WorldWideScience

Sample records for 3d observer variation

  1. Decreased 3D observer variation with matched CT-MRI, for target delineation in nasopharynx cancer

    Rasch, C.R.; Steenbakkers, R.J.; Fitton, I.; Duppen, J.C.; Nowak, P.J.; Pameijer, F.A.; Eisbruch, A.; Kaanders, J.H.A.M.; Paulsen, F.; Herk, M. van

    2010-01-01

    PURPOSE: To determine the variation in target delineation of nasopharyngeal carcinoma and the impact of measures to minimize this variation. MATERIALS AND METHODS: For ten nasopharyngeal cancer patients, ten observers each delineated the Clinical Target Volume (CTV) and the CTV elective. After 3D an

  2. Decreased 3D observer variation with matched CT-MRI, for target delineation in Nasopharynx cancer

    Kaanders Johannes HAM

    2010-03-01

    Full Text Available Abstract Purpose To determine the variation in target delineation of nasopharyngeal carcinoma and the impact of measures to minimize this variation. Materials and methods For ten nasopharyngeal cancer patients, ten observers each delineated the Clinical Target Volume (CTV and the CTV elective. After 3D analysis of the delineated volumes, a second delineation was performed. This implied improved delineation instructions, a combined delineation on CT and co-registered MRI, forced use of sagittal reconstructions, and an on-line anatomical atlas. Results Both for the CTV and the CTV elective delineations, the 3D SD decreased from Phase 1 to Phase 2, from 4.4 to 3.3 mm for the CTV and from 5.9 to 4.9 mm for the elective. There was an increase agreement, where the observers intended to delineate the same structure, from 36 to 64 surface % (p = 0.003 for the CTV and from 17 to 59% (p = 0.004 for the elective. The largest variations were at the caudal border of the delineations but these were smaller when an observer utilized the sagittal window. Hence, the use of sagittal side windows was enforced in the second phase and resulted in a decreased standard deviation for this area from 7.7 to 3.3 mm (p = 0.001 for the CTV and 7.9 to 5.6 mm (p = 0.03 for the CTV elective. Discussion Attempts to decrease the variation need to be tailored to the specific causes of the variation. Use of delineation instructions multimodality imaging, the use of sagittal windows and an on-line atlas result in a higher agreement on the intended target.

  3. Decreased 3D observer variation with matched CT-MRI, for target delineation in Nasopharynx cancer

    To determine the variation in target delineation of nasopharyngeal carcinoma and the impact of measures to minimize this variation. For ten nasopharyngeal cancer patients, ten observers each delineated the Clinical Target Volume (CTV) and the CTV elective. After 3D analysis of the delineated volumes, a second delineation was performed. This implied improved delineation instructions, a combined delineation on CT and co-registered MRI, forced use of sagittal reconstructions, and an on-line anatomical atlas. Both for the CTV and the CTV elective delineations, the 3D SD decreased from Phase 1 to Phase 2, from 4.4 to 3.3 mm for the CTV and from 5.9 to 4.9 mm for the elective. There was an increase agreement, where the observers intended to delineate the same structure, from 36 to 64 surface % (p = 0.003) for the CTV and from 17 to 59% (p = 0.004) for the elective. The largest variations were at the caudal border of the delineations but these were smaller when an observer utilized the sagittal window. Hence, the use of sagittal side windows was enforced in the second phase and resulted in a decreased standard deviation for this area from 7.7 to 3.3 mm (p = 0.001) for the CTV and 7.9 to 5.6 mm (p = 0.03) for the CTV elective. Attempts to decrease the variation need to be tailored to the specific causes of the variation. Use of delineation instructions multimodality imaging, the use of sagittal windows and an on-line atlas result in a higher agreement on the intended target

  4. Decreased 3D observer variation with matched CT-MRI, for target delineation in Nasopharynx cancer

    C.R.N. Rasch (Coen); R.J.H.M. Steenbakkers (Roel); I. Fitton (Isabelle); J.C. Duppen (Joop); P.J.C.M. Nowak (Peter); F.A. Pameijer (Frank); A. Eisbruch (Avraham); J.H.A.M. Kaanders (Johannes); F. Paulsen (Frank); M. Herk (Marcel)

    2010-01-01

    textabstractPurpose: To determine the variation in target delineation of nasopharyngeal carcinoma and the impact of measures to minimize this variation.Materials and methods: For ten nasopharyngeal cancer patients, ten observers each delineated the Clinical Target Volume (CTV) and the CTV elective.

  5. 3-D reconstructions of active stars - observations

    Korhonen, Heidi

    2012-01-01

    Stars are usually faint point sources and investigating their surfaces and interiors observationally is very demanding. Here I give a review on the state-of-the-art observing techniques and recent results on studying interiors and surface features of active stars.

  6. Variational regularization of 3D data experiments with Matlab

    Montegranario, Hebert

    2014-01-01

    Variational Regularization of 3D Data provides an introduction to variational methods for data modelling and its application in computer vision. In this book, the authors identify interpolation as an inverse problem that can be solved by Tikhonov regularization. The proposed solutions are generalizations of one-dimensional splines, applicable to n-dimensional data and the central idea is that these splines can be obtained by regularization theory using a trade-off between the fidelity of the data and smoothness properties.As a foundation, the authors present a comprehensive guide to the necessary fundamentals of functional analysis and variational calculus, as well as splines. The implementation and numerical experiments are illustrated using MATLAB®. The book also includes the necessary theoretical background for approximation methods and some details of the computer implementation of the algorithms. A working knowledge of multivariable calculus and basic vector and matrix methods should serve as an adequat...

  7. 2D vs. 3D mammography observer study

    Fernandez, James Reza F.; Hovanessian-Larsen, Linda; Liu, Brent

    2011-03-01

    Breast cancer is the most common type of non-skin cancer in women. 2D mammography is a screening tool to aid in the early detection of breast cancer, but has diagnostic limitations of overlapping tissues, especially in dense breasts. 3D mammography has the potential to improve detection outcomes by increasing specificity, and a new 3D screening tool with a 3D display for mammography aims to improve performance and efficiency as compared to 2D mammography. An observer study using a mammography phantom was performed to compare traditional 2D mammography with this ne 3D mammography technique. In comparing 3D and 2D mammography there was no difference in calcification detection, and mass detection was better in 2D as compared to 3D. There was a significant decrease in reading time for masses, calcifications, and normals in 3D compared to 2D, however, as well as more favorable confidence levels in reading normal cases. Given the limitations of the mammography phantom used, however, a clearer picture in comparing 3D and 2D mammography may be better acquired with the incorporation of human studies in the future.

  8. 3D Variation in delineation of head and neck organs at risk

    Consistent delineation of patient anatomy becomes increasingly important with the growing use of highly conformal and adaptive radiotherapy techniques. This study investigates the magnitude and 3D localization of interobserver variability of organs at risk (OARs) in the head and neck area with application of delineation guidelines, to establish measures to reduce current redundant variability in delineation practice. Interobserver variability among five experienced radiation oncologists was studied in a set of 12 head and neck patient CT scans for the spinal cord, parotid and submandibular glands, thyroid cartilage, and glottic larynx. For all OARs, three endpoints were calculated: the Intraclass Correlation Coefficient (ICC), the Concordance Index (CI) and a 3D measure of variation (3D SD). All endpoints showed largest interobserver variability for the glottic larynx (ICC = 0.27, mean CI = 0.37 and 3D SD = 3.9 mm). Better agreement in delineations was observed for the other OARs (range, ICC = 0.32-0.83, mean CI = 0.64-0.71 and 3D SD = 0.9-2.6 mm). Cranial, caudal, and medial regions of the OARs showed largest variations. All endpoints provided support for improvement of delineation practice. Variation in delineation is traced to several regional causes. Measures to reduce this variation can be: (1) guideline development, (2) joint delineation review sessions and (3) application of multimodality imaging. Improvement of delineation practice is needed to standardize patient treatments

  9. 3D face recognition under expressions, occlusions, and pose variations.

    Drira, Hassen; Ben Amor, Boulbaba; Srivastava, Anuj; Daoudi, Mohamed; Slama, Rim

    2013-09-01

    We propose a novel geometric framework for analyzing 3D faces, with the specific goals of comparing, matching, and averaging their shapes. Here we represent facial surfaces by radial curves emanating from the nose tips and use elastic shape analysis of these curves to develop a Riemannian framework for analyzing shapes of full facial surfaces. This representation, along with the elastic Riemannian metric, seems natural for measuring facial deformations and is robust to challenges such as large facial expressions (especially those with open mouths), large pose variations, missing parts, and partial occlusions due to glasses, hair, and so on. This framework is shown to be promising from both--empirical and theoretical--perspectives. In terms of the empirical evaluation, our results match or improve upon the state-of-the-art methods on three prominent databases: FRGCv2, GavabDB, and Bosphorus, each posing a different type of challenge. From a theoretical perspective, this framework allows for formal statistical inferences, such as the estimation of missing facial parts using PCA on tangent spaces and computing average shapes. PMID:23868784

  10. BM3D Frames and Variational Image Deblurring

    Danielyan, Aram; Egiazarian, Karen

    2011-01-01

    A family of the Block Matching 3-D (BM3D) algorithms for various imaging problems has been recently proposed within the framework of nonlocal patch-wise image modeling [1], [2]. In this paper we construct analysis and synthesis frames, formalizing the BM3D image modeling and use these frames to develop novel iterative deblurring algorithms. We consider two different formulations of the deblurring problem: one given by minimization of the single objective function and another based on the Nash equilibrium balance of two objective functions. The latter results in an algorithm where the denoising and deblurring operations are decoupled. The convergence of the developed algorithms is proved. Simulation experiments show that the decoupled algorithm derived from the Nash equilibrium formulation demonstrates the best numerical and visual results and shows superiority with respect to the state of the art in the field, confirming a valuable potential of BM3D-frames as an advanced image modeling tool.

  11. Testing Observational Techniques with 3D MHD Jets in Clusters

    Mendygral, Peter J; Jones, Tom W

    2009-01-01

    Observations of X-ray cavities formed by powerful jets from AGN in galaxy cluster cores are commonly used to estimate the mechanical luminosity of these sources. We test the reliability of observationally measuring this power with synthetic X-ray observations of 3-D MHD simulations of jets in a galaxy cluster environment. We address the role that factors such as jet intermittency and orientation of the jets on the sky have on the reliability of observational measurements of cavity enthalpy and age. An estimate of the errors in these quantities can be made by directly comparing ``observationally'' derived values with values from the simulations. In our tests, cavity enthalpy, age and mechanical luminosity derived from observations are within a factor of two of the simulation values.

  12. Interobserver variation in measurements of Cesarean scar defect and myometrium with 3D ultrasonography

    Madsen, Lene Duch; Glavind, Julie; Uldbjerg, Niels; Dueholm, Margit

    Objectives: To evaluate the Cesarean scar defect depth and the residual myometrial thickness with 3-dimensional (3D) sonography concerning interobserver variation. Methods: Ten women were randomly selected from a larger cohort of Cesarean scar ultrasound evaluations. All women were examined 6......-16 months after their first Cesarean section with 2D transvaginal sonography and had 3D volumes recorded. Two observers independently evaluated “off-line” each of the 3D volumes stored. Residual myometrial thickness (RMT) and Cesarean scar defect depth (D) was measured in the sagittal plane with an interval...... of 1mm across the entire width of the endometrium. RMT was defined as the shortest distance from the scar defect to the uterine serosa among all RMT measures, and D was defined similarly as the largest depth of the scar defect extending from the uterine cavity. The median value for RMT and D for each...

  13. 3D reconstruction methods of coronal structures by radio observations

    Aschwanden, Markus J.; Bastian, T. S.; White, Stephen M.

    1992-11-01

    The ability to carry out the three dimensional (3D) reconstruction of structures in the solar corona would represent a major advance in the study of the physical properties in active regions and in flares. Methods which allow a geometric reconstruction of quasistationary coronal structures (for example active region loops) or dynamic structures (for example flaring loops) are described: stereoscopy of multi-day imaging observations by the VLA (Very Large Array); tomography of optically thin emission (in radio or soft x-rays); multifrequency band imaging by the VLA; and tracing of magnetic field lines by propagating electron beams.

  14. Probabilistic Seismic Hazard Maps of Seattle, Washington, Including 3D Sedimentary Basin Effects and Rupture Directivity: Implications of 3D Random Velocity Variations (Invited)

    Frankel, A. D.; Stephenson, W. J.; Carver, D.; Odum, J.; Williams, R. A.; Rhea, S.

    2010-12-01

    We have produced probabilistic seismic hazard maps of Seattle for 1 Hz spectral acceleration, using over five hundred 3D finite-difference simulations of earthquakes on the Seattle fault, Southern Whidbey Island fault, and Cascadia subduction zone, as well as for random deep and shallow earthquakes at various locations. The 3D velocity model was validated by modeling the observed waveforms for the 2001 M6.8 Nisqually earthquake and several smaller events in the region. At these longer periods (≥ 1 sec) that are especially important to the response of buildings of ten stories or higher, seismic waves are strongly influenced by sedimentary basins and rupture directivity. We are investigating how random spatial variations in the 3D velocity model affect the simulated ground motions for M6.7 earthquakes on the Seattle fault. A fractal random variation of shear-wave velocity with a Von Karman correlation function produces spatial variations of peak ground velocity with multiple scale lengths. We find that a 3D velocity model with a 10% standard deviation in shear-wave velocity in the top 1.5 km and 5% standard deviation from 1.5-10 km depth produces variations in peak ground velocities of as much as a factor of two, relative to the case with no random variations. The model with random variations generally reduces the peak ground velocity of the forward rupture directivity pulse for sites near the fault where basin-edge focusing of S-waves occurs. It also tends to reduce the peak velocity of localized areas where basin surface waves are focused. However, the medium with random variations also causes small-scale amplification of ground motions over distances of a few kilometers. We are also evaluating alternative methods of characterizing the aleatory uncertainty in the probabilistic hazard calculations.

  15. 3D Observation of GEMS by Electron Tomography

    Matsuno, Junya; Miyake, Akira; Tsuchiyama, Akira; Nakamura-Messenger, Keiko; Messenger, Scott

    2014-01-01

    Amorphous silicates in chondritic porous interplanetary dust particles (CP-IDPs) coming from comets are dominated by glass with embedded metal and sulfides (GEMS). GEMS grains are submicron-sized rounded objects (typically 100-500) nm in diameter) with anaometer-sized (10-50 nm) Fe-Ni metal and sulfide grains embedded in an amorphous silicate matrix. Several formation processes for GEMS grains have been proposed so far, but these models are still being debated [2-5]. Bradley et al. proposed that GEMS grains are interstellar silicate dust that survived various metamorphism or alteration processes in the protoplanetary disk and that they are amorphiation products of crystalline silicates in the interstellar medium by sputter-deposition of cosmic ray irradiation, similar to space weathering [2,4]. This consideration is based on the observation of nano-sized crystals (approximately 10 nm) called relict grains in GEMS grains and their shapes are pseudomorphs to the host GEMS grains. On the other hand, Keller and Messenger proposed that most GEMS formed in the protoplanetary disk as condensates from high temperature gas [3,5]. This model is based on the fact that most GEMS grains have solar isotopic compositions and have extremely heterogeneous and non-solar elemental compositions. Keller and Messenger (2011) also reported that amorphous silicates in GEMS grains are surrounded by sulfide grains, which formed as sulfidization of metallic iron grains located on the GEMS surface. The previous studies were performed with 2D observation by using transmission electron microscopy (TEM) or scanning TEM (STEM). In order to understand the structure of GEMS grains described above more clearly, we observed 3D structure of GEMS grains by electron tomography using a TEM/STEM (JEM-2100F, JEOL) at Kyoto University. Electron tomography gives not only 3D structures but also gives higher spatial resolution (approximately a few nm) than that in conventional 2D image, which is restricted by

  16. 3D panorama stereo visual perception centering on the observers

    Tang, YiPing; Zhou, Jingkai; Xu, Haitao; Xiang, Yun

    2015-09-01

    For existing three-dimensional (3D) laser scanners, acquiring geometry and color information of the objects simultaneously is difficult. Moreover, the current techniques cannot store, modify, and model the point clouds efficiently. In this work, we have developed a novel sensor system, which is called active stereo omni-directional vision sensor (ASODVS), to address those problems. ASODVS is an integrated system composed of a single-view omni-directional vision sensor and a mobile planar green laser generator platform. Driven by a stepper motor, the laser platform can move vertically along the axis of the ASODVS. During the scanning of the laser generators, the panoramic images of the environment are captured and the characteristics and space location information of the laser points are calculated accordingly. Based on the image information of the laser points, the 3D space can be reconstructed. Experimental results demonstrate that the proposed ASODVS system can measure and reconstruct the 3D space in real-time and with high quality.

  17. A comparison of 3-D model predictions of Mars' oxygen corona with early MAVEN IUVS observations

    Lee, Yuni; Combi, Michael R.; Tenishev, Valeriy; Bougher, Stephen W.; Deighan, Justin; Schneider, Nicholas M.; McClintock, William E.; Jakosky, Bruce M.

    2015-11-01

    We have compared our 3-D hot O corona model predictions with the OI 130.4 nm emission detected by Imaging Ultraviolet Spectrograph/Mars Atmosphere and Volatile EvolutioN (IUVS/MAVEN) based completely on our best pre-MAVEN understanding of the 3-D structure of the thermosphere and ionosphere. The model was simulated appropriately for the observational conditions. In addition to dissociative recombination (DR) of O2+, DR of CO2+ is also considered as an important hot O source. The model predictions showed excellent agreement with the transition altitude, the observed altitude variation of density, and the spatial variation of the corona with respect to the Mars-Sun geometry. While previous models predicted escape rates covering a range of nearly 100, the brightness of the modeled hot O densities is a factor of ~1.5 lower than the observations. We discuss possible changes to the model that could come from further analysis of MAVEN measurements and that might close the gap between the modeled and observed brightness.

  18. Variation and diversity in Homo erectus: a 3D geometric morphometric analysis of the temporal bone.

    Terhune, Claire E; Kimbel, William H; Lockwood, Charles A

    2007-07-01

    Although the level of taxonomic diversity within the fossil hominin species Homo erectus (sensu lato) is continually debated, there have been relatively few studies aiming to quantify the morphology of this species. Instead, most researchers have relied on qualitative descriptions or the evaluation of nonmetric characters, which in many cases display continuous variation. Also, only a few studies have used quantitative data to formally test hypotheses regarding the taxonomic composition of the "erectus" hypodigm. Despite these previous analyses, however, and perhaps in part due to these varied approaches for assessing variation within specimens typically referred to H. erectus (sensu lato) and the general lack of rigorous statistical testing of how variation within this taxon is partitioned, there is currently little consensus regarding whether this group is a single species, or whether it should instead be split into separate temporal or geographically delimited taxa. In order to evaluate possible explanations for variation within H. erectus, we tested the general hypothesis that variation within the temporal bone morphology of H. erectus is consistent with that of a single species, using great apes and humans as comparative taxa. Eighteen three-dimensional (3D) landmarks of the temporal bone were digitized on a total of 520 extant and fossil hominid crania. Landmarks were registered by Generalized Procrustes Analysis, and Procrustes distances were calculated for comparisons of individuals within and between the extant taxa. Distances between fossil specimens and between a priori groupings of fossils were then compared to the distances calculated within the extant taxa to assess the variation within the H. erectus sample relative to that of known species, subspecies, and populations. Results of these analyses indicate that shape variation within the entire H. erectus sample is generally higher than extant hominid intraspecific variation, and putative H. ergaster

  19. An experimental analysis for the impact of 3D variation assi- milation of satellite data on typhoon track simulation

    XIE Hongqin; WU Zengmao; GAO Shanhong

    2004-01-01

    A series of test simulations are performed to evaluate the impact of satellite-derived meteorological data on numerical typhoon track prediction. Geostationary meteorological satellite (GMS-5) and NOAA's TIROS operational vertical sounder (TOVS) observations are used in the experiments. A three-dimensional variational (3D-Var) assimilation scheme is developed to assimilate the satellite data directly into the Penn State-NCAR nonhydrostatic meteorological model (MM5). Three-dimensional objective analysis fields based on the T213 results and conventional observations are employed as the background fields of the initialization. The comparisons of the simulated typhoon tracks are carried out, which correspond respectively to assimilate different kinds of satellite data. It is found that, compared with the experiment without satellite data assimilation, the 3D-Var assimilation schemes lead to significant improvements on typhoon track prediction. Track errors reduce from approximately 25% at 24 h to approximately 30% at 48 h for 3D-Var assimilation experiments.

  20. Serum induced degradation of 3D DNA box origami observed by high speed atomic force microscope

    Jiang, Zaixing; Zhang, Shuai; Yang, Chuanxu;

    2015-01-01

    3D DNA origami holds tremendous potential to encapsulate and selectively release therapeutic drugs. Observations of real-time performance of 3D DNA origami structures in physiological environment will contribute much to its further applications. Here, we investigate the degradation kinetics of 3D...... DNA box origami in serum using high-speed atomic force microscope optimized for imaging 3D DNA origami in real time. The time resolution allows characterizing the stages of serum effects on individual 3D DNA box origami with nanometer resolution. Our results indicate that the whole digest process is a...

  1. Nose Tip Region Detection in 3D Facial Model across Large Pose Variation and Facial Expression

    Laili Hayati Anuar; Syamsiah Mashohor; Makhfudzah Mokhtar; Wan Azizun Wan Adnan

    2010-01-01

    Detecting nose tip location has become an important task in face analysis. However, for a 3D face model with presence of large rotation variation, detecting nose tip location is certainly a challenging task. In this paper, we propose a method to detect nose tip region in large rotation variation based on the geometrical shape of a nose. Nose region has always been considered as the most protuberant part of a face. Based on convex points of face surface, we use morphological approach to obtain...

  2. Variational nodal method (VNM) to solve 3-D transport equation. Application to EFR design

    The physics design of both thermal and fast reactors requires the capability to solve in an accurate manner the neutron transport equation in three dimensional geometry. As a typical example, the paper shows the application of the Variational Nodal Method (VNM) to EFR (European Fast Reactor) to study the detection of a Control Rod Withdrawal (CRW) fault. The VNM has been incorporated in the past by CEA in the ANL code DIF3D and, more recently, in the European system of codes ERANOS (TGV code). Numerical tests based on international benchmarks and calculations show the validity and the efficiency of the proposed VNM. (orig.)

  3. Fast quantitative susceptibility mapping using 3D EPI and total generalized variation.

    Langkammer, Christian; Bredies, Kristian; Poser, Benedikt A; Barth, Markus; Reishofer, Gernot; Fan, Audrey Peiwen; Bilgic, Berkin; Fazekas, Franz; Mainero, Caterina; Ropele, Stefan

    2015-05-01

    Quantitative susceptibility mapping (QSM) allows new insights into tissue composition and organization by assessing its magnetic property. Previous QSM studies have already demonstrated that magnetic susceptibility is highly sensitive to myelin density and fiber orientation as well as to para- and diamagnetic trace elements. Image resolution in QSM with current approaches is limited by the long acquisition time of 3D scans and the need for high signal to noise ratio (SNR) to solve the dipole inversion problem. We here propose a new total-generalized-variation (TGV) based method for QSM reconstruction, which incorporates individual steps of phase unwrapping, background field removal and dipole inversion in a single iteration, thus yielding a robust solution to the reconstruction problem. This approach has beneficial characteristics for low SNR data, allowing for phase data to be rapidly acquired with a 3D echo planar imaging (EPI) sequence. The proposed method was evaluated with a numerical phantom and in vivo at 3 and 7 T. Compared to total variation (TV), TGV-QSM enforced higher order smoothness which yielded solutions closer to the ground truth and prevented stair-casing artifacts. The acquisition time for images with 1mm isotropic resolution and whole brain coverage was 10s on a clinical 3 Tesla scanner. In conclusion, 3D EPI acquisition combined with single-step TGV reconstruction yields reliable QSM images of the entire brain with 1mm isotropic resolution in seconds. The short acquisition time combined with the robust reconstruction may enable new QSM applications in less compliant populations, clinical susceptibility tensor imaging, and functional resting state examinations. PMID:25731991

  4. 3-D Waveguide Effects of Topographical Structural Variation on Full Waveform Propagation: 3-D Finite Difference Modeling Comparisons with Field Data From Yuma Proving Ground, Arizona

    Anderson, T. S.; Miller, R.; Greenfield, R.; Fisk, D.

    2002-12-01

    The propagation of seismic waves through regions of complex topography is not thoroughly understood. Surface waves, are of particular interest, as they are large in amplitude and can characterize the source depth, magnitude, and frequency content. The amplitude and frequency content of seismic waves that propagate in regions with large topographical variations are affected by both the scattering and blockage of the wave energy. The ability to predict the 3-d scattering due to topography will improve the understanding of both regional scale surface wave magnitudes, and refine surface wave discriminants as well as at the local scale (Smart Weapons Test Range, Yuma Proving Ground, Arizona. The result of the KGS characterization study is a high-resolution 3-d model that is used in our seismic simulations. The velocities Vs, Vp are calculated by tomography and refraction, attenuation coefficients estimated from the surface wave and from p-waves and are provided in a model with attributes resolved in 3-d to 0.5 meters. In the present work, we present comparisons of synthetic data with seismic data collected at the Smart Weapons Test Range to benchmark the accuracy achieved in simulating 3-d wave propagation in the vicinity of a topographical anomaly (trench). Synthetic seismograms are generated using a 3-d 8th order staggered grid visco-elastic finite difference code that accounts for topography. The geologic model is based on the Yuma site characterization. The size of these calculations required use of the DoD High Performance Computers and parallelized code. Results are compared with field data. Preliminary results show an excellent match with field data using the 3-d fdtd technique.

  5. Comparison of 2D versus 3D mammography with screening cases: an observer study

    Fernandez, James Reza; Deshpande, Ruchi; Hovanessian-Larsen, Linda; Liu, Brent

    2012-02-01

    Breast cancer is the most common type of non-skin cancer in women. 2D mammography is a screening tool to aid in the early detection of breast cancer, but has diagnostic limitations of overlapping tissues, especially in dense breasts. 3D mammography has the potential to improve detection outcomes by increasing specificity, and a new 3D screening tool with a 3D display for mammography aims to improve performance and efficiency as compared to 2D mammography. An observer study using human studies collected from was performed to compare traditional 2D mammography with this new 3D mammography technique. A prior study using a mammography phantom revealed no difference in calcification detection, but improved mass detection in 2D as compared to 3D. There was a significant decrease in reading time for masses, calcifications, and normals in 3D compared to 2D, however, as well as more favorable confidence levels in reading normal cases. Data for this current study is currently being obtained, and a full report should be available in the next few weeks.

  6. Are 3-D coronal mass ejection parameters from single-view observations consistent with multiview ones?

    Lee, Harim; Moon, Y.-J.; Na, Hyeonock; Jang, Soojeong; Lee, Jae-Ok

    2015-12-01

    To prepare for when only single-view observations are available, we have made a test whether the 3-D parameters (radial velocity, angular width, and source location) of halo coronal mass ejections (HCMEs) from single-view observations are consistent with those from multiview observations. For this test, we select 44 HCMEs from December 2010 to June 2011 with the following conditions: partial and full HCMEs by SOHO and limb CMEs by twin STEREO spacecraft when they were approximately in quadrature. In this study, we compare the 3-D parameters of the HCMEs from three different methods: (1) a geometrical triangulation method, the STEREO CAT tool developed by NASA/CCMC, for multiview observations using STEREO/SECCHI and SOHO/LASCO data, (2) the graduated cylindrical shell (GCS) flux rope model for multiview observations using STEREO/SECCHI data, and (3) an ice cream cone model for single-view observations using SOHO/LASCO data. We find that the radial velocities and the source locations of the HCMEs from three methods are well consistent with one another with high correlation coefficients (≥0.9). However, the angular widths by the ice cream cone model are noticeably underestimated for broad CMEs larger than 100° and several partial HCMEs. A comparison between the 3-D CME parameters directly measured from twin STEREO spacecraft and the above 3-D parameters shows that the parameters from multiview are more consistent with the STEREO measurements than those from single view.

  7. MOND and IMF variations in early-type galaxies from $\\rm ATLAS^{3D}$

    Tortora, C; Cardone, V F; Napolitano, N R; Jetzer, Ph

    2013-01-01

    MOdified Newtonian dynamics (MOND) represents a phenomenological alternative to dark matter (DM) for the missing mass problem in galaxies and clusters of galaxies. We analyze the central regions of a local sample of $\\sim 220$ early-type galaxies from the $\\rm ATLAS^{3D}$ survey, to see if the data can be reproduced without recourse to DM. We estimate dynamical masses in the MOND context through Jeans analysis, and compare to $\\rm ATLAS^{3D}$ stellar masses from stellar population synthesis. We find that the observed stellar mass--velocity dispersion relation is steeper than expected assuming MOND with a fixed stellar initial mass function (IMF) and a standard value for the acceleration parameter $a_{\\rm 0}$. Turning from the space of observables to model space, a) fixing the IMF, a universal value for $a_{\\rm 0}$ cannot be fitted, while, b) fixing $a_{\\rm 0}$ and leaving the IMF free to vary, we find that it is "lighter" (Chabrier-like) for low-dispersion galaxies, and "heavier" (Salpeter-like) for high disp...

  8. UAV Control on the Basis of 3D Landmark Bearing-Only Observations

    Karpenko, Simon; Konovalenko, Ivan; Miller, Alexander; Miller, Boris; Nikolaev, Dmitry

    2015-01-01

    The article presents an approach to the control of a UAV on the basis of 3D landmark observations. The novelty of the work is the usage of the 3D RANSAC algorithm developed on the basis of the landmarks’ position prediction with the aid of a modified Kalman-type filter. Modification of the filter based on the pseudo-measurements approach permits obtaining unbiased UAV position estimation with quadratic error characteristics. Modeling of UAV flight on the basis of the suggested algorithm shows good performance, even under significant external perturbations. PMID:26633394

  9. UAV Control on the Basis of 3D Landmark Bearing-Only Observations.

    Karpenko, Simon; Konovalenko, Ivan; Miller, Alexander; Miller, Boris; Nikolaev, Dmitry

    2015-01-01

    The article presents an approach to the control of a UAV on the basis of 3D landmark observations. The novelty of the work is the usage of the 3D RANSAC algorithm developed on the basis of the landmarks' position prediction with the aid of a modified Kalman-type filter. Modification of the filter based on the pseudo-measurements approach permits obtaining unbiased UAV position estimation with quadratic error characteristics. Modeling of UAV flight on the basis of the suggested algorithm shows good performance, even under significant external perturbations. PMID:26633394

  10. DIF3D 8.0/VARIANT8.0, 2-D 3-D Multigroup Diffusion/Transport Theory Nodal and Finite Difference Solver, Variational Method

    1 - Description of program or function: DIF3D solves multigroup diffusion theory eigenvalue, adjoint, fixed source and criticality (concentration search) problems in 1-, 2- and 3-space dimensions for orthogonal (rectangular or cylindrical), triangular and hexagonal geometries. Anisotropic diffusion coefficients are permitted. Flux and power density maps by mesh cell and region-wise balance integrals are provided. Although primarily designed for fast reactor problems, up-scattering and internal black boundary conditions are also treated. The DIF3D8.0/VARIANT8.0 release differs from the previous DIF3D7.0 release in that it includes a significantly expanded set of solution techniques using variational nodal methods. DIF3D's nodal option solves the multigroup steady state neutron diffusion equation in two- and three-dimensional hexagonal and cartesian geometries and solves the transport equation in two-and three-dimensional cartesian geometries. Eigenvalue, adjoint, fixed source and criticality (concentration) search problems are permitted as are anisotropic diffusion coefficients. Flux and power density maps by mesh cell and region-wise balance integrals are provided. Although primarily designed for fast reactor problems, up-scattering and for finite difference option only internal black boundary conditions are also treated. VARIANT solves the multigroup steady-state neutron diffusion and transport equations in two- and three-dimensional Cartesian and hexagonal geometries using variational nodal methods. The transport approximations involve complete spherical harmonic expansions up to order P5. Eigenvalue, adjoint, fixed source, gamma heating, and criticality (concentration) search problems are permitted. Anisotropic scattering is treated, and although primarily designed for fast reactor problems, up-scattering options are also included. Related and Auxiliary Programs: DIF3D reads and writes the standard interface files specified by the Committee on Computer Code

  11. Solar radiation transport in the cloudy atmosphere: a 3D perspective on observations and climate impacts

    The interplay of sunlight with clouds is a ubiquitous and often pleasant visual experience, but it conjures up major challenges for weather, climate, environmental science and beyond. Those engaged in the characterization of clouds (and the clear air nearby) by remote sensing methods are even more confronted. The problem comes, on the one hand, from the spatial complexity of real clouds and, on the other hand, from the dominance of multiple scattering in the radiation transport. The former ingredient contrasts sharply with the still popular representation of clouds as homogeneous plane-parallel slabs for the purposes of radiative transfer computations. In typical cloud scenes the opposite asymptotic transport regimes of diffusion and ballistic propagation coexist. We survey the three-dimensional (3D) atmospheric radiative transfer literature over the past 50 years and identify three concurrent and intertwining thrusts: first, how to assess the damage (bias) caused by 3D effects in the operational 1D radiative transfer models? Second, how to mitigate this damage? Finally, can we exploit 3D radiative transfer phenomena to innovate observation methods and technologies? We quickly realize that the smallest scale resolved computationally or observationally may be artificial but is nonetheless a key quantity that separates the 3D radiative transfer solutions into two broad and complementary classes: stochastic and deterministic. Both approaches draw on classic and contemporary statistical, mathematical and computational physics.

  12. Towards high resolution mapping of 3-D mesoscale dynamics from observations

    B. Buongiorno Nardelli

    2012-10-01

    Full Text Available The MyOcean R&D project MESCLA (MEsoSCaLe dynamical Analysis through combined model, satellite and in situ data was devoted to the high resolution 3-D retrieval of tracer and velocity fields in the oceans, based on the combination of in situ and satellite observations and quasi-geostrophic dynamical models. The retrieval techniques were also tested and compared with the output of a primitive equation model, with particular attention to the accuracy of the vertical velocity field as estimated through the Q vector formulation of the omega equation. The project focused on a test case, covering the region where the Gulf Stream separates from the US East Coast. This work demonstrated that innovative methods for the high resolution mapping of 3-D mesoscale dynamics from observations can be used to build the next generations of operational observation-based products.

  13. Integration of a 3D Variational data assimilation scheme with a coastal area morphodynamic model of Morecambe Bay

    Thornhill, Gill D.; Mason, David C.; Sarah L. Dance; Amos S. Lawless; Nichols, Nancy K.; Forbes, Heather R.

    2012-01-01

    This paper describes the implementation of a 3D variational (3D-Var) data assimilation scheme for a morphodynamic model applied to Morecambe Bay, UK. A simple decoupled hydrodynamic and sediment transport model is combined with a data assimilation scheme to investigate the ability of such methods to improve the accuracy of the predicted bathymetry. The inverse forecast error covariance matrix is modelled using a Laplacian approximation which is calibrated for the length scale parameter requir...

  14. Electric current in flares ribbons: from the standard model in 3D to observations

    Janvier, Miho; Bommier, V; Schmieder, B; Démoulin, P; Pariat, E

    2014-01-01

    The paper presents for the first time a quantification of the photospheric electric current ribbon evolutions during an eruptive flare, accurately predicted by the standard 3D flare model. The standard flare model in 3D has been developed with the MHD code OHM, which models the evolution of an unstable flux rope. Through a series of paper, the model has been successful in explaining observational characteristics of eruptive flares, as well as the intrinsic 3D reconnection mechanism. Such a model also explains the increase of the photospheric currents as a consequence of the evolution of the coronal current layer where reconnection takes place. The photospheric footprints of the 3D current layer reveal a ribbon shape structure. In the present paper, the evolution of the current density is analyzed for the X-class flare that occurred on 15/02/2011 in AR 11158. We first describe the structural evolution of the high vertical current density regions derived with the UNNOFIT inversion code from magnetograms (HMI, e...

  15. 3D Cloud Effects in OCO-2 Observations - Evidence and Mitigation

    Schmidt, Sebastian; Massie, Steven; Iwabuchi, Hironobu; Okamura, Rintaro; Crisp, David

    2016-04-01

    In July 2014, the NASA Orbiting Carbon Observatory (OCO-2) satellite was inserted into the 705-km Afternoon Constellation (A-Train). OCO-2 provides estimates of column-averaged CO2 dry air mixing ratios (XCO2), based on high spectral resolution radiance observations of reflected sunlight in the O2 A-band and in the weak and strong absorption CO2 bands at 1.6 and 2.1 μm. The accuracy requirement for OCO-2 XCO2 retrievals is 1 ppmv on regional scales (> 1000 km). At the single sounding level, inhomogeneous clouds, surface albedo, and aerosols introduce wavelength-dependent perturbations into the sensed radiance fields, affecting the retrieval products. Scattering and shadowing by clouds outside of the field of view (FOV) may be a leading source of error for clear-sky XCO2 retrievals in partially cloudy regions. To understand these effects, we developed a 3D OCO-2 simulator, which uses observations by MODIS (also in the A-Train) and other scene information as input to simulate OCO-2 radiance spectra at the full wavelength resolution of the three bands. It is based on MCARaTS (Monte Carlo Atmospheric Radiative Transfer Simulator) as the 3D radiative transfer solver. The OCO-2 3D simulator was applied to an observed scene near a Total Carbon Column Observing Network (TCCON) station. The 3D calculations reproduced the OCO-2 radiances, including the perturbations due to clouds, at the single sounding level. The analysis further suggests that clouds near an OCO-2 footprint leave systematic spectral imprints on the radiances, which could be parameterized to be included in the retrieval state vector. If successful, this new state vector element could account for 3D effects without the need for operational 3D radiative transfer calculations. This may be the starting point not only for the improved screening of low-level broken boundary layer clouds, but also for mitigating the effects of nearby clouds at the radiance level, thus improving the accuracy of retrievals in

  16. Soil-structure interaction during tunnelling in urban area: observations and 3D numerical modelling

    Fargnoli, Valentina

    2015-01-01

    This work illustrates a soil-tunnel-structure interaction study performed by an integrated,geotechnical and structural,approach based on 3D finite element analyses and validated against experimental observations.The study aims at analysing the response of reinforced concrete framed buildings on discrete foundations in interaction with metro lines.It refers to the case of the twin tunnels of the Milan (Italy) metro line 5,recently built in coarse grained materials using EPB machines,for which ...

  17. 3D in situ observations of glass fibre/matrix interfacial debonding

    Martyniuk, Karolina; Sørensen, Bent F.; Modregger, Peter; Lauridsen, Erik Mejdal

    2013-01-01

    X-ray microtomography was used for 3D in situ observations of the evolution of fibre/matrix interfacial debonding. A specimen with a single fibre oriented perpendicular to the tensile direction was tested at a synchrotron facility using a special loading rig which allowed for applying a load...... transverse to the fibre. Three distinguishable damage stages were observed: (i) interfacial debond initiation at the free surface, (ii) debond propagation from the surface into the specimen and (iii) unstable debonding along the full length of the scanned volume. The high resolution microtomography provides...

  18. The power spectrum of solar convection flows from high-resolution observations and 3D simulations

    Chaouche, L Yelles; Bonet, J A

    2014-01-01

    We compare Fourier spectra of photospheric velocity fields from very high resolution IMaX observations to those from recent 3D numerical magnetoconvection models. We carry out a proper comparison by synthesizing spectral lines from the numerical models and then applying to them the adequate residual instrumental degradation that affects the observational data. Also, the validity of the usual observational proxies is tested by obtaining synthetic observations from the numerical boxes and comparing the velocity proxies to the actual velocity values from the numerical grid. For the observations, data from the SUNRISE/IMaX instrument with about 120 km spatial resolution are used, thus allowing the calculation of observational Fourier spectra well into the subgranular range. For the simulations, we use four series of runs obtained with the STAGGER code and synthesize the IMaX spectral line (FeI 5250.2 A) from them. Proxies for the velocity field are obtained via Dopplergrams (vertical component) and local correlat...

  19. Weld line optimization on thermoplastic elastomer micro injection moulded components using 3D focus variation optical microscopy

    Hasnaes, F.B.; Elsborg, R.; Tosello, G.; Calaon, M.; Hansen, H. N.

    The presented study investigates weld line depth development across a micro suspension ring. A focus variation microscope was used to obtain 3D images of the weld line area. Suspension rings produced with different micro injection moulding process parameters were examined to identify the correlat...

  20. Pathways for Observing Stellar Surfaces Using 3D Hydrodynamical Simulations of Evolved Stars

    Chiavassa, A

    2015-01-01

    Evolved stars are among the largest and brightest stars and they are ideal targets for the new generation of sensitive, high resolution instrumentation that provides spectrophotometric, interferometric, astrometric, and imaging observables. The interpretation of the complex stellar surface images requires numerical simulations of stellar convection that take into account multi-dimensional time-dependent radiation hydrodynamics with realistic input physics. We show how the evolved star simulations are obtained using the radiative hydrodynamics code CO5BOLD and how the accurate observables are computed with the post-processing radiative transfer code Optim3D. The synergy between observations and theoretical work is supported by a proper and quantitative analysis using these simulations, and by strong constraints from the observational side.

  1. Anatomical Variations of the Circle of Willis in Males and Females on 3D MR Angiograms

    Kawther A. Hafez, Nahla M. Afifi, Fardous Z. Saudi

    2007-03-01

    Full Text Available Objective: The objective of the present work was to study the anatomical variations of the circle of Willis as regard its component vessels and their average diameters in a sample of adult Egyptians and to detect any sex-related differences in these variations. Material and Methods: One hundred and twenty adult patients were observed (60 males and 60 females. They all had problems unrelated to any ischemic or vascular diseases, so they were considered as healthy control, concerning the morphology of the circle of Willis. In addition, ten cadavers' brains were obtained from the Anatomy department, Faculty of Medicine Ain Shams University for examination of the circle of Willis and for detection of any variations. Results: The anatomical variations of the anterior part, posterior part and completeness of the circle were inspected. Also, the diameters of all component vessels were assessed. The results indicated that, the anterior part of the circle was completed in 70% males and 75% females of the study sample. No statistically significant difference was detected between sexes. The most common variant of the anterior part was the single anterior communicating artery followed by the hypoplastic or absent anterior communicating artery. The posterior part of the circle was completed in 44% males and 58% females. The most common variant was the bilateral posterior communicating arteries, followed by the unilateral posterior communicating artery. An entirely complete circle was found only in 45% of the entire population; and it was higher in the females than the in males. The vessels diameters were smaller in the females than in the males, except for the diameter of the posterior communicating artery. Cadavers' examination revealed six cases with complete circle, 3 cases of unilateral fetal posterior communicating and one case of absent posterior communicating artery. Conclusion: The present study showed the amazing great variability of the anatomy of

  2. Observed 3D Structure, Generation, and Dissipation of Oceanic Mesoscale Eddies in the South China Sea

    Zhang, Zhiwei; Tian, Jiwei; Qiu, Bo; Zhao, Wei; Chang, Ping; Wu, Dexing; Wan, Xiuquan

    2016-04-01

    Oceanic mesoscale eddies with horizontal scales of 50–300 km are the most energetic form of flows in the ocean. They are the oceanic analogues of atmospheric storms and are effective transporters of heat, nutrients, dissolved carbon, and other biochemical materials in the ocean. Although oceanic eddies have been ubiquitously observed in the world oceans since 1960s, our understanding of their three-dimensional (3D) structure, generation, and dissipation remains fragmentary due to lack of systematic full water-depth measurements. To bridge this knowledge gap, we designed and conducted a multi-months field campaign, called the South China Sea Mesoscale Eddy Experiment (S-MEE), in the northern South China Sea in 2013/2014. The S-MEE for the first time captured full-depth 3D structures of an anticyclonic and cyclonic eddy pair, which are characterized by a distinct vertical tilt of their axes. By observing the eddy evolution at an upstream versus downstream location and conducting an eddy energy budget analysis, the authors further proposed that generation of submesoscale motions most likely constitutes the dominant dissipation mechanism for the observed eddies.

  3. 3-D microphysical model studies of Arctic denitrification: comparison with observations

    S. Davies

    2005-01-01

    Full Text Available Simulations of Arctic denitrification using a 3-D chemistry-microphysics transport model are compared with observations for the winters 1994/1995, 1996/1997 and 1999/2000. The model of Denitrification by Lagrangian Particle Sedimentation (DLAPSE couples the full chemical scheme of the 3-D chemical transport model, SLIMCAT, with a nitric acid trihydrate (NAT growth and sedimentation scheme. We use observations from the Microwave Limb Sounder (MLS and Improved Limb Atmospheric Sounder (ILAS satellite instruments, the balloon-borne Michelsen Interferometer for Passive Atmospheric Sounding (MIPAS-B, and the in situ NOy instrument on-board the ER-2. As well as directly comparing model results with observations, we also assess the extent to which these observations are able to validate the modelling approach taken. For instance, in 1999/2000 the model captures the temporal development of denitrification observed by the ER-2 from late January into March. However, in this winter the vortex was already highly denitrified by late January so the observations do not provide a strong constraint on the modelled rate of denitrification. The model also reproduces the MLS observations of denitrification in early February 2000. In 1996/1997 the model captures the timing and magnitude of denitrification as observed by ILAS, although the lack of observations north of ~67° N make it difficult to constrain the actual timing of onset. The comparison for this winter does not support previous conclusions that denitrification must be caused by an ice-mediated process. In 1994/1995 the model notably underestimates the magnitude of denitrification observed during a single balloon flight of the MIPAS-B instrument. Agreement between model and MLS HNO3 at 68 hPa in mid-February 1995 was significantly better. Sensitivity tests show that a 1.5 K overall decrease in vortex temperatures or a factor 4 increase in assumed NAT nucleation rates produce the best

  4. KAGLVis - On-line 3D Visualisation of Earth-observing-satellite Data

    Szuba, Marek; Ameri, Parinaz; Grabowski, Udo; Maatouki, Ahmad; Meyer, Jörg

    2015-04-01

    One of the goals of the Large-Scale Data Management and Analysis project is to provide a high-performance framework facilitating management of data acquired by Earth-observing satellites such as Envisat. On the client-facing facet of this framework, we strive to provide visualisation and basic analysis tool which could be used by scientists with minimal to no knowledge of the underlying infrastructure. Our tool, KAGLVis, is a JavaScript client-server Web application which leverages modern Web technologies to provide three-dimensional visualisation of satellite observables on a wide range of client systems. It takes advantage of the WebGL API to employ locally available GPU power for 3D rendering; this approach has been demonstrated to perform well even on relatively weak hardware such as integrated graphics chipsets found in modern laptop computers and with some user-interface tuning could even be usable on embedded devices such as smartphones or tablets. Data is fetched from the database back-end using a ReST API and cached locally, both in memory and using HTML5 Web Storage, to minimise network use. Computations, calculation of cloud altitude from cloud-index measurements for instance, can depending on configuration be performed on either the client or the server side. Keywords: satellite data, Envisat, visualisation, 3D graphics, Web application, WebGL, MEAN stack.

  5. Multimode observations and 3D magnetic control of the boundary of a tokamak plasma

    Levesque, J. P.; Rath, N.; Shiraki, D.; Angelini, S.; Bialek, J.; Byrne, P. J.; DeBono, B. A.; Hughes, P. E.; Mauel, M. E.; Navratil, G. A.; Peng, Q.; Rhodes, D. J.; Stoafer, C. C.

    2013-07-01

    We present high-resolution detection and control of the 3D magnetic boundary in the High Beta Tokamak-Extended Pulse (HBT-EP) device. Measurements of non-axisymmetric radial and poloidal fields are made using 216 magnetic sensors positioned near the plasma surface. Control of 3D fields is accomplished using 40 independent saddle coils attached to the passive stabilizing wall. The control coils are energized with high-power solid-state amplifiers, and massively parallel, high-throughput feedback control experiments are performed using low-latency connections between PCI Express analogue input and output modules and a graphics processing unit. The time evolution of unstable and saturated wall-stabilized external kink modes are studied with and without applying magnetic perturbations using the control coils. The 3D dynamic structure of the magnetic field surrounding the plasma is determined through biorthogonal decomposition using the full set of magnetic sensors without the need to fit either a Fourier or a model-based basis. Naturally occurring external kinks are composed of multiple independent helical modes. Smooth transitions between dominant poloidal mode numbers are observed for simultaneous n = 1 and n = 2 modes as the edge safety factor changes. Relative amplitudes of coexistent m/n = 3/1 and 6/2 modes depend on the plasma's major radius and edge safety factor. When stationary 3/1 magnetic perturbations are applied, the resonant response can be linear, saturated, or disruptive, depending upon the perturbation amplitude and the edge safety factor; increased plasma-wall interactions from the perturbed plasma are proposed as a saturation mechanism. Initial feedback experiments have used 40 sensors and 40 control coils, producing mode amplification or suppression, and acceleration or deceleration depending on the feedback phase angle.

  6. Direct observations of the 3D pore network of a Callovo-Oxfordian clay-stone

    Document available in extended abstract form only. Long term deep underground storage of radioactive nuclear waste is planned in the East of France within an argillaceous rock layer (the host rock), also called argillite, situated at ca. 450-500 m depth. Andra, the French national agency for nuclear waste management, is in charge of assessing the feasibility, the safety and the performance of this underground disposal. The drilling of storage tunnels generates an Excavated Damaged Zone (EDZ), where argillite is macro-cracked in various locations. This requires strengthening by different means, e.g. shotcrete or pre-fabricated concrete arches. It is also expected that underground water seepage will contribute to argillite sealing: mainly self-sealing, and sealing at the interface with concrete. Sealing phenomena include crystalline swelling of smectitic clay components of argillite and inter-particle swelling of clay minerals due to osmosis mechanisms. Small scale pores and mineral organisation of the COx clay-stone are widely acknowledged to control transfer properties of water, gas and varied solutes. In order to assess these properties, the COx small-scale structure has been imaged down to micrometric resolution by various means, including classical Scanning Electron Microscopy (SEM), X-ray computed microtomography and autoradiography. To go further into pore and mineral characterisation of COx clay-stone, the following investigations are currently under way: (i) acquiring/quantifying the 3D geometry of the pore network of undisturbed COx with a nano-metric resolution and (ii) imaging/quantifying the small-scale (mm-nm) structure of self-sealed volumes. The FIB (Focused Ion Beam) /SEM technique allows performing 3D observations of solid volumes of ca. a few microns, with a resolution of about ten nanometers, by acquiring and computing regularly spaced 2D SEM images. This technique provides quantification of the 3D spatial distribution mainly of macro- and meso

  7. The 3D structure of an active region filament as extrapolated from photospheric and chromospheric observations

    Chaouche, L Yelles; Pillet, V Martínez; Moreno-Insertis, F

    2012-01-01

    The 3D structure of an active region (AR) filament is studied using nonlinear force-free field (NLFFF) extrapolations based on simultaneous observations at a photospheric and a chromospheric height. To that end, we used the Si I 10827 \\AA\\ line and the He I 10830 \\AA\\ triplet obtained with the Tenerife Infrared Polarimeter (TIP) at the VTT (Tenerife). The two extrapolations have been carried out independently from each other and their respective spatial domains overlap in a considerable height range. This opens up new possibilities for diagnostics in addition to the usual ones obtained through a single extrapolation from, typically, a photospheric layer. Among those possibilities, this method allows the determination of an average formation height of the He I 10830 \\AA\\ signal of \\approx 2 Mm above the surface of the sun. It allows, as well, to cross-check the obtained 3D magnetic structures in view of verifying a possible deviation from the force- free condition especially at the photosphere. The extrapolati...

  8. Does spatial variation in environmental conditions affect recruitment? A study using a 3-D model of Peruvian anchovy

    Xu, Yi; Rose, Kenneth A.; Chai, Fei; Chavez, Francisco P.; Ayón, Patricia

    2015-11-01

    We used a 3-dimensional individual-based model (3-D IBM) of Peruvian anchovy to examine how spatial variation in environmental conditions affects larval and juvenile growth and survival, and recruitment. Temperature, velocity, and phytoplankton and zooplankton concentrations generated from a coupled hydrodynamic Nutrients-Phytoplankton-Zooplankton-Detritus (NPZD) model, mapped to a three dimensional rectangular grid, were used to simulate anchovy populations. The IBM simulated individuals as they progressed from eggs to recruitment at 10 cm. Eggs and yolk-sac larvae were followed hourly through the processes of development, mortality, and movement (advection), and larvae and juveniles were followed daily through the processes of growth, mortality, and movement (advection plus behavior). A bioenergetics model was used to grow larvae and juveniles. The NPZD model provided prey fields which influence both food consumption rate as well as behavior mediated movement with individuals going to grids cells having optimal growth conditions. We compared predicted recruitment for monthly cohorts for 1990 through 2004 between the full 3-D IBM and a point (0-D) model that used spatially-averaged environmental conditions. The 3-D and 0-D versions generated similar interannual patterns in monthly recruitment for 1991-2004, with the 3-D results yielding consistently higher survivorship. Both versions successfully captured the very poor recruitment during the 1997-1998 El Niño event. Higher recruitment in the 3-D simulations was due to higher survival during the larval stage resulting from individuals searching for more favorable temperatures that lead to faster growth rates. The strong effect of temperature was because both model versions provided saturating food conditions for larval and juvenile anchovies. We conclude with a discussion of how explicit treatment of spatial variation affected simulated recruitment, other examples of fisheries modeling analyses that have used a

  9. Observation of Majorization Principle for quantum algorithms via 3-D integrated photonic circuits

    Flamini, Fulvio; Giordani, Taira; Bentivegna, Marco; Spagnolo, Nicoló; Crespi, Andrea; Corrielli, Giacomo; Osellame, Roberto; Martin-Delgado, Miguel Angel; Sciarrino, Fabio

    2016-01-01

    The Majorization Principle is a fundamental statement governing the dynamics of information processing in optimal and efficient quantum algorithms. While quantum computation can be modeled to be reversible, due to the unitary evolution undergone by the system, these quantum algorithms are conjectured to obey a quantum arrow of time dictated by the Majorization Principle: the probability distribution associated to the outcomes gets ordered step-by-step until achieving the result of the computation. Here we report on the experimental observation of the effects of the Majorization Principle for two quantum algorithms, namely the quantum fast Fourier transform and a recently introduced validation protocol for the certification of genuine many-boson interference. The demonstration has been performed by employing integrated 3-D photonic circuits fabricated via femtosecond laser writing technique, which allows to monitor unambiguously the effects of majorization along the execution of the algorithms. The measured ob...

  10. Observation of the $^1$S$_0$ to $^3$D$_1$ clock transition in $^{175}$Lu$^+$

    Arnold, Kyle J; Roy, A; Paez, E; Wang, S; Barrett, M D

    2016-01-01

    We report the first laser spectroscopy of the $^1$S$_0$ to $^3$D$_1$ clock transition in $^{175}$Lu$^+$. Clock operation is demonstrated on three pairs of Zeeman transitions, one pair from each hyperfine manifold of the $^3$D$_1$ term. We measure the hyperfine intervals of the $^3$D$_1$ to 10 ppb uncertainty and infer the optical frequency averaged over the three hyperfine transitions to be 353.639 915 952 2 (6) THz. The lifetime of the $^3$D$_1$ state is inferred to be $174^{+23}_{-32}$ hours from the M1 coupling strength.

  11. Jets in coronal holes: Hinode observations and 3D computer modelling

    Moreno-Insertis, F; Ugarte-Urra, I

    2007-01-01

    Recent observations of coronal hole areas with the XRT and EIS instruments onboard the Hinode satellite have shown with unprecedented detail the launching of fast, hot jets away from the solar surface. In some cases these events coincide with episodes of flux emergence from beneath the photosphere. In this letter we show results of a 3D numerical experiment of flux emergence from the solar interior into a coronal hole and compare them with simultaneous XRT and EIS observations of a jet-launching event that accompanied the appearance of a bipolar region in MDI magnetograms. The magnetic skeleton and topology that result in the experiment bear a strong resemblance to linear force-fee extrapolations of the SOHO/MDI magnetograms. A thin current sheet is formed at the boundary of the emerging plasma. A jet is launched upward along the open reconnected field lines with values of temperature, density and velocity in agreement with the XRT and EIS observations. Below the jet, a split-vault structure results with two ...

  12. The Shock Dynamics of Heterogeneous YSO Jets: 3-D Simulations Meet Multi-Epoch Observations

    Hansen, E C; Hartigan, P; Lebedev, S V

    2016-01-01

    High resolution observations of Young Stellar Object (YSO) jets show them to be composed of many small-scale knots or clumps. In this paper we report results of 3-D numerical simulations designed to study how such clumps interact and create morphologies and kinematic patterns seen in emission line observations. Our simulations focus on clump scale dynamics by imposing velocity differences between spherical, over-dense regions which then lead to the formation of bow shocks as faster clumps overtake slower material. We show that much of the spatial structure apparent in emission line images of jets arises from the dynamics and interactions of these bow shocks. Our simulations show a variety of time-dependent features, including bright knots associated with Mach stems where the shocks intersect, a "frothy" emission structure that arises from the presence of the Non-linear Thin Shell Instability (NTSI) along the surfaces of the bow shocks, and the merging and fragmentation of clumps. Our simulations use a new non...

  13. Assessing soil water storage distribution under sprinkler irrigation by coupling 3D simulations and field observations

    Taha, Uday; Shabeeb, Ahmed; dragonetti, giovanna; Lamaddalena, Nicola; Coppola, Antonio

    2016-04-01

    This work analyzed the variability of sprinkler irrigation application over a bare soil, both in terms of water application efficiency and uniformity, by integrating and comparing the information on the irrigation depth data (ID), as measured by catch cans, soil water storage in the upper root zone, as measured by TDR probes, and a 3D simulations of water flow in soils. Three irrigation tests were performed at three different pressures (2, 3 and 4 bar). A lateral water redistribution was observed and simulated after each irrigation event by comparing spatial distributions of site-specific water application efficiency (AEs), as well as ratios of site-specific actual water storage increase (SWEs) and irrigation depth (IDs) to the water content before irrigation. Because of soil water redistribution processes, distribution uniformity based on soil storages was systematically higher than the catch can uniformity. The obvious consequence of lateral water redistribution processes was that the soil smoothing action on non-uniformity observed at the surface increased both with depth and over time. At a given depth the uniformity of soil water storages always attained the same value, whatever the pressure considered and the catch can-based uniformity coefficient. It was concluded that, for the case of random distribution of ID, the uniformity of water storages is driven by the soil behavior rather than by the irrigation system.

  14. The power spectrum of solar convection flows from high-resolution observations and 3D simulations

    Yelles Chaouche, L.; Moreno-Insertis, F.; Bonet, J. A.

    2014-03-01

    Context. Understanding solar surface magnetoconvection requires the study of the Fourier spectra of the velocity fields. Nowadays, observations are available that resolve very small spatial scales, well into the subgranular range, almost reaching the scales routinely resolved in numerical magnetoconvection simulations. Comparison of numerical and observational data at present can provide an assessment of the validity of the observational proxies. Aims: Our aims are: (1) to obtain Fourier spectra for the photospheric velocity fields using the spectropolarimetric observations with the highest spatial resolution so far (~120 km), thus reaching for the first time spatial scales well into the subgranular range; (2) to calculate corresponding Fourier spectra from realistic 3D numerical simulations of magnetoconvection and carry out a proper comparison with their observational counterparts considering the residual instrumental degradation in the observational data; and (3) to test the observational proxies on the basis of the numerical data alone, by comparing the actual velocity field in the simulations with synthetic observations obtained from the numerical boxes. Methods: (a) For the observations, data from the SUNRISE/IMaX spectropolarimeter are used. (b) For the simulations, we use four series of runs obtained with the STAGGER code for different average signed vertical magnetic field values (0, 50, 100, and 200 G). Spectral line profiles are synthesized from the numerical boxes for the same line observed by IMaX (Fe I 5250.2 Å) and degraded to match the performance of the IMaX instrument. Proxies for the velocity field are obtained via Dopplergrams (vertical component) and local correlation tracking (LCT, for the horizontal component). Fourier power spectra are calculated and a comparison between the synthetic and observational data sets carried out. (c) For the internal comparison of the numerical data, velocity values on constant optical depth surfaces are used

  15. 3D modeling of GJ1214b's atmosphere: formation of inhomogeneous high clouds and observational implications

    Charnay, Benjamin; Misra, Amit; Leconte, Jérémy; Arney, Giada

    2015-01-01

    The warm sub-Neptune GJ1214b has a featureless transit spectrum which may be due to the presence of high and thick clouds or haze. Here, we simulate the atmosphere of GJ1214b with a 3D General Circulation Model for cloudy hydrogen-dominated atmospheres, including cloud radiative effects. We show that the atmospheric circulation is strong enough to transport micrometric cloud particles to the upper atmosphere and generally leads to a minimum of cloud at the equator. By scattering stellar light, clouds increase the planetary albedo to 0.4-0.6 and cool the atmosphere below 1 mbar. However, the heating by ZnS clouds leads to the formation of a stratospheric thermal inversion above 10 mbar, with temperatures potentially high enough on the dayside to evaporate KCl clouds. We show that flat transit spectra consistent with HST observations are possible if cloud particle radii are around 0.5 micron, and that such clouds should be optically thin at wavelengths > 3 microns. Using simulated cloudy atmospheres that fit th...

  16. 3-D water vapor field in the atmospheric boundary layer observed with scanning differential absorption lidar

    Späth, Florian; Behrendt, Andreas; Muppa, Shravan Kumar; Metzendorf, Simon; Riede, Andrea; Wulfmeyer, Volker

    2016-04-01

    High-resolution three-dimensional (3-D) water vapor data of the atmospheric boundary layer (ABL) are required to improve our understanding of land-atmosphere exchange processes. For this purpose, the scanning differential absorption lidar (DIAL) of the University of Hohenheim (UHOH) was developed as well as new analysis tools and visualization methods. The instrument determines 3-D fields of the atmospheric water vapor number density with a temporal resolution of a few seconds and a spatial resolution of up to a few tens of meters. We present three case studies from two field campaigns. In spring 2013, the UHOH DIAL was operated within the scope of the HD(CP)2 Observational Prototype Experiment (HOPE) in western Germany. HD(CP)2 stands for High Definition of Clouds and Precipitation for advancing Climate Prediction and is a German research initiative. Range-height indicator (RHI) scans of the UHOH DIAL show the water vapor heterogeneity within a range of a few kilometers up to an altitude of 2 km and its impact on the formation of clouds at the top of the ABL. The uncertainty of the measured data was assessed for the first time by extending a technique to scanning data, which was formerly applied to vertical time series. Typically, the accuracy of the DIAL measurements is between 0.5 and 0.8 g m-3 (or < 6 %) within the ABL even during daytime. This allows for performing a RHI scan from the surface to an elevation angle of 90° within 10 min. In summer 2014, the UHOH DIAL participated in the Surface Atmosphere Boundary Layer Exchange (SABLE) campaign in southwestern Germany. Conical volume scans were made which reveal multiple water vapor layers in three dimensions. Differences in their heights in different directions can be attributed to different surface elevation. With low-elevation scans in the surface layer, the humidity profiles and gradients can be related to different land cover such as maize, grassland, and forest as well as different surface layer

  17. 3-D water vapor field in the atmospheric boundary layer observed with scanning differential absorption lidar

    Späth, Florian; Behrendt, Andreas; Muppa, Shravan Kumar; Metzendorf, Simon; Riede, Andrea; Wulfmeyer, Volker

    2016-01-01

    High-resolution three-dimensional (3-D) water vapor data of the atmospheric boundary layer (ABL) are required to improve our understanding of land–atmosphere exchange processes. For this purpose, the scanning differential absorption lidar (DIAL) of the University of Hohenheim (UHOH) was developed as well as new analysis tools and visualization methods. The instrument determines 3-D fields of the atmospheric water vapor number density with a temporal resolution of a few secon...

  18. Lujiatun Psittacosaurids: Understanding Individual and Taphonomic Variation Using 3D Geometric Morphometrics

    Brandon P Hedrick; Peter Dodson

    2013-01-01

    Psittacosaurus is one of the most abundant and speciose genera in the Dinosauria, with fifteen named species. The genus is geographically and temporally widespread with large sample sizes of several of the nominal species allowing detailed analysis of intra- and interspecific variation. We present a reanalysis of three separate, coeval species within the Psittacosauridae; P. lujiatunensis, P. major, and Hongshanosaurus houi from the Lujiatun beds of the Yixian Formation, northeastern China, u...

  19. Comparison of a unidirectional panoramic 3D endoluminal interpretation technique to traditional 2D and bidirectional 3D interpretation techniques at CT colonography: preliminary observations

    Lenhart, D.K.; Babb, J.; Bonavita, J.; Kim, D. [Department of Radiology, NYU Medical Center, 560 First Avenue, Suite HW-202, New York, NY 10016 (United States); Bini, E.J. [Department of Medicine, NYU School of Medicine, NYU Medical Center, 560 First Avenue, Suite HW-202, New York, NY 10016 (United States); Megibow, A.J. [Department of Radiology, NYU Medical Center, 560 First Avenue, Suite HW-202, New York, NY 10016 (United States); Macari, M., E-mail: michael.macari@med.nyu.ed [Department of Radiology, NYU Medical Center, 560 First Avenue, Suite HW-202, New York, NY 10016 (United States)

    2010-02-15

    Aim: To compare the evaluation times and accuracy of unidirectional panoramic three-dimensional (3D) endoluminal interpretation to traditional two-dimensional (2D) and bidirectional 3D endoluminal techniques. materials and methods: Sixty-nine patients underwent computed tomography colonography (CTC) after bowel cleansing. Forty-five had no polyps and 24 had at least one polyp >=6 mm. Patients underwent same-day colonoscopy with segmental unblinding. Three experienced abdominal radiologists evaluated the data using one of three primary interpretation techniques: (1) 2D; (2) bidirectional 3D; (3) panoramic 3D. Mixed model analysis of variance and logistic regression for correlated data were used to compare techniques with respect to time and sensitivity and specificity. Results: Mean evaluation times were 8.6, 14.6, and 12.1 min, for 2D, 3D, and panoramic, respectively. 2D was faster than either 3D technique (p < 0.0001), and the panoramic technique was faster than bidirectional 3D (p = 0.0139). The overall sensitivity of each technique per polyp and per patient was 68.4 and 76.7% for 2D, 78.9 and 93.3% for 3D; and 78.9 and 86.7% for panoramic 3D. Conclusion: 2D interpretation was the fastest overall, the panoramic technique was significantly faster than the bidirectional with similar sensitivity and specificity. The sensitivity for a single reader was significantly lower using the 2D technique. Each reader should select the technique with which they are most successful.

  20. Efficient and robust 3D CT image reconstruction based on total generalized variation regularization using the alternating direction method.

    Chen, Jianlin; Wang, Linyuan; Yan, Bin; Zhang, Hanming; Cheng, Genyang

    2015-01-01

    Iterative reconstruction algorithms for computed tomography (CT) through total variation regularization based on piecewise constant assumption can produce accurate, robust, and stable results. Nonetheless, this approach is often subject to staircase artefacts and the loss of fine details. To overcome these shortcomings, we introduce a family of novel image regularization penalties called total generalized variation (TGV) for the effective production of high-quality images from incomplete or noisy projection data for 3D reconstruction. We propose a new, fast alternating direction minimization algorithm to solve CT image reconstruction problems through TGV regularization. Based on the theory of sparse-view image reconstruction and the framework of augmented Lagrange function method, the TGV regularization term has been introduced in the computed tomography and is transformed into three independent variables of the optimization problem by introducing auxiliary variables. This new algorithm applies a local linearization and proximity technique to make the FFT-based calculation of the analytical solutions in the frequency domain feasible, thereby significantly reducing the complexity of the algorithm. Experiments with various 3D datasets corresponding to incomplete projection data demonstrate the advantage of our proposed algorithm in terms of preserving fine details and overcoming the staircase effect. The computation cost also suggests that the proposed algorithm is applicable to and is effective for CBCT imaging. Theoretical and technical optimization should be investigated carefully in terms of both computation efficiency and high resolution of this algorithm in application-oriented research. PMID:26756406

  1. Direct observation of 3-D grain growth in Al–0.1% Mn

    Schmidt, Søren; Olsen, Ulrik Lund; Poulsen, Henning Friis;

    2008-01-01

    Grain growth in an Al-0.1% Mn sample has been measured non-destructively using a three-dimensional X-ray diffraction (3DXRD) microscope. The 3-D grain morphology as well as the crystallographic orientation was determined for 483 grains in the illuminated volume prior to annealing. After annealing...

  2. Simultaneous observation of low temperature 4f-4f and 3d-3d emission spectra in a series of Cr(III)(ox)Ln(III) assembly

    Subhan, M A; Suzuki, T; Choi, J H; Kaizaki, S

    2003-01-01

    We report here the low temperature emission spectra in the heterometal dinuclear 3d-4f assembled molecular system [(acac) sub 2 Cr sup I sup I sup I (mu-ox)Ln sup I sup I sup I (HBpz sub 3) sub 2] (Cr(ox)Ln:acac sup - =acetylacetonate, ox sup 2 sup - =oxalate, HBpz sub 3 sup - =hydrotris(pyrazol-1-yl)borate; Ln=La, Nd, Ho, Er , Tm and Yb) in comparison with those of Na[Cr(acac) sub 2 (ox)] and [(HBpz sub 3) sub 2 Ln(mu-ox)Ln(HBpz sub 3) sub 2](Ln=Nd and Er). From 10 to 150 K the Cr(ox)Ln complexes show a broad emission band around 800 nm from the sup 2 E state of Cr(III) moiety. At room temperature no sup 2 E- sup 4 A sub 2 emission was observed in the Cr(ox)Ln except for the La and Lu complexes. On warming from 10 to 300 K rapid quenching of the sup 2 E- sup 4 A sub 2 emission of Cr(III) is suggested to result from the energy transfer from Cr to Ln in the Cr(ox)Ln. The excitation spectra and the life-time were also measured with monitoring the 4f-4f emission peaks of the Cr(ox)Yb complex.

  3. A region-appearance-based adaptive variational model for 3D liver segmentation

    Purpose: Liver segmentation from computed tomography images is a challenging task owing to pixel intensity overlapping, ambiguous edges, and complex backgrounds. The authors address this problem with a novel active surface scheme, which minimizes an energy functional combining both edge- and region-based information. Methods: In this semiautomatic method, the evolving surface is principally attracted to strong edges but is facilitated by the region-based information where edge information is missing. As avoiding oversegmentation is the primary challenge, the authors take into account multiple features and appearance context information. Discriminative cues, such as multilayer consecutiveness and local organ deformation are also implicitly incorporated. Case-specific intensity and appearance constraints are included to cope with the typically large appearance variations over multiple images. Spatially adaptive balancing weights are employed to handle the nonuniformity of image features. Results: Comparisons and validations on difficult cases showed that the authors’ model can effectively discriminate the liver from adhering background tissues. Boundaries weak in gradient or with no local evidence (e.g., small edge gaps or parts with similar intensity to the background) were delineated without additional user constraint. With an average surface distance of 0.9 mm and an average volume overlap of 93.9% on the MICCAI data set, the authors’ model outperformed most state-of-the-art methods. Validations on eight volumes with different initial conditions had segmentation score variances mostly less than unity. Conclusions: The proposed model can efficiently delineate ambiguous liver edges from complex tissue backgrounds with reproducibility. Quantitative validations and comparative results demonstrate the accuracy and efficacy of the model

  4. 3D Multifluid MHD simulation for Uranus and Neptune: the seasonal variations of their magnetosphere

    Cao, X.; Paty, C. S.

    2015-12-01

    The interaction between Uranus' intrinsic magnetic field and the solar wind is quite different from the magnetospheric interactions of other planets. Uranus' large obliquity, coupled with the fact that its dipole moment is off-centered and highly tilted relative to the rotation axis, leads to unique and seasonally dependent interaction geometries with the solar wind. We present results from adapting a multifluid MHD simulation to examine these seasonally dependent geometries in terms of the global magnetospheric structure, magnetopause and bow shock location, and magnetotail configuration. The Voyager 2 spacecraft encountered Uranus near solstice, and was able to observe the magnetic field structure and plasma characteristics of a twisted magnetotail [Behannon et al., 1987]. We use such magnetometer and plasma observations as a basis for benchmarking our simulations for the solstice scenario. Auroral observations made by the Hubble Space Telescope during equinox [Lamy et al.,2012] give some indication of the magnetospheric interaction with the solar wind. We also demonstrate the structural difference of the magnetosphere between solstice and equinox seasons. The magnetosphere at equinox is quite distinct due to the orientation and rotation of the magnetic axis relative to the solar wind direction.

  5. Refilling process in the plasmasphere: a 3-D statistical characterization based on Cluster density observations

    G. Lointier

    2013-02-01

    Full Text Available The Cluster mission offers an excellent opportunity to investigate the evolution of the plasma population in a large part of the inner magnetosphere, explored near its orbit's perigee, over a complete solar cycle. The WHISPER sounder, on board each satellite of the mission, is particularly suitable to study the electron density in this region, between 0.2 and 80 cm−3. Compiling WHISPER observations during 1339 perigee passes distributed over more than three years of the Cluster mission, we present first results of a statistical analysis dedicated to the study of the electron density morphology and dynamics along and across magnetic field lines between L = 2 and L = 10. In this study, we examine a specific topic: the refilling of the plasmasphere and trough regions during extended periods of quiet magnetic conditions. To do so, we survey the evolution of the ap index during the days preceding each perigee crossing and sort out electron density profiles along the orbit according to three classes, namely after respectively less than 2 days, between 2 and 4 days, and more than 4 days of quiet magnetic conditions (ap ≤ 15 nT following an active episode (ap > 15 nT. This leads to three independent data subsets. Comparisons between density distributions in the 3-D plasmasphere and trough regions at the three stages of quiet magnetosphere provide novel views about the distribution of matter inside the inner magnetosphere during several days of low activity. Clear signatures of a refilling process inside an expended plasmasphere in formation are noted. A plasmapause-like boundary, at L ~ 6 for all MLT sectors, is formed after 3 to 4 days and expends somewhat further after that. In the outer part of the plasmasphere (L ~ 8, latitudinal profiles of median density values vary essentially according to the MLT sector considered rather than according to the refilling duration. The shape of these density profiles

  6. Direct observation in 3d of structural crossover in binary hard sphere mixtures

    Statt, Antonia; Pinchaipat, Rattachai; Turci, Francesco; Evans, Robert; Royall, C. Patrick

    2016-04-01

    For binary fluid mixtures of spherical particles in which the two species are sufficiently different in size, the dominant wavelength of oscillations of the pair correlation functions is predicted to change from roughly the diameter of the large species to that of the small species along a sharp crossover line in the phase diagram [C. Grodon et al., J. Chem. Phys. 121, 7869 (2004)]. Using particle-resolved colloid experiments in 3d we demonstrate that crossover exists and that its location in the phase diagram is in quantitative agreement with the results of both theory and our Monte-Carlo simulations. In contrast with previous work [J. Baumgartl et al., Phys. Rev. Lett. 98, 198303 (2007)], where a correspondence was drawn between crossover and percolation of both species, in our 3d study we find that structural crossover is unrelated to percolation.

  7. 2D and 3D endoanal and translabial ultrasound measurement variation in normal postpartum measurements of the anal sphincter complex

    MERIWETHER, Kate V.; HALL, Rebecca J.; LEEMAN, Lawrence M.; MIGLIACCIO, Laura; QUALLS, Clifford; ROGERS, Rebecca G.

    2015-01-01

    Introduction Women may experience anal sphincter anatomy changes after vaginal or Cesarean delivery. Therefore, accurate and acceptable imaging options to evaluate the anal sphincter complex (ASC) are needed. ASC measurements may differ between translabial (TL-US) and endoanal ultrasound (EA-US) imaging and between 2D and 3D ultrasound. The objective of this analysis was to describe measurement variation between these modalities. Methods Primiparous women underwent 2D and 3D TL-US imaging of the ASC six months after a vaginal birth (VB) or Cesarean delivery (CD). A subset of women also underwent EA-US measurements. Measurements included the internal anal sphincter (IAS) thickness at proximal, mid, and distal levels and the external anal sphincter (EAS) at 3, 6, 9, and 12 o’clock positions as well as bilateral thickness of the pubovisceralis muscle (PVM). Results 433 women presented for US: 423 had TL-US and 64 had both TL-US and EA-US of the ASC. All IAS measurements were significantly thicker on TL-US than EA-US (all p0.20). On both TL-US and EA-US, there were multiple sites where significant asymmetry existed in left versus right measurements. Conclusion The ultrasound modality used to image the ASC introduces small but significant changes in measurements, and the direction of the bias depends on the muscle and location being imaged. PMID:25344221

  8. How Students and Field Geologists Reason in Integrating Spatial Observations from Outcrops to Visualize a 3-D Geological Structure

    Kastens, Kim A.; Agrawal, Shruti; Liben, Lynn S.

    2009-01-01

    Geologists and undergraduate students observed eight artificial "rock outcrops" in a realistically scaled field area, and then tried to envision a geological structure that might plausibly be formed by the layered rocks in the set of outcrops. Students were videotaped as they selected which of fourteen 3-D models they thought best represented the…

  9. Poster: Observing change in crowded data sets in 3D space - Visualizing gene expression in human tissues

    Rogowski, Marcin

    2013-03-01

    We have been confronted with a real-world problem of visualizing and observing change of gene expression between different human tissues. In this paper, we are presenting a universal representation space based on two-dimensional gel electrophoresis as opposed to force-directed layouts encountered most often in similar problems. We are discussing the methods we devised to make observing change more convenient in a 3D virtual reality environment. © 2013 IEEE.

  10. Mid-Infrared Observations of Planetary Nebulae detected in the GLIMPSE 3D Survey

    J. A. Quino-Mendoza

    2011-01-01

    Full Text Available Presentamos mapas, perfiles y fotometría de 24 nebulosas planetarias (NPs detectadas en el estudio del plano galáctico en el infrarrojo medio (MIR de GLIMPSE 3D. Las NPs muestran muchas de las propiedades observadas en estudios previos de estas fuentes, incluyendo la evidencia de emisión a mayores longitudes de onda afuera de las zonas ionizadas, una consecuencia probable de la emisión de hidrocarburos aromáticos policíclicos (PAHs dentro de las regiones de fotodisociación (PDRs. Notamos también variaciones en los cocientes de flujo 5.8 µm/4.5 µm y 8.0 µm/4.5 µm con respecto a la distancia del núcleo; presentamos evidencia de un aumento en la emisión MIR en los halos de las fuentes y encontramos evidencia de variaciones en color respecto de la evolución nebular.

  11. Parameters of the human 3D gaze while observing portable autostereoscopic display: a model and measurement results

    Boev, Atanas; Hanhela, Marianne; Gotchev, Atanas; Utirainen, Timo; Jumisko-Pyykkö, Satu; Hannuksela, Miska

    2012-02-01

    We present an approach to measure and model the parameters of human point-of-gaze (PoG) in 3D space. Our model considers the following three parameters: position of the gaze in 3D space, volume encompassed by the gaze and time for the gaze to arrive on the desired target. Extracting the 3D gaze position from binocular gaze data is hindered by three problems. The first problem is the lack of convergence - due to micro saccadic movements the optical lines of both eyes rarely intersect at a point in space. The second problem is resolution - the combination of short observation distance and limited comfort disparity zone typical for a mobile 3D display does not allow the depth of the gaze position to be reliably extracted. The third problem is measurement noise - due to the limited display size, the noise range is close to the range of properly measured data. We have developed a methodology which allows us to suppress most of the measurement noise. This allows us to estimate the typical time which is needed for the point-of-gaze to travel in x, y or z direction. We identify three temporal properties of the binocular PoG. The first is reaction time, which is the minimum time that the vision reacts to a stimulus position change, and is measured as the time between the event and the time the PoG leaves the proximity of the old stimulus position. The second is the travel time of the PoG between the old and new stimulus position. The third is the time-to-arrive, which is the time combining the reaction time, travel time, and the time required for the PoG to settle in the new position. We present the method for filtering the PoG outliers, for deriving the PoG center from binocular eye-tracking data and for calculating the gaze volume as a function of the distance between PoG and the observer. As an outcome from our experiments we present binocular heat maps aggregated over all observers who participated in a viewing test. We also show the mean values for all temporal

  12. Data Assimilation of Lightning using 1D+3D/4D WRF Var Assimilation Schemes with Non-Linear Observation Operators

    Navon, M. I.; Stefanescu, R.; Fuelberg, H. E.; Marchand, M.

    2012-12-01

    NASA's launch of the GOES-R Lightning Mapper (GLM) in 2015 will provide continuous, full disc, high resolution total lightning (IC + CG) data. The data will be available at a horizontal resolution of approximately 9 km. Compared to other types of data, the assimilation of lightning data into operational numerical models has received relatively little attention. Previous efforts of lightning assimilation mostly have employed nudging. This paper will describe the implementation of 1D+3D/4D Var assimilation schemes of existing ground-based WTLN (Worldwide Total Lightning Network) lightning observations using non-linear observation operators in the incremental WRFDA system. To mimic the expected output of GLM, the WTLN data were used to generate lightning super-observations characterized by flash rates/81 km2/20 min. A major difficulty associated with variational approaches is the complexity of the observation operator that defines the model equivalent of lightning. We use Convective Available Potential Energy (CAPE) as a proxy between lightning data and model variables. This operator is highly nonlinear. Marecal and Mahfouf (2003) have shown that nonlinearities can prevent direct assimilation of rainfall rates in the ECMWF 4D-VAR (using the incremental formulation proposed by Courtier et al. (1994)) from being successful. Using data from the 2011 Tuscaloosa, AL tornado outbreak, we have proved that the direct assimilation of lightning data into the WRF 3D/4D - Var systems is limited due to this incremental approach. Severe threshold limits must be imposed on the innovation vectors to obtain an improved analysis. We have implemented 1D+3D/4D Var schemes to assimilate lightning observations into the WRF model. Their use avoids innovation vector constrains from preventing the inclusion of a greater number of lightning observations Their use also minimizes the problem that nonlinearities in the moist convective scheme can introduce discontinuities in the cost function

  13. VizieR Online Data Catalog: 3D observations of S 140 (Koumpia+, 2015)

    Koumpia, E.; Harvey, P. M.; Ossenkopf, V.; van der Tak, F. F. S.; Mookerjea, B.; Fuente, A.; Kramer, C.

    2015-07-01

    Reduced IRAM data, after applying basic routines in GILDAS (e.g. baseline correction), converted to main beam temperatures. The molecule-transition is indicating in the name of the file. CO transitions as observed with HIFI and the PACS observations were reduced using HIPE 9.1. (2 data files).

  14. Vertebral artery variations and osseous anomaly at the C1-2 level diagnosed by 3D CT angiography in normal subjects

    The craniovertebral junction is anatomically complicated. Representative vertebral artery (VA) variations include the persistent first intersegmental artery (FIA), fenestration of the VA above and below C1 (FEN), posterior inferior cerebellar artery (PICA) from C1/2, and high-riding VA (HRVA). The ponticulus posticus (PP) is a well-known osseous anomaly at C1. Although those anomalies are frequent in patients with cervical deformity, the prevalence of these in subjects with normal cervical spines is still unknown. The aim of this study is to investigate the variations and prevalence of vascular and osseous anomalies based on three-dimensional computed tomographic (3D CT) angiography in patients without any cervical diseases, such as rheumatoid arthritis, Klippel-Feil syndrome, or Down syndrome. Eligible subjects were patients who underwent 3D CT angiography by the Department of Otorhinolaryngology and Internal Medicine from January 2009 to October 2013 in our institution. The authors defined a HRVA as a C2 pedicle with a maximum diameter of 4 mm or less. Among 480 subjects with a mean age of 63.1 years, 387 patients were eligible. One hundred and eighteen subjects were female, and 269 were male. HRVA was observed in 10.1 % of patients (39 out of 387 cases), FIA in 1.8 % (7 cases), FEN in 1.3 % (5 cases), and PICA in 1.3 % (5 cases). PP was observed in 6.2 % of patients (24 cases). According to past reports, many VA anomalies could be attributed to congenital or acquired conditions (e.g., rheumatoid arthritis). However, VA anomalies appear to exist even in patients without any such cervical diseases. (orig.)

  15. Vertebral artery variations and osseous anomaly at the C1-2 level diagnosed by 3D CT angiography in normal subjects

    Wakao, Norimitsu; Kamiya, Mitsuhiro [Aichi Medical University, Department of Spine Center, Aichi (Japan); Aichi Medical University, Department of Orthopedic Surgery, Nagakute, Aichi (Japan); Takeuchi, Mikinobu; Hirasawa, Atsuhiko; Kawanami, Katsuhisa; Takayasu, Masakazu [Aichi Medical University, Department of Spine Center, Aichi (Japan); Nishimura, Manabu [Aichi Medical University, Department of Radiology, Nagakute, Aichi (Japan); Riew, K.D. [Washington University, Department of Orthopedic Surgery, St. Louis, MO (United States); Imagama, Shiro [Nagoya University, Department of Orthopedic Surgery, Nagoya, Aichi (Japan); Sato, Keiji [Aichi Medical University, Department of Orthopedic Surgery, Nagakute, Aichi (Japan)

    2014-10-15

    The craniovertebral junction is anatomically complicated. Representative vertebral artery (VA) variations include the persistent first intersegmental artery (FIA), fenestration of the VA above and below C1 (FEN), posterior inferior cerebellar artery (PICA) from C1/2, and high-riding VA (HRVA). The ponticulus posticus (PP) is a well-known osseous anomaly at C1. Although those anomalies are frequent in patients with cervical deformity, the prevalence of these in subjects with normal cervical spines is still unknown. The aim of this study is to investigate the variations and prevalence of vascular and osseous anomalies based on three-dimensional computed tomographic (3D CT) angiography in patients without any cervical diseases, such as rheumatoid arthritis, Klippel-Feil syndrome, or Down syndrome. Eligible subjects were patients who underwent 3D CT angiography by the Department of Otorhinolaryngology and Internal Medicine from January 2009 to October 2013 in our institution. The authors defined a HRVA as a C2 pedicle with a maximum diameter of 4 mm or less. Among 480 subjects with a mean age of 63.1 years, 387 patients were eligible. One hundred and eighteen subjects were female, and 269 were male. HRVA was observed in 10.1 % of patients (39 out of 387 cases), FIA in 1.8 % (7 cases), FEN in 1.3 % (5 cases), and PICA in 1.3 % (5 cases). PP was observed in 6.2 % of patients (24 cases). According to past reports, many VA anomalies could be attributed to congenital or acquired conditions (e.g., rheumatoid arthritis). However, VA anomalies appear to exist even in patients without any such cervical diseases. (orig.)

  16. Evaluating Satellite Observed CO2 Column by a 3-D Atmospheric Transport Model

    Satellite remote sensing is the latest method of measuring atmospheric CO2, which covers a wide range and makes periodic observation. But due to lack of ground-based observation sites, global satellite observed CO2 column is not evaluated efficiently. This paper assess the applicability of using GEOS-Chem model to forward simulate atmospheric CO2 for verifying Greenhouse Gas Observation SATellite (GOSAT) observed CO2 column. It is shown that GEOS-Chem performs well in modelling atmospheric CO2 and there are generally no significant differences between ground-based observation and model results. According to the comparsion, the spatial and temporal distribution of XCO2 agrees well between GOSAT and GEOS-Chem. GOSAT XCO2 is turned out to be 2.6 ppm lower than the model results. The mean difference observed between GOSAT and GEOS-Chem varies from −1.8 to −3.1 ppm seasonally, with the standard deviation ranging from 1.4 to 2.1 ppm. And in general, the difference is larger in summer than that in winter, in land area than in sea area. It might have been caused by the different land-sea distribution and eco-system's changing with seasons

  17. First MMS Observations of High Time Resolution 3D Electric and Magnetic fields at the Dayside Magnetopause.

    Torbert, R. B.; Burch, J. L.; Russell, C. T.; Magnes, W.; Ergun, R. E.; Lindqvist, P. A.; Le Contel, O.; Vaith, H.; Macri, J.; Myers, S.; Rau, D.; Needell, J.; King, B.; Granoff, M.; Chutter, M.; Dors, I.; Argall, M. R.; Shuster, J. R.; Olsson, G.; Marklund, G. T.; Khotyaintsev, Y. V.; Eriksson, A. I.; Kletzing, C.; Bounds, S. R.; Anderson, B. J.; Baumjohann, W.; Steller, M.; Bromund, K. R.; Le, G.; Nakamura, R.; Strangeway, R. J.; Leinweber, H. K.; Tucker, S.; Westfall, J.; Fischer, D.; Plaschke, F.; Pollock, C. J.; Giles, B. L.; Moore, T. E.; Mauk, B.; Fuselier, S. A.

    2015-12-01

    The electrodynamics at the magnetopause is key to our understanding of ion and electron acceleration within reconnection regions. The Magnetospheric Multiscale (MMS) fleet of four spacecraft was launched into its Phase-1 equatorial orbit of 12 Re apogee specifically to investigate these regions at the Earth's magnetopause. In addition to a comprehensive suite of particle measurements, MMS makes very high time resolution 3D electric and magnetic field measurements of high accuracy using flux-gate, search coil, 3-axis double probe, and electron drift sensors. In September 2015, the MMS fleet will begin to encounter the dusk-side magnetopause in its initial configuration of approximately 160 km separation, allowing investigation of the spatial and temporal characteristics of important electrodynamics during reconnection. Using these field and particle measurements, we present first observations of 3D magnetic and electric fields (including their parallel component), and inferred current sheets, during active magnetopause crossings using the highest time resolution data available on MMS.

  18. Frontiers of Galaxy Evolution : Time-Domain Observations and 3D Spectroscopy

    Schmidt, Kasper Borello

    2012-01-01

    Understanding the formation and evolution of galaxies through cosmic time has been a central focus of astrophysics in the last decades: how did the interplay between dark matter structure formation, star formation, galaxy merging, and active galactic nuclei (AGN) give rise to the observed galaxy properties at different redshifts? This thesis presents innovative observational approaches to two aspects of this problem: finding and studying AGN through their variability, and making a first syste...

  19. A unified framework for 3D radiation therapy and IMRT planning: plan optimization in the beamlet domain by constraining or regularizing the fluence map variations

    The purpose of this work is to demonstrate that physical constraints on fluence gradients in 3D radiation therapy (RT) planning can be incorporated into beamlet optimization explicitly by direct constraint on the spatial variation of the fluence maps or implicitly by using total-variation regularization (TVR). The former method forces the fluence to vary in accordance with the known form of a wedged field and latter encourages the fluence to take the known form of the wedged field by requiring the derivatives of the fluence maps to be piece-wise constant. The performances of the proposed methods are evaluated by using a brain cancer case and a head and neck case. It is found that both approaches are capable of providing clinically sensible 3D RT solutions with monotonically varying fluence maps. For currently available 3D RT delivery schemes based on the use of customized physical or dynamic wedges, constrained optimization seems to be more useful because the optimized fields are directly deliverable. Working in the beamlet domain provides a natural way to model the spatial variation of the beam fluence. The proposed methods take advantage of the fact that 3D RT is a special form of intensity-modulated radiation therapy (IMRT) and finds the optimal plan by searching for fields with a certain type of spatial variation. The approach provides a unified framework for 3D CRT and IMRT plan optimization. (note)

  20. A comparative study on 3-D solar wind structure observed by Ulysses and MHD simulation

    FENG Xueshang; XIANG Changqing; ZHONG Dingkun; FAN Quanlin

    2005-01-01

    During Ulysses' first rapid pole-to-pole transit from September 1994 to June 1995, its observations showed that middle- or high-speed solar winds covered all latitudes except those between -20° and +20° near the ecliptic plane,where the velocity was 300-450 km/s. At poleward 40°,however, only fast solar winds at the speed of 700-870 km/s were observed. In addition, the transitions from low-speed wind to high-speed wind or vice versa were abrupt. In this paper, the large-scale structure of solar wind observed by Ulysses near solar minimum is simulated by using the three-dimensional numerical MHD model. The model combines TVD Lax-Friedrich scheme and MacCormack Ⅱ scheme and decomposes the calculation region into two regions: one from 1 to 22 Rs and the other from 18 Rs to 1 AU.Based on the observations of the solar photospheric magnetic field and an addition of the volumetric heating to MHD equations, the large-scale solar wind structure mentioned above is reproduced by using the three-dimensional MHD model and the numerical results are roughly consistent with Ulysses' observations. Our simulation shows that the initial magnetic field topology and the addition of volume heating may govern the bimodal structure of solar wind observed by Ulysses and also demonstrates that the three-dimensional MHD numerical model used here is efficient in modeling the large-scale solar wind structure.

  1. TAMDAR Observation Assimilation in WRF 3D-Var and Its Impact on Hurricane Ike (2008) Forecast

    Hong-Li WANG; Xiang-Yu HUANG

    2012-01-01

    This study evaluates the impact of atmospheric observations from the Tropospheric Airborne Meteorological Data Reporting (TAMDAR) observing system on numerical weather prediction of hurricane Ike (2008) using three-dimensional data assimilation system for the Weather Research and Forecast (WRF) model (WRF 3D-Var). The TAMDAR data assimilation capability is added to WRF 3D-Var by incorporating the TAMDAR observation operator and corresponding observation processing procedure. Two 6-h cycling data assimilation and forecast experiments are conducted. Track and intensity forecasts are verified against the best track data from the National Hurricane Center. The results show that, on average, assimilating TAMDAR observations has a positive impact on the forecasts of hurricane Ike. The TAMDAR data assimilation reduces the track errors by about 30 km for 72-h forecasts. Improvements in intensity forecasts are also seen after four 6-h data assimilation cycles. Diagnostics show that assimilation of TAMDAR data improves subtropical ridge and steering flow in regions along Ike's track, resulting in better forecasts.

  2. Direct observation of multistep energy transfer in LHCII with fifth-order 3D electronic spectroscopy

    Zhang, Zhengyang; Lambrev, Petar H.; Wells, Kym L.; Garab, Győző; Tan, Howe-Siang

    2015-07-01

    During photosynthesis, sunlight is efficiently captured by light-harvesting complexes, and the excitation energy is then funneled towards the reaction centre. These photosynthetic excitation energy transfer (EET) pathways are complex and proceed in a multistep fashion. Ultrafast two-dimensional electronic spectroscopy (2DES) is an important tool to study EET processes in photosynthetic complexes. However, the multistep EET processes can only be indirectly inferred by correlating different cross peaks from a series of 2DES spectra. Here we directly observe multistep EET processes in LHCII using ultrafast fifth-order three-dimensional electronic spectroscopy (3DES). We measure cross peaks in 3DES spectra of LHCII that directly indicate energy transfer from excitons in the chlorophyll b (Chl b) manifold to the low-energy level chlorophyll a (Chl a) via mid-level Chl a energy states. This new spectroscopic technique allows scientists to move a step towards mapping the complete complex EET processes in photosynthetic systems.

  3. Calibration of 3-d.o.f. Translational Parallel Manipulators Using Leg Observations

    Pashkevich, Anatoly; Wenger, Philippe; Gomolitsky, Roman

    2009-01-01

    The paper proposes a novel approach for the geometrical model calibration of quasi-isotropic parallel kinematic mechanisms of the Orthoglide family. It is based on the observations of the manipulator leg parallelism during motions between the specific test postures and employs a low-cost measuring system composed of standard comparator indicators attached to the universal magnetic stands. They are sequentially used for measuring the deviation of the relevant leg location while the manipulator moves the TCP along the Cartesian axes. Using the measured differences, the developed algorithm estimates the joint offsets and the leg lengths that are treated as the most essential parameters. Validity of the proposed calibration technique is confirmed by the experimental results.

  4. Present-Day 3D Velocity Field of Eastern North America Based on Continuous GPS Observations

    Goudarzi, Mohammad Ali; Cocard, Marc; Santerre, Rock

    2016-03-01

    The Saint Lawrence River valley in eastern Canada was studied using observations of continuously operating GPS (CGPS) stations. The area is one of the most seismically active regions in eastern North America characterized by many earthquakes, which is also subject to an ongoing glacial isostatic adjustment. We present the current three-dimensional velocity field of eastern North America obtained from more than 14 years (9 years on average) of data at 112 CGPS stations. Bernese GNSS and GITSA software were used for CGPS data processing and position time series analysis, respectively. The results show the counterclockwise rotation of the North American plate in the No-Net-Rotation model with the average of 16.8 ± 0.7 mm/year constrained to ITRF 2008. We also present an ongoing uplift model for the study region based on the present-day CGPS observations. The model shows uplift all over eastern Canada with the maximum rate of 13.7 ± 1.2 mm/year and subsidence to the south mainly over northern USA with a typical rate of -1 to -2 mm/year and the minimum value of -2.7 ± 1.4 mm/year. We compared our model with the rate of radial displacements from the ICE-5G model. Both models agree within 0.02 mm/year at the best stations; however, our model shows a systematic spatial tilt compared to ICE-5G. The misfits between two models amount to the maximum relative subsidence of -6.1 ± 1.1 mm/year to the east and maximum relative uplift of 5.9 ± 2.7 mm/year to the west. The intraplate horizontal velocities are radially outward from the centers of maximum uplift and are inward to the centers of maximum subsidence with the typical velocity of 1-1.6 ± 0.4 mm/year that is in agreement with the ICE-5G model to the first order.

  5. Present-Day 3D Velocity Field of Eastern North America Based on Continuous GPS Observations

    Goudarzi, Mohammad Ali; Cocard, Marc; Santerre, Rock

    2016-07-01

    The Saint Lawrence River valley in eastern Canada was studied using observations of continuously operating GPS (CGPS) stations. The area is one of the most seismically active regions in eastern North America characterized by many earthquakes, which is also subject to an ongoing glacial isostatic adjustment. We present the current three-dimensional velocity field of eastern North America obtained from more than 14 years (9 years on average) of data at 112 CGPS stations. Bernese GNSS and GITSA software were used for CGPS data processing and position time series analysis, respectively. The results show the counterclockwise rotation of the North American plate in the No-Net-Rotation model with the average of 16.8 ± 0.7 mm/year constrained to ITRF 2008. We also present an ongoing uplift model for the study region based on the present-day CGPS observations. The model shows uplift all over eastern Canada with the maximum rate of 13.7 ± 1.2 mm/year and subsidence to the south mainly over northern USA with a typical rate of -1 to -2 mm/year and the minimum value of -2.7 ± 1.4 mm/year. We compared our model with the rate of radial displacements from the ICE-5G model. Both models agree within 0.02 mm/year at the best stations; however, our model shows a systematic spatial tilt compared to ICE-5G. The misfits between two models amount to the maximum relative subsidence of -6.1 ± 1.1 mm/year to the east and maximum relative uplift of 5.9 ± 2.7 mm/year to the west. The intraplate horizontal velocities are radially outward from the centers of maximum uplift and are inward to the centers of maximum subsidence with the typical velocity of 1-1.6 ± 0.4 mm/year that is in agreement with the ICE-5G model to the first order.

  6. Computing 3-D wavefields in mantle circulations models to test hypotheses on the origin of lower mantle heterogeneity under Africa directly against seismic observations

    Schuberth, Bernhard; Zaroli, Christophe; Nolet, Guust

    2015-04-01

    Of particular interest for the tectonic evolution of the Atlantic region is the influence of lower mantle structure under Africa on flow in the upper mantle beneath the ocean basin. Along with its Pacific counterpart, the large African anomaly in the lowermost mantle with strongly reduced seismic velocities has received considerable attention in seismological and geodynamic studies. Several seismological observations are typically taken as an indication that these two anomalies are being caused by large-scale compositional variations and that they are piles of material with higher density than normal mantle rock. This would imply negative buoyancy in the lowermost mantle under Africa, which has important implications for the flow at shallower depth and inferences on the processes that led to the formation of the Atlantic Ocean basin. However, a large number of recent studies argue for a strong thermal gradient across the core-mantle boundary that might provide an alternative explanation for the lower mantle anomaly through the resulting large lateral temperature variations. Recently, we developed a new joint forward modeling approach to test such geodynamic hypotheses directly against the seismic observations: Seismic heterogeneity is predicted by converting the temperature field of a high-resolution 3-D mantle circulation model into seismic velocities using thermodynamic models of mantle mineralogy. 3-D global wave propagation in the synthetic elastic structures is then simulated using a spectral element method. Being based on forward modelling only, this approach allows us to generate synthetic wavefields and seismograms independently of seismic observations. The statistics of observed long-period body wave traveltime variations show a markedly different behaviour for P- and S-waves: the standard deviation of P-wave delay times stays almost constant with ray turning depth, while that of the S-wave delay times increases strongly throughout the mantle. In an

  7. Incorporating Sedimentological Observations, Hydrogeophysics and conceptual Knowledge to Constrain 3D Numerical Heterogeneity Models of Coarse Alluvial Systems

    Huber, E.; Huggenberger, P.

    2012-12-01

    Accurate predictions on groundwater flow and transport behavior within fluvial and glaciofluvial sediments, but also interaction with surface water bodies, rely on knowledge of distributed aquifer properties. The complexity of the depositional and erosional processes in fluvial systems leads to highly heterogeneous distributions of hydrogeological parameters. The system dynamics, such as aggradation rates and channel mobility of alluvial systems; its influence on the preservation potential of the key depositional elements in the geological record; and its influence on the heterogeneity scales and the relevance for groundwater hydraulics is topic of the presentation. The aims of our work are to find a relation between surface morphological structures and the sedimentary structures in vertical profiles (i.e. gravel pits or GPR sections) and to derive rules for the interpretation of horizontal time-slices from 3D GPR data. Based on these data we set-up conceptual models of the structures of coarse alluvial systems at different scales which can be tested by stochastic methods. Relevant depositional elements and a hierarchy or genetic relationship of such elements will be defined based on the knowledge of depositional processes in alluvial systems inferred from: field observations after major flood events; 2D and 3D GPR data; and from existing data derived from laboratory flumes. Extensive geophysical field experiments within the Tagliamento alluvial system gave new insights to the sedimentary structures developing at high flows. Owing to the fact that rivers often destroy at least part of their bed during or shortly after large floods and subsequently rebuild, it is not easy to establish a simple relationship between surface morphology and the sedimentary structures found in vertical sections of many alluvial outcrops. According to these findings we suppose that surface or near-surface structures will not catch the essence of heterogeneity of alluvial aquifers

  8. Observation of 3d84d-3d84p soft-x-ray laser emission in high-Z ions isoelectronic to Co I

    A transition analogous to the strongest 4d-4p nickel-like x-ray laser transition has been observed in cobaltlike ions within the same plasma. Amplified spontaneous emission from Co-like ions has been identified in laser-produced exploding-foil plasmas of Yb and Ta. The Co-like line exhibits similar time history to the Ni-like laser line and has a gain coefficient consistent with a significant Co-like population. The observation of this transition is of interest as fluorinelike analogs to neonlike 3p-3s x-ray lasers have never been seen although they are predicted to have gain

  9. Estimating 3D variation in active-layer thickness beneath arctic streams using ground-penetrating radar

    Brosten, T.R.; Bradford, J.H.; McNamara, J.P.; Gooseff, M.N.; Zarnetske, J.P.; Bowden, W.B.; Johnston, M.E.

    2009-01-01

    We acquired three-dimensional (3D) ground-penetrating radar (GPR) data across three stream sites on the North Slope, AK, in August 2005, to investigate the dependence of thaw depth on channel morphology. Data were migrated with mean velocities derived from multi-offset GPR profiles collected across a stream section within each of the 3D survey areas. GPR data interpretations from the alluvial-lined stream site illustrate greater thaw depths beneath riffle and gravel bar features relative to neighboring pool features. The peat-lined stream sites indicate the opposite; greater thaw depths beneath pools and shallower thaw beneath the connecting runs. Results provide detailed 3D geometry of active-layer thaw depths that can support hydrological studies seeking to quantify transport and biogeochemical processes that occur within the hyporheic zone.

  10. Aquilion ONE / ViSION Edition CT scanner realizing 3D dynamic observation with low-dose scanning

    Computed tomography (CT) scanners have been continuously advancing as essential diagnostic imaging equipment for the diagnosis and treatment of a variety of diseases, including the three major disease classes of cerebrovascular disease, cardiovascular disease, and cancer. Through the development of helical CT scanners and multislice CT scanners, Toshiba Medical Systems Corporation has developed the Aquilion ONE, a CT scanner with a scanning range of up to 160 mm per rotation that can obtain three-dimensional (3D) images of the brain, heart, and other organs in a single rotation. We have now developed the Aquilion ONE / ViSION Edition, a next-generation 320-row multislice CT scanner incorporating the latest technologies that achieves a shorter scanning time and significant reduction in dose compared with conventional products. This product with its low-dose scanning technology will contribute to the practical realization of new diagnosis and treatment modalities employing four-dimensional (4D) data based on 3D dynamic observations through continuous rotations. (author)

  11. 3D Online Submicron Scale Observation of Mixed Metal Powder's Microstructure Evolution in High Temperature and Microwave Compound Fields

    Dan Kang

    2014-01-01

    Full Text Available In order to study the influence on the mechanical properties caused by microstructure evolution of metal powder in extreme environment, 3D real-time observation of the microstructure evolution of Al-Ti mixed powder in high temperature and microwave compound fields was realized by using synchrotron radiation computerized topography (SR-CT technique; the spatial resolution was enhanced to 0.37 μm/pixel through the designed equipment and the introduction of excellent reconstruction method for the first time. The process of microstructure evolution during sintering was clearly distinguished from 2D and 3D reconstructed images. Typical sintering parameters such as sintering neck size, porosity, and particle size of the sample were presented for quantitative analysis of the influence on the mechanical properties and the sintering kinetics during microwave sintering. The neck size-time curve was obtained and the neck growth exponent was 7.3, which indicated that surface diffusion was the main diffusion mechanism; the reason was the eddy current loss induced by the external microwave fields providing an additional driving force for mass diffusion on the particle surface. From the reconstructed images and the curve of porosity and average particle size versus temperature, it was believed that the presence of liquid phase aluminum accelerated the densification and particle growth.

  12. Testing remote sensing on artificial observations: impact of drizzle and 3-D cloud structure on effective radius retrievals

    T. Zinner

    2010-01-01

    Full Text Available Remote sensing of cloud effective particle size with passive sensors like the Moderate Resolution Imaging Spectroradiometer (MODIS is an important tool for cloud microphysical studies. As a measure of the radiatively relevant droplet size, effective radius can be retrieved with different combinations of visible through shortwave and midwave infrared channels. In practice, retrieved effective radii from these combinations can be quite different. This difference is perhaps indicative of different penetration depths and path lengths for the spectral reflectances used. In addition, operational liquid water cloud retrievals are based on the assumption of a relatively narrow distribution of droplet sizes; the role of larger precipitation particles in these distributions is neglected. Therefore, possible explanations for the discrepancy in some MODIS spectral size retrievals could include 3-D radiative transport effects, including sub-pixel cloud inhomogeneity, and/or the impact of drizzle formation.

    The possible factors of influence are isolated and investigated in detail by the use of simulated cloud scenes and synthetic satellite data: marine boundary layer cloud scenes from large eddy simulations (LES with detailed microphysics are combined with Monte Carlo radiative transfer calculations that explicitly account for the detailed droplet size distributions as well as 3-D radiative transfer to simulate MODIS observations. The operational MODIS optical thickness and effective radius retrieval algorithm is applied to these and the results are compared to the given LES microphysics.

    We investigate two types of marine cloud situations each with and without drizzle from LES simulations: (1 a typical daytime stratocumulus deck at two times in the diurnal cycle and (2 one scene with scattered cumulus. Only small impact of drizzle formation on the retrieved domain average and on the differences between the three effective radius retrievals

  13. Testing remote sensing on artificial observations: impact of drizzle and 3-D cloud structure on effective radius retrievals

    T. Zinner

    2010-10-01

    Full Text Available Remote sensing of cloud effective particle size with passive sensors like the Moderate Resolution Imaging Spectroradiometer (MODIS is an important tool for cloud microphysical studies. As a measure of the radiatively relevant droplet size, effective radius can be retrieved with different combinations of visible through shortwave and midwave infrared channels. In practice, retrieved effective radii from these combinations can be quite different. This difference is perhaps indicative of different penetration depths and path lengths for the spectral reflectances used. In addition, operational liquid water cloud retrievals are based on the assumption of a relatively narrow distribution of droplet sizes; the role of larger precipitation particles in these distributions is neglected. Therefore, possible explanations for the discrepancy in some MODIS spectral size retrievals could include 3-D radiative transport effects, including sub-pixel cloud inhomogeneity, and/or the impact of drizzle formation.

    For three cloud cases the possible factors of influence are isolated and investigated in detail by the use of simulated cloud scenes and synthetic satellite data: marine boundary layer cloud scenes from large eddy simulations (LES with detailed microphysics are combined with Monte Carlo radiative transfer calculations that explicitly account for the detailed droplet size distributions as well as 3-D radiative transfer to simulate MODIS observations. The operational MODIS optical thickness and effective radius retrieval algorithm is applied to these and the results are compared to the given LES microphysics.

    We investigate two types of marine cloud situations each with and without drizzle from LES simulations: (1 a typical daytime stratocumulus deck at two times in the diurnal cycle and (2 one scene with scattered cumulus. Only small impact of drizzle formation on the retrieved domain average and on the differences between the three

  14. Variations of the 3-D coronal magnetic field associated with the X3.4-class solar flare event of AR 10930

    He, Han; Yan, Yihua; Chen, P F; Fang, Cheng

    2016-01-01

    The variations of the 3-D coronal magnetic fields associated with the X3.4-class flare of active region 10930 are studied in this paper. The coronal magnetic field data are reconstructed from the photospheric vector magnetograms obtained by the Hinode satellite and using the nonlinear force-free field extrapolation method developed in our previous work (He et al., 2011). The 3-D force-free factor $\\alpha$, 3-D current density, and 3-D magnetic energy density are employed to analyze the coronal data. The distributions of $\\alpha$ and current density reveal a prominent magnetic connectivity with strong negative $\\alpha$ values and strong current density before the flare. This magnetic connectivity extends along the main polarity inversion line and is found to be totally broken after the flare. The distribution variation of magnetic energy density reveals the redistribution of magnetic energy before and after the flare. In the lower space of the modeling volume the increase of magnetic energy dominates, and in t...

  15. Quantitative Assessment of Variational Surface Reconstruction from Sparse Point Clouds in Freehand 3D Ultrasound Imaging during Image-Guided Tumor Ablation

    Shuangcheng Deng

    2016-04-01

    Full Text Available Surface reconstruction for freehand 3D ultrasound is used to provide 3D visualization of a VOI (volume of interest during image-guided tumor ablation surgery. This is a challenge because the recorded 2D B-scans are not only sparse but also non-parallel. To solve this issue, we established a framework to reconstruct the surface of freehand 3D ultrasound imaging in 2011. The key technique for surface reconstruction in that framework is based on variational interpolation presented by Greg Turk for shape transformation and is named Variational Surface Reconstruction (VSR. The main goal of this paper is to evaluate the quality of surface reconstructions, especially when the input data are extremely sparse point clouds from freehand 3D ultrasound imaging, using four methods: Ball Pivoting, Power Crust, Poisson, and VSR. Four experiments are conducted, and quantitative metrics, such as the Hausdorff distance, are introduced for quantitative assessment. The experiment results show that the performance of the proposed VSR method is the best of the four methods at reconstructing surface from sparse data. The VSR method can produce a close approximation to the original surface from as few as two contours, whereas the other three methods fail to do so. The experiment results also illustrate that the reproducibility of the VSR method is the best of the four methods.

  16. A Residual Kriging method for the reconstruction of 3D high-resolution meteorological fields from airborne and surface observations

    Laiti, Lavinia; Zardi, Dino; de Franceschi, Massimiliano; Rampanelli, Gabriele

    2013-04-01

    Manned light aircrafts and remotely piloted aircrafts represent very valuable and flexible measurement platforms for atmospheric research, as they are able to provide high temporal and spatial resolution observations of the atmosphere above the ground surface. In the present study the application of a geostatistical interpolation technique called Residual Kriging (RK) is proposed for the mapping of airborne measurements of scalar quantities over regularly spaced 3D grids. In RK the dominant (vertical) trend component underlying the original data is first extracted to filter out local anomalies, then the residual field is separately interpolated and finally added back to the trend; the determination of the interpolation weights relies on the estimate of the characteristic covariance function of the residuals, through the computation and modelling of their semivariogram function. RK implementation also allows for the inference of the characteristic spatial scales of variability of the target field and its isotropization, and for an estimate of the interpolation error. The adopted test-bed database consists in a series of flights of an instrumented motorglider exploring the atmosphere of two valleys near the city of Trento (in the southeastern Italian Alps), performed on fair-weather summer days. RK method is used to reconstruct fully 3D high-resolution fields of potential temperature and mixing ratio for specific vertical slices of the valley atmosphere, integrating also ground-based measurements from the nearest surface weather stations. From RK-interpolated meteorological fields, fine-scale features of the atmospheric boundary layer developing over the complex valley topography in connection with the occurrence of thermally-driven slope and valley winds, are detected. The performance of RK mapping is also tested against two other commonly adopted interpolation methods, i.e. the Inverse Distance Weighting and the Delaunay triangulation methods, comparing the results

  17. 3D simulations of realistic power halos in magneto-hydrostatic sunspot atmospheres: linking theory and observation

    Rijs, Carlos; Przybylski, Damien; Moradi, Hamed; Cally, Paul S; Shelyag, Sergiy

    2015-01-01

    The well-observed acoustic halo is an enhancement in time-averaged Doppler velocity and intensity power with respect to quiet-sun values which is prominent for weak and highly inclined field around the penumbra of sunspots and active regions. We perform 3D linear wave modelling with realistic distributed acoustic sources in a MHS sunspot atmosphere and compare the resultant simulation enhancements with multi-height SDO observations of the phenomenon. We find that simulated halos are in good qualitative agreement with observations. We also provide further proof that the underlying process responsible for the halo is the refraction and return of fast magnetic waves which have undergone mode conversion at the critical $a=c$ atmospheric layer. In addition, we also find strong evidence that fast-Alfv\\'en mode conversion plays a significant role in the structure of the halo, taking energy away from photospheric and chromospheric heights in the form of field-aligned Alfv\\'en waves. This conversion process may explai...

  18. In situ 3-D observation of early strain localization during failure of thin Al alloy (2198) sheet

    Morgeneyer, Thilo F.; Taillandier-Thomas, Thibault; Helfen, Lukas; Baumbach, Tilo; Sinclair, Ian; Roux, Stéphane; Hild, François

    2014-01-01

    High-resolution in situ synchrotron X-ray laminography combined with digital volume correlation (DVC) is used to measure the damage and plastic strain fields ahead of a notch introduced within a 2198 Al-Cu-Li alloy sheet. Synchrotron laminography is a technique specifically developed for three-dimensional (3-D) imaging of laterally extended sheet specimens with micrometre resolution. DVC is carried out using the 3-D image contrast caused by iron-rich intermetallic particles present in the all...

  19. Total Variation-Based Reduction of Streak Artifacts, Ring Artifacts and Noise in 3D Reconstruction from Optical Projection Tomography

    Michálek, Jan

    2015-01-01

    Roč. 21, č. 6 (2015), s. 1602-1615. ISSN 1431-9276 R&D Projects: GA MŠk(CZ) LH13028; GA ČR(CZ) GA13-12412S Institutional support: RVO:67985823 Keywords : optical projection tomography * microscopy * artifacts * total variation * data mismatch Subject RIV: EA - Cell Biology Impact factor: 1.877, year: 2014

  20. 3D Numerical Optimization Modelling of Ivancich landslides (Assisi, Italy) via integration of remote sensing and in situ observations.

    Castaldo, Raffaele; De Novellis, Vincenzo; Lollino, Piernicola; Manunta, Michele; Tizzani, Pietro

    2015-04-01

    The new challenge that the research in slopes instabilities phenomena is going to tackle is the effective integration and joint exploitation of remote sensing measurements with in situ data and observations to study and understand the sub-surface interactions, the triggering causes, and, in general, the long term behaviour of the investigated landslide phenomenon. In this context, a very promising approach is represented by Finite Element (FE) techniques, which allow us to consider the intrinsic complexity of the mass movement phenomena and to effectively benefit from multi source observations and data. In this context, we perform a three dimensional (3D) numerical model of the Ivancich (Assisi, Central Italy) instability phenomenon. In particular, we apply an inverse FE method based on a Genetic Algorithm optimization procedure, benefitting from advanced DInSAR measurements, retrieved through the full resolution Small Baseline Subset (SBAS) technique, and an inclinometric array distribution. To this purpose we consider the SAR images acquired from descending orbit by the COSMO-SkyMed (CSK) X-band radar constellation, from December 2009 to February 2012. Moreover the optimization input dataset is completed by an array of eleven inclinometer measurements, from 1999 to 2006, distributed along the unstable mass. The landslide body is formed of debris material sliding on a arenaceous marl substratum, with a thin shear band detected using borehole and inclinometric data, at depth ranging from 20 to 60 m. Specifically, we consider the active role of this shear band in the control of the landslide evolution process. A large field monitoring dataset of the landslide process, including at-depth piezometric and geological borehole observations, were available. The integration of these datasets allows us to develop a 3D structural geological model of the considered slope. To investigate the dynamic evolution of a landslide, various physical approaches can be considered

  1. 3D Face Appearance Model

    Lading, Brian; Larsen, Rasmus; Åström, Kalle

    2006-01-01

    We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}......We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}...

  2. 3D Face Apperance Model

    Lading, Brian; Larsen, Rasmus; Astrom, K

    2006-01-01

    We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations......We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations...

  3. Observation of femoral and tibial insertion of the posterior cruciate ligament by using conventional CT and transparent 3D-CT

    Presented are image data acquisitioned by the volume rendering (VR)-3D-CT and authors' transparent (T)-3D-CT to depict the bone contour, of medial intercondylar ridge (MIR) and posterior intercodylar fossa (PIF) at femoral and tibial insertion, respectively, of the posterior cruciate ligament (PCL) as those data are helpful for planning the reconstruction surgery of PCL and for confirming the femoral PCL insertion by using the C-arm during operation. Helical scanning is conducted with GE MD-CT (64DAS) to reconstruct VR-3D-CT image with the workstation ZIO's ZIO900M Quadra and T-3D-CT image, by reducing the opacity by pixel exclusion of the intraosseous lumen. MIR is observed in all 70 normal knees tested in VR-3D-CT and the bifurcate ridge, in 15 knees among them. In T-3D-CT image, distance data of the origin of MIR from Blumensaat's line and the angle of MIR and bone axis are calculated and presented. In VR-3D-CT and T-3D-CT images of PIF from 20 knees, actual measures of PIF slope angle (degree), PIF area ratio to joint surface (JS) (%), distance from JS to centers of anterolateral (AL) and posterolateral (PM) slopes (mm), and from medial and lateral JS to PIF posterior border (mm), and distance ratios of PM and AL to medial and lateral tibia, respectively, (%) are calculated and presented. Findings are: MIR originates at 45% distal point of Blumensaat's line; the articular line crosses with PIF at its center in T-3D-CT sagittal plane; centers of tibial AL and PM exist at the middle of frontal plane, and at 1.00 and 5.5 mm, respectively, distal points of JS of sagittal plane. The PIF data are rather comparable to those obtained in cadavers reported in 3 literatures and the present procedure is concluded to be valid. (author)

  4. Circadian and diurnal variation of circulating immune complexes, complement-mediated solubilization, and the complement split product C3d in rheumatoid arthritis

    Petersen, Ivan; Baatrup, Gunnar; Brandslund, I;

    1986-01-01

    with low CMS and increased IC levels in the morning, and vice versa in the afternoon. Bed rest and exercise did not influence these fluctuations. The C3d concentration in plasma was increased but showed no diurnal or circadian periodic fluctuations when the levels were corrected for fluctuations in......Nine patients with active classical rheumatoid arthritis (ARA criteria) were studied with reference to circadian variation of immunological and clinical parameters. Complement-mediated solubilization (CMS) of immune complexes (IC) and the level of circulating IC were found to be inversely related...

  5. 3D Digital Modelling

    Hundebøl, Jesper

    wave of new building information modelling tools demands further investigation, not least because of industry representatives' somewhat coarse parlance: Now the word is spreading -3D digital modelling is nothing less than a revolution, a shift of paradigm, a new alphabet... Research qeustions. Based...... on empirical probes (interviews, observations, written inscriptions) within the Danish construction industry this paper explores the organizational and managerial dynamics of 3D Digital Modelling. The paper intends to - Illustrate how the network of (non-)human actors engaged in the promotion (and arrest) of 3......D Modelling (in Denmark) stabilizes - Examine how 3D Modelling manifests itself in the early design phases of a construction project with a view to discuss the effects hereof for i.a. the management of the building process. Structure. The paper introduces a few, basic methodological concepts...

  6. Accuracy and inter-observer variability of 3D versus 4D cone-beam CT based image-guidance in SBRT for lung tumors

    Sweeney Reinhart A

    2012-06-01

    Full Text Available Abstract Background To analyze the accuracy and inter-observer variability of image-guidance (IG using 3D or 4D cone-beam CT (CBCT technology in stereotactic body radiotherapy (SBRT for lung tumors. Materials and methods Twenty-one consecutive patients treated with image-guided SBRT for primary and secondary lung tumors were basis for this study. A respiration correlated 4D-CT and planning contours served as reference for all IG techniques. Three IG techniques were performed independently by three radiation oncologists (ROs and three radiotherapy technicians (RTTs. Image-guidance using respiration correlated 4D-CBCT (IG-4D with automatic registration of the planning 4D-CT and the verification 4D-CBCT was considered gold-standard. Results were compared with two IG techniques using 3D-CBCT: 1 manual registration of the planning internal target volume (ITV contour and the motion blurred tumor in the 3D-CBCT (IG-ITV; 2 automatic registration of the planning reference CT image and the verification 3D-CBCT (IG-3D. Image quality of 3D-CBCT and 4D-CBCT images was scored on a scale of 1–3, with 1 being best and 3 being worst quality for visual verification of the IGRT results. Results Image quality was scored significantly worse for 3D-CBCT compared to 4D-CBCT: the worst score of 3 was given in 19 % and 7.1 % observations, respectively. Significant differences in target localization were observed between 4D-CBCT and 3D-CBCT based IG: compared to the reference of IG-4D, tumor positions differed by 1.9 mm ± 0.9 mm (3D vector on average using IG-ITV and by 3.6 mm ± 3.2 mm using IG-3D; results of IG-ITV were significantly closer to the reference IG-4D compared to IG-3D. Differences between the 4D-CBCT and 3D-CBCT techniques increased significantly with larger motion amplitude of the tumor; analogously, differences increased with worse 3D-CBCT image quality scores. Inter-observer variability was largest in SI direction and was

  7. The Effect of 3D Computer Modeling and Observation-Based Instruction on the Conceptual Change regarding Basic Concepts of Astronomy in Elementary School Students

    Kucukozer, Huseyin; Korkusuz, M. Emin; Kucukozer, H. Asuman; Yurumezoglu, Kemal

    2009-01-01

    This study has examined the impact of teaching certain basic concepts of astronomy through a predict-observe-explain strategy, which includes three-dimensional (3D) computer modeling and observations on conceptual changes seen in sixth-grade elementary school children (aged 11-13; number of students: 131). A pre- and postastronomy instruction…

  8. 3-D observations of a red tide event in the offshore water along the western Guangdong coast

    XIE Lingling; QI Yiquan; CHEN Qingxiang; HU Jianyu; ZHANG Shuwen; YI Xiaofei; CHEN Fajin; DENG Rui; DENG Xiaodong; WANG Jing

    2015-01-01

    From November 24 to 26, 2014, a red tide event occurred in the offshore water off the Hailing Island located at the western Guangdong coast. The red tide appeared as pink strips distributed within 3 km in the offshore water and extended for about 10 km along the shoreline. During the flood tide, the pink seawater rushed to the beach with breaking waves, forming foam strips on the beach. Guangdong Province Key Laboratory for Coastal Ocean Variation and Disaster Prediction Technologies, Guangdong Ocean University, emergently responded to the event and organized three-dimensional observations from the air, onboard and on beach. The preliminary analyses of the cruise data and water samples indicate that the event was induced by non-toxicNoctiluca scintillans, of which the concentration reaches as high as 4 200 cells/L near the surface and 2 600 cells/L at the bottom.

  9. Pressure driven currents near magnetic islands in 3D MHD equilibria: Effects of pressure variation within flux surfaces and of symmetry

    Reiman, Allan H.

    2016-07-01

    In toroidal, magnetically confined plasmas, the heat and particle transport is strongly anisotropic, with transport along the field lines sufficiently strong relative to cross-field transport that the equilibrium pressure can generally be regarded as constant on the flux surfaces in much of the plasma. The regions near small magnetic islands, and those near the X-lines of larger islands, are exceptions, having a significant variation of the pressure within the flux surfaces. It is shown here that the variation of the equilibrium pressure within the flux surfaces in those regions has significant consequences for the pressure driven currents. It is further shown that the consequences are strongly affected by the symmetry of the magnetic field if the field is invariant under combined reflection in the poloidal and toroidal angles. (This symmetry property is called "stellarator symmetry.") In non-stellarator-symmetric equilibria, the pressure-driven currents have logarithmic singularities at the X-lines. In stellarator-symmetric MHD equilibria, the singular components of the pressure-driven currents vanish. These equilibria are to be contrasted with equilibria having B ṡ∇p =0 , where the singular components of the pressure-driven currents vanish regardless of the symmetry. They are also to be contrasted with 3D MHD equilibrium solutions that are constrained to have simply nested flux surfaces, where the pressure-driven current goes like 1 /x near rational surfaces, where x is the distance from the rational surface, except in the case of quasi-symmetric flux surfaces. For the purpose of calculating the pressure-driven currents near magnetic islands, we work with a closed subset of the MHD equilibrium equations that involves only perpendicular force balance, and is decoupled from parallel force balance. It is not correct to use the parallel component of the conventional MHD force balance equation, B ṡ∇p =0 , near magnetic islands. Small but nonzero values of B

  10. Bootstrapping 3D fermions

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-01

    We study the conformal bootstrap for a 4-point function of fermions in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge C T . We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N . We also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  11. Design considerations for an infrared Imaging Video Bolometer for observation of 3D radiation structures of detached LHD plasmas

    Infrared Imaging Video Bolometers (IRVBs) are successfully being used to study the three dimensional impurity radiation distribution from the LHD plasma. IRVBs can serve as a promising diagnostic for studying the radiation structures of detached plasmas in LHD and hence a comparison can be established with theoretical models. A new IRVB system is being designed for the LHD bottom port for better access to the magnetic x-points and to study the 3D radiation structures. The design overview of this new IRVB system is discussed in this paper. The design includes spatial resolution, field of view of the IRVB, sensitivity and signal to noise estimates. Two optical configurations for an infrared periscope are discussed in brief and selection of a catadioptric configuration with a cassegrain telescope is justified. The sensitivity of the existing IRVBs is expected to increase 5 fold by the addition of this IR periscope. (author)

  12. Incorporation of 3-D Scanning Lidar Data into Google Earth for Real-time Air Pollution Observation

    Chiang, C.; Nee, J.; Das, S.; Sun, S.; Hsu, Y.; Chiang, H.; Chen, S.; Lin, P.; Chu, J.; Su, C.; Lee, W.; Su, L.; Chen, C.

    2011-12-01

    3-D Differential Absorption Scanning Lidar (DIASL) system has been designed with small size, light weight, and suitable for installation in various vehicles and places for monitoring of air pollutants and displays a detailed real-time temporal and spatial variability of trace gases via the Google Earth. The fast scanning techniques and visual information can rapidly identify the locations and sources of the polluted gases and assess the most affected areas. It is helpful for Environmental Protection Agency (EPA) to protect the people's health and abate the air pollution as quickly as possible. The distributions of the atmospheric pollutants and their relationship with local metrological parameters measured with ground based instruments will also be discussed. Details will be presented in the upcoming symposium.

  13. Reproducing Electric Field Observations during Magnetic Storms by means of Rigorous 3-D Modelling and Distortion Matrix Co-estimation

    Püthe, Christoph; Manoj, Chandrasekharan; Kuvshinov, Alexey

    2015-04-01

    Electric fields induced in the conducting Earth during magnetic storms drive currents in power transmission grids, telecommunication lines or buried pipelines. These geomagnetically induced currents (GIC) can cause severe service disruptions. The prediction of GIC is thus of great importance for public and industry. A key step in the prediction of the hazard to technological systems during magnetic storms is the calculation of the geoelectric field. To address this issue for mid-latitude regions, we developed a method that involves 3-D modelling of induction processes in a heterogeneous Earth and the construction of a model of the magnetospheric source. The latter is described by low-degree spherical harmonics; its temporal evolution is derived from observatory magnetic data. Time series of the electric field can be computed for every location on Earth's surface. The actual electric field however is known to be perturbed by galvanic effects, arising from very local near-surface heterogeneities or topography, which cannot be included in the conductivity model. Galvanic effects are commonly accounted for with a real-valued time-independent distortion matrix, which linearly relates measured and computed electric fields. Using data of various magnetic storms that occurred between 2000 and 2003, we estimated distortion matrices for observatory sites onshore and on the ocean bottom. Strong correlations between modellings and measurements validate our method. The distortion matrix estimates prove to be reliable, as they are accurately reproduced for different magnetic storms. We further show that 3-D modelling is crucial for a correct separation of galvanic and inductive effects and a precise prediction of electric field time series during magnetic storms. Since the required computational resources are negligible, our approach is suitable for a real-time prediction of GIC. For this purpose, a reliable forecast of the source field, e.g. based on data from satellites

  14. Infrared-induced variation of the magnetic properties of a magnetoplasmonic film with a 3D sub-micron periodic triangular roof-type antireflection structure

    Tian, Junlong; Zhang, Wang; Huang, Yiqiao; Liu, Qinglei; Wang, Yuhua; Zhang, Zhijian; Zhang, Di

    2015-01-01

    A carbon-matrix nickel composite magnetoplasmonic film with a 3D sub-micron periodic triangular roof-type antireflection structure (SPTAS) was fabricated via a simple and promising method that combines chemosynthesis with biomimetic techniques. The Troides helena (Linnaeus) forewing (T_FW) was chosen as the biomimetic template. The carbon-matrix Ni wing fabricated via electroless Ni deposition for 6 h (CNMF_6h) exhibits enhanced infrared absorption. Over a wavelength range (888-2500 nm), the enhancement of the infrared absorption of CNMF_6h is up to 1.85 times compared with the T_FW. Furthermore, infrared excitation induces a photothermal effect that results in variation in the magnetic properties of the carbon-matrix Ni wing. The magnetic properties were also confirmed using atomic force microscopy (AFM) and magnetic force microscopy (MFM). The good correlation between the AFM and MFM images demonstrates that the surface of the SPTAS of CNMF_6h exhibits strong magnetic properties. The infrared induced photothermal effect that results in magnetic variation is promising for use in the design of novel magnetoplasmonic films with potential applications in infrared information recording and heat-assisted magnetic recording.

  15. Study of morphology effects on magnetic interactions and band gap variations for 3d late transition metal bi-doped ZnO nanostructures by hybrid DFT calculations

    Using density functional theory (DFT) based electronic structure calculations, the effects of morphology of semiconducting nanostructures on the magnetic interaction between two magnetic dopant atoms as well as a possibility of tuning band gaps have been studied in the case of the bi-doped (ZnO)24 nanostructures with the impurity dopant atoms of the 3d late transition metals—Mn, Fe, Co, Ni, and Cu. To explore the morphology effect, three different structures of the host (ZnO)24 nano-system, having different degrees of spatial confinement, have been considered: a two dimensional nanosheet, a one dimensional nanotube, and a finite cage-shaped nanocluster. The present study employs hybrid density functional theory to accurately describe the electronic structure of all the systems. It is shown here that the magnetic coupling between the two dopant atoms remains mostly anti-ferromagnetic in the course of changing the morphology from the sheet geometry to the cage-shaped geometry of the host systems, except for the case of energetically most stable bi-Mn doping, which shows a transition from ferromagnetic to anti-ferromagnetic coupling with decreasing aspect ratio of the host system. The effect of the shape change, however, has a significant effect on the overall band gap variations of both the pristine as well as all the bi-doped systems, irrespective of the nature of the dopant atoms and provides a means for easy tunability of their optoelectronic properties

  16. Study of morphology effects on magnetic interactions and band gap variations for 3d late transition metal bi-doped ZnO nanostructures by hybrid DFT calculations

    Datta, Soumendu, E-mail: soumendu@bose.res.in; Baral, Sayan; Mookerjee, Abhijit [Department of Condensed Matter Physics and Material Sciences, S.N. Bose National Centre for Basic Sciences, JD Block, Sector-III, Salt Lake City, Kolkata 700 098 (India); Kaphle, Gopi Chandra [Central Department of Physics, Tribhuvan University, Kathmandu (Nepal)

    2015-08-28

    Using density functional theory (DFT) based electronic structure calculations, the effects of morphology of semiconducting nanostructures on the magnetic interaction between two magnetic dopant atoms as well as a possibility of tuning band gaps have been studied in the case of the bi-doped (ZnO){sub 24} nanostructures with the impurity dopant atoms of the 3d late transition metals—Mn, Fe, Co, Ni, and Cu. To explore the morphology effect, three different structures of the host (ZnO){sub 24} nano-system, having different degrees of spatial confinement, have been considered: a two dimensional nanosheet, a one dimensional nanotube, and a finite cage-shaped nanocluster. The present study employs hybrid density functional theory to accurately describe the electronic structure of all the systems. It is shown here that the magnetic coupling between the two dopant atoms remains mostly anti-ferromagnetic in the course of changing the morphology from the sheet geometry to the cage-shaped geometry of the host systems, except for the case of energetically most stable bi-Mn doping, which shows a transition from ferromagnetic to anti-ferromagnetic coupling with decreasing aspect ratio of the host system. The effect of the shape change, however, has a significant effect on the overall band gap variations of both the pristine as well as all the bi-doped systems, irrespective of the nature of the dopant atoms and provides a means for easy tunability of their optoelectronic properties.

  17. 3D Face Appearance Model

    Lading, Brian; Larsen, Rasmus; Åström, Kalle

    2006-01-01

    We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}

  18. 3D Face Apperance Model

    Lading, Brian; Larsen, Rasmus; Astrom, K

    2006-01-01

    We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations

  19. 3D video

    Lucas, Laurent; Loscos, Céline

    2013-01-01

    While 3D vision has existed for many years, the use of 3D cameras and video-based modeling by the film industry has induced an explosion of interest for 3D acquisition technology, 3D content and 3D displays. As such, 3D video has become one of the new technology trends of this century.The chapters in this book cover a large spectrum of areas connected to 3D video, which are presented both theoretically and technologically, while taking into account both physiological and perceptual aspects. Stepping away from traditional 3D vision, the authors, all currently involved in these areas, provide th

  20. 3D Animation Essentials

    Beane, Andy

    2012-01-01

    The essential fundamentals of 3D animation for aspiring 3D artists 3D is everywhere--video games, movie and television special effects, mobile devices, etc. Many aspiring artists and animators have grown up with 3D and computers, and naturally gravitate to this field as their area of interest. Bringing a blend of studio and classroom experience to offer you thorough coverage of the 3D animation industry, this must-have book shows you what it takes to create compelling and realistic 3D imagery. Serves as the first step to understanding the language of 3D and computer graphics (CG)Covers 3D anim

  1. Spatially-resolved Energetic Electron Properties for the 21 May 2004 Flare from Radio Observations and 3D Simulations

    Kuznetsov, Alexey

    2014-01-01

    We investigate in detail the 21 May 2004 flare using simultaneous observations of the Nobeyama Radioheliograph, Nobeyama Radiopolarimeters, Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and Solar and Heliospheric Observatory (SOHO). The flare images in different spectral ranges reveal the presence of a well-defined single flaring loop in this event. We have simulated the gyrosynchrotron microwave emission using the recently developed interactive IDL tool GX Simulator. By comparing the simulation results with the observations, we have deduced the spatial and spectral properties of the non-thermal electron distribution. The microwave emission has been found to be produced by the high-energy electrons ($>100$ keV) with a relatively hard spectrum ($\\delta\\simeq 2$); the electrons were strongly concentrated near the loop top. At the same time, the number of high-energy electrons near the footpoints was too low to be detected in the RHESSI images and spatially unresolved data. The SOHO Extreme-ultra...

  2. Learning by observation for surgical subtasks: Multilateral cutting of 3D viscoelastic and 2D Orthotropic Tissue Phantoms

    Murali, A.; Sen, S.; Kehoe, B; Garg, A; McFarland, S.; Patil, S.; Boyd, WD; Lim, S; Abbeel, P.; Goldberg, K.

    2015-01-01

    © 2015 IEEE. Automating repetitive surgical subtasks such as suturing, cutting and debridement can reduce surgeon fatigue and procedure times and facilitate supervised tele-surgery. Programming is difficult because human tissue is deformable and highly specular. Using the da Vinci Research Kit (DVRK) robotic surgical assistant, we explore a 'Learning By Observation' (LBO) approach where we identify, segment, and parameterize motion sequences and sensor conditions to build a finite state machi...

  3. Ideal and non-ideal MHD regimes of wire array implosion obtained in 3D hybrid simulations and observed during experiments at NTF (Nevada Terawatt Facility)

    Recent 3D hybrid simulation of a plasma current-carrying column revealed two regimes of sausage and kink instability development. In the first regime, with small Hall parameter, development of instabilities leads to appearance of large-scale axial perturbations and eventually to the bending of the plasma column. In the second regime, with five times larger Hall parameter, small-scale perturbations dominated and no bending of the plasma column was observed. Simulation results are compared to recent experimental data, including laser probing, x-ray spectroscopy and time-gated x-ray imaging during wire array implosions at NTF

  4. Validation of a global 3D heliospheric model with observations for the May 12, 1997 CME event

    Cohen, O.; Sokolov, I. V.; Roussev, I. I.; Lugaz, N.; Manchester, W. B.; Gombosi, T. I.; Arge, C. N.

    2008-02-01

    We simulate the May 12, 1997 space weather event from the Sun to the Earth. The initiation of the coronal mass ejection (CME) was done by superimposing a semi-circular, out-of-equilibrium magnetic flux rope onto a semi-empirical, steady-state solar corona model (SCM). The result at 1 AU was obtained by coupling the SCM with an inner heliosphere model (IHM). Our results demonstrate that the CME parameters can be obtained from magnetogram data and white-light observations and that the results at 1 AU can be simulated faster than the real time, even with the use of a relatively moderate computation resources. This particular event, however, is found to be very difficult to model, despite the fact that it is temporarily isolated in time from other CME events and it occurred during a solar minimum period. We found that the active region flux rope should be resolved with higher resolution in order to maintain its integrity while propagating into space. This way we can obtain a better agreement with measurements at 1 AU.

  5. Mine TEM 3D Observation Method and Application%矿井瞬变电磁三维观测方法与应用

    曹煜; 唐润秋; 吴昭; 王宗涛; 戚俊

    2016-01-01

    依据矿井瞬变电磁超前探测理论,介绍矿井瞬变电磁法在煤矿巷道中的全空间三维观测方法,在考虑计算适用条件和计算效率的基础上,将三维空间矩形体单元进行剖分,以获得探测区域范围内的电阻率分布情况,再利用“烟圈”模型简化反演电阻率算法和空间扩散叠加技术,获得工作面顶板电阻率三维分布。通过实际探采对比,工作面顶板三维空间的低阻分布与顶板富水区具有对应关系,为工作面的顶板水探放提供了三维靶区。该方法对于回采工作面顶板的砂岩水、岩溶水及老空水超前探测具有应用价值。%According to the mine TEM advanced prospecting theory, introduced the mine TEM omni-spatial 3D observation method in coalmine roadways. Considering computation application condition and efficiency, carried out 3D spatial cuboid subdivision to get pros⁃pecting area resistivity distribution situation. Then using smoke ring simplified inversion resistivity algorithm and spatial diffusion stacking technology obtained working face roof resistivity 3D distribution. Through correlation of exploration and mining information, the working face roof 3D space conductive formation distribution and roof water enriched area have corresponding relations, thus can provide 3D target for working face roof water detection and drainage. The method has practical value in coal face roof sandstone water, karst water and gob water advanced prospecting.

  6. Sensitivity analysis with regard to variations of physical forcing including two possible future hydrographic regimes for the Oeregrundsgrepen. A follow-up baroclinic 3D-model study

    A sensitivity analysis with regard to variations of physical forcing has been performed using a 3D baroclinic model of the Oeregrundsgrepen area for a whole-year period with data pertaining to 1992. The results of these variations are compared to a nominal run with unaltered physical forcing. This nominal simulation is based on the experience gained in an earlier whole-year modelling of the same area; the difference is mainly that the present nominal simulation is run with identical parameters for the whole year. From a computational economy point of view it has been necessary to vary the time step between the month-long simulation periods. For all simulations with varied forcing, the same time step as for the nominal run has been used. The analysis also comprises the water turnover of a hypsographically defined subsection, the Bio Model area, located above the SFR depository. The external forcing factors that have been varied are the following (with their found relative impact on the volume average of the retention time of the Bio Model area over one year given within parentheses): atmospheric temperature increased/reduced by 2.5 deg C (-0.1% resp. +0.6%), local freshwater discharge rate doubled/halved (-1.6% resp. +0.01%), salinity range at the border increased/reduced a factor 2 (-0.84% resp. 0.00%), wind speed forcing reduced 10% (+8.6%). The results of these simulations, at least the yearly averages, permit a reasonably direct physical explanation, while the detailed dynamics is for natural reasons more intricate. Two additional full-year simulations of possible future hydrographic regimes have also been performed. The first mimics a hypothetical situation with permanent ice cover, which increases the average retention time 87%. The second regime entails the future hypsography with its anticipated shoreline displacement by an 11 m land-rise in the year 4000 AD, which also considerably increases the average retention times for the two remaining layers of the

  7. Analysis of riverine suspended particulate matter fluxes (Gulf of Lion, Mediterranean Sea) using a synergy of ocean color observations with a 3-D hydrodynamic sediment transport model

    Le Fouest, Vincent; Chami, Malik; Verney, Romaric

    2015-02-01

    The export of riverine suspended particulate matter (SPM) in the coastal ocean has major implications for the biogeochemical cycles. In the Mediterranean Sea (France), the Rhone River inputs of SPM into the Gulf of Lion (GoL) are highly variable in time, which severely impedes the assessment of SPM fluxes. The objectives of this study are (i) to investigate the prediction of the land-to-ocean flux of SPM using the complementarity (i.e., synergy) between a hydrodynamic sediment transport model and satellite observations, and (ii) to analyze the spatial distribution of the SPM export. An original approach that combines the MARS-3D model with satellite ocean color data is proposed. Satellite-derived SPM and light penetration depth are used to initialize MARS-3D and to validate its predictions. A sensitivity analysis is performed to quantify the impact of riverine SPM size composition and settling rate on the horizontal export of SPM. The best agreement between the model and the satellite in terms of SPM spatial distribution and export is obtained for two conditions: (i) when the relative proportion of "heavy and fast" settling particles significantly increases relative to the "light and slow" ones, and (ii) when the settling rate of heavy and light SPM increases by fivefold. The synergy between MARS-3D and the satellite data improved the SPM flux predictions by 48% near the Rhone River mouth. Our results corroborate the importance of implementing satellite observations within initialization procedures of ocean models since data assimilation techniques may fail for river floods showing strong seasonal variability.

  8. Solar Wind Halo Formation by the Scattering of the Strahl via Direct Cluster/PEACE Observations of the 3D Velocity Distribution Function

    Figueroa-Vinas, Adolfo; Gurgiolo, Chris A.; Nieves-Chinchilla, Teresa; Goldstein, Melvyn L.

    2010-01-01

    It has been suggested by a number of authors that the solar wind electron halo can be formed by the scattering of the strahl. On frequent occasions we have observed in electron angular skymaps (Phi/Theta-plots) of the electron 3D velocity distribution functions) a bursty-filament of particles connecting the strahl to the solar wind core-halo. These are seen over a very limited energy range. When the magnetic field is well off the nominal solar wind flow direction such filaments are inconsistent with any local forces and are probably the result of strong scattering. Furthermore, observations indicates that the strahl component is frequently and significantly anisotropic (Tper/Tpal approx.2). This provides a possible free energy source for the excitation of whistler waves as a possible scattering mechanism. The empirical observational evidence between the halo and the strahl suggests that the strahl population may be, at least in part, the source of the halo component.

  9. EUROPEANA AND 3D

    D. Pletinckx

    2012-09-01

    Full Text Available The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  10. A seismic modeling analysis of wide and narrow 3D observation systems for channel sand bodies%河道砂体宽/窄方位三维观测系统地震物理模型分析

    狄帮让; 徐秀仓; 魏建新

    2008-01-01

    The effect of the wide and narrow azimuth 3D observation systems on seismic imaging precision is becoming a hot area for studies of high precision 3D seismic acquisition methods in recent years. In this paper we utilize 3D physical seismic modeling experiments. A 3D channel sand body physical seismic model is constructed and two acquisition systems are designed with wide azimuth (16 lines) and narrow azimuth (8 lines) to model 3D seismic data acquisition and processing seismic work flows. From analysis of migrated time slice data with high quality and small size, we conclude that when the overlying layers are smooth and lateral velocities have little change, both wide and narrow azimuth observation systems in 3D acquisition can be used for obtaining high precision imaging and equivalent resolution of the channel sand body.

  11. A study of the variation of physical conditions in the cometary coma based on a 3D multi-fluid model

    Shou, Y.; Combi, M. R.; Fougere, N.; Tenishev, V.; Toth, G.; Gombosi, T. I.; Huang, Z.; Jia, X.; Bieler, A. M.; Hansen, K. C.

    2015-12-01

    Physics-based numerical coma models are desirable whether to interpret the spacecraft observations of the inner coma or to compare with the ground-based observations of the outer coma. One example is Direct Simulation Monte Carlo (DSMC) method, which has been successfully adopted to simulate the coma under various complex conditions. However, for bright comets with large production rates, the time step in DSMC model has to be tiny to accommodate the small mean free path and the high collision frequency. In addition a truly time-variable 3D DSMC model would still be computationally difficult or even impossible under most circumstances. In this work, we develop a multi-neutral-fluid model based on BATS-R-US in the University of Michigan's SWMF (Space Weather Modeling Framework), which can serve as a useful alternative to DSMC methods to compute both the inner and the outer coma and to treat time-variable phenomena. This model treats H2O, OH, H2, O, H and CO2 as separate fluids and each fluid has its own velocity and temperature. But collisional interactions can also couple all fluids together. Collisional interactions tend to decrease the velocity differences and are also able to re-distribute the excess energy deposited by chemical reactions among all species. To compute the momentum and energy transfer caused by such interactions self-consistently, collisions between fluids, whose efficiency is proportional to the densities, are included as well as heating from various chemical reactions. By applying the model to comets with different production rates (i.e. 67P/Churyumov-Gerasimenko, 1P/Halley, etc.), we are able to study how the heating efficiency varies with cometocentric distances and production rates. The preliminary results and comparison are presented and discussed. This work has been partially supported by grant NNX14AG84G from the NASA Planetary Atmospheres Program, and US Rosetta contracts JPL #1266313, JPL #1266314 and JPL #1286489.

  12. Solid works 3D

    This book explains modeling of solid works 3D and application of 3D CAD/CAM. The contents of this book are outline of modeling such as CAD and 2D and 3D, solid works composition, method of sketch, writing measurement fixing, selecting projection, choosing condition of restriction, practice of sketch, making parts, reforming parts, modeling 3D, revising 3D modeling, using pattern function, modeling necessaries, assembling, floor plan, 3D modeling method, practice floor plans for industrial engineer data aided manufacturing, processing of CAD/CAM interface.

  13. Open 3D Projects

    Felician ALECU

    2010-01-01

    Full Text Available Many professionals and 3D artists consider Blender as being the best open source solution for 3D computer graphics. The main features are related to modeling, rendering, shading, imaging, compositing, animation, physics and particles and realtime 3D/game creation.

  14. 3d-3d correspondence revisited

    Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-01

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  15. IZDELAVA TISKALNIKA 3D

    Brdnik, Lovro

    2015-01-01

    Diplomsko delo analizira trenutno stanje 3D tiskalnikov na trgu. Prikazan je razvoj in principi delovanja 3D tiskalnikov. Predstavljeni so tipi 3D tiskalnikov, njihove prednosti in slabosti. Podrobneje je predstavljena zgradba in delovanje koračnih motorjev. Opravljene so meritve koračnih motorjev. Opisana je programska oprema za rokovanje s 3D tiskalniki in komponente, ki jih potrebujemo za izdelavo. Diploma se oklepa vprašanja, ali je izdelava 3D tiskalnika bolj ekonomična kot pa naložba v ...

  16. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  17. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  18. Recognition methods for 3D textured surfaces

    Cula, Oana G.; Dana, Kristin J.

    2001-06-01

    Texture as a surface representation is the subject of a wide body of computer vision and computer graphics literature. While texture is always associated with a form of repetition in the image, the repeating quantity may vary. The texture may be a color or albedo variation as in a checkerboard, a paisley print or zebra stripes. Very often in real-world scenes, texture is instead due to a surface height variation, e.g. pebbles, gravel, foliage and any rough surface. Such surfaces are referred to here as 3D textured surfaces. Standard texture recognition algorithms are not appropriate for 3D textured surfaces because the appearance of these surfaces changes in a complex manner with viewing direction and illumination direction. Recent methods have been developed for recognition of 3D textured surfaces using a database of surfaces observed under varied imaging parameters. One of these methods is based on 3D textons obtained using K-means clustering of multiscale feature vectors. Another method uses eigen-analysis originally developed for appearance-based object recognition. In this work we develop a hybrid approach that employs both feature grouping and dimensionality reduction. The method is tested using the Columbia-Utrecht texture database and provides excellent recognition rates. The method is compared with existing recognition methods for 3D textured surfaces. A direct comparison is facilitated by empirical recognition rates from the same texture data set. The current method has key advantages over existing methods including requiring less prior information on both the training and novel images.

  19. What causes the large extensions of red-supergiant atmospheres? Comparisons of interferometric observations with 1-D hydrostatic, 3-D convection, and 1-D pulsating model atmospheres

    Arroyo-Torres, B; Chiavassa, A; Scholz, M; Freytag, B; Marcaide, J M; Hauschildt, P H; Wood, P R; Abellan, F J

    2015-01-01

    We present the atmospheric structure and the fundamental parameters of three red supergiants, increasing the sample of RSGs observed by near-infrared spectro-interferometry. Additionally, we test possible mechanisms that may explain the large observed atmospheric extensions of RSGs. We carried out spectro-interferometric observations of 3 RSGs in the near-infrared K-band with the VLTI/AMBER instrument at medium spectral resolution. To comprehend the extended atmospheres, we compared our observational results to predictions by available hydrostatic PHOENIX, available 3-D convection, and new 1-D self-excited pulsation models of RSGs. Our near-infrared flux spectra are well reproduced by the PHOENIX model atmospheres. The continuum visibility values are consistent with a limb-darkened disk as predicted by the PHOENIX models, allowing us to determine the angular diameter and the fundamental parameters of our sources. Nonetheless, in the case of V602 Car and HD 95686, the PHOENIX model visibilities do not predict ...

  20. 3D and Education

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  1. Kinematics and 3D Structure of Large-scale Coronal Waves and Shocks observed with STEREO/EUVI and PROBA2/SWAP

    Coronal mass ejections, flares and EUV waves are the most energetic phenomena of the active Sun. Three event studies are presented, primarily based on the unprecedented observations from NASA's STEREO twin spacecraft. Emphasis was put on the kinematics, morphology and perturbation profiles of EUV waves. One major objective was the investigation of their 3D geometry and their interaction with other coronal features using multi-satellite viewpoints. Another aim was the determination of the basic plasma parameters of EUV waves, which provide information on their physical nature. The final purpose was to identify the triggering mechanism, based on detailed comparison of the EUV wave evolution with that of associated phenomena, particularly during the initial phase. The first study focused on the 3D morphology of an EUV wave by comparison of the STEREO-B on-disk signatures with the off-limb features in the lateral STEREO-A view. It was for the first time possible to determine the propagation height (80 - 100 Mm) and de-projected speed (∼265 km/s) of an EUV wave, being consistent with a freely propagating fast-mode MHD wave. The evolution of the plasma parameters of 4 homologous waves occurring within 8 hours was closely examined in the second study. The results revealed a distinct correlation between the magnetosonic Mach numbers and speeds indicative for a nonlinear MHD wave nature of the EUV waves. The third study concentrated on the reflection of 3 homologous waves at the border of a coronal hole. It was found that all waves obey the Huygens-Fresnel-principle, and that the reflected waves propagated in a layer (∼100 Mm above the primary waves. Their behavior can only be explained in the frame of wave theory. All facts gathered in the three studies give clear indications for the fast-mode MHD wave character of these EUV waves. (author)

  2. Markerless 3D Face Tracking

    Walder, Christian; Breidt, Martin; Bulthoff, Heinrich;

    2009-01-01

    We present a novel algorithm for the markerless tracking of deforming surfaces such as faces. We acquire a sequence of 3D scans along with color images at 40Hz. The data is then represented by implicit surface and color functions, using a novel partition-of-unity type method of efficiently...... combining local regressors using nearest neighbor searches. Both these functions act on the 4D space of 3D plus time, and use temporal information to handle the noise in individual scans. After interactive registration of a template mesh to the first frame, it is then automatically deformed to track...... the scanned surface, using the variation of both shape and color as features in a dynamic energy minimization problem. Our prototype system yields high-quality animated 3D models in correspondence, at a rate of approximately twenty seconds per timestep. Tracking results for faces and other objects...

  3. 3D virtuel udstilling

    Tournay, Bruno; Rüdiger, Bjarne

    2006-01-01

    3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s.......3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s....

  4. Infrared-induced variation of the magnetic properties of a magnetoplasmonic film with a 3D sub-micron periodic triangular roof-type antireflection structure

    Junlong Tian; Wang Zhang; Yiqiao Huang; Qinglei Liu; Yuhua Wang; Zhijian Zhang; Di Zhang

    2015-01-01

    A carbon-matrix nickel composite magnetoplasmonic film with a 3D sub-micron periodic triangular roof-type antireflection structure (SPTAS) was fabricated via a simple and promising method that combines chemosynthesis with biomimetic techniques. The Troides helena (Linnaeus) forewing (T_FW) was chosen as the biomimetic template. The carbon-matrix Ni wing fabricated via electroless Ni deposition for 6 h (CNMF_6h) exhibits enhanced infrared absorption. Over a wavelength range (888–2500 nm), the ...

  5. Underwater 3D filming

    Roberto Rinaldi

    2014-12-01

    Full Text Available After an experimental phase of many years, 3D filming is now effective and successful. Improvements are still possible, but the film industry achieved memorable success on 3D movie’s box offices due to the overall quality of its products. Special environments such as space (“Gravity” and the underwater realm look perfect to be reproduced in 3D. “Filming in space” was possible in “Gravity” using special effects and computer graphic. The underwater realm is still difficult to be handled. Underwater filming in 3D was not that easy and effective as filming in 2D, since not long ago. After almost 3 years of research, a French, Austrian and Italian team realized a perfect tool to film underwater, in 3D, without any constrains. This allows filmmakers to bring the audience deep inside an environment where they most probably will never have the chance to be.

  6. A 3D-CTM with detailed online PSC-microphysics: analysis of the Antarctic winter 2003 by comparison with satellite observations

    F. Daerden

    2007-01-01

    Full Text Available We present the first detailed microphysical simulations which are performed online within the framework of a global 3-D chemical transport model (CTM with full chemistry. The model describes the formation and evolution of four types of polar stratospheric cloud (PSC particles. Aerosol freezing and other relevant microphysical processes are treated in a full explicit way. Each particle type is described by a binned size distribution for the number density and chemical composition. This set-up allows for an accurate treatment of sedimentation and for detailed calculation of surface area densities and optical properties. Simulations are presented for the Antarctic winter of 2003 and comparisons are made to a diverse set of satellite observations (optical and chemical measurements of POAM III and MIPAS to illustrate the capabilities of the model. This study shows that a combined resolution approach where microphysical processes are simulated in coarse-grained conditions gives good results for PSC formation and its large-scale effect on the chemical environment through processes such as denitrification, dehydration and ozone loss.

  7. Polar Stratospheric Clouds and heterogeneous chemistry: Comparison between a 3D-CTM with detailed online PSC microphysics and CALIPSO observations

    Viscardy, Sébastien; Errera, Quentin; Pitts, Michael C.; Poole, Lamont R.; Chabrillat, Simon; Daerden, Frank

    2013-04-01

    A 3-D Chemical Transport Model (CTM), with full stratospheric chemistry and driven by the ECMWF temperature and wind fields, has been coupled to a detailed PSC microphysical model to simulate polar winters. The formation and evolution of four types of PSC particles (STS, SAT, NAT, and ice) are described through relevant microphysical processes which alter interactively the nitric acid and water vapor concentrations of the atmosphere. Each particle type is described by a binned size distribution for the number density and chemical composition. This set-up allows for detailed calculation of optical properties and surface area densities used to compute the heterogeneous reaction rates. After comparing the evolution of the stratospheric chemical structure to satellite observations, we will investigate how the model reproduces the PSC coverage detected by CALIPSO. A comparison between the model and CALIPSO optical properties will be used to discuss the PSC composition. Finally, we aim at estimating the contribution of each PSC particle type to the chlorine activation.

  8. A 3D-CTM with detailed online PSC microphysics: Heterogeneous chemistry and comparison with CALIPSO satellite observations during Antarctic winters

    Viscardy, S.; Errera, Q.; Pitts, M. C.; Daerden, F.

    2012-04-01

    A 3-D Chemical Transport Model (CTM), with full stratospheric chemistry and driven by the ECMWF temperature and wind fields, is coupled to the PSC microphysical model PSCBox. This interactively describes the formation and evolution of four types of PSC particles (STS, SAT, NAT, and ice) through relevant microphysical processes. The number density and composition of each type of particles are computed for a binned size distribution. As a result, the calculation of surface area densities is accurately performed, of which the computation of the heterogeneous reaction constants takes advantage. The explicit computation of the particle size distributions allows obtaining the same optical properties as those measured by CALIPSO. Hence, the evolution of PSC coverage and composition will be studied and compared to the CALIPSO observations during Antarctic winters. The relationship between the presence of PSCs and the heterogeneous chemistry will also be investigated. In particular, two issues will be considered: (i) how the ozone depletion is related to the PSC coverage, and (ii) how each PSC particle type contributes to the chlorine activation.

  9. 3D Integral Field Observations of Ten Galactic Winds - I. Extended phase (>10 Myr) of mass/energy injection before the wind blows

    Sharp, R G

    2010-01-01

    We present 3D spectroscopic observations of a sample of 10 nearby galaxies with the AAOmega-SPIRAL integral field spectrograph on the 3.9m AAT, the largest survey of its kind to date. The double-beam spectrograph provides spatial maps in a range of spectral diagnostics: [OIII] 5007, H-beta, Mg-b, NaD, [OI] 6300, H-alpha, [NII] 6583, [SII] 6717, 6731. All of the objects in our survey show extensive wind-driven filamentation along the minor axis, in addition to large-scale disk rotation. Our sample can be divided into either starburst galaxies or active galactic nuclei (AGN), although some objects appear to be a combination of these. The total ionizing photon budget available to both classes of galaxies is sufficient to ionise all of the wind-blown filamentation out to large radius. We find however that while AGN photoionisation always dominates in the wind filaments, this is not the case in starburst galaxies where shock ionisation dominates. This clearly indicates that after the onset of star formation, there...

  10. Postseismic Displacement Following the Sumatra-Andaman Earthquake Detected by Continuous GPS Observation and the Effect of Viscoelastic Relaxation Using 3D- FEM

    Katagi, T.; Hashimoto, M.; Hashizume, M.; Choosakul, N.; Takemoto, S.; Fukuda, Y.; Fujimori, K.; Satomura, M.; Wu, P.; Otsuka, Y.; Takiguchi, H.; Saito, S.; Maruyama, T.; Kato, T.

    2007-12-01

    We have studied postseismic displacement following the Sumatra-Andaman earthquake of December 26, 2004 in Thailand and other Southeast Asian countries using continuous GPS observation. We will report the results of our GPS analysis from the beginning of 2001 to the end of October 2007. We have also constructed 3D-FEM to evaluate the effect of viscoelastic relaxation following the earthquake. We will also report this result. We used continuous GPS data from 6 sites operated by Chulalongkorn Univ. and Kyoto Univ. or JAMSTEC, 2 sites by Shizuoka Univ. and JAMSTEC, 3 sites by NICT in Thailand and Myanmar, 1 site by STE-Lab, Nagoya Univ., and IGS sites which are located in countries surrounding the Indian Ocean include Japan, China and Australia. Bernese 5.0 was used for the processing of 30 sec. sampling data to obtain static solutions. From our analysis, no significant motions were detected at each site until the day of the earthquake. Although postseismic displacements still have been detected at CHMI and SIS2 in northern Thailand, far from the epicenter, they seem to be decelerated. On the other hand, at SAMP and PHKT, close to the epicenter, where postseismic displacements also became smaller, but still may take a time to stop. An about 29 cm SW-ward motion was detected at PHKT from just after the Sumatra-Andaman earthquake to June 2007, which is larger than its coseismic displacement, about 26 cm. We have constructed 3D-FEM model to estimate how much viscoelastic relaxation affects postseismic displacements after the earthquake. We adopted a Maxwell viscoelastic body as well as Katagi et al. (2006), and modeled around the Andaman-Sea area using isoparametric hexahedral elements with 8 nodes (Zienkiewicz and Cheng, 1967). The Andaman-Sea is well known as a back arc basins, and its ocean floor is still spreading. Therefore, the mantle viscosity under the Sunda-plate may be smaller because of upwelling warm mantle. We are going to investigate and report the

  11. Blender 3D cookbook

    Valenza, Enrico

    2015-01-01

    This book is aimed at the professionals that already have good 3D CGI experience with commercial packages and have now decided to try the open source Blender and want to experiment with something more complex than the average tutorials on the web. However, it's also aimed at the intermediate Blender users who simply want to go some steps further.It's taken for granted that you already know how to move inside the Blender interface, that you already have 3D modeling knowledge, and also that of basic 3D modeling and rendering concepts, for example, edge-loops, n-gons, or samples. In any case, it'

  12. An observational correlation between stellar brightness variations and surface gravity

    Bastien, Fabienne A; Basri, Gibor; Pepper, Joshua

    2013-01-01

    Surface gravity is one of a star's basic properties, but it is difficult to measure accurately, with typical uncertainties of 25-50 per cent if measured spectroscopically and 90-150 per cent photometrically. Asteroseismology measures gravity with an uncertainty of about two per cent but is restricted to relatively small samples of bright stars, most of which are giants. The availability of high-precision measurements of brightness variations for >150,000 stars provides an opportunity to investigate whether the variations can be used to determine surface gravities. The Fourier power of granulation on a star's surface correlates physically with surface gravity; if brightness variations on timescales of hours arise from granulation, then such variations should correlate with surface gravity. Here we report an analysis of archival data that reveals an observational correlation between surface gravity and the root-mean-square brightness variations on timescales of less than eight hours for stars with temperatures ...

  13. Professional Papervision3D

    Lively, Michael

    2010-01-01

    Professional Papervision3D describes how Papervision3D works and how real world applications are built, with a clear look at essential topics such as building websites and games, creating virtual tours, and Adobe's Flash 10. Readers learn important techniques through hands-on applications, and build on those skills as the book progresses. The companion website contains all code examples, video step-by-step explanations, and a collada repository.

  14. Crowded Field 3D Spectroscopy

    Becker, T; Roth, M M; Becker, Thomas; Fabrika, Sergei; Roth, Martin M.

    2003-01-01

    The quantitative spectroscopy of stellar objects in complex environments is mainly limited by the ability of separating the object from the background. Standard slit spectroscopy, restricting the field of view to one dimension, is obviously not the proper technique in general. The emerging Integral Field (3D) technique with spatially resolved spectra of a two-dimensional field of view provides a great potential for applying advanced subtraction methods. In this paper an image reconstruction algorithm to separate point sources and a smooth background is applied to 3D data. Several performance tests demonstrate the photometric quality of the method. The algorithm is applied to real 3D observations of a sample Planetary Nebula in M31, whose spectrum is contaminated by the bright and complex galaxy background. The ability of separating sources is also studied in a crowded stellar field in M33.

  15. Dosimetric impact of inter-observer variability for 3D conformal radiotherapy and volumetric modulated arc therapy: the rectal tumor target definition case

    To assess the dosimetric effect induced by inter-observer variability in target definition for 3D-conformal RT (3DCRT) and volumetric modulated arc therapy by RapidArc (RA) techniques for rectal cancer treatment. Ten patients with rectal cancer subjected to neo-adjuvant RT were randomly selected from the internal database. Four radiation oncologists independently contoured the clinical target volume (CTV) in blind mode. Planning target volume (PTV) was defined as CTV + 7 mm in the three directions. Afterwards, shared guidelines between radiation oncologists were introduced to give general criteria for the contouring of rectal target and the four radiation oncologists defined new CTV following the guidelines. For each patient, six intersections (I) and unions (U) volumes were calculated coupling the contours of the various oncologists. This was repeated for the contours drawn after the guidelines. Agreement Index (AI = I/U) was calculated pre and post guidelines. Two RT plans (one with 3DCRT technique using 3–4 fields and one with RA using a single modulated arc) were optimized on each radiation oncologist’s PTV. For each plan the PTV volume receiving at least 95% of the prescribed dose (PTV V95%) was calculated for both target and non-target PTVs. The inter-operator AI pre-guidelines was 0.57 and was increased up to 0.69 post-guidelines. The maximum volume difference between the various CTV couples, drawn for each patient, passed from 380 ± 147 cm3 to 137 ± 83 cm3 after the introduction of guidelines. The mean percentage for the non-target PTV V95% was 93.7 ± 9.2% before and 96.6 ± 4.9%after the introduction of guidelines for the 3DCRT, for RA the increase was more relevant, passing from 86.5 ± 13.8% (pre) to 94.5 ± 7.5% (post). The OARs were maximally spared with VMAT technique while the variability between pre and post guidelines was not relevant in both techniques. The contouring inter-observer variability has dosimetric effects in the PTV coverage

  16. From 3D view to 3D print

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  17. 3D Spectroscopic Instrumentation

    Bershady, Matthew A

    2009-01-01

    In this Chapter we review the challenges of, and opportunities for, 3D spectroscopy, and how these have lead to new and different approaches to sampling astronomical information. We describe and categorize existing instruments on 4m and 10m telescopes. Our primary focus is on grating-dispersed spectrographs. We discuss how to optimize dispersive elements, such as VPH gratings, to achieve adequate spectral resolution, high throughput, and efficient data packing to maximize spatial sampling for 3D spectroscopy. We review and compare the various coupling methods that make these spectrographs ``3D,'' including fibers, lenslets, slicers, and filtered multi-slits. We also describe Fabry-Perot and spatial-heterodyne interferometers, pointing out their advantages as field-widened systems relative to conventional, grating-dispersed spectrographs. We explore the parameter space all these instruments sample, highlighting regimes open for exploitation. Present instruments provide a foil for future development. We give an...

  18. 3D Projection Installations

    Halskov, Kim; Johansen, Stine Liv; Bach Mikkelsen, Michelle

    2014-01-01

    Three-dimensional projection installations are particular kinds of augmented spaces in which a digital 3-D model is projected onto a physical three-dimensional object, thereby fusing the digital content and the physical object. Based on interaction design research and media studies, this article...... contributes to the understanding of the distinctive characteristics of such a new medium, and identifies three strategies for designing 3-D projection installations: establishing space; interplay between the digital and the physical; and transformation of materiality. The principal empirical case, From...... Fingerplan to Loop City, is a 3-D projection installation presenting the history and future of city planning for the Copenhagen area in Denmark. The installation was presented as part of the 12th Architecture Biennale in Venice in 2010....

  19. Herramientas SIG 3D

    Francisco R. Feito Higueruela

    2010-04-01

    Full Text Available Applications of Geographical Information Systems on several Archeology fields have been increasing during the last years. Recent avances in these technologies make possible to work with more realistic 3D models. In this paper we introduce a new paradigm for this system, the GIS Thetrahedron, in which we define the fundamental elements of GIS, in order to provide a better understanding of their capabilities. At the same time the basic 3D characteristics of some comercial and open source software are described, as well as the application to some samples on archeological researchs

  20. TOWARDS: 3D INTERNET

    Ms. Swapnali R. Ghadge

    2013-01-01

    In today’s ever-shifting media landscape, it can be a complex task to find effective ways to reach your desired audience. As traditional media such as television continue to lose audience share, one venue in particular stands out for its ability to attract highly motivated audiences and for its tremendous growth potential the 3D Internet. The concept of '3D Internet' has recently come into the spotlight in the R&D arena, catching the attention of many people, and leading to a lot o...

  1. 3D Dental Scanner

    Kotek, L.

    2015-01-01

    This paper is about 3D scan of plaster dental casts. The main aim of the work is a hardware and software proposition of 3D scan system for scanning of dental casts. There were used camera, projector and rotate table for this scanning system. Surface triangulation was used, taking benefits of projections of structured light on object, which is being scanned. The rotate table is controlled by PC. The camera, projector and rotate table are synchronized by PC. Controlling of stepper motor is prov...

  2. Interaktiv 3D design

    Villaume, René Domine; Ørstrup, Finn Rude

    2002-01-01

    Projektet undersøger potentialet for interaktiv 3D design via Internettet. Arkitekt Jørn Utzons projekt til Espansiva blev udviklet som et byggesystem med det mål, at kunne skabe mangfoldige planmuligheder og mangfoldige facade- og rumudformninger. Systemets bygningskomponenter er digitaliseret som...... 3D elementer og gjort tilgængelige. Via Internettet er det nu muligt at sammenstille og afprøve en uendelig  række bygningstyper som  systemet blev tænkt og udviklet til....

  3. A method for incorporating organ motion due to breathing into 3D dose calculations in the liver: Sensitivity to variations in motion

    Organ motion has been previously described using a probability distribution function that depends solely upon the amplitude of motion and the degree of asymmetry in the breathing cycle, and that function has been used with patient specific parameters to correct static dose distributions for patient breathing using a dose convolution method. In this study, the consequences of errors in the selection of those two parameters were evaluated. Patients previously treated using a focal liver dose escalation protocol were selected with tumors located in the superior or inferior portion of the liver. For a fixed degree of asymmetry (amplitude), the amplitude (asymmetry) of motion was varied about its nominal value and the consequences of organ motion on the dose distribution and the (potentially new) prescription dose were evaluated. These comparisons show that small (±3 mm) variations of the amplitude of motion about the nominally measured value may not result in clinically significant changes (5 mm) can lead to significant changes. Assuming from measurement that the patient breathes asymmetrically (spends more time at expiration), variations in the assumed degree of asymmetry rarely lead to clinically significant changes; the most significant cause for concern being when the patient breathing cycle is maximally different from the treatment planning case (e.g., patient assumed to spend more time at expiration, but later breaths symmetrically). The results point out where quality assurance efforts should be concentrated to help assure the validity of the assumptions used to correct the static dose distributions for patient breathing using the convolution method

  4. Analysis of the variation in OCT measurements of a structural bottle neck for eye-brain transfer of visual information from 3D-volumes of the optic nerve head, PIMD-Average [02π

    Söderberg, Per G.; Malmberg, Filip; Sandberg-Melin, Camilla

    2016-03-01

    The present study aimed to analyze the clinical usefulness of the thinnest cross section of the nerve fibers in the optic nerve head averaged over the circumference of the optic nerve head. 3D volumes of the optic nerve head of the same eye was captured at two different visits spaced in time by 1-4 weeks, in 13 subjects diagnosed with early to moderate glaucoma. At each visit 3 volumes containing the optic nerve head were captured independently with a Topcon OCT- 2000 system. In each volume, the average shortest distance between the inner surface of the retina and the central limit of the pigment epithelium around the optic nerve head circumference, PIMD-Average [02π], was determined semiautomatically. The measurements were analyzed with an analysis of variance for estimation of the variance components for subjects, visits, volumes and semi-automatic measurements of PIMD-Average [0;2π]. It was found that the variance for subjects was on the order of five times the variance for visits, and the variance for visits was on the order of 5 times higher than the variance for volumes. The variance for semi-automatic measurements of PIMD-Average [02π] was 3 orders of magnitude lower than the variance for volumes. A 95 % confidence interval for mean PIMD-Average [02π] was estimated to 1.00 +/-0.13 mm (D.f. = 12). The variance estimates indicate that PIMD-Average [02π] is not suitable for comparison between a onetime estimate in a subject and a population reference interval. Cross-sectional independent group comparisons of PIMD-Average [02π] averaged over subjects will require inconveniently large sample sizes. However, cross-sectional independent group comparison of averages of within subject difference between baseline and follow-up can be made with reasonable sample sizes. Assuming a loss rate of 0.1 PIMD-Average [02π] per year and 4 visits per year it was found that approximately 18 months follow up is required before a significant change of PIMDAverage [02π] can

  5. Atmospheric diurnal variations observed with GPS radio occultation soundings

    F. Xie

    2010-07-01

    Full Text Available The diurnal variation, driven by solar forcing, is a fundamental mode in the Earth's weather and climate system. Radio occultation (RO measurements from the six COSMIC satellites (Constellation Observing System for Meteorology, Ionosphere and Climate provide nearly uniform global coverage with high vertical resolution, all-weather and diurnal sampling capability. This paper analyzes the diurnal variations of temperature and refractivity from three-year (2007–2009 COSMIC RO measurements in the troposphere and stratosphere between 30° S and 30° N. The RO observations reveal both propagating and trapped vertical structures of diurnal variations, including transition regions near the tropopause where data with high vertical resolution are critical. In the tropics the diurnal amplitude in refractivity shows the minimum around 14 km and increases to a local maximum around 32 km in the stratosphere. The upward propagating component of the migrating diurnal tides in the tropics is clearly captured by the GPS RO measurements, which show a downward progression in phase from stratopause to the upper troposphere with a vertical wavelength of about 25 km. At ~32 km the seasonal variation of the tidal amplitude maximizes at the opposite side of the equator relative to the solar forcing. The vertical structure of tidal amplitude shows strong seasonal variations and becomes asymmetric along the equator and tilted toward the summer hemisphere in the solstice months. Such asymmetry becomes less prominent in equinox months.

  6. 3D Harmonic Echocardiography:

    M.M. Voormolen

    2007-01-01

    textabstractThree dimensional (3D) echocardiography has recently developed from an experimental technique in the ’90 towards an imaging modality for the daily clinical practice. This dissertation describes the considerations, implementation, validation and clinical application of a unique

  7. Tangible 3D Modelling

    Hejlesen, Aske K.; Ovesen, Nis

    2012-01-01

    This paper presents an experimental approach to teaching 3D modelling techniques in an Industrial Design programme. The approach includes the use of tangible free form models as tools for improving the overall learning. The paper is based on lecturer and student experiences obtained through...

  8. Shaping 3-D boxes

    Stenholt, Rasmus; Madsen, Claus B.

    2011-01-01

    Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data...

  9. Construction and investigation of 3D vessels net of the brain according to MRI data using the method of variation of scanning plane

    Cherevko, A. A.; Yankova, G. S.; Maltseva, S. V.; Parshin, D. V.; Akulov, A. E.; Khe, A. K.; Chupakhin, A. P.

    2016-06-01

    The blood realizes the transport of substances, which are necessary for livelihoods, throughout the body. The assumption about the relationship genotype and structure of vasculature (in particular of brain) is natural. In the paper we consider models of vessel net for two genetic lines of laboratory mice. Vascular net obtained as a result of preprocessing MRI data. MRI scanning is realized using the method of variation of slope of scanning plane, i.e. by several sets of parallel planes specified by different normal vectors. The following special processing allowed to construct models of vessel nets without fragmentation. The purpose of the work is to compare the vascular network models of two different genetic lines of laboratory mice.

  10. Resolving the impact of short-term variations in physical processes impacting on the spawning environment of eastern Baltic cod : application of a 3-D hydrodynamic model

    Hinrichsen, H.H.; St. John, Michael; Lehmann, A.;

    2002-01-01

    cod. Recent research has identified the importance of inflows of saline and oxygenated North Sea water into the Baltic Sea for the recruitment of Baltic cod. However, other processes have been suggested to modify this reproduction volume including variations in timing and volume of terrestrial runoff...... large scale and local atmospheric forcing conditions are related to the identified major processes affecting the reproduction volume. (C) 2002 Elsevier Science B.V. All rights reserved....... compared to runs with modified meteorological forcing conditions and river runoff. From these simulations, it is apparent that processes other than major Baltic inflows have the potential to alter the reproduction volume of Baltic cod. Low near-surface air temperatures in the North Sea, the Skagerrak...

  11. Determination of the 3D-topology of an EUV-filament observed by SOHO/CDS, SOHO/Sumer and VTT/MSDP

    Schwartz, Pavol; Heinzel, Petr; Schmieder, B.; Anzer, U.

    Noordwijk: ESA Publication division, 2003 - (Wilson, A.), s. 495-498. (ESA Special publication.. 535). [International solar cycle studies symposium 2003. Tatranská Lomnica (SK), 23.06.2003-28.06.2003] R&D Projects: GA AV ČR IAA3003203; GA AV ČR IBS1003006 Institutional research plan: CEZ:AV0Z1003909 Keywords : EUV-filaments * 3D-topology -mass loading Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  12. Along-strike variations of structural styles in the imbricated Molasse of Salzburg and Upper Austria: a 3-D seismic perspective

    Hinsch, Ralph; Linzer, Hans-Gert

    2010-05-01

    At the southern border of the Northern Alpine Foreland Basin syntectonic deposits (Molasse Sediments) are partly incorporated into Alpine contractional deformation. Along the alpine chain style and timing of this deformation varies significantly. In this study we use one of the largest European on-shore 3-D seismic datasets, spanning the Molasse basin of Upper Austria and Salzburg states, to investigate the along-strike structural architecture of the alpine deformation front. In the Austrian Part of the Molasse basin, foredeep sedimentation started in Upper-Eocene times (Wagner, 1996). The sediments cover the European margin, consisting of a crystalline basement covered by variously thick Mesozoic sediments (Nachtmann und Wagner, 1987). In Oligocene to Lower Miocene times, syntectonic foredeep sedimentation took place in a deep marine environment, comprising an axial channel system (Linzer 2001, DeRuig and Hubbard, 2006). Parts of these syntectonic sediments are subsequently affected by the advancing thrust wedge. Within the study area, three distinct fold-and-thrust belt segments of different structural architecture can be defined. 1) The Perwang Imbricates are a promontory mostly situated in Salzburg at the border to Germany. Complexly deformed small thrust sheets evolve above a detachment horizon situated in Late Cretaceous shaly marls in Oligocene times. Syntectonic piggy-back and thrust top basins evolve (Covault et al. 2008), which are partly affected by subsequent Miocene overthrusting. 2) The Regau Segment is the area west of the Perwang lobe. It is dominated by few number of thrust sheets in the Molasse sediments. Instead, over-thrusting by the alpine wedge (pre-deformed Flysch and Helvetic thrust sheets) dominates. 3) The Sierning Imbricates segment is located further to the east, at the border of Upper Austria to Lower Austria. The structural inventory of this thrust belt is comprises varying numbers of thrust sheets along strike (1-5), ramp

  13. Variations observed in environmental radiation at ground level

    To investigate and monitor environmental radiation at ground level, Physikalisch-Technische Bundesanstalt (PTB) has installed several dosemeters and particle detectors at the new Ambient Radiation Dosimetry Site. The separation of the total ambient dose equivalent rate H*(10)env of environmental radiation into the different contributions is achieved by comparing the data of different detectors: the muon detector MUDOS, a modified neutron dosemeter, proportional counters and ionisation chambers. The response of the latter two dosemeter systems to cosmic radiation was determined at the Cosmic Radiation Dosimetry Site on a lake near PTB. Besides the increase of the ambient dose equivalent rate during rainfall, variations owing to air pressure, solar activity and temperature changes in the upper atmosphere are observed. Without rain and solar effects, smooth variations of the cosmic component at ground level of ±6.9 nSv h-1 should be treated as naturally occurring variations during an entire year. (authors)

  14. Performance Analysis of a 3D Ionosphere Tomographic Model

    Liu Zhi-zhao; Gao Yang

    2003-01-01

    A 3D high precision ionospheric model is developed based on tomography technique. This tomographic model employs GPS data observed by an operational network of dual-frequency GPS receivers. The methodology of developing a 3D ionospheric tomography model is briefly summarized. However emphasis is put on the analysis and evaluation of the accuracy variation of 3D ionosphere modeling with respect to the change of GPS data cutoff angle.Three typical cutoff angle values (15°, 20° and 25°) are tested. For each testing cutoff angle, the performances of the3D ionospheric model constructed using tomography technique are assessed by calibrating the model predicted ionospheric TEC with the GPS measured TEC and by employing the model predicted TEC to a practical GPS positioning application single point positioning (SPP).Test results indicate the 3D model predicted VTEC has about 0.4 TECU improvement in accuracy when cutoff angle rises from 15° to 20°. However, no apparent improvement is found from 20° to 25°. The model's improvement is also validated by the better SPP accuracy of 3D model than its counterpart-dual frequency model in the 20° and 25° cases.

  15. 3D animace

    Klusoň, Jindřich

    2010-01-01

    Computer animation has a growing importance and application in the world. With expansion of technologies increases quality of the final animation as well as number of 3D animation software. This thesis is currently mapped animation software for creating animation in film, television industry and video games which are advisable users requirements. Of them were selected according to criteria the best - Autodesk Maya 2011. This animation software is unique with tools for creating special effects...

  16. Upgrading and testing the 3D reconstruction of gamma-ray air showers as observed with an array of Imaging Atmospheric Cherenkov telescopes

    Naumann-Godó, M; Degrange, B

    2009-01-01

    Stereoscopic arrays of Imaging Atmospheric Cherenkov Telescopes allow to reconstruct gamma-ray-induced showers in 3 dimensions, which offers several advantages: direct access to the shower parameters in space and straightforward calorimetric measurement of the incident energy. In addition, correlations between the different images of the same shower are taken into account. An analysis method based on a simple 3D-model of electromagnetic showers was recently implemented in the framework of the H.E.S.S. experiment. In the present article, the method is completed by an additional quality criterion, which reduces the background contamination by a factor of about 2 in the case of extended sources, while keeping gamma-ray efficiency at a high level. On the other hand, the dramatic flares of the blazar PKS 2155-304 in July 2006, which provided H.E.S.S. data with an almost pure gamma-ray sample, offered the unique opportunity of a precision test of the 3D-reconstruction method as well as of the H.E.S.S. simulations u...

  17. EEJ and Sq Variations Observed at MAGDAS/CPMN Stations

    Yumoto, K.; Yamazaki, Y.; Abe, S.; Uozumi, T.

    2009-12-01

    The Space Environment Research Center (SERC), Kyushu University has deployed the MAGnetic Data Acqusition System (MAGDAS) at 50 stations along the 210- and 96-degree magnetic meridians (MM) and the magnetic dip equator, and several FM-CW radars along the 210-degree MM during the International Heliophysical Year (IHY) period of 2005-2009 (see http://magdas.serc.kyushu-u.ac.jp/ and http://magdas2.serc.kyushu-u.ac.jp/). The MAGDAS project for space weather will be continued during the Post IHY, i.e., the International Space Weather Initiative (ISWI) period of 2010-2012. The goal of MAGDAS project is to become the most comprehensive ground-based monitoring system of the earth's magnetic field. By analyzing these new MAGDAS data, we can perform a real-time monitoring and modeling of the global (e.g., Sq, EEJ) current system and the ambient plasma mass density for understanding the electromagnetic and plasma environment changes in geospace during helio-magnetospheric storms. In order to examine the propagation mechanisms of transient disturbances, i.e., sc/si, Pi 2, and DP2, relations of ionospheric electric and magnetic fields are also investigated by analyzing the MAGDAS magnetic data and the Doppler data of our FM-CW ionospheric radar. A new EE-index (EDst, EU, and EL) was proposed by SERC for real-time and long-term geo-space monitoring. The basic algorithm to obtain EE-index was constructed by Uozumi et al. (2008). EU and EL mainly represent the range of the EEJ (equatorial electrojet) and CEJ (equatorial counter electrojet) components, respectively. The baseline levels of EU and EL are obtained by averaging the H-component magnetic variations observed at the nightside (LT = 18-06) MAGDAS/CPMN (Circum-pan Pacific Magnetometer Network) stations along the magnetic equator. The baseline value is defined as EDst and its variations are found to be similar to those of Dst. We examined relationships among the EEJ amplitude, the F10.7 solar radiation flux, the solar wind

  18. Massive 3D Supergravity

    Andringa, Roel; de Roo, Mees; Hohm, Olaf; Sezgin, Ergin; Townsend, Paul K

    2009-01-01

    We construct the N=1 three-dimensional supergravity theory with cosmological, Einstein-Hilbert, Lorentz Chern-Simons, and general curvature squared terms. We determine the general supersymmetric configuration, and find a family of supersymmetric adS vacua with the supersymmetric Minkowski vacuum as a limiting case. Linearizing about the Minkowski vacuum, we find three classes of unitary theories; one is the supersymmetric extension of the recently discovered `massive 3D gravity'. Another is a `new topologically massive supergravity' (with no Einstein-Hilbert term) that propagates a single (2,3/2) helicity supermultiplet.

  19. Massive 3D supergravity

    Andringa, Roel; Bergshoeff, Eric A; De Roo, Mees; Hohm, Olaf [Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Sezgin, Ergin [George and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Townsend, Paul K, E-mail: E.A.Bergshoeff@rug.n, E-mail: O.Hohm@rug.n, E-mail: sezgin@tamu.ed, E-mail: P.K.Townsend@damtp.cam.ac.u [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2010-01-21

    We construct the N=1 three-dimensional supergravity theory with cosmological, Einstein-Hilbert, Lorentz Chern-Simons, and general curvature squared terms. We determine the general supersymmetric configuration, and find a family of supersymmetric adS vacua with the supersymmetric Minkowski vacuum as a limiting case. Linearizing about the Minkowski vacuum, we find three classes of unitary theories; one is the supersymmetric extension of the recently discovered 'massive 3D gravity'. Another is a 'new topologically massive supergravity' (with no Einstein-Hilbert term) that propagates a single (2,3/2) helicity supermultiplet.

  20. TOWARDS: 3D INTERNET

    Ms. Swapnali R. Ghadge

    2013-08-01

    Full Text Available In today’s ever-shifting media landscape, it can be a complex task to find effective ways to reach your desired audience. As traditional media such as television continue to lose audience share, one venue in particular stands out for its ability to attract highly motivated audiences and for its tremendous growth potential the 3D Internet. The concept of '3D Internet' has recently come into the spotlight in the R&D arena, catching the attention of many people, and leading to a lot of discussions. Basically, one can look into this matter from a few different perspectives: visualization and representation of information, and creation and transportation of information, among others. All of them still constitute research challenges, as no products or services are yet available or foreseen for the near future. Nevertheless, one can try to envisage the directions that can be taken towards achieving this goal. People who take part in virtual worlds stay online longer with a heightened level of interest. To take advantage of that interest, diverse businesses and organizations have claimed an early stake in this fast-growing market. They include technology leaders such as IBM, Microsoft, and Cisco, companies such as BMW, Toyota, Circuit City, Coca Cola, and Calvin Klein, and scores of universities, including Harvard, Stanford and Penn State.

  1. [Real time 3D echocardiography

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  2. Body size and ability to pass through a restricted space: Observations from 3D scanning of 210 male UK offshore workers.

    Stewart, Arthur; Ledingham, Robert; Furnace, Graham; Nevill, Alan

    2015-11-01

    Offshore workers are subjected to a unique physical and cultural environment which has the ability to affect their size and shape. Because they are heavier than the UK adult population we hypothesized they would have larger torso dimensions which would adversely affect their ability to pass one another in a restricted space. A sample of 210 male offshore workers was selected across the full weight range, and measured using 3D body scanning for shape. Bideltoid breadth and maximum chest depth were extracted from the scans and compared with reference population data. In addition a size algorithm previously calculated on 44 individuals was applied to adjust for wearing a survival suit and re-breather device. Mean bideltoid breadth and chest depth was 51.4 cm and 27.9 cm in the offshore workers, compared with 49.7 cm and 25.4 cm respectively in the UK population as a whole. Considering the probability of two randomly selected people passing within a restricted space of 100 cm and 80 cm, offshore workers are 28% and 34% less likely to pass face to face and face to side respectively, as compared with UK adults, an effect which is exacerbated when wearing personal protective equipment. PMID:26154233

  3. Variation of proton flux profiles with the observer's latitude in simulated gradual SEP events

    Rodríguez-Gasén, R; Sanahuja, B; Jacobs, C; Poedts, S

    2013-01-01

    We study the variation of the shape of the proton intensity-time profiles in simulated gradual Solar Energetic Particle (SEP) events with the relative observer's position in space with respect to the main direction of propagation of an interplanetary (IP) shock. Using a three-dimensional (3D) magnetohydrodynamic (MHD) code to simulate such a shock, we determine the evolution of the downstream-to-upstream ratios of the plasma variables at its front. Under the assumption of an existing relation between the normalized ratio in speed across the shock front and the injection rate of shock-accelerated particles, we model the transport of the particles and we obtain the proton flux profiles to be measured by a grid of 18 virtual observers located at 0.4 and 1.0 AU, with different latitudes and longitudes with respect to the shock nose. The differences among flux profiles are the result of the way each observer establishes a magnetic connection with the shock front, and we find that changes in the observer's latitude...

  4. Poliarquia em 3D

    Santos Wanderley Guilherme dos

    1998-01-01

    Full Text Available The article takes issue with positions that reduce representative systems to democratic linearity, considering how the latter is restricted to variations in forms of government and electoral systems that do not correspond to the growing complexity of national organizations. It is proposed that a third dimension be added to Robert Dahl?s bidimensional model that is, eligibility from which it is possible to derive minimalist yet strict definitions of authoritarian systems, of representative systems in general, and of their oligarchical and polyarchical variations.

  5. 3D printing for dummies

    Hausman, Kalani Kirk

    2014-01-01

    Get started printing out 3D objects quickly and inexpensively! 3D printing is no longer just a figment of your imagination. This remarkable technology is coming to the masses with the growing availability of 3D printers. 3D printers create 3-dimensional layered models and they allow users to create prototypes that use multiple materials and colors.  This friendly-but-straightforward guide examines each type of 3D printing technology available today and gives artists, entrepreneurs, engineers, and hobbyists insight into the amazing things 3D printing has to offer. You'll discover methods for

  6. 基于FLAC3D的地基土地震作用下孔压的变化分析%Variation analysis of porewater pressure under the earthquake based on FLAC3D foundation soil

    何相礼; 李健全; 朱方敏

    2012-01-01

    This paper carries out fluid-solid interaction analysis on porewater pressure variation of foundation soil under the earthquake by using FLAC3D finite difference software, and explores the porewater pressure variation of foundation soil under the earthquake. Results show that the foundation porewater pressure distribution is closely related to seismic excitation, field soil quality, composition and embedding conditions and so on, which has significant meaning for further understanding hydraulic foundation earthquake hazard.%利用FLAC3D有限差分软件对地基土在地震作用下孔隙水压力的变化进行了流固耦合分析,探讨了地基土在地震作用下孔压的变化规律,结果表明地基孔隙水压力的分布与地震激励、场地土的土质、组成和埋藏条件等因素都有密切关系,对进一步加深液化地基震害的理解具有重要的意义。

  7. 3D ultrafast ultrasound imaging in vivo

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra—and inter-observer variability. (fast track communication)

  8. 3D monitor

    Szkandera, Jan

    2009-01-01

    Tato bakalářská práce se zabývá návrhem a realizací systému, který umožní obraz scény zobrazovaný na ploše vnímat prostorově. Prostorové vnímání 2D obrazové informace je umožněno jednak stereopromítáním a jednak tím, že se obraz mění v závislosti na poloze pozorovatele. Tato práce se zabývá hlavně druhým z těchto problémů. This Bachelor's thesis goal is to design and realize system, which allows user to perceive 2D visual information as three-dimensional. 3D visual preception of 2D image i...

  9. Mobile 3D tomograph

    Mobile tomographs often have the problem that high spatial resolution is impossible owing to the position or setup of the tomograph. While the tree tomograph developed by Messrs. Isotopenforschung Dr. Sauerwein GmbH worked well in practice, it is no longer used as the spatial resolution and measuring time are insufficient for many modern applications. The paper shows that the mechanical base of the method is sufficient for 3D CT measurements with modern detectors and X-ray tubes. CT measurements with very good statistics take less than 10 min. This means that mobile systems can be used, e.g. in examinations of non-transportable cultural objects or monuments. Enhancement of the spatial resolution of mobile tomographs capable of measuring in any position is made difficult by the fact that the tomograph has moving parts and will therefore have weight shifts. With the aid of tomographies whose spatial resolution is far higher than the mechanical accuracy, a correction method is presented for direct integration of the Feldkamp algorithm

  10. Random-Profiles-Based 3D Face Recognition System

    Joongrock Kim; Sunjin Yu; Sangyoun Lee

    2014-01-01

    In this paper, a noble nonintrusive three-dimensional (3D) face modeling system for random-profile-based 3D face recognition is presented. Although recent two-dimensional (2D) face recognition systems can achieve a reliable recognition rate under certain conditions, their performance is limited by internal and external changes, such as illumination and pose variation. To address these issues, 3D face recognition, which uses 3D face data, has recently received much attention. However, the perf...

  11. Atmospheric Variations as observed by IceCube

    Tilav, Serap; Kuwabara, Takao; Rocco, Dominick; Rothmaier, Florian; Simmons, Matt; Wissing, Henrike

    2010-01-01

    We have measured the correlation of rates in IceCube with long and short term variations in the South Pole atmosphere. The yearly temperature variation in the middle stratosphere (30-60 hPa) is highly correlated with the high energy muon rate observed deep in the ice, and causes a +/-10% seasonal modulation in the event rate. The counting rates of the surface detectors, which are due to secondary particles of relatively low energy (muons, electrons and photons), have a negative correlation with temperatures in the lower layers of the stratosphere (40-80 hPa), and are modulated at a level of +/-5%. The region of the atmosphere between pressure levels 20-120 hPa, where the first cosmic ray interactions occur and the produced pions/kaons interact or decay to muons, is the Antarctic ozone layer. The anticorrelation between surface and deep ice trigger rates reflects the properties of pion/kaon decay and interaction as the density of the stratospheric ozone layer changes. Therefore, IceCube closely probes the ozon...

  12. X3D: Extensible 3D Graphics Standard

    Daly, Leonard; Brutzman, Don

    2007-01-01

    The article of record as published may be located at http://dx.doi.org/10.1109/MSP.2007.905889 Extensible 3D (X3D) is the open standard for Web-delivered three-dimensional (3D) graphics. It specifies a declarative geometry definition language, a run-time engine, and an application program interface (API) that provide an interactive, animated, real-time environment for 3D graphics. The X3D specification documents are freely available, the standard can be used without paying any royalties,...

  13. 3D game environments create professional 3D game worlds

    Ahearn, Luke

    2008-01-01

    The ultimate resource to help you create triple-A quality art for a variety of game worlds; 3D Game Environments offers detailed tutorials on creating 3D models, applying 2D art to 3D models, and clear concise advice on issues of efficiency and optimization for a 3D game engine. Using Photoshop and 3ds Max as his primary tools, Luke Ahearn explains how to create realistic textures from photo source and uses a variety of techniques to portray dynamic and believable game worlds.From a modern city to a steamy jungle, learn about the planning and technological considerations for 3D modelin

  14. 3D Printing an Octohedron

    Aboufadel, Edward F.

    2014-01-01

    The purpose of this short paper is to describe a project to manufacture a regular octohedron on a 3D printer. We assume that the reader is familiar with the basics of 3D printing. In the project, we use fundamental ideas to calculate the vertices and faces of an octohedron. Then, we utilize the OPENSCAD program to create a virtual 3D model and an STereoLithography (.stl) file that can be used by a 3D printer.

  15. Wireless 3D Chocolate Printer

    FROILAN G. DESTREZA

    2014-02-01

    Full Text Available This study is for the BSHRM Students of Batangas State University (BatStateU ARASOF for the researchers believe that the Wireless 3D Chocolate Printer would be helpful in their degree program especially on making creative, artistic, personalized and decorative chocolate designs. The researchers used the Prototyping model as procedural method for the successful development and implementation of the hardware and software. This method has five phases which are the following: quick plan, quick design, prototype construction, delivery and feedback and communication. This study was evaluated by the BSHRM Students and the assessment of the respondents regarding the software and hardware application are all excellent in terms of Accuracy, Effecitveness, Efficiency, Maintainability, Reliability and User-friendliness. Also, the overall level of acceptability of the design project as evaluated by the respondents is excellent. With regard to the observation about the best raw material to use in 3D printing, the chocolate is good to use as the printed material is slightly distorted,durable and very easy to prepare; the icing is also good to use as the printed material is not distorted and is very durable but consumes time to prepare; the flour is not good as the printed material is distorted, not durable but it is easy to prepare. The computation of the economic viability level of 3d printer with reference to ROI is 37.14%. The recommendation of the researchers in the design project are as follows: adding a cooling system so that the raw material will be more durable, development of a more simplified version and improving the extrusion process wherein the user do not need to stop the printing process just to replace the empty syringe with a new one.

  16. 3D modelling and recognition

    Rodrigues, Marcos; Robinson, Alan; Alboul, Lyuba; Brink, Willie

    2006-01-01

    3D face recognition is an open field. In this paper we present a method for 3D facial recognition based on Principal Components Analysis. The method uses a relatively large number of facial measurements and ratios and yields reliable recognition. We also highlight our approach to sensor development for fast 3D model acquisition and automatic facial feature extraction.

  17. Static and dynamic variational principles for expectation values of observables

    A general procedure is first reviewed for constructing variational principles (v.p.) suited to the optimization of a quantity of interest. Conditions under which the solution may be obtained as a maximum rather than as a saddle-point are examined. Applications are then worked out, providing v.p. adapted to the evaluation of expectation values, fluctuations or correlations of quantum observables, whether the system is at thermal equilibrium or whether it has evolved. Another class of v.p. concerns dynamical problems. The general method allows to recover a known time-dependent v.p. for a state and an observable [3,13] which answers the following question. Given the state of the system at the time t0, what is the expectation value at a later time t1. A more general v.p. applies to situations in which the initial state is too complicated to be handled exactly. Both the approximate initial conditions and the approximate evolution are then determined so as to optimize . Finally, analogous v.p. are constructed in classical statistical mechanics and hamiltonian dynamics. A recent formulation of classical mechanics in terms of covariant Poisson brackets [19] comes out naturally in this context from the v.p. for the evaluation of a classical expectation value

  18. 3-D contextual Bayesian classifiers

    Larsen, Rasmus

    distribution for the pixel values as well as a prior distribution for the configuration of class variables within the cross that is made of a pixel and its four nearest neighbours. We will extend these algorithms to 3-D, i.e. we will specify a simultaneous Gaussian distribution for a pixel and its 6 nearest 3......-D neighbours, and generalise the class variable configuration distributions within the 3-D cross given in 2-D algorithms. The new 3-D algorithms are tested on a synthetic 3-D multivariate dataset....

  19. Taming Supersymmetric Defects in 3d-3d Correspondence

    Gang, Dongmin; Romo, Mauricio; Yamazaki, Masahito

    2015-01-01

    We study knots in 3d Chern-Simons theory with complex gauge group $SL(N,\\mathbb{C})$, in the context of its relation with 3d $\\mathcal{N}=2$ theory (the so-called 3d-3d correspondence). The defect has either co-dimension 2 or co-dimension 4 inside the 6d $(2,0)$ theory, which is compactified on a 3-manifold $\\hat{M}$. We identify such defects in various corners of the 3d-3d correspondence, namely in 3d $SL(N,\\mathbb{C})$ Chern-Simons theory, in 3d $\\mathcal{N}=2$ theory, in 5d $\\mathcal{N}=2$ super Yang-Mills theory, and in the M-theory holographic dual. We can make quantitative checks of the 3d-3d correspondence by computing partition functions at each of these theories. This Letter is a companion to a longer paper, which contains more details and more results.

  20. Compositional Variations from UVIS Observations of Titan's Dayglow and Comparisons with in situ INMS Observations

    Stevens, M. H.; Evans, J. S.; Ajello, J. M.; Bradley, E. T.; Meier, R. R.; Westlake, J. H.; Waite, J. H., Jr.

    2012-04-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed Titan’s dayside limb on multiple occasions between 2007 and 2011. The airglow observations reveal the same variety of EUV (600-1150Å) and FUV (1150-1900Å) emissions arising from photoelectron excitation and photofragmentation of molecular nitrogen (N2) on Earth. Through spectral analysis we extract radiance profiles for each set of UVIS limb emissions in the EUV and FUV, which are attenuated by methane (CH4). Using a terrestrial airglow model adapted to Titan, we derive the N2 and CH4 density profiles using the prescribed solar irradiance for the relevant Cassini orbit and compare the calculated radiance profiles directly with observations. We find that the UVIS airglow observations can be explained by solar driven processes, although fluctuations in the observed airglow between flybys suggest compositional changes in the background atmosphere. We compare the compositional variations inferred from the UVIS airglow to in situ observations by the Cassini Ion and Neutral Mass Spectrometer (INMS) from the same Titan orbit and discuss how the variations may be related to Titan’s varying plasma environment.

  1. Direct numerical simulation of 3D transitional fluid flows

    Full text: For the numerical simulation of the 2D-3D transitional homogeneous and stratified incompressible viscous fluid flows, characterizing by the full Navier-Stokes equations, the splitting on physical factors method is used. The explicit hybrid finite difference scheme of the method has the following behaviors: the second order of accuracy in space, minimum scheme viscosity and dispersion, workable in wide range of Reynolds and Froude numbers and monotonicity. The efficiency of the developed numerical method and the advanced performance of the supercomputers allowed simulating 2D-3D transitional uncompressible viscous fluid flows around the bluff bodies in particular around a cylinder. By the numerical simulation of the fluid flows around 3D circular cylinder it was found that the transition to 3D regime arrives at Re>200. At 200< Re<300 the mode A with wavelength 3.5 d<λ<4.0 d (where d is the diameter of the cylinder) for 3D structures along the axis of a cylinder was observed. At 300< Re<400 the mode B with wavelength 0.8 d<λ<0.9 d was observed. At Re=300 the both modes A and B were observed simultaneously. The regime with large dislocations previously discovered experimentally was first obtained numerically at 210< Re<260. This regime is characterized by flow phase dislocation along the axis of the cylinder and as the effect by the amplitude fall of the lift force coefficient and the variations in the drag coefficient. There was simulated numerically the initiation of the attached internal waves behind the circular cylinder and upstream disturbance area at low Froude and moderate Reynolds numbers. (author)

  2. Large power factor and anomalous Hall effect and their correlation with observed linear magneto resistance in Co-doped Bi2Se3 3D topological insulator.

    Singh, Rahul; Shukla, K K; Kumar, A; Okram, G S; Singh, D; Ganeshan, V; Lakhani, Archana; Ghosh, A K; Chatterjee, Sandip

    2016-09-21

    Magnetoresistance (MR), thermo power, magnetization and Hall effect measurements have been performed on Co-doped Bi2Se3 topological insulators. The undoped sample shows that the maximum MR as a destructive interference due to a π-Berry phase leads to a decrease of MR. As the Co is doped, the linearity in MR is increased. The observed MR of Bi2Se3 can be explained with the classical model. The low temperature MR behavior of Co doped samples cannot be explained with the same model, but can be explained with the quantum linear MR model. Magnetization behavior indicates the establishment of ferromagnetic ordering with Co doping. Hall effect data also supports the establishment of ferromagnetic ordering in Co-doped Bi2Se3 samples by showing the anomalous Hall effect. Furthermore, when spectral weight suppression is insignificant, Bi2Se3 behaves as a dilute magnetic semiconductor. Moreover, the maximum power factor is observed when time reversal symmetry (TRS) is maintained. As the TRS is broken the power factor value is decreased, which indicates that with the rise of Dirac cone above the Fermi level the anomalous Hall effect and linearity in MR increase and the power factor decreases. PMID:27419361

  3. Observation of overlapping spin-1 and spin-3 D0K- resonances at mass 2.86 GeV/c2.

    Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Brown, H; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H-M; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Fay, Rf; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garofoli, J; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gavardi, L; Gavrilov, G; Geraci, A; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Gianì, S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kelsey, M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lowdon, P; Lu, H; Lucchesi, D; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Mapelli, A; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Moggi, N; Molina Rodriguez, J; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A-B; Mountain, R; Muheim, F; Müller, K; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, G; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pazos Alvarez, A; Pearce, A; Pellegrino, A; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Petridis, K; Petrolini, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Playfer, S; Plo Casasus, M; Polci, F; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Reichert, S; Reid, M M; Dos Reis, A C; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rotondo, M; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrie, M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Sepp, I; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Steinkamp, O; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Stroili, R; Subbiah, V K; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szilard, D; Szumlak, T; T'Jampens, S; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Websdale, D; Whitehead, M; Wicht, J; Wiedner, D; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2014-10-17

    The resonant substructure of B(s)(0) → D(0)K(-)π(+) decays is studied using a data sample corresponding to an integrated luminosity of 3.0 fb(-1) of pp collision data recorded by the LHCb detector. An excess at m(D(0)K(-))≈ 2.86 GeV/c(2) is found to be an admixture of spin-1 and spin-3 resonances. Therefore, the D(sJ)*(2860)(-) state previously observed in inclusive e(+)e(-) → D(0)K(-)X and pp → D(0)K(-)X processes consists of at least two particles. This is the first observation of a heavy flavored spin-3 resonance, and the first time that any spin-3 particle has been seen to be produced in B decays. The masses and widths of the new states and of the D(s2)*(2573)(-) meson are measured, giving the most precise determinations to date. PMID:25361252

  4. Large power factor and anomalous Hall effect and their correlation with observed linear magneto resistance in Co-doped Bi2Se3 3D topological insulator

    Singh, Rahul; Shukla, K. K.; Kumar, A.; Okram, G. S.; Singh, D.; Ganeshan, V.; Lakhani, Archana; Ghosh, A. K.; Chatterjee, Sandip

    2016-09-01

    Magnetoresistance (MR), thermo power, magnetization and Hall effect measurements have been performed on Co-doped Bi2Se3 topological insulators. The undoped sample shows that the maximum MR as a destructive interference due to a π-Berry phase leads to a decrease of MR. As the Co is doped, the linearity in MR is increased. The observed MR of Bi2Se3 can be explained with the classical model. The low temperature MR behavior of Co doped samples cannot be explained with the same model, but can be explained with the quantum linear MR model. Magnetization behavior indicates the establishment of ferromagnetic ordering with Co doping. Hall effect data also supports the establishment of ferromagnetic ordering in Co-doped Bi2Se3 samples by showing the anomalous Hall effect. Furthermore, when spectral weight suppression is insignificant, Bi2Se3 behaves as a dilute magnetic semiconductor. Moreover, the maximum power factor is observed when time reversal symmetry (TRS) is maintained. As the TRS is broken the power factor value is decreased, which indicates that with the rise of Dirac cone above the Fermi level the anomalous Hall effect and linearity in MR increase and the power factor decreases.

  5. Solar cycle variation of gravity waves observed in OH airglow

    Gelinas, L. J.; Hecht, J. H.; Walterscheid, R. L.; Reid, I. M.; Woithe, J.; Vincent, R. A.

    2013-12-01

    Airglow imaging provides a unique means by which to study many wave-related phenomena in the 80 to 100 km altitude regime. Two-dimensional image observations reveal quasi-monochromatic disturbances associated with atmospheric gravity waves (AGWs) as well as small-scale instabilities, often called ripples. Image-averaged temperature and intensity measurements can be used to study the response of the airglow layer to tides and planetary waves, as well as monitor longer-term climatological variations. Here we present results of low and mid-latitude OH airglow observations beginning near solar max of solar cycle 23 and continuing through solar max of cycle 24. Aerospace imagers deployed at Alice Springs (23o42'S, 133o53'E) and Adelaide (34o55'S, 138o36'E) have been operating nearly continuously since ~2001. The imagers employ filters measuring OH Meinel (6, 2) and O2 Atmospheric (0, 1) band emission intensities and temperatures, as well as atmospheric gravity wave parameters. The Aerospace Corporation's Infrared Camera deployed at Maui, HI (20.7N,156.3W), collected more than 700 nights of airglow images from 2002-2005. The camera measures the OH Meinel (4,2) emission at 1.6 um using a 1 second exposure at a 3 second cadence, which allows the study of AGW and ripple features over very short temporal and spatial scales. The camera was relocated to Cerro Pachon, Chile (30.1 S, 70.8 W) and has been operating continuously since 2010. Temperature, intensity and gravity wave climatologies derived from the two Australian airglow imagers span a full solar cycle (solar max to solar max). Emission intensities have been calibrated using background stars, and temperatures have been calibrated with respect to TIMED/SABER temperatures, reducing the influence of instrument degradation on the solar cycle climatology. An automated wave detection algorithm is used to identify quasi monochromatic wave features in the airglow data, including wavelength, wave period and propagation

  6. Observations on variational and projector Monte Carlo methods

    Variational Monte Carlo and various projector Monte Carlo (PMC) methods are presented in a unified manner. Similarities and differences between the methods and choices made in designing the methods are discussed. Both methods where the Monte Carlo walk is performed in a discrete space and methods where it is performed in a continuous space are considered. It is pointed out that the usual prescription for importance sampling may not be advantageous depending on the particular quantum Monte Carlo method used and the observables of interest, so alternate prescriptions are presented. The nature of the sign problem is discussed for various versions of PMC methods. A prescription for an exact PMC method in real space, i.e., a method that does not make a fixed-node or similar approximation and does not have a finite basis error, is presented. This method is likely to be practical for systems with a small number of electrons. Approximate PMC methods that are applicable to larger systems and go beyond the fixed-node approximation are also discussed

  7. Temperature dependent structural variation from 2D supramolecular network to 3D interpenetrated metal–organic framework: In situ cleavage of S–S and C–S bonds

    Ugale, Bharat; Singh, Divyendu; Nagaraja, C.M., E-mail: cmnraja@iitrpr.ac.in

    2015-03-15

    Two new Zn(II)–organic compounds, [Zn(muco)(dbds){sub 2}(H{sub 2}O){sub 2}] (1) and [Zn(muco)(dbs)] (2) (where, muco=trans, trans-muconate dianion, dbds=4,4′-dipyridyldisulfide and dbs=4,4′-dipyridylsulfide) have been synthesized from same precursors but at two different temperatures. Both the compounds have been characterized by single-crystal X-ray diffraction, powder X-ray diffraction, elemental analysis, IR spectroscopy, thermal analysis and photoluminescence studies. Compound 1 prepared at room temperature possesses a molecular structure extended to 2D supramolecular network through (H–O…H) hydrogen-bonding interactions. Compound 2, obtained at high temperature (100 °C) shows a 3-fold interpenetrating 3D framework constituted by an in situ generated dbs linker by the cleavage of S–S and C–S bonds of dbds linker. Thus, the influence of reaction temperature on the formation of two structural phases has been demonstrated. Both 1 and 2 exhibit ligand based luminescence emission owing to n→π⁎ and π→π⁎ transitions and also high thermal stabilities. - Graphical abstract: The influence of temperature on the formation of two structural phases, a 2D supramolecular network and a 3D 3-fold interpenetrating framework has been demonstrated and their luminescence emission is measured. - Highlights: • Two new Zn(II)–organic compounds were synthesized by tuning reaction temperatures. • Temperature induced in situ generation of dbs linker has been observed. • The compounds exhibit high thermal stability and luminescence emission properties. • The effect of temperature on structure, dimension and topology has been presented.

  8. Temperature dependent structural variation from 2D supramolecular network to 3D interpenetrated metal–organic framework: In situ cleavage of S–S and C–S bonds

    Two new Zn(II)–organic compounds, [Zn(muco)(dbds)2(H2O)2] (1) and [Zn(muco)(dbs)] (2) (where, muco=trans, trans-muconate dianion, dbds=4,4′-dipyridyldisulfide and dbs=4,4′-dipyridylsulfide) have been synthesized from same precursors but at two different temperatures. Both the compounds have been characterized by single-crystal X-ray diffraction, powder X-ray diffraction, elemental analysis, IR spectroscopy, thermal analysis and photoluminescence studies. Compound 1 prepared at room temperature possesses a molecular structure extended to 2D supramolecular network through (H–O…H) hydrogen-bonding interactions. Compound 2, obtained at high temperature (100 °C) shows a 3-fold interpenetrating 3D framework constituted by an in situ generated dbs linker by the cleavage of S–S and C–S bonds of dbds linker. Thus, the influence of reaction temperature on the formation of two structural phases has been demonstrated. Both 1 and 2 exhibit ligand based luminescence emission owing to n→π⁎ and π→π⁎ transitions and also high thermal stabilities. - Graphical abstract: The influence of temperature on the formation of two structural phases, a 2D supramolecular network and a 3D 3-fold interpenetrating framework has been demonstrated and their luminescence emission is measured. - Highlights: • Two new Zn(II)–organic compounds were synthesized by tuning reaction temperatures. • Temperature induced in situ generation of dbs linker has been observed. • The compounds exhibit high thermal stability and luminescence emission properties. • The effect of temperature on structure, dimension and topology has been presented

  9. 砒砂岩区地貌形态三维分形特征量化及空间变异%Quantization and Spatial Variation of Topographic Features Using 3D Fractal Dimensions in Arsenic Rock Area

    张传才; 秦奋; 王海鹰; 李宁; 李阳

    2016-01-01

    针对现有地貌形态三维分形模型结构存在的不足,构建一个新的地貌形态三维分形维数测算模型。基于该模型对砒砂岩区274个小流域的地貌形态三维分形维数进行计算并分析其空间变异规律。研究表明:①基于该模型计算的分形维数能更准确地反映地貌形态复杂度信息;②砒砂岩区小流域地貌形态三维分形维数介于1.6836~1.9486之间;③地貌形态三维分形维数整体上覆土砒砂岩区(均值为1.7659)<裸露砒砂岩强度侵蚀区(均值为1.7854)和剧烈侵蚀区(均值为1.7748)<覆沙砒砂岩区(均值为1.7966)。由于地表覆盖物、砒砂岩裸露程度和土壤侵蚀机理的差异而形成的不同地貌特征是该区地貌形态分形特征空间变异的主要原因。%This article focuses on constructing a three-dimensional fractal model to quantify topographic fea-tures and analyzes its spatial variation in arsenic rock area. Topographical complexity is commonly described by the fractal dimension, which is a comprehensive index for topography, and a significant parameter for the soil erosion model at the watershed scale. Although lots of fractal models describing topographic features have been built by domestic and overseas scholars, mostare flawed on the model structure. To solve this problem, the article proposes a new index describing relief volume, and designs a new 3D fractal model for arsenic rock ar-ea. Based on the fractal model, ESRI ARCENGINE was used to develop the software computing fractal dimen-sion of topographic features. The fractal dimensions of 274 small watersheds were calculated by this software, and their statistical values, such as average value, maximum value, minimum value, standard deviation and co-efficient of differentiation,were obtained using zonal statistical tool.The thematic map showing spatial variation was produced using ArcGIS software based on classification statistical method

  10. Diurnal Variations of Titan's Surface Temperatures From Cassini -CIRS Observations

    Cottini, Valeria; Nixon, Conor; Jennings, Don; Anderson, Carrie; Samuelson, Robert; Irwin, Patrick; Flasar, F. Michael

    The Cassini Composite Infrared Spectrometer (CIRS) observations of Saturn's largest moon, Titan, are providing us with the ability to detect the surface temperature of the planet by studying its outgoing radiance through a spectral window in the thermal infrared at 19 m (530 cm-1) characterized by low opacity. Since the first acquisitions of CIRS Titan data the in-strument has gathered a large amount of spectra covering a wide range of latitudes, longitudes and local times. We retrieve the surface temperature and the atmospheric temperature pro-file by modeling proper zonally averaged spectra of nadir observations with radiative transfer computations. Our forward model uses the correlated-k approximation for spectral opacity to calculate the emitted radiance, including contributions from collision induced pairs of CH4, N2 and H2, haze, and gaseous emission lines (Irwin et al. 2008). The retrieval method uses a non-linear least-squares optimal estimation technique to iteratively adjust the model parameters to achieve a spectral fit (Rodgers 2000). We show an accurate selection of the wide amount of data available in terms of footprint diameter on the planet and observational conditions, together with the retrieved results. Our results represent formal retrievals of surface brightness temperatures from the Cassini CIRS dataset using a full radiative transfer treatment, and we compare to the earlier findings of Jennings et al. (2009). The application of our methodology over wide areas has increased the planet coverage and accuracy of our knowledge of Titan's surface brightness temperature. In particular we had the chance to look for diurnal variations in surface temperature around the equator: a trend with slowly increasing temperature toward the late afternoon reveals that diurnal temperature changes are present on Titan surface. References: Irwin, P.G.J., et al.: "The NEMESIS planetary atmosphere radiative transfer and retrieval tool" (2008). JQSRT, Vol. 109, pp

  11. Copper Electrodeposition for 3D Integration

    Beica, Rozalia; Ritzdorf, Tom

    2008-01-01

    Two dimensional (2D) integration has been the traditional approach for IC integration. Due to increasing demands for providing electronic devices with superior performance and functionality in more efficient and compact packages, has driven the semiconductor industry to develop more advanced packaging technologies. Three-dimensional (3D) approaches address both miniaturization and integration required for advanced and portable electronic products. Vertical integration proved to be essential in achieving a greater integration flexibility of disparate technologies, reason for which a general trend of transition from 2D to 3D integration is currently being observed in the industry. 3D chip integration using through silicon via (TSV) copper is considered one of the most advanced technologies among all different types of 3D packaging technologies. Copper electrodeposition is one of technologies that enable the formation of TSV structures. Because of its well-known application for copper damascene, it was believed ...

  12. Measuring Visual Closeness of 3-D Models

    Morales, Jose A.

    2012-09-01

    Measuring visual closeness of 3-D models is an important issue for different problems and there is still no standardized metric or algorithm to do it. The normal of a surface plays a vital role in the shading of a 3-D object. Motivated by this, we developed two applications to measure visualcloseness, introducing normal difference as a parameter in a weighted metric in Metro’s sampling approach to obtain the maximum and mean distance between 3-D models using 3-D and 6-D correspondence search structures. A visual closeness metric should provide accurate information on what the human observers would perceive as visually close objects. We performed a validation study with a group of people to evaluate the correlation of our metrics with subjective perception. The results were positive since the metrics predicted the subjective rankings more accurately than the Hausdorff distance.

  13. Eyes on the Earth 3D

    Kulikov, anton I.; Doronila, Paul R.; Nguyen, Viet T.; Jackson, Randal K.; Greene, William M.; Hussey, Kevin J.; Garcia, Christopher M.; Lopez, Christian A.

    2013-01-01

    Eyes on the Earth 3D software gives scientists, and the general public, a realtime, 3D interactive means of accurately viewing the real-time locations, speed, and values of recently collected data from several of NASA's Earth Observing Satellites using a standard Web browser (climate.nasa.gov/eyes). Anyone with Web access can use this software to see where the NASA fleet of these satellites is now, or where they will be up to a year in the future. The software also displays several Earth Science Data sets that have been collected on a daily basis. This application uses a third-party, 3D, realtime, interactive game engine called Unity 3D to visualize the satellites and is accessible from a Web browser.

  14. 3D Printing Functional Nanocomposites

    Leong, Yew Juan

    2016-01-01

    3D printing presents the ability of rapid prototyping and rapid manufacturing. Techniques such as stereolithography (SLA) and fused deposition molding (FDM) have been developed and utilized since the inception of 3D printing. In such techniques, polymers represent the most commonly used material for 3D printing due to material properties such as thermo plasticity as well as its ability to be polymerized from monomers. Polymer nanocomposites are polymers with nanomaterials composited into the ...

  15. 3D IBFV : Hardware-Accelerated 3D Flow Visualization

    Telea, Alexandru; Wijk, Jarke J. van

    2003-01-01

    We present a hardware-accelerated method for visualizing 3D flow fields. The method is based on insertion, advection, and decay of dye. To this aim, we extend the texture-based IBFV technique for 2D flow visualization in two main directions. First, we decompose the 3D flow visualization problem in a

  16. 3D Elevation Program—Virtual USA in 3D

    Lukas, Vicki; Stoker, J.M.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  17. 3D Printed Multimaterial Microfluidic Valve

    Patrick, William G.; Sharma, Sunanda; Kong, David S.; Oxman, Neri

    2016-01-01

    We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics. PMID:27525809

  18. 3D face analysis for demographic biometrics

    Tokola, Ryan A [ORNL; Mikkilineni, Aravind K [ORNL; Boehnen, Chris Bensing [ORNL

    2015-01-01

    Despite being increasingly easy to acquire, 3D data is rarely used for face-based biometrics applications beyond identification. Recent work in image-based demographic biometrics has enjoyed much success, but these approaches suffer from the well-known limitations of 2D representations, particularly variations in illumination, texture, and pose, as well as a fundamental inability to describe 3D shape. This paper shows that simple 3D shape features in a face-based coordinate system are capable of representing many biometric attributes without problem-specific models or specialized domain knowledge. The same feature vector achieves impressive results for problems as diverse as age estimation, gender classification, and race classification.

  19. 3D Printed Multimaterial Microfluidic Valve.

    Keating, Steven J; Gariboldi, Maria Isabella; Patrick, William G; Sharma, Sunanda; Kong, David S; Oxman, Neri

    2016-01-01

    We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics. PMID:27525809

  20. 3D for Graphic Designers

    Connell, Ellery

    2011-01-01

    Helping graphic designers expand their 2D skills into the 3D space The trend in graphic design is towards 3D, with the demand for motion graphics, animation, photorealism, and interactivity rapidly increasing. And with the meteoric rise of iPads, smartphones, and other interactive devices, the design landscape is changing faster than ever.2D digital artists who need a quick and efficient way to join this brave new world will want 3D for Graphic Designers. Readers get hands-on basic training in working in the 3D space, including product design, industrial design and visualization, modeling, ani

  1. 3-D printers for libraries

    Griffey, Jason

    2014-01-01

    As the maker movement continues to grow and 3-D printers become more affordable, an expanding group of hobbyists is keen to explore this new technology. In the time-honored tradition of introducing new technologies, many libraries are considering purchasing a 3-D printer. Jason Griffey, an early enthusiast of 3-D printing, has researched the marketplace and seen several systems first hand at the Consumer Electronics Show. In this report he introduces readers to the 3-D printing marketplace, covering such topics asHow fused deposition modeling (FDM) printing workBasic terminology such as build

  2. A 3-D Contextual Classifier

    Larsen, Rasmus

    1997-01-01

    . This includes the specification of a Gaussian distribution for the pixel values as well as a prior distribution for the configuration of class variables within the cross that is m ade of a pixel and its four nearest neighbours. We will extend this algorithm to 3-D, i.e. we will specify a simultaneous Gaussian...... distr ibution for a pixel and its 6 nearest 3-D neighbours, and generalise the class variable configuration distribution within the 3-D cross. The algorithm is tested on a synthetic 3-D multivariate dataset....

  3. 3D Bayesian contextual classifiers

    Larsen, Rasmus

    2000-01-01

    We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours.......We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours....

  4. Interactive 3D multimedia content

    Cellary, Wojciech

    2012-01-01

    The book describes recent research results in the areas of modelling, creation, management and presentation of interactive 3D multimedia content. The book describes the current state of the art in the field and identifies the most important research and design issues. Consecutive chapters address these issues. These are: database modelling of 3D content, security in 3D environments, describing interactivity of content, searching content, visualization of search results, modelling mixed reality content, and efficient creation of interactive 3D content. Each chapter is illustrated with example a

  5. Supernova Remnant in 3-D

    2009-01-01

    of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through. The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave. This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron. High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these structures, but their orientation and

  6. Random-Profiles-Based 3D Face Recognition System

    Joongrock Kim

    2014-03-01

    Full Text Available In this paper, a noble nonintrusive three-dimensional (3D face modeling system for random-profile-based 3D face recognition is presented. Although recent two-dimensional (2D face recognition systems can achieve a reliable recognition rate under certain conditions, their performance is limited by internal and external changes, such as illumination and pose variation. To address these issues, 3D face recognition, which uses 3D face data, has recently received much attention. However, the performance of 3D face recognition highly depends on the precision of acquired 3D face data, while also requiring more computational power and storage capacity than 2D face recognition systems. In this paper, we present a developed nonintrusive 3D face modeling system composed of a stereo vision system and an invisible near-infrared line laser, which can be directly applied to profile-based 3D face recognition. We further propose a novel random-profile-based 3D face recognition method that is memory-efficient and pose-invariant. The experimental results demonstrate that the reconstructed 3D face data consists of more than 50 k 3D point clouds and a reliable recognition rate against pose variation.

  7. Improvement of 3D Scanner

    2003-01-01

    The disadvantage remaining in 3D scanning system and its reasons are discussed. A new host-and-slave structure with high speed image acquisition and processing system is proposed to quicken the image processing and improve the performance of 3D scanning system.

  8. 3D Printing for Bricks

    ECT Team, Purdue

    2015-01-01

    Building Bytes, by Brian Peters, is a project that uses desktop 3D printers to print bricks for architecture. Instead of using an expensive custom-made printer, it uses a normal standard 3D printer which is available for everyone and makes it more accessible and also easier for fabrication.

  9. Modular 3-D Transport model

    MT3D was first developed by Chunmiao Zheng in 1990 at S.S. Papadopulos & Associates, Inc. with partial support from the U.S. Environmental Protection Agency (USEPA). Starting in 1990, MT3D was released as a pubic domain code from the USEPA. Commercial versions with enhanced capab...

  10. 煤层气储层三维渗透率变化规律实验研究%Experimental research on variation pattern of 3D permeability in coalbed methane reservoir

    裴柏林

    2013-01-01

    During coalbed methane development, the permeability of reservoir is one of the important restricting factors. The paper, adopting lab flowing test of coal cores, has measured the permeability of coal cores under dif-ferent confining pressure and different flowing pressure, obtained the variation curves of permeability. Furthermore from regression of test data, it was found that there was power exponent relation between the permeability and the ambient pressure in coal cores, and there existed exponential relation between model parameters and injection pressure difference. The analysis of flowing experiment process of 3D permeability indicated that the permeability variation of coal cores is a non-reversible process, the left direction and the right direction of coal cores are more sensible to pressure change. Moreover, in the lower pressure area, permeability change is faster, but in higher pressure area, it is slower. So it should take more attention to the pressure change in the low pressure area during coalbed methane development.%  煤层气开发过程中,储层的渗透性是制约煤层气开发的重要因素之一。采用煤心室内流动实验的方法,对不同围压、不同流压下的煤心进行渗透率测试,得出其渗透率变化曲线;进而,对实验数据进行回归发现,煤心渗透率与围压之间存在幂指数关系,而模型参数与注入压差之间存在指数关系。分析三维渗透率流动实验过程得出,煤心渗透率变化为非可逆过程,煤心的左右方向对压力变化更为敏感;同时,在低压区,渗透率变化较快,而高压区变化平缓。因此,在煤层气开发过程中,要尤其注重低压区压力变化对渗透率的影响。

  11. Using 3D in Visualization

    Wood, Jo; Kirschenbauer, Sabine; Döllner, Jürgen;

    2005-01-01

    The notion of three-dimensionality is applied to five stages of the visualization pipeline. While 3D visulization is most often associated with the visual mapping and representation of data, this chapter also identifies its role in the management and assembly of data, and in the media used...... to display 3D imagery. The extra cartographic degree of freedom offered by using 3D is explored and offered as a motivation for employing 3D in visualization. The use of VR and the construction of virtual environments exploit navigational and behavioral realism, but become most usefil when combined...... with abstracted representations embedded in a 3D space. The interactions between development of geovisualization, the technology used to implement it and the theory surrounding cartographic representation are explored. The dominance of computing technologies, driven particularly by the gaming industry...

  12. Charge collection characterization of a 3D silicon radiation detector by using 3D simulations

    Kalliopuska, J; Orava, R

    2007-01-01

    In 3D detectors, the electrodes are processed within the bulk of the sensor material. Therefore, the signal charge is collected independently of the wafer thickness and the collection process is faster due to shorter distances between the charge collection electrodes as compared to a planar detector structure. In this paper, 3D simulations are used to assess the performance of a 3D detector structure in terms of charge sharing, efficiency and speed of charge collection, surface charge, location of the primary interaction and the bias voltage. The measured current pulse is proposed to be delayed due to the resistance–capacitance (RC) product induced by the variation of the serial resistance of the pixel electrode depending on the depth of the primary interaction. Extensive simulations are carried out to characterize the 3D detector structures and to verify the proposed explanation for the delay of the current pulse. A method for testing the hypothesis experimentally is suggested.

  13. Resolving 3D magnetism in nanoparticles using polarization analyzed SANS

    Utilizing a polarized 3He cell as an analyzer we were able to perform a full polarization analysis on small-angle neutron scattering (SANS) data from an ensemble of 7 nm magnetite nanoparticles. The results led to clear separation of magnetic and nuclear scattering plus a 3D vectorial decomposition of the magnetism observed. At remanence variation in long-range magnetic correlation length was found to be highly dependent on temperature from 50 to 300 K. Additionally, we were able to compare the magnetic scattering from moments along and perpendicular to an applied field at saturation and in remanence.

  14. 3D Geological Modeling under Extremely Complex Geological Conditions

    Yanlin Shao; Ailing Zheng; Youbin He; Keyan Xiao

    2012-01-01

    3D modeling method is divided into geospatial modeling and 3D geological modeling. 3D geological modeling technique has become a favorable tool for people to observe and analyze the geological body enriched in mineral resources. Unlike geospatial modeling, 3D geological modeling must consider various geological conditions affecting spatial shape and petrophysical distribution of geological body for its complexity. This article analyzes the uncertainty, complexity and diversity of geological b...

  15. ADT-3D Tumor Detection Assistant in 3D

    Jaime Lazcano Bello

    2008-12-01

    Full Text Available The present document describes ADT-3D (Three-Dimensional Tumor Detector Assistant, a prototype application developed to assist doctors diagnose, detect and locate tumors in the brain by using CT scan. The reader may find on this document an introduction to tumor detection; ADT-3D main goals; development details; description of the product; motivation for its development; result’s study; and areas of applicability.

  16. Unassisted 3D camera calibration

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  17. Fully Automatic 3D Reconstruction of Histological Images

    Bagci, Ulas; Bai, Li

    2009-01-01

    In this paper, we propose a computational framework for 3D volume reconstruction from 2D histological slices using registration algorithms in feature space. To improve the quality of reconstructed 3D volume, first, intensity variations in images are corrected by an intensity standardization process which maps image intensity scale to a standard scale where similar intensities correspond to similar tissues. Second, a subvolume approach is proposed for 3D reconstruction by dividing standardized...

  18. Color 3D Reverse Engineering

    2002-01-01

    This paper presents a principle and a method of col or 3D laser scanning measurement. Based on the fundamental monochrome 3D measureme nt study, color information capture, color texture mapping, coordinate computati on and other techniques are performed to achieve color 3D measurement. The syste m is designed and composed of a line laser light emitter, one color CCD camera, a motor-driven rotary filter, a circuit card and a computer. Two steps in captu ring object's images in the measurement process: Firs...

  19. 3-D neutron transport benchmarks

    A set of 3-D neutron transport benchmark problems proposed by the Osaka University to NEACRP in 1988 has been calculated by many participants and the corresponding results are summarized in this report. The results of Keff, control rod worth and region-averaged fluxes for the four proposed core models, calculated by using various 3-D transport codes are compared and discussed. The calculational methods used were: Monte Carlo, Discrete Ordinates (Sn), Spherical Harmonics (Pn), Nodal Transport and others. The solutions of the four core models are quite useful as benchmarks for checking the validity of 3-D neutron transport codes

  20. 3D on the internet

    Puntar, Matej

    2012-01-01

    The purpose of this thesis is the presentation of already established and new technologies of displaying 3D content in a web browser. The thesis begins with a short presentation of the history of 3D content available on the internet and its development together with advantages and disadvantages of individual technologies. The latter two are described in detail as well is their use and the differences among them. Special emphasis has been given to WebGL, the newest technology of 3D conte...

  1. 5-axis 3D Printer

    Grutle, Øyvind Kallevik

    2015-01-01

    3D printers have in recent years become extremely popular. Even though 3D printing technology have existed since the late 1980's, it is now considered one of the most significant technological breakthroughs of the twenty-first century. Several different 3D printing processes have been invented during the years. But it is the fused deposition modeling (FDM) which was one of the first invented that is considered the most popular today. Even though the FDM process is the most popular, it still s...

  2. Handbook of 3D integration

    Garrou , Philip; Ramm , Peter

    2014-01-01

    Edited by key figures in 3D integration and written by top authors from high-tech companies and renowned research institutions, this book covers the intricate details of 3D process technology.As such, the main focus is on silicon via formation, bonding and debonding, thinning, via reveal and backside processing, both from a technological and a materials science perspective. The last part of the book is concerned with assessing and enhancing the reliability of the 3D integrated devices, which is a prerequisite for the large-scale implementation of this emerging technology. Invaluable reading fo

  3. Exploration of 3D Printing

    Lin, Zeyu

    2014-01-01

    3D printing technology is introduced and defined in this Thesis. Some methods of 3D printing are illustrated and their principles are explained with pictures. Most of the essential parts are presented with pictures and their effects are explained within the whole system. Problems on Up! Plus 3D printer are solved and a DIY product is made with this machine. The processes of making product are recorded and the items which need to be noticed during the process are the highlight in this th...

  4. Tuotekehitysprojekti: 3D-tulostin

    Pihlajamäki, Janne

    2011-01-01

    Opinnäytetyössä tutustuttiin 3D-tulostamisen teknologiaan. Työssä käytiin läpi 3D-tulostimesta tehty tuotekehitysprojekti. Sen lisäksi esiteltiin yleisellä tasolla tuotekehitysprosessi ja syntyneiden tulosten mahdollisia suojausmenetelmiä. Tavoitteena tässä työssä oli kehittää markkinoilta jo löytyvää kotitulostin-tasoista 3D-laiteteknologiaa lähemmäksi ammattilaistason ratkaisua. Tavoitteeseen pyrittiin keskittymällä parantamaan laitteella saavutettavaa tulostustarkkuutta ja -nopeutt...

  5. High solar cycle spectral variations inconsistent with stratospheric ozone observations

    Ball, W T; Rozanov, E V; Kuchar, A; Sukhodolov, T; Tummon, F; Shapiro, A V; Schmutz, W

    2016-01-01

    Some of the natural variability in climate is understood to come from changes in the Sun. A key route whereby the Sun may influence surface climate is initiated in the tropical stratosphere by the absorption of solar ultraviolet (UV) radiation by ozone, leading to a modification of the temperature and wind structures and consequently to the surface through changes in wave propagation and circulation. While changes in total, spectrally-integrated, solar irradiance lead to small variations in global mean surface temperature, the `top-down' UV effect preferentially influences on regional scales at mid-to-high latitudes with, in particular, a solar signal noted in the North Atlantic Oscillation (NAO). The amplitude of the UV variability is fundamental in determining the magnitude of the climate response but understanding of the UV variations has been challenged recently by measurements from the SOlar Radiation and Climate Experiment (SORCE) satellite, which show UV solar cycle changes up to 10 times larger than p...

  6. Main: TATCCAYMOTIFOSRAMY3D [PLACE

    Full Text Available TATCCAYMOTIFOSRAMY3D S000256 01-August-2006 (last modified) kehi TATCCAY motif found in rice (O. ... otif and G motif (see S000130) are responsible for sugar ... repression (Toyofuku et al. 1998); GATA; amylase; ...

  7. Heterodyne 3D ghost imaging

    Yang, Xu; Zhang, Yong; Yang, Chenghua; Xu, Lu; Wang, Qiang; Zhao, Yuan

    2016-06-01

    Conventional three dimensional (3D) ghost imaging measures range of target based on pulse fight time measurement method. Due to the limit of data acquisition system sampling rate, range resolution of the conventional 3D ghost imaging is usually low. In order to take off the effect of sampling rate to range resolution of 3D ghost imaging, a heterodyne 3D ghost imaging (HGI) system is presented in this study. The source of HGI is a continuous wave laser instead of pulse laser. Temporal correlation and spatial correlation of light are both utilized to obtain the range image of target. Through theory analysis and numerical simulations, it is demonstrated that HGI can obtain high range resolution image with low sampling rate.

  8. Conducting polymer 3D microelectrodes

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi;

    2010-01-01

    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained...

  9. Combinatorial 3D Mechanical Metamaterials

    Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin

    2015-03-01

    We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.

  10. AI 3D Cybug Gaming

    Ahmed, Zeeshan

    2010-01-01

    In this short paper I briefly discuss 3D war Game based on artificial intelligence concepts called AI WAR. Going in to the details, I present the importance of CAICL language and how this language is used in AI WAR. Moreover I also present a designed and implemented 3D War Cybug for AI WAR using CAICL and discus the implemented strategy to defeat its enemies during the game life.