WorldWideScience

Sample records for 3d photonic crystals

  1. Output couplers for 3D photonic crystal waveguides

    Full text: One crucial practical problem facing 3D photonic crystal applications is finding a way to couple electromagnetic energy efficiently into and out of a 3D photonic crystal waveguide. We investigate two approaches for solving this problem: the photonic crystal horn antenna; and the conventional waveguide to 3D photonic crystal waveguide mode coupler. We demonstrate both approaches theoretically using numerical simulations, and experimentally using prototypes operating at microwave frequencies. Both methods succeed in providing highly efficient coupling into and out of the 3D photonic crystal waveguide over a wide bandwidth, thereby demonstrating two solutions to the output coupling problem. Copyright (2005) Australian Institute of Physics

  2. Optical experiments on 3D photonic crystals

    Koenderink, F.; Vos, W.

    2003-01-01

    Photonic crystals are optical materials that have an intricate structure with length scales of the order of the wavelength of light. The flow of photons is controlled in a manner analogous to how electrons propagate through semiconductor crystals, i.e., by Bragg diffraction and the formation of band

  3. Large Area Printing of 3D Photonic Crystals

    Watkins, James J.; Beaulieu, Michael R.; Hendricks, Nicholas R.; Kothari, Rohit

    2014-03-01

    We have developed a readily scalable print, lift, and stack approach for producing large area, 3D photonic crystal (PC) structures. UV-assisted nanoimprint lithography (UV-NIL) was used to pattern grating structures comprised of highly filled nanoparticle polymer composite resists with tune-able refractive indices (RI). The gratings were robust and upon release from a support substrate were oriented and stacked to yield 3D PCs. The RI of the composite resists was tuned between 1.58 and 1.92 at 800 nm while maintaining excellent optical transparency. The grating structure dimensions, line width, depth, and pitch, were easily varied by simply changing the imprint mold. For example, a 6 layer log-pile stack was prepared using a composite resist a RI of 1.72 yielding 72 % reflection at 900 nm. The process is scalable for roll-to-roll (R2R) production. Center for Hierarchical Manufacturing - an NSF Nanoscale Science and Engineering Center.

  4. FEM Modelling of 3D Photonic Crystals and Photonic Crystal Waveguides

    Burger, S; Schaedle, A; Schmidt, F; Zschiedrich, L

    2005-01-01

    We present a finite-element simulation tool for calculating light fields in 3D nano-optical devices. This allows to solve challenging problems on a standard personal computer. We present solutions to eigenvalue problems, like Bloch-type eigenvalues in photonic crystals and photonic crystal waveguides, and to scattering problems, like the transmission through finite photonic crystals. The discretization is based on unstructured tetrahedral grids with an adaptive grid refinement controlled and steered by an error-estimator. As ansatz functions we use higher order, vectorial elements (Nedelec, edge elements). For a fast convergence of the solution we make use of advanced multi-grid algorithms adapted for the vectorial Maxwell's equations.

  5. 3D electron tomography of biological photonic crystals

    Butz, Benjamin; Winter, Benjamin; Vieweg, Benito; Knoke, Isabel; Spallek, Stefanie; Spiecker, Erdmann [CENEM, Universitaet Erlangen-Nuernberg (Germany); Schroeder-Turk, Gerd; Mecke, Klaus [Theoretische Physik I, Universitaet Erlangen-Nuernberg (Germany)

    2011-07-01

    Photonic crystals, i.e. periodical nanostructures of materials with different dielectric constants, are highly interesting for applications in optics, optoelectronics, and sensing. By tailoring the geometrical parameters radically different and improved optical properties (e.g., optical band-gap structure, extreme refractive indices, or high anisotropy) can be achieved. Naturally occurring photonic crystals, like butterfly scales, exoskeletons of insects (chitin), or seashells (nacre), can serve as model systems for understanding the relationship between structure and optical properties. Butterfly scales are studied by TEM using a FEI Titan{sup 3} 80-300 instrument. An optimized FIB technique or ultramicrotome sectioning were used to prepare the sensitive specimens with desired thickness. Since the periodical structures have dimensions on the sub-{mu}m scale, HAADF-STEM tomography was employed for obtaining extended tilt series under conditions of atomic-number sensitive imaging. Since the solid crystal consists of chemically homogeneous chitin while the pores are unfilled, the distinct contrast in the images can easily be interpreted in terms of the local projected mass density allowing to reconstruct the chitin distribution within the optical unit cell of the scales with high 3D resolution.

  6. 3D electron tomography of biological photonic crystals

    Photonic crystals, i.e. periodical nanostructures of materials with different dielectric constants, are highly interesting for applications in optics, optoelectronics, and sensing. By tailoring the geometrical parameters radically different and improved optical properties (e.g., optical band-gap structure, extreme refractive indices, or high anisotropy) can be achieved. Naturally occurring photonic crystals, like butterfly scales, exoskeletons of insects (chitin), or seashells (nacre), can serve as model systems for understanding the relationship between structure and optical properties. Butterfly scales are studied by TEM using a FEI Titan3 80-300 instrument. An optimized FIB technique or ultramicrotome sectioning were used to prepare the sensitive specimens with desired thickness. Since the periodical structures have dimensions on the sub-μm scale, HAADF-STEM tomography was employed for obtaining extended tilt series under conditions of atomic-number sensitive imaging. Since the solid crystal consists of chemically homogeneous chitin while the pores are unfilled, the distinct contrast in the images can easily be interpreted in terms of the local projected mass density allowing to reconstruct the chitin distribution within the optical unit cell of the scales with high 3D resolution.

  7. Atomic layer deposition in porous structures: 3D photonic crystals

    This paper reports recent results from studies of atomic layer deposition for the infiltration of three-dimensional photonic crystals. Infiltration of ZnS:Mn and TiO2 are reported for SiO2-based opal templates. It has been demonstrated that high filling fractions can be achieved and that the infiltrated material can be of high crystalline quality as assessed by photoluminescence measurements. The highly conformal and uniform coatings obtained in these studies are shown to contribute significantly to the photonic band gap properties. These investigations show the advantages of atomic layer deposition (ALD) as a flexible and practical pathway for attaining high performance photonic crystal structures and optical microcavities

  8. Template-Directed Directionally Solidified 3D Mesostructured AgCl-KCl Eutectic Photonic Crystals.

    Kim, Jinwoo; Aagesen, Larry K; Choi, Jun Hee; Choi, Jaewon; Kim, Ha Seong; Liu, Jinyun; Cho, Chae-Ryong; Kang, Jin Gu; Ramazani, Ali; Thornton, Katsuyo; Braun, Paul V

    2015-08-19

    3D mesostructured AgCl-KCl photonic crystals emerge from colloidal templating of eutectic solidification. Solvent removal of the KCl phase results in a mesostructured AgCl inverse opal. The 3D-template-induced confinement leads to the emergence of a complex microstructure. The 3D mesostructured eutectic photonic crystals have a large stop band ranging from the near-infrared to the visible tuned by the processing. PMID:26177830

  9. Micromorph silicon tandem solar cells with fully integrated 3D photonic crystal intermediate reflectors

    Üpping, J.; Bielawny, A.; Fahr, S.; Rockstuhl, C.; Lederer, F.; Steidl, L.; Zentel, R.; Beckers, T.; Lambertz, A.; Carius, R.; Wehrspohn, R. B.

    2010-05-01

    A 3D photonic intermediate reflector for textured micromorph silicon tandem solar cells has been investigated. In thin-film silicon tandem solar cells consisting of amorphous and microcrystalline silicon with two junctions of a-Si/c-Si, efficiency enhancements can be achieved by increasing the current density in the a-Si top cell providing an optimized current matching at high current densities. For an ideal photon-management between top and bottom cell, a spectrally-selective intermediate reflective layer (IRL) is necessary. We present the first fully-integrated 3D photonic thin-film IRL device incorporated on a planar substrate. Using a ZnO inverted opal structure the external quantum efficiency of the top cell in the spectral region of interest could be enhanced. As an outlook we present the design and the preparation of a 3D self organized photonic crystal structure in a textured micromorph tandem solar cell.

  10. 3D photonic crystal interlayers for micromorph thin film silicon tandem cell

    Uepping, Johannes; Bielawny, Andreas; Otto, Martin; Wehrspohn, Ralf B. [Institute of Physics, University of Halle, Wittenberg (Germany); Steidl, Lorenz; Zentel, Rudolf [Dept. of Chemistry, University of Mainz (Germany); Lee, Seung-Mo; Knez, Mato [Max Planck Institute of Microstructure Physics, Halle (Germany); Beckers, Thomas; Carius, Reinhard [Institute of Energy Research, IEF-5 Photovoltaics, Forschungszentrum Juelich GmbH (Germany)

    2010-07-01

    A 3D photonic intermediate reflector for textured micromorph silicon tandem solar cells has been investigated. In thin-film silicon tandem solar cells consisting of amorphous and microcrystalline silicon with two junctions of a-Si/{mu}c-Si, efficiency enhancements can be achieved by increasing the current density in the a-Si top cell. It is one goal to provide an optimized current matching at high current densities. For an ideal photon-management between top and bottom cell, a spectrally selective intermediate reflective layer (IRL) is necessary. We show results toward the first fully integrated 3D photonic thin-film IRL device incorporated in a state-of-the-art textured tandem solar cell. The design and the preparation of a 3D self organized inverted opal photonic crystal structure in a textured micromorph tandem solar cell is presented.

  11. Resource-saving application of FDTD technique in 3D photonic crystal waveguide calculations

    Lavrinenko, Andrei; Tromborg, Bjarne

    This paper presents an algorithm based on the well-known FDTD numerical method which is adapted for 3D problems of transmission and reflection of photonic crystal waveguides, and which effectively saves memory and computing resources. Specific examples showing its validity and effectiveness are...

  12. 3D photonic crystal interlayers for micromorph thin film silicon tandem cell

    Bielawny, Andreas; Uepping, Johannes; Miclea, Paul T.; Wehrspohn, Ralf B. [Institute of Physics, University of Halle, Wittenberg (Germany); Rockstuhl, Carsten; Lederer, Falk [Institue of Physics, Solid States Optics, University of Jena (Germany); Peters, Marius [Freiburg Centre for Material Research, University of Freiburg (Germany); Steidl, Lorenz; Zentel, Rudolf [Dept. of Chemistry, Pharmacy and Earth Science, University of Mainz (Germany); Lee, Seung-Mo; Knez, Mato [Max Planck Institute of Microstructure Physics, Halle (Germany); Lambertz, Andreas; Carius, Reinhard [Institute of Energy Research, IEF-5 Photovoltaics, Forschungszentrum Juelich GmbH (Germany)

    2009-07-01

    The concept of 3D photonic intermediate reflectors for micromorph silicon tandem cells has been investigated toward first prototype cells. The reflector enhances the absorption of spectrally selected light in the top cell and decreases the current mismatch between both junctions. Our device is an inverted opal structure made of ZnO and built using self organized nanoparticles and atomic layer deposition coating methods. This 3D photonic crystal intermediate layer is less dependent of the angle of incidence than other state of the art thickness dependent massive interlayers. We present design rules, preparation and characterization of a 3D photonic thin film device. A first prototype is compared to a state of the art reference silicon tandem cell.

  13. Reflectivity calculated for a 3D silicon photonic band gap crystal with finite support

    Devashish, D; van der Vegt, J J W; Vos, Willem L

    2016-01-01

    We study numerically the reflectivity of three-dimensional (3D) photonic crystals with a complete 3D photonic band gap, with the aim to interpret recent experiments. We employ the finite element method to study crystals with the cubic diamond-like inverse woodpile structure. The high-index backbone has a dielectric function similar to silicon. We study crystals with a range of thicknesses up to ten unit cells ($L \\leq 10 c$). The crystals are surrounded by vacuum, and have a finite support as in experiments. The polarization-resolved reflectivity spectra reveal Fabry-P{\\'e}rot fringes related to standing waves in the finite crystal, as well as broad stop bands with nearly $100~\\%$ reflectivity, even for thin crystals. From the strong reflectivity peaks, it is inferred that the maximum reflectivity observed in experiments is not limited by finite size. The frequency ranges of the stop bands are in excellent agreement with stop gaps in the photonic band structure, that pertain to infinite and perfect crystals. ...

  14. Bottom-up Fabrication of Multilayer Stacks of 3D Photonic Crystals from Titanium Dioxide.

    Kubrin, Roman; Pasquarelli, Robert M; Waleczek, Martin; Lee, Hooi Sing; Zierold, Robert; do Rosário, Jefferson J; Dyachenko, Pavel N; Montero Moreno, Josep M; Petrov, Alexander Yu; Janssen, Rolf; Eich, Manfred; Nielsch, Kornelius; Schneider, Gerold A

    2016-04-27

    A strategy for stacking multiple ceramic 3D photonic crystals is developed. Periodically structured porous films are produced by vertical convective self-assembly of polystyrene (PS) microspheres. After infiltration of the opaline templates by atomic layer deposition (ALD) of titania and thermal decomposition of the polystyrene matrix, a ceramic 3D photonic crystal is formed. Further layers with different sizes of pores are deposited subsequently by repetition of the process. The influence of process parameters on morphology and photonic properties of double and triple stacks is systematically studied. Prolonged contact of amorphous titania films with warm water during self-assembly of the successive templates is found to result in exaggerated roughness of the surfaces re-exposed to ALD. Random scattering on rough internal surfaces disrupts ballistic transport of incident photons into deeper layers of the multistacks. Substantially smoother interfaces are obtained by calcination of the structure after each infiltration, which converts amorphous titania into the crystalline anatase before resuming the ALD infiltration. High quality triple stacks consisting of anatase inverse opals with different pore sizes are demonstrated for the first time. The elaborated fabrication method shows promise for various applications demanding broadband dielectric reflectors or titania photonic crystals with a long mean free path of photons. PMID:27045887

  15. Ultralow-loss 3-dB photonic crystal waveguide splitter

    Frandsen, Lars Hagedorn; Borel, Peter Ingo; Zhuang, Yanxin; Harpøth, Anders; Thorhauge, Morten; Kristensen, Martin; Bogaerts, Wim; Dumon, P.; Baets, Roel; Wiaux, V.; Wouters, J.; Beckx, S.

    2004-01-01

    A photonic crystal waveguide splitter that exhibits ultralow-loss 3-dB splitting for TE-polarized light is fabricated in silicon-on-insulator material by use of deep UV lithography. The high performance is achieved by use of a Y junction, which is designed to ensure single-mode operation, and low......-loss 60° bends. Zero-loss 3-dB output is experimentally obtained in the range 1560-1585 nm. Results from three-dimensional finite-difference time-domain modeling with no adjustable parameters are found to be in excellent agreement with the experimental results....

  16. Percolation lithography: Tuning and freezing disorder in 3D photonic crystals using partial wetting and drying

    Burgess, Ian B.; Abedzadeh, Navid; Theresa M. Kay; Shneidman, Anna V.; Cranshaw, Derek J.; Loncar, Marko; Aizenberg, Joanna

    2015-01-01

    Although complex, hierarchical nanoscale geometries with tailored degrees of disorder are commonly found in biological systems, few simple self-assembly routes to fabricating synthetic analogues have been identified. We present two techniques that exploit basic capillary phenomena to finely control disorder in porous 3D photonic crystals, leading to complex and hierarchical geometries. In the first, we exposed the structures to mixtures of ethanol and water that partially wet their pores, whe...

  17. Simulating 3D $Z_2$ Topological Nodes in Nonsymmorphic Photonic Crystals

    Wang, Hai-Xiao; Hang, Zhi Hong; Chen, Huanyang; Kee, Hae-Young; Jiang, Jian-Hua

    2016-01-01

    We propose an all-dielectric, space-time reversal symmetric photonics-crystal architecture that possess 3D Dirac points and line-nodes with nontrivial $Z_2$ topological charge, which can be realized at infrared and microwave frequencies. The protected degeneracy of bands is achieved via nonsymmorphic symmetries despite the lack of Kramers degeneracy in photonic crystal systems. Two orthogonal screw axes lead to 3D $Z_2$ Dirac points on high symmetry Brillouin zone (BZ) boundary line. On the other hand, twofold $Z_2$ line-nodes appear around the $\\Gamma$-point due to a combination of nonsymmorphic and point-group symmetries. The lowest line-node is deterministic because of degeneracy partner switching between Bloch states with opposite parities. A pair of Fermi arcs associated with $Z_2$ topological charge is emerged below light-line and protected by total internal reflection on certain photonic-crystal-air interfaces. These robust surface states offer an unique opportunity to realize "open cavity" with strong...

  18. Design of a 3D photonic band gap cavity in a diamond-like inverse woodpile photonic crystal

    Woldering, Léon A; Vos, Willem L

    2014-01-01

    We theoretically investigate the design of cavities in a three-dimensional (3D) inverse woodpile photonic crystal. This class of cubic diamond-like crystals has a very broad photonic band gap and consists of two perpendicular arrays of pores with a rectangular structure. The point defect that acts as a cavity is centred on the intersection of two intersecting perpendicular pores with a radius that differs from the ones in the bulk of the crystal. We have performed supercell bandstructure calculations with up to $5 \\times 5 \\times 5$ unit cells. We find that up to five isolated and dispersionless bands appear within the 3D photonic band gap. For each isolated band, the electric-field energy is localized in a volume centred on the point defect, hence the point defect acts as a 3D photonic band gap cavity. The mode volume of the cavities resonances is as small as 0.8 $\\lambda^{3}$ (resonance wavelength cubed), indicating a strong confinement of the light. By varying the radius of the defect pores we found that o...

  19. 3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell

    Uepping, Johannes; Miclea, Paul T.; Wehrspohn, Ralf B. [Institute of Physics, Martin-Luther-University of Halle-Wittenberg, Heinrich-Damerow-Str. 4, 06120 Halle (Germany); Rockstuhl, Carsten; Lederer, Falk [Institute of Condensed Matter Theory and Solid States Optics, Friedrich Schiller University Jena, 07743 Jena (Germany); Peters, Marius [Freiburg Centre for Material Research, University of Freiburg, 79104 Freiburg (Germany); Steidl, Lorenz; Zentel, Rudolf [Dept. of Chemistry, Pharmacy and Earth Science, Johannes Gutenberg University of Mainz, Duesbergweg 10-14 (Germany); Lee, Seung-Mo; Knez, Mato [Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Germany); Lambertz, Andreas; Carius, Reinhard [Institute of Energy Research, IEF-5 Photovoltaics, Forschungszentrum Juelich GmbH, 52425 Juelich (Germany); Bielawny, Andreas

    2008-12-15

    The concept of 3D photonic intermediate reflectors for micromorph silicon tandem solar cells has been investigated. In thin-film silicon tandem solar cells consisting of amorphous and microcrystalline silicon with two junctions of a-Si/{mu}c-Si, efficiency enhancements can be achieved by increasing the current density in the a-Si top cell. It is one goal to provide an optimized current matching at high current densities. For an ideal photon-management between top and bottom cell, a spectrally selective intermediate reflective layer (IRL) is necessary, which is less dependent of the angle of incidence than state-of-the-art thickness dependent massive interlayers. The design, preparation and characterization of a 3D photonic thin-film filter device for this purpose has been pursued straight forward in simulation and experimental realization. The inverted opal is capable of providing a suitable optical band stop with high reflectance and the necessary long wavelength transmittance as well and provides further options for improved light trapping. We have determined numerically the relative efficiency enhancement of an a-Si/{mu}c-Si tandem solar cell using a conductive 3D-photonic crystal. We have further fabricated such structures by ZnO-replication of polymeric opals using chemical vapour deposition and atomic layer deposition techniques and present the results of their characterization. Thin film photonic IRL have been prepared at the rear side of a-Si solar cells. Completed with a back contact, this is the first step to integrate this novel technology into an a-Si/{mu}c-Si tandem solar cell process. The spectral response of the cell is presented and compared with reference cells. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Fabrication and optical properties of 3D composite photonic crystals of core-shell structures

    Liu Yanping [Department of Physics, Lanzhou University, Lanzhou 730000 (China); Yan Zhijun [Department of Physics, Lanzhou University, Lanzhou 730000 (China); Lan Wei [Department of Physics, Lanzhou University, Lanzhou 730000 (China); Huang Chunming [Department of Physics, Lanzhou University, Lanzhou 730000 (China); Wang Yinyue [Department of Physics, Lanzhou University, Lanzhou 730000 (China)]. E-mail: wangyy@lzu.edu.cn

    2007-08-31

    Three-dimensional (3D) composite colloidal photonic crystals with SiO{sub 2} core and ZnO shell were fabricated on borosilicate glass (BSG) substrate by a two-stage deposition method. Scanning electron microscopy (SEM) measurements show that both the pre-deposited SiO{sub 2} and SiO{sub 2}/ZnO core-shell structures are oriented with their (1 1 1) axes parallel to the substrates. Optical measurement reveals that the periodic arrays exhibit a photonic band gap in the (1 1 1) direction. The optical properties of SiO{sub 2}/ZnO core-shell structures strongly depend on the size dispersions of colloidal spheres and the intrinsic defects in the sample.

  1. Percolation lithography: Tuning and freezing disorder in 3D photonic crystals using partial wetting and drying

    Burgess, Ian B; Kay, Theresa M; Shneidman, Anna V; Cranshaw, Derek J; Loncar, Marko; Aizenberg, Joanna

    2015-01-01

    Although complex, hierarchical nanoscale geometries with tailored degrees of disorder are commonly found in biological systems, few simple self-assembly routes to fabricating synthetic analogues have been identified. We present two techniques that exploit basic capillary phenomena to finely control disorder in porous 3D photonic crystals, leading to complex and hierarchical geometries. In the first, we exposed the structures to mixtures of ethanol and water that partially wet their pores, where small adjustments to the ethanol content controlled the degree of partial wetting. In the second, we infiltrated the structures with thin films of volatile alkanes and observed a sequence of partial infiltration patterns as the liquid evaporated. In both cases, macroscopic symmetry breaking was driven by subtle sub-wavelength variations in the pore geometry that directed site-selective infiltration of liquids. The resulting patterns, well described by percolation theory, had significant effects on the photonic structur...

  2. Inorganic chiral 3-D photonic crystals with bicontinuous gyroid structure replicated from butterfly wing scales

    Mille, Christian; Tyrode, Eric; Corkery, Robert W.

    2011-01-01

    Three dimensional silica photonic crystals with the gyroid minimal surface structure have been synthesized. The butterfly Callophrys rubi was used as a biotemplate. This material represents a significant addition to the small family of synthetic bicontinuous photonic crystals. QC 20110913

  3. Probing the intrinsic optical Bloch-mode emission from a 3D photonic crystal.

    Hsieh, Mei-Li; Bur, James A; Du, Qingguo; John, Sajeev; Lin, Shawn-Yu

    2016-10-14

    We report experimental observation of intrinsic Bloch-mode emission from a 3D tungsten photonic crystal at low thermal excitation. After the successful removal of conventional metallic emission (normal emission), it is possible to make an accurate comparison of the Bloch-mode and the normal emission. For all biases, we found that the emission intensity of the Bloch-mode is higher than that of the normal emission. The Bloch-mode emission also exhibits a slower dependence on [Formula: see text] than that of the normal emission. The observed higher emission intensity and a different T-dependence is attributed to Bloch-mode assisted emission where emitters have been located into a medium having local density of states different than the isotropic case. Furthermore, our finite-difference time-domain (FDTD) simulation shows the presence of localized spots at metal-air boundaries and corners, having intense electric field. The enhanced plasmonic field and local non-equilibrium could induce a strong thermally stimulated emission and may be the cause of our unusual observation. PMID:27606574

  4. Integration of 2D and 3D nanostructure fabrication with wafer-scale microelectronics: Photonic crystals and graphene

    Arpiainen, Sanna

    2015-01-01

    This Thesis considers different aspects of heterogeneous integration of 2- and 3-dimensional nanostructures with today's microelectronics process flow. The applications in the main focus are integrated 3D photonic crystals on a photonic chip and graphene biosensors, both exploiting directed self-assembly but at different length scales. View point is from the fabrication and integration challenges, but the future prospects of the selected fields of applications are also reviewed. Utilizatio...

  5. Fabrication of fully undercut ZnO-based photonic crystal membranes with 3D optical confinement

    Hoffmann, Sandro Phil; Albert, Maximilian; Meier, Cedrik

    2016-09-01

    For studying nonlinear photonics, a highly controllable emission of photons with specific properties is essential. Two-dimensional photonic crystals (PhCs) have proven to be an excellent candidate for manipulating photon emission due to resonator-based effects. Additionally, zinc oxide (ZnO) has high susceptibility coefficients and therefore shows pronounced nonlinear effects. However, in order to fabricate such a cavity, a fully undercut ZnO membrane is required, which is a challenging problem due to poor selectivity of the known etching chemistry for typical substrates such as sapphire or ZnO. The aim of this paper is to demonstrate and characterize fully undercut photonic crystal membranes based on a thin ZnO film sandwiched between two layers of silicon dioxide (SiO2) on silicon substrates, from the initial growth of the heterostructure throughout the entire fabrication process. This process leads to a fully undercut ZnO-based membrane with adjustable optical confinement in all three dimensions. Finally, photonic resonances within the tailored photonic band gap are achieved due to optimized PhC-design (in-plane) and total internal reflection in the z-direction. The presented approach enables a variety of photon based resonator structures in the UV regime for studying nonlinear effects, including photon-exciton coupling and all-optical switching.

  6. Fabrication of holographic 3-D polymeric photonic crystals in near-Infrared band and study of Its optical property

    ZHANG Sa-sa; WANG Qing-pu; ZHANG Xing-yu; CHEN Jia-qi; WANG Li

    2008-01-01

    A three-sidewalls-prism holographic method has been provided for the fabrication of 3-D fcc-type polymeric photonic crystal using negative photoresist.Special fabrication treatment has been introduced to ensure the stability of the fabricated nanostructures.The scanning electronic microscopy (SEM) and the diffraction results testified the good dependability of the fabricared structures.The simulation of the partial band structure is in good agreement with the transmission and reflection spectra obtained by Fouricr transform infrared spectroscopy.

  7. 3D FDTD simulations of photonic devices

    Full text: In our contribution we will present the recent results on 3D simulations of photonic devices. Particularly, quantum well infrared photodetectors with embedded photonic crystal are optimized to achieve optimal light coupling and quantum efficiency. Furthermore, we study schemes of light coupling into SOI waveguides. Both optical fibre-SOI waveguide and laser-SOI waveguide coupling schemes are investigated. The results of investigations regarding the influence of disorder on the reflection peak in opal 3D photonic crystal will be also presented. This work was supported by the Austrian Nanoinitiative RPC PLATON. (author)

  8. Photolithographic fabrication of 3D Penrose-like quasi-photonic crystal polymeric templates utilizing lab-made phasemask

    Torres-Lazos, Faraon

    Photonic crystals (PhC) have recently become of great interest because of their potential as replacement of electronics and/or supplement to semiconductors technology. The PhC's capability to make compact integrated optical circuits has already made possible the laboratory manufacture of an array of different types of optical waveguides, cavities and filters. The work presented here aimed to simultaneously fabricate a 3D-PhC templates employing six-beam holographic lithography. The basic procedures included recording gratings using interference field of laser sources in a photoresist coating on a glass substrate. The manufacturing method utilized only one optical element, a phasemask, drastically reducing the complexity of fabrication by eliminating the need multiple mirrors and beam splitters. Using this approach, a template can be created with a single exposure to laser source and just varying exposure times, increasing reproducibility.

  9. Large Area 2D and 3D Colloidal Photonic Crystals Fabricated by a Roll-to-Roll Langmuir-Blodgett Method.

    Parchine, Mikhail; McGrath, Joe; Bardosova, Maria; Pemble, Martyn E

    2016-06-14

    We present our results on the fabrication of large area colloidal photonic crystals on flexible poly(ethylene terephthalate) (PET) film using a roll-to-roll Langmuir-Blodgett technique. Two-dimensional (2D) and three-dimensional (3D) colloidal photonic crystals from silica nanospheres (250 and 550 nm diameter) with a total area of up to 340 cm(2) have been fabricated in a continuous manner compatible with high volume manufacturing. In addition, the antireflective properties and structural integrity of the films have been enhanced via the use of a second roll-to-roll process, employing a slot-die coating of an optical adhesive over the photonic crystal films. Scanning electron microscopy images, atomic force microscopy images, and UV-vis optical transmission and reflection spectra of the fabricated photonic crystals are analyzed. This analysis confirms the high quality of the 2D and 3D photonic crystals fabricated by the roll-to-roll LB technique. Potential device applications of the large area 2D and 3D colloidal photonic crystals on flexible PET film are briefly reviewed. PMID:27218474

  10. Finite section Chern number for a 3D photonic crystal and demonstration of the bulk-edge correspondence using a gaussian basis set

    Oono, Shuhei; Hatsugai, Yasuhiro

    2016-01-01

    We have characterized robust propagation modes of electromagnetic waves in helical structures by the section Chern number that is defined for two-dimensional (2D) section of the three-dimensional (3D) Brillouin zone. The Weyl point in the photonic bands is associated with a discontinuous jump of the section Chern number. A spatially localized gaussian basis set is used to calculate the section Chern numbers where we have implemented the divergence-free condition on the each basis function in 3D. Validity of the bulk-edge correspondence in a 3D photonic crystal is discussed in relation to the broken inversion symmetry.

  11. Final LDRD report : enhanced spontaneous emission rate in visible III-nitride LEDs using 3D photonic crystal cavities.

    Fischer, Arthur Joseph; Subramania, Ganapathi S.; Coley, Anthony J.; Lee, Yun-Ju; Li, Qiming; Wang, George T.; Luk, Ting Shan; Koleske, Daniel David; Fullmer, Kristine Wanta

    2009-09-01

    The fundamental spontaneous emission rate for a photon source can be modified by placing the emitter inside a periodic dielectric structure allowing the emission to be dramatically enhanced or suppressed depending on the intended application. We have investigated the relatively unexplored realm of interaction between semiconductor emitters and three dimensional photonic crystals in the visible spectrum. Although this interaction has been investigated at longer wavelengths, very little work has been done in the visible spectrum. During the course of this LDRD, we have fabricated TiO{sub 2} logpile photonic crystal structures with the shortest wavelength band gap ever demonstrated. A variety of different emitters with emission between 365 nm and 700 nm were incorporated into photonic crystal structures. Time-integrated and time-resolved photoluminescence measurements were performed to measure changes to the spontaneous emission rate. Both enhanced and suppressed emission were demonstrated and attributed to changes to the photonic density of states.

  12. Electric transport in 3D photonic crystal intermediate reflectors for micromorph thin-film tandem solar cells

    Üpping, J.; Bielawny, A.; Lee, S.; Knez, M.; Carius, R.; Wehrspohn, R. B.

    2009-08-01

    The progress of 3D photonic intermediate reflectors for micromorph silicon tandem cells towards a first prototype cell is presented. Intermediate reflectors enhance the absorption of spectrally-selected light in the top cell and decrease the current mismatch between both junctions. A numerical method to predict filter properties for optimal current matching is presented. Our device is an inverted opal structure made of ZnO and fabricated using self-organized nanoparticles and atomic layer deposition for conformal coating. In particular, the influence of ZnO-doping and replicated cracks during drying of the opal is discussed with respect to conductivity and optical properties. A first prototype is compared to a state-of-the-art reference cell.

  13. Photonic crystals

    Busch, Kurt; Wehrspohn, Ralf B; Föll, Helmut

    2006-01-01

    The majority of the contributions in this topically edited book stems from the priority program SPP 1113 ""Photonische Kristalle"" run by the Deutsche Forschungsgemeinschaft (DFG), resulting in a survey of the current state of photonic crystal research in Germany. The first part of the book describes methods for the theoretical analysis of their optical properties as well as the results. The main part is dedicated to the fabrication, characterization and modeling of two- and three-dimensional photonic crystals, while the final section presents a wide spectrum of applications: gas sensors, micr

  14. Photonic crystals principles and applications

    Gong, Qihuang

    2013-01-01

    IntroductionPrimary Properties of Photonic CrystalsFabrication of Photonic CrystalsPhotonic Crystal All-Optical SwitchingTunable Photonic Crystal FilterPhotonic Crystal LaserPhotonic Crystal Logic DevicesPhotonic Crystal Sensors

  15. Photonic Crystal VCSELs

    D.; S.; Song; J.; W.; Paek; K.; H.; Lee; Y.; H.; Lee

    2003-01-01

    Photonic crystal vertical cavity surface emitting lasers (PC VCSELs) are reviewed. The PC VCSEL shows single-transverse-mode continuous wave operation in the entire current range with side mode suppression ratio 35-40 dB. A simple 3-D plane wave expansion method is found to be very effective in analyzing the modal properties of the PC VCSELs.

  16. Photonic Crystal VCSELs

    D. S. Song; J. W. Paek; K. H. Lee; Y. H. Lee

    2003-01-01

    Photonic crystal vertical cavity surface emitting lasers (PC VCSELs) are reviewed. The PC VCSEL shows single-transverse-mode continuous wave operation in the entire current range with side mode suppression ratio 35-40dB. A simple 3-D plane wave expansion method is found to be very effective in analyzing the modal properties of the PC VCSELs.

  17. Theoretical study of relative width of photonic band gap for the 3-D dielectric structure

    G K Johri; Akhilesh Tiwari; Saumya Saxena; Rajesh Sharma; Kuldeep Srivastava; Manoj Johri

    2002-03-01

    Calculations for the relative width (/0) as a function of refractive index and relative radius of the photonic band gap for the fcc closed packed 3-D dielectric microstructure are reported and comparison of experimental observations and theoretical predictions are given. This work is useful for the understanding of photonic crystals and occurrence of the photonic band gap.

  18. 2D and 3D heterogeneous photonic integrated circuits

    Yoo, S. J. Ben

    2014-03-01

    Exponential increases in the amount of data that need to be sensed, communicated, and processed are continuing to drive the complexity of our computing, networking, and sensing systems. High degrees of integration is essential in scalable, practical, and cost-effective microsystems. In electronics, high-density 2D integration has naturally evolved towards 3D integration by stacking of memory and processor chips with through-silicon-vias. In photonics, too, we anticipate highdegrees of 3D integration of photonic components to become a prevailing method in realizing future microsystems for information and communication technologies. However, compared to electronics, photonic 3D integration face a number of challenges. This paper will review two methods of 3D photonic integration --- fs laser inscription and layer stacking, and discuss applications and future prospects.

  19. Polymer-based photonic crystals

    Edrington, A.C.; Urbas, A.M.; Fink, Y.; Thomas, E.L. [Massachusetts Inst. of Tech., Cambridge (United States). Dept. of Materials Science and Engineering; DeRege, P. [Firmenich, Inc., Port Newark, NJ (United States); Chen, C.X.; Swager, T.M. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Chemistry; Hadjichristidis, N. [Athens Univ. (Greece). Dept. of Chemistry; Xenidou, M.; Fetters, L.J. [ExxonMobil Research Corp., Annandale, NJ (United States); Joannopoulos, J.D. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Physics

    2001-03-16

    The development of polymers as photonic crystals is highlighted, placing special emphasis on self-assembled block copolymers. 1D self-assembled multilayers as well as 2D and 3D self-assembled structures are examined, then intricate block polymer structures such as that shown in the Figure are discussed as are birefringent multilayer and elastomeric films. (orig.)

  20. Photonic crystal fibers

    Lægsgaard, Jesper; Hansen, K P; Nielsen, M D;

    2003-01-01

    Photonic crystal fibers having a complex microstructure in the transverse plane constitute a new and promising class of optical fibers. Such fibers can either guide light through total internal reflection or the photonic bandgap effect, In this paper, we review the different types and applications...... of photonic crystal fibers with particular emphasis on recent advances in the field....

  1. Superconducting photonic crystals

    Berman, Oleg L.; Lozovik, Yurii E.; Eiderman, Sergey L.; Coalson, Rob D.

    2006-01-01

    The band structure of a novel type of photonic crystal with superconducting constituent elements is calculated numerically via a plane wave expansion. The density of states and the dependence of the width of the photonic gap on the filling factor is analyzed for a two-dimensional photonic crystal consisting of an infinite array of parallel superconducting cylinders.

  2. Planar photonic crystal

    Nedeljkovic, Dusan; Pearsall, T. P.; Kuchinsky, S. A.; Mikhailov, M. D.; Lončar, Marko; Scherer, Axel

    2001-01-01

    We present results of guiding light in a single-line-defect planar photonic crystal (PPC) waveguide with 90° and 60° bends. The wave guiding is obtained by total internal reflection perpendicular to the plane of propagation and by the photonic band gap for the 2D photonic crystal in the plane. The results for photonic waveguiding are shown and demonstrated at 1.5 µm wavelength.

  3. Photonic Crystal Waveguide Fabrication

    Høvik, Jens

    2012-01-01

    This research is entirely devoted to the study and fabrication of structures with periodic dielectric constants, also known as photonic crystals (PhCs). These structures show interesting dispersion characteristics which give them a range of prohibited frequencies that are not allowed to propagate within the crystal. This property makes them suited for a wide array of photonic-based components. One-dimensional photonic crystals are already commercialized and are of widespread use in for exampl...

  4. ALICE photon spectrometer crystals

    Maximilien Brice

    2006-01-01

    Members of the mechanical assembly team insert the last few crystals into the first module of ALICE's photon spectrometer. These crystals are made from lead-tungstate, a crystal as clear as glass but with nearly four times the density. When a high-energy particle passes through one of these crystals it will scintillate, emitting a flash of light allowing the energy of photons, electrons and positrons to be measured.

  5. Photonic Crystal Laser Accelerator Structures

    Cowan, Benjamin; Javanmard, Mehdi; Siemann, Robert H.

    2003-01-01

    Photonic crystals have great potential for use as laser-driven accelerator structures. A photonic crystal is a dielectric structure arranged in a periodic geometry. Like a crystalline solid with its electronic band structure, the modes of a photonic crystal lie in a set of allowed photonic bands. Similarly, it is possible for a photonic crystal to exhibit one or more photonic band gaps, with frequencies in the gap unable to propagate in the crystal. Thus photonic crystals can confine an optic...

  6. Creating bio-inspired hierarchical 3D-2D photonic stacks via planar lithography on self-assembled inverse opals

    Burgess, Ian B; Loncar, Marko

    2012-01-01

    Structural hierarchy and complex 3D architecture are characteristics of biological photonic designs that are challenging to reproduce in synthetic materials. Top-down lithography allows for designer patterning of arbitrary shapes, but is largely restricted to planar 2D structures. Self-assembly techniques facilitate easy fabrication of 3D photonic crystals, but controllable defect-integration is difficult. In this paper we combine the advantages of top-down and bottom-up fabrication, developing two techniques to deposit 2D-lithographically-patterned planar layers on top of or in between inverse-opal 3D photonic crystals and creating hierarchical structures that resemble the architecture of the bright green wing scales of the butterfly, Parides sesostris. These fabrication procedures, combining advantages of both top-down and bottom-up fabrication, may prove useful in the development of omnidirectional coloration elements and 3D-2D photonic crystal devices.

  7. Reduction of thermal conductivity by nanoscale 3D phononic crystal.

    Yang, Lina; Yang, Nuo; Li, Baowen

    2013-01-01

    We studied how the period length and the mass ratio affect the thermal conductivity of isotopic nanoscale three-dimensional (3D) phononic crystal of Si. Simulation results by equilibrium molecular dynamics show isotopic nanoscale 3D phononic crystals can significantly reduce the thermal conductivity of bulk Si at high temperature (1000 K), which leads to a larger ZT than unity. The thermal conductivity decreases as the period length and mass ratio increases. The phonon dispersion curves show an obvious decrease of group velocities in 3D phononic crystals. The phonon's localization and band gap is also clearly observed in spectra of normalized inverse participation ratio in nanoscale 3D phononic crystal. PMID:23378898

  8. Liquid crystal tunable photonic crystal dye laser

    Buss, Thomas; Christiansen, Mads Brøkner; Smith, Cameron; Kristensen, Anders

    2010-01-01

    We present a dye-doped liquid crystal laser using a photonic crystal cavity. An applied electric field to the liquid crystal provides wavelength tunability. The photonic crystal enhances resonant interaction with the gain medium.

  9. Photonic Crystal Fiber Attenuator

    Joo Beom Eom; Hokyung Kim; Jinchae Kim; Un-Chul Paek; Byeong Ha Lee

    2003-01-01

    We propose a novel fiber attenuator based on photonic crystal fibers. The difference in the modal field diameters of a conventional single mode fiber and a photonic crystal fiber was used. A variable optical attenuator was also achieved by applying macro-bending on the PCF part of the proposed attenuator

  10. 3D integration of sub-surface photonics with CMOS

    Jalali, Bahram; Indukuri, Tejaswi; Koonath, Prakash

    2006-02-01

    The integration of photonics and electronics on a single silicon substrate requires technologies that can add optical functionalities without significantly sacrificing valuable wafer area. To this end, we have developed an innovative fabrication process, called SIMOX 3-D Sculpting, that enables monolithic optoelectronic integration in a manner that does not compromise the economics of CMOS manufacturing. In this technique, photonic devices are realized in subsurface silicon layers that are separated from the surface silicon layer by an intervening SiO II layer. The surface silicon layer may then be utilized for electronic circuitry. SIMOX 3-D sculpting involves (1) the implantation of oxygen ions into a patterned silicon substrate followed by (2) high temperature anneal to create buried waveguide-based photonic devices. This process has produced subterranean microresonators with unloaded quality factors of 8000 and extinction ratios >20dB. On the surface silicon layers, MOS transistor structures have been fabricated. The small cross-sectional area of the waveguides lends itself to the realization of nonlinear optical devices. We have previously demonstrated spectral broadening and continuum generation in silicon waveguides utilizing Kerr optical nonlinearity. This may be combined with microresonator filters for on-chip supercontiuum generation and spectral carving. The monolithic integration of CMOS circuits and optical modulators with such multi-wavelength sources represent an exciting avenue for silicon photonics.

  11. Active Photonic Crystal Waveguides

    Ek, Sara

    This thesis deals with the fabrication and characterization of active photonic crystal waveguides, realized in III-V semiconductor material with embedded active layers. The platform offering active photonic crystal waveguides has many potential applications. One of these is a compact photonic...... crystal semiconductor optical amplier. As a step towards such a component, photonic crystal waveguides with a single quantum well, 10 quantum wells and three layers of quantum dots are fabricated and characterized. An experimental study of the amplied spontaneous emission and a implied transmission are...... presented in this thesis. A variation of photonic crystal design parameters are used leading to a spectral shift of the dispersion, it is veried that the observed effects shift accordingly. An enhancement of the amplified spontaneous emission was observed close to the band edge, where light is slowed down...

  12. Liquid crystal tunable photonic crystal dye laser

    Buss, Thomas; Christiansen, Mads Brøkner; Smith, Cameron;

    2010-01-01

    We present a dye-doped liquid crystal laser using a photonic crystal cavity. An applied electric field to the liquid crystal provides wavelength tunability. The photonic crystal enhances resonant interaction with the gain medium.......We present a dye-doped liquid crystal laser using a photonic crystal cavity. An applied electric field to the liquid crystal provides wavelength tunability. The photonic crystal enhances resonant interaction with the gain medium....

  13. Fractal Photonic Crystal Waveguides

    Monsoriu, Juan A.; Zapata-Rodriguez, Carlos J.; Silvestre, Enrique; Furlan, Walter D.

    2004-01-01

    We propose a new class of one-dimensional (1D) photonic waveguides: the fractal photonic crystal waveguides (FPCWs). These structures are photonic crystal waveguides (PCWs) etched with fratal distribution of grooves such as Cantor bars. The transmission properties of the FPCWs are investigated and compared with those of the conventional 1D PCWs. It is shown that the FPCW transmission spectrum has self-similarity properties associated with the fractal distribution of grooves. Furthermore, FPCW...

  14. Ultrafast photonic crystal optical switching

    GONG Qi-huang; HU Xiao-yong

    2006-01-01

    Photonic crystal,a novel and artificial photonic material with periodic dielectric distribution,possesses photonic bandgap and can control the propagation states of photons.Photonic crystal has been considered to be a promising candidate for the future integrated photonic devices.The properties and the fabrication method of photonic crystal are expounded.The progresses of the study of ultrafast photonic crystal optical switching are discussed in detail.

  15. Photonic crystal waveguides in artificial opals

    Lavrinenko, Andrei; Kiyan, Roman; Neumeister, Andrei; Schweizer, Thorsten; Leyrer, Reinhold J.; Wohlleben, Wendel

    3D photonic crystals based on Si inverted-opals are numerically explored as hosts for effective air-channel waveguides, which can serve as parts of photonic circuits. Two basic shapes of straight waveguides are considered: cylindrical and a chain of spheres. Modelling shows that transmission is h...

  16. Photonic Crystal Fibres

    Bjarklev, Anders Overgaard; Broeng, Jes; Sanchez Bjarklev, Araceli

    bandgap structures and thoughts of inspiration from microstructures in nature, as well as classification of the various photonic crystal fibres, theoretical tools for analysing the fibres and methods of their production. Finally, the book points toward some of the many future applications, where photonic...

  17. Polymer and metallodielectric based photonic crystals

    Kassim, Syara

    2014-01-01

    The bottom-up colloidal synthesis of photonic crystals has attracted interest over top-down approaches due to their relatively simplicity, the potential to produce large areas, and the low-costs with this approach in fabricating complex 3-dimensional structures. This thesis focuses on the bottom-up approach in the fabrication of polymeric colloidal photonic crystals and their subsequent modification. Poly(methyl methacrylate) sub-micron spheres were used to produce opals, inverse opals and 3D...

  18. One-Dimensional Photonic Crystal Superprisms

    Ting, David

    2005-01-01

    Theoretical calculations indicate that it should be possible for one-dimensional (1D) photonic crystals (see figure) to exhibit giant dispersions known as the superprism effect. Previously, three-dimensional (3D) photonic crystal superprisms have demonstrated strong wavelength dispersion - about 500 times that of conventional prisms and diffraction gratings. Unlike diffraction gratings, superprisms do not exhibit zero-order transmission or higher-order diffraction, thereby eliminating cross-talk problems. However, the fabrication of these 3D photonic crystals requires complex electron-beam substrate patterning and multilayer thin-film sputtering processes. The proposed 1D superprism is much simpler in structural complexity and, therefore, easier to design and fabricate. Like their 3D counterparts, the 1D superprisms can exhibit giant dispersions over small spectral bands that can be tailored by judicious structure design and tuned by varying incident beam direction. Potential applications include miniature gas-sensing devices.

  19. Three-dimensional photonic crystals fabricated by simultaneous multidirectional etching

    Kitano, Keisuke; Suzuki, Katsuyoshi; Ishizaki, Kenji; Noda, Susumu

    2015-04-01

    We discuss three-dimensional (3D) photonic crystals fabricated by simultaneous multidirectional plasma etching. First, we investigate a method for controlling the ion sheath used in reactive ion etching for obtaining multidirectional etching. We then discuss the fabrication tolerance from an analytical perspective. Based on our results, we demonstrate the fabrication of 3D photonic crystals with thicknesses of 1, 1.5, and 2 lattice periods in the surface-normal direction on single-crystalline silicon wafers, which show high reflectance (˜100 %) and low transmittance (-17 dB ) at optical communication wavelengths, suggesting the formation of a complete photonic band gap. We reveal that the shape of the etched holes limits the performance of 3D photonic crystals and suggest possible ways to improve the band-gap effect. Moreover, we show that 3D photonic crystals with short lattice constants show high reflectance (˜80 %) at visible to near-infrared wavelengths. By investigating the influence of absorption on the characteristics of 3D photonic crystals, we reveal that the reflectance remains as high as 94% in the photonic band-gap range even when the absorption of silicon is taken into account. We find that a unique increase of absorption occurs at several discrete wavelengths below the photonic band gap, suggesting the possibility of manipulating light absorption. These results not only simplify the fabrication of 3D photonic crystals, but also provide a basis for realizing 3D photonic nanostructures that include other materials.

  20. 3D Vectorial Time Domain Computational Integrated Photonics

    Kallman, J S; Bond, T C; Koning, J M; Stowell, M L

    2007-02-16

    The design of integrated photonic structures poses considerable challenges. 3D-Time-Domain design tools are fundamental in enabling technologies such as all-optical logic, photonic bandgap sensors, THz imaging, and fast radiation diagnostics. Such technologies are essential to LLNL and WFO sponsors for a broad range of applications: encryption for communications and surveillance sensors (NSA, NAI and IDIV/PAT); high density optical interconnects for high-performance computing (ASCI); high-bandwidth instrumentation for NIF diagnostics; micro-sensor development for weapon miniaturization within the Stockpile Stewardship and DNT programs; and applications within HSO for CBNP detection devices. While there exist a number of photonics simulation tools on the market, they primarily model devices of interest to the communications industry. We saw the need to extend our previous software to match the Laboratory's unique emerging needs. These include modeling novel material effects (such as those of radiation induced carrier concentrations on refractive index) and device configurations (RadTracker bulk optics with radiation induced details, Optical Logic edge emitting lasers with lateral optical inputs). In addition we foresaw significant advantages to expanding our own internal simulation codes: parallel supercomputing could be incorporated from the start, and the simulation source code would be accessible for modification and extension. This work addressed Engineering's Simulation Technology Focus Area, specifically photonics. Problems addressed from the Engineering roadmap of the time included modeling the Auston switch (an important THz source/receiver), modeling Vertical Cavity Surface Emitting Lasers (VCSELs, which had been envisioned as part of fast radiation sensors), and multi-scale modeling of optical systems (for a variety of applications). We proposed to develop novel techniques to numerically solve the 3D multi-scale propagation problem for both the

  1. Registration of 3-D holograms of diamond crystals (Abstract Only)

    Marchenko, S. N.; Smirnova, S. N.

    1991-02-01

    Registration of 3D ho1orarns broadens the possibility of using single-crystal tool for imagining and investigating inner inhomogeneities and dynamic stresses in top area of gem diamond, study of which by other techniques,e.g. polarization optics, is difficult or impossible. The difficulty is that the diamond with significant refractive index of 2.42 has comparatively small angle of total internal reflection of 24°50. As a result, with random illumination of the tops of octahedron diamond crystals, both smooth- faceted and with polycentric facets, illuminating light is successively reflected from different farets and absorbed in the crystal or comes out of it in a spot and direction that are difficult to calculate. Optimal schemes of illuminating crystals for recording 3D holograms of smooth faceted octahedron diamonds are given. Analysis of illumination of the crystal with polycentric facets shows that correction of light in the diamond is determined by directivity diagram the width of which depends in inhomogeneity size of the diamond. 3D holograms of diamonds with different reflectivity were produced. For the first time the possibility is shown for registration of holograms for studying stresses in diamond top using single-crystal tool.

  2. Photonic Crystals Towards Nanoscale Photonic Devices

    Lourtioz, Jean-Michel; Berger, Vincent; Gérard, Jean-Michel; Maystre, Daniel; Tchelnokov, Alexis

    2005-01-01

    Just like the periodical crystalline potential in solid-state crystals determines their properties for the conduction of electrons, the periodical structuring of photonic crystals leads to envisioning the possibility of achieving a control of the photon flux in dielectric and metallic materials. The use of photonic crystals as a cage for storing, filtering or guiding light at the wavelength scale thus paves the way to the realisation of optical and optoelectronic devices with ultimate properties and dimensions. This should contribute toward meeting the demands for a greater miniaturisation that the processing of an ever increasing number of data requires. Photonic Crystals intends at providing students and researchers from different fields with the theoretical background needed for modelling photonic crystals and their optical properties, while at the same time presenting the large variety of devices, from optics to microwaves, where photonic crystals have found applications. As such, it aims at building brid...

  3. Photonic Crystals Towards Nanoscale Photonic Devices

    Lourtioz, Jean-Michel; Berger, Vincent; Gérard, Jean-Michel; Maystre, Daniel; Tchelnokov, Alexei; Pagnoux, Dominique

    2008-01-01

    Just like the periodical crystalline potential in solid state crystals determines their properties for the conduction of electrons, the periodical structuring of photonic crystals leads to envisioning the possibility of achieving a control of the photon flux in dielectric and metallic materials. The use of photonic crystals as cages for storing, filtering or guiding light at the wavelength scale paves the way to the realization of optical and optoelectronic devices with ultimate properties and dimensions. This will contribute towards meeting the demands for greater miniaturization imposed by the processing of an ever increasing number of data. Photonic Crystals will provide students and researchers from different fields with the theoretical background required for modelling photonic crystals and their optical properties, while at the same time presenting the large variety of devices, ranging from optics to microwaves, where photonic crystals have found application. As such, it aims at building bridges between...

  4. Nonlinear Photonic Crystal Fibers

    Hansen, Kim Per

    2004-01-01

    applications based on four-wave mixing. In addition, the broad supercontinua have a range of applications within biomedicine, telecommunication and metrology. The special structure of photonic crystal fibers opens up the possibility, in a simple way, to create polarization-maintaining fibers without the use of...

  5. Photonic Crystal Fibers

    William J. Wadsworth; Jonathan C. Knight; William H. Reeves; Philip St.J. Russell

    2003-01-01

    By offering greatly enhanced control of light compared to conventional step-index structures, photonic crystal fibres are radically improving the performance of linear and nonlinear fibre devices, including gas-Raman cells, super-continuum generators, soliton systems and cladding-pumped lasers.

  6. 3D Reproduction of a Snow Crystal by Stereolithography

    Jun’ichi TAMAKI; Yanagi, Satoshi; Yuya AOKI; Kubo, Akihiko; KAMEDA, Takao; A.M.M. Sharif Ullah; 田牧, 純一; 久保, 明彦; 亀田, 貴雄

    2012-01-01

    A new method was proposed for replicating snow crystals that uses light-curing resin containing no harmful substances, as the replicating material, and the 3D reproduction of a snow crystal by stereolithography was conducted. It was found that a UV light irradiation density of at least 0.6 mW/cm2 was required to complete the light-hardening reaction within 15 min when polyene/polythiol resin (NOA81) was used as the light-curing resin. When the atmospheric temperature was 0 °C, the maximum tem...

  7. 3-D Silicon Photonic Lattices- Cornerstone of an Emerging Photonics Revolution

    Fleming, J.G.; Lin, Shawn-Yu

    1999-07-08

    Three-dimensional photonic lattices are engineered materials which are the photonic analogues of semiconductors. These structures were first proposed and demonstrated in the mid-to-late 1980's. However, due to fabrication difficulties, lattices active in the infrared are only just emerging. Wide ranges of structures and fabrication approaches have been investigated. The most promising approach for many potential applications is a diamond-like structure fabricated using silicon microprocessing techniques. This approach has enabled the fabrication of 3-D silicon photonic lattices active in the infrared. The structures display band gaps centered from 12{micro} down to 1.55{micro}.

  8. Quantum dot photonic crystal lasers

    Yoshie, T.; Shchekin, O. B.; Chen, H.; Deppe, D. G.; Scherer, A.

    2002-01-01

    Coupled cavity designs on two-dimensional square lattice photonic crystal slabs were used to demonstrate optically pumped indium arsenide quantum dot photonic crystal lasers at room temperature. Threshold pump powers of 120 and 370 μW were observed for coupled cavities including two and four defect cavities defined in optimised photonic crystals.

  9. Photonic Eigenmodes in a Photonic Crystal Membrane

    E. Ya. Glushko; O. E. Glushko; L. A. Karachevtseva

    2012-01-01

    Photonic membranes are the most widely used kind of 2D photonic crystals in signal processing. Nevertheless, some important aspects of electromagnetic field behavior in membrane like photonic crystals (MPCs) need detail investigation. We develop the approach close to resonant coupling modes method which unites both external and intrinsic problems, in-plane and out-of-plane geometries, and resonator properties of MPC. The resonator standing modes are excited by an external source through the s...

  10. Photonic Crystal Optical Tweezers

    Wilson, Benjamin K.; Mentele, Tim; Bachar, Stephanie; Knouf, Emily; Bendoraite, Ausra; Tewari, Muneesh; Pun, Suzie H.; Lin, Lih Y.

    2009-01-01

    Non-invasive optical manipulation of particles has emerged as a powerful and versatile tool for biological study and nanotechnology. In particular, trapping and rotation of cells, cell nuclei and sub-micron particles enables unique functionality for various applications such as tissue engineering, cancer research and nanofabrication. We propose and demonstrate a purely optical approach to rotate and align particles using the interaction of polarized light with photonic crystal nanostructures ...

  11. Hydrophobic photonic crystal fibers.

    Xiao, Limin; Birks, T A; Loh, W H

    2011-12-01

    We propose and demonstrate hydrophobic photonic crystal fibers (PCFs). A chemical surface treatment for making PCFs hydrophobic is introduced. This repels water from the holes of PCFs, so that their optical properties remain unchanged even when they are immersed in water. The combination of a hollow core and a water-repellent inner surface of the hydrophobic PCF provides an ultracompact dissolved-gas sensor element, which is demonstrated for the sensing of dissolved ammonia gas. PMID:22139276

  12. Variable frequency photonic crystals

    Wu, Xiang-Yao; Liu, Xiao-Jing; Yang, Jing-Hai; Li, Hong; Chen, Wan-Jin

    2015-01-01

    In this paper, we have firstly proposed a new one-dimensional variable frequency photonic crystals (VFPCs), and calculated the transmissivity and the electronic field distribution of VFPCs with and without defect layer, and considered the effect of defect layer and variable frequency function on the transmissivity and the electronic field distribution. We have obtained some new characteristics for the VFPCs, which should be help to design a new type optical devices.

  13. Graphene-based photonic crystal

    Berman, Oleg L.; Boyko, Vladimir S.; Kezerashvili, Roman Ya.; Kolesnikov, Anton A.; Lozovik, Yurii E.

    2010-01-01

    A novel type of photonic crystal formed by embedding a periodic array of constituent stacks of alternating graphene and dielectric discs into a background dielectric medium is proposed. The photonic band structure and transmittance of such photonic crystal are calculated. The graphene-based photonic crystals can be used effectively as the frequency filters and waveguides for the far infrared region of electromagnetic spectrum. Due to substantial suppression of absorption of low-frequency radi...

  14. Slotted Photonic Crystal Sensors

    Andrea Di Falco

    2013-03-01

    Full Text Available Optical biosensors are increasingly being considered for lab-on-a-chip applications due to their benefits such as small size, biocompatibility, passive behaviour and lack of the need for fluorescent labels. The light guiding mechanisms used by many of them results in poor overlap of the optical field with the target molecules, reducing the maximum sensitivity achievable. This review article presents a new platform for optical biosensors, namely slotted photonic crystals, which provide higher sensitivities due to their ability to confine, spatially and temporally, the optical mode peak within the analyte itself. Loss measurements showed values comparable to standard photonic crystals, confirming their ability to be used in real devices. A novel resonant coupler was designed, simulated, and experimentally tested, and was found to perform better than other solutions within the literature. Combining with cavities, microfluidics and biological functionalization allowed proof-of-principle demonstrations of protein binding to be carried out. Higher sensitivities were observed in smaller structures than possible with most competing devices reported in the literature. This body of work presents slotted photonic crystals as a realistic platform for complete on-chip biosensing; addressing key design, performance and application issues, whilst also opening up exciting new ideas for future study.

  15. Computational 3D and reflectivity imaging with high photon efficiency

    Shin, Dongeek; Kirmani, Ahmed; Shapiro, Jeffrey H.; Goyal, Vivek K

    2014-01-01

    Capturing depth and reflectivity images at low light levels from active illumination of a scene has wide-ranging applications. Conventionally, even with single-photon detectors, hundreds of photon detections are needed at each pixel to mitigate Poisson noise. We introduce a robust method for estimating depth and reflectivity using on the order of 1 detected photon per pixel averaged over the scene. Our computational imager combines physically accurate single-photon counting statistics with ex...

  16. High-speed photodetectors in a photonic crystal platform

    Ottaviano, Luisa; Semenova, Elizaveta; Schubert, Martin; Yvind, Kresten; Armaroli, Andrea; Bellanca, Gaetano; Trillo, Stefano; Nguyen, Thanh Nam; Gay, Mathilde; Bramerie, Laurent; Simon, Jean-Claude

    2012-01-01

    International audience We demonstrate a fast photodetector (f 3dB > 40GHz) integrated into a high-index contrast photonic crystal platform. Device design, fabrication and characterization are presented.

  17. Two-Photon Absorbing Molecules as Potential Materials for 3D Optical Memory

    Kazuya Ogawa

    2014-01-01

    Full Text Available In this review, recent advances in two-photon absorbing photochromic molecules, as potential materials for 3D optical memory, are presented. The investigations introduced in this review indicate that 3D data storage processing at the molecular level is possible. As 3D memory using two-photon absorption allows advantages over existing systems, the use of two-photon absorbing photochromic molecules is preferable. Although there are some photochromic molecules with good properties for memory, in most cases, the two-photon absorption efficiency is not high. Photochromic molecules with high two-photon absorption efficiency are desired. Recently, molecules having much larger two-photon absorption cross sections over 10,000 GM (GM= 10−50 cm4 s molecule−1 photon−1 have been discovered and are expected to open the way to realize two-photon absorption 3D data storage.

  18. Cavity quantum electrodynamics with three-dimensional photonic bandgap crystals

    Vos, W.L.; Woldering, L.A.; Ghulinyan, M.; Pavesi, L.

    2015-01-01

    This paper is Chapter 8 of the book "Light Localisation and Lasing: Random and Pseudorandom Photonic Structures", edited by Mher Ghulinyan and Lorenzo Pavesi (Cambridge University Press, Cambridge, 2015). It provides an overview of much recent work on 3D photonic crystals with a complete photonic b

  19. A novel method for polarization squeezing with Photonic Crystal Fibers

    Milanovic, Josip; Lassen, Mikael Østergaard; Andersen, Ulrik Lund;

    2010-01-01

    Photonic Crystal Fibers can be tailored to increase the effective Kerr nonlinearity, while producing smaller amounts of excess noise compared to standard silicon fibers. Using these features of Photonic Crystal Fibers we create polarization squeezed states with increased purity compared to standard...... Stokes parameter squeezing of −3.9 ±0.3dB and anti-squeezing of 16.2 ±0.3dB....

  20. Photonic Crystals: Physics and Technology

    Sibilia, Concita; Marciniak, Marian; Szoplik, Tomasz

    2008-01-01

    The aim of the work is give an overview of the activity in the field of Photonic Crystal developed in the frame of COST P11 action . The main objective of the COST P11 action was to unify and coordinate national efforts aimed at studying linear and nonlinear optical interactions with Photonic Crystals (PCs), without neglecting an important aspect related to the material research as idea and methods of realizations of 3D PC, together with the development and implementation of measurement techniques for the experimental evaluation of their potential applications in different area, as for example telecommunication with novel optical fibers, lasers, nonlinear multi-functionality, display devices , opto-electronics, sensors. The book contain contributions from authors who gave their lecture at the Cost P11 Training School. Training School was held at the Warsaw University (2007) and National Institute of Telecommunications (May 23), Warsaw. It was attended by 23 students. The focus of the School was on the work of...

  1. Photonic Crystal Optical Tweezers

    Wilson, Benjamin K; Bachar, Stephanie; Knouf, Emily; Bendoraite, Ausra; Tewari, Muneesh; Pun, Suzie H; Lin, Lih Y

    2009-01-01

    Non-invasive optical manipulation of particles has emerged as a powerful and versatile tool for biological study and nanotechnology. In particular, trapping and rotation of cells, cell nuclei and sub-micron particles enables unique functionality for various applications such as tissue engineering, cancer research and nanofabrication. We propose and demonstrate a purely optical approach to rotate and align particles using the interaction of polarized light with photonic crystal nanostructures to generate enhanced trapping force. With a weakly focused laser beam we observed efficient trapping and transportation of polystyrene beads with sizes ranging from 10 um down to 190 nm as well as cancer cell nuclei. In addition, we demonstrated alignment of non-spherical particles using a 1-D photonic crystal structure. Bacterial cells were trapped, rotated and aligned with optical intensity as low as 17 uW/um^2. Finite-difference time domain (FDTD) simulations of the optical near-field and far-field above the photonic c...

  2. Dynamics of Spontaneous Emission Controlled by Local Density of States in Photonic Crystals

    Lodahl, Peter; Nikolaev, Ivan S.; van Driel, A. Floris;

    2006-01-01

    We have measured time-resolved spontaneous emission from quantum dots in 3D photonic crystals. Due to the spatially dependent local density of states, the distribution of decay rates varies strongly with the photonic crystal lattice parameter.......We have measured time-resolved spontaneous emission from quantum dots in 3D photonic crystals. Due to the spatially dependent local density of states, the distribution of decay rates varies strongly with the photonic crystal lattice parameter....

  3. Natural photonic crystals

    Vigneron, Jean Pol; Simonis, Priscilla

    2012-10-01

    Photonic structures appeared in nature several hundred millions years ago. In the living world, color is used for communication and this important function strongly impacts the individual chances of survival as well as the chances to reproduce. This has a statistical influence on species populations. Therefore, because they are involved in evolution, natural color-generating structures are - from some point of view - highly optimized. In this short review, a survey is presented of the development of natural photonic crystal-type structures occurring in insects, spiders, birds, fishes and other marine animals, in plants and more, from the standpoint of light-waves propagation. One-, two-, and three-dimensional structures will be reviewed with selected examples.

  4. Natural photonic crystals

    Vigneron, Jean Pol, E-mail: jean-pol.vigneron@fundp.ac.be [Research Center in Physics of Matter and Radiation (PMR), University of Namur (FUNDP), rue de Bruxelles, 61, B-5000 Namur (Belgium); Simonis, Priscilla [Research Center in Physics of Matter and Radiation (PMR), University of Namur (FUNDP), rue de Bruxelles, 61, B-5000 Namur (Belgium)

    2012-10-15

    Photonic structures appeared in nature several hundred millions years ago. In the living world, color is used for communication and this important function strongly impacts the individual chances of survival as well as the chances to reproduce. This has a statistical influence on species populations. Therefore, because they are involved in evolution, natural color-generating structures are - from some point of view - highly optimized. In this short review, a survey is presented of the development of natural photonic crystal-type structures occurring in insects, spiders, birds, fishes and other marine animals, in plants and more, from the standpoint of light-waves propagation. One-, two-, and three-dimensional structures will be reviewed with selected examples.

  5. Natural photonic crystals

    Photonic structures appeared in nature several hundred millions years ago. In the living world, color is used for communication and this important function strongly impacts the individual chances of survival as well as the chances to reproduce. This has a statistical influence on species populations. Therefore, because they are involved in evolution, natural color-generating structures are - from some point of view - highly optimized. In this short review, a survey is presented of the development of natural photonic crystal-type structures occurring in insects, spiders, birds, fishes and other marine animals, in plants and more, from the standpoint of light-waves propagation. One-, two-, and three-dimensional structures will be reviewed with selected examples.

  6. 1024 pixels single photon imaging array for 3D ranging

    Bellisai, S.; Guerrieri, F.; Tisa, S.; Zappa, F.; Tosi, A.; Giudice, A.

    2011-01-01

    Three dimensions (3D) acquisition systems are driving applications in many research field. Nowadays 3D acquiring systems are used in a lot of applications, such as cinema industry or in automotive (for active security systems). Depending on the application, systems present different features, for example color sensitivity, bi-dimensional image resolution, distance measurement accuracy and acquisition frame rate. The system we developed acquires 3D movie using indirect Time of Flight (iTOF), starting from phase delay measurement of a sinusoidally modulated light. The system acquires live movie with a frame rate up to 50frame/s in a range distance between 10 cm up to 7.5 m.

  7. Resonant Photonic States in Coupled Heterostructure Photonic Crystal Waveguides

    Sabarinathan J; Cox JD; Singh

    2010-01-01

    Abstract In this paper, we study the photonic resonance states and transmission spectra of coupled waveguides made from heterostructure photonic crystals. We consider photonic crystal waveguides made from three photonic crystals A, B and C, where the waveguide heterostructure is denoted as B/A/C/A/B. Due to the band structure engineering, light is confined within crystal A, which thus act as waveguides. Here, photonic crystal C is taken as a nonlinear photonic crystal, which has a band gap th...

  8. Photonic crystals in epitaxial semiconductors

    La Rue, R M de

    1998-01-01

    The title of the paper uses the expression "photonic crystals". By photonic crystals, we mean regular periodic structures with a substantial refractive index variation in one-, two- or three- dimensional space. Such crystals can $9 exist naturally, for example natural opal, but are more typically fabricated by people. Under sufficiently strong conditions, i.e., sufficiently large refractive index modulation, correct size of structural components, and $9 appropriate rotational and translational symmetry, these crystals exhibit the characteristics of a photonic bandgap (PBG) structure. In a full photonic bandgap structure there is a spectral stop band for electromagnetic waves $9 propagating in any direction through the structure and with an arbitrary state of polarization. This behavior is of interest both from a fundamental viewpoint and from the point of view of novel applications in photonic devices. The $9 paper gives an outline review of work on photonic crystals carried out by the Optoelectronics Researc...

  9. Photonic-crystal fibers gyroscope

    Ali Muse Haider

    2015-01-01

    Full Text Available In this paper we proposed to use of a photonic crystal fiber with an inner hollow defect. The use of such fibers is not affected by a material medium on the propagation of optical radiation. Photonic crystal fibers present special properties and capabilities that lead to an outstanding potential for sensing applications

  10. Extended-Range Ultrarefractive 1D Photonic Crystal Prisms

    Ting, David Z.

    2007-01-01

    A proposal has been made to exploit the special wavelength-dispersive characteristics of devices of the type described in One-Dimensional Photonic Crystal Superprisms (NPO-30232) NASA Tech Briefs, Vol. 29, No. 4 (April 2005), page 10a. A photonic crystal is an optical component that has a periodic structure comprising two dielectric materials with high dielectric contrast (e.g., a semiconductor and air), with geometrical feature sizes comparable to or smaller than light wavelengths of interest. Experimental superprisms have been realized as photonic crystals having three-dimensional (3D) structures comprising regions of amorphous Si alternating with regions of SiO2, fabricated in a complex process that included sputtering. A photonic crystal of the type to be exploited according to the present proposal is said to be one-dimensional (1D) because its contrasting dielectric materials would be stacked in parallel planar layers; in other words, there would be spatial periodicity in one dimension only. The processes of designing and fabricating 1D photonic crystal superprisms would be simpler and, hence, would cost less than do those for 3D photonic crystal superprisms. As in 3D structures, 1D photonic crystals may be used in applications such as wavelength-division multiplexing. In the extended-range configuration, it is also suitable for spectrometry applications. As an engineered structure or artificially engineered material, a photonic crystal can exhibit optical properties not commonly found in natural substances. Prior research had revealed several classes of photonic crystal structures for which the propagation of electromagnetic radiation is forbidden in certain frequency ranges, denoted photonic bandgaps. It had also been found that in narrow frequency bands just outside the photonic bandgaps, the angular wavelength dispersion of electromagnetic waves propagating in photonic crystal superprisms is much stronger than is the angular wavelength dispersion obtained

  11. Optical tornadoes in photonic crystals

    Onoda, Masaru; Ochiai, Tetsuyuki

    2008-01-01

    Based on an optical analogy of spintronics, the generation of optical tornadoes is theoretically investigated in two-dimensional photonic crystals without space-inversion symmetry. We address its close relation to the Berry curvature in crystal momentum space, which represents the non-trivial geometric property of a Bloch state. It is shown that the Berry curvature is easily controlled by tuning two types of dielectric rods in a honeycomb photonic crystal. Then, Bloch states with large Berry ...

  12. Quasimetallic silicon micromachined photonic crystals

    We report on fabrication of a layer-by-layer photonic crystal using highly doped silicon wafers processed by semiconductor micromachining techniques. The crystals, built using (100) silicon wafers, resulted in an upper stop band edge at 100 GHz. The transmission and defect characteristics of these structures were found to be analogous to metallic photonic crystals. We also investigated the effect of doping concentration on the defect characteristics. The experimental results agree well with predictions of the transfer matrix method simulations

  13. Cavity quantum electrodynamics with three-dimensional photonic bandgap crystals

    Vos, W L

    2015-01-01

    This paper gives an overview of recent work on three-dimensional (3D) photonic crystals with a "full and complete" 3D photonic band gap. We review five main aspects: 1) spontaneous emission inhibition, 2) spatial localization of light within a tiny nanoscale volume (aka "a nanobox for light"), 3) the introduction of a gain medium leading to thresholdless lasers, 4) breaking of the weak-coupling approximation of cavity QED, both in the frequency and in the time-domain, 5) decoherence, in particular the shielding of vacuum fluctuations by a 3D photonic bandgap. In addition, we list and evaluate all known photonic crystal structures with a demonstrated 3D band gap.

  14. Progress in 2D photonic crystal Fano resonance photonics

    Zhou, Weidong; Zhao, Deyin; Shuai, Yi-Chen; Yang, Hongjun; Chuwongin, Santhad; Chadha, Arvinder; Seo, Jung-Hun; Wang, Ken X.; Liu, Victor; Ma, Zhenqiang; Fan, Shanhui

    2014-01-01

    In contrast to a conventional symmetric Lorentzian resonance, Fano resonance is predominantly used to describe asymmetric-shaped resonances, which arise from the constructive and destructive interference of discrete resonance states with broadband continuum states. This phenomenon and the underlying mechanisms, being common and ubiquitous in many realms of physical sciences, can be found in a wide variety of nanophotonic structures and quantum systems, such as quantum dots, photonic crystals, plasmonics, and metamaterials. The asymmetric and steep dispersion of the Fano resonance profile promises applications for a wide range of photonic devices, such as optical filters, switches, sensors, broadband reflectors, lasers, detectors, slow-light and non-linear devices, etc. With advances in nanotechnology, impressive progress has been made in the emerging field of nanophotonic structures. One of the most attractive nanophotonic structures for integrated photonics is the two-dimensional photonic crystal slab (2D PCS), which can be integrated into a wide range of photonic devices. The objective of this manuscript is to provide an in depth review of the progress made in the general area of Fano resonance photonics, focusing on the photonic devices based on 2D PCS structures. General discussions are provided on the origins and characteristics of Fano resonances in 2D PCSs. A nanomembrane transfer printing fabrication technique is also reviewed, which is critical for the heterogeneous integrated Fano resonance photonics. The majority of the remaining sections review progress made on various photonic devices and structures, such as high quality factor filters, membrane reflectors, membrane lasers, detectors and sensors, as well as structures and phenomena related to Fano resonance slow light effect, nonlinearity, and optical forces in coupled PCSs. It is expected that further advances in the field will lead to more significant advances towards 3D integrated photonics, flat

  15. Multicolor photonic crystal laser array

    Wright, Jeremy B; Brener, Igal; Subramania, Ganapathi S; Wang, George T; Li, Qiming

    2015-04-28

    A multicolor photonic crystal laser array comprises pixels of monolithically grown gain sections each with a different emission center wavelength. As an example, two-dimensional surface-emitting photonic crystal lasers comprising broad gain-bandwidth III-nitride multiple quantum well axial heterostructures were fabricated using a novel top-down nanowire fabrication method. Single-mode lasing was obtained in the blue-violet spectral region with 60 nm of tuning (or 16% of the nominal center wavelength) that was determined purely by the photonic crystal geometry. This approach can be extended to cover the entire visible spectrum.

  16. Configurable silicon photonic crystal waveguides

    In this Letter, we demonstrate that the mode cut off of a photonic crystal waveguide can be trimmed with high accuracy by electron beam bleaching of a chromophore doped polymer cladding. Using this method, configurable waveguides are realized, which allow for spatially resolved changes of the photonic crystal's effective lattice constant as small as 7.6 pm. We show three different examples how to take advantage of configurable photonic crystal waveguides: Shifting of the complete transmission spectrum, definition of cavities with high quality factor, and tuning of existing cavities

  17. ARROW-based silicon-on-insulator photonic crystal waveguides with reduced losses

    Lavrinenko, Andrei V.; Novitsky, Andrey V.; Zhilko, Vitaly V.

    2006-01-01

    We employ an antiresonant reflecting layers arrangement with silicon-on-insulator based photonic crystal waveguides. The 3D FDTD numerical modelling reveals improved transmission in such structures with a promising potential for their application in photonic circuits.

  18. Pendellosung effect in photonic crystals

    Savo, S; Miletto, C; Andreone, A; Dardano, P; Moretti, L; Mocella, V

    2008-01-01

    At the exit surface of a photonic crystal, the intensity of the diffracted wave can be periodically modulated, showing a maximum in the "positive" (forward diffracted) or in the "negative" (diffracted) direction, depending on the slab thickness. This thickness dependence is a direct result of the so-called Pendellosung phenomenon, consisting of the periodic exchange inside the crystal of the energy between direct and diffracted beams. We report the experimental observation of this effect in the microwave region at about 14 GHz by irradiating 2D photonic crystal slabs of different thickness and detecting the intensity distribution of the electromagnetic field at the exit surface and inside the crystal itself.

  19. Computational Modeling of Photonic Crystal Microcavity Single-Photon Emitters

    Saulnier, Nicole A.

    Conventional cryptography is based on algorithms that are mathematically complex and difficult to solve, such as factoring large numbers. The advent of a quantum computer would render these schemes useless. As scientists work to develop a quantum computer, cryptographers are developing new schemes for unconditionally secure cryptography. Quantum key distribution has emerged as one of the potential replacements of classical cryptography. It relics on the fact that measurement of a quantum bit changes the state of the bit and undetected eavesdropping is impossible. Single polarized photons can be used as the quantum bits, such that a quantum system would in some ways mirror the classical communication scheme. The quantum key distribution system would include components that create, transmit and detect single polarized photons. The focus of this work is on the development of an efficient single-photon source. This source is comprised of a single quantum dot inside of a photonic crystal microcavity. To better understand the physics behind the device, a computational model is developed. The model uses Finite-Difference Time-Domain methods to analyze the electromagnetic field distribution in photonic crystal microcavities. It uses an 8-band k · p perturbation theory to compute the energy band structure of the epitaxially grown quantum dots. We discuss a method that combines the results of these two calculations for determining the spontaneous emission lifetime of a quantum dot in bulk material or in a microcavity. The computational models developed in this thesis are used to identify and characterize microcavities for potential use in a single-photon source. The computational tools developed are also used to investigate novel photonic crystal microcavities that incorporate 1D distributed Bragg reflectors for vertical confinement. It is found that the spontaneous emission enhancement in the quasi-3D cavities can be significantly greater than in traditional suspended slab

  20. Modeling of photonic Crystal Fibres

    Bjarklev, Anders Overgaard; Broeng, Jes; Barkou, Stig Eigil

    1999-01-01

    Diferent theoretical models for analysis of photonic crystal fibres are reviewed and compaired. The methods span from simple scalar approaches to full-vectorial models using different mode-field decompositions. The specific advantages of the methods are evaluated.......Diferent theoretical models for analysis of photonic crystal fibres are reviewed and compaired. The methods span from simple scalar approaches to full-vectorial models using different mode-field decompositions. The specific advantages of the methods are evaluated....

  1. ARROW-based silicon-on-insulator photonic crystal waveguides with reduced losses

    Lavrinenko, Andrei; Novitsky, A.; Zhilko, V.V.

    We employ an antiresonant reflecting layers arrangement with silicon-on-insulator based photonic crystal waveguides. The 3D FDTD numerical modelling reveals improved transmission in such structures with a promising potential for their application in photonic circuits.......We employ an antiresonant reflecting layers arrangement with silicon-on-insulator based photonic crystal waveguides. The 3D FDTD numerical modelling reveals improved transmission in such structures with a promising potential for their application in photonic circuits....

  2. Feasibility and value of fully 3D Monte Carlo reconstruction in single photon emission computed tomography

    The accuracy of Single Photon Emission Computed Tomography (SPECT) images is degraded by physical effects, namely photon attenuation, Compton scatter and spatially varying collimator response. The 3D nature of these effects is usually neglected by the methods used to correct for these effects. To deal with the 3D nature of the problem, a 3D projector modeling the spread of photons in 3D can be used in iterative tomographic reconstruction. The 3D projector can be estimated analytically with some approximations, or using precise Monte Carlo simulations. This latter approach has not been applied to fully 3D reconstruction yet due to impractical storage and computation time. The goal of this paper was to determine the gain to be expected from fully 3D Monte Carlo (F3DMC) modeling of the projector in iterative reconstruction, compared to conventional 2D and 3D reconstruction methods. As a proof-of-concept, two small datasets were considered. The projections of the two phantoms were simulated using the Monte Carlo simulation code GATE, as well as the corresponding projector, by taking into account all physical effects (attenuation, scatter, camera point spread function) affecting the imaging process. F3DMC was implemented by using this 3D projector in a maximum likelihood expectation maximization (MLEM) iterative reconstruction. To assess the value of F3DMC, data were reconstructed using 4 methods: filtered backprojection (FBP), MLEM without attenuation correction (MLEM), MLEM with attenuation correction, Jaszczak scatter correction and 3D correction for depth-dependent spatial resolution using an analytical model (MLEMC) and F3DMC. Our results suggest that F3DMC improves mainly imaging sensitivity and signal-to-noise ratio (SNR): sensitivity is multiplied by about 103 and SNR is increased by 20 to 70% compared to MLEMC. Computation of a more robust projector and application of the method on more realistic datasets are currently under investigation. (authors)

  3. Quantum computation in photonic crystals

    Angelakis, D G; Yannopapas, V; Ekert, A; Angelakis, Dimitris G.; Santos, Marcelo Franca; Yannopapas, Vassilis; Ekert, Artur

    2004-01-01

    Quantum computers require technologies that offer both sufficient control over coherent quantum phenomena and minimal spurious interactions with the environment. We show, that photons confined to photonic crystals, and in particular to highly efficient waveguides formed from linear chains of defects doped with atoms can generate strong non-linear interactions which allow to implement both single and two qubit quantum gates. The simplicity of the gate switching mechanism, the experimental feasibility of fabricating two dimensional photonic crystal structures and integrability of this device with optoelectronics offers new interesting possibilities for optical quantum information processing networks.

  4. Manufacturing method of photonic crystal

    Park, In Sung; Lee, Tae Ho; Ahn, Jin Ho; Biswas, Rana; Constant, Kristen P.; Ho, Kai-Ming; Lee, Jae-Hwang

    2013-01-29

    A manufacturing method of a photonic crystal is provided. In the method, a high-refractive-index material is conformally deposited on an exposed portion of a periodic template composed of a low-refractive-index material by an atomic layer deposition process so that a difference in refractive indices or dielectric constants between the template and adjacent air becomes greater, which makes it possible to form a three-dimensional photonic crystal having a superior photonic bandgap. Herein, the three-dimensional structure may be prepared by a layer-by-layer method.

  5. Diamond based photonic crystal microcavities.

    Tomljenovic-Hanic, S; Steel, M J; de Sterke, C Martijn; Salzman, J

    2006-04-17

    Diamond based technologies offer a material platform for the implementation of qubits for quantum computing. The photonic crystal architecture provides the route for a scalable and controllable implementation of high quality factor (Q) nanocavities, operating in the strong coupling regime for cavity quantum electrodynamics. Here we compute the photonic band structures and quality factors of microcavities in photonic crystal slabs in diamond, and compare the results with those of the more commonly-used silicon platform. We find that, in spite of the lower index contrast, diamond based photonic crystal microcavities can exhibit quality factors of Q=3.0x10(4), sufficient for proof of principle demonstrations in the quantum regime. PMID:19516502

  6. Virtual and Printed 3D Models for Teaching Crystal Symmetry and Point Groups

    Casas, Lluís; Estop, Euge`nia

    2015-01-01

    Both, virtual and printed 3D crystal models can help students and teachers deal with chemical education topics such as symmetry and point groups. In the present paper, two freely downloadable tools (interactive PDF files and a mobile app) are presented as examples of the application of 3D design to study point-symmetry. The use of 3D printing to…

  7. Modelling of photonic crystal fibres

    Knudsen, Erik

    2003-01-01

    In the presenta ph.d. work a theoretical study of aspects of modelling photonic crystal fibres was carried out. Photonic crystal fibres form a class of optical waveguides where guidance is no longer provided by a difference in refractive index between core and cladding. Instead, guidance is...... provided by an arrangement of air-holes running along the length of the fibre. Depending on the geometry of the fibre, the guiding mechanism may be either arising from the formation of a photonic bandgap in the cladding structure (photonic bandgap fibre), or by an effect resembling total internal...... modes in contiguous fibre segments curved at different radii. Overall microbend loss is expressed as a statistical mean of mismatch losses. Extending a well proven, established formula for macrobending losses in stop index fibres, we provide an estimate of macrobend losses in an air-guiding photonic...

  8. Transient Plasma Photonic Crystals for High-Power Lasers

    Lehmann, G.; Spatschek, K. H.

    2016-06-01

    A new type of transient photonic crystals for high-power lasers is presented. The crystal is produced by counterpropagating laser beams in plasma. Trapped electrons and electrically forced ions generate a strong density grating. The lifetime of the transient photonic crystal is determined by the ballistic motion of ions. The robustness of the photonic crystal allows one to manipulate high-intensity laser pulses. The scheme of the crystal is analyzed here by 1D Vlasov simulations. Reflection or transmission of high-power laser pulses are predicted by particle-in-cell simulations. It is shown that a transient plasma photonic crystal may act as a tunable mirror for intense laser pulses. Generalizations to 2D and 3D configurations are possible.

  9. Photonic Band Gaps in 3D Network Structures with Short-range Order

    Liew, Seng Fatt; Noh, Heeso; Schreck, Carl F; Dufresne, Eric R; O'Hern, Corey S; Cao, Hui

    2011-01-01

    We present a systematic study of photonic band gaps (PBGs) in three-dimensional (3D) photonic amorphous structures (PAS) with short-range order. From calculations of the density of optical states (DOS) for PAS with different topologies, we find that tetrahedrally connected dielectric networks produce the largest isotropic PBGs. Local uniformity and tetrahedral order are essential to the formation of PBGs in PAS, in addition to short-range geometric order. This work demonstrates that it is possible to create broad, isotropic PBGs for vector light fields in 3D PAS without long-range order.

  10. Photonic crystal fibers -

    Libori, Stig E. Barkou

    2002-01-01

    possibilities, the thesis will attempot to offer a proof of concept, rather than an in-depth analysis, thus reflecting the present state of the art within the area of micro-structured fibers. Another important sub-class of micro-structured fibers is photonic bandgap fibers. Photonic bandgap fibers are far more......-structured fibers that guide light by simple index effects. However, photonic bandgap fibers offer more radical possibilities, such as core regions with an effective index that is lower than the surrounding effective cladding index one may guide light in air- and dispersion qualities that differ from both those of...

  11. Three-dimensional photonic crystals created by single-step multi-directional plasma etching.

    Suzuki, Katsuyoshi; Kitano, Keisuke; Ishizaki, Kenji; Noda, Susumu

    2014-07-14

    We fabricate 3D photonic nanostructures by simultaneous multi-directional plasma etching. This simple and flexible method is enabled by controlling the ion-sheath in reactive-ion-etching equipment. We realize 3D photonic crystals on single-crystalline silicon wafers and show high reflectance (>95%) and low transmittance (<-15dB) at optical communication wavelengths, suggesting the formation of a complete photonic bandgap. Moreover, our method simply demonstrates Si-based 3D photonic crystals that show the photonic bandgap effect in a shorter wavelength range around 0.6 μm, where further fine structures are required. PMID:25090524

  12. Fabrication of 3D nano/microelectrodes via two-photon-polymerization

    Abaddi, Mohammed Al-; Sasso, Luigi; Dimaki, Maria;

    2012-01-01

    The integration of two-photon polymerization technology with standard microfabrication techniques is imperative for the use of this tool in micro- and nanotechnology and especially for the future commercialization of the technology. In this work, we report a novel method for the fabrication of 3D...

  13. Multiband processing of multimode light: combining 3D photonic lanterns with waveguide Bragg gratings

    Spaleniak, Izabela; Jovanovic, Nemanja; Williams, Robert J; Lawrence, Jon S; Ireland, Michael J; Withford, Michael J

    2013-01-01

    The first demonstration of narrowband spectral filtering of multimode light on a 3D integrated photonic chip using photonic lanterns and waveguide Bragg gratings is reported. The photonic lanterns with multi-notch waveguide Bragg gratings were fabricated using the femtosecond direct-write technique in boro-aluminosilicate glass (Corning, Eagle 2000). Transmission dips of up to 5 dB were measured in both photonic lanterns and reference single-mode waveguides with 10.4-mm-long gratings. The result demonstrates efficient and symmetrical performance of each of the gratings in the photonic lantern. Such devices will be beneficial to space-division multiplexed communication systems as well as for units for astronomical instrumentation for suppression of the atmospheric telluric emission from OH lines.

  14. IR Sensor Synchronizing Active Shutter Glasses for 3D HDTV with Flexible Liquid Crystal Lenses

    Jeong In Han

    2013-12-01

    Full Text Available IR sensor synchronizing active shutter glasses for three-dimensional high definition television (3D HDTV were developed using a flexible liquid crystal (FLC lens. The FLC lens was made on a polycarbonate (PC substrate using conventional liquid crystal display (LCD processes. The flexible liquid crystal lens displayed a maximum transmission of 32% and total response time of 2.56 ms. The transmittance, the contrast ratio and the response time of the flexible liquid crystal lens were superior to those of glass liquid crystal lenses. Microcontroller unit and drivers were developed as part of a reception module with power supply for the IR sensor synchronizing active shutter glasses with the flexible liquid crystal lens prototypes. IR sensor synchronizing active shutter glasses for 3D HDTV with flexible liquid crystal lenses produced excellent 3D images viewing characteristics.

  15. Photonic band gap of 2D complex lattice photonic crystal

    GUAN Chun-ying; YUAN Li-bo

    2009-01-01

    It is of great significance to present a photonic crystal lattice structure with a wide photonic bandgap. A two-dimension complex lattice photonic crystal is proposed. The photonic crystal is composed of complex lattices with triangular structure, and each single cell is surrounded by six scatterers in an hexagon. The photonic band gaps are calculated based on the plane wave expansion (PWE) method. The results indicate that the photonic crystal has tunable large TM polarization band gap, and a gap-midgap ratio of up to 45.6%.

  16. Review on recent progress of three-dimensional optical photonic crystal

    Over the past two decades, the field of photonic-crystals has become one of the most influential realms of contemporary optics. In this paper, we will review two recent experimental progresses in three-dimensional photonic-crystal operating in optical wavelengths. The first is the observation of anomalous light-refraction, an acutely negative refraction, in a 3D photonic-crystal for light trapping, guiding and near-unity absorption. The second is the observation of quasi-coherent thermal emission from an all-metallic 3D photonic-crystal at elevated temperatures

  17. Imprinted photonic crystal chemical sensors

    Boersma, A.; Burghoorn, M.M.A.; Saalmink, M.

    2011-01-01

    In this paper we present the use of Photonic Crystals as chemical sensors. These 2D nanostructured sensors were prepared by nano-imprint lithography during which a nanostructure is transferred from a nickel template into a responsive polymer, that is be specifically tuned to interact with the chemic

  18. Photonic-crystal waveguide biosensor

    Skivesen, Nina; Têtu, Amélie; Kristensen, Martin;

    2007-01-01

    A photonic-crystal waveguide sensor is presented for biosensing. The sensor is applied for refractive index measurements and detection of protein-concentrations. Concentrations around 10 μg/ml (0.15μMolar) are measured with excellent signal to noise ratio, and a broad, dynamic refractive index...

  19. Tuning and Freezing Disorder in Photonic Crystals using Percolation Lithography

    Burgess, Ian B.; Abedzadeh, Navid; Kay, Theresa M.; Shneidman, Anna V.; Cranshaw, Derek J.; Lončar, Marko; Aizenberg, Joanna

    2016-01-01

    Although common in biological systems, synthetic self-assembly routes to complex 3D photonic structures with tailored degrees of disorder remain elusive. Here we show how liquids can be used to finely control disorder in porous 3D photonic crystals, leading to complex and hierarchical geometries. In these optofluidic crystals, dynamically tunable disorder is superimposed onto the periodic optical structure through partial wetting or evaporation. In both cases, macroscopic symmetry breaking is driven by subtle sub-wavelength variations in the pore geometry. These variations direct site-selective infiltration of liquids through capillary interactions. Incorporating cross-linkable resins into our liquids, we developed methods to freeze in place the filling patterns at arbitrary degrees of partial wetting and intermediate stages of drying. These percolation lithography techniques produced permanent photonic structures with adjustable disorder. By coupling strong changes in optical properties to subtle differences in fluid behavior, optofluidic crystals may also prove useful in rapid analysis of liquids.

  20. Overlay Alignment Using Two Photonic Crystals

    Peng, C; Morton, K; Yu, Z; Chou, Stephen Y.; Morton, Keith; Peng, Can; Yu, Zhaoning

    2005-01-01

    In this paper we proposed a novel overlay alignment method using two sets of identical photonic crystals (PhCs). In this method the reflection or transmission spectrum of the two overlaid photonic crystals is measured to help wafer tilt, yaw rotation, and translation aligning. The initial testing results with two 1D photonic crystals and analysis of the alignment accuracy are presented. This method is particularly useful in building photonic crystal stacks with nanoimprint lithography (NIL).

  1. A naturally grown three-dimensional nonlinear photonic crystal

    Xu, Tianxiang; Lu, Dazhi; Yu, Haohai, E-mail: haohaiyu@sdu.edu.cn; Zhang, Huaijin, E-mail: huaijinzhang@sdu.edu.cn; Wang, Jiyang [State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100 (China); Zhang, Yong, E-mail: zhangyong@nju.edu.cn [National Laboratory of Solid State Microstructures, School of Physics, and College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093 (China)

    2016-02-01

    Nonlinear frequency conversion via three-dimensional (3D) quasi-phase matching (QPM) process is experimentally realized based on a Ba{sub 0.77}Ca{sub 0.23}TiO{sub 3} (BCT) crystal. The ferroelectric domains in BCT crystal are observed, and the results reveal that the antiparallel domains distribute in three dimensions and can provide 3D reciprocal lattice vectors for QPM processes. Broadband petal-like second-harmonic patterns are achieved, which are well consistent with the theoretical quasi-cubic model of 3D nonlinear photonic crystals. Our work not only promotes the development of QPM technique but also builds a platform for 3D nonlinear optics and quantum optics.

  2. A naturally grown three-dimensional nonlinear photonic crystal

    Nonlinear frequency conversion via three-dimensional (3D) quasi-phase matching (QPM) process is experimentally realized based on a Ba0.77Ca0.23TiO3 (BCT) crystal. The ferroelectric domains in BCT crystal are observed, and the results reveal that the antiparallel domains distribute in three dimensions and can provide 3D reciprocal lattice vectors for QPM processes. Broadband petal-like second-harmonic patterns are achieved, which are well consistent with the theoretical quasi-cubic model of 3D nonlinear photonic crystals. Our work not only promotes the development of QPM technique but also builds a platform for 3D nonlinear optics and quantum optics

  3. Photonic crystal waveguides based on an antiresonant reflecting platform

    Lavrinenko, Andrei; Frandsen, Lars Hagedorn; Fage-Pedersen, Jacob;

    2005-01-01

    We apply the antiresonant reflecting layers arrangement to silicon-on-insulator based photonic crystal waveguides. Several layered structures with different combinations of materials (Si-SiO2, Si3N4-SiO2) and layer topology have been analysed. Numerical modelling using 3D Finite-Difference Time...

  4. Topology Optimised Broadband Photonic Crystal Y-Splitter

    Borel, Peter Ingo; Frandsen, Lars Hagedorn; Harpøth, Anders; Kristensen, Martin; Jensen, Jakob Søndergaard; Sigmund, Ole

    2005-01-01

    A planar photonic crystal waveguide Y-splitter that exhibits large-bandwidth low-loss 3 dB splitting for TE-polarised light has been fabricated in silicon-on-insulator material. The high performance is achieved by utilising topology optimisation to design the Y-junction and by using topology...

  5. Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications

    Gross S.

    2015-11-01

    Full Text Available Since the discovery that tightly focused femtosecond laser pulses can induce a highly localised and permanent refractive index modification in a large number of transparent dielectrics, the technique of ultrafast laser inscription has received great attention from a wide range of applications. In particular, the capability to create three-dimensional optical waveguide circuits has opened up new opportunities for integrated photonics that would not have been possible with traditional planar fabrication techniques because it enables full access to the many degrees of freedom in a photon. This paper reviews the basic techniques and technological challenges of 3D integrated photonics fabricated using ultrafast laser inscription as well as reviews the most recent progress in the fields of astrophotonics, optical communication, quantum photonics, emulation of quantum systems, optofluidics and sensing.

  6. 3D Photonic Nanostructures via Diffusion-Assisted Direct fs Laser Writing

    Gabija Bickauskaite

    2012-01-01

    Full Text Available We present our research into the fabrication of fully three-dimensional metallic nanostructures using diffusion-assisted direct laser writing, a technique which employs quencher diffusion to fabricate structures with resolution beyond the diffraction limit. We have made dielectric 3D nanostructures by multiphoton polymerization using a metal-binding organic-inorganic hybrid material, and we covered them with silver using selective electroless plating. We have used this method to make spirals and woodpiles with 600 nm intralayer periodicity. The resulting photonic nanostructures have a smooth metallic surface and exhibit well-defined diffraction spectra, indicating good fabrication quality and internal periodicity. In addition, we have made dielectric woodpile structures decorated with gold nanoparticles. Our results show that diffusion-assisted direct laser writing and selective electroless plating can be combined to form a viable route for the fabrication of 3D dielectric and metallic photonic nanostructures.

  7. Optical echo in photonic crystals

    Antipov, A E

    2006-01-01

    The dynamics of photonic wavepacket in the effective oscillator potential is studied. The oscillator potential is constructed on a base of one dimensional photonic crystal with a period of unit cell adiabatically varied in space. The structure has a locally equidistant discrete spectrum. This leads to an echo effect, i.e. the periodical reconstruction of the packet shape. The effect can be observed in a nonlinear response of the system. Numerical estimations for porous-silicon based structures are presented for femtosecond Ti:Sapphire laser pump.

  8. A Novel Woodpile Three-Dimensional Terahertz Photonic Crystal

    LIU Huan; YAO Jian-Quan; ZHENG Fang-Hua; XU De-Gang; WANG Peng

    2007-01-01

    A novel woodpile lattice structure is proposed. Based on plane wave expansion (PWE) method, the complete photonic band gaps (PBGs) of the novel woodpile three-dimensional (3D) terahertz (THz) photonic crystal (PC) with a decreasing symmetry relative to a face-centred-tetragonal (fct) symmetry are optimized by varying some structural parameters and the highest band gap ratio can reach 27.61%. Compared to the traditional woodpile lattice, the novel woodpile lattice has a wider range of the Riling ratios to gain high quality PBGs, which provides greater convenience for the manufacturing process. The novel woodpile 3D PC will be very promising for materials of THz functional components.

  9. Tunable Photonic Band Gaps In Photonic Crystal Fibers Filled With a Cholesteric Liquid Crystal

    Thomas; Tanggaard; Larsen; David; Sparre; Hermann; Anders; Bjarklev

    2003-01-01

    A photonic crystal fiber has been filled with a cholesteric liquid crystal. A temperature sensitive photonic band gap effect was observed, which was especially pronounced around the liquid crystal phase transition temperature.

  10. FABRICATION OF PHOTONIC CRYSTAL WITH SUPERLATTICES

    SUN Cheng; Chen Haihua; Zhang Jizhong; Wei Hongmei; Gu Zhongze

    2006-01-01

    A novel technique was used to fabricate three-dimensional photonic crystals with superlattices. The super structure was fabricated by assembling monodispersed microspheres in the grooves of the scales of morpho butterfly, which makes the photonic crystal being composed of two kinds of different photonic structures (natural groove structure of butterfly wing and artificial microspherical colloids arrangement). The superstructural photonic crystal exhibits some unique optical properties different from both the butterfly wing and the colloidal crystal. The approach exhibited here provides a new way for fabricate photonic crystals with superlattices.

  11. Two-dimensional function photonic crystals

    Wu, Xiang-Yao; Liu, Xiao-Jing; Liang, Yu

    2016-01-01

    In this paper, we have firstly proposed two-dimensional function photonic crystals, which the dielectric constants of medium columns are the functions of space coordinates $\\vec{r}$, it is different from the two-dimensional conventional photonic crystals constituting by the medium columns of dielectric constants are constants. We find the band gaps of two-dimensional function photonic crystals are different from the two-dimensional conventional photonic crystals, and when the functions form of dielectric constants are different, the band gaps structure should be changed, which can be designed into the appropriate band gaps structures by the two-dimensional function photonic crystals.

  12. Optical Magnetometer Incorporating Photonic Crystals

    Kulikov, Igor; Florescu, Lucia

    2007-01-01

    According to a proposal, photonic crystals would be used to greatly increase the sensitivities of optical magnetometers that are already regarded as ultrasensitive. The proposal applies, more specifically, to a state-of-the-art type of quantum coherent magnetometer that exploits the electromagnetically-induced-transparency (EIT) method for determining a small change in a magnetic field indirectly via measurement of the shift, induced by that change, in the hyperfine levels of resonant atoms exposed to the field.

  13. Preliminary Study for Dosimetric Characteristics of 3D-printed Materials with Megavoltage Photons

    Jeong, Seonghoon; Chung, Weon Kuu; Kim, Dong Wook

    2015-01-01

    In these days, 3D-printer is on the rise in various fields including radiation therapy. This preliminary study aimed to estimate the dose characteristics of the 3D-printer materials which could be used as the compensator or immobilizer in radiation treatment. The cubes which have 5cm length and different densities as 50%, 75% and 100% were printed by 3D-printer. A planning CT scans for cubes were performed using a CT simulator (Brilliance CT, Philips Medical System, Netherlands). Dose distributions behind the cube were calculated when 6MV photon beam passed through cube. The dose response for 3D-printed cube, air and water were measured by using EBT3 film and 2D array detector. When results of air case were normalized to 100, dose calculated by TPS and measured dose of 50% and 75% cube were 96~99. Measured and calculated doses of water and 100% cube were 82~84. HU values of 50%, 75% and 100% were -910, -860 and -10, respectively. From these results, 3D-printer in radiotherapy could be used for medical purpose...

  14. Photonic crystals, amorphous materials, and quasicrystals

    Photonic crystals consist of artificial periodic structures of dielectrics, which have attracted much attention because of their wide range of potential applications in the field of optics. We may also fabricate artificial amorphous or quasicrystalline structures of dielectrics, i.e. photonic amorphous materials or photonic quasicrystals. So far, both theoretical and experimental studies have been conducted to reveal the characteristic features of their optical properties, as compared with those of conventional photonic crystals. In this article, we review these studies and discuss various aspects of photonic amorphous materials and photonic quasicrystals, including photonic band gap formation, light propagation properties, and characteristic photonic states. (focus issue)

  15. Heat Treatment of the Photonic Crystal Fiber

    Joo; Beom; Eom; Seongwoo; Yoo; Jinchae; Kim; Hokyung; Kim; Un-Chul; Paek; Byeong; Ha; Lee

    2003-01-01

    We report heat treatment of the photonic crystal fiber. As the temperature was increased, the transmission of the photonic crystal fiber was increased, unlike conventional single mode fiber. The transmission increase at short wavelength region was larger than long wavelength region for the various temperatures. After crystallization of the silica glass, the spectra of the photonic crystal fiber were just decreased at all wavelength regions, but, in case of the single mode fiber, the absorption in visibl...

  16. Algorithms and technologies for photonic crystal modelling

    Hart, Elizabeth E.

    2009-01-01

    In this thesis an investigation into the behaviour of light when passing through photonic crystals was carried out using numerical methods. Photonic crystals are expensive and difficult to fabricate so there is a requirement for computer simulations that can quickly and accurately model how the crystal structure will affect the behaviour of light. A finite difference method was written to model two-dimensional photonic crystals. The results from the finite difference method mod...

  17. Three-dimensional photonic crystals containing designed defects achieved with two-photon photopolymerization

    Ming Zhou; Wei Zhang; Junjie Kong; Haifeng Yang; Lan Cai

    2009-01-01

    Two-photon photopolymerization (TPP) with femtosecond laser is a promising method to fabricate three-dimensional (3D) photonic crystals (PCs). Based on the TPP principle, the micro-fabrication system has been built. The 3D woodpile PCs with rod space of 2000 nm are fabricated easily and different defects are introduced in order to form the cross-waveguide and the micro-laser structure PCs. Simulation results of the optical field intensity distributions using finite-difference time domain (FDTD) method are given, which support the designs and implementation of the PC of two types in theory.

  18. Novel Organic Materials for Multi-photon Photopolymerization and Photografting: Powerful Tools for Precise Microfabracation and Functionalization in 3D

    Two-photon excitation provides the possibility of the activation of chemical or physical processes with high spatial resolution in 3D. Such strategy has been widely used in microfabrication of photonic crystals, polymer-based optical waveguides on integrated circuit boards, high-density 3D optical data storage and other industries requiring high precision. Since the photo-activated chemical or physical processes are confined only within the small focal volume, excellent spatial control could be obtained. Moreover, the excitation source with long wavelength offers the advantages of deeper tissue penetration and less photodamage, making 2PA especially suitable for various biological applications, such as bioimaging and in-vivo biofabrications. The development of novel two-photon absorption (2PA) active organic materials is essential to realize the desired functions. The first part of the thesis focuses on the novel 2PA photoinitiators (2PIs) used for two-photon induced photopolymerization (2PP), a versatile technique for precise 3D microfabrications. High initiation efficiency is the most important character for an efficient PI. Based on a potent lead structure 1,5-bis(4-(N,N-dibutylamino) phenyl)penta-1,4-diyn-3-one, several aromatic ketone-based 2PIs containing triple bonds and dialkylamino groups were synthesized via Sonogashira coupling reactions. 2, 7-substituted fluorenone-based PI B3FL, with the largest 2PA cross section of 440 GM at 800 nm, exhibited the broadest processing windows among the investigated PIs. The double bonds conversion of the cross-linking polymeric network and the mechanical properties of the microstructures were also evaluated by FTIR and nanoindentation measurements, respectively. Beside initiation efficiency of PIs, the ease and cost of preparation are also critical factors from practical aspect. To overcome the problem of the reported 2PIs derived from the complicated syntheses and expensive catalysts, a series of linear and cyclic

  19. Photon Polarization in Photonic Crystal Fibers under Compton Scattering

    HAO Dong-shan; ZHANG Xiao-fu

    2007-01-01

    Using the quantum invariant theory and unitary transformation means, we study the influences of multi-photon nonlinear Compton scattering on the photon polarization in photonic crystal fibers(PCF). The results show that the photon polarization of the incident photon changes a lot due to scattered optical, and its general geometric phase factor, Hamiton number and evolution operator are definited both by the incident and scattered optical.

  20. An ARROW-based silicon-on-insulator photonic crystal waveguides with reduced losses

    Lavrinenko, Andrei

    2006-01-01

    We employ an antiresonant reflecting layers arrangement for siliicon-on-insulator based photonic crystal waveguides with thin cores. 3D FDTD numerical modelling reveals the reduction of losses with a promising potential for competing with membrane-like waveguides.......We employ an antiresonant reflecting layers arrangement for siliicon-on-insulator based photonic crystal waveguides with thin cores. 3D FDTD numerical modelling reveals the reduction of losses with a promising potential for competing with membrane-like waveguides....

  1. Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3D integrated optics

    Stone, Adam; Jain, Himanshu; Dierolf, Volkmar; Sakakura, Masaaki; Shimotsuma, Yasuhiko; Miura, Kiyotaka; Hirao, Kazuyuki; Lapointe, Jerome; Kashyap, Raman

    2015-05-01

    Direct three-dimensional laser writing of amorphous waveguides inside glass has been studied intensely as an attractive route for fabricating photonic integrated circuits. However, achieving essential nonlinear-optic functionality in such devices will also require the ability to create high-quality single-crystal waveguides. Femtosecond laser irradiation is capable of crystallizing glass in 3D, but producing optical-quality single-crystal structures suitable for waveguiding poses unique challenges that are unprecedented in the field of crystal growth. In this work, we use a high angular-resolution electron diffraction method to obtain the first conclusive confirmation that uniform single crystals can be grown inside glass by femtosecond laser writing under optimized conditions. We confirm waveguiding capability and present the first quantitative measurement of power transmission through a laser-written crystal-in-glass waveguide, yielding loss of 2.64 dB/cm at 1530 nm. We demonstrate uniformity of the crystal cross-section down the length of the waveguide and quantify its birefringence. Finally, as a proof-of-concept for patterning more complex device geometries, we demonstrate the use of dynamic phase modulation to grow symmetric crystal junctions with single-pass writing.

  2. Cholesteric liquid crystal photonic crystal lasers and photonic devices

    Zhou, Ying

    This dissertation discusses cholesteric liquid crystals (CLCs) and polymers based photonic devices including one-dimensional (1D) photonic crystal lasers and broadband circular polarizers. CLCs showing unique self-organized chiral structures have been widely used in bistable displays, flexible displays, and reflectors. However, the photonic band gap they exhibit opens a new way for generating laser light at the photonic band edge (PBE) or inside the band gap. When doped with an emissive laser dye, cholesteric liquid crystals provide distributed feedback so that mirrorless lasing is hence possible. Due to the limited surface anchoring, the thickness of gain medium and feedback length is tens of micrometers. Therefore lasing efficiency is quite limited and laser beam is highly divergent. To meet the challenges, we demonstrated several new methods to enhance the laser emission while reducing the beam divergence from a cholesteric liquid crystal laser. Enhanced laser emission is demonstrated by incorporating a single external CLC reflector as a polarization conserved reflector. Because the distributed feedback from the active layer is polarization selective, a CLC reflector preserves the original polarization of the reflected light and a further stimulated amplification ensues. As a result of virtually doubled feedback length, the output is dramatically enhanced in the same circular polarization state. Meanwhile, the laser beam divergence is dramatically reduced due to the increased cavity length from micrometer to millimeter scale. Enhanced laser emission is also demonstrated by the in-cell metallic reflector because the active layer is pumped twice. Unlike a CLC reflector, the output from a mirror-reflected CLC laser is linearly polarized as a result of coherent superposition of two orthogonal circular polarization states. The output linear polarization direction can be well controlled and fine tuned by varying the operating temperature and cell gap. Enhanced laser

  3. Photonic crystals with topological defects

    Liew, Seng Fatt; Xiong, Wen; Cao, Hui

    2014-01-01

    We introduce topological defect to a square lattice of elliptical cylinders. Despite the broken translational symmetry, the long-range positional order of the cylinders leads to residual photonic bandgap in the density of optical states. However, the band-edge modes are strongly modified by the spatial variation of ellipse orientation. The $\\Gamma-X$ band-edge mode splits into four regions of high intensity and the output flux becomes asymmetric due to the formation of crystalline domains with different orientation. The $\\Gamma-M$ band-edge mode has the energy flux circulates around the topological defect center, creating an optical vortex. By removing the elliptical cylinders at the center, we create localized defect states which are dominated by either clockwise or counter-clockwise circulating waves. The flow direction can be switched by changing the ellipse orientation. The deterministic aperiodic variation of the unit cell orientation adds another dimension to the control of light in photonic crystals, e...

  4. Fabrication and characterization of three-dimensional infrared photonic crystals

    Zavieh, Lisa

    It has been predicted theoretically that photonic crystals can be used to control the propagation of light through dielectric media for wavelengths extending beyond the microwave to include the infrared and the visible. Fabrication of 3-D photonic crystals with a bandgap in the near infrared or visible would have application in the design of a new class of photonic devices that include optical mirrors, waveguides, and cavity resonators. Demonstrations of 3-D photonic crystals have been limited primarily to the microwave and infrared wavelength regimes because of the constraints imposed by the nanometer scale dimensions required for operation in the visible. This thesis presents a novel method of fabricating a simple cubic photonic crystal which potentially can be tailored to operate at any wavelength. Fabrication was broken down into several processing steps, each of which was investigated independently. Design of Experiment (DOE) was used in a parametric study to optimize dry etching conditions by which GaAs/AlxGa1--x As multilayer structures were etched with anisotropic profile and rapid etch rate. Also, the etching properties of diffusion controlled wet lateral etching of buried AlxGa1--xAs layers in hydrofluoric acid solutions (HF) were investigated. Using the results obtained from the etching studies, both dry and wet etching techniques were employed to fabricate the simple-cubic photonic structure. Following fabrication, the photonic crystal was characterized at normal angles and oblique incidence using Fourier transform infrared spectroscopy (FTIR). The experimental results show strong correlation to theoretically predicted values. The simplicity of the process and positive results indicate that it may be possible to scale down the structure to obtain an photonic band lattice with a bandgap of 1.55 mum.

  5. Model-Based Estimation of 3-D Stiffness Parameters in Photonic-Force Microscopy

    Thévenaz, P; Singh, A.S.G.; Bertseva, E.; Lekki, J.; Kulik, A. J.; Unser, M

    2010-01-01

    We propose a system to characterize the 3-D diffusion properties of the probing bead trapped by a photonic-force microscope. We follow a model-based approach, where the model of the dynamics of the bead is given by the Langevin equation. Our procedure combines software and analog hardware to measure the corresponding stiffness matrix. We are able to estimate all its elements in real time, including off-diagonal terms. To achieve our goal, we have built a simple analog computer that performs a...

  6. Light-directing chiral liquid crystal nanostructures: from 1D to 3D.

    Bisoyi, Hari Krishna; Li, Quan

    2014-10-21

    Endowing external, remote, and dynamic control to self-organized superstructures with desired functionalities is a principal driving force in the bottom-up nanofabrication of molecular devices. Light-driven chiral molecular switches or motors in liquid crystal (LC) media capable of self-organizing into optically tunable one-dimensional (1D) and three-dimensional (3D) superstructures represent such an elegant system. As a consequence, photoresponsive cholesteric LCs (CLCs), i.e., self-organized 1D helical superstructures, and LC blue phases (BPs), i.e., self-organized 3D periodic cubic lattices, are emerging as a new generation of multifunctional supramolecular 1D and 3D photonic materials in their own right because of their fundamental academic interest and technological significance. These smart stimuli-responsive materials can be facilely fabricated from achiral LC hosts by the addition of a small amount of a light-driven chiral molecular switch or motor. The photoresponsiveness of these materials is a result of both molecular interaction and geometry changes in the chiral molecular switch upon light irradiation. The doped photoresponsive CLCs undergo light-driven pitch modulation and/or helix inversion, which has many applications in color filters, polarizers, all-optical displays, optical lasers, sensors, energy-saving smart devices, and so on. Recently, we have conceptualized and rationally synthesized different light-driven chiral molecular switches that have very high helical twisting powers (HTPs) and exhibit large changes in HTP in different states, thereby enabling wide phototunability of the systems by the addition of very small amounts of the molecular switches into commercially available achiral LCs. The light-driven chiral molecular switches are based on well-recognized azobenzene, dithienylcyclopentene, and spirooxazine derivatives. We have demonstrated high-resolution and lightweight photoaddressable displays without patterned electronics on

  7. 3D imaging using combined neutron-photon fan-beam tomography: A Monte Carlo study.

    Hartman, J; Yazdanpanah, A Pour; Barzilov, A; Regentova, E

    2016-05-01

    The application of combined neutron-photon tomography for 3D imaging is examined using MCNP5 simulations for objects of simple shapes and different materials. Two-dimensional transmission projections were simulated for fan-beam scans using 2.5MeV deuterium-deuterium and 14MeV deuterium-tritium neutron sources, and high-energy X-ray sources, such as 1MeV, 6MeV and 9MeV. Photons enable assessment of electron density and related mass density, neutrons aid in estimating the product of density and material-specific microscopic cross section- the ratio between the two provides the composition, while CT allows shape evaluation. Using a developed imaging technique, objects and their material compositions have been visualized. PMID:26953978

  8. BioPhotonics Workstation supporting 3D joystick-control of microplatforms [invited

    Tauro, Sandeep; Palima, Darwin; Perch-Nielsen, Ivan R.; Kelemen, Lóránd; Ormos, Pál; Glückstad, Jesper

    2010-01-01

    handles provides leverage enabling submicron positioning accuracy of the tip. The tip can be joystick positioned in 3D with full rotational freedom, as close to the cell as desired. Using microtools allows experiments on cells without requiring extensive sample preparation. Furthermore, each tip of the...... positioning of several microtools simultaneously near one single cell. The experiments are performed in our BioPhotonics Workstation with counterpropagating beam geometry. This geometry provides a large manipulation area and allows realtime manipulation or a plurality or traps (euITenl1y 100 independently...... reconfigurable traps), facilitating precise control and a rapid response of the optically manipulated microtools • The microtools are prefabricated by two-photon polymerization. The tools consist of a tip with submicron features, connected to three spheres functioning as trapping handles. The separation of...

  9. Three-dimensional photonic crystal with a stop band from 1.35 to 1.95thinspthinspμ m

    A combination of advanced silicon-processing techniques was used to create three-dimensional (3D) photonic crystals with a 180-nm minimum feature size. The resulting 3D crystal displayed a strong stop band at optical wavelengths from λ=1.35 μm to λ=1.95 μm . This is believed to be the smallest 3D crystal with a complete 3D photonic bandgap ever created. copyright 1999 Optical Society of America

  10. Monte Carlo methods for direct calculation of 3D dose distributions for photon fields in radiotherapy

    Even with state of the art treatment planning systems the photon dose calculation can be erroneous under certain circumstances. In these cases Monte Carlo methods promise a higher accuracy. We have used the photon transport code CHILD of the GSF-Forschungszentrum, which was developed to calculate dose in diagnostic radiation protection matters. The code was refined for application in radiotherapy for high energy photon irradiation and should serve for dose verification in individual cases. The irradiation phantom can be entered as any desired 3D matrix or be generated automatically from an individual CT database. The particle transport takes into account pair production, photo, and Compton effect with certain approximations. Efficiency is increased by the method of 'fractional photons'. The generated secondary electrons are followed by the unscattered continuous-slowing-down-approximation (CSDA). The developed Monte Carlo code Monaco Matrix was tested with simple homogeneous and heterogeneous phantoms through comparisons with simulations of the well known but slower EGS4 code. The use of a point source with a direction independent energy spectrum as simplest model of the radiation field from the accelerator head is shown to be sufficient for simulation of actual accelerator depth dose curves. Good agreement (<2%) was found for depth dose curves in water and in bone. With complex test phantoms and comparisons with EGS4 calculated dose profiles some drawbacks in the code were found. Thus, the implementation of the electron multiple-scattering should lead us to step by step improvement of the algorithm. (orig.)

  11. Preparation, structural, and calorimetric characterization of bicomponent metallic photonic crystals

    Kozlov, M. E.; Murthy, N. S.; Udod, I.; Khayrullin, I. I.; Baughman, R. H.; Zakhidov, A. A.

    2007-03-01

    We report preparation and characterization of novel bicomponent metal-based photonic crystals having submicron three-dimensional (3D) periodicity. Fabricated photonic crystals include SiO2 sphere lattices infiltrated interstitially with metals, carbon inverse lattices filled with metal or metal alloy spheres, Sb inverse lattices, and Sb inverse lattices filled with Bi spheres. Starting from a face centered SiO2 lattice template, these materials were obtained by sequences of either templating and template extraction or templating, template extraction, and retemplating. Surprising high fidelity was obtained for all templating and template extraction steps. Scanning electron microscopy (SEM), small angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC) were used to characterize the structure and the effects of the structure on calorimetric properties. To the best of our knowledge, SAXS data on metallic photonic crystals were collected for first time.

  12. High-Q microwave resonators with a photonic crystal structure

    The localisation of electromagnetic energy at a defect in a photonic crystal is similar to a well known effect employed to construct high-Q microwave resonators: In a whispering gallery (WHG-) mode resonator the high Q-factor is achieved by localisation of the electromagnetic field energy by total reflection inside a disk made of dielectric material. The topic of this work is to demonstrate, that WHG-like modes can exist in an air defect in a photonic crystal that extends over several lattice periods; and that a high-Q microwave resonator can be made, utilizing these resonant modes. In numerical simulations, the transmission properties of a photonic crystal structure with hexagonal lattice symmetry have been investigated with a transfer-matrix-method. The eigenmodes of a defect structure in a photonic crystal have been calculated with a quasi-3d finite element integration technique. Experimental results confirm the simulated transmission properties and show the existence of modes inside the band gap, when a defect is introduced in the crystal. Resonator measurements show that a microwave resonator can be operated with those defect modes. It was found out that the main losses of the resonator were caused by bad microwave properties of the used dielectric material and by metal losses on the top and bottom resonator walls. Furthermore, it turned out that the detection of the photonic crystal defect mode was difficult because of a lack of simulation possibilities and high housing mode density in the resonator. (orig.)

  13. Spatial solitons in nonlinear photonic crystals

    Corney, Joel Frederick; Bang, Ole

    2000-01-01

    We study solitons in one-dimensional quadratic nonlinear photonic crystals with periodic linear and nonlinear susceptibilities. We show that such crystals support stable bright and dark solitons, even when the effective quadratic nonlinearity is zero.......We study solitons in one-dimensional quadratic nonlinear photonic crystals with periodic linear and nonlinear susceptibilities. We show that such crystals support stable bright and dark solitons, even when the effective quadratic nonlinearity is zero....

  14. Biased liquid crystal photonic bandgap fiber

    Weirich, Johannes; Lægsgaard, Jesper; Alkeskjold, Thomas Tanggaard;

    2008-01-01

    We simulate the director structure of all capillaries in a biased photonic crystal fiber infiltrated with liquid crystals. Various mode simulations for different capillaries show the necessity to consider the entire structure.......We simulate the director structure of all capillaries in a biased photonic crystal fiber infiltrated with liquid crystals. Various mode simulations for different capillaries show the necessity to consider the entire structure....

  15. GRAPHICAL DISPLAY OF THREE-DIMENSIONAL (3-D) INTENSITY DATA FROM SINGLE-CRYSTAL REFLECTIONS

    Pilotti, M.; McIntyre, G.

    1986-01-01

    A simple program to display and manipulate 3-D arrays of counts of single-crystal diffraction reflections on an Evans and Sutherland PS300 graphics display is described. Superposition of integration envelopes or resolution ellipsoids from data-reduction algorithms allows assessment of the effectiveness of the algorithms. Some examples illustrating the diagnostic applications of the program are given.

  16. SPADAS: a high-speed 3D single-photon camera for advanced driver assistance systems

    Bronzi, D.; Zou, Y.; Bellisai, S.; Villa, F.; Tisa, S.; Tosi, A.; Zappa, F.

    2015-02-01

    Advanced Driver Assistance Systems (ADAS) are the most advanced technologies to fight road accidents. Within ADAS, an important role is played by radar- and lidar-based sensors, which are mostly employed for collision avoidance and adaptive cruise control. Nonetheless, they have a narrow field-of-view and a limited ability to detect and differentiate objects. Standard camera-based technologies (e.g. stereovision) could balance these weaknesses, but they are currently not able to fulfill all automotive requirements (distance range, accuracy, acquisition speed, and frame-rate). To this purpose, we developed an automotive-oriented CMOS single-photon camera for optical 3D ranging based on indirect time-of-flight (iTOF) measurements. Imagers based on Single-photon avalanche diode (SPAD) arrays offer higher sensitivity with respect to CCD/CMOS rangefinders, have inherent better time resolution, higher accuracy and better linearity. Moreover, iTOF requires neither high bandwidth electronics nor short-pulsed lasers, hence allowing the development of cost-effective systems. The CMOS SPAD sensor is based on 64 × 32 pixels, each able to process both 2D intensity-data and 3D depth-ranging information, with background suppression. Pixel-level memories allow fully parallel imaging and prevents motion artefacts (skew, wobble, motion blur) and partial exposure effects, which otherwise would hinder the detection of fast moving objects. The camera is housed in an aluminum case supporting a 12 mm F/1.4 C-mount imaging lens, with a 40°×20° field-of-view. The whole system is very rugged and compact and a perfect solution for vehicle's cockpit, with dimensions of 80 mm × 45 mm × 70 mm, and less that 1 W consumption. To provide the required optical power (1.5 W, eye safe) and to allow fast (up to 25 MHz) modulation of the active illumination, we developed a modular laser source, based on five laser driver cards, with three 808 nm lasers each. We present the full characterization of

  17. Photonic crystal fiber based antibody detection

    Duval, A; Lhoutellier, M; Jensen, J B; Hoiby, P E; Missier, V; Pedersen, L H; Hansen, Theis Peter; Bjarklev, Anders Overgaard; Bang, Ole

    An original approach for detecting labeled antibodies based on strong penetration photonic crystal fibers is introduced. The target antibody is immobilized inside the air-holes of a photonic crystal fiber and the detection is realized by the means of evanescent-wave fluorescence spectroscopy and...

  18. Numerical analysis of multicore photonic crystal fibers

    Yanfeng Li(栗岩锋); Qingyue Wang(王清月); Minglie Hu(胡明列)

    2003-01-01

    A Galerkin's method-based numerical procedure is extended to obtain the modal field distribution ofmulticore photonic crystal fibers for the first time to our knowledge, which can reveal how the air hole sizeinfluences the mode coupling and how the coupling strength varies with wavelength. These results will behelpful in the future design of multicore photonic crystal fibers with proper guidance properties.

  19. PLANAR OPTICAL WAVEGUIDES WITH PHOTONIC CRYSTAL STRUCTURE

    2003-01-01

    Planar optical waveguide comprising a core region and a cladding region comprising a photonic crystal material, said photonic crystal material having a lattice of column elements, wherein at least a number of said column elements are elongated substantially in an axial direction for said core...

  20. Photonic crystal scintillators and methods of manufacture

    Torres, Ricardo D.; Sexton, Lindsay T.; Fuentes, Roderick E.; Cortes-Concepcion, Jose

    2015-08-11

    Photonic crystal scintillators and their methods of manufacture are provided. Exemplary methods of manufacture include using a highly-ordered porous anodic alumina membrane as a pattern transfer mask for either the etching of underlying material or for the deposition of additional material onto the surface of a scintillator. Exemplary detectors utilizing such photonic crystal scintillators are also provided.

  1. Application of Photonic Crystals in Semiconductor Lasers

    LIU Guang-yu; WANG Li-jun; ZHANG Yan; PENG Biao; SUN Yan-fang; LI Te; CUI Jin-jiang; NING Yong-qiang; QIN Li; LIU Yun

    2007-01-01

    Photonic crystals (PCs) have attracted much considerable research attention in the past two decades. They are artificially fabricated periodic dielectric structures. The periodic dielectric structures have photonic band gap (PBG) and are referred to as photonic band gap materials. This paper mainly introduces one-dimensional (1-D) and 2D PCs applied in the semiconductor lasers.

  2. Photonic Paint Developed with Metallic Three-Dimensional Photonic Crystals

    John D. Williams

    2012-07-01

    Full Text Available This work details the design and simulation of an inconspicuous photonic paint that can be applied onto an object for anticounterfeit and tag, track, and locate (TTL applications. The paint consists of three-dimensional metallic tilted woodpile photonic crystals embedded into a visible and infrared transparent polymer film, which can be applied to almost any surface. The tilted woodpile photonic crystals are designed with a specific pass band detectable at nearly all incident angles of light. When painted onto a surface, these crystals provide a unique reflective infra-red optical signature that can be easily observed and recorded to verify the location or contents of a package.

  3. Surface states in photonic crystals

    Vojtíšek P.

    2013-05-01

    Full Text Available Among many unusual and interesting physical properties of photonic crystals (PhC, in recent years, the propagation of surface electromagnetic waves along dielectric PhC boundaries have attracted considerable attention, also in connection to their possible applications. Such surfaces states, produced with the help of specialized defects on PhC boundaries, similarly to surfaces plasmons, are localized surfaces waves and, as such, can be used in various sensing applications. In this contribution, we present our recent studies on numerical modelling of surface states (SS for all three cases of PhC dimensionality. Simulations of these states were carried out by the use of plane wave expansion (PWE method via the MIT MPB package.

  4. Heat Treatment of the Photonic Crystal Fiber

    Joo Beom Eom; Seongwoo Yoo; Jinchae Kim; Hokyung Kim; Un-Chul Paek; Byeong Ha Lee

    2003-01-01

    We report heat treatment of the photonic crystal fiber. As the temperature was increased, the transmission of the photonic crystal fiber was increased, unlike conventional single mode fiber. The transmission increase at short wavelength region was larger than long wavelength region for the various temperatures. After crystallization of the silica glass, the spectra of the photonic crystal fiber were just decreased at all wavelength regions, but, in case of the single mode fiber, the absorption in visible region around 450 nm increased with increasing temperature.

  5. Liquid crystal orientation control in photonic liquid crystal fibers

    Chychlowski, M. S.; Nowinowski-Kruszelnicki, E.; Woliński, T. R.

    2011-05-01

    Similarly to liquid crystal displays technology in photonic liquid crystal fibers (PLCFs) a molecular orientation control is a crucial issue that influences proper operation of PLCF-based devices. The paper presents two distinct configurations: planar and radial escaped orientation of the LC molecules inside capillaries as well as methods of their application to photonic liquid crystal fibers. Possibilities of LC orientation control influence both: attenuation and transmitting spectra of the PLCF The orienting method is based on creation of an additional orienting layer on the inner surface of the capillary or air hole of the photonic liquid crystal fiber. Aligning materials used in the experiment are commercially available polyimides SE1211 and SE130 which induce liquid crystal homeotropic and planar anchoring conditions. The orienting layer increase an order parameter of the liquid crystal improving propagation properties and stability of photonic liquid crystal fiber-based devices.

  6. Observation of Majorization Principle for quantum algorithms via 3-D integrated photonic circuits

    Flamini, Fulvio; Giordani, Taira; Bentivegna, Marco; Spagnolo, Nicoló; Crespi, Andrea; Corrielli, Giacomo; Osellame, Roberto; Martin-Delgado, Miguel Angel; Sciarrino, Fabio

    2016-01-01

    The Majorization Principle is a fundamental statement governing the dynamics of information processing in optimal and efficient quantum algorithms. While quantum computation can be modeled to be reversible, due to the unitary evolution undergone by the system, these quantum algorithms are conjectured to obey a quantum arrow of time dictated by the Majorization Principle: the probability distribution associated to the outcomes gets ordered step-by-step until achieving the result of the computation. Here we report on the experimental observation of the effects of the Majorization Principle for two quantum algorithms, namely the quantum fast Fourier transform and a recently introduced validation protocol for the certification of genuine many-boson interference. The demonstration has been performed by employing integrated 3-D photonic circuits fabricated via femtosecond laser writing technique, which allows to monitor unambiguously the effects of majorization along the execution of the algorithms. The measured ob...

  7. Increasing Surface Plasmons Propagation via Photonic Nanojets with Periodically Spaced 3D Dielectric Cuboids

    Victor Pacheco-Peña

    2016-03-01

    Full Text Available A structure based on periodically arranged 3D dielectric cuboids connected by photonic nanojets (PNJs is proposed with the aim of increasing the propagation distance of surface plasmon polaritons (SPPs at the telecom wavelength of 1550 nm. The performance of the structure is evaluated and compared with the case without the cuboids demonstrating that the SPPs propagation length is enhanced by a factor greater than 2, reaching a value of approximately 19λ0, when the gap between the cuboids is 2.5λ0. Also, the dependence of the propagation length with the height of the cubes is evaluated, showing that this parameter is critical for a good performance of the chain. A subwavelength resolution is obtained for all the jets generated at the output of the cuboids.

  8. Segmentation, Reconstruction, and Analysis of Blood Thrombus Formation in 3D 2-Photon Microscopy Images

    Xu Zhiliang

    2010-01-01

    Full Text Available We study the problem of segmenting, reconstructing, and analyzing the structure growth of thrombi (clots in blood vessels in vivo based on 2-photon microscopic image data. First, we develop an algorithm for segmenting clots in 3D microscopic images based on density-based clustering and methods for dealing with imaging artifacts. Next, we apply the union-of-balls (or alpha-shape algorithm to reconstruct the boundary of clots in 3D. Finally, we perform experimental studies and analysis on the reconstructed clots and obtain quantitative data of thrombus growth and structures. We conduct experiments on laser-induced injuries in vessels of two types of mice (the wild type and the type with low levels of coagulation factor VII and analyze and compare the developing clot structures based on their reconstructed clots from image data. The results we obtain are of biomedical significance. Our quantitative analysis of the clot composition leads to better understanding of the thrombus development, and is valuable to the modeling and verification of computational simulation of thrombogenesis.

  9. Crystallization of Mefenamic Acid from Dimethylformamide Microemulsions: Obtaining Thermodynamic Control through 3D Nanoconfinement

    Catherine E. Nicholson

    2011-09-01

    Full Text Available Recently we showed how crystallization in microemulsions could lead directly to the most stable polymorph, thereby leapfrogging Ostwald’s rule of stages. Here we consider in more details the crystallization of mefenamic acid from dimethylformamide microemulsions. Crystallization of mefenamic acid from bulk DMF has previously been shown to produce only the metastable Form II irrespective of the supersaturation or temperature. In contrast, we show that stable Form I can be produced from DMF microemulsions provided the lowest supersaturations that can achieve crystallization are used; these correspond to initial supersaturations that are significantly higher than those commonly used in bulk solution crystallizations, owing to the large decrease in supersaturation that occurs when a nuclei grows in a 3D-nanoconfined droplet. Increasing the supersaturation above the minimum required for crystallization leads to increasing proportions of metastable Form II crystals. In compositions crystallizing a mixture of Form I and Form II crystals, the Form I crystals can nevertheless be obtained exclusively by slowly heating the microemulsions.

  10. Photonic band gap engineering in 2D photonic crystals

    Yogita Kalra; R K Sinha

    2006-12-01

    The polarization-dependent photonic band gaps (TM and TE polarizations) in two-dimensional photonic crystals with square lattices composed of air holes in dielectric and vice versa i.e., dielectric rods in air, using the plane-wave expansion method are investigated. We then study, how the photonic band gap size is affected by the changing ellipticity of the constituent air holes/dielectric rods. It is observed that the size of the photonic band gap changes with changing ellipticity of the constituent air holes/dielectric rods. Further, it is reported, how the photonic band gap size is affected by the change in the orientation of the constituent elliptical air holes/dielectric rods in 2D photonic crystals.

  11. Biased liquid crystal infiltrated photonic bandgap fiber

    Weirich, Johannes; Lægsgaard, Jesper; Scolari, Lara;

    2009-01-01

    A simulation scheme for the transmission spectrum of a photonic crystal fiber infiltrated with a nematic liquid crystal and subject to an external bias is presented. The alignment of the biased liquid crystal is simulated using the finite element method to solve the relevant system of coupled...... partial differential equations. From the liquid crystal alignment the full tensorial dielectric permittivity in the capillaries is derived. The transmission spectrum for the photonic crystal fiber is obtained by solving the generalized eigenvalue problem deriving from Maxwell’s equations using a vector...... element based finite element method. We demonstrate results for a splay aligned liquid crystal infiltrated into the capillaries of a four-ring photonic crystal fiber and compare them to corresponding experiments....

  12. Sidewall roughness measurement of photonic wires and photonic crystals

    Svalgaard, Mikael; Frandsen, Lars Hagedorn; Garnæs, Jørgen;

    2007-01-01

    The performance of nanophotonic building blocks such as photonic wires and photonic crystals are rapidly improving, with very low propagation loss and very high cavity Q-factors being reported. In order to facilitate further improvements in performance the ability to quantitatively measure...

  13. Large-bandwidth planar photonic crystal waveguides

    Søndergaard, Thomas; Lavrinenko, Andrei

    defect has appropriate dispersion properties relative to the photonic crystal slab material surrounding the line defect. A three-dimensional theoretical analysis is given for large-bandwidth waveguide designs based on a silicon-air photonic crystal slab suspended in air. In one example, the leakage......A general design principle is presented for making finite-height photonic crystal waveguides that support leakage-free guidance of light over large frequency intervals. The large bandwidth waveguides are designed by introducing line defects in photonic crystal slabs, where the material in the line......-free single-mode guidance is found for a large frequency interval covering 60% of the photonic band-gap....

  14. 3D equilibrium crystal shapes in the new light of STM and AFM

    A systematic study of 3D equilibrium crystal shapes (ECS) can yield important surface energetic quantities, such as step, kink, surface and step-step interaction free energies. Observations of the ECS, especially of flat facets and adjacent vicinal regions, will provide primarily relative step and surface free energies. An advanced goal is to determine absolute step free energies, kink formation and step interaction energies. Absolute values of these energies are important in governing crystal growth morphologies, high temperature phase changes and kinetic processes associated with shape changes. Furthermore, absolute step and kink energies are the key to absolute surface free energies of well defined low-index orientations. We review new experiments where sections of the ECS are monitored as a function of temperature to extract characteristic morphological parameters, yielding absolute surface energetic quantities. Attention will be paid to the question of attaining true 3D equilibrium of an ensemble of crystallites. The special role of scanning tunneling and atomic force microscopies will be stressed. New ways of overcoming the problem of the activation barrier for facet growth (or shrinkage) through the study of dislocated crystallites will be demonstrated. In the general context of 3D crystallites, the study of 2D nano-crystals, in the form of adatom or vacancy islands on extended flat surfaces, will be discussed. In particular, the connection between the temperature dependent shape of 2D islands and the absolute step and kink formation energies of the bounding steps, complementary to facet shape changes of 3D crystallites, has emerged as an important topic of recent research. Finally, high temperature phase changes, such as surface roughening and surface melting, as they have been observed by scanning electron microscopy on 3D crystallites, will be briefly reviewed

  15. Feasibility and value of fully 3D Monte Carlo reconstruction in single-photon emission computed tomography

    The accuracy of Single-Photon Emission Computed Tomography images is degraded by physical effects, namely photon attenuation, Compton scatter and spatially varying collimator response. The 3D nature of these effects is usually neglected by the methods used to correct for these effects. To deal with the 3D nature of the problem, a 3D projector modeling the spread of photons in 3D can be used in iterative tomographic reconstruction. The 3D projector can be estimated analytically with some approximations, or using precise Monte Carlo simulations. This latter approach has not been applied to fully 3D reconstruction yet due to impractical storage and computation time. The goal of this paper was to determine the gain to be expected from fully 3D Monte Carlo (F3DMC) modeling of the projector in iterative reconstruction, compared to conventional 2D and 3D reconstruction methods. As a proof-of-concept, two small datasets were considered. The projections of the two phantoms were simulated using the Monte Carlo simulation code GATE, as well as the corresponding projector, by taking into account all physical effects (attenuation, scatter, camera point spread function) affecting the imaging process. F3DMC was implemented by using this 3D projector in a maximum likelihood expectation maximization (MLEM) iterative reconstruction. To assess the value of F3DMC, data were reconstructed using four methods: filtered backprojection, MLEM without attenuation correction (MLEM), MLEM with attenuation correction, Jaszczak scatter correction and 3D correction for depth-dependent spatial resolution using an analytical model (MLEMC) and F3DMC. Our results suggest that F3DMC improves mainly imaging sensitivity and signal-to-noise ratio (SNR): sensitivity is multiplied by about 103 and SNR is increased by 20-70% compared to MLEMC. Computation of a more robust projector and application of the method on more realistic datasets are currently under investigation

  16. Tuning of resonances in photonic crystal photodetectors

    Full text: Photonic crystal slabs (PCS) have shown capabilities for detectivity enhancement of photodetectors in the mid-infrared region (MIR). The increased photon lifetime at the PCS resonance peaks leads to a higher photon absorption. For tuning of the resonances of a PCS quantum well infrared photodetector we used a device structure, that allows PCS heating by a lateral current flow. It was additionally designed for resonance tuning by postprocessing the PCS thickness. The combination of postprocessing and thermal tuning allows coarse and fine shifting of the photonic crystal resonances. Peakshifts up to 4 cm-1 were achieved by thermal fine tuning at a design wavelength of 8 μm. (author)

  17. Nanostructured Porous Silicon Photonic Crystal for Applications in the Infrared

    G. Recio-Sánchez

    2012-01-01

    Full Text Available In the last decades great interest has been devoted to photonic crystals aiming at the creation of novel devices which can control light propagation. In the present work, two-dimensional (2D and three-dimensional (3D devices based on nanostructured porous silicon have been fabricated. 2D devices consist of a square mesh of 2 μm wide porous silicon veins, leaving 5×5 μm square air holes. 3D structures share the same design although multilayer porous silicon veins are used instead, providing an additional degree of modulation. These devices are fabricated from porous silicon single layers (for 2D structures or multilayers (for 3D structures, opening air holes in them by means of 1 KeV argon ion bombardment through the appropriate copper grids. For 2D structures, a complete photonic band gap for TE polarization is found in the thermal infrared range. For 3D structures, there are no complete band gaps, although several new partial gaps do exist in different high-symmetry directions. The simulation results suggest that these structures are very promising candidates for the development of low-cost photonic devices for their use in the thermal infrared range.

  18. Photonic crystal laser-driven accelerator structures

    Cowan, Benjamin

    2005-01-01

    We discuss simulated photonic crystal structure designs, including two- and three-dimensional planar structures and fibers. The discussion of 2D structures demonstrates guiding of a speed-of-light accelerating mode by a defect in a photonic crystal lattice and reveals design considerations and trade-offs. With a three-dimensional lattice, we introduce a candidate geometry and discuss beam dynamics, coupling, and manufacturing techniques for that structure. In addition we discuss W-band scale tests of photonic crystal structures. The computational methods are also discussed.

  19. 3D position determination in monolithic crystals coupled to SiPMs for PET

    Etxebeste, Ane; Barrio, John; Muñoz, Enrique; Oliver, Josep F.; Solaz, Carles; Llosá, Gabriela

    2016-05-01

    The interest in using continuous monolithic crystals in positron emission tomography (PET) has grown in the last years. Coupled to silicon photomultipliers (SiPMs), the detector can combine high sensitivity and high resolution, the two main factors to be maximized in a positron emission tomograph. In this work, the position determination capability of a detector comprised of a 12× 12× 10 mm3 LYSO crystal coupled to an 8× 8 -pixel array of SiPMs is evaluated. The 3D interaction position of γ-rays is estimated using an analytical model of the light distribution including reflections on the facets of the crystal. Monte Carlo simulations have been performed to evaluate different crystal reflectors and geometries. The method has been characterized and applied to different cases. Intrinsic resolution obtained with the position estimation method used in this work, applied to experimental data, achieves sub-millimetre resolution values. Average resolution over the detector surface for 5 mm thick crystal is  ∼0.9 mm FWHM and  ∼1.2 mm FWHM for 10 mm thick crystal. Depth of interaction resolution is close to 2 mm FWHM in both cases, while the FWTM is  ∼5.3 mm for 5 mm thick crystal and  ∼9.6 mm for 10 mm thick crystal.

  20. Nonlinear photonic crystals as source of entangled photons

    Full text: Nonlinear photonic crystals can be used to provide phase matching for frequency conversion in optically isotropic materials. The phase-matching mechanism proposed here is a combination of form birefringence and phase velocity dispersion in a periodic structure. Since the phase matching relies on the geometry of the photonic crystal, it becomes possible to use highly nonlinear materials. This is illustrated considering a one dimensional periodic Al0.4Ga0.6As/air structure for the generation of 1.5 micrometer light. The down-conversion process is treated quantum mechanically and analytical predictions of the down-converted emission are made. We show that emission suitable for the extraction of polarization-entangled photon pairs can be generated in one-dimensional photonic crystal structures that can be realistically fabricated. (author)

  1. Main Factors for Affecting Photonic Bandgap of Photonic Crystals

    LI Xia; XUE Wei; JIANG Yu-rong; YU Zhi-nong; WANG Hua-qing

    2007-01-01

    The factors affecting one dimensional (1D) and two dimensional (2D) photonic crystals (PhCs) are systemically analyzed in this paper by numerical simulation.Transfer matrix method (TMM) is employed for 1D PCs, both finite difference time domain method (FDTD) and plane wave expansion method (PWE) are employed for 2D PCs.The result shows that the photonic bandgaps (PBG) are directly affected by crystal type, crystal lattice constant, modulation of refractive index and periodicity, and it is should be useful for design of different type photonic crystals with the required PBG and functional devices.Finally, as an example, a near-IR 1D PCs narrow filter was designed.

  2. A novel photonic crystal fibre switch

    Alkeskjold, Thomas Tanggaard; Hermann, D.S.; Broeng, Jes;

    2003-01-01

    A new thermo-optic fibre switch is demonstrated, which utilizes the phase transitions of a thermochromic liquid crystal inside a photonic crystal fibre. We report an extinction ratio of 60 dB and an insertion loss of 1 dB.......A new thermo-optic fibre switch is demonstrated, which utilizes the phase transitions of a thermochromic liquid crystal inside a photonic crystal fibre. We report an extinction ratio of 60 dB and an insertion loss of 1 dB....

  3. Photonic crystal biosensor in spatial fourier domain

    Hallynck, Elewout; Bienstman, Peter

    2011-01-01

    We propose a photonic crystal biosensor, operating at a single wavelength, based on analysis of resonant guided modes in the spatial Fourier domain. Sensitivities of 65 degrees per RIU and more have been simulated.

  4. Parametric solitons in nonlinear photonic crystals

    K Gallo; Stivala, S; Pasquazi, A.; Assanto, G

    2007-01-01

    We present theoretical and experimental investigations on the soliton dynamics associated to multiple second harmonic generation resonances in two-dimensional nonlinear photonic crystals, highlighting a wealth of new possibilities for soliton management in such structures.

  5. Recent Progress of Photonic Crystal Fibers

    Katsusuke; Tajima

    2003-01-01

    Photonic crystal fibers are attractive since we can realize a wide variety of unique features in the PCFs, which cannot be realized in conventional single-mode fibers. We describe recent progress in the PCF.

  6. Enhanced nonlinear effects in photonic crystal fibers

    LI Yan-feng; HU Ming-lie; CHAI Lu; WANG Ching-yue

    2006-01-01

    Photonic crystal fibers are a new class of single-material optical fibers with wavelength-scale air holes running down the entire fiber length.Photonic crystal fibers were first developed in 1996 and have subsequently been the focus of increasing scientific and technological interest in the field of fiber optics.The manufacturing,principles,basic properties,and some applications of photonic crystal fibers are briefly described in this paper.A review of our recent work on the nonlinear effects in photonic crystal fibers is presented,and special emphasis is placed on such effects as supercontinuum generation,frequency conversion, and solitons observed when femtosecond light pulses propagate in these fibers.

  7. Photonic crystal fiber modelling and applications

    Bjarklev, Anders Overgaard; Broeng, Jes; Libori, Stig E. Barkou;

    2001-01-01

    Photonic crystal fibers having a microstructured air-silica cross section offer new optical properties compared to conventional fibers for telecommunication, sensor, and other applications. Recent advances within research and development of these fibers are presented....

  8. Photonic crystal fibers, devices, and applications

    Wei JIN; Jian JU; Hoi Lut HO; Yeuk Lai HOO; Ailing ZHANG

    2013-01-01

    This paper reviews different types of air-silica photonic crystal fibers (PCFs), discusses their novel properties, and reports recent advances in PCF components and sensors as well as techniques for splicing PCFs to standard telecomm fibers.

  9. Selective gas sensing for photonic crystal lasers

    Smith, Cameron; Christiansen, Mads Brøkner; Buss, Thomas; Kristensen, Anders; Lind, Johan Ulrik; Nielsen, Claus Højgård; Larsen, Niels Bent

    2011-01-01

    We facilitate photonic crystal lasers to sense gases via an additional swelling polymer film. We describe the transduction transfer function and experimentally demonstrate an enhanced ethanol vapor sensitivity over 15 dB with low humidity crosstalk....

  10. Symmetry-protected topological photonic crystal in three dimensions

    Lu, Ling; Fang, Chen; Fu, Liang; Johnson, Steven G.; Joannopoulos, John D.; Soljačić, Marin

    2016-04-01

    Topology of electron wavefunctions was first introduced to characterize the quantum Hall states in two dimensions discovered in 1980 (ref. ). Over the past decade, it has been recognized that symmetry plays a crucial role in the classification of topological phases, leading to the broad notion of symmetry-protected topological phases. As a primary example, topological insulators are distinguished from normal insulators in the presence of time-reversal symmetry (). A three-dimensional (3D) topological insulator exhibits an odd number of protected surface Dirac cones, a unique property that cannot be realized in any 2D systems. Importantly, the existence of topological insulators requires Kramers’ degeneracy in spin-orbit coupled electronic materials; this forbids any direct analogue in boson systems. In this report, we discover a 3D topological photonic crystal phase hosting a single surface Dirac cone, which is protected by a crystal symmetry--the nonsymmorphic glide reflection rather than . Such a gapless surface state is fully robust against random disorder of any type. This bosonic topological band structure is achieved by applying alternating magnetization to gap out the 3D `generalized Dirac points’ discovered in the bulk of our crystal. The Z2 bulk invariant is characterized through the evolution of Wannier centres. Our proposal--readily realizable using ferrimagnetic materials at microwave frequencies--expands the scope of 3D topological materials from fermions to bosons.

  11. Veselago lens by photonic hyper-crystals

    Huang, Zun

    2014-01-01

    An imaging system functioning as a Veselago lens has been proposed based on the novel concept of photonic "hyper-crystal" -- an artificial optical medium synthesizing the properties of hyperbolic materials and photonic crystals. This Veselago lens shows a nearly constant negative refractive index and substantially reduced image aberrations. It can find potential applications in photolithography and hot-spots detection of silicon-based integrated circuits.

  12. Selective gas sensing for photonic crystal lasers

    Smith, Cameron; Christiansen, Mads Brøkner; Buss, Thomas;

    2011-01-01

    We facilitate photonic crystal lasers to sense gases via an additional swelling polymer film. We describe the transduction transfer function and experimentally demonstrate an enhanced ethanol vapor sensitivity over 15 dB with low humidity crosstalk.......We facilitate photonic crystal lasers to sense gases via an additional swelling polymer film. We describe the transduction transfer function and experimentally demonstrate an enhanced ethanol vapor sensitivity over 15 dB with low humidity crosstalk....

  13. Enhanced Gain in Photonic Crystal Amplifiers

    Ek, Sara; Semenova, Elizaveta; Hansen, Per Lunnemann;

    2012-01-01

    study of a 1 QW photonic crystal amplifier. Net gain is achieved which enables laser oscillation in photonic crystal micro cavities. The ability to freely tailor the dispersion in a semiconductor optical amplifier makes it possible to raise the optical gain considerably over a certain bandwidth. These...... results are promising for short and efficient semiconductor optical amplifiers. This effect will also benefit other devices, such as mode locked lasers....

  14. Photonic crystal fibers: fundamentals to emerging applications

    Bjarklev, Anders Overgaard

    2005-01-01

    A review of the fundamental properties of photonic crystal fibers is presented. Special focus is held on the emerging fields of application within areas such as actively controlled fiber devices and high-power fiber lasers.......A review of the fundamental properties of photonic crystal fibers is presented. Special focus is held on the emerging fields of application within areas such as actively controlled fiber devices and high-power fiber lasers....

  15. High-birefringent photonic crystal fiber

    Libori, Stig E. Barkou; Broeng, Jes; Knudsen, Erik;

    2001-01-01

    A highly birefringent photonic crystal fiber design is analysed. Birefringence up to 10-3 is found. Random fluctuations in the cladding design are analysed, and the fiber is found to be a feasible polarization maintaining fiber.......A highly birefringent photonic crystal fiber design is analysed. Birefringence up to 10-3 is found. Random fluctuations in the cladding design are analysed, and the fiber is found to be a feasible polarization maintaining fiber....

  16. Photonic Crystals Mathematical Analysis and Numerical Approximation

    Dörfler, Willy; Plum, Michael; Schneider, Guido; Wieners, Christian

    2011-01-01

    This book concentrates on the mathematics of photonic crystals, which form an important class of physical structures investigated in nanotechnology. Photonic crystals are materials which are composed of two or more different dielectrics or metals, and which exhibit a spatially periodic structure, typically at the length scale of hundred nanometers. In the mathematical analysis and the numerical simulation of the partial differential equations describing nanostructures, several mathematical difficulties arise, e. g., the appropriate treatment of nonlinearities, simultaneous occurrence of contin

  17. Dispersion properties of photonic crystal fibres

    Bjarklev, Anders Overgaard; Broeng, Jes; Dridi, Kim;

    1998-01-01

    Approximate dispersion and bending properties of all-silica two-dimensional photonic crystal fibres are characterised by the combination of an effective-index model and classical analysis tools for optical fibres. We believe for the first time to have predicted the dispersion properties of photonic...

  18. Propagation of Light in Photonic Crystal Fibre Devices

    Dabirian, Ali; Akbari, Mahmood; Mortensen, Niels Asger

    2005-01-01

    We describe a semi-analytical approach for three-dimensional analysis of photonic crystal fibre devices. The approach relies on modal transmission-line theory. We offer two examples illustrating the utilization of this approach in photonic crystal fibres: the verification of the coupling action in a photonic crystal fibre coupler and the modal reflectivity in a photonic crystal fibre distributed Bragg reflector.

  19. Optical trapping apparatus, methods and applications using photonic crystal resonators

    Erickson, David; Chen, Yih-Fan

    2015-06-16

    A plurality of photonic crystal resonator optical trapping apparatuses and a plurality optical trapping methods using the plurality of photonic crystal resonator optical trapping apparatuses include located and formed over a substrate a photonic waveguide that is coupled (i.e., either separately coupled or integrally coupled) with a photonic crystal resonator. In a particular embodiment, the photonic waveguide and the photonic crystal resonator comprise a monocrystalline silicon (or other) photonic material absent any chemical functionalization. In another particular embodiment, the photonic waveguide and the photonic crystal resonator comprise a silicon nitride material which when actuating the photonic crystal resonator optical trapping apparatus with a 1064 nanometer resonant photonic radiation wavelength (or other resonant photonic radiation wavelength in a range from about 700 to about 1200 nanometers) provides no appreciable heating of an aqueous sample fluid that is analyzed by the photonic crystal resonator optical trapping apparatus.

  20. Preparation of metallo-dielectric photonic crystals by multi-photon direct laser writing

    Kuebler, Stephen M.; Tal, Amir; Chen, Yun-Sheng

    2008-02-01

    Metallo-dielectric photonic crystals (MDPCs) can exhibit intriguing and potentially useful optical properties, including ultra-wide photonic bandgaps, engineered thermal emission, and negative refractive index. But access to such materials has been limited by the lack of suitable methods for their preparation. We have developed a route to three-dimensional (3D) MDPCs that involves fabricating a polymeric pre-form by multi-photon direct laser writing and then conformally depositing metal onto the pre-form by electroless metallization. We use the approach to prepare silver- and copper-plated "woodpile" PCs having face-centered tetragonal symmetry and unit-cell period of several micrometers. The resulting 3D metallized structures exhibit mid-infrared reflectance that is consistent with theory and experimental observations obtained for MDPCs prepared by other routes. These data indicate that multi-photon direct laser writing coupled with electroless metallization is a viable route to complex 3D MDPCs of many symmetries and basis sets and provides a path for integrating such structures with other micron-scale optical elements.

  1. Robust topology optimization of three-dimensional photonic-crystal band-gap structures

    Men, Han; Lee, Karen Y. K.; Freund, Robert M.; Peraire, Jaime; Johnson, Steven G.

    2014-01-01

    We perform full 3D topology optimization (in which "every voxel" of the unit cell is a degree of freedom) of photonic-crystal structures in order to find optimal omnidirectional band gaps for various symmetry groups, including fcc (including diamond), bcc, and simple-cubic lattices. Even without imposing the constraints of any fabrication process, the resulting optimal gaps are only slightly larger than previous hand designs, suggesting that current photonic crystals are nearly optimal in thi...

  2. The X'tal cube PET detector with a monolithic crystal processed by the 3D sub-surface laser engraving technique: Performance comparison with glued crystal elements

    Yoshida, Eiji, E-mail: rush@nirs.go.jp [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Hirano, Yoshiyuki; Tashima, Hideaki; Inadama, Naoko; Nishikido, Fumihiko [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Moriya, Takahiro; Omura, Tomohide; Watanabe, Mitsuo [Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu, Shizuoka 434-8601 (Japan); Murayama, Hideo; Yamaya, Taiga [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2013-09-21

    The X'tal cube is a depth-of-interaction (DOI)-PET detector which is aimed at obtaining isotropic resolution by effective readout of scintillation photons from six sides of the crystal block. The X'tal cube is composed of a 3D crystal block with isotropic segments. Each face of the 3D crystal block is covered with a 4×4 array of multi-pixel photon counters (MPPCs). Previously, in order to fabricate the 3D crystal block efficiently and precisely, we applied a sub-surface laser engraving technique to a monolithic crystal block instead of gluing segmented small crystals. A dense arrangement of multiple micro-cracks carved by the laser beam works efficiently as a scattering wall for the scintillation photons. The X'tal cube with the laser-processed block showed excellent performance with respect to crystal identification and energy resolution. In this work, for characteristics comparison between the laser-processed block and the conventional segmented array block, we made the laser-processed block and two types of segmented array blocks, one with air gaps and the other with glued segmented small crystals. All crystal blocks had 3D grids of 2 mm pitch. The 4×4 MPPC arrays were optically coupled to each surface of the crystal block. When performance was evaluated using a uniform irradiation of 511 keV, we found that the X'tal cubes with the laser-processed block could easily achieve 2 mm{sup 3} uniform crystal identification. Also, the average energy resolution of each 3D grid was 11.1±0.7%. On the other hand, the glued segmented array block had a pinched distribution and crystals could not be separated clearly. The segmented array block with air gaps had satisfactory crystal identification performance; however, the laser-processed block had higher crystal identification performance. Also, the energy resolution of the laser-processed block was better than for the segmented array blocks. In summary, we found the laser-processed X'tal cube had

  3. Proton radiation therapy (prt) for pediatric optic pathway gliomas: comparison with 3d planned conventional photons and a standard photon technique

    Purpose: Following adequate therapy, excellent long-term survival rates can be achieved for patients with optic pathway gliomas. Therefore, avoidance of treatment-related functional long-term sequelae is of utmost importance. Optimized sparing of normal tissue is of primary concern in the development of new treatment modalities. The present study compares proton radiation therapy (PRT) with a three-dimensional (3D)-planned multiport photon and a lateral beam photon technique for localized and extensive optic pathway tumors. Methods and Materials: Between February 1992 and November 1997, seven children with optic pathway gliomas underwent PRT. For this study, we computed proton, 3D photon, and lateral photon plans based on the same CT data sets, and using the same treatment planning software for all plans. Radiation exposure for normal tissue and discrete organs at risk was quantified based on dose-volume histograms. Results: Gross tumor volume (GTV) ranged from 3.9 cm3 to 127.2 cm3. Conformity index (relation of encompassing isodose to GTV volume) was 2.3 for protons, 2.9 for 3D photons, and 7.3 for lateral photons. The relative increase of normal tissue (NT) encompassed at several isodose levels in relation to NT encompassed by the 95% proton isodose volume was computed. Relative NT volume of proton plan isodoses at the 95%, 90%, 80%, 50%, and 25% isodose level increased from 1 to 1.6, 2.8, 6.4, to a maximum of 13.3. Relative volumes for 3D photons were 1.6, 2.4, 3.8, 11.5, and 34.8. Lateral plan relative values were 6, 8.3, 11.5, 19.2, and 26.8. Analysis for small (3) and larger (> 80 cm3) tumors showed that protons encompassed the smallest volumes of NT at all isodose levels. Comparable conformity and high-dose gradient were achieved for proton and 3D photon plans in small tumors. However, with increasing tumor volume and complexity, differences became larger. At the 50% isodose level, 3D photons were superior to lateral photons for small tumors; this advantage

  4. A novel photonic crystal fibre switch

    Alkeskjold, Thomas Tanggaard; Hermann, D.S.; Broeng, Jes; Bjarklev, Anders Overgaard

    2003-01-01

    A new thermo-optic fibre switch is demonstrated, which utilizes the phase transitions of a thermochromic liquid crystal inside a photonic crystal fibre. We report an extinction ratio of 60 dB and an insertion loss of 1 dB.

  5. Photonic crystal-adaptive optical devices

    Buss, Thomas

    This Ph.D. thesis presents methods for enhancing the optical functionality of transparent glass panes by introduction of invisible nanoscale surface structures, such as gratings and planar photonic cyrstals. In this way the primary functionality of the glass - transparancy - may be enhanced with...... new properties, turning window glasses or glass surfaces of hand-held electronics into multifunctional devices. Common to all examples discussed, gratings and photonic crystals are used to engineer the optical dispersion and selectively modify the direction of guided light and transfer free...... minimized, thus allowing a homogeneous, glare-free, white-light daylighting into the room. Even more functionality can be achieved when the optical effects are tunable or reconfigurable. This is investigated with photonic crystal dye lasers. These lasers combine a photonic crystal resonator with a dye...

  6. A SiPM-based isotropic-3D PET detector X'tal cube with a three-dimensional array of 1 mm{sup 3} crystals

    Yamaya, Taiga; Mitsuhashi, Takayuki; Inadama, Naoko; Nishikido, Fumihiko; Yoshida, Eiji; Murayama, Hideo [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Matsumoto, Takahiro; Kawai, Hideyuki; Suga, Mikio [Chiba University, 1-33 Yayoicho, Inage-ku, Chiba 263-8522 (Japan); Watanabe, Mitsuo, E-mail: taiga@nirs.go.jp [Central Research Laboratory, Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu 434-8601 (Japan)

    2011-11-07

    We are developing a novel, general purpose isotropic-3D PET detector X'tal cube which has high spatial resolution in all three dimensions. The research challenge for this detector is implementing effective detection of scintillation photons by covering six faces of a segmented crystal block with silicon photomultipliers (SiPMs). In this paper, we developed the second prototype of the X'tal cube for a proof-of-concept. We aimed at realizing an ultimate detector with 1.0 mm{sup 3} cubic crystals, in contrast to our previous development using 3.0 mm{sup 3} cubic crystals. The crystal block was composed of a 16 x 16 x 16 array of lutetium gadolinium oxyorthosilicate (LGSO) crystals 0.993 x 0.993 x 0.993 mm{sup 3} in size. The crystals were optically glued together without inserting any reflector inside and 96 multi-pixel photon counters (MPPCs, S10931-50P, i.e. six faces each with a 4 x 4 array of MPPCs), each having a sensitive area of 3.0 x 3.0 mm{sup 2}, were optically coupled to the surfaces of the crystal block. Almost all 4096 crystals were identified through Anger-type calculation due to the finely adjusted reflector sheets inserted between the crystal block and light guides. The reflector sheets, which formed a belt of 0.5 mm width, were placed to cover half of the crystals of the second rows from the edges in order to improve identification performance of the crystals near the edges. Energy resolution of 12.7% was obtained at 511 keV with almost uniform light output for all crystal segments thanks to the effective detection of the scintillation photons.

  7. Two-Dimentional Photonic Crystal Waveguides

    Søndergaard, Thomas; Dridi, Kim

    1999-01-01

    In the recent years a new class of periodic high-index contrast dielectric structures, known as photonic bandgap structures, has been discovered. In these structures frequency intervals, known as photonic bandgaps, where propagation of electromagnetic waves is not allowed, exist due to the periodic...... dielectric function. This is analogous to semiconductors, where electronic bandgaps exist due to the periodic arrangement of atoms. As is also the case for semiconductor structures, photonic bandgap structures may become of even greater value when defects are introduced. In particular, point defects make...... possible a novel class of optical microcavities, whereas line defects make possible a novel class of waveguides. In this paper we will analyze two-dimensional photonic crystal waveguides based on photonic crystals with rods arranged on a triangular and a square lattice using a plane-wave expansion method...

  8. Photonic Crystal Slab Quantum Well Infrared Photodetector

    Full text: Photonic crystals (PCs) exhibit fascinating properties for the control of light. Two-dimensional (2D) PCs are the most important class, as they are compatible with standard semiconductor processing. For confinement of photons in the out-of-plane direction a photonic crystal slab (PCS) is often used. By fabricating a PCS from a photosensitive material the resonant modes of the PCS can be directly measured in the photocurrent spectrum of the device. For detection of light in the mid-infrared region (MIR) we used a quantum well infrared photodetector (QWIP). At the resonance frequencies of the PCS the lifetime of the photons is increased, which increases the photon absorption. Therefore, a lower doping concentration in the quantum wells of the active zone can be used. With a lower doping concentration the thermal noise is reduced and maximum operation temperature can be increased. (author)

  9. Fabrication and optical transmission characteristics of polymers woodpile photonic crystal structures with different crystal planes

    Chen, Ling-Jing; Dong, Xian-Zi; Zhao, Yuan-Yuan; Zhang, Yong-Liang; Liu, Jie; Zheng, Mei-Ling; Duan, Xuan-Ming; Zhao, Zhen-Sheng

    2015-10-01

    The photonic band gap effect which originates from the translational invariance of the periodic lattice of dielectrics has been widely applied in the technical applications of microwave, telecommunication and visible wavelengths. Among the various examples, polymers based three dimensional (3D) photonic crystals (PhCs) have attracted considerable interest because they can be easily fabricated by femo-second (fs) ultrafast laser direct writing (DLW) method. However, it is difficult to realize complete band gap in polymers PhCs due to the low index contrast between polymers and air. Here, we report the design and experimental realization of light's nonreciprocal propagation in woodpile PhCs fabricated with DLW method. Firstly, we fabricated several polymers woodpile PhCs on glass substrate with different crystal planes. The Fourier transform infrared spectroscopy (FTIR) measurements are in agreement with the theoretical predictions, which proves the validity and the accuracy of our DLW method. Further measurements of the transmission spectra with respect to the incident angle reveal that the surface crystal planes and incident wave vectors play important roles in the optical response. Furthermore, we designed and fabricated a 30° PhC wedge. And we find nonreciprocal transmission effect between the forward and backward waves, resulting from the nonsymmetrical refraction of the light in different planes. Our results may find potential applications in future 3D photonic integrated circuits and pave the way for the fabrication of other photonic and optical devices with DLW method.

  10. 液晶材料与3D显示%Liquid Crystal Materials and 3D Display

    张兴; 郑成武; 李宁; 周兴丹; 李正强; 华瑞茂

    2012-01-01

    The article describes the basic principles of the 3D display, highlights the current mainstream 3D display types, including glasses 3D technology and naked eye 3D technology. Glasses 3D technology contains anaglyphic 3D, polarized 3D and active shutter 3D; naked eye 3D technology contains parallax barrier 3D, lenticular lens 3D, directional backlight 3D and multi-layer display 3D. The realization methods of 3D images and applications of the different 3D technologies mentioned above are described. Advantages and disadvantages of the 3D technologies concerning liquid crystal display are discussed in details. According to the characteristics of liquid crystal materials and 3D liquid crystal display, rapid response property of liquid crystal materials used in 3D display panels are concluded. Also requirements of the optical anisotropy parameters of liquid crystal materials are summarized.%介绍了3D显示的基本原理,重点介绍了目前3D显示的主流技术类型,包含了眼镜式3D技术以及裸眼式3D技术,其中眼镜式3D技术包含色差式3D技术、偏光式3D技术和主动快门式3D技术;裸眼式3D技术包含视差屏障式3D技术、柱状透镜式3D技术、指向光源式3D技术和多层显示式3D技术.阐述了各种3D显示技术的基本实现原理和应用领域、并对涉及液晶显示的几种3D技术的优缺点进行了对比.结合液晶材料的特点与3D液晶显示的实际要求,阐述了3D液晶面板对液晶材料快速响应方面的要求,以及液晶透镜对液晶材料光学各向异性参数的要求.

  11. Thermal tunability of photonic bandgaps in liquid crystal filled polymer photonic crystal fiber

    Wang, Doudou; Chen, Guoxiang; Wang, Lili

    2016-05-01

    A highly tunable bandgap-guiding polymer photonic crystal fiber is designed by infiltrating the cladding air holes with liquid crystal 5CB. Structural parameter dependence and thermal tunability of the photonic bandgaps, mode properties and confinement losses of the designed fiber are investigated. Bandgaps red shift as the temperature goes up. Average thermal tuning sensitivity of 30.9 nm/°C and 20.6 nm/°C is achieved around room temperature for the first and second photonic bandgap, respectively. Our results provide theoretical references for applications of polymer photonic crystal fiber in sensing and tunable fiber-optic devices.

  12. Creation of 3-D crystals from single cobalt nanoparticles in external magnetic fields

    Using monodisperse nanocrystalline cobalt (Co) particles in non-polar colloidal dispersions, large areas of symmetric multi-dimensional structures were created using magnetophoretic deposition (MPD). To overcome the van der Waals and magnetic dipole-dipole interactions, the particles were stabilized with hydrophobic amines, phosphines, carboxylates and/or polymers. Depending on the preparation parameters, our particles had either bcc or ε-Co crystalline structures. Using MPD with magnetic fields up to 1 T, it was possible to create two-dimensional (2-D) arrays of near-perfect symmetry up to 1 μm2 in size on various substrates, e.g. carbon-coated copper grids, silicon, or glass. Growth of the 2-D crystal was shown to be dependent on the direction of the applied external magnetic field. Three-dimensional (3-D) crystals could be created by increasing the magnetic field strength up to 6 T. Copyright (2001) CSIRO Australia

  13. Ultra-High-Efficiency Apodized Grating Coupler Using a Fully Etched Photonic Crystal

    Ding, Yunhong; Peucheret, Christophe; Ou, Haiyan

    2013-01-01

    We demonstrate an apodized fiber-to-chip grating coupler using fully etched photonic crystal holes on the silicon-on-insulator platform. An ultra-high coupling efficiency of 1.65 dB (68%) with 3 dB bandwidth of 60 nm is experimentally demonstrated.......We demonstrate an apodized fiber-to-chip grating coupler using fully etched photonic crystal holes on the silicon-on-insulator platform. An ultra-high coupling efficiency of 1.65 dB (68%) with 3 dB bandwidth of 60 nm is experimentally demonstrated....

  14. Ultra-flat supercontinuum generation in cascaded photonic crystal fiber with picosecond fiber laser pumping

    Zhang, Huanian; Li, Ping

    2016-08-01

    In this letter, a new method for achieving ultra-flat supercontinuum generation is proposed. A picosecond fiber laser was used as the pump source, in a cascaded photonic crystal fiber, ultra-flat supercontinuum generation spectrum at 3 dB level from 1070 up to 1630 nm is obtained, to our knowledge, the 3 dB bandwidth of 560 nm is the most flat supercontinuum generation obtained in photonic crystal fibers, the results indicated that our method is efficient for achieving ultra-flat supercontinuum, which will promote the technical applications of supercontinuum.

  15. Quantum Dots in Photonic Crystal Waveguides

    Sollner, Immo Nathanael

    This Thesis is focused on the study of quantum electrodynamics in photonic crystal waveguides. We investigate the interplay between a single quantum dot and the fundamental mode of the photonic crystal waveguide. We demonstrate experimental coupling eciencies for the spontaneous emission into the...... chiral quantum-dot-waveguide coupling. Such a structure is ideally suited for a number of applications in quantum information processing and among others we propose an on-chip spin-photon interface, a single photon transistor, and a deterministic cNOT gate.......This Thesis is focused on the study of quantum electrodynamics in photonic crystal waveguides. We investigate the interplay between a single quantum dot and the fundamental mode of the photonic crystal waveguide. We demonstrate experimental coupling eciencies for the spontaneous emission into the...... mode exceeding 98% for emitters spectrally close to the band-edge of the waveguide mode. In addition we illustrate the broadband nature of the underlying eects, by obtaining coupling eciencies above 90% for quantum dots detuned from the band edge by as far as 20nm. These values are in good agreement...

  16. Chromatic Dispersion Compensation Using Photonic Crystal Fibers with Hexagonal Distribution

    Erick E. Reyes-Vera

    2013-11-01

    Full Text Available In this paper we show various configurations of photonic crystal fiber with hexagonal holes distribution for compensation of chromatic dispersion in optical communications links. The vectorial finite element method with scattering boundary condition was used for the analysis of the fibers. From these results it was estimated variation of the dispersion and the dispersion slope with respect to change in the diameter of the holes in the microstructure. With the above was possible to obtain values of dispersion in the C and L bands of telecommunications close to -850 ps / nm * km, with confinement losses 10-3 dB / km

  17. Ultrafast Optical Switching Using Photonic Molecules in Photonic Crystal Waveguides

    Zhao, Yanhui; Qiu, Kangsheng; Gao, Yunan; Xu, Xiulai

    2015-01-01

    We study the coupling between photonic molecules and waveguides in photonic crystal slab structures using finite-difference time-domain method and coupled mode theory. In a photonic molecule with two cavities, the coupling of cavity modes results in two super-modes with symmetric and anti-symmetric field distributions. When two super-modes are excited simultaneously, the energy of electric field oscillates between the two cavities. To excite and probe the energy oscillation, we integrate photonic molecule with two photonic crystal waveguides. In coupled structure, we find that the quality factors of two super-modes might be different because of different field distributions of super-modes. After optimizing the radii of air holes between two cavities of photonic molecule, nearly equal quality factors of two super-modes are achieved, and coupling strengths between the waveguide modes and two super-modes are almost the same. In this case, complete energy oscillations between two cavities can be obtained with a p...

  18. Waveguide photonic crystals with characteristics controlled with p-i-n diodes

    A one-dimensional waveguide photonic structure-specifically, a photonic crystal with a controllable frequency characteristic-is designed. The central frequency of the spectral window of the photonic crystal can be tuned by choosing the parameters of disturbance of periodicity in the photonic crystal, whereas the transmission coefficient at a particular frequency can be controlled by varying the voltage at a p-i-n diode. It is shown that the possibility exists of using the waveguide photonic crystal to design a microwave device operating in the 3-cm-wavelength region, with a transmission band of 70 MHz at a level 3 dB and the transmission coefficient controllable in the range from -1.5 to -25 dB under variations in the forward voltage bias at the p-i-n diode from zero to 700 mV.

  19. Coupled Photonic Crystal Cavity Array Laser

    Schubert, Martin

    quantum dots are carried out. In agreement with a simple gain model the structures do not show stimulated emission. The spectral splitting due to the coupling between single cavities as well as arrays of cavities is studied theoretically and experimentally. Lasing is observed for photonic crystal cavity......This thesis describes the design, fabrication and characterization of photonic crystal slab lasers. The main focus is on coupled photonic crystal cavity lasers which are examined in great detail. The cavity type which is mainly explored consists of a defect formed by a single missing hole in the...... structures with quantum wells. A detailed Analysis is conducted on single cavities, two coupled cavities and arrays of coupled cavities. The lasing threshold is determined by measuring the photoluminescence intensity depending on the excitation power. Changes in the linewidth and peak position for different...

  20. Optical properties of photonic crystals

    Sakoda, Kazuaki

    2001-01-01

    The interaction between the radiation field and matter is the most fundamen­ tal source of dynamics in nature. It brings about the absorption and emission of photons, elastic and inelastic light scattering, the radiative lifetime of elec­ tronic excited states, and so on. The huge amount of energy carried from the sun by photons is the source of all activities of creatures on the earth. The absorption of photons by chlorophylls and the successive electronic excita­ tion initiate a series of chemical reactions that are known as photosynthesis, which support all life on the earth. Radiative energy is also the main source of all meteorological phenomena. The fundamentals of the radiation field and its interaction with matter were clarified by classical electromagnetism and quantum electrodynamics. These theories, we believe, explain all electromagnetic phenomena. They not only provide a firm basis for contemporary physics but also generate a vast range of technological applications. These include television, ...

  1. Integrated photonic crystal selective emitter for thermophotovoltaics

    Zhou, Zhiguang; Yehia, Omar; Bermel, Peter

    2016-01-01

    Converting blackbody thermal radiation to electricity via thermophotovoltaics (TPV) is inherently inefficient. Photon recycling using cold-side filters offers potentially improved performance but requires extremely close spacing between the thermal emitter and the receiver, namely a high view factor. Here, we propose an alternative approach for thermal energy conversion, the use of an integrated photonic crystal selective emitter (IPSE), which combines two-dimensional photonic crystal selective emitters and filters into a single device. Finite difference time domain and current transport simulations show that IPSEs can significantly suppress sub-bandgap photons. This increases heat-to-electricity conversion for photonic crystal based emitters from 35.2 up to 41.8% at 1573 K for a GaSb photovoltaic (PV) diode with matched bandgaps of 0.7 eV. The physical basis of this enhancement is a shift from a perturbative to a nonperturbative regime, which maximized photon recycling. Furthermore, combining IPSEs with nonconductive optical waveguides eliminates a key difficulty associated with TPV: the need for precise alignment between the hot selective emitter and cool PV diode. The physical effects of both the IPSE and waveguide can be quantified in terms of an extension of the concept of an effective view factor.

  2. Ultra compact spectrometer apparatus and method using photonic crystals

    Ting, David Z. (Inventor); Hill, Cory J. (Inventor); Bandara, Sumith V. (Inventor); Gunapala, Sarath D. (Inventor)

    2009-01-01

    The present invention is directed to methods of photonic crystal formation, and to methods and apparatus for using such photonic crystals, particularly in conjunction with detector arrays. Photonic crystal parameters and detector array parameters are compared to optimize the selection and orientation of a photonic crystal shape. A photonic crystal is operatively positioned relative to a plurality of light sensors. The light sensors can be separated by a pitch distance and positioned within one half of the pitch distance of an exit surface of the photonic crystals.

  3. Selective filling of Photonic Crystal Fibres

    Nielsen, Kristian; Noordegraaf, Danny; Sørensen, Thorkild; Bjarklev, Anders Overgaard; Hansen, Theis Peter

    2005-01-01

    A model for calculating the time necessary for filling one or more specific holes in a photonic crystal fibre is made. This model is verified for water, and its enabling potential is illustrated by a polymer application. Selective filling of the core in an air-guide photonic crystal fibre is...... demonstrated for a polymer and for water. Launching light into such a hybrid-material core proves to be very easily done. Finally, a scheme for enabling access to the core alone, by use of a fusion splicer, is presented....

  4. Slow light in photonic crystal waveguides

    Moulin, G.; Jacobsen, Rune Shim; Lavrinenko, Andrei; Frandsen, Lars Hagedorn; Borel, Peter Ingo; Fage-Pedersen, Jacob

    report on the first experiments where a direct measure of the group velocity is performed; this is done by measuring the time delay of modulated light propagating through a photonic crystal waveguide. The structure is fabricated in silicon-on-insulator (SOI). A group index (c/vg) of up to almost 200 has......In photonic crystal waveguides the group velocity vg of the fundamental guided mode generally decreases at wavelengths close to the cut-off of the mode. This can be inferred from the calculated band diagram (frequency vs. wavevector) since the slope of the mode corresponds to its group velocity. We...

  5. Serrin blow-up criterion for strong solutions to the 3-D compressible nematic liquid crystal flows with vacuum

    Qiao Liu

    2013-01-01

    In this article, we extend the well-known Serrin's blow-up criterion for solutions of the 3-D incompressible Navier-Stokes equations to the 3-D compressible nematic liquid crystal flows where the initial vacuum is allowed. It is proved that for the initial-boundary value problem of the 3-D compressible nematic liquid crystal flows in a bounded domain, the strong solution exists globally if the velocity satisfies the Serrin's condition and $L^1(0,T;L^{infty})$-norm of the gradient of th...

  6. Serrin blow-up criterion for strong solutions to the 3-D compressible nematic liquid crystal flows with vacuum

    Qiao Liu

    2013-04-01

    Full Text Available In this article, we extend the well-known Serrin's blow-up criterion for solutions of the 3-D incompressible Navier-Stokes equations to the 3-D compressible nematic liquid crystal flows where the initial vacuum is allowed. It is proved that for the initial-boundary value problem of the 3-D compressible nematic liquid crystal flows in a bounded domain, the strong solution exists globally if the velocity satisfies the Serrin's condition and $L^1(0,T;L^{infty}$-norm of the gradient of the velocity is bounded.

  7. Photonic crystal fiber pressure sensor

    Fávero, F. C.; Quintero, S. M. M.; Silva, V. V.; Martelli, C.; Braga, Arthur M. B.; Carvalho, Isabel C. S.; Llerena, Roberth W. A.

    2009-10-01

    A high sensitivity optical fiber pressure sensor based on a modal interferometer with high birefringence photonic fiber is proposed and demonstrated. The sensor dependence with hydrostatic pressure is evaluated both numerically and experimentally. The measured pressure sensitivity at room temperature is found to be 3.36 nmMPa-1.

  8. Adaptivity in Bandstructure Calculations of Photonic Crystals

    Krämer, Axel

    2011-01-01

    Photonic crystals are refractive materials with a certain periodic structure. By the Floquet-Bloch transformation the Maxwell eigenvalue problem for the propagating frequencies in an infinite domain (modelling an infinite crystal) is reformulated into a set of eigenvalue problems in the elementary cell, parameterised by the quasi-momemtum k. The aim of this thesis is to develop adaptive techniques to deal with the family of eigenvalue problems.

  9. Integrated photonic devices using self-assembled and optically defined photonic crystal superstructures

    Wang, Ying

    Photonic crystals are structures with dielectric constants modulated in one, two, or three dimensions. They are an interesting subject of active research due to their ability to control the flow of light on a very small-length scale. In the research for this thesis, two integrated photonic devices were designed, fabricated and characterized which utilize the special optical properties of photonic crystals. The first device is a photonic crystal-photodiode micro-electro-optic filter, where a vertical self-assembly method was employed to grow a 3D face-centered cubic (FCC) photonic crystal over a working electro-optic device, a photodiode and a photodiode-plus-preamplifier made using conventional CMOS techniques. The objective of this project was to judge the practicality of the process and to observe the effect of the photonic crystal on the spectral response of the photodiode and photodiode-amplifier. Spectral measurements taken using a grating monochrometer confirmed that a stop band exists in the photocurrent response of this integrated photonic device, photonic crystal photodiode filter, at the predicted wavelength of 600 nm. These results were consistent with the simulation results made by using a 1D slab structure model. Although many groups have developed procedures to successfully grow self-assembled photonic crystals on substrates, we believe this is the first application of grown opals over functioning integrated electronics. This work explored the ability to include photonic functionality on the wafer with integrated electronic circuitry, and demonstrated a simple, practical and economic way to achieve it. The second device is a tunable planar waveguide with an optically defined 1D photonic crystal cladding layer. In this section a planar waveguide with a photosensitive cladding layer (mixture of PMMA co DR1 and side-chain nematic liquid crystal polymer) that is optically addressable and reversible is presented. The maximum of intensity decrease of the

  10. Sentinel Lymph Node Detection by 3D Freehand Single-Photon Emission Computed Tomography in Early Stage Breast Cancer

    Salih Sinan Gültekin; Ahmet Oğuz Hasdemir; Emine Öztürk

    2016-01-01

    We herein present our first experience obtained by 3D freehand single-photon emission computed tomography (SPECT) (F-SPECT) guidance for sentinel lymph node detection (SLND) in two patients with early stage breast cancer. F-SPECT guidance was carried out using one-day protocol in one case and by the two-day protocol in the other one. SLND was performed successfully in both patients. Histopathologic evaluation showed that the excised nodes were tumor negative. Thus, patients underw...

  11. Direct transcription of two-dimensional colloidal crystalarrays into three-dimensional photonic crystals.

    Vlad, Alexandru; Frölich, Andreas; Zebrowski, Thomas; Dutu, Constantin Augustin; Busch, Kurt; Melinte, Sorin; Wegener, Martin; Huynen, Isabelle

    2013-01-01

    A simple protocol for the fabrication of three-dimensional (3D) photonic crystals in silicon is presented. Surface structuring by nanosphere lithography is merged with a novel silicon etching method to fabricate ordered 3D architectures. The SPRIE method, sequential passivation reactive ion etching, is a one-step processing protocol relying on sequential passivation and reactive ion etching reactions using C 4 F 8 and SF 6 plasma chemistries. The diffusion of fresh reactants and etch product ...

  12. Extreme low thermal conductivity in nanoscale 3D Si phononic crystal with spherical pores.

    Yang, Lina; Yang, Nuo; Li, Baowen

    2014-01-01

    In this work, we propose a nanoscale three-dimensional (3D) Si phononic crystal (PnC) with spherical pores, which can reduce the thermal conductivity of bulk Si by a factor up to 10,000 times at room temperature. Thermal conductivity of Si PnCs depends on the porosity, for example, the thermal conductivity of Si PnCs with porosity 50% is 300 times smaller than that of bulk Si. The phonon participation ratio spectra demonstrate that more phonons are localized as the porosity increases. The thermal conductivity is insensitive to the temperature changes from room temperature to 1100 K. The extreme-low thermal conductivity could lead to a larger value of ZT than unity as the periodic structure affects very little the electric conductivity. PMID:24559126

  13. Trajectory attractors for the Sun–Liu model for nematic liquid crystals in 3D

    In this paper we prove the existence of a trajectory attractor (in the sense of Chepyzhov and Vishik) for a nonlinear PDE system obtained from a 3D liquid crystal model accounting for stretching effects. The system couples a nonlinear evolution equation for the director d (introduced in order to describe the preferred orientation of the molecules) with an incompressible Navier–Stokes equation for the evolution of the velocity field u. The technique is based on the introduction of a suitable trajectory space and of a metric accounting for the double-well type nonlinearity contained in the director equation. Finally, a dissipative estimate is obtained by using a proper integrated energy inequality. Both the cases of (homogeneous) Neumann and (non-homogeneous) Dirichlet boundary conditions for d are considered. (paper)

  14. Optically triggered Q-switched photonic crystal laser

    Maune, Brett; Witzens, Jeremy; Baehr-Jones, Thomas; Kolodrubetz, Michael; Atwater, Harry; Scherer, Axel; Hagen, Rainer; Qiu, Yueming

    2005-01-01

    An optically triggered liquid crystal infiltrated Q-switched photonic crystal laser is demonstrated. A photonic crystal laser cavity was designed and fabricated to support two orthogonally polarized high-Q cavity modes after liquid crystal infiltration. By controlling the liquid crystal orientation via a layer of photoaddressable polymer and a writing laser, the photonic crystal lasing mode can be reversibly switched between the two modes which also switches the laser’s emission polarization ...

  15. Fabrication of high fidelity, high index three-dimensional photonic crystals using a templating approach

    Xu, Yongan

    In this dissertation, we demonstrate the fabrication of high fidelity 3D photonic crystal through polymer template fabrication, backfilling and template removal to obtain high index inversed inorganic photonic crystals (PCs). Along the line, we study the photoresist chemistry to minimize the shrinkage, backfilling strategies for complete infiltration, and template removal at high and low temperatures to minimize crack-formation. Using multibeam interference lithography (MBIL), we fabricate diamond-like photonic structures from commercially available photoresist, SU-8, epoxy functionalized polyhedral oligomeric silsesquioxane (POSS), and narrowly distributed poly(glycidyl methacrylate)s (PGMA). The 3D structure from PGMA shows the lowest shrinkage in the [111] direction, 18%, compared to those fabricated from the SU-8 (41%) and POSS (48%) materials under the same conditions. To fabricate a photonic crystal with large and complete photonic bandgap, it often requires backfilling of high index inorganic materials into a 3D polymer template. We have studied different backfilling methods to create three different types of high index, inorganic 3D photonic crystals. Using SU-8 structures as templates, we systematically study the electrodeposition technique to create inversed 3D titania crystals. We find that 3D SU-8 template is completely infiltrated with titania sol-gel through a two-stage process: a conformal coating of a thin layer of films occurs at the early electrodeposition stage (polymer template, inversed 3D titania crystals are obtained. The optical properties of the 3D photonic crystals characterized at various processing steps matches with the simulated photonic bandgaps (PBGs) and the SEM observation, further supporting the complete filling by the wet chemistry. Since both PGMA and SU-8 decompose at a temperature above 400°C, leading to the formation of defects and cracks, a highly thermal and mechanical stable template is desired for PC fabrication. We

  16. Photon statistics in scintillation crystals

    Bora, Vaibhav Joga Singh

    Scintillation based gamma-ray detectors are widely used in medical imaging, high-energy physics, astronomy and national security. Scintillation gamma-ray detectors are eld-tested, relatively inexpensive, and have good detection eciency. Semi-conductor detectors are gaining popularity because of their superior capability to resolve gamma-ray energies. However, they are relatively hard to manufacture and therefore, at this time, not available in as large formats and much more expensive than scintillation gamma-ray detectors. Scintillation gamma-ray detectors consist of: a scintillator, a material that emits optical (scintillation) photons when it interacts with ionization radiation, and an optical detector that detects the emitted scintillation photons and converts them into an electrical signal. Compared to semiconductor gamma-ray detectors, scintillation gamma-ray detectors have relatively poor capability to resolve gamma-ray energies. This is in large part attributed to the "statistical limit" on the number of scintillation photons. The origin of this statistical limit is the assumption that scintillation photons are either Poisson distributed or super-Poisson distributed. This statistical limit is often dened by the Fano factor. The Fano factor of an integer-valued random process is dened as the ratio of its variance to its mean. Therefore, a Poisson process has a Fano factor of one. The classical theory of light limits the Fano factor of the number of photons to a value greater than or equal to one (Poisson case). However, the quantum theory of light allows for Fano factors to be less than one. We used two methods to look at the correlations between two detectors looking at same scintillation pulse to estimate the Fano factor of the scintillation photons. The relationship between the Fano factor and the correlation between the integral of the two signals detected was analytically derived, and the Fano factor was estimated using the measurements for SrI2:Eu, YAP

  17. Self-assembled tunable photonic hyper-crystals

    Smolyaninova, Vera N; Lahneman, David; Narimanov, Evgenii E; Smolyaninov, Igor I

    2013-01-01

    We demonstrate a novel artificial optical material, a photonic hyper-crystal, which combines the most interesting features of hyperbolic metamaterials and photonic crystals. Similar to hyperbolic metamaterials, photonic hyper-crystals exhibit broadband divergence in their photonic density of states due to the lack of usual diffraction limit on the photon wave vector. On the other hand, similar to photonic crystals, hyperbolic dispersion law of extraordinary photons is modulated by forbidden gaps near the boundaries of photonic Brillouin zones. Three dimensional self-assembly of photonic hyper-crystals has been achieved by application of external magnetic field to a cobalt nanoparticle-based ferrofluid. Unique spectral properties of photonic hyper-crystals lead to extreme sensitivity of the material to monolayer coatings of cobalt nanoparticles, which should find numerous applications in biological and chemical sensing.

  18. Bandwidth engineering of photonic crystal waveguide bends

    Borel, Peter Ingo; Frandsen, Lars Hagedorn; Harpøth, Anders;

    2004-01-01

    An effective design principle has been applied to photonic crystal waveguide bends fabricated in silicon-on-insulator material using deep UV lithography resulting in a large increase in the low-loss bandwidth of the bends. Furthermore, it is experimentally demonstrated that the absolute bandwidth...

  19. low pump power photonic crystal fibre amplifiers

    Hougaard, Kristian G.; Broeng, Jes; Bjarklev, Anders Overgaard

    2003-01-01

    Designs of low pump power optical amplifiers, based on photonic crystal fibres are presented. The potential of these fibre amplifiers is investigated, and it is demonstrated that such amplifiers may deliver gains of more than 15 dB at 1550 nm with less than 1 mW of optical pump power....

  20. Photonic crystal nanostructures for optical biosensing applications

    Dorfner, D.; Zabel, T.; Hürlimann, T.;

    2009-01-01

    We present the design, fabrication and optical investigation of photonic crystal (PhC) nanocavity drop filters for use as optical biosensors. The resonant cavity mode wavelength and Q-factor are studied as a function of the ambient refractive index and as a function of adsorbed proteins (bovine...

  1. Chaotic behaviour of photonic crystals resonators

    Di Falco, A.

    2015-02-08

    We show here theoretically and experimentally how chaotic Photonic Crystal resonators can be used for en- ergy harvesting applications and the demonstration of fundamental theories, like the onset of superradiance in quantum systems. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  2. Polarization squeezing with photonic crystal fibers

    Milanovic, J.; Huck, Alexander; Heersink, J.; Marquardt, C.; Andersen, Ulrik Lund; Leuchs, G.

    2007-01-01

    We report on the generation of polarization squeezing by employing intense, ultrashort light pulses in a single pass method in photonic crystal fibers. We investigated the squeezing behavior near the zero-dispersion wavelength and in the anomalous dispersion regime by using two distinct fibers. We...

  3. Topology optimised planar photonic crystal building blocks

    Frandsen, Lars Hagedorn; Hede, K. K.; Borel, Peter Ingo; Jensen, Jakob Søndergaard; Sigmund, Ole

    A photonic crystal waveguide (PhCW) 1x4 splitter has been constructed from PhCW 60° bends1 and Y-splitters2 that have been designed individually by utilising topology optimisation3. The splitter has been fabricated in a silicon-on-insulator material (Fig. 1) and exhibits a broadband splitting for...

  4. Silicon photonic crystals and spontaneous emission

    Dood, Michiel Jacob Andries de

    2002-01-01

    Photonic crystals, i.e. materials that have a periodic variation in refractive index, form an interesting new class of materials that can be used to modify spontaneous emission and manipulate optical modes in ways that were impossible so far. This thesis is divided in three parts. Part I discusses

  5. Monolithic photonic crystal quantum-cascade laser

    Benz, A; Deutsch, C H; Fasching, G; Unterrainer, K [Photonics Institute and Center for Micro- and Nanostructures, Vienna University of Technology, Gusshausstrasse 29/387, A-1040 Vienna (Austria); Andrews, A M; Klang, P; Schrenk, W; Strasser, G, E-mail: alexander.benz@tuwien.ac.a [Institute of Solid-State Electronics and Center for Micro- and Nanostructures, Vienna University of Technology, Floragasse 7/362, A-1040 Vienna (Austria)

    2009-11-15

    We present the design and realization of active photonic crystal (PhC) terahertz quantum-cascade lasers. The devices consist of sub-wavelength isolated pillars which are embedded in a double-metal waveguide. The lasing is observed at flat-band regions not in the bandgap itself. A stable single-mode emission under all driving conditions is achieved.

  6. Fabrication and Analysis of Photonic Crystals

    Campbell, Dean J.; Korte, Kylee E.; Xia, Younan

    2007-01-01

    These laboratory experiments are designed to explore aspects of nanoscale chemistry by constructing and spectroscopically analyzing thin films of photonic crystals. Films comprised of colloidal spheres and polydimethylsiloxane exhibit diffraction-based stop bands that shift reversibly upon exposure to some common solvents. Topics covered in these…

  7. Finite element analysis of photonic crystal fibers

    Uranus, H.P.; Hoekstra, H.J.W.M.; Groesen, van E.

    2005-01-01

    A finite-element-based vectorial optical mode solver, furnished with Bayliss-Gunzburger-Turkel-like transparent boundary conditions, is used to rigorously analyze photonic crystal fibers (PCFs). Both the real and imaginary part of the modal indices can be computed in a relatively small computational

  8. Photonic Crystal Sensors Based on Porous Silicon

    Claudia Pacholski

    2013-04-01

    Full Text Available Porous silicon has been established as an excellent sensing platform for the optical detection of hazardous chemicals and biomolecular interactions such as DNA hybridization, antigen/antibody binding, and enzymatic reactions. Its porous nature provides a high surface area within a small volume, which can be easily controlled by changing the pore sizes. As the porosity and consequently the refractive index of an etched porous silicon layer depends on the electrochemial etching conditions photonic crystals composed of multilayered porous silicon films with well-resolved and narrow optical reflectivity features can easily be obtained. The prominent optical response of the photonic crystal decreases the detection limit and therefore increases the sensitivity of porous silicon sensors in comparison to sensors utilizing Fabry-Pérot based optical transduction. Development of porous silicon photonic crystal sensors which allow for the detection of analytes by the naked eye using a simple color change or the fabrication of stacked porous silicon photonic crystals showing two distinct optical features which can be utilized for the discrimination of analytes emphasize its high application potential.

  9. Limits of slow light in photonic crystals

    Pedersen, Jesper Goor; Xiao, Sanshui; Mortensen, N. Asger

    2008-01-01

    are presented. The results obtained are entirely general and may be applied to any effect which results in a broadening of the electromagnetic states, such as loss, disorder, and finite-size effects. This significantly limits the reduction in group velocity attainable via photonic crystals....

  10. Planar photonic crystal waveguides in silicon oxynitride

    Liu, Haoling; Frandsen, Lars Hagedorn; Borel, Peter Ingo;

    visible wavelengths they absorb light very strongly. In contrary, silicon oxynitride (SiON) glasses offer high transparency down to blue and ultraviolet wavelengths. Thus, SiON photonic crystal waveguides can open for new possibilities, e.g., within sensing and life sciences. We have fabricated Si...

  11. All-polymer photonic crystal slab sensor

    Hermannsson, Pétur Gordon; Sørensen, Kristian Tølbøl; Vannahme, Christoph;

    2015-01-01

    An all-polymer photonic crystal slab sensor is presented, and shown to exhibit narrow resonant reflection with a FWHM of less than 1 nm and a sensitivity of 31 nm/RIU when sensing media with refractive indices around that of water. This results in a detection limit of 4.5x10-6 RIU when measured...

  12. Photonic crystal fibres - novel fibres, new applications

    Bjarklev, Anders Overgaard; Riishede, Jesper; Libori, Stig E. Barkou; Broeng, Jes

    Photonic crystal fibres with an air-silica micro-structured cross-section, offer novel fibre designs and new fibre characteristics, compared to standard silica fibres, such as new guiding mechanisms, different group velocity dispersion characteristics and new possibilities when designed as non...

  13. Vectorial analysis of dielectric photonic crystal VCSEL

    Chung, Il-Sug; Mørk, Jesper

    A new vertical-cavity surface-emitting laser structure employing a dielectric photonic crystal mirror has been suggested and been numerically investigated. The new structure has a smaller threshold gain, a moderate strength of single-transverse-mode operation, a high quality of emission beam free...

  14. Quantum Electrodynamics in Photonic Crystal Waveguides

    Nielsen, Henri Thyrrestrup

    In this thesis we have performed quantum electrodynamics (QED) experiments in photonic crystal (PhC) waveguides and cavity QED in the Anderson localized regime in disordered PhC waveguides. Decay rate measurements of quantum dots embedded in PhC waveguides has been used to map out the variations in...

  15. Suppression law of quantum states in a 3D photonic fast Fourier transform chip.

    Crespi, Andrea; Osellame, Roberto; Ramponi, Roberta; Bentivegna, Marco; Flamini, Fulvio; Spagnolo, Nicolò; Viggianiello, Niko; Innocenti, Luca; Mataloni, Paolo; Sciarrino, Fabio

    2016-01-01

    The identification of phenomena able to pinpoint quantum interference is attracting large interest. Indeed, a generalization of the Hong-Ou-Mandel effect valid for any number of photons and optical modes would represent an important leap ahead both from a fundamental perspective and for practical applications, such as certification of photonic quantum devices, whose computational speedup is expected to depend critically on multi-particle interference. Quantum distinctive features have been predicted for many particles injected into multimode interferometers implementing the Fourier transform over the optical modes. Here we develop a scalable approach for the implementation of the fast Fourier transform algorithm using three-dimensional photonic integrated interferometers, fabricated via femtosecond laser writing technique. We observe the suppression law for a large number of output states with four- and eight-mode optical circuits: the experimental results demonstrate genuine quantum interference between the injected photons, thus offering a powerful tool for diagnostic of photonic platforms. PMID:26843135

  16. Photonic crystal waveguides in PECVD glass

    Liu, Haoling; Frandsen, Lars Hagedorn; Têtu, Amélie; Borel, Peter Ingo; Fage-Pedersen, Jacob

    Silicon oxynitride (SiON) on silicon has found wide use as a robust and versatileplatform for integrated, optical devices. With plasma-enhanced chemical vapourdeposition (PECVD) the refractive index can be varied all the way from 1.5 (pure silica,SiO2) to 2.0 (pure silicon nitride, Si3N4). We have...... fabricated glasses with refractive indexup to approximately 1.75, with which value it is possible to fabricate photonic crystalwaveguides. These structures have the advantage of being transparent in the whole of thevisible region, which makes them different from photonic crystals made in...... semiconductormaterials, and attractive in, e.g., biological applications. For operation in the visibleregion, the photonic crystal waveguide must be realized with a 2D lattice of air holes thatare spaced with a period of ~ 300 nm. In this poster, we report on simulations of theoptical guiding in these structures and...

  17. The Gain Properties of 1-D Active Photonic Crystal

    2003-01-01

    The terminology 'ID frequency'(w ID) is proposed after analyzing the 1D active photonic crystal based on the transfer matrix method. The relationship between wID and the structure parameters of the photonic crystal is investigated.

  18. Epitaxial growth of three dimensionally structured III-V photonic crystal via hydride vapor phase epitaxy

    Three-dimensional (3D) photonic crystals are one class of materials where epitaxy, and the resultant attractive electronic properties, would enable new functionalities for optoelectronic devices. Here we utilize self-assembled colloidal templates to fabricate epitaxially grown single crystal 3D mesostructured GaxIn1−xP (GaInP) semiconductor photonic crystals using hydride vapor phase epitaxy (HVPE). The epitaxial relationship between the 3D GaInP and the substrate is preserved during the growth through the complex geometry of the template as confirmed by X-ray diffraction (XRD) and high resolution transmission electron microscopy. XRD reciprocal space mapping of the 3D epitaxial layer further demonstrates the film to be nearly fully relaxed with a negligible strain gradient. Fourier transform infrared spectroscopy reflection measurement indicates the optical properties of the photonic crystal which agree with finite difference time domain simulations. This work extends the scope of the very few known methods for the fabrication of epitaxial III-V 3D mesostructured materials to the well-developed HVPE technique

  19. Epitaxial growth of three dimensionally structured III-V photonic crystal via hydride vapor phase epitaxy

    Zheng, Qiye; Kim, Honggyu; Zhang, Runyu; Zuo, Jianmin; Braun, Paul V., E-mail: pbraun@illinois.edu [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Sardela, Mauro [Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Balaji, Manavaimaran; Lourdudoss, Sebastian; Sun, Yan-Ting [Laboratory of Semiconductor Materials, Department of Materials and Nano Physics, Royal Institute of Technology (KTH), Electrum 229, 164 40 Kista (Sweden)

    2015-12-14

    Three-dimensional (3D) photonic crystals are one class of materials where epitaxy, and the resultant attractive electronic properties, would enable new functionalities for optoelectronic devices. Here we utilize self-assembled colloidal templates to fabricate epitaxially grown single crystal 3D mesostructured Ga{sub x}In{sub 1−x}P (GaInP) semiconductor photonic crystals using hydride vapor phase epitaxy (HVPE). The epitaxial relationship between the 3D GaInP and the substrate is preserved during the growth through the complex geometry of the template as confirmed by X-ray diffraction (XRD) and high resolution transmission electron microscopy. XRD reciprocal space mapping of the 3D epitaxial layer further demonstrates the film to be nearly fully relaxed with a negligible strain gradient. Fourier transform infrared spectroscopy reflection measurement indicates the optical properties of the photonic crystal which agree with finite difference time domain simulations. This work extends the scope of the very few known methods for the fabrication of epitaxial III-V 3D mesostructured materials to the well-developed HVPE technique.

  20. Controlling Anderson localization in disordered photonic crystal waveguides

    Smolka, Stephan; Garcia, Pedro D.; Lodahl, Peter

    2010-01-01

    We prove Anderson localization in the slow-light regime of a photonic crystal waveguide by measuring the ensemble-averaged localization length which is controlled by the dispersion of the disordered photonic crystal waveguide.......We prove Anderson localization in the slow-light regime of a photonic crystal waveguide by measuring the ensemble-averaged localization length which is controlled by the dispersion of the disordered photonic crystal waveguide....

  1. Topology optimized mode conversion in a photonic crystal waveguide fabricated in siliconon-insulator material

    Frandsen, Lars Hagedorn; Elesin, Yuriy; Frellsen, Louise Floor;

    2014-01-01

    We have designed and for the first time experimentally verified a topology optimized mode converter with a footprint of ∼6.3 μm × ∼3.6 μm which converts the fundamental even mode to the higher order odd mode of a dispersion engineered photonic crystal waveguide. 2D and 3D topology optimization is...

  2. Effective index approximations of photonic crystal slabs: a 2-to-1-D assessment

    Hammer, Manfred; Ivanova, Olena V.

    2009-01-01

    The optical properties of slab-like photonic crystals are often discussed on the basis of effective index (EI) approximations, where a 2-D effective refractive index profile replaces the actual 3-D structure. Our aim is to assess this approximation by analogous steps that reduce finite 2-D waveguide

  3. Photonics and lasing in liquid crystals

    Alison D. Ford

    2006-07-01

    Full Text Available Lasers were invented some 40 years ago and are now used in a plethora of applications. Stable liquid crystals were discovered at about the same time, and are now the basis of a large display industry. Both technologies involve photonics, the former in the creation and use of light and the latter in the control and manipulation of light. However, it is only recently that these two mature technologies have been combined to form liquid-crystal lasers, heralding a new era for these photonic materials and the potential for novel applications. We summarize the characteristics of liquid crystals that lead to laser devices, the wide diversity of possible laser systems, and the properties of the light produced.

  4. Research on interferometric photonic crystal fiber hydrophone

    Luo, Hong; Zhang, Zhen-hui; Wang, Fu-yin; Xiong, Shui-dong

    2013-08-01

    Current research on photonic crystal fiber (PCF) for acoustic sensing was focused on the PCF's pressure sensitivity enhancement. However, whether the enhancement of the PCF's pressure sensitivity can be actually realized is still controversial. Practical hydrophone, utilizing PCFs, to manifest its superior sensitivity to normal single mode fibers (SMFs) for acoustic sensing, should be made. Account to this point of view, actual hydrophone was fabricated. Index guiding PCF was used, the fiber core is solid silicon dioxide (SiO2), and the cladding is SiO2 filled with lots of periodical transverse circular air hollows. The PCF, mounted on an air-backed mandrel for structural sensitivity enhancement, was used as a sensing arm of the fiber Michelson interferometer. The other arm, so called reference arm, was made of SMF. Faraday rotator mirrors (FRM) were spliced in the end of each interferometric arm account for polarization induced phase fading, which is a common scheme in fiber interferometric sensing systems. A similar hydrophone, with all the same structure except that the PCF was exchanged into SMF, was also fabrication to make the contrast. The narrowlinewidth and frequency-tunable optical fiber laser was used to achieve high accuracy optical interferometric measurement. Meanwhile, the phase generated carrier (PGC) modulation-demodulation scheme was adopted to interrogate the measurand signal. Experiment was done by using acoustic standing-wave test apparatus. Linearity characteristics of the two hydrophones were measured at frequency 100Hz, 500Hz, and 1000Hz, experimental results showed that the maximum error of the linearity was 10%, a little larger than the theoretical results. Pressure sensitivities of the PCF hydrophone and the SMF hydrophone were measured using a reference standard PZT hydrophone in the frequency range from 20 Hz to 1600 Hz, the measurement data showed that the sensitivity of the PCF hydrophone was about -162.8 dB re. rad/μPa, with a

  5. Design of a compact mode and polarization converter in three-dimensional photonic crystals

    Wang, Jian; Qi, Minghao

    2012-01-01

    A mode and polarization converter is proposed and optimized for 3D photonic integrated circuits based on photonic crystals (PhCs). The device converts the index-guided TE mode of a W1 solid-core (SC) waveguide to the band-gap-guided TM mode of a W1 hollow-core (HC) waveguide in 3D PhCs, and vice versa. The conversion is achieved based on contra-directional mode coupling. For a 25 mu m-long device, simulations show that the power conversion efficiency is over 98% across a wavelength range of 1...

  6. Novel 3D conformal technique for treament of choroidal melanoma with external beam photon radiotherapy

    To report a 3D conformal radiotherapy (3D-CRT) technique that utilises a specific eye immobilisation and treatment set-up method as an alternative to stereotactic radiotherapy (SRT), for treatment of juxtapapillary choroidal melanoma (CM) and report early treatment outcomes of this technique. A contact lens and rod system was designed to provide eye immobilisation and a treatment reference point for 3D-CRT. The technique is described in detail in the body of the paper. A retrospective chart review was conducted to report freedom from local progression (FFLP) and radiation toxicity in a cohort of patients treated with a dose of 50Gy in five fractions. Eleven eligible patients with juxtapapillary CM were treated between 2003 and 2009. The median follow-up was 3.2 years (range 1.2–5.3). The FFLP was 100% (95% confidence interval 71.5–100). The reproducibility of the set-up and eye immobilisation for fractionation was excellent. The mean dose to the planning target volume was 51.4Gy (interquartilic range 51.0–51.9). Normal tissue dose constraints were achieved; however, the quality of the 3D-CRT plan was variable. The highest acute radiation toxicity score was Common Toxicity Criteria version 3 grade 1. Vision outcomes were poor. n this small series, a novel non-stereotactic technique was found to be an accurate method for the treatment of CM with a high rate of freedom from tumour progression, in keeping with the SRT series. The quality of the conformal plan was variable. Investigation of the optimal dose-fractionation schedule to minimise late radiation toxicity without compromise of tumour control is the focus of ongoing clinical research at our centre.

  7. 3D Photonic Nanostructures via Diffusion-Assisted Direct fs Laser Writing

    Gabija Bickauskaite; Maria Manousidaki; Konstantina Terzaki; Elmina Kambouraki; Ioanna Sakellari; Nikos Vasilantonakis; David Gray; Soukoulis, Costas M.; Costas Fotakis; Maria Vamvakaki; Maria Kafesaki; Maria Farsari; Alexander Pikulin; Nikita Bityurin

    2012-01-01

    We present our research into the fabrication of fully three-dimensional metallic nanostructures using diffusion-assisted direct laser writing, a technique which employs quencher diffusion to fabricate structures with resolution beyond the diffraction limit. We have made dielectric 3D nanostructures by multiphoton polymerization using a metal-binding organic-inorganic hybrid material, and we covered them with silver using selective electroless plating. We have used this method to make spirals ...

  8. Single-photon pulsed-light indirect time-of-flight 3D ranging.

    Bellisai, S; Bronzi, D; Villa, F A; Tisa, S; Tosi, A; Zappa, F

    2013-02-25

    "Indirect" time-of-flight is one technique to obtain depth-resolved images through active illumination that is becoming more popular in the recent years. Several methods and light timing patterns are used nowadays, aimed at improving measurement precision with smarter algorithms, while using less and less light power. Purpose of this work is to present an indirect time-of-flight imaging camera based on pulsed-light active illumination and a 32 × 32 single-photon avalanche diode array with an improved illumination timing pattern, able to increase depth resolution and to reach single-photon level sensitivity. PMID:23482043

  9. Electrically tunable liquid crystal photonic bandgap fiber laser

    Olausson, Christina Bjarnal Thulin; Scolari, Lara; Wei, Lei;

    2010-01-01

    We demonstrate electrical tunability of a fiber laser by using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an all......-spliced laser cavity based on a liquid crystal photonic bandgap fiber mounted on a silicon assembly, a pump/signal combiner with single-mode signal feed-through and an ytterbium-doped photonic crystal fiber. The laser cavity produces a single-mode output and is tuned in the range 1040-1065nm by applying...

  10. Photonic density of states maps for design of photonic crystal devices

    Sukhoivanov, I. A.; Guryev, I. V.; Lucio, J. A. Andrade; Mendez, E. Alvarado; Trejo-Duran, M.; Torres-Cisneros, M.

    2010-01-01

    In this work, it has been investigated whether photonic density of states maps can be applied to the design of photonic crystal-based devices. For this reason, comparison between photonic density of states maps and transmittance maps was carried out. Results of comparison show full correspondence between these characteristics. Photonic density of states maps appear to be preferable for the design of photonic crystal devices, than photonic band gap maps presented earlier and than transmittance...

  11. Photonic crystal fibres - a variety of applications

    Bjarklev, Anders Overgaard; Riishede, Jesper

    2002-01-01

    bandgap fibers. These fibers have today reached a level of maturity where they may be used as building blocks for a variety of new applications. Today's research is focusing increasingly on applications of the fibres, thus redirecting earlier focus on crystal fibers themselves and their unique guiding...... mechanisms. Some of the new applications that are receiving a significant amount of attention are based on nonlinear effects-super continuum generation and applications of such being highly studied examples. In this presentation, we will discuss the basic properties of photonic crystal fibers and highlight...

  12. A plasma photonic crystal bandgap device

    Wang, B.; Cappelli, M. A.

    2016-04-01

    A fully tunable plasma photonic crystal is used to control the propagation of free space electromagnetic waves in the S to X bands of the microwave spectrum. An array of discharge plasma tubes forms a simple square crystal structure with the individual plasma dielectric constant tuned through variation in the plasma density. We show, through simulations and experiments, that transverse electric mode bandgaps exist, arising from the positive and negative dielectric constant regimes of the plasma, and that the respective bandgap frequencies can be shifted through changing the dielectric constant by varying discharge current density.

  13. 3D near-infrared imaging based on a single-photon avalanche diode array sensor

    Mata Pavia, J.; Charbon, E.; Wolf, M.

    2011-01-01

    An imager for optical tomography was designed based on a detector with 128x128 single-photon pixels that included a bank of 32 time-to-digital converters. Due to the high spatial resolution and the possibility of performing time resolved measurements, a new contact-less setup has been conceived in w

  14. Dynamically Reconfigurable Photonic Crystal Nanobeam Cavities

    Frank, Ian W; McCutcheon, Murray W; Loncar, Marko

    2009-01-01

    Wavelength-scale, high Q-factor photonic crystal cavities have emerged as a platform of choice for on-chip manipulation of optical signals, with applications ranging from low-power optical signal processing and cavity quantum electrodynamics, to biochemical sensing. Many of these applications, however, are limited by the fabrication tolerances and the inability to precisely control the resonant wavelength of fabricated structures. Various techniques for post-fabrication wavelength trimming and dynamical wavelength control -- using, for example, thermal effects, free carrier injection, low temperature gas condensation, and immersion in fluids -- have been explored. However, these methods are often limited by small tuning ranges, high power consumption, or the inability to tune continuously or reversibly. In this letter, by combining nano-electro-mechanical systems (NEMS) and nanophotonics, we demonstrate reconfigurable photonic crystal nanobeam cavities that can be continuously and dynamically tuned using elec...

  15. Energy flow in photonic crystal waveguides

    Søndergaard, Thomas; Dridi, Kim

    2000-01-01

    Theoretical and numerical investigations of energy flow in photonic crystal waveguides made of line defects and branching points are presented. It is shown that vortices of energy flow may occur, and the net energy flow along: the line defect is described via the effective propagation velocity....... Single-mode and multimode operations are studied, and dispersion relations are computed for different waveguide widths. Both strong positive, strong negative, and zero dispersion an possible. It is shown that geometric parameters such as the nature of the lattice, the line defect orientation, the defect...... width, and the branching-point geometry have a significant influence on the electrodynamics. These are important issues for the fabrication of photonic crystal structures....

  16. A tunable microwave plasma photonic crystal filter

    Wang, B.; Cappelli, M. A. [Stanford Plasma Physics Laboratory, Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States)

    2015-10-26

    The integration of gaseous plasma elements into a microwave photonic crystal band gap cavity structure allows for active tuning of the device. An alumina rod array microwave photonic crystal waveguide resonator is simulated and characterized through finite difference time domain methods. A gaseous plasma element is integrated into the cavity structure and the effect of plasma density on the transmission properties of the structure is investigated. We show, through both simulations and experiments, that the permittivity of the plasma can be adjusted to shift the peak resonance to allow for both switching and tunability of transmission. The experimentally measured peak shifts in transmission are compared to those simulated and the electron density of the gaseous plasma element is calculated and compared to values determined from the measured discharge current density.

  17. A tunable microwave plasma photonic crystal filter

    Wang, B.; Cappelli, M. A.

    2015-10-01

    The integration of gaseous plasma elements into a microwave photonic crystal band gap cavity structure allows for active tuning of the device. An alumina rod array microwave photonic crystal waveguide resonator is simulated and characterized through finite difference time domain methods. A gaseous plasma element is integrated into the cavity structure and the effect of plasma density on the transmission properties of the structure is investigated. We show, through both simulations and experiments, that the permittivity of the plasma can be adjusted to shift the peak resonance to allow for both switching and tunability of transmission. The experimentally measured peak shifts in transmission are compared to those simulated and the electron density of the gaseous plasma element is calculated and compared to values determined from the measured discharge current density.

  18. "Wandering" soliton in a nonlinear photonic crystal

    Lysak, T. M.; Trofimov, V. A.

    2015-12-01

    On the basis of computer simulation, we demonstrate the possibility of a new type of "wandering" solitons implementation in nonlinear periodic layered structures. "Wandering" soliton moves across the layers, repeatedly changing its direction of motion due to the reflection from the photonic crystal (PC) boundaries with the ambient medium. The initial soliton is located inside a PC and occupies several of its layers. Its profile can be found as the solution of the corresponding nonlinear eigenvalue problem. "Wandering" solitons are formed as a result of a large perturbation of the wave vector, which leads to the soliton motion across photonic crystal layers. In the process of reflection from the boundary with the ambient medium, the soliton partly penetrates into the ambient medium at a depth equal to the width of several PC layers. A slow return of light energy, which previously left the PC, can take place at this moment.

  19. A tunable microwave plasma photonic crystal filter

    The integration of gaseous plasma elements into a microwave photonic crystal band gap cavity structure allows for active tuning of the device. An alumina rod array microwave photonic crystal waveguide resonator is simulated and characterized through finite difference time domain methods. A gaseous plasma element is integrated into the cavity structure and the effect of plasma density on the transmission properties of the structure is investigated. We show, through both simulations and experiments, that the permittivity of the plasma can be adjusted to shift the peak resonance to allow for both switching and tunability of transmission. The experimentally measured peak shifts in transmission are compared to those simulated and the electron density of the gaseous plasma element is calculated and compared to values determined from the measured discharge current density

  20. Liquid Crystals and Photonic Bandgap Fiber Components

    Weirich, Johannes; Wei, Lei; Scolari, Lara;

    Liquid Crystal(LC)filled Photonic Crystal Fibers(PCFs) represent a promising platform for the design and the fabrication of tunable all-in fiber devices. Tunability is achieved by varying the refractive index of the LC thermally, optically or electrically. In this contribution we present important...... parts of the LC theory as well as an application of a LC infiltrated PCF subject to an external electrostatic field. The fiber is placed between two electrodes and the voltage is increased step by step leading to the reorientation of the LC in the fiber capillaries. This mechanism can be used to produce...... a swichable polarizer, and an on chip LC photonic bandgap fiber polarimeter is presented, which admits strong attenuation of one polarization direction while the other one is nearly unaffected....

  1. Nanoimprinted polymer photonic crystal dye lasers

    Christiansen, Mads Brøkner; Smith, Cameron; Buss, Thomas;

    2010-01-01

    Optically pumped polymer photonic crystal band-edge dye lasers are presented. The photonic crystal is a rectangular lattice providing laser feedback as well as an optical resonance for the pump light. The lasers are defined in a thin film of photodefinable Ormocore hybrid polymer, doped with the...... laser dye Pyrromethene 597. A compact frequency doubled Nd:YAG laser (352 nm, 5 ns pulses) is used to pump the lasers from above the chip. The laser devices are 450 nm thick slab waveguides with a rectangular lattice of 100 nm deep air holes imprinted into the surface. The 2-dimensional rectangular...... lattice is described by two orthogonal unit vectors of length a and b, defining the P and X directions. The frequency of the laser can be tuned via the lattice constant a (187 nm - 215 nm) while pump light is resonantly coupled into the laser from an angle () depending on the lattice constant b (355 nm...

  2. Absorption enhancement in graphene photonic crystal structures.

    Khaleque, Abdul; Hattori, Haroldo T

    2016-04-10

    Graphene, a single layer of carbon atoms arranged in a honeycomb lattice, is attracting significant interest because of its potential applications in electronic and optoelectronic devices. Although graphene exhibits almost uniform absorption within a large wavelength range, its interaction with light is weak. In this paper, the enhancement of the optical absorption in graphene photonic crystal structures is studied: the structure is modified by introducing scatterers and mirrors. It is shown that the absorption of the graphene photonic crystal structure can be enhanced about four times (nearly 40%) with respect to initial reference absorption of 9.8%. The study can be a useful tool for investigating graphene physics in different optical settings. PMID:27139857

  3. Percolation and lasing in real 3D crystals with inhomogeneous distributed random pores

    We systematically study the percolation phase transition in real 3D crystals where not only the state of pores but also their radius r and displacement s are random valued numbers. The mean values R=〈r〉 and S=〈s〉 emerge as additional spatial scales in such an extended network. This leads to variations of the threshold (critical) percolation probability pC and the percolation order parameter P that become to be the intricate functions of R and S. Our numerical simulations have shown that in such extended system the incipient spanning cluster can arise even for situations where for simple periodical system the percolation does not exist. We analyzed the validity of the nearest neighbor's approximation and found that such approximation is not valid for materials with large dispersivity of pores. The lasing of nanoemitters incorporated in such percolating spanning cluster is studied too. This effect can open interesting perspectives in modern nano- and micro-information technologies

  4. Solitons in quadratic nonlinear photonic crystals

    Corney, Joel Frederick; Bang, Ole

    2001-01-01

    We study solitons in one-dimensional quadratic nonlinear photonic crystals with modulation of both the linear and nonlinear susceptibilities. We derive averaged equations that include induced cubic nonlinearities, which can be defocusing, and we numerically find previously unknown soliton families....... Because of these induced cubic terms, solitons still exist even when the effective quadratic nonlinearity vanishes and conventional theory predicts that there can be no soliton. We demonstrate that both bright and dark forms of these solitons can propagate stably....

  5. Dynamically Reconfigurable Photonic Crystal Nanobeam Cavities

    Frank, Ian W.; Deotare, Parag B.; McCutcheon, Murray W.; Loncar, Marko

    2009-01-01

    Wavelength-scale, high Q-factor photonic crystal cavities have emerged as a platform of choice for on-chip manipulation of optical signals, with applications ranging from low-power optical signal processing and cavity quantum electrodynamics, to biochemical sensing. Many of these applications, however, are limited by the fabrication tolerances and the inability to precisely control the resonant wavelength of fabricated structures. Various techniques for post-fabrication wavelength trimming an...

  6. Supercontinuum noise in tapered photonic crystal fibers

    Møller, Uffe; Sørensen, Simon Toft; Moselund, Peter Morten;

    Supercontinuum generation (SCG) in highly nonlinear photonic crystal fibers (PCF) has drawn a lot of attention for the last decade. Pumping such PCFs with high-power picosecond laser pulses enables the creation of broadband and intense light. Picosecond SCG is initiated by modulation instability...... and as such contains some noise. It is thus of significant interest to reduce the noise. Here we focus on the noise properties of such supercontinuum (SC) generated in tapered PCFs....

  7. Photonic crystal fibres in the market

    Broeng, Jes; Laurila, Marko; Noordegraaf, Danny;

    2011-01-01

    Photonic crystal fibres (PCFs) emerged as a research topic in the mid 1990'ies [1]. Today, 15 years later, these fibres are increasing deployed in various commercial markets. Here, we will address three of these markets; medical imaging, materials processing and sensors. We will describe how the...... PCFs provide radical improvements and illustrate the strong diversity in the evolution of PCFs to serve these different markets....

  8. Modeling of Photonic Band Gap Crystals and Applications

    Ihab Fathy El-Kady

    2002-08-27

    In this work, the authors have undertaken a theoretical approach to the complex problem of modeling the flow of electromagnetic waves in photonic crystals. The focus is to address the feasibility of using the exciting phenomena of photonic gaps (PBG) in actual applications. The authors start by providing analytical derivations of the computational electromagnetic methods used in their work. They also present a detailed explanation of the physics underlying each approach, as well as a comparative study of the strengths and weaknesses of each method. The Plane Wave expansion, Transfer Matrix, and Finite Difference time Domain Methods are addressed. They also introduce a new theoretical approach, the Modal Expansion Method. They then shift the attention to actual applications. They begin with a discussion of 2D photonic crystal wave guides. The structure addressed consists of a 2D hexagonal structure of air cylinders in a layered dielectric background. Comparison with the performance of a conventional guide is made, as well as suggestions for enhancing it. The studies provide an upper theoretical limit on the performance of such guides, as they assumed no crystal imperfections and non-absorbing media. Next, they study 3D metallic PBG materials at near infrared and optical wavelengths. The main objective is to study the importance of absorption in the metal and the suitability of observing photonic band gaps in such structures. They study simple cubic structures where the metallic scatters are either cubes or interconnected metallic rods. Several metals are studied (aluminum, gold, copper, and silver). The effect of topology is addressed and isolated metallic cubes are found to be less lossy than the connected rod structures. The results reveal that the best performance is obtained by choosing metals with a large negative real part of the dielectric function, together with a relatively small imaginary part. Finally, they point out a new direction in photonic crystal

  9. Photonic crystal slabs for optical micro electro mechanical systems (OMEMS)

    2010-01-01

    Photonic crystals are materials with a periodic variation of composition in one, two or three directions. For some optical frequency intervals, they behave as homogeneous transparent materials where optical waves are allowed to travel without scattering, but these frequency intervals are intervened by photonic band gaps in which the propagation of light is forbidden. Photonic crystals are the photonic analogue to traditional crystals, where the periodic arrangement of atoms allows electrons a...

  10. Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes

    Niclass, Cristiano; Rochas, Alexis; Besse, Pierre-André; Charbon, Edoardo

    2005-01-01

    The design and characterization of an imaging system is presented for depth information capture of arbitrary three-dimensional (3-D) objects. The core of the system is an array of 32 × 32 rangefinding pixels that independently measure the time-of-flight of a ray of light as it is reflected back from the objects in a scene. A single cone of pulsed laser light illuminates the scene, thus no complex mechanical scanning or expensive optical equipment are needed. Millimetric depth accuracies can b...

  11. Two-photon imaging of a magneto-fluorescent indicator for 3D optical magnetometry.

    Lee, Hohjai; Brinks, Daan; Cohen, Adam E

    2015-10-19

    We developed an optical method to visualize the three-dimensional distribution of magnetic field strength around magnetic microstructures. We show that the two-photon-excited fluorescence of a chained donor-bridge-acceptor compound, phenanthrene-(CH2)12-O-(CH2)2-N,N-dimethylaniline, is sensitive to ambient magnetic field strength. A test structure is immersed in a solution of the magneto-fluorescent indicator and a custom two-photon microscope maps the fluorescence of this compound. The decay kinetics of the electronic excited state provide a measure of magnetic field that is insensitive to photobleaching, indicator concentration, or local variations in optical excitation or collection efficiency. PMID:26480460

  12. Printed Large-Area Single-Mode Photonic Crystal Bandedge Surface-Emitting Lasers on Silicon.

    Zhao, Deyin; Liu, Shihchia; Yang, Hongjun; Ma, Zhenqiang; Reuterskiöld-Hedlund, Carl; Hammar, Mattias; Zhou, Weidong

    2016-01-01

    We report here an optically pumped hybrid III-V/Si photoic crystal surface emitting laser (PCSEL), consisting of a heterogeneously integrated III-V InGaAsP quantum well heterostructure gain medium, printed on a patterned defect-free Si photonic crystal (PC) bandedge cavity. Single mode lasing was achieved for a large area laser, with a side-mode suppression ratio of 28 dB, for lasing operation temperature ~ 200 K. Two types of lasers were demonstrated operating at different temperatures. Detailed modal analysis reveals the lasing mode matches with the estimated lasing gain threshold conditions. Our demonstration promises a hybrid laser sources on Si towards three-dimensional (3D) integrated Si photonics for on-chip wavelength-division multiplex (3D WDM) systems for a wide range of volume photonic/electronic applications in computing, communication, sensing, imaging, etc. PMID:26727551

  13. Printed Large-Area Single-Mode Photonic Crystal Bandedge Surface-Emitting Lasers on Silicon

    Zhao, Deyin; Liu, Shihchia; Yang, Hongjun; Ma, Zhenqiang; Reuterskiöld-Hedlund, Carl; Hammar, Mattias; Zhou, Weidong

    2016-01-01

    We report here an optically pumped hybrid III-V/Si photoic crystal surface emitting laser (PCSEL), consisting of a heterogeneously integrated III-V InGaAsP quantum well heterostructure gain medium, printed on a patterned defect-free Si photonic crystal (PC) bandedge cavity. Single mode lasing was achieved for a large area laser, with a side-mode suppression ratio of 28 dB, for lasing operation temperature ~200 K. Two types of lasers were demonstrated operating at different temperatures. Detailed modal analysis reveals the lasing mode matches with the estimated lasing gain threshold conditions. Our demonstration promises a hybrid laser sources on Si towards three-dimensional (3D) integrated Si photonics for on-chip wavelength-division multiplex (3D WDM) systems for a wide range of volume photonic/electronic applications in computing, communication, sensing, imaging, etc.

  14. Combined global 2D-local 3D modeling of the industrial Czochralski silicon crystal growth process

    Jung, T.; Seebeck, J.; Friedrich, J.

    2013-04-01

    A global, axisymmetric thermal model of a Czochralski furnace is coupled to an external, local, 3D, time-dependent flow model of the melt via the inclusion of turbulent heat fluxes, extracted from the 3D melt model, into the 2D furnace model. Boundary conditions of the 3D model are updated using results from the 2D model. In the 3D model the boundary layers are resolved by aggressive mesh refinement towards the walls, and the Large Eddy Simulation approach is used to model the turbulent flow in the melt volume on a relatively coarse mesh to minimize calculation times. It is shown that by using this approach it is possible to reproduce fairly good results from Direct Numerical Simulations obtained on much finer meshes, as well as experimental results for interface shape and oxygen concentration in the case of growth of silicon crystals with 210 mm diameter for photovoltaics by the Czochralski method.

  15. Fabrication of Metarodielectric Photonic Crystals for Microwave Control

    Takinami, Yohei; Kirihara, Soshu, E-mail: y-takinami@jwri.osaka-u.ac.jp [Smart Processing Reserch Center, Joining and Welding Reserch Institute, Osaka University (Japan)

    2011-05-15

    Photonic crystals have inspired a great deal of interests as key platforms for effective control of electromagnetic wave. They can suppress incident waves at a certain frequency by Bragg diffraction and exhibit photonic band gap. Photonic band gap structures can be applied for effective and compact wave control equipments. In this investigation, metal photonic crystals were fabricated by stereolithography and heat treatment process. Furthermore, metal-dielectric crystal was created through impregnation process of dielectric media. This concept of metal-dielectric photonic crystal is expected to contribute for not only the downsizing of electromagnetic wave devices, but also thermal flow control.

  16. Degeneracy and Split of Defect States in Photonic Crystals

    黄晓琴; 崔一平

    2003-01-01

    One-dimensional photonic crystals with two or more structural defects are studied. We observed an interesting characteristic of transmission band structure of photonic crystals with defects using the transmission-matrixmethod simulation. The transmission states in the wide photonic band gap caused by defects revealdegeneracy and split in certain conditions. Every split state is contributed by coupling of all defects in a photonic crystal.Using the tight-binding method, we obtain an approximate analytic expression for the split frequency of photonic crystals with two structural defects.

  17. Fabrication of Metarodielectric Photonic Crystals for Microwave Control

    Photonic crystals have inspired a great deal of interests as key platforms for effective control of electromagnetic wave. They can suppress incident waves at a certain frequency by Bragg diffraction and exhibit photonic band gap. Photonic band gap structures can be applied for effective and compact wave control equipments. In this investigation, metal photonic crystals were fabricated by stereolithography and heat treatment process. Furthermore, metal-dielectric crystal was created through impregnation process of dielectric media. This concept of metal-dielectric photonic crystal is expected to contribute for not only the downsizing of electromagnetic wave devices, but also thermal flow control.

  18. From Molecular to Macroscopic via the Rational Design of a Self-Assembled 3D DNA Crystal

    Zheng, J.; Birktoft, J; Yi, C; Tong, W; Ruojie, S; Constantinou, P; Ginell, S; Chenge, M; Seeman, N

    2009-01-01

    We live in a macroscopic three-dimensional (3D) world, but our best description of the structure of matter is at the atomic and molecular scale. Understanding the relationship between the two scales requires a bridge from the molecular world to the macroscopic world. Connecting these two domains with atomic precision is a central goal of the natural sciences, but it requires high spatial control of the 3D structure of matter1. The simplest practical route to producing precisely designed 3D macroscopic objects is to form a crystalline arrangement by self-assembly, because such a periodic array has only conceptually simple requirements: a motif that has a robust 3D structure, dominant affinity interactions between parts of the motif when it self-associates, and predictable structures for these affinity interactions. Fulfilling these three criteria to produce a 3D periodic system is not easy, but should readily be achieved with well-structured branched DNA motifs tailed by sticky ends2. Complementary sticky ends associate with each other preferentially and assume the well-known B-DNA structure when they do so3; the helically repeating nature of DNA facilitates the construction of a periodic array. It is essential that the directions of propagation associated with the sticky ends do not share the same plane, but extend to form a 3D arrangement of matter. Here we report the crystal structure at 4?Angstroms resolution of a designed, self-assembled, 3D crystal based on the DNA tensegrity triangle4. The data demonstrate clearly that it is possible to design and self-assemble a well-ordered macromolecular 3D crystalline lattice with precise control.

  19. 3-D Monte Carlo neutron-photon transport code JMCT and its algorithms

    JMCT Monte Carlo neutron and photon transport code has been developed which is based on the JCOGIN toolbox. JCOGIN includes the geometry operation, tally, the domain decomposition and the parallel computation about particle (MPI) and spatial domain (OpenMP) etc. The viewdata of CAD is equipped in JMCT preprocessor. The full-core pin-mode, which is from Chinese Qinshan-II nuclear power station, is design and simulated by JMCT. The detail pin-power distribution and keff results are shown in this paper. (author)

  20. Add-drop filter based on dual photonic crystal nanobeam cavities in push-pull mode

    Poulton, Christopher V; Wade, Mark T; Popovic, Milos A

    2015-01-01

    We demonstrate an add-drop filter based on a dual photonic crystal nanobeam cavity system that emulates the operation of a traveling-wave resonator and drops light on resonance to a single output port. Realized on an advanced SOI CMOS (IBM 45nm SOI) chip without any foundry process modifications, the device shows 16dB extinction in through port and 1dB loss in drop port with a 3dB bandwidth of 64GHz. To the best of our knowledge, this is the first implementation of a four-port add-drop filter based on photonic crystal nanobeam cavities.

  1. Distributed optical fibre devices based on liquid crystal infiltrated photonic crystal fibers

    Alkeskjold, Thomas Tanggaard; Broeng, Jes; Hermann, D.S.; Bjarklev, Anders Overgaard

    2004-01-01

    We describe a new class of hybrid photonic crystal fibers, which are liquid crystal infiltrated fibers. Using these fibers, we demonstrate 'distributed' tunable filter and switching functionalities operating by the photonic bandgap effect.

  2. Feasibility of tunable MEMS photonic crystal devices

    Periodic photonic crystal structures channel electromagnetic waves much as semiconductors (quantum) wells channel electrons. Photonic bandgap crystals (PBC) are fabricated by arranging sub-wavelength alternating materials with high and low dielectric constants to produce a desired effective bandgap. Photons with energy within this bandgap cannot propagate through the structure. This property has made these structures useful for microwave applications such as frequency-selective surfaces, narrowband filters, and antenna substrates when the dimensions are on the order of millimeters. They are also potentially very useful, albeit much more difficult to fabricate, in the visible-near-infrared region for various applications when the smallest dimensions are at the edge of current micro-lithography fabrication tools. We micro-fabricated suspended free standing micro-structure bridge waveguides to serve as substrates for PBC features. These micro-bridges were fabricated onto commercial silicon-on-insulator wafers. Nanoscale periodic features were fabricated onto these micro-structure bridges to form a tunable system. When this combined structure is perturbed, such as mechanical deflection of the suspended composite structure at resonance, there can be a realtime shift in the material effective bandgap due to slight geometric alterations due to the induced mechanical stress. Extremely high resonance frequencies device speeds are possible with these very small dimension MEMS

  3. Silicon Three-Dimensional Photonic Crystal and its Applications; TOPICAL

    Photonic crystals are periodically engineered ''materials'' which are the photonic analogues of electronic crystals. Much like electronic crystal, photonic crystal materials can have a variety of crystal symmetries, such as simple-cubic, closed-packed, Wurtzite and diamond-like crystals. These structures were first proposed in late 1980's. However, due mainly to fabrication difficulties, working photonic crystals in the near-infrared and visible wavelengths are only just emerging. In this article, we review the construction of two- and three-dimensional photonic crystals of different symmetries at infrared and optical wavelengths using advanced semiconductor processing. We further demonstrate that this process lends itself to the creation of line defects (linear waveguides) and point defects (micro-cavities), which are the most basic building blocks for optical signal processing, filtering and routing

  4. Properties of photonic bandgap in one-dimensional multicomponent photonic crystal

    ZHANG Yi; WANG Qi

    2006-01-01

    Properties of photonic band gap and light propagation in one-dimensional multicomponent photonic crystal have been studied with the optical transfer matrix method.We mainly analyze the relation of photonic band-gap property with the arrangement of components,the refractive index and the geometrical thickness.In this study,the methods to change the width and the location of the existing photonic band-gaps in multicomponent photonic crystal are proposed.

  5. Bulk crystal growth and electronic characterization of the 3D Dirac semimetal Na{sub 3}Bi

    Kushwaha, Satya K.; Krizan, Jason W.; Cava, R. J., E-mail: rcava@princeton.edu [Department of Chemistry, Princeton University, Princeton, New Jersey 08542 (United States); Feldman, Benjamin E.; Gyenis, András; Randeria, Mallika T.; Xiong, Jun; Xu, Su-Yang; Alidoust, Nasser; Belopolski, Ilya; Liang, Tian; Zahid Hasan, M.; Ong, N. P.; Yazdani, A. [Department of Physics, Princeton University, Princeton, New Jersey 08542 (United States)

    2015-04-01

    High quality hexagon plate-like Na{sub 3}Bi crystals with large (001) plane surfaces were grown from a molten Na flux. The freshly cleaved crystals were analyzed by low temperature scanning tunneling microscopy and angle-resolved photoemission spectroscopy, allowing for the characterization of the three-dimensional (3D) Dirac semimetal (TDS) behavior and the observation of the topological surface states. Landau levels were observed, and the energy-momentum relations exhibited a linear dispersion relationship, characteristic of the 3D TDS nature of Na{sub 3}Bi. In transport measurements on Na{sub 3}Bi crystals, the linear magnetoresistance and Shubnikov-de Haas quantum oscillations are observed for the first time.

  6. Two-photon luminescence thermometry: towards 3D high-resolution thermal imaging of waveguides.

    He, Ruiyun; Vázquez de Aldana, Javier Rodríguez; Pedrola, Ginés Lifante; Chen, Feng; Jaque, Daniel

    2016-07-11

    We report on the use of the Erbium-based luminescence thermometry to realize high resolution, three dimensional thermal imaging of optical waveguides. Proof of concept is demonstrated in a 980-nm laser pumped ultrafast laser inscribed waveguide in Er:Yb phosphate glass. Multi-photon microscopy images revealed the existence of well confined intra-waveguide temperature increments as large as 200 °C for moderate 980-nm pump powers of 120 mW. Numerical simulations and experimental data reveal that thermal loading can be substantially reduced if pump events are separated more than the characteristic thermal time that for the waveguides investigated is in the ms time scale. PMID:27410882

  7. Fractional decay of quantum dots in real photonic crystals

    Kristensen, Philip Trøst; Koenderink, A. Femius; Lodahl, Peter; Tromborg, Bjarne; Mørk, Jesper

    2008-01-01

    We show that fractional decay may be observable in experiments using quantum dots and photonic crystals with parameters that are currently achievable. We focus on the case of inverse opal photonic crystals and locate the position in the crystal where the effect is most pronounced. Furthermore, we...

  8. Lead-Tungstate Crystal of the ALICE Photon Spectrometer (PHOS)

    2003-01-01

    The photon spectrometer (PHOS) is designed to measure the temperature of collisions by detecting photons emerging from them. It will be made of lead tungstate crystals like these. When high-energy photons strike lead tungstate, they make it glow, or scintillate, and this glow can be measured. Lead tungstate is extremely dense (denser than iron), stopping most photons that reach it.

  9. Mineral crystal alignment in mineralized fracture callus determined by 3D small-angle X-ray scattering

    Liu, Yifei; Manjubala, Inderchand; Roschger, Paul; Schell, Hanna; Duda, Georg N.; Fratzl, Peter

    2010-10-01

    Callus tissue formed during bone fracture healing is a mixture of different tissue types as revealed by histological analysis. But the structural characteristics of mineral crystals within the healing callus are not well known. Since two-dimensional (2D) scanning small-angle X-ray scattering (sSAXS) patterns showed that the size and orientation of callus crystals vary both spatially and temporally [1] and 2D electron microscopic analysis implies an anisotropic property of the callus morphology, the mineral crystals within the callus are also expected to vary in size and orientation in 3D. Three-dimensional small-angle X-ray scattering (3D SAXS), which combines 2D SAXS patterns collected at different angles of sample tilting, has been previously applied to investigate bone minerals in horse radius [2] and oim/oim mouse femur/tibia [3]. We implement a similar 3D SAXS method but with a different way of data analysis to gather information on the mineral alignment in fracture callus. With the proposed accurate yet fast assessment of 3D SAXS information, it was shown that the plate shaped mineral particles in the healing callus were aligned in groups with their predominant orientations occurring as a fiber texture.

  10. Mineral crystal alignment in mineralized fracture callus determined by 3D small-angle X-ray scattering

    Callus tissue formed during bone fracture healing is a mixture of different tissue types as revealed by histological analysis. But the structural characteristics of mineral crystals within the healing callus are not well known. Since two-dimensional (2D) scanning small-angle X-ray scattering (sSAXS) patterns showed that the size and orientation of callus crystals vary both spatially and temporally [1] and 2D electron microscopic analysis implies an anisotropic property of the callus morphology, the mineral crystals within the callus are also expected to vary in size and orientation in 3D. Three-dimensional small-angle X-ray scattering (3D SAXS), which combines 2D SAXS patterns collected at different angles of sample tilting, has been previously applied to investigate bone minerals in horse radius [2] and oim/oim mouse femur/tibia [3]. We implement a similar 3D SAXS method but with a different way of data analysis to gather information on the mineral alignment in fracture callus. With the proposed accurate yet fast assessment of 3D SAXS information, it was shown that the plate shaped mineral particles in the healing callus were aligned in groups with their predominant orientations occurring as a fiber texture.

  11. Progress towards photonic crystal quantum cascade laser

    Walker, C L; Farmer, C. D.; Stanley, C. R.; Ironside, C. N.

    2004-01-01

    The work describes recent progress in the design, simulation, implementation and characterisation of photonic crystal (PhC) GaAs-based quantum cascade lasers (QCLs). The benefits of applying active PhC confinement around a QCL cavity are explained, highlighting a route to reduced threshold current operation. Design of a suitable PhC has been performed using published bandgap maps; simulation results of this PhC show a wide, high reflectivity stopband. Implementation of the PhC for the device ...

  12. Fused combiners for photonic crystal bers

    Noordegraaf, Danny

    The work presented in this Ph.D. thesis focuses on the fabrication of fused combiners for high-power fiber lasers and amplifiers. The main focus of the Ph.D. project was to further develop the fused pump combiners for airclad photonic crystal bers (PCFs), and implement a signal feed-through in...... tapered fiber bundle approach and was tested up to 2.5 kW of combined output power. Two components for the field of astrophotonics have also been developed. The first was a fused fiber bundle, designed to be placed in the focal plane of a telescope. By measuring the spectral content out of the individual...

  13. Supercontinuum Generation in a Photonic Crystal Fibre

    YAN Pei-Guang; RUAN Shuang-Chen; LIN Hao-Jia; DU Chen-Lin; YU Yong-Qin; LU Ke-Cheng; YAO Jian-Quan

    2004-01-01

    @@ Nearly 1000-nm broad continuum from 390nm to 1370nm is generated in a 2-m long photonic crystal fibre. The maximum total power of supercontinuum is measured to be 60mW with the pumping power of 800mW output from a 200-fs Ti:sapphire laser. The evolution of the pumping light into supercontinuum is experimentally studied in detail. It is found that the mechanism for supercontinuum generation has direct relations with Raman effect and soliton effect, and the four-wave mixing plays an important role in the last phase of the supercontinuum generation.

  14. Temperature stabilization of optofluidic photonic crystal cavities

    Kamutsch, Christian; Smith, Cameron L.C.; Graham, Alexandra;

    2009-01-01

    demonstrate a PhC cavity with a quality factor of Q15 000 that exhibits a temperature-independent resonance. Temperature-stable cavities constitute a major building block in the development of a large suite of applications from high-sensitivity sensor systems for chemical and biomedical applications to......We present a principle for the temperature stabilization of photonic crystal (PhC) cavities based on optofluidics. We introduce an analytic method enabling a specific mode of a cavity to be made wavelength insensitive to changes in ambient temperature. Using this analysis, we experimentally...

  15. A 3D pencil-beam-based superposition algorithm for photon dose calculation in heterogeneous media

    Tillikainen, L.; Helminen, H.; Torsti, T.; Siljamäki, S.; Alakuijala, J.; Pyyry, J.; Ulmer, W.

    2008-07-01

    In this work, a novel three-dimensional superposition algorithm for photon dose calculation is presented. The dose calculation is performed as a superposition of pencil beams, which are modified based on tissue electron densities. The pencil beams have been derived from Monte Carlo simulations, and are separated into lateral and depth-directed components. The lateral component is modeled using exponential functions, which allows accurate modeling of lateral scatter in heterogeneous tissues. The depth-directed component represents the total energy deposited on each plane, which is spread out using the lateral scatter functions. Finally, convolution in the depth direction is applied to account for tissue interface effects. The method can be used with the previously introduced multiple-source model for clinical settings. The method was compared against Monte Carlo simulations in several phantoms including lung- and bone-type heterogeneities. Comparisons were made for several field sizes for 6 and 18 MV energies. The deviations were generally within (2%, 2 mm) of the field central axis dmax. Significantly larger deviations (up to 8%) were found only for the smallest field in the lung slab phantom for 18 MV. The presented method was found to be accurate in a wide range of conditions making it suitable for clinical planning purposes.

  16. Gaussian Filtering with Tapered Liquid Crystal Photonic Bandgap Fibers

    Scolari, Lara; Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard

    2006-01-01

    We present a device based on a tapered Liquid Crystal Photonic Bandgap Fiber that allows active all-in-fiber filtering. The resulting Photonic Bandgap Fiber device provides a Gaussian filter covering the wavelength range 1200-1600 nm......We present a device based on a tapered Liquid Crystal Photonic Bandgap Fiber that allows active all-in-fiber filtering. The resulting Photonic Bandgap Fiber device provides a Gaussian filter covering the wavelength range 1200-1600 nm...

  17. Electrical Control of Silicon Photonic Crystal Cavity by Graphene

    Majumdar, Arka; Kim, Jonghwan; Vuckovic, Jelena; Wang, Feng

    2012-01-01

    Efficient conversion of electrical signal to optical signal in nano-photonics enables solid state integration of electronics and photonics. Combination of graphene with photonic crystals is promising for electro-optic modulation. In this paper, we demonstrate that by electrostatic gating a single layer of graphene on top of a photonic crystal cavity, the cavity resonance can be changed significantly. A ~2nm change in the cavity resonance linewidth and almost 400% (6 dB) change in resonance re...

  18. Band Structure Based Analysis of Certain Photonic Crystal Structures

    Wolff, Christian

    2011-01-01

    Photonic crystals are periodic dielectric structures that may exhibit a complete photonic band gap. First, I discuss geometric properties of the band structure such as band edges. In a second part, I present work on photonic Wannier functions and their use for solving the wave equation. The third part is devoted to applications of the presented methods: A polarization resolved transmission experiment of opel films and an analogy experiment for spontaneous emission inside a photonic crystal.

  19. Broadband photon-photon interactions mediated by cold atoms in a photonic crystal fiber

    Litinskaya, Marina; Tignone, Edoardo; Pupillo, Guido

    2016-01-01

    We demonstrate theoretically that photon-photon attraction can be engineered in the continuum of scattering states for pairs of photons propagating in a hollow-core photonic crystal fiber filled with cold atoms. The atoms are regularly spaced in an optical lattice configuration and the photons are resonantly tuned to an internal atomic transition. We show that the hard-core repulsion resulting from saturation of the atomic transitions induces bunching in the photonic component of the collective atom-photon modes (polaritons). Bunching is obtained in a frequency range as large as tens of GHz, and can be controlled by the inter-atomic separation. We provide a fully analytical explanation for this phenomenon by proving that correlations result from a mismatch of the quantization volumes for atomic excitations and photons in the continuum. Even stronger correlations can be observed for in-gap two-polariton bound states. Our theoretical results use parameters relevant for current experiments and suggest a simple and feasible way to induce interactions between photons. PMID:27170160

  20. Broadband photon-photon interactions mediated by cold atoms in a photonic crystal fiber

    Litinskaya, Marina; Tignone, Edoardo; Pupillo, Guido

    2016-05-01

    We demonstrate theoretically that photon-photon attraction can be engineered in the continuum of scattering states for pairs of photons propagating in a hollow-core photonic crystal fiber filled with cold atoms. The atoms are regularly spaced in an optical lattice configuration and the photons are resonantly tuned to an internal atomic transition. We show that the hard-core repulsion resulting from saturation of the atomic transitions induces bunching in the photonic component of the collective atom-photon modes (polaritons). Bunching is obtained in a frequency range as large as tens of GHz, and can be controlled by the inter-atomic separation. We provide a fully analytical explanation for this phenomenon by proving that correlations result from a mismatch of the quantization volumes for atomic excitations and photons in the continuum. Even stronger correlations can be observed for in-gap two-polariton bound states. Our theoretical results use parameters relevant for current experiments and suggest a simple and feasible way to induce interactions between photons.

  1. Broadband photon-photon interactions mediated by cold atoms in a photonic crystal fiber.

    Litinskaya, Marina; Tignone, Edoardo; Pupillo, Guido

    2016-01-01

    We demonstrate theoretically that photon-photon attraction can be engineered in the continuum of scattering states for pairs of photons propagating in a hollow-core photonic crystal fiber filled with cold atoms. The atoms are regularly spaced in an optical lattice configuration and the photons are resonantly tuned to an internal atomic transition. We show that the hard-core repulsion resulting from saturation of the atomic transitions induces bunching in the photonic component of the collective atom-photon modes (polaritons). Bunching is obtained in a frequency range as large as tens of GHz, and can be controlled by the inter-atomic separation. We provide a fully analytical explanation for this phenomenon by proving that correlations result from a mismatch of the quantization volumes for atomic excitations and photons in the continuum. Even stronger correlations can be observed for in-gap two-polariton bound states. Our theoretical results use parameters relevant for current experiments and suggest a simple and feasible way to induce interactions between photons. PMID:27170160

  2. Fabrication of Two-Dimensional Organic Photonic Crystal Microcavity

    JIANG Ping; HU Xiao-Yong; YANG Hong; GONG Qi-Huang

    2006-01-01

    @@ A two-dimensional polystyrene photonic crystal microcavity is fabricated by the method of focused ion beam etching. The scanning electron microscopy and the transmittance spectrum are used to characterize the properties of the photonic crystal microcavity. The quality factor and the transmittance of the photonic crystal microcavity is more than 530 and 90%, respectively. The measured results are in agreement with the theoretical predictions.

  3. Superlens Biosensor with Photonic Crystals in Negative Refraction

    Zohreh Dorrani; Mohammad Ali Mansouri-Birjandi

    2012-01-01

    We have presented the study on one structure fabricated with photonic crystals for use as biosensors with superlensing property in dimensions of nano and micro with negative refractive index. In a special frequency, this type of photonic crystal acts as Left-Handed Metamaterial (LHM). It is shown that by a suitable choice of design parameters, such as, dimensions of bars, it is possible to reach sensing property by this structure in two-dimensional triangular photonic crystals. The structure ...

  4. Terahertz wave attenuation analysis of silicon photonic crystal fiber

    Finite element method is employed to analyze terahertz wave transmission characteristic in hexagonal photonic crystal fiber. We compared the terahertz field distribution and attenuation of the proposed photonic crystal fiber for different air-hole diameter. When d/ equals to 0.95, the lowest of transmission loss is 0.0012dB/m. The simulated results show that the performance of the presented photonic crystal fiber meets with the demand of terahertz transmission.

  5. Young's double-slit experiment in photonic crystals

    We present an experimental and numerical study of the transmission of a photonic crystal perforated by two subwavelength slits, separated by two wavelengths. The experimental near-field image of the double-slit design of the photonic crystal shows an interference pattern, which is analogous to Young's experiment. This interference arises as a consequence of the excitation of surface states of the photonic crystals and agrees very well with the simulations.

  6. Few-quantum-dot lasing in photonic crystal nanocavities

    Liu, Jin; Ates, Serkan; Stobbe, Søren; Lorke, Michael; Lodahl, Peter

    2011-01-01

    Photonic crystal nanolasers have attracted great interest both for fundamental research and applications in the past decade. In photonic crystal cavities, the leakage to optical modes is strongly reduced, which increases the spontaneous emission coupling factor, β. This is a crucial parameter for...... and more advanced semiconductor models of photonic crystal nanolasers is still missing [2]. The goal of this work is to get a deep understanding of the quantum dots based nanocavity lasers by comparing experiments to theory....

  7. Photonic crystal waveguides by direct writing of e-beam on self-assembled photonic crystals

    Sunita Kedia; R Vijaya

    2011-04-01

    Direct electron beam lithography technique is used for writing a variety of waveguide structures on thin films of polymethyl methacrylate (PMMA) and self-assembled three-dimensionally ordered photonic crystals made up of PMMA colloidal spheres. The waveguide structures fabricated on both these type of samples are characterized by scanning electron microscope and optical microscope images.

  8. Superlens Biosensor with Photonic Crystals in Negative Refraction

    Zohreh Dorrani

    2012-05-01

    Full Text Available We have presented the study on one structure fabricated with photonic crystals for use as biosensors with superlensing property in dimensions of nano and micro with negative refractive index. In a special frequency, this type of photonic crystal acts as Left-Handed Metamaterial (LHM. It is shown that by a suitable choice of design parameters, such as, dimensions of bars, it is possible to reach sensing property by this structure in two-dimensional triangular photonic crystals. The structure investigated in three size and results shows the slab of photonic crystals prosperous process that, with sensing applications can has imaging applications.

  9. Rare-Earth Doped Photonic Crystal Fibre Lasers and Amplifiers

    Hougaard, Kristian G.

    2005-01-01

    In this thesis, a theoretical and numerical study of the use of rare-earthdoped photonic crystal fibres as optical amplifiers and lasers, has been performed. Photonic crystal fibres or microstructured optical fibres is a new kind of optical fibre in which the cladding region typically consist of a....... The thesis also presents the basic properties of optical amplification, and describes the numerical model developed to model the behaviour of lasers and amplifiers based on photonic crystal fibres. The developed numerical tools are then used to investigate specific applications of photonic crystal...

  10. Negative Refraction experiments in Photonic Crystal prisms

    Vodo, Plarenta; Parimi, Patanjali. V.; Lu, Wentao. T.; di Gennaro, Emiliano; Sridhar, Srinivas

    2004-03-01

    We have experimentally demonstrated negative refraction in metallic photonic crystal (PC) prisms [1]. The refracted fields in the parallel plate waveguide (PPW) are measured by an automated dipole antenna, which scans the desired area, while the free space (FS) measurements, performed in a anechoic chamber, are measured by a rectangular X-band horn that swings in an arc in far field area. Both TE and TM excitation modes are used in FS experiments. Numerical calculations of the band structure and equi-frequency surface simulations are used to determine frequency regions of negative refraction of the triangular lattice PC. Angle of refraction determined by theoretical simulations and experimental results, are in exceptional good agreement, yielding the negative refraction index. FS and PPW refraction experimental results agree remarkably with simulations. 1. "Negative Refraction and Left-handed electromagnetism in Microwave Photonic Crystals", P.V Parimi, W.T Lu, P.Vodo J. Sokoloff and S.Sridhar, cond-mat/0306109 (2003)

  11. Photonic Crystal Laser-Driven Accelerator Structures

    Cowan, Benjamin M.

    2007-08-22

    Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques.

  12. Multicriteria classification for photonic crystal fiber design

    Sassi, Imene; Belacel, Nabil; Bouslimani, Yassine; Hamam, Habib; Attia, Rabah

    2008-06-01

    The photonic crystal fibers (PCF) are considered as the future information support for the telecommunication system. In this paper, a multicriteria method is used for the design of the PCFs with the user-defined optical proprieties. This method combines the deductive and the inductive learning and it is introduced for the first time in the field of optical fibers. These simulation tools will be optimized for PCF structures in order to optimize the parameters necessary for the improvement of the communication system performances. The multicriteria decision analysis makes it possible to evaluate the optical proprieties of PCFs by determining the effects of attenuation and distortion caused by Physics Phenomena. This decision is done by the means of a relational model preferably. As a result, this method avoids the recourse to distances and makes it possible to use quantitative and/or qualitative criteria. Moreover, it defeat some difficulties encountered when data are expressed in different units. These advantages allow the new multicriteria classification method to be employed easily to the diagnosis and to the design of photonic-crystals fibers.

  13. Dielectric matrices with air cavities as a waveguide photonic crystal

    Usanov, D. A.; Skripal', A. V.; Merdanov, M. K.; Gorlitskii, V. O.

    2016-02-01

    Frequency dependences of the transmission coefficient of a microwave photonic crystal that represents a structure containing alternating layers of ceramic material (Al2O3) with a relatively large number of cavities and foam plastic are studied in the presence and absence of distortions of the periodicity of a photonic structure. The frequency dependences of the transmission coefficient can be analyzed using a model of effective medium that makes it possible to consider the interaction of electromagnetic wave and photonic crystal using a transfer matrix of a 1D photonic crystal. The band character of the frequency dependence of the transmission coefficient of the photonic crystal related to the periodicity of the photonic crystal in the transverse plane for the waveguide with a standard cross section is not manifested in a certain range of material permittivities.

  14. Novel and simple route to fabricate 2D ordered gold nanobowl arrays based on 3D colloidal crystals.

    Rao, Yanying; Tao, Qin; An, Ming; Rong, Chunhui; Dong, Jian; Dai, Yurong; Qian, Weiping

    2011-11-01

    In this study, we present a new method to fabricate large-area two-dimensionally (2D) ordered gold nanobowl arrays based on 3D colloidal crystals by wet chemosynthesis, which combines the advantages of a very simple preparation and an applicability to "real" nanomaterials. By combination of in situ growth of gold nanoshell (GNSs) arrays based on three-dimensional (3D) colloidal silica crystals, a monolayer ordered reversed GNS array (2D ordered GNS array) was conveniently manufactured by an acrylic ester modified biaxial oriented polypropylene (BOPP). 2D ordered gold nanobowl array with adjustable periodic holes, good stability, reproducibility, and repeatability could be obtained when the silica core was etched by HF solution. The surface-enhanced Raman scattering (SERS) enhancement factor (EF) of this 2D ordered gold nanobowl array could reach 1.27 × 10(7), which shows high SERS enhancing activity and can be used as a universal SERS substrate. PMID:21932785

  15. In vitro analog of human bone marrow from 3D scaffolds with biomimetic inverted colloidal crystal geometry

    Nichols, Joan E.; Cortiella, Joaquin; Lee, Jungwoo; Niles, Jean A; Cuddihy, Meghan; Wang, Shaopeng; Cantu, Andrea; Mlcak, Ron; Valdivia, Esther; Yancy, Ryan; Bielitzki, Joseph; McClure, Matthew L.; Nicholas A. Kotov

    2008-01-01

    In vitro replicas of bone marrow can potentially provide a continuous source of blood cells for transplantation and serve as a laboratory model to examine human immune system dysfunctions and drug toxicology. Here we report the development of an in vitro artificial bone marrow based on a 3D scaffold with inverted colloidal crystal (ICC) geometry mimicking the structural topology of actual bone marrow matrix. To facilitate adhesion of cells, scaffolds were coated with a layer of transparent na...

  16. Photonic crystals: features and applications (physics research and technology)

    2013-01-01

    The present book is focused on the study of unprecedented control and manipulation of light by photonic crystals (PCs) and their applications. These are micro- or usually nano-structures composed of periodic indexes of refraction of dielectrics with high refractive index contrast. They exhibit optical frequency band gaps in analogy to electronic bands for a periodic potential of a semiconductor crystal lattice. The gemstone opal and butterflys feathers colours are already referred to as natural examples of photonic crystals. The characteristics of such supper-lattices were first reported by Yablonovitch in 1987. The exploitation of photonic crystals is a promising tool in communication, sensors, optical computing, and nanophotonics. Discussed are the various features of one-dimensional (1D) and two-dimensional (2D) photonic crystals, photonic quasi crystals, heterostuctures and PC fibres under a variety of conditions using several materials, and metamaterials. It also focuses on the applications of PCs in opt...

  17. Robust topology optimization of three-dimensional photonic-crystal band-gap structures

    Men, Han; Freund, Robert M; Peraire, Jaime; Johnson, Steven G

    2014-01-01

    We perform full 3D topology optimization (in which "every voxel" of the unit cell is a degree of freedom) of photonic-crystal structures in order to find optimal omnidirectional band gaps for various symmetry groups, including fcc (including diamond), bcc, and simple-cubic lattices. Even without imposing the constraints of any fabrication process, the resulting optimal gaps are only slightly larger than previous hand designs, suggesting that current photonic crystals are nearly optimal in this respect. However, optimization can discover new structures, e.g. a new fcc structure with the same symmetry but slightly larger gap than the well known inverse opal, which may offer new degrees of freedom to future fabrication technologies. Furthermore, our band-gap optimization is an illustration of a computational approach to 3D dispersion engineering which is applicable to many other problems in optics, based on a novel semidefinite-program formulation for nonconvex eigenvalue optimization combined with other techniq...

  18. Hydrothermal Synthesis, Crystal Structure and Characterization of a Microporous 3D Pillared-Layer 3d-4f Copper-Holmium Heterometallic Coordination Polymer

    A microporous 3D pillared-layer 3d-4f (Cu+-Ho3+) coordination polymer based on the linkages of 2D wavelike Ho-carboxylate layers and 1D Cu4Br4 inorganic chains in centipede-type structure by IN. pillars has been obtained. Furthermore, the magnetic properties of this complex have been investigated. Our results provide an intriguing example of 3D 3d-4f PCPs and further demonstrate that the pillared-layer approach can be used for constructing novel 3D 3d-4f PCPs. There has been more and more interest in recent years in the design and synthesis of porous coordination polymers (PCPs) not only for their fascinating structural diversity but also for their potential applications as functional materials in magnetism, molecular adsorption, gas storage, ion exchange, catalysis and separation. Up to now, almost all approaches to the construction of porous materials have focused on the 3D monometallic PCPs. However, the preparation of hetero-metallic PCPs especially containing lanthanide (Ln) and transition metal (TM) ions has been drawn less attention. A pillared-layer approach to the construction of 3D 3d-4f coordination polymers upon the connections of Ln-carboxylate layers and TM-inorganic motifs by organic pillars via coordination bonding has been reported. In most such 3D pillared-layer 3d-4f structures, TM-inorganic layers/chains generally obstruct the development of channels based on the pores formed by Ln-carboxylate layers

  19. Enhancement of the Accuracy of photonic structure of photonic crystal fibre by using Artificial Neural Network

    Er. Amandeep Kaur; Dr. Sandeep Singh Gill; Prof. Baljeet Kaur

    2012-01-01

    There are several methods introduced to refining the accuracy of Photonic structures. No one has as yet studied the effect of Neural Networks in refining the accuracy of the photonic structure of the Photonic Crystal Fibers. In this paper we use The simulation that will be conducted using artificial neural networks to refining the accuracy of the photonic crystal fibers &.Artificial neural network will be further optimized by varying the number of layers to enhance the accuracy of the photoni...

  20. Very high coupling of TM polarised light in photonic crystal directional couplers

    Borel, Peter Ingo; Thorhauge, Morten; Frandsen, Lars Hagedorn;

    2003-01-01

    The experimental and simulated spectra for TE and TM polarised light for the transmission through photonic crystal directional couplers are presented. The 3D FDTD simulations successfully explain all the major features of the experimental spectra as well as the actual transmission level. Especially...... noteworthy is the transmission level, experimentally found to be above -3 dB in the wavelength range 1520-1690 nm, for TM polarised light in the coupled channel. It is noted that even though band calculations show that the propagation of the TM polarisation takes place below the TM valence band, very high...... and spectrally smooth coupling is observed for the TM polarisation in this wavelength range....

  1. Triangular nanobeam photonic cavities in single crystal diamond

    Bayn, Igal; Salzman, Joseph; Kalish, Rafi

    2011-01-01

    Diamond photonics provides an attractive architecture to explore room temperature cavity quantum electrodynamics and to realize scalable multi-qubit computing. Here we review the present state of diamond photonic technology. The design, fabrication and characterization of a novel triangular cross section nanobeam cavity produced in a single crystal diamond is demonstrated. The present cavity design, based on a triangular cross section allows vertical confinement and better signal collection efficiency than that of slab-based nanocavities, and eliminates the need for a pre-existing membrane. The nanobeam is fabricated by Focused-Ion-Beam (FIB) patterning. The cavity is characterized by a confocal photoluminescence. The modes display quality factors of Q ~220 and are deviated in wavelength by only ~1.7nm from the NV- color center zero phonon line (ZPL). The measured results are found in good agreement with 3D Finite-Difference-Time-Domain (FDTD) calculations. A more advanced cavity design with Q=22,000 is model...

  2. Flat-top Drop Filter based on a Single Topology Optimized Photonic Crystal Cavity

    Frandsen, Lars Hagedorn; Elesin, Yuriy; Guan, Xiaowei; Sigmund, Ole; Yvind, Kresten

    2015-01-01

    Outperforming conventional design concepts, a flat-top drop filter has been designed byapplying 3D topology optimization to a single waveguide-coupled L3 photonic crystal cavity.Measurements on the design fabricated in silicon-on-insulator material reveal that the pass-band ofthe drop channel is...... flat within 0.44 dB over a wavelength range of 9.7 nm with an insertion losslower than 0.85 dB....

  3. Crystallization of Mefenamic Acid from Dimethylformamide Microemulsions: Obtaining Thermodynamic Control through 3D Nanoconfinement

    Nicholson, Catherine E.; Sharon J. Cooper

    2011-01-01

    Recently we showed how crystallization in microemulsions could lead directly to the most stable polymorph, thereby leapfrogging Ostwald’s rule of stages. Here we consider in more details the crystallization of mefenamic acid from dimethylformamide microemulsions. Crystallization of mefenamic acid from bulk DMF has previously been shown to produce only the metastable Form II irrespective of the supersaturation or temperature. In contrast, we show that stable Form I can be produced from DMF mic...

  4. Single-Photon Technologies Based on Quantum-Dots in Photonic Crystals

    Lehmann, Tau Bernstorff

    In this thesis, the application of semiconductor quantum-dots in photonic crystals is explored as aresource for single-photon technology.Two platforms based on photonic crystals, a cavity and a waveguide, are examined as platformssingle-photon sources. Both platforms demonstrate strong single-photon...... purity under quasi-resonantexcitation. Furthermore the waveguide based platform demonstrates indistinguishable single-photonsat timescales up to 13 ns.A setup for active demultiplexing of single-photons to a three-fold single-photon state is proposed.Using a fast electro-optical modulator, single-photons...... from a quantum-dot are routed on timescalesof the exciton lifetime. Using active demultiplexing a three-fold single-photon state is generated at anextracted rate of 2:03 ±0:49 Hz.An on-chip power divider integrated with a quantum-dot is investigated. Correlation measurementof the photon statistic...

  5. Fractional decay of quantum dots in photonic crystals

    Kristensen, Philip Trøst; Koenderink, Femius; Lodahl, Peter; Tromborg, Bjarne; Mørk, Jesper

    2008-01-01

    We define a practical measure for the degree of fractional decay and establish conditions for the effect to be observable for quantum dots in photonic crystals exhibiting absorptive losses.......We define a practical measure for the degree of fractional decay and establish conditions for the effect to be observable for quantum dots in photonic crystals exhibiting absorptive losses....

  6. Increased polarization-entangled photon flux via thinner crystals

    We analyze the scaling laws that govern the production of polarization-entangled photons via type-II spontaneous parametric down-conversion (SPDC). We demonstrate experimentally that thin nonlinear crystals can generate a higher number of entangled photons than thicker crystals, basically because they generate a broader spectrum

  7. Coherent Cherenkov radiation and laser oscillation in a photonic crystal

    Denis, T; Lee, J H H; van der Meer, R; Strooisma, A; van der Slot, P J M; Vos, W L; Boller, K J

    2016-01-01

    We demonstrate that photonic crystals can be used to generate powerful and highly coherent laser radiation when injecting a beam of free electrons. Using theoretical investigations we present the startup dynamics and coherence properties of such laser, in which gain is provided by matching the optical phase velocity in the photonic crystal to the velocity of the electron beam.

  8. Photonic crystal fiber design for broadband directional coupling

    Lægsgaard, Jesper; Bang, Ole; Bjarklev, Anders Overgaard

    2004-01-01

    A novel design for a broadband directional coupler based on a photonic crystal fiber is investigated numerically. It is shown that suitable index-depressing doping of the core regions in an index-guiding twin-core photonic crystal fiber can stabilize the coupling coefficient between the cores over...

  9. Topology optimization and fabrication of photonic crystal structures

    Borel, Peter Ingo; Harpøth, Anders; Frandsen, Lars Hagedorn; Kristensen, Martin; Shi, Peixiong; Jensen, Jakob Søndergaard; Sigmund, Ole

    2004-01-01

    Topology optimization is used to design a planar photonic crystal waveguide component resulting in significantly enhanced functionality. Exceptional transmission through a photonic crystal waveguide Z-bend is obtained using this inverse design strategy. The design has been realized in a silicon...

  10. Photonic Crystal Fibres: A New Calss of Optical Waveguides

    Broeng, Jes; Mogilevstev, D.; Barkou, Stig Eigil;

    1999-01-01

    Remarkable properties of optical fibers with a high-index core region and sorrounding silica/ air photonic crystal cladding have recently been reported. Here we discuss the physics, the special guiding properties, and the theoretical tools developed for the modeling of these photonic crystal fibers...

  11. Controlled coupling of photonic crystal cavities using photochromic tuning

    Cai, Tao; Solomon, Glenn S; Waks, Edo

    2013-01-01

    We present a method to control the resonant coupling interaction in a coupled-cavity photonic crystal molecule by using a local and reversible photochromic tuning technique. We demonstrate the ability to tune both a two-cavity and a three-cavity photonic crystal molecule through the resonance condition by selectively tuning the individual cavities. Using this technique, we can quantitatively determine important parameters of the coupled-cavity system such as the photon tunneling rate. This method can be scaled to photonic crystal molecules with larger numbers of cavities, which provides a versatile method for studying strong interactions in coupled resonator arrays.

  12. Waveguide circuits in three-dimensional photonic crystals

    Waveguide circuits in three-dimensional photonic crystals with complete photonic band gaps are simulated with finite difference time domain (FDTD) simulations, and compared with measurements on microwave scale photonic crystals. The transmission through waveguide bends critically depends on the photonic crystal architecture in the bend region. We have found experimentally and theoretically, a new waveguide bend configuration consisting of overlapping rods in the bend region, that performs better than the simple waveguide bend of terminated rods, especially in the higher frequency portion of the band. Efficient beam splitters with this junction geometry are also simulated

  13. Photonic crystal chips for optical communications and quantum information processing

    Englund, Dirk; Fushman, Ilya; Faraon, Andrei; Ellis, Bryan; Vučković, Jelena

    2008-08-01

    We discuss recent our recent progress on functional photonic crystals devices and circuits for classical and quantum information processing. For classical applications, we have demonstrated a room-temperature-operated, low threshold, nanocavity laser with pulse width in the picosecond regime; and an all-optical switch controlled with 60 fJ pulses that shows switching time on the order of tens of picoseconds. For quantum information processing, we discuss the promise of quantum networks on multifunctional photonic crystals chips. We also discuss a new coherent probing technique of quantum dots coupled to photonic crystal nanocavities and demonstrate amplitude and phase nonlinearities realized with control beams at the single photon level.

  14. Strongly-Refractive One-Dimensional Photonic Crystal Prisms

    Ting, David Z. (Inventor)

    2004-01-01

    One-dimensional (1D) photonic crystal prisms can separate a beam of polychromatic electromagnetic waves into constituent wavelength components and can utilize unconventional refraction properties for wavelength dispersion over significant portions of an entire photonic band rather than just near the band edges outside the photonic band gaps. Using a ID photonic crystal simplifies the design and fabrication process and allows the use of larger feature sizes. The prism geometry broadens the useful wavelength range, enables better optical transmission, and exhibits angular dependence on wavelength with reduced non-linearity. The properties of the 1 D photonic crystal prism can be tuned by varying design parameters such as incidence angle, exit surface angle, and layer widths. The ID photonic crystal prism can be fabricated in a planar process, and can be used as optical integrated circuit elements.

  15. Photonic Crystal Fiber Source of Quantum Correlated Photon Pairs in the 1550 nm Telecom Band

    A source of quantum correlated photon pairs in the 1550nm telecom band obtained by a pumping 11m photonic crystal fiber with 10 ps pulse trains is experimentally demonstrated. We investigate how the birefringence of the fiber influences the purity of the photon pairs. We also present the frequency correlation of the signal and idler photon pairs. The experimental results are useful for developing a compact source of photon pairs well suited for quantum communication

  16. Photonic crystal cavities with metallic Schottky contacts

    We report about the fabrication and analysis of high Q photonic crystal cavities with metallic Schottky-contacts. The structures are based on GaAs n-i membranes with an InGaAs quantum well in the i-region and nanostructured low ohmic metal top-gates. They are designed for photocurrent readout within the cavity and fast electric manipulations. The cavity structures are characterized by photoluminescence and photocurrent spectroscopy under resonant excitation. We find strong cavity resonances in the photocurrent spectra and surprisingly high Q-factors up to 6500. Temperature dependent photocurrent measurements in the region between 4.5 K and 310 K show an exponential enhancement of the photocurrent signal and an external quantum efficiency up to 0.26

  17. Large Mode Area Photonic Crystal Fibers

    Nielsen, Martin Dybendal

    2004-01-01

    The photonic crystal fiber (PCF) is a novel single-material optical waveguide realized by an arrangement of air-holes running along the full length of the fiber. Since the proposal of the PCF in 1996, the technology has developed into being a well-established area of research and commercialisation...... PCFs are presented. The first is a large-mode area fiber optimised for visible light applications. The second is a fiber optimised for the telecommunication band realizing a nonlinear effective area 5 times larger than state of the art conventional fibers. Two examples of alternative designs are....... The work presented in this thesis deals with the optical properties of large-mode area PCFs for which the mode-field diameter, typically, is an order of magnitude larger than the free-space optical wavelength. Special emphasis is put on the description of relevant mechanisms of attenuation in these...

  18. Controlling spontaneous emission of light by photonic crystals

    Lodahl, Peter

    2005-01-01

    Photonic bandgap crystals were proposed almost two decades ago as a unique tool for controlling propagation and emission of light. Since then the research field of photonic crystals has exploded and many beautiful demonstrations of the use of photonic crystals and fibers for molding light...... propagation have appeared that hold great promises for integrated optics. These major achievements solidly demonstrate the ability to control propagation of light. In contrast, an experimental demonstration of the use of photonic crystals for timing the emission of light has so far lacked. In a recent...... publication in Nature, we have demonstrated experimentally that both the direction and time of spontaneous emission can be controlled, thereby confirming the original proposal by Eli Yablonovich that founded the field of photonic crystals. We believe that this work opens new opportunities for solid...

  19. Lattice Boltzmann Simulation of 3D Nematic Liquid Crystal near Phase Transition

    ZHANG Jun; TAO Rui-Bao

    2002-01-01

    Phase transition between nematic and isotropic liquid crystal is a very weak first order phase transition.We avoid to use the normal Landau-de Gennes's free energy that reduces a strong first order transition, and set up adata base of free energy calculated by means of Tao-Sheng Lin's extended molecular field theory that can explain theexperiments of the equilibrium properties of nematic liquid crystal very well. Then we use the free energy method oflattice Boltzmann developed by Oxford group to study the phase decomposition, pattern formation in the flow of theliquid crystal near transition temperature.

  20. Thermally Driven Photonic Actuator Based on Silica Opal Photonic Crystal with Liquid Crystal Elastomer.

    Xing, Huihui; Li, Jun; Shi, Yang; Guo, Jinbao; Wei, Jie

    2016-04-13

    We have developed a novel thermoresponsive photonic actuator based on three-dimensional SiO2 opal photonic crystals (PCs) together with liquid crystal elastomers (LCEs). In the process of fabrication of such a photonic actuator, the LCE precursor is infiltrated into the SiO2 opal PC followed by UV light-induced photopolymerization, thereby forming the SiO2 opal PC/LCE composite film with a bilayer structure. We find that this bilayer composite film simultaneously exhibits actuation behavior as well as the photonic band gap (PBG) response to external temperature variation. When the SiO2 opal PC/LCE composite film is heated, it exhibits a considerable bending deformation, and its PBG shifts to a shorter wavelength at the same time. In addition, this actuation is quite fast, reversible, and highly repeatable. The thermoresponsive behavior of the SiO2 opal PC/LCE composite films mainly derives from the thermal-driven change of nematic order of the LCE layer which leads to the asymmetric shrinkage/expansion of the bilayer structure. These results will be of interest in designing optical actuator systems for environment-temperature detection. PMID:26996608

  1. Optical microcavities based on surface modes in two-dimensional photonic crystals and silicon-on-insulator photonic crystals

    Xiao, Sanshui; Qiu, M.

    2007-01-01

    Surface-mode optical microcavities based on two-dimensional photonic crystals and silicon-on-insulator photonic crystals are studied. We demonstrate that a high-quality-factor microcavity can be easily realized in these structures. With an increasing of the cavity length, the quality factor is gr...

  2. Photonic crystal fiber with novel dispersion properties

    Shuqin LOU; Shujie LOU; Tieying GUO; Liwen WANG; Weiguo CHEN; Honglei LI; Shuisheng JIAN

    2009-01-01

    Our recent research on designing microstruc-tured fiber with novel dispersion properties is reported in this paper. Two kinds ofphotonic crystal fibers (PCFs) are introduced first. One is the highly nonlinear PCF with broadband nearly zero flatten dispersion. With introducing the germanium-doped (Ge-doped) core into highly non-linear PCF and optimizing the diameters of the first two inner rings of air holes, a new structure of highly non-linear PCF was designed with the nonlinear coefficient up to 47 W-1·km-1 at the wavelength 1.55 μm and nearly zero flattened dispersion of ±0.5 ps/(km·nm) in telecom-munication window (1460-1625nm). Another is the highly negative PCF with a ring of fluorin-doped (F-doped) rods to form its outer ring core while pure silica rods to form its inner core. The peak dispersion - 1064 ps/(km·nm) in 8 nm full width at half maximum (FWHM) wavelength range and -365ps/(km·nm) in 20nm (FWHM) wavelength range can be reached by adjusting the structure parameters. Then, our recent research on the fabrication of PCFs is reported. Effects of draw parameters such as drawing temperature, feed speed, and furnace temperature on the geometry of the final photonic crystal fiber are investigated.

  3. Dose measurements and calculations for tumors within lung: a comparative 3D study for 6 and 18 MV photons

    Purpose/Objective: For treatment of lung cancer, dose heterogeneity corrections and subsequent prescription alteration remain controversial. Previous dosimetry studies based on slab geometry and single beam geometry may not adequately represent the clinical situation of a circumscribed tumor within lung. Energy choice also remains a controversy. The objective of this study was to perform dose measurements for a tumor in lung in an anthropomorphic phantom using a clinically relevant beam arrangement for both 6 and 18 MV photons. Measured and calculated dose distributions were compared, using several different dose calculation algorithms. Methods and Materials: An anthropomorphic phantom was modified by replacing lung cylinders (2.5 and 5.0 cm diameter) with muscle-equivalent cylinders. The phantom was scanned on a CT simulator. Gross, clinical, and planning target volumes (GTV, CTV, PTV1 - tumor and regional nodes plus one cm margin, PTV2 - tumor only plus one cm margin) were delineated slice-by-slice. 3D planning was performed with large fields (AP/PA/RPO) covering PTV1 and boost fields optimized for each PTV2 for 6 and 18 MV photons. Ratio-TAR (RTAR) both with and without heterogeneity corrections, convolution adapted RTAR (CARTAR), and superposition convolution dose calculation algorithms were tested. Film was placed in between phantom slices at the 'tumor' levels. The phantom was irradiated using homogeneous monitor unit calculations. Measured and calculated dose distributions were compared by isodoses and dose volume histograms. One test case (2.5 cm. cylinder) compared film and TLD dose measurements with similar results. Lung-tissue ratio (LTR) measurements with an ion chamber imbedded in a 3 x 3 cm2 muscle-equivalent rectangular solid, surrounded by either lung or muscle-equivalent material, were also performed. Results: The three heterogeneity correction algorithms, compared with the measured isodoses, overpredicted the minimum dose to PTV2 by 11-18% for the

  4. Topological modes in one-dimensional solids and photonic crystals

    Atherton, Timothy J.; Butler, Celia A. M.; Taylor, Melita C.; Hooper, Ian R.; Hibbins, Alastair P.; Sambles, J. Roy; Mathur, Harsh

    2016-03-01

    It is shown theoretically that a one-dimensional crystal with time-reversal and particle-hole symmetries is characterized by a topological invariant that predicts the existence or otherwise of edge states. This is confirmed experimentally through the construction and simulation of a photonic crystal analog in the microwave regime. It is shown that the edge mode couples to modes external to the photonic crystal via a Fano resonance.

  5. Direct growth of single-crystal Pt nanowires on Sn@CNT Nanocable: 3D electrodes for highly active electrocatalysts.

    Sun, Shuhui; Zhang, Gaixia; Geng, Dongsheng; Chen, Yougui; Banis, Mohammad Norouzi; Li, Ruying; Cai, Mei; Sun, Xueliang

    2010-01-18

    A newly designed and fabricated novel three dimensional (3D) nanocomposite composed of single-crystal Pt nanowires (PtNW) and a coaxial nanocable support consisting of a tin nanowire and a carbon nanotube (Sn@CNT) is reported. This nanocomposite is fabricated by the synthesis of Sn@CNT nanocables by means of a thermal evaporation method, followed by the direct growth with PtNWs through a facile aqueous solution approach at room temperature. Electrochemical measurements demonstrate that the PtNW--Sn@CNT 3D electrode exhibits enhanced electrocatalytic performance in oxygen reduction reaction (ORR) for polymer electrolyte membrane fuel cells (PEMFCs), methanol oxidation (MOR) for direct methanol fuel cells (DMFCs), and CO tolerance compared with commercial ETEK Pt/C catalyst made of Pt nanoparticles. PMID:20024993

  6. Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales

    Saranathan, Vinodkumar; Osuji, Chinedum O.; Mochrie, Simon G. J.; Noh, Heeso; Narayanan, Suresh; Sandy, Alec; Dufresne, Eric R.; Prum, Richard O.

    2010-01-01

    Complex three-dimensional biophotonic nanostructures produce the vivid structural colors of many butterfly wing scales, but their exact nanoscale organization is uncertain. We used small angle X-ray scattering (SAXS) on single scales to characterize the 3D photonic nanostructures of five butterfly species from two families (Papilionidae, Lycaenidae). We identify these chitin and air nanostructures as single network gyroid (I4132) photonic crystals. We describe their optical function from SAXS...

  7. Correlating intravital multi-photon microscopy to 3D electron microscopy of invading tumor cells using anatomical reference points.

    Matthia A Karreman

    Full Text Available Correlative microscopy combines the advantages of both light and electron microscopy to enable imaging of rare and transient events at high resolution. Performing correlative microscopy in complex and bulky samples such as an entire living organism is a time-consuming and error-prone task. Here, we investigate correlative methods that rely on the use of artificial and endogenous structural features of the sample as reference points for correlating intravital fluorescence microscopy and electron microscopy. To investigate tumor cell behavior in vivo with ultrastructural accuracy, a reliable approach is needed to retrieve single tumor cells imaged deep within the tissue. For this purpose, fluorescently labeled tumor cells were subcutaneously injected into a mouse ear and imaged using two-photon-excitation microscopy. Using near-infrared branding, the position of the imaged area within the sample was labeled at the skin level, allowing for its precise recollection. Following sample preparation for electron microscopy, concerted usage of the artificial branding and anatomical landmarks enables targeting and approaching the cells of interest while serial sectioning through the specimen. We describe here three procedures showing how three-dimensional (3D mapping of structural features in the tissue can be exploited to accurately correlate between the two imaging modalities, without having to rely on the use of artificially introduced markers of the region of interest. The methods employed here facilitate the link between intravital and nanoscale imaging of invasive tumor cells, enabling correlating function to structure in the study of tumor invasion and metastasis.

  8. A 3D photon superposition/convolution algorithm and its foundation on results of Monte Carlo calculations

    Ulmer, W.; Pyyry, J.; Kaissl, W.

    2005-04-01

    Based on previous publications on a triple Gaussian analytical pencil beam model and on Monte Carlo calculations using Monte Carlo codes GEANT-Fluka, versions 95, 98, 2002, and BEAMnrc/EGSnrc, a three-dimensional (3D) superposition/convolution algorithm for photon beams (6 MV, 18 MV) is presented. Tissue heterogeneity is taken into account by electron density information of CT images. A clinical beam consists of a superposition of divergent pencil beams. A slab-geometry was used as a phantom model to test computed results by measurements. An essential result is the existence of further dose build-up and build-down effects in the domain of density discontinuities. These effects have increasing magnitude for field sizes densities <=0.25 g cm-3, in particular with regard to field sizes considered in stereotaxy. They could be confirmed by measurements (mean standard deviation 2%). A practical impact is the dose distribution at transitions from bone to soft tissue, lung or cavities. This work has partially been presented at WC 2003, Sydney.

  9. Volumetric label-free imaging and 3D reconstruction of mammalian cochlea based on two-photon excitation fluorescence microscopy

    The visualization of the delicate structure and spatial relationship of intracochlear sensory cells has relied on the laborious procedures of tissue excision, fixation, sectioning and staining for light and electron microscopy. Confocal microscopy is advantageous for its high resolution and deep penetration depth, yet disadvantageous due to the necessity of exogenous labeling. In this study, we present the volumetric imaging of rat cochlea without exogenous dyes using a near-infrared femtosecond laser as the excitation mechanism and endogenous two-photon excitation fluorescence (TPEF) as the contrast mechanism. We find that TPEF exhibits strong contrast, allowing cellular and even subcellular resolution imaging of the cochlea, differentiating cell types, visualizing delicate structures and the radial nerve fiber. Our results further demonstrate that 3D reconstruction rendered with z-stacks of optical sections enables better revealment of fine structures and spatial relationships, and easily performed morphometric analysis. The TPEF-based optical biopsy technique provides great potential for new and sensitive diagnostic tools for hearing loss or hearing disorders, especially when combined with fiber-based microendoscopy. (paper)

  10. Air-guiding photonic bandgap fiber with improved triangular air-silica photonic crystal cladding

    Yan, M; Shum, P

    2005-01-01

    We introduce a small-core air-guiding photonic crystal fiber whose cladding is made of improved air-silica photonic crystal with non-circular air holes placed in triangular lattice. The fiber achieves un-disturbed bandgap guidance over 350nm wavelength range.

  11. Strategies for the crystallization of viruses: using phase diagrams and gels to produce 3D crystals of Grapevine fanleaf virus.

    Schellenberger, Pascale; Demangeat, Gérard; Lemaire, Olivier; Ritzenthaler, Christophe; Bergdoll, Marc; Oliéric, Vincent; Sauter, Claude; Lorber, Bernard

    2011-05-01

    The small icosahedral plant RNA nepovirus Grapevine fanleaf virus (GFLV) is specifically transmitted by a nematode and causes major damage to vineyards worldwide. To elucidate the molecular mechanisms underlying the recognition between the surface of its protein capsid and cellular components of its vector, host and viral proteins synthesized upon infection, the wild type GFLV strain F13 and a natural mutant (GFLV-TD) carrying a Gly₂₉₇Asp mutation were purified, characterized and crystallized. Subsequently, the geometry and volume of their crystals was optimized by establishing phase diagrams. GFLV-TD was twice as soluble as the parent virus in the crystallization solution and its crystals diffracted X-rays to a resolution of 2.7 Å. The diffraction limit of GFLV-F13 crystals was extended from 5.5 to 3 Å by growth in agarose gel. Preliminary crystallographic analyses indicate that both types of crystals are suitable for structure determination. Keys for the successful production of GFLV crystals include the rigorous quality control of virus preparations, crystal quality improvement using phase diagrams, and crystal lattice reinforcement by growth in agarose gel. These strategies are applicable to the production of well-diffracting crystals of other viruses and macromolecular assemblies. PMID:21352920

  12. Coupling light in photonic crystal waveguides: A review

    Dutta, Hemant Sankar; Goyal, Amit Kumar; Srivastava, Varun; Pal, Suchandan

    2016-07-01

    Submicron scale structures with high index contrast are key to compact structures for realizing photonic integrated structures. Ultra-compact optical devices in silicon-on-insulator (SOI) substrates serve compatibility with semiconductor fabrication technology leading to reduction of cost and mass production. Photonic crystal structures possess immense potential for realizing various compact optical devices. However, coupling light to photonic crystal waveguide structures is crucial in order to achieve strong transmission and wider bandwidth of signal. Widening of bandwidth will increase potential for various applications and high transmission will make easy signal detection at the output. In this paper, the techniques reported so far for coupling light in photonic crystal waveguides have been reviewed and analyzed so that a comprehensive guide for an efficient coupling to photonic crystal waveguides can be made possible.

  13. Photonic and Plasmonic Guided Modes in Graphene-Silicon Photonic Crystals

    Gu, Tingyi; Andryieuski, Andrei; Hao, Yufeng;

    2015-01-01

    We report the results of systematic studies of plasmonic and photonic guided modes in large-area single-layer graphene integrated into a nanostructured silicon substrate. The interaction of light with graphene and substrate photonic crystals can be classified in distinct regimes depending on the...... relation of the photonic crystal lattice constant and the relevant modal wavelengths, that is, plasmonic, photonic, and free-space. By optimizing the design of the substrate, these resonant modes can increase the absorption of graphene in the infrared, facilitating enhanced performance of modulators......, filters, sensors, and photodetectors utilizing silicon photonic platforms....

  14. Photonic and plasmonic guiding modes in graphene-silicon photonic crystals

    Gu, Tingyi; Hao, Yufeng; Li, Yilei; Hone, James; Wong, Chee Wei; Lavrinenko, Andrei; Low, Tony; Heinz, Tony F

    2015-01-01

    We report systematic studies of plasmonic and photonic guiding modes in large-area chemical-vapor-deposition-grown graphene on nanostructured silicon substrates. Light interaction in graphene with substrate photonic crystals can be classified into four distinct regimes depending on the photonic crystal lattice constant and the various modal wavelengths (i.e. plasmonic, photonic and free-space). By optimizing the design of the substrate, these resonant modes can magnify the graphene absorption in infrared wavelength, for efficient modulators, filters, sensors and photodetectors on silicon photonic platforms.

  15. Self-collimation in photonic crystals with anisotropic constituents

    J. W. Haus; M. Siraj; P. Prasad; P. Markowicz

    2007-01-01

    @@ In a photonic crystal composed of anisotropic constituents we quantify the range of input angles and the degree of collimation of the beam inside the crystal. The optical properties of a photobleached 4-dimethylamino-N-methyl-4-stilbazolium-tosylate (DAST) crystal are used in our model to demonstrate the efficacy of the self-collimation features.

  16. Quantitative analysis of crystal/grain sizes and their distributions in 2D and 3D

    Berger, Alfons; Herwegh, Marco; Schwarz, Jens-Oliver;

    2011-01-01

    root) to calculate statistical parameters as the mean, median, mode or the skewness of a crystal size distribution. The finally calculated average grain sizes have to be compatible between the different grain size estimation approaches in order to be properly applied, for example, in paleo-piezometers...

  17. Black Phosphorus based One-dimensional Photonic Crystals and Microcavities

    Kriegel, I

    2016-01-01

    The latest achievements in the fabrication of black phosphorus thin layers, towards the technological breakthrough of a phosphorene atomically thin layer, are paving the way for a their employment in electronics, optics, and optoelectronics. In this work, we have simulated the optical properties of one-dimensional photonic structures, i.e. photonic crystals and microcavities, in which few-layer black phosphorus is one of the components. The insertion of the 5 nm black phosphorous layers leads to a photonic band gap in the photonic crystals and a cavity mode in the microcavity interesting for light manipulation and emission enhancement.

  18. Photonic Crystal Polarizing and Non-Polarizing Beam Splitters

    GUAN Chun-Ying; SHI Jin-Hui; YUAN Li-Bo

    2008-01-01

    A polarizing beam splitter(PBS)and a non-polarizing beam splitter(NPBS)based on a photonic crystal(PC)directional coupler are demonstrated.The photonic crystal directional coupler consists of a hexagonal lattice of dielectric pillars in air and has a complete photonic band gap.The photonic band structure and the band gap map are calculated using the plane wave expansion(PWE)method.The splitting properties of the splitter are investigated numerically using the finite difference time domain(FDTD)method.

  19. Nano structured Porous Silicon Photonic Crystal for Applications in the Infrared

    In the last decades great interest has been devoted to photonic crystals aiming at the creation of novel devices which can control light propagation. In the present work, two-dimensional (2D) and three-dimensional (3D) devices based on nano structured porous silicon have been fabricated. 2D devices consist of a square mesh of 2μm wide porous silicon veins, leaving 5 X 5 μm square air holes. 3D structures share the same design although multilayer porous silicon veins are used instead, providing an additional degree of modulation. These devices are fabricated from porous silicon single layers (for 2D structures) or multilayers (for 3D structures), opening air holes in them by means of 1 KeV argon ion bombardment through the appropriate copper grids. For 2D structures, a complete photonic band gap for TE polarization is found in the thermal infrared range. For 3D structures, there are no complete band gaps, although several new partial gaps do exist in different high-symmetry directions. The simulation results suggest that these structures are very promising candidates for the development of low-cost photonic devices for their use in the thermal infrared range.

  20. Three dimensional reflectance properties of superconductor-dielectric photonic crystal

    Pandey, G. N.; Pandey, J. P.; Pandey, U. K.; Sancheti, Bhagyashree; Ojha, S. P.

    2016-05-01

    In this present communication, we have studied the optical properties of Photonics Crystals with super conducting constituent using the TMM method for a stratified medium. We also studied the three dimensional reflectance property of superconductor-dielectric photonic crystal at different temperature and thickness. From above study we show that the superconductor-dielectric photonic crystal may be used as broad band reflector and omnidirectional reflector at low temperature below to the critical temperature. Such property may be applied to make of the reflector which can be used in low temperature region.

  1. Passive integrated circuits utilizing slow light in photonic crystal waveguides

    Lavrinenko, Andrei; Têtu, Amélie; Yang, Lirong;

    2006-01-01

    We report thorough investigations of photonic crystal waveguide properties in the slow light regime. The transmission and the group index near the cutoff wavelengths oscillate in phase in close analogy with the ID photonic crystal behavior. The influence of having a finite number of periods in the...... photonic crystal waveguide is addressed to explain the spiky character of both the transmission and group index spectra. The profile of the slow-light modes is stretched out into the first and second rows of the holes closest to the waveguide channel. One of our strategies to ameliorate the design of...

  2. Two-Dimensionally Confined Topological Edge States in Photonic Crystals

    Barik, Sabyasachi; DeGottardi, Wade; Waks, Edo; Hafezi, Mohammad

    2016-01-01

    We present an all-dielectric photonic crystal structure that supports two-dimensionally confined helical topological edge states. The topological properties of the system are controlled by the crystal parameters. An interface between two regions of differing band topologies gives rise to topological edge states confined in a dielectric slab that propagate around sharp corners without backscattering. Three dimensional finite-difference time-domain calculations show these edges to be confined in the out-of-plane direction by total internal reflection. Such nanoscale photonic crystal architectures could enable strong interactions between photonic edge states and quantum emitters.

  3. Demonstration of a three-dimensional photonic crystal nanocavity in a 〈110〉-layered diamond structure

    We experimentally demonstrate a three-dimensional photonic crystal (3D PC) nanocavity in a 〈110〉-layered diamond structure with a quality factor (Q-factor) of 12 800 at a wavelength of 1.1 μm. The observed Q is 1.2 times higher than that of a 3D PC nanocavity in a woodpile structure with the same in-plane size and the same number of stacked layers. This result indicates the potential importance of the 〈110〉-layered diamond structure for getting high Q 3D PC nanocavities within a limited in-plane space

  4. Demonstration of a three-dimensional photonic crystal nanocavity in a 〈110〉-layered diamond structure

    Tajiri, T. [Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan); Takahashi, S.; Ota, Y.; Tatebayashi, J. [Institute of Nano Quantum Information Electronics, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan); Iwamoto, S.; Arakawa, Y. [Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan); Institute of Nano Quantum Information Electronics, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan)

    2015-08-17

    We experimentally demonstrate a three-dimensional photonic crystal (3D PC) nanocavity in a 〈110〉-layered diamond structure with a quality factor (Q-factor) of 12 800 at a wavelength of 1.1 μm. The observed Q is 1.2 times higher than that of a 3D PC nanocavity in a woodpile structure with the same in-plane size and the same number of stacked layers. This result indicates the potential importance of the 〈110〉-layered diamond structure for getting high Q 3D PC nanocavities within a limited in-plane space.

  5. Tunable bandpass filter based on photonic crystal fiber filled with multiple liquid crystals

    Scolari, Lara; Tartarini, G.; Borelli, E.; Alkeskjold, Thomas Tanggaard; Mulvad, Hans Christian Hansen; Bassi, Paolo; Bjarklev, Anders Overgaard

    A tunable bandpass filter based on a photonic crystal fiber filled with two different liquid crystals is demonstrated. 130 nm bandwidth tunability is achieved by tuning the temperature from 30degC to 90degC....

  6. Design of a compact mode and polarization converter in three-dimensional photonic crystals.

    Wang, Jian; Qi, Minghao

    2012-08-27

    A mode and polarization converter is proposed and optimized for 3D photonic integrated circuits based on photonic crystals (PhCs). The device converts the index-guided TE mode of a W1 solid-core (SC) waveguide to the band-gap-guided TM mode of a W1 hollow-core (HC) waveguide in 3D PhCs, and vice versa. The conversion is achieved based on contra-directional mode coupling. For a 25 μm-long device, simulations show that the power conversion efficiency is over 98% across a wavelength range of 16 nm centered at 1550 nm, whereas the reflection remains below -20 dB. The polarization extinction ratio of the conversion is in principle infinitely high because both W1 waveguides operate in the single-mode regimes in this wavelength range. PMID:23037086

  7. Photonic-crystal lasers light up

    Every laptop computer, PDA or mobile phone contains a microprocessor in which millions of interconnected transistors perform complex logical functions. Optical circuits, in contrast, are still at the pre-integrated- circuit stage. The optical fibres that form the backbone of the Internet, for example, are mostly connected individually between sources and detectors. Direct optical signal routing, on the other hand, would provide a reconfigurable network that fulfils the requirements of today's bandwidth-hungry applications, such as video-on-demand. Optical routing could even be used inside computers to connect the central processing unit to its peripherals. Now researchers in the US have brought the dream of all-optical circuits a little closer. Raffaele Colombelli of Bell Labs and co-workers at the California Institute of Technology and Harvard University have developed a new type of light source by combining a quantum cascade laser with a photonic crystal (Science 302 1374). The team used lithography to etch an array of holes in the semiconductor laser, which allowed the spectral and spatial properties of the output radiation to be controlled. The marriage of these two devices could form miniature chemical sensors for medical or environmental applications. (author)

  8. Design of a 3D Digital Liquid Crystal Particle Thermometry and Velocimetry (3DDLCPT/V) System

    Grothe, Rob; Rixon, Greg; Dabiri, Dana

    2007-11-01

    A novel 3D Digital Liquid Crystal Particle Thermometry and Velocimetry (3DDLCPT/V) system has been designed and fabricated. By combining 3D Defocusing Particle Image Velocimetry (3DDPIV) and Digital Particle Image Thermometry (DPIT) into one system, this technique provides simultaneous temperature and velocity data using temperature-sensitive liquid crystal particles (LCP) as flow sensors. A custom water-filled prism corrects for astigmatism caused by off-axis imaging. New optics equations are derived to account for multi-surface refractions. This redesign also maximizes the use of the CCD area to more efficiently image the volume of interest. Six CCD cameras comprise the imaging system, with three allocated for velocity measurements and three for temperature measurements. The cameras are optically aligned to sub-pixel accuracy using a precision grid and high-resolution translation stages. Two high-intensity custom-designed xenon flashlamps provide illumination. Temperature calibration of the LCP is then performed. These results and proof-of-concept experiments will be discussed in detail.

  9. Quantum computation with Kerr-nonlinear photonic crystals

    Azuma, H

    2006-01-01

    In this paper, we consider a method for implementing a quantum logic gate with photons whose wave function propagates in a one-dimensional Kerr-nonlinear photonic crystal. The photonic crystal causes the incident photons to undergo Bragg reflection by its periodic structure of dielectric materials and forms the photonic band structure, namely, the light dispersion relation. This dispersion relation reduces the group velocity of the wave function of the photons, so that it enhances nonlinear interaction of the photons. (Because variation of the group velocity against the wave vector is very steep, we have to tune up the wavelength of injected photons precisely, however.) If the photonic crystal includes layers of a Kerr medium, we can rotate the phase of the wave function of the incident photons by a large angle efficiently. We show that we can construct the nonlinear sign-shift (NS) gate proposed by Knill, Laflamme, and Milburn (KLM) by this method. Thus, we can construct the conditional sign-flip gate for tw...

  10. The Dominant Role of Chalcogen Bonding in the Crystal Packing of 2D/3D Aromatics

    Fanfrlík, Jindřich; Přáda, A.; Padělková, Z.; Pecina, Adam; Macháček, Jan; Lepšík, Martin; Holub, Josef; Růžička, A.; Hnyk, Drahomír; Hobza, Pavel

    2014-01-01

    Roč. 53, č. 38 (2014), s. 10139-10142. ISSN 1433-7851 R&D Projects: GA ČR GBP208/12/G016; GA ČR GAP208/10/2269 Grant ostatní: GA MŠk(CZ) ED2.1.00/03.0058; GA MŠk(CZ) ED1.1.00/02.0070; GA MŠk(CZ) LM2011033 Institutional support: RVO:61388963 ; RVO:61388980 Keywords : boranes * chalcogen bonds * crystal structures * sulfur * X-ray diffraction Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 11.261, year: 2014

  11. Tunable complete photonic band gap in anisotropic photonic crystal slabs with non-circular air holes using liquid crystals

    Fathollahi Khalkhali, T.; Bananej, A.

    2016-06-01

    In this study, we analyze the tunability of complete photonic band gap of square and triangular photonic crystal slabs composed of square and hexagonal air holes in anisotropic tellurium background with SiO2 as cladding material. The non-circular holes are infiltrated with liquid crystal. Using the supercell method based on plane wave expansion, we study the variation of complete band gap by changing the optical axis orientation of liquid crystal. Our numerical results show that noticeable tunability of complete photonic band gap can be obtained in both square and triangular structures with non-circular holes.

  12. Pendellösung effect in photonic crystals

    Savo, S.; di Gennaro, E.; Miletto, C.; Andreone, A.; Dardano, P.; Moretti, L.; Mocella, V.

    2008-06-01

    At the exit surface of a photonic crystal, the intensity of the diffracted wave can be periodically modulated, showing a maximum in the "positive" (forward diffracted) or in the "negative" (diffracted) direction, depending on the slab thickness. This thickness dependence is a direct result of the so-called Pendellosung phenomenon, consisting of the periodic exchange inside the crystal of the energy between direct and diffracted beams. We report the experimental observation of this effect in the microwave region at about 14 GHz by irradiating 2D photonic crystal slabs of different thickness and detecting the intensity distribution of the electromagnetic field at the exit surface and inside the crystal itself.

  13. Hydrothermal Synthesis and Crystal Structure of a New 3-D Open-framework Zincophosphate

    CHEN Xue-Huan; CAO Yan-Ning; ZHANG Han-Hui; CHEN Yi-Ping; CHEN Xin-Xiang; CHAI Xiao-Chuan

    2008-01-01

    An open-framework zincophosphate, [C4N3H16][Zn4.5(PO4)4] 1, has been hydrothermally synthesized and characterized by single-crystal X-ray diffraction. It crystallizes in the tetragonal space group P(4) with a = 14.512(5), c = 8.914(3)(A), V = 1877.3(11) (A)3,C4H16N3O16P4Zn4.50, Mr = 780.24. Z = 4, Dc = 2.761 g/cm3,μ = 6.103 mm-1, F(000) = 1536, T=298(2) K, R = 0.0416 and wR = 0.0816. In the structure, ZnO4 and PO4 tetrahedra are linked to each other, forming four-membered rings which are connected variably to form two secondary building units (SBUs). The SBUs are connected so as to generate two chains along the c axis,which are further linked together alternatively via common oxygen atoms (Zn-O-P) giving rise to 8-ring-channels in the [001] direction, and the protonated guest diethylenetriamine (DETA)molecules sit in the middle of these channels. Other characterizations are also described by elemental analysis, thermal analysis and IR and fluorescent spectra.

  14. Improving nanocavity switching using Fano resonances in photonic crystal structures

    Heuck, Mikkel; Kristensen, Philip Trøst; Elesin, Yuriy;

    2013-01-01

    We present a simple design for achieving Fano resonances in photonic crystal coupled waveguide-cavity structures. A coupled mode theory analysis shows an order of magnitude reduction in switching energy compared to conventional Lorentz resonances....

  15. Optical loss due to intrinsic structural variations of photonic crystals

    Koenderink, A F; Vos, Willem L.

    2004-01-01

    A bottleneck limiting the widespread application of photonic crystals is scattering of light by unavoidable variations in size and position of the crystals' building blocks. We present a new model for both 2 and 3-dimensional photonic crystals that relates the resulting loss length to the magnitude of the variations. The predicted lengths agree well with our experiments on high-quality opals and inverse opals over a wide frequency range, and with literature data analyzed by us. In state-of-the-art structures, control over photons is limited to distances of 50 lattice parameters (~ 15 micron). Consequently, applications of photonic crystals in optical integrated circuits remain a fata morgana, unless an unprecedented reduction of the random variations is achieved.

  16. Photonic Crystals: Advances in Design, Fabrication, and Characterization

    Busch, Kurt; Lölkes, Stefan; Wehrspohn, Ralf B.; Föll, Helmut

    2004-03-01

    The majority of the contributions in this topically edited book stems from the priority program SPP 1113 "Photonische Kristalle" run by the Deutsche Forschungsgemeinschaft (DFG), resulting in a survey of the current state of photonic crystal research in Germany. The first part of the book describes methods for the theoretical analysis of their optical properties as well as the results. The main part is dedicated to the fabrication, characterization and modeling of two- and three-dimensional photonic crystals, while the final section presents a wide spectrum of applications: gas sensors, micro-lasers, and photonic crystal fibers. Illustrated in full color, this book is not only of interest to advanced students and researchers in physics, electrical engineering, and material science, but also to company R&D departments involved in photonic crystal-related technological developments.

  17. One-Dimensional Tunable Photonic-Crystal IR Filter Project

    National Aeronautics and Space Administration — MetroLaser proposes to design and develop an innovative narrowband tunable IR filter based on the properties of a one-dimensional photonic crystal structure with a...

  18. Inclined nanoimprinting lithography-based 3D nanofabrication

    We report a 'top–down' 3D nanofabrication approach combining non-conventional inclined nanoimprint lithography (INIL) with reactive ion etching (RIE), contact molding and 3D metal nanotransfer printing (nTP). This integration of processes enables the production and conformal transfer of 3D polymer nanostructures of varying heights to a variety of other materials including a silicon-based substrate, a silicone stamp and a metal gold (Au) thin film. The process demonstrates the potential of reduced fabrication cost and complexity compared to existing methods. Various 3D nanostructures in technologically useful materials have been fabricated, including symmetric and asymmetric nanolines, nanocircles and nanosquares. Such 3D nanostructures have potential applications such as angle-resolved photonic crystals, plasmonic crystals and biomimicking anisotropic surfaces. This integrated INIL-based strategy shows great promise for 3D nanofabrication in the fields of photonics, plasmonics and surface tribology

  19. Nonlocal gap soliton in liquid infiltrated photonic crystal fibres

    Bennet, F.H.; Rosberg, C.R.; Rasmussen, Per Dalgaard;

    We report on the observation of nonlocal gap solitons in infiltrated photonic crystal fibres. We employ the thermal defocusing nonlinearity of the liquid to study soliton existence and effect of boundaries of the periodic structure.......We report on the observation of nonlocal gap solitons in infiltrated photonic crystal fibres. We employ the thermal defocusing nonlinearity of the liquid to study soliton existence and effect of boundaries of the periodic structure....

  20. Few-quantum-dot lasing in photonic crystal nanocavities

    Liu, Jin; Ates, Serkan; Stobbe, Søren; Lorke, Michael; Lodahl, Peter

    2012-01-01

    A very smooth lasing transition in photonic crystal nanocavities with embedded quantum dots is observed and compared to the theory. Decay rate measurements reveal that only a few quantum dots are feeding the cavity.......A very smooth lasing transition in photonic crystal nanocavities with embedded quantum dots is observed and compared to the theory. Decay rate measurements reveal that only a few quantum dots are feeding the cavity....

  1. Surface Bloch waves mediated heat transfer between two photonic crystals

    Ben-Abdallah, Philippe; Joulain, Karl; Pryamikov, Andrey

    2010-01-01

    submitted to Applied Physics Letters We theoretically investigate the non-radiative heat transfer between two photonic crystals separated by a small gap in non-equilibrium thermal situation. We predict that the surface Bloch states coupling supported by these media can make heat exchanges larger than those measured at the same separation distance between two massive homogeneous materials made with the elementary components of photonic crystals. These results could find broad applications i...

  2. Broadband tunable hybrid photonic crystal-nanowire light emitter

    Wilhelm, Christophe E; Xiong, Qihua; Soci, Cesare; Lehoucq, Gaëlle; Dolfi, Daniel; De Rossi, Alfredo; Combrié, Sylvain

    2015-01-01

    We integrate about 100 single Cadmium Selenide semiconductor nanowires in self-standing Silicon Nitride photonic crystal cavities in a single processing run. Room temperature measurements reveal a single narrow emission linewidth, corresponding to a Q-factor as large as 5000. By varying the structural parameters of the photonic crystal, the peak wavelength is tuned, thereby covering the entire emission spectral range of the active material. A very large spectral range could be covered by heterogeneous integration of different active materials.

  3. Coherent Umklapp Scattering of Light from Disordered Photonic Crystals

    Sivachenko, A.Y.; Raikh, M. E.; Vardeny, Z. V.

    2000-01-01

    A theoretical study of the coherent light scattering from disordered photonic crystal is presented. In addition to the conventional enhancement of the reflected light intensity into the backscattering direction, the so called coherent backscattering (CBS), the periodic modulation of the dielectric function in photonic crystals gives rise to a qualitatively new effect: enhancement of the reflected light intensity in directions different from the backscattering direction. These additional coher...

  4. Quantum effect of one-dimensional photonic crystal

    Wu, Xiang-Yao; Liu, Xiao-Jing; Liang, Yu; Ba, Nuo; Chen, Wan-Jin; Yuan, Hong-Chun; Li, Heng-Mei

    2015-01-01

    In this paper, we have studied the quantum transmission characteristics of one-dimensional photonic crystal with and without defect layer by the quantum theory approach, and compared the calculation results of classical with quantum theory. We have found some new quantum effects in the one-dimensional photonic crystal. When the incident angle $\\theta=0$, there is no quantum effect. When the incident angle $\\theta\

  5. Highly efficient fluorescence sensing with hollow core photonic crystal fibers

    Smolka, Stephan; Barth, Michael; Benson, Oliver

    2008-01-01

    We investigate hollow core photonic crystal fibers for ultra-sensitive fluorescence detection by selectively infiltrating the central hole with fluorophores. Dye concentrations down to 10(-9) M can be detected using only nanoliter sample volumes.......We investigate hollow core photonic crystal fibers for ultra-sensitive fluorescence detection by selectively infiltrating the central hole with fluorophores. Dye concentrations down to 10(-9) M can be detected using only nanoliter sample volumes....

  6. Polymer photonic crystal dye lasers as optofluidic cell sensors

    Christiansen, Mads Brøkner; Lopacinska, Joanna M.; Jakobsen, Mogens Havsteen;

    2009-01-01

    Hybrid polymer photonic crystal band-edge lasers are chemically activated to covalently bind bio-molecules or for HeLa cell attachment using an anthraquinone (AQ) UV activated photolinker. The lasers change emission wavelength linearly with inhomogeneous cell coverage.......Hybrid polymer photonic crystal band-edge lasers are chemically activated to covalently bind bio-molecules or for HeLa cell attachment using an anthraquinone (AQ) UV activated photolinker. The lasers change emission wavelength linearly with inhomogeneous cell coverage....

  7. Tapered photonic crystal fibers for blue-enhanced supercontinuum generation

    Møller, Uffe; Sørensen, Simon Toft; Larsen, Casper;

    2012-01-01

    Tapering of photonic crystal fibers is an effective way of shifting the blue edge of a supercontinuum spectrum down in the deep-blue. We discuss the optimum taper profile for enhancing the power in the blue edge.......Tapering of photonic crystal fibers is an effective way of shifting the blue edge of a supercontinuum spectrum down in the deep-blue. We discuss the optimum taper profile for enhancing the power in the blue edge....

  8. Highly Sensitive Sensors Based on Photonic Crystal Fiber Modal Interferometers

    Joel Villatoro

    2009-01-01

    Full Text Available We review the research on photonic crystal fiber modal interferometers with emphasis placed on the characteristics that make them attractive for different sensing applications. The fabrication of such interferometers is carried out with different post-processing techniques such as grating inscription, tapering or cleaving, and splicing. In general photonic crystal fiber interferometers exhibit low thermal sensitivity while their applications range from sensing strain or temperature to refractive index and volatile organic compounds.

  9. Highly Sensitive Sensors Based on Photonic Crystal Fiber Modal Interferometers

    Valerio Pruneri; Gonçal Badenes; Joel Villatoro; Vittoria Finazzi

    2009-01-01

    We review the research on photonic crystal fiber modal interferometers with emphasis placed on the characteristics that make them attractive for different sensing applications. The fabrication of such interferometers is carried out with different post-processing techniques such as grating inscription, tapering or cleaving, and splicing. In general photonic crystal fiber interferometers exhibit low thermal sensitivity while their applications range from sensing strain or temperature to refract...

  10. Nonlinear Gain Saturation in Active Slow Light Photonic Crystal Waveguides

    Chen, Yaohui; Mørk, Jesper

    2013-01-01

    We present a quantitative three-dimensional analysis of slow-light enhanced traveling wave amplification in an active semiconductor photonic crystal waveguides. The impact of slow-light propagation on the nonlinear gain saturation of the device is investigated.......We present a quantitative three-dimensional analysis of slow-light enhanced traveling wave amplification in an active semiconductor photonic crystal waveguides. The impact of slow-light propagation on the nonlinear gain saturation of the device is investigated....

  11. Simulation of Nonlinear Gain Saturation in Active Photonic Crystal Waveguides

    Chen, Yaohui; Mørk, Jesper

    2012-01-01

    In this paper we present a theoretical analysis of slowlight enhanced traveling wave amplification in an active semiconductor Photonic crystal waveguides. The impact of group index on nonlinear modal gain saturation is investigated.......In this paper we present a theoretical analysis of slowlight enhanced traveling wave amplification in an active semiconductor Photonic crystal waveguides. The impact of group index on nonlinear modal gain saturation is investigated....

  12. Numerical modeling in photonic crystals integrated technology: the COPERNICUS Project

    Malaguti, Stefania; Armaroli, Andrea; Bellanca, Gaetano; Trillo, Stefano; Kaunga-Nyirenda, Simeon; Lim, Jun; Larkins, Eric; Kristensen, Philip Trøst; Yvind, Kresten; Mørk, Jesper; Dumeige, Yannick; Gay, Mathilde; Colman, Pierre; Combrie, Sylvain; De Rossi, Alfredo

    Photonic crystals will play a fundamental role in the future of optical communications. The relevance of the numerical modeling for the success of this technology is assessed by using some examples concerning the experience of the COPERNICUS Project.......Photonic crystals will play a fundamental role in the future of optical communications. The relevance of the numerical modeling for the success of this technology is assessed by using some examples concerning the experience of the COPERNICUS Project....

  13. Enhancement of polymer dye lasers by multifunctional photonic crystal lattice

    Christiansen, Mads Brøkner; Xiao, Sanshui; Mortensen, Asger;

    2009-01-01

    The light output of dye doped hybrid polymer band-edge lasers is increased more than 100 times by using a rectangular lattice photonic crystal, which provides both feedback and couples more pump light into the laser.......The light output of dye doped hybrid polymer band-edge lasers is increased more than 100 times by using a rectangular lattice photonic crystal, which provides both feedback and couples more pump light into the laser....

  14. Single Mode Photonic Crystal Vertical Cavity Surface Emitting Lasers

    Kent D. Choquette

    2012-01-01

    Full Text Available We review the design, fabrication, and performance of photonic crystal vertical cavity surface emitting lasers (VCSELs. Using a periodic pattern of etched holes in the top facet of the VCSEL, the optical cavity can be designed to support the fundamental mode only. The electrical confinement is independently defined by proton implantation or oxide confinement. By control of the refractive index and loss created by the photonic crystal, operation in the Gaussian mode can be insured, independent of the lasing wavelength.

  15. Enhancement of carbon nanotube photoluminescence by photonic crystal nanocavities

    Watahiki, R.; Shimada, T; Zhao, P; Chiashi, S.; Iwamoto, S.; Arakawa, Y; Maruyama, S.; Kato, Y. K.

    2012-01-01

    Photonic crystal nanocavities are used to enhance photoluminescence from single-walled carbon nanotubes. Micelle-encapsulated nanotubes are deposited on nanocavities within Si photonic crystal slabs and confocal microscopy is used to characterize the devices. Photoluminescence spectra and images reveal nanotube emission coupled to nanocavity modes. The cavity modes can be tuned throughout the emission wavelengths of carbon nanotubes, demonstrating the ability to enhance photoluminescence from...

  16. Enhancement of carbon nanotube photoluminescence by photonic crystal nanocavities

    Watahiki, R.; Shimada, T; Zhao, P; Chiashi, S.; Iwamoto, S.; Arakawa, Y; Maruyama, S.; Kato, Y. K.

    2012-01-01

    Photonic crystal nanocavities are used to enhance photoluminescence from single-walled carbon nanotubes. Micelle-encapsulated nanotubes are deposited on nanocavities within Si photonic crystal slabs and confocal microscopy is used to characterize the devices.Photoluminescencespectra and images reveal nanotube emission coupled to nanocavity modes. The cavity modes can be tuned throughout the emission wavelengths of carbon nanotubes, demonstrating the ability to enhance photoluminescence from a...

  17. Slow-light effects in photonic crystal membrane lasers

    Xue, Weiqi; Yu, Yi; Ottaviano, Luisa;

    2015-01-01

    In this paper, we present a systematic investigation of photonic crystal cavity laser operating in the slow-light regime. The dependence of lasing threshold on the effect of slow-light will be particularly highlighted.......In this paper, we present a systematic investigation of photonic crystal cavity laser operating in the slow-light regime. The dependence of lasing threshold on the effect of slow-light will be particularly highlighted....

  18. Measuring nonlinear stresses generated by defects in 3D colloidal crystals

    Lin, Neil Y C; Schall, Peter; Sethna, James P; Cohen, Itai

    2016-01-01

    The mechanical, structural and functional properties of crystals are determined by their defects and the distribution of stresses surrounding these defects has broad implications for the understanding of transport phenomena. When the defect density rises to levels routinely found in real-world materials, transport is governed by local stresses that are predominantly nonlinear. Such stress fields however, cannot be measured using conventional bulk and local measurement techniques. Here, we report direct and spatially resolved experimental measurements of the nonlinear stresses surrounding colloidal crystalline defect cores, and show that the stresses at vacancy cores generate attractive interactions between them. We also directly visualize the softening of crystalline regions surrounding dislocation cores, and find that stress fluctuations in quiescent polycrystals are uniformly distributed rather than localized at grain boundaries, as is the case in strained atomic polycrystals. Nonlinear stress measurements ...

  19. Tailoring Dispersion properties of photonic crystal waveguides by topology optimization

    Stainko, Roman; Sigmund, Ole

    2007-01-01

    The paper describes a systematic method for the tailoring of dispersion properties of slab-based photonic crystal waveguides. The method is based on the topology optimization method which consists in repeated finite element frequency domain analyzes, analytical sensitivity analyzes and gradient...... based design updates. The goal of the optimization process is to come up with slow light, zero group velocity dispersion photonic waveguides or photonic waveguides with tailored dispersion properties for dispersion compensation purposes. Two examples concerning reproduction of a specific dispersion...

  20. Monolithic femtosecond Yb-fiber laser with photonic crystal fibers

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    We demonstrate a monolithic stable SESAM-modelocked self-starting Yb-fiber laser. A novel PM all-solid photonic bandgap fiber is used for intra-cavity of dispersion management. The ex-cavity final pulse compression is performed in a spliced-on PM hollow-core photonic crystal fiber. The laser...

  1. Spontaneous emission in two-dimensional photonic crystal microcavities

    Søndergaard, Thomas

    2000-01-01

    The properties of the radiation field in a two-dimensional photonic crystal with and without a microcavity introduced are investigated through the concept of the position-dependent photon density of states. The position-dependent rate of spontaneous radiative decay for a two-level atom with random...

  2. Photonic Crystal Waveguides in Triangular Lattice of Nanopillars

    Chigrin, Dmitry N.; Lavrinenko, Andrei

    Photonic nanopillars waveguides have been analysed. Dielectric nanopillars are arranged in such way that they from a tringular lattice of 2D photonic crystal. Dispersion of the modes depends on the direction of the triangular lattice, Ã-J or Ã-X, in which nanopillars arrays are extended. Light...

  3. Studying The Effect of Various Parameters on The Characteristics of The Dielectric and Metallic Photonic Crystals

    Transmittance characteristics of two types of photonic crystals have been analysed using the transfer matrix method. The first one is the dielectric photonic crystal (DPC), and the second is the metallic photonic crystal (MPC). The effect of the most parameters on the transmission spectra of the dielectric and metallic photonic crystals has been studied

  4. The calculation of the band structure in 3D phononic crystal with hexagonal lattice

    Aryadoust, Mahrokh; Salehi, H. [University of Shahid Chamran, Ahvaz (Iran, Islamic Republic of). Dept. of Physics

    2015-07-01

    In this article, the propagation of acoustic waves in the phononic crystals (PCs) of three dimensions with the hexagonal (HEX) lattice is studied theoretically. The PCs are constituted of nickel (Ni) spheres embedded in epoxy. The calculations of the band structure and the density of states are performed using the plane wave expansion (PWE) method in the irreducible part of the Brillouin zone (BZ). In this study, we analyse the dependence of the band structures inside (the complete band gap width) on c/a and filling fraction in the irreducible part of the first BZ. Also, we have analysed the band structure of the ALHA and MLHKM planes. The results show that the maximum width of absolute elastic band gap (AEBG) (0.045) in the irreducible part of the BZ of HEX lattice is formed for c/a=6 and filling fraction equal to 0.01. In addition, the maximum of the first and second AEBG widths are 0.0884 and 0.0474, respectively, in the MLHKM plane, and the maximum of the first and second AEBG widths are 0.0851 and 0.0431, respectively, in the ALHA plane.

  5. Broadband Transmission Loss Using the Overlap of Resonances in 3D Sonic Crystals

    Alexandre Lardeau

    2016-05-01

    Full Text Available The acoustic properties of a three-dimensional sonic crystal made of square-rod rigid scatterers incorporating a periodic arrangement of quarter wavelength resonators are theoretically and experimentally reported in this work. The periodicity of the system produces Bragg band gaps that can be tuned in frequency by modifying the orientation of the square-rod scatterers with respect to the incident wave. In addition, the quarter wavelength resonators introduce resonant band gaps that can be tuned by coupling the neighbor resonators. Bragg and resonant band gaps can overlap allowing the wave propagation control inside the periodic resonant medium. In particular, we show theoretically and experimentally that this system can produce a broad frequency band gap exceeding two and a half octaves (from 590 Hz to 3220 Hz with transmission lower than 3%. Finite element methods were used to calculate the dispersion relation of the locally resonant system. The visco-thermal losses were accounted for in the quarter wavelength resonators to simulate the wave propagation in the semi-infinite structures and to compare the numerical results with the experiments performed in an echo-free chamber. The simulations and the experimental results are in good agreement. This work motivates interesting applications of this system as acoustic audible filters.

  6. CCT- and CRI-tuning of white light-emitting diodes using three-dimensional non-close-packed colloidal photonic crystals with photonic stop-bands.

    Lai, Chun-Feng; Chang, Chung-Chieh; Wang, Ming-Jye; Wu, Mau-Kuen

    2013-07-01

    This study exhibited the correlated color temperature (CCT)- and color-rendering index (CRI)-tuning behavior of light emission from white light-emitting diodes (WLEDs) using three-dimensional non-close-packed (3D NCP) colloidal photonic crystals (CPhCs). The CCT of approximately 5300 K (characteristic of cold WLEDs) of white light propagated through the NCP CPhCs dropped to 3000 K (characteristic of warm WLEDs) because of the photonic stop-bands based on the photonic band structures of NCP CPhCs. This study successfully developed a novel technique that introduces lower-cost CCT- and CRI-tuning cold WLEDs with a CRI of over 90 that of warm WLEDs by using 3D NCP CPhCs. PMID:24104495

  7. Compact Design of an Electrically Tunable and Rotatable Polarizer Based on a Liquid Crystal Photonic Bandgap Fiber

    Wei, Lei; Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard

    2009-01-01

    In this letter, a compact electrically controlled broadband liquid crystal (LC) photonic bandgap fiber polarizer is designed and fabricated. A good fiber coupling quality between two single-mode fibers and one 10-mm-long LC-filled photonic crystal fiber is obtained and protected by using SU-8 fiber...... fixing structures during the device assembly. The total insertion loss of this all-in-fiber device is 2.7 dB. An electrically tunable polarization extinction ratio of 21.3 dB is achieved with 45$^{circ}$ rotatable transmission axis as well as switched on and off in the wavelength range of 1300–1600 nm....

  8. Slow-light-enhanced gain in active photonic crystal waveguides

    Ek, Sara; Hansen, Per Lunnemann; Chen, Yaohui;

    2014-01-01

    , which would have interesting application prospects, for example enabling ultra-compact optical amplifiers for integration in photonic chips. Here we experi- mentally investigate the gain of a photonic crystal membrane structure with embedded quantum wells. We find that by solely changing the photonic...... crystal structural parameters, the maximum value of the gain coefficient can be increased compared with a ridge waveguide structure and at the same time the spectral position of the peak gain be controlled. The experimental results are in qualitative agreement with theory and show that gain values similar...

  9. Fabrication of a Two-Dimensional Organic Photonic Crystal

    HU Xiao-Yong; LI Yan; GONG Qi-Huang; CHENG Bing-Ying; ZHANG Dao-Zhong

    2005-01-01

    @@ A high-quality two-dimensional polystyrene photonic crystal is fabricated by the method of focused ion beam etching. The scanning electron microscopy (SEM) and the transmittance spectrum are used to characterize the properties of the photonic crystal. The measured transmittance spectrum is in agreement with the theoretical one. The influences of the disorders caused by the random perturbations in the diameter or the position of the air holes on the photonic band structure are analysed. It is found that the phtonic bandgap can tolerate less than 10% degree of disorder.

  10. Photon-pair generation in photonic crystal fibrebre with a 1.5GHz modelocked VECSEL

    Morris, Oliver J; Wilcox, Keith G; Tropper, Anne C; Mosley, Peter J

    2014-01-01

    Four-wave mixing (FWM) in optical fibre is a leading technique for generating high-quality photon pairs. We report the generation of photon pairs by spontaneous FWM in photonic crystal fibre pumped by a 1.5 GHz repetition-rate vertical-external-cavity surface-emitting laser (VECSEL). The photon pairs exhibit high count rates and a coincidence-to-accidental ratio of over 80. The VECSEL's high repetition-rate, high average power, tunability, and small footprint make this an attractive source for quantum key distribution and photonic quantum-state engineering.

  11. Formation of collimated beams behind the woodpile photonic crystal

    We experimentally observe formation of narrow laser beams behind the woodpile photonic crystal, when the beam remains well collimated in free propagation behind the crystal. We show that the collimation depends on the input laser beam's focusing conditions, and we interpret theoretically the observed effect by calculating the spatial dispersion of propagation eigenmodes and by numerical simulation of paraxial propagation model.

  12. Plasmonic and Photonic Modes Excitation in Graphene on Silicon Photonic Crystal Membrane

    Andryieuski, Andrei; Gu, Tingyi; Hao, Yufeng;

    Graphene is a perspective material platform for the infrared (from far-IR to near-IR) optoelectronics due to possibility of extremely confined surface plasmons polaritons excitation at long wavelengths, and large (for atomically thin layer) optical absorbance of 2.3% in the short wavelengths ranges....... Being deposited on a silicon photonic crystal membrane graphene serves as a highly promising system for modern optoelectronics with rich variety of possible regimes. Depending on the relation between the photonic crystal lattice constant and wavelengths (plasmonic, photonic and free-space) we identify...... four different interaction schemes. We refer to them as metamaterial, plasmonic, photonic and diffraction grating regimes based on the principle character of light interactions with the graphene deposited on the Si photonic crystal membrane. The optimal configurations for resonant excitation of modes...

  13. Modelling crystal plasticity by 3D dislocation dynamics and the finite element method: The Discrete-Continuous Model revisited

    Vattré, A.; Devincre, B.; Feyel, F.; Gatti, R.; Groh, S.; Jamond, O.; Roos, A.

    2014-02-01

    A unified model coupling 3D dislocation dynamics (DD) simulations with the finite element (FE) method is revisited. The so-called Discrete-Continuous Model (DCM) aims to predict plastic flow at the (sub-)micron length scale of materials with complex boundary conditions. The evolution of the dislocation microstructure and the short-range dislocation-dislocation interactions are calculated with a DD code. The long-range mechanical fields due to the dislocations are calculated by a FE code, taking into account the boundary conditions. The coupling procedure is based on eigenstrain theory, and the precise manner in which the plastic slip, i.e. the dislocation glide as calculated by the DD code, is transferred to the integration points of the FE mesh is described in full detail. Several test cases are presented, and the DCM is applied to plastic flow in a single-crystal Nickel-based superalloy.

  14. A study on new types of metallic photonic crystals

    In this thesis, I tried to synthesize a one dimension dielectric photonic crystal. I have succeeded in depositing single layers of zinc oxide and magnesium oxide on glass substrates. Each single layer was characterized by a scanning electron microscope, X-ray diffraction, A Mirue interferometer, and a spectrophotometer. The refractive indices, extinction coefficients, and absorption coefficients of each single layer were calculated from the measured transmittance, reflectance, and thickness data. Using the calculated parameters (refractive indices) and measured parameters (thicknesses) the transmission spectrum of the one dimension photonic crystal composed of zinc oxide and magnesium oxide was modelled. Using the transfer matrix method, a comparative study of the one dimension-dielectric and metallic photonic crystals was done. Effect of the refractive index difference, filling factor, number of periods, Plasmon frequency, damping coefficient, and incidence angle on the transmittance of the dielectric and metallic photonic crystal was carried out. A multilayered structure composed of Silver and Gallium Nitride was designed to transmit in the visible region, block UV frequencies, and reflect the IR and microwave frequencies. Using a combination of MaxwellGarnett Approximation and the transfer matrix method; the properties of a nanocomposite photonic crystal consisting of Cryolite and spherical nanoparticles of silver distributed in a dielectric matrix of titanium dioxide was studied. Effect of the nanoparticle concentration, lattice constant and incidence angle on the polaritonic and structure photonic band gap were studied.

  15. Controllable light diffraction in woodpile photonic crystals filled with liquid crystal

    Ho, Chih-Hua; Zeng, Hao; Wiersma, Diederik S. [European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, via Nello Carrara 1, 50019 Sesto Fiorentino (Italy); Cheng, Yu-Chieh; Maigyte, Lina; Trull, Jose; Cojocaru, Crina [Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Colom 11, 08222 Terrassa (Spain); Staliunas, Kestutis [Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Colom 11, 08222 Terrassa (Spain); Institucio Catalana de Reserca i Estudis Avançats (ICREA), passeig Lluis Companys 23, 08010 Barcelona (Spain)

    2015-01-12

    An approach to switching between different patterns of light beams transmitted through the woodpile photonic crystals filled with liquid crystals is proposed. The phase transition between the nematic and isotropic liquid crystal states leads to an observable variation of the spatial pattern transmitted through the photonic structure. The transmission profiles in the nematic phase also show polarization sensibility due to refractive index dependence on the field polarization. The experimental results are consistent with a numerical calculation by Finite Difference Time Domain method.

  16. Study on a novel photonic crystal temperature sensor

    FU Hai-wei; ZHAO Hui; QIAO Xue-guang; LI Yan; ZHAO Da-zhuang; YONG Zhen

    2011-01-01

    In this paper,a model of photonic crystal temperature sensor based on crystal microcavity in a straight photonic crystal waveguide is proposed.The transmission characteristics of light in the sensor under different temperatures are simulated by using finite-differenee time-domain (FDTD) method.The thermal expansion and thermal-optic effects of silicon are taken into account.The results show that the resonant wavelength of microcavity increases linearly as the temperature rising.The wavelength shift along with temperature is 6.6 pm / ℃.

  17. Passive Temperature Stabilization of Silicon Photonic Devices Using Liquid Crystals

    Joanna Ptasinski

    2014-03-01

    Full Text Available In this work we explore the negative thermo-optic properties of liquid crystal claddings for passive temperature stabilization of silicon photonic integrated circuits. Photonic circuits are playing an increasing role in communications and computing, but they suffer from temperature dependent performance variation. Most existing techniques aimed at compensation of thermal effects rely on power hungry Joule heating. We show that integrating a liquid crystal cladding helps to minimize the effects of a temperature dependent drift. The advantage of liquid crystals lies in their high negative thermo-optic coefficients in addition to low absorption at the infrared wavelengths.

  18. Three dimensional silicon photonic crystals fabricated by two photon phase mask lithography

    We describe the fabrication of silicon three dimensional photonic crystals using polymer templates defined by a single step, two-photon exposure through a layer of photopolymer with relief molded on its surface. The resulting crystals exhibit high structural quality over large areas, displaying geometries consistent with calculation. Spectroscopic measurements of transmission and reflection through the silicon and polymer structures reveal excellent optical properties, approaching properties predicted by simulations that assume ideal layouts

  19. The research and progress of micro-fabrication technologies of two-dimensional photonic crystal

    XU XingSheng; ZHANG DaoZhong

    2007-01-01

    The novel material of photonic crystal makes it possible to control a photon, and the photonic integration will have breakthrough progress due to the application of photonic crystal. It is based on the photonic crystal device that the photonic crystal integration could be realized. Therefore, we should first investigate photonic crystal devices based on the active and the passive semiconductor materials,which may have great potential application in photonic integration. The most practical and important method to fabricate two-dimensional photonic crystal is the micro-manufacture method. In this paper,we summarize and evaluate the fabrication methods of two-dimensional photonic crystal in near-infrared region, including electron beam lithography, selection of mask, dry etching, and some works of ours. This will be beneficial to the study of the photonic crystal in China.

  20. Lead tungstate crystal of the ALICE Photon Spectrometer (PHOS)

    Patrice Loïez

    2002-01-01

    A consignment of 500 lead tungstate crystals arrived at CERN from the northern Russian town of Apatity in May. Destined for the ALICE heavy-ion experiment in preparation for the Large Hadron Collider, each crystal is an 18 cm long rod with a 2.2 cm square section, and weighs some 750 g. A total of 17 000 crystals will make up the experiment's photon spectrometer.

  1. Beam Steering at Higher Photonic Bands and Design of a Directional Cloak Formed by Photonic Crystals

    Venkatachalam Subramanian

    2013-02-01

    Full Text Available Beam steering due to anomalous dispersion at higher photonic bands in dielectric photonic crystal is reported in this work. Based on this concept, directional cloak is designed that conceals a larger dimensional scattering object against the normal incident, linearly polarizedelectromagnetic waves.

  2. Beam Steering at Higher Photonic Bands and Design of a Directional Cloak Formed by Photonic Crystals

    Venkatachalam Subramanian; Natesan Yogesh

    2013-01-01

    Beam steering due to anomalous dispersion at higher photonic bands in dielectric photonic crystal is reported in this work. Based on this concept, directional cloak is designed that conceals a larger dimensional scattering object against the normal incident, linearly polarizedelectromagnetic waves.

  3. Subpicosecond shifting of the photonic band gap in a three-dimensional photonic crystal

    Mazurenko, DA; Kerst, R; Dijkhuis, JI; Akimov, AV; Golubev, VG; Kaplyanskii, AA; Kurdyukov, DA; Pevtsov, AB

    2005-01-01

    We demonstrate spectral shifting of the photonic band gap in a three-dimensional photonic crystal within a time of less than 350 fs. Single 120 fs high-power optical pulses are capable to induce the transition from the semiconductor to the metallic phase of VO2 in the pores of our artificial silica

  4. Kossel diffraction and photonic modes in one-dimensional photonic crystal

    André, J. -M.; Jonnard, Philippe; Le Guen, K.; Bridou, F

    2015-01-01

    Kossel diffraction under standing-wave excitation in a one-dimensional photonic crystal is investigated. It is shown that by combining the reciprocity theorem, the Fermi golden rule and the concept of density of photonic modes, it is possible to predict the behaviour of the Kossel diffraction in such a system.

  5. Optical cone beam tomography of Cherenkov-mediated signals for fast 3D dosimetry of x-ray photon beams in water

    Glaser, Adam K., E-mail: Adam.K.Glaser@dartmouth.edu, E-mail: Brian.W.Pogue@dartmouth.edu; Andreozzi, Jacqueline M. [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States); Zhang, Rongxiao [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Pogue, Brian W., E-mail: Adam.K.Glaser@dartmouth.edu, E-mail: Brian.W.Pogue@dartmouth.edu [Thayer School of Engineering and Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Gladstone, David J. [Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766 (United States)

    2015-07-15

    Purpose: To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF). Methods: An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a Feldkamp–Davis–Kress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian ECLIPSE treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts. Results: 3D light volumes were successfully reconstructed over a 400 × 400 × 350 mm{sup 3} volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%–99% pass fraction depending on the chosen threshold dose. Conclusions: The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water.

  6. Optical cone beam tomography of Cherenkov-mediated signals for fast 3D dosimetry of x-ray photon beams in water

    Purpose: To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF). Methods: An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a Feldkamp–Davis–Kress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian ECLIPSE treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts. Results: 3D light volumes were successfully reconstructed over a 400 × 400 × 350 mm3 volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%–99% pass fraction depending on the chosen threshold dose. Conclusions: The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water

  7. Two-photon laser-generated microtracks in 3D collagen lattices: principles of MMP-dependent and -independent collective cancer cell invasion

    Cancer invasion into an extracellular matrix (ECM) results from a biophysical reciprocal interplay between the expanding cancer lesion and tissue barriers imposed by the adjacent microenvironment. In vivo, connective tissue provides both densely packed ECM barriers adjacent to channel/track-like spaces and loosely organized zones, both of which may impact cancer invasion mode and efficiency; however little is known about how three-dimensional (3D) spaces and aligned tracks present in interstitial tissue guide cell invasion. We here describe a two-photon laser ablation procedure to generate 3D microtracks in dense 3D collagen matrices that support and guide collective cancer cell invasion. Whereas collective invasion of mammary tumor (MMT) breast cancer cells into randomly organized collagen networks required matrix metalloproteinase (MMP) activity for cell-derived collagen breakdown, re-alignment and track generation, preformed tracks supported MMP-independent collective invasion down to a track caliber of 3 µm. Besides contact guidance along the track of least resistance and initial cell deformation (squeezing), MMP-independent collective cell strands led to secondary track expansion by a pushing mechanism. Thus, two-photon laser ablation is useful to generate barrier-free microtracks in a 3D ECM which guide collective invasion independently of pericellular proteolysis

  8. Soft-Lithographical Fabrication of Three-dimensional Photonic Crystals in the Optical Regime

    Jae-Hwang Lee

    2006-08-09

    This dissertation describes several projects to realize low-cost and high-quality three-dimensional (3D) microfabrication using non-photolithographic techniques for layer-by-layer photonic crystals. Low-cost, efficient 3D microfabrication is a demanding technique not only for 3D photonic crystals but also for all other scientific areas, since it may create new functionalities beyond the limit of planar structures. However, a novel 3D microfabrication technique for photonic crystals implies the development of a complete set of sub-techniques for basic layer-by-layer stacking, inter-layer alignment, and material conversion. One of the conventional soft lithographic techniques, called microtransfer molding ({mu}TM), was developed by the Whitesides group in 1996. Although {mu}TM technique potentially has a number of advantages to overcome the limit of conventional photolithographic techniques in building up 3D microstructures, it has not been studied intensively after its demonstration. This is mainly because of technical challenges in the nature of layer-by-layer fabrication, such as the demand of very high yield in fabrication. After two years of study on conventional {mu}TM, We have developed an advanced microtransfer molding technique, called two-polymer microtransfer molding (2P-{mu}TM) that shows an extremely high yield in layer-by-layer microfabrication sufficient to produce highly layered microstructures. The use of two different photo-curable prepolymers, a filler and an adhesive, allows for fabrication of layered microstructures without thin films between layers. The capabilities of 2P-{mu}TM are demonstrated by the fabrication of a wide-area 12-layer microstructure with high structural fidelity. Second, we also had to develop an alignment technique. We studied the 1st-order diffracted moire fringes of transparent multilayered structures comprised of irregularly deformed periodic patterns. By a comparison study of the diffracted moire fringe pattern and

  9. Chromatic dispersion of liquid crystal infiltrated capillary tubes and photonic crystal fibers

    Rasmussen, Per Dalgaard; Lægsgaard, Jesper; Bang, Ole

    2006-01-01

    We consider chromatic dispersion of capillary tubes and photonic crystal fibers infiltrated with liquid crystals. A perturbative scheme for inclusion of material dispersion of both liquid crystal and the surrounding waveguide material is derived. The method is used to calculate the chromatic...

  10. Omnidirectional photonic band gap of one-dimensional ternary plasma photonic crystals

    An omnidirectional photonic band gap (PBG) is presented in one-dimensional ternary plasma photonic crystal (PPC). In contrast to the omnidirectional PBG coming from a zero- n-tilde gap or single negative (SNG) (permittivity- or permittivity-negative) gap, this gap originates from a Bragg gap. It has been shown that the ternary PPC, compared with the usual binary photonic crystal (PC), has a superior feature in the enhancement of the high-reflectance range (HRR) and the modulation of the omnidirectional PBG. Omnidirectional PBGs can be utilized as omnidirectional or large incident angle filters or reflectors in microwave devices

  11. Dispersive photonic crystals from the plane wave method

    Guevara-Cabrera, E.; Palomino-Ovando, M. A.; Flores-Desirena, B.; Gaspar-Armenta, J. A.

    2016-03-01

    Nowadays photonic crystals are widely used in many different applications. One of the most used methods to compute their band structure is the plane wave method (PWM). However, it can only be applied directly to non-dispersive media and be extended to systems with a few model dielectric functions. We explore an extension of the PWM to photonic crystals containing dispersive materials, that solves an eigenvalue equation for the Bloch wave vectors. First we compare our calculation with analytical results for one dimensional photonic crystals containing Si using experimental values of its optical parameters, and obtainig very well agreement, even for the spectrum region with strong absorption. Then, using the same method, we computed the band structure for a two dimensional photonic crystal without absorption, formed by an square array of MgO cylinders in air. The optical parameters for MgO were modeled with the Lorentz dielectric function. Finally, we studied an array of MgO cylinders in a metal, using Drude model without absorption, for the metal dielectric function. For this last case, we study the gap-midgap ratio as a function of the filling fraction for both the square and triangular lattice. The gap-midgap ratio is larger for the triangular lattice, with a maximum value of 10% for a filling fraction of 0.6. Our results show that the method can be applied to dispersive materials, and then to a wide range of applications where photonic crystals can be used.

  12. Enhanced four-wave mixing in graphene-silicon slow-light photonic crystal waveguides

    We demonstrate the enhanced four-wave mixing of monolayer graphene on slow-light silicon photonic crystal waveguides. 200-μm interaction length, a four-wave mixing conversion efficiency of −23 dB is achieved in the graphene-silicon slow-light hybrid, with an enhanced 3-dB conversion bandwidth of about 17 nm. Our measurements match well with nonlinear coupled-mode theory simulations based on the measured waveguide dispersion, and provide an effective way for all-optical signal processing in chip-scale integrated optics.

  13. Photonic crystals composed of virtual pillars with magnetic walls: Photonic band gaps and double Dirac cones

    Kim, Seong-Han; Kim, Soeun; Kee, Chul-Sik

    2016-08-01

    Photonic crystals composed of virtual pillars with magnetic walls are proposed. A virtual pillar with a magnetic wall can be created inside a parallel perfect electric conductor plate waveguide by introducing a circular perfect magnetic conductor patch in the upper perfect electric conductor plate of the waveguide. The virtual pillar mimics a perfect magnetic conductor pillar with a radius less than that of the circular patch because electromagnetic waves can slightly penetrate the wall. Furthermore, the photonic band structures of a triangular photonic crystal composed of virtual pillars for the transverse electromagnetic modes of the waveguide are investigated. They are very similar to those of a triangular photonic crystal composed of infinitely long perfect electric conductor cylinders for transverse magnetic modes. The similarity between the two different photonic crystals is well understood by the boundary conditions of perfect electric and magnetic conductor surfaces. A double Dirac cone at the center of the Brillouin zone is observed and thus the virtual pillar triangular photonic crystal can act a zero-refractive-index material at the Dirac point frequency.

  14. Photon irradiation response of photonic crystal fibres and flat fibres at radiation therapy doses

    Radiation effects of photon irradiation in pure Photonic Crystal Fibres (PCF) and Flat fibres (FF) are still much less investigated in thermoluminescense dosimetry (TLD). We have reported the TL response of PCF and FF subjected to 6 MV photon irradiation. The proposed dosimeter shows good linearity at doses ranging from 1 to 4 Gy. The small size of these detectors points to its use as a dosimeter at megavoltage energies, where better tissue-equivalence and the Bragg–Gray cavity theory prevails. - Highlights: • First study about radiation effects of photon irradiation in pure Photonic Crystal Fibres (PCF) and Flat fibres (FF). • PCF and FF. have been found to have good dose linearity (up to 4 Gy). • The value of Zeff obtained is in the range of 10.3–11.3 and 11.3–11.8 for PCF and FF respectively

  15. Modelling and design of complete photonic band gaps in two-dimensional photonic crystals

    Yogita Kalra; R K Sinha

    2008-01-01

    In this paper, we investigate the existence and variation of complete photonic band gap size with the introduction of asymmetry in the constituent dielectric rods with honeycomb lattices in two-dimensional photonic crystals (PhC) using the plane-wave expansion (PWE) method. Two examples, one consisting of elliptical rods and the other comprising of rectangular rods in honeycomb lattices are considered with a view to estimate the design parameters for maximizing the complete photonic band gap. Further, it has been shown that complete photonic band gap size changes with the variation in the orientation angle of the constituent dielectric rods.

  16. Photonic-crystal-based all-optical NOT logic gate.

    Singh, Brahm Raj; Rawal, Swati

    2015-12-01

    In the present paper, we have utilized the concept of photonic crystals for the implementation of an optical NOT gate inverter. The designed structure has a hexagonal arrangement of silicon rods in air substrate. The logic function is based on the phenomenon of the existence of the photonic bandgap and resulting guided modes in defect photonic crystal waveguides. We have plotted the transmission, extinction ratio, and tolerance analysis graphs for the structure, and it has been observed that the maximum output is obtained for a telecom wavelength of 1.554 μm. Dispersion curves are obtained using the plane wave expansion method, and the transmission is simulated using the finite element method. The proposed structure is applicable for photonic integrated circuits due to its simple structure and clear operating principle. PMID:26831380

  17. Ultrahigh-Q modes in anisotropic 2D photonic crystal

    In this work, we design a two-dimensional photonic crystal cavity made with a substrate of an anisotropic material. We consider triangular lattice photonic crystal made from air holes in tellurium. The cavity itself is then created by three missing holes in the centre. Using the three-dimensional finite-difference time-domain simulation and optimization of the geometrical parameters and the symmetric displacement of the edge air holes on the quality factor, the cavity’s structural parameters yield an ultrahigh-Q mode cavity with quality factor Q = 2.95 × 1011 for a filling factor r/a = 0.45 and lateral displacement of 10 nm. This shows great enhancement compared with previous studies in which silicon material has been used. The designed structure can be helpful in a number of applications associated with photonic crystal cavities, including quantum information processing, filters, and nanoscale sensors. (paper)

  18. Mode conversion in a magnetic photonic crystal waveguide

    In this work, we have reported a theoretical study of a magnetic photonic crystal waveguide (also called a magneto photonic crystal waveguide). This structure is formed by a triangular lattice of air holes in a bismuth iron garnet (BIG) film, grown on gallium gadolinium garnet substrates. Nonreciprocal TE–TM mode conversion is caused by the Faraday rotation if the magnetization is aligned along the z-axis, parallel to mode of propagation. The properties of this phenomenon are simulated using the beam propagation method. The conversion output has been simulated, and the Faraday rotation and modal birefringence have been calculated by varying the gyrotropy and the thickness of the BIG film. This magnetic photonic crystal waveguide has the advantage of enhancing Faraday rotation in optical isolators

  19. Quantum Storage of Photonic Entanglement in a Crystal

    Clausen, Christoph; Bussieres, Felix; Sangouard, Nicolas; Afzelius, Mikael; de Riedmatten, Hugues; Gisin, Nicolas

    2010-01-01

    Entanglement is the fundamental characteristic of quantum physics. Large experimental efforts are devoted to harness entanglement between various physical systems. In particular, entanglement between light and material systems is interesting due to their prospective roles as "flying" and stationary qubits in future quantum information technologies, such as quantum repeaters and quantum networks. Here we report the first demonstration of entanglement between a photon at telecommunication wavelength and a single collective atomic excitation stored in a crystal. One photon from an energy-time entangled pair is mapped onto a crystal and then released into a well-defined spatial mode after a predetermined storage time. The other photon is at telecommunication wavelength and is sent directly through a 50 m fiber link to an analyzer. Successful transfer of entanglement to the crystal and back is proven by a violation of the Clauser-Horne-Shimony-Holt (CHSH) inequality by almost three standard deviations (S=2.64+/-0....

  20. Co-molding of nanoscale photonic crystals and microfluidic channel

    Snyder, Chloe E.; Kadiyala, Anand; Srungarapu, Maurya; Liu, Yuxin; Dawson, Jeremy M.

    2014-03-01

    Photonic crystals are nanofabricated structures that enhance light as it is passed through the constructed design. These structures are normally fabricated out of silicon but have shown to be an improvement if fabricated from a more cost effective material. Photonic crystals have uses within biosensing as they may be used to analyze DNA and other analytes. Microfluidic channels are used to transport different analytes and other samples from one end to another. Microfluidics are used in biosensing as a means of transport and are typically fabricated from biocompatible polymers. Integrated together, the photonic crystals and microfluidic channels would be able to achieve better sensing capabilities and cost effective methods for large scale production. Results will be shown from the co-molding.

  1. Diamond-Structured Photonic Crystals with Graded Air Spheres Radii

    Dichen Li

    2012-05-01

    Full Text Available A diamond-structured photonic crystal (PC with graded air spheres radii was fabricated successfully by stereolithography (SL and gel-casting process. The graded radii in photonic crystal were formed by uniting different radii in photonic crystals with a uniform radius together along the Г‑Х direction. The stop band was observed between 26.1 GHz and 34.3 GHz by reflection and transmission measurements in the direction. The result agreed well with the simulation attained by the Finite Integration Technique (FIT. The stop band width was 8.2 GHz and the resulting gap/midgap ratio was 27.2%, which became respectively 141.4% and 161.9% of the perfect PC. The results indicate that the stop band width of the diamond-structured PC can be expanded by graded air spheres radii along the Г‑Х direction, which is beneficial to develop a multi bandpass filter.

  2. Compact Couplers for Photonic Crystal Laser-Driven Accelerator Structures

    Photonic crystal waveguides are promising candidates for laser-driven accelerator structures because of their ability to confine a speed-of-light mode in an all-dielectric structure. Because of the difference between the group velocity of the waveguide mode and the particle bunch velocity, fields must be coupled into the accelerating waveguide at frequent intervals. Therefore efficient, compact couplers are critical to overall accelerator efficiency. We present designs and simulations of high-efficiency coupling to the accelerating mode in a three-dimensional photonic crystal waveguide from a waveguide adjoining it at 90o. We discuss details of the computation and the resulting transmission. We include some background on the accelerator structure and photonic crystal-based optical acceleration in general.

  3. Optical modulator based on coupled photonic crystal cavities

    Serafimovich, Pavel G.; Kazanskiy, Nikolay L.

    2016-07-01

    We propose and numerically investigate an optical signal modulator based on two-photonic crystal nanobeam cavities coupled through a waveguide. The suggested modulator shifts the resonant frequency over a scalable range. We design a compact optical modulator based on photonic crystal nanobeams cavities that exhibits high stability to manufacturing. Photonic crystal waveguide tuning in the low-intensity region of the resonant mode is demonstrated. The advantages of the suggested approach over the single-resonator optical modulator approaches include the possibilities to shift the modulator frequency over a scalable range that depends on switching energy level and to effectively electrically tune the device in the low-intensity region of the resonant mode.

  4. Parametric Simulations of Slanted 1D Photonic Crystal Sensors.

    Breuer-Weil, Aaron; Almasoud, Naif Nasser; Abbasi, Badaruddin; Yetisen, Ali K; Yun, Seok-Hyun; Butt, Haider

    2016-12-01

    Photonic crystals and band gap materials act as manipulators of light and have a plethora of applications. They are made up of stacks of alternating dielectric constants. This article shows the simulations of an inclined, one dimensional and tuneble photonic crystal, using numerical finite element methods. The photonic crystal was made up of silver nanoparticles embedded in a hydrogel matrix and it has the ability to change and recover its periodicity. A series of factors concerning the geometry of the lattice were tested in order to analyze the efficiency, performance and optimize the properties of the optical sensor. These factors range from the size of the nanoparticles and their density within the stacks, to observing the effect of diffraction angle in readouts. PMID:27000025

  5. Single-Crystal to Single-Crystal Phase Transition and Segmented Thermochromic Luminescence in a Dynamic 3D Interpenetrated Ag(I) Coordination Network.

    Yan, Zhi-Hao; Li, Xiao-Yu; Liu, Li-Wei; Yu, Si-Qi; Wang, Xing-Po; Sun, Di

    2016-02-01

    A new 3D Ag(I)-based coordination network, [Ag2(pz)(bdc)·H2O]n (1; pz = pyrazine and H2bdc = benzene-1,3-dicarboxylic acid), was constructed by one-pot assembly and structurally established by single-crystal X-ray diffraction at different temperatures. Upon cooling from 298 to 93 K, 1 undergo an interesting single-crystal to single-crystal phase transition from orthorhombic Ibca (Z = 16) to Pccn (Z = 32) at around 148 K. Both phases show a rare 2-fold-interpenetrated 4-connected lvt network but incorporate different [Ag2(COO)2] dimeric secondary building units. It is worth mentioning that complex 1 shows red- and blue-shifted luminescences in the 290-170 and 140-80 K temperature ranges, respectively. The variable-temperature single-crystal X-ray crystallographic studies suggest that the argentophilic interactions and rigidity of the structure dominated the luminescence chromism trends at the respective temperature ranges. Upon being mechanically ground, 1 exhibits a slight mechanoluminescence red shift from 589 to 604 nm at 298 K. PMID:26828950

  6. Triangular nanobeam photonic cavities in single crystal diamond

    Bayn, Igal; Meyler, Boris; Salzman, Joseph; Kalish, Rafi

    2011-01-01

    Diamond photonics provides an attractive architecture to explore room temperature cavity quantum electrodynamics and to realize scalable multi-qubit computing. Here we review the present state of diamond photonic technology. The design, fabrication and characterization of a novel triangular cross section nanobeam cavity produced in a single crystal diamond is demonstrated. The present cavity design, based on a triangular cross section allows vertical confinement and better signal collection e...

  7. Parametric down-conversion in photonic crystal waveguides

    Weihs, Gregor

    2005-01-01

    Photonic crystals create dramatic new possibilities for nonlinear optics. Line defects are shown to support modes suitable for the production of pairs of photons by the material's second order nonlinearity even if the phase-matching conditions cannot be satisfied in the bulk. These structures offer the flexibility to achieve specific dispersion characteristics and potentially very high brightness. In this work, two phase matching schemes are identified and analyzed regarding their dispersive ...

  8. Quantum Cascade Surface-Emitting Photonic Crystal Laser

    Colombelli, Raffaele; Srinivasan, Kartik; Troccoli, Mariano; Painter, Oskar; Gmachl, Claire F.; Tennant, Donald M.; Sergent, A. Michael; Sivco, Deborah L.; Cho, Alfred Y.; Capasso, Federico

    2003-01-01

    We combine photonic and electronic band structure engineering to create a surface-emitting quantum cascade microcavity laser. A high-index contrast two-dimensional photonic crystal is used to form a micro-resonator that simultaneously provides feedback for laser action and diffracts light vertically from the surface of the semiconductor surface. A top metallic contact allows electrical current injection and provides vertical optical confinement through a bound surface plasmon wave. The miniat...

  9. Slow-light enhanced gain in active photonic crystal waveguides

    Ek, Sara; Lunnemann, Per; Chen, Yaohui; Semenova, Elizaveta; Yvind, Kresten; Mørk, Jesper

    2014-01-01

    Slow light is a fascinating physical effect, raising fundamental questions related to our understanding of light-matter interactions as well as offering new possibilities for photonic devices. From the first demonstrations of slow light propagation in ultra-cold atomic gasses, solid-state Ruby and photonic crystal structures, focus has shifted to applications, with slow light offering the ability to enhance and control light-matter interactions. The demonstration of tuneable delay lines, enha...

  10. Remote macroscopic entanglement on a photonic crystal architecture

    Flayac, H.; Minkov, M; Savona, V.

    2015-01-01

    The outstanding progress in nanostructure fabrication and cooling technologies allows what was unthinkable a few decades ago: bringing single-mode mechanical vibrations to the quantum regime. The coupling between photon and phonon excitations is a natural source of nonclassical states of light and mechanical vibrations, and its study within the field of cavity optomechanics is developing lightning fast. Photonic crystal cavities are highly integrable architectures that have demonstrated the s...

  11. High-Q silicon carbide photonic-crystal cavities

    Lee, Jonathan Y.; Lu, Xiyuan; Lin, Qiang

    2015-01-01

    We demonstrate one-dimensional photonic-crystal nanobeam cavities in amorphous silicon carbide. The fundamental mode exhibits intrinsic optical quality factor as high as 7.69 × 104 with mode volume ˜ 0.60 ( λ / n ) 3 at wavelength 1.5 μm. A corresponding Purcell factor value of ˜104 is the highest reported to date in silicon carbide optical cavities. The device exhibits great potential for integrated nonlinear photonics and cavity nano-optomechanics.

  12. Theoretical analysis of a biased photonic crystal fiber infiltrated with a negative dielectric anisotropy liquid crystal

    Weirich, Johannes; Wei, Lei; Lægsgaard, Jesper;

    2009-01-01

    We simulate the PBG mode of a biased Photonic Crystal Fiber (PCF) infiltrated with a Liquid Crystal (LC) with negative dielectric anisotropy. We analyse the voltage induced change of the transmission spectrum, dispersion and losses and compare them to the experimental values.......We simulate the PBG mode of a biased Photonic Crystal Fiber (PCF) infiltrated with a Liquid Crystal (LC) with negative dielectric anisotropy. We analyse the voltage induced change of the transmission spectrum, dispersion and losses and compare them to the experimental values....

  13. Absorption and emission properties of photonic crystals and metamaterials

    Peng, Lili

    2007-08-03

    We study the emission and absorption properties of photonic crystals and metamaterials using Comsol Multiphysics and Ansoft HFSS as simulation tools. We calculate the emission properties of metallic designs using drude model and the results illustrate that an appropriate termination of the surface of the metallic structure can significantly increase the absorption and therefore the thermal emissivity. We investigate the spontaneous emission rate modifications that occur for emitters inside two-dimensional photonic crystals and find the isotropic and directional emissions with respect to different frequencies as we have expected.

  14. Polarized quantum dot emission in electrohydrodynamic jet printed photonic crystals

    Tailored optical output, such as color purity and efficient optical intensity, are critical considerations for displays, particularly in mobile applications. To this end, we demonstrate a replica molded photonic crystal structure with embedded quantum dots. Electrohydrodynamic jet printing is used to control the position of the quantum dots within the device structure. This results in significantly less waste of the quantum dot material than application through drop-casting or spin coating. In addition, the targeted placement of the quantum dots minimizes any emission outside of the resonant enhancement field, which enables an 8× output enhancement and highly polarized emission from the photonic crystal structure

  15. Group-index limitations in slow-light photonic crystals

    Grgic, Jure; Pedersen, Jesper Goor; Xiao, Sanshui;

    2010-01-01

    In photonic crystals the speed of light can be significantly reduced due to band-structure effects associated with the spatially periodic dielectric function, rather than originating from strong material dispersion. In the ideal and loss-less structures it is possible even to completely stop the...... light near frequency band edges associated with symmetry points in the Brillouin zone. Unfortunately, despite the impressive progress in fabrication of photonic crystals, real structures differ from the ideal structures in several ways including structural disorder, material absorption, out of plane...

  16. Design and Fabrication of SOI-based photonic crystal components

    Borel, Peter Ingo; Frandsen, Lars Hagedorn; Harpøth, Anders;

    2004-01-01

    We present examples of ultra-compact photonic crystal components realized in silicon-on-insulator material. We have fabricated several different types of photonic crystal waveguide components displaying high transmission features. This includes 60° and 120° bends, different types of couplers......, and splitters. Recently, we have designed and fabricated components with more than 200 nm bandwidths. Design strategies to enhance the performance include systematic variation of design parameters using finite-difference time-domain simulations and inverse design methods such as topology optimization....

  17. Hollow core photonic crystal fiber based viscometer with Raman spectroscopy

    Horan, Laura E.; Ruth, Albert A.; Garcia-Gunning, Fatima C.

    2012-01-01

    The velocity of a liquid flowing through the core of a hollow core photonic crystal fiber (driven by capillary forces) is used for the determination of a liquid's viscosity, using volumes of less than 10 nl. The simple optical technique used is based on the change in propagation characteristics of the fiber as it fills with the liquid of interest via capillary action, monitored by a laser source. Furthermore, the liquid filled hollow core photonic crystal fiber is then used as a vessel to col...

  18. Design and Fabrication of Photonic Crystal Materials and Components

    Harpøth, Anders

    2005-01-01

    The work described in this thesis covers the issues of producing materials for use as base material for fabricating photonic crystals and the design, fabrication and characterization of photonic crystal components. One of the aims is to investigate the possibilities of fabricating a silicon......-on-insulator (SOI) material using standard cleanroom processing techniques. A standard silicon wafer is covered with a silica film by an oxidation process and subsequently covered with a thin silicon layer deposited from silane by a Low Pressure Chemical Vapor Deposition (LPCVD) process. Such a process sequence is...

  19. Active Photonic Crystal Switches: Modeling, Design and Experimental Characterization

    Heuck, Mikkel; Yu, Yi; Kristensen, Philip Trøst; Kuznetsova, Nadezda; Yvind, Kresten; Mørk, Jesper

    2013-01-01

    In this paper, we present recent progress in modeling, design, fabrication and experimental characterization of InP photonic crystal all-optical switches. Novel designs with increased flexibility and performance are presented, and their operation using high speed data signals is analyzed numerica......In this paper, we present recent progress in modeling, design, fabrication and experimental characterization of InP photonic crystal all-optical switches. Novel designs with increased flexibility and performance are presented, and their operation using high speed data signals is analyzed...

  20. Polarized quantum dot emission in electrohydrodynamic jet printed photonic crystals

    See, Gloria G. [Micro and Nanotechnology Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 208 North Wright Street, Urbana, Illinois 61801 (United States); Xu, Lu; Nuzzo, Ralph G. [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States); Sutanto, Erick; Alleyne, Andrew G. [Mechanical Science and Engineering Department, University of Illinois at Urbana-Champaign, 154 Mechanical Engineering Building, Urbana, Illinois 61801 (United States); Cunningham, Brian T. [Micro and Nanotechnology Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 208 North Wright Street, Urbana, Illinois 61801 (United States); Department of Bioengineering, University of Illinois at Urbana-Champaign, 1270 Digital Computer Laboratory, MC-278, Urbana, Illinois 61801 (United States)

    2015-08-03

    Tailored optical output, such as color purity and efficient optical intensity, are critical considerations for displays, particularly in mobile applications. To this end, we demonstrate a replica molded photonic crystal structure with embedded quantum dots. Electrohydrodynamic jet printing is used to control the position of the quantum dots within the device structure. This results in significantly less waste of the quantum dot material than application through drop-casting or spin coating. In addition, the targeted placement of the quantum dots minimizes any emission outside of the resonant enhancement field, which enables an 8× output enhancement and highly polarized emission from the photonic crystal structure.

  1. Coupling of single quantum dots to a photonic crystal waveguide

    Lund-Hansen, Toke; Stobbe, Søren; Julsgaard, Brian; Lodahl, Peter

    is coupled efficiently to a single enhanced mode. One popular approach has been to couple single quantum dots to a nanocavity but a limiting factor in this configuration is that in order to apply the photon it should subsequently be coupled out of the cavity, reducing the overall efficiency...... significantly. An alternative approach is to couple the quantum dot directly to the propagating mode of a photonic waveguide. We demonstrate the coupling of single quantum dots to a photonic crystal waveguide using time-resolved spontaneous emission measurements. A pronounced effect is seen in the decay rates...

  2. Direct fiber-coupled single photon source based on a photonic crystal waveguide

    A single photon source plays a key role in quantum applications such as quantum computers and quantum communications. Epitaxially grown quantum dots are one of the promising platforms to implement a good single photon source. However, it is challenging to realize an efficient single photon source based on semiconductor materials due to their high refractive index. Here we demonstrate a direct fiber coupled single photon source with high collection efficiency by employing a photonic crystal (PhC) waveguide and a tapered micro-fiber. To confirm the single photon nature, the second-order correlation function g(2)(τ) is measured with a Hanbury Brown-Twiss setup. The measured g(2)(0) value is 0.15, and we can estimate 24% direct collection efficiency from a quantum dot to the fiber

  3. Direct fiber-coupled single photon source based on a photonic crystal waveguide

    Ahn, Byeong-Hyeon, E-mail: seygene@kaist.ac.kr; Lee, Chang-Min; Lim, Hee-Jin [Department of Physics, KAIST, Daejeon 305-701 (Korea, Republic of); Schlereth, Thomas W.; Kamp, Martin [Technische Physik, Physikalisches Institut and Wilhelm Conrad Röntgen-Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg (Germany); Höfling, Sven [Technische Physik, Physikalisches Institut and Wilhelm Conrad Röntgen-Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg (Germany); SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS (United Kingdom); Lee, Yong-Hee [Department of Physics, KAIST, Daejeon 305-701 (Korea, Republic of); Graduate School of Nanoscience and Technology (WCU), KAIST, Daejeon 305-701 (Korea, Republic of)

    2015-08-24

    A single photon source plays a key role in quantum applications such as quantum computers and quantum communications. Epitaxially grown quantum dots are one of the promising platforms to implement a good single photon source. However, it is challenging to realize an efficient single photon source based on semiconductor materials due to their high refractive index. Here we demonstrate a direct fiber coupled single photon source with high collection efficiency by employing a photonic crystal (PhC) waveguide and a tapered micro-fiber. To confirm the single photon nature, the second-order correlation function g{sup (2)}(τ) is measured with a Hanbury Brown-Twiss setup. The measured g{sup (2)}(0) value is 0.15, and we can estimate 24% direct collection efficiency from a quantum dot to the fiber.

  4. Photonic Bandgap Properties of Atom-lattice Photonic Crystals in Polymer

    REN Lin; WANG Dian; SUN Gui-ting; NIU Li-gang; YANG Han; SONG Jun-feng

    2011-01-01

    The present paper covers the various photonic crystals(PhCs) structures mimicking real atom-lattice structures in electronic crystals by using the femtosecond laser-induced two-photon photopolymerization of SU-8 resin. The bandgap properties were investigated by varying the crystal orientations in <111>, <110> and <100> of diamond-lattice PhCs. lhe photonic stop gaps were present at λ=3.88 μm in <111> direction, λ=4.01 μtm in <110> direction and λ=5.30 μm in <100> direction, respectively. In addition, defects were introduced in graphite-lattice PhCs and the strong localization of photons in this structure with defects at λ=5 μm was achieved. All the above work shows the powerful capability of femtosecond laser fabrication in manufacturing various complicated threedimensional photonic crystals and of controlling photons by inducing defects in the PhCs samples.

  5. Macroporous photonic crystal-based anti-ultraviolet and anti-near-infrared materials by doctor blade coating

    Cai, Chang-Yun; Lin, Kun-Yi Andrew; Chen, Ying-Chu; Yang, Hongta

    2016-02-01

    In this article, we report a roll-to-roll compatible bottom-up self-assembly approach to fabricate double-multilayer macroporous polymer photonic crystals consisting of a multilayer of three-dimensional (3D) hexagonal close-packed (HCP) 200 nm spherical pores and a multilayer of 3D HCP 500 nm spherical pores. Both optical measurements and theoretical predictions reveal that the as-prepared polymer film exhibits anti-ultraviolet and anti-near-infrared properties caused by the Bragg's diffractive of incident ultraviolet radiation and near-infrared radiation from the crystalline lattice of air cavities in the polymer film.

  6. The thick-crystal regime in photon pair sources

    Septriani, Brigitta; Durak, Kadir; Ling, Alexander

    2015-01-01

    We present comprehensive measurement data on the pump and collection beam parameters necessary to achieve high collection efficiency ($89.0 \\pm 1.7 \\%$) together with high brightness when a single $\\beta$-Barium Borate crystal is operated in the thick-crystal regime and pumped with a narrow linewidth laser source. Spectral analysis of the collinear, non-degenerate photons suggest that the effective interaction length within the crystal is dominated by the collection beam mode and the use of longer crystals with increased spatial walk-off does not necessarily lead to a reduced collection efficiency. This result is an important consideration for optical designers who seek to develop practical photon pair sources.

  7. Photon Cascade from a Single Crystal Phase Nanowire Quantum Dot

    Bouwes Bavinck, Maaike; Jöns, Klaus D; Zieliński, Michal; Patriarche, Gilles; Harmand, Jean-Christophe; Akopian, Nika; Zwiller, Val

    2016-01-01

    unprecedented potential to be controlled with atomic layer accuracy without random alloying. We show for the first time that crystal phase quantum dots are a source of pure single-photons and cascaded photon-pairs from type II transitions with excellent optical properties in terms of intensity and line width......We report the first comprehensive experimental and theoretical study of the optical properties of single crystal phase quantum dots in InP nanowires. Crystal phase quantum dots are defined by a transition in the crystallographic lattice between zinc blende and wurtzite segments and therefore offer....... We notice that the emission spectra consist often of two peaks close in energy, which we explain with a comprehensive theory showing that the symmetry of the system plays a crucial role for the hole levels forming hybridized orbitals. Our results state that crystal phase quantum dots have promising...

  8. Spectral plasmonic effect in the nano-cavity of dye-doped nanosphere-based photonic crystals

    Yadav, Ashish; Danesh, Mohammad; Zhong, Liubiao; Cheng, Gary J.; Jiang, Lin; Chi, Lifeng

    2016-04-01

    We demonstrated three-dimensional PMMA-based photonic crystal (3D-PC) nanostructures attached to Au nanoparticles (AuNPs), which undergo self-organization into super lattice planes and enhance the fluorescence properties. This new structure exhibited interesting tunable spectral, peak broadening plasmonic behavior because of strong plasmonic interaction at high laser powers. The presented work provides an important tool to improve the efficiency of dye laser applications.

  9. Spectral plasmonic effect in the nano-cavity of dye-doped nanosphere-based photonic crystals.

    Yadav, Ashish; Danesh, Mohammad; Zhong, Liubiao; Cheng, Gary J; Jiang, Lin; Chi, Lifeng

    2016-04-22

    We demonstrated three-dimensional PMMA-based photonic crystal (3D-PC) nanostructures attached to Au nanoparticles (AuNPs), which undergo self-organization into super lattice planes and enhance the fluorescence properties. This new structure exhibited interesting tunable spectral, peak broadening plasmonic behavior because of strong plasmonic interaction at high laser powers. The presented work provides an important tool to improve the efficiency of dye laser applications. PMID:26954366

  10. Volumetric modulated arc planning for lung stereotactic body radiotherapy using conventional and unflattened photon beams: a dosimetric comparison with 3D technique

    Frequently, three-dimensional (3D) conformal beams are used in lung cancer stereotactic body radiotherapy (SBRT). Recently, volumetric modulated arc therapy (VMAT) was introduced as a new treatment modality. VMAT techniques shorten delivery time, reducing the possibility of intrafraction target motion. However dose distributions can be quite different from standard 3D therapy. This study quantifies those differences, with focus on VMAT plans using unflattened photon beams. A total of 15 lung cancer patients previously treated with 3D or VMAT SBRT were randomly selected. For each patient, non-coplanar 3D, coplanar and non-coplanar VMAT and flattening filter free VMAT (FFF-VMAT) plans were generated to meet the same objectives with 50 Gy covering 95% of the PTV. Two dynamic arcs were used in each VMAT plan. The couch was set at ± 5° to the 0° straight position for the two non-coplanar arcs. Pinnacle version 9.0 (Philips Radiation Oncology, Fitchburg WI) treatment planning system with VMAT capabilities was used. We analyzed the conformity index (CI), which is the ratio of the total volume receiving at least the prescription dose to the target volume receiving at least the prescription dose; the conformity number (CN) which is the ratio of the target coverage to CI; and the gradient index (GI) which is the ratio of the volume of 50% of the prescription isodose to the volume of the prescription isodose; as well as the V20, V5, and mean lung dose (MLD). Paired non-parametric analysis of variance tests with post-tests were performed to examine the statistical significance of the differences of the dosimetric indices. Dosimetric indices CI, CN and MLD all show statistically significant improvement for all studied VMAT techniques compared with 3D plans (p < 0.05). V5 and V20 show statistically significant improvement for the FFF-VMAT plans compared with 3D (p < 0.001). GI is improved for the FFF-VMAT and the non-coplanar VMAT plans (p < 0.01 and p < 0.05 respectively

  11. Formation of collimated beams behind the woodpile photonic crystal

    Trull Silvestre, José Francisco; Maigyte, Lina; Malinauskas, Mangirdas; Mizeikis, Vygantas; Juodkazis, Saulius; Cojocaru, Crina; Rutkauskas, Marius; Peckus, Martynas; Sirutkaitis, Valdas; Staliunas, Kestutis

    2011-01-01

    We experimentally observe formation of narrow laser beams behind the woodpile photonic crystal, when the beam remains well collimated in free propagation behind the crystal. We show that the collimation depends on the input laser beam’s focusing conditions, and we interpret theoretically the observed effect by calculating the spatial dispersion of propagation eigenmodes and by numerical simulation of paraxial propagation model. Peer Reviewed

  12. Designing large-bandwidth planar photonic crystal waveguides

    Lavrinenko, Andrei; Søndergaard, Thomas

    Our waveguide design is characterized by first of all a large bandwidth, and secondly it is characterized by a relatively high group velocity giving a better modal dispersion match with the modes of standard waveguides used for coupling light into the planar crystal waveguide (PCW). We consider t...... dispersion properties for a PCW based on introducing a line defect in a photonic crystal with air-holes arranged periodically on a triangular lattice in silicon....

  13. Three-dimensional metallic photonic crystals with optical bandgaps.

    Vasilantonakis, Nikos; Terzaki, Konstantina; Sakellari, Ioanna; Purlys, Vytautas; Gray, David; Soukoulis, Costas M; Vamvakaki, Maria; Kafesaki, Maria; Farsari, Maria

    2012-02-21

    The fabrication of fully three-dimensional photonic crystals with a bandgap at optical wavelengths is demonstrated by way of direct femtosecond laser writing of an organic-inorganic hybrid material with metal-binding moieties, and selective silver coating using electroless plating. The crystals have 600-nm intralayer periodicity and sub-100 nm features, and they exhibit well-defined diffraction patterns. PMID:22278944

  14. Radius vertical graded nanoscale interlaced-coupled photonic crystal sensors array

    Zhang, Pan; Tian, Huiping; Yang, Daquan; Liu, Qi; Zhou, Jian; Huang, Lijun; Ji, Yuefeng

    2015-11-01

    A radius vertical graded photonic crystal sensors array based on a monolithic substrate is proposed, which is potentially to be used as label-free detection in aqueous environments. The sensors array device consists of five resonant cavities including three H1 cavities and two L2 cavities which are interlaced-coupled to a radius vertical graded single photonic crystal line defect waveguide (W1). Each resonator has a different resonant wavelength dip which can shift independently with crosstalk lower than -13 dB in response to the refractive index change of air holes around every cavity. With three-dimensional finite-difference time-domain (3D-FDTD) method, simulation results demonstrate that the quality factors of microcavities are over 104. Besides, the refractive index sensitivity is 100 nm/RIU with the detection limit approximately of 5.63×10-4. Meanwhile, the radius vertical graded photonic crystal with more interlaced cavities is more suited to ultracompact optical monolithic integration.

  15. Super-resolved 3-D imaging of live cells organelles from bright-field photon transmission micrographs

    Rychtarikova, Renata; Shi, Kevin; Malakhova, Daria; Machacek, Petr; Smaha, Rebecca; Urban, Jan; Stys, Dalibor

    2016-01-01

    Current biological and medical research is aimed at obtaining a detailed spatiotemporal map of a live cell's interior to describe and predict cell's physiological state. We present here an algorithm for complete 3-D modelling of cellular structures from a z-stack of images obtained using label-free wide-field bright-field light-transmitted microscopy. The method visualizes 3-D objects with a volume equivalent to the area of a camera pixel multiplied by the z-height. The computation is based on finding pixels of unchanged intensities between two consecutive images of an object spread function. These pixels represent strongly light-diffracting, light-absorbing, or light-emitting objects. To accomplish this, variables derived from R\\'{e}nyi entropy are used to suppress camera noise. Using this algorithm, the detection limit of objects is only limited by the technical specifications of the microscope setup--we achieve the detection of objects of the size of one camera pixel. This method allows us to obtain 3-D re...

  16. Design, Fabrication and Computational Characterization of a 3D Micro-Valve Built by Multi-Photon Polymerization

    Stratos Galanopoulos

    2014-08-01

    Full Text Available We report on the design, modeling and fabrication by multi-photon polymerization of a complex medical fluidic device. The physical dimensions of the built micro-valve prototype are compared to those of its computer-designed model. Important fabrication issues such as achieving high dimensional resolution and ability to control distortion due to shrinkage are presented and discussed. The operational performance of both multi-photon and CAD-created models under steady blood flow conditions was evaluated and compared through computational fluid dynamics analysis.

  17. Polarization Beam Splitter Based on a Self-Collimation Michelson Interferometer in a Silicon Photonic Crystal

    A polarization beam splitter based on a self-collimation Michelson interferometer (SMI) in a hole-type silicon photonic crystal is proposed and numerically demonstrated. Utilizing the polarization dependence of the transmission spectra of the SMI and polarization peak matching method, the SMI can work as a polarization beam splitter (PBS) by selecting an appropriate path length difference in the structure. Based on its novel polarization beam splitting mechanics, the polarization extinction ratios (PERs) for TM and TE modes are as high as 18.4 dB and 24.3 dB, respectively. Since its dimensions are only several operating wavelengths, the PBS may have practical applications in photonic integrated circuits. (fundamental areas of phenomenology(including applications))

  18. Dual concentric crystal low energy photon detector

    Guilmette, R.A.

    A photon detector for biological samples includes a block of NaI(T1) having a hole containing a thin walled cylinder of CsI(T1). At least three photo multiplier tubes are evenly spaced around the parameter of the block. Biological samples are placed within the hole, and emissions which are sensed by at least two of the photo multipliers from only the NaI(T1) detector are counted.

  19. Photonic crystal with left-handed components

    Markoš, Peter

    2016-02-01

    We show that the periodic array of left-handed cylinders possesses a rich spectrum of guided modes when the negative permeability of cylinders equals exactly to minus value of permeability of embedding media. These resonances strongly influence propagation of electromagnetic waves through photonic structures made from left-handed materials. A series of Fano resonances excited by incident wave destroys the band frequency spectrum of square array of left-handed cylinders and increases considerably the absorption of transmitted waves.

  20. Photonic crystal with left-handed components

    Markos, Peter

    2015-01-01

    We show that the periodic array of left-handed cylinders possesses a rich spectrum of guided modes when the negative permeability of cylinders equals exactly to minus value of permeability of embedding media. These resonances strongly influences propagation of electromagnetic waves through photonic structures made from left-handed materials. A series of Fano resonances excited by incident wave destroys the band frequency spectrum of square array of left-handed cylinders and increases consider...