid pressure is determined from an equation of state and supplemented with an artificial viscous pressure for the computation of shock waves. The computing mesh consists of a three-dimensional network of arbitrarily shaped, six-sided deformable cells, and a variety of user-selectable boundary conditions are provided in the program. 2 - Method of solution: SALE3D uses an ICED-ALE technique, which combines the ICE method of treating flow speeds and the ALE mesh treatment to calculate three-dimensional fluid flow. The finite- difference approximations to the conservation of mass, momentum, and specific internal energy differential equations are solved in a sequence of time steps on a network of deformable computational cells. The basic hydrodynamic part of each cycle is divided into three phases: (1) an explicit solution of the Lagrangian equations of motion updating the velocity field by the effects of all forces, (2) an implicit calculation using Newton-Raphson iterative scheme that provides time-advanced pressures and velocities, and (3) the addition of advective contributions for runs that are Eulerian or contain some relative motion of grid and fluid. A powerful feature of this three-phases approach is the ease with which

4. Topology optimization of 3D Stokes flow problems

Gersborg-Hansen, Allan; Sigmund, Ole; Bendsøe, Martin P.

The design of MEMS devices have benefitted from the topology optimization tool and complicated layout problems have been solved, see [1] for an overview. This research is aimed at micro fluidic devices known as micro-Total-Analysis-Systems (muTAS) where the main physical phenomena originate from...... examples relevant for optimal micro fluidic mixer design are shown where the design is planar - compliant with micro fabrication techniques - and where the designs are 3D. In addition issues related to the parallel solution of the linear algebra problems are discussed. The implementation uses the...

5. 3-D thin layer navier-stokes solution of supersonic turbulent flow

In this research, a 3-D Thin Layer Navier-Stokes (TLNS) code is developed. This code consists of several numerical algorithms for space and time discretization, together with appropriate turbulence modeling. The Roe method is used for the discretization of inviscid terms and the central scheme for viscous terms. The explicit time marching technique is applied, based on finite volume space discretization. This code can be employed in the range of laminar and turbulent flow. It is validated for a supersonic flow with mach number 3 around a tangent-o give with incidence angles of 6 deg and a secant-o give with incidence angles of 10 deg. The circumferential pressure distribution is compared with experimental and Euler code results and the results of TLNS are acceptable. The cross-sectional Mach number contours are also presented. In addition to an outer shock, a cross-flow shock wave is captured in the case of a 10 deg angle of incidence

6. Computation of 3D steady Navier-Stokes flow with free-surface gravity waves

Lewis, M. R.; Koren, Barry; Raven, H.C.

2003-01-01

In this paper an iterative method for the computation of stationary gravity-wave solutions is investigated, using a novel formulation of the free-surface (FS) boundary-value problem. This method requires the solution of a sequence of stationary Reynolds-Averaged Navier-Stokes subproblems employing the so-called quasi free-surface condition. The numerical performance of this new approach is investigated for two test cases. The first test case involves the computation of the 3D gravity-wave pat...

7. Numerical solution of 3D Stokes problems

Preconditions conjugate gradient algorithms for solving 3D Stokes problems by stable piecewise discontinuous pressure finite elements are presented. The emphasis is on the preconditioning schemes and their numerical implementation for use with Hermitian-based discontinuous pressure elements. For the piecewise constant discontinuous pressure elements, a variant implementation of the preconditioner proposed by Cahouet and Chabard for the continuous pressure elements is employed. For the piecewise linear discontinuous pressure elements, a new preconditioner is presented. Numerical examples are presented for the cubic lid driven cavity problem with two representative elements (i.e., the Q2-P0 and the Q2-P1 brick elements). Numerical results show that the preconditioning schemes are very effective in reducing the number of pressure iterations at very reasonable costs. It is also shown that they are insensitive to the mesh Reynolds number, except for nearly steady flows (Rem → 0), and are almost independent of mesh sizes. It is demonstrated that the schemes performed reasonably well on nonuniform meshes. 15 refs., 6 figs., 1 tab

8. Persistence of Steady 3D Euler Solutions for 3D Navier-Stokes Equations

Li, Y Charles

2008-01-01

In the classical plane Couette flow, certain 3D steady solution (the so-called lower branch state) of the Navier-Stokes equations has a nontrivial limit as the Reynolds number approaches infinity \\cite{WGW07}. The limit is a shear of the form ($U(y,z), 0, 0$) in velocity variables. On the other hand, all the shears of this form are solutions of the corresponding 3D Euler equations. This note derives a necessary condition for such a shear to be a limit shear. The condition is $\\int \\Dl U f(U) dy dz = 0$ for any function $f$ satisfying certain boundary condition. Similar conditions are also derived for plane Poiseuille flow and pipe Poiseuille flow, which correspond to similar limit shears as revealed in \\cite{Wal03} \\cite{Vis08}.

9. A Tamed 3D Navier-Stokes Equation in Domains

Zhang, Xicheng

2008-01-01

In this paper, we analyze a tamed 3D Navier-Stokes equation in uniform $C^2$-domains (not necessarily bounded), which obeys the scaling invariance principle, and prove the existence and uniqueness of strong solutions to this tamed equation. In particular, if there exists a bounded solution to the classical 3D Navier-Stokes equation, then this solution satisfies our tamed equation. Moreover, the existence of a global attractor for the tamed equation in bounded domains is also proved. As simple...

10. Quasi-3D navier-stokes model for rotating airfoil

Wen Zhong Shen; Noerkaer Soerensen, J.

1999-02-01

A quasi-3D model of the unsteady Navier-Stokes equations in a rotating frame of reference has been developed. The equations governing the flow past a rotating blade are approximated using an order of magnitude analysis on the spanwise derivatives. The model takes into account rotational effects and spanwise outflow at computing expenses in the order of what is typical for similar 2D calculations. Results are presented for both laminar and turbulent flows past blades in pure rotation. In the turbulent case the influence of small-scale turbulence is modelled by the one-equation Baldwin-Barth turbulence model. The computations demonstrate that the main influence of rotation is to increase the maximum lift. (au) 18 refs.

11. On the Regularity for 3D Navier-Stokes Equation

Lin, Qun

2013-01-01

In this paper we will prove that the vorticity belongs to $L^{\\infty}(0,T;L^2(\\Omega))$ for 3D incompressible Navier-Stokes equation with periodic initial-boundary value conditions, then the existence of a global smooth solution is obtained. Our approach is to construct a set of auxiliary problems to approximate the original one for vorticity equation.

12. Investigations of Interaction of the Main Flow with Root and Tip Leakage Flows in an Axial Turbine Stage by Means of a Source/Sink Approach for a 3D Navier-Stokes Solver

Piotr Lampart; Andrzej Gardzilewicz; Sergey Yershov; Andrey Rusanov

2001-01-01

The effect of interaction of the main flow with root and tip leakage flows on the performance of an high pressure (HP) stage of an impulse turbine is studied numerically. The flow in blade-to-blade channels and axial gaps is computed with the aid of a 3D Navier-Stokes solver FlowER. The numerical scheme is modified to include the some/sink-type boundary conditions in places at the endwalls referring to design locations of injection of leakage and windage flows into, or extract from, the blade-to-blade passage. The turbine stage is computed in three configurations. First, computations are made without tip leakage and windage flows with source/sink slots closed.Second, tip leakage slots are open. Third, both tip leakage and windage flow slots are open, and the obtained flow characteristics including kinetic energy losses in the stage are compared so as to estimate the interaction of the main and leakage flows.

13. On the Dynamic Programming Approach for the 3D Navier-Stokes Equations

The dynamic programming approach for the control of a 3D flow governed by the stochastic Navier-Stokes equations for incompressible fluid in a bounded domain is studied. By a compactness argument, existence of solutions for the associated Hamilton-Jacobi-Bellman equation is proved. Finally, existence of an optimal control through the feedback formula and of an optimal state is discussed

14. 3D IBFV : Hardware-Accelerated 3D Flow Visualization

Telea, Alexandru; Wijk, Jarke J. van

2003-01-01

We present a hardware-accelerated method for visualizing 3D flow fields. The method is based on insertion, advection, and decay of dye. To this aim, we extend the texture-based IBFV technique for 2D flow visualization in two main directions. First, we decompose the 3D flow visualization problem in a

15. 3D vector flow imaging

Pihl, Michael Johannes

The main purpose of this PhD project is to develop an ultrasonic method for 3D vector flow imaging. The motivation is to advance the field of velocity estimation in ultrasound, which plays an important role in the clinic. The velocity of blood has components in all three spatial dimensions, yet...... conventional methods can estimate only the axial component. Several approaches for 3D vector velocity estimation have been suggested, but none of these methods have so far produced convincing in vivo results nor have they been adopted by commercial manufacturers. The basis for this project is the Transverse...... on the TO fields are suggested. They can be used to optimize the TO method. In the third part, a TO method for 3D vector velocity estimation is proposed. It employs a 2D phased array transducer and decouples the velocity estimation into three velocity components, which are estimated simultaneously based on 5...

16. On the Statistical Properties of the 3D Incompressible Navier-Stokes-Voigt Model

Levant, Boris; Titi, Edriss S

2009-01-01

The Navier-Stokes-Voigt (NSV) model of viscoelastic incompressible fluid has been recently proposed as a regularization of the 3D Navier-Stokes equations for the purpose of direct numerical simulations. In this work we investigate its statistical properties by employing phenomenological heuristic arguments, in combination with Sabra shell model simulations of the analogue of the NSV model. For large values of the regularizing parameter, compared to the Kolmogorov length scale, simulations exhibit multiscaling inertial range, and the dissipation range displaying low intermittency. These facts provide evidence that the NSV regularization may reduce the stiffness of direct numerical simulations of turbulent flows, with a small impact on the energy containing scales.

17. Practical analytical solutions for benchmarking of 2-D and 3-D geodynamic Stokes problems with variable viscosity

Popov, I. Yu.; Lobanov, I. S.; POPOV S.I.; Popov, A. I.; Gerya, T. V.

2014-01-01

Geodynamic modeling is often related with challenging computations involving solution of the Stokes and continuity equations under the condition of highly variable viscosity. Based on a new analytical approach we have developed particular analytical solutions for 2-D and 3-D incompressible Stokes flows with both linearly and exponentially variable viscosity. We demonstrate how these particular solutions can be converted into 2-D and 3-D test problems suitable for...

18. Tamed 3D Navier-Stokes Equation: Existence, Uniqueness and Regularity

Röckner, Michael; Zhang, Xicheng

2007-01-01

In this paper, we prove the existence and uniqueness of a smooth solution to a tamed 3D Navier-Stokes equation in the whole space. In particular, if there exists a bounded smooth solution to the classical 3D Navier-Stokes equation, then this solution satisfies our tamed equation. Moreover, using this renormalized equation we can give a new construction for a suitable weak solution of the classical 3D Navier-Stokes equation introduced in [Scheffer: Hausdorff measure and the Navier-Stokes equat...

19. 3D analysis of Navier-Stokes in steady state of the behavior of the flow in the Inter stage 1 of a gas turbine Frame 7; Analisis de navier-stokes tridimensional en estado estable del comportamiento del flujo en la inter etapa 1 de una turbina de gas frame 7

Henandez Rosete, Alejandro; Mazur C, Zdzislaw [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

2007-11-15

20. Exponential mixing of the 3D stochastic Navier-Stokes equations driven by mildly degenerate noises

Albeverio, S.; Debussche, A; Xu, L Lihu

2009-01-01

We prove the strong Feller property and exponential mixing for 3D stochastic Navier-Stokes equation driven by mildly degenerate noises (i.e. all but finitely many Fourier modes are forced) via Kolmogorov equation approach.

1. Exponential Mixing of the 3D Stochastic Navier-Stokes Equations Driven by Mildly Degenerate Noises

We prove the strong Feller property and exponential mixing for 3D stochastic Navier-Stokes equation driven by mildly degenerate noises (i.e. all but finitely many Fourier modes being forced) via a Kolmogorov equation approach.

2. Well posedness of a stochastic hyperviscosity-regularized 3D Navier-Stokes equation

Ferrario, B.

2010-01-01

We analyse the well posedness of a stochastic hyperviscosity-regularized 3D Navier-Stokes equation; this is the Navier-Stokes equation in which the Laplace operator is replaced by its a-power for a>1. We prove existence and uniqueness for this equation assuming a>= 5/4.

3. Study of Tip-loss Using an Inverse 3D Navier-Stokes Method

Mikkelsen, Robert; Sørensen, Jens Nørkær; Shen, Wen Zhong; Michelsen, Jess

2003-01-01

3D Navier-Stokes equations combined with the actuator line technique where blade loading is applied using an inverse method. The numerical simulations shows that the method captures the tip-correction when comparing with the theories of Prandtl and Goldstein, however, the accuracy of the obtained...... results reveal that further refinements still is needed. Keywords: Tip-loss; Actuator line; 3D Navier-Stokes methods....

4. Kolmogorov's dissipation number and the number of degrees of freedom for the 3D Navier-Stokes equations

Cheskidov, Alexey

2015-01-01

Kolmogorov's theory of turbulence predicts that only wavenumbers bellow some critical value, called Kolmogorov's dissipation number, are essential to describe the evolution of a three-dimensional fluid flow. A determining wavenumber, first introduced by Foias and Prodi for the 2D Navier-Stokes equations, is a mathematical analog of Kolmogorov's number. The purpose of this paper is to prove the existence of a time-dependent determining wavenumber for the 3D Navier-Stokes equations whose time average is bounded by Kolmogorov's dissipation wavenumber for all solutions on the global attractor whose intermittency is not extreme.

5. 3D Navier-Stokes Time Accurate Solutions Using Multipartitioning Parallel Computation Methodology

Zha, Ge-Cheng

1998-01-01

A parallel CFD code solving 3D time accurate Navier-Stokes equations with multipartitioning parallel Methodology is being developed in collaboration with Ohio State University within the Air Vehicle Directorate, at Wright Patterson Air Force Base. The advantage of the multipartitioning parallel method is that the domain decomposition will not introduce domain boundaries for the implicit operators. A ring structure data communication is employed so that the implicit time accurate method can be implemented for multi-processors with the same accuracy as for the single processor. No sub-iteration is needed at the domain boundaries. The code has been validated for some typical unsteady flows, which include Coutte Flow, flow passing a cylinder. The code now is being employed for a large scale time accurate wall jet transient flow computation. 'ne preliminary results are promising. The mesh has been refined to capture more details of the flow field. The mesh refinement computation is in progress and would be difficult to successfully implement without the parallel computation techniques used. A modified version of the code with more efficient inversion of the diagonalized block matrix is currently being tested.

6. Exact Solutions on Twisted Rings for the 3D Navier-Stokes Equations

Funaro, Daniele

2011-01-01

The problem of describing the behavior of the solutions to the Navier-Stokes equations in three space dimensions has always been borderline. From one side, due to the viscosity term, smooth data seem to produce solutions with an everlasting regular behavior. On the other hand, the lack of a convincing theoretical analysis suggests the existence of possible counterexamples. In particular, one cannot exclude the blowing up of solutions in finite time even in presence of smooth data. Here we give examples of explicit solutions of the non-homogeneous equations. These are defined on a Hill's type vortex where the flow is rotating and swirling at the same time, inducing the flux to spiraling at a central node. Despite the appearance, the solution still remains very regular at the agglomeration point. The analysis may lead to a better understanding of the subtle problem of characterizing the solution space of the 3D Navier-Stokes equations. For instance, this result makes more narrow the path to the search of counte...

7. Higher derivatives estimate for the 3D Navier-Stokes equation

Vasseur, Alexis F.

2009-01-01

In this article, a non linear family of spaces, based on the energy dissipation, is introduced. This family bridges an energy space (containing weak solutions to Navier-Stokes equation) to a critical space (invariant through the canonical scaling of the Navier-Stokes equation). This family is used to get uniform estimates on higher derivatives to solutions to the 3D Navier-Stokes equations. Those estimates are uniform, up to the possible blowing-up time. The proof uses blow-up techniques. Est...

8. Regularity of transition semigroups associated to a 3D stochastic Navier-Stokes equation

Flandoli, F.; Romito, M.

2006-01-01

A 3D stochastic Navier-Stokes equation with a suitable non degenerate additive noise is considered. The regularity in the initial conditions of every Markov transition kernel associated to the equation is studied by a simple direct approach. A by-product of the technique is the equivalence of all transition probabilities associated to every Markov transition kernel.

9. Regularity Criteria For Strong Solutions To The 3D Navier-Stokes Equations

Younsi, Abdelhafid

2012-01-01

In this paper, we study the regularity problem of the 3D incompressible Navier\\~nStokes equations. We prove that the strong solution exists globally for new regularity criteria. For negligible forces, we give an improvement of the known time interval of regularity obtained in [9].

10. Topology optimization of mass distribution problems in Stokes flow

Gersborg-Hansen, Allan; Berggren, Martin; Dammann, Bernd

We consider topology optimization of mass distribution problems in 2D and 3D Stokes flow with the aim of designing devices that meet target outflow rates. For the purpose of validation, the designs have been post processed using the image processing tools available in FEMLAB. In turn, this has...

11. Direct numerical simulation of 3D transitional fluid flows

Full text: For the numerical simulation of the 2D-3D transitional homogeneous and stratified incompressible viscous fluid flows, characterizing by the full Navier-Stokes equations, the splitting on physical factors method is used. The explicit hybrid finite difference scheme of the method has the following behaviors: the second order of accuracy in space, minimum scheme viscosity and dispersion, workable in wide range of Reynolds and Froude numbers and monotonicity. The efficiency of the developed numerical method and the advanced performance of the supercomputers allowed simulating 2D-3D transitional uncompressible viscous fluid flows around the bluff bodies in particular around a cylinder. By the numerical simulation of the fluid flows around 3D circular cylinder it was found that the transition to 3D regime arrives at Re>200. At 200< Re<300 the mode A with wavelength 3.5 d<λ<4.0 d (where d is the diameter of the cylinder) for 3D structures along the axis of a cylinder was observed. At 300< Re<400 the mode B with wavelength 0.8 d<λ<0.9 d was observed. At Re=300 the both modes A and B were observed simultaneously. The regime with large dislocations previously discovered experimentally was first obtained numerically at 210< Re<260. This regime is characterized by flow phase dislocation along the axis of the cylinder and as the effect by the amplitude fall of the lift force coefficient and the variations in the drag coefficient. There was simulated numerically the initiation of the attached internal waves behind the circular cylinder and upstream disturbance area at low Froude and moderate Reynolds numbers. (author)

12. Intermittency and regularity issues in 3D Navier-Stokes turbulence

Gibbon, J. D.; Doering, Charles R.

2004-01-01

Two related open problems in the theory of 3D Navier-Stokes turbulence are discussed in this paper. The first is the phenomenon of intermittency in the dissipation field. Dissipation-range intermittency was first discovered experimentally by Batchelor and Townsend over fifty years ago. It is characterized by spatio-temporal binary behaviour in which long, quiescent periods in the velocity signal are interrupted by short, active events' during which there are violent fluctuations away from th...

13. On convergence of trajectory attractors of the 3D Navier-Stokes-α model as α approaches 0

We study the relations between the long-time dynamics of the Navier-Stokes-α model and the exact 3D Navier-Stokes system. We prove that bounded sets of solutions of the Navier-Stokes-α model converge to the trajectory attractor A0 of the 3D Navier-Stokes system as the time approaches infinity and α approaches zero. In particular, we show that the trajectory attractor Aα of the Navier-Stokes-α model converges to the trajectory attractor A0 of the 3D Navier-Stokes system as α→0+. We also construct the minimal limit Amin(subset or equal A0) of the trajectory attractor Aα as α→0+ and prove that the set Amin is connected and strictly invariant. Bibliography: 35 titles.

14. Numerical stability of coupling schemes in the 3d/0d modelling ofairflows and blood flows

Fouchet-Incaux, Justine; Grandmont, Céline; Martin, Sebastien

2014-01-01

We consider models which are classically used in the simulation of airflows and blood flows andinvestigate the numerical stability of some discretization strategies. The geometrical complexity of the networksin which air/blood flows leads to a classical decomposition of two areas: a truncated 3D geometry correspondingto the largest contribution of the domain and a 0D part connected to the 3D part, modelling air/blood flowsin smaller airways/vessels. The resulting Navier-Stokes system in the 3...

15. 3-D Viscous Flow Analysis of an Axial Flow Pump Impeller

Steven M. Miner

1997-01-01

A commercial CFD code is used to compute the flow field within the first stage impeller of a two stage axial flow pump. The code solves the 3-D Reynolds Averaged Navier Stokes equations in a rotating cylindrical coordinate system using a standard k−ε turbulence model. Stage design parameters are, rotational speed 870 rpm, flow coefficient φ=0.12, head coefficient ψ=0.06, and specific speed 2.86 (8070 US). Results from the study include relative and absolute velocities, flow angles, and static...

16. A lattice-Boltzmann scheme of the Navier-Stokes equations on a 3D cuboid lattice

Min, Haoda; Peng, Cheng; Wang, Lian-Ping

2015-11-01

The standard lattice-Boltzmann method (LBM) for fluid flow simulation is based on a square (in 2D) or cubic (in 3D) lattice grids. Recently, two new lattice Boltzmann schemes have been developed on a 2D rectangular grid using the MRT (multiple-relaxation-time) collision model, by adding a free parameter in the definition of moments or by extending the equilibrium moments. Here we developed a lattice Boltzmann model on 3D cuboid lattice, namely, a lattice grid with different grid lengths in different spatial directions. We designed our MRT-LBM model by matching the moment equations from the Chapman-Enskog expansion with the Navier-Stokes equations. The model guarantees correct hydrodynamics. A second-order term is added to the equilibrium moments in order to restore the isotropy of viscosity on a cuboid lattice. The form and the coefficients of the extended equilibrium moments are determined through an inverse design process. An additional benefit of the model is that the viscosity can be adjusted independent of the stress-moment relaxation parameter, thus improving the numerical stability of the model. The resulting cuboid MRT-LBM model is then validated through benchmark simulations using laminar channel flow, turbulent channel flow, and the 3D Taylor-Green vortex flow.

17. XML3D and Xflow: combining declarative 3D for the Web with generic data flows.

Klein, Felix; Sons, Kristian; Rubinstein, Dmitri; Slusallek, Philipp

2013-01-01

Researchers have combined XML3D, which provides declarative, interactive 3D scene descriptions based on HTML5, with Xflow, a language for declarative, high-performance data processing. The result lets Web developers combine a 3D scene graph with data flows for dynamic meshes, animations, image processing, and postprocessing. PMID:24808080

18. Long time decay for 3D Navier-Stokes equations in Sobolev-Gevrey spaces

Jamel Benameur

2016-04-01

Full Text Available In this article, we study the long time decay of global solution to 3D incompressible Navier-Stokes equations. We prove that if $u\\in{\\mathcal C}([0,\\infty,H^1_{a,\\sigma}(\\mathbb{R}^3$ is a global solution, where $H^1_{a,\\sigma}(\\mathbb{R}^3$ is the Sobolev-Gevrey spaces with parameters $a>0$ and $\\sigma>1$, then $\\|u(t\\|_{H^1_{a,\\sigma}(\\mathbb{R}^3}$ decays to zero as time approaches infinity. Our technique is based on Fourier analysis.

19. On the stochastic 3D-Lagrangian averaged Navier-Stokes Alpha-Model with finite delay

Caraballo Garrido, Tomás; Márquez Durán, Antonio Miguel; Real Anguas, José

2005-01-01

Existence and uniqueness of solutions for a stochastic version of the 3D-Lagrangian averaged Navier-Stokes (LANS-®) equation in a bounded domain and containing some hereditary characteristics are proved.

20. 3-D Viscous Flow Analysis of a Mixed Flow Pump Impeller

Steven M. Miner

2001-01-01

This paper presents the results of a study using a coarse grid to analyze the flow in the impeller of a mixed flow pump. A commercial computational fluid dynamics code (FLOTRAN) is used to solve the 3-D Reynolds Averaged Navier Stokes equations in a rotating cylindrical coordinate system. The standard k-ε turbulence model is used. The mesh for this study uses 26,000 nodes and the model is run on a SPARCstation 20. This is in contrast to typical analyses using in excess of 100,000 nodes that a...

1. Invariant measures for the 3D Navier-Stokes-Voigt equations and their Navier-Stokes limit

Ramos, Fabio

2009-01-01

The Navier-Stokes-Voigt model of viscoelastic incompressible fluid has been recently proposed as a regularization of the three-dimensional Navier-Stokes equations for the purpose of direct numerical simulations. Besides the kinematic viscosity parameter, $\ 2. Recent advances in Runge-Kutta schemes for solving 3-D Navier-Stokes equations Vatsa, Veer N.; Wedan, Bruce W.; Abid, Ridha 1989-01-01 A thin-layer Navier-Stokes has been developed for solving high Reynolds number, turbulent flows past aircraft components under transonic flow conditions. The computer code has been validated through data comparisons for flow past isolated wings, wing-body configurations, prolate spheroids and wings mounted inside wind-tunnels. The basic code employs an explicit Runge-Kutta time-stepping scheme to obtain steady state solution to the unsteady governing equations. Significant gain in the efficiency of the code has been obtained by implementing a multigrid acceleration technique to achieve steady-state solutions. The improved efficiency of the code has made it feasible to conduct grid-refinement and turbulence model studies in a reasonable amount of computer time. The non-equilibrium turbulence model of Johnson and King has been extended to three-dimensional flows and excellent agreement with pressure data has been obtained for transonic separated flow over a transport type of wing. 3. Parallel computation of 3-D Navier-Stokes flowfields for supersonic vehicles Ryan, James S.; Weeratunga, Sisira 1993-01-01 Multidisciplinary design optimization of aircraft will require unprecedented capabilities of both analysis software and computer hardware. The speed and accuracy of the analysis will depend heavily on the computational fluid dynamics (CFD) module which is used. A new CFD module has been developed to combine the robust accuracy of conventional codes with the ability to run on parallel architectures. This is achieved by parallelizing the ARC3D algorithm, a central-differenced Navier-Stokes method, on the Intel iPSC/860. The computed solutions are identical to those from conventional machines. Computational speed on 64 processors is comparable to the rate on one Cray Y-MP processor and will increase as new generations of parallel computers become available. 4. 3D Navier-Stokes Simulations of a rotor designed for Maximum Aerodynamic Efficiency Johansen, Jeppe; Madsen, Helge. Aa.; Gaunaa, Mac; Bak, Christian; Sørensen, Niels 2007-01-01 The present paper describes the design of a three-bladed wind turbine rotor taking into account maximum aerodynamic efficiency only and not considering structural as well as offdesign issues. The rotor was designed assuming constant induction for most of the blade span, but near the tip region a...... constant load was assumed. The rotor design was obtained using an Actuator Disc model and was subsequently verified using both a free wake Lifting Line method and a full 3D Navier-Stokes solver. Excellent agreement was obtained using the three models. Global mechanical power coefficient, CP, reached a...... value of slightly above 0.51, while global thrust coefficient, CT, was 0.87. The local power coefficient, Cp, increased to slightly above the Betz limit on the inner part of the rotor as well as the local thrust coefficient, Ct, increased to a value above 1.1. This agrees well with the theory of de... 5. Simulations of soluble surfactants in 3D multiphase flow Muradoglu, Metin; Tryggvason, Gretar 2014-10-01 A finite-difference/front-tracking method is developed for simulations of soluble surfactants in 3D multiphase flows. The interfacial and bulk surfactant concentration evolution equations are solved fully coupled with the incompressible Navier-Stokes equations. A non-linear equation of state is used to relate interfacial surface tension to surfactant concentration at the interface. Simple test cases are designed to validate different parts of the numerical algorithm and the computational results are found to be in a good agreement with the analytical solutions. The numerical algorithm is parallelized using a domain-decomposition method. It is then applied to study the effects of soluble surfactants on the motion of buoyancy-driven bubbles in a straight square channel in nearly undeformable (spherical) and deformable (ellipsoidal) regimes. Finally the method is used to examine the effects of soluble surfactants on the lateral migration of bubbles in a pressure-driven channel flow. It is found that surfactant-induced Marangoni stresses counteract the shear-induced lift force and can reverse the lateral bubble migration completely, i.e., the contaminated bubble drifts away from the channel wall and stabilizes at the center of the channel when the surfactant-induced Marangoni stresses are sufficiently large. 6. Preliminary examples of 3D vector flow imaging Pihl, Michael Johannes; Stuart, Matthias Bo; Tomov, Borislav Gueorguiev; 2013-01-01 This paper presents 3D vector flow images obtained using the 3D Transverse Oscillation (TO) method. The method employs a 2D transducer and estimates the three velocity components simultaneously, which is important for visualizing complex flow patterns. Data are acquired using the experimental...... ultrasound scanner SARUS on a flow rig system with steady flow. The vessel of the flow-rig is centered at a depth of 30 mm, and the flow has an expected 2D circular-symmetric parabolic prole with a peak velocity of 1 m/s. Ten frames of 3D vector flow images are acquired in a cross-sectional plane orthogonal...... acquisition as opposed to magnetic resonance imaging (MRI). The results demonstrate that the 3D TO method is capable of performing 3D vector flow imaging.... 7. Grounding line dynamics inferred from a 3D full-Stokes model solving the contact problem Favier, Lionel; Gagliardini, Olivier; Durand, Gael; Zwinger, Thomas 2010-05-01 The mass balance of marine ice-sheets, such as the West Antarctic Ice Sheet, is mostly controlled by their grounding line dynamics. Most numerical models simulating marine ice-sheets involve simplifications and do not include all the stress gradients. First results obtained with a 3D full-Stokes model for the grounded ice-sheet / floating ice-shelf transition, using the finite-element code Elmer/Ice, are presented. The initial geometry, which takes into account a dome and a calving front, has been laterally extruded from a previously investigated 2D flowline geometry. The grounding line migration is computed by solving the contact problem between the ice and the rigid downward sloping bedrock, where a non linear friction law is applied in the two horizontal directions. The evolutions of the sea-air and sea-ice interfaces are determined by the solution of a local transport equation. The consistency between the 3D model and the analogous results of the flowline model is shown by comparing the results in the basic extruded case, with no normal flux through lateral boundaries. Thereafter, spatially non uniform perturbations are introduced, to simulate the grounding line dynamics under fully three-dimensional perturbations. 8. 3D Flow reconstruction using ultrasound PIV Poelma, C.; Mari, J. M.; Foin, N.; Tang, M.-X.; Krams, R; Caro, C.G.; Weinberg, P.D.; Westerweel, J. 2009-01-01 Ultrasound particle image velocimetry (PIV) can be used to obtain velocity fields in non-transparent geometries and/or fluids. In the current study, we use this technique to document the flow in a curved tube, using ultrasound contrast bubbles as flow tracer particles. The performance of the technique is first tested in a straight tube, with both steady laminar and pulsatile flows. Both experiments confirm that the technique is capable of reliable measurements. A number of adaptations are int... 9. 3-D numerical modelling of flow around a groin Miller, R.; Roulund, A.; Sumer, B. Mutlu; 2003-01-01 A 3-D flow code, EllipSys3D, has been implemented to simulate the 3-D flow around a groin in steady current. The k  turbulence model has been used for closure. Two kinds of groins are considered: (1) A vertical-wall groin, and (2) A groin with a side slope. Steady-flow simulations were conducted....... The paper reports early results of the investigation. The simulations capture main features of the flow around the groin. The horseshoe vortex in front of the vertical-wall groin is resolved. The vortex shedding at the head is not resolved because no transient flow simulations have been conducted at... 10. Anomalous dissipation and energy cascade in 3D inviscid flows Dascaliuc, Radu 2011-01-01 Adopting the setting for the study of existence and scale locality of the energy cascade in 3D viscous flows in physical space introduced in [arXiv:1101.2193] to 3D inviscid flows, it is shown that the anomalous dissipation is indeed capable of triggering the cascade which then continues ad infinitum, confirming Onsager's predictions. 11. The new high resolution method of Godunovs type for 3D viscous flow calculations Yershov, S.V.; Rusanov, A.V. [Ukranian National Academy of Sciences, Kahrkov (Ukraine) 1996-12-31 The numerical method is suggested for the calculations of the 3D viscous compressible flows described by the thin-layer Reynolds-averaged Navier-Stokes equations. The method is based on the Godunovs finite-difference scheme and it uses the ENO reconstruction suggested by Harten to achieve the uniformly high-order accuracy. The computational efficiency is provided with the simplified multi grid approach and the implicit step written in {delta} -form. The turbulent effects are simulated with the Baldwin - Lomax turbulence model. The application package FlowER is developed to calculate the 3D turbulent flows within complex-shape channels. The numerical results for the 3D flow around a cylinder and through the complex-shaped channels show the accuracy and the reliability of the suggested method. (author) 12. Regularity for 3D Navier-Stokes equations in terms of two components of the vorticity Sadek Gala 2010-10-01 Full Text Available We establish regularity conditions for the 3D Navier-Stokes equation via two components of the vorticity vector. It is known that if a Leray-Hopf weak solution$u$satisfies$$ilde{omega}in L^{2/(2-r}(0,T;L^{3/r}(mathbb{R}^3quad hbox{with }0 13. Regimes of nonlinear depletion and regularity in the 3D Navier–Stokes equations The periodic 3D Navier–Stokes equations are analyzed in terms of dimensionless, scaled, L2m-norms of vorticity Dm (1 ⩽ m < ∞). The first in this hierarchy, D1, is the global enstrophy. Three regimes naturally occur in the D1 − Dm plane. Solutions in the first regime, which lie between two concave curves, are shown to be regular, owing to strong nonlinear depletion. Moreover, numerical experiments have suggested, so far, that all dynamics lie in this heavily depleted regime [1]; new numerical evidence for this is presented. Estimates for the dimension of a global attractor and a corresponding inertial range are given for this regime. However, two more regimes can theoretically exist. In the second, which lies between the upper concave curve and a line, the depletion is insufficient to regularize solutions, so no more than Leray's weak solutions exist. In the third, which lies above this line, solutions are regular, but correspond to extreme initial conditions. The paper ends with a discussion on the possibility of transition between these regimes. (paper) 14. On the Regularity of the Solutions for Cauchy Problem of Incompressible 3D Navier-Stokes Equation Lin, Qun 2013-01-01 In this paper we will prove that the vorticity belongs to$L^{\\infty}(0, T; L^2(R^3))$for the Cauchy problem of 3D incompressible Navier-Stokes equation, then the existence of a global smooth solution is obtained. Our approach is to construct a set of auxiliary problems to approximate the original one for vorticity equation. 15. Lattice Boltzmann Method for 3-D Flows with Curved Boundary Mei, Renwei; Shyy, Wei; Yu, Dazhi; Luo, Li-Shi 2002-01-01 In this work, we investigate two issues that are important to computational efficiency and reliability in fluid dynamics applications of the lattice, Boltzmann equation (LBE): (1) Computational stability and accuracy of different lattice Boltzmann models and (2) the treatment of the boundary conditions on curved solid boundaries and their 3-D implementations. Three athermal 3-D LBE models (D3QI5, D3Ql9, and D3Q27) are studied and compared in terms of efficiency, accuracy, and robustness. The boundary treatment recently developed by Filippova and Hanel and Met et al. in 2-D is extended to and implemented for 3-D. The convergence, stability, and computational efficiency of the 3-D LBE models with the boundary treatment for curved boundaries were tested in simulations of four 3-D flows: (1) Fully developed flows in a square duct, (2) flow in a 3-D lid-driven cavity, (3) fully developed flows in a circular pipe, and (4) a uniform flow over a sphere. We found that while the fifteen-velocity 3-D (D3Ql5) model is more prone to numerical instability and the D3Q27 is more computationally intensive, the 63Q19 model provides a balance between computational reliability and efficiency. Through numerical simulations, we demonstrated that the boundary treatment for 3-D arbitrary curved geometry has second-order accuracy and possesses satisfactory stability characteristics. 16. Uniform regularity and vanishing dissipation limit for the full compressible Navier-Stokes system in 3-D bounded domain Yong, Wang 2015-01-01 In the present paper, we study the uniform regularity and vanishing dissipation limit for the full compressible Navier-Stokes system whose viscosity and heat conductivity are allowed to vanish at different order. The problem is studied in a 3-D bounded domain with Navier-slip type boundary conditions \\eqref{1.9}. It is shown that there exists a unique strong solution to the full compressible Navier-Stokes system with the boundary conditions \\eqref{1.9} in a finite time interval which is indep... 17. Localization of small obstacles in Stokes flow We want to detect small obstacles immersed in a fluid flowing in a larger bounded domain Ω in the three-dimensional case. We assume that the fluid motion is governed by the steady-state Stokes equations. We make a measurement on a part of the exterior boundary ∂Ω and then take a Kohn–Vogelius approach to locate these obstacles. We use here the notion of the topological derivative in order to determine the number of objects and their rough locations. Thus we first establish an asymptotic expansion of the solution of the Stokes equations in Ω when we add small obstacles inside. Then, we use it to find a topological asymptotic expansion of the considered Kohn–Vogelius functional which gives us the formula of its topological gradient. Finally, we make some numerical simulations exploring the efficiency and the limits of this method. (paper) 18. Parallel Processor for 3D Recovery from Optical Flow Jose Hugo Barron-Zambrano 2009-01-01 Full Text Available 3D recovery from motion has received a major effort in computer vision systems in the recent years. The main problem lies in the number of operations and memory accesses to be performed by the majority of the existing techniques when translated to hardware or software implementations. This paper proposes a parallel processor for 3D recovery from optical flow. Its main feature is the maximum reuse of data and the low number of clock cycles to calculate the optical flow, along with the precision with which 3D recovery is achieved. The results of the proposed architecture as well as those from processor synthesis are presented. 19. Numerical analysis of 3-D potential flow in centrifugal turbomachines Daiguji, H. 1983-09-01 A numerical method is developed for analysing a three-dimensional steady incompressible potential flow through an impeller in centrifugal turbomachines. The method is the same as the previous method which was developed for the axial flow turbomachines, except for some treatments in the downstream region. In order to clarify the validity and limitation of the method, a comparison with the existing experimental data and numerical results is made for radial flow compressor impellers. The calculated blade surface pressure distributions almost coincide with the quasi-3-D calculation by Krimerman and Adler (1978), but are different partly from the quasi-3-D calculation using one meridional flow analysis. It is suggested from this comparison that the flow through an impeller with high efficiency near the design point can be predicted by this fully 3-D numerical method. 20. Effect of vorticity coherence on energy-enstrophy bounds for the 3D Navier-Stokes equations Dascaliuc, Radu; Jolly, Michael S 2015-01-01 Bounding curves in the energy,enstrophy-plane are derived for the 3D Navier-Stokes equations under an assumption on coherence of the vorticity direction. The analysis in the critical case where the direction is H\\"older continuous with exponent$r=1/2$results in a curve with extraordinarily large maximal enstrophy (exponential in Grashof), in marked contrast to the subcritical case,$r>1/2$(algebraic in Grashof). 1. On the Coupling of Incompressible Stokes or Navier–Stokes and Darcy Flows Through Porous Media Girault, V. 2012-11-03 In this chapter, we present the theoretical analysis of coupled incompressible Navier-Stokes (or Stokes) flows and Darcy flows with the Beavers-Joseph-Saffman interface condition. We discuss alternative interface and porous media models. We review some finite element methods used by several authors in this coupling and present numerical experiments. 2. Asymptotic behaviour of the non-autonomous 3D Navier-Stokes problem with coercive force Vorotnikov, Dmitry 2010-01-01 We construct pullback attractors to the weak solutions of the three-dimensional Dirichlet problem for the incompressible Navier-Stokes equations in the case when the external force may become unbounded as time goes to plus or minus infinity. 3. Numerical simulation of a 3-D flow within a storage area hexagonal modular pavement systems This numerical study has been performed to predict the flow patterns and characteristics within a storage area Hexagonal Modular Pavement Systems. Throughout the design and planning period for future construction are increasingly integrating computational fluid dynamics (CFD) into the process. A commercially known software, FLOW-3D, is applied to numerically solve the Navier-stokes equations for solution domains which are separated into three regions with overlapping boundaries to efficiently accommodate the grid resolutions, namely the honeycomb shaped modular, gravel and combined honeycomb shaped modular with gravel fill. The filtration of the fluid within the interstices of a permeable pavement is evaluated by integrating the Reynolds Averaged Navier-Stokes equations (RANS) inside the voids rather than making use of the widespread porous media approach. In conclusion, the results from numerical simulation are generally well agreed with the existing data and flow information such as flow patterns at increased flow, discharge rate and pressure is obtained to be used for engineering design purpose. Overall, the potential for FLOW-3D to model various geometries and configurations appears great. It should be noted that CFD should not be considered a complete replacement for physical modelling; however, it can definitely be used as a supplementary tool throughout the pavement design process. 4. Serrin blow-up criterion for strong solutions to the 3-D compressible nematic liquid crystal flows with vacuum Qiao Liu 2013-01-01 In this article, we extend the well-known Serrin's blow-up criterion for solutions of the 3-D incompressible Navier-Stokes equations to the 3-D compressible nematic liquid crystal flows where the initial vacuum is allowed. It is proved that for the initial-boundary value problem of the 3-D compressible nematic liquid crystal flows in a bounded domain, the strong solution exists globally if the velocity satisfies the Serrin's condition and$L^1(0,T;L^{infty})$-norm of the gradient of th... 5. Serrin blow-up criterion for strong solutions to the 3-D compressible nematic liquid crystal flows with vacuum Qiao Liu 2013-04-01 Full Text Available In this article, we extend the well-known Serrin's blow-up criterion for solutions of the 3-D incompressible Navier-Stokes equations to the 3-D compressible nematic liquid crystal flows where the initial vacuum is allowed. It is proved that for the initial-boundary value problem of the 3-D compressible nematic liquid crystal flows in a bounded domain, the strong solution exists globally if the velocity satisfies the Serrin's condition and$L^1(0,T;L^{infty}$-norm of the gradient of the velocity is bounded. 6. 3D Printed Micro Free-Flow Electrophoresis Device. Anciaux, Sarah K; Geiger, Matthew; Bowser, Michael T 2016-08-01 The cost, time, and restrictions on creative flexibility associated with current fabrication methods present significant challenges in the development and application of microfluidic devices. Additive manufacturing, also referred to as three-dimensional (3D) printing, provides many advantages over existing methods. With 3D printing, devices can be made in a cost-effective manner with the ability to rapidly prototype new designs. We have fabricated a micro free-flow electrophoresis (μFFE) device using a low-cost, consumer-grade 3D printer. Test prints were performed to determine the minimum feature sizes that could be reproducibly produced using 3D printing fabrication. Microfluidic ridges could be fabricated with dimensions as small as 20 μm high × 640 μm wide. Minimum valley dimensions were 30 μm wide × 130 μm wide. An acetone vapor bath was used to smooth acrylonitrile-butadiene-styrene (ABS) surfaces and facilitate bonding of fully enclosed channels. The surfaces of the 3D-printed features were profiled and compared to a similar device fabricated in a glass substrate. Stable stream profiles were obtained in a 3D-printed μFFE device. Separations of fluorescent dyes in the 3D-printed device and its glass counterpart were comparable. A μFFE separation of myoglobin and cytochrome c was also demonstrated on a 3D-printed device. Limits of detection for rhodamine 110 were determined to be 2 and 0.3 nM for the 3D-printed and glass devices, respectively. PMID:27377354 7. Vertical Flow Lithography for Fabrication of 3D Anisotropic Particles. Habasaki, Shohei; Lee, Won Chul; Yoshida, Shotaro; Takeuchi, Shoji 2015-12-22 A microfluidics-based method for the 3D fabrication of anisotropic particles is reported. The method uses a vertical microchannel where tunable light patterns solidify photocurable resins for stacking multiple layers of the resins, thus enabling an application of stereolithography concepts to conventional flow lithography. Multilayered, tapered, and angular compartmental microparticles are demonstrated. PMID:26551590 8. Investigating dynamic stall, 3-D and rotational effects on wind turbine blades by means of an unsteady quasi-3D Navier-Stokes solver Chaviaropoulos, P.K. [CRES-Center for Renewable Energy Sources, Pikermi Attiki (Greece) 1997-08-01 The blade element codes provide surprisingly accurate predictions of the aerodynamic loads provided that they are fed with proper lift and drag - incidence curves for the profiles mounted on the rotor blades. The evident question is how one can obtain such data. It is common experience that the use of the mostly available steady two-dimensional profile data may lead to serious discrepancies between measured and simulated loads. Although several correction techniques have been proposed as a remedy during the last years, from simplified dynamic stall models suitably tuned for wind turbines to 3-D correction schemes for profile data, the problem is by no means over-passed. Especially for the three-dimensional effects it seems that part of the difficulty is due to our limited understanding of the physical mechanism which is responsible for the extra loading of the inner part of the blades. Recognizing the importance of the above aspects two relevant Joule projects have been launched, the concluded Dynamic Stall and 3-D Effects JOU2-CT93-0345 and the ongoing VISCWIND JOR3-CT95-0007 project. Part of the activities in the first and all the activities in the second project are devoted to the identification and quantification of the dynamic stall and three-dimensional effects experienced by the wind turbine blades using Navier-Stokes computations. The contribution of CRES in these two projects is briefly presented in this paper. (EG) 9. The 3D Flow Field Around an Embedded Planet Fung, Jeffrey; Wu, Yanqin 2015-01-01 Understanding the 3D flow topology around a planet embedded in its natal disk is crucial to the study of planet formation. 3D modifications to the well-studied 2D flow topology have the potential to resolve longstanding problems in both planet migration and accretion. We present a detailed analysis of the 3D isothermal flow field around a 5 Earth-mass planet on a fixed circular orbit, simulated using our high-resolution multi-GPU hydrodynamics code PEnGUIn. We show that, overall, the horseshoe region has a columnar structure extending vertically much beyond the Hill sphere of the planet. This columnar structure is only broken for some of the widest horseshoe streamlines, along which high altitude fluid descends and converges rapidly toward the planet, enters its Bondi sphere, performs one horseshoe turn, and exits radially in the midplane. A portion of this flow gathers enough speed to exit the horseshoe region altogether. We call this newly identified feature the "transient" horseshoe flow. As the flow conti... 10. Sufficiency Class for Global (in Time) Solutions to the 3D-Navier-Stokes Equations Gill, Tepper L.; Zachary, Woodford W 2007-01-01 A well-known unsolved problem (in the classical theory of fluid mechanics) is to identify a set of initial velocities, which may depend on the viscosity, the body forces and possibly the boundary of the fluid that will allow global in time solutions to the three-dimensional Navier-Stokes equations. (These equations describe the time evolution of the fluid velocity and pressure of an incompressible viscous homogeneous Newtonian fluid in terms of a given initial velocity and given external body... 11. Analysis of the velocity tracking control problem for the 3D evolutionary Navier-Stokes equations Casas Rentería, Eduardo; Chrysafinos, Konstantinos 2016-01-01 The velocity tracking problem for the evolutionary Navier–Stokes equations in three dimensions is studied. The controls are of distributed type and are submitted to bound constraints. The classical cost functional is modified so that a full analysis of the control problem is possible. First and second order necessary and sufficient optimality conditions are proved. A fully discrete scheme based on a discontinuous (in time) Galerkin approach, combined with conforming finite element subspaces i... 12. On Energy Cascades in the Forced 3D Navier-Stokes Equations Dascaliuc, R.; Grujić, Z. 2016-06-01 We show—in the framework of physical scales and (K_1,K_2)-averages—that Kolmogorov's dissipation law combined with the smallness condition on a Taylor length scale is sufficient to guarantee energy cascades in the forced Navier-Stokes equations. Moreover, in the periodic case we establish restrictive scaling laws—in terms of Grashof number—for kinetic energy, energy flux, and energy dissipation rate. These are used to improve our sufficient condition for forced cascades in physical scales. 13. 3D modelling of edge parallel flow asymmetries The issue of parallel flows asymmetries in the edge plasma is tackled with a new first principle transport and turbulence code. TOKAM-3D is a 3D full-torus fluid code that can be used both in diffusive and turbulent regimes and covers either exclusively closed flux surfaces or both open and closed field lines in limiter geometry. Two independent mechanisms susceptible to lead to large amplitude asymmetric parallel flows are evidenced. Global ExB drifts coupled with the presence of the limiter break the poloidal symmetry and can generate large amplitude parallel flows even with poloidally uniform transport coefficients. On the other hand, turbulent transport in the edge exhibits a strong ballooning of the radial particle flux generating an up-down m = 1, n = 0 structure on the parallel velocity. The combination of both mechanisms in complete simulations leads to a poloidal and radial distribution of the parallel velocity comparable to experimental results. 14. The 3D Flow Field Around an Embedded Planet Fung, Jeffrey; Artymowicz, Pawel; Wu, Yanqin 2015-10-01 3D modifications to the well-studied 2D flow topology around an embedded planet have the potential to resolve long-standing problems in planet formation theory. We present a detailed analysis of the 3D isothermal flow field around a 5 Earth-mass planet on a fixed circular orbit, simulated using our graphics processing unit hydrodynamics code PEnGUIn. We find that, overall, the horseshoe region has a columnar structure extending vertically much beyond the Hill sphere of the planet. This columnar structure is only broken for some of the widest horseshoe streamlines, along which high altitude fluid descends rapidly into the planet’s Bondi sphere, performs one horseshoe turn, and exits the Bondi sphere radially in the midplane. A portion of this flow exits the horseshoe region altogether, which we refer to as the “transient” horseshoe flow. The flow continues as it rolls up into a pair of up-down symmetric horizontal vortex lines shed into the wake of the planet. This flow, unique to 3D, affects both planet accretion and migration. It prevents the planet from sustaining a hydrostatic atmosphere due to its intrusion into the Bondi sphere, and leads to a significant corotation torque on the planet, unanticipated by 2D analysis. In the reported simulation, starting with a {{Σ }}˜ {r}-3/2 radial surface density profile, this torque is positive and partially cancels with the negative differential Lindblad torque, resulting in a factor of three slower planet migration rate. Finally, we report 3D effects can be suppressed by a sufficiently large disk viscosity, leading to results similar to 2D. 15. On the physics of shear flows in 3D geometry Recent experiments have shown the importance of multi-scale (long-range) mechanisms in the transition to improved confinement regimes and the key role of electric fields to amplify them. Flows driven by turbulence might explain such experimental observation, which would imply to consider the importance of 3-D effects on the energy transfer between flows and turbulence. Comparative studies in different magnetic configurations (tokamaks vs stellarators), diagnostic development and large-scale simulation are needed to assess the importance of multi-scale physics in the development of sheared flows. (author) 16. Comparison of OpenFOAM and EllipSys3D for neutral atmospheric flow over complex terrain Cavar, Dalibor; Réthoré, Pierre-Elouan; Bechmann, Andreas; Sørensen, Niels N.; Martinez, Benjamin, Jr; Zahle, Frederik; Berg, Jacob; Kelly, Mark C. 2016-01-01 The flow solvers OpenFOAM and EllipSys3D are compared in the case of neutral atmospheric flow over terrain using the test cases of Askervein and Bolund hills. Both solvers are run using the steady-state Reynolds-averaged Navier–Stokes k– turbulence model. One of the main modeling differences between the two solvers is the wall-function approach. The Open-FOAM v.1.7.1 uses a Nikuradse’s sand roughness model, while EllipSys3D uses a model based on the atmosphericroughness length. It is found th... 17. Numerical Investigation of 3D Flow Around Two Tandem Cylinders Kalvig, Ragnhild Birgitte Hidle 2015-01-01 Circular cylinders in tandem arrangement are used in many marine applications like dual pipelines and dual risers. Turbulent flow in 3D around two tandem cylinders is simulated numerically using Large Eddy Simulation (LES) with a Smagorinsky subgrid scale model. The Reynolds number based on the cylinder diameter of 1 meter and free stream velocity of$U=1.31$m/s is 13100, which is in the subcritical flow regime. The center-to-center spacing between the cylinders is$S/D=5$. The software used... 18. A Computational Model for Suspended Large Rigid Bodies in 3D Unsteady Viscous Flows Xiao, Feng 1999-11-01 A 3D numerical model for computing large rigid objects suspended in fluid flow has been developed. Rather than calculating the surface pressure upon the solid body, we evaluate the net force and torque based on a volume force formulation. The total effective force is obtained by summing up the forces at the Eulerian grids occupied by the rigid body. The effects of the moving bodies are coupled to the fluid flow by imposing the velocity field of the bodies to the fluid. A Poisson equation is used to compute the pressure over the whole domain. The objects are identified by color functions and calculated by the PPM scheme and a tangent function transformation which scales the transition region of the computed interface to a compact thickness. The model is then implemented on a parallel computer of distributed memory and validated with Stokes and low Reynolds number flows. 19. Mesh Resolution Effect on 3D RANS Turbomachinery Flow Simulations Yershov, Sergiy 2016-01-01 The paper presents the study of the effect of a mesh refinement on numerical results of 3D RANS computations of turbomachinery flows. The CFD solver F, which based on the second-order accurate ENO scheme, is used in this study. The simplified multigrid algorithm and local time stepping permit decreasing computational time. The flow computations are performed for a number of turbine and compressor cascades and stages. In all flow cases, the successively refined meshes of H-type with an approximate orthogonalization near the solid walls were generated. The results obtained are compared in order to estimate their both mesh convergence and ability to resolve the transonic flow pattern. It is concluded that for thorough studying the fine phenomena of the 3D turbomachinery flows, it makes sense to use the computational meshes with the number of cells from several millions up to several hundred millions per a single turbomachinery blade channel, while for industrial computations, a mesh of about or less than one mil... 20. Optimal propulsive flapping in Stokes flows Swimming fish and flying insects use the flapping of fins and wings to generate thrust. In contrast, microscopic organisms typically deform their appendages in a wavelike fashion. Since a flapping motion with two degrees of freedom is able, in theory, to produce net forces from a time-periodic actuation at all Reynolds numbers, we compute in this paper the optimal flapping kinematics of a rigid spheroid in a Stokes flow. The hydrodynamics for the force generation and energetics of the flapping motion is solved exactly. We then compute analytically the gradient of a flapping efficiency in the space of all flapping gaits and employ it to derive numerically the optimal flapping kinematics as a function of the shape of the flapper and the amplitude of the motion. The kinematics of optimal flapping are observed to depend weakly on the flapper shape and are very similar to the figure-eight motion observed in the motion of insect wings. Our results suggest that flapping could be a exploited experimentally as a propulsion mechanism valid across the whole range of Reynolds numbers. (paper) 1. Optimal propulsive flapping in Stokes flows Was, Loic 2014-01-01 Swimming fish and flying insects use the flapping of fins and wings to generate thrust. In contrast, microscopic organisms typically deform their appendages in a wavelike fashion. Since a flapping motion with two degrees of freedom is able, in theory, to produce net forces from a time-periodic actuation at all Reynolds number, we compute in this paper the optimal flapping kinematics of a rigid spheroid in a Stokes flow. The hydrodynamics for the force generation and energetics of the flapping motion is solved exactly. We then compute analytically the gradient of a flapping efficiency in the space of all flapping gaits and employ it to derive numerically the optimal flapping kinematics as a function of the shape of the flapper and the amplitude of the motion. The kinematics of optimal flapping are observed to depend weakly on the flapper shape and are very similar to the figure-eight motion observed in the motion of insect wings. Our results suggest that flapping could be a exploited experimentally as a propul... 2. Optimal propulsive flapping in Stokes flows. Was, Loïc; Lauga, Eric 2014-03-01 Swimming fish and flying insects use the flapping of fins and wings to generate thrust. In contrast, microscopic organisms typically deform their appendages in a wavelike fashion. Since a flapping motion with two degrees of freedom is able, in theory, to produce net forces from a time-periodic actuation at all Reynolds numbers, we compute in this paper the optimal flapping kinematics of a rigid spheroid in a Stokes flow. The hydrodynamics for the force generation and energetics of the flapping motion is solved exactly. We then compute analytically the gradient of a flapping efficiency in the space of all flapping gaits and employ it to derive numerically the optimal flapping kinematics as a function of the shape of the flapper and the amplitude of the motion. The kinematics of optimal flapping are observed to depend weakly on the flapper shape and are very similar to the figure-eight motion observed in the motion of insect wings. Our results suggest that flapping could be a exploited experimentally as a propulsion mechanism valid across the whole range of Reynolds numbers. PMID:24343130 3. Challenges in Lagrangian transport and predictability in 3D flows Branicki, M.; Wiggins, S.; Kirwan, A. D.; Malek-Madani, R. 2011-12-01 The interplay between the geometrical theory of dynamical systems and the trajectory-based description of aperiodically time-dependent fluid flows has led to significant advances in understanding the role of chaotic transport in geophysical flows at scales dominated by advection. Lagrangian transport analysis utilizing either the time-dependent geometry of intersecting stable and unstable manifolds of the so-called Distinguished Hyperbolic Trajectories (DHT), or ridges of finite-time Lyapunov exponent fields (LCS), provide a much needed and complementary insight into ephemeral mechanisms responsible for the existence of leaky' transport barriers and 'leaky' mesoscale eddies. However, to date most oceanic applications have been confined to 2D analysis of near surface regions in 'perfect' flows not accounting for model or measurement error, and with the tacit assumption of negligible vertical velocities. I will systematically address issues concerning the regimes of applicability of two-dimensional analysis in 3D aperiodically time-dependent flows, as well as outstanding challenges in fully 3D Lagrangian transport analysis. Even for perfect horizontal velocities, little is known about the vertical extent of stable/unstable manifolds associated with DHTs and/or other special structures relevant to stratified 3D flows. In particular, their sensitivity to errors in the vertical velocities and data assimilation methods has been little studied. Rigorous results regarding the above issues will be illustrated by revealing and mathematically tractable toy models, as well as examples from a detailed study in an eddy-rich region from the Gulf of Mexico and the Mediterranean. New ways of quantifying the uncertainty in Lagrangian predictions will also be presented. 4. 3-D NUMERICAL SIMULATIONS OF FLOW LOSS IN HELICAL CHANNEL ZHAO Ling-zhi; PENG Yan; LU Fang; LI Jian; LI Ran; LIU Bao-lin 2012-01-01 The flow loss of a helical channel Magnetohydrodynamic (MHD) thruster without MHD effect was numerically studied with 3-D simulations,and a flow loss coefficient ξ was defined to quantify the flow loss and its influencing factors were studied.The results show that ξ decreases in a first-order exponential manner with the pitch of a helical wall and the Reynolds number,and it declines slowly when t / T ＞ 0.2 and Re ＞ 105,a flow guide makes the flow more smooth and uniform,especially in the flow guide and helical wall sub-regions and thus reduces the flow loss greatly,by about 30％ with the averaged value of ξ from 0.0385to 0.027,a rectifier weakens the helical flow and strengthens the axial one in the rectifier and outlet sub-regions,thus reduces the rotational kinetic pressure with the averaged value of ξ declining about 4％ from 0.0385 to 0.037,and ξ decreases with a rectifier's axial length when Re ＞ 105. 5. Laminar Validation Cases for the Incompressible Flow Model in ALE3D Ortega, J 2002-07-16 To benchmark the incompressible flow model in ALE3D, two test cases are conducted. The first case of two-dimensional flow over a flat plate is selected because it provides a straightforward example to determine whether or not ALE3D can grow a boundary layer by viscous diffusion. The benefit of the flat plate problem is that under certain conditions, the governing Navier-Stokes equations can be simplified and solved with numerical techniques, providing an independent result that can be compared with the solution from ALE3D. The second test case is that of two-dimensional, laminar flow about a circular cylinder. This test case is selected because it provides the complexity of an unsteady bluff-body wake in which vorticity is periodically shed from the surface of the cylinder. Since this canonical flow problem has been studied extensively both experimentally and computationally, the results from ALE3D can be compared with those presented in the literature. The results for the flat plate case demonstrate that the implicit time integration scheme results in an approximate twenty-four-fold reduction of the simulation time over that of the explicit time integration scheme. On the other hand, a problematic trend is observed in the explicit time integration scheme used in the flat plate case. The errors in both the velocity and shear stress are not reduced through grid refinement as one might expect. Another trend that raises concern with the flat plate problem is the sensitivity of the velocity and shear stress to the outlet zero natural boundary condition. In all of the flat plate simulations, at least one of the calculated quantities varies quite noticeably near the outlet of the flow domain. For the case of a circular cylinder in which an explicit time integration scheme is employed, both the drag coefficient and Strouhal number demonstrate trends of converging to a solution that compares favorably with results from other studies in the literature. 6. A numerical study of the transition to oscillatory flow in 3D lid-driven cubic cavity flows Chiu, Shang-Huan; He, Jiwen; Guo, Aixia; Glowinski, Roland 2016-01-01 In this article, three dimensional (3D) lid-driven cubic cavity flows have been studied numerically for various values of Reynolds number ($Re$). The numerical solution of the Navier-Stokes equations modeling incompressible viscous fluid flow in a cubic cavity is obtained via a methodology combining a first order accurate operator-splitting,$L^2$-projection Stokes solver, a wave-like equation treatment of the advection and finite element methods. The numerical results obtained for Re$=$400, 1000, and 3200 show a good agreement with available numerical and experimental results in literature. Simulation results predict that the critical Re$_{cr}$for the transition from steady flow to oscillatory (a Hopf bifurcation) is somewhere in [1870, 1875] for the mesh size$h=1/96$. Via studying the flow field distortion of fluid flow at Re before and after Re$_{cr}$, the occurrence of the first pair of Taylor-G\\"ortler-like vortices is connected to the flow field distortion at the transition from steady flow to oscilla... 7. Approximate controllability of Lagrangian trajectories of the 3D Navier–Stokes system by a finite-dimensional force In the Eulerian approach, the motion of an incompressible fluid is usually described by the velocity field which is given by the Navier–Stokes system. The velocity field generates a flow in the space of volume-preserving diffeomorphisms. The latter plays a central role in the Lagrangian description of a fluid, since it allows to identify the trajectories of the individual particles. In this paper, we show that the velocity field of the fluid and the corresponding flow of diffeomorphisms can be simultaneously approximately controlled using a finite-dimensional external force. The proof is based on some methods from the geometric control theory introduced by Agrachev and Sarychev. (paper) 8. A parallel block multi-level preconditioner for the 3D incompressible Navier-Stokes equations The development of robust and efficient algorithms for both steady-state simulations and fully implicit time integration of the Navier-Stokes equations is an active research topic. To be effective, the linear subproblems generated by these methods require solution techniques that exhibit robust and rapid convergence. In particular, they should be insensitive to parameters in the problem such as mesh size, time step, and Reynolds number. In this context, we explore a parallel preconditioner based on a block factorization of the coefficient matrix generated in an Oseen nonlinear iteration for the primitive variable formulation of the system. The key to this preconditioner is the approximation of a certain Schur complement operator by a technique first proposed by Kay, Loghin, and Wathen [SIAM J. Sci. Comput., 2002] and Silvester, Elman, Kay, and Wathen [J. Comput. Appl. Math. 128 (2001) 261]. The resulting operator entails subsidiary computations (solutions of pressure Poisson and convection-diffusion subproblems) that are similar to those required for decoupled solution methods; however, in this case these solutions are applied as preconditioners to the coupled Oseen system. One important aspect of this approach is that the convection-diffusion and Poisson subproblems are significantly easier to solve than the entire coupled system, and a solver can be built using tools developed for the subproblems. In this paper, we apply smoothed aggregation algebraic multigrid to both subproblems. Previous work has focused on demonstrating the optimality of these preconditioners with respect to mesh size on serial, two-dimensional, steady-state computations employing geometric multi-grid methods; we focus on extending these methods to large-scale, parallel, three-dimensional, transient and steady-state simulations employing algebraic multigrid (AMG) methods. Our results display nearly optimal convergence rates for steady-state solutions as well as for transient solutions over a 9. INS3D - NUMERICAL SOLUTION OF THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS IN THREE-DIMENSIONAL GENERALIZED CURVILINEAR COORDINATES (IBM VERSION) Kwak, D. 1994-01-01 INS3D computes steady-state solutions to the incompressible Navier-Stokes equations. The INS3D approach utilizes pseudo-compressibility combined with an approximate factorization scheme. This computational fluid dynamics (CFD) code has been verified on problems such as flow through a channel, flow over a backwardfacing step and flow over a circular cylinder. Three dimensional cases include flow over an ogive cylinder, flow through a rectangular duct, wind tunnel inlet flow, cylinder-wall juncture flow and flow through multiple posts mounted between two plates. INS3D uses a pseudo-compressibility approach in which a time derivative of pressure is added to the continuity equation, which together with the momentum equations form a set of four equations with pressure and velocity as the dependent variables. The equations' coordinates are transformed for general three dimensional applications. The equations are advanced in time by the implicit, non-iterative, approximately-factored, finite-difference scheme of Beam and Warming. The numerical stability of the scheme depends on the use of higher-order smoothing terms to damp out higher-frequency oscillations caused by second-order central differencing. The artificial compressibility introduces pressure (sound) waves of finite speed (whereas the speed of sound would be infinite in an incompressible fluid). As the solution converges, these pressure waves die out, causing the derivation of pressure with respect to time to approach zero. Thus, continuity is satisfied for the incompressible fluid in the steady state. Computational efficiency is achieved using a diagonal algorithm. A block tri-diagonal option is also available. When a steady-state solution is reached, the modified continuity equation will satisfy the divergence-free velocity field condition. INS3D is capable of handling several different types of boundaries encountered in numerical simulations, including solid-surface, inflow and outflow, and far 10. Chemical oxygen-iodine laser (COIL) beam quality predictions using 3D Navier-Stokes (MINT) and wave optics (OCELOT) codes Lampson, Alan I.; Plummer, David N.; Erkkila, John H.; Crowell, Peter G.; Helms, Charles A. 1998-05-01 This paper describes a series of analyses using the 3-d MINT Navier-Stokes and OCELOT wave optics codes to calculate beam quality in a COIL laser cavity. To make this analysis tractable, the problem was broken into two contributions to the medium quality; that associated with microscale disturbances primarily from the transverse iodine injectors, and that associated with the macroscale including boundary layers and shock-like effects. Results for both microscale and macroscale medium quality are presented for the baseline layer operating point in terms of single pass wavefront error. These results show that the microscale optical path difference effects are 1D in nature and of low spatial order. The COIL medium quality is shown to be dominated by macroscale effects; primarily pressure waves generated from flow/boundary layer interactions on the cavity shrouds. 11. An efficient finite volume TVD scheme for steady-state solutions of the 3-D compressible Euler/Navier-Stokes equations The formulation and validation of an efficient spatially second-order accurate finite volume total variation diminishing (TVD) scheme in general curvilinear coordinates for the 3-D compressible Navier-Stokes equations in strong conservation law form is presented. Approximate factorization and flux splitting are not utilized; therefore the associated extra, unwanted numerical dissipation is avoided, especially in complex viscous problems. A general line relaxation procedure is used to accelerate the convergence rate for geometrically complex steady-state problems since it is completely vectorizable. The implicit operator is cast in a delta-form using a TVD preconditioning matrix. The explicit part is evaluated using the same finite-volume TVD procedures developed by the authors in previous publications. This procedure preserves the high-resolution TVD characteristics in the steady state even at high CFL numbers. Numerical results are presented which demonstrate the efficiency, accuracy, and convergence characteristics for single and multi-body inviscid and turbulent flows. 21 refs 12. Application of the least-squares finite element method on the simulations of 3D incompressible free surface flows This paper presents the simulation of 3D free surface flows by the two-phase least-squares finite element method (LSFEM). It is believed that this is the first time the LSFEM be extended from a 2D model to a 3D one and applied to investigate the 3D free surface flow phenomena. The dynamic and kinematic boundary conditions of free surface are described in an Eulerian coordinate system. The governing 3D Navier-Stokes equations in association with the color function are solved by the element-by-element scheme. In this simulation, the volume of fluid (VOF) method and continuous stress force (CSF) models are applied for the determination of the interface between the two phases of liquid and gas. The free surface position at each time step is determined by the distribution of the color function. The formation of the 3D model is carefully examined; and the quantitative comparisons of the 3D numerical simulations with experimental measurements and previous 2D numerical results are verified in good agreement. For the partial dam-break flows, it is shown that the two-phase LSFEM can effectively simulate the 3D flows. The unsteady water surface profiles of dam-break flow moving over an obstacle and the liquid drop are also simulated in this study. A 3D two-phase LSFEM has been established and carefully justified by some benchmark free surface flows. The method will be useful for the actual application to the two-phase flows with two immiscible fluids, such as liquid-gas flow, and metallurgic flow. 13. Electroosmotic flow through a microparallel channel with 3D wall roughness. Chang, Long; Jian, Yongjun; Buren, Mandula; Sun, Yanjun 2016-02-01 In this paper, a perturbation method is introduced to study the EOF in a microparallel channel with 3D wall roughness. The corrugations of the two walls are periodic sinusoidal waves of small amplitude in two directions either in phase or half-period out of phase. Based on linearized Poisson-Boltzmann equation, Laplace equation, and the Navier-Stokes equations, the perturbation solutions of velocity, electrical potential, and volume flow rate are obtained. By using numerical computation, the influences of the wall corrugations on the mean velocity are analyzed. The variations of electrical potential, velocity profile, mean velocity, and their dependences on the wave number α and β of wall corrugations in two directions, the nondimensional electrokinetic width K, and the zeta potential ratio between the lower wall and the upper wall ς are analyzed graphically. PMID:26333852 14. Multilevel local refinement and multigrid methods for 3-D turbulent flow Liao, C.; Liu, C. [UCD, Denver, CO (United States); Sung, C.H.; Huang, T.T. [David Taylor Model Basin, Bethesda, MD (United States) 1996-12-31 A numerical approach based on multigrid, multilevel local refinement, and preconditioning methods for solving incompressible Reynolds-averaged Navier-Stokes equations is presented. 3-D turbulent flow around an underwater vehicle is computed. 3 multigrid levels and 2 local refinement grid levels are used. The global grid is 24 x 8 x 12. The first patch is 40 x 16 x 20 and the second patch is 72 x 32 x 36. 4th order artificial dissipation are used for numerical stability. The conservative artificial compressibility method are used for further improvement of convergence. To improve the accuracy of coarse/fine grid interface of local refinement, flux interpolation method for refined grid boundary is used. The numerical results are in good agreement with experimental data. The local refinement can improve the prediction accuracy significantly. The flux interpolation method for local refinement can keep conservation for a composite grid, therefore further modify the prediction accuracy. 15. An explicit Runge-Kutta method for 3D turbulent incompressible flows Sung, Chao-Ho; Lin, Cheng-Wen; Hung, C. M. 1988-01-01 A computer code has been developed to solve for the steady-state solution of the 3D incompressible Reynolds-averaged Navier-Stokes equations. The approach is based on the cell-center, central-difference, finite-volume formulation and an explicit one-step, multistage Runge-Kutta time-stepping scheme. The Baldwin-Lomax turbulence model is used. Techniques to accelerate the rate of convergence to a steady-state solution include the preconditioned method, the local time stepping, and the implicit residual smoothing. Improvements in computational efficiency have been demonstrated in several areas. This numerical procedure has been used to simulate the turbulent horseshoe vortex flow around an airfoil/flat-plate juncture. 16. Progress Toward Overset-Grid Moving Body Capability for USM3D Unstructured Flow Solver Pandyna, Mohagna J.; Frink, Neal T.; Noack, Ralph W. 2005-01-01 A static and dynamic Chimera overset-grid capability is added to an established NASA tetrahedral unstructured parallel Navier-Stokes flow solver, USM3D. Modifications to the solver primarily consist of a few strategic calls to the Donor interpolation Receptor Transaction library (DiRTlib) to facilitate communication of solution information between various grids. The assembly of multiple overlapping grids into a single-zone composite grid is performed by the Structured, Unstructured and Generalized Grid AssembleR (SUGGAR) code. Several test cases are presented to verify the implementation, assess overset-grid solution accuracy and convergence relative to single-grid solutions, and demonstrate the prescribed relative grid motion capability. 17. Energy flow in passive and active 3D cochlear model Wang, Yanli; Steele, Charles [Department of Mechanical Engineering, Stanford University, Stanford, California (United States); Puria, Sunil [Department of Mechanical Engineering, Stanford University, Stanford, California (United States); Department of Otolaryngology, Head and Neck Surgery, Stanford University, Stanford, California (United States) 2015-12-31 Energy flow in the cochlea is an important characteristic of the cochlear traveling wave, and many investigators, such as von Békésy and Lighthill, have discussed this phenomenon. Particularly after the discovery of the motility of the outer hair cells (OHCs), the nature of the power gain of the cochlea has been a fundamental research question. In the present work, direct three-dimensional (3D) calculations of the power on cross sections of the cochlea and on the basilar membrane are performed based on a box model of the mouse cochlea. The distributions of the fluid pressure and fluid velocity in the scala vestibuli are presented. The power output from the OHCs and the power loss due to fluid viscous damping are calculated along the length of the cochlea. This work provides a basis for theoretical calculations of the power gain of the OHCs from mechanical considerations. 18. Energy flow in passive and active 3D cochlear model Wang, Yanli; Puria, Sunil; Steele, Charles 2015-12-01 Energy flow in the cochlea is an important characteristic of the cochlear traveling wave, and many investigators, such as von Békésy and Lighthill, have discussed this phenomenon. Particularly after the discovery of the motility of the outer hair cells (OHCs), the nature of the power gain of the cochlea has been a fundamental research question. In the present work, direct three-dimensional (3D) calculations of the power on cross sections of the cochlea and on the basilar membrane are performed based on a box model of the mouse cochlea. The distributions of the fluid pressure and fluid velocity in the scala vestibuli are presented. The power output from the OHCs and the power loss due to fluid viscous damping are calculated along the length of the cochlea. This work provides a basis for theoretical calculations of the power gain of the OHCs from mechanical considerations. 19. Energy flow in passive and active 3D cochlear model Energy flow in the cochlea is an important characteristic of the cochlear traveling wave, and many investigators, such as von Békésy and Lighthill, have discussed this phenomenon. Particularly after the discovery of the motility of the outer hair cells (OHCs), the nature of the power gain of the cochlea has been a fundamental research question. In the present work, direct three-dimensional (3D) calculations of the power on cross sections of the cochlea and on the basilar membrane are performed based on a box model of the mouse cochlea. The distributions of the fluid pressure and fluid velocity in the scala vestibuli are presented. The power output from the OHCs and the power loss due to fluid viscous damping are calculated along the length of the cochlea. This work provides a basis for theoretical calculations of the power gain of the OHCs from mechanical considerations 20. Reynolds-stress model prediction of 3-D duct flows Gerolymos, G A 2014-01-01 The paper examines the impact of different modelling choices in second-moment closures by assessing model performance in predicting 3-D duct flows. The test-cases (developing flow in a square duct [Gessner F.B., Emery A.F.: {\\em ASME J. Fluids Eng.} {\\bf 103} (1981) 445--455], circular-to-rectangular transition-duct [Davis D.O., Gessner F.B.: {\\em AIAA J.} {\\bf 30} (1992) 367--375], and \\tsn{S}-duct with large separation [Wellborn S.R., Reichert B.A., Okiishi T.H.: {\\em J. Prop. Power} {\\bf 10} (1994) 668--675]) include progressively more complex strains. Comparison of experimental data with selected 7-equation models (6 Reynolds-stress-transport and 1 scale-determining equations), which differ in the closure of the velocity/pressure-gradient tensor$\\Pi_{ij}$, suggests that rapid redistribution controls separation and secondary-flow prediction, whereas, inclusion of pressure-diffusion modelling improves reattachment and relaxation behaviour. 1. Stokes flow through a tube with bumpy wall Wang, C. Y. 2006-07-01 The Stokes flow through a tube with a bumpy wall is solved through a perturbation in the small amplitude of the three-dimensional bumps. The solution can be expressed in terms of modified Bessel functions. For given area or volume of a bump, there exists an optimum circumferential wave number and an optimum aspect ratio for which the flow rate is maximized. 2. Navier-Stokes Flow in Cylindrical Elastic Tubes Taha Sochi 2015-01-01 Analytical expressions correlating the volumetric flow rate to the inlet and outlet pressures are derived for the time-independent flow of Newtonian fluids in cylindrically-shaped elastic tubes using a one-dimensional Navier-Stokes flow model with two pressure-area constitutive relations. These expressions for elastic tubes are the equivalent of Poiseuille and Poiseuille-type expressions for rigid tubes which were previously derived for the flow of Newtonian and non-Newtonian fluids under var... 3. Flow of Navier-Stokes Fluids in Cylindrical Elastic Tubes Sochi, Taha 2013-01-01 Analytical expressions correlating the volumetric flow rate to the inlet and outlet pressures are derived for the time-independent flow of Newtonian fluids in cylindrically-shaped elastic tubes using a one-dimensional Navier-Stokes flow model with two pressure-area constitutive relations. These expressions for elastic tubes are the equivalent of Poiseuille and Poiseuille-type expressions for rigid tubes which were previously derived for the flow of Newtonian and non-Newtonian fluids under var... 4. Large-eddy simulation of 3D turbulent flow past a complete marine hydrokinetic turbine Kang, S.; Sotiropoulos, F. 2011-12-01 A high-resolution computational framework was recently developed by Kang et al (Adv. Water Resour., submitted) for simulating three-dimensional (3D), turbulent flow past real-life, complete marine hydrokinetic (MHK) turbine configurations. In this model the complex turbine geometry is resolved by employing the curvilinear immersed boundary (CURVIB) method, which solves the 3D unsteady incompressible Navier-Stokes equations in generalized curvilinear domains with embedded arbitrarily complex, moving and/or stationary immersed boundaries (Ge and Sotiropoulos, 2007). Turbulence is simulated using the large-eddy simulation (LES) approach adapted in the context of the CURVIB method, with a wall model based on solving the simplified boundary layer equations used to reconstruct boundary conditions near all solid surfaces (Kang et al., 2011). The model can resolve the flow patterns generated by the rotor and all stationary components of the turbine as well as the interactions of the flow structures with the channel bed. We apply this model to carry out LES of the flow past the model-size hydrokinetic turbine deployed in the St. Anthony Falls Laboratory main channel. The mean velocities and second-order turbulence statistics measured in the downstream wake using acoustic Doppler velocimetry (ADV) are compared with the LES results. The comparisons show that the computed mean velocities and turbulent stresses are in good agreement with the measurements. The high-resolution LES data are used to explore physically important downstream flow characteristics such as the time-averaged wake structure, recovery of cross-sectionally averaged power potential, near-bed scour potential, etc. This work is supported by Verdant Power. 5. Slip flow through a converging microchannel: experiments and 3D simulations An experimental and 3D numerical study of gaseous slip flow through a converging microchannel is presented in this paper. The measurements reported are with nitrogen gas flowing through the microchannel with convergence angles (4°, 8° and 12°), hydraulic diameters (118, 147 and 177 µm) and lengths (10, 20 and 30 mm). The measurements cover the entire slip flow regime and a part of the continuum and transition regimes (the Knudsen number is between 0.0004 and 0.14); the flow is laminar (the Reynolds number is between 0.5 and 1015). The static pressure drop is measured for various mass flow rates. The overall pressure drop increases with a decrease in the convergence angle and has a relatively large contribution of the viscous component. The numerical solutions of the Navier–Stokes equations with Maxwell’s slip boundary condition explore two different flow behaviors: uniform centerline velocity with linear pressure variation in the initial and the middle part of the microchannel and flow acceleration with nonlinear pressure variation in the last part of the microchannel. The centerline velocity and the wall shear stress increase with a decrease in the convergence angle. The concept of a characteristic length scale for a converging microchannel is also explored. The location of the characteristic length is a function of the Knudsen number and approaches the microchannel outlet with rarefaction. These results on gaseous slip flow through converging microchannels are observed to be considerably different than continuum flow. (paper) 6. A free software for pore-scale modelling: solving Stokes equation for velocity fields and permeability values in 3D pore geometries Gerke, Kirill 2015-04-01 In this contribution we introduce a novel free software which solves the Stokes equation to obtain velocity fields for low Reynolds-number flows within externally generated 3D pore geometries. Provided with velocity fields, one can calculate permeability for known pressure gradient boundary conditions via Darcy\\'s equation. Finite-difference schemes of 2nd and 4th order of accuracy are used together with an artificial compressibility method to iteratively converge to a steady-state solution of Stokes\\' equation. This numerical approach is much faster and less computationally demanding than the majority of open-source or commercial softwares employing other algorithms (finite elements/volumes, lattice Boltzmann, etc.) The software consists of two parts: 1) a pre and post-processing graphical interface, and 2) a solver. The latter is efficiently parallelized to use any number of available cores (the speedup on 16 threads was up to 10-12 depending on hardware). Due to parallelization and memory optimization our software can be used to obtain solutions for 300x300x300 voxels geometries on modern desktop PCs. The software was successfully verified by testing it against lattice Boltzmann simulations and analytical solutions. To illustrate the software\\'s applicability for numerous problems in Earth Sciences, a number of case studies have been developed: 1) identifying the representative elementary volume for permeability determination within a sandstone sample, 2) derivation of permeability/hydraulic conductivity values for rock and soil samples and comparing those with experimentally obtained values, 3) revealing the influence of the amount of fine-textured material such as clay on filtration properties of sandy soil. This work was partially supported by RSF grant 14-17-00658 (pore-scale modelling) and RFBR grants 13-04-00409-a and 13-05-01176-a. 7. A free software for pore-scale modelling: solving Stokes equation for velocity fields and permeability values in 3D pore geometries Gerke, Kirill; Vasilyev, Roman; Khirevich, Siarhei; Karsanina, Marina; Collins, Daniel; Korost, Dmitry; Mallants, Dirk 2015-04-01 In this contribution we introduce a novel free software which solves the Stokes equation to obtain velocity fields for low Reynolds-number flows within externally generated 3D pore geometries. Provided with velocity fields, one can calculate permeability for known pressure gradient boundary conditions via Darcy's equation. Finite-difference schemes of 2nd and 4th order of accuracy are used together with an artificial compressibility method to iteratively converge to a steady-state solution of Stokes' equation. This numerical approach is much faster and less computationally demanding than the majority of open-source or commercial softwares employing other algorithms (finite elements/volumes, lattice Boltzmann, etc.) The software consists of two parts: 1) a pre and post-processing graphical interface, and 2) a solver. The latter is efficiently parallelized to use any number of available cores (the speedup on 16 threads was up to 10-12 depending on hardware). Due to parallelization and memory optimization our software can be used to obtain solutions for 300x300x300 voxels geometries on modern desktop PCs. The software was successfully verified by testing it against lattice Boltzmann simulations and analytical solutions. To illustrate the software's applicability for numerous problems in Earth Sciences, a number of case studies have been developed: 1) identifying the representative elementary volume for permeability determination within a sandstone sample, 2) derivation of permeability/hydraulic conductivity values for rock and soil samples and comparing those with experimentally obtained values, 3) revealing the influence of the amount of fine-textured material such as clay on filtration properties of sandy soil. This work was partially supported by RSF grant 14-17-00658 (pore-scale modelling) and RFBR grants 13-04-00409-a and 13-05-01176-a. 8. On 3D Lagrangian Navier-Stokes$\\alpha$model with a Class of Vorticity-Slip Boundary conditions Xiao, Yuelong; Xin, Zhouping 2012-01-01 This paper concerns the 3-dimensional Lagrangian Navier-Stokes$\\alpha$model and the limiting Navier-Stokes system on smooth bounded domains with a class of vorticity-slip boundary conditions and the Navier-slip boundary conditions. It establishes the spectrum properties and regularity estimates of the associated Stokes operators, the local well-posedness of the strong solution and global existence of weak solutions for initial boundary value problems for such systems. Furthermore, the vanis... 9. On the stability threshold for the 3D Couette flow in Sobolev regularity Bedrossian, Jacob; Masmoudi, Nader 2015-01-01 We study Sobolev regularity disturbances to the periodic, plane Couette flow in the 3D incompressible Navier-Stokes equations at high Reynolds number$\\textbf{Re}$. Our goal is to estimate how the stability threshold scales in$\\textbf{Re}$: the largest the initial perturbation can be while still resulting in a solution that does not transition away from Couette flow. In this work we prove that initial data which satisfies$\\| u_{in} \\|_{H^\\sigma} \\leq \\delta\\textbf{Re}^{-3/2}$for any$\\sigma > 9/2$and some$\\delta = \\delta(\\sigma) > 0$depending only on$\\sigma$, is global in time, remains within$O(\\textbf{Re}^{-1/2})$of the Couette flow in$L^2$for all time, and converges to the class of "2.5 dimensional" streamwise-independent solutions referred to as streaks for times$t \\gtrsim \\textbf{Re}^{1/3}$. Numerical experiments performed by Reddy et. al. with "rough" initial data estimated a threshold of$\\sim \\textbf{Re}^{-31/20}$, which shows very close agreement with our estimate. 10. Drop deformation in stokes flow through converging channels Wrobel, LC; Soares, D.; Das Bhaumik, CL 2009-01-01 This work presents an application of a direct BEM formulation for drop deformation and interaction in Stokes flows through converging channels. Parametric studies are conducted to investigate the effect, on drop deformation, of the channel’s convergence ratio, the drop-fluid viscosity ratio, the interfacial tension and the initial relative position of the drops. 11. Discretizations in isogeometric analysis of Navier-Stokes flow Nielsen, Peter Nørtoft; Gersborg, Allan Roulund; Gravesen, Jens; 2011-01-01 This paper deals with isogeometric analysis of 2-dimensional, steady state, incompressible Navier-Stokes flow subjected to Dirichlet boundary conditions. We present a detailed description of the numerical method used to solve the boundary value problem. Numerical inf-sup stability tests for the... 12. Ewald summation for the rotlet singularity of Stokes flow Klinteberg, Ludvig af 2016-01-01 Ewald summation is an efficient method for computing the periodic sums that appear when considering the Green's functions of Stokes flow together with periodic boundary conditions. We show how Ewald summation, and accompanying truncation error estimates, can be easily derived for the rotlet, by considering it as a superposition of electrostatic force calculations. 13. Shear-free boundary in Stokes flow Amaranath, T.; S. D. Nigam; Palaniappan, D. 1996-01-01 A theorem of Harper for axially symmetric flow past a sphere which is a stream surface, and is also shear-free, is extended to flow past a doubly-body Ã°ÂÂ”Â… consisting of two unequal, orthogonally intersecting spheres. Several illustrative examples are given. An analogue of Faxen's law for a double-body is observed. 14. Numerical solution of compressible subsonic flows in 3D channel Pořízková, P.; Kozel, K.; Horáček, Jaromír Prague : Institute of Thermomechanics ASCR, v. v. i., 2013 - (Zolotarev, I.), s. 37-42 ISBN 978-80-87012-49-9. [Interaction and Feedbacks 2013 /20./. Prague (CZ), 26.11.2013-27.11.2013] R&D Projects: GA ČR(CZ) GAP101/11/0207 Institutional support: RVO:61388998 Keywords : finite volume method * aeroacoustics * Navier-Stokes equations Subject RIV: BI - Acoustics 15. Numerical 3D Model of Viscous Turbulent Flow in One Stage Gas Turbine and Its Experimental Validation Yu.V. STARODUBTSEV; I.G. GOGOLEV; V.G. SOLODOV 2005-01-01 @@ The paper describes 3D numerical Reynolds Averaged Navier-Stokes (RANS) model and approximate sector approach for viscous turbulent flow through flow path of one stage axial supercharge gas turbine of marine diesel engine. Computational data are tested by comparison with experimental data. The back step flow path opening and tip clearance jet are taken into account.This approach could be applied for variety of turbine theory and design tasks: for offer optimal design in order to minimize kinetic energy stage losses; for solution of partial supply problem; for analysis of flow pattern in near extraction stages; for estimation of rotational frequency variable forces on blades; for sector vane adjustment (with thin leading edges mainly), for direct flow modeling in the turbine etc. The development of this work could be seen in the direction of unsteady stage model application. 16. Numerical Calculations of 3-D High-Lift Flows and Comparison with Experiment Compton, William B, III 2015-01-01 Solutions were obtained with the Navier-Stokes CFD code TLNS3D to predict the flow about the NASA Trapezoidal Wing, a high-lift wing composed of three elements: the main-wing element, a deployed leading-edge slat, and a deployed trailing-edge flap. Turbulence was modeled by the Spalart-Allmaras one-equation turbulence model. One case with massive separation was repeated using Menter's two-equation SST (Menter's Shear Stress Transport) k-omega turbulence model in an attempt to improve the agreement with experiment. The investigation was conducted at a free stream Mach number of 0.2, and at angles of attack ranging from 10.004 degrees to 34.858 degrees. The Reynolds number based on the mean aerodynamic chord of the wing was 4.3 x 10 (sup 6). Compared to experiment, the numerical procedure predicted the surface pressures very well at angles of attack in the linear range of the lift. However, computed maximum lift was 5% low. Drag was mainly under predicted. The procedure correctly predicted several well-known trends and features of high-lift flows, such as off-body separation. The two turbulence models yielded significantly different solutions for the repeated case. 17. Numerical simulation of 3D flows in atmospheric boundary layer Šimonek, Jiří; Kozel, K.; Jaňour, Zbyněk Praha : Ústav termomechaniky AV ČR, v. v. i, 2012 - (Šimurda, D.; Kozel, K.), s. 93-96 ISBN 978-80-87012-40-6. [Topical Problems of Fluid Mechanics 2012 . Praha (CZ), 15.02. 2012 -17.02. 2012 ] R&D Projects: GA ČR GAP101/12/1271 Institutional research plan: CEZ:AV0Z20760514 Keywords : numerical solution * atmospheric boundary layer * Navier-Stokes equation s Subject RIV: DG - Athmosphere Sciences, Meteorology 18. Coupling nonlinear Stokes and Darcy flow using mortar finite elements Ervin, Vincent J. 2011-11-01 We study a system composed of a nonlinear Stokes flow in one subdomain coupled with a nonlinear porous medium flow in another subdomain. Special attention is paid to the mathematical consequence of the shear-dependent fluid viscosity for the Stokes flow and the velocity-dependent effective viscosity for the Darcy flow. Motivated by the physical setting, we consider the case where only flow rates are specified on the inflow and outflow boundaries in both subdomains. We recast the coupled Stokes-Darcy system as a reduced matching problem on the interface using a mortar space approach. We prove a number of properties of the nonlinear interface operator associated with the reduced problem, which directly yield the existence, uniqueness and regularity of a variational solution to the system. We further propose and analyze a numerical algorithm based on mortar finite elements for the interface problem and conforming finite elements for the subdomain problems. Optimal a priori error estimates are established for the interface and subdomain problems, and a number of compatibility conditions for the finite element spaces used are discussed. Numerical simulations are presented to illustrate the algorithm and to compare two treatments of the defective boundary conditions. © 2010 Published by Elsevier B.V. on behalf of IMACS. 19. The Numerical Investigation on Vortex Flow Behavior Using FLOW-3D Jafar Chapokpour 2012-01-01 Full Text Available In this paper a numerical investigation is given for a Rankine type vortex flow inside the cylindrical vortex chamber using FLOW-3D. The FLOW-3D is a general purpose computational fluid dynamics (CFD package. The fluid motion is described with non-linear, transient, second-order differential equations. Additionally the free surface also exists in many simulations carried out with FLOW-3D because flow parameters and materials properties, such as density, velocity and pressure experience a discontinuity at it. After analysis of the vortex by mentioned details, the finding of time-averaged velocity components, turbulent components, turbulence dissipation, in the 2D briefed sections of chamber were depicted. It was found that there are different flow patterns like clockwise/anticlockwise vortices and some sink points combined with each other in different time intervals, decaying and generating along the time. Also the turbulence intensity and dissipations around the boundary conditions of chamber like central flushing discharge are higher than the flow body. It was also found that this CFD package was not able to simulate thoroughly the central air core of chamber after filling of chamber. This analysis is validated by comparison with previous experimental data that was measured in vortex settling basin. 20. Effects of Presence, Copresence, and Flow on Learning Outcomes in 3D Learning Spaces Hassell, Martin D.; Goyal, Sandeep; Limayem, Moez; Boughzala, Imed 2012-01-01 The level of satisfaction and effectiveness of 3D virtual learning environments were examined. Additionally, 3D virtual learning environments were compared with face-to-face learning environments. Students that experienced higher levels of flow and presence also experienced more satisfaction but not necessarily more effectiveness with 3D virtual… 1. Application of a recent solution of the Navier–Stokes equation to flow on the surface of a globe Highlights: • An exact solution of the 3D Navier–Stokes equation is simplified to 2D on the surface of a globe. • An initial velocity along the equator produces two symmetric flows towards the poles. • The velocity flows are arrived at without the use of numerical iterations speeding up the simulation. - Abstract: We reduce an exact solution of the 3D Navier–Stokes equation (Muriel, 2011) [1] to two dimensions to model flow on the surface of a globe, producing the following results: (a) an analytic discovery of the time evolution of two streams, one each above and below the equator, (b) analytic speed-up of modeling bypassing iterative numerical simulation 2. Partial Averaged Navier-Stokes approach for cavitating flow Zhang, L.; Zhang, Y. N. 2015-01-01 Partial Averaged Navier Stokes (PANS) is a numerical approach developed for studying practical engineering problems (e.g. cavitating flow inside hydroturbines) with a resonance cost and accuracy. One of the advantages of PANS is that it is suitable for any filter width, leading a bridging method from traditional Reynolds Averaged Navier-Stokes (RANS) to direct numerical simulations by choosing appropriate parameters. Comparing with RANS, the PANS model will inherit many physical nature from parent RANS but further resolve more scales of motion in great details, leading to PANS superior to RANS. As an important step for PANS approach, one need to identify appropriate physical filter-width control parameters e.g. ratios of unresolved-to-total kinetic energy and dissipation. In present paper, recent studies of cavitating flow based on PANS approach are introduced with a focus on the influences of filter-width control parameters on the simulation results. 3. Application of the parallel BDDC preconditioner to the Stokes flow Šístek, Jakub; Sousedík, Bedřich; Burda, P.; Mandel, J.; Novotný, J. 2011-01-01 Roč. 46, č. 1 (2011), s. 429-435. ISSN 0045-7930 R&D Projects: GA AV ČR IAA100760702; GA ČR GA106/08/0403 Institutional research plan: CEZ:AV0Z10190503; CEZ:AV0Z20760514 Keywords : BDDC * domain decomprosition * iterative substructuring * Stokes flow Subject RIV: BA - General Mathematics Impact factor: 1.810, year: 2011 http://www.sciencedirect.com/science/article/pii/S0045793011000053 4. 3D pressure imaging of an aircraft propeller blade-tip flow by phase-locked stereoscopic PIV Ragni, D.; Oudheusden, B.W. van; Scarano, F. [Delft University of Technology, Faculty of Aerospace Engineering, Delft (Netherlands) 2012-02-15 The flow field at the tip region of a scaled DHC Beaver aircraft propeller, running at transonic speed, has been investigated by means of a multi-plane stereoscopic particle image velocimetry setup. Velocity fields, phase-locked with the blade rotational motion, are acquired across several planes perpendicular to the blade axis and merged to form a 3D measurement volume. Transonic conditions have been reached at the tip region, with a revolution frequency of 19,800 rpm and a relative free-stream Mach number of 0.73 at the tip. The pressure field and the surface pressure distribution are inferred from the 3D velocity data through integration of the momentum Navier-Stokes equation in differential form, allowing for the simultaneous flow visualization and the aerodynamic loads computation, with respect to a reference frame moving with the blade. The momentum and pressure data are further integrated by means of a contour-approach to yield the aerodynamic sectional force components as well as the blade torsional moment. A steady Reynolds averaged Navier-Stokes numerical simulation of the entire propeller model has been used for comparison to the measurement data. (orig.) 5. Stereo Scene Flow for 3D Motion Analysis Wedel, Andreas 2011-01-01 This book presents methods for estimating optical flow and scene flow motion with high accuracy, focusing on the practical application of these methods in camera-based driver assistance systems. Clearly and logically structured, the book builds from basic themes to more advanced concepts, culminating in the development of a novel, accurate and robust optic flow method. Features: reviews the major advances in motion estimation and motion analysis, and the latest progress of dense optical flow algorithms; investigates the use of residual images for optical flow; examines methods for deriving mot 6. Numerical method for calculation of 3D viscous turbomachine flow taking into account stator/rotor unsteady interaction Rusanov, A.V.; Yershov, S.V. [Institute of Mechanical Engineering Problems of National Academy of Sciences of Ukraine Kharkov (Ukraine) 1997-12-31 The numerical method is suggested for the calculation of the 3D periodically unsteady viscous cascade flow evoked by the aerodynamics interaction of blade rows. Such flow is described by the thin-layer Reynolds-averaged unsteady Navier-Stokes equations. The turbulent effects are simulated with the modified Baldwin-Lomax turbulence model. The problem statement allows to consider an unsteady flow through either a single turbo-machine stage or a multi stage turbomachine. The sliding mesh techniques and the time-space non-oscillatory square interpolation are used in axial spacings to calculate the flow in a computational domain that contains the reciprocally moving elements. The gasdynamical equations are integrated numerically with the implicit quasi-monotonous Godunovs type ENO scheme of the second or third order of accuracy. The suggested numerical method is incorporated in the FlowER code developed by authors for calculations of the 3D viscous compressible flows through multi stage turbomachines. The numerical results are presented for unsteady turbine stage throughflows. The method suggested is shown to simulate qualitatively properly the main unsteady cascade effects in particular the periodically blade loadings, the propagation of stator wakes through rotor blade passage and the unsteady temperature flowfields for stages with cooled stator blades. (author) 21 refs. 7. Stokes Flow with Slip and Kuwabara Boundary Conditions Sunil Datta; Satya Deo 2002-08-01 The forces experienced by randomly and homogeneously distributed parallel circular cylinder or spheres in uniform viscous flow are investigated with slip boundary condition under Stokes approximation using particle-in-cell model technique and the result compared with the no-slip case. The corresponding problem of streaming flow past spheroidal particles departing but little in shape from a sphere is also investigated. The explicit expression for the stream function is obtained to the first order in the small parameter characterizing the deformation. As a particular case of this we considered an oblate spheroid and evaluate the drag on it. 8. On Approximation and Computation of Navier-Stokes Flow VARNHORN Werner; ZANGER Florian 2013-01-01 We present an approximation method for the non-stationary nonlinear incompressible Navier-Stokes equations in a cylindrical domain (0,T)×G,where G （C） IR3is a smoothly bounded domain.Our method is applicable to general three-dimensional flow without any symmetry restrictions and relies on existence,uniqueness and representation results from mathematical fluid dynamics.After a suitable time delay in the nonlinear convective term v·▽v we obtain globally (in time) uniquely solvable equations,which-by using semi-implicit time differences-can be transformed into a finite number of Stokes-type boundary value problems.For the latter a boundary element method based on a corresponding hydrodynamical potential theory is carried out.The method is reported in short outlines ranging from approximation theory up to numerical test calculations. 9. Analytical Solution For Navier-Stokes Equations In Two Dimensions For Laminar Incompressible Flow Otarod, Saeed.; Otarod, Davar 2006-01-01 The Navier-Stokes equations describing laminar flow of an incompressible fluid will be solved. Different group of general solutions for Navier stokes equations governing Laminar incompressible fluids will be derived. 10. Parallel Simulation of 3-D Turbulent Flow Through Hydraulic Machinery 徐宇; 吴玉林 2003-01-01 Parallel calculational methods were used to analyze incompressible turbulent flow through hydraulic machinery. Two parallel methods were used to simulate the complex flow field. The space decomposition method divides the computational domain into several sub-ranges. Parallel discrete event simulation divides the whole task into several parts according to their functions. The simulation results were compared with the serial simulation results and particle image velocimetry (PIV) experimental results. The results give the distribution and configuration of the complex vortices and illustrate the effectiveness of the parallel algorithms for numerical simulation of turbulent flows. 11. A Navier-Stokes Approximation of the 3D Euler Equation with the Zero Flux on the Boundary Bellout, H.; Neustupa, Jiří 2008-01-01 Roč. 10, č. 4 (2008), s. 531-553. ISSN 1422-6928 R&D Projects: GA ČR GA201/05/0005 Institutional research plan: CEZ:AV0Z10190503 Keywords : Euler equation s * Navier - Stokes equation s Subject RIV: BA - General Mathematics Impact factor: 0.940, year: 2008 12. Implementation for blow up of tornado-type solutions for complex version of 3D Navier-Stokes system Arnold, M D 2008-01-01 We consider Cauchy problem for Fourier transformation of 3-dimensional Navier-Stokes system with zero external force. Using initial data purposed by Dong Li and Ya.G.Sinai we implement self-similar regime producing fast growing behavior of the energy of solution while time tends to critical value. 13. Numerical experiments with 2D and 3D transonic flows Trefilík, J.; Huml, J.; Kozel, Karel; Příhoda, Jaromír Fukuoka: Kyushu University, 2012 - (Beneš, M.; Kimura, M.; Yazaki, S.), s. 1-14. (36). ISSN 1881-4042. [The Czech–Japanese Seminar in Applied Mathematics 2010. Praha (CZ), 30.08.2010-04.09.2010] R&D Projects: GA ČR(CZ) GAP101/10/1329 Institutional research plan: CEZ:AV0Z20760514 Keywords : inviscid flow * viscous flow * turbulence modelling * finite volume method Subject RIV: BK - Fluid Dynamics 14. New 3-D flow interpolation method on moving ADCP data Tsubaki, R.; Kawahara, Y.; Muto, Y.; Fujita, I. 2012-05-01 A simple but accurate interpolation procedure for obtaining the three-dimensional distribution of three-component velocity data, from moving acoustic doppler current profiler (ADCP) observation data, is proposed. For understanding actual flow structure within a river with complex bathymetry, the three-dimensional mean velocity field provides a basic picture of the flow. For obtaining the three-dimensional distribution of three-component velocity data, in this work, anisotropic gridding was introduced in order to remove the random component of measured velocity data caused by the turbulence of the flow and measurement error. A continuity correction based on the pressure equation was used to reduce both random and systematic errors. The accuracy of the developed method was evaluated using three-dimensional flow simulation data from a detached-eddy simulation (DES). By using the procedure developed, the complex flow structure surrounding the spur dikes section in the Uji River was successfully visualized and explored. The proposed method shows superiorities in both accuracy and consistency for the interpolated velocity field, as compared to the kriging and inverse-distance weighted (IDW) methods. 15. Laser direct writing 3D structures for microfluidic channels: flow meter and mixer Lin, Chih-Lang; Liu, Yi-Jui; Lin, Zheng-Da; Wu, Bo-Long; Lee, Yi-Hsiung; Shin, Chow-Shing; Baldeck, Patrice L. 2015-03-01 The 3D laser direct-writing technology is aimed at the modeling of arbitrary three-dimensional (3D) complex microstructures by scanning a laser-focusing point along predetermined trajectories. Through the perspective technique, the details of designed 3D structures can be properly fabricated in a microchannel. This study introduces a direct reading flow meter and a 3D passive mixer fabricated by laser direct writing for microfluidic applications. The flow meter consists of two rod-shaped springs, a pillar, an anchor, and a wedge-shaped indicator, installed inside a microfluidic channel. The indicator is deflected by the flowing fluid while restrained by the spring to establish an equilibrium indication according to the flow rate. The measurement is readily carried out by optical microscopy observation. The 3D passive Archimedes-screw-shaped mixer is designed to disturb the laminar flow 3D direction for enhancing the mixing efficiency. The simulation results indicate that the screw provides 3D disturbance of streamlines in the microchannel. The mixing demonstration for fluids flowing in the micrchannel approximately agrees with the simulation result. Thanks to the advantage of the laser direct writing technology, this study performs the ingenious applications of 3D structures for microchannels. 16. CFD study of flow accelerated corrosion in 3D elbows Highlights: • Calculated the MTC effects under the FAC operating conditions of Indian power plant. • The validation of MTC results with the experimental data of NPP has been carried out. • The vortical flow behavior is captured in terms of vortex corelines. • The close proximity effect is analyzed. • These results will help to developing the targeted inspection plans of failures. - Abstract: The objective of this paper is to examine the last step of the mechanistic model of wall thinning degradation mechanism i.e., convective mass transfer in feeder pipes under different environments of nuclear power plants (NPP). In the present study, the flow and mass transfer of demineralised water in carbon steel pipes such as single and double elbow was simulated under Indian NPP feeder water system conditions. The numerical simulations of mass transfer results are compared with the wall thickness measurement data of feeder pipes of Indian and CANDU NPP. The eddy structures and their interactions with the wall and the formation of vortex corelines were examined to analyze the flow changes in double elbow pipe. These vortex corelines appeared at the downstream of the bends. The intensity of these vortex corelines has been calculated by plotting the helicity along the vortex coreline. Due to the formation of vortex corelines and resulting flow changes, the mass transfer coefficient (MTC) varies circumferentially. MTC is the most important parameter to predict the highly susceptible FAC locations. For the MTC analysis, the Chilton–Colburn analogy in terms of wall shear stress was used. From this analogy, the effecting behavior of flow and geometrical parameters such as Reynolds number (Re) and the close proximity of bends, respectively, on MTC are studied. The locations of maximum MTC are calculated for both the single elbow of 73° and 90° and the double elbow of 90° and are shown in terms of contours. The flow singularity exists at the elbows; specifically in the 17. An Oseen Two-Level Stabilized Mixed Finite-Element Method for the 2D/3D Stationary Navier-Stokes Equations Peihua Qin; Dongxiu Xie; Xin Zhao; Aiwen Wang 2012-01-01 We investigate an Oseen two-level stabilized finite-element method based on the local pressure projection for the 2D/3D steady Navier-Stokes equations by the lowest order conforming finite-element pairs (i.e.,${Q}_{1}-{P}_{0}$and${P}_{1}-{P}_{0}$). Firstly, in contrast to other stabilized methods, they are parameter free, no calculation of higher-order derivatives and edge-based data structures, implemented at the element level with minimal cost. In addition, the Oseen two-level stabilize... 18. Soliton metrics for two-loop renormalization group flow on 3D unimodular Lie groups Glickenstein, David; Wu, Liang 2015-01-01 The two-loop renormalization group flow is studied via the induced bracket flow on 3D unimodular Lie groups. A number of steady solitons are found. Some of these steady solitons come from maximally symmetric metrics that are steady, shrinking, or expanding solitons under Ricci flow, while others are not obviously related to Ricci flow solitons. 19. Torsional oscillations of a sphere in a Stokes flow Box, F; Mullin, T 2014-01-01 The results of an experimental investigation of a sphere performing torsional oscillations in a Stokes flow are presented. A novel experimental set up was developed which enabled the motion of the sphere to be remotely controlled through application of an oscillatory magnetic field. The response of the sphere to the applied field was characterised in terms of the viscous, magnetic and gravitational torques acting on the sphere. A mathematical model of the system was developed and good agreement was found between experimental and theoretical results. The flow resulting from the motion of the sphere was measured and the fluid velocity was found to have an inverse square dependence on radial distance from the sphere. Agreement between measurements and the analytical solution for the fluid velocity indicates that the flow may be considered Stokesian. 20. Numerical simulation of 3D backward facing step flows at various Reynolds numbers Louda Petr 2015-01-01 Full Text Available The work deals with the numerical simulation of 3D turbulent flow over backward facing step in a narrow channel. The mathematical model is based on the RANS equations with an explicit algebraic Reynolds stress model (EARSM. The numerical method uses implicit finite volume upwind discretization. While the eddy viscosity models fail in predicting complex 3D flows, the EARSM model is shown to provide results which agree well with experimental PIV data. The reference experimental data provide the 3D flow field. The simulations are compared with experiment for 3 values of Reynolds number. 1. Simulation of 3D Flow in Turbine Blade Rows including the Effects of Coolant Ejection Jian-Jun LIU; Bai-Tao AN; Yun-Tao ZENG 2008-01-01 This paper describes the numerical simulation of three-dimensional viscous flows in air-cooled turbine blade rows with the effects of coolant ejection. A TVD Navier-Stokes flow solver incorporated with Baldwin-Lomax turbulence model and multi-grid convergence acceleration algorithm are used for the simulation. The influences of coolant ejection on the main flow are accounted by volumetric coolant source terms. Numerical results for a four-stage turbine are presented and discussed. 2. Approximate analytic solutions to 3D unconfined groundwater flow within regional 2D models Luther, K.; Haitjema, H. M. 2000-04-01 We present methods for finding approximate analytic solutions to three-dimensional (3D) unconfined steady state groundwater flow near partially penetrating and horizontal wells, and for combining those solutions with regional two-dimensional (2D) models. The 3D solutions use distributed singularities (analytic elements) to enforce boundary conditions on the phreatic surface and seepage faces at vertical wells, and to maintain fixed-head boundary conditions, obtained from the 2D model, at the perimeter of the 3D model. The approximate 3D solutions are analytic (continuous and differentiable) everywhere, including on the phreatic surface itself. While continuity of flow is satisfied exactly in the infinite 3D flow domain, water balance errors can occur across the phreatic surface. 3. Blow-up criterions of strong solutions to 3D compressible Navier-Stokes equations with vacuum Wen, Huanyao; Zhu, Changjiang 2011-01-01 In the paper, we establish a blow-up criterion in terms of the integrability of the density for strong solutions to the Cauchy problem of compressible isentropic Navier-Stokes equations in \\mathbb{R}^3 with vacuum, under the assumptions on the coefficients of viscosity: \\frac{29\\mu}{3}>\\lambda. This extends the corresponding results in [20, 36] where a blow-up criterion in terms of the upper bound of the density was obtained under the condition 7\\mu>\\lambda. As a byproduct, the restriction 7\\... 4. Are the incompressible 3d Navier-Stokes equations locally ill-posed in the natural energy space? Jia, Hao; Šverák, Vladimír 2013-01-01 An important open problem in the theory of the Navier-Stokes equations is the uniqueness of the Leray-Hopf weak solutions with$L^2initial data. In this paper we give sufficient conditions for non-uniqueness in terms of spectral properties of a natural linear operator associated to scale-invariant solutions recently constructed in \\cite{JiaSverak}. If the spectral conditions are satisfied, non-uniqueness and ill-posedness can appear for quite benign compactly supported data, just at the bor... 5. A geometric measure-type regularity criterion for solutions to the 3D Navier–Stokes equations A local anisotropic geometric measure-type condition on the super-level sets of solutions to the 3D NSE preventing the formation of a finite-time singularity is presented; essentially, local one-dimensional sparseness of the regions of intense fluid activity in a very weak sense. (paper) 6. A front-tracking/front-capturing method for the simulation of 3D multi-fluid flows with free surfaces A method for simulating incompressible, imiscible, unsteady, Newtonian, multi-fluid flows with free surfaces is described. A sharp interface separates fluids of different density and viscosity. Surface and interfacial tensions are also considered and the required curvature is geometrically approximated at the fronts by a least squares quadratic fitting. To remove small undulations at the fronts, a mass-conserving filter is employed. The numerical method employed to solve the Navier-Stokes equations is based on the GENSMAC-3D front-tracking method. The velocity field is computed using a finite-difference scheme on an Eulerian grid. The free-surface and the interfaces are represented by an unstructured Lagrangian grid moving through an Eulerian grid. The method was validated by comparing the numerical results with analytical results for a number of simple problems. Complex numerical simulations show the capability and emphasize the robustness of this new method 7. Multi-GPU three dimensional Stokes solver for simulating glacier flow Licul, Aleksandar; Herman, Frédéric; Podladchikov, Yuri; Räss, Ludovic; Omlin, Samuel 2016-04-01 Here we present how we have recently developed a three-dimensional Stokes solver on the GPUs and apply it to a glacier flow. We numerically solve the Stokes momentum balance equations together with the incompressibility equation, while also taking into account strong nonlinearities for ice rheology. We have developed a fully three-dimensional numerical MATLAB application based on an iterative finite difference scheme with preconditioning of residuals. Differential equations are discretized on a regular staggered grid. We have ported it to C-CUDA to run it on GPU's in parallel, using MPI. We demonstrate the accuracy and efficiency of our developed model by manufactured analytical solution test for three-dimensional Stokes ice sheet models (Leng et al.,2013) and by comparison with other well-established ice sheet models on diagnostic ISMIP-HOM benchmark experiments (Pattyn et al., 2008). The results show that our developed model is capable to accurately and efficiently solve Stokes system of equations in a variety of different test scenarios, while preserving good parallel efficiency on up to 80 GPU's. For example, in 3D test scenarios with 250000 grid points our solver converges in around 3 minutes for single precision computations and around 10 minutes for double precision computations. We have also optimized the developed code to efficiently run on our newly acquired state-of-the-art GPU cluster octopus. This allows us to solve our problem on more than 20 million grid points, by just increasing the number of GPU used, while keeping the computation time the same. In future work we will apply our solver to real world applications and implement the free surface evolution capabilities. REFERENCES Leng,W.,Ju,L.,Gunzburger,M. & Price,S., 2013. Manufactured solutions and the verification of three-dimensional stokes ice-sheet models. Cryosphere 7,19-29. Pattyn, F., Perichon, L., Aschwanden, A., Breuer, B., de Smedt, B., Gagliardini, O., Gudmundsson,G.H., Hindmarsh, R 8. The application of a 3D PTV algorithm to a mixed convection flow Kieft, R.N.; Schreel, K.R.A.M.; Van der Plas, G.A.J.; Rindt, C.C.M. [Energy Technology Division, Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands) 2002-10-01 A 3D particle-tracking velocimetry (PTV) algorithm is applied to the wake flow behind a heated cylinder. The method is tested in advance with respect to its accuracy and performance. In the accuracy tests, its capability to locate particles in 3D space is tested. It appears that the algorithm can determine the particle position with an accuracy of less than 0.5 camera pixels, equivalent to 0.3 mm in the present test situation. The performance tests show that for particles located in a 2D plane, the algorithm can track the particles with a vector yield reaching 100%, which means that a velocity vector can be determined for almost all particles detected. The calculated velocity vectors for this situation have a standard deviation of less than 1%. The performance is also tested on a mixed convection flow behind a heated cylinder in which the 2D flow transits into a 3D flow. As there is no exact solution of such a flow available, the 3D PTV results are compared with visualisation results. The results show that the 3D PTV method can capture the main features of the 3D transition of the 2D vortex street. (orig.) 9. Assessing cerebrospinal fluid flow connectivity using 3D gradient echo phase contrast velocity encoded MRI The aim of this study is to investigate the feasibility of using three-directional velocity encoded 3D gradient echo (GE) phase contrast (PC) imaging to assess cerebrospinal fluid (CSF) flow connectivity in the human brain. Five healthy volunteers were scanned using low velocity sensitivity (Venc = 0.04–0.05 m s−1). Flow–time curves were compared to standard 2D PC scans. The 3D data were used to reconstruct in vivo CSF flow volumes based on time-averaged phase-difference information, and the patency of the CSF flow pathways was assessed using nearest-neighbour connectivity. A pulsatile flow phantom was used to gauge the measurement accuracy of the CSF flow volumes at low flow velocities. Flow connectivity from the lateral ventricles down to the cisterna magna was successfully demonstrated in all volunteers. The phantom tests showed a good distinction between the flow cavities and the background noise. 3D PC imaging results in CSF flow waveforms with similar pulsatility but underestimated peak velocities compared to 2D PC data. 3D time-resolved velocity encoded GE imaging has successfully been applied to assess CSF flow connectivity in normal subjects 10. Navier-Stokes Computations With One-Equation Turbulence Model for Flows Along Concave Wall Surfaces Wang, Chi R. 2005-01-01 This report presents the use of a time-marching three-dimensional compressible Navier-Stokes equation numerical solver with a one-equation turbulence model to simulate the flow fields developed along concave wall surfaces without and with a downstream extension flat wall surface. The 3-D Navier- Stokes numerical solver came from the NASA Glenn-HT code. The one-equation turbulence model was derived from the Spalart and Allmaras model. The computational approach was first calibrated with the computations of the velocity and Reynolds shear stress profiles of a steady flat plate boundary layer flow. The computational approach was then used to simulate developing boundary layer flows along concave wall surfaces without and with a downstream extension wall. The author investigated the computational results of surface friction factors, near surface velocity components, near wall temperatures, and a turbulent shear stress component in terms of turbulence modeling, computational mesh configurations, inlet turbulence level, and time iteration step. The computational results were compared with existing measurements of skin friction factors, velocity components, and shear stresses of the developing boundary layer flows. With a fine computational mesh and a one-equation model, the computational approach could predict accurately the skin friction factors, near surface velocity and temperature, and shear stress within the flows. The computed velocity components and shear stresses also showed the vortices effect on the velocity variations over a concave wall. The computed eddy viscosities at the near wall locations were also compared with the results from a two equation turbulence modeling technique. The inlet turbulence length scale was found to have little effect on the eddy viscosities at locations near the concave wall surface. The eddy viscosities, from the one-equation and two-equation modeling, were comparable at most stream-wise stations. The present one 11. Propulsion of micro-structures in Oscillatory Stokes Flow Jo, Ikhee; Huang, Yangyang; Zimmerman, Walter; Kanso, Eva 2015-11-01 Drug delivery often necessitates specific site-targeting within the human body. The use of micro and/or nano devices swimming through the bloodstream provides an attractive mechanism for targeted drug targeting, however the design and practical implementation of such devices remain very challenging. Inspired by flapping wings, we construct a two-dimensional wedge-like device, consisting of two links connected by a linear torsional spring and released in an oscillatory Stokes flow. We vary the stiffness and rest angle of the linear spring and the oscillation amplitude and frequency of the background flow to explore the behavior of the device. We find that the device achieves a net displacement, or propulsion, in oscillatory flows even when no elastic energy is stored initially, thus breaking Purcell's scallop's theorem. More importantly, the vehicle tends to align with the background flow under perturbations. We conclude by commenting on how to control the parameters of the device and the fluid to achieve desired behavior of the device. These findings may have significant implications on the design of micro devices in viscous fluids. 12. 3D-printed devices for continuous-flow organic chemistry Vincenza Dragone 2013-05-01 Full Text Available We present a study in which the versatility of 3D-printing is combined with the processing advantages of flow chemistry for the synthesis of organic compounds. Robust and inexpensive 3D-printed reactionware devices are easily connected using standard fittings resulting in complex, custom-made flow systems, including multiple reactors in a series with in-line, real-time analysis using an ATR-IR flow cell. As a proof of concept, we utilized two types of organic reactions, imine syntheses and imine reductions, to show how different reactor configurations and substrates give different products. 13. The computation of steady 3-D separated flows over aerodynamic bodies at incidence and yaw Pulliam, T. H.; Pan, D. 1986-01-01 This paper describes the implementation of a general purpose 3-D NS code and its application to simulated 3-D separated vortical flows over aerodynamic bodies. The thin-layer Reynolds-averaged NS equations are solved by an implicit approximate factorization scheme. The pencil data structure enables the code to run on very fine grids using only limited incore memories. Solutions of a low subsonic flow over an inclined ellipsoid are compared with experimental data to validate the code. Transonic flows over a yawed elliptical wing at incidence are computed and separations occurred at different yaw angles are discussed. 14. 3D-printed devices for continuous-flow organic chemistry Vincenza Dragone; Victor Sans; Rosnes, Mali H; Kitson, Philip J.; Leroy Cronin 2013-01-01 We present a study in which the versatility of 3D-printing is combined with the processing advantages of flow chemistry for the synthesis of organic compounds. Robust and inexpensive 3D-printed reactionware devices are easily connected using standard fittings resulting in complex, custom-made flow systems, including multiple reactors in a series with in-line, real-time analysis using an ATR-IR flow cell. As a proof of concept, we utilized two types of organic reactions, imine syntheses and im... 15. Dual local and non-local cascades in 3D turbulent Beltrami flows Herbert, E; Daviaud, F; Dubrulle, B.; Nazarenko, S.; A. Naso 2012-01-01 We discuss the possibility of dual local and non-local cascades in a 3D turbulent Beltrami flow, with inverse energy cascade and direct helicity cascade, by analogy with 2D turbulence. We discuss the corresponding energy spectrum in both local and non-local case. Comparison with a high Reynolds number turbulent von Karman flow is provided and discussed. 16. The performance & flow visualization studies of three-dimensional (3-D) wind turbine blade models Sutrisno, Prajitno, Purnomo, W., Setyawan B. 2016-06-01 Recently, studies on the design of 3-D wind turbine blades have a less attention even though 3-D blade products are widely sold. In contrary, advanced studies in 3-D helicopter blade tip have been studied rigorously. Studies in wind turbine blade modeling are mostly assumed that blade spanwise sections behave as independent two-dimensional airfoils, implying that there is no exchange of momentum in the spanwise direction. Moreover, flow visualization experiments are infrequently conducted. Therefore, a modeling study of wind turbine blade with visualization experiment is needed to be improved to obtain a better understanding. The purpose of this study is to investigate the performance of 3-D wind turbine blade models with backward-forward swept and verify the flow patterns using flow visualization. In this research, the blade models are constructed based on the twist and chord distributions following Schmitz's formula. Forward and backward swept are added to the rotating blades. Based on this, the additional swept would enhance or diminish outward flow disturbance or stall development propagation on the spanwise blade surfaces to give better blade design. Some combinations, i. e., b lades with backward swept, provide a better 3-D favorable rotational force of the rotor system. The performance of the 3-D wind turbine system model is measured by a torque meter, employing Prony's braking system. Furthermore, the 3-D flow patterns around the rotating blade models are investigated by applying "tuft-visualization technique", to study the appearance of laminar, separated, and boundary layer flow patterns surrounding the 3-dimentional blade system. 17. Ultrarapid Detection of Pathogenic Bacteria Using a 3D Immunomagnetic Flow Assay Lee, Wonjae; Kwon, Donghoon; Chung, Boram; Jung, Gyoo Yeol; Au, Anthony; Folch, Albert; Jeon, Sangmin 2014-01-01 We developed a novel 3D immunomagnetic flow assay for the rapid detection of pathogenic bacteria in a large-volume food sample. Antibody-functionalized magnetic nanoparticle clusters (AbMNCs) were magnetically immobilized on the surfaces of a 3D-printed cylindrical microchannel. The injection of a Salmonella-spiked sample solution into the microchannel produced instant binding between the AbMNCs and the Salmonella bacteria due to their efficient collisions. Nearly perfect capture of the AbMNC... 18. Completion of PCFLOW3D Model for Simulation of Flow and Dispersion of Pollutants Kovšca, Jasna 2007-01-01 An upgrade of the three-dimensional baroclinic mathematical model PCFLOW3D with a new turbulence model Smagorinsky-vertical is presented. Several test cases were made to compare this new turbulence model with other turbulence models already built in the PCFLOW3D model. Additional verifications of the test results were performed using the commercial software CORMIX of which main purpose is to simulate the near field areas of pollution inflows. CORMIX is restricted to steady flow... 19. Stokes Flow over Composite Sphere: Liquid Core with Permeable Shell bharat raj jaiswal 2015-01-01 Full Text Available This paper presents an analytical study of an infinite expanse of uniform flow of steady axisymmetric Stokes flow of an incompressible Newtonian fluid around the spherical drop of Reiner-Rivlin liquid coated with the permeable layer with the assumption that the liquid located outside the capsule penetrates into the permeable layer, but it is not mingled with the liquid located in the internal concave of capsule. The flow inside the permeable layer is described by the Brinkman equation. The viscosity of the permeable medium is assumed to be same as pure liquid. The stream function solution for the outer flow field is obtained in terms of modified Bessel functions and Gegenbauer functions, and for the inner flow field, the stream function solution is obtained by expanding the stream function in terms of S. The flow fields are determined explicitly by matching the boundary conditions at the pure liquid-porous interface, porous-Reiner-Rivlin liquid interface, and uniform velocity at infinity. The drag force experienced by the capsule is evaluated, and its variation with regard to permeability parameter a, dimensionless parameter S, ratio of viscosities l2, and thickness of permeable layer d is studied and graphs plotted against these parameters. Several cases of interest are deduced from the present analysis. It is observed that the cross-viscosity increases the drag force, whereas the thickness d decreases the drag on capsule. It is also observed that the drag force is increasing or decreasing function of permeability parameter for l2 < 1. 20. Quantification of blood perfusion using 3D power Doppler: an in-vitro flow phantom study Raine-Fenning, N J [School of Human Development, Queens Medical Centre, University of Nottingham, Nottingham (United Kingdom); Ramnarine, K V [Department of Medical Physics, University Hospitals of Leicester NHS Trust, Leicester (United Kingdom); Nordin, N M [School of Human Development, Queens Medical Centre, University of Nottingham, Nottingham (United Kingdom); Campbell, B K [School of Human Development, Queens Medical Centre, University of Nottingham, Nottingham (United Kingdom) 2004-01-01 Three-dimensional (3D) power Doppler data is increasingly used to assess and quantify blood flow and tissue perfusion. The objective of this study was to assess the validity of common 3D power Doppler 'vascularity' indices by quantification in well characterised in-vitro flow models. A computer driven gear pump was used to circulate a steady flow of a blood mimicking fluid through various well characterised flow phantoms to investigate the effect of the number of flow channels, flow rate, depth dependent tissue attenuation, blood mimic scatter particle concentration and ultrasound settings. 3D Power Doppler data were acquired with a Voluson 530D scanner and 7.5 MHz transvaginal transducer (GE Kretz). Virtual Organ Computer-aided Analysis software (VOCAL) was used to quantify the vascularisation index (VI), flow index (FI) and vascularisation-flow index (VFI). The vascular indices were affected by many factors, some intuitive and some with more complex or unexpected relationships (e.g. VI increased linearly with an increase in flow rate, blood mimic scatter particle concentration and number of flow channels, and had a complex dependence on pulse repetition frequency). Use of standardised settings and appropriate calibration are required in any attempt at relating 'vascularity indices' with flow. 1. A 3D model of a reverse vortex flow gliding arc reactor Trenchev, G.; Kolev, St.; Bogaerts, A. 2016-06-01 In this computational study, a gliding arc plasma reactor with a reverse-vortex flow stabilization is modelled for the first time by a fluid plasma description. The plasma reactor operates with argon gas at atmospheric pressure. The gas flow is simulated using the k-ε Reynolds-averaged Navier–Stokes turbulent model. A quasi-neutral fluid plasma model is used for computing the plasma properties. The plasma arc movement in the reactor is observed, and the results for the gas flow, electrical characteristics, plasma density, electron temperature, and gas temperature are analyzed. 2. Numerical simulation of complex 3D compressible viscous flows through rotating blade passage Despotović M.; Babić Milun; Milovanović D.; Šušteršič Vanja 2003-01-01 This paper describes a three-dimensional compressible Navier-Stokes code, which has been developed for analysis of turbocompressor blade rows and other internal flows. Despite numerous numerical techniques and statement that Computational Fluid Dynamics has reached state of the art, issues related to successful simulations represent valuable database of how particular tech­nique behave for a specifie problem. This paper deals with rapid numerical method accurate enough to be used as a design ... 3. Numerical prediction of 3-D periodic flow unsteadiness in a centrifugal pump under part-load condition 裴吉; 袁寿其; 李晓俊; 袁建平 2014-01-01 Numerical simulation and 3-D periodic flow unsteadiness analysis for a centrifugal pump with volute are carried out in whole flow passage, including the impeller with twisted blades, the volute and the side chamber channels under a part-load condition. The pressure fluctuation intensity coefficient (PFIC) based on the standard deviation method, the time-averaged velocity unsteadi-ness intensity coefficient (VUIC) and the time-averaged turbulence intensity coefficient (TIC) are defined by averaging the results at each grid node for an entire impeller revolution period. Therefore, the strength distributions of the periodic flow unsteadiness based on the unsteady Reynolds-averaged Navier-Stokes (URANS) equations can be analyzed directly and in detail. It is shown that under the des.0.6Q condition, the pressure fluctuation intensity is larger near the blade pressure side than near the suction side, and a high fluctuation intensity can be observed at the beginning section of the spiral of the volute. The flow velocity unsteadiness intensity is larger near the blade suction side than near the pressure side. A strong turbulence intensity can be found near the blade suction side, the impeller shroud side as well as in the side chamber. The leakage flow has a significant effect on the inflow of the impeller, and can increase both the flow velocity unsteadiness intensity and the turbulence intensity near the wall. The accumulative flow unstea-diness results of an impeller revolution can be an important aspect to be considered in the centrifugal pump optimum design for ob-taining a more stable inner flow of the pump and reducing the flow-induced vibration and noise in certain components. 4. Effects of Texture Component Orientation on Orientation Flow Visibility for 3-D Shape Perception Michelle L Fowler; Andrea Li 2013-01-01 In images of textured 3-D surfaces, orientation flows created by the texture components parallel to the surface slant play a critical role in conveying the surface slant and shape. This study examines the visibility of these orientation flows in complex patterns. Specifically, we examine the effect of orientation of neighboring texture components on orientation flow visibility. Complex plaids consisting of gratings equally spaced in orientation were mapped onto planar and curved surfaces. The... 5. High fidelity digital inline holographic method for 3D flow measurements. Toloui, Mostafa; Hong, Jiarong 2015-10-19 Among all the 3D optical flow diagnostic techniques, digital inline holographic particle tracking velocimetry (DIH-PTV) provides the highest spatial resolution with low cost, simple and compact optical setups. Despite these advantages, DIH-PTV suffers from major limitations including poor longitudinal resolution, human intervention (i.e. requirement for manually determined tuning parameters during tracer field reconstruction and extraction), limited tracer concentration, and expensive computations. These limitations prevent this technique from being widely used for high resolution 3D flow measurements. In this study, we present a novel holographic particle extraction method with the goal of overcoming all the major limitations of DIH-PTV. The proposed method consists of multiple steps involving 3D deconvolution, automatic signal-to-noise ratio enhancement and thresholding, and inverse iterative particle extraction. The entire method is implemented using GPU-based algorithm to increase the computational speed significantly. Validated with synthetic particle holograms, the proposed method can achieve particle extraction rate above 95% with fake particles less than 3% and maximum position error below 1.6 particle diameter for holograms with particle concentration above 3000 particles/mm3. The applicability of the proposed method for DIH-PTV has been further validated using the experiment of laminar flow in a microchannel and the synthetic tracer flow fields generated using a DNS turbulent channel flow database. Such improvements will substantially enhance the implementation of DIH-PTV for 3D flow measurements and enable the potential commercialization of this technique. PMID:26480377 6. A moving mesh algorithm for 3-D regional groundwater flow with water table and seepage face Knupp, P. A numerical algorithm is described for solving the free-surface groundwater flow equations in 3-D large-scale unconfined aquifers with strongly heterogeneous conductivity and surface recharge. The algorithm uses a moving mesh to track the water-table as it evolves according to kinematic and seepage face boundary conditions. Both steady-state and transient algorithms are implemented in the SECO-Flow 3-D code and demonstrated on stratigraphy based on the Delaware Basin of south-eastern New Mexico. 7. 3-D NUMERICAL SIMULATION OF FLOW THROUGH AN ORIFICE SPILL-WAY TUNNEL 2002-01-01 A Large Eddy Simulation (LES) approachbased on the weakly compressible hydrodynamic equation with a single-plase fluid model for the cavitation flow has been de-veloped and employed in simulating 3-D unsteady viscous flowthrough an orifice type spillwy tunnel. The finite volume ap-proach in space and the predictor-corrector method in timehave been used to the numerical discretization, and the "Lawof wall" is applied at the solid boundary. The velocity, pres-sure fields and the cavitation phenomenon are obtained, thecomputational results show that 3-D LES approach can givemore realistic flow field prediction of the orifice type spillwaytunnel. 8. A study of flow mixing in a PWR vessel in asymmetric cooldown faults using the FLOW3D code The Harwell computational fluid dynamics code, FLOW3D has been used to simulate a flow mixing test in the Oconee-1 reactor. The object was to test the ability of FLOW3D to describe thermal mixing in a PWR pressure vessel for the conditions of an over-cooling fault. The code produced reasonable estimates of the thermal diffusion observed in the Oconee test, with a tendency to underpredict mixing. However, the test exhibited gross swirl and asymmetric mixing which was not predicted by FLOW3D. Sensitivity studies to investigate the effects of downcomer ovality, inlet flow vorticity and flow imbalance between loops, have not revealed the source of the observed asymmetries 9. Thermal structure and basal sliding parametrisation at Pine Island Glacier – a 3-D full-Stokes model study N. Wilkens 2014-09-01 Full Text Available Pine Island Glacier is one of the fastest changing glaciers in the Antarctic Ice Sheet and therefore in scientific focus. The glacier holds enough ice to raise global sea level significantly (∼0.5 m, when fully melted. The question addressed by numerous modelling studies of the glacier focuses on whether the observed changes are a start for an uncontrolled and accelerating retreat. The movement of the glacier is, in the fast flowing areas, dominated by basal motion. In modelling studies the parametrisation of the basal motion is therefore crucial. Inversion methods are commonly applied to reproduce the complex surface flow structure at Pine Island Glacier, which use information of the observed surface velocity field, to constrain basal sliding. We introduce two different approaches of combining a physical parameter, the basal roughness, with basal sliding parametrisations. This way basal sliding is connected again to its original formulation. We show that the basal roughness is an important and helpful parameter to consider and that many features of the flow structure could be reproduced with these approaches. 10. Effects of texture component orientation on orientation flow visibility for 3-D shape perception. Michelle L Fowler Full Text Available In images of textured 3-D surfaces, orientation flows created by the texture components parallel to the surface slant play a critical role in conveying the surface slant and shape. This study examines the visibility of these orientation flows in complex patterns. Specifically, we examine the effect of orientation of neighboring texture components on orientation flow visibility. Complex plaids consisting of gratings equally spaced in orientation were mapped onto planar and curved surfaces. The visibility of the component that creates the orientation flows was quantified by measuring its contrast threshold (CT while varying the combination of neighboring components present in the pattern. CTs were consistently lowest only when components closest in orientation to that of the orientation flows were subtracted from the pattern. This finding suggests that a previously reported frequency-selective cross-orientation suppression mechanism involved with the perception of 3-D shape from texture is affected by proximity in orientation of concurrent texture components. 11. 3-D Vector Flow Using a Row-Column Addressed CMUT Array Holbek, Simon; Christiansen, Thomas Lehrmann; Engholm, Mathias; 2016-01-01 cells, and second, elements areaccessed by row and/or column indices. The 62+62 2-D row-column addressed prototype CMUT probe was usedfor vector flow estimation by transmitting focused ultrasound into a flow-rig with a fully developed parabolicflow. The beam-to-flow angle was 90◦. The received data was...... characteristic parabolic velocity profile was estimated with a peak velocity of 0.48m/s ± 0.02 m/s in reference to the expected 0.54 m/s. The results presented are the first 3-D vector flow estimates obtained with a row-column CMUT probe, which demonstrates that the CMUT technology is feasiblefor 3-D flow... 12. New P3D Hydraulic Fracturing Model Based on the Radial Flow 鲁连军; 孙逢春; 肖海华; 安申法 2004-01-01 Pseudo three-dimension (P3D) hydraulic fracturing models often overpredict the fracture height for a poorly contained fracture. To solve this problem, a new method is presented in shaping the P3D fracture geometry on the basis of the fundamental theory and the original 1D fluid flow is replaced with a more representatively radial flow. The distribution of the fluid in the modified fluid field is analyzed and a sound explanation to the problem is given. Due to the consideration of the fluid flow in the vertical direction, the modified model can predict the fracture height much better. To validate the rationality of the radial fluid flow assumption, the distribution of the fluid in the modified fluid field is simulated with the plane potential flow by using finite element method. And the results agree effectively with those from the assumption. Through comparing with the full 3D model, the results show that this new P3D model can be used to aid the fracturing design and predict the fracture height under poorly contained situation. 13. One-layer microfluidic device for hydrodynamic 3D self-flow-focusing operating in low flow speed Daghighi, Yasaman; Gnyawali, Vaskar; Strohm, Eric M.; Tsai, Scott S. H.; Kolios, Michael C. 2016-03-01 Hydrodynamic 3D flow-focusing techniques in microfluidics are categorized as (a) sheathless techniques which require high flow rates and long channels, resulting in high operating cost and high flow rates which are inappropriate for applications with flow rate limitations, and (b) sheath-flow based techniques which usually require excessive sheath flow rate to achieve hydrodynamic 3D flow-focusing. Many devices based on these principles use complicated fabrication methods to create multi-layer microchannels. We have developed a sheath-flow based microfluidic device that is capable of hydrodynamic 3D self-flow-focusing. In this device the main flow (black ink) in a low speed, and a sheath flow, enter through two inlets and enter a 180 degree curved channel (300 × 300 μm cross-section). Main flow migrates outwards into the sheath-flow due to centrifugal effects and consequently, vertical focusing is achieved at the end of the curved channel. Then, two other sheath flows horizontally confine the main flow to achieve horizontal focusing. Thus, the core flow is three-dimensionally focused at the center of the channel at the downstream. Using centrifugal force for 3D flow-focusing in a single-layer fabricated microchannel has been previously investigated by few groups. However, their demonstrated designs required high flow speed (>1 m/s) which is not suitable for many applications that live biomedical specie are involved. Here, we introduce a new design which is operational in low flow speed (microfluidic device can be used in detecting, counting and isolating cells in many biomedical applications. 14. Modeling blood flow circulation in intracranial arterial networks: a comparative 3D/1D simulation study. Grinberg, L; Cheever, E; Anor, T; Madsen, J R; Karniadakis, G E 2011-01-01 We compare results from numerical simulations of pulsatile blood flow in two patient-specific intracranial arterial networks using one-dimensional (1D) and three-dimensional (3D) models. Specifically, we focus on the pressure and flowrate distribution at different segments of the network computed by the two models. Results obtained with 1D and 3D models with rigid walls show good agreement in massflow distribution at tens of arterial junctions and also in pressure drop along the arteries. The 3D simulations with the rigid walls predict higher amplitude of the flowrate and pressure temporal oscillations than the 1D simulations with compliant walls at various segments even for small time-variations in the arterial cross-sectional areas. Sensitivity of the flow and pressure with respect to variation in the elasticity parameters is investigated with the 1D model. PMID:20661645 15. 3D Simulation of Velocity Profile of Turbulent Flow in Open Channel with Complex Geometry Kamel, Benoumessad; Ilhem, Kriba; Ali, Fourar; Abdelbaki, Djebaili Simulation of open channel flow or river flow presents unique challenge to numerical simulators, which is widely used in the applications of computational fluid dynamics. The prediction is extremely difficult because the flow in open channel is usually transient and turbulent, the geometry is irregular and curved, and the free-surface elevation is varying with time. The results from a 3D non-linear k- ɛ turbulence model are presented to investigate the flow structure, the velocity distribution and mass transport process in a meandering compound open channel and a straight open channel. The 3D numerical model for calculating flow is set up in cylinder coordinates in order to calculate the complex boundary channel. The finite volume method is used to disperse the governing equations and the SIMPLE algorithm is applied to acquire the coupling of velocity and pressure. The non-linear k- ɛ turbulent model has good useful value because of taking into account the anisotropy and not increasing the computational time. The main contributions of this study are developing a numerical method that can be applied to predict the flow in river bends with various bend curvatures and different width-depth ratios. This study demonstrates that the 3D non-linear k- ɛ turbulence model can be used for analyzing flow structures, the velocity distribution and pollutant transport in the complex boundary open channel, this model is applicable for real river and wetland problem. 16. Implementation and testing of the CFDS-FLOW3D code FLOW3D is a multi-purpose, transient fluid dynamics and heat transfer code developed by Computational Fluid Dynamics Services (CFDS), a branch of AEA Technology, based at Harwell. The code is supplied with a SUN-based operating environment consisting of an interactive grid generator SOPHIA and a post-processor JASPER for graphical display of results. Both SOPHIA and JASPER are extensions of the support software originally written for the ASTEC code, also promoted by CFDS. The latest release of FLOW3D contains well-tested turbulence and combustion models and, in a less-developed form, a multi-phase modelling potential. This document describes briefly the modelling capabilities of FLOW3D (Release 3.2) and outlines implementation procedures for the VAX, CRAY and CONVEX computer systems. Additional remarks are made concerning the in-house support programs which have been specially written in order to adapt existing ASTEC input data for use with FLOW3D; these programs operate within a VAX-VMS environment. Three sample calculations have been performed and results compared with those obtained previously using the ASTEC code, and checked against other available data, where appropriate. (author) 35 figs., 3 tabs., 42 refs 17. A Closed Form Solution to Segment 3D Motion Using Straight-line Optical Flow ZHANG Jing; SHI Fan-huai; MA Wen-juan; LIU Yun-cai 2008-01-01 A closed form solution to the problem of segmenting multiple 3D motion models was proposed fromstraight-line optical flow. It introduced the multibody line optical flow constraint (MLOFC), a polynomial equation relating motion models and line parameters. The motion models can be obtained analytically as the derivative of the MLOFC at the corresponding line measurement, without knowing the motion model associated with that line. Experiments on real and synthetic sequences were also presented. 18. Comparison of Tomo-PIV and 3D-PTV for microfluidic flows Two 3D-3C velocimetry techniques for micro-scale measurements are compared: tomographic particle image velocimetry (Tomo-PIV) and 3D particle-tracking velocimetry (3D-PTV). Both methods are applied to experimental data from a confined shear-driven liquid droplet over a moving surface. The droplet has 200 μm height and 2 mm diameter. Micro 3D-PTV and Tomo-PIV are used to obtain the tracer particle distribution and the flow velocity field for the same set of images. It is shown that the reconstructed particle distributions are distinctly different, where Tomo-PIV returns a nearly uniform distribution over the height of the volume, as expected, and PTV reveals a clear peak in the particle distribution near the plane of focus. In Tomo-PIV, however, the reconstructed particle peak intensity decreases in proportion to the distance from the plane of focus. Due to the differences in particle distributions, the measured flow velocities are also different. In particular, we observe Tomo-PIV to be in closer agreement with mass conservation. Furthermore, the random noise level is found to increase with distance to the plane of focus at a higher rate for 3D-PTV as compared to Tomo-PIV. Thus, for a given noise threshold value, the latter method can measure reliably over a thicker volume. (paper) 19. In vivo analysis of physiological 3D blood flow of cerebral veins Schuchardt, Florian; Schroeder, Laure; Baeuerle, Jochen; Harloff, Andreas [University Medical Centre, Department of Neurology, Freiburg (Germany); Anastasopoulos, Constantin [University Medical Center, Department of Neuropaediatrics and Muscle Disorders, Freiburg (Germany); University Medical Centre, Department of Neuroradiology, Freiburg (Germany); Markl, Michael [Northwestern University, Department of Radiology, Feinberg School of Medicine and McCormick School of Engineering, Chicago, IL (United States); Hennemuth, Anja; Drexl, Johann [Fraunhofer MEVIS, Bremen (Germany); Valdueza, Jose M. [Neurological Center, Segeberger Kliniken, Bad Segeberg (Germany); Mader, Irina [University Medical Centre, Department of Neuroradiology, Freiburg (Germany) 2015-08-15 To visualize and quantify physiological blood flow of intracranial veins in vivo using time-resolved, 3D phase-contrast MRI (4D flow MRI), and to test measurement accuracy. Fifteen healthy volunteers underwent repeated ECG-triggered 4D flow MRI (3 Tesla, 32-channel head coil). Intracranial venous blood flow was analysed using dedicated software allowing for blood flow visualization and quantification in analysis planes at the superior sagittal, straight, and transverse sinuses. MRI was evaluated for intra- and inter-observer agreement and scan-rescan reproducibility. Measurements of the transverse sinuses were compared with transcranial two-dimensional duplex ultrasound. Visualization of 3D blood flow within cerebral sinuses was feasible in 100 % and within at least one deep cerebral vein in 87 % of the volunteers. Blood flow velocity/volume increased along the superior sagittal sinus and was lower in the left compared to the right transverse sinus. Intra- and inter-observer reliability and reproducibility of blood flow velocity (mean difference 0.01/0.02/0.02 m/s) and volume (mean difference 0.0002/-0.0003/0.00003 l/s) were good to excellent. High/low velocities were more pronounced (8 % overestimation/9 % underestimation) in MRI compared to ultrasound. Four-dimensional flow MRI reliably visualizes and quantifies three-dimensional cerebral venous blood flow in vivo and is promising for studies in patients with sinus thrombosis and related diseases. (orig.) 20. Magnetic resonance velocity mapping of 3D cerebrospinal fluid flow dynamics in hydrocephalus: preliminary results Stadlbauer, Andreas [Landesklinikum St. Poelten, MR Physics Group, Department of Radiology, St. Poelten (Austria); University of Erlangen-Nuremberg, Department of Neurosurgery, Erlangen (Germany); Salomonowitz, Erich [Landesklinikum St. Poelten, MR Physics Group, Department of Radiology, St. Poelten (Austria); Brenneis, Christian [Landesklinikum St. Poelten, Department of Neurology, St. Poelten (Austria); Ungersboeck, Karl [Landesklinikum St. Poelten, Department of Neurosurgery, St. Poelten (Austria); Riet, Wilma van der [European MRI Consultancy (EMRIC), Strasbourg (France); Buchfelder, Michael; Ganslandt, Oliver [University of Erlangen-Nuremberg, Department of Neurosurgery, Erlangen (Germany) 2012-01-15 To investigate the detectability of CSF flow alterations in the ventricular system of patients with hydrocephalus using time-resolved 3D MR velocity mapping. MR velocity mapping was performed in 21 consecutive hydrocephalus patients and 21 age-matched volunteers using a 3D phase-contrast (PC) sequence. Velocity vectors and particle path lines were calculated for visualisation of flow dynamics. CSF flow was classified as ''hypomotile flow'' if it showed attenuated dynamics and as ''hypermotile flow'' if it showed increased dynamics compared with volunteers. Diagnostic efficacy was compared with routine 2D cine PC-MRI. Seven patients showed hypomotile CSF flow: six had non-communicating hydrocephalus due to aqueductal stenosis. One showed oscillating flow between the lateral ventricles after craniotomy for intracranial haemorrhage. Seven patients showed normal flow: six had hydrocephalus ex vacuo due to brain atrophy. One patient who underwent ventriculostomy 10 years ago showed a flow path through the opening. Seven patients showed hypermotile flow: three had normal pressure hydrocephalus, three had dementia, and in one the diagnosis remained unclear. The diagnostic efficacy of velocity mapping was significantly higher except for that of aqueductal stenosis. Our approach may be useful for diagnosis, therapy planning, and follow-up of different kinds of hydrocephalus. (orig.) 1. Structural elements and collapse regimes in 3D flows on a slope The mechanisms and structural elements of an instability whose development results in the collapse of flow fragments have been studied in the scope of the Hamilton version of the “shallow water” 3D model on a slope. The study indicated that the 3D model differs from its 2D analog in a more varied set of collapsing solutions. In particular, the solutions describing anisotropic collapse, during which the area of a collapsing fragment in contact with the slope contracts into a segment rather than a point, exist together with the solutions describing radially symmetric (isotropic) collapse. 2. Computational fluid dynamics simulations of blood flow regularized by 3D phase contrast MRI Rispoli, Vinicius C; Nielsen, Jon; Nayak, Krishna S; 2015-01-01 BACKGROUND: Phase contrast magnetic resonance imaging (PC-MRI) is used clinically for quantitative assessment of cardiovascular flow and function, as it is capable of providing directly-measured 3D velocity maps. Alternatively, vascular flow can be estimated from model-based computation fluid...... approach in regularizing 3D flow fields is evaluated. METHODS: The proposed algorithm incorporates both a Newtonian fluid physics model and a linear PC-MRI signal model. The model equations are solved numerically using a modified CFD algorithm. The numerical solution corresponds to the optimal solution of...... dynamics (CFD) calculations. CFD provides arbitrarily high resolution, but its accuracy hinges on model assumptions, while velocity fields measured with PC-MRI generally do not satisfy the equations of fluid dynamics, provide limited resolution, and suffer from partial volume effects. The purpose of this... 3. Parallel Adaptive Computation of Blood Flow in a 3D Whole'' Body Model Zhou, M.; Figueroa, C. A.; Taylor, C. A.; Sahni, O.; Jansen, K. E. 2008-11-01 Accurate numerical simulations of vascular trauma require the consideration of a larger portion of the vasculature than previously considered, due to the systemic nature of the human body's response. A patient-specific 3D model composed of 78 connected arterial branches extending from the neck to the lower legs is constructed to effectively represent the entire body. Recently developed outflow boundary conditions that appropriately represent the downstream vasculature bed which is not included in the 3D computational domain are applied at 78 outlets. In this work, the pulsatile blood flow simulations are started on a fairly uniform, unstructured mesh that is subsequently adapted using a solution-based approach to efficiently resolve the flow features. The adapted mesh contains non-uniform, anisotropic elements resulting in resolution that conforms with the physical length scales present in the problem. The effects of the mesh resolution on the flow field are studied, specifically on relevant quantities of pressure, velocity and wall shear stress. 4. A fast and accurate method to predict 2D and 3D aerodynamic boundary layer flows A quasi-simultaneous interaction method is applied to predict 2D and 3D aerodynamic flows. This method is suitable for offshore wind turbine design software as it is a very accurate and computationally reasonably cheap method. This study shows the results for a NACA 0012 airfoil. The two applied solvers converge to the experimental values when the grid is refined. We also show that in separation the eigenvalues remain positive thus avoiding the Goldstein singularity at separation. In 3D we show a flow over a dent in which separation occurs. A rotating flat plat is used to show the applicability of the method for rotating flows. The shown capabilities of the method indicate that the quasi-simultaneous interaction method is suitable for design methods for offshore wind turbine blades 5. 3D flow past transonic turbine cascade SE 1050 — Experiment and numerical simulations Šimurda, D.; Fürst, J.; Luxa, M. 2013-08-01 This paper is concerned with experimental and numerical research on 3D flow past prismatic turbine cascade SE1050 (known in QNET network as open test case SE1050). The primary goal was to assess the influence of the inlet velocity profile on the flow structures in the interblade channel and on the flow field parameters at the cascade exit and to compare these findings to results of numerical simulations. Investigations of 3D flow past the cascade with non-uniform inlet velocity profile were carried out both experimentally and numerically at subsonic ( M 2is = 0.8) and at transonic ( M 2is = 1.2) regime at design angle of incidence. Experimental data was obtained using a traversing device with a five-hole conical probe. Numerically, the 3D flow was simulated by open source code OpenFOAM and in-house code. Analyses of experimental data and CFD simulations have revealed the development of distinctive vortex structures resulting from non-uniform inlet velocity profile. Origin of these structures results in increased loss of kinetic energy and spanwise shift of kinetic energy loss coefficient distribution. Differences found between the subsonic and the transonic case confirm earlier findings available in the literature. Results of CFD and experiments agree reasonably well. 6. Flow Exergy as a Lagrangian for the Navier-Stokes Equations for Incompressible Flow Enrico Sciubba 2004-09-01 Full Text Available A novel variational derivation of the Navier-Stokes equations for incompressible flows is presented and discussed. The Lagrangian density is obtained from the exergy balance equation written for both the (Lagrangian steady and quasi-stationary isothermal flows of an incompressible fluid. The exergy of a fluid mass (composed of a kinetic, a pressure-work, a diffusive, and a dissipative portion, the latter being the result of viscous irreversibility is derived first, and it is then shown that a formal minimisation of the exergy variation (i.e. destruction generates, without recurring to “local potentials”, the Navier-Stokes equations of motion under the given assumptions. The acceleration being held constant, the proposed variational method can be classified as a “restricted” principle. The problem is also briefly discussed both in its historical perspective and in its possible formal and practical implications. 7. Navier-Stokes solver using Green's functions I: channel flow and plane Couette flow Viswanath, Divakar 2012-01-01 Numerical solvers of the incompressible Navier-Stokes equations have reproduced turbulence phenomena such as the law of the wall, the dependence of turbulence intensities on the Reynolds number, and experimentally observed properties of turbulence energy production. In this article, we begin a sequence of investigations whose eventual aim is to derive and implement numerical solvers that can reach higher Reynolds numbers than is currently possible. Every time step of a Navier-Stokes solver in effect solves a linear boundary value problem. The use of Green's functions leads to numerical solvers which are highly accurate in resolving the boundary layer, which is a source of delicate but exceedingly important physical effects at high Reynolds numbers. The use of Green's functions brings with it a need for careful quadrature rules and a reconsideration of time steppers. We derive and implement Green's function based solvers for the channel flow and plane Couette flow geometries. The solvers are validated by repro... 8. Numerical modelling of gravel unconstrained flow experiments with the DAN3D and RASH3D codes Sauthier, Claire; Pirulli, Marina; Pisani, Gabriele; Scavia, Claudio; Labiouse, Vincent 2015-12-01 Landslide continuum dynamic models have improved considerably in the last years, but a consensus on the best method of calibrating the input resistance parameter values for predictive analyses has not yet emerged. In the present paper, numerical simulations of a series of laboratory experiments performed at the Laboratory for Rock Mechanics of the EPF Lausanne were undertaken with the RASH3D and DAN3D numerical codes. They aimed at analysing the possibility to use calibrated ranges of parameters (1) in a code different from that they were obtained from and (2) to simulate potential-events made of a material with the same characteristics as back-analysed past-events, but involving a different volume and propagation path. For this purpose, one of the four benchmark laboratory tests was used as past-event to calibrate the dynamic basal friction angle assuming a Coulomb-type behaviour of the sliding mass, and this back-analysed value was then used to simulate the three other experiments, assumed as potential-events. The computational findings show good correspondence with experimental results in terms of characteristics of the final deposits (i.e., runout, length and width). Furthermore, the obtained best fit values of the dynamic basal friction angle for the two codes turn out to be close to each other and within the range of values measured with pseudo-dynamic tilting tests. 9. A 3D pseudospectral algorithm to simulate rotating flows in cylindrical cavities Peres, Noele; Poncet, Sébastien; Serre, Eric 2012-01-01 When simulating flows in cylindrical rotating cavities a difficulty arises from the singularities appearing on the axis. Its singularities are due to the presence of terms 1/r^n (n = 1, 2) in the Navier-Stokes equations, where r is the radial dis-tance. To avoid evaluating differential equation coefficients which are infinite at that point, the grid must exclude the origin or specific pole conditions must be imposed. An efficient and accurate pseudo-spectral method has been here developed usi... 10. Delft3D-FLOW on PRACE infrastructures for real life hydrodynamic applications. Donners, John; Genseberger, Menno; Jagers, Bert; de Goede, Erik; Mourits, Adri 2013-04-01 PRACE, the Partnership for Advanced Computing in Europe, offers access to the largest high-performance computing systems in Europe. PRACE invites and helps industry to increase their innovative potential through the use of the PRACE infrastructure. This poster describes different efforts to assist Deltares with porting the open-source simulation software Delft3D-FLOW to PRACE infrastructures. Analysis of the performance on these infrastructures has been done for real life flow applications. Delft3D-FLOW is a 2D and 3D shallow water solver which calculates non-steady flow and transport phenomena resulting from tidal and meteorological forcing on a curvilinear, boundary fitted grid in Cartesian or spherical coordinates. It also includes a module which sediment transport (both suspended and bed total load) and morphological changes for an arbitrary number of cohesive and non-cohesive fractions. As Delft3D-FLOW has been developed over several decades, with a variety of functionality and over 350k lines of source code, porting to PRACE infrastructures needs some effort. At the moment Delft3D-FLOW uses MPI with domain decomposition in one direction as its parallellisation approach. Because it is hard to identify scaling issues if one immediately starts with a complex case with many features enabled, different cases with increasing complexity have been used to investigate scaling of this parallellisation approach on several PRACE platforms. As a base reference case we started with a schematic high-resolution 2D hydrodynamic model of the river Waal that turned out to be surprisingly well-suited to the highly-parallel PRACE machines. Although Delft3D-FLOW employs a sophisticated build system, several modifications were required to port it to most PRACE systems due to the use of specific, highly-tuned compilers and MPI-libraries. After this we moved to a 3D hydrodynamic model of Rotterdam harbour that includes sections of the rivers Rhine and Meuse and a part of the North 11. Numerical and experimental investigation of the 3D free surface flow in a model Pelton turbine This investigation focuses on the numerical and experimental analysis of the 3D free surface flow in a Pelton turbine. In particular, two typical flow conditions occurring in a full scale Pelton turbine - a configuration with a straight inlet as well as a configuration with a 90 degree elbow upstream of the nozzle - are considered. Thereby, the effect of secondary flow due to the 90 degree bending of the upstream pipe on the characteristics of the jet is explored. The hybrid flow field consists of pure liquid flow within the conduit and free surface two component flow of the liquid jet emerging out of the nozzle into air. The numerical results are validated against experimental investigations performed in the laboratory of the Institute of Fluid Mechanics (FLM). For the numerical simulation of the flow the in-house unstructured fully parallelized finite volume solver solver3D is utilized. An advanced interface capturing model based on the classic Volume of Fluid method is applied. In order to ensure sharp interface resolution an additional convection term is added to the transport equation of the volume fraction. A collocated variable arrangement is used and the set of non-linear equations, containing fluid conservation equations and model equations for turbulence and volume fraction, are solved in a segregated manner. For pressure-velocity coupling the SIMPLE and PISO algorithms are implemented. Detailed analysis of the observed flow patterns in the jet and of the jet geometry are presented. 12. Selecting 3D Chaotic Flow States for Accelerated DNA Replication in Micro Scale Convective PCR Priye, Aashish; Hassan, Yassin; Ugaz, Victor 2016-01-01 Micro-scale flow in cylindrical geometries can harness chaotic advection to perform complex thermally activated biochemical reactions such as the polymerase chain reaction (PCR). We have applied a 3D computational fluid dynamics model to resolve the complex flow patterns in such geometries. The resulting 3D flow trajectories are then used as input to a kinetic model to resolve the time evolution of DNA replication process. A simple mass action kinetic model was developed to couple these biochemical reactions with the intricate flow. Residence time analysis of virtual particles in the flow revealed that the flow has a strong chaotic component in wider geometries in comparison with taller geometries (quasi periodic motion). This work shows, for the first time that the chaotic aspect of the flow field plays a key role in determining the strength of the coupling between the reactions and the flow. Our model can quantify the doubling times of these reactions capturing the lag, exponential and plateau phases of PCR... 13. Wavelet-based adaptive numerical simulation of unsteady 3D flow around a bluff body de Stefano, Giuliano; Vasilyev, Oleg 2012-11-01 The unsteady three-dimensional flow past a two-dimensional bluff body is numerically simulated using a wavelet-based method. The body is modeled by exploiting the Brinkman volume-penalization method, which results in modifying the governing equations with the addition of an appropriate forcing term inside the spatial region occupied by the obstacle. The volume-penalized incompressible Navier-Stokes equations are numerically solved by means of the adaptive wavelet collocation method, where the non-uniform spatial grid is dynamically adapted to the flow evolution. The combined approach is successfully applied to the simulation of vortex shedding flow behind a stationary prism with square cross-section. The computation is conducted at transitional Reynolds numbers, where fundamental unstable three-dimensional vortical structures exist, by well-predicting the unsteady forces arising from fluid-structure interaction. 14. PIV measurements in a microfluidic 3D-sheathing structure with three-dimensional flow behaviour Klank, Henning; Goranovic, Goran; Kutter, Jörg Peter; Gjelstrup, Henrik; Michelsen, J.; Westergaard, C.H. 2002-01-01 The design and production time for complex microfluidic systems is considerable, often up to several months. It is therefore important to be able to understand and predict the flow phenomena prior to design and fabrication of the microdevice in order to save costly fabrication resources. The...... structures are often of complex geometry and include strongly three-dimensional flow behaviour, which poses a challenge for the micro particle image velocimetry (micro-PIV) technique. The flow in a microfluidic 3D-sheathing structure has been measured throughout the volume using micro-PIV. In addition, a... 15. Computation of aircraft component flow fields at transonic Mach numbers using a three-dimensional Navier-Stokes algorithm Shrewsbury, George D.; Vadyak, Joseph; Schuster, David M.; Smith, Marilyn J. 1989-01-01 A computer analysis was developed for calculating steady (or unsteady) three-dimensional aircraft component flow fields. This algorithm, called ENS3D, can compute the flow field for the following configurations: diffuser duct/thrust nozzle, isolated wing, isolated fuselage, wing/fuselage with or without integrated inlet and exhaust, nacelle/inlet, nacelle (fuselage) afterbody/exhaust jet, complete transport engine installation, and multicomponent configurations using zonal grid generation technique. Solutions can be obtained for subsonic, transonic, or hypersonic freestream speeds. The algorithm can solve either the Euler equations for inviscid flow, the thin shear layer Navier-Stokes equations for viscous flow, or the full Navier-Stokes equations for viscous flow. The flow field solution is determined on a body-fitted computational grid. A fully-implicit alternating direction implicit method is employed for the solution of the finite difference equations. For viscous computations, either a two layer eddy-viscosity turbulence model or the k-epsilon two equation transport model can be used to achieve mathematical closure. 16. 3D mathematical model for suspended load transport by turbulent flows and its applications LU Yongjun; DOU Guoren; HAN Longxi; SHAO Xuejun; YANG Xianghua 2004-01-01 This paper presents a 3D mathematical model for suspended load transport in turbulent flows. Based on Dou's stochastic theory of turbulent flow, numerical schemes of Reynolds stresses for anisotropic turbulent flows were obtained. A refined wall function was employed to treat solid wall boundaries. The equations for 2D suspended load motion and sorting of bed material have been expanded into 3D cases. Numerical results are validated by the measured data of the Gezhouba Project, and proved to be in good agreement with the experimental. The present method has been employed to simulate sediment erosion and deposition in the dam area of Three Gorges Project, and for the operation of the project, siltation process and deposition pattern in the near-dam area of the reservoir, size distribution of the deposits and bed material, and flow fields and sediment concentration fields at different time and elevations are predicted. The predicted results are close to the experimental observations in physical model studies. Thus, a new method is established for 3D simulation of sediment motion in dam areas of multi-purpose water projects. 17. Quasi 3D modeling of water flow and solute transport in vadose zone and groundwater Yakirevich, A.; Kuznetsov, M.; Weisbrod, N.; Pachepsky, Y. A. 2013-12-01 The complexity of subsurface flow systems calls for a variety of concepts leading to the multiplicity of simplified flow models. One commonly used simplification is based on the assumption that lateral flow and transport in unsaturated zone is insignificant unless the capillary fringe is involved. In such cases the flow and transport in the unsaturated zone above groundwater level can be simulated as a 1D phenomenon, whereas through groundwater they are viewed as 2D or 3D phenomena. A new approach for a numerical scheme for 3D variably saturated flow and transport is presented. A Quasi-3D approach allows representing flow in the 'vadose zone - aquifer' system by a series of 1D Richards' equations solved in variably-saturated zone and by 3D-saturated flow equation in groundwater (modified MODFLOW code). The 1D and 3D equations are coupled at the phreatic surface in a way that aquifer replenishment is calculated using the Richards' equation, and solving for the moving water table does not require definition of the specific yield parameter. The 3D advection-dispersion equation is solved in the entire domain by the MT3D code. Using implicit finite differences approximation to couple processes in the vadose zone and groundwater provides mass conservation and increase of computational efficiency. The above model was applied to simulate the impact of irrigation on groundwater salinity in the Alto Piura aquifer (Northern Peru). Studies on changing groundwater quality in arid and semi-arid lands show that irrigation return flow is one of the major factors contributing to aquifer salinization. Existing mathematical models do not account explicitly for the solute recycling during irrigation on a daily scale. Recycling occurs throughout the unsaturated and saturated zones, as function of the solute mass extracted from pumping wells. Salt concentration in irrigation water is calculated at each time step as a function of concentration of both surface water and groundwater 18. Modeling 3-D flow in the mantle wedge with complex slab geometries: Comparisons with seismic anisotropy Kincaid, C. R.; MacDougall, J. G.; Druken, K. A.; Fischer, K. M. 2010-12-01 Understanding patterns in plate scale mantle flow in subduction zones is key to models of thermal structure, dehydration reactions, volatile distributions and magma generation and transport in convergent margins. Different patterns of flow in the mantle wedge can generate distinct signatures in seismological observables. Observed shear wave fast polarization directions in several subduction zones are inconsistent with predictions of simple 2-D wedge corner flow. Geochemical signatures in a number of subduction zones also indicate 3-D flow and entrainment patterns in the wedge. We report on a series of laboratory experiments on subduction driven flow to characterize spatial and temporal variability in 3-D patterns in flow and shear-induced finite strain. Cases focus on how rollback subduction, along-strike dip changes in subducting plates and evolving gaps or tears in subduction zones control temporal-spatial patterns in 3-D wedge flow. Models utilize a glucose working fluid with a temperature dependent viscosity to represent the upper 2000 km of the mantle. Subducting lithosphere is modeled with two rubber-reinforced continuous belts. Belts pass around trench and upper/lower mantle rollers. The deeper rollers can move laterally to allow for time varying dip angle. Each belt has independent speed control and dip adjustment, allowing for along-strike changes in convergence rate and the evolution of slab gaps. Rollback is modeled using a translation system to produce either uniform and asymmetric lateral trench motion. Neutral density finite strain markers are distributed throughout the fluid and used as proxies for tracking the evolution of anisotropy through space and time in the evolving flow fields. Particle image velocimetry methods are also used to track time varying 3-D velocity fields for directly calculating anisotropy patterns. Results show that complex plate motions (rollback, steepening) and morphologies (gaps) in convergent margins produce flows with 19. Numerical simulation of complex 3D compressible viscous flows through rotating blade passage Despotović M. 2003-01-01 Full Text Available This paper describes a three-dimensional compressible Navier-Stokes code, which has been developed for analysis of turbocompressor blade rows and other internal flows. Despite numerous numerical techniques and statement that Computational Fluid Dynamics has reached state of the art, issues related to successful simulations represent valuable database of how particular tech­nique behave for a specifie problem. This paper deals with rapid numerical method accurate enough to be used as a design tool. The mathematical model is based on System of Favre averaged Navier-Stokes equations that are written in relative frame of reference, which rotates with constant angular velocity around axis of rotation. The governing equations are solved using finite vol­ume method applied on structured grids. The numerical procedure is based on the explicit multistage Runge-Kutta scheme that is coupled with modem numerical procedures for convergence acceleration. To demonstrate the accuracy of the described numer­ical method developed software is applied to numerical analysis of flow through impeller of axial turbocompressor, and obtained results are compared with available experimental data. 20. 3D Particle image velocimetry test of inner flow in a double blade pump impeller Liu, Houlin; Wang, Kai; Yuan, Shouqi; Tan, Minggao; Wang, Yong; Ru, Weimin 2012-05-01 The double blade pump is widely used in sewage treatment industry, however, the research on the internal flow characteristics of the double blade pump with particle image velocimetry (PIV) technology is very little at present. To reveal inner flow characteristics in double blade pump impeller under off-design and design conditions, inner flows in a double blade pump impeller, whose specific speed is 111, are measured under the five off-design conditions and design condition by using 3D PIV test technology. In order to ensure the accuracy of the 3D PIV test, the external trigger synchronization system which makes use of fiber optic and equivalent calibration method are applied. The 3D PIV relative velocity synthesis procedure is compiled by using Visual C++ 2005. Then absolute velocity distribution and relative velocity distribution in the double blade pump impeller are obtained. Test results show that vortex exists in each condition, but the location, size and velocity of vortex core are different. Average absolute velocity value of impeller outlet increases at first, then decreases, and then increases again with increase of flow rate. Again average relative velocity values under 0.4, 0.8, and 1.2 design condition are higher than that under 1.0 design condition, while under 0.6 and 1.4 design condition it is lower. Under low flow rate conditions, radial vectors of absolute velocities at impeller outlet and blade inlet near the pump shaft decrease with increase of flow rate, while that of relative velocities at the suction side near the pump shaft decreases. Radial vectors of absolute velocities and relative velocities change slightly under the two large flow rate conditions. The research results can be applied to instruct the hydraulic optimization design of double blade pumps. 1. Nonlinear analysis of chaotic flow in a 3D closed-loop pulsating heat pipe Pouryoussefi, S M 2016-01-01 Numerical simulation has been conducted for the chaotic flow in a 3D closed-loop pulsating heat pipe (PHP). Heat flux and constant temperature boundary conditions were applied for evaporator and condenser sections, respectively. Water and ethanol were used as working fluids. Volume of Fluid (VOF) method has been employed for two-phase flow simulation. Spectral analysis of temperature time series was carried out using Power Spectrum Density (PSD) method. Existence of dominant peak in PSD diagram indicated periodic or quasi-periodic behavior in temperature oscillations at particular frequencies. Correlation dimension values for ethanol as working fluid was found to be higher than that for water under the same operating conditions. Similar range of Lyapunov exponent values for the PHP with water and ethanol as working fluids indicated strong dependency of Lyapunov exponent to the structure and dimensions of the PHP. An O-ring structure pattern was obtained for reconstructed 3D attractor at periodic or quasi-peri... 2. Sand transverse dune aerodynamics: 3D Coherent Flow Structures from a computational study Bruno, Luca 2015-01-01 The engineering interest about dune fields is dictated by the their interaction with a number of human infrastructures in arid environments. The aerodynamic behaviour of sand dunes in atmospheric boundary layer belongs to the class of bluff bodies. Because of their simple geometry and their frequent occurrence in desert area, transverse sand dunes are usually adopted in literature as a benchmark to investigate dune aerodynamics by means of both computational or experimental approach, usually in nominally 2D setups. The writers suspect the flow in the wake is characterised by 3D features and affected by wind tunnel setup - e.g. blockage effect, duct side wall boundary layer, incoming velocity profile - when experimental studies are carried out. The present study aims at evaluating the 3D flow features of an idealised transverse dune under different setup conditions by means of computational simulations and to compare the obtained results with experimental measurements. 3. 3D-printing of Redox flow batteries for energy storage: a rapid prototype laboratory cell Arenas-Martinez, L.F.; Walsh, F.C.; Ponce de Leon, C. 2015-01-01 Although interest in redox flow batteries (RFBs) for energy storage has grown over the last few years, implementation of RFB technology has been slow and challenging. Recent developments in 3D-printing of materials enable a transforming technology for fast, reproducible and documented cell manufacture. This technology can give an improved engineering approach to cell design and fabrication, needed to fulfil requirements for lower cost, longer lifetime hardware capable of efficient reliable pe... 4. Numerical Calculation of the Flow Inside Pump Impellers Using 3D Euler Equations SARIOĞLU, Kemal; Ayder, Erkan 1999-01-01 The flow pattern inside an impeller should be determined for maximum efficiency and performance. The effects of the design parameters on the pump performance can be determined using numerical calculations instead of empirical equations. Incompressible 3D time-dependent Euler equations, written in a conservative form, are used. An artificial pressure term is added to preserve the hyperbolic character of the equations. A finite-volume technique is used for space discretization. A fou... 5. Rotary slanted single wire CTA – a useful tool for 3D flows investigations Jonáš P. 2013-01-01 The procedure is described of experimental investigation of a statistically stationary generally nonisothermal 3D flow by means of a constant temperature anemometer (CTA) using single slanted heated wire, rotary round the fixed axis. The principle of this procedure is quite clear. The change of the heated wire temperature modifies ratio of CTA sensitivities to temperature and velocity fluctuations. Turning the heated wire through a proper angle changes the sensitivity to components of the ins... 6. Influence of Underhood Flow on Engine Cooling Using 1-D And 3-D Approach Bolehovský Ondřej; Novotný Jan 2015-01-01 This work deals with numerical simulation of complete cooling system of internal combustion engine (GT-SUITE), which also involves the simulation of flow in underhood using the computationally undemanding simulation. A detailed model of the internal combustion engine is extended to a cooling circuit model which is then coupled to a simplified underhood model which is created with the help of GT-COOL application as a 3-D model and afterwards transferred to a 1-D form. The approaches, one using... 7. Empirical Modeling of Spatial 3D Flow Characteristics Using a Remote-Controlled ADCP System: Monitoring a Spring Flood Claude Flener; Yunsheng Wang; Leena Laamanen; Elina Kasvi; Jenni-Mari Vesakoski; Petteri Alho 2015-01-01 The use of acoustic Doppler current profilers (ADCP) for measuring streamflow and discharge is becoming increasingly widespread. The spatial distribution of flow patterns is useful data in studying riverine habitats and geomorphology. Until now, most flow mapping has focused on measurements along a series of transects in a channel. Here, we set out to measure, model and analyze the 3D flow characteristics of a natural river over a continuous areal extent, quantifying flow velocity, 3D flow di... 8. Ultrarapid detection of pathogenic bacteria using a 3D immunomagnetic flow assay. Lee, Wonjae; Kwon, Donghoon; Chung, Boram; Jung, Gyoo Yeol; Au, Anthony; Folch, Albert; Jeon, Sangmin 2014-07-01 We developed a novel 3D immunomagnetic flow assay for the rapid detection of pathogenic bacteria in a large-volume food sample. Antibody-functionalized magnetic nanoparticle clusters (AbMNCs) were magnetically immobilized on the surfaces of a 3D-printed cylindrical microchannel. The injection of a Salmonella-spiked sample solution into the microchannel produced instant binding between the AbMNCs and the Salmonella bacteria due to their efficient collisions. Nearly perfect capture of the AbMNCs and AbMNCs-Salmonella complexes was achieved under a high flow rate by stacking permanent magnets with spacers inside the cylindrical separator to maximize the magnetic force. The concentration of the bacteria in solution was determined using ATP luminescence measurements. The detection limit was better than 10 cfu/mL, and the overall assay time, including the binding, rinsing, and detection steps for a 10 mL sample took less than 3 min. To our knowledge, the 3D immunomagnetic flow assay described here provides the fastest high-sensitivity, high-capacity method for the detection of pathogenic bacteria. PMID:24856003 9. Flow structure of the solids in a 3-D gas-liquid-solid fluidized bed Larachi, F.; Cassanello, M.; Chaouki, J.; Guy, C. [Ecole Polytechnique, Montreal, Quebec (Canada). Dept. of Chemical Engineering 1996-09-01 Gas-liquid-solid fluidized systems have made inroads into a variety of industrial applications from heavy oil, petroleum resid, and synthetic crude processing to fermentation and aerobic biological wastewater treatment. Local and macroscopic solids flow structure and kinematics in a 3-D gas-liquid-solid fluidized bed were studied using a noninvasive radioactive-particle tracking (RPT) technique. Based on the multisite detection of {gamma} radiations emitted from a single radiolabeled tracer particle freely moving in the fluidized bed, RPT permitted the authors to obtain fast sampling of 3-D trajectories of the tracer, whose physical properties were similar to those of the solids inventory. These trajectories showed the detailed motion sequences of the solid particles as entrained in the bubble wakes, fluctuating randomly or sinking deterministically in the liquid-solid emulsion. Based on measurements done in the vortical-spiral flow regime, the dynamic solids flow structure inside a three-phase fluidized bed can be viewed as a three-zone core-annulus-annulus structure: a central fast-bubble flow region with the particles swirling upward; a vortical flow region around the velocity inversion point with the particles momentarily captured in emulsion vortices; and a relatively bubble-free descending flow region where the particles spiral down between the velocity inversion point and vessel walls. The flow structure of dense fluidized beds are similar to the flow structure of liquid and/or solid in lean fluidized beds. Measured distributions of local ensemble-averaged particle velocities and turbulence intensities were consistent with the existence of a toroidal recirculatory solids flow pattern in the bed. Measured mean circumferential ensemble-averaged radial velocity was essentially zero throughout most of the bed. The solids flow turbulence field was nonisotropic, as radial turbulence intensities were generally lower than longitudinal turbulence intensities. 10. NUMERICAL SIMULATION OF 3-D FLOW FIELD IN ARCIFORM PLUNGE POOL 2002-01-01 The 3-D complex turbulent flow fields in aplunge pool with arciform bottom are simulated by using thek-ε model in body-fitted coordinates. The calculated results re-veal the flow characteristics in the arciform plunge pool underthe different flood discharge conditions, which can not be easi-ly obtained in the physical model test because the measure-ment of the complex velocity is very difficult. The calculatedflow fields are helpful to understand in depth the hydrauliccharacteristics of plunge pool. The calculated and the meas-ured pressure distributions on the pool bottom are comparedand in good agreement. 11. Nonhydrostatic granular flow over 3-D terrain: New Boussinesq-type gravity waves? Castro-Orgaz, Oscar; Hutter, Kolumban; Giraldez, Juan V.; Hager, Willi H. 2015-01-01 granular mass flow is a basic step in the prediction and control of natural or man-made disasters related to avalanches on the Earth. Savage and Hutter (1989) pioneered the mathematical modeling of these geophysical flows introducing Saint-Venant-type mass and momentum depth-averaged hydrostatic equations using the continuum mechanics approach. However, Denlinger and Iverson (2004) found that vertical accelerations in granular mass flows are of the same order as the gravity acceleration, requiring the consideration of nonhydrostatic modeling of granular mass flows. Although free surface water flow simulations based on nonhydrostatic depth-averaged models are commonly used since the works of Boussinesq (1872, 1877), they have not yet been applied to the modeling of debris flow. Can granular mass flow be described by Boussinesq-type gravity waves? This is a fundamental question to which an answer is required, given the potential to expand the successful Boussinesq-type water theory to granular flow over 3-D terrain. This issue is explored in this work by generalizing the basic Boussinesq-type theory used in civil and coastal engineering for more than a century to an arbitrary granular mass flow using the continuum mechanics approach. Using simple test cases, it is demonstrated that the above question can be answered in the affirmative way, thereby opening a new framework for the physical and mathematical modeling of granular mass flow in geophysics, whereby the effect of vertical motion is mathematically included without the need of ad hoc assumptions. 12. Flow measurements in a model centrifugal pump by 3-D PIV Yang, H.; Xu, H. R.; Liu, C. 2012-11-01 PIV (Particle Image Velocimetry), as an non-intrusive flow measurements technology, is widely used to investigate the flow fields in many areas. 3-D (three Dimensional) PIV has seldom been used to measure flow field in rotational impeller of centrifugal pump due to the difficulty of calibration in samll space. In this article, a specially manufactured water tank was used to perform the calibration for 3-D PIV measurement. The instantaneous absolute velocity in one impeller passage was obtained by merging of three sub zones and the relative velocity was acquired by velocity decomposition. The result shows that, when the pump runs at the condition of design flow rate, the radial component velocity Wr appears a concave distribution except the condition of R=45 mm. With the increase of radius, the circumference location of the minimum radial component velocity Wr moves from the pressure side to the suction side. At the same time, the tangential component velocity Wθ on the suction side decreases gradually with the increase of radius, while the component on the pressure side increases gradually. The secondary flow in different radius section has also been shown. At last, the error of PIV measurements was analyzed, which shows that the test results are accurate and the measured data is reliable. 13. 3D MHD free surface fluid flow simulation based on magnetic-field induction equations The purpose of this paper is to present our recent efforts on 3D MHD model development and our results based on the technique derived from induced-magnetic-field equations. Two important features are utilized in our numerical method to obtain convergent solutions. First, a penalty factor is introduced in order to force the local divergence free condition of the magnetic fields. The second is that we extend the insulating wall thickness to ensure that the induced magnetic field at its boundaries is null. These simulation results for lithium film free surface flows under NSTX outboard mid-plane magnetic field configurations have shown that 3D MHD effects from a surface normal field gradient cause return currents to interact with surface normal fields and produce unfavorable MHD forces. This leads to a substantial change in flow pattern and a reduction in flow velocity, with most of the flow spilling over one side of the chute. These critical phenomena can not be revealed by 2D models. Additionally, a design which overcomes these undesired flow characteristics is obtained 14. Empirical Modeling of Spatial 3D Flow Characteristics Using a Remote-Controlled ADCP System: Monitoring a Spring Flood Claude Flener 2015-01-01 Full Text Available The use of acoustic Doppler current profilers (ADCP for measuring streamflow and discharge is becoming increasingly widespread. The spatial distribution of flow patterns is useful data in studying riverine habitats and geomorphology. Until now, most flow mapping has focused on measurements along a series of transects in a channel. Here, we set out to measure, model and analyze the 3D flow characteristics of a natural river over a continuous areal extent, quantifying flow velocity, 3D flow directions, volumes, water depth and their changes over time. We achieved multidimensional spatial flow measurements by deploying an ADCP on a remotely-controlled boat, combined with kinematic GNSS positioning and locally-monitored water level data. We processed this data into a 3D point cloud of accurately positioned individual 3D flow measurements that allows the visual analysis of flow velocities, directions and channel morphology in 3D space. We demonstrate how this allows monitoring changes of flow patterns with a time series of flow point clouds measured over the period of a spring flood in Finnish Lapland. Furthermore, interpolating the raw point cloud onto a 3D matrix allows us to quantify volumetric flow while reducing noise in the data. We can now quantify the volumes of water moving at certain velocities in a given reach and their location in 3D space, allowing, for instance, the monitoring of the high-velocity core and its changes over time. 15. Analytical solution of Stokes flow near corners and applications to numerical solution of Navier-Stokes equations with high precision Burda, P.; Novotný, Jaroslav; Šístek, Jakub Praha : Matematický ústav AV ČR, v.v.i, 2012 - (Brandts, J.; Chleboun, J.; Korotov, S.; Segeth, K.; Šístek, J.; Vejchodský, T.), s. 43-54 ISBN 978-80-85823-60-8. [Applications of Math ematics 2012. Prague (CZ), 02.05.2012-05.05.2012] R&D Projects: GA ČR GA106/08/0403 Institutional support: RVO:67985840 ; RVO:61388998 Keywords : Stokes flow * singularities * corners * asymptotic solution Subject RIV: BA - General Math ematics http://www. math .cas.cz/~am2012/proceedings/contributions/burda.pdf 16. A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries. Ge, Liang; Sotiropoulos, Fotis 2007-08-01 A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [1]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow through a mechanical, bileaflet heart valve mounted in a model straight aorta with an anatomical-like triple sinus. PMID:19194533 17. RV functional imaging: 3-D echo-derived dynamic geometry and flow field simulations. Pasipoularides, Ares D; Shu, Ming; Womack, Michael S; Shah, Ashish; Von Ramm, Olaf; Glower, Donald D 2003-01-01 We describe a novel functional imaging approach for quantitative analysis of right ventricular (RV) blood flow patterns in specific experimental animals (or humans) using real-time, three-dimensional (3-D) echocardiography (RT3D). The method is independent of the digital imaging modality used. It comprises three parts. First, a semiautomated segmentation aided by intraluminal contrast medium locates the RV endocardial surface. Second, a geometric scheme for dynamic RV chamber reconstruction applies a time interpolation procedure to the RT3D data to quantify wall geometry and motion at 400 Hz. A volumetric prism method validated the dynamic geometric reconstruction against simultaneous sonomicrometric canine measurements. Finally, the RV endocardial border motion information is used for mesh generation on a computational fluid dynamics solver to simulate development of the early RV diastolic inflow field. Boundary conditions (tessellated endocardial surface nodal velocities) for the solver are directly derived from the endocardial geometry and motion information. The new functional imaging approach may yield important kinematic information on the distribution of instantaneous velocities in the RV diastolic flow field of specific normal or diseased hearts. PMID:12388220 18. 3D Simulation of Flow with Free Surface Based on Adaptive Octree Mesh System Li Shaowu; Zhuang Qian; Huang Xiaoyun; Wang Dong 2015-01-01 The technique of adaptive tree mesh is an effective way to reduce computational cost through automatic adjustment of cell size according to necessity. In the present study, the 2D numerical N-S solver based on the adaptive quadtree mesh system was extended to a 3D one, in which a spatially adaptive octree mesh system and multiple parti-cle level set method were adopted for the convenience to deal with the air-water-structure multiple-medium coexisting domain. The stretching process of a dumbbell was simulated and the results indicate that the meshes are well adaptable to the free surface. The collapsing process of water column impinging a circle cylinder was simulated and from the results, it can be seen that the processes of fluid splitting and merging are properly simulated. The interaction of sec-ond-order Stokes waves with a square cylinder was simulated and the obtained drag force is consistent with the result by the Morison’s wave force formula with the coefficient values of the stable drag component and the inertial force component being set as 2.54. 19. Simulation of a 3D unsteady flow in an axial turbine stage Straka Petr 2012-04-01 Full Text Available The contribution deals with a numerical simulation of an unsteady ﬂow in an axial turbine stage. The solution is performed using an in-house numerical code developed in the Aeronautical and Test Institute, Plc. in Prague. The numerical code is based on a ﬁnite volume discretization of governing equations (Favre averaged Navier-Stokes equations and a two-equations turbulence model. The temporal integration is based on the implicit second-order backward Euler formula, which is realized through the iteration process in dual time. The proposed numerical method is used for solution of the 3D, unsteady, viscous turbulent ﬂow of a perfect gas in the axial turbine stage. The ﬂow path consists of an input nozzle, stator blade-wheel, rotor blade-wheel, a shroud-seal gap and a diffuser. Attention is paid to the inﬂuence of a secondary ﬂow structures, such as generated vortices and ﬂow in shroud-seal gap. 20. Intrathoracic tumour motion estimation from CT imaging using the 3D optical flow method Guerrero, Thomas [Division of Radiation Oncology, University of Texas M D Anderson Cancer Center, Houston, TX 77030 (United States); Zhang, Geoffrey [Division of Radiation Oncology, University of Texas M D Anderson Cancer Center, Houston, TX 77030 (United States); Huang Tzungchi [Division of Radiation Oncology, University of Texas M D Anderson Cancer Center, Houston, TX 77030 (United States); Lin Kaping [Department of Electrical Engineering, Chung-Yuan University, Taipei, Taiwan (China) 2004-09-07 The purpose of this work was to develop and validate an automated method for intrathoracic tumour motion estimation from breath-hold computed tomography (BH CT) imaging using the three-dimensional optical flow method (3D OFM). A modified 3D OFM algorithm provided 3D displacement vectors for each voxel which were used to map tumour voxels on expiration BH CT onto inspiration BH CT images. A thoracic phantom and simulated expiration/inspiration BH CT pairs were used for validation. The 3D OFM was applied to the measured inspiration and expiration BH CT images from one lung cancer and one oesophageal cancer patient. The resulting displacements were plotted in histogram format and analysed to provide insight regarding the tumour motion. The phantom tumour displacement was measured as 1.20 and 2.40 cm with full-width at tenth maximum (FWTM) for the distribution of displacement estimates of 0.008 and 0.006 cm, respectively. The maximum error of any single voxel's motion estimate was 1.1 mm along the z-dimension or approximately one-third of the z-dimension voxel size. The simulated BH CT pairs revealed an rms error of less than 0.25 mm. The displacement of the oesophageal tumours was nonuniform and up to 1.4 cm, this was a new finding. A lung tumour maximum displacement of 2.4 cm was found in the case evaluated. In conclusion, 3D OFM provided an accurate estimation of intrathoracic tumour motion, with estimated errors less than the voxel dimension in a simulated motion phantom study. Surprisingly, oesophageal tumour motion was large and nonuniform, with greatest motion occurring at the gastro-oesophageal junction. 1. Intrathoracic tumour motion estimation from CT imaging using the 3D optical flow method Guerrero, Thomas; Zhang, Geoffrey; Huang, Tzung-Chi; Lin, Kang-Ping 2004-09-01 The purpose of this work was to develop and validate an automated method for intrathoracic tumour motion estimation from breath-hold computed tomography (BH CT) imaging using the three-dimensional optical flow method (3D OFM). A modified 3D OFM algorithm provided 3D displacement vectors for each voxel which were used to map tumour voxels on expiration BH CT onto inspiration BH CT images. A thoracic phantom and simulated expiration/inspiration BH CT pairs were used for validation. The 3D OFM was applied to the measured inspiration and expiration BH CT images from one lung cancer and one oesophageal cancer patient. The resulting displacements were plotted in histogram format and analysed to provide insight regarding the tumour motion. The phantom tumour displacement was measured as 1.20 and 2.40 cm with full-width at tenth maximum (FWTM) for the distribution of displacement estimates of 0.008 and 0.006 cm, respectively. The maximum error of any single voxel's motion estimate was 1.1 mm along the z-dimension or approximately one-third of the z-dimension voxel size. The simulated BH CT pairs revealed an rms error of less than 0.25 mm. The displacement of the oesophageal tumours was nonuniform and up to 1.4 cm, this was a new finding. A lung tumour maximum displacement of 2.4 cm was found in the case evaluated. In conclusion, 3D OFM provided an accurate estimation of intrathoracic tumour motion, with estimated errors less than the voxel dimension in a simulated motion phantom study. Surprisingly, oesophageal tumour motion was large and nonuniform, with greatest motion occurring at the gastro-oesophageal junction. Presented at The IASTED Second International Conference on Biomedical Engineering (BioMED 2004), Innsbruck, Austria, 16-18 February 2004. 2. Intrathoracic tumour motion estimation from CT imaging using the 3D optical flow method The purpose of this work was to develop and validate an automated method for intrathoracic tumour motion estimation from breath-hold computed tomography (BH CT) imaging using the three-dimensional optical flow method (3D OFM). A modified 3D OFM algorithm provided 3D displacement vectors for each voxel which were used to map tumour voxels on expiration BH CT onto inspiration BH CT images. A thoracic phantom and simulated expiration/inspiration BH CT pairs were used for validation. The 3D OFM was applied to the measured inspiration and expiration BH CT images from one lung cancer and one oesophageal cancer patient. The resulting displacements were plotted in histogram format and analysed to provide insight regarding the tumour motion. The phantom tumour displacement was measured as 1.20 and 2.40 cm with full-width at tenth maximum (FWTM) for the distribution of displacement estimates of 0.008 and 0.006 cm, respectively. The maximum error of any single voxel's motion estimate was 1.1 mm along the z-dimension or approximately one-third of the z-dimension voxel size. The simulated BH CT pairs revealed an rms error of less than 0.25 mm. The displacement of the oesophageal tumours was nonuniform and up to 1.4 cm, this was a new finding. A lung tumour maximum displacement of 2.4 cm was found in the case evaluated. In conclusion, 3D OFM provided an accurate estimation of intrathoracic tumour motion, with estimated errors less than the voxel dimension in a simulated motion phantom study. Surprisingly, oesophageal tumour motion was large and nonuniform, with greatest motion occurring at the gastro-oesophageal junction 3. Bifurcations and degenerate periodic points in a 3D chaotic fluid flow Smith, Lachlan D; Lester, Daniel R; Metcalfe, Guy 2016-01-01 Analysis of the periodic points of a conservative periodic dynamical system uncovers the basic kinematic structure of the transport dynamics, and identifies regions of local stability or chaos. While elliptic and hyperbolic points typically govern such behaviour in 3D systems, degenerate (parabolic) points play a more important role than expected. These points represent a bifurcation in local stability and Lagrangian topology. In this study we consider the ramifications of the two types of degenerate periodic points that occur in a model 3D fluid flow. (1) Period-tripling bifurcations occur when the local rotation angle associated with elliptic points is reversed, creating a reversal in the orientation of associated Lagrangian structures. Even though a single unstable point is created, the bifurcation in local stability has a large influence on local transport and the global arrangement of manifolds as the unstable degenerate point has three stable and three unstable directions, similar to hyperbolic points, ... 4. 3D numerical investigation of turbulent flow through lateral intake in open channel The flow at a channel bifurcation is turbulent, highly three-dimensional (3D) and has many complex features. There is transverse motion accompanying the main flow and an extensive separation zone that develops in the branch channel. This zone causes hydraulic and sedimentation problems that must be known before designing the system. This necessitates a deeper insight into the flow patterns and shear stress distributions near the solid boundaries. This paper reports a 3D numerical investigation of flow pattern and shear stress distribution at a lateral intake in an open channel. Simulations are done on rectangular channel geometry, with smooth bed and sidewalls. The CFD model uses the standard k-ε and k-ω model of Wilcox turbulence closure schemes as implemented in the FLUENT code. The simulation results were compared with available experimental data. It was found that both turbulence models used accurately predicted velocity profiles in the main channel but in the branch channel, the k-ω model is performed better than the k-ε turbulence model. (author) 5. Holographic measurement of wall stress distribution and 3D flow over a surface textured by microfibers Bocanegra, Humberto; Gorumlu, Seder; Aksak, Burak; Castillo, Luciano; Sheng, Jian 2015-11-01 Understanding how fluid flow interacts with micro-textured surfaces is crucial for a broad range of key biological processes and engineering applications including particle dispersion, pathogenic infections, and drag manipulation by surface topology. Existing methods, such as μPIV, suffers from low spatial resolution and fail to track tracer particle motion very close to a rough surface and within roughness elements. In this paper, we present a technique that combines high speed digital holographic microscopy (DHM) with a correlation based de-noising algorithm to overcome the optical interference generated by surface roughness and to capture a large number of 3D particle trajectories. It allows us to obtain a 3D velocity field with an uncertainty of 0.01% and 2D wall shear stress distribution at the resolution of ~ 65 μPa. Applying the technique to a microfluidics with a surface textured by microfibers, we find that the flow is three-dimensional and complex. While the microfibers affect the velocity flow field locally, their presence is felt globally in terms of wall shear stresses. The study of effect of microfiber patterns and flow characteristics on skin frictions are ongoing and will be reported. 6. Surfactant-induced migration of a spherical drop in Stokes flow Hanna, James A.; Vlahovska, Petia M. 2009-01-01 In Stokes flows, symmetry considerations dictate that a neutrally-buoyant spherical particle will not migrate laterally with respect to the local flow direction. We show that a loss of symmetry due to flow-induced surfactant redistribution leads to cross-stream drift of a spherical drop in Poiseuille flow. We derive analytical expressions for the migration velocity in the limit of small non-uniformities in the surfactant distribution, corresponding to weak-flow conditions or a high-viscosity ... 7. A continuous flow microfluidic calorimeter: 3-D numerical modeling with aqueous reactants Sen, Mehmet A., E-mail: mehmet.sen@mathworks.com [Northeastern University, Department of Mechanical and Industrial Engineering, 360 Hungtington Avenue, 334 Snell Engineering Center, Boston, MA 02115 (United States); Kowalski, Gregory J., E-mail: gkowal@coe.neu.edu [Northeastern University, Department of Mechanical and Industrial Engineering, 360 Hungtington Avenue, 334 Snell Engineering Center, Boston, MA 02115 (United States); Fiering, Jason, E-mail: jfiering@draper.com [Charles Stark Draper Laboratory, 555 Technology Square, Cambridge, MA 02139 (United States); Larson, Dale, E-mail: dlarson@draper.com [Charles Stark Draper Laboratory, 555 Technology Square, Cambridge, MA 02139 (United States) 2015-03-10 Highlights: • A co-flow microreactor is modeled in flow, reaction/diffusion, and thermal domains. • Analysis shows how arrayed temperature sensors can provide enthalpy of reaction. • Optical plasmonic temperature sensors could be arrayed suitably for calorimetry. • The reactor studied has a volume of 25 nL. - Abstract: A computational analysis of the reacting flow field, species diffusion and heat transfer processes with thermal boundary layer effects in a microchannel reactor with a coflow configuration was performed. Two parallel adjacent streams of aqueous reactants flow along a wide, shallow, enclosed channel in contact with a substrate, which is affixed to a temperature controlled plate. The Fluent computational fluid dynamics package solved the Navier–Stokes, mass transport and energy equations. The energy model, including the enthalpy of reaction as a nonuniform heat source, was validated by calculating the energy balance at several control volumes in the microchannel. Analysis reveals that the temperature is nearly uniform across the channel thickness, in the direction normal to the substrate surface; hence, measurements made by sensors at or near the surface are representative of the average temperature. Additionally, modeling the channel with a glass substrate and a silicone cover shows that heat transfer is predominantly due to the glass substrate. Finally, using the numerical results, we suggest that a microcalorimeter could be based on this configuration, and that temperature sensors such as optical nanohole array sensors could have sufficient spatial resolution to determine enthalpy of reaction. 8. Predictions of bubbly flows in vertical pipes using two-fluid models in CFDS-FLOW3D code Banas, A.O.; Carver, M.B. [Chalk River Laboratories (Canada); Unrau, D. [Univ. of Toronto (Canada) 1995-09-01 This paper reports the results of a preliminary study exploring the performance of two sets of two-fluid closure relationships applied to the simulation of turbulent air-water bubbly upflows through vertical pipes. Predictions obtained with the default CFDS-FLOW3D model for dispersed flows were compared with the predictions of a new model (based on the work of Lee), and with the experimental data of Liu. The new model, implemented in the CFDS-FLOW3D code, included additional source terms in the {open_quotes}standard{close_quotes} {kappa}-{epsilon} transport equations for the liquid phase, as well as modified model coefficients and wall functions. All simulations were carried out in a 2-D axisymmetric format, collapsing the general multifluid framework of CFDS-FLOW3D to the two-fluid (air-water) case. The newly implemented model consistently improved predictions of radial-velocity profiles of both phases, but failed to accurately reproduce the experimental phase-distribution data. This shortcoming was traced to the neglect of anisotropic effects in the modelling of liquid-phase turbulence. In this sense, the present investigation should be considered as the first step toward the ultimate goal of developing a theoretically sound and universal CFD-type two-fluid model for bubbly flows in channels. 9. The 3-D CFD modeling of gas turbine combustor-integral bleed flow interaction Chen, D. Y.; Reynolds, R. S. 1993-01-01 An advanced 3-D Computational Fluid Dynamics (CFD) model was developed to analyze the flow interaction between a gas turbine combustor and an integral bleed plenum. In this model, the elliptic governing equations of continuity, momentum and the k-e turbulence model were solved on a boundary-fitted, curvilinear, orthogonal grid system. The model was first validated against test data from public literature and then applied to a gas turbine combustor with integral bleed. The model predictions agreed well with data from combustor rig testing. The model predictions also indicated strong flow interaction between the combustor and the integral bleed. Integral bleed flow distribution was found to have a great effect on the pressure distribution around the gas turbine combustor. 10. Unsteady Reynolds Averaged Navier-Stokes and Large Eddy Simulations of Flows across Staggered Tube Bundle for a VHTR Lower Plenum Design In this work, behavior of unsteady and oscillating flow through a typical tube bundle array are analyzed by unsteady computations: 2D unsteady Reynolds averaged Navier-Stokes (URANS) and 3D Large Eddy Simulation (LES) and the results are compared with existing experimental data. In order to confirm appropriateness and limitations of CFD applications in the Korean VHTR design, two types of unsteady computations are performed such as 2D unsteady Reynolds averaged Navier-Stokes (URANS) and 3D Large Eddy Simulation (LES) for the existing tube bundle array. The velocity component profiles are compared with the experimental data and it is concluded that the URANS with the standard k-ω model is reasonably appropriate for cost-effective VHTR lower plenum analysis. Nevertheless, if more accurate results are needed, the LES-Smagorinsky computation is recommended considering limitations in the time averaged RANS in capturing small eddies 11. Complex 3D Blood Flow Pathways in Two Cases of Aorta to Right Heart Fistulae: a 4D Flow MRI study Thakrar, Darshit; Popescu, Andrada; Gupta, Suraj; de Freitas, Andrew; Russell, Hyde; Carr, James; Markl, Michael 2013-01-01 We present an analysis of 3D blood flow in two cases of Sinus of Valsalva to right heart fistulae based on 4D flow MRI. Despite similar underlying pathology, 3D visualization revealed intricate differences in flow patterns connecting the systemic and pulmonary circulation. The cases illustrates the potential of 4D flow MRI to complement the evaluation of complex structural heart disease by assessing complex flow dynamics and providing quantitative information of flow ratios and flow rates. 12. Matching-index-of-refraction of transparent 3D printing models for flow visualization Matching-index-of-refraction (MIR) has been used for obtaining high-quality flow visualization data for the fundamental nuclear thermal-hydraulic researches. By this method, distortions of the optical measurements such as PIV and LDV have been successfully minimized using various combinations of the model materials and the working fluids. This study investigated a novel 3D printing technology for manufacturing models and an oil-based working fluid for matching the refractive indices. Transparent test samples were fabricated by various rapid prototyping methods including selective layer sintering (SLS), stereolithography (SLA), and vacuum casting. As a result, the SLA direct 3D printing was evaluated to be the most suitable for flow visualization considering manufacturability, transparency, and refractive index. In order to match the refractive indices of the 3D printing models, a working fluid was developed based on the mixture of herb essential oils, which exhibit high refractive index, high transparency, high density, low viscosity, low toxicity, and low price. The refractive index and viscosity of the working fluid range 1.453–1.555 and 2.37–6.94 cP, respectively. In order to validate the MIR method, a simple test using a twisted prism made by the SLA technique and the oil mixture (anise and light mineral oil) was conducted. The experimental results show that the MIR can be successfully achieved at the refractive index of 1.51, and the proposed MIR method is expected to be widely used for flow visualization studies and CFD validation for the nuclear thermal-hydraulic researches 13. Matching-index-of-refraction of transparent 3D printing models for flow visualization Song, Min Seop; Choi, Hae Yoon; Seong, Jee Hyun; Kim, Eung Soo, E-mail: kes7741@snu.ac.kr 2015-04-01 Matching-index-of-refraction (MIR) has been used for obtaining high-quality flow visualization data for the fundamental nuclear thermal-hydraulic researches. By this method, distortions of the optical measurements such as PIV and LDV have been successfully minimized using various combinations of the model materials and the working fluids. This study investigated a novel 3D printing technology for manufacturing models and an oil-based working fluid for matching the refractive indices. Transparent test samples were fabricated by various rapid prototyping methods including selective layer sintering (SLS), stereolithography (SLA), and vacuum casting. As a result, the SLA direct 3D printing was evaluated to be the most suitable for flow visualization considering manufacturability, transparency, and refractive index. In order to match the refractive indices of the 3D printing models, a working fluid was developed based on the mixture of herb essential oils, which exhibit high refractive index, high transparency, high density, low viscosity, low toxicity, and low price. The refractive index and viscosity of the working fluid range 1.453–1.555 and 2.37–6.94 cP, respectively. In order to validate the MIR method, a simple test using a twisted prism made by the SLA technique and the oil mixture (anise and light mineral oil) was conducted. The experimental results show that the MIR can be successfully achieved at the refractive index of 1.51, and the proposed MIR method is expected to be widely used for flow visualization studies and CFD validation for the nuclear thermal-hydraulic researches. 14. Regional cerebral blood flow in pure dysarthria. A 3D-SSP study Pure dysarthria from brain infarction is a rare condition, and its pathophysiology remains unclear. To clarify the underlying mechanism of pure dysarthria, we investigated the lesion sites and regional cerebral blood flow in patients with pure dysarthria. We examined 18 consecutive patients with pure dysarthria (9 men and 9 women; mean age, 71 years) who underwent MRI and cerebral blood flow studies. To visualize the regional cerebral blood flow, we generated Z score images using the three-dimensional stereotactic surface projection (3D-SSP) method with single-photon emission computed tomography (SPECT) and N-isopropyl-p [123I]iodoamphetamine. Data on the brain surface perfusion extracted by the 3D-SSP analysis were compared between the pure dysarthria (PD) patients and 9 control subjects. MRI revealed multiple lacunar infarctions involving the internal capsule and/or corona radiata in 11 patients, left internal capsule-corona radiata infarction in 4 patients, and pontine infarction in 3 patients. SPECT with 3D-SSP demonstrated bilateral frontal cortical hypoperfusion in all patients, particularly in the anterior opercular region. Based on intergroup comparisons, the PD group exhibited pronounced cortical hypoperfusion in the opercular and medial frontal regions, left more than right. In conclusion, pure dysarthria is considered to originate from frontal cortical hypoperfusion, mainly in the anterior opercular and medial frontal regions, which is probably due to interruption of the corticosubcortical neural networks relevant to speech expression and articulation. In addition, it is suggested that left hemispheric lesions may make a greater contribution to the development of pure dysarthria than do right ones. (author) 15. 3D Numerical Simulation of Overbank Flow in Non-Orthogonal Curvilinear Coordinates ZHANG Ming-liang; SHEN Yong-ming; WU Xiu-guang 2005-01-01 The velocity field in meandering compound channels with overbank flow is highly three dimensional. To date, its features have been investigated experimentally and little research has been undertaken to investigate the feasibility of reproducing these velocity fields with computer models. If computer modeling were to prove successful in this context, it could become a useful prediction technique and research tool to enhance our understanding of natural river dynamics. A 3-D k-ε turbulence hydrodynamic model in curvilinear coordinates is established to simulate the overbank flow. The body-fitted coordinate is adopted in the horizontal plane, the part grid is adopted in the vertical direction, and the wall-function method is employed to simulate the bed resistance. The model is applied to the simulation of the meandering channel with straight flood plain banks, and the main velocities and secondary velocities for both the longitudinal and cross sections are presented. Comparison and analysis show that the results of simulation are fit to reflect the results of experiment. These results show the application value of the model to 3D overbank flow. 16. Vascular centerline extraction in 3D MR angiograms for phase contrast MRI blood flow measurement Hernandez Hoyos, M. [CREATIS, CNRS 5515 et INSERM U630 Research Unit, INSA de Lyon, 69 - Villeurbanne (France); Universidad de los Andes, Bogota (Colombia). Grupo Imagine, Grupo de Ingenieria Biomedica; Orlowski, P.; Piatkowska-Janko, E.; Bogorodzki, P. [Warsaw Univ. of Tech. (Poland). ZEJM-BINSK, Inst. of Radioelectronics; Orkisz, M. [CREATIS, CNRS 5515 et INSERM U630 Research Unit, INSA de Lyon, 69 - Villeurbanne (France) 2006-03-15 The accuracy of 2D phase contrast (PC) magnetic resonance angiography (MRA) depends on the alignment between the vessels and the imaging plane. PC MRA imaging of blood flow is challenging when the flow in several vessels is to be evaluated with one acquisition. For this purpose, semi-automatic determination of the plane most perpendicular to several vessels is proposed based on centerlines extracted from 3D MRA. Arterial centerlines are extracted from 3D MRA based on iterative estimation-prediction, multi-scale analysis of image moments, and a second-order shape model. The optimal plane is determined by minimizing misalignment between its normal vector and the centerlines' tangent vectors. The method was evaluated on a phantom and on 35 patients, by seeking the optimal plane for cerebral blood flow quantification simultaneously in internal carotids and vertebral arteries. In the phantom, difference of orientation and of height between known and calculated planes was 1.2 and 2.5 mm, respectively. In the patients, all but one centerline were correctly extracted and the misalignment of the plane was within 12 per artery. Semi-automatic centerline extraction simplifies and automates determination of the plane orthogonal to one vessel, thereby permitting automatic simultaneous minimization of the misalignment with several vessels in PC MRA. (orig.) 17. Vascular centerline extraction in 3D MR angiograms for phase contrast MRI blood flow measurement The accuracy of 2D phase contrast (PC) magnetic resonance angiography (MRA) depends on the alignment between the vessels and the imaging plane. PC MRA imaging of blood flow is challenging when the flow in several vessels is to be evaluated with one acquisition. For this purpose, semi-automatic determination of the plane most perpendicular to several vessels is proposed based on centerlines extracted from 3D MRA. Arterial centerlines are extracted from 3D MRA based on iterative estimation-prediction, multi-scale analysis of image moments, and a second-order shape model. The optimal plane is determined by minimizing misalignment between its normal vector and the centerlines' tangent vectors. The method was evaluated on a phantom and on 35 patients, by seeking the optimal plane for cerebral blood flow quantification simultaneously in internal carotids and vertebral arteries. In the phantom, difference of orientation and of height between known and calculated planes was 1.2 and 2.5 mm, respectively. In the patients, all but one centerline were correctly extracted and the misalignment of the plane was within 12 per artery. Semi-automatic centerline extraction simplifies and automates determination of the plane orthogonal to one vessel, thereby permitting automatic simultaneous minimization of the misalignment with several vessels in PC MRA. (orig.) 18. Quasi 3D refined simulation of flow and pollutant transport in a meandering River Reach Li-ren Yu 2013-03-01 Full Text Available This paper reports a quasi 3D numerical simulation in a meandering river reach of the Yellow River, aiming to develop a tool for modeling turbulent flows and pollutant transport in complex natural waters. The recently built depth-averaged two-equation turbulence model, together with and models, were used to close non-simplified quasi 3D hydrodynamic fundamental governing equations. The discretized equations were solved by advanced multi-grid iterative method under non-orthogonal body-fitted coarse and fine two-levels’ grids with collocated variable arrangement. Except for steady flow and transport computation, the processes of contaminant inpouring and plume development, caused by the side-discharge from a tribytary, also have been investigated numerically. The used three closure approaches are suitable for modeling strong mixing turbulence. The established model with higher order of magnitude of transported variable provides a possibility to elevate the computational precision. Based on the developed mathematical model, a CFD (Computational Fluid Dynamics software, namely Q3drm1.0, was developed. This numerical tool focuses on the refined simulations of the steady and unsteady problems of flow and temperature/contaminant transports in complicated computational domains with the strong ability to deal with different discharge situations: side-discharge, point-source discharge/point-sink, and area-source discharge from the slope along bank. In this article, the study of side-discharge is presented only. 19. PIV measurement of the flow field in a domestic refrigerator model: Comparison with 3D simulations Ben Amara, S.; Laguerre, O.; Flick, D. [UMR Genie Industriel Alimentaire (Cemagref-AgroParisTech-INRA) - Cemagref, Parc de Tourvoie, BP 44, 92185 Antony Cedex (France); Charrier-Mojtabi, M.-C.; Lartigue, B. [Universite Paul Sabatier, Laboratoire PHASE, E.A. 3208, 118 route de Narbonne, 31062 Toulouse Cedex 4 (France) 2008-12-15 PIV (particle image velocimetry) measurements of flow field due to natural convection in a parallelepipedic enclosure representing a domestic refrigerator model (scale 1) have been undertaken in order to determine the thickness of the hydrodynamic boundary layers and to study the flow motions depending on the boundary conditions applied on the vertical walls. One of the vertical walls is maintained at a negative and constant temperature either on the totality or on one part of its surface: this wall acts as the evaporator. The other walls are in contact with external air at constant temperature. The velocity measurements have been made in the symmetry plane of the enclosure. Unsteady recirculations have been observed at the bottom of the cavity. The influence of both the temperature and the dimension of the cold wall has been studied. Numerical simulations using CFD software (Fluent) have been then performed. In the numerical model, we assumed that the temperature of the evaporator is constant while an uniform global heat transfer coefficient has been used to describe the heat exchange with the external air at constant temperature. We considered laminar 3D flows and took into account the heat transfer by radiation between the different walls of the cavity. The results obtained with the 3D numerical simulations are in quite good agreement with the experimental airflow measurements using the PIV technique. (author) 20. Influence of Underhood Flow on Engine Cooling Using 1-D And 3-D Approach Bolehovský Ondřej 2015-12-01 Full Text Available This work deals with numerical simulation of complete cooling system of internal combustion engine (GT-SUITE, which also involves the simulation of flow in underhood using the computationally undemanding simulation. A detailed model of the internal combustion engine is extended to a cooling circuit model which is then coupled to a simplified underhood model which is created with the help of GT-COOL application as a 3-D model and afterwards transferred to a 1-D form. The approaches, one using 1-D solution of arrangement of the heat exchangers and the other 3-D approach using the underhood model, were investigated in two steady states corresponding to various vehicle speeds and engine load. These simulations have shown the inappropriateness of 1-D approach when solving the flow in the heat exchangers in the underhood and helped to explore a relatively undemanding method of flow simulation in the underhood, which enables to detect the interaction between the models of the cooling system and the internal combustion engine and the issue of arrangement of the heat exchangers in the underhood. 1. Simulation of the 3D viscoelastic free surface flow by a parallel corrected particle scheme Jin-Lian, Ren; Tao, Jiang 2016-02-01 In this work, the behavior of the three-dimensional (3D) jet coiling based on the viscoelastic Oldroyd-B model is investigated by a corrected particle scheme, which is named the smoothed particle hydrodynamics with corrected symmetric kernel gradient and shifting particle technique (SPH_CS_SP) method. The accuracy and stability of SPH_CS_SP method is first tested by solving Poiseuille flow and Taylor-Green flow. Then the capacity for the SPH_CS_SP method to solve the viscoelastic fluid is verified by the polymer flow through a periodic array of cylinders. Moreover, the convergence of the SPH_CS_SP method is also investigated. Finally, the proposed method is further applied to the 3D viscoelastic jet coiling problem, and the influences of macroscopic parameters on the jet coiling are discussed. The numerical results show that the SPH_CS_SP method has higher accuracy and better stability than the traditional SPH method and other corrected SPH method, and can improve the tensile instability. Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20130436 and BK20150436) and the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (Grant No. 15KJB110025). 2. Pipe Flow and Wall Turbulence Using a Modified Navier-Stokes Equation L. Jirkovsky; A. Muriel 2012-01-01 We use a derived incompressible modified Navier-Stokes equation to model pipe flow and wall turbulence. We reproduce the observed flattened paraboloid velocity profiles of turbulence that cannot be obtained directly using standard incompressible Navier-Stokes equation. The solutions found are in harmony with multi-valued velocity fields as a definition of turbulence. Repeating the procedure for the flow of turbulent fluid between two parallel flat plates we find similar flattened velocity profiles. We extend the analysis to the turbulent flow along a single wall and compare the results with experimental data and the established controversial yon Karman logarithmic law of the wall. 3. Quantification of smoothing requirement for 3D optic flow calculation of volumetric images Bab-Hadiashar, Alireza; Tennakoon, Ruwan B.; de Bruijne, Marleen 2013-01-01 Complexities of dynamic volumetric imaging challenge the available computer vision techniques on a number of different fronts. This paper examines the relationship between the estimation accuracy and required amount of smoothness for a general solution from a robust statistics perspective. We show...... that a (surprisingly) small amount of local smoothing is required to satisfy both the necessary and sufficient conditions for accurate optic flow estimation. This notion is called 'just enough' smoothing, and its proper implementation has a profound effect on the preservation of local information in processing 3D... 4. On the Modelling of Steady Generalized Newtonian Flows in a 3D Coronary Bypass Vimmr, Jan; Jonášová, Alena 2008-01-01 Blood's non-Newtonian behaviour is investigated in an idealized coronary 3D bypass model, which includes both the proximal and distal parts of the occluded native artery and the connected end-to-side bypass graft. Considering the blood to be a generalized Newtonian fluid, the shear-dependent viscosity is given by two well-known macroscopic non-Newtonian models (the Carreau-Yasuda model and the modified Cross model). Both non-Newtonian steady flow fields are analyzed with regard to the bypass ... 5. 3-D slug flow heat transfer analysis of coupled coolant cells in finite LMFBR bundles A three-dimensional single region slug flow heat transfer analysis for finite LMFBR rod bundles using a classical analytical solution method has been performed. According to the isolated single cell analysis, the results show that the peripheral clad temperature variation as well as the thermal entrance length are strongly dependent upon the degree of irregularity displayed by various coolant geometries. Since under the present LMFBR conditions, fully-developed temperature fields may hardly be established in such characteristic rod bundle regions, a 3-D heat transfer analysis seems to be mandatory. This implies that the results of fully developed heat transfer analyses are by far too conservative 6. Rotary slanted single wire CTA - a useful tool for 3D flows investigations Jonáš, P. 2013-04-01 The procedure is described of experimental investigation of a statistically stationary generally nonisothermal 3D flow by means of a constant temperature anemometer (CTA) using single slanted heated wire, rotary round the fixed axis. The principle of this procedure is quite clear. The change of the heated wire temperature modifies ratio of CTA sensitivities to temperature and velocity fluctuations. Turning the heated wire through a proper angle changes the sensitivity to components of the instantaneous velocity vector. Some recommendations are presented based on long time experiences, e.g. on the choice of probe, on the probe calibration, to the measurement organization and to the evaluation of results. 7. Rotary slanted single wire CTA – a useful tool for 3D flows investigations Jonáš P. 2013-04-01 Full Text Available The procedure is described of experimental investigation of a statistically stationary generally nonisothermal 3D flow by means of a constant temperature anemometer (CTA using single slanted heated wire, rotary round the fixed axis. The principle of this procedure is quite clear. The change of the heated wire temperature modifies ratio of CTA sensitivities to temperature and velocity fluctuations. Turning the heated wire through a proper angle changes the sensitivity to components of the instantaneous velocity vector. Some recommendations are presented based on long time experiences, e.g. on the choice of probe, on the probe calibration, to the measurement organization and to the evaluation of results. 8. Numerical Investigation of Nozzle Geometry Effect on Turbulent 3-D Water Offset Jet Flows Negar Mohammad Aliha 2016-01-01 Full Text Available Using the Yang-Shih low Reynolds k-ε turbulence model, the mean flow field of a turbulent offset jet issuing from a long circular pipe was numerically investigated. The experimental results were used to verify the numerical results such as decay rate of streamwise velocity, locus of maximum streamwise velocity, jet half width in the wall normal and lateral directions, and jet velocity profiles. The present study focused attention on the influence of nozzle geometry on the evolution of a 3D incompressible turbulent offset jet. Circular, square-shaped, and rectangular nozzles were considered here. A comparison between the mean flow characteristics of offset jets issuing from circular and square-shaped nozzles, which had equal area and mean exit velocity, were made numerically. Moreover, the effect of aspect ratio of rectangular nozzles on the main features of the flow was investigated. It was shown that the spread rate, flow entrainment, and mixing rate of an offset jet issuing from circular nozzle are lower than square-shaped one. In addition, it was demonstrated that the aspect ratio of the rectangular nozzles only affects the mean flow field of the offset jet in the near field (up to 15 times greater than equivalent diameter of the nozzles. Furthermore, other parameters including the wall shear stress, flow entrainment and the length of potential core were also investigated. 9. Method of internal 3D flow field numerical simulation for hydrodynamic torque converter Tao SHANG; Dingxuan ZHAO; Yuankun ZHANG; Xiangen GUO; Xiangzhong SHI 2008-01-01 To enhance the performance of a hydrody-namic torque converter and thoroughly understand the trait of inside flow, a numerical simulation method of internal 3D flow for the three-element centrifugal hydrodynamic torque converter was systematically researched and expatiated in this paper. First, the internal flow field of each impeller was calculated. The curves that illustrate the relationships between the pressure differences of the inlet and outlet versus flux were drawn. Second, the concurrent working point of each impeller was approximately estimated. Finally, a calculation was performed considering the influence on each impeller. The flow field of a working point was solved by multiple calculations and the actual working condition was gradually determined. The pressure and velocity distributions of the flow field were proposed. The performance parameters of the hydrodynamic torque converter were predicted. The calculation method, and the proposed pressure and velocity distribution of the flow field, have practical significance for the design and improvement of a hydrodynamic torque converter. 10. Analytical solution of rotationally symmetric Stokes flow near corners Burda, P.; Novotný, Jaroslav; Šístek, Jakub Praha : Matematický ústav AV ČR, v.v.i, 2013 - (Brandts, S.; Korotov, S.; Křížek, M.; Šístek, J.; Vejchodský, T.), s. 13-20 ISBN 978-80-85823-61-5. [Applications of Math ematics 2013. Prague (CZ), 15.05.2013-18.05.2013] Institutional support: RVO:67985840 ; RVO:61388998 Keywords : Stokes problem * rotationally symmetric domains Subject RIV: BA - General Math ematics http://www. math .cas.cz/~am2013/proceedings/contributions/burda.pdf 11. Method of coupling 1-D unsaturated flow with 3-D saturated flow on large scale Yan ZHU 2011-12-01 Full Text Available A coupled unsaturated-saturated water flow numerical model was developed. The water flow in the unsaturated zone is considered the one-dimensional vertical flow, which changes in the horizontal direction according to the groundwater table and the atmospheric boundary conditions. The groundwater flow is treated as the three-dimensional water flow. The recharge flux to groundwater from soil water is considered the bottom flux for the numerical simulation in the unsaturated zone, and the upper flux for the groundwater simulation. It connects and unites the two separated water flow systems. The soil water equation is solved based on the assumed groundwater table and the subsequent predicted recharge flux. Then, the groundwater equation is solved with the predicted recharge flux as the upper boundary condition. Iteration continues until the discrepancy between the assumed and calculated groundwater nodal heads have a certain accuracy. Illustrative examples with different water flow scenarios regarding the Dirichlet boundary condition, the Neumann boundary condition, the atmospheric boundary condition, and the source or sink term were calculated by the coupled model. The results are compared with those of other models, including Hydrus-1D, SWMS-2D, and FEFLOW, which demonstrate that the coupled model is effective and accurate and can significantly reduce the computational time for the large number of nodes in saturated-unsaturated water flow simulation. 12. Real-time tracking with a 3D-flow processor array The problem of real-time track-finding has been performed to date with CAM (Content Addressable Memories) or with fast coincidence logic, because the processing scheme was though to have much slower performance. Advances in technology together with a new architectural approach make it feasible to also explore the computing technique for real-time track finding thus giving the advantages of implementing algorithms that can find more parameters such as calculate the sagitta, curvature, pt, etc. with respect to the CAM approach. This report describes real-time track finding using a new computing approach technique based on the 3D-flow array processor system. This system consists of a fixed interconnection architexture scheme, allowing flexible algorithm implementation on a scalable platform. The 3D-Flow parallel processing system for track finding is scalable in size and performance by either increasing the number of processors, or increasing the speed or else the number of pipelined stages. The present article describes the conceptual idea and the design stage of the project 13. Real-time tracking with a 3D-Flow processor array The problem of real-time track-finding has been performed to date with CAM (Content Addressable Memories) or with fast coincidence logic, because the processing scheme was thought to have much slower performance. Advances in technology together with a new architectural approach make it feasible to also explore the computing technique for real-time track finding thus giving the advantages of implementing algorithms that can find more parameters such as calculate the sagitta, curvature, pt, etc., with respect to the CAM approach. The report describes real-time track finding using new computing approach technique based on the 3D-Flow array processor system. This system consists of a fixed interconnection architecture scheme, allowing flexible algorithm implementation on a scalable platform. The 3D-Flow parallel processing system for track finding is scalable in size and performance by either increasing the number of processors, or increasing the speed or else the number of pipelined stages. The present article describes the conceptual idea and the design stage of the project 14. LHCb base-line level-0 trigger 3D-flow implementation Crosetto, D 1999-01-01 The LHCb Level-0 trigger implementation with the 3D-Flow system offers full programmability, allowing it to adapt to unexpected operating conditions and enabling new, unpredicted physics. The implementation is described in detail and refers to components and technology available today. The 3D-Flow Processor system is a new, technology-independent concept in very fast, real-time system architectures. Based on the replication of a single type of circuit of 100 k gates, which communicates in six directions: bi-directional with North, East, West, and South neighbors, unidirectional from Top to Bottom, the system offers full programmability, modularity, ease of expansion and adaptation to the latest technology. A complete study of its applicability to the LHCb calorimeter triggers is presented. Full description of the input data handling, either in digital or mixed digital-analog form, of the data processing, and the transmission of results to the global level-0 trigger decision unit are provided. Any level-0 trig... 15. Coupled Aeroelastic Oscillations of a Turbine Blade Row in 3D Transonic Flow Vitaly Gnesin; Lyubov Kolodyazhnaya; Romuald Rzadkowski 2001-01-01 This paper presents the mutual time - marching method to predict the aeroelastic stability of an oscillating blade row in 3D transonic flow. The ideal gas flow through a blade row is governed by the time dependent Euler equations in conservative form which are integrated by using the explicit monotonous second order accurate Godunov-Kolgan finite volume scheme and moving hybrid H-O grid. The structure analysis uses the modal approach and 3D finite element dynamic model of blade. The blade movement is assumed as a linear combination of the fast modes of blade natural oscillations with the modal coefficients depending on time. To demonstrate the capability and correctness of the method, two experimentally investigated test cases have been selected, in which the blades had performed tuned harmonic bending or torsional vibrations (The 1th and 4th standard configurations of the "Workshop on Aeroelasticity in Turbomachines" by Bolcs and Fransson, 1986). The calculated results of aeroelastic behaviour of the blade row (4th standard configuration), are presented over a wide frequency range under different start regimes of interblade phase angle. 16. A numerical solution of 3D inviscid rotational flow in turbines and ducts Oktay, Erdal; Akmandor, Sinan; Üçer, Ahmet 1998-04-01 The numerical solutions of inviscid rotational (Euler) flows were obtained using an explicit hexahedral unstructured cell vertex finite volume method. A second-order-accurate, one-step Lax-Wendroff scheme was used to solve the unsteady governing equations discretized in conservative form. The transonic circular bump, in which the location and the strength of the captured shock are well predicted, was used as the first test case. The nozzle guide vanes of the VKI low-speed turbine facility were used to validate the Euler code in highly 3D environment. Despite the high turning and the secondary flows which develop, close agreements have been obtained with experimental and numerical results associated with these test cases. 17. A NUMERICAL SIMULATION OF 3-D INNER FLOW IN UP-STREAM PUMPING MECHANICAL SEAL ZHANG Jin-feng; YUAN Shou-qi; FU Yong-hong; FANG Yu-jian 2006-01-01 Numerical simulation of 3-D inner flow between Up-stream Pumping Mechanical Face Seals (UPMFS) faces was initially done by CFD software, which made the flow visualization come true.Simulation results directly discover the action of hydrodynamic lubrication, and by comparison with that of Conventional Mechanic Face Seals (CMFS), the advantage over bigger bearing capability, less friction and much less leakage are explained clearly.Otherwise there are also some different ideas and results from precedent analysis and computational research results: dynamic and static pressure profiles can be obtained respectively instead of the analytic total pressure distribution only, pressure distribution is nonlinear, while always be solved as linear, lower pressure is observed at the area of inner diameter caused by the grooves, but its possible cavitations effects to the performance of UPMFS still need further study. 18. Casting directly from a computer model by using advanced simulation software FLOW-3D Cast ® M. Sirviö 2009-01-01 Full Text Available ConiferRob - A patternless casting technique, originally conceived at VTT Technical Research Centre of Finland and furtherdeveloped at its spin-off company, Simtech Systems, offers up to 40% savings in product development costs, and up to two months shorterdevelopment times compared to conventional techniques. Savings of this order can be very valuable on today's highly competitivemarkets. Casting simulation is commonly used for designing of casting systems. However, most of the software are today old fashioned and predicting just shrinkage porosity. Flow Science, VTT and Simtech have developed new software called FLOW-3D Cast ® , whichcan simulate surface defects, air entrainment, filters, core gas problems and even a cavitation. 19. MRI-based aortic blood flow model in 3D ballistocardiography. Lejeune, L; Prisk, G K; Nonclercq, A; Migeotte, P-F 2015-08-01 Ballistocardiography (BCG) is a non-invasive technique which measures the acceleration of a body induced by cardiovascular activity, namely the force exerted by the beating heart. A one dimensional aortic flow model based on the transmission lines theory is developped and applied to the simulation of three dimensional BCG. A four-element Windkessel model is used to generate the pressure-wave. Using transverse MRI slices of a human subject, a reconstruction of the aorta allows the extraction of parameters used to relate the local change in mass of the 1D flow model to 3D acceleration BCG. Simulated BCG curves are then compared qualitatively with the ensemble average curves of the same subject recorded in sustained microgravity. Confirming previous studies, the main features of the y-axis are well simulated. The simulated z-axis, never attempted before, shows important similarities. The simulated x-axis is less faithful and suggests the presence of reflections. PMID:26737946 20. 3D conformation of a flexible fiber in a turbulent flow Verhille, Gautier; Bartoli, Adrien 2016-07-01 A growing number of studies is devoted to anisotropic particles in turbulent flows. In most cases, the particles are assumed to be rigid and their deformations are neglected. We present an adaptation of classical computer vision tools to reconstruct from two different images the 3D conformation of a fiber distorted by the turbulent fluctuations in a von Kármán flow. This technique allows us notably to characterize the fiber deformation by computing the correlation function of the orientation of the tangent vector. This function allows us to tackle the analogy between polymers and flexible fibers proposed by Brouzet et al. (Phys Rev Lett 112(7):074501, 2014). We show that this function depends on an elastic length ℓ _e which characterizes the particle flexibility, as is the case for polymers, but also on the fiber length L, contrary to polymers. 1. Effect of span length and temperature on the 3-D confined flow around a vortex promoter Martin, E. [Fluid Mechanics Area, School of Industrial Engineering, Universidad de Vigo, Campus Lagoas-Marcosende, 36310 Vigo (Spain); Velazquez, A., E-mail: angel.velazquez@upm.es [Aerospace Propulsion and Fluid Mechanics Department, School of Aeronautics, Universidad Politecnica de Madrid, Plaza del Cardenal Cisneros 3, 28040 Madrid (Spain) 2011-12-15 Highlights: Black-Right-Pointing-Pointer The article deals with study of vortex promoter flow in a 3-D micro-channel. Black-Right-Pointing-Pointer Aspects studied are: channel aspect ratio and prism surface temperature. Black-Right-Pointing-Pointer Flow is classified into three different regimes depending on different parameters. Black-Right-Pointing-Pointer Results could be used for practical engineering design purposes. - Abstract: This article presents a numerical study on the influence of span length and wall temperature on the 3-D flow pattern around a square section vortex promoter located inside a micro-channel in the low Reynolds number regime. The first objective of the work is to quantify the critical Reynolds number that defines the onset of vortex shedding and to identify the different regimes that appear as a function of the channel aspect ratio (span to height ratio). We found that the critical Reynolds number for the onset of the Karman street regime increases as the aspect ratio decreases. In particular, for the aspect ratio of 1/2 the critical Reynolds number is nearly six times the critical Reynolds number of the 2-D problem. An intermediate oscillating regime between the steady and the Karman street solutions was also found to exist within a rather wide range of Reynolds numbers for small channel aspect ratios. The second objective was to investigate the influence of the vortex promoter wall temperature on both vortex shedding and flow pattern. This has practical engineering implications because the working fluid considered in the article is water that has a viscosity that depends significantly on temperature and promotes a strong coupling between the momentum and energy equations that influences the system behaviour. Results indicate that high surface temperature on the prism promotes the onset of the Karman street, suggesting design guidelines for micro-channel based heat sinks that make use of vortex promoters. 2. Effect of span length and temperature on the 3-D confined flow around a vortex promoter Highlights: ► The article deals with study of vortex promoter flow in a 3-D micro-channel. ► Aspects studied are: channel aspect ratio and prism surface temperature. ► Flow is classified into three different regimes depending on different parameters. ► Results could be used for practical engineering design purposes. - Abstract: This article presents a numerical study on the influence of span length and wall temperature on the 3-D flow pattern around a square section vortex promoter located inside a micro-channel in the low Reynolds number regime. The first objective of the work is to quantify the critical Reynolds number that defines the onset of vortex shedding and to identify the different regimes that appear as a function of the channel aspect ratio (span to height ratio). We found that the critical Reynolds number for the onset of the Karman street regime increases as the aspect ratio decreases. In particular, for the aspect ratio of 1/2 the critical Reynolds number is nearly six times the critical Reynolds number of the 2-D problem. An intermediate oscillating regime between the steady and the Karman street solutions was also found to exist within a rather wide range of Reynolds numbers for small channel aspect ratios. The second objective was to investigate the influence of the vortex promoter wall temperature on both vortex shedding and flow pattern. This has practical engineering implications because the working fluid considered in the article is water that has a viscosity that depends significantly on temperature and promotes a strong coupling between the momentum and energy equations that influences the system behaviour. Results indicate that high surface temperature on the prism promotes the onset of the Karman street, suggesting design guidelines for micro-channel based heat sinks that make use of vortex promoters. 3. A 3-D implicit finite-volume model of shallow water flows Wu, Weiming; Lin, Qianru 2015-09-01 A three-dimensional (3-D) model has been developed to simulate shallow water flows in large water bodies, such as coastal and estuarine waters. The eddy viscosity is determined using a newly modified mixing length model that uses different mixing length functions for the horizontal and vertical shear strain rates. The 3-D shallow water flow equations with the hydrostatic pressure assumption are solved using an implicit finite-volume method based on a quadtree (telescoping) rectangular mesh on the horizontal plane and the sigma coordinate in the vertical direction. The quadtree technique can locally refine the mesh around structures or in high-gradient regions by splitting a coarse cell into four child cells. The grid nodes are numbered with a one-dimensional index system that has unstructured grid feature for better grid flexibility. All the primary variables are arranged in a non-staggered grid system. Fluxes at cell faces are determined using a Rhie and Chow-type momentum interpolation, to avoid the possible spurious checkerboard oscillations caused by linear interpolation. Each of the discretized governing equations is solved iteratively using the flexible GMRES method with ILUT preconditioning, and coupling of water level and velocity among these equations is achieved by using the SIMPLEC algorithm with under-relaxation. The model has been tested in four cases, including steady flow near a spur-dyke, tidal flows in San Francisco Bay and Gironde Estuary, and wind-induced current in a flume. The calculated water levels and velocities are in good agreement with the measured values. 4. 3-D numerical investigation of subsurface flow in anisotropic porous media using multipoint flux approximation method Negara, Ardiansyah 2013-01-01 Anisotropy of hydraulic properties of subsurface geologic formations is an essential feature that has been established as a consequence of the different geologic processes that they undergo during the longer geologic time scale. With respect to petroleum reservoirs, in many cases, anisotropy plays significant role in dictating the direction of flow that becomes no longer dependent only on the pressure gradient direction but also on the principal directions of anisotropy. Furthermore, in complex systems involving the flow of multiphase fluids in which the gravity and the capillarity play an important role, anisotropy can also have important influences. Therefore, there has been great deal of motivation to consider anisotropy when solving the governing conservation laws numerically. Unfortunately, the two-point flux approximation of finite difference approach is not capable of handling full tensor permeability fields. Lately, however, it has been possible to adapt the multipoint flux approximation that can handle anisotropy to the framework of finite difference schemes. In multipoint flux approximation method, the stencil of approximation is more involved, i.e., it requires the involvement of 9-point stencil for the 2-D model and 27-point stencil for the 3-D model. This is apparently challenging and cumbersome when making the global system of equations. In this work, we apply the equation-type approach, which is the experimenting pressure field approach that enables the solution of the global problem breaks into the solution of multitude of local problems that significantly reduce the complexity without affecting the accuracy of numerical solution. This approach also leads in reducing the computational cost during the simulation. We have applied this technique to a variety of anisotropy scenarios of 3-D subsurface flow problems and the numerical results demonstrate that the experimenting pressure field technique fits very well with the multipoint flux approximation 5. Computed Tomography 3-D Imaging of the Metal Deformation Flow Path in Friction Stir Welding Schneider, Judy; Beshears, Ronald; Nunes, Arthur C., Jr. 2005-01-01 In friction stir welding (FSW), a rotating threaded pin tool is inserted into a weld seam and literally stirs the edges of the seam together. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path is required. Marker studies are the principal method of studying the metal deformation flow path around the FSW pin tool. In our study, we have used computed tomography (CT) scans to reveal the flow pattern of a lead wire embedded in a FSW weld seam. At the welding temperature of aluminum, the lead becomes molten and is carried with the macro-flow of the weld metal. By using CT images, a 3-dimensional (3D) image of the lead flow pattern can be reconstructed. CT imaging was found to be a convenient and comprehensive way of collecting and displaying tracer data. It marks an advance over previous more tedious and ambiguous radiographic/metallographic data collection methods. 6. Pelton turbine Needle erosion prediction based on 3D three- phase flow simulation Pelton turbine, which applied to the high water head and small flow rate, is widely used in the mountainous area. During the operation period the sediment contained in the water does not only induce the abrasion of the buckets, but also leads to the erosion at the nozzle which may damage the needle structure. The nozzle and needle structure are mainly used to form high quality cylindrical jet and increase the efficiency of energy exchange in the runner to the most. Thus the needle erosion will lead to the deformation of jet, and then may cause the efficiency loss and cavitation. The favourable prediction of abrasion characteristic of needle can effectively guide the optimization design and maintenance of needle structure. This paper simulated the unsteady three-dimensional multi-phase flow in the nozzle and injected jet flow. As the jet containing water and sediment is injected into the free atmosphere air with high velocity, the VOF model was adopted to predict the water and air flow. The sediment is simplified into round solid particle and the discrete particle model (DPM) was employed to predict the needle abrasion characteristic. The sand particle tracks were analyzed to interpret the mechanism of sand erosion on the needle surface. And the numerical result of needle abrasion was obtained and compared with the abrasion field observation. The similarity of abrasion pattern between the numerical results and field observation illustrated the validity of the 3D multi-phase flow simulation method 7. A Parallel 3D Spectral Difference Method for Solutions of Compressible Navier Stokes Equations on Deforming Grids and Simulations of Vortex Induced Vibration DeJong, Andrew Numerical models of fluid-structure interaction have grown in importance due to increasing interest in environmental energy harvesting, airfoil-gust interactions, and bio-inspired formation flying. Powered by increasingly powerful parallel computers, such models seek to explain the fundamental physics behind the complex, unsteady fluid-structure phenomena. To this end, a high-fidelity computational model based on the high-order spectral difference method on 3D unstructured, dynamic meshes has been developed. The spectral difference method constructs continuous solution fields within each element with a Riemann solver to compute the inviscid fluxes at the element interfaces and an averaging mechanism to compute the viscous fluxes. This method has shown promise in the past as a highly accurate, yet sufficiently fast method for solving unsteady viscous compressible flows. The solver is monolithically coupled to the equations of motion of an elastically mounted 3-degree of freedom rigid bluff body undergoing flow-induced lift, drag, and torque. The mesh is deformed using 4 methods: an analytic function, Laplace equation, biharmonic equation, and a bi-elliptic equation with variable diffusivity. This single system of equations -- fluid and structure -- is advanced through time using a 5-stage, 4th-order Runge-Kutta scheme. Message Passing Interface is used to run the coupled system in parallel on up to 240 processors. The solver is validated against previously published numerical and experimental data for an elastically mounted cylinder. The effect of adding an upstream body and inducing wake galloping is observed. 8. Surface-tension-driven Stokes flow: A numerical method based on conformal geometry Buchak, Peter; Crowdy, Darren G. 2016-07-01 A novel numerical scheme is presented for solving the problem of two dimensional Stokes flows with free boundaries whose evolution is driven by surface tension. The formulation is based on a complex variable formulation of Stokes flow and use of conformal mapping to track the free boundaries. The method is motivated by applications to modelling the fabrication process for microstructured optical fibres (MOFs), also known as "holey fibres", and is therefore tailored for the computation of multiple interacting free boundaries. We give evidence of the efficacy of the method and discuss its performance. 9. Simulation of abrasive flow machining process for 2D and 3D mixture models Dash, Rupalika; Maity, Kalipada 2015-12-01 Improvement of surface finish and material removal has been quite a challenge in a finishing operation such as abrasive flow machining (AFM). Factors that affect the surface finish and material removal are media viscosity, extrusion pressure, piston velocity, and particle size in abrasive flow machining process. Performing experiments for all the parameters and accurately obtaining an optimized parameter in a short time are difficult to accomplish because the operation requires a precise finish. Computational fluid dynamics (CFD) simulation was employed to accurately determine optimum parameters. In the current work, a 2D model was designed, and the flow analysis, force calculation, and material removal prediction were performed and compared with the available experimental data. Another 3D model for a swaging die finishing using AFM was simulated at different viscosities of the media to study the effects on the controlling parameters. A CFD simulation was performed by using commercially available ANSYS FLUENT. Two phases were considered for the flow analysis, and multiphase mixture model was taken into account. The fluid was considered to be a 10. Cosmic dynamo analogue and decay of magnetic fields in 3D Ricci flows de Andrade, Garcia 2009-01-01 Magnetic curvature effects, investigated by Barrow and Tsagas (BT) [Phys Rev D \\textbf{77},(2008)],as a mechanism for magnetic field decay in open Friedmann universes ({\\Lambda}<0$), are applied to dynamo geometric Ricci flows in 3D curved substrate in laboratory. By simple derivation, a covariant three-dimensional magnetic self-induced equation, presence of these curvature effects, indicates that de Sitter cosmological constant (${\\Lambda}\\ge{0}$), leads to enhancement in the fast kinematic dynamo action which adds to stretching of plasma flows. From the magnetic growth rate, the strong shear case, anti-de Sitter case (${\\Lambda}<0$) BT magnetic decaying fields are possible while for weak shear, fast dynamos are possible. The self-induced equation in Ricci flows is similar to the equation derived by BT in$(3+1)$-spacetime continuum. Lyapunov-de Sitter metric is obtained from Ricci flow eigenvalue problem. In de Sitter analogue there is a decay rate of${\\gamma}\\approx{-{\\Lambda}}\\approx{-10^{-35}s^{-...

11. Quasi 3-D measurements of turbulence structure in horizontal air-water bubbly flow

Quasi 3-D measurements of the turbulence structure of air-water bubbly flow in a horizontal tube with 35 mm i.d. are undertaken with two TSI 'X''-type hot-film probes. The turbulent fluctuations, uf,vf,wf, in axial, radial and circumferential directions, respectively, and Reynolds tresses -UV-bar and -u w-bar are obtained. It is found that in the lower portion of the tube, the profiles of turbulent fluctuation and Reynolds tress resemble those of single phase flow; whereas in the upper portion of he tube, where the bubble population is high, the turbulence, especially the circumferential fluctuation wf, is substantially enhanced, and the radial turbulence assumes highest value in the radial position -0.7< r/R<0.5. The magnitudes of Reynolds stresses -u w-bar and -UV-bar in our measurements are in the same level except in the lower portion of the tube where -u w-bar assumes a value close to zero as is the case in single phase flow and vertical air-water bubbly flow

12. Multiscale modeling of mechanosensing channels on vesicles and cell membranes in 3D constricted flows and shear flows

Peng, Zhangli; Pak, On Shun; Young, Yuan-Nan; Liu, Allen; Stone, Howard

2015-11-01

We investigate the gating of mechanosensing channels (Mscls) on vesicles and cell membranes under different flow conditions using a multiscale approach. At the cell level (microns), the membrane tension is calculated using a 3D two-component whole-cell membrane model based on dissipative particle dynamics (DPD), including the cortex cytoskeleton and its interactions with the lipid bilayer. At the Mscl level (nanometers), we predict the relation between channel gating and the membrane tension obtained from a cell-level model using a semi-analytical model based on the bilayer hydrophobic mismatch energy. We systematically study the gating of Mscls of vesicles and cell membranes in constricted channel flows and shear flows, and explore the dependence of the gating on flow rate, cell shape and size. The results provide guidance for future experiments in inducing Mscl opening for various purposes such as drug delivery.

13. Computer Simulation of Flow in CSO “OK3D Evropská”

J. Pollert

2000-01-01

Full Text Available During the last 30 years, a number of devices has been developed for dynamic separation of settle able solids in wastewaters. Initially, these separators were used for control of Combined Sewer Overflow (CSO pollution by retaining the bulk of solids in the underflow, directed to the sewage treatment plant (STP, and allowing combined sewage with reduced pollutant loads to overflow from the sewer systém. This paper is describing CSO “OK 3D Evropská” in Prague 6 on Evropská Street. Inlet to CSO is 3 m diameter tube collecting water from location of Oepy, Vokovice, Liboc and Ruzyně. The outflow throttle pipe is 1.1 m in diameter and continues to central wastewater treatment plant and overflow is ending in Šárecký creek. Šárecký creek flows through the Šárka valley which is environmentally protected area. CSO “OK 3D Evropská" has high overflow crest and probability of the function is 0.44 per year.

14. A corrected vortex blob method for 3D thermal buoyant flows

Golia, Carmine; Buonomo, Bernardo; Viviani, Antonio [Seconda Universita di Napoli (SUN), Dipartimento di Ingegneria Aerospaziale e Meccanica (DIAM), via Roma 29, 81031 Aversa (Italy)

2008-11-15

This work explores novel ideas to improve the accuracy of integral approximation to differential operators (divergence, gradient and Laplacian) in the simulation of 3D thermal buoyant flows with meshless Lagrangian Blobs methods. Basically, we investigate and develop an integral discretization of the differential operators of the field equations, by using convolutions of truncated 3D-Taylor series expansions with a kernel function defined on a compact support around the blob centre of a given particle. This allows to overtake: circle the irregular distribution of cells in the compact support around the given blob, circle the deficiency of cells in the compact support due to the presence of a boundary cutting the compact support of nearby blobs. The accuracy and the order of approximation of such discretizations are determined in regular and randomly distorted grids of various sizes, and compared with the widely used particle strength exchange formulations. The analysis of the effects of using the new formulations to solve problems at realistic values of the Grashof number demonstrates the validity and the benefits of the novel findings. (author)

15. Potential for 3-D hyporheic exchange flow along a succession of pool-riffle sequences

Käser, Daniel; Binley, Andrew; Krause, Stefan; Heathwaite, Louise

2010-05-01

Pool-riffle sequences are key geomorphological features that can influence the ecology of streams by inducing a flow exchange between surface water and groundwater - a process called hyporheic exchange flow (HEF). The objective of this research was to test the suitability of a simple 3-D groundwater model for characterizing HEF induced by pool-riffle sequences that had been the focus of experimental study. Three reaches of 20 m were modelled separately. While the bed topography was surveyed and represented at a high resolution, the permeability distribution referred to a simple conceptual model consisting of two superposed layers. One hypothesis was that, despite its simplicity, the calibrated model would produce an acceptable fit between observed and simulated heads because its permeability structure resembled the natural system. The potential complexity of hyporheic flow patterns is well-known, yet this study highlights the usefulness of a simple conceptual model coupled to mechanistic flow equations for describing HEF in 3-D. The error structure of the calibrated model provides insight into various site-specific features. The root mean square error between computed and observed hydraulic heads (relative to the head drop over the structure) is comparable to other studies with more elaborate permeability structures. After calibration, a sensitivity analysis was conducted in order to determine the influence of permeability contrast between the layers, depth of the permeability interface, and basal flux on three HEF characteristics: residence time, lateral and vertical extent, and total flux. Results indicate that permeability characteristics can affect HEF in different ways. For example, the vertical extent is deepest in homogeneous conditions, whereas the lateral extent is not significantly affected by permeability contrast, or by the depth of the interface between the two layers. Thus bank piezometers may be insufficient to calibrate groundwater models of HEF

16. Noninvasive 3D pressure calculation from PC-MRI via non-iterative harmonics-based orthogonal projection: constant flow experiment.

Negahdar, M J; Kadbi, Mo; Cha, J; Cebral, J; Amini, A

2013-01-01

Use of phase-contrast (PC) MRI in assessment of hemodynamics has significant clinical importance. In this paper we develop a novel approach to determination of hemodynamic pressures. 3D gradients of pressure obtained from Navier-Stokes equation are expanded into a series of orthogonal basis functions, and are subsequently projected onto an integrable subspace. Before the projection step however, a scheme is devised to eliminate the discontinuity at the vessel and image boundaries. In terms of the computation time, the proposed approach significantly improves on previous iterative methods for pressure calculations. The method has been validated using computational fluid dynamic simulations and in-vitro MRI studies of stenotic flows. PMID:24110706

17. Incompressible limit of all-time solutions to 3-D full Navier-Stokes equations for perfect gas with well-prepared initial condition

Ren, Dandan; Ou, Yaobin

2016-08-01

In this paper, we prove the incompressible limit of all-time strong solutions to the three-dimensional full compressible Navier-Stokes equations. Here the velocity field and temperature satisfy the Dirichlet boundary condition and convective boundary condition, respectively. The uniform estimates in both the Mach number {ɛin(0,overline{ɛ}]} and time {tin[0,∞)} are established by deriving a differential inequality with decay property, where {overline{ɛ} in(0,1]} is a constant. Based on these uniform estimates, the global solution of full compressible Navier-Stokes equations with "well-prepared" initial conditions converges to the one of isentropic incompressible Navier-Stokes equations as the Mach number goes to zero.

18. FLOW3D model for below-core thermal mixing in the Oconee pressurised water reactor

The computational fluid dynamics code FLOW3D is being used to develop a model for calculating the mixing of cold leg flows inside the vessel of a pressurised water reactor. To assess the capabilities of the model, a simulation was made of a thermal mixing test at the Oconee-1 Nuclear Station. The test measured temperature deviations at the core inlet produced by an imposed temperature difference between cold legs. Both the tests results and the simulation showed that most of the cold leg flows arrive unmixed at the core inlet. However, the simulation was unable to reproduce the asymmetric irregularities observed in the core inlet temperature distribution, and consequently the degree of mixing was under-predicted. Various sensitivity studies were carried out on the model, but these did not reveal the source of the asymmetry. It was therefore concluded that the asymmetry source was outside the scope of the model, but the model was nevertheless able to make plausible but pessimistic estimates of mixing. (author)

19. Lattice Boltzmann Model of 3D Multiphase Flow in Artery Bifurcation Aneurysm Problem.

Abas, Aizat; Mokhtar, N Hafizah; Ishak, M H H; Abdullah, M Z; Ho Tian, Ang

2016-01-01

This paper simulates and predicts the laminar flow inside the 3D aneurysm geometry, since the hemodynamic situation in the blood vessels is difficult to determine and visualize using standard imaging techniques, for example, magnetic resonance imaging (MRI). Three different types of Lattice Boltzmann (LB) models are computed, namely, single relaxation time (SRT), multiple relaxation time (MRT), and regularized BGK models. The results obtained using these different versions of the LB-based code will then be validated with ANSYS FLUENT, a commercially available finite volume- (FV-) based CFD solver. The simulated flow profiles that include velocity, pressure, and wall shear stress (WSS) are then compared between the two solvers. The predicted outcomes show that all the LB models are comparable and in good agreement with the FVM solver for complex blood flow simulation. The findings also show minor differences in their WSS profiles. The performance of the parallel implementation for each solver is also included and discussed in this paper. In terms of parallelization, it was shown that LBM-based code performed better in terms of the computation time required. PMID:27239221

20. Lattice Boltzmann Model of 3D Multiphase Flow in Artery Bifurcation Aneurysm Problem

Aizat Abas

2016-01-01

Full Text Available This paper simulates and predicts the laminar flow inside the 3D aneurysm geometry, since the hemodynamic situation in the blood vessels is difficult to determine and visualize using standard imaging techniques, for example, magnetic resonance imaging (MRI. Three different types of Lattice Boltzmann (LB models are computed, namely, single relaxation time (SRT, multiple relaxation time (MRT, and regularized BGK models. The results obtained using these different versions of the LB-based code will then be validated with ANSYS FLUENT, a commercially available finite volume- (FV- based CFD solver. The simulated flow profiles that include velocity, pressure, and wall shear stress (WSS are then compared between the two solvers. The predicted outcomes show that all the LB models are comparable and in good agreement with the FVM solver for complex blood flow simulation. The findings also show minor differences in their WSS profiles. The performance of the parallel implementation for each solver is also included and discussed in this paper. In terms of parallelization, it was shown that LBM-based code performed better in terms of the computation time required.

1. A Novel Flow-Perfusion Bioreactor Supports 3D Dynamic Cell Culture

Alexander M. Sailon

2009-01-01

Full Text Available Background. Bone engineering requires thicker three-dimensional constructs than the maximum thickness supported by standard cell-culture techniques (2 mm. A flow-perfusion bioreactor was developed to provide chemotransportation to thick (6 mm scaffolds. Methods. Polyurethane scaffolds, seeded with murine preosteoblasts, were loaded into a novel bioreactor. Control scaffolds remained in static culture. Samples were harvested at days 2, 4, 6, and 8 and analyzed for cellular distribution, viability, metabolic activity, and density at the periphery and core. Results. By day 8, static scaffolds had a periphery cell density of 67%±5.0%, while in the core it was 0.3%±0.3%. Flow-perfused scaffolds demonstrated peripheral cell density of 94%±8.3% and core density of 76%±3.1% at day 8. Conclusions. Flow perfusion provides chemotransportation to thick scaffolds. This system may permit high throughput study of 3D tissues in vitro and enable prefabrication of biological constructs large enough to solve clinical problems.

2. Lattice Boltzmann Model of 3D Multiphase Flow in Artery Bifurcation Aneurysm Problem

Abas, Aizat; Mokhtar, N. Hafizah; Ishak, M. H. H.; Abdullah, M. Z.; Ho Tian, Ang

2016-01-01

This paper simulates and predicts the laminar flow inside the 3D aneurysm geometry, since the hemodynamic situation in the blood vessels is difficult to determine and visualize using standard imaging techniques, for example, magnetic resonance imaging (MRI). Three different types of Lattice Boltzmann (LB) models are computed, namely, single relaxation time (SRT), multiple relaxation time (MRT), and regularized BGK models. The results obtained using these different versions of the LB-based code will then be validated with ANSYS FLUENT, a commercially available finite volume- (FV-) based CFD solver. The simulated flow profiles that include velocity, pressure, and wall shear stress (WSS) are then compared between the two solvers. The predicted outcomes show that all the LB models are comparable and in good agreement with the FVM solver for complex blood flow simulation. The findings also show minor differences in their WSS profiles. The performance of the parallel implementation for each solver is also included and discussed in this paper. In terms of parallelization, it was shown that LBM-based code performed better in terms of the computation time required.

3. Analytic solution of an initial-value problem from Stokes flow with free boundary

Xuming Xie

2008-01-01

We study an initial-value problem arising from Stokes flow with free boundary. If the initial data is analytic in disk $mathcal{R}_r$ containing the unit disk, it is proved that unique solution, which is analytic in $mathcal{R}_s$ for $sin (1,r)$, exists locally in time.

4. Actuator Line/Navier-Stokes Computations for Flows past the Yawed MEXICO Rotor

Shen, Wen Zhong; Sørensen, Jens Nørkær; Yang, H.

2011-01-01

In the paper the Actuator Line/Navier-Stokes model has been used to simulate flows past the yawed MEXICO rotor. The computed loads as well as the velocity field behind the yawed rotor are compared to detailed pressure and PIV measurements which were carried out in the EU funded MEXICO project...

5. A Note on Blow-up Criterion of Strong Solutions for the 3D Inhomogeneous Incompressible Navier-Stokes Equations with Vacuum

In this paper, we study the three-dimensional inhomogeneous incompressible Navier-Stokes equations, and establish several regularity criteria in terms of only velocity which allow the initial density to contain vacuum. Therefore, our results can be considered as further improvement to the previous results

6. A Note on Blow-up Criterion of Strong Solutions for the 3D Inhomogeneous Incompressible Navier-Stokes Equations with Vacuum

Ye, Zhuan, E-mail: yezhuan815@126.com; Xu, Xiaojing [Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, School of Mathematical Sciences (China)

2015-12-15

In this paper, we study the three-dimensional inhomogeneous incompressible Navier-Stokes equations, and establish several regularity criteria in terms of only velocity which allow the initial density to contain vacuum. Therefore, our results can be considered as further improvement to the previous results.

7. A strongly conservative finite element method for the coupling of Stokes and Darcy flow

Kanschat, G.

2010-08-01

We consider a model of coupled free and porous media flow governed by Stokes and Darcy equations with the Beavers-Joseph-Saffman interface condition. This model is discretized using divergence-conforming finite elements for the velocities in the whole domain. Discontinuous Galerkin techniques and mixed methods are used in the Stokes and Darcy subdomains, respectively. This discretization is strongly conservative in Hdiv(Ω) and we show convergence. Numerical results validate our findings and indicate optimal convergence orders. © 2010 Elsevier Inc.

8. Global smooth flows for compressible Navier-Stokes-Maxwell equations

Xu, Jiang; Cao, Hongmei

2016-08-01

Umeda et al. (Jpn J Appl Math 1:435-457, 1984) considered a rather general class of symmetric hyperbolic-parabolic systems: A0zt+sum_{j=1}nAjz_{xj}+Lz=sum_{j,k=1}nB^{jk}z_{xjxk} and showed optimal decay rates with certain dissipative assumptions. In their results, the dissipation matrices {L} and {B^{jk}(j,k=1,ldots,n)} are both assumed to be real symmetric. So far there are no general results in case that {L} and {B^{jk}} are not necessarily symmetric, which is left open now. In this paper, we investigate compressible Navier-Stokes-Maxwell (N-S-M) equations arising in plasmas physics, which is a concrete example of hyperbolic-parabolic composite systems with non-symmetric dissipation. It is observed that the Cauchy problem for N-S-M equations admits the dissipative mechanism of regularity-loss type. Consequently, extra higher regularity is usually needed to obtain the optimal decay rate of {L1({mathbb{R}}^3)}-{L^2({mathbb{R}}^3)} type, in comparison with that for the global-in-time existence of smooth solutions. In this paper, we obtain the minimal decay regularity of global smooth solutions to N-S-M equations, with aid of {L^p({mathbb{R}}^n)}-{Lq({mathbb{R}}^n)}-{Lr({mathbb{R}}^n)} estimates. It is worth noting that the relation between decay derivative orders and the regularity index of initial data is firstly found in the optimal decay estimates.

9. Framework system and research flow of uncertainty in 3D geological structure models

2010-01-01

Uncertainty in 3D geological structure models has become a bottleneck that restricts the development and application of 3D geological modeling.In order to solve this problem during periods of accuracy assessment,error detection and dynamic correction in 3D geological structure models,we have reviewed the current situation and development trends in 3D geological modeling.The main context of uncertainty in 3D geological structure models is discussed.Major research issues and a general framework system of unce...

10. 3D Markov Process for Traffic Flow Prediction in Real-Time.

Ko, Eunjeong; Ahn, Jinyoung; Kim, Eun Yi

2016-01-01

Recently, the correct estimation of traffic flow has begun to be considered an essential component in intelligent transportation systems. In this paper, a new statistical method to predict traffic flows using time series analyses and geometric correlations is proposed. The novelty of the proposed method is two-fold: (1) a 3D heat map is designed to describe the traffic conditions between roads, which can effectively represent the correlations between spatially- and temporally-adjacent traffic states; and (2) the relationship between the adjacent roads on the spatiotemporal domain is represented by cliques in MRF and the clique parameters are obtained by example-based learning. In order to assess the validity of the proposed method, it is tested using data from expressway traffic that are provided by the Korean Expressway Corporation, and the performance of the proposed method is compared with existing approaches. The results demonstrate that the proposed method can predict traffic conditions with an accuracy of 85%, and this accuracy can be improved further. PMID:26821025

11. 3D Markov Process for Traffic Flow Prediction in Real-Time

Eunjeong Ko

2016-01-01

Full Text Available Recently, the correct estimation of traffic flow has begun to be considered an essential component in intelligent transportation systems. In this paper, a new statistical method to predict traffic flows using time series analyses and geometric correlations is proposed. The novelty of the proposed method is two-fold: (1 a 3D heat map is designed to describe the traffic conditions between roads, which can effectively represent the correlations between spatially- and temporally-adjacent traffic states; and (2 the relationship between the adjacent roads on the spatiotemporal domain is represented by cliques in MRF and the clique parameters are obtained by example-based learning. In order to assess the validity of the proposed method, it is tested using data from expressway traffic that are provided by the Korean Expressway Corporation, and the performance of the proposed method is compared with existing approaches. The results demonstrate that the proposed method can predict traffic conditions with an accuracy of 85%, and this accuracy can be improved further.

12. A digital holography set-up for 3D vortex flow dynamics

Lebon, Benoît; Perret, Gaële; Coëtmellec, Sébastien; Godard, Gilles; Gréhan, Gérard; Lebrun, Denis; Brossard, Jérôme

2016-06-01

In the present paper, a digital in-line holography (DIH) set-up, with a converging beam, is used to take three-dimensional (3D) velocity measurements of vortices. The vortices are formed periodically at the edges of a submerged horizontal plate submitted to regular waves. They take the form of vortex filaments that extend from side to side of the channel. They undergo strongly three-dimensional instability mechanisms that remain very complicated to characterize experimentally. The experiments are performed in a 10 × 0.3 × 0.3 m3 wave flume. The DIH set-up is performed using a modulated laser diode emitting at the wavelength of 640 nm and a lensless CCD camera. The beam crosses the channel side to side. To reveal the flow dynamics, 30-μm hydrogen bubbles are generated at the edge of the plate to serve as tracers. Their locations are recorded on the holograms multiple times to access the dynamics of the flow. This method leads to an accuracy in the order of 100 μm on the axial location. Those measurements have been validated with stereo-PIV measurements. A very good agreement is found on time-averaged velocity fields between the two techniques.

13. Simulation of bacteria transport processes in a river with Flow3D

Schwarzwälder, Kordula; Bui, Minh Duc; Rutschmann, Peter

2014-05-01

Water quality aspects are getting more and more important due to the European water Framework directive (WFD). One problem related to this topic is the inflow of untreated wastewater due to combined sewer overflows into a river. The wastewater mixture contains even bacteria like E. coli and Enterococci which are markers for water quality. In our work we investigated the transport of these bacteria in river Isar by using a large-scale flume in the outside area of our lab (Oskar von Miller Institute). Therefor we could collect basic data and knowledge about the processes which occur during bacteria sedimentation and remobilisation. In our flume we could use the real grain with the exact size distribution curve as in the river Isar which we want to simulate and we had the chance to nurture a biofilm which is realistic for the analysed situation. This biofilm plays an important role in the remobilisation processes, because the bacteria are hindered to be washed out back into the bulk phase as fast and in such an amount as this would happen without biofilm. The results of our experiments are now used for a module in the 3D software Flow3D to simulate the effects of a point source inlet of raw wastewater on the water quality. Therefor we have to implement the bacteria not as a problem of concentration with advection and diffusion but as single particles which can be inactivated during the process of settling and need to be hindered from remobilisation by the biofilm. This biofilm has special characteristic, it is slippery and has a special thickness which influences the chance of bacteria being removed. To achieve realistic results we have to include the biofilm with more than a probabilistic-tool to make sure that our module is transferable. The module should be as flexible as possible to be improved step by step with increasing quality of dataset.

14. Efficient numerical solution of steady free-surface Navier-Stokes flow

Brummelen, van, Einar; Raven, H.C.; Koren, Barry

2001-01-01

Numerical solution of flows that are partially bounded by a freely moving boundary is of great importance in practical applications such as ship hydrodynamics. The usual method for solving steady viscous free-surface flow subject to gravitation is alternating time integration of the kinematic condition, and the Navier-Stokes equations with the dynamic conditions imposed, until steady state is reached. This paper shows that at subcritical Froude numbers this time integration approach is necess...

15. A cavitation aggressiveness index within the Reynolds averaged Navier Stokes methodology for cavitating flows

KOUKOUVINIS P.; BERGELES G.; GAVAISES M

2015-01-01

The paper proposes a methodology within the Reynolds averaged Navier Stokes (RANS) solvers for cavitating flows capable of predicting the flow regions of bubble collapse and the potential aggressiveness to material damage. An aggressiveness index is introduced, called cavitation aggressiveness index (CAI) based on the total derivative of pressure which identifies surface areas exposed to bubble collapses, the index is tested in two known cases documented in the open literature and seems to identify regions of potential cavitation damage.

16. Accurate computation of Stokes flow driven by an open immersed interface

Li, Yi; Layton, Anita T.

2012-06-01

We present numerical methods for computing two-dimensional Stokes flow driven by forces singularly supported along an open, immersed interface. Two second-order accurate methods are developed: one for accurately evaluating boundary integral solutions at a point, and another for computing Stokes solution values on a rectangular mesh. We first describe a method for computing singular or nearly singular integrals, such as a double layer potential due to sources on a curve in the plane, evaluated at a point on or near the curve. To improve accuracy of the numerical quadrature, we add corrections for the errors arising from discretization, which are found by asymptotic analysis. When used to solve the Stokes equations with sources on an open, immersed interface, the method generates second-order approximations, for both the pressure and the velocity, and preserves the jumps in the solutions and their derivatives across the boundary. We then combine the method with a mesh-based solver to yield a hybrid method for computing Stokes solutions at N2 grid points on a rectangular grid. Numerical results are presented which exhibit second-order accuracy. To demonstrate the applicability of the method, we use the method to simulate fluid dynamics induced by the beating motion of a cilium. The method preserves the sharp jumps in the Stokes solution and their derivatives across the immersed boundary. Model results illustrate the distinct hydrodynamic effects generated by the effective stroke and by the recovery stroke of the ciliary beat cycle.

17. Regularized image system for Stokes flow outside a solid sphere

Wróbel, Jacek K.; Cortez, Ricardo; Varela, Douglas; Fauci, Lisa

2016-07-01

The image system for a three-dimensional flow generated by regularized forces outside a solid sphere is formulated and implemented as an extension of the method of regularized Stokeslets. The method is based on replacing a point force given by a delta distribution with a smooth localized function and deriving the exact velocity field produced by the forcing. In order to satisfy zero-flow boundary conditions at a solid sphere, the image system for singular Stokeslets is generalized to give exact cancellation of the regularized flow at the surface of the sphere. The regularized image system contains the same elements as the singular counterpart but with coefficients that depend on a regularization parameter. As this parameter vanishes, the expressions reduce to the image system of the singular Stokeslet. The expression relating force and velocity can be inverted to compute the forces that generate a given velocity boundary condition elsewhere in the flow. We present several examples within the context of biological flows at the microscale in order to validate and highlight the usefulness of the image system in computations.

18. High-resolution 3D seismic data characterize fluid flow systems in the SW Barents Sea

Bünz, Stefan; Mienert, Jürgen; Rajan, Anupama

2010-05-01

The flow of fluids through marine sediments is one of the most dominant and pervasive processes in continental margins. These processes control the evolution of a sedimentary basin and its seafloor environment, and have implications for hydrocarbon exploration and seabed ecosystems. Many seep sites at the seafloor are associated with large but complex faunal communities that have received significant attention in recent years. However, there is a need for a better understanding of the driving mechanism of fluid flow in various geological settings, the accumulation of fluids in the subsurface and their focused flow through conduits and/or faults to the seabed. The Barents Sea is a large hydrocarbon-prone basin of the Norwegian Arctic region. A significant portion of the hydrocarbons has leaked or migrated into the shallow subsurface and is now trapped in gas-hydrate and shallow-gas reservoirs. Furthermore, there are few places in the Barents Sea, where methane gas is leaking from the seafloor into the oceanosphere. Accumulations of free gas in the shallow subsurface are considered a geohazard. They constitute a risk for safe drilling operations and they may pose a threat to global climate if the seal that is trapping them is breached. P-Cable 3D high-resolution seismic data from the Ringvassøya Fault Complex and the Polheim Sub-Platform provide new and detailed insight into fluid flow controls and accumulation mechanisms. The data shows a wide variety of fluid flow features, mostly in the form of pockmarks, bright spots, wipe-out zones or vertical zones of disturbed reflectivity. Fluids migrate by both diapiric mechanism and channelized along sedimentary layers. Glacigenic sediments generally form a strong boundary for fluid flow in the very shallow section. However, we can recognize pockmarks not only at the seafloor but also at one subsurface layer approximately 50 m below sea floor indicating a former venting period in the SW Barents Sea. At few locations high

19. Model investigations 3D of gas-powder two phase flow in descending bed with consideration radial distribution of flow

B. Panic

2013-04-01

Full Text Available The results of experimental investigations concerning radial distribution of powder accumulation in bed and static pressure were presented in this paper. To realize this research physical model of gas-powder two phase flow with descending bed was projected and constructed. Amounts of “dynamic” and “static” powder accumulated in bed, in dependence on gas velocity and of bed particles were investigated. In 3D model “static” powder (with its radial distribution at the tuyere level and in the higher part of bed was measured. The influence of bed particles, powder and gas radial distribution on values of interaction forces between flow phases in investigated system was defined.

20. Experimental Investigation of Material Flows Within FSWs Using 3D Tomography

Charles R. Tolle; Timothy A. White; Karen S. Miller; Denis E. Clark; Herschel B. Smartt

2008-06-01

There exists significant prior work using tracers or pre-placed hardened markers within friction stir welding (FSWing) to experimentally explore material flow within the FSW process. Our experiments replaced markers with a thin sheet of copper foil placed between the 6061 aluminum lap and butt joints that were then welded. The absorption characteristics of x-rays for copper and aluminum are significantly different allowing for non-destructive evaluation (NDE) methods such as x-ray computed tomography (CT) to be used to demonstrate the material movement within the weldment on a much larger scale than previously shown. 3D CT reconstruction of the copper components of the weldment allows for a unique view into the final turbulent state of the welding process as process parameters are varied. The x-ray CT data of a section of the weld region was collected using a cone-beam x-ray imaging system developed at the INL. Six-hundred projections were collected over 360-degrees using a 160-kVp Bremsstrahlung x-ray generator (25-micrometer focal spot) and amorphoussilicon x-ray detector. The region of the object that was imaged was about 3cm tall and 1.5cm x 1cm in cross section, and was imaged at a magnification of about 3.6x. The data were reconstructed on a 0.5x0.5x0.5 mm3 voxel grid. After reconstruction, the aluminum and copper could be easily discriminated using a gray level threshold allowing visualization of the copper components. Fractal analysis of the tomographic reconstructed material topology is investigated as a means to quantify macro level material flow based on process parameters. The results of multi-pass FSWs show increased refinement of the copper trace material. Implications of these techniques for quantifying process flow are discussed.

1. Steady State Stokes Flow Interpolation for Fluid Control

Bhatacharya, Haimasree; Nielsen, Michael Bang; Bridson, Robert

2012-01-01

Fluid control methods often require surface velocities interpolated throughout the interior of a shape to use the velocity as a feedback force or as a boundary condition. Prior methods for interpolation in computer graphics — velocity extrapolation in the normal direction and potential flow...

2. Exact solutions to the Navier-Stokes equation for an incompressible flow from the interpretation of the Schroedinger wave function

Vladimir V. Kulish; Lage, Jose L.

2013-01-01

The existence of the velocity potential is a direct consequence from the derivation of the continuity equation from the Schroedinger equation. This implies that the Cole-Hopf transformation is applicable to the Navier-Stokes equation for an incompressible flow and allows reducing the Navier-Stokes equation to the Einstein-Kolmogorov equation, in which the reaction term depends on the pressure. The solution to the resulting equation, and to the Navier-Stokes equation as well, can then be writt...

3. Three-dimensional computational study of asymmetric flows using Navier-Stokes equations

Cheung, Y. K. (Editor); Lee, J. H. W. (Editor); Leung, A. Y. T. (Editor); Wong, Tin-Chee; Kandil, Osama A.; Liu, C. H.

1992-01-01

The unsteady, compressible, thin-layer Navier-Stokes equations are used to obtain three-dimensional, asymmetric, vortex-flow solutions around cones and cone-cylinder configurations. The equations are solved using an implicit, upwind, flux-difference splitting, finite-volume scheme. The computational applications cover asymmetric flows around a 5 semi-apex angle cone of unit length at various Reynolds number. Next, a cylindrical afterbody of various length is added to the conical forebody to study the effect of the length of cylindrical afterbody on the flow asymmetry. All the asymmetric flow solutions are obtained by using a short-duration side-slip disturbance.

4. Higher-order in time "quasi-unconditionally stable" ADI solvers for the compressible Navier-Stokes equations in 2D and 3D curvilinear domains

Bruno, Oscar P.; Cubillos, Max

2016-02-01

This paper introduces alternating-direction implicit (ADI) solvers of higher order of time-accuracy (orders two to six) for the compressible Navier-Stokes equations in two- and three-dimensional curvilinear domains. The higher-order accuracy in time results from 1) An application of the backward differentiation formulae time-stepping algorithm (BDF) in conjunction with 2) A BDF-like extrapolation technique for certain components of the nonlinear terms (which makes use of nonlinear solves unnecessary), as well as 3) A novel application of the Douglas-Gunn splitting (which greatly facilitates handling of boundary conditions while preserving higher-order accuracy in time). As suggested by our theoretical analysis of the algorithms for a variety of special cases, an extensive set of numerical experiments clearly indicate that all of the BDF-based ADI algorithms proposed in this paper are "quasi-unconditionally stable" in the following sense: each algorithm is stable for all couples (h , Δt)of spatial and temporal mesh sizes in a problem-dependent rectangular neighborhood of the form (0 ,Mh) × (0 ,Mt). In other words, for each fixed value of Δt below a certain threshold, the Navier-Stokes solvers presented in this paper are stable for arbitrarily small spatial mesh-sizes. The second-order formulation has further been rigorously shown to be unconditionally stable for linear hyperbolic and parabolic equations in two-dimensional space. Although implicit ADI solvers for the Navier-Stokes equations with nominal second-order of temporal accuracy have been proposed in the past, the algorithms presented in this paper are the first ADI-based Navier-Stokes solvers for which second-order or better accuracy has been verified in practice under non-trivial (non-periodic) boundary conditions.

5. A comparative analysis of 3D flow fields between straight and bowed blades in a steam turbine

M.HASSANVAND; WANG Zhong-qi 王仲奇; WANG Song-tao 王松涛

2004-01-01

A commercial Navier-Stokes flow solver has been employed tor simulating steady subsonic flow characteristics and analyzing the comparative features of flow fields between straight and bowed blades applied to the stator of a high pressure steam turbine. For comparison, we have studied the effects of bowed blades on the wakes of stator trailing edge and horse shoe vortex in the rotor. It was found that the position of wakes for bowed blades is shifted toward the blade suction side. Also, we have discussed and compared the entropy generation and energy loss caused by dissipation mechanism within the boundary layers on the hub and shroud; and temperature gradient in meridional plane.

6. Pipe Flow and Wall Turbulence Using a Modified Navier-Stokes Equation

We use a derived incompressible modified Navier-Stokes equation to model pipe flow and wall turbulence. We reproduce the observed flattened paraboloid velocity profiles of turbulence that cannot be obtained directly using standard incompressible Navier-Stokes equation. The solutions found are in harmony with multi-valued velocity fields as a definition of turbulence. Repeating the procedure for the flow of turbulent fluid between two parallel flat plates we find similar flattened velocity profiles. We extend the analysis to the turbulent flow along a single wall and compare the results with experimental data and the established controversial von Karman logarithmic law of the wall. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

7. Shock waves in Stokes flows down an inclined plate.

Benilov, E S; Lapin, V N

2011-06-01

We consider a viscous flow on an inclined plate, such that the liquid's depth far upstream is larger than that far downstream, resulting in a "smoothed-shock wave" steadily propagating downstream. Our numerical simulations show that in a large section of the problem's parameter space all initial conditions overturn (i.e., the liquid's surface becomes vertical at some point) and thus no steady solution exists. The overturning can only be stopped by a sufficiently strong surface tension. PMID:21797491

8. Using a magnetite/thermoplastic composite in 3D printing of direct replacements for commercially available flow sensors

Flow sensing is an essential technique required for a wide range of application environments ranging from liquid dispensing to utility monitoring. A number of different methodologies and deployment strategies have been devised to cover the diverse range of potential application areas. The ability to easily create new bespoke sensors for new applications is therefore of natural interest. Fused deposition modelling is a 3D printing technology based upon the fabrication of 3D structures in a layer-by-layer fashion using extruded strands of molten thermoplastic. The technology was developed in the late 1980s but has only recently come to more wide-scale attention outside of specialist applications and rapid prototyping due to the advent of low-cost 3D printing platforms such as the RepRap. Due to the relatively low-cost of the printers and feedstock materials, these printers are ideal candidates for wide-scale installation as localized manufacturing platforms to quickly produce replacement parts when components fail. One of the current limitations with the technology is the availability of functional printing materials to facilitate production of complex functional 3D objects and devices beyond mere concept prototypes. This paper presents the formulation of a simple magnetite nanoparticle-loaded thermoplastic composite and its incorporation into a 3D printed flow-sensor in order to mimic the function of a commercially available flow-sensing device. Using the multi-material printing capability of the 3D printer allows a much smaller amount of functional material to be used in comparison to the commercial flow sensor by only placing the material where it is specifically required. Analysis of the printed sensor also revealed a much more linear response to increasing flow rate of water showing that 3D printed devices have the potential to at least perform as well as a conventionally produced sensor. (paper)

9. Using a magnetite/thermoplastic composite in 3D printing of direct replacements for commercially available flow sensors

Leigh, S. J.; Purssell, C. P.; Billson, D. R.; Hutchins, D. A.

2014-09-01

Flow sensing is an essential technique required for a wide range of application environments ranging from liquid dispensing to utility monitoring. A number of different methodologies and deployment strategies have been devised to cover the diverse range of potential application areas. The ability to easily create new bespoke sensors for new applications is therefore of natural interest. Fused deposition modelling is a 3D printing technology based upon the fabrication of 3D structures in a layer-by-layer fashion using extruded strands of molten thermoplastic. The technology was developed in the late 1980s but has only recently come to more wide-scale attention outside of specialist applications and rapid prototyping due to the advent of low-cost 3D printing platforms such as the RepRap. Due to the relatively low-cost of the printers and feedstock materials, these printers are ideal candidates for wide-scale installation as localized manufacturing platforms to quickly produce replacement parts when components fail. One of the current limitations with the technology is the availability of functional printing materials to facilitate production of complex functional 3D objects and devices beyond mere concept prototypes. This paper presents the formulation of a simple magnetite nanoparticle-loaded thermoplastic composite and its incorporation into a 3D printed flow-sensor in order to mimic the function of a commercially available flow-sensing device. Using the multi-material printing capability of the 3D printer allows a much smaller amount of functional material to be used in comparison to the commercial flow sensor by only placing the material where it is specifically required. Analysis of the printed sensor also revealed a much more linear response to increasing flow rate of water showing that 3D printed devices have the potential to at least perform as well as a conventionally produced sensor.

10. Thermocapillary bubble flow and coalescence in a rotating cylinder: A 3D study

Alhendal, Yousuf; Turan, A.; Al-mazidi, M.

2015-12-01

The process of thermocapillary bubbles rising in a rotating 3D cylinder in zero gravity was analysed and presented numerically with the aid of computational fluid dynamics (CFD) by means of the volume of fluid (VOF) method. Calculations were carried out to investigate in detail the effect of the rotational speed of the hosted liquid on the trajectory of both single and group bubbles driven by the Marangoni force in zero-gravity conditions. For rotational speeds from 0.25 to 2 rad/s, bubble displacement with angular motion was found to be directed between the hotter surface and the rotational axis. This is contrary to the conventional bubble flow from areas of high pressure to low pressure, radial direction, or from cold to hot regions, axial direction. The results demonstrate that for the ratio of rotational speeds to the thermocapillary bubble velocity larger than unity, the surface tension gradient is the dominant force and the bubble motion towards the hotter. On the other hand, for ratio less than 1, the bubble motion is dominated and is significantly affected by centrifugal force. As rotation speed increases, the amount of deflection increases and the Marangoni effect vanishes. The current study is novel in the sense that single- and multi-bubble motion incorporating thermocapillary forces in a rotating liquid in a zero-gravity environment has never been numerically investigated.

11. Stability of 3D Gaussian vortices in rotating stratified Boussinesq flows: Linear analysis

Mahdinia, Mani; Jiang, Chung-Hsiang

2016-01-01

The linear stability of three-dimensional (3D) vortices in rotating, stratified flows has been studied by analyzing the non-hydrostatic inviscid Boussinesq equations. We have focused on a widely-used model of geophysical and astrophysical vortices, which assumes an axisymmetric Gaussian structure for pressure anomalies in the horizontal and vertical directions. For a range of Rossby number ($-0.5 < Ro < 0.5$) and Burger number ($0.02 < Bu < 2.3$) relevant to observed long-lived vortices, the growth rate and spatial structure of the most unstable eigenmodes have been numerically calculated and presented as a function of $Ro-Bu$. We have found neutrally-stable vortices only over a small region of the $Ro-Bu$ parameter space: cyclones with $Ro \\sim 0.02-0.05$ and $Bu \\sim 0.85-0.95$. However, we have also found that anticyclones in general have slower growth rates compared to cyclones. In particular, growth rate of the most unstable eigenmode for anticyclones in a large region of the parameter space ...

12. Turbulence and Steady Flows in 3D Global Stratified MHD Simulations of Accretion Disks

Flock, M; Klahr, H; Turner, N J; Henning, Th

2011-01-01

We present full 2 Pi global 3-D stratified MHD simulations of accretion disks. We interpret our results in the context of proto-planetary disks. We investigate the turbulence driven by the magneto-rotational instability (MRI) using the PLUTO Godunov code in spherical coordinates with the accurate and robust HLLD Riemann solver. We follow the turbulence for more than 1500 orbits at the innermost radius of the domain to measure the overall strength of turbulent motions and the detailed accretion flow pattern. We find that regions within two scale heights of the midplane have a turbulent Mach number of about 0.1 and a magnetic pressure two to three orders of magnitude less than the gas pressure, while outside three scale heights the magnetic pressure equals or exceeds the gas pressure and the turbulence is transonic, leading to large density fluctuations. The strongest large-scale density disturbances are spiral density waves, and the strongest of these waves has m=5. No clear meridional circulation appears in t...

13. Quasi-periodic non-stationary solutions of 3D Euler equations for incompressible flow

Ershkov, Sergey V

2015-01-01

A novel derivation of non-stationary solutions of 3D Euler equations for incompressible inviscid flow is considered here. Such a solution is the product of 2 separated parts: - one consisting of the spatial component and the other being related to the time dependent part. Spatial part of a solution could be determined if we substitute such a solution to the equations of motion (equation of momentum) with the requirement of scale-similarity in regard to the proper component of spatial velocity. So, the time-dependent part of equations of momentum should depend on the time-parameter only. The main result, which should be outlined, is that the governing (time-dependent) ODE-system consist of 2 Riccati-type equations in regard to each other, which has no solution in general case. But we obtain conditions when each component of time-dependent part is proved to be determined by the proper elliptical integral in regard to the time-parameter t, which is a generalization of the class of inverse periodic functions.

14. Bubble breakup in two-dimensional Stokes flow

A new class of exact solutions is reported for an evolving bubble in a two-dimensional slow viscous flow. It is observed that for an expanding bubble the interface grows smoother with time, whereas the contracting-bubble solutions display a tendency to form sharp corners (''near cusps'') for small values of surface tension. In the latter case, we also obtain analytic solutions that describe bubble breakup: For a large class of initial shapes, the interface will eventually develop a thin ''neck'' whose width goes to zero before the bubble is completely removed from the liquid

15. Stokes flow paths separation and recirculation cells in X-junctions of varying angle

Cachile, Mario; Gomba, Juan M; Hulin, Jean-Pierre; Auradou, Harold

2012-01-01

Fluid and solute transfer in X-junctions between straight channels is shown to depend critically on the junction angle in the Stokes flow regime. Experimentally, water and a water-dye solution are injected at equal flow rates in two facing channels of the junction: Planar Laser Induced fluorescence (PLIF) measurements show that the largest part of each injected fluid "bounces back" preferentially into the outlet channel at the lowest angle to the injection; this is opposite to the inertial case and requires a high curvature of the corresponding streamlines. The proportion of this fluid in the other channel decreases from 50% at 90\\degree to zero at a threshold angle. These counterintuitive features reflect the minimization of energy dissipation for Stokes flows. Finite elements numerical simulations of a 2D Stokes flow of equivalent geometry con rm these results and show that, below the threshold angle 33.8\\degree recirculation cells are present in the center part of the junction and separate the two injected...

16. Rn3D: A finite element code for simulating gas flow and radon transport in variably saturated, nonisothermal porous media

This document is a user's manual for the Rn3D finite element code. Rn3D was developed to simulate gas flow and radon transport in variably saturated, nonisothermal porous media. The Rn3D model is applicable to a wide range of problems involving radon transport in soil because it can simulate either steady-state or transient flow and transport in one-, two- or three-dimensions (including radially symmetric two-dimensional problems). The porous materials may be heterogeneous and anisotropic. This manual describes all pertinent mathematics related to the governing, boundary, and constitutive equations of the model, as well as the development of the finite element equations used in the code. Instructions are given for constructing Rn3D input files and executing the code, as well as a description of all output files generated by the code. Five verification problems are given that test various aspects of code operation, complete with example input files, FORTRAN programs for the respective analytical solutions, and plots of model results. An example simulation is presented to illustrate the type of problem Rn3D is designed to solve. Finally, instructions are given on how to convert Rn3D to simulate systems other than radon, air, and water

17. Design, Analysis, and Initial Testing of a Fiber-Optic Shear Gage for 3D, High-Temperature Flows

Orr, Matthew William

2004-01-01

Design, Analysis, and Initial Testing of a Fiber-Optic Shear Gage for 3D, High-Temperature Flows Matthew W. Orr Dr. Joseph A. Schetz, Chairman Aerospace Engineering Abstract This investigation concerns the design, analysis, and initial testing of a new, two-component wall shear gage for 3D, high-temperature flows. This gage is a direct-measuring, non-nulling design with a round head surrounded by a small gap. Two flexure wheels are used to allow small motions of the flo...

18. Bypass Transitional Flow Calculations Using a Navier-Stokes Solver and Two-Equation Models

Liuo, William W.; Shih, Tsan-Hsing; Povinelli, L. A. (Technical Monitor)

2000-01-01

Bypass transitional flows over a flat plate were simulated using a Navier-Stokes solver and two equation models. A new model for the bypass transition, which occurs in cases with high free stream turbulence intensity (TI), is described. The new transition model is developed by including an intermittency correction function to an existing two-equation turbulence model. The advantages of using Navier-Stokes equations, as opposed to boundary-layer equations, in bypass transition simulations are also illustrated. The results for two test flows over a flat plate with different levels of free stream turbulence intensity are reported. Comparisons with the experimental measurements show that the new model can capture very well both the onset and the length of bypass transition.

19. Stokes flow between eccentric rotating spheres with slip regime

Faltas, M. S.; Saad, E. I.

2012-10-01

The steady axisymmetric flow problem of a viscous fluid contained between two eccentric spheres that rotate about an axis joining their centers with different angular velocities is considered. A linear slip of Basset-type boundary condition at both surfaces of the spherical particle and the container is used. Under the Stokesian assumption, a general solution is constructed from the superposition of basic solutions in the spherical coordinate systems based on the inner solid particle and the spherical container. The boundary conditions on the particle's surface and spherical container are satisfied by a collocation technique. Numerical results for the coupling coefficient acting on the particle are obtained with good convergence for various values of the ratio of particle-to-container radii, the relative distance between the centers of the particle and container, the slip coefficients and the relative angular velocity. In the limiting cases, the numerical values of the coupling coefficient for the solid sphere in concentric position with the container and when the particle is near the inner surface of the container are obtained, and the results are in good agreement with the available values in the literature. The variation of the coupling coefficient with respect the parameters considered are tabulated and displayed graphically.

20. A generalization of the Navier-Stokes equations to two-phase flows

A modified Allen-Cahn equation is combined with the compressible Navier-Stokes system. We show that, after a modification of the stress tensor, the second law of thermodynamics is valid for the resulting equations. We give a physical motivation of this alteration of the stress tensor and compare the new equations with the well known phase-field approach. The model can be used to describe cavitation in a flowing liquid. (author)

1. Quasi-steady Stokes flow of multiphase fluids with shear-dependent viscosity

Ebmeyer, Carsten; Urbano, José Miguel

2006-01-01

The quasi–steady power–law Stokes flow of a mixture of incompressible fluids with shear–dependent viscosity is studied. The fluids are immiscible and have constant densities. Existence results are presented for both the no–slip and the no–stick boundary value conditions. Use is made of Schauder’s fixed–point theorem, compactness arguments, and DiPerna-Lions renormalized solutions.

2. Optimal shape control of airfoil in compressible gas flow governed by Navier-Stokes equations

Plotnikov, Pavel I.; Sokolowski, Jan

2013-01-01

The flow around a rigid obstacle is governed by compressible Navier-Stokes equations. The nonhomogeneous Dirichlet problem is considered in a bounded domain with a compact obstacle in its interior. The flight of the airflow is characterized by the work shape functional, to be minimized over a family of admissible obstacles. The lift of the airfoil is given in function of time and should be closed to the flight scenario. Therefore, the minimization for a given lift of the work functional with ...

3. The solutions of Navier-Stokes equations in squeezing flow between parallel plates

Petrov, A. G.; Kharlamova, Irina

2014-01-01

Roč. 48, November–December (2014), s. 40-48. ISSN 0997-7546 Grant ostatní: Russian Foundation for Basic Research(RU) 14-01- 00818; Russian Foundation for Basic Research(RU) 14-01-00892 Institutional support: RVO:67985874 Keywords : closed form solution * Navier-Stokes equations * squeezing flow between plates * counterflow Subject RIV: BK - Fluid Dynamics Impact factor: 1.656, year: 2014

4. Analytical solution of Stokes flow inside an evaporating sessile drop: Spherical and cylindrical cap shapes

Masoud, Hassan; James D. Felske

2008-01-01

Exact analytical solutions are derived for the Stokes flows within evaporating sessile drops of spherical and cylindrical cap shapes. The results are valid for arbitrary contact angle. Solutions are obtained for arbitrary evaporative flux distributions along the free surface as long as the flux is bounded at the contact line. The field equations, E^4(Psi)=0 and Del^4(Phi)=0, are solved for the spherical and cylindrical cap cases, respectively. Specific results and computations are presented f...

5. Numerical simulation of standing wave with 3D predictor-corrector finite difference method for potential flow equations

罗志强; 陈志敏

2013-01-01

A three-dimensional (3D) predictor-corrector finite difference method for standing wave is developed. It is applied to solve the 3D nonlinear potential flow equa-tions with a free surface. The 3D irregular tank is mapped onto a fixed cubic tank through the proper coordinate transform schemes. The cubic tank is distributed by the staggered meshgrid, and the staggered meshgrid is used to denote the variables of the flow field. The predictor-corrector finite difference method is given to develop the difference equa-tions of the dynamic boundary equation and kinematic boundary equation. Experimental results show that, using the finite difference method of the predictor-corrector scheme, the numerical solutions agree well with the published results. The wave profiles of the standing wave with different amplitudes and wave lengths are studied. The numerical solutions are also analyzed and presented graphically.

6. Analysis of the flow field in a 3D model of convergent and divergent vocal folds

Šidlof, Petr; Horáček, Jaromír; Řidký, V.

Erlangen : University Hospital Erlangen, 2012 - (Dollinger, M.; Eysholdt, U.), s. 122-124 [International Conference on Voice Physiology and Biomechanics /8./ ICVPB 2012. Erlangen (DE), 05.07.2012-07.07.2012] R&D Projects: GA ČR(CZ) GAP101/11/0207 Institutional research plan: CEZ:AV0Z20760514 Keywords : vocal folds * glottal airflow simulations * parallel CFD * incompressible Navier-Stokes equations Subject RIV: BI - Acoustics

7. TRIO a general computer code for reactor 3-D flows analysis. Application to a LMFBR hot plenum

TRIO is a code developed at CEA to investigate general incompressible 2D and 3D viscous flows. Two calculations are presented: the lid driven cubic cavity at Re=400; steady state (velocity and temperature field) of a LMFBR hot plenum, carried out in order to prepare the calculation of a cold shock consecutive to a reactor scram. 8 refs., 26 figs.

8. SIMULATIONS OF 2D AND 3D THERMOCAPILLARY FLOWS BY A LEAST-SQUARES FINITE ELEMENT METHOD. (R825200)

Numerical results for time-dependent 2D and 3D thermocapillary flows are presented in this work. The numerical algorithm is based on the Crank-Nicolson scheme for time integration, Newton's method for linearization, and a least-squares finite element method, together with a matri...

9. Gas-Kinetic Navier-Stokes Solver for Hypersonic Flows in Thermal and Chemical Non-Equilibrium Project

National Aeronautics and Space Administration — This SBIR project proposes to develop a gas-kinetic Navier-Stokes solver for simulation of hypersonic flows in thermal and chemical non-equilibrium. The...

10. Experimental Analysis of 3D Flow in Scroll Casing of Multi-Blade Fan for Air-Conditioner

The multi-blade fan, which has been widely used as a blower for air-conditioning systems of vehicles, is one of the well-established fluid machinery. However, many factors must be considered in its practical design because the flow generated in the fan is quite complicated with three-dimensionality and unsteadiness. The fundamental fan performance is primarily determined by the impeller of the fan, and is also affected by the scroll casing. However, the theoretical estimation of the effect of the casing on the performance has not been well established. In order to estimate the casing effect on fan performance, detailed three-dimensional (3D) flow analysis in the casing is necessary. Stereoscopic PIV (SPIV) is one of the useful techniques for experimental analysis of 3D flow fields. There are some difficulties in practical application of SPIV for flow analysis in fluid machinery with complicated geometry, but the results obtained provide useful information for understanding the 3D flow field. In this report, experimental investigation of the flow in the scroll casing has been carried out using PIV and SPIV under the premise of downsizing automobile air conditioner fans.

11. Assessment of RELAP5-3D{copyright} using data from two-dimensional RPI flow tests

Davis, C.B.

1998-07-01

The capability of the RELAP5-3D{copyright} computer code to perform multi-dimensional thermal-hydraulic analysis was assessed using data from steady-state flow tests conducted at Rensselaer Polytechnic Institute (RPI). The RPI data were taken in a two-dimensional test section in a low-pressure air/water loop. The test section consisted of a thin vertical channel that simulated a two-dimensional slice through the core of a pressurized water reactor. Single-phase and two-phase flows were supplied to the test section in an asymmetric manner to generate a two-dimensional flow field. A traversing gamma densitometer was used to measure void fraction at many locations in the test section. High speed photographs provided information on the flow patterns and flow regimes. The RPI test section was modeled using the multi-dimensional component in RELAP5-3D Version BF06. Calculations of three RPI experiments were performed. The flow regimes predicted by the base code were in poor agreement with those observed in the tests. The two-phase regions were observed to be in the bubbly and slug flow regimes in the test. However, nearly all of the junctions in the horizontal direction were calculated to be in the stratified flow regime because of the relatively low velocities in that direction. As a result, the void fraction predictions were also in poor agreement with the measured values. Significantly improved results were obtained in sensitivity calculations with a modified version of the code that prevented the horizontal junctions from entering the stratified flow regime. These results indicate that the codes logic in the determination of flow regimes in a multi-dimensional component must be improved. The results of the sensitivity calculations also indicate that RELAP5-3D will provide a significant multi-dimensional hydraulic analysis capability once the flow regime prediction is improved.

12. 3D CFD modeling of subsonic and transonic flowing-gas DPALs with different pumping geometries

Yacoby, Eyal; Sadot, Oren; Barmashenko, Boris D.; Rosenwaks, Salman

2015-10-01

Three-dimensional computational fluid dynamics (3D CFD) modeling of subsonic (Mach number M ~ 0.2) and transonic (M ~ 0.9) diode pumped alkali lasers (DPALs), taking into account fluid dynamics and kinetic processes in the lasing medium is reported. The performance of these lasers is compared with that of supersonic (M ~ 2.7 for Cs and M ~ 2.4 for K) DPALs. The motivation for this study stems from the fact that subsonic and transonic DPALs require much simpler hardware than supersonic ones where supersonic nozzle, diffuser and high power mechanical pump (due to a drop in the gas total pressure in the nozzle) are required for continuous closed cycle operation. For Cs DPALs with 5 x 5 cm2 flow cross section pumped by large cross section (5 x 2 cm2) beam the maximum achievable power of supersonic devices is higher than that of the transonic and subsonic devices by only ~ 3% and ~ 10%, respectively. Thus in this case the supersonic operation mode has no substantial advantage over the transonic one. The main processes limiting the power of Cs supersonic DPALs are saturation of the D2 transition and large ~ 60% losses of alkali atoms due to ionization, whereas the influence of gas heating is negligible. For K transonic DPALs both the gas heating and ionization effects are shown to be unimportant. The maximum values of the power are higher than those in Cs transonic laser by ~ 11%. The power achieved in the supersonic and transonic K DPAL is higher than for the subsonic version, with the same resonator and K density at the inlet, by ~ 84% and ~ 27%, respectively, showing a considerable advantaged of the supersonic device over the transonic one. For pumping by rectangular beams of the same (5 x 2 cm2) cross section, comparison between end-pumping - where the laser beam and pump beam both propagate at along the same axis, and transverse-pumping - where they propagate perpendicularly to each other, shows that the output power and optical-to-optical efficiency are not

13. On Exact Solutions of the Navier-Stokes Equations for Uni-directional Flows

Lam, F

2015-01-01

In the present note, we show that the uni-directional flows in a rectangular channel and in a circular pipe are exact spatio-temporal solutions of the Navier-Stokes equations over a short time interval. We assert that the classical plane Poiseuille-Couette flow and Hagen-Poiseuille flow are time-independent approximations of the exact solutions if an appropriate initial velocity distribution at starting location is specified. Conceptually, there do not exist absolute steady flows starting from unspecified initial data. The classic experimental measurements by Poiseuille can be explained in terms of the evolutional solutions. In particular, the pipe flow does not have a time-independent characteristic velocity. The orthodox notion that the parabolic profile exists for arbitrary Reynolds numbers is unwarranted.

14. Axial Green’s function method for steady Stokes flow in geometrically complex domains

Jun, Sukky; Kim, Do Wan

2011-03-01

Axial Green's function method (AGM) is developed for the simulation of Stokes flow in geometrically complex solution domains. The AGM formulation systematically decomposes the multidimensional steady-state Stokes equations into 1D forms. The representation formula for the solution variables can then be derived using the 1D Green's functions only, from which a system of 1D integral equations is obtained. Furthermore, the explicit representation formula for the pressure variable enable the unique AGM approach to facilitating the stabilization issue caused by the saddle structure between velocity and pressure. The convergence of numerical solutions, the simple axial discretization of complex solution domains, and the nature of integral schemes are demonstrated through a variety of numerical examples.

15. EXPERIMENTAL AND COMPUTATIONAL MODELLING OF 3-D FLOW AND BED SHEAR STRESSES DOWNSTREAM FROM A MULTIPLE DUCT TIDAL BARRAGE

Jeffcoate, Penelope

2013-01-01

The near-field depth-varying velocities and resulting bed stresses downstream from a tidal barrage have not previously been studied. The flow through and downstream of a row of seven open draft tubes in a barrage has been investigated through laboratory experiment in a wide flume, 3-D RANS CFD simulation and 2-D depth-averaged computation. When there is no turbine representation and hence negligible swirl in the draft tubes, agreement between the experiments and 3-D modelling is shown to be g...

16. 2D fluid model analysis for the effect of 3D gas flow on a capacitively coupled plasma deposition reactor

Kim, Ho Jun; Lee, Hae June

2016-06-01

The wide applicability of capacitively coupled plasma (CCP) deposition has increased the interest in developing comprehensive numerical models, but CCP imposes a tremendous computational cost when conducting a transient analysis in a three-dimensional (3D) model which reflects the real geometry of reactors. In particular, the detailed flow features of reactive gases induced by 3D geometric effects need to be considered for the precise calculation of radical distribution of reactive species. Thus, an alternative inclusive method for the numerical simulation of CCP deposition is proposed to simulate a two-dimensional (2D) CCP model based on the 3D gas flow results by simulating flow, temperature, and species fields in a 3D space at first without calculating the plasma chemistry. A numerical study of a cylindrical showerhead-electrode CCP reactor was conducted for particular cases of SiH4/NH3/N2/He gas mixture to deposit a hydrogenated silicon nitride (SiN x H y ) film. The proposed methodology produces numerical results for a 300 mm wafer deposition reactor which agree very well with the deposition rate profile measured experimentally along the wafer radius.

17. 3D flow visualization and tomographic particle image velocimetry for vortex breakdown over a non-slender delta wing

Wang, ChengYue; Gao, Qi; Wei, RunJie; Li, Tian; Wang, JinJun

2016-06-01

Volumetric measurement for the leading-edge vortex (LEV) breakdown of a delta wing has been conducted by three-dimensional (3D) flow visualization and tomographic particle image velocimetry (TPIV). The 3D flow visualization is employed to show the vortex structures, which was recorded by four cameras with high resolution. 3D dye streaklines of the visualization are reconstructed using a similar way of particle reconstruction in TPIV. Tomographic PIV is carried out at the same time using same cameras with the dye visualization. Q criterion is employed to identify the LEV. Results of tomographic PIV agree well with the reconstructed 3D dye streaklines, which proves the validity of the measurements. The time-averaged flow field based on TPIV is shown and described by sections of velocity and streamwise vorticity. Combining the two measurement methods sheds light on the complex structures of both bubble type and spiral type of breakdown. The breakdown position is recognized by investigating both the streaklines and TPIV velocity fields. Proper orthogonal decomposition is applied to extract a pair of conjugated helical instability modes from TPIV data. Therefore, the dominant frequency of the instability modes is obtained from the corresponding POD coefficients of the modes based on wavelet transform analysis.

18. A 3D GPU-accelerated MPI-parallel computational tool for simulating interaction of moving rigid bodies with two-fluid flows

Pathak, Ashish; Raessi, Mehdi

2014-11-01

We present a 3D MPI-parallel, GPU-accelerated computational tool that captures the interaction between a moving rigid body and two-fluid flows. Although the immediate application is the study of ocean wave energy converters (WECs), the model was developed at a general level and can be used in other applications. Solving the full Navier-Stokes equations, the model is able to capture non-linear effects, including wave-breaking and fluid-structure interaction, that have significant impact on WEC performance. To transport mass and momentum, we use a consistent scheme that can handle large density ratios (e.g. air/water). We present a novel reconstruction scheme for resolving three-phase (solid-liquid-gas) cells in the volume-of-fluid context, where the fluid interface orientation is estimated via a minimization procedure, while imposing a contact angle. The reconstruction allows for accurate mass and momentum transport in the vicinity of three-phase cells. The fast-fictitious-domain method is used for capturing the interaction between a moving rigid body and two-fluid flow. The pressure Poisson solver is accelerated using GPUs in the MPI framework. We present results of an array of test cases devised to assess the performance and accuracy of the computational tool.

19. Depletion of nonlinearity in the pressure force driving Navier-Stokes flows : nonlinear depletion in NS flows

Tran, Chuong Van; Yu, Xinwei

2015-01-01

The dynamics of the velocity norms ||u||Lq for q ≥ 3, in Navier-Stokes flows is studied. The pressure term that drives this dynamics has a high degree of nonlinear depletion, which owes its origin to a genuine negative correlation between |u| and |∇|u||, among other things. Under viscous effects, such depletion may give rise to mild growth of ||u||Lq. We explore the possibility of non-singular growth of ||u||Lq.

20. Numerical Simulations of High-Frequency Respiratory Flows in 2D and 3D Lung Bifurcation Models

Chen, Zixi; Parameswaran, Shamini; Hu, Yingying; He, Zhaoming; Raj, Rishi; Parameswaran, Siva

2014-07-01

To better understand the human pulmonary system and optimize the high-frequency oscillatory ventilation (HFOV) design, numerical simulations were conducted under normal breathing frequency and HFOV condition using a CFD code Ansys Fluent and its user-defined C programs. 2D and 3D double bifurcating lung models were created, and the geometry corresponds to fifth to seventh generations of airways with the dimensions based on the Weibel's pulmonary model. Computations were carried out for different Reynolds numbers (Re = 400 and 1000) and Womersley numbers (α = 4 and 16) to study the air flow fields, gas transportation, and wall shear stresses in the lung airways. Flow structure was compared with experimental results. Both 2D and 3D numerical models successfully reproduced many results observed in the experiment. The oxygen concentration distribution in the lung model was investigated to analyze the influence of flow oscillation on gas transport inside the lung model.

1. Development of the flow behavior model for 3D scaffold fabrication in the polymer deposition process by a heating method

Kim, Jong Young; Park, Jung Kyu; Hahn, Sei Kwang; Kwon, Tai Hun; Cho, Dong-Woo

2009-10-01

The flow behavior model for 3D scaffold fabrication in the polymer deposition process by the heating method was developed for enhanced efficiency of the deposition process. The analysis of the polymer flow property is very important in the fabrication process of precise micro-structures such as scaffolds. In this study, a deposition model considering fluid mechanics and heat transfer phenomena was built up and introduced for the estimation of the fluid behavior of molten polymer. The effectiveness of the simulation model was verified through comparison with the experimental result in the case of PCL biomaterial. In addition, the effects of various parameters, such as pressure, temperature and nozzle size, were predicted through simulation before experimental approaches. Through the fabrication of 3D scaffold, it is concluded that this model is useful in predicting the flow behavior characteristics in the micro-structure fabrication process, which is based on the heating method.

2. Higher-order in time "quasi-unconditionally stable" ADI solvers for the compressible Navier-Stokes equations in 2D and 3D curvilinear domains

Bruno, Oscar

2015-01-01

This paper introduces alternating-direction implicit (ADI) solvers of higher order of time-accuracy (orders two to six) for the compressible Navier-Stokes equations in two- and three-dimensional curvilinear domains. The higher-order accuracy in time results from 1) An application of the backward differentiation formulae time-stepping algorithm (BDF) in conjunction with 2) A BDF-like extrapolation technique for certain components of the nonlinear terms (which makes use of nonlinear solves unnecessary), as well as 3) A novel application of the Douglas-Gunn splitting (which greatly facilitates handling of boundary conditions while preserving higher-order accuracy in time). As suggested by our theoretical analysis of the algorithms for a variety of special cases, an extensive set of numerical experiments clearly indicate that all of the BDF-based ADI algorithms proposed in this paper are "quasi-unconditionally stable" in the following sense: each algorithm is stable for all couples $(h,\\Delta t)$ of spatial and t...

3. Lagrangian Finite Element Method for 3D Time-Dependent Viscoelastic Flow Computations using Integral Models

Rasmussen, Henrik Koblitz

2000-01-01

(polymeric melts) and polymeric solutions. Secondly, the 3D-LIM has also been applied to calculate the inflation of a thick sheet of a polymer melt into an elliptic cylinder. These problems all include free surfaces. As the governing equations are solved for the particle positions, the motion of surfaces can...

4. Temporal Evolution of the 3-D Flow Field In a Mixing Tank with a Two-Bladed Impeller

Choi, Woong-Chul; Guezennec, Yann G.

1998-11-01

The evolution of the 3-D flow field inside a cylindrical mixing vessel was measured using 3-D Cinematic Particle Tracking Velocimetry. The mixing vessel consisted of a cylindrical chamber with a two-bladed impeller axially centered in the vessel. The impeller was a simple paddle wheel-type and its height in the vessel could be externally adjusted. The fluid inside the chamber was seeded by small neutrally buoyant particles. The entire vessel volume was illuminated by a high-power, collimated strobe light located under the vessel and the particle motion was imaged by a pair of synchronized high-speed (up to 500 fps) digital cameras. Prior to the actual experiments, an in situ calibration of the cameras was performed to automatically account for the optical distortion resulting from the curved vessel boundaries and index of refraction mismatch. The long, high-speed video sequences were analyzed using the FloDyne(tm) 3-D Particle Tracking software. This typically resulted in 500-600 instantaneous 3-D velocity vectors over the entire vessel. The image sequences were then processed for a large number of impeller rotations (50, typically). The resulting velocity fields were then post-processed to obtain the evolution of the phase-averaged 3-D velocity field as well as estimates of the intrinsic turbulence intensities. Animation of the reconstructed 3-D flow fields will be shown. Under some geometrical configurations of the impeller at low Reynolds numbers, the results show the presence of quasi-stable recirculating regions inhibiting the overall mixing.

5. Navier-Stokes solutions for two-dimensional subsonic base flow

Rudy, D. H.

1984-01-01

Methods for determining the effects of mass injection from the trailing edge of a bluff body at low speeds and in transonic flow were numerically studied along with an unmodified blunt-based body to gain insight into the effects of vortex shedding on the base drag. The methodology used to obtain finite-difference solutions to the Navier-Stokes equations for subsonic compressible two-dimensional near-wake flows is presented. The effectiveness of an introduced outflow boundary condition which minimizes reflections back into the computational domain was demonstrated with the solution of a model vortex problem. Calculations of the near-wake flow past a circular cylinder were in excellent agreement with experimental data. Laminar-flow solutions for a blunt-based model with and without a base cavity and with mass injection into the wake agreed qualitatively with experimental observations. The drag reduction capability provided by such base modifications was demonstrated.

6. Pore-Scale Modeling of Navier-Stokes Flow in Distensible Networks and Porous Media

Sochi, Taha

2013-01-01

In this paper, a pore-scale network modeling method, based on the flow continuity residual in conjunction with a Newton-Raphson non-linear iterative solving technique, is proposed and used to obtain the pressure and flow fields in a network of interconnected distensible ducts representing, for instance, blood vasculature or deformable porous media. A previously derived analytical expression correlating boundary pressures to volumetric flow rate in compliant tubes for a pressure-area constitutive elastic relation has been used to represent the underlying flow model. Comparison to a preceding equivalent method, the one-dimensional Navier-Stokes finite element, was made and the results were analyzed. The advantages of the new method have been highlighted and practical computational issues, related mainly to the rate and speed of convergence, have been discussed.

7. Flow of Navier-Stokes Fluids in Converging-Diverging Distensible Tubes

Sochi, Taha

2013-01-01

We use a method based on the lubrication approximation in conjunction with a residual-based mass-continuity iterative solution scheme to compute the flow rate and pressure field in distensible converging-diverging tubes for Navier-Stokes fluids. We employ an analytical formula derived from a one-dimensional version of the Navier-Stokes equations to describe the underlying flow model that provides the residual function. This formula correlates the flow rate to the boundary pressures in straight cylindrical elastic tubes with constant-radius. We validate our findings by the convergence toward a final solution with fine discretization as well as by comparison to the Poiseuille-type flow in its convergence toward analytic solutions found earlier in rigid converging-diverging tubes. We also tested the method on limiting special cases of cylindrical elastic tubes with constant-radius where the numerical solutions converged to the expected analytical solutions. The distensible model has also been endorsed by its con...

8. Molecular-detailed simulation of red blood cells in Stokes flows

Peng, Zhangli; Zhu, Qiang

2010-11-01

The red blood cell (RBC) membrane consists of a lipid bilayer and a cytoskeleton. By coupling a multiscale approach of RBC membranes with a boundary element method (BEM) for the exterior and interior fluids, we developed a numerical capacity to relate the fluid-structure interaction of RBCs in Stokes flows with detailed mechanical loads inside its molecular architecture. Our multiscale approach includes three models: in the whole cell level, a finite element method (FEM) is employed to model the lipid bilayer and the cytoskeleton as two distinct layers of continuum shells; the mechanical properties of the cytoskeleton are obtained from a molecular-based model; the spectrin, a major protein of the cytoskeleton, is simulated using a constitutive model. BEM is applied to predict the exterior and interior Stokes flows, and is coupled with the FEM of the membrane through a staggered coupling algorithm. Using this method, we simulated the tumbling and tank-treading behaviors of RBCs in shear flows, and investigated the RBC dynamics in capillary flows. The structural deformation of the cytoskeleton and the interaction force between the lipid bilayer and the cytoskeleton are predicted.

9. Numerical Modelling of the Aeroelastic Behaviour and Variable Loads for the Turbine Stage in 3D Transonic Flow

V.I. GNESIN; L.V. KOLODYAZHNAYA; R. RZADKOWSKI

2005-01-01

Fiszera st., 14, Gdansk, 80 952 PolandIn this study presented the algorithm proposed involves the coupled solution of 3-D unsteady flow through a turbine stage and the dynamics problem for rotor-blade motion by the action of aerodynamic forces, without separating the outer and inner flow fluctuations. The partially integrated method involves the solution of the fluid and structural equations separately, but information is exchanged at each time step, so that solution from one domain is used as a boundary condition for the other domain. 3-D transonic gas flow through the stator and rotor blades in relative motion with periodicity on the whole annulus is described by the unsteady Euler conservation equations, which are integrated using the explicit monotonous finite-volume difference scheme of GodunovKolgan. The structural analysis uses the modal approach and a 3-D finite element model of a blade. A calculation has been done for the last stage of the steam turbine, under design and off-design regimes. It is shown that the amplitude-frequency spectrum of blade oscillations contains the high frequency harmonics, corresponding to the rotor moving past one stator blade pitch, and low frequency harmonics caused by blade oscillations and flow nonunifonnity downstream from the blade row; moreover, the spectrum involves the harmonics which are not multiples of the rotation frequency.

10. Accurate calculation of Stokes drag for point-particle tracking in two-way coupled flows

Horwitz, J. A. K.; Mani, A.

2016-08-01

In this work, we propose and test a method for calculating Stokes drag applicable to particle-laden fluid flows where two-way momentum coupling is important. In the point-particle formulation, particle dynamics are coupled to fluid dynamics via a source term that appears in the respective momentum equations. When the particle Reynolds number is small and the particle diameter is smaller than the fluid scales, it is common to approximate the momentum coupling source term as the Stokes drag. The Stokes drag force depends on the difference between the undisturbed fluid velocity evaluated at the particle location, and the particle velocity. However, owing to two-way coupling, the fluid velocity is modified in the neighborhood of a particle, relative to its undisturbed value. This causes the computed Stokes drag force to be underestimated in two-way coupled point-particle simulations. We develop estimates for the drag force error as function of the particle size relative to the grid size. Because the disturbance field created by the particle contaminates the surrounding fluid, correctly calculating the drag force cannot be done solely by direct interpolation of the fluid velocity. Instead, we develop a correction method that calculates the undisturbed fluid velocity from the computed disturbed velocity field by adding an estimate of the velocity disturbance created by the particle. The correction scheme is tested for a particle settling in an otherwise quiescent fluid and is found to reduce the error in computed settling velocity by an order of magnitude compared with common interpolation schemes.

11. Efficient computation of steady, 3D water-wave patterns, application to hovercraft-type flows

Lewis, M. R.; Koren, Barry

2002-01-01

Numerical methods for the computation of stationary free surfaces is the subject of much current research in computational engineering. The present report is directed towards free surfaces in maritime engineering. Of interest here are the long steady waves generated by hovercraft and ships, the gravity waves. In the present report an existing 2D iterative method for the computation of stationary gravity-wave solutions is extended to 3D, numerically investigated, and improved. The method emplo...

12. NETFLO, 3-D Steady-State Ground-Water Flow in Heterogeneous Medium

Description of program or function: NETFLO simulates three-dimensional, ground-water flow in a heterogeneous medium idealized as a flow through an equivalent network of series and parallel flow members under steady-state flow conditions. The algorithm is based on the application of Darcy's law along each member and conservation of mass at each node. NETFLO determines the pressure at all nodes, and velocities and fluxes in all members, for all possible flow paths from a repository node to the discharge node, and the pertinent mean flow and transport characteristics along each path, for use as input to a one-dimensional nuclide transport program like GETOUT

13. A parallel implementation of the BDDC method for the Stokes flow

Šístek, Jakub; Burda, P.; Mandel, J.; Novotný, Jaroslav; Sousedík, B.

Berlin : Springer, 2011 - (Kuzmin, A.), s. 807-812 ISBN 978-3-642-17883-2. [International Conference on Computational Fluid Dynamics /6./. St Petersburg (RU), 12.07.2010-16.07.2010] R&D Projects: GA ČR GA106/08/0403 Institutional research plan: CEZ:AV0Z10190503; CEZ:AV0Z20760514 Keywords : BDDC * domain decomposition * iterative substructuring * Stokes flow Subject RIV: BA - General Mathematics http://www.springerlink.com/content/j5h0u05458071454/

14. A Stokes-residual backflow stabilization method applied to physiological flows

Bertoglio, Cristóbal; Caiazzo, Alfonso

2016-05-01

In computational fluid dynamics, the presence of incoming flow at open boundaries (backflow) might often yield unphysical oscillations and instabilities issues, even for moderate Reynolds numbers. It is widely accepted that this problem is caused by the incoming convective energy at the open boundary, which cannot be controlled a priori when the velocity at the boundary is unknown. In this work, we propose a stabilized finite element formulation for the incompressible Navier-Stokes equations, in which the stabilization term is based on the residual of a weak Stokes problem normal to the open boundary, driven by an approximated boundary pressure gradient. In particular, the viscous term introduces additional dissipation which controls the incoming convective energy. This method has the advantage as it does not require modifications or extensions of the computational domain. Moreover, it does not require a priori assumptions on the shape of the boundary velocity field. We illustrate our approach through several numerical examples relevant to blood and respiratory flows, including Womersley flows and realistic geometries coming from medical imaging. The performance of the simulations is compared to recently reported approaches.

15. SIMULATION PROCESS OF REMOVING NON-METALLIC INCLUSIONS IN ALUMINUM ALLOYS USING THE PROGRAM FLOW-3D

N. V. Sletova; I. N. Volnov; S. P. Zadrutsky; V. A. Chaikin

2015-01-01

The perspective materials for making fining preparations for the silumins are the calcium and strontium carbonates from the environmental safety point of view are shown. Principle possibility of using dispersed carbonates in the fining mixtures is confirmed by late inoculation process research using simulation FLOW-3D.The high efficiency of the fining mixture with the inoculants effect is confirmed by the industrial tests

16. SIMULATION PROCESS OF REMOVING NON-METALLIC INCLUSIONS IN ALUMINUM ALLOYS USING THE PROGRAM FLOW-3D

N. V. Sletova

2015-05-01

Full Text Available The perspective materials for making fining preparations for the silumins are the calcium and strontium carbonates from the environmental safety point of view are shown. Principle possibility of using dispersed carbonates in the fining mixtures is confirmed by late inoculation process research using simulation FLOW-3D.The high efficiency of the fining mixture with the inoculants effect is confirmed by the industrial tests

17. Fast particles identification in programmable form at level-0 trigger by means of the 3D-Flow system

The 3D-Flow Processor system is a new, technology-independent concept in very fast, real-time system architectures. Based on either an FPGA or an ASIC implementation, it can address, in a fully programmable manner, applications where commercially available processors would fail because of throughput requirements. Possible applications include filtering-algorithms (pattern recognition) from the input of multiple sensors, as well as moving any input validated by these filtering-algorithms to a single output channel. Both operations can easily be implemented on a 3D-Flow system to achieve a real-time processing system with a very short lag time. This system can be built either with off-the-shelf FPGAs or, for higher data rates, with CMOS chips containing 4 to 16 processors each. The basic building block of the system, a 3D-Flow processor, has been successfully designed in VHDL code written in ''Generic HDL'' (mostly made of reusable blocks that are synthesizable in different technologies, or FPGAs), to produce a netlist for a four-processor ASIC featuring 0.35 micron CBA (Ceil Base Array) technology at 3.3 Volts, 884 mW power dissipation at 60 MHz and 63.75 mm sq. die size. The same VHDL code has been targeted to three FPGA manufacturers (Altera EPF10K250A, ORCA-Lucent Technologies 0R3T165 and Xilinx XCV1000). A complete set of software tools, the 3D-Flow System Manager, equally applicable to ASIC or FPGA implementations, has been produced to provide full system simulation, application development, real-time monitoring, and run-time fault recovery. Today's technology can accommodate 16 processors per chip in a medium size die, at a cost per processor of less than 5 based on the current silicon die/size technology cost 18. Validation of 3D power Doppler and VOCAL software in the 1 sonographic assessment of hepatic venous flow Claeskens, J.; Tomsin, Kathleen; Molenberghs, Geert; Van Holsbeke, C; Mesens, T; MEYLAERTS, Liesbeth; Gyselaers, Wilfried 2013-01-01 Aim: To evaluate the reproducibility of three-dimensional power Doppler ultrasonography (3D-PDU) and the ­repeatability of Virtual Organ Computer-aided AnaLysis (VOCAL) software in the assessment of hepatic venous flow in ten healthy non-pregnant individuals. Methods: Visualization of hepatic veins was performed using both intra- and subhepatic approaches; These ­examinations were repeated twice. Vascular indices were obtained for each examination in a reference point using both small and... 19. Numerical Simulation and Experimental Investigation of 3-D Separated Flow Field around a Blunt Body 1999-01-01 @@Motivated by re-designing a fuselage in engineering application, the numerical and experimental investigation of the separated flow field around a special blunt body is described in this thesis. The aerodynamic response of the blunt body is successively studied. The thesis consists of four parts: the numerical simulation of the flow field around a two-dimensional blunt body; the numerical simulation of the flow field around a three-dimensional blunt body; the flow 20. Plane shear flows of frictionless spheres: Kinetic theory and 3D soft-sphere discrete element method simulations Vescovi, D.; Berzi, D. [Department of Civil and Environmental Engineering, Politecnico di Milano, Milan 20133 (Italy); Richard, P. [LUNAM Université, IFSTTAR, site de Nantes, GPEM/MAST, route de Bouaye CS 4, 44344 Bouguenais (France); Brodu, N. [Department of Physics, Duke University, Durham, North Carolina 27708 (United States) 2014-05-15 We use existing 3D Discrete Element simulations of simple shear flows of spheres to evaluate the radial distribution function at contact that enables kinetic theory to correctly predict the pressure and the shear stress, for different values of the collisional coefficient of restitution. Then, we perform 3D Discrete Element simulations of plane flows of frictionless, inelastic spheres, sheared between walls made bumpy by gluing particles in a regular array, at fixed average volume fraction and distance between the walls. The results of the numerical simulations are used to derive boundary conditions appropriated in the cases of large and small bumpiness. Those boundary conditions are, then, employed to numerically integrate the differential equations of Extended Kinetic Theory, where the breaking of the molecular chaos assumption at volume fraction larger than 0.49 is taken into account in the expression of the dissipation rate. We show that the Extended Kinetic Theory is in very good agreement with the numerical simulations, even for coefficients of restitution as low as 0.50. When the bumpiness is increased, we observe that some of the flowing particles are stuck in the gaps between the wall spheres. As a consequence, the walls are more dissipative than expected, and the flows resemble simple shear flows, i.e., flows of rather constant volume fraction and granular temperature. 1. Plane shear flows of frictionless spheres: Kinetic theory and 3D soft-sphere discrete element method simulations We use existing 3D Discrete Element simulations of simple shear flows of spheres to evaluate the radial distribution function at contact that enables kinetic theory to correctly predict the pressure and the shear stress, for different values of the collisional coefficient of restitution. Then, we perform 3D Discrete Element simulations of plane flows of frictionless, inelastic spheres, sheared between walls made bumpy by gluing particles in a regular array, at fixed average volume fraction and distance between the walls. The results of the numerical simulations are used to derive boundary conditions appropriated in the cases of large and small bumpiness. Those boundary conditions are, then, employed to numerically integrate the differential equations of Extended Kinetic Theory, where the breaking of the molecular chaos assumption at volume fraction larger than 0.49 is taken into account in the expression of the dissipation rate. We show that the Extended Kinetic Theory is in very good agreement with the numerical simulations, even for coefficients of restitution as low as 0.50. When the bumpiness is increased, we observe that some of the flowing particles are stuck in the gaps between the wall spheres. As a consequence, the walls are more dissipative than expected, and the flows resemble simple shear flows, i.e., flows of rather constant volume fraction and granular temperature 2. A low order flow/acoustics interaction method for the prediction of sound propagation using 3D adaptive hybrid grids A low-order flow/acoustics interaction method for the prediction of sound propagation and diffraction in unsteady subsonic compressible flow using adaptive 3-D hybrid grids is investigated. The total field is decomposed into the flow field described by the Euler equations, and the acoustics part described by the Nonlinear Perturbation Equations. The method is shown capable of predicting monopole sound propagation, while employment of acoustics-guided adapted grid refinement improves the accuracy of capturing the acoustic field. Interaction of sound with solid boundaries is also examined in terms of reflection, and diffraction. Sound propagation through an unsteady flow field is examined using static and dynamic flow/acoustics coupling demonstrating the importance of the latter. 3. A low order flow/acoustics interaction method for the prediction of sound propagation using 3D adaptive hybrid grids Kallinderis, Yannis, E-mail: kallind@otenet.gr [Dept. of Mechanical and Aeronautical Engineering, University of Patras, Rio Patras 26504 (Greece); Vitsas, Panagiotis A.; Menounou, Penelope [Dept. of Mechanical and Aeronautical Engineering, University of Patras, Rio Patras 26504 (Greece) 2012-07-15 A low-order flow/acoustics interaction method for the prediction of sound propagation and diffraction in unsteady subsonic compressible flow using adaptive 3-D hybrid grids is investigated. The total field is decomposed into the flow field described by the Euler equations, and the acoustics part described by the Nonlinear Perturbation Equations. The method is shown capable of predicting monopole sound propagation, while employment of acoustics-guided adapted grid refinement improves the accuracy of capturing the acoustic field. Interaction of sound with solid boundaries is also examined in terms of reflection, and diffraction. Sound propagation through an unsteady flow field is examined using static and dynamic flow/acoustics coupling demonstrating the importance of the latter. 4. Quasi 3D modeling of water flow in vadose zone and groundwater The complexity of subsurface flow systems calls for a variety of concepts leading to the multiplicity of simplified flow models. One habitual simplification is based on the assumption that lateral flow and transport in unsaturated zone are not significant unless the capillary fringe is involved. In ... 5. 3D flows near a HAWT rotor: A dissection of blade and wake contributions Micallef, D. 2012-01-01 Investigating the flow physics in the vicinity of the wind turbine blade is a challenging endeavour. In the past, focus was placed on the understanding of near wake flows arising from wake vorticity and the rotor loading. In this work, a different approach is taken by considering the flow field in t 6. Numerical simulation of Stokes flow around particles via a hybrid Finite Difference-Boundary Integral scheme Bhattacharya, Amitabh 2013-11-01 An efficient algorithm for simulating Stokes flow around particles is presented here, in which a second order Finite Difference method (FDM) is coupled to a Boundary Integral method (BIM). This method utilizes the strong points of FDM (i.e. localized stencil) and BIM (i.e. accurate representation of particle surface). Specifically, in each iteration, the flow field away from the particles is solved on a Cartesian FDM grid, while the traction on the particle surface (given the the velocity of the particle) is solved using BIM. The two schemes are coupled by matching the solution in an intermediate region between the particle and surrounding fluid. We validate this method by solving for flow around an array of cylinders, and find good agreement with Hasimoto's (J. Fluid Mech. 1959) analytical results. 7. 2D and 3D CFD modelling of a reactive turbulent flow in a double shell supercritical water oxidation reactor In order to design and define appropriate dimensions for a supercritical oxidation reactor, a comparative 2D and 3D simulation of the fluid dynamics and heat transfer during an oxidation process has been performed. The solver used is a commercial code, Fluent 6.2 (R). The turbulent flow field in the reactor, created by the stirrer, is taken into account with a k-omega model and a swirl imposed to the fluid. In the 3D case the rotation of the stirrer can be modelled using the sliding mesh model and the moving reference frame model. This work allows comparing 2D and 3D velocity and heat transfer calculations. The predicted values (mainly species concentrations and temperature profiles) are of the same order in both cases. The reactivity of the system is taken into account with a classical Eddy Dissipation Concept combustion model. Comparisons with experimental temperature measurements validate the ability of the CFD modelling to simulate the supercritical water oxidation reactive medium. Results indicate that the flow can be considered as plug flow-like and that heat transfer is strongly enhanced by the stirring. (authors) 8. 3-D hybrid LES-RANS model for simulation of open-channel T-diversion flows Jie ZHOU; Cheng ZENG 2009-01-01 The study of flow diversions in open channels plays an important practical role in the design and management of open-channel networks for irrigation or drainage.To accurately predict the mean flow and turbulence characteristics of open-channel dividing flows,a hybrid LES-RANS model,which combines the large eddy simulation (LES) model with the Reynolds-averaged Navier-Stokes (RANS) model,is proposed in the present study.The unsteady RANS model was used to simulate the upstream and downstream regions of a main channel,as well as the downstream region of a branch channel.The LES model was used to simulate the channel diversion region,where turbulent flow characteristics ate complicated.Isotropic velocity fluctuations were added at the inflow interface of the LES region to trigger the generation of resolved turbulence.A method based on the virtual body force is proposed to impose Reynolds-averaged velocity fields near the outlet of the LES region in order to take downstream flow effects computed by the RANS model into account and dissipate the excessive turbulent fluctuations.This hybrid approach saves computational effort and makes it easier to properly specify inlet and outlet boundary conditions.Comparison between computational results and experimental data indicates that this relatively new modeling approach can accurately predict open-channel T-diversion flows. 9. 3-D hybrid LES-RANS model for simulation of open-channel T-diversion flows Jie ZHOU 2009-09-01 Full Text Available The study of flow diversions in open channels plays an important practical role in the design and management of open-channel networks for irrigation or drainage. To accurately predict the mean flow and turbulence characteristics of open-channel dividing flows, a hybrid LES-RANS model, which combines the large eddy simulation (LES model with the Reynolds-averaged Navier-Stokes (RANS model, is proposed in the present study. The unsteady RANS model was used to simulate the upstream and downstream regions of a main channel, as well as the downstream region of a branch channel. The LES model was used to simulate the channel diversion region, where turbulent flow characteristics are complicated. Isotropic velocity fluctuations were added at the inflow interface of the LES region to trigger the generation of resolved turbulence. A method based on the virtual body force is proposed to impose Reynolds-averaged velocity fields near the outlet of the LES region in order to take downstream flow effects computed by the RANS model into account and dissipate the excessive turbulent fluctuations. This hybrid approach saves computational effort and makes it easier to properly specify inlet and outlet boundary conditions. Comparison between computational results and experimental data indicates that this relatively new modeling approach can accurately predict open-channel T-diversion flows. 10. Computer Simulation of Flow in CSO “OK3D Evropská” Pollert, J 2000-01-01 During the last 30 years, a number of devices has been developed for dynamic separation of settle able solids in wastewaters. Initially, these separators were used for control of Combined Sewer Overflow (CSO) pollution by retaining the bulk of solids in the underflow, directed to the sewage treatment plant (STP), and allowing combined sewage with reduced pollutant loads to overflow from the sewer systém. This paper is describing CSO “OK 3D Evropská” in Prague 6 on Evropská Street. Inlet... 11. Application of A Fast Multipole BIEM for Flow Diffraction from A 3D Body 滕斌; 宁德志 2004-01-01 A Fast Multipole Method (FMM) is developed as a numerical approach to the reduction of the computational cost and requirement memory capacity for a large in solving large-scale problems. In this paper it is applied to the boundary integral equation method (BIEM) for current diffraction from arbitrary 3D bodies. The boundary integral equation is discretized by higher order elements, the FMM is applied to avoid the matrix/vector product, and the resulting algebraic equation is solved by the Generalized Conjugate Residual method (GCR). Numerical examination shows that the FMM is more efficient than the direct evaluation method in computational cost and storage of computers. 12. Optic flow-based vision system for autonomous 3D localization and control of small aerial vehicles Kendoul, Farid; Fantoni, Isabelle; Nonami, Kenzo 2009-01-01 International audience The problem considered in this paper involves the design of a vision-based autopilot for small and micro Unmanned Aerial Vehicles (UAVs). The proposed autopilot is based on an optic flow-based vision system for autonomous localization and scene mapping, and a nonlinear control system for flight control and guidance. This paper focusses on the development of a real-time 3D vision algorithm for estimating optic flow, aircraft self-motion and depth map, using a low-reso... 13. 3-D flow and scour near a submerged wing dike: ADCP measurements on the Missouri River Jamieson, E.C.; Rennie, C.D.; Jacobson, R.B.; Townsend, R.D. 2011-01-01 Detailed mapping of bathymetry and three-dimensional water velocities using a boat-mounted single-beam sonar and acoustic Doppler current profiler (ADCP) was carried out in the vicinity of two submerged wing dikes located in the Lower Missouri River near Columbia, Missouri. During high spring flows the wing dikes become submerged, creating a unique combination of vertical flow separation and overtopping (plunging) flow conditions, causing large-scale three-dimensional turbulent flow structures to form. On three different days and for a range of discharges, sampling transects at 5 and 20 m spacing were completed, covering the area adjacent to and upstream and downstream from two different wing dikes. The objectives of this research are to evaluate whether an ADCP can identify and measure large-scale flow features such as recirculating flow and vortex shedding that develop in the vicinity of a submerged wing dike; and whether or not moving-boat (single-transect) data are sufficient for resolving complex three-dimensional flow fields. Results indicate that spatial averaging from multiple nearby single transects may be more representative of an inherently complex (temporally and spatially variable) three-dimensional flow field than repeated single transects. Results also indicate a correspondence between the location of calculated vortex cores (resolved from the interpolated three-dimensional flow field) and the nearby scour holes, providing new insight into the connections between vertically oriented coherent structures and local scour, with the unique perspective of flow and morphology in a large river. 14. 3D tomographic reconstruction of the internal velocity field of an immiscible drop in a shear flow Kerdraon, Paul; Dalziel, Stuart B.; Goldstein, Raymond E.; Landel, Julien R.; Peaudecerf, Francois J. 2015-11-01 We study experimentally the internal flow of a drop attached to a flat substrate and immersed in an immiscible shear flow. Transport inside the drop can play a crucial role in cleaning applications. Internal advection can enhance the mass transfer across the drop surface, thus increasing the cleaning rate. We used microlitre water-glycerol drops on a hydrophobic substrate. The drops were spherical and did not deform significantly under the shear flow. An oil phase of relative viscosity 0.01 to 1 was flowed over the drop. Typical Reynolds numbers inside the drops were of the order of 0.1 to 10. Using confocal microscopy, we performed 3D tomographic reconstruction of the flow field in the drop. The in-plane velocity field was measured using micro-PIV, and the third velocity component was computed from incompressibility. To our knowledge, this study gives the first experimental measurement of the three-dimensional internal velocity field of a drop in a shear flow. Numerical simulations and theoretical models published in the past 30 years predict a toroidal internal recirculation flow, for which the entire surface flows streamwise. However, our measurements reveal a qualitatively different picture with a two-lobed recirculation, featuring two stagnation points at the surface and a reverse surface flow closer to the substrate. This finding appears to be independent of Reynolds number and viscosity ratio in the ranges studied; we conjecture that the observed flow is due to the effect of surfactants at the drop surface. 15. Experimental study on the confined 3D laminar flow past a square prism with a high blockage ratio Highlights: • Experimental study of the flow past a confined square section prism. • Flow regime is 3D and laminar. • Different regimes are identified depending on the Reynolds number. • Results could be used for practical engineering design purposes. -- Abstract: An experimental PIV study is presented that addresses the confined 3D laminar flow behaviour past a square prism. The Reynolds number (Re), based on prism cross-section height varies between 100 and 256. The channel aspect ratio is 1/1 and the blockage ratio is 1/2.5. This geometry is representative of a passive method to enhance mixing in otherwise highly ordered laminar channel flow. It is found that the lateral walls exert a strong effect on the flow behaviour with two main consequences: (a) the onset of vortex shedding is delayed to a Re in the vicinity of 170, as opposed to the unconfined case where the critical Re is reported to be between 50 and 60 and (b) transition from the steady closed recirculation bubble regime to the vortex shedding regime is not abrupt. In particular, there is a range of Re for which the closed recirculation bubble pulsates with increasing amplitude prior to the onset of the Karman street regime. The experimental results are supported by numerical computations, and the relation of the results with the practical design of engineering systems is also discussed 16. Water flow prediction for Membranes using 3D simulations with detailed morphology Shi, Meixia 2015-04-01 The membrane morphology significantly influences membrane performance. For osmotically driven membrane processes, the morphology strongly affects the internal concentration polarization. Different membrane morphologies were generated by simulation and their influence on membrane performance was studied, using a 3D model. The simulation results were experimentally validated for two classical phase-inversion membrane morphologies: sponge- and finger-like structures. Membrane porosity and scanning electron microscopy image information were used as model input. The permeance results from the simulation fit well the experimentally measured permeances. Water permeances were predicted for different kinds of finger-like cavity membranes with different finger-like cavity lengths and various finger-like cavity sets, as well as for membranes with cylindrical cavities. The results provide realistic information on how to increase water permeance, and also illustrate that membrane’s complete morphology is important for the accurate water permeance evaluation. Evaluations only based on porosity might be misleading, and the new 3D simulation approach gives a more realistic representation. 17. NUMERICAL SIMULATION OF 3-D TURBULENT FLOW IN THE MULTI- INTAKES SUMP OF THE PUMP STATION CHEN Hong-xun; GUO Jia-hong 2007-01-01 In this article, a numerical model for three-dimensional turbulent flow in the sump of the pump station was presented. A reasonable boundary condition for the flow in the sump with several water intakes at different flow rates was proposed. The finite volume method was employed to solve the governing equations with the body fitted grid generated by the multi-block grid technique. By using the Fluent software, the fluid flow in a model sump of the pump station was calculated. Compared with the experimental result, the numerical result of the example is fairly good. 18. 2D and 3D simulation of cavitating flows: development of an original algorithm in code Saturne and study of the influence of turbulence modeling Cavitation is one of the most demanding physical phenomena influencing the performance of hydraulic machines. It is therefore important to predict correctly its inception and development, in order to quantify the performance drop it induces, and also to characterize the resulting flow instabilities. The aim of this work is to develop an unsteady 3D algorithm for the numerical simulation of cavitation in an industrial CFD solver 'Code Saturne'. It is based on a fractional step method and preserves the minimum/maximum principle of the void fraction. An implicit solver, based on a transport equation of the void fraction coupled with the Navier-Stokes equations is proposed. A specific numerical treatment of the cavitation source terms provides physical values of the void fraction (between 0 and 1) without including any artificial numerical limitation. The influence of RANS turbulence models on the simulation of cavitation on 2D geometries (Venturi and Hydrofoil) is then studied. It confirms the capability of the two-equation eddy viscosity models, k-epsilon and k-omega-SST, with the modification proposed by Reboud et al. (1998) to reproduce the main features of the unsteady sheet cavity behavior. The second order model RSM-SSG, based on the Reynolds stress transport, appears able to reproduce the highly unsteady flow behavior without including any arbitrary modification. The three-dimensional effects involved in the instability mechanisms are also analyzed. This work allows us to achieve a numerical tool, validated on complex configurations of cavitating flows, to improve the understanding of the physical mechanisms that control the three-dimensional unsteady effects involved in the mechanisms of instability. (author) 19. Interfacial tension based on-chip extraction of microparticles confined in microfluidic Stokes flows Huang, Haishui; He, Xiaoming 2014-01-01 Microfluidics involving two immiscible fluids (oil and water) has been increasingly used to produce hydrogel microparticles with wide applications. However, it is difficult to extract the microparticles out of the microfluidic Stokes flows of oil that have a Reynolds number (the ratio of inertia to viscous force) much less than one, where the dominant viscous force tends to drive the microparticles to move together with the surrounding oil. Here, we present a passive method for extracting hydrogel microparticles in microfluidic Stokes flow from oil into aqueous extracting solution on-chip by utilizing the intrinsic interfacial tension between oil and the microparticles. We further reveal that the thickness of an “extended confining layer” of oil next to the interface between oil and aqueous extracting solution must be smaller than the radius of microparticles for effective extraction. This method uses a simple planar merging microchannel design that can be readily fabricated and further integrated into a fluidic system to extract microparticles for wide applications. PMID:25378709 20. Outflow boundary conditions for 3D simulations of non-periodic blood flow and pressure fields in deformable arteries Vignon-Clementel, Irene; Jansen, K E; Taylor, C A; 10.1080/10255840903413565 2010-01-01 The simulation of blood flow and pressure in arteries requires outflow boundary conditions that incorporate models of downstream domains. We previously described a coupled multidomain method to couple analytical models of the downstream domains with 3D numerical models of the upstream vasculature. This prior work either included pure resistance boundary conditions or impedance boundary conditions based on assumed periodicity of the solution. However, flow and pressure in arteries are not necessarily periodic in time due to heart rate variability, respiration, complex transitional flow or acute physiological changes. We present herein an approach for prescribing lumped parameter outflow boundary conditions that accommodate transient phenomena. We have applied this method to compute haemodynamic quantities in different physiologically relevant cardiovascular models, including patient-specific examples, to study non-periodic flow phenomena often observed in normal subjects and in patients with acquired or congen... 1. Validation of the TRACR3D code for soil water flow under saturated/unsaturated conditions in three experiments Validation of the TRACR3D code in a one-dimensional form was obtained for flow of soil water in three experiments. In the first experiment, a pulse of water entered a crushed-tuff soil and initially moved under conditions of saturated flow, quickly followed by unsaturated flow. In the second experiment, steady-state unsaturated flow took place. In the final experiment, two slugs of water entered crushed tuff under field conditions. In all three experiments, experimentally measured data for volumetric water content agreed, within experimental errors, with the volumetric water content predicted by the code simulations. The experiments and simulations indicated the need for accurate knowledge of boundary and initial conditions, amount and duration of moisture input, and relevant material properties as input into the computer code. During the validation experiments, limitations on monitoring of water movement in waste burial sites were also noted. 5 references, 34 figures, 9 tables 2. 3D CFD computations of trasitional flows using DES and a correlation based transition model Sørensen, Niels N.; Bechmann, Andreas; Zahle, Frederik 2011-01-01 The present article describes the application of the correlation based transition model of Menter et al. in combination with the Detached Eddy Simulation (DES) methodology to two cases with large degree of flow separation typically considered difficult to compute. Firstly, the flow is computed over... 3. 3D Flow Past Transonic Turbine Cascade SE 1050 - Experiment and Numerical Simulations Šimurda, David; Fürst, J.; Luxa, Martin Shenzhen: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2013. [International Symposium on Experimental and Computational Aerothermodynamics of Internal Flows : ISAIF /11./. Shenzhen (CN), 06.05.2013-11.05.2013] R&D Projects: GA ČR(CZ) GAP101/10/1329 Institutional support: RVO:61388998 Keywords : blade cascade * vortex structures * transonic flow * CFD Subject RIV: BK - Fluid Dynamics 4. Analysis of zonal flow bifurcations in 3D drift wave turbulence simulations The main issue of experimental magnetic fusion devices lies with their inherently high turbulent transport, preventing long-term plasma confinement. A deeper understanding of the underlying transport processes is therefore desirable, especially in the high-gradient tokamak edge which marks the location of the drift wave regime as well as the outer boundary of the still badly understood high confinement mode. One of the most promising plasma features possibly connected to a complete bifurcation theory for the transition to this H-mode is found in large-scale phenomena capable of regulating radial transport through vortex shearing - i.e. zonal flows, linearly stable large-scale poloidal vector E x vector B-modes based on radial flux surface averages of the potential gradient generated through turbulent self-organization. Despite their relevance, few detailed turbulence studies of drift wave-based zonal flows have been undertaken, and none of them have explicitly targeted bifurcations - or, within a resistive sheared-slab environment, observed zonal flows at all. In this work, both analytical means and the two-fluid code NLET are used to analyze a reduced set of Hasegawa-Wakatani equations, describing a sheared collisional drift wave system without curvature. The characteristics of the drift waves themselves, as well as those of the drift wave-based zonal flows and their retroaction on the drift wave turbulence are examined. The single dimensionless parameter ρs proposed in previous analytical models is examined numerically and shown to divide the drift wave scale into two transport regimes, the behavioral characteristics of which agree perfectly with theoretical expectations. This transport transition correlates with a transition from pure drift wave turbulence at low ρs into the high-ρs zonal flow regime. The associated threshold has been more clearly identified by tracing it back to a tipping of the ratio between a newly proposed frequency gradient length at the 5. LDA measurement of the passage flow field in a 3-D airfoil cascade Stauter, R. C.; Fleeter, S. 1986-01-01 Three-dimensional internal flow computational models are currently being developed to predict the flow through turbomachinery blade rows. For these codes to be of quantitative value, they must be verified with data obtained in experiments which model the fundamental flow phenomena. In this paper, the complete three-dimensional flow field through a subsonic annular cascade of cambered airfoils is experimentally quantified. In particular, detailed three-dimensional data are obtained to quantify the inlet velocity profile, the cascade passage velocity field, and the exit region flow field. The primary instrumentation for acquiring these data is a single-channel Laser Doppler Anemometer operating in the backscatter mode, with chordwise distributions of airfoil surface static pressure taps also utilized. Appropriate data are correlated with predictions from the MERIDL/TSONIC codes. 6. The power spectrum of solar convection flows from high-resolution observations and 3D simulations Chaouche, L Yelles; Bonet, J A 2014-01-01 We compare Fourier spectra of photospheric velocity fields from very high resolution IMaX observations to those from recent 3D numerical magnetoconvection models. We carry out a proper comparison by synthesizing spectral lines from the numerical models and then applying to them the adequate residual instrumental degradation that affects the observational data. Also, the validity of the usual observational proxies is tested by obtaining synthetic observations from the numerical boxes and comparing the velocity proxies to the actual velocity values from the numerical grid. For the observations, data from the SUNRISE/IMaX instrument with about 120 km spatial resolution are used, thus allowing the calculation of observational Fourier spectra well into the subgranular range. For the simulations, we use four series of runs obtained with the STAGGER code and synthesize the IMaX spectral line (FeI 5250.2 A) from them. Proxies for the velocity field are obtained via Dopplergrams (vertical component) and local correlat... 7. The NCOREL computer program for 3D nonlinear supersonic potential flow computations Siclari, M. J. 1983-01-01 An innovative computational technique (NCOREL) was established for the treatment of three dimensional supersonic flows. The method is nonlinear in that it solves the nonconservative finite difference analog of the full potential equation and can predict the formation of supercritical cross flow regions, embedded and bow shocks. The method implicitly computes a conical flow at the apex (R = 0) of a spherical coordinate system and uses a fully implicit marching technique to obtain three dimensional cross flow solutions. This implies that the radial Mach number must remain supersonic. The cross flow solutions are obtained by using type dependent transonic relaxation techniques with the type dependency linked to the character of the cross flow velocity (i.e., subsonic/supersonic). The spherical coordinate system and marching on spherical surfaces is ideally suited to the computation of wing flows at low supersonic Mach numbers due to the elimination of the subsonic axial Mach number problems that exist in other marching codes that utilize Cartesian transverse marching planes. 8. Bidirectional inward migration of particles lagging behind a Poiseuille flow in a rectangular microchannel for 3D particle focusing Electrophoretic mobility of particles dispersed in an electrolyte solution induces the particles to lag behind a Poiseuille flow in a rectangular microchannel, which causes bidirectional inward migration of particles to the central axis of the channel. As a result, in the present theoretical and experimental study, three-dimensional (3D) particle focusing is clearly realized in such a manner that the particles are aligned in a single file along the axis of the channel as they are transported downstream. Theoretical prediction on the particle migration time provides an excellent assessment of the experimental results. The method proposed in the present study has potential for development of low-cost rapid manufacturing process of sheathless monolayer microchips for 3D particle focusing. (technical note) 9. DCM3D: A dual-continuum, three-dimensional, ground-water flow code for unsaturated, fractured, porous media This report constitutes the user's manual for DCM3D. DCM3D is a computer code for solving three-dimensional, ground-water flow problems in variably saturated, fractured porous media. The code is based on a dual-continuum model with porous media comprising one continuum and fractures comprising the other. The continua are connected by a transfer term that depends on the unsaturated permeability of the porous medium. An integrated finite-difference scheme is used to discretize the governing equations in space. The time-dependent term is allowed to remain continuous. The resulting set of ordinary differential equations (ODE's) is solved with a general ODE solver, LSODES. The code is capable of handling transient, spatially dependent source terms and boundary conditions. The boundary conditions can either prescribed head or prescribed flux. 24 refs., 22 figs., 5 tabs 10. Research on the Inner Water Flow Field in a Hydrocyclone by the Method of 3D Numerical Simulation Hui Li 2013-01-01 Full Text Available The inner water flow field in a hydrocyclone was simulated by the software of computational fluid dynamics-FLUENT, using RSM turbulent model. The air core, 3D velocity field distribution and pressure field distribution were simulated and contrasted with experimental results. The results indicated that the air core was through from the inlet to the outlet. The simulated 3D velocity field distribution was consistent with the results obtained by the experiments. The axial symmetry of pressure field distribution was quite good and the pressure gradient was very large. All these results tested the reliability of the method of numerical simulation and provided a reference for the further research of solid-liquid separation and the optimizing design of the hydrocyclone. 11. Verification of the Proteus two-dimensional Navier-Stokes code for flat plate and pipe flows Conley, Julianne M.; Zeman, Patrick L. 1991-01-01 The Proteus Navier-Stokes Code is evaluated for two-dimensional/axisymmetric, viscous, incompressible, internal and external flows. The particular cases to be discussed are laminar and turbulent flows over a flat plate, laminar and turbulent dveloping pipe flows and turbulent pipe flow with swirl. Results are compared with exact solutions, empirical correlations and experimental data. A detailed description of the code set-up, including boundary conditions, intitial conditions, grid size and grid packing is given for each case. 12. Holographic microscopy and microfluidics platform for measuring wall stress and 3D flow over surfaces textured by micro-pillars. Bocanegra Evans, Humberto; Gorumlu, Serdar; Aksak, Burak; Castillo, Luciano; Sheng, Jian 2016-01-01 Understanding how fluid flow interacts with micro-textured surfaces is crucial for a broad range of key biological processes and engineering applications including particle dispersion, pathogenic infections, and drag manipulation by surface topology. We use high-speed digital holographic microscopy (DHM) in combination with a correlation based de-noising algorithm to overcome the optical interference generated by surface roughness and to capture a large number of 3D particle trajectories in a microfluidic channel with one surface patterned with micropillars. It allows us to obtain a 3D ensembled velocity field with an uncertainty of 0.06% and 2D wall shear stress distribution at the resolution of ~65 μPa. Contrary to laminar flow in most microfluidics, we find that the flow is three-dimensional and complex for the textured microchannel. While the micropillars affect the velocity flow field locally, their presence is felt globally in terms of wall shear stresses at the channel walls. These findings imply that micro-scale mixing and wall stress sensing/manipulation can be achieved through hydro-dynamically smooth but topologically rough micropillars. PMID:27353632 13. Holographic microscopy and microfluidics platform for measuring wall stress and 3D flow over surfaces textured by micro-pillars Bocanegra Evans, Humberto; Gorumlu, Serdar; Aksak, Burak; Castillo, Luciano; Sheng, Jian 2016-06-01 Understanding how fluid flow interacts with micro-textured surfaces is crucial for a broad range of key biological processes and engineering applications including particle dispersion, pathogenic infections, and drag manipulation by surface topology. We use high-speed digital holographic microscopy (DHM) in combination with a correlation based de-noising algorithm to overcome the optical interference generated by surface roughness and to capture a large number of 3D particle trajectories in a microfluidic channel with one surface patterned with micropillars. It allows us to obtain a 3D ensembled velocity field with an uncertainty of 0.06% and 2D wall shear stress distribution at the resolution of ~65 μPa. Contrary to laminar flow in most microfluidics, we find that the flow is three-dimensional and complex for the textured microchannel. While the micropillars affect the velocity flow field locally, their presence is felt globally in terms of wall shear stresses at the channel walls. These findings imply that micro-scale mixing and wall stress sensing/manipulation can be achieved through hydro-dynamically smooth but topologically rough micropillars. 14. Holographic microscopy and microfluidics platform for measuring wall stress and 3D flow over surfaces textured by micro-pillars Bocanegra Evans, Humberto; Gorumlu, Serdar; Aksak, Burak; Castillo, Luciano; Sheng, Jian 2016-01-01 Understanding how fluid flow interacts with micro-textured surfaces is crucial for a broad range of key biological processes and engineering applications including particle dispersion, pathogenic infections, and drag manipulation by surface topology. We use high-speed digital holographic microscopy (DHM) in combination with a correlation based de-noising algorithm to overcome the optical interference generated by surface roughness and to capture a large number of 3D particle trajectories in a microfluidic channel with one surface patterned with micropillars. It allows us to obtain a 3D ensembled velocity field with an uncertainty of 0.06% and 2D wall shear stress distribution at the resolution of ~65 μPa. Contrary to laminar flow in most microfluidics, we find that the flow is three-dimensional and complex for the textured microchannel. While the micropillars affect the velocity flow field locally, their presence is felt globally in terms of wall shear stresses at the channel walls. These findings imply that micro-scale mixing and wall stress sensing/manipulation can be achieved through hydro-dynamically smooth but topologically rough micropillars. PMID:27353632 15. An exact solution for the 3D MHD stagnation-point flow of a micropolar fluid Borrelli, A.; Giantesio, G.; Patria, M. C. 2015-01-01 The influence of a non-uniform external magnetic field on the steady three dimensional stagnation-point flow of a micropolar fluid over a rigid uncharged dielectric at rest is studied. The total magnetic field is parallel to the velocity at infinity. It is proved that this flow is possible only in the axisymmetric case. The governing nonlinear partial differential equations are reduced to a system of ordinary differential equations by a similarity transformation, before being solved numerically. The effects of the governing parameters on the fluid flow and on the magnetic field are illustrated graphically and discussed. 16. Unsteady Cavitating Flow around a Hydrofoil Simulated Using the Partially-Averaged Navier—Stokes Model Numerical simulations of unsteady cavitating flow around a NACA66-mod hydrofoil were performed using the partially-averaged Navier—Stokes method with different values of the resolution control parameters (fk = 1.0−0.2, fin = 1). With decreasing fk, the predicted cavitating flow becomes unsteady as the time-averaged turbulent viscosity at the rear part of the attached cavity is gradually reduced. For fk = 0.9 and 0.8, the cavity becomes unstable and its length dramatically expands and shrinks, but the calculation fails to predict the vapor cloud shedding behavior observed experimentally. With smaller fk less than 0.7, the cloud shedding behavior is simulated numerically and the predicted cavity shedding frequency increases. With fk = 0.2, the whole cavitating flow evolution can be reasonably reproduced including the cavity growth/destabilization observed previously. The reentrant flow along the suction surface of the hydrofoil is the main trigger to cause the vapor cloud shedding. The wall pressure along the hydrofoil surface oscillates greatly due to the dynamic cavity shedding. Comparing the simulations and experiments, it is confirmed that for the PANS method, resolution control parameters of fk = 0.2 and fin = 1 are recommended for numerical simulations of unsteady cavitating flows. Thus, the present study shows that the PANS method is an effective approach for predicting unsteady cavitating flow over hydrofoils. (condensed matter: structure, mechanical and thermal properties) 17. Using the UM dynamical cores to reproduce idealised 3-D flows N. J. Mayne 2014-12-01 Full Text Available We demonstrate that both the current (New Dynamics, and next generation (ENDGame dynamical cores of the UK Met Office global circulation model, the UM, reproduce consistently, the long-term, large-scale flows found in several published idealised tests. The cases presented are the Held–Suarez test, a simplified model of Earth (including a stratosphere, and a hypothetical tidally locked Earth. Furthermore, we show that using simplifications to the dynamical equations, which are expected to be justified for the physical domains and flow regimes we have studied, and which are supported by the ENDGame dynamical core, also produces matching long-term, large-scale flows. Finally, we present evidence for differences in the detail of the planetary flows and circulations resulting from improvements in the ENDGame formulation over New Dynamics. 18. Numerical research on the 3D fiber orientation distribution in arbitrary planar flows 2007-01-01 The fiber orientation distribution in a fiber suspension flow was investigated by a finite difference scheme in spherical coordinates. The diffusivity was transformed between Cartesian and spherical coordinates through tensor analysis to obtain efficiency. It is found that under simple shear flow condition the diffusivity in the azimuthal direction, Dry, has greater effect on the orientation distribution than that in the colatitude direction, Drθθ. 19. Reflux venous flow in dural sinus and internal jugular vein on 3D time-of-flight MR angiography Jang, Jinhee; Kim, Bum-soo; Kim, Bom-yi; Choi, Hyun Seok; Jung, So-Lyung; Ahn, Kook-Jin; Byun, Jae Young [The Catholic University of Korea, Department of Radiology, Seoul St. Mary' s Hospital, School of Medicine, Seoul (Korea, Republic of) 2013-10-15 Reflux venous signal on the brain and neck time-of-flight magnetic resonance angiography (TOF MRA) is thought to be related to a compressed left brachiocephalic vein. This study is aimed to assess the prevalence of venous reflux flow in internal jugular vein (IJV), sigmoid sinus/transverse sinus (SS/TS), and inferior petrosal sinus (IPS) on the brain and neck TOF MRA and its pattern. From the radiology database, 3,475 patients (1,526 men, 1,949 women, age range 19-94, median age 62 years) with brain and neck standard 3D TOF MRA at 3 T and 1.5 T were identified. Rotational maximal intensity projection images of 3D TOF MRA were assessed for the presence of reflux flow in IJV, IPS, and SS/TS. Fifty-five patients (1.6 %) had reflux flow, all in the left side. It was more prevalent in females (n = 43/1,949, 2.2 %) than in males (n = 12/1,526, 0.8 %) (p = 0.001). The mean age of patients with reflux flow (66 years old) was older than those (60 years old) without reflux flow (p = 0.001). Three patients had arteriovenous shunt in the left arm for hemodialysis. Of the remaining 52 patients, reflux was seen on IJV in 35 patients (67.3 %). There were more patients with reflux flow seen on SS/TS (n = 34) than on IPS (n = 25). Venous reflux flow on TOF MRA is infrequently observed, and reflux pattern is variable. Because it is exclusively located in the left side, the reflux signal on TOF MRA could be an alarm for an undesirable candidate for a contrast injection on the left side for contrast-enhanced imaging study. (orig.) 20. Investigation of seasonal thermal flow in a real dam reservoir using 3-D numerical modeling Üneş Fatih 2015-03-01 Full Text Available Investigations indicate that correct estimation of seasonal thermal stratification in a dam reservoir is very important for the dam reservoir water quality modeling and water management problems. The main aim of this study is to develop a hydrodynamics model of an actual dam reservoir in three dimensions for simulating a real dam reservoir flows for different seasons. The model is developed using nonlinear and unsteady continuity, momentum, energy and k-ε turbulence model equations. In order to include the Coriolis force effect on the flow in a dam reservoir, Coriolis force parameter is also added the model equations. Those equations are constructed using actual dimensions, shape, boundary and initial conditions of the dam and reservoir. Temperature profiles and flow visualizations are used to evaluate flow conditions in the reservoir. Reservoir flow’s process and parameters are determined all over the reservoir. The mathematical model developed is capable of simulating the flow and thermal characteristics of the reservoir system for seasonal heat exchanges. Model simulations results obtained are compared with field measurements obtained from gauging stations for flows in different seasons. The results show a good agreement with the field measurements. 1. Secondary flow structure in a model curved artery: 3D morphology and circulation budget analysis Bulusu, Kartik V.; Plesniak, Michael W. 2015-11-01 In this study, we examined the rate of change of circulation within control regions encompassing the large-scale vortical structures associated with secondary flows, i.e. deformed Dean-, Lyne- and Wall-type (D-L-W) vortices at planar cross-sections in a 180° curved artery model (curvature ratio, 1/7). Magnetic resonance velocimetry (MRV) and particle image velocimetry (PIV) experiments were performed independently, under the same physiological inflow conditions (Womersley number, 4.2) and using Newtonian blood-analog fluids. The MRV-technique performed at Stanford University produced phase-averaged, three-dimensional velocity fields. Secondary flow field comparisons of MRV-data to PIV-data at various cross-sectional planes and inflow phases were made. A wavelet-decomposition-based approach was implemented to characterize various secondary flow morphologies. We hypothesize that the persistence and decay of arterial secondary flow vortices is intrinsically related to the influence of the out-of-plane flow, tilting, in-plane convection and diffusion-related factors within the control regions. Evaluation of these factors will elucidate secondary flow structures in arterial hemodynamics. Supported by the National Science Foundation under Grant Number CBET-0828903, and GW Center for Biomimetics and Bioinspired Engineering (COBRE). The MRV data were acquired at Stanford University in collaboration with Christopher Elkins and John Eaton. 2. Development of 3-D Flow Analysis Code for Fuel Assembly using Unstructured Grid System Myong, Hyon Kook; Kim, Jong Eun; Ahn, Jong Ki; Yang, Seung Yong [Kookmin Univ., Seoul (Korea, Republic of) 2007-03-15 The flow through a nuclear rod bundle with mixing vanes are very complex and required a suitable turbulence model to be predicted accurately. Final objective of this study is to develop a CFD code for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system. In order to develop a CFD code for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system, the following researches are made: - Development of numerical algorithm for CFD code's solver - Grid and geometric connectivity data - Development of software(PowerCFD code) for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system - Modulation of software(PowerCFD code) - Development of turbulence model - Development of analysis module of RANS/LES hybrid models - Analysis of turbulent flow and heat transfer - Basic study on LES analysis - Development of main frame on pre/post processors based on GUI - Algorithm for fully-developed flow. 3. Performance of Reynolds Averaged Navier-Stokes Models in Predicting Separated Flows: Study of the Hump Flow Model Problem Cappelli, Daniele; Mansour, Nagi N. 2012-01-01 Separation can be seen in most aerodynamic flows, but accurate prediction of separated flows is still a challenging problem for computational fluid dynamics (CFD) tools. The behavior of several Reynolds Averaged Navier-Stokes (RANS) models in predicting the separated ow over a wall-mounted hump is studied. The strengths and weaknesses of the most popular RANS models (Spalart-Allmaras, k-epsilon, k-omega, k-omega-SST) are evaluated using the open source software OpenFOAM. The hump ow modeled in this work has been documented in the 2004 CFD Validation Workshop on Synthetic Jets and Turbulent Separation Control. Only the baseline case is treated; the slot flow control cases are not considered in this paper. Particular attention is given to predicting the size of the recirculation bubble, the position of the reattachment point, and the velocity profiles downstream of the hump. 4. TITAN2F: a pseudo-3-D model of 2-phase debris flows Córdoba, G.; Sheridan, M. F.; Pitman, E. B. 2015-06-01 Debris flows, avalanches, landslides, and other geophysical mass flows can contain O(106-1010) m3 or more of material. These flows commonly consist of mixture of soil and rocks with a significant quantity of interstitial fluid. They can be tens of meters deep, and their runouts can extend many kilometers. The complicated rheology of such a mixture challenges every constitutive model that can reasonably be applied; the range of length and timescales involved in such mass flows challenges the computational capabilities of existing systems.This paper extends recent efforts to develop a depth averaged "thin layer" model for geophysical mass flows that contain a mixture of solid material and fluid. Concepts from the engineering community are integrated with phenomenological findings in geo-science, resulting in a theory that accounts for the principal solid and fluid forces as well as interactions between the phases, across a wide range of solid volume fraction. A principal contribution here is to present drag and phase interaction terms that comport with the literature in geo-sciences. The program predicts the evolution of the concentration and dynamic pressure. The theory is validated with with data from one dimensional dam break solutions and it is verified with data from artificial channel experiments. 5. A parallel overset-curvilinear-immersed boundary framework for simulating complex 3D incompressible flows. Borazjani, Iman; Ge, Liang; Le, Trung; Sotiropoulos, Fotis 2013-04-01 We develop an overset-curvilinear immersed boundary (overset-CURVIB) method in a general non-inertial frame of reference to simulate a wide range of challenging biological flow problems. The method incorporates overset-curvilinear grids to efficiently handle multi-connected geometries and increase the resolution locally near immersed boundaries. Complex bodies undergoing arbitrarily large deformations may be embedded within the overset-curvilinear background grid and treated as sharp interfaces using the curvilinear immersed boundary (CURVIB) method (Ge and Sotiropoulos, Journal of Computational Physics, 2007). The incompressible flow equations are formulated in a general non-inertial frame of reference to enhance the overall versatility and efficiency of the numerical approach. Efficient search algorithms to identify areas requiring blanking, donor cells, and interpolation coefficients for constructing the boundary conditions at grid interfaces of the overset grid are developed and implemented using efficient parallel computing communication strategies to transfer information among sub-domains. The governing equations are discretized using a second-order accurate finite-volume approach and integrated in time via an efficient fractional-step method. Various strategies for ensuring globally conservative interpolation at grid interfaces suitable for incompressible flow fractional step methods are implemented and evaluated. The method is verified and validated against experimental data, and its capabilities are demonstrated by simulating the flow past multiple aquatic swimmers and the systolic flow in an anatomic left ventricle with a mechanical heart valve implanted in the aortic position. PMID:23833331 6. Two phase liquid helium flow testing to simulate the operation of a cryocondensation pump in the D3-D tokamak Laughon, G. J.; Baxi, C. B.; Campbell, G. L.; Mahdavi, M. A.; Makariou, C. C.; Smith, J. P.; Schaffer, M. J.; Schaubel, K. M.; Menon, M. M. 1994-06-01 A liquid helium-cooled cryocondensation pump has been installed in the D3-D tokamak fusion energy research experiment at General Atomics. The pump is located within the tokamak vacuum chamber beneath the divertor baffle plates and is utilized for plasma density and contamination control. Two-phase helium flows through the pump at 5 to 10 g/s utilizing the heat transfer and constant temperature characteristics of boiling liquid . helium. The pump is designed for a pumping speed of 32,000 1/s. Extensive testing was performed with a prototypical pump test fixture. Several pump geometries (simple tube, coaxial flow plug, and coaxial slotted insert) were tested, in an iterative process, to determine which was the most satisfactory for stable cryocondensation pumping. Results from the different tests illustrating the temperature distribution and flow characteristics for each configuration are presented. 7. Boiling water flows. A local wall heat transfer model for use in an Eulerian 3-D computer code Electricite de France is currently developing a 3-D computer code for the Eulerian simulation of two-phase flows. This code, named ASTRID, is based on the six-equation two-fluid model. Boiling water flows are among the main applications of ASTRID, especially for nuclear power plant design. In order to provide ASTRID with appropriate closure laws and boundary conditions, Electricite de France and the Institut de Mecanique des Fluides de Toulouse (IMFT) have collaborated since 1991. The analysis of the current knowledge made possible to build a first set of closure laws and boundary conditions for boiling water flows, suitable for ASTRID. This paper is focused on the model used for heat transfer and bubble production at the wall, in a convective boiling situation. This model has been tested for a first comparison with existing experimental data. The results of this comparison are also presented here. (authors). 5 figs., 9 refs 8. Numerical study of density-stratified flow past two 3D hills : aligned in tandem In this paper, a parametric study using an immersed boundary method has been carried out to investigate the effects of stable density stratification on the wakes past two identical three-dimensional hills aligned in tandem. The Reynolds number based on the uniform inlet velocity and twice the hill height was fixed at Re=300 while the Froude number based on the inlet velocity and the hill height was retained at Fr=0.2. Neutral flow without density stratification was also computed for comparison. Under a strong stratification, vertical motion of fluid particles over the three-dimensional hills is suppressed and the wake structures behind the hills become planar. Depending on the distance between the two hills, the flow pattern of each wake is significantly affected by the stratification. There is a critical hill distance at which flow characteristics drastically change. Qualitative and quantitative features of the wake interaction are reported 9. An improved version of NCOREL: A computer program for 3-D nonlinear supersonic potential flow computations Siclari, Michael J. 1988-01-01 A computer code called NCOREL (for Nonconical Relaxation) has been developed to solve for supersonic full potential flows over complex geometries. The method first solves for the conical at the apex and then marches downstream in a spherical coordinate system. Implicit relaxation techniques are used to numerically solve the full potential equation at each subsequent crossflow plane. Many improvements have been made to the original code including more reliable numerics for computing wing-body flows with multiple embedded shocks, inlet flow through simulation, wake model and entropy corrections. Line relaxation or approximate factorization schemes are optionally available. Improved internal grid generation using analytic conformal mappings, supported by a simple geometric Harris wave drag input that was originally developed for panel methods and internal geometry package are some of the new features. 10. Digital-Particle-Image-Velocimetry (DPIV) in a scanning light-sheet: 3D starting flow around a short cylinder Brücker, Ch. 1995-08-01 Scanning-Particle-Image-Velocimetry Technique (SPIV), introduced by Brücker (1992) and Brücker and Althaus (1992), offers the quantitative investigation of three-dimensional vortical structures in unsteady flows. On principle, this technique combines classical Particle-Image-Velocimetry (PIV) with volume scanning using a scanning light-sheet. In our previous studies, single scans obtained from photographic frame series were evaluated to show the instantaneous vortical structure of the respective flow phenomena. Here, continuous video recordings are processed to capture also the temporal information for the study of the set-up of 3D effects in the cylinder wake. The flow is continuously sampled in depth by the scanning light-sheet and in each of the parallel planes frame-to-frame cross-correlation of the video images (DPIV) is applied to obtain the 2D velocity field. Because the scanning frequency and repetition rate is high in comparison with the characteristic time-scale of the flow, the evaluation provides a complete time-record of the 3D flow during the starting process. With use of the continuity concept as described by Robinson and Rockwell (1993), we obtained in addition the out-of-plane component of the velocity in spanwise direction. This in view, the described technique enabled the reconstruction of the three-dimensional time-dependent velocity and vorticity field. The visualization of the dynamical behaviour of these quantities as, e.g. by video, gave a good impression of the spanwise flow showing the “tornado-like” suction effect of the starting vortices. 11. Numerical Solution of 2D and 3D Atmospheric Boundary Layer Stratified Flows Šimonek, J.; Kozel, K.; Jaňour, Zbyněk Berlín : Springer, 2011 - (Fořt, J.; Fürst, J.; Halama, J.; Herbin, R.; Hubert, R.), s. 723-730 ISBN 978-3-642-20670-2. [FVCA Internationa Symposium /6./. Praha (CZ), 06.06.2011-10.6.2011] Institutional research plan: CEZ:AV0Z20760514 Keywords : CFD * finite volume method * variable density flows * atmospheric boundary layer flows Subject RIV: BK - Fluid Dynamics http://www.springerlink.com/content/p7r28m682x638510 12. Decay of the 3D inviscid liquid-gas two-phase flow model Zhang, Yinghui 2016-06-01 We establish the optimal {Lp-L2(1 ≤ p flow model and analyze the influences of the damping on the qualitative behaviors of solution. Compared with the viscous liquid-gas two-phase flow model (Zhang and Zhu in J Differ Equ 258:2315-2338, 2015), our results imply that the friction effect of the damping is stronger than the dissipation effect of the viscosities and enhances the decay rate of the velocity. Our proof is based on Hodge decomposition technique, the {Lp-L2} estimates for the linearized equations and an elaborate energy method. 13. 3D CFD computations of transitional flows using DES and a correlation based transition model Sørensen, Niels N. process can be important for the aerodynamic performance. Today, the most widespread approach is to use fully turbulent computations, where the transitional process is ignored and the entire boundary layer on the wings or airfoils is handled by the turbulence model. The correlation based transition model...... has lately shown promising results, and the present paper describes the application of the model to predict the drag and shedding frequency for flow around a cylinder from sub to super-critical Reynolds numbers. Additionally, the model is applied to the flow around the DU-96 airfoil, at high angles of... 14. 3D Flow Past Transonic Turbine Cascade SE 1050-Experiment and Numerical Simulations Šimurda, David; Fürst, J.; Luxa, Martin 2013-01-01 Roč. 22, č. 4 (2013), s. 311-319. ISSN 1003-2169. [International Symposium on Experimental and Computational Aerothermodynamics of Internal Flows : ISAIF /11./. Shenzhen, 06.05.2013-11.05.2013] R&D Projects: GA ČR(CZ) GAP101/10/1329 Institutional support: RVO:61388998 Keywords : blade cascade * vortex structures * transonic flow * CFD Subject RIV: BK - Fluid Dynamics Impact factor: 0.348, year: 2013 http://link.springer.com/article/10.1007%2Fs11630-013-0629-7 15. Modelling 3D Steam Turbine Flow Using Thermodynamic Properties of Steam Iapws-95 Rusanow A.V. 2016-01-01 Full Text Available An approach to approximate equations of state for water and steam (IAPWS-95 for the calculation of three-dimensional flows of steam in turbomachinery in a range of operation of the present and future steam turbines is described. Test calculations of three-dimensional viscous flow in an LP steam turbine using various equations of state (perfect gas, Van der Waals equation, equation of state for water and steam IAPWS-95 are made. The comparison of numerical results with experimental data is also presented. 16. Simultaneous tracking of 3D actin and microtubule strains in individual MLO-Y4 osteocytes under oscillatory flow. Baik, Andrew D; Qiu, Jun; Hillman, Elizabeth M C; Dong, Cheng; Guo, X Edward 2013-02-22 Osteocytes in vivo experience complex fluid shear flow patterns to activate mechanotransduction pathways. The actin and microtubule (MT) cytoskeletons have been shown to play an important role in the osteocyte's biochemical response to fluid shear loading. The dynamic nature of physiologically relevant fluid flow profiles (i.e., 1Hz oscillatory flow) impedes the ability to image and study both actin and MT cytoskeletons simultaneously in the same cell with high spatiotemporal resolution. To overcome these limitations, a multi-channel quasi-3D microscopy technique was developed to track the actin and MT networks simultaneously under steady and oscillatory flow. Cells displayed high intercellular variability and intracellular cytoskeletal variability in strain profiles. Shear Exz was the predominant strain in both steady and oscillatory flows in the form of viscoelastic creep and elastic oscillations, respectively. Dramatic differences were seen in oscillatory flow, however. The actin strains displayed an oscillatory strain profile more often than the MT networks in all the strains tested and had a higher peak-to-trough strain magnitude. Taken together, the actin networks are the more responsive cytoskeletal networks in osteocytes under oscillatory flow and may play a bigger role in mechanotransduction pathway activation and regulation. PMID:23352617 17. Numerical analysis of supercritical water flowing in an annular channel using the two-fluid model code ACE-3D The Supercritical-Water-Cooled Reactor (SCWR) is a high-temperature, high-pressure water cooled reactor that operates above the critical pressure of water. In order to perform efficiently the thermal design of the SCWR, it is important to assess the thermal-hydraulics in rod bundles of the core. The experimental conditions of mockup tests, however, have to be limited because of technical and financial reasons. Therefore, it is required to establish an analytical design technique which can extrapolate experimental data to various design conditions of the reactor. JAEA (Japan Atomic Energy Agency) have been improved the three-dimensional two-fluid model analysis code ACE-3D, which has been developed originally for the two-phase flow thermal hydraulics of light water reactors, to handle the thermal hydraulic properties of water at supercritical region. In the present paper, heat transfer experiments of supercritical water flowing in a vertical annular channel around a heater pin, which simulates the core flow around a fuel rod, were analyzed with the improved ACE-3D to assess the prediction performance of the code. As a result, it was confirmed that the calculated wall surface temperature agreed with the measured results and the code is applicable to prediction of heat transfer of supercritical water in the system that simulates the SCWR core. (author) 18. On homogenization of stokes flow in slowly varying media with applications to fluid–structure interaction Brown, Donald L. 2011-09-11 In this paper we establish corrector estimates for Stokes flow in slowly varying perforated media via two scale asymptotic analysis. Current methods and techniques are often not able to deal with changing geometries prevalent in applied problems. For example, in a deformable porous medium environment, the geometry does not remain periodic under mechanical deformation and if slow variation in the geometry occurs. For such problems, one cannot use classical homogenization results directly and new homogenization results and estimates are needed. Our work uses asymptotic techniques of Marusic-Paloka and Mikelic (Bollettino U. M. I 7:661-671, 1996) where the authors constructed a downscaled velocity which converges to the fine-scale velocity at a rate of ε1/6 where ε is the characteristic length scale. We assume a slowly varying porous medium and study homogenization and corrector estimates for the Stokes equations. Slowly varying media arise, e. g., in fluid-structure interaction (FSI) problems (Popov et al. in Iterative upscaling of flows in deformable porous media, 2008), carbonation of porous concrete (Peter in C. R. Mecanique 335:357-362, 2007a; C. R. Mecanique 335:679-684, 2007b), and various other multiphysics processes. To homogenize Stokes flows in such media we restate the cell problems of Marusic-Paloka and Mikelic (Bollettino U. M. I 7:661-671, 1996) in a moving RVE framework. Further, to recover the same convergence properties it is necessary to solve an additional cell problem and add one more corrector term to the downscaled velocity. We further extend the framework of Marusic-Paloka and Mikelic (Bollettino U. M. I 7:661-671, 1996) to three spatial dimensions in both periodic and variable pore-space cases. Next, we also propose an efficient algorithm for computing the correctors by solving a limited number of cell problems at selected spatial locations. We present two computational examples: one for a constructed medium of elliptical perforations, and 19. Investigation on 3D t wake flow structures of swimming bionic fish Shen, G.-X.; Tan, G.-K.; Lai, G.-J. 2012-10-01 A bionic experimental platform was designed for the purpose of investigating time accurate three-dimensional flow field, using digital particle image velocimetry (DSPIV). The wake behind the flapping trail of a robotic fish model was studied at high spatial resolution. The study was performed in a water channel. A robot fish model was designed and built. The model was fixed onto a rigid support framework using a cable-supporting method, with twelve stretched wires. The entire tail of the model can perform prescribed motions in two degrees of freedom, mainly in carangiform mode, by driving its afterbody and lunate caudal fin respectively. The DSPIV system was set up to operate in a translational manner, measuring velocity field in a series of parallel slices. Phase locked measurements were repeated for a number of runs, allowing reconstruction of phase average flow field. Vortex structures with phase history of the wake were obtained. The study reveals some new and complex three-dimensional flow structures in the wake of the fish, including "reverse hairpin vortex" and "reverse Karman S-H vortex rings", allowing insight into physics of this complex flow. 20. 3D time-dependent flow computations using a molecular stress function model with constraint release Rasmussen, Henrik Koblitz 2002-01-01 The numerical simulation of time dependent viscoelastic flow (in three dimensions) is of interest in connection with a variety of polymer processing operations. The application of the numerical simulation techniques is in the analysis and design of polymer processing problems. This is operations... 1. Numerical simulation of 3D unsteady flow in a rotating pump by dynamic mesh technique In this paper, the numerical simulation of unsteady flow for three kinds of typical rotating pumps, roots blower, roto-jet pump and centrifugal pump, were performed using the three-dimensional Dynamic Mesh technique. In the unsteady simulation, all the computational domains, as stationary, were set in one inertial reference frame. The motions of the solid boundaries were defined by the Profile file in FLUENT commercial code, in which the rotational orientation and speed of the rotors were specified. Three methods (Spring-based Smoothing, Dynamic Layering and Local Re-meshing) were used to achieve mesh deformation and re-meshing. The unsteady solutions of flow field and pressure distribution were solved. After a start-up stage, the flow parameters exhibit time-periodic behaviour corresponding to blade passing frequency of rotor. This work shows that Dynamic Mesh technique could achieve numerical simulation of three-dimensional unsteady flow field in various kinds of rotating pumps and have a strong versatility and broad application prospects 2. Miniaturized flow cytometer with 3D hydrodynamic particle focusing and integrated optical elements applying silicon photodiodes Rosenauer, M.; Buchegger, W.; Finoulst, I.; Verhaert, P.D.E.M.; Vellekoop, M. 2010-01-01 In this study, the design, realization and measurement results of a novel optofluidic system capable of performing absorbance-based flow cytometric analysis is presented. This miniaturized laboratory platform, fabricated using SU-8 on a silicon substrate, comprises integrated polymer-based waveguide 3. A continuation method for computing non-linear 3-D free surface flows Petersson, N.A. 1993-01-01 The subject of this paper is a pseudo-arclength continuation method for computing non-linear three-dimensional steady potential flow around a submerged body moving in a infinitely deep liquid at constant speed and distance below the free surface. 4. 3D flow organization and dynamics in subsonic jets: Aeroacoustic source analysis by tomographic PIV Violato, D.V. 2013-01-01 To meet the increasingly stringent noise regulation, aircraft manufacturers are searching for solutions to jet noise. This, which constitutes a significant amount of the total noise emitted by civil aircrafts, is generated by the mixing processes between the exhaust flow leaving the engine and the a 5. Vessel-wall imaging and quantification of flow-mediated dilation using water-selective 3D SSFP-echo Langham, Michael C; Li, Cheng; Englund, Erin K; Chirico, Erica N; Mohler, Emile R.; Floyd, Thomas F.; Wehrli, Felix W. 2013-01-01 Background To introduce a new, efficient method for vessel-wall imaging of carotid and peripheral arteries by means of a flow-sensitive 3D water-selective SSFP-echo pulse sequence. Methods Periodic applications of RF pulses will generate two transverse steady states, immediately after and before an RF pulse; the latter being referred to as the SSFP-echo. The SSFP-echo signal for water protons in blood is spoiled as a result of moving spins losing phase coherence in the presence of a gradient ... 6. Numerical Simulation of Tip Leakage Vortex Effect on Hydrogen-Combustion Flow around 3D Turbine Blade Naoto Miyama; Kazuaki Inaba; Makoto Yamamoto 2008-01-01 In these years, a lot of environmental problems such as air pollution and exhaustion of fossil fuels have been discussed intensively. In our laboratory, a hydrogen-fueled propulsion system has been researched as an alternative to conventional systems. A hydrogen-fueled propulsion system is expected to have higher power, lighter weight and lower emissions. However, for the practical use, there exist many problems that must be overcome. Considering these backgrounds, jet engines with hydrogen-fueled combustion within a turbine blade passage have been studied. Although some studies have been made on injecting and burning hydrogen fuel from a stator surface, little is known about the interaction between a tip leakage vortex near the suction side of a rotor tip and hydrogen-fueled combustion.The purpose of this study is to clarify the influence of the tip leakage vortex on the characteristics of the 3-dimensional flow field with hydrogen-fueled combustion within a turbine blade passage. Reynolds-averaged compressible Navier-Stokes equations are solved with incorporating a k-ε turbulence and a reduced chemical mechanism models. Using the computational results, the 3-dimensional turbulent flow field with chemical reactions is numerically visualized, and the three-dimensional turbulent flow fields with hydrogen combustion and the structure of the tip leakage vortex are investigated. 7. Numerical simulation of tip leakage vortex effect on hydrogen-combustion flow around 3D turbine blade Miyama, Naoto; Inaba, Kazuaki; Yamamoto, Makoto 2008-06-01 In these years, a lot of environmental problems such as air pollution and exhaustion of fossil fuels have been discussed intensively. In our laboratory, a hydrogen-fueled propulsion system has been researched as an alternative to conventional systems. A hydrogen-fueled propulsion system is expected to have higher power, lighter weight and lower emissions. However, for the practical use, there exist many problems that must be overcome. Considering these backgrounds, jet engines with hydrogen-fueled combustion within a turbine blade passage have been studied. Although some studies have been made on injecting and burning hydrogen fuel from a stator surface, little is known about the interaction between a tip leakage vortex near the suction side of a rotor tip and hydrogen-fueled combustion. The purpose of this study is to clarify the influence of the tip leakage vortex on the characteristics of the 3-dimensional flow field with hydrogen-fueled combustion within a turbine blade passage. Reynolds-averaged compressible Navier-Stokes equations are solved with incorporating a k-ɛ turbulence and a reduced chemical mechanism models. Using the computational results, the 3-dimensional turbulent flow field with chemical reactions is numerically visualized, and the three-dimensional turbulent flow fields with hydrogen combustion and the structure of the tip leakage vortex are investigated. 8. GeoFlow: 3D numerical simulation of supercritical thermal convective states Futterer, B; Egbers, C [Department of Aerodynamics and Fluid Mechanics, Brandenburg University of Technology Cottbus, Siemens-Halske-Ring 14, 03046 Cottbus (Germany); Hollerbach, R [Department of Applied Mathematics, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT (United Kingdom)], E-mail: futterer@tu-cottbus.de 2008-11-01 'GeoFlow' is a thermal convection experiment in rotating spherical shell geometry, which is going to take place in microgravity environment of International Space Station. We present numerical preliminary studies of the spherical Rayleigh-Benard problem under an artificial central force field. Numerical simulation is done with a pseudospectral method. Special focus here is the simulation of flow states at selected parameter points of Rayleigh and Taylor number of a defined plan for experimental runs on ISS. One loop will contain thermal convection without rotation, i.e. rising temperature gradient between inner and outer sphere. Another loop investigates convection superimposed by rotation, i.e. fixing temperature gradient and then rising rotation rate. In such cases different transitions are expected to be observed. Just rising Rayleigh number shows different stable states depending on initial conditions. Fixing Rayleigh number and then rising up Taylor number leads to traverse of different convective states showing rich dynamics of the system. 9. Time-resolved fuel injector flow characterisation based on 3D laser Doppler vibrometry Crua, Cyril 2015-01-01 In order to enable investigations of the fuel flow inside unmodified injectors, we have developed a new experimental approach to measure time-resolved vibration spectra of diesel nozzles using a three dimensional laser vibrometer. The technique we propose is based on the triangulation of the vibrometer and fuel pressure transducer signals, and enables the quantitative characterisation of quasi-cyclic internal flows without requiring modifications to the injector, the working fluid, or limiting the fuel injection pressure. The vibrometer, which uses the Doppler effect to measure the velocity of a vibrating object, was used to scan injector nozzle tips during the injection event. The data were processed using a discrete Fourier transform to provide time-resolved spectra for valve-closed-orifice, minisac and microsac nozzle geometries, and injection pressures ranging from 60 to 160MPa, hence offering unprecedented insight into cyclic cavitation and internal mechanical dynamic processes. A peak was consistently f... 10. Finite-difference model for 3-D flow in bays and estuaries Smith, Peter E.; Larock, Bruce E. 1993-01-01 This paper describes a semi-implicit finite-difference model for the numerical solution of three-dimensional flow in bays and estuaries. The model treats the gravity wave and vertical diffusion terms in the governing equations implicitly, and other terms explicitly. The model achieves essentially second-order accurate and stable solutions in strongly nonlinear problems by using a three-time-level leapfrog-trapezoidal scheme for the time integration. 11. A 3-D Euler method for internal transonic flows computation with a multi-domain approach Veuillot, J. P.; Meauze, G. 1985-05-01 The results of calculations of three dimensional viscous flow in two centrifugal compressor impellers and in two linear turbine cascades are considered and answers to thermodynamic questions are obtained. For the impellers, the calculations give the work and the losses, the total pressure ratio and the efficiency, and show where the inefficiency arises. The results for the turbines show the increase in loss within and downstream of the cascades and allow the buildup and decay of secondary kinetic energy to be followed. 12. On Nonlinear Stability Theorems of 3D Quasi-geostrophic Flow 2006-01-01 Nonlinear stability criteria for quasi-geostrophic zonally symmetric flow are improved by establishing an invariant of zonal momentum. When applied to the Eady model in a periodic channel with finite zonal length, the improved nonlinear stability criterion is identical to the linear normal-mode stability criterion provided the channel meridional width is no greater than 0.8605... times its channel length (which is the geophysically relevant case). 13. The 2-D and 3-D time marching transonic potential flow method for propfans Williams, Marc H. 1988-01-01 Recent efforts concentrated on the development of aerodynamic tools for the analysis of rotors at transonic speeds and of configurations involving relative rotation. Three distinct approaches were taken: (1) extension of the lifting surface method of Williams and Hwang (1986) to relative rotation; (2) development of a time marching linear potential method for counter rotation; and (3) development of 2 and 3 dimensional finite volume potential flow schemes for single rotation. Results from each of these approaches are described. 14. 3D FEM-BEM coupled resolution for acoustic waves propagation in potential flow BALIN, Nolwenn; SYLVAND, Guillaume; Casenave, Fabien 2012-01-01 International audience In order to reduce the environmental impact of aircrafts, it is necessary to accurately simulate the acoustics waves propagation in complex environment. A classical method used to compute the noise propagation on large distances is the Boundary Element Method. However this method restricts the flow to a uniform one. To improve the level of modeling, we present here a coupling between Finite Element (FEM) and Boundary Element Methods (BEM) to solve the acoustic propag... 15. Numerical simulation of 3D backward facing step flows at various Reynolds numbers Louda, Petr; Příhoda, Jaromír; Kozel, K. Paris : E D P SCIENCES, 2015 - (Vít, T.; Dančová, P.), 02049-02049 ISSN 2100-014X. - (EPJ Web of Conferences. 92). [Experimental Fluid Mechanics 2014. Český Krumlov (CZ), 18.11.2014-21.11.2014] R&D Projects: GA ČR GAP101/10/1230 Institutional support: RVO:61388998 Keywords : backward facing step * EARSM turbulence model * turbulent flow Subject RIV: BK - Fluid Dynamics 16. A parallel overset-curvilinear-immersed boundary framework for simulating complex 3D incompressible flows Borazjani, Iman; Ge, Liang; Le, Trung; Sotiropoulos, Fotis 2013-01-01 We develop an overset-curvilinear immersed boundary (overset-CURVIB) method in a general non-inertial frame of reference to simulate a wide range of challenging biological flow problems. The method incorporates overset-curvilinear grids to efficiently handle multi-connected geometries and increase the resolution locally near immersed boundaries. Complex bodies undergoing arbitrarily large deformations may be embedded within the overset-curvilinear background grid and treated as sharp interfac... 17. Numerical analysis of 3-D unsteady flow in a vaneless counter-rotating turbine ZHAO Qingjun; WANG Huishe; ZHAO Xiaolu; XU Jianzhong 2007-01-01 To reveal the unsteady flow characteristics of a vaneless counter-rotating turbine (VCRT),a threedimensional,viscous,unsteady computational fluid dynamics (CFD) analysis was performed.The results show that unsteady simulation is superior to steady simulation because more flow characteristics can be obtained.The unsteady effects in upstream airfoil rows are weaker than those in downstream airfoil rows in the VCRT.The static pressure distribution along the span in the pressure surface of a high pressure turbine stator is more uniform than that in the suction surface.The static pressure distributions along the span in the pressure surfaces and the suction surfaces of a high pressure turbine rotor and a low pressure turbine rotor are all uneven.The numerical results also indicate that the load of a high pressure turbine rotor will increase with the increase of the span.The deviation is very big between the direction of air flow at the outlet of a high pressure turbine rotor and the axial direction.A similar result can also be obtained in the outlet of a low pressure turbine rotor.This means that the specific work of a high pressure turbine rotor and a low pressure turbine rotor is big enough to reach the design objectives. 18. 3-D Flow Field of Cathode Design for NC Precision Electrochemical Machining Integer Impeller Based on CFD Rui Wu 2011-09-01 Full Text Available In order to achieve high efficiency and low cost cathode designing, improve stability of process in NC precision electrochemical machining of integer impeller, a method of applying Computational Fluid Dynamics (CFD to aid designing flow field structure of cathode and parameters for NC-ECM has been proposed in this study. The designing of flow field is the key point in cathode design and a suitable flow field design guarantees the process stability in electrochemical machining. A numerical model of the three-dimension flow field was built according to the geometrical model of interelectrode gap and cathode outline. Then the numerical simulation of 3-D flow field was performed by using the standard k-, turbulence model when the turbulence state in electrochemical machining had been determined. The effect of cathode’s structure and initial electrolyte pressure on the electrolyte flow field was analyzed according to the results of numerical simulation. A series of results similar to the actual experimental results are obtained. The method deduced in this paper could be used to achieve high efficiency and low cost cathode design, select of initial electrolyte pressure, and consequently a lot of “trial and error” cycles will be deduced. 19. Design, construction and testing of a COC 3D flow-over flow-through bioreactor for hepatic cell culture Windels, Jindrich; Verplancke, Rik; Jahanshahi, Amir; Heimann, Marcus; Leite, Sofia B.; Roosens, Tiffany; van Grunsven, Leo A; Barbe, Laurent; Prill, Sebastian; Jaeger, Magnus; Duschl, Claus; Vanfleteren, Jan 2015-01-01 In this poster, we present the joint development efforts for a 3D microfluidic bioreactor for hepatic cell cultures. Cyclic Olefin Copolymer (COC) was selected for constructing the bioreactor, since the material has good chemical resistance, low adsorption and good optical properties, including low auto-fluorescence. A downside of COC is that it is much more difficult to structure than more traditional microfluidic materials, such as PDMS, PMMA, … Two parallel approaches were developed for... 20. Numerical simulation of 3D flow past a real-life marine hydrokinetic turbine Kang, Seokkoo; Borazjani, Iman; Colby, Jonathan A.; Sotiropoulos, Fotis 2012-04-01 We simulate three-dimensional, turbulent flow past an axial-flow marine hydrokinetic (MHK) turbine mounted on the bed of a rectangular open channel by adapting a computational framework developed for carrying out high-resolution large-eddy simulation (LES) in arbitrarily complex domains involving moving or stationary boundaries. The complex turbine geometry, including the rotor and all stationary components, is handled by employing the curvilinear immersed boundary (CURVIB) method [1,2]. Velocity boundary conditions near all solid surfaces are reconstructed using a wall model based on solving the simplified boundary layer equations [2]. To demonstrate the capabilities of the model we apply it to simulate the flow past a Gen4 axial flow MHK turbine developed by Verdant Power for the Roosevelt Island Tidal Energy (RITE) project in the East River in New York City, USA. We carry out systematic grid refinement studies, using grids with up to 185 million nodes, for only the turbine rotor placed in an infinite free stream to show that the computed torque converges to a grid insensitive value, which is in good agreement with field measurements. We also carry out LES for the complete turbine configuration, including the pylon, nacelle and rotor, mounted on the bed of a straight rectangular open channel. The computed results illustrate the complexity of the flow and show that the power output of the complete turbine is primarily dependent on the rotor geometry and tip speed ratio, and is not affected by the stationary components of the turbine and the presence of the channel bed. The complete turbine simulation also reveals that the downstream wake of the turbine consists of three main regions: (1) the outer layer with the spiral blade tip vortices rotating in the same direction as the blades; (2) the counter-rotating inner layer surrounded by the spiral tip vortices; and (3) the core layer co-rotating with respect to the tip vortices. This study is the first to report the 1. A Hybrid Navier-Stokes/Particle Method for Simulating Rarefied Flow Duttweiler, Craig R.; Baganoff, Donald; Feiereisen, William J. 1997-11-01 A particle method such as the Direct Simulation Monte Carlo method (DSMC) simulates a gas flow by statistically modeling the behavior of a large number of virtual particles and is necessary for the simulation of rarefied flows for which the Navier-Stokes (NS) equations become invalid due to failure of the constituent relations upon which they are based. Unfortunately, while more versatile than NS, DSMC is also computationally much more intensive. Even on a parallel computer, simulation times can become large, and so a less computationally intensive method is desirable. Luckily, in a high-enthalpy flow, most of the particles, and hence computational intensity, are contained in a relatively small, dense region of the domain in which NS is often viable. A logical approach, then, is to hybridize NS and DSMC, allowing the former to handle regions of higher density and the latter to handle regions of greater rarefaction. A robust hybrid method has been developed and successfully applied to several problems, including a blunt body in Mach 10 flow and a lid-driven cavity. In these and other cases, the hybrid method takes less time to produce solutions whose quality is equal to or greater than that of solutions produced by DSMC alone. 2. Heat or mass transfer from a sphere in Stokes flow at low Péclet number Bell, Christopher G. 2013-04-01 We consider the low Péclet number, Pe≪1, asymptotic solution for steady-state heat or mass transfer from a sphere immersed in Stokes flow with a Robin boundary condition on its surface, representing Newton cooling or a first-order chemical reaction. The application of Van Dyke\\'s rule up to terms of O(Pe3) shows that the O(Pe3logPe) terms in the expression for the average Nusselt/Sherwood number are twice those previously derived in the literature. Inclusion of the O(Pe3) terms is shown to increase the range of validity of the expansion. © 2012 Elsevier Ltd. All rights reserved. 3. Navier-Stokes solver using Green's functions II: spectral integration of channel flow and plane Couette flow Viswanath, Divakar 2014-01-01 The Kleiser-Schumann (1980) and Kim-Moin-Moser (1987) algorithms for solving the incompressible Navier-Stokes equations have been used to simulate a great variety of turbulence phenomena in plane channels and in plane Couette flow. In this article, we derive new versions of either algorithm which completely eliminate numerical differentiation in the wall-normal direction. Thanks to greater accuracy, the new versions are able to reach higher Reynolds number than currently possible. Using10^{9}$grid points and only$10$compute nodes, they reach a frictional Reynolds number ($Re_{\\tau}$) of$2380$(with bulk flow$Re=80,000$), which may be compared with the simulation of Hoyas and Jim\\'enez (2006, 2008) which reached$Re_{\\tau}=2003$. The methods derived here appear capable of going well beyond$Re_{\\tau}=2380. 4. MOTION AND DEFORMATION OF VISCOUS DROP IN STOKES FLOW NEAR RIGID WALL LU Hua-jian; ZHANG Hui-sheng 2005-01-01 A boundary integral method was developed for simulating the motion and deformation of a viscous drop in an axisymmetric ambient Stokes flow near a rigid wall and for direct calculating the stress on the wall. Numerical experiments by the method were performed for different initial stand-off distances of the drop to the wall, viscosity ratios, combined surface tension and buoyancy parameters and ambient flow parameters. Numerical results show that due to the action of ambient flow and buoyancy the drop is compressed and stretched respectively in axial and radial directions when time goes. When the ambient flow action is weaker than that of the buoyancy the drop raises and bends upward and the stress on the wall induced by drop motion decreases when time advances. When the ambient flow action is stronger than that of the buoyancy the drop descends and becomes flatter and flatter as time goes. In this case when the initial stand-off distance is large the stress on the wall increases as the drop evolutes but when the stand-off distance is small the stress on the wall decreases as a result of combined effects of ambient flow, buoyancy and the stronger wall action to the flow. The action of the stress on the wall induced by drop motion is restricted in an area near the symmetric axis, which increases when the initial stand-off distance increases.When the initial stand-off distance increases the stress induced by drop motion decreases substantially. The surface tension effects resist the deformation and smooth the profile of the drop surfaces. The drop viscosity will reduce the deformation and migration of the drop. 5. Measurement and analysis of flow in 3D preforms for aerospace composites Stewart, Andrew Lawrence Composite materials have become viable alternatives to traditional engineering materials for many different product categories. Liquid transfer moulding (LTM) processes, specifically resin transfer moulding (RTM), is a cost-effective manufacturing technique for creating high performance composite parts. These parts can be tailor-made to their specific application by optimizing the properties of the textile preform. Preforms which require little or no further assembly work and are close to the shape of the final part are critical to obtaining high quality parts while simultaneously reducing labour and costs associated with other composite manufacturing techniques. One type of fabric which is well suited for near-net- shape preforms is stitched non-crimp fabrics. These fabrics offer very high in-plane strength and stiffness while also having increased resistance to delamination. Manufacturing parts from these dry preforms typically involves long-scale fluid flow through both open channels and porous fibre bundles. This thesis documents and analyzes the flow of fluid through preforms manufactured from non-crimp fabrics featuring through-thickness stitches. The objective of this research is to determine the effect of this type of stitch on the RTM injection process. All of the tests used preforms with fibre volume fractions representative of primary and secondary structural parts. A series of trials was conducted using different fibre materials, flow rates, fibre volumes fractions, and degrees of fibre consolidation. All of the trials were conducted for cases similar to RTM. Consolidation of the fibres showed improvements to both the thoroughness of the filling and to the fibre volume fraction. Experimentally determined permeability data was shown to trend well with simple models and precision of the permeability data was comparable to values presented by other authors who studied fabrics which did not feature the through-thickness stitches. 6. Fabrication of continuous flow microfluidics device with 3D electrode structures for high throughput DEP applications using mechanical machining. Zeinali, Soheila; Çetin, Barbaros; Oliaei, Samad Nadimi Bavil; Karpat, Yiğit 2015-07-01 Microfluidics is the combination of micro/nano fabrication techniques with fluid flow at microscale to pursue powerful techniques in controlling and manipulating chemical and biological processes. Sorting and separation of bio-particles are highly considered in diagnostics and biological analyses. Dielectrophoresis (DEP) has offered unique advantages for microfluidic devices. In DEP devices, asymmetric pair of planar electrodes could be employed to generate non-uniform electric fields. In DEP applications, facing 3D sidewall electrodes is considered to be one of the key solutions to increase device throughput due to the generated homogeneous electric fields along the height of microchannels. Despite the advantages, fabrication of 3D vertical electrodes requires a considerable challenge. In this study, two alternative fabrication techniques have been proposed for the fabrication of a microfluidic device with 3D sidewall electrodes. In the first method, both the mold and the electrodes are fabricated using high precision machining. In the second method, the mold with tilted sidewalls is fabricated using high precision machining and the electrodes are deposited on the sidewall using sputtering together with a shadow mask fabricated by electric discharge machining. Both fabrication processes are assessed as highly repeatable and robust. Moreover, the two methods are found to be complementary with respect to the channel height. Only the manipulation of particles with negative-DEP is demonstrated in the experiments, and the throughput values up to 105 particles / min is reached in a continuous flow. The experimental results are compared with the simulation results and the limitations on the fabrication techniques are also discussed. PMID:25808433 7. Reconstruction of 3D flow structures in a cylindrical cavity with a rotating lid Meyer, Knud Erik also be based on time-resolved stereoscopic PIV measurements in a vertical plane through the cylinder axis as shown in figure 1. Compared to Meyer et al (2008) the measurements will be expanded by adding measurements in several points outside the PIV data plane with a Laser Doppler Anemometer (LDA......). LDA has a very good time resolution and the synchronized PIV and LDA measurements will therefore resolve the ambiguity in the interpretation of PIV data with respect to whether the flow variations are caused by rotation of a three-dimensional structure or is a real transient phenomenon.... 8. Guidelines in the experimental validation of a 3D heat and fluid flow model of keyhole laser welding Courtois, Mickael; Carin, Muriel; Le Masson, Philippe; Gaied, Sadok; Balabane, Mikhaël 2016-04-01 During the past few years, numerous sophisticated models have been proposed to predict in a self-consistent way the dynamics of the keyhole, together with the melt pool and vapor jet. However, these models are only partially compared to experimental data, so the reliability of these models is questionable. The present paper aims to propose a more complete experimental set-up in order to validate the most relevant results calculated by these models. A complete heat transfer and fluid flow three-dimensional (3D) model is first proposed in order to describe laser welding in keyhole regimes. The interface is tracked with a level set method and fluid flows are calculated in liquid and gas. The mechanisms of recoil pressure and keyhole creation are highlighted in a fusion line configuration chosen as a reference. Moreover, a complete validation of the model is proposed with guidelines on the variables to observe. Numerous comparisons with dedicated experiments (thermocouples, pyrometry, high-speed camera) are proposed to estimate the validity of the model. In addition to traditional geometric measurements, the main variables calculated, temperatures, and velocities in the melt pool are at the center of this work. The goal is to propose a reference validation for complex 3D models proposed over the last few years. 9. Mixed-Hybrid and Vertex-Discontinuous-Galerkin Finite Element Modeling of Multiphase Compositional Flow on 3D Unstructured Grids Moortgat, Joachim 2016-01-01 Problems of interest in hydrogeology and hydrocarbon resources involve complex heterogeneous geological formations. Such domains are most accurately represented in reservoir simulations by unstructured computational grids. Finite element methods accurately describe flow on unstructured meshes with complex geometries, and their flexible formulation allows implementation on different grid types. In this work, we consider for the first time the challenging problem of fully compositional three-phase flow in 3D unstructured grids, discretized by any combination of tetrahedra, prisms, and hexahedra. We employ a mass conserving mixed hybrid finite element (MHFE) method to solve for the pressure and flux fields. The transport equations are approximated with a higher-order vertex-based discontinuous Galerkin (DG) discretization. We show that this approach outperforms a face-based implementation of the same polynomial order. These methods are well suited for heterogeneous and fractured reservoirs, because they provide ... 10. Implicit Finite Volume and Discontinuous Galerkin Methods for Multicomponent Flow in Unstructured 3D Fractured Porous Media Moortgat, Joachim; Soltanian, Mohamad Reza 2016-01-01 We present a new implicit higher-order finite element (FE) approach to efficiently model compressible multicomponent fluid flow on unstructured grids and in fractured porous subsurface formations. The scheme is sequential implicit: pressures and fluxes are updated with an implicit Mixed Hybrid Finite Element (MHFE) method, and the transport of each species is approximated with an implicit second-order Discontinuous Galerkin (DG) FE method. Discrete fractures are incorporated with a cross-flow equilibrium approach. This is the first investigation of all-implicit higher-order MHFE-DG for unstructured triangular, quadrilateral (2D), and hexahedral (3D) grids and discrete fractures. A lowest-order implicit finite volume (FV) transport update is also developed for the same grid types. The implicit methods are compared to an Implicit-Pressure-Explicit-Composition (IMPEC) scheme. For fractured domains, the unconditionally stable implicit transport update is shown to increase computational efficiency by orders of mag... 11. 3D CFD simulation of flashing flows in a converging-diverging nozzle Liao, Yixiang, E-mail: y.liao@hzdr.de; Lucas, Dirk 2015-10-15 Highlights: • Flashing flow in a converging-diverging nozzle simulated. • Three-dimensional CFD simulation using two-fluid model used. • Satisfactory agreement in cross-section averaged parameters. • Reasons for discrepancies in radial profiles discussed. • Obvious improvement in comparison to 1D calculations. - Abstract: Flashing of initially sub-cooled water in a vertical circular converging-diverging nozzle is simulated with two-fluid model incorporating drag and non-drag forces. Phase change is assumed to be induced only by interphase heat transfer while pressure jump across the interface is ignored. The reliability of CFD simulations is confirmed by comparison with experimental data and one-dimensional results basing on a drift-flux model. Satisfactory prediction of mass flow rate and cross-section averaged parameters is achieved. The predicted radial distribution of void fraction is however much more flat than the measured one. The discrepancy is found to be caused by the effect of lift force and the reversal of relative velocity. Cases characterised with large pressure-undershoot exhibit significant pressure non-equilibrium effect in form of a pressure recovery process. Sensitivity tests on bubble number density, heat transfer coefficient as well as nucleation are performed. 12. The power spectrum of solar convection flows from high-resolution observations and 3D simulations Yelles Chaouche, L.; Moreno-Insertis, F.; Bonet, J. A. 2014-03-01 Context. Understanding solar surface magnetoconvection requires the study of the Fourier spectra of the velocity fields. Nowadays, observations are available that resolve very small spatial scales, well into the subgranular range, almost reaching the scales routinely resolved in numerical magnetoconvection simulations. Comparison of numerical and observational data at present can provide an assessment of the validity of the observational proxies. Aims: Our aims are: (1) to obtain Fourier spectra for the photospheric velocity fields using the spectropolarimetric observations with the highest spatial resolution so far (~120 km), thus reaching for the first time spatial scales well into the subgranular range; (2) to calculate corresponding Fourier spectra from realistic 3D numerical simulations of magnetoconvection and carry out a proper comparison with their observational counterparts considering the residual instrumental degradation in the observational data; and (3) to test the observational proxies on the basis of the numerical data alone, by comparing the actual velocity field in the simulations with synthetic observations obtained from the numerical boxes. Methods: (a) For the observations, data from the SUNRISE/IMaX spectropolarimeter are used. (b) For the simulations, we use four series of runs obtained with the STAGGER code for different average signed vertical magnetic field values (0, 50, 100, and 200 G). Spectral line profiles are synthesized from the numerical boxes for the same line observed by IMaX (Fe I 5250.2 Å) and degraded to match the performance of the IMaX instrument. Proxies for the velocity field are obtained via Dopplergrams (vertical component) and local correlation tracking (LCT, for the horizontal component). Fourier power spectra are calculated and a comparison between the synthetic and observational data sets carried out. (c) For the internal comparison of the numerical data, velocity values on constant optical depth surfaces are used 13. Quasi 3D modelling of water flow in the sandy soil Rezaei, Meisam; Seuntjens, Piet; Joris, Ingeborg; Boënne, Wesley; De Pue, Jan; Cornelis, Wim 2016-04-01 Monitoring and modeling tools may improve irrigation strategies in precision agriculture. Spatial interpolation is required for analyzing the effects of soil hydraulic parameters, soil layer thickness and groundwater level on irrigation management using hydrological models at field scale. We used non-invasive soil sensor, a crop growth (LINGRA-N) and a soil hydrological model (Hydrus-1D) to predict soil-water content fluctuations and crop yield in a heterogeneous sandy grassland soil under supplementary irrigation. In the first step, the sensitivity of the soil hydrological model to hydraulic parameters, water stress, crop yield and lower boundary conditions was assessed after integrating models at one soil column. Free drainage and incremental constant head conditions were implemented in a lower boundary sensitivity analysis. In the second step, to predict Ks over the whole field, the spatial distributions of Ks and its relationship between co-located soil ECa measured by a DUALEM-21S sensor were investigated. Measured groundwater levels and soil layer thickness were interpolated using ordinary point kriging (OK) to a 0.5 by 0.5 m in aim of digital elevation maps. In the third step, a quasi 3D modelling approach was conducted using interpolated data as input hydraulic parameter, geometric information and boundary conditions in the integrated model. In addition, three different irrigation scenarios namely current, no irrigation and optimized irrigations were carried out to find out the most efficient irrigation regime. In this approach, detailed field scale maps of soil water stress, water storage and crop yield were produced at each specific time interval to evaluate the best and most efficient distribution of water using standard gun sprinkler irrigation. The results show that the effect of the position of the groundwater level was dominant in soil-water content prediction and associated water stress. A time-dependent sensitivity analysis of the hydraulic 14. Patterning process exploration of metal 1 layer in 7nm node with 3D patterning flow simulations Gao, Weimin; Ciofi, Ivan; Saad, Yves; Matagne, Philippe; Bachmann, Michael; Oulmane, Mohamed; Gillijns, Werner; Lucas, Kevin; Demmerle, Wolfgang; Schmoeller, Thomas 2015-03-01 In 7mn node (N7), the logic design requires the critical poly pitch (CPP) of 42-45nm and metal 1 (M1) pitch of 28- 32nm. Such high pattern density pushes the 193 immersion lithography solution toward its limit and also brings extremely complex patterning scenarios. The N7 M1 layer may require a self-aligned quadruple patterning (SAQP) with triple litho-etch (LE3) block process. Therefore, the whole patterning process flow requires multiple exposure+etch+deposition processes and each step introduces a particular impact on the pattern profiles and the topography. In this study, we have successfully integrated a simulation tool that enables emulation of the whole patterning flow with realistic process-dependent 3D profile and topology. We use this tool to study the patterning process variations of N7 M1 layer including the overlay control, the critical dimension uniformity (CDU) budget and the lithographic process window (PW). The resulting 3D pattern structure can be used to optimize the process flow, verify design rules, extract parasitics, and most importantly, simulate the electric field and identify hot spots for dielectric reliability. As an example application, we will report extractions of maximum electric field at M1 tipto- tip which is one of the most critical patterning locations and we will demonstrate the potential of this approach for investigating the impact of process variations on dielectric reliability. We will also present simulations of an alternative M1 patterning flow, with a single exposure block using extreme ultraviolet lithography (EUVL) and analyze its advantages compared to the LE3 block approach. 15. Code and Solution Verification of 3D Numerical Modeling of Flow in the Gust Erosion Chamber Yuen, A.; Bombardelli, F. A. 2014-12-01 Erosion microcosms are devices commonly used to investigate the erosion and transport characteristics of sediments at the bed of rivers, lakes, or estuaries. In order to understand the results these devices provide, the bed shear stress and flow field need to be accurately described. In this research, the UMCES Gust Erosion Microcosm System (U-GEMS) is numerically modeled using Finite Volume Method. The primary aims are to simulate the bed shear stress distribution at the surface of the sediment core/bottom of the microcosm, and to validate the U-GEMS produces uniform bed shear stress at the bottom of the microcosm. The mathematical model equations are solved by on a Cartesian non-uniform grid. Multiple numerical runs were developed with different input conditions and configurations. Prior to developing the U-GEMS model, the General Moving Objects (GMO) model and different momentum algorithms in the code were verified. Code verification of these solvers was done via simulating the flow inside the top wall driven square cavity on different mesh sizes to obtain order of convergence. The GMO model was used to simulate the top wall in the top wall driven square cavity as well as the rotating disk in the U-GEMS. Components simulated with the GMO model were rigid bodies that could have any type of motion. In addition cross-verification was conducted as results were compared with numerical results by Ghia et al. (1982), and good agreement was found. Next, CFD results were validated by simulating the flow within the conventional microcosm system without suction and injection. Good agreement was found when the experimental results by Khalili et al. (2008) were compared. After the ability of the CFD solver was proved through the above code verification steps. The model was utilized to simulate the U-GEMS. The solution was verified via classic mesh convergence study on four consecutive mesh sizes, in addition to that Grid Convergence Index (GCI) was calculated and based on 16. Stability of two-dimensional (2D) natural convection flows in air-filled differentially heated cavities: 2D/3D disturbances Following our previous two-dimensional (2D) studies of flows in differentially heated cavities filled with air, we studied the stability of 2D natural convection flows in these cavities with respect to 3D periodic perturbations. The basis of the numerical methods is a time-stepping code using the Chebyshev spectral collocation method and the direct Uzawa method for velocity–pressure coupling. Newton's iteration, Arnoldi's method and the continuation method have been used in order to, respectively, compute the 2D steady-state base solution, estimate the leading eigenmodes of the Jacobian and perform linear stability analysis. Differentially heated air-filled cavities of aspect ratios from 1 to 7 were investigated. Neutral curves (Rayleigh number versus wave number) have been obtained. It turned out that only for aspect ratio 7, 3D stationary instability occurs at slightly higher Rayleigh numbers than the onset of 2D time-dependent flow and that for other aspect ratios 3D instability always takes place before 2D time-dependent flows. 3D unstable modes are stationary and anti-centro-symmetric. 3D nonlinear simulations revealed that the corresponding pitchfork bifurcations are supercritical and that 3D instability leads only to weak flow in the third direction. Further 3D computations are also performed at higher Rayleigh number in order to understand the effects of the weak 3D fluid motion on the onset of time-dependent flow. 3D flow structures are responsible for the onset of time-dependent flow for aspect ratios 1, 2 and 3, while for larger aspect ratios they do not alter the transition scenario, which was observed in the 2D cases and that vertical boundary layers become unstable to traveling waves. (paper) 17. Modeling the oxidative coupling of methane：Heterogeneous chemistry coupled with 3D flow field simulation Yaghobi Nakisa; Ghoreishy Mir Hamid Reza 2009-01-01 The oxidative coupling of methane (OCM) over titanate perovskite catalyst has been developed by three-dimensional numerical simulations of flow field coupled with heat transfer as well as heterogeneous kinetic model.The reaction was assumed to take place both in the gas phase and on the catalytic surface.Kinetic rate constants were experimentally obtained using a ten step kinetic model.The simulation results agree quite well with the data of OCM experiments,which were used to investigate the effect of temperature on the selectivity and conversion obtained in the methane oxidative coupling process.The conversion of methane linearly increased with temperature and the selectivity of C2 was practically constant in the temperature range of 973-1073 K.The study shows that CFD tools make it possible to implement the heterogeneous kinetic model even for high exothermic reaction such as OCM. 18. Characterisation of global flow and local fluctuations in 3D SPH simulations of protoplanetary discs Arena, Serena 2013-01-01 A complete and detailed knowledge of the structure of the gaseous component in protoplanetary discs is essential to the study of dust evolution during the early phases of pre-planetesimal formation. The aim of this paper is to determine if three-dimensional accretion discs simulated by the Smoothed Particle Hydrodynamics (SPH) method can reproduce the observational data now available and the expected turbulent nature of protoplanetary discs. The investigation is carried out by setting up a suite of diagnostic tools specifically designed to characterise both the global flow and the fluctuations of the gaseous disc. The main result concerns the role of the artificial viscosity implementation in the SPH method: in addition to the already known ability of SPH artificial viscosity to mimic a physical-like viscosity under specific conditions, we show how the same artificial viscosity prescription behaves like an implicit turbulence model. In fact, we identify a threshold for the parameters in the standard artificia... 19. Nonlinear stability analysis of 3D Couette flow considering energy transfer conservation The transition from laminar plane Couette flow to intermittency is studied within a 108-dimensional Galerkin representation of Orr-Sommerfeld and Squire modes. A distinct transient behaviour is found in the Reynolds number region 325≤R≤350. The results also confirm the sensitive dependence on initial conditions in the intermittency regime as recently found in a higher-dimensional function space. As a crucial point, the conservation of the overall energy-transfer rate is rigorously implemented by renormalizing the nonlinear coefficients of the Galerkin system. As a consequence, there are no runaway trajectories in the cut-off system considered. Surprisingly, further consistency conditions were found in the quadratic terms of the time derivative of the kinetic energy. After they have been taken into account by the renormalization, a quantitatively good fulfillment of the energy balances is achieved 20. Numerical Analysis of Turbulent Structures with a {kappa}-{epsilon} 3D Model of a Flow over a Cubic Obstacle; Estudio numerico de estructuras turbulentas con un modelo {kappa}-{epsilon} en 3D de un flujo sobre un obstaculo cubico Millan Barrera, Cecia; Ramirez Leon, Hermilo [Instituto Mexicano de Tecnologia del Agua, Jiutepec, Morelos (Mexico) 2001-12-01 A numerical analysis is applied to a flow in an open channel and deformed by a three dimensional obstacle. The proposed model solves the 3-D Navier-Stokes equations, to which a {kappa}-{epsilon} turbulence model is coupled. The numerical analysis was constructed using a finite difference formulation for time evaluation purposed and staggered cells for space evaluation. The main goal of the present work was to study the turbulent structures and patterns of the flow due to an obstacle at the bottom of the channel plate. Our results are according to those found in the related literature. Flow patterns allow establishing the generation of turbulent structures by means of a comparison between this study and a most recent related work that evaluates the vorticity of the flow. [Spanish] Se reportan los resultados obtenidos, mediante simulaciones numericas, del movimiento del flujo en un canal con superficie libre y un obstaculo en el fondo. El sistema ecuaciones utilizado resuelve las ecuaciones de Navier-Stokes en tres dimensiones, al cual se le acoplo un modelo de turbulencia tipo {kappa}-{epsilon}. La solucion se obtiene numericamente utilizando un esquema en diferencias finitas para la evaluacion temporal de las variables y una celda escalonada para la evaluacion espacial de las mismas. El objetivo del modelo es estudiar los patrones de flujo y las estructuras turbulentas que se generan debido a la presencia del obstaculo. El estudio se realizo para un flujo en tres dimensiones. Los resultados son satisfactorios, ya que muestran concordancia con otros estudios numericos y experimentales encontrados en la literatura. 1. Modelling flow transition in a hypersonic boundary layer with Reynolds-averaged Navier-Stokes approach WANG Liang; FU Song 2009-01-01 Based on Reynolds-averaged Navier-Stokes approach, a laminar-turbulence transition model is proposed in this study that takes into account the effects of different instability modes associated with the variations in Mach numbers of compressible boundary layer flows. The model is based on k-ω-γ three-equation eddy-viscosity concept with k representing the fluctuating kinetic energy, ωthe specific dissipation rate and the intermittency factor γ.The particular features of the model are that: 1) k includes the non-turbulent, as well as turbulent fluctuations; 2) a transport equation for the intermittency factor γis proposed here with a source term set to trigger the transition onset; 3) through the introduction of a new length scale normal to wall, the present model employs the local variables only avoiding the use of the integral parameters, like the boundary layer thickness δ,which are often cost-ineffective with the modern CFD (Computational Fluid Dynamics) methods; 4) in the fully turbulent region, the model retreats to the well-known k-ωSST (Shear Stress Transport) model. This model is validated with a number of available experiments on boundary layer transitions including the incompressible, supersonic and hypersonic flows past flat plates, straight/flared cones at zero incidences, etc. It is demonstrated that the present model can be successfully applied to the engineering calculations of a variety of aerodynamic flow transition. 2. Modelling flow transition in a hypersonic boundary layer with Reynolds-averaged Navier-Stokes approach 2009-01-01 Based on Reynolds-averaged Navier-Stokes approach,a laminar-turbulence transition model is proposed in this study that takes into account the effects of different instability modes associated with the variations in Mach numbers of compressible boundary layer flows.The model is based on k-ω-γ three-equation eddy-viscosity concept with k representing the fluctuating kinetic energy,ωthe specific dissipation rate and the intermittency factorγ.The particular features of the model are that:1)k includes the non-turbulent,as well as turbulent fluctuations;2)a transport equation for the intermittency factorγis proposed here with a source term set to trigger the transition onset;3)through the introduction of a new length scale normal to wall,the present model employs the local variables only avoiding the use of the integral parameters,like the boundary layer thicknessδ,which are often cost-ineffective with the modern CFD(Computational Fluid Dynamics)methods;4)in the fully turbulent region,the model retreats to the well-known k-ωSST(Shear Stress Transport)model.This model is validated with a number of available experiments on boundary layer transitions including the incompressible,supersonic and hypersonic flows past flat plates,straight/flared cones at zero incidences,etc.It is demonstrated that the present model can be successfully applied to the engineering calculations of a variety of aerodynamic flow transition. 3. Numerical Solution of Stokes Flow in a Circular Cavity Using Mesh-free Local RBF-DQ Kutanaai, S Soleimani; Roshan, Naeem; Vosoughi, A; Saghafi, S; Barari, Amin; Soleimani, Soheil 2012-01-01 This work reports the results of a numerical investigation of Stokes flow problem in a circular cavity as an irregular geometry using mesh-free local radial basis function-based differential quadrature (RBF-DQ) method. This method is the combination of differential quadrature approximation of der... 4. Comparison of reynolds averaged navier stokes based simulation and large eddy simulation for one isothermal swirling flow Yang, Yang; Kær, Søren Knudsen 2012-01-01 The flow structure of one isothermal swirling case in the Sydney swirl flame database was studied using two numerical methods. Results from the Reynolds-averaged Navier-Stokes (RANS) approach and large eddy simulation (LES) were compared with experimental measurements. The simulations were applied... 5. NUMERICAL SIMULATION OF 3D KIRLOSKER TV-1 MODEL ENGINE CYLINDER FOR COLD FLOW S. SIVA 2013-12-01 Full Text Available The definition of an efficient optimization methodology for internal combustion engine design using computational fluid dynamic simulation models is presented. This paper aims at validating the fundamental numerical and computational fluid dynamic aspects which can lead to the definition of following models. The models used for analysis of Standard k-ε model, Realizable k-ε model, V2F k-ε model, AKN k-ε model, and Standard k-ω (Wilcox model. For these reasons, both single-and multi-objective problems will be addressed, where the former are still of relevant interest (i.e. optimization of engine performances, while the later have a much wider range of applications and are often characterized by conflicting objectives.Modeling of the KIRLOSKER OIL ENGINE TV1 will be done using GAMBIT. Flow inside the engine is to be the analysis and validation various turbulence models using STARCD. This is used to find the model which predicts the engine performance better. 6. A 3-D Moving Mesh Method for Simulation of Flow around a Rotational Body mohammad mehdi razzaghi 2016-01-01 Full Text Available The numerical simulation of flow around a three dimensional moving body faces different problems in several methods, such as disruption of the structure of the grid, the need for deletion and insertion of nodes, interpolation, and data transfer between different parts of grid. In order to tackle the above-mentioned problems, a new configuration has been developed for meshing domain, which besides providing the body with the capability of rotational and oscillatory motions in large displacements, saves the grid’s primitive quality. In the introduced method, the grid connections are manipulated with the motion of the body, but the general form of the grid is not changed or disrupted. This needs a special form for nodes of the grid, which is explained in this paper. The three dimensional unsteady form of the Euler equations is solved and the properties over each cell faces are evaluated using an averaging method. For time integration of the equations an implicit dual time method is used. It can prove that the volume of all elements is constant in the introduced grid. Therefore, there is no need to calculate elements volume in every time step. Several test cases are solved and the results are compared with experimental or other numerical data. 7. Linear Stability and Nonlinear Evolution of 3D Vortices in Rotating Stratified Flows Mahdinia, Mani; Hassanzadeh, Pedram; Marcus, Philip 2014-11-01 Axisymmetric Gaussian vortices are widely-used to model oceanic vortices. We study their stability in rotating, stratified flows by using the full Boussinesq equations. We created a stability map as a function of the Burger and Rossby numbers of the vortices. We computed the linear growth rates of the most-unstable eigenmodes and their corresponding eigenmodes. Our map shows a significant cyclone/anti-cyclone asymmetry. The vortices are linearly unstable in most of the parameter space that we studied. However, the anticyclonic vortices, over most of the parameter space, have eigenmodes with only very weak growth rates - longer than 50 vortex turn-around times. For oceanic vortices, that time corresponds to several months, so we argue that this slow growth rate means that the oceanic anticyclones lifetimes are not determined by linear stability, but by other processes. We also use our full, nonlinear simulations to show an example of an unstable cyclone with a very fast growing linear eigenmodes. However, we show that cyclone quickly redistributes its vorticity and becomes a stable tripole with a large core that is nearly axisymmetric. 8. Breakup of Finite-Size Colloidal Aggregates in Turbulent Flow Investigated by Three-Dimensional (3D) Particle Tracking Velocimetry. Saha, Debashish; Babler, Matthaus U; Holzner, Markus; Soos, Miroslav; Lüthi, Beat; Liberzon, Alex; Kinzelbach, Wolfgang 2016-01-12 Aggregates grown in mild shear flow are released, one at a time, into homogeneous isotropic turbulence, where their motion and intermittent breakup is recorded by three-dimensional particle tracking velocimetry (3D-PTV). The aggregates have an open structure with a fractal dimension of ∼2.2, and their size is 1.4 ± 0.4 mm, which is large, compared to the Kolmogorov length scale (η = 0.15 mm). 3D-PTV of flow tracers allows for the simultaneous measurement of aggregate trajectories and the full velocity gradient tensor along their pathlines, which enables us to access the Lagrangian stress history of individual breakup events. From this data, we found no consistent pattern that relates breakup to the local flow properties at the point of breakup. Also, the correlation between the aggregate size and both shear stress and normal stress at the location of breakage is found to be weaker, when compared with the correlation between size and drag stress. The analysis suggests that the aggregates are mostly broken due to the accumulation of the drag stress over a time lag on the order of the Kolmogorov time scale. This finding is explained by the fact that the aggregates are large, which gives their motion inertia and increases the time for stress propagation inside the aggregate. Furthermore, it is found that the scaling of the largest fragment and the accumulated stress at breakup follows an earlier established power law, i.e., dfrag ∼ σ(-0.6) obtained from laminar nozzle experiments. This indicates that, despite the large size and the different type of hydrodynamic stress, the microscopic mechanism causing breakup is consistent over a wide range of aggregate size and stress magnitude. PMID:26646289 9. Large Scale 3-D Dislocation Dynamics and Atomistic Simulations of Flow and Strain-Hardening Behavior of Metallic Micropillars Rao, Satish 2015-03-01 Experimental studies show strong strengthening effects for micrometer-scale FCC as well as two-phase superalloy crystals, even at high initial dislocation densities. This talk shows results from large-scale 3-D discrete dislocation simulations (DDS) used to explicitly model the deformation behavior of FCC Ni (flow stress and strain-hardening) as well as superalloy microcrystals for diameters ranging from 1 - 20 microns. The work shows that two size-sensitive athermal hardening processes, beyond forest and precipitation hardening, are sufficient to develop the dimensional scaling of the flow stress, stochastic stress variation, flow intermittency and, high initial strain-hardening rates, similar to experimental observations for various materials. In addition, 3D dislocation dynamics simulations are used to investigate strain-hardening characteristics and dislocation microstructure evolution with strain in large 20 micron size Ni microcrystals (bulk-like) under three different loading axes: 111, 001 and 110. Three different multi-slip loading axes, , and , are explored for shear strains of ~0.03 and final dislocation densities of ~1013/m2. The orientation dependence of initial strain hardening rates and dislocation microstructure evolution with strain are discussed. The simulated strain hardening results are compared with experimental data under similar loading conditions from bulk single-crystal Ni. Finally, atomistic simulation results on the operation of single arm sources in Ni bipillars with a large angle grain boundary is discussed. The atomistic simulation results are compared with experimental mechanical behavior data on Cu bipillars with a similar large angle grain boundary. This work was supported by AFOSR (Dr. David Stargel), and by a grant of computer time from the DOD High Performance Computing Modernization Program, at the Aeronautical Systems Center/Major Shared Resource Center. 10. Mixed-hybrid and vertex-discontinuous-Galerkin finite element modeling of multiphase compositional flow on 3D unstructured grids Moortgat, Joachim; Firoozabadi, Abbas 2016-06-01 Problems of interest in hydrogeology and hydrocarbon resources involve complex heterogeneous geological formations. Such domains are most accurately represented in reservoir simulations by unstructured computational grids. Finite element methods accurately describe flow on unstructured meshes with complex geometries, and their flexible formulation allows implementation on different grid types. In this work, we consider for the first time the challenging problem of fully compositional three-phase flow in 3D unstructured grids, discretized by any combination of tetrahedra, prisms, and hexahedra. We employ a mass conserving mixed hybrid finite element (MHFE) method to solve for the pressure and flux fields. The transport equations are approximated with a higher-order vertex-based discontinuous Galerkin (DG) discretization. We show that this approach outperforms a face-based implementation of the same polynomial order. These methods are well suited for heterogeneous and fractured reservoirs, because they provide globally continuous pressure and flux fields, while allowing for sharp discontinuities in compositions and saturations. The higher-order accuracy improves the modeling of strongly non-linear flow, such as gravitational and viscous fingering. We review the literature on unstructured reservoir simulation models, and present many examples that consider gravity depletion, water flooding, and gas injection in oil saturated reservoirs. We study convergence rates, mesh sensitivity, and demonstrate the wide applicability of our chosen finite element methods for challenging multiphase flow problems in geometrically complex subsurface media. 11. Navier-Stokes flow field analysis of compressible flow in a pressure relief valve Vu, Bruce T.; Wang, Ten-See; Shih, Ming-Hsin; Soni, Bharat K. 1993-07-01 The present study was motivated to analyze the complex flow field involving gaseous oxygen (GOX) flow in a relief valve (RV). The 9391 RV, pictured in Figure 1, was combined with the pilot valve to regulate the actuation pressure of the main valve system. During a high-pressure flow test at Marshall Space Flight Center (MSFC) the valve system developed a resonance chatter, which destroyed most of the valve body. Figures 2-4 show the valve body before and after accident. It was understood that the subject RV has never been operated at 5500 psia. In order to fully understand the flow behavior in the RV, a computational fluid dynamics (CFD) analysis is carried out to investigate the side load across the piston sleeve and the erosion patterns resulting from flow distribution around piston/nozzle interface. 12. Numerical Calculation of Secondary Flow in Pump Volute and Circular Casings using 3D Viscous Flow Techniques K. Majidi 2000-01-01 Full Text Available The flow field in volute and circular casings interacting with a centrifugal impeller is obtained by numerical analysis. In the present study, effects of the volute and circular casings on the flow pattern have been investigated by successively combining a volute casing and a circular casing with a single centrifugal impeller. The numerical calculations are carried out with a multiple frame of reference to predict the flow field inside the entire impeller and casings. The impeller flow field is solved in a rotating frame and the flow field in the casings in a stationary frame. The static pressure and velocity in the casing and impeller, and the static pressures and secondary velocity vectors at several cross-sectional planes of the casings are calculated. The calculations show that the curvature of the casings creates pressure gradients that cause vortices at cross-sectional planes of the casings. 13. MR-based tridirectional flow imaging. Acquisition and 3D analysis of flows in the thoracic aorta; MRT-basierte tridirektionale Flussbildgebung. Aufnahme und 3D-Analyse von Stroemungen in der thorakalen Aorta Unterhinninghofen, R. [Universitaet Karlsruhe, Institut fuer Technische Informatik, Karlsruhe (Germany); Deutsches Krebsforschungszentrum Heidelberg, Abteilung Radiologie (E010), Heidelberg (Germany); Ley, S. [Deutsches Krebsforschungszentrum Heidelberg, Abteilung Radiologie (E010), Heidelberg (Germany); Universitaetskinderklinik Heidelberg, Paediatrische Radiologie, Heidelberg (Germany); Frydrychowicz, A.; Markl, M. [Universitaetsklinikum Freiburg, Abteilung Roentgendiagnostik, Medizin Physik, Freiburg (Germany) 2007-11-15 Tridirectional MR flow imaging is a novel method that extends the well-established technique of phase-contrast flow measurement by vectorial velocity encoding, i.e., by encoding in all three spatial directions. Modern sequence protocols allow the acquisition of velocity vector fields with high spatial resolutions of 1-3 mm and temporal resolutions of 20-50 ms over the heart cycle. Using navigating techniques, data on the entire thoracic aorta can be acquired within about 20 min in free breathing. The subsequent computer-based data processing includes automatic correction of aliasing effects, eddy currents, gradient field inhomogeneities, and Maxwell terms. The data can be visualized in three dimensions using vector arrows, streamlines, or particle traces. The parallel visualization of morphological slices and of the surface of the vascular lumen in 3D enhances spatial and anatomical orientation. Furthermore, quantitative values such as blood flow velocity and volume, vorticity, and vessel wall shear stress can be determined. Modern software systems support the integrated flow-based analysis of typical aortic pathologies such as aneurysms and aortic insufficiency. To what extent this additional information will help us in making better therapeutic decisions needs to be studied in clinical trials. (orig.) [German] Die tridirektionale MRT-Flussbildgebung ist ein junges Verfahren, das die etablierte Phasenkontrastflussmessung um die vektorielle Geschwindigkeitskodierung, also Kodierung in allen 3 Raumrichtungen, erweitert. Moderne Sequenzen erfassen Geschwindigkeitsvektorfelder mit raeumlich hoher Aufloesung von 1-3 mm und ueber den Herzschlag mit einer zeitlichen Aufloesung von 20-50 ms. Dank Navigatortechnik kann die gesamte thorakale Aorta innerhalb von ca. 20 min in freier Atmung aufgenommen werden. Die anschliessende rechnergestuetzte Datenaufbereitung umfasst die automatische Korrektur von Aliasingeffekten, Wirbelstroemen, Gradientenfeldinhomogenitaeten und 14. Application of the Poor Man's Navier-Stokes Equations to Real-Time Control of Fluid Flow Polly, James B.; McDonough, J. M. 2012-01-01 Control of fluid flow is an important, underutilized process possessing potential benefits ranging from avoidance of separation and stall on aircraft wings to reduction of friction in oil and gas pipelines to mitigation of noise from wind turbines. But the Navier-Stokes (N.-S.) equations, whose solutions describe such flows, consist of a system of time-dependent, multidimensional, nonlinear partial differential equations (PDEs) which cannot be solved in real time using current computing hardw... 15. Exact solutions to the interfacial surfactant transport equation on a droplet in a Stokes flow regime Kallendorf, Christina; Fath, Anja; Oberlack, Martin; Wang, Yongqi 2015-08-01 In the research literature there exist very rare analytical solutions of the surfactant transport equation on an interface. In the present article, we derive sets of exact solutions to interfacial convection-diffusion equations which describe the interfacial transport of insoluble surfactants in a two-phase flow. The investigated model is based on a Stokes flow setting where a spherical shaped inner phase is dispersed in an outer phase. Under the assumption of the small capillary number, the deformation of the spherical phase interface is not taken into account. Neglecting the dependence of the surface tension on the interfacial surfactant concentration, hence neglecting the Marangoni effect, general exact solutions to the surfactant conservation law on the spherical surface with both convective and diffusive terms are provided by means of Heun's confluent function. For the steady case, it is shown that these solutions collapse to a simple exponential form. Furthermore, for the purely diffusive problem, exact solutions are constructed using Legendre polynomials. Such analytical solutions are very valuable as benchmark problems in numerical investigations. 16. Numerical investigation of the high Reynolds number 3D flow field generated by a self-propelling manta ray Pederzani, Jean-Noel; Haj-Hariri, Hossein 2012-11-01 An embedded-boundary (or cut-cell) method for complex geometry with moving boundaries is used to solve the three dimensional Navier-Stokes equation around a self-propelling manta swimming at moderately high Reynolds numbers. The motion of the ray is prescribed using a kinematic model fitted to actual biological data. The dependence of thrust production mechanism on Strouhal and Reynolds numbers is investigated. The vortex core structures are accurately plotted and a correlation between wake structures and propulsive performance is established. This insight is critical in understanding the key flow features that a bio-inspired autonomous vehicle should reproduce in order to swim efficiently. The solution method is implemented, on a block-structured Cartesian grid using a cut-cell approach enabling the code to correctly evaluate the wall shear-stress, a key feature necessary at higher Reynolds. To enhance computational efficiency, a parallel adaptive mesh refinement technique is used. The present method is validated against published experimental results. Supported by ONR MURI. 17. 3D Flapping Trajectory of a Micro-Air-Vehicle and its Application to Unsteady Flow Simulation Lung-Jieh Yang 2013-06-01 Full Text Available A three‐dimensional (3D trajectory detection framework using two high‐speed cameras for the flapping flexible wing of a micro‐air‐vehicle (MAV is presented. This MAV, which is called the “Golden Snitch”, has a successful flight record of 8 minutes. We embed the flexible wingskin with a nine light emitting diode (LED array as the light enhancing marker and capsulate it with parylene (poly‐para‐xylylene as the protection layer. We confirm an oblique figure of eight trajectory of this MAV’s wing with time‐varying coordinate data. The corresponding aerofoil of the main wings’ profiles was subjected to the time‐varying coordinate data, yielding a resolution of a 1/70 wing beating cycle of 15Hz flapping. The trajectory information is first demonstrated as the moving boundaries of an unsteady flow simulation around a flapping flexible wing. 18. Validation Analysis for the Calculation of a Turbulent Free Jet in Water Using CFDS-FLOW 3-D and FLUENT The application of computational fluid dynamics methods to the analysis of mixing in the high level waste tanks at the Savannah River Site requires a demonstration that the computer codes can properly represent the behavior of fluids in the tanks. The motive force for mixing the tanks is a set of jet pumps taking suction from the tank fluid and discharging turbulent jets near the bottom of the tank. The work described here focuses on the free turbulent jet in water as the simplest case of jet behavior for which data could be found in the open literature. Calculations performed with both CFDS-FLOW3D and FLUENT were compared with data as well as classical jet theory. Results showed both codes agreed reasonably well with each other and with the data, but that results were sensitive to the computational mesh and, to a lesser degree, the selection of turbulence models 19. Coupling Motion and Energy Harvesting of Two Side-by-Side Flexible Plates in a 3D Uniform Flow Dibo Dong 2016-05-01 Full Text Available The fluid-structure interaction problems of two side-by-side flexible plates with a finite aspect ratio in a three-dimensional (3D uniform flow are numerically studied. The plates’ motions are entirely passive under the force of surrounding fluid. By changing the aspect ratio and transverse distance, the coupling motions, drag force and energy capture performance are analyzed. The mechanisms underlying the plates’ motion and flow characteristics are discussed systematically. The adopted algorithm is verified and validated by the simulation of flow past a square flexible plate. The results show that the plate’s passive flapping behavior contains transverse and spanwise deformation, and the flapping amplitude is proportional to the aspect ratio. In the side-by-side configuration, three distinct coupling modes of the plates’ motion are identified, including single-plate mode, symmetrical flapping mode and decoupled mode. The plate with a lower aspect ratio may suffer less drag force and capture less bending energy than in the isolated situation. The optimized selection for obtaining higher energy conversion efficiency is the plate flapping in single-plate mode, especially the plate with a higher aspect ratio. The findings of this work provide several new physical insights into the understanding of fish schooling and are expected to inspire the developments of underwater robots or energy harvesters. 20. RELAP5-3D Analysis of Pressure Perturbation at the Peach Bottom BWR During Low-Flow Stability Tests Experimental and theoretical studies about the BWR (Boiling Water Reactor) stability have been performed to design a stable core configuration. BWR instabilities can be caused by inter-dependencies between thermal-hydraulic and reactivity feedback parameters such as the void-coefficient, for example, during a pressure perturbation event. In the present work, the pressure perturbation is considered in order to study in detail this type of transient. To simulate this event, including the strong feedback effects between core neutronic and reactor thermal-hydraulics, and to verify core behavior and evaluate parameters related to safety, RELAP5-3D code has been used in the analyses. The simulation was performed making use of Peach Bottom-2 BWR data to predict the dynamics of a real reactor during this type of event. Stability tests were conducted in the Peach Bottom 2 BWR, in 1977, and were done along the low-flow end of the rated power-flow line, and along the power-flow line corresponding to minimum recirculation pump speed. The calculated results are herein compared against the available experimental data. (authors) 1. Asymptotic analysis of the full Navier-Stokes-Fourier system: From compressible to incompressible fluid flows This is a survey of new results related to the study of the full Navier-Stokes-Fourier system for a general compressible, viscous, and heat conducting fluid, and its asymptotic behaviour as the Mach number approaches zero. The classical Navier-Stokes system for an incompressible fluid with lift, combined with the corresponding heat equation, is a limiting case. 2. 3D modelling of the flow of self-compacting concrete with or without steel fibres. Part I: slump flow test Deeb, R.; Kulasegaram, S.; Karihaloo, B. L. 2014-12-01 In part I of this two-part paper, a three-dimensional Lagrangian smooth particle hydrodynamics method has been used to model the flow of self-compacting concrete (SCC) with or without short steel fibres in the slump cone test. The constitutive behaviour of this non-Newtonian viscous fluid is described by a Bingham-type model. The 3D simulation of SCC without fibres is focused on the distribution of large aggregates (larger than or equal to 8 mm) during the flow. The simulation of self-compacting high- and ultra-high- performance concrete containing short steel fibres is focused on the distribution of fibres and their orientation during the flow. The simulation results show that the fibres and/or heavier aggregates do not precipitate but remain homogeneously distributed in the mix throughout the flow. 3. Development of multiphase Navier-Stokes simulation capability for turbulent gas flow over laminar liquid for Cartesian grids Miao, Sha; Hendrickson, Kelli; Liu, Yuming; Subramani, Hariprasad 2015-11-01 This work presents a novel and efficient Cartesian-grid based simulation capability for the study of an incompressible, turbulent gas layer over a liquid flow with disparate Reynolds numbers in two phases. This capability couples a turbulent gas-flow solver and a liquid-layer based on a second-order accurate Boundary Data Immersion Method (BDIM) at the deformable interface. The turbulent gas flow solver solves the incompressible Navier-Stokes equations via direct numerical simulation or through turbulence closure (unsteady Reynolds-Averaged Navier-Stokes Models) for Reynolds numbers O(106). In this application, a laminar liquid layer solution is obtained from depth-integrated Navier-Stokes equations utilizing shallow water wave assumptions. The immersed boundary method (BDIM) enforces the coupling at the deformable interface, the boundary conditions to turbulence closure equations and defines the domain geometry on the Cartesian grid. Validations are made for the turbulent gas channel flow over high-viscosity liquid. This simulation capability can be applied to problems in the oil and industrial sector such as channel and pipe flows with heavy oils as well as wind wave generation in shallow waters. Sponsored by the Chevron Energy Technology Company. 4. KNOW-BLADE task-4 report: Navier-Stokes aeroelasticity Politis, E.S.; Nikolaou, I.G.; Chaviaropoulos, P.K.; 2004-01-01 wind turbine blade have been combined with 2D and 3D unsteady Navier-Stokes solvers. The relative disadvantage of the quasi-3D approach (where the elastic solver is coupled with a 2D Navier-Stokes solver) isits inability to model induced flow. The lack of a validation test case did not allow for......The problem of the aeroelastic stability of wind turbine blades is addressed in this report by advancing the aerodynamic modelling in the beam element type codes from the engineering-type empirical models to unsteady, 2D or 3D, Navier-Stokes solvers. Inthis project, structural models for the full...... in damping with the increase of wind speeds and in a minimum value for the damping for wind speedaround 15~m/s. The eigenvalue analyses resulted in steeper distributions for this mode. The agreement in aerodynamic damping decrease with the increase of wind speed is also observed in the distributions... 5. Numerical simulation of the stokes wave for the flow around a ship hull coupled with the VOF model Shengtao, Chen; Jingjun, Zhong; Peng, Sun 2015-06-01 The surface wave generated by flow around a ship hull moving near free surface of water is simulated numerically in this study. The three-dimensional implicit finite volume method (FVM) is applied to solve Reynolds averaged Navier-Stokes (RANS) equation. The realizable k-e turbulence model has been implemented to capture turbulent flow around the ship hull in the free surface zone. The volume of fluid (VOF) method coupled with the Stokes wave theory has been used to determine the free surface effect of water. By using is a six degrees of freedom model, the ship hull's movement is numerically solved with the Stokes wave together. Under the action of Stokes waves on the sea, the interface between the air and water waves at the same regular pattern and so does the pressure and the vertical velocity. The ship hull moves in the same way as the wave. The amplitude of the ship hull's heave is less than the wave height because of the viscosity damping. This method could provide an important reference for the study of ships' movement, wave and hydrodynamics. 6. Examining the effect of pore size distribution and shape on flow through unsaturated peat using 3-D computed tomography F. Rezanezhad 2009-05-01 Full Text Available The hydraulic conductivity of unsaturated peat soils is controlled by the peat structure which affects the air-filled porosity, pore size distribution and shape. This study investigates how the size and shape of pores affects the flow of water through peat soils. In this study we used X-ray Computed Tomography (CT, at 45 µm resolution under 5 specific soil-water pressure head levels to provide 3-D, high-resolution images that were used to detect the inner pore structure of peat samples under a changing water regime. Pore structure and configuration were found to be irregular, which affected the rate of water transmission through peat soils. The 3-D analysis suggested that pore distribution is dominated by a single large pore-space. At low pressure head, this single large air-filled pore imparted a more effective flowpath compared to smaller pores. Smaller pores were disconnected and the flowpath was more tortuous than in the single large air-filled pore, and their contribution to flow was negligible when the single large pore was active. We quantify the pore structure of peat soil that affects the hydraulic conductivity in the unsaturated condition, and demonstrate the validity of our estimation of peat unsaturated hydraulic conductivity by making a comparison with a standard permeameter-based method. Estimates of unsaturated hydraulic conductivities were made for the purpose of testing the sensitivity of pore shape and geometry parameters on the hydraulic properties of peats and how to evaluate the structure of the peat and its affects on parameterization. We also studied the ability to quantify these factors for different soil moisture contents in order to define how the factors controlling the shape coefficient vary with changes in soil water pressure head. The relation between measured and estimated unsaturated hydraulic conductivity at various heads shows that rapid initial drainage, that changes the air-filled pore properties, creates a 7. A New Approach to Sap Flow Measurement Using 3D Printed Gauges and Open-source Electronics Ham, J. M.; Miner, G. L.; Kluitenberg, G. J. 2015-12-01 A new type of sap flow gauge was developed to measure transpiration from herbaceous plants using a modified heat pulse technique. Gauges were fabricated using 3D-printing technology and low-cost electronics to keep the materials cost under20 (U.S.) per sensor. Each gauge consisted of small-diameter needle probes fastened to a 3D-printed frame. One needle contained a resistance heater to provide a 6 to 8 second heat pulse while the other probes measured the resultant temperature increase at two distances from the heat source. The data acquisition system for the gauges was built from a low-cost Arduino microcontroller. The system read the gauges every 10 minutes and stored the results on a SD card. Different numerical techniques were evaluated for estimating sap velocity from the heat pulse data - including analytical solutions and parameter estimation approaches . Prototype gauges were tested in the greenhouse on containerized corn and sunflower. Sap velocities measured by the gauges were compared to independent gravimetric measurements of whole plant transpiration. Results showed the system could measure daily transpiration to within 3% of the gravimetric measurements. Excellent agreement was observed when two gauges were attached the same stem. Accuracy was not affected by rapidly changing transpiration rates observed under partly cloudy conditions. The gauge-based estimates of stem thermal properties suggested the system may also detect the onset of water stress. A field study showed the gauges could run for 1 to 2 weeks on a small battery pack. Sap flow measurements on multiple corn stems were scaled up by population to estimate field-scale transpiration. During full canopy cover, excellent agreement was observed between the scaled-up sap flow measurements and reference crop evapotranspiration calculated from weather data. Data also showed promise as a way to estimate real-time canopy resistance required for model verification and development. Given the low

8. Multigrid mapping and box relaxation for simulation of the whole process of flow transition in 3-D boundary layers

Liu, C.; Liu, Z. [Univ. of Colorado, Denver, CO (United States)

1994-12-31

A new multilevel technology was developed in this study which provides a successful numerical simulation for the whole process of flow transition in 3-D flat plate boundary layers, including linear growth, secondary instability, breakdown, and transition on a relatively coarse grid with low CPU cost. A fourth-order finite difference scheme on stretched and staggered grids, a fully implicit time-marching technique, a semi-coarsening multigrid based on the so-called approximate line-box relaxation, and a buffer domain for the outflow boundary conditions were all employed for high-order accuracy, good stability, and fast convergence. A new fine-coarse-fine grid mapping technique was developed to catch the large eddies and represent main roles of small eddies to keep the code running after the laminar flow breaks down. The computational results are in good agreement with linear stability theory, secondary instability theory, and some experiments. The computation also reproduced the K-type and C-type transition observed by laboratory experiments. The CPU cost for a typical case is around 2-9 CRAY-YMP hours.

9. Flow above and within granular media composed of spherical and non-spherical particles - using a 3D numerical model

Bartzke, Gerhard; Kuhlmann, Jannis; Huhn, Katrin

2016-04-01

The entrainment of single grains and, hence, their erosion characteristics are dependent on fluid forcing, grain size and density, but also shape variations. To quantitatively describe and capture the hydrodynamic conditions around individual grains, researchers commonly use empirical approaches such as laboratory flume tanks. Nonetheless, it is difficult with such physical experiments to measure the flow velocities in the direct vicinity or within the pore spaces of sediments, at a sufficient resolution and in a non-invasive way. As a result, the hydrodynamic conditions in the water column, at the fluid-porous interface and within pore spaces of a granular medium of various grain shapes is not yet fully understood. For that reason, there is a strong need for numerical models, since these are capable of quantifying fluid speeds within a granular medium. A 3D-SPH (Smooth Particle Hydrodynamics) numerical wave tank model was set up to provide quantitative evidence on the flow velocities in the direct vicinity and in the interior of granular beds composed of two shapes as a complementary method to the difficult task of in situ measurement. On the basis of previous successful numerical wave tank models with SPH, the model geometry was chosen in dimensions of X=2.68 [m], Y=0.48 [m], and Z=0.8 [m]. Three suites of experiments were designed with a range of particle shape models: (1) ellipsoids with the long axis oriented in the across-stream direction, (2) ellipsoids with the long axis oriented in the along-stream direction, and (3) spheres. Particle diameters ranged from 0.04 [m] to 0.08 [m]. A wave was introduced by a vertical paddle that accelerated to 0.8 [m/s] perpendicular to the granular bed. Flow measurements showed that the flow velocity values into the beds were highest when the grains were oriented across the stream direction and lowest in case when the grains were oriented parallel to the stream, indicating that the model was capable to simulate simultaneously

10. SALE-2D, 2-D Fluid Flow, Navier Stokes Equation Using Lagrangian or Eulerian Method

1 - Description of problem or function: SALE2D calculates two- dimensional fluid flows at all speeds, from the incompressible limit to highly supersonic. An implicit treatment of the pressure calculation similar to that in the Implicit Continuous-fluid Eulerian (ICE) technique provides this flow speed flexibility. In addition, the computing mesh may move with the fluid in a typical Lagrangian fashion, be held fixed in an Eulerian manner, or move in some arbitrarily specified way to provide a continuous rezoning capability. This latitude results from use of an Arbitrary Lagrangian-Eulerian (ALE) treatment of the mesh. The partial differential equations solved are the Navier-Stokes equations and the mass and internal energy equations. The fluid pressure is determined from an equation of state and supplemented with an artificial viscous pressure for the computation of shock waves. The computing mesh consists of a two-dimensional network of quadrilateral cells for either cylindrical or Cartesian coordinates, and a variety of user-selectable boundary conditions are provided in the program. 2 - Method of solution: The basic hydrodynamic part of each cycle of SALE is divided into three phases. Phase 1 is a typical explicit Lagrangian calculation in which the velocity field is updated by the effects of all forces. Phase 2 is a Newton-Raphson iteration that provides time-advanced pressures and velocities. It is used for calculations in the low-speed and even completely incompressible regimes. Phase 3 performs all the advective flux calculations. It is required for runs that are Eulerian or contain some other form of mesh rezoning. A powerful feature of SALE is the ease with which different phases can be combined to suit the requirements of individual problems

11. Direct measurement of particle size and 3D velocity of a gas-solid pipe flow with digital holographic particle tracking velocimetry.

Wu, Yingchun; Wu, Xuecheng; Yao, Longchao; Gréhan, Gérard; Cen, Kefa

2015-03-20

The 3D measurement of the particles in a gas-solid pipe flow is of great interest, but remains challenging due to curved pipe walls in various engineering applications. Because of the astigmatism induced by the pipe, concentric ellipse fringes in the hologram of spherical particles are observed in the experiments. With a theoretical analysis of the particle holography by an ABCD matrix, the in-focus particle image can be reconstructed by the modified convolution method and fractional Fourier transform. Thereafter, the particle size, 3D position, and velocity are simultaneously measured by digital holographic particle tracking velocimetry (DHPTV). The successful application of DHPTV to the particle size and 3D velocity measurement in a glass pipe's flow can facilitate its 3D diagnostics. PMID:25968543

12. Modeling GPR data to interpret porosity and DNAPL saturations for calibration of a 3-D multiphase flow simulation

Sneddon, Kristen W.; Powers, Michael H.; Johnson, Raymond H.; Poeter, Eileen P.

2002-01-01

Dense nonaqueous phase liquids (DNAPLs) are a pervasive and persistent category of groundwater contamination. In an effort to better understand their unique subsurface behavior, a controlled and carefully monitored injection of PCE (perchloroethylene), a typical DNAPL, was performed in conjunction with the University of Waterloo at Canadian Forces Base Borden in 1991. Of the various geophysical methods used to monitor the migration of injected PCE, the U.S. Geological Survey collected 500-MHz ground penetrating radar (GPR) data. These data are used in determining calibration parameters for a multiphase flow simulation. GPR data were acquired over time on a fixed two-dimensional surficial grid as the DNAPL was injected into the subsurface. Emphasis is on the method of determining DNAPL saturation values from this time-lapse GPR data set. Interactive full-waveform GPR modeling of regularized field traces resolves relative dielectric permittivity versus depth profiles for pre-injection and later-time data. Modeled values are end members in recursive calculations of the Bruggeman-Hanai-Sen (BHS) mixing formula, yielding interpreted pre-injection porosity and post-injection DNAPL saturation values. The resulting interpreted physical properties of porosity and DNAPL saturation of the Borden test cell, defined on a grid spacing of 50 cm with 1-cm depth resolution, are used as observations for calibration of a 3-D multiphase flow simulation. Calculated values of DNAPL saturation in the subsurface at 14 and 22 hours after the start of injection, from both the GPR and the multiphase flow modeling, are interpolated volumetrically and presented for visual comparison.

13. Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner

Bancroft, Gregory N.; Sikavitsas, Vassilios I.; van den Dolder, Juliette; Sheffield, Tiffany L.; Ambrose, Catherine G.; Jansen, John A.; Mikos, Antonios G.; McIntire, L. V. (Principal Investigator)

2002-01-01

Bone is a complex highly structured mechanically active 3D tissue composed of cellular and matrix elements. The true biological environment of a bone cell is thus derived from a dynamic interaction between responsively active cells experiencing mechanical forces and a continuously changing 3D matrix architecture. To investigate this phenomenon in vitro, marrow stromal osteoblasts were cultured on 3D scaffolds under flow perfusion with different rates of flow for an extended period to permit osteoblast differentiation and significant matrix production and mineralization. With all flow conditions, mineralized matrix production was dramatically increased over statically cultured constructs with the total calcium content of the cultured scaffolds increasing with increasing flow rate. Flow perfusion induced de novo tissue modeling with the formation of pore-like structures in the scaffolds and enhanced the distribution of cells and matrix throughout the scaffolds. These results represent reporting of the long-term effects of fluid flow on primary differentiating osteoblasts and indicate that fluid flow has far-reaching effects on osteoblast differentiation and phenotypic expression in vitro. Flow perfusion culture permits the generation and study of a 3D, actively modeled, mineralized matrix and can therefore be a valuable tool for both bone biology and tissue engineering.

14. The 3D flow structures generated by a pair of cubic roughness elements in a turbulent channel flow resolved using holographic microscopy

Gao, Jian; Katz, Joseph

2015-11-01

In studies of turbulent flows over rough walls, considerable efforts have been put on the overall effects of roughness parameters such as roughness height and spatial arrangement on the mean profiles and turbulence statistics. However there is very little experimental data on the generation, evolution, and interaction among roughness-initiated turbulent structures, which are essential for elucidating the near-wall turbulence production. As a first step, we approach this problem experimentally by applying digital holographic microscopy (DHM) to measure the flow and turbulence around a pair of cubic roughness elements embedded in the inner part of a high Reynolds number turbulent channel flow (Reτ = 2000 - 5000). The ratio of half-channel height (h) to cube height (a) is 25, and the cubes are aligned in the spanwise direction, and separated by 1.5 a. DHM provides high-resolution three-dimensional (3D) three-component (3C) velocity distributions. The presentation discusses methods to improve the data accuracy, both during the hologram acquisition and particle tracking phases. First, we compare and mutually validate velocity fields obtained from a two-view DHM system. Subsequently, during data processing, the seven criteria used for particle tracking is validated and augmented by planar tracking of particle image projections. Sample results reveal instantaneous 3D velocity fields and vortical structures resolved in fine details of several wall units. Funded by NSF and ONR.

15. Navier-Stokes flow field analysis of compressible flow in a high pressure safety relief valve

Vu, Bruce; Wang, Ten-See; Shih, Ming-Hsin; Soni, Bharat

1993-12-01

The objective of this study is to investigate the complex three-dimensional flowfield of an oxygen safety pressure relieve valve during an incident, with a computational fluid dynamic (CFD) analysis. Specifically, the analysis will provide a flow pattern that would lead to the expansion of the eventual erosion pattern of the hardware, so as to combine it with other findings to piece together a most likely scenario for the investigation. The CFD model is a pressure based solver. An adaptive upwind difference scheme is employed for the spatial discretization, and a predictor, multiple corrector method is used for the velocity-pressure coupling. The computational result indicated vortices formation near the opening of the valve which matched the erosion pattern of the damaged hardware.

16. Coupling Navier-stokes and Cahn-hilliard Equations in a Two-dimensional Annular flow Configuration

Vignal, Philippe

2015-06-01

In this work, we present a novel isogeometric analysis discretization for the Navier-Stokes- Cahn-Hilliard equation, which uses divergence-conforming spaces. Basis functions generated with this method can have higher-order continuity, and allow to directly discretize the higher- order operators present in the equation. The discretization is implemented in PetIGA-MF, a high-performance framework for discrete differential forms. We present solutions in a two- dimensional annulus, and model spinodal decomposition under shear flow.

17. Spectral analysis of a Stokes-type operator arising from flow around a rotating body

Farwig, R.; Nečasová, Šárka; Neustupa, Jiří

2011-01-01

Roč. 63, č. 1 (2011), s. 163-194. ISSN 0025-5645 R&D Projects: GA AV ČR IAA100190802; GA AV ČR IAA100190804; GA MŠk LC06052 Institutional research plan: CEZ:AV0Z10190503 Keywords : Stokes operator * Stokes operator with rotation * spectrum * essential spectrum Subject RIV: BA - General Mathematics Impact factor: 0.630, year: 2011

18. A high-order semi-explicit discontinuous Galerkin solver for 3D incompressible flow with application to DNS and LES of turbulent channel flow

Krank, Benjamin; Wall, Wolfgang A; Kronbichler, Martin

2016-01-01

We present an efficient discontinuous Galerkin scheme for simulation of the incompressible Navier-Stokes equations including laminar and turbulent flow. We consider a semi-explicit high-order velocity-correction method for time integration as well as nodal equal-order discretizations for velocity and pressure. The non-linear convective term is treated explicitly while a linear system is solved for the pressure Poisson equation and the viscous term. The key feature of our solver is a consistent penalty term reducing the local divergence error in order to overcome recently reported instabilities in spatially under-resolved high-Reynolds-number flows as well as small time steps. This penalty method is similar to the grad-div stabilization widely used in continuous finite elements. We further review and compare our method to several other techniques recently proposed in literature to stabilize the method for such flow configurations. The solver is specifically designed for large-scale computations through matrix-...

19. On the Analysis and Evaluation of Direct Containment Heating with the Multidimensional Multiphase Flow Code MC3D

Renaud Meignen

2010-01-01

Full Text Available In the course of a postulated severe accident in an NPP, Direct Containment Heating (DCH may occur after an eventual failure of the vessel. DCH is related to dynamical, thermal, and chemical phenomena involved by the eventual fine fragmentation and dispersal of the corium melt out of the vessel pit. It may threaten the integrity of the containment by pressurization of its atmosphere. Several simplified modellings have been proposed in the past but they require a very strong fitting which renders any extrapolation regarding geometry, material, and scales rather doubtful. With the development of multidimensional multiphase flow computer codes, it is now possible to investigate the phenomenon numerically with more details. We present an analysis of the potential of the MC3D code to support the analysis of this phenomenon, restricting our discussion to the dynamical processes. The analysis is applied to the case of French 1300 MWe PWR reactors for which we derive a correlation for the corium dispersal rate for application in a Probabilistic Safety Analysis (PSA level 2 study.

20. General programmable Level-1 trigger with 3D-Flow assembly system for calorimeters of different sizes and event rates

Experience demonstrates that fine tuning on the trigger of an experiment is often achieved only after running the experiment and analyzing the first data acquired. It is desirable that identification and, consequently, selection of interesting events be made on a more refined identification of particles. Use of an innovative parallel-processing system architecture together with an instruction set allows identification of objects (particles) among the data coming from a calorimeter in a programmable manner, utilizing the information related to their shape in two- or three-dimensional form, rather than applying only a programmable threshold proportional to their energy. The architecture is flexible, allowing execution of simple algorithms as well as complex pattern recognition algorithms. It is scalable in the sense that the same hardware can be used for small or large calorimeters having a slow or fast event rate. The simple printed circuit board (accommodating 16 x 3D-Flow processors) on a 4 in. x 4 in. board described herein uses the same hardware to build a large Level-1 programmable trigger (by interconnecting many boards in a matrix array) and is capable of implementing simple or complex pattern recognition algorithms at different event input rates (by cascading boards one on top of another). With the same hardware one can build low-cost, programmable Level-1 triggers for a small and low-event-rate calorimeter, or high-performance, programmable Level-1 triggers for a large calorimeter capable of sustaining up to 60 million events per second