WorldWideScience

Sample records for 3d micromechanical modeling

  1. 3D morphological and micromechanical modeling of cementitious materials

    The goal of this thesis is to develop morphological models of cementitious materials and use these models to study their local and effective response. To this aim, 3D images of cementitious materials (mortar and concrete), obtained by micro-tomography, are studied. First, the mortar image is segmented in order to obtain an image of a real microstructure, to be used for linear elasticity computations. The image of concrete is used, after being processed, to determine various morphological characteristics of the material. A random model of concrete is then developed and validated by means of morphological data. This model is made up of three phases, corresponding to the matrix, aggregates and voids. The aggregates phase is modelled by implantation of Poisson polyhedra without overlap. For this purpose, an algorithm suited to the vector generation of Poisson polyhedra is introduced and validated with morphological measurements. Finally, the effective linear elastic properties of the mortar and other simulated microstructures are estimated with the FFT (Fast-Fourier Transform) method, for various contrasts between the aggregates and matrix' Young moduli. To complete this work, focused on effective properties, an analysis of the local elastic response in the matrix phase is undertaken, in order to determine the spatial arrangement between stress concentration zones in the matrix and the phases of the microstructure (aggregates and voids). Moreover, a statistical fields characterization, in the matrix, is achieved, including the determination of the Representative Volume Element (RVE) size. Furthermore, a comparison between effective and local elastic properties obtained from microstructures containing polyhedra and spheres is carried out. (author)

  2. Micromechanical analysis of nanocomposites using 3D voxel based material model

    Mishnaevsky, Leon

    2012-01-01

    A computational study on the effect of nanocomposite structures on the elastic properties is carried out with the use of the 3D voxel based model of materials and the combined Voigt–Reuss method. A hierarchical voxel based model of a material reinforced by an array of exfoliated and intercalated ...... probability of glass fibers in hybrid (hierarchical) composites, using the micromechanical voxel-based model of nanocomposites, it was observed that the nanoreinforcement in the matrix leads to slightly lower fiber failure probability....

  3. 3D multiscale micromechanical model of wood: From annual rings to microfibrils

    Qing, Hai; Mishnaevsky, Leon

    2010-01-01

    A 3D micromechanical analytical-computational model of softwood, which takes into account the wood microstructures at four scale levels, from microfibrils to annual rings, is developed. For the analysis of the effect of the annual rings structure on the properties of softwood, an improved rule......M) and finite element method (FEM) simulations. It was shown that IRoM gives almost as good results as FEM. The analytical model of annual rings is combined with the 3D finite element model of softwood as cellular material with multilayered, microfibril reinforced cell walls, developed by (Qing and...... Mishnaevsky, 2009a) and (Qing and Mishnaevsky, 2009b). Using the combined four-level model, the effect of wood density, microfibril angle (MFA) and cell shape angle (CSA) on the Young’s moduli, Poisson’s ratios and shrinkage properties of softwood has been investigated in numerical experiments. The...

  4. Micro-mechanics based damage mechanics for 3D Orthogonal Woven Composites: Experiment and Numerical Modelling

    Saleh, Mohamed Nasr

    2016-01-08

    Damage initiation and evolution of three-dimensional (3D) orthogonal woven carbon fibre composite (3DOWC) is investigated experimentally and numerically. Meso-scale homogenisation of the representative volume element (RVE) is utilised to predict the elastic properties, simulate damage initiation and evolution when loaded in tension. The effect of intra-yarns transverse cracking and shear diffused damage on the in-plane transverse modulus and shear modulus is investigated while one failure criterion is introduced to simulate the matrix damage. The proposed model is based on two major assumptions. First, the effect of the binder yarns, on the in-plane properties, is neglected, so the 3DOWC unit cell can be approximated as a (0o/90o) cross-ply laminate. Second, a micro-mechanics based damage approach is used at the meso-scale, so damage indicators can be correlated, explicitly, to the density of cracks within the material. Results from the simulated RVE are validated against experimental results along the warp (0o direction) and weft (90o direction). This approach paves the road for more predictive models as damage evolution laws are obtained from micro mechanical considerations and rely on few well-defined material parameters. This largely differs from classical damage mechanics approaches in which the evolution law is obtained by retrofitting experimental observations.

  5. Moisture-related mechanical properties of softwood: 3D micromechanical modeling

    Qing, Hai; Mishnaevsky, Leon

    2009-01-01

    temperature-caused effects, has been developed and employed to the modeling of the moisture-related changes of the elastic properties of cell layers. A series of computational experiments have been carried out. In the simulations, it was observed that the shrinkage coefficients of longitudinal direction......Computational micromechanical analysis of the influence of moisture, density and microstructure of latewood on its hydroelastic and shrinkage properties is carried out. The elastic properties of cell sublayers have been determined using the unit cell models as for fiber reinforced composites (two...... results for elastic properties of cell sublayers obtained from the unit cell models, from the self-consistent method and Halpin-Tsai equations are compared, and good agreement between these methods was observed. A computational technique, based on the representation of moisture effect as equivalent...

  6. 3D Digital Modelling

    Hundebøl, Jesper

    wave of new building information modelling tools demands further investigation, not least because of industry representatives' somewhat coarse parlance: Now the word is spreading -3D digital modelling is nothing less than a revolution, a shift of paradigm, a new alphabet... Research qeustions. Based...... on empirical probes (interviews, observations, written inscriptions) within the Danish construction industry this paper explores the organizational and managerial dynamics of 3D Digital Modelling. The paper intends to - Illustrate how the network of (non-)human actors engaged in the promotion (and arrest) of 3......D Modelling (in Denmark) stabilizes - Examine how 3D Modelling manifests itself in the early design phases of a construction project with a view to discuss the effects hereof for i.a. the management of the building process. Structure. The paper introduces a few, basic methodological concepts...

  7. Tangible 3D Modelling

    Hejlesen, Aske K.; Ovesen, Nis

    2012-01-01

    This paper presents an experimental approach to teaching 3D modelling techniques in an Industrial Design programme. The approach includes the use of tangible free form models as tools for improving the overall learning. The paper is based on lecturer and student experiences obtained through...

  8. Numerical 3D Investigation of Non-Metallic (Glass, Carbon) Fiber Pull-out Micromechanics (in Concrete Matrix)

    Krasņikovs, A; Khabaz, A; Teļnova, I; Machanovsky, A; Klavinsh, J

    2010-01-01

    In the paper short glass and carbon fiber micro-mechanics in concrete matrix is under consideration. In present work was performed pull-out 3D numerical modeling. Numerical results were compared with realized experiments for single and few (fibre bundle) AR glass and carbon fibers pulling out of concrete matrix. Investigated were one fiber pull-out dynamics as well micro-stresses in the material. During performed single fiber pull out experiments were established such process mains steps: a) ...

  9. Micromechanical modeling of strength and damage of fiber reinforced composites

    Mishnaevsky, L. Jr.; Broendsted, P.

    2007-03-15

    The report for the first year of the EU UpWind project includes three parts: overview of concepts and methods of modelling of mechanical behavior, deformation and damage of unidirectional fiber reinforced composites, development of computational tools for the automatic generation of 3D micromechanical models of fiber reinforced composites, and micromechanical modelling of damage in FRC, and phenomenological analysis of the effect of frequency of cyclic loading on the lifetime and damage evolution in materials. (au)

  10. 3D modelling and recognition

    Rodrigues, Marcos; Robinson, Alan; Alboul, Lyuba; Brink, Willie

    2006-01-01

    3D face recognition is an open field. In this paper we present a method for 3D facial recognition based on Principal Components Analysis. The method uses a relatively large number of facial measurements and ratios and yields reliable recognition. We also highlight our approach to sensor development for fast 3D model acquisition and automatic facial feature extraction.

  11. 3D Face Appearance Model

    Lading, Brian; Larsen, Rasmus; Åström, Kalle

    2006-01-01

    We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}......We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}...

  12. 3D Face Apperance Model

    Lading, Brian; Larsen, Rasmus; Astrom, K

    2006-01-01

    We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations......We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations...

  13. Making Inexpensive 3-D Models

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  14. Variational Asymptotic Micromechanics Modeling of Composite Materials

    Tang, Tian

    2008-01-01

    The issue of accurately determining the effective properties of composite materials has received the attention of numerous researchers in the last few decades and continues to be in the forefront of material research. Micromechanics models have been proven to be very useful tools for design and analysis of composite materials. In the present work, a versatile micromechanics modeling framework, namely, the Variational Asymptotic Method for Unit Cell Homogenization (VAMUCH), has been invented a...

  15. 3D Face Appearance Model

    Lading, Brian; Larsen, Rasmus; Åström, Kalle

    2006-01-01

    We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}

  16. 3D Face Apperance Model

    Lading, Brian; Larsen, Rasmus; Astrom, K

    2006-01-01

    We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations

  17. Optical Measurement of Micromechanics and Structure in a 3D Fibrin Extracellular Matrix

    Kotlarchyk, Maxwell Aaron

    2011-07-01

    In recent years, a significant number of studies have focused on linking substrate mechanics to cell function using standard methodologies to characterize the bulk properties of the hydrogel substrates. However, current understanding of the correlations between the microstructural mechanical properties of hydrogels and cell function in 3D is poor, in part because of a lack of appropriate techniques. Methods for tuning extracellular matrix (ECM) mechanics in 3D cell culture that rely on increasing the concentration of either protein or cross-linking molecules fail to control important parameters such as pore size, ligand density, and molecular diffusivity. Alternatively, ECM stiffness can be modulated independently from protein concentration by mechanically loading the ECM. We have developed an optical tweezers-based microrheology system to investigate the fundamental role of ECM mechanical properties in determining cellular behavior. Further, this thesis outlines the development of a novel device for generating stiffness gradients in naturally derived ECMs, where stiffness is tuned by inducing strain, while local structure and mechanical properties are directly determined by laser tweezers-based passive and active microrheology respectively. Hydrogel substrates polymerized within 35 mm diameter Petri dishes are strained non-uniformly by the precise rotation of an embedded cylindrical post, and exhibit a position-dependent stiffness with little to no modulation of local mesh geometry. Here we present microrheological studies in the context of fibrin hydrogels. Microrheology and confocal imaging were used to directly measure local changes in micromechanics and structure respectively in unstrained hydrogels of increasing fibrinogen concentration, as well as in our strain gradient device, in which the concentration of fibrinogen is held constant. Orbital particle tracking, and raster image correlation analysis are used to quantify changes in fibrin mechanics on the

  18. Making Inexpensive 3-D Models

    Manos, Harry

    2016-03-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the TPT theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity well tailored to specific class lessons. Most of the supplies are readily available in the home or at school: rubbing alcohol, a rag, two colors of spray paint, art brushes, and masking tape. The cost of these supplies, if you don't have them, is less than 20.

  19. Local approach and micromechanical modelling of fracture

    After an introduction into the phenomenae of brittle and ductile fracture of steels the lecture will present various micromechanical models covering different aspects of the failure process. Emphasis will be laid on the applicatin of those models covering in particular the Weibull cleavage stress, the Rice and Tracey void growth model, and the Gurson model as modified by Needleman and Tvergard. Whenever possible, the comparison of experimental and numerical results will be stressed. In conclusion, the future potential of micromechanical models will be sketched, e.g., application to other materials like composites or towards optimization of existing and design of new materials. (orig.)

  20. Post processing of 3D models for 3D printing

    Pikovnik, Tomaž

    2015-01-01

    According to the opinion of some experts the additive manufacturing or 3D printing will change manufacturing industry, because any individual could print their own model according to his or her wishes. In this graduation thesis some of the additive manufacturing technologies are presented. Furthermore in the production of house scale model in 1:100 is presented, starting from modeling to printing. Special attention is given to postprocessing of the building model elements us...

  1. Modular 3-D Transport model

    MT3D was first developed by Chunmiao Zheng in 1990 at S.S. Papadopulos & Associates, Inc. with partial support from the U.S. Environmental Protection Agency (USEPA). Starting in 1990, MT3D was released as a pubic domain code from the USEPA. Commercial versions with enhanced capab...

  2. Crowdsourcing Based 3d Modeling

    Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.

    2016-06-01

    Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  3. 3D modelling for multipurpose cadastre

    Abduhl Rahman, A.; Van Oosterom, P.J.M.; Hua, T.C.; Sharkawi, K.H.; Duncan, E.E.; Azri, N.; Hassan, M.I.

    2012-01-01

    Three-dimensional (3D) modelling of cadastral objects (such as legal spaces around buildings, around utility networks and other spaces) is one of the important aspects for a multipurpose cadastre (MPC). This paper describes the 3D modelling of the objects for MPC and its usage to the knowledge of 3D

  4. Face Detection with a 3D Model

    Barbu, Adrian; Lay, Nathan; Gramajo, Gary

    2014-01-01

    This paper presents a part-based face detection approach where the spatial relationship between the face parts is represented by a hidden 3D model with six parameters. The computational complexity of the search in the six dimensional pose space is addressed by proposing meaningful 3D pose candidates by image-based regression from detected face keypoint locations. The 3D pose candidates are evaluated using a parameter sensitive classifier based on difference features relative to the 3D pose. A...

  5. FROM 3D MODEL DATA TO SEMANTICS

    My Abdellah Kassimi

    2012-01-01

    Full Text Available The semantic-based 3D models retrieval systems have become necessary since the increase of 3D modelsdatabases. In this paper, we propose a new method for the mapping problem between 3D model data andsemantic data involved in semantic based retrieval for 3D models given by polygonal meshes. First, wefocused on extracting invariant descriptors from the 3D models and analyzing them to efficient semanticannotation and to improve the retrieval accuracy. Selected shape descriptors provide a set of termscommonly used to describe visually a set of objects using linguistic terms and are used as semanticconcept to label 3D model. Second, spatial relationship representing directional, topological anddistance relationships are used to derive other high-level semantic features and to avoid the problem ofautomatic 3D model annotation. Based on the resulting semantic annotation and spatial concepts, anontology for 3D model retrieval is constructed and other concepts can be inferred. This ontology is usedto find similar 3D models for a given query model. We adopted the query by semantic example approach,in which the annotation is performed mostly automatically. The proposed method is implemented in our3D search engine (SB3DMR, tested using the Princeton Shape Benchmark Database.

  6. The 3D-city model

    Holmgren, Steen; Rüdiger, Bjarne; Tournay, Bruno

    2001-01-01

    We have worked with the construction and use of 3D city models for about ten years. This work has given us valuable experience concerning model methodology. In addition to this collection of knowledge, our perception of the concept of city models has changed radically. In order to explain...... of 3D city models....

  7. Spatial data modelling for 3D GIS

    Abdul-Rahman, Alias

    2007-01-01

    This book covers fundamental aspects of spatial data modelling specifically on the aspect of three-dimensional (3D) modelling and structuring. Realisation of ""true"" 3D GIS spatial system needs a lot of effort, and the process is taking place in various research centres and universities in some countries. The development of spatial data modelling for 3D objects is the focus of this book.

  8. Three-dimensional micromechanical models for the nonlinear analysis of pultruded composite structures

    Kilic, Mustafa Hakan

    This study presents a new three-dimensional (3D) micromechanics-based nonlinear framework for the analysis of pultruded composite structures. The proposed material modeling framework is a nested micromechanical approach that explicitly recognizes the different composite systems within the cross-section of a pultruded composite member. The 3D lamination theory is used to generate a homogenized nonlinear effective response using a through-thickness representative stacking sequence. Different 3D micromechanical models can be used to represent the composite layers within the repeating stacking sequence, e.g. roving layer, continuous filament mat (CFM), and woven fabrics. The proposed modeling framework is applied for pultruded composite material systems made from roving and CFM. The roving layer is idealized using an existing 3D nonlinear micromechanics model for a unidirectional fiber reinforced material. A simple nonlinear micromechanical model for the CFM layer is introduced and implemented. The overall modeling approach is able to predict both the elastic and nonlinear response of the composite material based on the in-situ properties and response of the fiber and matrix constituents. Experimental data, from off-axis tests of pultruded plates, is used to verify the proposed modeling approach. The 3D modeling framework shows good prediction capabilities for the overall effective elastic constants, as well as the nonlinear multi-axial stress-strain response. In addition, a simple degradation and damage modeling is coupled with the proposed analysis framework. Several applications are performed for the nonlinear analysis of pultruded composite structures, such as progressive failure analysis of notched plates, bending of short beams, and damage analysis of pultruded FRP bolted connections.

  9. Compression of 3D models with NURBS

    Santa Cruz Ducci, Diego; Ebrahimi, Touradj

    2005-01-01

    With recent progress in computing, algorithmics and telecommunications, 3D models are increasingly used in various multimedia applications. Examples include visualization, gaming, entertainment and virtual reality. In the multimedia domain 3D models have been traditionally represented as polygonal meshes. This piecewise planar representation can be thought of as the analogy of bitmap images for 3D surfaces. As bitmap images, they enjoy great flexibility and are particularly well suited to des...

  10. 3D modelling for multipurpose cadastre

    Abduhl Rahman, A.; P. J. M. Van Oosterom; T. C. Hua; Sharkawi, K.H.; E. E. Duncan; Azri, N.; Hassan, M. I.

    2012-01-01

    Three-dimensional (3D) modelling of cadastral objects (such as legal spaces around buildings, around utility networks and other spaces) is one of the important aspects for a multipurpose cadastre (MPC). This paper describes the 3D modelling of the objects for MPC and its usage to the knowledge of 3D cadastre since more and more related agencies attempt to develop or embed 3D components into the MPC. We also intend to describe the initiative by Malaysian national mapping and cadastral agency (...

  11. Curating Architectural 3D CAD Models

    MacKenzie Smith

    2009-06-01

    Full Text Available Normal 0 Increasing demand to manage and preserve 3-dimensional models for a variety of physical phenomena (e.g., building and engineering designs, computer games, or scientific visualizations is creating new challenges for digital archives. Preserving 3D models requires identifying technical formats for the models that can be maintained over time, and the available formats offer different advantages and disadvantages depending on the intended future uses of the models. Additionally, the metadata required to manage 3D models is not yet standardized, and getting intellectual proposal rights for digital models is uncharted territory.  The FACADE Project at MIT is investigating these challenges in the architecture, engineering and construction (AEC industry and has developed recommendations and systems to support digital archives in dealing with digital 3D models and related data. These results can also be generalized to other domains doing 3D modeling.

  12. Micromechanical devices with controllable stiffness fabricated from regular 3D porous materials

    Hierarchical pore structures can dramatically change the mechanical properties of materials, but current methods for creating porous materials make the mechanical properties difficult to engineer. Here we present template based techniques for making three-dimensional (3D) regular macroporous microcantilevers with Young’s moduli that can vary from 2.0 to 44.3 GPa. The Young’s moduli can be tuned by controlling the porosity and the deformation mode, which is dependent on the pore structure. The template technique allows 3D spatial control of the ordered porous structure and the ability to use a broad set of materials, demonstrated with nickel and alumina microcantilevers. (paper)

  13. 3-D Human Modeling and Animation

    Ratner, Peter

    2012-01-01

    3-D Human Modeling and Animation Third Edition All the tools and techniques you need to bring human figures to 3-D life Thanks to today's remarkable technology, artists can create and animate realistic, three-dimensional human figures that were not possible just a few years ago. This easy-to-follow book guides you through all the necessary steps to adapt your own artistic skill in figure drawing, painting, and sculpture to this exciting digital canvas. 3-D Human Modeling and Animation, Third Edition starts you off with simple modeling, then prepares you for more advanced techniques for crea

  14. Computer Modelling of 3D Geological Surface

    Kodge B. G.

    2011-02-01

    Full Text Available The geological surveying presently uses methods and tools for the computer modeling of 3D-structures of the geographical subsurface and geotechnical characterization as well as the application of geoinformation systems for management and analysis of spatial data, and their cartographic presentation. The objectives of this paper are to present a 3D geological surface model of Latur district in Maharashtra state of India. This study is undertaken through the several processes which are discussed in this paper to generate and visualize the automated 3D geological surface model of a projected area.

  15. Computer Modelling of 3D Geological Surface

    Kodge, B G

    2011-01-01

    The geological surveying presently uses methods and tools for the computer modeling of 3D-structures of the geographical subsurface and geotechnical characterization as well as the application of geoinformation systems for management and analysis of spatial data, and their cartographic presentation. The objectives of this paper are to present a 3D geological surface model of Latur district in Maharashtra state of India. This study is undertaken through the several processes which are discussed in this paper to generate and visualize the automated 3D geological surface model of a projected area.

  16. Multifractal modelling and 3D lacunarity analysis

    This study presents a comparative evaluation of lacunarity of 3D grey level models with different types of inhomogeneity. A new method based on the 'Relative Differential Box Counting' was developed to estimate the lacunarity features of grey level volumes. To validate our method, we generated a set of 3D grey level multifractal models with random, anisotropic and hierarchical properties. Our method gives a lacunarity measurement correlated with the theoretical one and allows a better model classification compared with a classical approach.

  17. Automatic balancing of 3D models

    Christiansen, Asger Nyman; Schmidt, Ryan; Bærentzen, Jakob Andreas

    2014-01-01

    3D printing technologies allow for more diverse shapes than are possible with molds and the cost of making just one single object is negligible compared to traditional production methods. However, not all shapes are suitable for 3D print. One of the remaining costs is therefore human time spent......, in these cases, we will apply a rotation of the object which only deforms the shape a little near the base. No user input is required but it is possible to specify manufacturing constraints related to specific 3D print technologies. Several models have successfully been balanced and printed using both polyjet...

  18. 3D face modeling, analysis and recognition

    Daoudi, Mohamed; Veltkamp, Remco

    2013-01-01

    3D Face Modeling, Analysis and Recognition presents methodologies for analyzing shapes of facial surfaces, develops computational tools for analyzing 3D face data, and illustrates them using state-of-the-art applications. The methodologies chosen are based on efficient representations, metrics, comparisons, and classifications of features that are especially relevant in the context of 3D measurements of human faces. These frameworks have a long-term utility in face analysis, taking into account the anticipated improvements in data collection, data storage, processing speeds, and application s

  19. Creating a 3D Game Character Model

    Paasikivi, Joni

    2014-01-01

    This thesis goes through the process of modeling a low poly 3D model for a video game project from the perspective of a novice 3D artist. The goal was to prepare a stylized low polygon model of less than 6000 triangles, based on pre-made design and a living person. The program used in this project was 3Ds Max. The process starts with the creation of the reference images for the 3Ds Max and goes through the process of modeling the wireframe model, unwrapping the model for texturizing, and crea...

  20. Measuring Visual Closeness of 3-D Models

    Morales, Jose A.

    2012-09-01

    Measuring visual closeness of 3-D models is an important issue for different problems and there is still no standardized metric or algorithm to do it. The normal of a surface plays a vital role in the shading of a 3-D object. Motivated by this, we developed two applications to measure visualcloseness, introducing normal difference as a parameter in a weighted metric in Metro’s sampling approach to obtain the maximum and mean distance between 3-D models using 3-D and 6-D correspondence search structures. A visual closeness metric should provide accurate information on what the human observers would perceive as visually close objects. We performed a validation study with a group of people to evaluate the correlation of our metrics with subjective perception. The results were positive since the metrics predicted the subjective rankings more accurately than the Hausdorff distance.

  1. Micromechanical modelling of fuel viscoplastic behaviour

    To identify the effect of microstructural parameters on the viscoplastic behaviour of nuclear fuels, micromechanical (also called homogenisation) approaches are used. These approaches aim at deriving effective properties of heterogeneous material from the properties of their constituents. They stand on full-field computations of representative volume elements of microstructures as well as on mean-field semi-analytical models. For light water reactor fuels, these approaches have been applied to the modelling of the effect of two microstructural parameters: the porosity effects on the thermal creep of dioxide uranium fuels (transient conditions of irradiation) as well as the plutonium content effect on the viscoplastic behaviour (nominal conditions of irradiations) of mixed oxide fuels (MOX). (authors)

  2. 3-D computational model of poly (lactic acid)/halloysite nanocomposites: Predicting elastic properties and stress analysis

    De Silva, R. T.; Pasbakhsh, Pooria; Goh, K. L.;

    2014-01-01

    A real-structure based 3-D micromechanical computational model of poly (lactic acid) nanocomposites reinforced by randomly oriented halloysite nanotubes (HNTs) was developed and compared with an idealized model (conventional model) and experimental results. The developed idealized model consists of...

  3. Multifractal modelling and 3D lacunarity analysis

    Hanen, Akkari, E-mail: bettaieb.hanen@topnet.t [Laboratoire de biophysique, TIM, Faculte de Medecine (Tunisia); Imen, Bhouri, E-mail: bhouri_imen@yahoo.f [Unite de recherche ondelettes et multifractals, Faculte des sciences (Tunisia); Asma, Ben Abdallah, E-mail: asma.babdallah@cristal.rnu.t [Laboratoire de biophysique, TIM, Faculte de Medecine (Tunisia); Patrick, Dubois, E-mail: pdubois@chru-lille.f [INSERM, U 703, Lille (France); Hedi, Bedoui Mohamed, E-mail: medhedi.bedoui@fmm.rnu.t [Laboratoire de biophysique, TIM, Faculte de Medecine (Tunisia)

    2009-09-28

    This study presents a comparative evaluation of lacunarity of 3D grey level models with different types of inhomogeneity. A new method based on the 'Relative Differential Box Counting' was developed to estimate the lacunarity features of grey level volumes. To validate our method, we generated a set of 3D grey level multifractal models with random, anisotropic and hierarchical properties. Our method gives a lacunarity measurement correlated with the theoretical one and allows a better model classification compared with a classical approach.

  4. 3D Modeling Engine Representation Summary Report

    Steven Prescott; Ramprasad Sampath; Curtis Smith; Timothy Yang

    2014-09-01

    Computers have been used for 3D modeling and simulation, but only recently have computational resources been able to give realistic results in a reasonable time frame for large complex models. This summary report addressed the methods, techniques, and resources used to develop a 3D modeling engine to represent risk analysis simulation for advanced small modular reactor structures and components. The simulations done for this evaluation were focused on external events, specifically tsunami floods, for a hypothetical nuclear power facility on a coastline.

  5. 3D gender recognition using cognitive modeling

    Fagertun, Jens; Andersen, Tobias; Hansen, Thomas;

    2013-01-01

    We use 3D scans of human faces and cognitive modeling to estimate the “gender strength”. The “gender strength” is a continuous class variable of the gender, superseding the traditional binary class labeling. To visualize some of the visual trends humans use when performing gender classification, we...

  6. 3D gender recognition using cognitive modeling

    Fagertun, Jens; Andersen, Tobias; Hansen, Thomas; Paulsen, Rasmus Reinhold

    2013-01-01

    We use 3D scans of human faces and cognitive modeling to estimate the “gender strength”. The “gender strength” is a continuous class variable of the gender, superseding the traditional binary class labeling. To visualize some of the visual trends humans use when performing gender classification, ...

  7. 3D object-oriented image analysis in 3D geophysical modelling

    Fadel, I.; van der Meijde, M.; Kerle, N.;

    2015-01-01

    Non-uniqueness of satellite gravity interpretation has traditionally been reduced by using a priori information from seismic tomography models. This reduction in the non-uniqueness has been based on velocity-density conversion formulas or user interpretation of the 3D subsurface structures (objects......) based on the seismic tomography models and then forward modelling these objects. However, this form of object-based approach has been done without a standardized methodology on how to extract the subsurface structures from the 3D models. In this research, a 3D object-oriented image analysis (3D OOA......) approach was implemented to extract the 3D subsurface structures from geophysical data. The approach was applied on a 3D shear wave seismic tomography model of the central part of the East African Rift System. Subsequently, the extracted 3D objects from the tomography model were reconstructed in the 3D...

  8. Multi-Level Micromechanical Modeling of Bone Tissues

    Wang, Yu-Kai

    2013-01-01

    In this thesis, we aim to develop robust multi-level micromechanical constitutive models for human bone tissues. First, the hierarchical microstructure of human bones is considered, and a multi-scale micromechanical homogenization scheme is proposed in Chapter 3. The proposed framework predicts that the pattern of mineralization and the shape of the mineral crystals serve to improve the mechanical function of collagen fibrils along the longitudinal axis. The numerical results in comparison to...

  9. Debris Dispersion Model Using Java 3D

    Thirumalainambi, Rajkumar; Bardina, Jorge

    2004-01-01

    This paper describes web based simulation of Shuttle launch operations and debris dispersion. Java 3D graphics provides geometric and visual content with suitable mathematical model and behaviors of Shuttle launch. Because the model is so heterogeneous and interrelated with various factors, 3D graphics combined with physical models provides mechanisms to understand the complexity of launch and range operations. The main focus in the modeling and simulation covers orbital dynamics and range safety. Range safety areas include destruct limit lines, telemetry and tracking and population risk near range. If there is an explosion of Shuttle during launch, debris dispersion is explained. The shuttle launch and range operations in this paper are discussed based on the operations from Kennedy Space Center, Florida, USA.

  10. Illustrating the disassembly of 3D models

    Guo, Jianwei

    2013-10-01

    We present a framework for the automatic disassembly of 3D man-made models and the illustration of the disassembly process. Given an assembled 3D model, we first analyze the individual parts using sharp edge loops and extract the contact faces between each pair of neighboring parts. The contact faces are then used to compute the possible moving directions of each part. We then present a simple algorithm for clustering the sets of the individual parts into meaningful sub-assemblies, which can be used for a hierarchical decomposition. We take the stability of sub-assemblies into account during the decomposition process by considering the upright orientation of the input models. Our framework also provides a user-friendly interface to enable the superimposition of the constraints for the decomposition. Finally, we visualize the disassembly process by generating an animated sequence. The experiments demonstrate that our framework works well for a variety of complex models. © 2013 Elsevier Ltd.

  11. Integrated Biogeomorphological Modeling Using Delft3D

    Ye, Q.; Jagers, B.

    2011-12-01

    The skill of numerical morphological models has improved significantly from the early 2D uniform, total load sediment models (with steady state or infrequent wave updates) to recent 3D hydrodynamic models with multiple suspended and bed load sediment fractions and bed stratigraphy (online coupled with waves). Although there remain many open questions within this combined field of hydro- and morphodynamics, we observe an increasing need to include biological processes in the overall dynamics. In riverine and inter-tidal environments, there is often an important influence by riparian vegetation and macrobenthos. Over the past decade more and more researchers have started to extend the simulation environment with wrapper scripts and other quick code hacks to estimate their influence on morphological development in coastal, estuarine and riverine environments. Although one can in this way quickly analyze different approaches, these research tools have generally not been designed with reuse, performance and portability in mind. We have now implemented a reusable, flexible, and efficient two-way link between the Delft3D open source framework for hydrodynamics, waves and morphology, and the water quality and ecology modules. The same link will be used for 1D, 2D and 3D modeling on networks and both structured and unstructured grids. We will describe the concepts of the overall system, and illustrate it with some first results.

  12. Adaptive Enhancement of 3D Scenes using Hierarchical Registration of Texture-Mapped 3D Models

    Ramalingam, Srikumar; Lodha, Suresh

    2003-01-01

    Adaptive fusion of new information in a 3D urban scene is an important goal to achieve in computer vision, graphics, and visualization. In this work we acquire new image pairs of a scene from closer distances and extract 3D models of successively higher resolutions. We present a new hierarchical approach to register these texture-mapped 3D models with a coarse 3D texture mapped model of an urban scene. First, we use the standard reconstruction algorithm to construct 3D models after establishi...

  13. GENERATING 3D MODEL FROM VIDEO

    Svetlana Mijakovska

    2014-12-01

    Full Text Available In this paper the process of 3D modelling from video is presented. Analysed previous research related to this process, and specifically described algorithms for detecting and matching key points. We described their advantages and disadvantages, and made a critical analysis of algorithms. In this paper, the three detectors (SUSAN, Plessey and Förstner are tested and compare. We used video taken with hand held camera of a cube and compare these detectors on it (taking into account their parameters of accuracy and repeatability. In conclusion, we practically made 3D model of the cube from video used these detectors in the first step of the process and three algorithms (RANSAC, MSAC and MLESAC for matching data.

  14. Sensing and compressing 3-D models

    Krumm, J. [Sandia National Labs., Albuquerque, NM (United States). Intelligent System Sensors and Controls Dept.

    1998-02-01

    The goal of this research project was to create a passive and robust computer vision system for producing 3-D computer models of arbitrary scenes. Although the authors were unsuccessful in achieving the overall goal, several components of this research have shown significant potential. Of particular interest is the application of parametric eigenspace methods for planar pose measurement of partially occluded objects in gray-level images. The techniques presented provide a simple, accurate, and robust solution to the planar pose measurement problem. In addition, the representational efficiency of eigenspace methods used with gray-level features were successfully extended to binary features, which are less sensitive to illumination changes. The results of this research are presented in two papers that were written during the course of this project. The papers are included in sections 2 and 3. The first section of this report summarizes the 3-D modeling efforts.

  15. Robust hashing for 3D models

    Berchtold, Waldemar; Schäfer, Marcel; Rettig, Michael; Steinebach, Martin

    2014-02-01

    3D models and applications are of utmost interest in both science and industry. With the increment of their usage, their number and thereby the challenge to correctly identify them increases. Content identification is commonly done by cryptographic hashes. However, they fail as a solution in application scenarios such as computer aided design (CAD), scientific visualization or video games, because even the smallest alteration of the 3D model, e.g. conversion or compression operations, massively changes the cryptographic hash as well. Therefore, this work presents a robust hashing algorithm for 3D mesh data. The algorithm applies several different bit extraction methods. They are built to resist desired alterations of the model as well as malicious attacks intending to prevent correct allocation. The different bit extraction methods are tested against each other and, as far as possible, the hashing algorithm is compared to the state of the art. The parameters tested are robustness, security and runtime performance as well as False Acceptance Rate (FAR) and False Rejection Rate (FRR), also the probability calculation of hash collision is included. The introduced hashing algorithm is kept adaptive e.g. in hash length, to serve as a proper tool for all applications in practice.

  16. Micromechanics of hierarchical materials

    Mishnaevsky, Leon, Jr.

    2012-01-01

    nanoengineered matrix, fiber bundle model of UD composites with hierarchically clustered fibers and 3D multilevel model of wood considered as a gradient, cellular material with layered composite cell walls. The main areas of research in micromechanics of hierarchical materials are identified, among them, the...

  17. Porting a 3d-modeler plugin

    Alfredsson, Jonas

    2008-01-01

    This report describes the work and the results found when comparing three different 3d modeler applications. The programs are 3ds Max, Maya and Cinema 4D. The comparisons focus on the possibilities/the amount of freedom these programs interface offer to its plugins. The comparisons are made from the point of view of a tool for creating animations developed as a plugin for these modelers. This plugins demands on the system it is loaded into have been analyzed and from the results of this analy...

  18. 3D modeling of buildings outstanding sites

    Héno, Rapha?le

    2014-01-01

    Conventional topographic databases, obtained by capture on aerial or spatial images provide a simplified 3D modeling of our urban environment, answering the needs of numerous applications (development, risk prevention, mobility management, etc.). However, when we have to represent and analyze more complex sites (monuments, civil engineering works, archeological sites, etc.), these models no longer suffice and other acquisition and processing means have to be implemented. This book focuses on the study of adapted lifting means for "notable buildings". The methods tackled in this book cover las

  19. The dual gonihedric 3D Ising model

    Johnston, D A [Department of Mathematics, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS (United Kingdom); Ranasinghe, R P K C M, E-mail: D.A.Johnston@hw.ac.uk [Department of Mathematics, University of Sri Jayewardenepura, Gangodawila (Sri Lanka)

    2011-07-22

    We investigate the dual of the {kappa} = 0 gonihedric Ising model on a 3D cubic lattice, which may be written as an anisotropically coupled Ashkin-Teller model. The original {kappa} = 0 gonihedric model has a purely plaquette interaction, displays a first order transition and possesses a highly degenerate ground state. We find that the dual model admits a similar large ground state degeneracy as a result of the anisotropic couplings and investigate the coupled mean-field equations for the model on a single cube. We also carry out Monte Carlo simulations which confirm a first order phase transition in the model and suggest that the ground state degeneracy persists throughout the low temperature phase. Some exploratory cooling simulations also hint at non-trivial dynamical behaviour.

  20. The dual gonihedric 3D Ising model

    We investigate the dual of the κ = 0 gonihedric Ising model on a 3D cubic lattice, which may be written as an anisotropically coupled Ashkin-Teller model. The original κ = 0 gonihedric model has a purely plaquette interaction, displays a first order transition and possesses a highly degenerate ground state. We find that the dual model admits a similar large ground state degeneracy as a result of the anisotropic couplings and investigate the coupled mean-field equations for the model on a single cube. We also carry out Monte Carlo simulations which confirm a first order phase transition in the model and suggest that the ground state degeneracy persists throughout the low temperature phase. Some exploratory cooling simulations also hint at non-trivial dynamical behaviour.

  1. 3D Model of Surfactant Replacement Therapy

    Grotberg, James; Tai, Cheng-Feng; Filoche, Marcel

    2015-11-01

    Surfactant Replacement Therapy (SRT) involves instillation of a liquid-surfactant mixture directly into the lung airway tree. Though successful in neonatal applications, its use in adults had early success followed by failure. We present the first mathematical model of 3D SRT where a liquid plug propagates through the tree from forced inspiration. In two separate modeling steps, the plug first deposits a coating film on the airway wall which subtracts from its volume, a ``coating cost''. Then the plug splits unevenly at the airway bifurcation due to gravity. The steps are repeated until a plug ruptures or reaches the tree endpoint alveoli/acinus. The model generates 3D images of the resulting acinar distribution and calculates two global indexes, efficiency and homogeneity. Simulating published literature, the earlier successful adult SRT studies show comparatively good index values, while the later failed studies do not. Those unsuccessful studies used smaller dose volumes with higher concentration mixtures, apparently assuming a well mixed compartment. The model shows that adult lungs are not well mixed in SRT due to the coating cost and gravity effects. Returning to the higher dose volume protocols could save many thousands of lives annually in the US. Supported by NIH Grants HL85156, HL84370 and Agence Nationale de la Recherche, ANR no. 2010-BLAN-1119-05.

  2. Design and Implementation of 3D Model Database for General-Purpose 3D GIS

    XU Weiping; ZHU Qing; DU Zhiqiang; ZHANG Yeting

    2010-01-01

    To improve the reusability of three-dimensional (3D) models and simplify the complexity of natural scene reconstruction, this paper presents a 3D model database for universal 3D GIS. After the introduction of its extensible function architecture,accompanied by the conclusion of implicit spatial-temporal hierarchy of models in any reconstructed scene of 3D GIS for general purpose, several key issues are discussed in detail, such as the storage and management of 3D models and related retrieval and load method, as well as the interfaces for further on-demand development. Finally, the validity and feasibility of this model database are proved through its application in the development of 3D visualization system of railway operation.

  3. 3D Model Assisted Image Segmentation

    Jayawardena, Srimal; Hutter, Marcus

    2012-01-01

    The problem of segmenting a given image into coherent regions is important in Computer Vision and many industrial applications require segmenting a known object into its components. Examples include identifying individual parts of a component for process control work in a manufacturing plant and identifying parts of a car from a photo for automatic damage detection. Unfortunately most of an object's parts of interest in such applications share the same pixel characteristics, having similar colour and texture. This makes segmenting the object into its components a non-trivial task for conventional image segmentation algorithms. In this paper, we propose a "Model Assisted Segmentation" method to tackle this problem. A 3D model of the object is registered over the given image by optimising a novel gradient based loss function. This registration obtains the full 3D pose from an image of the object. The image can have an arbitrary view of the object and is not limited to a particular set of views. The segmentation...

  4. Using 3D Scanning in 3D Character Modeling and Game Figure Production

    guo, Jun

    2008-01-01

    The theme of this thesis was to discuss the theory of 3D scanning, focus on the flowchart of using 3D NextEngine Desktop Scanner hardware and software as well as the 3D game character exporting and importing in both 3ds Max and CryENGINE2 Sandbox2. The purpose of this final-year project was to scan models made of modeling paste using the 3D NextEngine ScanStudio. The models were developed and imported as raw files into 3dsMax. At the same step, the skeletons were adjusted an...

  5. MC3D modelling of stratified explosion

    It is known that a steam explosion can occur in a stratified geometry and that the observed yields are lower than in the case of explosion in a premixture configuration. However, very few models are available to quantify the amount of melt which can be involved and the pressure peak that can be developed. In the stratified application of the MC3D code, mixing and fragmentation of the melt are explained by the growth of Kelvin Helmholtz instabilities due to the shear flow of the two phase coolant above the melt. Such a model is then used to recalculate the Frost-Ciccarelli tin-water experiment. Pressure peak, speed of propagation, bubble shape and erosion height are well reproduced as well as the influence of the inertial constraint (height of the water pool). (author)

  6. Micromechanically based modelling of thermomechanical properties in composite materials

    The underlying philosophy and some major computational approaches for micromechanical modelling of inhomogeneous materials are presented. On this basis, concepts for finite element models for use in designed high-performance components made of metal-matrix composites are discussed. (author)

  7. Regional geothermal 3D modelling in Denmark

    Poulsen, S. E.; Balling, N.; Bording, T. S.; Nielsen, S. B.

    2012-04-01

    In the pursuit of sustainable and low carbon emission energy sources, increased global attention has been given to the exploration and exploitation of geothermal resources within recent decades. In 2009 a national multi-disciplinary geothermal research project was established. As a significant part of this project, 3D temperature modelling is to be carried out, with special emphasis on temperatures of potential geothermal reservoirs in the Danish area. The Danish subsurface encompasses low enthalpy geothermal reservoirs of mainly Triassic and Jurassic age. Geothermal plants at Amager (Copenhagen) and Thisted (Northern Jutland) have the capacity of supplying the district heating network with up to 14 MW and 7 MW, respectively, by withdrawing warm pore water from the Gassum (Lower Jurassic/Upper Triassic) and Bunter (Lower Triassic) sandstone reservoirs, respectively. Explorative studies of the subsurface temperature regime typically are based on a combination of observations and modelling. In this study, the open-source groundwater modelling code MODFLOW is modified to simulate the subsurface temperature distribution in three dimensions by taking advantage of the mathematical similarity between saturated groundwater flow (Darcy flow) and heat conduction. A numerical model of the subsurface geology in Denmark is built and parameterized from lithological information derived from joint interpretation of seismic surveys and borehole information. Boundary conditions are constructed from knowledge about the heat flow from the Earth's interior and the shallow ground temperature. Matrix thermal conductivities have been estimated from analysis of high-resolution temperature logs measured in deep wells and porosity-depth relations are included using interpreted main lithologies. The model takes into account the dependency of temperature and pressure on thermal conductivity. Moreover, a transient model based correction of the paleoclimatic thermal disturbance caused by the

  8. RELAP5-3D Compressor Model

    A compressor model has been implemented in the RELAP5-3D code. The model is similar to that of the existing pump model, and performs the same function on a gas as the pump performs on a single-phase or two-phase fluid. The compressor component consists of an inlet junction and a control volume, and optionally, an outlet junction. This feature permits cascading compressor components in series. The equations describing the physics of the compressor are derived from first principles. These equations are used to obtain the head, the torque, and the energy dissipation. Compressor performance is specified using a map, specific to the design of the machine, in terms of the ratio of outlet-to-inlet total (or stagnation) pressure and adiabatic efficiency as functions of rotational velocity and flow rate. The input quantities are specified in terms of dimensionless variables, which are corrected to stagnation density and stagnation sound speed. A small correction was formulated for the input of efficiency to account for the error introduced by assumption of constant density when integrating the momentum equation. Comparison of the results of steady-state operation of the compressor model to those of the MIT design calculation showed excellent agreement for both pressure ratio and power

  9. 3D Geological Modeling under Extremely Complex Geological Conditions

    Yanlin Shao; Ailing Zheng; Youbin He; Keyan Xiao

    2012-01-01

    3D modeling method is divided into geospatial modeling and 3D geological modeling. 3D geological modeling technique has become a favorable tool for people to observe and analyze the geological body enriched in mineral resources. Unlike geospatial modeling, 3D geological modeling must consider various geological conditions affecting spatial shape and petrophysical distribution of geological body for its complexity. This article analyzes the uncertainty, complexity and diversity of geological b...

  10. 3D Models of Stellar Interactions

    Mohamed, S.; Podsiadlowski, Ph.; Booth, R.; Maercker, M.; Ramstedt, S.; Vlemmings, W.; Harries, T.; Mackey, J.; Langer, N.; Corradi, R.

    2014-04-01

    Symbiotic binaries consist of a cool, evolved mass-losing giant and an accreting compact companion. As symbiotic nebulae show similar morphologies to those in planetary nebulae (so much so that it is often difficult to distinguish between the two), they are ideal laboratories for understanding the role a binary companion plays in shaping the circumstellar envelopes in these evolved systems. We will present 3D Smoothed Particle Hydrodynamics (SPH) models of interacting binaries, e.g. R Aquarii and Mira, and discuss the formation of spiral outflows, arcs, shells and equatorial density enhancements.We will also discuss the implications of the former for planetary nebulae, e.g. the Egg Nebula and Cat's Eye, and the latter for the formation of bipolar geometries, e.g. M2-9. We also investigate accretion and angular momentum evolution in symbiotic binaries which may be important to understand the formation of jets and more episodic mass-loss features we see in circumstellar envelopes and the orbital characteristics of binary central stars of planetary nebulae.

  11. Efficient 3D scene modeling and mosaicing

    Nicosevici, Tudor

    2013-01-01

    This book proposes a complete pipeline for monocular (single camera) based 3D mapping of terrestrial and underwater environments. The aim is to provide a solution to large-scale scene modeling that is both accurate and efficient. To this end, we have developed a novel Structure from Motion algorithm that increases mapping accuracy by registering camera views directly with the maps. The camera registration uses a dual approach that adapts to the type of environment being mapped.   In order to further increase the accuracy of the resulting maps, a new method is presented, allowing detection of images corresponding to the same scene region (crossovers). Crossovers then used in conjunction with global alignment methods in order to highly reduce estimation errors, especially when mapping large areas. Our method is based on Visual Bag of Words paradigm (BoW), offering a more efficient and simpler solution by eliminating the training stage, generally required by state of the art BoW algorithms.   Also, towards dev...

  12. Unidirectional high fiber content composites: Automatic 3D FE model generation and damage simulation

    Qing, Hai; Mishnaevsky, Leon

    2009-01-01

    A new method and a software code for the automatic generation of 3D micromechanical FE models of unidirectional long-fiber-reinforced composite (LFRC) with high fiber volume fraction with random fiber arrangement are presented. The fiber arrangement in the cross-section is generated through random...... movements of fibers from their initial regular hexagonal arrangement. Damageable layers are introduced into the fibers to take into account the random distribution of the fiber strengths. A series of computational experiments on the glass fibers reinforced polymer epoxy matrix composite is performed to...

  13. VIRTUAL 3D CITY MODELING: TECHNIQUES AND APPLICATIONS

    S. P. Singh; K. Jain; V. R. Mandla

    2013-01-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as Building, Tree, Vegetation, and some manmade feature belonging to urban area. There are various terms used for 3D city models such as "Cybertown", "Cybercity", "Virtual City", or "Digital City". 3D city models are basically a computerized or digital model of a city contains the graphic representation of buildings and other objects in 2.5 or 3D. Generally three main Geomatics approach ...

  14. Building 3D models with modo 701

    García, Juan Jiménez

    2013-01-01

    The book will focus on creating a sample application throughout the book, building gradually from chapter to chapter.If you are new to the 3D world, this is the key to getting started with a modern software in the modern visualization industry. Only minimal previous knowledge is needed.If you have some previous knowledge about 3D content creation, you will find useful tricks that will differentiate the learning experience from a typical user manual from this, a practical guide concerning the most common problems and situations and how to solve them.

  15. 3D fast wavelet network model-assisted 3D face recognition

    Said, Salwa; Jemai, Olfa; Zaied, Mourad; Ben Amar, Chokri

    2015-12-01

    In last years, the emergence of 3D shape in face recognition is due to its robustness to pose and illumination changes. These attractive benefits are not all the challenges to achieve satisfactory recognition rate. Other challenges such as facial expressions and computing time of matching algorithms remain to be explored. In this context, we propose our 3D face recognition approach using 3D wavelet networks. Our approach contains two stages: learning stage and recognition stage. For the training we propose a novel algorithm based on 3D fast wavelet transform. From 3D coordinates of the face (x,y,z), we proceed to voxelization to get a 3D volume which will be decomposed by 3D fast wavelet transform and modeled after that with a wavelet network, then their associated weights are considered as vector features to represent each training face . For the recognition stage, an unknown identity face is projected on all the training WN to obtain a new vector features after every projection. A similarity score is computed between the old and the obtained vector features. To show the efficiency of our approach, experimental results were performed on all the FRGC v.2 benchmark.

  16. Using Insight3D to produce a 3D building model

    Natlačen, Daša

    2015-01-01

    The leadership in object 3D modeling was in the past decade taken over by integration of close range photogrammetry and computer vision. Major progress was achieved in the development of software tools, which enable obtaining spatial data from series of images taken from different perspectives. In order to gain new experience, Insight3D application was chosen to be addressed in this master’s thesis out of the rich set of software tools available on the market. The main goal of ...

  17. Micromechanics of hierarchical materials

    Mishnaevsky, Leon, Jr.

    2012-01-01

    A short overview of micromechanical models of hierarchical materials (hybrid composites, biomaterials, fractal materials, etc.) is given. Several examples of the modeling of strength and damage in hierarchical materials are summarized, among them, 3D FE model of hybrid composites with...... nanoengineered matrix, fiber bundle model of UD composites with hierarchically clustered fibers and 3D multilevel model of wood considered as a gradient, cellular material with layered composite cell walls. The main areas of research in micromechanics of hierarchical materials are identified, among them, the...... investigations of the effects of load redistribution between reinforcing elements at different scale levels, of the possibilities to control different material properties and to ensure synergy of strengthening effects at different scale levels and using the nanoreinforcement effects. The main future directions...

  18. 3D Modeling Techniques for Print and Digital Media

    Stephens, Megan Ashley

    In developing my thesis, I looked to gain skills using ZBrush to create 3D models, 3D scanning, and 3D printing. The models created compared the hearts of several vertebrates and were intended for students attending Comparative Vertebrate Anatomy. I used several resources to create a model of the human heart and was able to work from life while creating heart models from other vertebrates. I successfully learned ZBrush and 3D scanning, and successfully printed 3D heart models. ZBrush allowed me to create several intricate models for use in both animation and print media. The 3D scanning technique did not fit my needs for the project, but may be of use for later projects. I was able to 3D print using two different techniques as well.

  19. Planning for brachytherapy using a 3D-simulation model

    A 3D-simulation model made with a milling system was applied to HDR-brachytherapy. The 3D-simulation model is used to simulate the 3D-structure of the lesion and the surrounding organs before the actual catheterization for brachytherapy. The first case was recurrent prostatic cancer in a 61-year-old man. The other case was lymph node recurrence of a 71-year-old woman's upper gum cancer. In both cases, the 3D-simulation model was very useful to simulate the 3D-conformation, to plan the treatment process and to avoid the risk accompanying treatment. (author)

  20. Integrating 3D modeling, photogrammetry and design

    Foster, Shaun

    2014-01-01

    This book looks at the convergent nature of technology and its relationship to the field of photogrammetry and 3D design. This is a facet of a broader discussion of the nature of technology itself and the relationship of technology to art, as well as an examination of the educational process. In the field of technology-influenced design-based education it is natural to push for advanced technology, yet within a larger institution the constraints of budget and adherence to tradition must be accepted. These opposing forces create a natural balance; in some cases constraints lead to greater creat

  1. 3D modeling of metallic grain growth

    George, D.; Carlson, N.; Gammel, J.T.; Kuprat, A.

    1999-06-01

    This paper will describe simulating metallic grain growth using the Gradient Weighted Moving Finite Elements code, GRAIN3D. The authors also describe the set of mesh topology change operations developed to respond to changes in the physical topology such as the collapse of grains and to maintain uniform calculational mesh quality. Validation of the method is demonstrated by comparison to analytic calculations. The authors present results of multigrain simulations where grain boundaries evolve by mean curvature motion and include results which incorporate grain boundary orientation dependence.

  2. APPLICATION OF 3D MODELING IN 3D PRINTING FOR THE LOWER JAW RECONSTRUCTION

    Yu. Yu. Dikov

    2015-01-01

    Full Text Available Aim of study: improvement of functional and aesthetic results of microsurgery reconstructions of the lower jaw due to the use of the methodology of 3D modeling and 3D printing. Application of this methodology has been demonstrated on the example of treatment of 4 patients with locally distributed tumors of the mouth cavity, who underwent excision of the tumor with simultaneous reconstruction of the lower jaw with revascularized fibular graft.Before, one patient has already undergo segmental resection of the lower jaw with the defect replacement with the avascular ileac graft and a reconstruction plate. Then, a relapse of the disease and lysis of the graft has developed with him. Modeling of the graft according to the shape of the lower jaw was performed by making osteotomies of the bone part of the graft using three-dimensional virtual models created by computed tomography data. Then these 3D models were printed with a 3D printer of plastic with the scale of 1:1 with the fused deposition modeling (FDM technology and were used during the surgery in the course of modeling of the graft. Sterilizing of the plastic model was performed in the formalin chamber.This methodology allowed more specific reconstruction of the resected fragment of the lower jaw and get better functional and aesthetic results and prepare patients to further dental rehabilitation. Advantages of this methodology are the possibility of simultaneous performance of stages of reconstruction and resection and shortening of the time of surgery.

  3. OCTG Premium Threaded Connection 3D Parametric Finite Element Model

    Ahsan, Nabeel

    2016-01-01

    Full 360 degree 3D finite element models are the most complete representation of Oil Country Tubular Goods (OCTG) premium threaded connections. Full 3D models can represent helical threads and boundary conditions required to simulate make-up and service loading. A methodology is developed to create a 360 degree full 3D parametric finite element model with helical threads as an effective design and analysis tool. The approach is demonstrated with the creation of a metal-to-metal seal integral ...

  4. Summary on Several Key Techniques in 3D Geological Modeling

    Gang Mei

    2014-01-01

    Several key techniques in 3D geological modeling including planar mesh generation, spatial interpolation, and surface intersection are summarized in this paper. Note that these techniques are generic and widely used in various applications but play a key role in 3D geological modeling. There are two essential procedures in 3D geological modeling: the first is the simulation of geological interfaces using geometric surfaces and the second is the building of geological objects by means of vario...

  5. PERFORMANCE EVALUATION OF 3D MODELING SOFTWARE FOR UAV PHOTOGRAMMETRY

    Yanagi, H; H. Chikatsu

    2016-01-01

    UAV (Unmanned Aerial Vehicle) photogrammetry, which combines UAV and freely available internet-based 3D modeling software, is widely used as a low-cost and user-friendly photogrammetry technique in the fields such as remote sensing and geosciences. In UAV photogrammetry, only the platform used in conventional aerial photogrammetry is changed. Consequently, 3D modeling software contributes significantly to its expansion. However, the algorithms of the 3D modelling software are black box algori...

  6. Statistical Model of the 3-D Braided Composites Strength

    XIAO Laiyuan; ZUO Weiwei; CAI Ganwei; LIAO Daoxun

    2007-01-01

    Based on the statistical model for the tensile statistical strength of unidirectional composite materials and the stress analysis of 3-D braided composites, a new method is proposed to calculate the tensile statistical strength of the 3-D braided composites. With this method, the strength of 3-D braided composites can be calculated with very large accuracy, and the statistical parameters of 3-D braided composites can be determined. The numerical result shows that the tensile statistical strength of 3-D braided composites can be predicted using this method.

  7. Life in 3D is never flat: 3D models to optimise drug delivery.

    Fitzgerald, Kathleen A; Malhotra, Meenakshi; Curtin, Caroline M; O' Brien, Fergal J; O' Driscoll, Caitriona M

    2015-10-10

    The development of safe, effective and patient-acceptable drug products is an expensive and lengthy process and the risk of failure at different stages of the development life-cycle is high. Improved biopharmaceutical tools which are robust, easy to use and accurately predict the in vivo response are urgently required to help address these issues. In this review the advantages and challenges of in vitro 3D versus 2D cell culture models will be discussed in terms of evaluating new drug products at the pre-clinical development stage. Examples of models with a 3D architecture including scaffolds, cell-derived matrices, multicellular spheroids and biochips will be described. The ability to simulate the microenvironment of tumours and vital organs including the liver, kidney, heart and intestine which have major impact on drug absorption, distribution, metabolism and toxicity will be evaluated. Examples of the application of 3D models including a role in formulation development, pharmacokinetic profiling and toxicity testing will be critically assessed. Although utilisation of 3D cell culture models in the field of drug delivery is still in its infancy, the area is attracting high levels of interest and is likely to become a significant in vitro tool to assist in drug product development thus reducing the requirement for unnecessary animal studies. PMID:26220617

  8. 3D Hilbert Space Filling Curves in 3D City Modeling for Faster Spatial Queries

    Ujang, Uznir; Antón Castro, Francesc/François; Azri, Suhaibah;

    2014-01-01

    The advantages of three dimensional (3D) city models can be seen in various applications including photogrammetry, urban and regional planning, computer games, etc. They expand the visualization and analysis capabilities of Geographic Information Systems on cities, and they can be developed using...

  9. Automatic Generation of 3D Building Models for Sustainable Development

    Sugihara, Kenichi

    2015-01-01

    3D city models are important in urban planning for sustainable development. Urban planners draw maps for efficient land use and a compact city. 3D city models based on these maps are quite effective in understanding what, if this alternative plan is realized, the image of a sustainable city will be. However, enormous time and labour has to be consumed to create these 3D models, using 3D modelling software such as 3ds Max or SketchUp. In order to automate the laborious steps, a GIS and CG inte...

  10. Importing a 3D model from an industrial design

    Tran Thi, Thien

    2015-01-01

    In the media industry, sharing and transferring a 3D model to other programs for different stages of design is widely used. The final year project was carried out based on a case study in which a 3D model was imported from an industrial design to Autodesk 3ds Max. The thesis focuses on defining the workflow for importing a third-party 3D model to the 3ds Max program. In general, importing a 3D model made by one program to another one always presents many challenges. The purposes of this s...

  11. 3D scene modeling from multiple range views

    Sequeira, Vitor; Goncalves, Joao G. M.; Ribeiro, M. Isabel

    1995-09-01

    This paper presents a new 3D scene analysis system that automatically reconstructs the 3D geometric model of real-world scenes from multiple range images acquired by a laser range finder on board of a mobile robot. The reconstruction is achieved through an integrated procedure including range data acquisition, geometrical feature extraction, registration, and integration of multiple views. Different descriptions of the final 3D scene model are obtained: a polygonal triangular mesh, a surface description in terms of planar and biquadratics surfaces, and a 3D boundary representation. Relevant experimental results from the complete 3D scene modeling are presented. Direct applications of this technique include 3D reconstruction and/or update of architectual or industrial plans into a CAD model, design verification of buildings, navigation of autonomous robots, and input to virtual reality systems.

  12. Visualization of 3D Geological Models on Google Earth

    Choi, Y.; Um, J.; Park, M.

    2013-05-01

    Google Earth combines satellite imagery, aerial photography, thematic maps and various data sets to make a three-dimensional (3D) interactive image of the world. Currently, Google Earth is a popular visualization tool in a variety of fields and plays an increasingly important role not only for private users in daily life, but also for scientists, practitioners, policymakers and stakeholders in research and application. In this study, a method to visualize 3D geological models on Google Earth is presented. COLLAborative Design Activity (COLLADA, an open standard XML schema for establishing interactive 3D applications) was used to represent different 3D geological models such as borehole, fence section, surface-based 3D volume and 3D grid by triangle meshes (a set of triangles connected by their common edges or corners). In addition, we designed Keyhole Markup Language (KML, the XML-based scripting language of Google Earth) codes to import the COLLADA files into the 3D render window of Google Earth. The method was applied to the Grosmont formation in Alberta, Canada. The application showed that the combination of COLLADA and KML enables Google Earth to effectively visualize 3D geological structures and properties.; Visualization of the (a) boreholes, (b) fence sections, (c) 3D volume model and (d) 3D grid model of Grossmont formation on Google Earth

  13. IVIS-3D: A tool for interactive 3D-visualisation of gravity models

    Klesper, C.

    EDV-based interactive visualisation methods have become a very essential part in the modelling and analysing of three-dimensional models in geoscience. The value of enhanced 3D-visualization for the process of modelling and validation of complex models increases with the number of capabilities to change independently display parameters and to combine different data, like model and process information. But this value also falls with increasing information and methods which slow down user interaction and confuses the user with too much information and the complexity of user interfaces (Houlding, 1994). Especially for interactive 3D-visualization and validation of geometric models, existing modelling systems can meet the user requirements only inadequate. So lacks of functionality are often compensated by the user with a patchwork of different programs. Now the task was to find or create new visualisation methods, to combine the capabilities of interactive 3D-visualization with an intuitive environment and to adapt these features to the existing gravity and magnetic modelling program IGMAS (Götze et al., 1988); (Schmidt, 1996).

  14. a Fast Method for Measuring the Similarity Between 3d Model and 3d Point Cloud

    Zhang, Zongliang; Li, Jonathan; Li, Xin; Lin, Yangbin; Zhang, Shanxin; Wang, Cheng

    2016-06-01

    This paper proposes a fast method for measuring the partial Similarity between 3D Model and 3D point Cloud (SimMC). It is crucial to measure SimMC for many point cloud-related applications such as 3D object retrieval and inverse procedural modelling. In our proposed method, the surface area of model and the Distance from Model to point Cloud (DistMC) are exploited as measurements to calculate SimMC. Here, DistMC is defined as the weighted distance of the distances between points sampled from model and point cloud. Similarly, Distance from point Cloud to Model (DistCM) is defined as the average distance of the distances between points in point cloud and model. In order to reduce huge computational burdens brought by calculation of DistCM in some traditional methods, we define SimMC as the ratio of weighted surface area of model to DistMC. Compared to those traditional SimMC measuring methods that are only able to measure global similarity, our method is capable of measuring partial similarity by employing distance-weighted strategy. Moreover, our method is able to be faster than other partial similarity assessment methods. We demonstrate the superiority of our method both on synthetic data and laser scanning data.

  15. A 3D Geometry Model Search Engine to Support Learning

    Tam, Gary K. L.; Lau, Rynson W. H.; Zhao, Jianmin

    2009-01-01

    Due to the popularity of 3D graphics in animation and games, usage of 3D geometry deformable models increases dramatically. Despite their growing importance, these models are difficult and time consuming to build. A distance learning system for the construction of these models could greatly facilitate students to learn and practice at different…

  16. From 2D to 3D: Using Illumination Cones to Build 3d Face Model

    Xiao, S S; Jin, M [TianJin University, Collage of Precision Instrument and Opto-Ectronics Engineering (China)

    2006-10-15

    To solve the problem derivate by lighting condition and position of the camera, a new method using illumination cones to build 3d face model has been proposed. Due to illumination variability, the same object can show dramatic difference even as being viewed in fixed pose. To handle this variability, an object recognition system must employ a representation that is either invariant to, or can model this variability. The proposed technique presents an appearance-based method for modeling the variability due to illumination in the images of objects. The method differs from past appearance-based methods. Evenmore, a small set of training images is used to generate a representation that the illumination cone models the complete set of images of an object with Lambertian reflectance surface under a combination of arbitrary point light sources at infinity. After building up the illumination cones, researches focus on how to present the 3d model of the face. Combining illumination and texture feature to build up 3d model of the face make it easy solving the problem in recognition of face under different pose.

  17. From 2D to 3D: Using Illumination Cones to Build 3d Face Model

    To solve the problem derivate by lighting condition and position of the camera, a new method using illumination cones to build 3d face model has been proposed. Due to illumination variability, the same object can show dramatic difference even as being viewed in fixed pose. To handle this variability, an object recognition system must employ a representation that is either invariant to, or can model this variability. The proposed technique presents an appearance-based method for modeling the variability due to illumination in the images of objects. The method differs from past appearance-based methods. Evenmore, a small set of training images is used to generate a representation that the illumination cone models the complete set of images of an object with Lambertian reflectance surface under a combination of arbitrary point light sources at infinity. After building up the illumination cones, researches focus on how to present the 3d model of the face. Combining illumination and texture feature to build up 3d model of the face make it easy solving the problem in recognition of face under different pose

  18. Micromechanics and constitutive models for soft active materials with phase evolution

    Wang, Binglian

    Soft active materials, such as shape memory polymers, liquid crystal elastomers, soft tissues, gels etc., are materials that can deform largely in response to external stimuli. Micromechanics analysis of heterogeneous materials based on finite element method is a typically numerical way to study the thermal-mechanical behaviors of soft active materials with phase evolution. While the constitutive models that can precisely describe the stress and strain fields of materials in the process of phase evolution can not be found in the databases of some commercial finite element analysis (FEA) tools such as ANSYS or Abaqus, even the specific constitutive behavior for each individual phase either the new formed one or the original one has already been well-known. So developing a computationally efficient and general three dimensional (3D) thermal-mechanical constitutive model for soft active materials with phase evolution which can be implemented into FEA is eagerly demanded. This paper first solved this problem theoretically by recording the deformation history of each individual phase in the phase evolution process, and adopted the idea of effectiveness by regarding all the new formed phase as an effective phase with an effective deformation to make this theory computationally efficient. A user material subroutine (UMAT) code based on this theoretical constitutive model has been finished in this work which can be added into the material database in Abaqus or ANSYS and can be easily used for most soft active materials with phase evolution. Model validation also has been done through comparison between micromechanical FEA and experiments on a particular composite material, shape memory elastomeric composite (SMEC) which consisted of an elastomeric matrix and the crystallizable fibre. Results show that the micromechanics and the constitutive models developed in this paper for soft active materials with phase evolution are completely relied on.

  19. Numerical 3-D Modelling of Overflows

    Larsen, Torben; Nielsen, L.; Jensen, B.; Christensen, E. D.

    2008-01-01

    -dimensional so-called Volume of Fluid Models (VOF-models) based on the full Navier-Stokes equations (named NS3 and developed by DHI Water & Environment) As a general conclusion, the two numerical models show excellent results when compared with measurements. However, considerable errors occur when......The present study uses laboratory experiments to evaluate the reliability of two types of numerical models of sewers systems: - 1-dimensional model based on the extended Saint-Venant equation including the term for curvature of the water surface (the so-called Boussinesq approximation) - 2- and 3...

  20. Værkanalyse med digitale 3D modeller

    Villaume, René Domine; Ørstrup, Finn Rude

    2006-01-01

    Projektet afprøve muligheder for Værkanalyse af danske arkitekturværker med anvendelse af digitale 3D modeller. Arkitektstuderende har i en workshop udarbejdet en 3D model af Arkitekt Vilhelm Lauritzens bygning til  Københavns Lufthavn fra 1939. Modellen er herefter videreudviklet og yderligere...

  1. Octree-based Robust Watermarking for 3D Model

    Su Cai

    2011-02-01

    Full Text Available Three robust blind watermarking methods of 3D models based on Octree are proposed in this paper: OTC-W, OTP-W and Zero-W. Primary Component Analysis and Octree partition are used on 3D meshes. A scrambled binary image for OTC-W and a scrambled RGB image for OTP-W are separately embedded adaptively into the single child nodes at the bottom level of Octree structure. The watermark can be extracted without the original image and 3D model. Those two methods have high embedding capacity for 3D meshes. Meanwhile, they are robust against geometric transformation (like translation, rotation, uniform scaling and vertex reordering attacks. For Zero-W, higher nodes of Octree are used to construct ‘Zero-watermark’, which can resist simplification, noise and remeshing attacks. All those three methods are fit for 3D point cloud data and arbitrary 3D meshes.Three robust blind watermarking methods of 3D models based on Octree are proposed in this paper: OTC-W, OTP-W and Zero-W. Primary Component Analysis and Octree partition are used on 3D meshes. A scrambled binary image for OTC-W and a scrambled RGB image for OTP-W are separately embedded adaptively into the single child nodes at the bottom level of Octree structure. The watermark can be extracted without the original image and 3D model. Those two methods have high embedding capacity for 3D meshes. Meanwhile, they are robust against geometric transformation (like translation, rotation, uniform scaling and vertex reordering attacks. For Zero-W, higher nodes of Octree are used to construct ‘Zero-watermark’, which can resist simplification, noise and remeshing attacks. All those three methods are fit for 3D point cloud data and arbitrary 3D meshes.

  2. An Automated 3d Indoor Topological Navigation Network Modelling

    Jamali, A.; Rahman, A. A.; Boguslawski, P.; Gold, C. M.

    2015-10-01

    Indoor navigation is important for various applications such as disaster management and safety analysis. In the last decade, indoor environment has been a focus of wide research; that includes developing techniques for acquiring indoor data (e.g. Terrestrial laser scanning), 3D indoor modelling and 3D indoor navigation models. In this paper, an automated 3D topological indoor network generated from inaccurate 3D building models is proposed. In a normal scenario, 3D indoor navigation network derivation needs accurate 3D models with no errors (e.g. gap, intersect) and two cells (e.g. rooms, corridors) should touch each other to build their connections. The presented 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. For reducing time and cost of indoor building data acquisition process, Trimble LaserAce 1000 as surveying instrument is used. The modelling results were validated against an accurate geometry of indoor building environment which was acquired using Trimble M3 total station.

  3. EDGE REMOVAL OF 3D POLYGONAL MODEL USING MAYA API

    SAMEER ARORA

    2010-09-01

    Full Text Available In various applications of computer graphics, 3D polygonal modeling is used, which consists millions of triangular polygon. In this polygon attributes – vertices, edges and faces’ details are to be stored. In order to control the processing time, storing space, and transfer speed, it is often required to reduce the information ofthese polygonal 3D models. In this paper an effort is made to reduce the number of edges. There are various methods to reduce faces and edges of these 3D models. A C++ dynamic link library as Maya Plugin has been created to remove number of edges of 3D triangular polygon model using the Quadric Error Metrics (QEM in MAYA v2010 x64 API. QEM allows fast and accurate geometric simplification of 3D models.

  4. Several Strategies on 3D Modeling of Manmade Objects

    SHAO Zhenfeng; LI Deren; CHENG Qimin

    2004-01-01

    Several different strategies of 3D modeling are adopted for different kinds of manmade objects. Firstly, for those manmade objects with regular structure, if 2D information is available and elevation information can be obtained conveniently, then 3D modeling of them can be executed directly. Secondly, for those manmade objects with complicated structure comparatively and related stereo images pair can be acquired, in the light of topology-based 3D model we finish 3D modeling of them by integrating automatic and semi-automatic object extraction. Thirdly, for the most complicated objects whose geometrical information cannot be got from stereo images pair completely, we turn to topological 3D model based on CAD.

  5. Highway 3D model from image and lidar data

    Chen, Jinfeng; Chu, Henry; Sun, Xiaoduan

    2014-05-01

    We present a new method of highway 3-D model construction developed based on feature extraction in highway images and LIDAR data. We describe the processing road coordinate data that connect the image frames to the coordinates of the elevation data. Image processing methods are used to extract sky, road, and ground regions as well as significant objects (such as signs and building fronts) in the roadside for the 3D model. LIDAR data are interpolated and processed to extract the road lanes as well as other features such as trees, ditches, and elevated objects to form the 3D model. 3D geometry reasoning is used to match the image features to the 3D model. Results from successive frames are integrated to improve the final model.

  6. An Automatic Registration Algorithm for 3D Maxillofacial Model

    Qiu, Luwen; Zhou, Zhongwei; Guo, Jixiang; Lv, Jiancheng

    2016-09-01

    3D image registration aims at aligning two 3D data sets in a common coordinate system, which has been widely used in computer vision, pattern recognition and computer assisted surgery. One challenging problem in 3D registration is that point-wise correspondences between two point sets are often unknown apriori. In this work, we develop an automatic algorithm for 3D maxillofacial models registration including facial surface model and skull model. Our proposed registration algorithm can achieve a good alignment result between partial and whole maxillofacial model in spite of ambiguous matching, which has a potential application in the oral and maxillofacial reparative and reconstructive surgery. The proposed algorithm includes three steps: (1) 3D-SIFT features extraction and FPFH descriptors construction; (2) feature matching using SAC-IA; (3) coarse rigid alignment and refinement by ICP. Experiments on facial surfaces and mandible skull models demonstrate the efficiency and robustness of our algorithm.

  7. NASA 3D Models: Cassini Assembly

    National Aeronautics and Space Administration — Includes orbiter from CAD models. Accurate (to a fault) except no thermal blanketing is shown (this would cover most of the central structure of the spacecraft)....

  8. A 3D Model Reconstruction Method Using Slice Images

    LI Hong-an; KANG Bao-sheng

    2013-01-01

    Aiming at achieving the high accuracy 3D model from slice images, a new model reconstruction method using slice im-ages is proposed. Wanting to extract the outermost contours from slice images, the method of the improved GVF-Snake model with optimized force field and ray method is employed. And then, the 3D model is reconstructed by contour connection using the im-proved shortest diagonal method and judgment function of contour fracture. The results show that the accuracy of reconstruction 3D model is improved.

  9. Micromechanics and constitutive modeling of connective soft tissues.

    Fallah, A; Ahmadian, M T; Firozbakhsh, K; Aghdam, M M

    2016-07-01

    In this paper, a micromechanical model for connective soft tissues based on the available histological evidences is developed. The proposed model constituents i.e. collagen fibers and ground matrix are considered as hyperelastic materials. The matrix material is assumed to be isotropic Neo-Hookean while the collagen fibers are considered to be transversely isotropic hyperelastic. In order to take into account the effects of tissue structure in lower scales on the macroscopic behavior of tissue, a strain energy density function (SEDF) is developed for collagen fibers based on tissue hierarchical structure. Macroscopic response and properties of tissue are obtained using the numerical homogenization method with the help of ABAQUS software. The periodic boundary conditions and the proposed constitutive models are implemented into ABAQUS using the DISP and the UMAT subroutines, respectively. The existence of the solution and stable material behavior of proposed constitutive model for collagen fibers are investigated based on the poly-convexity condition. Results of the presented micromechanics model for connective tissues are compared and validated with available experimental data. Effects of geometrical and material parameters variation at microscale on macroscopic mechanical behavior of tissues are investigated. The results show that decrease in collagen content of the connective tissues like the tendon due to diseases leads 20% more stretch than healthy tissue under the same load which can results in connective tissue malfunction and hypermobility in joints. PMID:26807767

  10. Virtual 3d City Modeling: Techniques and Applications

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2013-08-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as Building, Tree, Vegetation, and some manmade feature belonging to urban area. There are various terms used for 3D city models such as "Cybertown", "Cybercity", "Virtual City", or "Digital City". 3D city models are basically a computerized or digital model of a city contains the graphic representation of buildings and other objects in 2.5 or 3D. Generally three main Geomatics approach are using for Virtual 3-D City models generation, in first approach, researcher are using Conventional techniques such as Vector Map data, DEM, Aerial images, second approach are based on High resolution satellite images with LASER scanning, In third method, many researcher are using Terrestrial images by using Close Range Photogrammetry with DSM & Texture mapping. We start this paper from the introduction of various Geomatics techniques for 3D City modeling. These techniques divided in to two main categories: one is based on Automation (Automatic, Semi-automatic and Manual methods), and another is Based on Data input techniques (one is Photogrammetry, another is Laser Techniques). After details study of this, finally in short, we are trying to give the conclusions of this study. In the last, we are trying to give the conclusions of this research paper and also giving a short view for justification and analysis, and present trend for 3D City modeling. This paper gives an overview about the Techniques related with "Generation of Virtual 3-D City models using Geomatics Techniques" and the Applications of Virtual 3D City models. Photogrammetry, (Close range, Aerial, Satellite), Lasergrammetry, GPS, or combination of these modern Geomatics techniques play a major role to create a virtual 3-D City model. Each and every techniques and method has some advantages and some drawbacks. Point cloud model is a modern trend for virtual 3-D city model. Photo-realistic, Scalable, Geo-referenced virtual 3

  11. Image based 3D city modeling : Comparative study

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2014-06-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing rapidly for various engineering and non-engineering applications. Generally four main image based approaches were used for virtual 3D city models generation. In first approach, researchers were used Sketch based modeling, second method is Procedural grammar based modeling, third approach is Close range photogrammetry based modeling and fourth approach is mainly based on Computer Vision techniques. SketchUp, CityEngine, Photomodeler and Agisoft Photoscan are the main softwares to represent these approaches respectively. These softwares have different approaches & methods suitable for image based 3D city modeling. Literature study shows that till date, there is no complete such type of comparative study available to create complete 3D city model by using images. This paper gives a comparative assessment of these four image based 3D modeling approaches. This comparative study is mainly based on data acquisition methods, data processing techniques and output 3D model products. For this research work, study area is the campus of civil engineering department, Indian Institute of Technology, Roorkee (India). This 3D campus acts as a prototype for city. This study also explains various governing parameters, factors and work experiences. This research work also gives a brief introduction, strengths and weakness of these four image based techniques. Some personal comment is also given as what can do or what can't do from these softwares. At the last, this study shows; it concluded that, each and every software has some advantages and limitations. Choice of software depends on user requirements of 3D project. For normal visualization project, SketchUp software is a good option. For 3D documentation record, Photomodeler gives good result. For Large city

  12. Elongated Tetrakaidecahedron Micromechanics Model for Space Shuttle External Tank Foams

    Sullivan, Roy M.; Ghosn, Louis J.; Lerch, Bradley A.; Baker, Eric H.

    2009-01-01

    The results of microstructural characterization studies and physical and mechanical testing of BX-265 and NCFI24-124 foams are reported. A micromechanics model developed previously by the authors is reviewed, and the resulting equations for the elastic constants, the relative density, and the strength of the foam in the principal material directions are presented. The micromechanics model is also used to derive equations to predict the effect of vacuum on the tensile strength and the strains induced by exposure to vacuum. Using a combination of microstructural dimensions and physical and mechanical measurements as input, the equations for the elastic constants and the relative density are applied and the remaining microstructural dimensions are predicted. The predicted microstructural dimensions are in close agreement with the average measured values for both BX-265 and NCFI24-124. With the microstructural dimensions, the model predicts the ratio of the strengths in the principal material directions for both foams. The model is also used to predict the Poisson s ratios, the vacuum-induced strains, and the effect of vacuum on the tensile strengths. However, the comparison of these predicted values with the measured values is not as favorable.

  13. Modelling Polymer Deformation during 3D Printing

    McIlroy, Claire; Olmsted, Peter

    Three-dimensional printing has the potential to transform manufacturing processes, yet improving the strength of printed parts, to equal that of traditionally-manufactured parts, remains an underlying issue. The fused deposition modelling technique involves melting a thermoplastic, followed by layer-by-layer extrusion to fabricate an object. The key to ensuring strength at the weld between layers is successful inter-diffusion. However, prior to welding, both the extrusion process and the cooling temperature profile can significantly deform the polymer micro-structure and, consequently, how well the polymers are able to ``re-entangle'' across the weld. In particular, polymer alignment in the flow can cause de-bonding of the layers and create defects. We have developed a simple model of the non-isothermal extrusion process to explore the effects that typical printing conditions and material rheology have on the conformation of a polymer melt. In particular, we incorporate both stretch and orientation using the Rolie-Poly constitutive equation to examine the melt structure as it flows through the nozzle, the subsequent alignment with the build plate and the resulting deformation due to the fixed nozzle height, which is typically less than the nozzle radius.

  14. Technology for creating interactive 3D model printing equipment

    Розенберг, О. А.; Хохлова, Розалія Анатоліївна

    2013-01-01

    The article analyzed the software to create interactive 3D models of printing equipment. The analysis revealed the advantages and disadvantages presented by the editors and determined the direction of research. The main parameters that influence the choice of software for interactive 3D simulation models, study models of production technologies in different applications are constructed classification software.The recommendations on the choice of the software to model, depending on the particu...

  15. 3D Model Retrieval Based on Semantic and Shape Indexes

    Kassimi, My Abdellah

    2011-01-01

    The size of 3D models used on the web or stored in databases is becoming increasingly high. Then, an efficient method that allows users to find similar 3D objects for a given 3D model query has become necessary. Keywords and the geometry of a 3D model cannot meet the needs of users' retrieval because they do not include the semantic information. In this paper, a new method has been proposed to 3D models retrieval using semantic concepts combined with shape indexes. To obtain these concepts, we use the machine learning methods to label 3D models by k-means algorithm in measures and shape indexes space. Moreover, semantic concepts have been organized and represented by ontology language OWL and spatial relationships are used to disambiguate among models of similar appearance. The SPARQL query language has been used to question the information displayed in this language and to compute the similarity between two 3D models. We interpret our results using the Princeton Shape Benchmark Database and the results show ...

  16. 3D PIC Modeling of Microcavity Discharge

    Hopkins, Matthew; Manginell, Ronald; Moore, Christopher; Yee, Benjamin; Moorman, Matthew

    2015-09-01

    We present a number of techniques and challenges in simulating the transient behavior of a microcavity discharge. Our microcavities are typically cylindrical with diameters approximately 50 - 100 μm, heights of 50 - 200 μm, pressure near atmospheric, and operate at a few hundred volts. We employ a fully kinetic simulation methodology, the Particle-in-Cell (PIC) method, with interparticle collisions handled via methods based on direct simulation Monte Carlo (DSMC). In particular, we explicitly include kinetic electrons. Some of the challenges we encounter include variations in number densities, external circuit coupling, and time step resolution constraints. By employing dynamic particle weighting (particle weights vary over time by species and location) we can mitigate some of the challenges modeling systems with 107 variations in number densities. Smoothing mechanisms have been used to attempt to mitigate external circuit response. We perform our simulations on hundreds or thousands of processing cores to accommodate the computational work inherent in using relatively small time step sizes (e.g., 50 fs for a 100 ns calculation). In addition, particle weighting issues inherent to three-dimensional low temperature plasma systems will be mentioned. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under Contract DE-AC04-94AL85000.

  17. A micromechanics model for bread dough

    Mohammed, M. A. P; Tarleton, E.; Charalambides, M. N.; Williams, J. G. [Imperial College London, Mechanical Engineering Department, London SW7 2AZ (United Kingdom)

    2015-01-22

    The mechanical behaviour of dough and gluten was studied in an effort to investigate whether bread dough can be treated as a two phase (starch and gluten) composite material. The dough and gluten show rate dependent behaviour under tension, compression and shear tests, and non-linear unloading-reloading curves under cyclic compression tests. There is evidence from cryo-Scanning Electron Microscopy (SEM) that damage in the form of debonding between starch and gluten occurs when the sample is stretched. A composite finite element model was developed using starch as filler and gluten as matrix. The interaction between the starch and gluten was modelled as cohesive contact. The finite element analysis predictions agree with trends seen in experimental test data on dough and gluten, further evidence that debonding of starch and gluten is a possible damage mechanism in dough.

  18. A micromechanics model for bread dough

    The mechanical behaviour of dough and gluten was studied in an effort to investigate whether bread dough can be treated as a two phase (starch and gluten) composite material. The dough and gluten show rate dependent behaviour under tension, compression and shear tests, and non-linear unloading-reloading curves under cyclic compression tests. There is evidence from cryo-Scanning Electron Microscopy (SEM) that damage in the form of debonding between starch and gluten occurs when the sample is stretched. A composite finite element model was developed using starch as filler and gluten as matrix. The interaction between the starch and gluten was modelled as cohesive contact. The finite element analysis predictions agree with trends seen in experimental test data on dough and gluten, further evidence that debonding of starch and gluten is a possible damage mechanism in dough

  19. A micromechanics model for bread dough

    Mohammed, M. A. P.; Tarleton, E.; Charalambides, M. N.; Williams, J. G.

    2015-01-01

    The mechanical behaviour of dough and gluten was studied in an effort to investigate whether bread dough can be treated as a two phase (starch and gluten) composite material. The dough and gluten show rate dependent behaviour under tension, compression and shear tests, and non-linear unloading-reloading curves under cyclic compression tests. There is evidence from cryo-Scanning Electron Microscopy (SEM) that damage in the form of debonding between starch and gluten occurs when the sample is stretched. A composite finite element model was developed using starch as filler and gluten as matrix. The interaction between the starch and gluten was modelled as cohesive contact. The finite element analysis predictions agree with trends seen in experimental test data on dough and gluten, further evidence that debonding of starch and gluten is a possible damage mechanism in dough.

  20. Performance Analysis of a 3D Ionosphere Tomographic Model

    Liu Zhi-zhao; Gao Yang

    2003-01-01

    A 3D high precision ionospheric model is developed based on tomography technique. This tomographic model employs GPS data observed by an operational network of dual-frequency GPS receivers. The methodology of developing a 3D ionospheric tomography model is briefly summarized. However emphasis is put on the analysis and evaluation of the accuracy variation of 3D ionosphere modeling with respect to the change of GPS data cutoff angle.Three typical cutoff angle values (15°, 20° and 25°) are tested. For each testing cutoff angle, the performances of the3D ionospheric model constructed using tomography technique are assessed by calibrating the model predicted ionospheric TEC with the GPS measured TEC and by employing the model predicted TEC to a practical GPS positioning application single point positioning (SPP).Test results indicate the 3D model predicted VTEC has about 0.4 TECU improvement in accuracy when cutoff angle rises from 15° to 20°. However, no apparent improvement is found from 20° to 25°. The model's improvement is also validated by the better SPP accuracy of 3D model than its counterpart-dual frequency model in the 20° and 25° cases.

  1. Tangible 3D modeling of coherent and themed structures

    Walther, Jeppe Ullè; Bærentzen, J. Andreas; Aanæs, Henrik

    2016-01-01

    We present CubeBuilder, a system for interactive, tangible 3D shape modeling. CubeBuilder allows the user to create a digital 3D model by placing physical, non-interlocking cubic blocks. These blocks may be placed in a completely arbitrary fashion and combined with other objects. In effect, this...... turns the task of 3D modeling into a playful activity that hardly requires any learning on the part of the user. The blocks are registered using a depth camera and entered into the cube graph where each block is a node and adjacent blocks are connected by edges. From the cube graph, we transform the...

  2. The 3D model: explaining densification and deformation mechanisms by using 3D parameter plots.

    Picker, Katharina M

    2004-04-01

    The aim of the study was to analyze very differently deforming materials using 3D parameter plots and consequently to gain deeper insights into the densification and deformation process described with the 3D model in order to define an ideal tableting excipient. The excipients used were dicalcium phosphate dihydrate (DCPD), sodium chloride (NaCl), microcrystalline cellulose (MCC), xylitol, mannitol, alpha-lactose monohydrate, maltose, hydroxypropyl methylcellulose (HPMC), sodium carboxymethylcellulose (NaCMC), cellulose acetate (CAC), maize starch, potato starch, pregelatinized starch, and maltodextrine. All of the materials were tableted to graded maximum relative densities (rhorel, max) using an eccentric tableting machine. The data which resulted, namely force, displacement, and time, were analyzed by the application of 3D modeling. Different particle size fractions of DCPD, CAC, and MCC were analyzed in addition. Brittle deforming materials such as DCPD exhibited a completely different 3D parameter plot, with low time plasticity, d, and low pressure plasticity, e, and a strong decrease in omega values when densification increased, in contrast to the plastically deforming MCC, which had much higher d, e, and omega values. e and omega values changed only slightly when densification increased for MCC. NaCl showed less of a decrease in omega values than DCPD did, and the d and e values were between those of MCC and DCPD. The sugar alcohols, xylitol and mannitol, behaved in a similar fashion to sodium chloride. This is also valid for the crystalline sugars, alpha-lactose monohydrate, and maltose. However, the sugars are more brittle than the sugar alcohols. The cellulose derivatives, HPMC, NaCMC, and CAC, are as plastic as MCC, however, their elasticity depends on substitution indicated by lower (more elastic) or higher (less elastic) omega values. The native starches, maize starch and potato starch, are very elastic, and pregelatinized starch and maltodextrine are

  3. The 3-Dimensional Core Model DYN3D

    Mittag, Siegfried; Rohde, Ulrich; Grundmann, Ulrich

    2010-01-01

    Analyzing the safety margins in transients and accidents of nuclear reactors 3-dimensional models of the core were used to avoid conservative assumptions needed for point kinetics or 1-dimensional models. Therefore the 3D code DYN3D has been developed for the analysis of reactivity initiated accidents (RIA) in thermal nuclear reactors. The power distributions are calculated with the help of nodal expansion methods (NEM) for hexagonal and Cartesian geometry. The fuel rod model and the thermohy...

  4. 3-D network model and its parameter calibration

    LIU; Xiaoyu(刘晓宇); LIANG; Naigang(梁乃刚); LI; Min(李敏)

    2002-01-01

    A material model, whose framework is parallel spring-bundles oriented in 3-D space, isproposed. Based on a discussion of the discrete schemes and optimum discretization of the solidangles, a 3-D network cell consisted of one-dimensional components is developed with its geomet-rical and physical parameters calibrated. It is proved that the 3-D network model is able to exactlysimulate materials with arbitrary Poisson ratio from 0 to 1/2, breaking through the limit that the pre-vious models in the literature are only suitable for materials with Poisson ratio from 0 to 1/3. A sim-plified model is also proposed to realize high computation accuracy within Iow computation cost.Examples demonstrate that the 3-D network model has particular superiority in the simulation ofshort-fiber reinforced composites.

  5. Detailed Primitive-Based 3d Modeling of Architectural Elements

    Remondino, F.; Lo Buglio, D.; Nony, N.; De Luca, L.

    2012-07-01

    The article describes a pipeline, based on image-data, for the 3D reconstruction of building façades or architectural elements and the successive modeling using geometric primitives. The approach overcome some existing problems in modeling architectural elements and deliver efficient-in-size reality-based textured 3D models useful for metric applications. For the 3D reconstruction, an opensource pipeline developed within the TAPENADE project is employed. In the successive modeling steps, the user manually selects an area containing an architectural element (capital, column, bas-relief, window tympanum, etc.) and then the procedure fits geometric primitives and computes disparity and displacement maps in order to tie visual and geometric information together in a light but detailed 3D model. Examples are reported and commented.

  6. 3D Servicescape Model: Atmospheric Qualities of Virtual Reality Retailing

    Aasim Munir Dad

    2016-02-01

    Full Text Available The purpose of this paper is to provide a 3D servicescape conceptual model which explores the potential effect of 3D virtual reality retail stores’ environment on shoppers' behaviour. Extensive review of literature within two different domains, namely: servicescape models, and retail atmospherics, was carried out in order to propose a conceptual model. Further, eight detailed interviews were conducted to confirm the stimulus dimension of the conceptual model. A 3D servicescape conceptual model is offered on the basis of stimulus-organism-dimension, which proposes that a 3D virtual reality retail (VRR store environment consists of physical, social, socially symbolic and natural dimensions. These dimensions are proposed to affect shoppers’ behaviour through the mediating variables of emotions (pleasure and arousal. An interrelationship between pleasure and arousal, as mediating variables, is also proposed. This research opens a number of new avenues for further research through the proposed model of shoppers’ behaviour in a VRR store environment. Further, a systematic taxonomy development of VRR store environment is attempted through this proposed model that may prove to be an important step in theory building. A comprehensive 3D service scape model along with a large number of propositions is made to define a 3D VRR store environment.

  7. A method of 3D modeling and codec

    QI Yue; YANG Shen; CAI Su; HOU Fei; SHEN XuKun; ZHAO QinPing

    2009-01-01

    3D modeling and codec of real objects are hot Issues in the field of virtual reality. In this paper, we propose an automatic registration two range Images method and a cycle based automatic global reg-istration algorithm for rapidly and automatically registering all range Images and constructing a real-istic 3D model. Besides, to meet the requirement of huge data transmission over Internet, we present a 3D mesh encoding/decoding method for encoding geometry, topology and attribute data with high compression ratio and supporting progressive transmission. The research results have already been applied successfully in digital museum.

  8. 3D Image Modelling and Specific Treatments in Orthodontics Domain

    Dionysis Goularas

    2007-01-01

    Full Text Available In this article, we present a 3D specific dental plaster treatment system for orthodontics. From computer tomography scanner images, we propose first a 3D image modelling and reconstruction method of the Mandible and Maxillary based on an adaptive triangulation allowing management of contours meant for the complex topologies. Secondly, we present two specific treatment methods directly achieved on obtained 3D model allowing the automatic correction for the setting in occlusion of the Mandible and the Maxillary, and the teeth segmentation allowing more specific dental examinations. Finally, these specific treatments are presented via a client/server application with the aim of allowing a telediagnosis and treatment.

  9. Surface modelling in 3D city information system

    Igor Petz

    2009-10-01

    Full Text Available Geographical information systems deal with terrain, cartographical and urban information; these systems allow gathering, maintaining and presentation of the included data. The approach of combininggeographical information systems with visualization methods of virtual reality is presented in this article. Virtual 3D City Information System is a project which purpose is to model parts of the city to 3D graphics using polygonal modelling for modelling objects by representing their surfaces using polygons. Realappearance is provided by using textures. Usually 3D exterior contains large data set of polygons. Presented system contains three parts: editor (modelling part, database and visualisation part. Thesystem is controlled by script (Python language using too. In conclusion are described some results of visualization of 3D scene that is represented as Košice city part.

  10. Animation of 3D Model of Human Head

    V. Michalcin

    2007-04-01

    Full Text Available The paper deals with the new algorithm of animation of 3D model of the human head in combination with its global motion. The designed algorithm is very fast and with low calculation requirements, because it does not need the synthesis of the input videosequence for estimation of the animation parameters as well as the parameters of global motion. The used 3D model Candide generates different expressions using its animation units which are controlled by the animation parameters. These ones are estimated on the basis of optical flow without the need of extracting of the feature points in the frames of the input videosequence because they are given by the selected vertices of the animation units of the calibrated 3D model Candide. The established multiple iterations inside the designed animation algorithm of 3D model of the human head between two successive frames significantly improved its accuracy above all for the large motion.

  11. Interactive 3D computer model of the human corneolimbal region

    Molvaer, Rikke Kongshaug; Andreasen, Arne; Heegaard, Steffen;

    2013-01-01

    plan. In all, one low-magnification and 24 high-magnification interactive 3D models were created. Immunohistochemistry against stem cell markers p63 and ΔNp63α was performed as a supplement to the 3D models. RESULTS: Using the interactive 3D models, we identified three types of stem cell niches......PURPOSE: This study aims to clarify the existence of and to map the localization of different proposed stem cell niches in the corneal limbal region. MATERIALS AND METHODS: One human eye was cut into 2200 consecutive sections. Every other section was stained with haematoxylin and eosin, digitized...... in the superior limbal region and one LEC, six LCs and 12 FSPs in the inferior limbal region. Only few LECs, LCs and FSPs were localized nasally and temporally. CONCLUSION: Interactive 3D models are a powerful tool that may help to shed more light on the existence and spatial localization of the different stem...

  12. Formal representation of 3D structural geological models

    Wang, Zhangang; Qu, Honggang; Wu, Zixing; Yang, Hongjun; Du, Qunle

    2016-05-01

    The development and widespread application of geological modeling methods has increased demands for the integration and sharing services of three dimensional (3D) geological data. However, theoretical research in the field of geological information sciences is limited despite the widespread use of Geographic Information Systems (GIS) in geology. In particular, fundamental research on the formal representations and standardized spatial descriptions of 3D structural models is required. This is necessary for accurate understanding and further applications of geological data in 3D space. In this paper, we propose a formal representation method for 3D structural models using the theory of point set topology, which produces a mathematical definition for the major types of geological objects. The spatial relationships between geologic boundaries, structures, and units are explained in detail using the 9-intersection model. Reasonable conditions for describing the topological space of 3D structural models are also provided. The results from this study can be used as potential support for the standardized representation and spatial quality evaluation of 3D structural models, as well as for specific needs related to model-based management, query, and analysis.

  13. 3D models for teaching and learning geosciences

    Ward, Emma

    2011-01-01

    Although 3D geological models have been used in teaching as early as 1841, recent developments in 3D geological modelling methods and visualisation at the British Geological Survey (BGS) are providing unique resources for teaching and learning geoscience in the 21st century. Today’s geoscience students utilise a variety of cognitive processes and spatial skills during their learning experience. These include the application of schema’s, image construction, detecting patterns...

  14. Numerical modelling of 3D woven preform deformations

    Green, S D; Long, A.C.; El Said, B. S. F.; Hallett, S. R.

    2014-01-01

    In order to accurately predict the performance of 3D woven composites, it is necessary that realistic textile geometry is considered, since failure typically initiates at regions of high deformation or resin pockets. This paper presents the development of a finite element model based on the multi-chain digital element technique, as applied to simulate weaving and compaction of an orthogonal 3D woven composite. The model was reduced to the scale of the unit cell facilitating high fidelity resu...

  15. A 3-D constitutive model for pressure-dependent phase transformation of porous shape memory alloys.

    Ashrafi, M J; Arghavani, J; Naghdabadi, R; Sohrabpour, S

    2015-02-01

    Porous shape memory alloys (SMAs) exhibit the interesting characteristics of porous metals together with shape memory effect and pseudo-elasticity of SMAs that make them appropriate for biomedical applications. In this paper, a 3-D phenomenological constitutive model for the pseudo-elastic behavior and shape memory effect of porous SMAs is developed within the framework of irreversible thermodynamics. Comparing to micromechanical and computational models, the proposed model is computationally cost effective and predicts the behavior of porous SMAs under proportional and non-proportional multiaxial loadings. Considering the pressure dependency of phase transformation in porous SMAs, proper internal variables, free energy and limit functions are introduced. With the aim of numerical implementation, time discretization and solution algorithm for the proposed model are also presented. Due to lack of enough experimental data on multiaxial loadings of porous SMAs, we employ a computational simulation method (CSM) together with available experimental data to validate the proposed constitutive model. The method is based on a 3-D finite element model of a representative volume element (RVE) with random pores pattern. Good agreement between the numerical predictions of the model and CSM results is observed for elastic and phase transformation behaviors in various thermomechanical loadings. PMID:25528691

  16. Performance Evaluation of 3d Modeling Software for Uav Photogrammetry

    Yanagi, H.; Chikatsu, H.

    2016-06-01

    UAV (Unmanned Aerial Vehicle) photogrammetry, which combines UAV and freely available internet-based 3D modeling software, is widely used as a low-cost and user-friendly photogrammetry technique in the fields such as remote sensing and geosciences. In UAV photogrammetry, only the platform used in conventional aerial photogrammetry is changed. Consequently, 3D modeling software contributes significantly to its expansion. However, the algorithms of the 3D modelling software are black box algorithms. As a result, only a few studies have been able to evaluate their accuracy using 3D coordinate check points. With this motive, Smart3DCapture and Pix4Dmapper were downloaded from the Internet and commercial software PhotoScan was also employed; investigations were performed in this paper using check points and images obtained from UAV.

  17. Automatic Texture Mapping of Architectural and Archaeological 3d Models

    Kersten, T. P.; Stallmann, D.

    2012-07-01

    Today, detailed, complete and exact 3D models with photo-realistic textures are increasingly demanded for numerous applications in architecture and archaeology. Manual texture mapping of 3D models by digital photographs with software packages, such as Maxon Cinema 4D, Autodesk 3Ds Max or Maya, still requires a complex and time-consuming workflow. So, procedures for automatic texture mapping of 3D models are in demand. In this paper two automatic procedures are presented. The first procedure generates 3D surface models with textures by web services, while the second procedure textures already existing 3D models with the software tmapper. The program tmapper is based on the Multi Layer 3D image (ML3DImage) algorithm and developed in the programming language C++. The studies showing that the visibility analysis using the ML3DImage algorithm is not sufficient to obtain acceptable results of automatic texture mapping. To overcome the visibility problem the Point Cloud Painter algorithm in combination with the Z-buffer-procedure will be applied in the future.

  18. Virtual Vixens 3D character modeling and scene placement

    von Koenigsmarck, Arndt

    2007-01-01

    Features software workshops for 3ds Max, Maya, CINEMA 4D, Lightwave, and Softimage XSI.Hot, hotter, hottest. See how today''s leading modeling artists create 3D characters that sizzle and get the techniques you''ll need to create your own virtual vixens.Steven Stahlberg, Liam Kemp, Marco Patrito, and Sze Jones from Blur Studio are just a few of the 3D artists who share their secrets for making the fantasy females you wish were real. You''ll get their personal stories, insights into the profession, and new ways to conceive and construct your own 3D characters.Then, seven hands-on workshops demo

  19. 3-D numerical modelling of flow around a groin

    Miller, R.; Roulund, A.; Sumer, B. Mutlu;

    2003-01-01

    A 3-D flow code, EllipSys3D, has been implemented to simulate the 3-D flow around a groin in steady current. The k  turbulence model has been used for closure. Two kinds of groins are considered: (1) A vertical-wall groin, and (2) A groin with a side slope. Steady-flow simulations were conducted....... The paper reports early results of the investigation. The simulations capture main features of the flow around the groin. The horseshoe vortex in front of the vertical-wall groin is resolved. The vortex shedding at the head is not resolved because no transient flow simulations have been conducted at...

  20. Validation of multipoint kinetics model against 3D Trikin Code

    Validation of multipoint kinetics formulation for RELAP5 code has been carried out against 3D TRIKIN code. Core behavior of an asymmetric reactivity transient has been simulated through artificial tuning of lattice constants in 3D code. Individual node normalized reactivity has been conserved and power estimates from multipoint model have been compared with 3D simulation. It has been observed that localized peak power estimates from multipoint simulation are on higher side and therefore are conservative in nature. Improvements in multipoint formulation in regards to evolving coupling coefficients and involving more number of nodes can help in improving its accuracy to some extent. (author)

  1. Gis-Based Smart Cartography Using 3d Modeling

    Malinverni, E. S.; Tassetti, A. N.

    2013-08-01

    3D City Models have evolved to be important tools for urban decision processes and information systems, especially in planning, simulation, analysis, documentation and heritage management. On the other hand existing and in use numerical cartography is often not suitable to be used in GIS because not geometrically and topologically correctly structured. The research aim is to 3D structure and organize a numeric cartography for GIS and turn it into CityGML standardized features. The work is framed around a first phase of methodological analysis aimed to underline which existing standard (like ISO and OGC rules) can be used to improve the quality requirement of a cartographic structure. Subsequently, from this technical specifics, it has been investigated the translation in formal contents, using an owner interchange software (SketchUp), to support some guide lines implementations to generate a GIS3D structured in GML3. It has been therefore predisposed a test three-dimensional numerical cartography (scale 1:500, generated from range data captured by 3D laser scanner), tested on its quality according to the previous standard and edited when and where necessary. Cad files and shapefiles are converted into a final 3D model (Google SketchUp model) and then exported into a 3D city model (CityGML LoD1/LoD2). The GIS3D structure has been managed in a GIS environment to run further spatial analysis and energy performance estimate, not achievable in a 2D environment. In particular geometrical building parameters (footprint, volume etc.) are computed and building envelop thermal characteristics are derived from. Lastly, a simulation is carried out to deal with asbestos and home renovating charges and show how the built 3D city model can support municipal managers with risk diagnosis of the present situation and development of strategies for a sustainable redevelop.

  2. Micromechanical modeling of unidirectional composites with uneven interfacial strengths

    Ashouri Vajari, Danial; Legarth, Brian Nyvang; Niordson, Christian Frithiof

    2013-01-01

    Composite materials under loads normal to the fiber orientation often fail due to debonding between fibers and matrix. In this paper a micromechanical model is developed to study the interfacial and geometrical effects in fiber-reinforced composites using generalized plane strain by means of the...... trapezoidal cohesive zone model is used. A parametric study is carried out to evaluate the influence of the interfacial properties, fiber position and fiber volume fraction on the overall stressestrain response as well as the end-crack opening displacement and the opening crack angle. All the results...... stress drop. This behavior is shown to be very sensitive to interface parameters as well as geometrical parameters. The interfacial dissimilarity shows for all the investigations, that decreasing the maximum cohesive strength leads to more stable interfacial crack growth, whereas increasing the critical...

  3. Mechanical properties of Composite Engineering Structures by Multivolume Micromechanical Modelling

    B. Novotný

    2000-01-01

    Full Text Available Engineering structures often consist of elements having the character of a periodically repeated composite structure. A multivolume micromechanical model based on a representative cell division into r1 × r2 × r3 subcells with different elastic material properties has been used in this paper to derive macromechanical characteristics of the composite construction response to applied load and temperature changes. The multivolume method is based on ensuring the equilibrium of the considered volume on an average basis. In the same (average way, the continuity conditions of displacements and tractions at the interfaces between subcells and between neighboring representative elements are imposed, resulting in a homogenization procedure that eliminates the discrete nature of the composite model. The details of the method are shown for the case of a concrete block pavement. A parametric study is presented illustrating the influence of joint thickness, joint filling material properties and the quality of bonding between block and filler elements.

  4. Research on 3D Distribution of Meandering River Sand Body Using Sedimentary Facies Method and 3D Geological Modeling

    WU Jian; CAO Dai-yong

    2006-01-01

    Sedimentary facies study is an important method in describing the property and distribution of reservoir. 3D geological modeling is a powerful tool in 3D characterization of geological bodies. By combining the sedimentary facies study with 3D geological modeling to generate 3D sedimentary facies model, the 3D geometry and distribution feature of sand bodies can be more accurately characterized, particularly in 3D view. In Liuchu oilfield of Jizhong depression, the Ed2IV formation was recognized as meandering river deposition facies and five sedimentary facies were identified, which include point bar sand, levee, channel margin, abandoned channel and floodplain. All the 24 sand body facies in Ed2IV were mapped and the 3D sedimentary facies model established based on 2D facies maps. The result shows that the 3D sedimentary facies model is well matched for the research result of sedimentary facies. Being an extension of traditional sedimentary study, the 3D sedimentary facies model can be used to describe the 3D geometry and distribution orders of a single sand body more reliably and more accurately.

  5. Creating physical 3D stereolithograph models of brain and skull.

    Daniel J Kelley

    Full Text Available The human brain and skull are three dimensional (3D anatomical structures with complex surfaces. However, medical images are often two dimensional (2D and provide incomplete visualization of structural morphology. To overcome this loss in dimension, we developed and validated a freely available, semi-automated pathway to build 3D virtual reality (VR and hand-held, stereolithograph models. To evaluate whether surface visualization in 3D was more informative than in 2D, undergraduate students (n = 50 used the Gillespie scale to rate 3D VR and physical models of both a living patient-volunteer's brain and the skull of Phineas Gage, a historically famous railroad worker whose misfortune with a projectile tamping iron provided the first evidence of a structure-function relationship in brain. Using our processing pathway, we successfully fabricated human brain and skull replicas and validated that the stereolithograph model preserved the scale of the VR model. Based on the Gillespie ratings, students indicated that the biological utility and quality of visual information at the surface of VR and stereolithograph models were greater than the 2D images from which they were derived. The method we developed is useful to create VR and stereolithograph 3D models from medical images and can be used to model hard or soft tissue in living or preserved specimens. Compared to 2D images, VR and stereolithograph models provide an extra dimension that enhances both the quality of visual information and utility of surface visualization in neuroscience and medicine.

  6. 3D Bioprinting of Tissue/Organ Models.

    Pati, Falguni; Gantelius, Jesper; Svahn, Helene Andersson

    2016-04-01

    In vitro tissue/organ models are useful platforms that can facilitate systematic, repetitive, and quantitative investigations of drugs/chemicals. The primary objective when developing tissue/organ models is to reproduce physiologically relevant functions that typically require complex culture systems. Bioprinting offers exciting prospects for constructing 3D tissue/organ models, as it enables the reproducible, automated production of complex living tissues. Bioprinted tissues/organs may prove useful for screening novel compounds or predicting toxicity, as the spatial and chemical complexity inherent to native tissues/organs can be recreated. In this Review, we highlight the importance of developing 3D in vitro tissue/organ models by 3D bioprinting techniques, characterization of these models for evaluating their resemblance to native tissue, and their application in the prioritization of lead candidates, toxicity testing, and as disease/tumor models. PMID:26895542

  7. 3D web visualization of huge CityGML models

    Prandi, F.; Devigili, F.; Soave, M.; Di Staso, U.; De Amicis, R.

    2015-08-01

    Nowadays, rapid technological development into acquiring geo-spatial information; joined to the capabilities to process these data in a relative short period of time, allows the generation of detailed 3D textured city models that will become an essential part of the modern city information infrastructure (Spatial Data Infrastructure) and, can be used to integrate various data from different sources for public accessible visualisation and many other applications. One of the main bottlenecks, which at the moment limit the use of these datasets to few experts, is a lack on efficient visualization systems through the web and interoperable frameworks that allow standardising the access to the city models. The work presented in this paper tries to satisfy these two requirements developing a 3D web-based visualization system based on OGC standards and effective visualization concepts. The architectural framework, based on Services Oriented Architecture (SOA) concepts, provides the 3D city data to a web client designed to support the view process in a very effective way. The first part of the work is to design a framework compliant to the 3D Portrayal Service drafted by the of the Open Geospatial Consortium (OGC) 3D standardization working group. The latter is related to the development of an effective web client able to render in an efficient way the 3D city models.

  8. Arbitrary modeling of TSVs for 3D integrated circuits

    Salah, Khaled; El-Rouby, Alaa

    2014-01-01

    This book presents a wide-band and technology independent, SPICE-compatible RLC model for through-silicon vias (TSVs) in 3D integrated circuits. This model accounts for a variety of effects, including skin effect, depletion capacitance and nearby contact effects. Readers will benefit from in-depth coverage of concepts and technology such as 3D integration, Macro modeling, dimensional analysis and compact modeling, as well as closed form equations for the through silicon via parasitics. Concepts covered are demonstrated by using TSVs in applications such as a spiral inductor?and inductive-based

  9. 3D Modelling of Biological Systems for Biomimetics

    Shujun Zhang; Kevin Hapeshi; Ashok K. Bhattacharya

    2004-01-01

    With the advanced development of computer-based enabling technologies, many engineering, medical, biology,chemistry, physics and food science etc have developed to the unprecedented levels, which lead to many research and development interests in various multi-discipline areas. Among them, biomimetics is one of the most promising and attractive branches of study. Biomimetics is a branch of study that uses biological systems as a model to develop synthetic systems.To learn from nature, one of the fundamental issues is to understand the natural systems such animals, insects, plants and human beings etc. The geometrical characterization and representation of natural systems is an important fundamental work for biomimetics research. 3D modeling plays a key role in the geometrical characterization and representation, especially in computer graphical visualization. This paper firstly presents the typical procedure of 3D modelling methods and then reviews the previous work of 3D geometrical modelling techniques and systems developed for industrial, medical and animation applications. Especially the paper discusses the problems associated with the existing techniques and systems when they are applied to 3D modelling of biological systems. Based upon the discussions, the paper proposes some areas of research interests in 3D modelling of biological systems and for Biomimetics.

  10. Modeling and Manufacturing of Micromechanical RF Switch with Inductors

    Ying-Liang Chen

    2007-11-01

    Full Text Available This study presents the simulation, fabrication and characterization ofmicromechanical radio frequency (RF switch with micro inductors. The inductors areemployed to enhance the characteristic of the RF switch. An equivalent circuit model isdeveloped to simulate the performance of the RF switch. The behaviors of themicromechanical RF switch are simulated by the finite element method software,CoventorWare. The micromechanical RF switch is fabricated using the complementarymetal oxide semiconductor (CMOS and a post-process. The post-process employs a wetetching to etch the sacrificial layer, and to release the suspended structures of the RF switch.The structure of the RF switch contains a coplanar waveguide (CPW, a suspendedmembrane, eight springs and two inductors in series. Experimental results reveal that theinsertion loss and isolation of the switch are 1.7 dB at 21 GHz and 19 dB at 21 GHz,respectively. The driving voltage of the switch is about 13 V.

  11. A spherical harmonics intensity model for 3D segmentation and 3D shape analysis of heterochromatin foci.

    Eck, Simon; Wörz, Stefan; Müller-Ott, Katharina; Hahn, Matthias; Biesdorf, Andreas; Schotta, Gunnar; Rippe, Karsten; Rohr, Karl

    2016-08-01

    The genome is partitioned into regions of euchromatin and heterochromatin. The organization of heterochromatin is important for the regulation of cellular processes such as chromosome segregation and gene silencing, and their misregulation is linked to cancer and other diseases. We present a model-based approach for automatic 3D segmentation and 3D shape analysis of heterochromatin foci from 3D confocal light microscopy images. Our approach employs a novel 3D intensity model based on spherical harmonics, which analytically describes the shape and intensities of the foci. The model parameters are determined by fitting the model to the image intensities using least-squares minimization. To characterize the 3D shape of the foci, we exploit the computed spherical harmonics coefficients and determine a shape descriptor. We applied our approach to 3D synthetic image data as well as real 3D static and real 3D time-lapse microscopy images, and compared the performance with that of previous approaches. It turned out that our approach yields accurate 3D segmentation results and performs better than previous approaches. We also show that our approach can be used for quantifying 3D shape differences of heterochromatin foci. PMID:27037463

  12. Support Vector Machine active learning for 3D model retrieval

    2007-01-01

    In this paper, we present a novel Support Vector Machine active learning algorithm for effective 3D model retrieval using the concept of relevance feedback. The proposed method learns from the most informative objects which are marked by the user, and then creates a boundary separating the relevant models from irrelevant ones. What it needs is only a small number of 3D models labelled by the user. It can grasp the user's semantic knowledge rapidly and accurately. Experimental results showed that the proposed algorithm significantly improves the retrieval effectiveness. Compared with four state-of-the-art query refinement schemes for 3D model retrieval, it provides superior retrieval performance after no more than two rounds of relevance feedback.

  13. 3D-modeling of Norrköping

    Chau, Chieu Vinh

    2007-01-01

    The interest for a detailed and high solution city model has been large within the project” Optical signature analysis” at the department for Sensor Technology in FOI, Linköping. Thus, a textured 3D-model over Norrköping is needed, which later can be imported into simulation software to study optical signature in urban environment. The aim with this thesis work is to be able to use the result as a multi-used 3D-model within applications of the Swedish defence force for future usage. It is imp...

  14. Modeling real conditions of 'Ukrytie' object in 3D measurement

    The article covers a technology of creation on soft products basis for designing: AutoCad, and computer graphics and animation 3D Studio, 3DS MAX, of 3D model of geometrical parameters of current conditions of building structures, technological equipment, fuel-containing materials, concrete, water of ruined Unit 4, 'Ukryttia' object, of Chernobyl NPP. The model built using the above technology will be applied in the future as a basis when automating the design and computer modeling of processes at the 'Ukryttia' object

  15. Potential of 3D City Models to assess flood vulnerability

    Schröter, Kai; Bochow, Mathias; Schüttig, Martin; Nagel, Claus; Ross, Lutz; Kreibich, Heidi

    2016-04-01

    Vulnerability, as the product of exposure and susceptibility, is a key factor of the flood risk equation. Furthermore, the estimation of flood loss is very sensitive to the choice of the vulnerability model. Still, in contrast to elaborate hazard simulations, vulnerability is often considered in a simplified manner concerning the spatial resolution and geo-location of exposed objects as well as the susceptibility of these objects at risk. Usually, area specific potential flood loss is quantified on the level of aggregated land-use classes, and both hazard intensity and resistance characteristics of affected objects are represented in highly simplified terms. We investigate the potential of 3D City Models and spatial features derived from remote sensing data to improve the differentiation of vulnerability in flood risk assessment. 3D City Models are based on CityGML, an application scheme of the Geography Markup Language (GML), which represents the 3D geometry, 3D topology, semantics and appearance of objects on different levels of detail. As such, 3D City Models offer detailed spatial information which is useful to describe the exposure and to characterize the susceptibility of residential buildings at risk. This information is further consolidated with spatial features of the building stock derived from remote sensing data. Using this database a spatially detailed flood vulnerability model is developed by means of data-mining. Empirical flood damage data are used to derive and to validate flood susceptibility models for individual objects. We present first results from a prototype application in the city of Dresden, Germany. The vulnerability modeling based on 3D City Models and remote sensing data is compared i) to the generally accepted good engineering practice based on area specific loss potential and ii) to a highly detailed representation of flood vulnerability based on a building typology using urban structure types. Comparisons are drawn in terms of

  16. 3D head model classification using optimized EGI

    Tong, Xin; Wong, Hau-san; Ma, Bo

    2006-02-01

    With the general availability of 3D digitizers and scanners, 3D graphical models have been used widely in a variety of applications. This has led to the development of search engines for 3D models. Especially, 3D head model classification and retrieval have received more and more attention in view of their many potential applications in criminal identifications, computer animation, movie industry and medical industry. This paper addresses the 3D head model classification problem using 2D subspace analysis methods such as 2D principal component analysis (2D PCA[3]) and 2D fisher discriminant analysis (2DLDA[5]). It takes advantage of the fact that the histogram is a 2D image, and we can extract the most useful information from these 2D images to get a good result accordingingly. As a result, there are two main advantages: First, we can perform less calculation to obtain the same rate of classification; second, we can reduce the dimensionality more than PCA to obtain a higher efficiency.

  17. 3D model of amphioxus steroid receptor complexed with estradiol

    The origins of signaling by vertebrate steroids are not fully understood. An important advance was the report that an estrogen-binding steroid receptor [SR] is present in amphioxus, a basal chordate with a similar body plan as vertebrates. To investigate the evolution of estrogen-binding to steroid receptors, we constructed a 3D model of amphioxus SR complexed with estradiol. This 3D model indicates that although the SR is activated by estradiol, some interactions between estradiol and human ERα are not conserved in the SR, which can explain the low affinity of estradiol for the SR. These differences between the SR and ERα in the steroid-binding domain are sufficient to suggest that another steroid is the physiological regulator of the SR. The 3D model predicts that mutation of Glu-346 to Gln will increase the affinity of testosterone for amphioxus SR and elucidate the evolution of steroid-binding to nuclear receptors.

  18. Statistical 3D damage accumulation model for ion implant simulators

    Hernandez-Mangas, J M; Enriquez, L E; Bailon, L; Barbolla, J; Jaraiz, M

    2003-01-01

    A statistical 3D damage accumulation model, based on the modified Kinchin-Pease formula, for ion implant simulation has been included in our physically based ion implantation code. It has only one fitting parameter for electronic stopping and uses 3D electron density distributions for different types of targets including compound semiconductors. Also, a statistical noise reduction mechanism based on the dose division is used. The model has been adapted to be run under parallel execution in order to speed up the calculation in 3D structures. Sequential ion implantation has been modelled including previous damage profiles. It can also simulate the implantation of molecular and cluster projectiles. Comparisons of simulated doping profiles with experimental SIMS profiles are presented. Also comparisons between simulated amorphization and experimental RBS profiles are shown. An analysis of sequential versus parallel processing is provided.

  19. Diffusion approximation for modeling of 3-D radiation distributions

    A three-dimensional transport code DIF3D, based on the diffusion approximation, is used to model the spatial distribution of radiation energy arising from volumetric isotropic sources. Future work will be concerned with the determination of irradiances and modeling of realistic scenarios, relevant to the battlefield conditions. 8 refs., 4 figs

  20. 3D subsurface temperature model of Europe for geothermal exploration

    Limberger, J.; Wees, J.D. van

    2014-01-01

    For the assessment of geothermal resources in Europe we constructed a digital 3D temperature model of the European crust and sedimentary basins, incorporating publicly available temperature data. Using European crustal thickness models and indirect parameters such as surface heat flow measurements,

  1. 3D Shape Modeling Using High Level Descriptors

    Andersen, Vedrana

    The goal of this Ph.D. project is to investigate and improve the methods for describing the surface of 3D objects, with focus on modeling geometric texture on surfaces. Surface modeling being a large field of research, the work done during this project concentrated around a few smaller areas...

  2. Validation of a 3-D hemispheric nested air pollution model

    Frohn, L. M.; Christensen, J.H.; Brandt, J; C. Geels; Hansen, K. M.

    2003-01-01

    Several air pollution transport models have been developed at the National Environmental Research Institute in Denmark over the last decade (DREAM, DEHM, ACDEP and DEOM). A new 3-D nested Eulerian transport-chemistry model: REGIonal high resolutioN Air pollution model (REGINA) is based on modules and parameterisations from these models as well as new methods. The model covers the majority of the Northern Hemisphere with currently one nest...

  3. ENHANCED LOD CONCEPTS FOR VIRTUAL 3D CITY MODELS

    Benner, J.; Geiger, A; G. Gröger; Häfele, K.-H.; Löwner, M.-O.

    2013-01-01

    Virtual 3D city models contain digital three dimensional representations of city objects like buildings, streets or technical infrastructure. Because size and complexity of these models continuously grow, a Level of Detail (LoD) concept effectively supporting the partitioning of a complete model into alternative models of different complexity and providing metadata, addressing informational content, complexity and quality of each alternative model is indispensable. After a short over...

  4. Modelling Gaia CCD pixels with Silvaco 3D engineering software

    Seabroke, G M; Hopkinson, G; Burt, D; Robbins, M; Holland, A

    2010-01-01

    Gaia will only achieve its unprecedented measurement accuracy requirements with detailed calibration and correction for radiation damage. We present our Silvaco 3D engineering software model of the Gaia CCD pixel and two of its applications for Gaia: (1) physically interpreting supplementary buried channel (SBC) capacity measurements (pocket-pumping and first pixel response) in terms of e2v manufacturing doping alignment tolerances; and (2) deriving electron densities within a charge packet as a function of the number of constituent electrons and 3D position within the charge packet as input to microscopic models being developed to simulate radiation damage.

  5. Automatic Generation of 3D Building Models with Multiple Roofs

    Kenichi Sugihara; Yoshitugu Hayashi

    2008-01-01

    Based on building footprints (building polygons) on digital maps, we are proposing the GIS and CG integrated system that automatically generates 3D building models with multiple roofs. Most building polygons' edges meet at right angles (orthogonal polygon). The integrated system partitions orthogonal building polygons into a set of rectangles and places rectangular roofs and box-shaped building bodies on these rectangles. In order to partition an orthogonal polygon, we proposed a useful polygon expression in deciding from which vertex a dividing line is drawn. In this paper, we propose a new scheme for partitioning building polygons and show the process of creating 3D roof models.

  6. Modelling Gaia CCD pixels with Silvaco 3D engineering software

    Seabroke, G. M.; Prod'Homme, T.; Hopkinson, G.; Burt, D.; Robbins, M.; Holland, A.

    2011-02-01

    Gaia will only achieve its unprecedented measurement accuracy requirements with detailed calibration and correction for radiation damage. We present our Silvaco 3D engineering software model of the Gaia CCD pixel and two of its applications for Gaia: (1) physically interpreting supplementary buried channel (SBC) capacity measurements (pocket-pumping and first pixel response) in terms of e2v manufacturing doping alignment tolerances; and (2) deriving electron densities within a charge packet as a function of the number of constituent electrons and 3D position within the charge packet as input to microscopic models being developed to simulate radiation damage.

  7. Round table session on '3D-city-modeling'

    Rüdiger, Bjarne; Tournay, Bruno

    According to eCAADe's mission, the exchange and collaboration within the area of computer aided architectural design education and research, while respecting the pedagogical and administrative approaches in the different schools and countries, can be regarded as a core activity. On the occasion of...... eCAADe 2001 in Helsinki a working session on the topic "3D-City-Modeling" was held, in which a varietybundle of papers was presented. The eCAADe 2002 round table session on "3D-City-Modeling" is opening up for an intensive discussion on a number of goals which were elaborated by a working group in...

  8. Round table session on '3D-city-modeling

    Rüdiger, Bjarne; Tournay, Bruno

    According to eCAADs's mission, the exchange and collaboration within the area of computer aided architectural design education and research, while respecting the pedagogical and administrative approaches in the different schools and countries, can be regarded as a core activity. On the occasion of...... eCAADe 2001 in Helsinki a working session on the topic "3D-City-Modeling" was held, in which a varietybundle of papers was presented. The eCAADe 2002 round table session on "3D-City-Modeling" is opening up for an intensive discussion on a number of goals which were elaborated by a working group in...

  9. Design and modeling for 3D ICS and interposers

    Swaminathan, Madhavan

    2013-01-01

    3D Integration is being touted as the next semiconductor revolution. This book provides a comprehensive coverage on the design and modeling aspects of 3D integration, in particularly, focus on its electrical behavior. Looking from the perspective the Silicon Via (TSV) and Glass Via (TGV) technology, the book introduces 3DICs and Interposers as a technology, and presents its application in numerical modeling, signal integrity, power integrity and thermal integrity. The authors underscored the potential of this technology in design exchange formats and power distribution.

  10. Probabilistic reasoning for assembly-based 3D modeling

    Chaudhuri, Siddhartha

    2011-01-01

    Assembly-based modeling is a promising approach to broadening the accessibility of 3D modeling. In assembly-based modeling, new models are assembled from shape components extracted from a database. A key challenge in assembly-based modeling is the identification of relevant components to be presented to the user. In this paper, we introduce a probabilistic reasoning approach to this problem. Given a repository of shapes, our approach learns a probabilistic graphical model that encodes semantic and geometric relationships among shape components. The probabilistic model is used to present components that are semantically and stylistically compatible with the 3D model that is being assembled. Our experiments indicate that the probabilistic model increases the relevance of presented components. © 2011 ACM.

  11. Parallel Optimization of 3D Cardiac Electrophysiological Model Using GPU

    Yong Xia

    2015-01-01

    Full Text Available Large-scale 3D virtual heart model simulations are highly demanding in computational resources. This imposes a big challenge to the traditional computation resources based on CPU environment, which already cannot meet the requirement of the whole computation demands or are not easily available due to expensive costs. GPU as a parallel computing environment therefore provides an alternative to solve the large-scale computational problems of whole heart modeling. In this study, using a 3D sheep atrial model as a test bed, we developed a GPU-based simulation algorithm to simulate the conduction of electrical excitation waves in the 3D atria. In the GPU algorithm, a multicellular tissue model was split into two components: one is the single cell model (ordinary differential equation and the other is the diffusion term of the monodomain model (partial differential equation. Such a decoupling enabled realization of the GPU parallel algorithm. Furthermore, several optimization strategies were proposed based on the features of the virtual heart model, which enabled a 200-fold speedup as compared to a CPU implementation. In conclusion, an optimized GPU algorithm has been developed that provides an economic and powerful platform for 3D whole heart simulations.

  12. Geospatial Modelling Approach for 3d Urban Densification Developments

    Koziatek, O.; Dragićević, S.; Li, S.

    2016-06-01

    With growing populations, economic pressures, and the need for sustainable practices, many urban regions are rapidly densifying developments in the vertical built dimension with mid- and high-rise buildings. The location of these buildings can be projected based on key factors that are attractive to urban planners, developers, and potential buyers. Current research in this area includes various modelling approaches, such as cellular automata and agent-based modelling, but the results are mostly linked to raster grids as the smallest spatial units that operate in two spatial dimensions. Therefore, the objective of this research is to develop a geospatial model that operates on irregular spatial tessellations to model mid- and high-rise buildings in three spatial dimensions (3D). The proposed model is based on the integration of GIS, fuzzy multi-criteria evaluation (MCE), and 3D GIS-based procedural modelling. Part of the City of Surrey, within the Metro Vancouver Region, Canada, has been used to present the simulations of the generated 3D building objects. The proposed 3D modelling approach was developed using ESRI's CityEngine software and the Computer Generated Architecture (CGA) language.

  13. Technical report on micro-mechanical versus conventional modelling in non-linear fracture mechanics

    While conventional fracture mechanics is capable of predicting crack growth behaviour if sufficient experimental observations are available, micro-mechanical modelling can both increase the accuracy of these predictions and model phenomena that are inaccessible by the conventional theory such as the ductile-cleavage temperature transition. A common argument against micro-mechanical modelling is that it is too complicated for use in routine engineering applications. This is both a computational and an educational problem. That micro-mechanical modelling is unnecessarily complicated is certainly true in many situations. The on-going development of micro-mechanical models, computational algorithms and computer speed will however most probably diminish the computational problem rather rapidly. Compare for instance the rate of development of computational methods for structural analysis. Meanwhile micro-mechanical modelling may serve as a tool by which more simplified engineering methods can be validated. The process of receiving a wide acceptance of the new methods is probably much slower. This involves many steps. First the research community must be in reasonable agreement on the methods and their use. Then the methods have to be implemented into computer software and into code procedures. The development and acceptance of conventional fracture mechanics may serve as an historical example of the time required before a new methodology has received a wide usage. The CSNI Working Group on Integrity and Ageing (IAGE) decided to carry out a report on micro-mechanical modeling to promote this promising and valuable technique. The report presents a comparison with non-linear fracture mechanics and highlights key aspects that could lead to a better knowledge and accurate predictions. Content: - 1. Introduction; - 2. Concepts of non-linear fracture mechanics with point crack tip modelling; - 3. Micro-mechanical models for cleavage fracture; - 4, Micro-mechanical modelling of

  14. Vizuelizacija 3D modela geopodataka i njihova primjena : Visualisation of the 3D geodata models and their application

    Mirko Borisov

    2014-12-01

    Full Text Available U radu se opisuju 3D modeli geopodataka i njihova primjena. Na geodetskim planovima i topografskim kartama najčešće se primjenjuju metode prikaza terena (reljefa pomoću kota i izohipsi. Međutim, sa pojavom novih tehnologija mijenja se način vizualizacije i naglašava koncept 3D modela geopodataka. Pritom, koriste se različiti pojmovi: digitalni model visina (DMV, digitalni model terena (DMT, digitalni model površi (DMP i drugo. Infrastruktura i 3D modeli geopodataka su standardizovani, ali se vizualizacija i detaljnost sadržaja mijenja i usklađuje prema namjeni i razmjeri prikaza. Primjena 3D modela geopodataka u digitalnom obliku (raster ili vektor postaje sve više aktuelna i putem interneta. Zato je važno razlikovati navedene pojmove i odlike 3D modela geopodataka kao i mogućnosti njihove primjene. : This paper describes the 3D geodata models and their application. On geodetic plans and topographic maps commonly applied methods of terrain (relief by spots elevation and contour lines. However, with the advent of new technologies the way of the visualisation is changing and highlights the concept 3D geodata model. Namely, there are different concepts: digital elevation model (DEM, digital terrain model (DTM, digital surface model (DSP and so on. Infrastructure and 3D geodata models are standardized, while the visualization and details of information change and adjust the needs and aspect ratio display. Application of 3D geodata models in digital format (raster or vector is becoming increasingly topical over the internet. Therefore, it is important to distinguish between certain concepts and features of 3D geodata models and the possibility of their application.

  15. Robust model-based 3d/3D fusion using sparse matching for minimally invasive surgery.

    Neumann, Dominik; Grbic, Sasa; John, Matthias; Navab, Nassir; Hornegger, Joachim; Ionasec, Razvan

    2013-01-01

    Classical surgery is being disrupted by minimally invasive and transcatheter procedures. As there is no direct view or access to the affected anatomy, advanced imaging techniques such as 3D C-arm CT and C-arm fluoroscopy are routinely used for intra-operative guidance. However, intra-operative modalities have limited image quality of the soft tissue and a reliable assessment of the cardiac anatomy can only be made by injecting contrast agent, which is harmful to the patient and requires complex acquisition protocols. We propose a novel sparse matching approach for fusing high quality pre-operative CT and non-contrasted, non-gated intra-operative C-arm CT by utilizing robust machine learning and numerical optimization techniques. Thus, high-quality patient-specific models can be extracted from the pre-operative CT and mapped to the intra-operative imaging environment to guide minimally invasive procedures. Extensive quantitative experiments demonstrate that our model-based fusion approach has an average execution time of 2.9 s, while the accuracy lies within expert user confidence intervals. PMID:24505663

  16. 3D Model Generation From the Engineering Drawing

    Vaský, Jozef; Eliáš, Michal; Bezák, Pavol; Červeňanská, Zuzana; Izakovič, Ladislav

    2010-01-01

    The contribution deals with the transformation of engineering drawings in a paper form into a 3D computer representation. A 3D computer model can be further processed in CAD/CAM system, it can be modified, archived, and a technical drawing can be then generated from it as well. The transformation process from paper form to the data one is a complex and difficult one, particularly owing to the different types of drawings, forms of displayed objects and encountered errors and deviations from technical standards. The algorithm for 3D model generating from an orthogonal vector input representing a simplified technical drawing of the rotational part is described in this contribution. The algorithm was experimentally implemented as ObjectARX application in the AutoCAD system and the test sample as the representation of the rotational part was used for verificaton.

  17. Causal Dynamical Triangulation of 3D Tensor Model

    Kawabe, Hiroshi

    2016-01-01

    We extend the string field theory of the two dimensional (2D) generalized causal dynamical triangulation (GCDT) with the Ishibashi-Kawai (IK-) type interaction formulated by the matrix model, to the three dimensional (3D) model of the surface field theory. Based on the loop gas model, we construct a tensor model for the discretized surface field and then apply it the stochastic quantization method. In the double scaling limit, the model is characterized by two scaling dimensions $D$ and $D_N$, the power indices of the minimal length as the scaling parameter. The continuum GCDT model with the IK-type interaction is realized with the similar restriction in the $D_N$-$D$ space, to the 2D model. The distinct property in the 3D model is that the quantum effect contains the IK-type interaction only, while the ordinary splitting interaction is excluded.

  18. Geodiversity: Exploration of 3D geological model space

    Lindsay, M. D.; Jessell, M. W.; Ailleres, L.; Perrouty, S.; de Kemp, E.; Betts, P. G.

    2013-05-01

    The process of building a 3D model necessitates the reconciliation of field observations, geophysical interpretation, geological data uncertainty and the prevailing tectonic evolution hypotheses and interpretations. Uncertainty is compounded when clustered data points collected at local scales are statistically upscaled to one or two points for use in regional models. Interpretation is required to interpolate between sparse field data points using ambiguous geophysical data in covered terranes. It becomes clear that multiple interpretations are possible during model construction. The various interpretations are considered as potential natural representatives, but pragmatism typically dictates that just a single interpretation is offered by the modelling process. Uncertainties are introduced into the 3D model during construction from a variety of sources and through data set optimisation that produces a single model. Practices such as these are likely to result in a model that does not adequately represent the target geology. A set of geometrical ‘geodiversity’ metrics are used to analyse a 3D model of the Gippsland Basin, southeastern Australia after perturbing geological input data via uncertainty simulation. The resulting sets of perturbed geological observations are used to calculate a suite of geological 3D models that display a range of geological architectures. The concept of biodiversity has been adapted for the geosciences to quantify geometric variability, or geodiversity, between models in order to understand the effect uncertainty has models geometry. Various geometrical relationships (depth, volume, contact surface area, curvature and geological complexity) are used to describe the range of possibilities exhibited throughout the model suite. End-member models geodiversity metrics are classified in a similar manner to taxonomic descriptions. Further analysis of the model suite is performed using principal component analysis (PCA) to determine

  19. Improving Semantic Updating Method on 3d City Models Using Hybrid Semantic-Geometric 3d Segmentation Technique

    Sharkawi, K.-H.; Abdul-Rahman, A.

    2013-09-01

    Cities and urban areas entities such as building structures are becoming more complex as the modern human civilizations continue to evolve. The ability to plan and manage every territory especially the urban areas is very important to every government in the world. Planning and managing cities and urban areas based on printed maps and 2D data are getting insufficient and inefficient to cope with the complexity of the new developments in big cities. The emergence of 3D city models have boosted the efficiency in analysing and managing urban areas as the 3D data are proven to represent the real world object more accurately. It has since been adopted as the new trend in buildings and urban management and planning applications. Nowadays, many countries around the world have been generating virtual 3D representation of their major cities. The growing interest in improving the usability of 3D city models has resulted in the development of various tools for analysis based on the 3D city models. Today, 3D city models are generated for various purposes such as for tourism, location-based services, disaster management and urban planning. Meanwhile, modelling 3D objects are getting easier with the emergence of the user-friendly tools for 3D modelling available in the market. Generating 3D buildings with high accuracy also has become easier with the availability of airborne Lidar and terrestrial laser scanning equipments. The availability and accessibility to this technology makes it more sensible to analyse buildings in urban areas using 3D data as it accurately represent the real world objects. The Open Geospatial Consortium (OGC) has accepted CityGML specifications as one of the international standards for representing and exchanging spatial data, making it easier to visualize, store and manage 3D city models data efficiently. CityGML able to represents the semantics, geometry, topology and appearance of 3D city models in five well-defined Level-of-Details (LoD), namely LoD0

  20. Micromechanics Based Inelastic and Damage Modeling of Composites

    P. P. Procházka

    2004-01-01

    Full Text Available Micromechanics based models are considered for application to viscoelasticity and damage in metal matrix composites. The method proposes a continuation and development of Dvooák’s transformation field analysis, considering the piecewise uniform eigenstrains in each material phase. Standard applications of the method to a two-phase are considered in this study model, i.e., only one sub-volume per phase is considered. A continuous model is used, employing transformation field analysis with softening in order to prevent the tensile stress overstepping the tensile strength. At the same time shear cracking occurs in the tangential direction of the possible crack. This is considered in the principal shear stresses and they make disconnections in displacements. In this case, discontinuous models are more promising. Because discrete models, that can describe the situation more realistically have not been worked out in detail, we retain a continuous model and substitute the slip caused by overstepping the damage law by introducing eigenparameters from TFA. The various aspects of the proposed methods are systematically checked by comparing with finite element unit cell analyses, made through periodic homogenization assumptions, for SiC/Ti unidirectional lay-ups. 

  1. Estimation of shape model parameters for 3D surfaces

    Erbou, Søren Gylling Hemmingsen; Darkner, Sune; Fripp, Jurgen; Ourselin, Sébastien; Ersbøll, Bjarne Kjær

    surfaces using distance maps, which enables the estimation of model parameters without the requirement of point correspondence. For applications with acquisition limitations such as speed and cost, this formulation enables the fitting of a statistical shape model to arbitrarily sampled data. The method is......Statistical shape models are widely used as a compact way of representing shape variation. Fitting a shape model to unseen data enables characterizing the data in terms of the model parameters. In this paper a Gauss-Newton optimization scheme is proposed to estimate shape model parameters of 3D...... applied to a database of 3D surfaces from a section of the porcine pelvic bone extracted from 33 CT scans. A leave-one-out validation shows that the parameters of the first 3 modes of the shape model can be predicted with a mean difference within [-0.01,0.02] from the true mean, with a standard deviation...

  2. Micromechanical modeling of tuffaceous rock for application in nuclear waste storage

    This paper describes the development of micromechanical models for tuffaceous rock. In particular, laboratory tests have been conducted on Topopah Spring tuff from Yucca Mountain, Nevada and Apache Leap tuff from Superior, Arizona. Topopah Spring tuff is the host rock for the proposed underground nuclear waste repository at Yucca Mountain, and Apache Leap tuff is an analog for the host rock. Based on SEM microscopy of the damaged rock specimens, the specific micro-mechanisms for deformation in tuffs have been determined. Micromechanical models based on fracture mechanics theory are then developed for these specific mechanisms. The micromechanical models are able to predict the nonlinear stress-strain behaviour of tuff, including strain-hardening, strain-softening, triaxial strength, and dilatation. (Author)

  3. Teaching the geological subsurface with 3D models

    Thorpe, Steve; Ward, Emma

    2014-05-01

    3D geological models have great potential as a resource when teaching geological concepts as it allows the student to visualise and interrogate UK geology. They are especially useful when dealing with the conversion of 2D field, map and GIS outputs into three dimensional geological units, which is a common problem for many students. Today's earth science students use a variety of skills and processes during their learning experience including spatial thinking, image construction, detecting patterns, making predictions and deducing the orientation of themselves. 3D geological models can reinforce spatial thinking strategies and encourage students to think about processes and properties, in turn helping the student to recognise pre-learnt geological principles in the field and to convert what they see at the surface into a picture of what is going on at depth. The British Geological Survey (BGS) has been producing digital 3D geological models for over 10 years. The models produced are revolutionising the working practices, data standards and products of the BGS. Sharing our geoscience information with academia is highlighted throughout the BGS strategy as is instilling practical skills in future geoscience professionals, such as model building and interpretation. In 2009 a project was launched to investigate the potential of the models as a teaching resource. The study included justifying if and how the models help students to learn, how models have been used historically, and how other forms of modelling are being used today. BGS now produce 3D geological models for use by anyone teaching or learning geoscience. They incorporate educational strategies that will develop geospatial skills and alleviate potential problems that some students experience. They are contained within contemporary case studies and show standard geological concepts, structures, sedimentary rocks, cross sections and field techniques. 3D geological models of the Isle of Wight and Ingleborough

  4. 3D Geological Model for "LUSI" - a Deep Geothermal System

    Sohrabi, Reza; Jansen, Gunnar; Mazzini, Adriano; Galvan, Boris; Miller, Stephen A.

    2016-04-01

    Geothermal applications require the correct simulation of flow and heat transport processes in porous media, and many of these media, like deep volcanic hydrothermal systems, host a certain degree of fracturing. This work aims to understand the heat and fluid transport within a new-born sedimentary hosted geothermal system, termed Lusi, that began erupting in 2006 in East Java, Indonesia. Our goal is to develop conceptual and numerical models capable of simulating multiphase flow within large-scale fractured reservoirs such as the Lusi region, with fractures of arbitrary size, orientation and shape. Additionally, these models can also address a number of other applications, including Enhanced Geothermal Systems (EGS), CO2 sequestration (Carbon Capture and Storage CCS), and nuclear waste isolation. Fractured systems are ubiquitous, with a wide-range of lengths and scales, making difficult the development of a general model that can easily handle this complexity. We are developing a flexible continuum approach with an efficient, accurate numerical simulator based on an appropriate 3D geological model representing the structure of the deep geothermal reservoir. Using previous studies, borehole information and seismic data obtained in the framework of the Lusi Lab project (ERC grant n°308126), we present here the first 3D geological model of Lusi. This model is calculated using implicit 3D potential field or multi-potential fields, depending on the geological context and complexity. This method is based on geological pile containing the geological history of the area and relationship between geological bodies allowing automatic computation of intersections and volume reconstruction. Based on the 3D geological model, we developed a new mesh algorithm to create hexahedral octree meshes to transfer the structural geological information for 3D numerical simulations to quantify Thermal-Hydraulic-Mechanical-Chemical (THMC) physical processes.

  5. APROS 3-D core models for simulators and plant analyzers

    The 3-D core models of APROS simulation environment can be used in simulator and plant analyzer applications, as well as in safety analysis. The key feature of APROS models is that the same physical models can be used in all applications. For three-dimensional reactor cores the APROS models cover both quadratic BWR and PWR cores and the hexagonal lattice VVER-type cores. In APROS environment the user can select the number of flow channels in the core and either five- or six-equation thermal hydraulic model for these channels. The thermal hydraulic model and the channel description have a decisive effect on the calculation time of the 3-D core model and thus just these selection make at present the major difference between a safety analysis model and a training simulator model. The paper presents examples of various types of 3-D LWR-type core descriptions for simulator and plant analyzer use and discusses the differences of calculation speed and physical results between a typical safety analysis model description and a real-time simulator model description in transients. (author)

  6. Monocular model-based 3D tracking of rigid objects

    Lepetit, Vincent

    2014-01-01

    Many applications require tracking complex 3D objects. These include visual serving of robotic arms on specific target objects, Augmented Reality systems that require real time registration of the object to be augmented, and head tracking systems that sophisticated interfaces can use. Computer vision offers solutions that are cheap, practical and non-invasive. ""Monocular Model-Based 3D Tracking of Rigid Objects"" reviews the different techniques and approaches that have been developed by industry and research. First, important mathematical tools are introduced: camera representation, robust e

  7. Automatic 3D Modeling of the Urban Landscape

    Esteban, I.; Dijk, J.; Groen, F.A.

    2010-01-01

    In this paper we present a fully automatic system for building 3D models of urban areas at the street level. We propose a novel approach for the accurate estimation of the scale consistent camera pose given two previous images. We employ a new method for global optimization and use a novel sampling

  8. 3D Property Modeling of Void Ratio by Cokriging

    Yao Lingqing; Pan Mao; Cheng Qiuming

    2008-01-01

    Void ratio measures compactness of ground soil in geotechnical engineering. When samples are collected in certain area for mapping void ratios, other relevant types of properties such as water content may be also analyzed. To map the spatial distribution of void ratio in the area based on these types of point, observation data interpolation is often needed. Owing to the variance of sampling density along the horizontal and vertical directions, special consideration is required to handle anisotropy of estimator. 3D property modeling aims at predicting the overall distribution of property values from limited samples, and geostatistical method can he employed naturally here because they help to minimize the mean square error of estimation. To construct 3D property model of void ratio, cokriging was used considering its mutual correlation with water content, which is another important soil parameter. Moreover, K-D tree was adopted to organize the samples to accelerate neighbor query in 3D space during the above modeling process. At last, spatial configuration of void ratio distribution in an engineering body was modeled through 3D visualization, which provides important information for civil engineering purpose.

  9. Micromechanical modeling and inverse identification of damage using cohesive approaches

    In this study a micromechanical model is proposed for a collection of cohesive zone models embedded between two each elements of a standard cohesive-volumetric finite element method. An equivalent 'matrix-inclusions' composite is proposed as a representation of the cohesive-volumetric discretization. The overall behaviour is obtained using homogenization approaches (Hashin Shtrikman scheme and the P. Ponte Castaneda approach). The derived model deals with elastic, brittle and ductile materials. It is available whatever the triaxiality loading rate and the shape of the cohesive law, and leads to direct relationships between the overall material properties and the local cohesive parameters and the mesh density. First, rigorous bounds on the normal and tangential cohesive stiffnesses are obtained leading to a suitable control of the inherent artificial elastic loss induced by intrinsic cohesive models. Second, theoretical criteria on damageable and ductile cohesive parameters are established (cohesive peak stress, critical separation, cohesive failure energy,... ). These criteria allow a practical calibration of the cohesive zone parameters as function of the overall material properties and the mesh length. The main interest of such calibration is its promising capacity to lead to a mesh-insensitive overall response in surface damage. (author)

  10. Building a 3-D Appearance Model of the Human Face

    Sjöstrand, Karl; Larsen, Rasmus; Lading, Brian

    2003-01-01

    This paper describes a method for building an appearance model from three-dimensional data of human faces. The data consists of 3-D vertices, polygons and a texture map. The method uses a set of nine manually placed landmarks to automatically form a dense correspondence of thousands of points. This makes sure the model is able to capture the subtle details of a face. The model can be used for face segmentation and fully automated face registration.

  11. Building a 3-D Appearance Model of the Human Face

    Sjöstrand, Karl; Larsen, Rasmus; Lading, Brian

    2003-01-01

    This paper describes a method for building an appearance model from three-dimensional data of human faces. The data consists of 3-D vertices, polygons and a texture map. The method uses a set of nine manually placed landmarks to automatically form a dense correspondence of thousands of points. This...... makes sure the model is able to capture the subtle details of a face. The model can be used for face segmentation and fully automated face registration....

  12. Thermal 3D Modeling of Geothermal Area Using Terrestrial Photogrammetry

    Akcay, Ozgun; Cuneyt Erenoglu, Ramazan; Erenoglu, Oya; Yılmazturk, Ferruh; Karaca, Zeki

    2015-04-01

    Photogrammetry and computer vision, sciences producing high accuracy 3D models from digital images based on projective geometry. 3D models can also be produced using thermal camera images using photogrammetry and computer vision techniques. Thermal images are capable of displaying hotspots on geothermal areas as a heat source in details. In the research, Tuzla geothermal area in Çanakkale province of Turkey is inspected using imaging techniques of terrestrial photogrammetry. Both a digital camera Canon EOS 650D and an infrared camera Optris PI 450 are used to obtain images of the thermal site. Calibration parameters (focal length, principle point, distortion coefficients) of thermal and digital cameras are determined using the calibration test field at the laboratory before the field work. In order to provide the georeferencing and the robustness of the 3D model, aluminum discs having diameter of 30 centimeters as ground control points (GCPs) are set to the geothermal area appropriately before imaging. Aluminum targets are chosen as the GCP because they are determined on the image depending on the contrast reflectance rate of the aluminum. Using GNSS RTK receivers supplying ±1 cm accuracy positioning, GCPs are measured so as to implement photogrammetric process successfully with thermal images. Numerous corresponding points are detected on the overlapped images with image matching techniques. Later on, bundle block adjustment is applied to calculate the revised interior orientation parameters of camera and exterior orientation parameters of camera positions. The 3D model showing details of the surface temperatures of the geothermal area are produced with multi view stereo (MVS) technique. The technique is able to produce 3D representation (point cloud, mesh and textured surface) of the field from both the thermal and digital images. The research presents that photogrammetric evaluation of thermal images is a noteworthy method to obtain a quick- accurate 3D

  13. 3D geometric modelling of hand-woven textile

    Shidanshidi, H.; Naghdy, F.; Naghdy, G.; Conroy, D. Wood

    2008-02-01

    Geometric modeling and haptic rendering of textile has attracted significant interest over the last decade. A haptic representation is created by adding the physical properties of an object to its geometric configuration. While research has been conducted into geometric modeling of fabric, current systems require time-consuming manual recognition of textile specifications and data entry. The development of a generic approach for construction of the 3D geometric model of a woven textile is pursued in this work. The geometric model would be superimposed by a haptic model in the future work. The focus at this stage is on hand-woven textile artifacts for display in museums. A fuzzy rule based algorithm is applied to the still images of the artifacts to generate the 3D model. The derived model is exported as a 3D VRML model of the textile for visual representation and haptic rendering. An overview of the approach is provided and the developed algorithm is described. The approach is validated by applying the algorithm to different textile samples and comparing the produced models with the actual structure and pattern of the samples.

  14. Use Models like Maps in a 3D SDI

    Gietzel, Jan; Gabriel, Paul; Schaeben, Helmut; Le, Hai Ha

    2013-04-01

    Digital geological applications have become 3D up to 4D modelling of the underground. The modellers are working very heterogeneously in terms of its applied software systems. On the other hand the 3D/4D modelling of the subsurface has become part of the geological surveys all around the world. This implies a wide spread group of users working in different institutions aiming to work together on one subsurface model. Established 3D/4D-modelling software systems mainly use a file based approach to store data, which is in a high contrast to the needs of a central administrated and network based data transfer approach. At the department of geophysics and geo information sciences at the Technical University Bergakademie Freiberg, the GST system for managing 3D and 4D geosciences data in a databases system was developed and is now continued by the company GiGa infosystems. The GST-Framework includes a storage engine, a web service for sharing and a number of client software including a browser based client interface for visualising, accessing and manipulating geological CAD data. Including a check out system GST supports multi user editing on huge models, designed to manage seamless high resolution models of the subsurface. While working on complex projects various software is used for the creation of the model, the prediction of properties and final simulation. A problem rising from the use of several software is the interoperability of the models. Due to conversion errors different working groups use mainly different raw data. This results in different models, which have to be corrected with additional effort. One platform sharing the models is strongly demanded. One high potential solution is a centralized and software independent storage, which will be presented.

  15. Statistical skull models from 3D X-ray images

    Berar, M; Bailly, G; Payan, Y; Berar, Maxime; Desvignes, Michel; Payan, Yohan

    2006-01-01

    We present 2 statistical models of the skull and mandible built upon an elastic registration method of 3D meshes. The aim of this work is to relate degrees of freedom of skull anatomy, as static relations are of main interest for anthropology and legal medicine. Statistical models can effectively provide reconstructions together with statistical precision. In our applications, patient-specific meshes of the skull and the mandible are high-density meshes, extracted from 3D CT scans. All our patient-specific meshes are registrated in a subject-shared reference system using our 3D-to-3D elastic matching algorithm. Registration is based upon the minimization of a distance between the high density mesh and a shared low density mesh, defined on the vertexes, in a multi resolution approach. A Principal Component analysis is performed on the normalised registrated data to build a statistical linear model of the skull and mandible shape variation. The accuracy of the reconstruction is under the millimetre in the shape...

  16. Anisotropic 3D Modeling for Long Offset VSP Survey Design

    Today's seismic techniques allow the geoscientist to do the interpretation more quantitatively. AVO and anisotropy measurements are the examples of DHI (Direct Hydrocarbon Indication). These measurements can be done accurately using long offset borehole seismic survey such as walk away VSP, having the geophones located down hole close to the target formation. This paper will show the importance 3D seismic modeling prior to the survey, by simulating the seismic wave propagation in three-dimensional volume filled with continuous material properties. This pre-survey modeling can help us suppressing the uncertainties and narrowing the error bars on the real survey. Some examples from offshore Nigeria showed dramatic geometrical differences between ordinary 2D compared to 3D observations Assumption that the seismic wave travels in 2D plane is not always acceptable for survey design. The examples also demonstrated the ability to observe some critical information such as the limit of incidence angle, compromise between resolution and image coverage, effects of velocity anomalies, anisotropy and dipping formations on lateral coverage. Fluid effect in 3D modeling will also be discussed here. Amplitude anomalies are predicted by replacing different type of fluids effect in the target reservoirs, as well as various types of AVO classes. A well-prepared long offset VSP survey is very critical to provide us high quality and high accuracy information that can be used to calibrate and optimise the full 3D seismic processing and interpretation in the area. This process is known as Well Driven Seismic (WDS)

  17. 3D Geological modelling - towards a European level infrastructure

    Lee, Kathryn A.; van der Krogt, Rob; Busschers, Freek S.

    2013-04-01

    The joint European Geological Surveys are preparing the ground for a "European Geological Data Infrastructure" (EGDI), under the framework of the FP7-project EGDI-Scope. This scoping study, started in June 2012, for a pan-European e-Infrastructure is based on the successes of earlier joint projects including 'OneGeology-Europe' and aims to provide the backbone for serving interoperable, geological data currently held by European Geological Surveys. Also data from past, ongoing and future European projects will be incorporated. The scope will include an investigation of the functional and technical requirements for serving 3D geological models and will look to research the potential for providing a framework to integrate models at different scales, and form a structure for enabling the development of new and innovative model delivery mechanisms. The EGDI-scope project encourages pan-European inter-disciplinary collaboration between all European Geological Surveys. It aims to enhance emerging web based technologies that will facilitate the delivery of geological data to user communities involved in European policy making and international industry, but also to geoscientific research communities and the general public. Therefore, stakeholder input and communication is imperative to the success, as is the collaboration with all the Geological Surveys of Europe. The most important functional and technical requirements for delivery of such information at pan-European level will be derived from exchanges with relevant European stakeholder representatives and providers of geological data. For handling and delivering 3D geological model data the project will need to address a number of strategic issues: • Which are the most important issues and queries for the relevant stakeholders, requiring 3D geological models? How can this be translated to functional requirements for development and design of an integrated European application? • How to handle the very large

  18. Quasi-3D Multi-scale Modeling Framework Development

    Arakawa, A.; Jung, J.

    2008-12-01

    When models are truncated in or near an energetically active range of the spectrum, model physics must be changed as the resolution changes. The model physics of GCMs and that of CRMs are, however, quite different from each other and at present there is no unified formulation of model physics that automatically provides transition between these model physics. The Quasi-3D (Q3D) Multi-scale Modeling Framework (MMF) is an attempt to bridge this gap. Like the recently proposed Heterogeneous Multiscale Method (HMM) (E and Engquist 2003), MMF combines a macroscopic model, GCM, and a microscopic model, CRM. Unlike the traditional multiscale methods such as the multi-grid and adapted mesh refinement techniques, HMM and MMF are for solving multi-physics problems. They share the common objective "to design combined macroscopic-microscopic computational methods that are much more efficient than solving the full microscopic model and at the same time give the information we need" (E et al. 2008). The question is then how to meet this objective in practice, which can be highly problem dependent. In HHM, the efficiency is gained typically by localization of the microscale problem. Following the pioneering work by Grabowski and Smolarkiewicz (1999) and Grabowski (2001), MMF takes advantage of the fact that 2D CRMs are reasonably successful in simulating deep clouds. In this approach, the efficiency is gained by sacrificing the three-dimensionality of cloud-scale motion. It also "localizes" the algorithm through embedding a CRM in each GCM grid box using cyclic boundary condition. The Q3D MMF is an attempt to reduce the expense due to these constraints by partially including the cloud-scale 3D effects and extending the CRM beyond individual GCM grid boxes. As currently formulated, the Q3D MMF is a 4D estimation/prediction framework that combines a GCM with a 3D anelastic cloud-resolving vector vorticity equation model (VVM) applied to a network of horizontal grids. The network

  19. Modeling Perception of 3D Forms Using Fuzzy Knowledge Bases

    Achiche, Sofiane; Ahmed, Saeema

    the aesthetics of their products are likely to be perceived are of value. In this paper the authors propose an approach to formalize the relationship between geometric information of a 3D object and the intended perception using fuzzy logic. 3D objects (shapes) created by design engineering students...... to evoke a certain perception were analysed. Three different fuzzy logic models, with different input variables, for evaluating massiveness and lightness in a form are proposed. The uthors identified geometric information as inputs of the fuzzy model and developed a set of fuzzy if/then rules to map...... the relationships between the fuzzy sets on each input premise and the output premise. In our case the output premise of the fuzzy logic model is the level of belonging to the design context (perception). An evaluation of how users perceived the shapes was conducted to validate the fuzzy logic models...

  20. Integrated modeling and 3D visualization for mine complex fields

    LI Zhong-xue; SUN En-ji; LI Cui-ping; MA Bin

    2007-01-01

    Proposed a novel approach to the problem of mine complex fields in a perspective of digital modeling and visual representation, and it aimed at developing a theoretical framework for mine complex fields with the factors and their relationships delineated in a unified manner and at building a prototype for an integrated system of methods, models,and techniques with mine complex fields modeled digitally and represented visually. Specifically, the paper addressed the issues of data mining and knowledge discovery techniques as used in the processing of geological and ore deposit samples, digital modeling techniques as used in the description of mine complex fields, 3D visual simulation techniques as used in the representation of ore bodies and underground excavations, seamless interfacing techniques with other systems such as CAD and web GIS as used in the restructuring of 2D data into 3D models and mapping of 3D models onto 2D graphics, and implementation techniques as used in the case of building a web based prototype system for the integrated modeling and visualization of underground mines.

  1. A 3D Babcock-Leighton Solar Dynamo Model

    Miesch, Mark S

    2014-01-01

    We present a 3D kinematic solar dynamo model in which poloidal field is generated by the emergence and dispersal of tilted sunspot pairs (more generally Bipolar Magnetic Regions, or BMRs). The axisymmetric component of this model functions similarly to previous 2D Babcock-Leighton (BL) dynamo models that employ a double-ring prescription for poloidal field generation but we generalize this prescription into a 3D flux emergence algorithm that places BMRs on the surface in response to the dynamo-generated toroidal field. In this way, the model can be regarded as a unification of BL dynamo models (2D in radius/latitude) and surface flux transport models (2D in latitude/longitude) into a more self-consistent framework that captures the full 3D structure of the evolving magnetic field. The model reproduces some basic features of the solar cycle including an 11-yr periodicity, equatorward migration of toroidal flux in the deep convection zone, and poleward propagation of poloidal flux at the surface. The poleward-p...

  2. 3D model of the Bernese Part of the Swiss Molasse Basin: visualization of uncertainties in a 3D model

    Mock, Samuel; Allenbach, Robin; Reynolds, Lance; Wehrens, Philip; Kurmann-Matzenauer, Eva; Kuhn, Pascal; Michael, Salomè; Di Tommaso, Gennaro; Herwegh, Marco

    2016-04-01

    The Swiss Molasse Basin comprises the western and central part of the North Alpine Foreland Basin. In recent years it has come under closer scrutiny due to its promising geopotentials such as geothermal energy and CO2 sequestration. In order to adress these topics good knowledge of the subsurface is a key prerequisite. For that matter, geological 3D models serve as valuable tools. In collaboration with the Swiss Geological Survey (swisstopo) and as part of the project GeoMol CH, a geological 3D model of the Swiss Molasse Basin in the Canton of Bern has been built. The model covers an area of 1810 km2and reaches depth of up to 6.7 km. It comprises 10 major Cenozoic and Mesozoic units and numerous faults. The 3D model is mainly based on 2D seismic data complemented by information from few deep wells. Additionally, data from geological maps and profiles were used for refinement at shallow depths. In total, 1163 km of reflection seismic data, along 77 seismic lines, have been interpreted by different authors with respect to stratigraphy and structures. Both, horizons and faults, have been interpreted in 2D and modelled in 3D using IHS's Kingdom Suite and Midland Valley's MOVE software packages, respectively. Given the variable degree of subsurface information available, each 3D model is subject of uncertainty. With the primary input data coming from interpretation of reflection seismic data, a variety of uncertainties comes into play. Some of them are difficult to address (e.g. author's style of interpretation) while others can be quantified (e.g. mis-tie correction, well-tie). An important source of uncertainties is the quality of seismic data; this affects the traceability and lateral continuation of seismic reflectors. By defining quality classes we can semi-quantify this source of uncertainty. In order to visualize the quality and density of the input data in a meaningful way, we introduce quality-weighted data density maps. In combination with the geological 3D

  3. Building Statistical Shape Spaces for 3D Human Modeling

    Pishchulin, Leonid; Wuhrer, Stefanie; Helten, Thomas; Theobalt, Christian; Schiele, Bernt

    2015-01-01

    Statistical models of 3D human shape and pose learned from scan databases have developed into valuable tools to solve a variety of vision and graphics problems. Unfortunately, most publicly available models are of limited expressiveness as they were learned on very small databases that hardly reflect the true variety in human body shapes. In this paper, we contribute by rebuilding a widely used statistical body representation from the largest commercially available scan database, and making t...

  4. Active microrheology of a model of the nuclear micromechanical environment

    Byrd, Henry; Kilfoil, Maria

    2014-03-01

    In order to successfully complete the final stages of chromosome segregation, eukaryotic cells require the motor enzyme topoisomerase II, which can resolve topological constraints between entangled strands of duplex DNA. We created an in vitro model of a close approximation of the nuclear micromechanical environment in terms of DNA mass and entanglement density, and investigated the influence of this motor enzyme on the DNA mechanics. Topoisomerase II is a non-processive ATPase which we found significantly increases the motions of embedded microspheres in the DNA network. Because of this activity, we study the mechanical properties of our model system by active microrheology by optical trapping. We test the limits of fluctuation dissipation theorem (FDT) under this type of activity by comparing the active microrheology to passive measurements, where thermal motion alone drives the beads. We can relate any departure from FDT to the timescale of topoisomerase II activity in the DNA network. These experiments provide insight into the physical necessity of this motor enzyme in the cell.

  5. Geometric and Colour Data Fusion for Outdoor 3D Models

    Ricardo Chacón

    2012-05-01

    Full Text Available This paper deals with the generation of accurate, dense and coloured 3D models of outdoor scenarios from scanners. This is a challenging research field in which several problems still remain unsolved. In particular, the process of 3D model creation in outdoor scenes may be inefficient if the scene is digitalized under unsuitable technical (specific scanner on-board camera and environmental (rain, dampness, changing illumination conditions. We address our research towards the integration of images and range data to produce photorealistic models. Our proposal is based on decoupling the colour integration and geometry reconstruction stages, making them independent and controlled processes. This issue is approached from two different viewpoints. On the one hand, given a complete model (geometry plus texture, we propose a method to modify the original texture provided by the scanner on-board camera with the colour information extracted from external images taken at given moments and under specific environmental conditions. On the other hand, we propose an algorithm to directly assign external images onto the complete geometric model, thus avoiding tedious on-line calibration processes. We present the work conducted on two large Roman archaeological sites dating from the first century A.D., namely, the Theatre of Segobriga and the Fori Porticus of Emerita Augusta, both in Spain. The results obtained demonstrate that our approach could be useful in the digitalization and 3D modelling fields.

  6. Towards a 3d Spatial Urban Energy Modelling Approach

    Bahu, J.-M.; Koch, A.; Kremers, E.; Murshed, S. M.

    2013-09-01

    Today's needs to reduce the environmental impact of energy use impose dramatic changes for energy infrastructure and existing demand patterns (e.g. buildings) corresponding to their specific context. In addition, future energy systems are expected to integrate a considerable share of fluctuating power sources and equally a high share of distributed generation of electricity. Energy system models capable of describing such future systems and allowing the simulation of the impact of these developments thus require a spatial representation in order to reflect the local context and the boundary conditions. This paper describes two recent research approaches developed at EIFER in the fields of (a) geo-localised simulation of heat energy demand in cities based on 3D morphological data and (b) spatially explicit Agent-Based Models (ABM) for the simulation of smart grids. 3D city models were used to assess solar potential and heat energy demand of residential buildings which enable cities to target the building refurbishment potentials. Distributed energy systems require innovative modelling techniques where individual components are represented and can interact. With this approach, several smart grid demonstrators were simulated, where heterogeneous models are spatially represented. Coupling 3D geodata with energy system ABMs holds different advantages for both approaches. On one hand, energy system models can be enhanced with high resolution data from 3D city models and their semantic relations. Furthermore, they allow for spatial analysis and visualisation of the results, with emphasis on spatially and structurally correlations among the different layers (e.g. infrastructure, buildings, administrative zones) to provide an integrated approach. On the other hand, 3D models can benefit from more detailed system description of energy infrastructure, representing dynamic phenomena and high resolution models for energy use at component level. The proposed modelling strategies

  7. 3D Babcock-Leighton Solar Dynamo Models

    Miesch, Mark S.; Hazra, Gopal; Karak, Bidya Binay; Teweldebirhan, Kinfe; Upton, Lisa

    2016-05-01

    We present results from the new STABLE (Surface flux Transport and Babcock Leighton) Dynamo Model. STABLE is a 3D Babcock-Leighton/Flux Transport dynamo model in which the source of poloidal field is the explicit emergence, distortion, and dispersal of bipolar magnetic regions (BMRs). In this talk I will discuss initial results with axisymmetric flow fields, focusing on the operation of the model, the general features of the cyclic solutions, and the challenge of achieving supercritical dynamo solutions using only the Babcock-Leighton source term. Then I will present dynamo simulations that include 3D convective flow fields based on the observed velocity power spectrum inferred from photospheric Dopplergrams. I'll use these simulations to assess how the explicit transport and amplification of fields by surface convection influences the operation of the dynamo. I will also discuss the role of surface magnetic fields in regulating the subsurface toroidal flux budget.

  8. Technical illustration based on 3D CSG models

    GENG Wei-dong; DING Lei; YU Hong-feng; PAN Yun-he

    2005-01-01

    This paper presents an automatic non-photorealistic rendering approach to generating technical illustration from 3D models. It first decomposes the 3D object into a set of CSG primitives, and then performs the hidden surface removal based on the prioritized list, in which the rendition order of CSG primitives is sorted out by depth. Then, each primitive is illustrated by the pre-defined empirical lighting model, and the system mimics the stroke-drawing by user-specified style. In order to artistically and flexibly modulate the illumination, the empirical lighting model is defined by three major components: parameters of multi-level lighting intensities, parametric spatial occupations for each lighting level, and an interpolation method to calculate the lighting units into the spatial occupation of CSG primitives, instead of"pixel-by-pixel" painting. This region-by-region shading facilitates the simulation of illustration styles.

  9. 3-D model-based tracking for UAV indoor localization.

    Teulière, Céline; Marchand, Eric; Eck, Laurent

    2015-05-01

    This paper proposes a novel model-based tracking approach for 3-D localization. One main difficulty of standard model-based approach lies in the presence of low-level ambiguities between different edges. In this paper, given a 3-D model of the edges of the environment, we derive a multiple hypotheses tracker which retrieves the potential poses of the camera from the observations in the image. We also show how these candidate poses can be integrated into a particle filtering framework to guide the particle set toward the peaks of the distribution. Motivated by the UAV indoor localization problem where GPS signal is not available, we validate the algorithm on real image sequences from UAV flights. PMID:25099967

  10. Engineering cancer microenvironments for in vitro 3-D tumor models

    Waseem Asghar

    2015-12-01

    Full Text Available The natural microenvironment of tumors is composed of extracellular matrix (ECM, blood vasculature, and supporting stromal cells. The physical characteristics of ECM as well as the cellular components play a vital role in controlling cancer cell proliferation, apoptosis, metabolism, and differentiation. To mimic the tumor microenvironment outside the human body for drug testing, two-dimensional (2-D and murine tumor models are routinely used. Although these conventional approaches are employed in preclinical studies, they still present challenges. For example, murine tumor models are expensive and difficult to adopt for routine drug screening. On the other hand, 2-D in vitro models are simple to perform, but they do not recapitulate natural tumor microenvironment, because they do not capture important three-dimensional (3-D cell–cell, cell–matrix signaling pathways, and multi-cellular heterogeneous components of the tumor microenvironment such as stromal and immune cells. The three-dimensional (3-D in vitro tumor models aim to closely mimic cancer microenvironments and have emerged as an alternative to routinely used methods for drug screening. Herein, we review recent advances in 3-D tumor model generation and highlight directions for future applications in drug testing.

  11. GPU-accelerated 3-D model-based tracking

    Model-based approaches to tracking the pose of a 3-D object in video are effective but computationally demanding. While statistical estimation techniques, such as the particle filter, are often employed to minimize the search space, real-time performance remains unachievable on current generation CPUs. Recent advances in graphics processing units (GPUs) have brought massively parallel computational power to the desktop environment and powerful developer tools, such as NVIDIA Compute Unified Device Architecture (CUDA), have provided programmers with a mechanism to exploit it. NVIDIA GPUs' single-instruction multiple-thread (SIMT) programming model is well-suited to many computer vision tasks, particularly model-based tracking, which requires several hundred 3-D model poses to be dynamically configured, rendered, and evaluated against each frame in the video sequence. Using 6 degree-of-freedom (DOF) rigid hand tracking as an example application, this work harnesses consumer-grade GPUs to achieve real-time, 3-D model-based, markerless object tracking in monocular video.

  12. A 3D alcoholic liver disease model on a chip.

    Lee, JaeSeo; Choi, BongHwan; No, Da Yoon; Lee, GeonHui; Lee, Seung-Ri; Oh, HyunJik; Lee, Sang-Hoon

    2016-03-14

    Alcohol is one of the main causes of liver diseases, and the development of alcoholic liver disease (ALD) treatment methods has been one of the hottest issues. For this purpose, development of in vitro models mimicking the in vivo physiology is one of the critical requirements, and they help to determine the disease mechanisms and to discover the treatment method. Herein, a three-dimensional (3D) ALD model was developed and its superior features in mimicking the in vivo condition were demonstrated. A spheroid-based microfluidic chip was employed for the development of the 3D in vitro model of ALD progression. We co-cultured rat primary hepatocytes and hepatic stellate cells (HSCs) in a fluidic chip to investigate the role of HSCs in the recovery of liver with ALD. An interstitial level of flow derived by an osmotic pump was applied to the chip to provide in vivo mimicking of fluid activity. Using this in vitro tool, we were able to observe structural changes and decreased hepatic functions with the increase in ethanol concentration. The recovery process of liver injured by alcohol was observed by providing fresh culture medium to the damaged 3D liver tissue for few days. A reversibly- and irreversibly-injured ALD model was established. The proposed model can not only be used for the research of alcoholic disease mechanism, but also has the potential for use in studies of hepatotoxicity and drug screening applications. PMID:26857817

  13. 3D modeling of dual-gate FinFET.

    Mil'shtein, Samson; Devarakonda, Lalitha; Zanchi, Brian; Palma, John

    2012-01-01

    The tendency to have better control of the flow of electrons in a channel of field-effect transistors (FETs) did lead to the design of two gates in junction field-effect transistors, field plates in a variety of metal semiconductor field-effect transistors and high electron mobility transistors, and finally a gate wrapping around three sides of a narrow fin-shaped channel in a FinFET. With the enhanced control, performance trends of all FETs are still challenged by carrier mobility dependence on the strengths of the electrical field along the channel. However, in cases when the ratio of FinFET volume to its surface dramatically decreases, one should carefully consider the surface boundary conditions of the device. Moreover, the inherent non-planar nature of a FinFET demands 3D modeling for accurate analysis of the device performance. Using the Silvaco modeling tool with quantization effects, we modeled a physical FinFET described in the work of Hisamoto et al. (IEEE Tran. Elec. Devices 47:12, 2000) in 3D. We compared it with a 2D model of the same device. We demonstrated that 3D modeling produces more accurate results. As 3D modeling results came close to experimental measurements, we made the next step of the study by designing a dual-gate FinFET biased at Vg1 >Vg2. It is shown that the dual-gate FinFET carries higher transconductance than the single-gate device. PMID:23148493

  14. Error Analysis Of 3d Polygonal Model:A Survey

    Devendra Singh Rajput

    2012-05-01

    Full Text Available Various applications of computer graphics, (like animation, scientific visualization, and virtual reality involve the manipulation of geometric models. They are generally represented by triangular meshes due to its wide acceptance to process on rendering systems. The need of realism and high visual fidelity and the latest advances on scanning devices has increased complexity and size of triangular meshes. The original 3D model gets modified because of activities like approximation, transmission, processing and storage etc. Mostly the modification occurs due to simplification approaches which primarily use geometric distance metric as their simplification criteria. But it is hard to measure a small distance error accurately whereas other geometric or appearance error (like high curvature, thin region, color, texture, normals and volumetric has greater importance. Hence it is essential to understand the applicability of various parameters to evaluate the quality of 3D model. This paper briefly surveys the various errors analysis techniques, error metrics and tools to assess the quality of 3D mesh models.

  15. CityGML - Interoperable semantic 3D city models

    Gröger, Gerhard; Plümer, Lutz

    2012-07-01

    CityGML is the international standard of the Open Geospatial Consortium (OGC) for the representation and exchange of 3D city models. It defines the three-dimensional geometry, topology, semantics and appearance of the most relevant topographic objects in urban or regional contexts. These definitions are provided in different, well-defined Levels-of-Detail (multiresolution model). The focus of CityGML is on the semantical aspects of 3D city models, its structures, taxonomies and aggregations, allowing users to employ virtual 3D city models for advanced analysis and visualization tasks in a variety of application domains such as urban planning, indoor/outdoor pedestrian navigation, environmental simulations, cultural heritage, or facility management. This is in contrast to purely geometrical/graphical models such as KML, VRML, or X3D, which do not provide sufficient semantics. CityGML is based on the Geography Markup Language (GML), which provides a standardized geometry model. Due to this model and its well-defined semantics and structures, CityGML facilitates interoperable data exchange in the context of geo web services and spatial data infrastructures. Since its standardization in 2008, CityGML has become used on a worldwide scale: tools from notable companies in the geospatial field provide CityGML interfaces. Many applications and projects use this standard. CityGML is also having a strong impact on science: numerous approaches use CityGML, particularly its semantics, for disaster management, emergency responses, or energy-related applications as well as for visualizations, or they contribute to CityGML, improving its consistency and validity, or use CityGML, particularly its different Levels-of-Detail, as a source or target for generalizations. This paper gives an overview of CityGML, its underlying concepts, its Levels-of-Detail, how to extend it, its applications, its likely future development, and the role it plays in scientific research. Furthermore, its

  16. 3D root canal modeling for advanced endodontic treatment

    Hong, Shane Y.; Dong, Janet

    2002-06-01

    More than 14 million teeth receive endodontic (root canal) treatment annually. Before a clinician's inspection and diagnosis, destructive access preparation by removing teeth crown and dentin is usually needed. This paper presents a non-invasive method for accessing internal tooth geometry by building 3-D tooth model from 2-D radiographic and endoscopic images to be used for an automatic prescription system of computer-aided treatment procedure planning, and for the root canal preparation by an intelligent micro drilling machine with on-line monitoring. It covers the techniques specific for dental application in the radiographic images acquirement, image enhancement, image segmentation and feature recognition, distance measurement and calibration, merging 2D image into 3D mathematical model representation and display. Included also are the methods to form references for irregular teeth geometry and to do accurately measurement with self-calibration.

  17. 3D fracture permeability modelling in offshore Arabian Gulf reservoir

    Bushara, M.N.; El Tawel, A.; Borougha, H.; Dabbouk, C. [Zakum Development Co., Abu Dhabi (United Arab Emirates); Daly, C. [Roxar Ltd., Dubai (United Arab Emirates)

    2001-06-01

    A stochastic method has been developed to predict fracture permeability distribution for oil fields. This new method does a better job than current methods in determining water encroachment trends. The method was developed based on a study conducted on a carbonate reservoir located offshore Abu Dhabi. The 3D model allows petroleum engineers to assess fractures and to better understand their geologic control in terms of permeability in reservoirs with single porosity models. In this study, strain field over the reservoir, which correlated with test permeability, was obtained from curvature analysis and calibrated to strain calculated from core fractures. Curvature analysis included some uncertainties such as strain estimates, details of fracture spatial geometry and shear/strike-slip movements. It was concluded that these uncertainties could be eliminated with better strain field determination and 3D seismic data. 4 refs., 5 figs.

  18. Camera Calibration by Registration Stereo Reconstruction to 3D Model

    Klečka, J.

    2015-01-01

    Paper aims at unusual way to camera calibration. The main idea is that by registration of uncalibrated stereo reconstruction to 3D model of the same scene is eliminated ambiguity of the reconstruction. The reason for this is that exact metric scene reconstruction from image pair can be understate as information equivalent to calibration of the source camera pair. Described principles were verified by experiment on real data and results are presented at the end of the paper.

  19. Modeling 2D and 3D Horizontal Wells Using CVFA

    Chen, Zhangxin; Huan, Guanren; Li, Baoyan

    2003-01-01

    In this paper we present an application of the recently developed control volume function approximation (CVFA) method to the modeling and simulation of 2D and 3D horizontal wells in petroleum reservoirs. The base grid for this method is based on a Voronoi grid. One of the features of the CVFA is that the flux at the interfaces of control volumes can be accurately computed via function approximations. Also, it reduces grid orientation effects and applies to any shape of eleme...

  20. Study of 3D-modelling software environments

    Егорова, Ирина Николаевна; Гайдамащук, Алиса Владимировна

    2013-01-01

    The study of three-dimensional modeling software packages such as Autodesk Maya, Autodesk 3Ds Studio Max, Lightwave 3D, Maxon Cinema 4D, Blender, ZBrush was conducted in the paper. The analysis of software packages allowed to identify the most effective ones. These were Autodesk Maya, Autodesk 3Ds Studio Max and ZBrush packages. The selected software packages were used for the creation of a computer scene, the main elements of which are interior, character and animation. Practical research al...

  1. Registration of 3D Face Scans with Average Face Models

    Salah, Albert Ali; Alyuz, N.; Akarun, L.

    2008-01-01

    The accuracy of a 3D face recognition system depends on a correct registration that aligns the facial surfaces and makes a comparison possible. The best results obtained so far use a costly one-to-all registration approach, which requires the registration of each facial surface to all faces in the gallery. We explore the approach of registering the new facial surface to an average face model (AFM), which automatically establishes correspondence to the pre-registered gallery faces. We propose ...

  2. PIXIE3D: An efficient, fully implicit, parallel, 3D extended MHD code for fusion plasma modeling

    PIXIE3D is a modern, parallel, state-of-the-art extended MHD code that employs fully implicit methods for efficiency and accuracy. It features a general geometry formulation, and is therefore suitable for the study of many magnetic fusion configurations of interest. PIXIE3D advances the state of the art in extended MHD modeling in two fundamental ways. Firstly, it employs a novel conservative finite volume scheme which is remarkably robust and stable, and demands very small physical and/or numerical dissipation. This is a fundamental requirement when one wants to study fusion plasmas with realistic conductivities. Secondly, PIXIE3D features fully-implicit time stepping, employing Newton-Krylov methods for inverting the associated nonlinear systems. These methods have been shown to be scalable and efficient when preconditioned properly. Novel preconditioned ideas (so-called physics based), which were prototypes in the context of reduced MHD, have been adapted for 3D primitive-variable resistive MHD in PIXIE3D, and are currently being extended to Hall MHD. PIXIE3D is fully parallel, employing PETSc for parallelism. PIXIE3D has been thoroughly benchmarked against linear theory and against other available extended MHD codes on nonlinear test problems (such as the GEM reconnection challenge). We are currently in the process of extending such comparisons to fusion-relevant problems in realistic geometries. In this talk, we will describe both the spatial discretization approach and the preconditioning strategy employed for extended MHD in PIXIE3D. We will report on recent benchmarking studies between PIXIE3D and other 3D extended MHD codes, and will demonstrate its usefulness in a variety of fusion-relevant configurations such as Tokamaks and Reversed Field Pinches. (Author)

  3. Modeling 3D faces from samplings via compressive sensing

    Sun, Qi; Tang, Yanlong; Hu, Ping

    2013-07-01

    3D data is easier to acquire for family entertainment purpose today because of the mass-production, cheapness and portability of domestic RGBD sensors, e.g., Microsoft Kinect. However, the accuracy of facial modeling is affected by the roughness and instability of the raw input data from such sensors. To overcome this problem, we introduce compressive sensing (CS) method to build a novel 3D super-resolution scheme to reconstruct high-resolution facial models from rough samples captured by Kinect. Unlike the simple frame fusion super-resolution method, this approach aims to acquire compressed samples for storage before a high-resolution image is produced. In this scheme, depth frames are firstly captured and then each of them is measured into compressed samples using sparse coding. Next, the samples are fused to produce an optimal one and finally a high-resolution image is recovered from the fused sample. This framework is able to recover 3D facial model of a given user from compressed simples and this can reducing storage space as well as measurement cost in future devices e.g., single-pixel depth cameras. Hence, this work can potentially be applied into future applications, such as access control system using face recognition, and smart phones with depth cameras, which need high resolution and little measure time.

  4. Prototype coupling of the CFD code ANSYS CFX with the 3D neutron kinetic core model DYN3D

    Analyses of postulated reactivity initiated accidents in nuclear reactors are carried out using 3D neutron kinetic core models. The feedback is usually calculated using 1D thermal hydraulic models for channel flow, partly with the possibility of cross flow between these channels. A different possibility is the use of subchannel codes for the determination of the feedback. The code DYN3D developed at Forschungszentrum Dresden-Rossendorf is an example for a 3D neutron kinetic core model. In its basic version, the code contains models for the solution of the 3D neutron diffusion equation in two energy groups for fuel assemblies with rectangular and hexagonal cross section. Recently the code was extended to an arbitrary number of energy groups. Further, a simplified transport approximation for the flux calculation was implemented for fuel assemblies with quadratic cross section. The CFD code ANSYS CFX is the reference CFD code of the German CFD Network in Nuclear Reactor Safety. One of the goals of the co-operation inside this network is the development of CFD software for the simulation of multi-dimensional flows in reactor cooling systems. This includes the coupling of the CFD code ANSYS CFX with the 3D neutron kinetic core model DYN3D. (orig.)

  5. 3D-printer visualization of neuron models

    Robert A McDougal

    2015-06-01

    Full Text Available Neurons come in a wide variety of shapes and sizes. In a quest to understand this neuronal diversity, researchers have three-dimensionally traced tens of thousands of neurons; many of these tracings are freely available through online repositories like NeuroMorpho.Org and ModelDB. Tracings can be visualized on the computer screen, used for statistical analysis of the properties of different cell types, used to simulate neuronal behavior, and more. We introduce the use of 3D printing as a technique for visualizing traced morphologies. Our method for generating printable versions of a cell or group of cells is to expand dendrite and axon diameters and then to transform the wireframe tracing into a 3D object with a neuronal surface generating algorithm like Constructive Tessellated Neuronal Geometry (CTNG. We show that 3D printed cells can be readily examined, manipulated, and compared with other neurons to gain insight into both the biology and the reconstruction process. We share our printable models in a new database, 3DModelDB, and encourage others to do the same with cells that they generate using our code or other methods. To provide additional context, 3DModelDB provides a simulatable version of each cell, links to papers that use or describe it, and links to associated entries in other databases.

  6. Right approach to 3D modeling using CAD tools

    Baddam, Mounica Reddy

    The thesis provides a step-by-step methodology to enable an instructor dealing with CAD tools to optimally guide his/her students through an understandable 3D modeling approach which will not only enhance their knowledge about the tool's usage but also enable them to achieve their desired result in comparatively lesser time. In the known practical field, there is particularly very little information available to apply CAD skills to formal beginners' training sessions. Additionally, advent of new software in 3D domain cumulates updating into a more difficult task. Keeping up to the industry's advanced requirements emphasizes the importance of more skilled hands in the field of CAD development, rather than just prioritizing manufacturing in terms of complex software features. The thesis analyses different 3D modeling approaches specified to the varieties of CAD tools currently available in the market. Utilizing performance-time databases, learning curves have been generated to measure their performance time, feature count etc. Based on the results, improvement parameters have also been provided for (Asperl, 2005).

  7. Effective 3-D surface modeling for geographic information systems

    K. Yüksek

    2013-11-01

    Full Text Available In this work, we propose a dynamic, flexible and interactive urban digital terrain platform (DTP with spatial data and query processing capabilities of Geographic Information Systems (GIS, multimedia database functionality and graphical modeling infrastructure. A new data element, called Geo-Node, which stores image, spatial data and 3-D CAD objects is developed using an efficient data structure. The system effectively handles data transfer of Geo-Nodes between main memory and secondary storage with an optimized Directional Replacement Policy (DRP based buffer management scheme. Polyhedron structures are used in Digital Surface Modeling (DSM and smoothing process is performed by interpolation. The experimental results show that our framework achieves high performance and works effectively with urban scenes independent from the amount of spatial data and image size. The proposed platform may contribute to the development of various applications such as Web GIS systems based on 3-D graphics standards (e.g. X3-D and VRML and services which integrate multi-dimensional spatial information and satellite/aerial imagery.

  8. Effective 3-D surface modeling for geographic information systems

    Yüksek, K.; Alparslan, M.; Mendi, E.

    2016-01-01

    In this work, we propose a dynamic, flexible and interactive urban digital terrain platform with spatial data and query processing capabilities of geographic information systems, multimedia database functionality and graphical modeling infrastructure. A new data element, called Geo-Node, which stores image, spatial data and 3-D CAD objects is developed using an efficient data structure. The system effectively handles data transfer of Geo-Nodes between main memory and secondary storage with an optimized directional replacement policy (DRP) based buffer management scheme. Polyhedron structures are used in digital surface modeling and smoothing process is performed by interpolation. The experimental results show that our framework achieves high performance and works effectively with urban scenes independent from the amount of spatial data and image size. The proposed platform may contribute to the development of various applications such as Web GIS systems based on 3-D graphics standards (e.g., X3-D and VRML) and services which integrate multi-dimensional spatial information and satellite/aerial imagery.

  9. Underwater 3d Modeling: Image Enhancement and Point Cloud Filtering

    Sarakinou, I.; Papadimitriou, K.; Georgoula, O.; Patias, P.

    2016-06-01

    This paper examines the results of image enhancement and point cloud filtering on the visual and geometric quality of 3D models for the representation of underwater features. Specifically it evaluates the combination of effects from the manual editing of images' radiometry (captured at shallow depths) and the selection of parameters for point cloud definition and mesh building (processed in 3D modeling software). Such datasets, are usually collected by divers, handled by scientists and used for geovisualization purposes. In the presented study, have been created 3D models from three sets of images (seafloor, part of a wreck and a small boat's wreck) captured at three different depths (3.5m, 10m and 14m respectively). Four models have been created from the first dataset (seafloor) in order to evaluate the results from the application of image enhancement techniques and point cloud filtering. The main process for this preliminary study included a) the definition of parameters for the point cloud filtering and the creation of a reference model, b) the radiometric editing of images, followed by the creation of three improved models and c) the assessment of results by comparing the visual and the geometric quality of improved models versus the reference one. Finally, the selected technique is tested on two other data sets in order to examine its appropriateness for different depths (at 10m and 14m) and different objects (part of a wreck and a small boat's wreck) in the context of an ongoing research in the Laboratory of Photogrammetry and Remote Sensing.

  10. 3D Geologic Model of the San Diego Area

    Danskin, W. R.; Cromwell, G.; Glockhoff, C.; Martin, D.

    2015-12-01

    Prior geologic studies of the San Diego area, including northern Baja California, Mexico, focused on site investigations, characterization of rock formations, or earthquake hazards. No comprehensive, quantitative model characterizing the three-dimensional (3D) geology of the entire area has been developed. The lack of such a model limits understanding of large-scale processes, such as development of ancient landforms, and groundwater movement and availability. To evaluate these regional processes, the United States Geological Survey (USGS) conducted a study to better understand the geologic structure of the San Diego area. A cornerstone of this study is the installation and analysis of 77 wells at 12 multiple-depth monitoring-well sites. Geologic information from these wells was combined with lithologic data from 81 oil exploration wells and municipal and private water wells, gravity and seismic interpretations, and paleontological interpretations. These data were analyzed in conjunction with geologic maps and digital elevation models to develop a 3D geologic model of the San Diego area, in particular of the San Diego embayment. Existing interpretations of regional surficial geology, faulting, and tectonic history provided the framework for this model, which was refined by independent evaluation of subsurface geology. Geologic formations were simplified into five sedimentary units (Quaternary, Plio-Pleistocene, Oligocene, Eocene and Cretaceous ages), and one basal crystalline unit (primarily Cretaceous and Jurassic). Complex fault systems are represented in the model by ten fault strands that maintain overall displacement. The 3D geologic model corroborates existing geologic concepts of the San Diego area, refines the extent of subsurface geology, and allows users to holistically evaluate subsurface structures and regional hydrogeology.

  11. Etruscans in 3D - Surveying and 3D modeling for a better access and understanding of heritage -

    B. Jiménez Fernández-Palacios; Rizzi., A; F. Remondino

    2013-01-01

    Archaeological 3D digital documentation of monuments and historical sites should be considered a precious source of information and it can be very useful for preservation, conservation, restoration and reconstruction of Cultural Heritage. This paper reports a work dealing with 3D surveying and modeling of different Etruscan heritage sites, featuring necropolis with underground frescoed tombs dating back to VII-IV century B.C., located in the area corresponding roughly to the actual central It...

  12. 3D computer model of the VINCY cyclotron magnet

    The VINCY Cyclotron magnetic field simulation was performed with the help of the three-dimensional (3D) software. The following aspects of the system were considered: 3D calculation of the magnetic field in the median plane, 3D calculation of the magnetic field in the extraction region, 3D calculation of the stray magnetic field. 8 refs., 17 figs., 3 tabs

  13. 3D Massive MIMO Systems: Channel Modeling and Performance Analysis

    Nadeem, Qurrat-Ul-Ain

    2015-03-01

    Multiple-input-multiple-output (MIMO) systems of current LTE releases are capable of adaptation in the azimuth only. More recently, the trend is to enhance the system performance by exploiting the channel\\'s degrees of freedom in the elevation through the dynamic adaptation of the vertical antenna beam pattern. This necessitates the derivation and characterization of three-dimensional (3D) channels. Over the years, channel models have evolved to address the challenges of wireless communication technologies. In parallel to theoretical studies on channel modeling, many standardized channel models like COST-based models, 3GPP SCM, WINNER, ITU have emerged that act as references for industries and telecommunication companies to assess system-level and link-level performances of advanced signal processing techniques over real-like channels. Given the existing channels are only two dimensional (2D) in nature; a large effort in channel modeling is needed to study the impact of the channel component in the elevation direction. The first part of this work sheds light on the current 3GPP activity around 3D channel modeling and beamforming, an aspect that to our knowledge has not been extensively covered by a research publication. The standardized MIMO channel model is presented, that incorporates both the propagation effects of the environment and the radio effects of the antennas. In order to facilitate future studies on the use of 3D beamforming, the main features of the proposed 3D channel model are discussed. A brief overview of the future 3GPP 3D channel model being outlined for the next generation of wireless networks is also provided. In the subsequent part of this work, we present an information-theoretic channel model for MIMO systems that supports the elevation dimension. The model is based on the principle of maximum entropy, which enables us to determine the distribution of the channel matrix consistent with the prior information on the angles of departure and

  14. Subduction zone guided waves: 3D modelling and attenuation effects

    Garth, T.; Rietbrock, A.

    2013-12-01

    Waveform modelling is an important tool for understanding complex seismic structures such as subduction zone waveguides. These structures are often simplified to 2D structures for modelling purposes to reduce computational costs. In the case of subduction zone waveguide affects, 2D models have shown that dispersed arrivals are caused by a low velocity waveguide, inferred to be subducted oceanic crust and/or hydrated outer rise normal faults. However, due to the 2D modelling limitations the inferred seismic properties such as velocity contrast and waveguide thickness are still debated. Here we test these limitations with full 3D waveform modelling. For waveguide effects to be observable the waveform must be accurately modelled to relatively high frequencies (> 2 Hz). This requires a small grid spacing due to the high seismic velocities present in subduction zones. A large area must be modelled as well due to the long propagation distances (400 - 600 km) of waves interacting with subduction zone waveguides. The combination of the large model area and small grid spacing required means that these simulations require a large amount of computational resources, only available at high performance computational centres like the UK National super computer HECTOR (used in this study). To minimize the cost of modelling for such a large area, the width of the model area perpendicular to the subduction trench (the y-direction) is made as small as possible. This reduces the overall volume of the 3D model domain. Therefore the wave field is simulated in a model ';corridor' of the subduction zone velocity structure. This introduces new potential sources of error particularly from grazing wave side reflections in the y-direction. Various dampening methods are explored to reduce these grazing side reflections, including perfectly matched layers (PML) and more traditional exponential dampening layers. Defining a corridor model allows waveguide affects to be modelled up to at least 2

  15. Image-Based 3D Face Modeling System

    Vladimir Vezhnevets

    2005-08-01

    Full Text Available This paper describes an automatic system for 3D face modeling using frontal and profile images taken by an ordinary digital camera. The system consists of four subsystems including frontal feature detection, profile feature detection, shape deformation, and texture generation modules. The frontal and profile feature detection modules automatically extract the facial parts such as the eye, nose, mouth, and ear. The shape deformation module utilizes the detected features to deform the generic head mesh model such that the deformed model coincides with the detected features. A texture is created by combining the facial textures augmented from the input images and the synthesized texture and mapped onto the deformed generic head model. This paper provides a practical system for 3D face modeling, which is highly automated by aggregating, customizing, and optimizing a bunch of individual computer vision algorithms. The experimental results show a highly automated process of modeling, which is sufficiently robust to various imaging conditions. The whole model creation including all the optional manual corrections takes only 2∼3 minutes.

  16. 3D statistical shape models incorporating 3D random forest regression voting for robust CT liver segmentation

    Norajitra, Tobias; Meinzer, Hans-Peter; Maier-Hein, Klaus H.

    2015-03-01

    During image segmentation, 3D Statistical Shape Models (SSM) usually conduct a limited search for target landmarks within one-dimensional search profiles perpendicular to the model surface. In addition, landmark appearance is modeled only locally based on linear profiles and weak learners, altogether leading to segmentation errors from landmark ambiguities and limited search coverage. We present a new method for 3D SSM segmentation based on 3D Random Forest Regression Voting. For each surface landmark, a Random Regression Forest is trained that learns a 3D spatial displacement function between the according reference landmark and a set of surrounding sample points, based on an infinite set of non-local randomized 3D Haar-like features. Landmark search is then conducted omni-directionally within 3D search spaces, where voxelwise forest predictions on landmark position contribute to a common voting map which reflects the overall position estimate. Segmentation experiments were conducted on a set of 45 CT volumes of the human liver, of which 40 images were randomly chosen for training and 5 for testing. Without parameter optimization, using a simple candidate selection and a single resolution approach, excellent results were achieved, while faster convergence and better concavity segmentation were observed, altogether underlining the potential of our approach in terms of increased robustness from distinct landmark detection and from better search coverage.

  17. Line defects in the 3d Ising model

    Billó, M; Gaiotto, D; Gliozzi, F; Meineri, M; Pellegrini, R

    2013-01-01

    We investigate the properties of the twist line defect in the critical 3d Ising model using Monte Carlo simulations. In this model the twist line defect is the boundary of a surface of frustrated links or, in a dual description, the Wilson line of the Z2 gauge theory. We test the hypothesis that the twist line defect flows to a conformal line defect at criticality and evaluate numerically the low-lying spectrum of anomalous dimensions of the local operators which live on the defect as well as mixed correlation functions of local operators in the bulk and on the defect.

  18. Towards Forward Modeling of 3D Heterogeneity in D" region

    To, A.; Capdeville, Y.; Romanowicz, B.

    2002-12-01

    The presence of strong lateral heterogeneity in D" is now well documented. While tomographic modeling provides constraints on the large scale patterns, strong variations on shorter scales are best addressed by forward modeling. Appropriate tools are needed for forward modeling that will handle strong 3D heterogeneity, at relatively short periods and including diffracted waves. We use a coupled mode/SEM (Spectral Element Method) to compute synthetic seismograms in 3D models of the D" layer down to 1/12s. This coupled method (Capdeville, 2001) affords faster computations than SEM in cases where heterogeneity can be restricted to a specific layer. We compare them with observed waveforms for several events in the Western Pacific. Observed and synthetic travel time trends are very consistent, although in most cases the observed residuals are significantly larger. Waveform amplitudes are less consistent. In order to understand the origin of the amplitude difference, we test the effect of 3D heterogeneity on Sdiff phase. In particular, the results show opposite trends in the amplitude of Sdiff due to heterogeneity located near the CMB or well above it. This provides constraints on the location of the causative velocity heterogeneity. Because the forward modeling approach requires many iterations, the coupled mode/SEM approach is still computationally intensive. It is more efficient to use a less accurate traditional approach to first get closer to a final model, and only then use coupled mode/SEM to refine the model. Ray theory is the most expedient way to calculate travel times. However, it is an infinite frequency approximation and not appropriate to handle diffracting waves. We show that ray theory predicts larger travel time anomaly for Sdiff phase than the one obtained by coupled mode/SEM. Although it is based on a weak heterogeneity assumption, Non-linear Asymptotic Coupling Theory(NACT) (Li and Romanowicz, 1995) helps to overcome this difficulty. It can handle

  19. On Angular Sampling Methods for 3-D Spatial Channel Models

    Fan, Wei; Jämsä, Tommi; Nielsen, Jesper Ødum; Pedersen, Gert Frølund

    2015-01-01

    This paper discusses generating three dimensional (3D) spatial channel models with emphasis on the angular sampling methods. Three angular sampling methods, i.e. modified uniform power sampling, modified uniform angular sampling, and random pairing methods are proposed and investigated in detail....... The random pairing method, which uses only twenty sinusoids in the ray-based model for generating the channels, presents good results if the spatial channel cluster is with a small elevation angle spread. For spatial clusters with large elevation angle spreads, however, the random pairing method would...

  20. Digital 3D Borobudur - Integration of 3D surveying and modeling techniques

    Suwardhi, D.; Menna, F.; Remondino, F.; Hanke, K.; Akmalia, R.

    2015-08-01

    The Borobudur temple (Indonesia) is one of the greatest Buddhist monuments in the world, now listed as an UNESCO World Heritage Site. The present state of the temple is the result of restorations after being exposed to natural disasters several times. Today there is still a growing rate of deterioration of the building stones whose causes need further researches. Monitoring programs, supported at institutional level, have been effectively executed to observe the problem. The paper presents the latest efforts to digitally document the Borobudur Temple and its surrounding area in 3D with photogrammetric techniques. UAV and terrestrial images were acquired to completely digitize the temple, produce DEM, orthoimages and maps at 1:100 and 1:1000 scale. The results of the project are now employed by the local government organizations to manage the heritage area and plan new policies for the conservation and preservation of the UNESCO site. In order to help data management and policy makers, a web-based information system of the heritage area was also built to visualize and easily access all the data and achieved 3D results.

  1. 3-D Rigid Models from Partial Views - Global Factorization

    Aguiar, Pedro M Q; Gonçalves, Bruno B

    2010-01-01

    The so-called factorization methods recover 3-D rigid structure from motion by factorizing an observation matrix that collects 2-D projections of features. These methods became popular due to their robustness - they use a large number of views, which constrains adequately the solution - and computational simplicity - the large number of unknowns is computed through an SVD, avoiding non-linear optimization. However, they require that all the entries of the observation matrix are known. This is unlikely to happen in practice, due to self-occlusion and limited field of view. Also, when processing long videos, regions that become occluded often appear again later. Current factorization methods process these as new regions, leading to less accurate estimates of 3-D structure. In this paper, we propose a global factorization method that infers complete 3-D models directly from the 2-D projections in the entire set of available video frames. Our method decides whether a region that has become visible is a region tha...

  2. Discrete Method of Images for 3D Radio Propagation Modeling

    Novak, Roman

    2016-09-01

    Discretization by rasterization is introduced into the method of images (MI) in the context of 3D deterministic radio propagation modeling as a way to exploit spatial coherence of electromagnetic propagation for fine-grained parallelism. Traditional algebraic treatment of bounding regions and surfaces is replaced by computer graphics rendering of 3D reflections and double refractions while building the image tree. The visibility of reception points and surfaces is also resolved by shader programs. The proposed rasterization is shown to be of comparable run time to that of the fundamentally parallel shooting and bouncing rays. The rasterization does not affect the signal evaluation backtracking step, thus preserving its advantage over the brute force ray-tracing methods in terms of accuracy. Moreover, the rendering resolution may be scaled back for a given level of scenario detail with only marginal impact on the image tree size. This allows selection of scene optimized execution parameters for faster execution, giving the method a competitive edge. The proposed variant of MI can be run on any GPU that supports real-time 3D graphics.

  3. Simulation of current generation in a 3-D plasma model

    Two wires carrying current in the same direction will attract each other, and two wires carrying current in the opposite direction will repel each other. Now, consider a test charge in a plasma. If the test charge carries current parallel to the plasma, then it will be pulled toward the plasma core, and if the test charge carries current anti-parallel to the plasma, then it will be pushed to the edge. The electromagnetic coupling between the plasma and a test charge (i.e., the Aparallel circ vparallel term in the test charge's Hamiltonian) breaks the symmetry in the parallel direction, and gives rise to a diffusion coefficient which is dependent on the particle's parallel velocity. This is the basis for the open-quotes preferential lossclose quotes mechanism described in the work by Nunan et al. In our previous 2+1/2 D work, in both cylindrical and toroidal geometries, showed that if the plasma column is centrally fueled, then an initial current increases steadily. The results in straight, cylindrical plasmas showed that self generated parallel current arises without trapped particle or neoclassical diffusion, as assumed by the bootstrap theory. It suggests that the fundamental mechanism seems to be the conservation of particles canonical momenta in the direction of the ignorable coordinate. We have extended the simulation to 3D to verify the model put forth. A scalable 3D EM-PIC code, with a localized field-solver, has been implemented to run on a large class of parallel computers. On the 512-node SP2 at Cornell Theory Center, we have benchmarked the 2+1/2 D calculations using 32 grids in the previously ignored direction, and a 100-fold increase in the number of particles. Our preliminary results show good agreements between the 2+1/2 D and the 3D calculations. We will present our 3D results at the meeting

  4. Testing Mercury Porosimetry with 3D Printed Porosity Models

    Hasiuk, F.; Ewing, R. P.; Hu, Q.

    2014-12-01

    Mercury intrusion porosimetry is one of the most widely used techniques to study the porous nature of a geological and man-made materials. In the geosciences, it is commonly used to describe petroleum reservoir and seal rocks as well as to grade aggregates for the design of asphalt and portland cement concretes. It's wide utility stems from its ability to characterize a wide range of pore throat sizes (from nanometers to around a millimeter). The fundamental physical model underlying mercury intrusion porosimetry, the Washburn Equation, is based on the assumption that rock porosity can be described as a bundle of cylindrical tubes. 3D printing technology, also known as rapid prototyping, allows the construction of intricate and accurate models, exactly what is required to build models of rock porosity. We evaluate the applicability of the Washburn Equation by comparing properties (like porosity, pore and pore throat size distribution, and surface area) computed on digital porosity models (built from CT data, CAD designs, or periodic geometries) to properties measured via mercury intrusion porosimetry on 3D printed versions of the same digital porosity models.

  5. Inferring 3D Articulated Models for Box Packaging Robot

    Yang, Heran; Cong, Matthew; Saxena, Ashutosh

    2011-01-01

    Given a point cloud, we consider inferring kinematic models of 3D articulated objects such as boxes for the purpose of manipulating them. While previous work has shown how to extract a planar kinematic model (often represented as a linear chain), such planar models do not apply to 3D objects that are composed of segments often linked to the other segments in cyclic configurations. We present an approach for building a model that captures the relation between the input point cloud features and the object segment as well as the relation between the neighboring object segments. We use a conditional random field that allows us to model the dependencies between different segments of the object. We test our approach on inferring the kinematic structure from partial and noisy point cloud data for a wide variety of boxes including cake boxes, pizza boxes, and cardboard cartons of several sizes. The inferred structure enables our robot to successfully close these boxes by manipulating the flaps.

  6. 3D model tools for architecture and archaeology reconstruction

    Vlad, Ioan; Herban, Ioan Sorin; Stoian, Mircea; Vilceanu, Clara-Beatrice

    2016-06-01

    The main objective of architectural and patrimonial survey is to provide a precise documentation of the status quo of the surveyed objects (monuments, buildings, archaeological object and sites) for preservation and protection, for scientific studies and restoration purposes, for the presentation to the general public. Cultural heritage documentation includes an interdisciplinary approach having as purpose an overall understanding of the object itself and an integration of the information which characterize it. The accuracy and the precision of the model are directly influenced by the quality of the measurements realized on field and by the quality of the software. The software is in the process of continuous development, which brings many improvements. On the other side, compared to aerial photogrammetry, close range photogrammetry and particularly architectural photogrammetry is not limited to vertical photographs with special cameras. The methodology of terrestrial photogrammetry has changed significantly and various photographic acquisitions are widely in use. In this context, the present paper brings forward a comparative study of TLS (Terrestrial Laser Scanner) and digital photogrammetry for 3D modeling. The authors take into account the accuracy of the 3D models obtained, the overall costs involved for each technology and method and the 4th dimension - time. The paper proves its applicability as photogrammetric technologies are nowadays used at a large scale for obtaining the 3D model of cultural heritage objects, efficacious in their assessment and monitoring, thus contributing to historic conservation. Its importance also lies in highlighting the advantages and disadvantages of each method used - very important issue for both the industrial and scientific segment when facing decisions such as in which technology to invest more research and funds.

  7. Exploiting Textured 3D Models for Developing Serious Games

    Kontogianni, G.; Georgopoulos, A.

    2015-08-01

    Digital technologies have affected significantly many fields of computer graphics such as Games and especially the field of the Serious Games. These games are usually used for educational proposes in many fields such as Health Care, Military applications, Education, Government etc. Especially Digital Cultural Heritage is a scientific area that Serious Games are applied and lately many applications appear in the related literature. Realistic 3D textured models which have been produced using different photogrammetric methods could be a useful tool for the creation of Serious Game applications in order to make the final result more realistic and close to the reality. The basic goal of this paper is how 3D textured models which are produced by photogrammetric methods can be useful for developing a more realistic environment of a Serious Game. The application of this project aims at the creation of an educational game for the Ancient Agora of Athens. The 3D models used vary not only as far as their production methods (i.e. Time of Flight laser scanner, Structure from Motion, Virtual historical reconstruction etc.) is concerned, but also as far as their era as some of them illustrated according to their existing situation and some others according to how these monuments looked like in the past. The Unity 3D® game developing environment was used for creating this application, in which all these models were inserted in the same file format. For the application two diachronic virtual tours of the Athenian Agora were produced. The first one illustrates the Agora as it is today and the second one at the 2nd century A.D. Finally the future perspective for the evolution of this game is presented which includes the addition of some questions that the user will be able to answer. Finally an evaluation is scheduled to be performed at the end of the project.

  8. The Engelbourg's ruins: from 3D TLS point cloud acquisition to 3D virtual and historic models

    Koehl, Mathieu; Berger, Solveig; Nobile, Sylvain

    2014-05-01

    The Castle of Engelbourg was built at the beginning of the 13th century, at the top of the Schlossberg. It is situated on the territory of the municipality of Thann (France), at the crossroads of Alsace and Lorraine, and dominates the outlet of the valley of Thur. Its strategic position was one of the causes of its systematic destructions during the 17th century, and Louis XIV finished his fate by ordering his demolition in 1673. Today only few vestiges remain, of which a section of the main tower from about 7m of diameter and 4m of wide laying on its slice, unique characteristic in the regional castral landscape. It is visible since the valley, was named "the Eye of the witch", and became a key attraction of the region. The site, which extends over approximately one hectare, is for several years the object of numerous archaeological studies and is at the heart of a project of valuation of the vestiges today. It was indeed a key objective, among the numerous planned works, to realize a 3D model of the site in its current state, in other words, a virtual model "such as seized", exploitable as well from a cultural and tourist point of view as by scientists and in archaeological researches. The team of the ICube/INSA lab had in responsibility the realization of this model, the acquisition of the data until the delivery of the virtual model, thanks to 3D TLS and topographic surveying methods. It was also planned to integrate into this 3D model, data of 2D archives, stemming from series of former excavations. The objectives of this project were the following ones: • Acquisition of 3D digital data of the site and 3D modelling • Digitization of the 2D archaeological data and integration in the 3D model • Implementation of a database connected to the 3D model • Virtual Visit of the site The obtained results allowed us to visualize every 3D object individually, under several forms (point clouds, 3D meshed objects and models, etc.) and at several levels of detail

  9. Computational Modelling of Piston Ring Dynamics in 3D

    Dlugoš Jozef

    2014-12-01

    Full Text Available Advanced computational models of a piston assembly based on the level of virtual prototypes require a detailed description of piston ring behaviour. Considering these requirements, the piston rings operate in regimes that cannot, in general, be simplified into an axisymmetric model. The piston and the cylinder liner do not have a perfect round shape, mainly due to machining tolerances and external thermo-mechanical loads. If the ring cannot follow the liner deformations, a local loss of contact occurs resulting in blow-by and increased consumption of lubricant oil in the engine. Current computational models are unable to implement such effects. The paper focuses on the development of a flexible 3D piston ring model based on the Timoshenko beam theory using the multibody system (MBS. The MBS model is compared to the finite element method (FEM solution.

  10. Table of 3D organ model IDs and organ names (IS-A Tree) - BodyParts3D | LSDB Archive [Life Science Database Archive metadata

    Full Text Available BodyParts3D Table of 3D organ model IDs and organ names (IS-A Tree) Data detail Data name Table of 3D organ model... IDs and organ names (IS-A Tree) Description of data contents List of downloadable 3D organ models in a... tab-delimited text file format, describing the correspondence between 3D organ model...e Database Description Download License Update History of This Database Site Policy | Contact Us Table of 3D organ model IDs and organ names (IS-A Tree) - BodyParts3D | LSDB Archive ...

  11. Table of 3D organ model IDs and organ names (PART-OF Tree) - BodyParts3D | LSDB Archive [Life Science Database Archive metadata

    Full Text Available BodyParts3D Table of 3D organ model IDs and organ names (PART-OF Tree) Data detail Data name Table of 3D organ model... IDs and organ names (PART-OF Tree) Description of data contents List of downloadable 3D organ model...s in a tab-delimited text file format, describing the correspondence between 3D organ model...ntact Us Table of 3D organ model IDs and organ names (PART-OF Tree) - BodyParts3D | LSDB Archive ...

  12. 3-D numerical modeling of methane hydrate deposits

    Pinero, Elena; W. Rottke; Fuchs, T.; Hensen, Christian; Haeckel, Matthias; Wallmann, Klaus

    2011-01-01

    Within the German gas hydrate initiative SUGAR, we have developed a new tool for predicting the formation of sub-seafloor gas hydrate deposits. For this purpose, a new 2D/3D module simulating the biogenic generation of methane from organic material and the formation of gas hydrates has been added to the petroleum systems modeling software package PetroMod®. T ypically, PetroMod® simulates the thermogenic generation of multiple hydrocarbon components including oil and gas, their migration t...

  13. 3D simulation of the Cluster-Cluster Aggregation model

    Li, Chao; Xiong, Hailing

    2014-12-01

    We write a program to implement the Cluster-Cluster Aggregation (CCA) model with java programming language. By using the simulation program, the fractal aggregation growth process can be displayed dynamically in the form of a three-dimensional (3D) figure. Meanwhile, the related kinetics data of aggregation simulation can be also recorded dynamically. Compared to the traditional programs, the program has better real-time performance and is more helpful to observe the fractal growth process, which contributes to the scientific study in fractal aggregation. Besides, because of adopting java programming language, the program has very good cross-platform performance.

  14. 3D Discrete Dislocation Modelling of High Temperature Plasticity

    Záležák, Tomáš; Dlouhý, Antonín

    2011-01-01

    Roč. 465, - (2011), s. 115-118. ISSN 1013-9826. [MSMF /6./ Materials Structure and Micromechanics of Fracture. Brno, 28.06.2010-30.06.2010] R&D Projects: GA MŠk OC 162 Institutional research plan: CEZ:AV0Z20410507 Keywords : discrete dislocation dynamics * high temperature deformation * meso-scale simulations of plasticity * diffusion Subject RIV: BE - Theoretical Physics

  15. Tracking topological entity changes in 3D collaborative modeling systems

    ChengYuan; He Fazhi; HuangZhiyong; Cai Xiantao; and Zhang Dejun

    2012-01-01

    One of the key problems in collaborative geometric modeling systems is topological entity correspondence when topolog- ical structure of geometry models on collaborative sites changes, ha this article, we propose a solution for tracking topological entity alterations in 3D collaborative modeling environment. We firstly make a thorough analysis and detailed categorization on the altera- tion properties and causations for each type of topological entity, namely topological face and topological edge. Based on collabora- tive topological entity naming mechanism, a data structure called TEST (Topological Entity Structure Tree) is introduced to track the changing history and current state of each topological entity, to embody the relationship among topological entities. Rules and algo- rithms are presented for identification of topological entities referenced by operations for correct execution and model consistency. The algorithm has been verified within the prototype we have implemented with ACIS.

  16. Quasi-3D navier-stokes model for rotating airfoil

    Wen Zhong Shen; Noerkaer Soerensen, J.

    1999-02-01

    A quasi-3D model of the unsteady Navier-Stokes equations in a rotating frame of reference has been developed. The equations governing the flow past a rotating blade are approximated using an order of magnitude analysis on the spanwise derivatives. The model takes into account rotational effects and spanwise outflow at computing expenses in the order of what is typical for similar 2D calculations. Results are presented for both laminar and turbulent flows past blades in pure rotation. In the turbulent case the influence of small-scale turbulence is modelled by the one-equation Baldwin-Barth turbulence model. The computations demonstrate that the main influence of rotation is to increase the maximum lift. (au) 18 refs.

  17. 3D Massive MIMO Systems: Modeling and Performance Analysis

    Nadeem, Qurrat-Ul-Ain

    2015-07-30

    Multiple-input-multiple-output (MIMO) systems of current LTE releases are capable of adaptation in the azimuth only. Recently, the trend is to enhance system performance by exploiting the channel’s degrees of freedom in the elevation, which necessitates the characterization of 3D channels. We present an information-theoretic channel model for MIMO systems that supports the elevation dimension. The model is based on the principle of maximum entropy, which enables us to determine the distribution of the channel matrix consistent with the prior information on the angles. Based on this model, we provide analytical expression for the cumulative density function (CDF) of the mutual information (MI) for systems with a single receive and finite number of transmit antennas in the general signalto- interference-plus-noise-ratio (SINR) regime. The result is extended to systems with finite receive antennas in the low SINR regime. A Gaussian approximation to the asymptotic behavior of MI distribution is derived for the large number of transmit antennas and paths regime. We corroborate our analysis with simulations that study the performance gains realizable through meticulous selection of the transmit antenna downtilt angles, confirming the potential of elevation beamforming to enhance system performance. The results are directly applicable to the analysis of 5G 3D-Massive MIMO-systems.

  18. 3D MODELING OF THE ARCHAIC AMPHORAS OF IONIA

    A. Denker

    2015-04-01

    Full Text Available Few other regions offer such a rich collection of amphoras than the cities of Ionia. Throughout history amphoras of these cities had been spread all over the Mediterranean. Despite their common characteristics, amphora manufacturing cities of Ionia had their own distinctive styles that can be identified. They differed in details of shape and decoration. Each city produced an authentic type of amphora which served as a trademark of itself and enabled its attribution to where it originated from. That’s why, amphoras provide important insight into commerce of old ages and yield evidence into ancient sailing routes. Owing to this our knowledge of the ancient trade is profoundly enriched. The following is based on the finds of amphoras which originated from the Ionian cities of Chios, Clazomenai, Lesbos, Miletus, and Samos. Starting from city-specific forms which offer interpretative advantages in provenancing, this article surveys the salient features of the regional forms and styles of the those Ionian cities. 3D modeling is utilized with the aim of bringing fresh glimpses of the investigated amphoras by showing how they originally looked. Due to their virtual indestructibility these models offer interpretative advantages by enabling experimental testing of hypotheses upon the finds without risking them. The 3D models in the following sections were reconstructed from numerous fragments of necks, handles, body sherds and bases. They convey in color- unlike the monochrome drawings which we were accustomed to-the texture, decoration, tint and the vitality of the amphoras of Ionia.

  19. Canada in 3D - Toward a Sustainable 3D Model for Canadian Geology from Diverse Data Sources

    Brodaric, B.; Pilkington, M.; Snyder, D. B.; St-Onge, M. R.; Russell, H.

    2015-12-01

    Many big science issues span large areas and require data from multiple heterogeneous sources, for example climate change, resource management, and hazard mitigation. Solutions to these issues can significantly benefit from access to a consistent and integrated geological model that would serve as a framework. However, such a model is absent for most large countries including Canada, due to the size of the landmass and the fragmentation of the source data into institutional and disciplinary silos. To overcome these barriers, the "Canada in 3D" (C3D) pilot project was recently launched by the Geological Survey of Canada. C3D is designed to be evergreen, multi-resolution, and inter-disciplinary: (a) it is to be updated regularly upon acquisition of new data; (b) portions vary in resolution and will initially consist of four layers (surficial, sedimentary, crystalline, and mantle) with intermediary patches of higher-resolution fill; and (c) a variety of independently managed data sources are providing inputs, such as geophysical, 3D and 2D geological models, drill logs, and others. Notably, scalability concerns dictate a decentralized and interoperable approach, such that only key control objects, denoting anchors for the modeling process, are imported into the C3D database while retaining provenance links to original sources. The resultant model is managed in the database, contains full modeling provenance as well as links to detailed information on rock units, and is to be visualized in desktop and online environments. It is anticipated that C3D will become the authoritative state of knowledge for the geology of Canada at a national scale.

  20. Comparative 3-D Modeling of tmRNA

    Wower Iwona

    2005-06-01

    Full Text Available Abstract Background Trans-translation releases stalled ribosomes from truncated mRNAs and tags defective proteins for proteolytic degradation using transfer-messenger RNA (tmRNA. This small stable RNA represents a hybrid of tRNA- and mRNA-like domains connected by a variable number of pseudoknots. Comparative sequence analysis of tmRNAs found in bacteria, plastids, and mitochondria provides considerable insights into their secondary structures. Progress toward understanding the molecular mechanism of template switching, which constitutes an essential step in trans-translation, is hampered by our limited knowledge about the three-dimensional folding of tmRNA. Results To facilitate experimental testing of the molecular intricacies of trans-translation, which often require appropriately modified tmRNA derivatives, we developed a procedure for building three-dimensional models of tmRNA. Using comparative sequence analysis, phylogenetically-supported 2-D structures were obtained to serve as input for the program ERNA-3D. Motifs containing loops and turns were extracted from the known structures of other RNAs and used to improve the tmRNA models. Biologically feasible 3-D models for the entire tmRNA molecule could be obtained. The models were characterized by a functionally significant close proximity between the tRNA-like domain and the resume codon. Potential conformational changes which might lead to a more open structure of tmRNA upon binding to the ribosome are discussed. The method, described in detail for the tmRNAs of Escherichia coli, Bacillus anthracis, and Caulobacter crescentus, is applicable to every tmRNA. Conclusion Improved molecular models of biological significance were obtained. These models will guide in the design of experiments and provide a better understanding of trans-translation. The comparative procedure described here for tmRNA is easily adopted for the modeling the members of other RNA families.

  1. Coupling of the advanced thermohydraulic code ATHLET with the 3D-core model DYN3D

    Two strategies of coupling are described: (i) the use of only the neutron kinetic part of DYN3D integrated into the heat transfer and heat conduction model of ATHLET; (ii) complete modeling of the core by DYN3D. Implementation of the coupling is described and the advantages and disadvantages of the two ways of coupling are discussed. Test calculations were carried out for both versions of the coupled codes and compared with pure ATHLET calculations. After validation the code complex will be a powerful instrument for safety analyses of WWER type reactors. (J.B.) 2 figs., 6 refs

  2. Focus for 3D city models should be on interoperability

    Bodum, Lars; Kjems, Erik; Jaegly, Marie Michele Helena;

    2006-01-01

    development of a system called GRIFINOR, that can handle multidimensional geographic objects as Java-objects. GRIFINOR is a new platform for 3D geovisualization. The purpose of the GRIFINOR platform is to provide researchers and developers with an open source platform, a counterpart to proprietary......-specific purposes. The trend until now has shown that municipalities and developers in most cases have given high priority to the visual impact of these models. It has been more important for the cities to obtain a model that gave a high degree of verisimilarity in contrast to a model that had a high degree of...... developments in Geographical Exploration Systems. Centralized and proprietary Geographical Exploration Systems only give us their own perspective on the world. On the contrary, GRIFINOR is decentralized and available for everyone to use, empowering people to promote their own world vision....

  3. Modeling Tree Crown Dynamics with 3D Partial Differential Equations

    Robert eBeyer

    2014-07-01

    Full Text Available We characterize a tree's spatial foliage distribution by the local leaf area density. Considering this spatially continuous variable allows to describe the spatiotemporal evolution of the tree crown by means of 3D partial differential equations. These offer a framework to rigorously take locally and adaptively acting effects into account, notably the growth towards light. Biomass production through photosynthesis and the allocation to foliage and wood are readily included in this model framework. The system of equations stands out due to its inherent dynamic property of self-organization and spontaneous adaptation, generating complex behavior from even only a few parameters. The density-based approach yields spatially structured tree crowns without relying on detailed geometry. We present the methodological fundamentals of such a modeling approach and discuss further prospects and applications.

  4. 3D density model of the Central Andes

    Prezzi, Claudia B.; Götze, Hans-Jürgen; Schmidt, Sabine

    2009-12-01

    We developed a 3D density model of the continental crust, the subducted plate and the upper mantle of the Central Andes between 20-29°S and 74-61°W through the forward modelling of Bouguer anomaly. The goal of this contribution is to gain insight on the lithospheric structure integrating the available information (geophysical, geologic, petrologic, and geochemical) in a single model. The geometry of our model is defined and constrained by hypocentre location, reflection and refraction on and offshore seismic lines, travel time and attenuation tomography, receiver function analysis, magnetotelluric studies, thermal models and balanced structural cross-sections. The densities allocated to the different bodies are calculated considering petrologic and geochemical data and pressure and temperature conditions. The model consists of 31 parallel E-W vertical planes, where the continental crust comprises distinct bodies, which represent the different morphotectonic units of the Central Andes. We include a partial melting zone at midcrustal depths under the Altiplano-Puna (low-velocity zone) and consider the presence of a rheologically strong block beneath the Salar de Atacama basin, according to recent seismic studies. Contour maps of the depth of the continental Moho, the thickness of the lower crust and the depth to the bottom of the lithosphere below South America are produced. The possible percentage of partial melt in the Central Andes low-velocity zone is estimated. The residual anomaly is calculated by subtracting from the Bouguer anomaly the gravimetric effect of the modelled subducted slab and of the modelled Moho. Isostatic anomalies are calculated from regional and local isostatic Mohos calculated with and without internal loads, derived from our gravity model, which are then compared to the modelled continental Moho. This study contributes to a more detailed knowledge of the lithospheric structure of this region of the Andes and provides an integrated 3D

  5. Brandenburg 3D - a comprehensive 3D Subsurface Model, Conception of an Infrastructure Node and a Web Application

    Kerschke, Dorit; Schilling, Maik; Simon, Andreas; Wächter, Joachim

    2014-05-01

    The Energiewende and the increasing scarcity of raw materials will lead to an intensified utilization of the subsurface in Germany. Within this context, geological 3D modeling is a fundamental approach for integrated decision and planning processes. Initiated by the development of the European Geospatial Infrastructure INSPIRE, the German State Geological Offices started digitizing their predominantly analog archive inventory. Until now, a comprehensive 3D subsurface model of Brandenburg did not exist. Therefore the project B3D strived to develop a new 3D model as well as a subsequent infrastructure node to integrate all geological and spatial data within the Geodaten-Infrastruktur Brandenburg (Geospatial Infrastructure, GDI-BB) and provide it to the public through an interactive 2D/3D web application. The functionality of the web application is based on a client-server architecture. Server-sided, all available spatial data is published through GeoServer. GeoServer is designed for interoperability and acts as the reference implementation of the Open Geospatial Consortium (OGC) Web Feature Service (WFS) standard that provides the interface that allows requests for geographical features. In addition, GeoServer implements, among others, the high performance certified compliant Web Map Service (WMS) that serves geo-referenced map images. For publishing 3D data, the OGC Web 3D Service (W3DS), a portrayal service for three-dimensional geo-data, is used. The W3DS displays elements representing the geometry, appearance, and behavior of geographic objects. On the client side, the web application is solely based on Free and Open Source Software and leans on the JavaScript API WebGL that allows the interactive rendering of 2D and 3D graphics by means of GPU accelerated usage of physics and image processing as part of the web page canvas without the use of plug-ins. WebGL is supported by most web browsers (e.g., Google Chrome, Mozilla Firefox, Safari, and Opera). The web

  6. Improving 3D spatial queries search: newfangled technique of space filling curves in 3D city modeling

    Uznir, U.; Anton, François; Suhaibah, A.;

    2013-01-01

    The advantages of three dimensional (3D) city models can be seen in various applications including photogrammetry, urban and regional planning, computer games, etc.. They expand the visualization and analysis capabilities of Geographic Information Systems on cities, and they can be developed using...

  7. A 3D Bubble Merger Model for RTI Mixing

    Cheng, Baolian

    2015-11-01

    In this work we present a model for the merger processes of bubbles at the edge of an unstable acceleration driven mixing layer. Steady acceleration defines a self-similar mixing process, with a time-dependent inverse cascade of structures of increasing size. The time evolution is itself a renormalization group evolution. The model predicts the growth rate of a Rayleigh-Taylor chaotic fluid-mixing layer. The 3-D model differs from the 2-D merger model in several important ways. Beyond the extension of the model to three dimensions, the model contains one phenomenological parameter, the variance of the bubble radii at fixed time. The model also predicts several experimental numbers: the bubble mixing rate, the mean bubble radius, and the bubble height separation at the time of merger. From these we also obtain the bubble height to the radius aspect ratio, which is in good agreement with experiments. Applications to recent NIF and Omega experiments will be discussed. This work was performed under the auspices of the U.S. Department of Energy by the Los Alamos National Laboratory under Contract No. W-7405-ENG-36.

  8. 3D model generation using an airborne swarm

    Clark, R. A.; Punzo, G.; Dobie, G.; MacLeod, C. N.; Summan, R.; Pierce, G.; Macdonald, M.; Bolton, G.

    2015-03-01

    Using an artificial kinematic field to provide co-ordination between multiple inspection UAVs, the authors herein demonstrate full 3D modelling capability based on a photogrammetric system. The operation of the system is demonstrated by generating a full 3D surface model of an intermediate level nuclear waste storage drum. Such drums require periodic inspection to ensure that drum distortion or corrosion is carefully monitored. Performing this inspection with multiple airborne platforms enables rapid inspection of structures that are inaccessible to on-surface remote vehicles and are in human-hazardous environments. A three-dimensional surface-meshed model of the target can then be constructed in post-processing through photogrammetry analysis of the visual inspection data. The inspection environment uses a tracking system to precisely monitor the position of each aerial vehicle within the enclosure. The vehicles used are commercially available Parrot AR. Drone quadcopters, controlled through a computer interface connected over an IEEE 802.11n (WiFi) network, implementing a distributed controller for each vehicle. This enables the autonomous and distributed elements of the control scheme to be retained, while alleviating the vehicles of the control algorithm's computational load. The control scheme relies on a kinematic field defined with the target at its centre. This field defines the trajectory for all the drones in the volume relative to the central target, enabling the drones to circle the target at a set radius while avoiding drone collisions. This function enables complete coverage along the height of the object, which is assured by transitioning to another inspection band only after completing circumferential coverage. Using a swarm of vehicles, the time until complete coverage can be significantly reduced.

  9. 3D model generation using an airborne swarm

    Using an artificial kinematic field to provide co-ordination between multiple inspection UAVs, the authors herein demonstrate full 3D modelling capability based on a photogrammetric system. The operation of the system is demonstrated by generating a full 3D surface model of an intermediate level nuclear waste storage drum. Such drums require periodic inspection to ensure that drum distortion or corrosion is carefully monitored. Performing this inspection with multiple airborne platforms enables rapid inspection of structures that are inaccessible to on-surface remote vehicles and are in human-hazardous environments. A three-dimensional surface-meshed model of the target can then be constructed in post-processing through photogrammetry analysis of the visual inspection data. The inspection environment uses a tracking system to precisely monitor the position of each aerial vehicle within the enclosure. The vehicles used are commercially available Parrot AR. Drone quadcopters, controlled through a computer interface connected over an IEEE 802.11n (WiFi) network, implementing a distributed controller for each vehicle. This enables the autonomous and distributed elements of the control scheme to be retained, while alleviating the vehicles of the control algorithm’s computational load. The control scheme relies on a kinematic field defined with the target at its centre. This field defines the trajectory for all the drones in the volume relative to the central target, enabling the drones to circle the target at a set radius while avoiding drone collisions. This function enables complete coverage along the height of the object, which is assured by transitioning to another inspection band only after completing circumferential coverage. Using a swarm of vehicles, the time until complete coverage can be significantly reduced

  10. 3D model generation using an airborne swarm

    Clark, R. A.; Punzo, G.; Macdonald, M. [Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow, G1 1XW (United Kingdom); Dobie, G.; MacLeod, C. N.; Summan, R.; Pierce, G. [Centre for Ultrasonic Engineering, University of Strathclyde, Glasgow, G1 1XW (United Kingdom); Bolton, G. [National Nuclear Laboratory Limited, Chadwick House, Warrington Road, Birchwood Park, Warrington, WA3 6AE (United Kingdom)

    2015-03-31

    Using an artificial kinematic field to provide co-ordination between multiple inspection UAVs, the authors herein demonstrate full 3D modelling capability based on a photogrammetric system. The operation of the system is demonstrated by generating a full 3D surface model of an intermediate level nuclear waste storage drum. Such drums require periodic inspection to ensure that drum distortion or corrosion is carefully monitored. Performing this inspection with multiple airborne platforms enables rapid inspection of structures that are inaccessible to on-surface remote vehicles and are in human-hazardous environments. A three-dimensional surface-meshed model of the target can then be constructed in post-processing through photogrammetry analysis of the visual inspection data. The inspection environment uses a tracking system to precisely monitor the position of each aerial vehicle within the enclosure. The vehicles used are commercially available Parrot AR. Drone quadcopters, controlled through a computer interface connected over an IEEE 802.11n (WiFi) network, implementing a distributed controller for each vehicle. This enables the autonomous and distributed elements of the control scheme to be retained, while alleviating the vehicles of the control algorithm’s computational load. The control scheme relies on a kinematic field defined with the target at its centre. This field defines the trajectory for all the drones in the volume relative to the central target, enabling the drones to circle the target at a set radius while avoiding drone collisions. This function enables complete coverage along the height of the object, which is assured by transitioning to another inspection band only after completing circumferential coverage. Using a swarm of vehicles, the time until complete coverage can be significantly reduced.

  11. The Use of Satellite Data in the Operational 3D Coupled Ecosystem Model of the Baltic Sea (3D Cembs

    Nowicki Artur

    2016-01-01

    Full Text Available The objective of this paper is to present an automatic monitoring system for the 3D CEMBS model in the operational version. This predictive, eco hydrodynamic model is used as a tool to control the conditions and bio productivity of the Baltic sea environment and to forecast physical and ecological changes in the studied basin. Satellite-measured data assimilation is used to constrain the model and achieve higher accuracy of its results.

  12. Coupling of the 3D neutron kinetic core model DYN3D with the CFD software ANSYS-CFX

    Highlights: • Improved thermal hydraulic description of nuclear reactor cores. • Possibility of three-dimensional flow phenomena in the core, such as cross flow, flow reversal, flow around obstacles. • Simulation at higher spatial resolution as compared to system codes. - Abstract: This article presents the implementation of a coupling between the 3D neutron kinetic core model DYN3D and the commercial, general purpose computational fluid dynamics (CFD) software ANSYS-CFX. In the coupling approach, parts of the thermal hydraulic calculation are transferred to CFX for its better ability to simulate the three-dimensional coolant redistribution in the reactor core region. The calculation of the heat transfer from the fuel into the coolant remains with DYN3D, which incorporates well tested and validated heat transfer models for rod-type fuel elements. On the CFX side, the core region is modeled based on the porous body approach. The implementation of the code coupling is verified by comparing test case results with reference solutions of the DYN3D standalone version. Test cases cover mini and full core geometries, control rod movement and partial overcooling transients

  13. 3D reconstruction of porous electrodes and microstructure modelling

    Joos, Jochen; Rueger, Bernd; Weber, Andre; Ivers-Tiffee, Ellen [Karlsruher Institute fuer Technologie (KIT), Karlsruhe (DE). Inst. fuer Werkstoffe der Elektrotechnik (IWE); Carraro, Thomas [Heidelberg Univ. (Germany). Inst. fuer Angewandte Mathematik

    2010-07-01

    The performance of a solid oxide fuel cell (SOFC) is limited by electrode polarisation processes, depending both on material composition and microstructure characteristics. To understand and improve electrode performance, a detailed knowledge of the electrode microstructure is essential. Recent developments in 3D image reconstruction combined with Focused Ion Beam (FIB) and Scanning Electron Microscopy (SEM) techniques proved a way to achieve highly detailed microstructural data. From this data the determination of valuable microstructural parameters is possible. The microstructure is commonly described by parameters as volume/porosity fraction, tortuosity of pores/materal (or: tortuosity of electronic and ionic transport in 2-phase materials), three-phase boundary length (electronic conducting electrodes) or electrode surface area (mixed conducting electrodes). Based on these parameters and with the help of adequate models, the electrode performance can be estimated. It is obvious that the accurateness of the model prediction depends on the quality of the parameters. Different groups reported first trials in the reconstruction of SOFC electrodes by FIB/SEM methods. They all used the reconstruction to calculate microstructural parameters. But nevertheless a lot of questions remain, primarily questions concerning the accuracy of the reconstruction or the minimum size of the volume that has to be reconstructed to obtain meaningful results. In this contribution, a ZEISS 1540XB CrossBeam {sup registered} was used to provide over 700 consecutive images of a porous LSCF (La{sub 0.58}Sr{sub 0.4}CO{sub 0.2.}Fe{sub 0.8}O{sub 3-{delta}})-cathode. The calculation of the key microstructural parameters (i) volume/porosity fraction (ii) electrode surface area and (iii) tortuosity of pores and material from 3D FIB/SEM-data will be presented. Additionally the influence of the reconstruction-volume on the calculated parameters will be discussed. Also the presented technique is

  14. 3D Printed Molecules and Extended Solid Models for Teaching Symmetry and Point Groups

    Scalfani, Vincent F.; Vaid, Thomas P.

    2014-01-01

    Tangible models help students and researchers visualize chemical structures in three dimensions (3D). 3D printing offers a unique and straightforward approach to fabricate plastic 3D models of molecules and extended solids. In this article, we prepared a series of digital 3D design files of molecular structures that will be useful for teaching…

  15. Beyond Virtual Replicas: 3D Modeling and Maltese Prehistoric Architecture

    Filippo Stanco

    2013-01-01

    Full Text Available In the past decade, computer graphics have become strategic for the development of projects aimed at the interpretation of archaeological evidence and the dissemination of scientific results to the public. Among all the solutions available, the use of 3D models is particularly relevant for the reconstruction of poorly preserved sites and monuments destroyed by natural causes or human actions. These digital replicas are, at the same time, a virtual environment that can be used as a tool for the interpretative hypotheses of archaeologists and as an effective medium for a visual description of the cultural heritage. In this paper, the innovative methodology and aims and outcomes of a virtual reconstruction of the Borg in-Nadur megalithic temple, carried out by Archeomatica Project of the University of Catania, are offered as a case study for a virtual archaeology of prehistoric Malta.

  16. Massive fermion model in 3d and higher spin currents

    Bonora, L; Prester, P Dominis; de Souza, B Lima; Smolic, I

    2016-01-01

    We analyze the 3d free massive fermion theory coupled to external sources. The presence of a mass explicitly breaks parity invariance. We calculate two- and three-point functions of a gauge current and the energy momentum tensor and, for instance, obtain the well-known result that in the IR limit (but also in the UV one) we reconstruct the relevant CS action. We then couple the model to higher spin currents and explicitly work out the spin 3 case. In the UV limit we obtain an effective action which was proposed many years ago as a possible generalization of spin 3 CS action. In the IR limit we derive a different higher spin action. This analysis can evidently be generalized to higher spins. We also discuss the conservation and properties of the correlators we obtain in the intermediate steps of our derivation.

  17. Energy flow in passive and active 3D cochlear model

    Wang, Yanli; Steele, Charles [Department of Mechanical Engineering, Stanford University, Stanford, California (United States); Puria, Sunil [Department of Mechanical Engineering, Stanford University, Stanford, California (United States); Department of Otolaryngology, Head and Neck Surgery, Stanford University, Stanford, California (United States)

    2015-12-31

    Energy flow in the cochlea is an important characteristic of the cochlear traveling wave, and many investigators, such as von Békésy and Lighthill, have discussed this phenomenon. Particularly after the discovery of the motility of the outer hair cells (OHCs), the nature of the power gain of the cochlea has been a fundamental research question. In the present work, direct three-dimensional (3D) calculations of the power on cross sections of the cochlea and on the basilar membrane are performed based on a box model of the mouse cochlea. The distributions of the fluid pressure and fluid velocity in the scala vestibuli are presented. The power output from the OHCs and the power loss due to fluid viscous damping are calculated along the length of the cochlea. This work provides a basis for theoretical calculations of the power gain of the OHCs from mechanical considerations.

  18. Energy flow in passive and active 3D cochlear model

    Wang, Yanli; Puria, Sunil; Steele, Charles

    2015-12-01

    Energy flow in the cochlea is an important characteristic of the cochlear traveling wave, and many investigators, such as von Békésy and Lighthill, have discussed this phenomenon. Particularly after the discovery of the motility of the outer hair cells (OHCs), the nature of the power gain of the cochlea has been a fundamental research question. In the present work, direct three-dimensional (3D) calculations of the power on cross sections of the cochlea and on the basilar membrane are performed based on a box model of the mouse cochlea. The distributions of the fluid pressure and fluid velocity in the scala vestibuli are presented. The power output from the OHCs and the power loss due to fluid viscous damping are calculated along the length of the cochlea. This work provides a basis for theoretical calculations of the power gain of the OHCs from mechanical considerations.

  19. Energy flow in passive and active 3D cochlear model

    Energy flow in the cochlea is an important characteristic of the cochlear traveling wave, and many investigators, such as von Békésy and Lighthill, have discussed this phenomenon. Particularly after the discovery of the motility of the outer hair cells (OHCs), the nature of the power gain of the cochlea has been a fundamental research question. In the present work, direct three-dimensional (3D) calculations of the power on cross sections of the cochlea and on the basilar membrane are performed based on a box model of the mouse cochlea. The distributions of the fluid pressure and fluid velocity in the scala vestibuli are presented. The power output from the OHCs and the power loss due to fluid viscous damping are calculated along the length of the cochlea. This work provides a basis for theoretical calculations of the power gain of the OHCs from mechanical considerations

  20. 3D RECORDING FOR 2D DELIVERING – THE EMPLOYMENT OF 3D MODELS FOR STUDIES AND ANALYSES –

    A. Rizzi

    2012-09-01

    Full Text Available In the last years, thanks to the advances of surveying sensors and techniques, many heritage sites could be accurately replicated in digital form with very detailed and impressive results. The actual limits are mainly related to hardware capabilities, computation time and low performance of personal computer. Often, the produced models are not visible on a normal computer and the only solution to easily visualized them is offline using rendered videos. This kind of 3D representations is useful for digital conservation, divulgation purposes or virtual tourism where people can visit places otherwise closed for preservation or security reasons. But many more potentialities and possible applications are available using a 3D model. The problem is the ability to handle 3D data as without adequate knowledge this information is reduced to standard 2D data. This article presents some surveying and 3D modeling experiences within the APSAT project ("Ambiente e Paesaggi dei Siti d’Altura Trentini", i.e. Environment and Landscapes of Upland Sites in Trentino. APSAT is a multidisciplinary project funded by the Autonomous Province of Trento (Italy with the aim documenting, surveying, studying, analysing and preserving mountainous and hill-top heritage sites located in the region. The project focuses on theoretical, methodological and technological aspects of the archaeological investigation of mountain landscape, considered as the product of sequences of settlements, parcelling-outs, communication networks, resources, and symbolic places. The mountain environment preserves better than others the traces of hunting and gathering, breeding, agricultural, metallurgical, symbolic activities characterised by different lengths and environmental impacts, from Prehistory to the Modern Period. Therefore the correct surveying and documentation of this heritage sites and material is very important. Within the project, the 3DOM unit of FBK is delivering all the surveying

  1. 3-D Eutrophication Modeling for Lake Simcoe, Canada

    Lu, Q.; Duckett, F.; Nairn, R.; Brunton, A.

    2006-12-01

    The Lake Simcoe Region Conservation Authority (LSRCA) and the Province of Ontario are undertaking a series of studies to facilitate management of the pressures of population growth in the Lake Simcoe watershed. With rapid population growth and urban development comes additional land clearing, storm water runoff and the discharge of treated sewage, all of which are sources of increased phosphorus loading to Lake Simcoe. Depressed oxygen levels were linked to phosphorous enrichment of the lake, with the resultant stimulation of algal growth in the sunlit upper waters of the lake, and its subsequent senescence and settling into the hypolimnion where bacterial decomposition consumes oxygen from the stratified waters. This poster describes a 3-D hydrodynamic, thermal and water quality model of Lake Simcoe developed using the Danish Hydraulics Institute (DHI) MIKE3 model. The hydrodynamic module includes wind-driven circulation, temperature variation, development of the thermocline and thermal stratification, and hydraulic forcing from inflowing tributaries. This is linked to the water quality module which simulates the eutrophication processes in the response of the lake to loadings of phosphorus, such as algal growth, the growth of aquatic plants and subsequent oxygen consumption. The model has been calibrated against Acoustic Doppler Current Profiler velocity data, plus measured temperature and water quality data at MOE stations in the lake and water intakes. The model is an important assessment tool for the management of the lake and its watersheds, allowing assessment of the impacts of the urban growth and land use change on the water quality in Lake Simcoe.

  2. Indoor Modelling Benchmark for 3D Geometry Extraction

    Thomson, C.; Boehm, J.

    2014-06-01

    A combination of faster, cheaper and more accurate hardware, more sophisticated software, and greater industry acceptance have all laid the foundations for an increased desire for accurate 3D parametric models of buildings. Pointclouds are the data source of choice currently with static terrestrial laser scanning the predominant tool for large, dense volume measurement. The current importance of pointclouds as the primary source of real world representation is endorsed by CAD software vendor acquisitions of pointcloud engines in 2011. Both the capture and modelling of indoor environments require great effort in time by the operator (and therefore cost). Automation is seen as a way to aid this by reducing the workload of the user and some commercial packages have appeared that provide automation to some degree. In the data capture phase, advances in indoor mobile mapping systems are speeding up the process, albeit currently with a reduction in accuracy. As a result this paper presents freely accessible pointcloud datasets of two typical areas of a building each captured with two different capture methods and each with an accurate wholly manually created model. These datasets are provided as a benchmark for the research community to gauge the performance and improvements of various techniques for indoor geometry extraction. With this in mind, non-proprietary, interoperable formats are provided such as E57 for the scans and IFC for the reference model. The datasets can be found at: http://indoor-bench.github.io/indoor-bench.

  3. Reynolds-stress model prediction of 3-D duct flows

    Gerolymos, G A

    2014-01-01

    The paper examines the impact of different modelling choices in second-moment closures by assessing model performance in predicting 3-D duct flows. The test-cases (developing flow in a square duct [Gessner F.B., Emery A.F.: {\\em ASME J. Fluids Eng.} {\\bf 103} (1981) 445--455], circular-to-rectangular transition-duct [Davis D.O., Gessner F.B.: {\\em AIAA J.} {\\bf 30} (1992) 367--375], and \\tsn{S}-duct with large separation [Wellborn S.R., Reichert B.A., Okiishi T.H.: {\\em J. Prop. Power} {\\bf 10} (1994) 668--675]) include progressively more complex strains. Comparison of experimental data with selected 7-equation models (6 Reynolds-stress-transport and 1 scale-determining equations), which differ in the closure of the velocity/pressure-gradient tensor $\\Pi_{ij}$, suggests that rapid redistribution controls separation and secondary-flow prediction, whereas, inclusion of pressure-diffusion modelling improves reattachment and relaxation behaviour.

  4. 3D numerical modeling of India-Asia-like collision

    -Erika Püsök, Adina; Kaus, Boris; Popov, Anton

    2013-04-01

    above a strong mantle lithosphere - the jelly sandwich model (Burov and Watts, 2006). 3D models are thus needed to investigate these hypotheses. However, fully 3D models of the dynamics of continent collision zones have only been developed very recently, and presently most research groups have relied on certain explicit assumptions for their codes. Here, we employ the parallel 3D code LaMEM (Lithosphere and Mantle Evolution Model), with a finite difference staggered grid solver, which is capable of simulating lithospheric deformation while simultaneously taking mantle flow and a free surface into account. We here report on first lithospheric and upper-mantle scale simulations in which the Indian lithosphere is indented into Asia. Acknowledgements. Funding was provided by the European Research Council under the European Community's Seventh Framework Program (FP7/2007-2013) / ERC Grant agreement #258830. Numerical computations have been performed on JUQUEEN of the Jülich high-performance computing center. • Beaumont, C., Jamieson, R.A., Nguyen, M.H., Medvedev, S.E., 2004. Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan-Tibetan orogeny. J. Geophys. Res. 109, B06406. • Burov, E. & Watts, W.S., 2006. The long-term strength of continental lithosphere: "jelly sandwich" or "crème brûlée"?. GSA Today, 16, doi: 10.1130/1052-5173(2006)10161132.1130.CO;1132. • England P., Houseman, G., 1986. Finite strain calculations of continental deformation. 2. Comparison with the India-Asia collision zone. J. Geophys. Res.- Solid Earth and Planets 91 (B3), 3664-3676. • Jackson, J., 2002. Strength of the continental lithosphere: time to abandon the jelly sandwich?. GSA Today, September, 4-10. • Lechmann, S.M., May, D.A., Kaus, B.J.P., Schmalholz, S.M., 2011. Comparing thin-sheet models with 3D multilayer models for continental collision. Geophy. Int. J. doi: 10.1111/j.1365-246X.2011.05164.x • Royden, L.H., Burchfiel, B.C., King, R

  5. 3D Printing of Molecular Potential Energy Surface Models

    Lolur, Phalgun; Dawes, Richard

    2014-01-01

    Additive manufacturing, commonly known as 3D printing, is gaining popularity in a variety of applications and has recently become routinely available. Today, 3D printing services are not only found in engineering design labs and through online companies, but also in university libraries offering student access. In addition, affordable options for…

  6. 3D-Digital soil property mapping by geoadditive models

    Papritz, Andreas

    2016-04-01

    In many digital soil mapping (DSM) applications, soil properties must be predicted not only for a single but for multiple soil depth intervals. In the GlobalSoilMap project, as an example, predictions are computed for the 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm, 100-200 cm depth intervals (Arrouays et al., 2014). Legacy soil data are often used for DSM. It is common for such datasets that soil properties were measured for soil horizons or for layers at varying soil depth and with non-constant thickness (support). This poses problems for DSM: One strategy is to harmonize the soil data to common depth prior to the analyses (e.g. Bishop et al., 1999) and conduct the statistical analyses for each depth interval independently. The disadvantage of this approach is that the predictions for different depths are computed independently from each other so that the predicted depth profiles may be unrealistic. Furthermore, the error induced by the harmonization to common depth is ignored in this approach (Orton et al. 2016). A better strategy is therefore to process all soil data jointly without prior harmonization by a 3D-analysis that takes soil depth and geographical position explicitly into account. Usually, the non-constant support of the data is then ignored, but Orton et al. (2016) presented recently a geostatistical approach that accounts for non-constant support of soil data and relies on restricted maximum likelihood estimation (REML) of a linear geostatistical model with a separable, heteroscedastic, zonal anisotropic auto-covariance function and area-to-point kriging (Kyriakidis, 2004.) Although this model is theoretically coherent and elegant, estimating its many parameters by REML and selecting covariates for the spatial mean function is a formidable task. A simpler approach might be to use geoadditive models (Kammann and Wand, 2003; Wand, 2003) for 3D-analyses of soil data. geoAM extend the scope of the linear model with spatially correlated errors to

  7. 3D-Digital soil property mapping by geoadditive models

    Papritz, Andreas

    2016-04-01

    In many digital soil mapping (DSM) applications, soil properties must be predicted not only for a single but for multiple soil depth intervals. In the GlobalSoilMap project, as an example, predictions are computed for the 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm, 100-200 cm depth intervals (Arrouays et al., 2014). Legacy soil data are often used for DSM. It is common for such datasets that soil properties were measured for soil horizons or for layers at varying soil depth and with non-constant thickness (support). This poses problems for DSM: One strategy is to harmonize the soil data to common depth prior to the analyses (e.g. Bishop et al., 1999) and conduct the statistical analyses for each depth interval independently. The disadvantage of this approach is that the predictions for different depths are computed independently from each other so that the predicted depth profiles may be unrealistic. Furthermore, the error induced by the harmonization to common depth is ignored in this approach (Orton et al. 2016). A better strategy is therefore to process all soil data jointly without prior harmonization by a 3D-analysis that takes soil depth and geographical position explicitly into account. Usually, the non-constant support of the data is then ignored, but Orton et al. (2016) presented recently a geostatistical approach that accounts for non-constant support of soil data and relies on restricted maximum likelihood estimation (REML) of a linear geostatistical model with a separable, heteroscedastic, zonal anisotropic auto-covariance function and area-to-point kriging (Kyriakidis, 2004.) Although this model is theoretically coherent and elegant, estimating its many parameters by REML and selecting covariates for the spatial mean function is a formidable task. A simpler approach might be to use geoadditive models (Kammann and Wand, 2003; Wand, 2003) for 3D-analyses of soil data. geoAM extend the scope of the linear model with spatially correlated errors to

  8. A Unified Building Model for 3D Urban GIS

    Ihab Hijazi

    2012-07-01

    Full Text Available Several tasks in urban and architectural design are today undertaken in a geospatial context. Building Information Models (BIM and geospatial technologies offer 3D data models that provide information about buildings and the surrounding environment. The Industry Foundation Classes (IFC and CityGML are today the two most prominent semantic models for representation of BIM and geospatial models respectively. CityGML has emerged as a standard for modeling city models while IFC has been developed as a reference model for building objects and sites. Current CAD and geospatial software provide tools that allow the conversion of information from one format to the other. These tools are however fairly limited in their capabilities, often resulting in data and information losses in the transformations. This paper describes a new approach for data integration based on a unified building model (UBM which encapsulates both the CityGML and IFC models, thus avoiding translations between the models and loss of information. To build the UBM, all classes and related concepts were initially collected from both models, overlapping concepts were merged, new objects were created to ensure the capturing of both indoor and outdoor objects, and finally, spatial relationships between the objects were redefined. Unified Modeling Language (UML notations were used for representing its objects and relationships between them. There are two use-case scenarios, both set in a hospital: “evacuation” and “allocating spaces for patient wards” were developed to validate and test the proposed UBM data model. Based on these two scenarios, four validation queries were defined in order to validate the appropriateness of the proposed unified building model. It has been validated, through the case scenarios and four queries, that the UBM being developed is able to integrate CityGML data as well as IFC data in an apparently seamless way. Constraints and enrichment functions are

  9. 3D Finite Difference Modelling of Basaltic Region

    Engell-Sørensen, L.

    2003-04-01

    The main purpose of the work was to generate realistic data to be applied for testing of processing and migration tools for basaltic regions. The project is based on the three - dimensional finite difference code (FD), TIGER, made by Sintef. The FD code was optimized (parallelized) by the author, to run on parallel computers. The parallel code enables us to model large-scale realistic geological models and to apply traditional seismic and micro seismic sources. The parallel code uses multiple processors in order to manipulate subsets of large amounts of data simultaneously. The general anisotropic code uses 21 elastic coefficients. Eight independent coefficients are needed as input parameters for the general TI medium. In the FD code, the elastic wave field computation is implemented by a higher order FD solution to the elastic wave equation and the wave fields are computed on a staggered grid, shifted half a node in one or two directions. The geological model is a gridded basalt model, which covers from 24 km to 37 km of a real shot line in horizontal direction and from the water surface to the depth of 3.5 km. The 2frac {1}{2}D model has been constructed using the compound modeling software from Norsk Hydro. The vertical parameter distribution is obtained from observations in two wells. At The depth of between 1100 m to 1500 m, a basalt horizon covers the whole sub surface layers. We have shown that it is possible to simulate a line survey in realistic (3D) geological models in reasonable time by using high performance computers. The author would like to thank Norsk Hydro, Statoil, GEUS, and SINTEF for very helpful discussions and Parallab for being helpful with the new IBM, p690 Regatta system.

  10. Predicted 3D Model of the Rabies Virus Glycoprotein Trimer

    Fernando, Bastida-González; Yersin, Celaya-Trejo; José, Correa-Basurto; Paola, Zárate-Segura

    2016-01-01

    The RABVG ectodomain is a homotrimer, and trimers are often called spikes. They are responsible for the attachment of the virus through the interaction with nicotinic acetylcholine receptors, neural cell adhesion molecule (NCAM), and the p75 neurotrophin receptor (p75NTR). This makes them relevant in viral pathogenesis. The antigenic structure differs significantly between the trimers and monomers. Surfaces rich in hydrophobic amino acids are important for trimer stabilization in which the C-terminal of the ectodomain plays an important role; to understand these interactions between the G proteins, a mechanistic study of their functions was performed with a molecular model of G protein in its trimeric form. This verified its 3D conformation. The molecular modeling of G protein was performed by a I-TASSER server and was evaluated via a Rachamandran plot and ERRAT program obtained 84.64% and 89.9% of the residues in the favorable regions and overall quality factor, respectively. The molecular dynamics simulations were carried out on RABVG trimer at 310 K. From these theoretical studies, we retrieved the RMSD values from Cα atoms to assess stability. Preliminary model of G protein of rabies virus stable at 12 ns with molecular dynamics was obtained. PMID:27294109

  11. Fault interpretation strategy for 3D model simulation

    Mendoza, P.; Floricich, M. [Petroleos de Venezuela SA EPM, Caracas (Venezuela)

    2002-07-01

    A 3-dimensional cellular model and visualization software was developed to help characterize the spatial geometry of a petroleum reservoir in order to determine the distribution of the petrophysical properties in a coherent manner. The 3-D analysis requires the same input data as traditional 2-dimensional methods so it is not more expensive, but it improves the integrity of geologic interpretations. The model makes it possible to generate fault planes which contribute to the understanding of the structural configuration of a petroleum deposit. Visualization tools provide quality control and are used to verify grid geometry in faulted structures and fault planes. The authors present experiences gained in building the geologic model for the LL-03 reservoir in Venezuela's Lake Maracaibo region which forms part of the Bolivar Coastal Field. The reservoir has more than 2,000 well that penetrate its vertical section, of which 1051 have been completed and which make up 30 per cent of the total production of the La Rosa Medium segregation of the Maracaibo District. 5 refs., 17 figs.

  12. POWER AWARE PHYSICAL MODEL FOR 3D IC’S

    Yasmeen Hasan

    2011-10-01

    Full Text Available In this work we have proposed a geometric model that is employed to devise a scheme for identifying thehotspots and zones in a chip. These spots or zone need to be guarded thermally to ensure performance andreliability of the chip. The model namely continuous unit sphere model has been presented taking intoaccount that the 3D region of the chip is uniform, thereby reflecting on the possible locations of heatsources and the target observation points. The experimental results for the – continuous domain establishthat a region which does not contain any heat sources may become hotter than the regions containing thethermal sources. Thus a hotspot may appear away from the active sources, and placing heat sinks on theactive thermal sources alone may not suffice to tackle thermal imbalance. Power management techniquesaid in obtaining a uniform power profile throughout the chip, but we propose an algorithm using minimumbipartite matching where we try to move the sources minimally (with minimum perturbation in the chipfloor plan near cooler points (blocks to obtain a uniform power profile due to diffusion of heat fromhotter point to cooler ones.

  13. 3D-GEM: Geo-technical extension towards an integrated 3D information model for infrastructural development

    Tegtmeier, W.; Zlatanova, S.; van Oosterom, P. J. M.; Hack, H. R. G. K.

    2014-03-01

    In infrastructural projects, communication as well as information exchange and (re-)use in and between involved parties is difficult. Mainly this is caused by a lack of information harmonisation. Various specialists are working together on the development of an infrastructural project and all use their own specific software and definitions for various information types. In addition, the lack of and/or differences in the use and definition of thematic semantic information regarding the various information types adds to the problem. Realistic 3D models describing and integrating parts of the earth already exist, but are generally neglecting the subsurface, and especially the aspects of geology and geo-technology. This paper summarises the research towards the extension of an existing integrated semantic information model to include surface as well as subsurface objects and in particular, subsurface geological and geotechnical objects. The major contributions of this research are the definition of geotechnical objects and the mechanism to link them with CityGML, GeoSciML and O&M standard models. The model is called 3D-GEM, short for 3D Geotechnical Extension Model.

  14. Coupling of the computational fluid dynamics code ANSYS CFX with the 3D neutron kinetic core model DYN3D

    The computational fluid dynamics code ANSYS CFX has been coupled with the neutron-kinetic core model DYN3D. ANSYS CFX calculates the fluid dynamics and related transport phenomena in the reactors coolant and provides the corresponding data to DYN3D. In the fluid flow simulation of the coolant, the core itself is modeled within the porous body approach. DYN3D calculates the neutron kinetics and the fuel behavior including the heat transfer to the coolant. The physical data interface between the codes is the volumetric heat release rate into the coolant. In the prototype that is currently available, the coupling is restricted to single-phase flow problems. In the time domain an explicit coupling of the codes has been implemented so far. Steady-state and transient verification calculations for two small-size test problems confirm the correctness of the implementation of the prototype coupling. The first test problem was a mini-core consisting of nine real-size fuel assemblies with quadratic cross section. Comparison was performed with the DYN3D stand-alone code. In the steady state, the effective multiplication factor obtained by the DYN3D/ANSYS CFX codes hows a deviation of 9.8 pcm from the DYN3D stand-alone solution. This difference can be attributed to the use of different water property packages in the two codes. The transient test case simulated the withdrawal of the control rod from the central fuel assembly at hot zero power in the same mini-core. Power increase during the introduction of positive reactivity and power reduction due to fuel temperature increase are calculated in the same manner by the coupled and the stand-alone codes. The maximum values reached during the power rise differ by about 1 MW at a power level of 50 MW. Beside the different water property packages, these differences are caused by the use of different flow solvers. The same calculations were carried for a mini-core with seven real-size fuel assemblies with hexagonal cross section in

  15. Object-oriented urban 3D spatial data model organization method

    Li, Jing-wen; Li, Wen-qing; Lv, Nan; Su, Tao

    2015-12-01

    This paper combined the 3d data model with object-oriented organization method, put forward the model of 3d data based on object-oriented method, implemented the city 3d model to quickly build logical semantic expression and model, solved the city 3d spatial information representation problem of the same location with multiple property and the same property with multiple locations, designed the space object structure of point, line, polygon, body for city of 3d spatial database, and provided a new thought and method for the city 3d GIS model and organization management.

  16. A novel mechanotactic 3D modeling of cell morphology

    Cell morphology plays a critical role in many biological processes, such as cell migration, tissue development, wound healing and tumor growth. Recent investigations demonstrate that, among other stimuli, cells adapt their shapes according to their substrate stiffness. Until now, the development of this process has not been clear. Therefore, in this work, a new three-dimensional (3D) computational model for cell morphology has been developed. This model is based on a previous cell migration model presented by the same authors. The new model considers that during cell–substrate interaction, cell shape is governed by internal cell deformation, which leads to an accurate prediction of the cell shape according to the mechanical characteristic of its surrounding micro-environment. To study this phenomenon, the model has been applied to different numerical cases. The obtained results, which are qualitatively consistent with well-known related experimental works, indicate that cell morphology not only depends on substrate stiffness but also on the substrate boundary conditions. A cell located within an unconstrained soft substrate (several kPa) with uniform stiffness is unable to adhere to its substrate or to send out pseudopodia. When the substrate stiffness increases to tens of kPa (intermediate and rigid substrates), the cell can adequately adhere to its substrate. Subsequently, as the traction forces exerted by the cell increase, the cell elongates and its shape changes. Within very stiff (hard) substrates, the cell cannot penetrate into its substrate or send out pseudopodia. On the other hand, a cell is found to be more elongated within substrates with a constrained surface. However, this elongation decreases when the cell approaches it. It can be concluded that the higher the net traction force, the greater the cell elongation, the larger the cell membrane area, and the less random the cell alignment. (paper)

  17. 3D city models as a basis for heat demand simulations; 3D-Stadtmodelle als Grundlage fuer Waermebedarfssimulationen

    Schulte, Claudia; Coors, Volker; Eicker, Ursula [Hochschule fuer Technik (HFT), Stuttgart (Germany)

    2012-07-01

    The biggest potential for heat consumption reduction and CO2 emission reduction in Germany is in older buildings. By applying innovative modernization concepts, primary energy consumption could be reduced by 80 percent. Planning of modernisation and energy concepts requires data on the current status. HFT Stuttgart developed a promising method for assessing heat consumption according to DIN 18599 of urban districts on the basis of 3D models of buildings (CityGML). The method is presented and explained here.

  18. IMPROVING SEMANTIC UPDATING METHOD ON 3D CITY MODELS USING HYBRID SEMANTIC-GEOMETRIC 3D SEGMENTATION TECHNIQUE

    Sharkawi, K.-H.; Abdul-Rahman, A

    2013-01-01

    Cities and urban areas entities such as building structures are becoming more complex as the modern human civilizations continue to evolve. The ability to plan and manage every territory especially the urban areas is very important to every government in the world. Planning and managing cities and urban areas based on printed maps and 2D data are getting insufficient and inefficient to cope with the complexity of the new developments in big cities. The emergence of 3D city models hav...

  19. Methods for Geometric Data Validation of 3d City Models

    Wagner, D.; Alam, N.; Wewetzer, M.; Pries, M.; Coors, V.

    2015-12-01

    Geometric quality of 3D city models is crucial for data analysis and simulation tasks, which are part of modern applications of the data (e.g. potential heating energy consumption of city quarters, solar potential, etc.). Geometric quality in these contexts is however a different concept as it is for 2D maps. In the latter case, aspects such as positional or temporal accuracy and correctness represent typical quality metrics of the data. They are defined in ISO 19157 and should be mentioned as part of the metadata. 3D data has a far wider range of aspects which influence their quality, plus the idea of quality itself is application dependent. Thus, concepts for definition of quality are needed, including methods to validate these definitions. Quality on this sense means internal validation and detection of inconsistent or wrong geometry according to a predefined set of rules. A useful starting point would be to have correct geometry in accordance with ISO 19107. A valid solid should consist of planar faces which touch their neighbours exclusively in defined corner points and edges. No gaps between them are allowed, and the whole feature must be 2-manifold. In this paper, we present methods to validate common geometric requirements for building geometry. Different checks based on several algorithms have been implemented to validate a set of rules derived from the solid definition mentioned above (e.g. water tightness of the solid or planarity of its polygons), as they were developed for the software tool CityDoctor. The method of each check is specified, with a special focus on the discussion of tolerance values where they are necessary. The checks include polygon level checks to validate the correctness of each polygon, i.e. closeness of the bounding linear ring and planarity. On the solid level, which is only validated if the polygons have passed validation, correct polygon orientation is checked, after self-intersections outside of defined corner points and edges

  20. GammaModeler 3-D gamma-ray imaging technology

    The 3-D GammaModelertrademark system was used to survey a portion of the facility and provide 3-D visual and radiation representation of contaminated equipment located within the facility. The 3-D GammaModelertrademark system software was used to deconvolve extended sources into a series of point sources, locate the positions of these sources in space and calculate the 30 cm. dose rates for each of these sources. Localization of the sources in three dimensions provides information on source locations interior to the visual objects and provides a better estimate of the source intensities. The three dimensional representation of the objects can be made transparent in order to visualize sources located within the objects. Positional knowledge of all the sources can be used to calculate a map of the radiation in the canyon. The use of 3-D visual and gamma ray information supports improved planning decision-making, and aids in communications with regulators and stakeholders

  1. COMPUTER AIDED DESIGN IN URBAN ARHITECTURE 3D MODELING

    Nicolae Radu MARSANU; Silvia Mihaela RUSU

    2010-01-01

    The gap from the PC made sketches with the help of the china ink pen and ruler to the digitised drawing boards, high diagonal monitors and 3D projecting is truly spectacular. The increasingly efficient and more specialized programs allow the architects a whole range of facilities providing drawing commands and changes very easy to use, automatic rating, operating simultaneously in multiple windows, building sections and extracts of the plan, 3D views design and even projecting in virtual real...

  2. 3D Modeling and Stress Analysis of Flare Piping

    Navath Ravikiran

    2014-10-01

    Full Text Available For transportation of fluid, steam or air piping system is widely used. For installing the piping system pipes, flanges, piping supports, valves, piping fittings etc. are used, which are piping elements. They are manufactured as per Codes and standards. Equipment and piping layout design as per process requirement and available space. Above layout made out by the help of General arrangement drawing, plant layout and P & ID. Then after flexibility providing to piping system, for compensate the different loads by the engineer. Stresses in pipe or piping systems are generated due to loads like expansion & contraction due to thermal load, seismic load, wind load, sustained load, reaction load etc. the stress analysis is done by help of software like CAESAR II. In this paper, a Flare pipe line is designed and 3D modeling is prepared in PDMS software. Attention is focused for stress analysis by Caesar-II software. So that various stress values, forces and deflections are analyzed at each node to make the design at safe operating conditions

  3. 3D numerical modeling of YSO accretion shocks

    Matsakos T.

    2014-01-01

    Full Text Available The dynamics of YSO accretion shocks is determined by radiative processes as well as the strength and structure of the magnetic field. A quasi-periodic emission signature is theoretically expected to be observed, but observations do not confirm any such pattern. In this work, we assume a uniform background field, in the regime of optically thin energy losses, and we study the multi-dimensional shock evolution in the presence of perturbations, i.e. clumps in the stream and an acoustic energy flux flowing at the base of the chromosphere. We perform 3D MHD simulations using the PLUTO code, modelling locally the impact of the infalling gas onto the chromosphere. We find that the structure and dynamics of the post-shock region is strongly dependent on the plasma-beta (thermal over magnetic pressure, different values of which may give distinguishable emission signatures, relevant for observations. In particular, a strong magnetic field effectively confines the plasma inside its flux tubes and leads to the formation of quasi-independent fibrils. The fibrils may oscillate out of phase and hence the sum of their contributions in the emission results in a smooth overall profile. On the contrary, a weak magnetic field is not found to have any significant effect on the shocked plasma and the turbulent hot slab that forms is found to retain its periodic signature.

  4. 3D Simulation Modeling of the Tooth Wear Process.

    Ning Dai

    Full Text Available Severe tooth wear is the most common non-caries dental disease, and it can seriously affect oral health. Studying the tooth wear process is time-consuming and difficult, and technological tools are frequently lacking. This paper presents a novel method of digital simulation modeling that represents a new way to study tooth wear. First, a feature extraction algorithm is used to obtain anatomical feature points of the tooth without attrition. Second, after the alignment of non-attrition areas, the initial homogeneous surface is generated by means of the RBF (Radial Basic Function implicit surface and then deformed to the final homogeneous by the contraction and bounding algorithm. Finally, the method of bilinear interpolation based on Laplacian coordinates between tooth with attrition and without attrition is used to inversely reconstruct the sequence of changes of the 3D tooth morphology during gradual tooth wear process. This method can also be used to generate a process simulation of nonlinear tooth wear by means of fitting an attrition curve to the statistical data of attrition index in a certain region. The effectiveness and efficiency of the attrition simulation algorithm are verified through experimental simulation.

  5. Creating a 3D printer and testing mechanical properties of printed models

    Ceglar, Luka

    2015-01-01

    3D printing is experiencing rapid development in recent years. Due to the favorable price and fast and precise manufacturing, 3D printing is increasingly replacing the production models of the conventional methods. This thesis presents the history of 3D printing and some common technologies used in 3D printing. There are presented characteristics, weaknesses, as well as a general method of operation. In this thesis I present building and use of 3D printer. I made pressure, tension and bend...

  6. 3D modeling of carbonates petro-acoustic heterogeneities

    Baden, Dawin; Guglielmi, Yves; Saracco, Ginette; Marié, Lionel; Viseur, Sophie

    2015-04-01

    Characterizing carbonate reservoirs heterogeneity is a challenging issue for Oil & Gas Industry, CO2 sequestration and all kinds of fluid manipulations in natural reservoirs, due to the significant impact of heterogeneities on fluid flow and storage within the reservoir. Although large scale (> meter) heterogeneities such as layers petrophysical contrasts are well addressed by computing facies-based models, low scale (meter) heterogeneities are often poorly constrained because of the complexity in predicting their spatial arrangement. In this study, we conducted petro-acoustic measurements on cores of different size and diameter (Ø = 1", 1.5" and 5") in order to evaluate anisotropy or heterogeneity in carbonates at different laboratory scales. Different types of heterogeneities which generally occur in carbonate reservoir units (e.g. petrographic, diagenetic, and tectonic related) were sampled. Dry / wet samples were investigated with different ultrasonic apparatus and using different sensors allowing acoustic characterization through a bandwidth varying from 50 to 500 kHz. Comprehensive measurements realized on each samples allowed statistical analyses of petro-acoustic properties such as attenuation, shear and longitudinal wave velocity. The cores properties (geological and acoustic facies) were modeled in 3D using photogrammetry and GOCAD geo-modeler. This method successfully allowed detecting and imaging in three dimensions differential diagenesis effects characterized by the occurrence of decimeter-scale diagenetic horizons in samples assumed to be homogeneous and/or different diagenetic sequences between shells filling and the packing matrix. We then discuss how small interfaces such as cracks, stylolithes and laminations which are also imaged may have guided these differential effects, considering that understanding the processes may be taken as an analogue to actual fluid drainage complexity in deep carbonate reservoir.

  7. Modelling and inversion of 3D complex kinematic data; Modelisation et inversion de donnees cinematiques complexes en 3D

    Clarke, R.

    1997-10-27

    Reflection tomography can determine velocity models containing lateral velocity variations and reflectors of arbitrary shapes; in order to access the kinematic data, a 3D zero offset approach to the SMART (Sequential Migration Aided Reflection Tomography) method, an original method of migration velocity analysis, is adopted. The approach involves interpreting kinematic data in the post-stack depth migrated cube and then de-migrating the horizons by two-point ray-tracing. A fast and robust two-point ray-tracer is developed, which can recover multi-valued kinematic data from complex geological structures. An original formulation for 3D reflection tomography is proposed, which can reliably take into account multivalued travel times

  8. 3D modeling and visualization software for complex geometries; 3D-Modellierungs- und Visualisierungs-Software fuer komplexe Geometrien

    Guse, Guenter; Klotzbuecher, Michael; Mohr, Friedrich [AREVA NDE Solutions / intelligeNDT Systems and Services GmbH (Germany)

    2011-07-01

    The reactor safety depends on reliable nondestructive testing of reactor components. For 100% detection probability of flaws and the determination of their size using ultrasonic methods the ultrasonic waves have to hit the flaws within a specific incidence and squint angle. For complex test geometries like testing of nozzle welds from the outside of the component these angular ranges can only be determined using elaborate mathematical calculations. The authors developed a 3D modeling and visualization software tool that allows to integrate and present ultrasonic measuring data into the 3D geometry. The software package was verified using 1:1 test samples (example: testing of the nozzle edge of the feedwater nozzle of a steam generator from the outside; testing of the reactor pressure vessel nozzle edge from the inside).

  9. Effect of fibre arrangement on the multiaxial fatigue of fibrous composites: a micromechanical computational model

    Roberto Brighenti

    2015-10-01

    Full Text Available Structural components made of fibre-reinforced materials are frequently used in engineering applications. Fibre-reinforced composites are multiphase materials, and complex mechanical phenomena take place at limit conditions but also during normal service situations, especially under fatigue loading, causing a progressive deterioration and damage. Under repeated loading, the degradation mainly occurs in the matrix material and at the fibre-matrix interface, and such a degradation has to be quantified for design structural assessment purposes. To this end, damage mechanics and fracture mechanics theories can be suitably applied to examine such a problem. Damage concepts can be applied to the matrix mechanical characteristics and, by adopting a 3-D mixed mode fracture description of the fibre-matrix detachment, fatigue fracture mechanics concepts can be used to determine the progressive fibre debonding responsible for the loss of load bearing capacity of the reinforcing phase. In the present paper, a micromechanical model is used to evaluate the unixial or multiaxial fatigue behaviour of structures with equi-oriented or randomly distributed fibres. The spatial fibre arrangement is taken into account through a statistical description of their orientation angles for which a Gaussian-like distribution is assumed, whereas the mechanical effect of the fibres on the composite is accounted for by a homogenization approach aimed at obtaining the macroscopic elastic constants of the material. The composite material behaves as an isotropic one for randomly distributed fibres, while it is transversally isotropic for unidirectional fibres. The fibre arrangement in the structural component influences the fatigue life with respect to the biaxiality ratio for multiaxial constant amplitude fatigue loading. One representative parametric example is discussed.

  10. Micromechanical investigation of soil plasticity using a discrete model of polygonal particles

    Alonso-Marroquin Fernando; Muhlhaus Hans B.; Herrmann Hans J.

    2008-01-01

    The mechanical behavior of soils has been traditionally described using continuum-mechanics-based models. These are empirical relations based on laboratory tests of soil specimens. The investigation of the soils at the grain scale using discrete element models has become possible in recent years. These models have provided valuable understanding of many micromechanical aspects of soil deformation. The aim of this work is to draw together these two approaches in the investigation of the plasti...

  11. Micromechanical modeling of sulphate corrosion in concrete: Influence of ettringite forming reaction

    Basista M.; Weglewski W.

    2008-01-01

    Two micromechanical models are developed to simulate the expansion of cementitious composites exposed to external sulphate attack. The difference between the two models lies in the form of chemical reaction of the ettringite formation (through-solution vs. topochemical). In both models the Fick's second law with reaction term is assumed to govern the transport of the sulphate ions. The Eshelby solution and the equivalent inclusion method are used to determine the eigenstrain of the expanding ...

  12. A micromechanical damage and fracture model for polymers based on fractional strain-gradient elasticity

    Heyden, S.; Li, B.; Weinberg, K.; Conti, S.; Ortiz, M.

    2015-01-01

    We formulate a simple one-parameter macroscopic model of distributed damage and fracture of polymers that is amenable to a straightforward and efficient numerical implementation. We show that the macroscopic model can be rigorously derived, in the sense of optimal scaling, from a micromechanical model of chain elasticity and failure regularized by means of fractional strain-gradient elasticity. In particular, we derive optimal scaling laws that supply a link between the single parameter of the macroscopic model, namely, the critical energy-release rate of the material, and micromechanical parameters pertaining to the elasticity and strength of the polymer chains and to the strain-gradient elasticity regularization. We show how the critical energy-release rate of specific materials can be determined from test data. Finally, we demonstrate the scope and fidelity of the model by means of an example of application, namely, Taylor-impact experiments of polyurea 1000 rods.

  13. Viscoelastic micromechanical model for dynamic modulus prediction of asphalt concrete with interface effects

    董满生; 高仰明; 李凌林; 王利娜; 孙志彬

    2016-01-01

    A viscoelastic micromechanical model is presented to predict the dynamic modulus of asphalt concrete (AC) and investigate the effect of imperfect interface between asphalt mastic and aggregates on the overall viscoelastic characteristics of AC. The linear spring layer model is introduced to simulate the interface imperfection. Based on the effective medium theory, the viscoelastic micromechanical model is developed by two equivalence processes. The present prediction is compared with available experimental data to verify the developed framework. It is found that the proposed model has the capability to predict the dynamic modulus of AC. Interface effect on the dynamic modulus of AC is discussed using the developed model. It is shown that the interfacial bonding strength has a significant influence on the global mechanical performance of AC, and that continued improvement in surface functionalization is necessary to realize the full potential of aggregates reinforcement.

  14. 3D Geological Model of Nihe ore deposit Constrained by Gravity and Magnetic Modeling

    Qi, Guang; Yan, Jiayong; Lv, Qingtan; Zhao, Jinhua

    2016-04-01

    We present a case study on using integrated geologic model in mineral exploration at depth. Nihe ore deposit in Anhui Province, is deep hidden ore deposit which was discovered in recent years, this finding is the major driving force of deep mineral exploration work in Luzong. Building 3D elaborate geological model has the important significance for prospecting to deep or surround in this area, and can help us better understand the metallogenic law and ore-controlling regularity. A 3D geological model, extending a depth from +200m to -1500m in Nihe ore deposit, has been compiled from surface geological map, cross-section, borehole logs and amounts of geological inference. And then the 3D geological models have been given physical property parameter for calculating the potential field. Modelling the potential response is proposed as means of evaluating the viability of the 3D geological models, and the evidence of making small changes to the uncertain parts of the original 3D geological models. It is expected that the final models not only reproduce supplied prior geological knowledge, but also explain the observed geophysical data. The workflow used to develop the 3D geologic model in this study includes the three major steps, as follows: (1) Determine the basic information of Model: Defining the 3D limits of the model area, the basic geological and structural unit, and the tectonic contact relations and the sedimentary sequences between these units. (2) 3D model construction: Firstly, a series of 2D geological cross sections over the model area are built by using all kinds of prior information, including surface geology, borehole data, seismic sections, and local geologists' knowledge and intuition. Lastly, we put these sections into a 3D environment according to their profile locations to build a 3D model by using geostatistics method. (3) 3D gravity and magnetic modeling: we calculate the potential field responses of the 3D model, and compare the predicted and

  15. Towards an Anisotropic Whole Mantle 3D Elastic Velocity Model

    Panning, M. P.; Romanowicz, B.; Gung, Y.

    2001-12-01

    Many studies have documented the existence of anisotropy in the earth's upper mantle, concentrated in the top 200 km. This evidence comes from the study of surface waves as well as shear wave splitting. There is also evidence for shear wave splitting in D", at least in well sampled regions. There are some hints of anisotropy at the base of the transition zone. Tomographic models of the upper mantle have been developed with simplifying assumptions about the nature of the anisotropy, in order to minimize the number of free parameters in the inversions. Some assume transverse isotropy (e.g Ekström and Dziewonski, 1997), others include additional degrees of freedom with some realistic constraints on mineralogy (e.g. Montagner and Tanimoto, 1991). Our goal is to investigate anisotropy in the whole mantle, using the framework of waveform inversion, and the nonlinear asymptotic mode coupling theory (NACT), previously developed and applied to the construction of whole-mantle SH velocity models (Li and Romanowicz, 1996; Mégnin and Romanowicz, 2000). For this we require a 3 component dataset, and we have extended our automatic transverse (T) component wavepicking procedures to the vertical (Z) and longitudinal (L) component - a non-trivial task given the large number of phases present in the coupled P-SV system. A useful initial assumption, for which the theory has been readily adapted, is that of transverse isotropy. As a first step towards this, we have been investigating inversions using T component and Z,L component data separately. In particular, this allows us to explore the sampling that can be achieved with Z,L component data alone in the deepest part of the mantle. Indeed, D" is in general much better sampled in SH than in SV, owing to the availability of SHdiff at large distances, while SVdiff decays more rapidly due to mantle-core coupling. We present the results of our resolution experiments and discuss the differences between the 3D SV model obtained in well

  16. Numerical Results of 3-D Modeling of Moon Accumulation

    Khachay, Yurie; Anfilogov, Vsevolod; Antipin, Alexandr

    2014-05-01

    For the last time for the model of the Moon usually had been used the model of mega impact in which the forming of the Earth and its sputnik had been the consequence of the Earth's collision with the body of Mercurial mass. But all dynamical models of the Earth's accumulation and the estimations after the Pb-Pb system, lead to the conclusion that the duration of the planet accumulation was about 1 milliard years. But isotopic results after the W-Hf system testify about a very early (5-10) million years, dividing of the geochemical reservoirs of the core and mantle. In [1,2] it is shown, that the account of energy dissipating by the decay of short living radioactive elements and first of all Al26,it is sufficient for heating even small bodies with dimensions about (50-100) km up to the iron melting temperature and can be realized a principal new differentiation mechanism. The inner parts of the melted preplanets can join and they are mainly of iron content, but the cold silicate fragments return to the supply zone and additionally change the content of Moon forming to silicates. Only after the increasing of the gravitational radius of the Earth, the growing area of the future Earth's core can save also the silicate envelope fragments [3]. For understanding the further system Earth-Moon evolution it is significant to trace the origin and evolution of heterogeneities, which occur on its accumulation stage.In that paper we are modeling the changing of temperature,pressure,velocity of matter flowing in a block of 3d spherical body with a growing radius. The boundary problem is solved by the finite-difference method for the system of equations, which include equations which describe the process of accumulation, the Safronov equation, the equation of impulse balance, equation Navier-Stocks, equation for above litho static pressure and heat conductivity in velocity-pressure variables using the Businesque approach.The numerical algorithm of the problem solution in velocity

  17. Research on urban rapid 3D modeling and application based on CGA rule

    Li, Jing-wen; Jiang, Jian-wu; Zhou, Song; Yin, Shou-qiang

    2015-12-01

    Use CityEngine as the 3D modeling platform, research on urban rapid 3D modeling technology based on the CGA(Computer Generated Architectur) rule , solved the problem of the rapid creation of urban 3D model in large scenes , and research on building texture processing and 3D model optimization techniques based on CGA rule , using component modeling method , solved the problem of texture distortion and model redundancy in the traditional fast modeling 3D model , and development of a three-dimensional view and analysis system based on ArcGIS Engine , realization of 3D model query , distance measurement , specific path flight , 3D marking , Scene export,etc.

  18. Biological modelling of fuzzy target volumes in 3D radiotherapy

    Purpose/Objective: The outcome of each radiotherapy depends critically on the optimal choice of the target volume. The goal of the radiotherapist is to include all tumor spread at the same time as saving as much healthy tissue as possible. Even when the information of all imaging modalities is combined, the diagnostic techniques are not sensitive and specific enough to visualize all microscopic tumor cell spread. Due to this lack of information there is room for different interpretations concerning the extend of the target volume, leading to a fuzzy target volume. The aim of this work is to develop a model to score different target volume boundaries within the region of diagnostic uncertainty in terms of tumor control probability (TCP) and normal tissue complication probabilities (NTCP). Materials and Methods: In order to assess the region of diagnostic uncertainty, the radiotherapist defines interactively a minimal planning target volume that absolutely must be irradiated according to the diagnostic information available and a maximal planning target volume outside which no tumor cell spread is expected. For the NTCP calculation we use the Lyman 4 parameter model to estimate the response of an organ at risk to a uniform partial volume irradiation. The TCP calculation is based on the Poisson model of cell killing. The TCP estimation depends not only on volume, dose, clonogenic cell density and the α parameter of the linear quadratic model but also on the probability to find clonogenic cells in the considered volume. Inside the minimal PTV this probability is 1, outside the maximal PTV it is 0. Therefore all voxels inside the minimal PTV are assigned the value of 1 with respect to the target volume, all voxels outside the maximal PTV the value of 0. For voxels in the region of uncertainty in between, a 3D linear interpolation is performed. Here we assume the probability to follow the interpolated values. Starting with the minimal PTV, the expected gain in TCP and

  19. Numerical modeling of wave processes in 3D fractured media

    Golubev V.; Petrov I.

    2014-01-01

    Seismic response from the cluster of vertical oriented cracks is simulated using grid-characteristic method on parallelepiped structured meshes. Synthetic seismograms and wave fields are calculated. The structure of the response including dependency on type of saturator (gas, fluid) is analyzed. Numerical experiments showed the effect of high-frequency daisy-chain wave’s generation from 3D periodic structures.

  20. Using 3D Geometric Models to Teach Spatial Geometry Concepts.

    Bertoline, Gary R.

    1991-01-01

    An explanation of 3-D Computer Aided Design (CAD) usage to teach spatial geometry concepts using nontraditional techniques is presented. The software packages CADKEY and AutoCAD are described as well as their usefulness in solving space geometry problems. (KR)

  1. Registration of 3D Face Scans with Average Face Models

    Salah, A.A.; Alyuz, N.; Akarun, L.

    2008-01-01

    The accuracy of a 3D face recognition system depends on a correct registration that aligns the facial surfaces and makes a comparison possible. The best results obtained so far use a costly one-to-all registration approach, which requires the registration of each facial surface to all faces in the g

  2. Framework system and research flow of uncertainty in 3D geological structure models

    2010-01-01

    Uncertainty in 3D geological structure models has become a bottleneck that restricts the development and application of 3D geological modeling.In order to solve this problem during periods of accuracy assessment,error detection and dynamic correction in 3D geological structure models,we have reviewed the current situation and development trends in 3D geological modeling.The main context of uncertainty in 3D geological structure models is discussed.Major research issues and a general framework system of unce...

  3. The Traveling Optical Scanner – Case Study on 3D Shape Models of Ancient Brazilian Skulls

    Trinderup, Camilla Himmelstrup; Dahl, Vedrana Andersen; Gregersen, Kristian Murphy;

    2016-01-01

    , inoffensive and inexpensive 3D scanning modality based on structured light, suitable for capturing the morphology and the appearance of specimens. Benefits of having 3D models are manifold. The 3D models are easy to share among researchers and can be made available to the general public. Advanced...

  4. Foam Micromechanics

    Kraynik, A.M.; Neilsen, M.K.; Reinelt, D.A.; Warren, W.E.

    1998-11-03

    -dimensional situation is always easier to visualize and usually easier to analyze, the roots of foam micromechanics lie in the plane packed with polygons. There are striking similarities as well as obvious differences between 2D and 3D.

  5. Modeling of multi-inclusion composites with interfacial imperfections:Micromechanical and numerical simulations

    2010-01-01

    A micromechanical approach based on a two-layer built-in model and a numerical simulation based on boundary element method are proposed to predict the effective properties of the multi-inclusion composite with imperfect interfaces.The spring model is introduced to simulate the interface imperfection.These two methods are compared with each other,and good agreement is achieved.The effects of interface spring stiffness,volume ratio and stiffness of inclusions on the micro-and macro-mechanical behaviors of fiber-reinforced composites are investigated.It is shown that the developed micromechanical method is very comprehensive and efficient for fast prediction of effective properties of composites,while the numerical method is very accurate in detailed modeling of the mechanical behavior of composites with multiple inclusions.

  6. Transforming 2d Cadastral Data Into a Dynamic Smart 3d Model

    Tsiliakou, E.; Labropoulos, T.; Dimopoulou, E.

    2013-08-01

    3D property registration has become an imperative need in order to optimally reflect all complex cases of the multilayer reality of property rights and restrictions, revealing their vertical component. This paper refers to the potentials and multiple applications of 3D cadastral systems and explores the current state-of-the art, especially the available software with which 3D visualization can be achieved. Within this context, the Hellenic Cadastre's current state is investigated, in particular its data modeling frame. Presenting the methodologies and specifications addressing the registration of 3D properties, the operating cadastral system's shortcomings and merits are pointed out. Nonetheless, current technological advances as well as the availability of sophisticated software packages (proprietary or open source) call for 3D modeling. In order to register and visualize the complex reality in 3D, Esri's CityEngine modeling software has been used, which is specialized in the generation of 3D urban environments, transforming 2D GIS Data into Smart 3D City Models. The application of the 3D model concerns the Campus of the National Technical University of Athens, in which a complex ownership status is established along with approved special zoning regulations. The 3D model was built using different parameters based on input data, derived from cadastral and urban planning datasets, as well as legal documents and architectural plans. The process resulted in a final 3D model, optimally describing the cadastral situation and built environment and proved to be a good practice example of 3D visualization.

  7. AUTOMATIC TEXTURE RECONSTRUCTION OF 3D CITY MODEL FROM OBLIQUE IMAGES

    Kang, Junhua; Deng, Fei; LI, XINWEI; WAN, FANG

    2016-01-01

    In recent years, the photorealistic 3D city models are increasingly important in various geospatial applications related to virtual city tourism, 3D GIS, urban planning, real-estate management. Besides the acquisition of high-precision 3D geometric data, texture reconstruction is also a crucial step for generating high-quality and visually realistic 3D models. However, most of the texture reconstruction approaches are probably leading to texture fragmentation and memory inefficiency....

  8. Multi Sensor Data Integration for AN Accurate 3d Model Generation

    Chhatkuli, S.; Satoh, T.; Tachibana, K.

    2015-05-01

    The aim of this paper is to introduce a novel technique of data integration between two different data sets, i.e. laser scanned RGB point cloud and oblique imageries derived 3D model, to create a 3D model with more details and better accuracy. In general, aerial imageries are used to create a 3D city model. Aerial imageries produce an overall decent 3D city models and generally suit to generate 3D model of building roof and some non-complex terrain. However, the automatically generated 3D model, from aerial imageries, generally suffers from the lack of accuracy in deriving the 3D model of road under the bridges, details under tree canopy, isolated trees, etc. Moreover, the automatically generated 3D model from aerial imageries also suffers from undulated road surfaces, non-conforming building shapes, loss of minute details like street furniture, etc. in many cases. On the other hand, laser scanned data and images taken from mobile vehicle platform can produce more detailed 3D road model, street furniture model, 3D model of details under bridge, etc. However, laser scanned data and images from mobile vehicle are not suitable to acquire detailed 3D model of tall buildings, roof tops, and so forth. Our proposed approach to integrate multi sensor data compensated each other's weakness and helped to create a very detailed 3D model with better accuracy. Moreover, the additional details like isolated trees, street furniture, etc. which were missing in the original 3D model derived from aerial imageries could also be integrated in the final model automatically. During the process, the noise in the laser scanned data for example people, vehicles etc. on the road were also automatically removed. Hence, even though the two dataset were acquired in different time period the integrated data set or the final 3D model was generally noise free and without unnecessary details.

  9. Numerical Results of Earth's Core Accumulation 3-D Modelling

    Khachay, Yurie; Anfilogov, Vsevolod

    2013-04-01

    For a long time as a most convenient had been the model of mega impact in which the early forming of the Earth's core and mantle had been the consequence of formed protoplanet collision with the body of Mercurial mass. But all dynamical models of the Earth's accumulation and the estimations after the Pb-Pb system, lead to the conclusion that the duration of the planet accumulation was about 1 milliard years. But isotopic results after the W-Hf system testify about a very early (5-10) million years, dividing of the geochemical reservoirs of the core and mantle. In [1,3] it is shown, that the account of energy dissipating by the decay of short living radioactive elements and first of all Al,it is sufficient for heating even small bodies with dimensions about (50-100) km up to the iron melting temperature and can be realized a principal new differentiation mechanism. The inner parts of the melted preplanets can join and they are mainly of iron content, but the cold silicate fragments return to the supply zone. Only after the increasing of the gravitational radius, the growing area of the future core can save also the silicate envelope fragments. All existing dynamical accumulation models are constructed by using a spherical-symmetrical model. Hence for understanding the further planet evolution it is significant to trace the origin and evolution of heterogeneities, which occur on the planet accumulation stage. In that paper we are modeling distributions of temperature, pressure, velocity of matter flowing in a block of 3D- spherical body with a growing radius. The boundary problem is solved by the finite-difference method for the system of equations, which include equations which describe the process of accumulation, the Safronov equation, the equation of impulse balance, equation Navier-Stocks, equation for above litho static pressure and heat conductivity in velocity-pressure variables using the Businesque approach. The numerical algorithm of the problem solution in

  10. A novel alternative method for 3D visualisation in Parasitology: the construction of a 3D model of a parasite from 2D illustrations.

    Teo, B G; Sarinder, K K S; Lim, L H S

    2010-08-01

    Three-dimensional (3D) models of the marginal hooks, dorsal and ventral anchors, bars and haptoral reservoirs of a parasite, Sundatrema langkawiense Lim & Gibson, 2009 (Monogenea) were developed using the polygonal modelling method in Autodesk 3ds Max (Version 9) based on two-dimensional (2D) illustrations. Maxscripts were written to rotate the modelled 3D structures. Appropriately orientated 3D haptoral hard-parts were then selected and positioned within the transparent 3D outline of the haptor and grouped together to form a complete 3D haptoral entity. This technique is an inexpensive tool for constructing 3D models from 2D illustrations for 3D visualisation of the spatial relationships between the different structural parts within organisms. PMID:20962723

  11. An asymptotic homogenization model for smart 3D grid-reinforced composite structures with generally orthotropic constituents

    A comprehensive micromechanical model for smart 3D composite structures reinforced with a periodic grid of generally orthotropic cylindrical reinforcements that also exhibit piezoelectric behavior is developed. The original boundary value problem characterizing the piezothermoelastic behavior of these structures is decoupled into a set of three simpler unit cell problems dealing, separately, with the elastic, piezoelectric and thermal expansion characteristics of the smart composite. The technique used is that of asymptotic homogenization and the solution of the unit cell problems permits determination of the effective elastic, piezoelectric and thermal expansion coefficients. The general orthotropy of the constituent materials is very important from the practical viewpoint and makes the analysis much more complicated. Several examples of practical interest are used to illustrate the work including smart 3D composites with cubic and conical embedded grids as well as diagonally reinforced smart structures. It is also shown in this work that in the limiting particular case of 2D grid-reinforced structures with isotropic reinforcements our results converge to earlier published results

  12. A Survey of Recent View-based 3D Model Retrieval Methods

    Liu, Qiong

    2012-01-01

    Extensive research efforts have been dedicated to 3D model retrieval in recent decades. Recently, view-based methods have attracted much research attention due to the high discriminative property of multi-views for 3D object representation. In this report, we summarize the view-based 3D model methods and provide the further research trends. This paper focuses on the scheme for matching between multiple views of 3D models and the application of bag-of-visual-words method in 3D model retrieval....

  13. 3D modelling of edge parallel flow asymmetries

    The issue of parallel flows asymmetries in the edge plasma is tackled with a new first principle transport and turbulence code. TOKAM-3D is a 3D full-torus fluid code that can be used both in diffusive and turbulent regimes and covers either exclusively closed flux surfaces or both open and closed field lines in limiter geometry. Two independent mechanisms susceptible to lead to large amplitude asymmetric parallel flows are evidenced. Global ExB drifts coupled with the presence of the limiter break the poloidal symmetry and can generate large amplitude parallel flows even with poloidally uniform transport coefficients. On the other hand, turbulent transport in the edge exhibits a strong ballooning of the radial particle flux generating an up-down m = 1, n = 0 structure on the parallel velocity. The combination of both mechanisms in complete simulations leads to a poloidal and radial distribution of the parallel velocity comparable to experimental results.

  14. Cyclic deformation behavior of an {alpha}/{beta} titanium alloy. 2: Internal stresses and micromechanic modelling

    Feaugas, X.; Clavel, M. [Univ. de Technologie de Compiegne (France); Pilvin, P. [Univ. Paris VI, Evry (France)]|[Ecole des Mines de Paris, Evry (France). Centre des Materiaux

    1997-07-01

    A micromechanic model was used to study the influence of the different microstructure heterogeneity levels of an {alpha}/{beta} titanium alloy during monotonic and cyclic loadings. In the micromechanic model two levels of heterogeneity were considered: the cell and the two phases ({alpha} and {beta}). The cell is defined as an {alpha} (h.c.p.) crystal surrounded by {beta}-phase (b.c.c.). A modified Kroener`s rule is used to describe the stress localization. This rule takes into account the elasto-plastic accommodation between cells and between phases. The main results are the following: the rate of reduction of the {alpha}/{beta} incompatibilities is greater than that associated with inter-cells and the cyclic softening depends not only on the reduction of the transgranular incompatibilities ({alpha}-phase), but also on inter-cell internal stress redistribution.

  15. Micromechanical Modeling of Solid Oxide Fuel Cell Anode Supports based on Three-dimensional Reconstructions

    Kwok, Kawai; Jørgensen, Peter Stanley; Frandsen, Henrik Lund

    2014-01-01

    purpose of this work is to provide such a link. State-of-the-art SOFCs are supported by a porous layer of Ni-3YSZ which has a complex microstructure and a drastic difference in behaviors between their phases. This work investigates the microscopic stress distribution and macroscopic creep rate of porous...... Ni-3YSZ in the operating temperature through numerical micromechanical modeling. Three-dimensional microstructures of Ni-3YSZ anode supports are reconstructed from a two-dimensional image stack obtained via focused ion beam tomography. Time-dependent stress distributions in the microscopic scale are...... computed by the finite element method. The macroscopic creep response of the porous anode support is determined based on homogenization theory. It is shown that micromechanical modeling provides an effective tool to study the effect of microstructures on the macroscopic properties....

  16. Håndbog i 3D-modeller

    Karlshøj, Jan; Bennetsen, Jens Chr.; Kjems, Erik;

    Denne håndbog er udviklet i forbindelse med overgangen til nye digitale 3D-metoder, -værktøjer og -procedurer. Håndbogen gennemgår baggrundsmateriale, teknologi og metoder, der kan bruges til skabe alternative løsninger, kvalificere beslutninger, klæde bygherren bedre på og i det hele taget få mere...

  17. Mixed Structural Models for 3D Audio in Virtual Environments

    Geronazzo, Michele

    2014-01-01

    In the world of ICT, strategies for innovation and development are increasingly focusing on applications that require spatial representation and real-time interaction with and within 3D media environments. One of the major challenges that such applications have to address is user-centricity, reflecting e.g. on developing complexity-hiding services so that people can personalize their own delivery of services. In these terms, multimodal interfaces represent a key factor for enabling an inclusi...

  18. Modelling 3D product visualization on the online retailer

    Algharabat, R.; Dennis, C

    2009-01-01

    -Purpose: An emerging body of research has investigated telepresence and presence notions in online retailers’ websites during the past two decades. Since that time considerable research has been published in different fields to explain the meanings and applications of these notions. This study aims to investigate the antecedents and consequences of 3D product simulation telepresence and the effects of the consequences on consumers’ behavioural intentions on the online retailer Website. -D...

  19. Fatigue damage in short glass fiber reinforced PA66: Micromechanical modeling and multiscale identification approach

    DESPRINGRE, Nicolas; CHEMISKY, Yves; Meraghni, Fodil; FITOUSSI, Joseph; Robert, Gilles

    2015-01-01

    The paper presents a new micromechanical high cycle fatigue visco-damage model for short glass fiber reinforced thermoplastic composites, namely: PA66/GF30. This material, extensively used for automotive applications, has a specific microstructure which is induced by the injection process. The multi-scale developed approach is a modified Mori-Tanaka method that includes coated reinforcements and the evolution of micro-scale damage processes. The description of the damage processes is based on...

  20. Micromechanical modeling of the elastic behavior of unidirectional CVI SiC/SiC composites

    CHATEAU, Camille; GELEBART, Lionel; Bornert, Michel; CREPIN, Jérôme

    2015-01-01

    The elastic behavior of SiC/SiC composite is investigated at the scale of the tow through a micromechanical modeling taking into account the heterogeneous nature of the microstructure. The paper focuses on the sensitivity of transverse properties to the residual porosity resulting from the matrix infiltration process. The full analysis is presented stepwise, starting from the microstructural characterization to the study of the impact of pore shape and volume fraction. Various Volume Elements...

  1. Virtual and Printed 3D Models for Teaching Crystal Symmetry and Point Groups

    Casas, Lluís; Estop, Euge`nia

    2015-01-01

    Both, virtual and printed 3D crystal models can help students and teachers deal with chemical education topics such as symmetry and point groups. In the present paper, two freely downloadable tools (interactive PDF files and a mobile app) are presented as examples of the application of 3D design to study point-symmetry. The use of 3D printing to…

  2. Toward the Automatic Generation of a Semantic VRML Model from Unorganized 3D Point Clouds

    Ben Hmida, Helmi; Cruz, Christophe; Nicolle, Christophe; Boochs, Frank

    2011-01-01

    International audience This paper presents our experience regarding the creation of 3D semantic facility model out of unorganized 3D point clouds. Thus, a knowledge-based detection approach of objects using the OWL ontology language is presented. This knowledge is used to define SWRL detection rules. In addition, the combination of 3D processing built-ins and topological Built-Ins in SWRL rules aims at combining geometrical analysis of 3D point clouds and specialist's knowledge. This combi...

  3. Numerical modelling of gravel unconstrained flow experiments with the DAN3D and RASH3D codes

    Sauthier, Claire; Pirulli, Marina; Pisani, Gabriele; Scavia, Claudio; Labiouse, Vincent

    2015-12-01

    Landslide continuum dynamic models have improved considerably in the last years, but a consensus on the best method of calibrating the input resistance parameter values for predictive analyses has not yet emerged. In the present paper, numerical simulations of a series of laboratory experiments performed at the Laboratory for Rock Mechanics of the EPF Lausanne were undertaken with the RASH3D and DAN3D numerical codes. They aimed at analysing the possibility to use calibrated ranges of parameters (1) in a code different from that they were obtained from and (2) to simulate potential-events made of a material with the same characteristics as back-analysed past-events, but involving a different volume and propagation path. For this purpose, one of the four benchmark laboratory tests was used as past-event to calibrate the dynamic basal friction angle assuming a Coulomb-type behaviour of the sliding mass, and this back-analysed value was then used to simulate the three other experiments, assumed as potential-events. The computational findings show good correspondence with experimental results in terms of characteristics of the final deposits (i.e., runout, length and width). Furthermore, the obtained best fit values of the dynamic basal friction angle for the two codes turn out to be close to each other and within the range of values measured with pseudo-dynamic tilting tests.

  4. 3D MODELLING FROM UN CALIBRATED IMAGES – A COMPARATIVE STUDY

    Limi V L

    2014-03-01

    Full Text Available 3D modeling is a demanding area of research. Creating a 3D world from sequence of images captured using different mobile cameras pose additional challenge in this field. We plan to explore this area of computer vision to model a 3D world of Indian heritage sites for virtual tourism. In this paper a comparative study of the existing methods used for 3D reconstruction of un-calibrated image sequences was done. The study shows different scenario of modeling 3D objects from un-calibrated images which include community photo collection, images taken from unknown camera, 3D modeling using two un-calibrated images, etc. Hence the different methods available were studied and an overall view of the techniques used in each step of 3D reconstruction was explored. The merits and demerits of each method were also compared.

  5. Genetic Fuzzy Modelling of User Perception of 3D Shapes

    Achiche, Sofiane; Ahmed-Kristensen, Saeema

    2011-01-01

    Defining the aesthetic and emotional value of a product is an important consideration for its design. Furthermore, if several designers are faced with the task of creating an object that describe a certain emotion/perception (aggressive, soft, heavy, etc.), each is most likely to interpret the...... emotion/perception with different shapes composed of a set of different geometric features. In this paper, the authors propose an automatic approach to formalize the relationships between geometric information of 3D objects and the intended emotional content using fuzzy logic. In addition, the...

  6. Relations between a micro-mechanical model and a damage model for ductile failure in shear

    Tvergaard, Viggo; Nielsen, Kim Lau

    2010-01-01

    show a strong dependence on the level of hydrostatic tension. Eventhough the reason for this pressure dependence is different in the two models, as the shear-extended Gurson model does not describe voids flattening out and the associated failure mechanism by micro-cracks interacting with neighbouring......Gurson type constitutive models that account for void growth to coalescence are not able to describe ductile fracture in simple shear, where there is no hydrostatic tension in the material. But recent micro-mechanical studies have shown that in shear the voids are flattened out to micro-cracks......, which rotate and elongate until interaction with neighbouring micro-cracks gives coalescence. Thus, the failure mechanism is very different from that under tensile loading. Also, the Gurson model has recently been extended to describe failure in shear, by adding a damage term to the expression for the...

  7. A deep learning approach to the classification of 3D CAD models

    Fei-wei QIN; Lu-ye LI; Shu-ming GAO; Xiao-ling YANG; Xiang CHEN

    2014-01-01

    Model classification is essential to the management and reuse of 3D CAD models. Manual model classification is laborious and error prone. At the same time, the automatic classification methods are scarce due to the intrinsic complexity of 3D CAD models. In this paper, we propose an automatic 3D CAD model classification approach based on deep neural networks. According to prior knowledge of the CAD domain, features are selected and extracted from 3D CAD models first, and then pre-processed as high dimensional input vectors for category recognition. By analogy with the thinking process of engineers, a deep neural network classifier for 3D CAD models is constructed with the aid of deep learning techniques. To obtain an optimal solution, multiple strategies are appropriately chosen and applied in the training phase, which makes our classifier achieve better per-formance. We demonstrate the efficiency and effectiveness of our approach through experiments on 3D CAD model datasets.

  8. Face Recognition and Growth Prediction using a 3D Morphable Face Model

    Scherbaum, Kristina

    2007-01-01

    We present two different techniques and applications that are based on the 3D Morphable Face Model. In the first part of this thesis, we develop a new top-down approach to 3D data analysis by fitting a 3D Morphable Face Model to 3D scans of faces. The algorithm is specifically designed for scans which were recorded in a perspective projection. In an analysis-by-synthesis approach, shape, texture, pose and illumination are optimized simultaneously. Starting from raw 3D s...

  9. A new approach towards image based virtual 3D city modeling by using close range photogrammetry

    S. P. Singh; K. Jain; V. R. Mandla

    2014-01-01

    3D city model is a digital representation of the Earth's surface and it’s related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing day to day for various engineering and non-engineering applications. Generally three main image based approaches are using for virtual 3D city models generation. In first approach, researchers used Sketch based modeling, second method is Procedural grammar based m...

  10. 3-D Reconstruction of Medical Image Using Wavelet Transform and Snake Model

    Jinyong Cheng

    2009-12-01

    Full Text Available Medical image segmentation is an important step in 3-D reconstruction, and 3-D reconstruction from medical images is an important application of computer graphics and biomedicine image processing. An improved image segmentation method which is suitable for 3-D reconstruction is presented in this paper. A 3-D reconstruction algorithm is used to reconstruct the 3-D model from medical images. Rough edge is obtained by multi-scale wavelet transform at first. With the rough edge, improved gradient vector flow snake model is used and the object contour in the image is found. In the experiments, we reconstruct 3-D models of kidney, liver and brain putamen. The performances of the experiments indicate that the new algorithm can produce accurate 3-D reconstruction.

  11. 3D building modeling,organization and application in digital city system

    2010-01-01

    The real world is a three-dimensional(3D)space requiring that 3D geospatial information applications be developed in alignment with the observer’s visual and perceptive habits.Particularly,3D building model data are required in a wide range of areas such as urban planning,environmental protection,real estate management and emergency response.At the same time,the development of Web service[LU1]technologies allows the possibility of the widely distributed 3D geospatial data on the web.3D city building model with its related information is an important part in the construction of a digital city system,and has become a staple resource on the web nowadays.In view of the hierarchical representation of a 3D building model,an abstract of a 3D building model based on structure details is studied,and a novel representation approach named 3D transparent building hierarchical model is presented in this paper.This approach fully uses both the existing 3D modeling technologies and CAD constructing mapping data.By the spatial relationship description,structural components inside a building can be represented and integrated as hierarchical models in a unified 3D space.In addition,based on the characteristics of the 3D building model data,a service-oriented architecture and Web service technologies for 3D city building models are discussed.The aim of the approach is that 3D city building models can be used as a kind of data resource service on the web,and can also exist independently in various different web applications.

  12. Measuring the impact of 3D data geometric modeling on spatial analysis: Illustration with Skyview factor

    Brasebin, M.; Perret, J.; Mustière, S.; Weber, C.

    2012-10-01

    The increased availability of 3D urban data reflects a growing interest in 3D spatial analysis. As 3D spatial analysis often uses complex 3D data, studies of the potential gains of using more detailed 3D urban databases for specific uses is an important issue. First, more complex data implies an increase in time and memory usage for the analysis (and calls for more research on the efficiency of the algorithms used). Second, detailed 3D urban data are complex to produce, expensive and it is important to be well informed in order to decide whether of not to invest in such data. Currently, many studies have been led about the fitness for use of 2D data but they are very scarce concerning 3D data. This article presents a method to determine the influence of 3D modeling on the results of 3D analysis by isolating the potential sources of errors (such as roof modeling and geometric accuracy). This method is applied on two 3D datasets (LOD1 and LOD2) and a 3D indicator (the sky view factor or SVF). The results show that the significant influence of roof modeling is globally compensated by the difference in geometric modeling but that important local variations are noticed. Nevertheless, for 75% of the SVF processed the difference between the results using these two databases is lower than 2%.

  13. Micromechanics model for predicting anisotropic electrical conductivity of carbon fiber composite materials

    Haider, Mohammad Faisal; Haider, Md. Mushfique; Yasmeen, Farzana

    2016-07-01

    Heterogeneous materials, such as composites consist of clearly distinguishable constituents (or phases) that show different electrical properties. Multifunctional composites have anisotropic electrical properties that can be tailored for a particular application. The effective anisotropic electrical conductivity of composites is strongly affected by many parameters including volume fractions, distributions, and orientations of constituents. Given the electrical properties of the constituents, one important goal of micromechanics of materials consists of predicting electrical response of the heterogeneous material on the basis of the geometries and properties of the individual phases, a task known as homogenization. The benefit of homogenization is that the behavior of a heterogeneous material can be determined without resorting or testing it. Furthermore, continuum micromechanics can predict the full multi-axial properties and responses of inhomogeneous materials, which are anisotropic in nature. Effective electrical conductivity estimation is performed by using classical micromechanics techniques (composite cylinder assemblage method) that investigates the effect of the fiber/matrix electrical properties and their volume fractions on the micro scale composite response. The composite cylinder assemblage method (CCM) is an analytical theory that is based on the assumption that composites are in a state of periodic structure. The CCM was developed to extend capabilities variable fiber shape/array availability with same volume fraction, interphase analysis, etc. The CCM is a continuum-based micromechanics model that provides closed form expressions for upper level length scales such as macro-scale composite responses in terms of the properties, shapes, orientations and constituent distributions at lower length levels such as the micro-scale.

  14. A deformable generic 3D model of haptoral anchor of Monogenean.

    Bee Guan Teo

    Full Text Available In this paper, a digital 3D model which allows for visualisation in three dimensions and interactive manipulation is explored as a tool to help us understand the structural morphology and elucidate the functions of morphological structures of fragile microorganisms which defy live studies. We developed a deformable generic 3D model of haptoral anchor of dactylogyridean monogeneans that can subsequently be deformed into different desired anchor shapes by using direct manipulation deformation technique. We used point primitives to construct the rectangular building blocks to develop our deformable 3D model. Point primitives are manually marked on a 2D illustration of an anchor on a Cartesian graph paper and a set of Cartesian coordinates for each point primitive is manually extracted from the graph paper. A Python script is then written in Blender to construct 3D rectangular building blocks based on the Cartesian coordinates. The rectangular building blocks are stacked on top or by the side of each other following their respective Cartesian coordinates of point primitive. More point primitives are added at the sites in the 3D model where more structural variations are likely to occur, in order to generate complex anchor structures. We used Catmull-Clark subdivision surface modifier to smoothen the surface and edge of the generic 3D model to obtain a smoother and more natural 3D shape and antialiasing option to reduce the jagged edges of the 3D model. This deformable generic 3D model can be deformed into different desired 3D anchor shapes through direct manipulation deformation technique by aligning the vertices (pilot points of the newly developed deformable generic 3D model onto the 2D illustrations of the desired shapes and moving the vertices until the desire 3D shapes are formed. In this generic 3D model all the vertices present are deployed for displacement during deformation.

  15. Large-scale 3-D modeling by integration of resistivity models and borehole data through inversion

    Foged, N.; Marker, Pernille Aabye; Christiansen, A. V.;

    2014-01-01

    We present an automatic method for parameterization of a 3-D model of the subsurface, integrating lithological information from boreholes with resistivity models through an inverse optimization, with the objective of further detailing of geological models, or as direct input into groundwater models...... and the borehole data set in one variable. Finally, we use k-means clustering to generate a 3-D model of the subsurface structures. We apply the procedure to the Norsminde survey in Denmark, integrating approximately 700 boreholes and more than 100 000 resistivity models from an airborne survey in the...

  16. A Log-Based 3D Model Retrieval Relevance Feedback Scheme Using Biased SVMs

    Zhiyong Zhang; Bailin Yang; Xun Wang

    2010-01-01

    Retrieval relevance feedback is an iterative search technique to bridge the semantic gap between the high level user intention and low level data representation. This technique interactively determines a user's desired output or query concept by asking the user whether certain proposed 3D models are relevant or not. In the past, most research efforts in 3D model retrieval field have focused on designing algorithms for traditional relevance feedback. Given a 3D model retrieval system, it can c...

  17. 3D simulation studies of tokamak plasmas using MHD and extended-MHD models

    The M3D (Multi-level 3D) tokamak simulation project aims at the simulation of tokamak plasmas using a multi-level tokamak code package. Several current applications using MHD and Extended-MHD models are presented; high-β disruption studies in reversed shear plasmas using the MHD level MH3D code, ω*i stabilization and nonlinear island saturation of TAE mode using the hybrid particle/MHD level MH3D-K code, and unstructured mesh MH3D++ code studies. In particular, three internal mode disruption mechanisms are identified from simulation results which agree which agree well with experimental data

  18. A new approach towards image based virtual 3D city modeling by using close range photogrammetry

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2014-05-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing day to day for various engineering and non-engineering applications. Generally three main image based approaches are using for virtual 3D city models generation. In first approach, researchers used Sketch based modeling, second method is Procedural grammar based modeling and third approach is Close range photogrammetry based modeling. Literature study shows that till date, there is no complete solution available to create complete 3D city model by using images. These image based methods also have limitations This paper gives a new approach towards image based virtual 3D city modeling by using close range photogrammetry. This approach is divided into three sections. First, data acquisition process, second is 3D data processing, and third is data combination process. In data acquisition process, a multi-camera setup developed and used for video recording of an area. Image frames created from video data. Minimum required and suitable video image frame selected for 3D processing. In second section, based on close range photogrammetric principles and computer vision techniques, 3D model of area created. In third section, this 3D model exported to adding and merging of other pieces of large area. Scaling and alignment of 3D model was done. After applying the texturing and rendering on this model, a final photo-realistic textured 3D model created. This 3D model transferred into walk-through model or in movie form. Most of the processing steps are automatic. So this method is cost effective and less laborious. Accuracy of this model is good. For this research work, study area is the campus of department of civil engineering, Indian Institute of Technology, Roorkee. This campus acts as a prototype for city. Aerial photography is restricted in many country

  19. A Micro-Mechanically Based Continuum Model for Strain-Induced Crystallization in Natural Rubber

    Mistry, Sunny Jigger

    Recent experimental results show that strain-induced crystallization can substantially improve the crack growth resistance of natural rubber. While this might suggest superior designs of tires or other industrial applications where elastomers are used, a more thorough understanding of the underlying physics of strain-induced crystallization in natural rubber has to be developed before any design process can be started. The objective of this work is to develop a computationally-accessible micro-mechanically based continuum model, which is able to predict the macroscopic behavior of strain crystallizing natural rubber. While several researchers have developed micro-mechanical models of partially crystallized polymer chains, their results mainly give qualitative agreement with experimental data due to a lack of good micro-macro transition theories or the lack of computational power. However, recent developments in multiscale modeling in polymers provide new tools to continue this early work. In this thesis, a new model is proposed to model strain-induced crystallization in natural rubber. To this end, a micro-mechanical model of a constrained partially crystallized polymer chain with an extended-chain crystal is derived and connected to the macroscopic level using the non-affine micro-sphere model. On the macroscopic level, a thermodynamically consistent framework for strain-crystallizing materials is developed, and a description of the crystallization kinetics is introduced. For that matter, an evolution law for crystallization based on the gradient of the macroscopic Helmholtz free energy function (chemical potential) in combination with a simple threshold function is used. A numerical implementation of the model is proposed and its predictive performance assessed using published data.

  20. Detection of Disease Symptoms on Hyperspectral 3d Plant Models

    Roscher, Ribana; Behmann, Jan; Mahlein, Anne-Katrin; Dupuis, Jan; Kuhlmann, Heiner; Plümer, Lutz

    2016-06-01

    We analyze the benefit of combining hyperspectral images information with 3D geometry information for the detection of Cercospora leaf spot disease symptoms on sugar beet plants. Besides commonly used one-class Support Vector Machines, we utilize an unsupervised sparse representation-based approach with group sparsity prior. Geometry information is incorporated by representing each sample of interest with an inclination-sorted dictionary, which can be seen as an 1D topographic dictionary. We compare this approach with a sparse representation based approach without geometry information and One-Class Support Vector Machines. One-Class Support Vector Machines are applied to hyperspectral data without geometry information as well as to hyperspectral images with additional pixelwise inclination information. Our results show a gain in accuracy when using geometry information beside spectral information regardless of the used approach. However, both methods have different demands on the data when applied to new test data sets. One-Class Support Vector Machines require full inclination information on test and training data whereas the topographic dictionary approach only need spectral information for reconstruction of test data once the dictionary is build by spectra with inclination.

  1. 3D product authenticity model for online retail: An invariance analysis

    Algharabat, R; Dennis, C.

    2009-01-01

    This study investigates the effects of different levels of invariance analysis on three dimensional (3D) product authenticity model (3DPAM) constructs in the e- retailing context. A hypothetical retailer Web site presents a variety of laptops using 3D product visualisations. The proposed conceptual model achieves acceptable fit and the hypothesised paths are all valid. We empirically investigate the invariance across the subgroups to validate the results of our 3DPAM. We concluded that the 3D...

  2. Volcanic Ash Cloud Properties: Comparison Between MODIS Satellite Retrievals and FALL3D Transport Model

    Corradini, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia; Merucci, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia; Folch, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia

    2011-01-01

    The moderate Resolution Imaging Spectroradiometer (MODIS) is a multispectral satellite instrument operating from the visible to thermal infrared spectral range. FALL3D is a 3-D time-dependent Eulerian model for the transport and deposition of volcanic particles. In this letter, quantitative comparison between the volcanic cloud ash mass and optical depth retrieved by MODIS and modeled by FALL3D has been performed. Three MODIS images collected on October 28, 29, and 30 on Mt. Etna volcano duri...

  3. Content-based similarity for 3D model retrieval and classification

    Ke Lü; Ning He; Jian Xue

    2009-01-01

    With the rapid development of 3D digital shape information,content-based 3D model retrieval and classification has become an important research area.This paper presents a novel 3D model retrieval and classification algorithm.For feature representation,a method combining a distance histogram and moment invariants is proposed to improve the retrieval performance.The major advantage of using a distance histogram is its invariance to the transforms of scaling,translation and rotation.Based on the premise that two similar objects should have high mutual information,the querying of 3D data should convey a great deal of information on the shape of the two objects,and so we propose a mutual information distance measurement to perform the similarity comparison of 3D objects.The proposed algorithm is tested with a 3D model retrieval and classification prototype,and the experimental evaluation demonstrates satisfactory retrieval results and classification accuracy.

  4. On the Finite Element Implementation of the Generalized Method of Cells Micromechanics Constitutive Model

    Wilt, T. E.

    1995-01-01

    The Generalized Method of Cells (GMC), a micromechanics based constitutive model, is implemented into the finite element code MARC using the user subroutine HYPELA. Comparisons in terms of transverse deformation response, micro stress and strain distributions, and required CPU time are presented for GMC and finite element models of fiber/matrix unit cell. GMC is shown to provide comparable predictions of the composite behavior and requires significantly less CPU time as compared to a finite element analysis of the unit cell. Details as to the organization of the HYPELA code are provided with the actual HYPELA code included in the appendix.

  5. 3D geological interpretation of geophysical profiles and further 3D geological modelling at LLWR Site and surrounding area

    Smith, N; Auton, C.; Kearsey, T.; Finlayson, A; Callaghan, E.

    2010-01-01

    The report encompasses four pieces of work undertaken on behalf of LLWR Ltd during 2010: 1) A description of the interpretation of geophysical profiles obtained from the Drigg Spit area were revised in a 3D environment in order to address inconsistencies along the profiles where they intersected. Profile interpretations were revised using GSI3D software, by examining both the original geophysical profile, the existing interpretation and geological information from boreholes ...

  6. NASA 3D Models: ISS (Hi-res)

    National Aeronautics and Space Administration — A very high resolution model of the International Space Station in many parts. The download includes an image of the final configuration. This model is provided in...

  7. Combination of Virtual Tours, 3d Model and Digital Data in a 3d Archaeological Knowledge and Information System

    Koehl, M.; Brigand, N.

    2012-08-01

    The site of the Engelbourg ruined castle in Thann, Alsace, France, has been for some years the object of all the attention of the city, which is the owner, and also of partners like historians and archaeologists who are in charge of its study. The valuation of the site is one of the main objective, as well as its conservation and its knowledge. The aim of this project is to use the environment of the virtual tour viewer as new base for an Archaeological Knowledge and Information System (AKIS). With available development tools we add functionalities in particular through diverse scripts that convert the viewer into a real 3D interface. By beginning with a first virtual tour that contains about fifteen panoramic images, the site of about 150 times 150 meters can be completely documented by offering the user a real interactivity and that makes visualization very concrete, almost lively. After the choice of pertinent points of view, panoramic images were realized. For the documentation, other sets of images were acquired at various seasons and climate conditions, which allow documenting the site in different environments and states of vegetation. The final virtual tour was deducted from them. The initial 3D model of the castle, which is virtual too, was also joined in the form of panoramic images for completing the understanding of the site. A variety of types of hotspots were used to connect the whole digital documentation to the site, including videos (as reports during the acquisition phases, during the restoration works, during the excavations, etc.), digital georeferenced documents (archaeological reports on the various constituent elements of the castle, interpretation of the excavations and the searches, description of the sets of collected objects, etc.). The completely personalized interface of the system allows either to switch from a panoramic image to another one, which is the classic case of the virtual tours, or to go from a panoramic photographic image

  8. COMBINATION OF VIRTUAL TOURS, 3D MODEL AND DIGITAL DATA IN A 3D ARCHAEOLOGICAL KNOWLEDGE AND INFORMATION SYSTEM

    M. Koehl

    2012-08-01

    Full Text Available The site of the Engelbourg ruined castle in Thann, Alsace, France, has been for some years the object of all the attention of the city, which is the owner, and also of partners like historians and archaeologists who are in charge of its study. The valuation of the site is one of the main objective, as well as its conservation and its knowledge. The aim of this project is to use the environment of the virtual tour viewer as new base for an Archaeological Knowledge and Information System (AKIS. With available development tools we add functionalities in particular through diverse scripts that convert the viewer into a real 3D interface. By beginning with a first virtual tour that contains about fifteen panoramic images, the site of about 150 times 150 meters can be completely documented by offering the user a real interactivity and that makes visualization very concrete, almost lively. After the choice of pertinent points of view, panoramic images were realized. For the documentation, other sets of images were acquired at various seasons and climate conditions, which allow documenting the site in different environments and states of vegetation. The final virtual tour was deducted from them. The initial 3D model of the castle, which is virtual too, was also joined in the form of panoramic images for completing the understanding of the site. A variety of types of hotspots were used to connect the whole digital documentation to the site, including videos (as reports during the acquisition phases, during the restoration works, during the excavations, etc., digital georeferenced documents (archaeological reports on the various constituent elements of the castle, interpretation of the excavations and the searches, description of the sets of collected objects, etc.. The completely personalized interface of the system allows either to switch from a panoramic image to another one, which is the classic case of the virtual tours, or to go from a panoramic

  9. Towards Precise Metadata-set for Discovering 3D Geospatial Models in Geo-portals

    Zamyadi, A.; Pouliot, J.; Bédard, Y.

    2013-09-01

    Accessing 3D geospatial models, eventually at no cost and for unrestricted use, is certainly an important issue as they become popular among participatory communities, consultants, and officials. Various geo-portals, mainly established for 2D resources, have tried to provide access to existing 3D resources such as digital elevation model, LIDAR or classic topographic data. Describing the content of data, metadata is a key component of data discovery in geo-portals. An inventory of seven online geo-portals and commercial catalogues shows that the metadata referring to 3D information is very different from one geo-portal to another as well as for similar 3D resources in the same geo-portal. The inventory considered 971 data resources affiliated with elevation. 51% of them were from three geo-portals running at Canadian federal and municipal levels whose metadata resources did not consider 3D model by any definition. Regarding the remaining 49% which refer to 3D models, different definition of terms and metadata were found, resulting in confusion and misinterpretation. The overall assessment of these geo-portals clearly shows that the provided metadata do not integrate specific and common information about 3D geospatial models. Accordingly, the main objective of this research is to improve 3D geospatial model discovery in geo-portals by adding a specific metadata-set. Based on the knowledge and current practices on 3D modeling, and 3D data acquisition and management, a set of metadata is proposed to increase its suitability for 3D geospatial models. This metadata-set enables the definition of genuine classes, fields, and code-lists for a 3D metadata profile. The main structure of the proposal contains 21 metadata classes. These classes are classified in three packages as General and Complementary on contextual and structural information, and Availability on the transition from storage to delivery format. The proposed metadata set is compared with Canadian Geospatial

  10. Mapping Infrared Data on Terrestrial Laser Scanning 3D Models of Buildings

    Mattia Previtali; Elisabetta Rosina; Marco Scaioni; Luigi Barazzetti; Mario Ivan Alba

    2011-01-01

    A new 3D acquisition and processing procedure to map RGB, thermal IR and near infrared images (NIR) on a detailed 3D model of a building is presented. The combination and fusion of different data sources allows the generation of 3D thermal data useful for different purposes such as localization, visualization, and analysis of anomalies in contemporary architecture. The classic approach, which is currently used to map IR images on 3D models, is based on the direct registration of each single i...

  11. Micromechanisms of damage in unidirectional fiber reinforced composites

    Mishnaevsky, Leon; Brøndsted, Povl

    2009-01-01

    Numerical micromechanical investigations of the mechanical behavior and damage evolution of glass fiber reinforced composites are presented. A program code for the automatic generation of 3D micromechanical unit cell models of composites with damageable elements is developed, and used in the...... strength of a composite at the pre-critical load, while the fibers with randomly distributed strengths lead to the higher strength of the composite at post-critical loads. In the case of randomly distributed fiber strengths, the damage growth in fibers seems to be almost independent from the crack length...

  12. Automatic extraction of soft tissues from 3D MRI head images using model driven analysis

    This paper presents an automatic extraction system (called TOPS-3D : Top Down Parallel Pattern Recognition System for 3D Images) of soft tissues from 3D MRI head images by using model driven analysis algorithm. As the construction of system TOPS we developed, two concepts have been considered in the design of system TOPS-3D. One is the system having a hierarchical structure of reasoning using model information in higher level, and the other is a parallel image processing structure used to extract plural candidate regions for a destination entity. The new points of system TOPS-3D are as follows. (1) The TOPS-3D is a three-dimensional image analysis system including 3D model construction and 3D image processing techniques. (2) A technique is proposed to increase connectivity between knowledge processing in higher level and image processing in lower level. The technique is realized by applying opening operation of mathematical morphology, in which a structural model function defined in higher level by knowledge representation is immediately used to the filter function of opening operation as image processing in lower level. The system TOPS-3D applied to 3D MRI head images consists of three levels. First and second levels are reasoning part, and third level is image processing part. In experiments, we applied 5 samples of 3D MRI head images with size 128 x 128 x 128 pixels to the system TOPS-3D to extract the regions of soft tissues such as cerebrum, cerebellum and brain stem. From the experimental results, the system is robust for variation of input data by using model information, and the position and shape of soft tissues are extracted corresponding to anatomical structure. (author)

  13. Integration of 3D photogrammetric outcrop models in the reservoir modelling workflow

    Deschamps, Remy; Joseph, Philippe; Lerat, Olivier; Schmitz, Julien; Doligez, Brigitte; Jardin, Anne

    2014-05-01

    3D technologies are now widely used in geosciences to reconstruct outcrops in 3D. The technology used for the 3D reconstruction is usually based on Lidar, which provides very precise models. Such datasets offer the possibility to build well-constrained outcrop analogue models for reservoir study purposes. The photogrammetry is an alternate methodology which principles are based in determining the geometric properties of an object from photographic pictures taken from different angles. Outcrop data acquisition is easy, and this methodology allows constructing 3D outcrop models with many advantages such as: - light and fast acquisition, - moderate processing time (depending on the size of the area of interest), - integration of field data and 3D outcrops into the reservoir modelling tools. Whatever the method, the advantages of digital outcrop model are numerous as already highlighted by Hodgetts (2013), McCaffrey et al. (2005) and Pringle et al. (2006): collection of data from otherwise inaccessible areas, access to different angles of view, increase of the possible measurements, attributes analysis, fast rate of data collection, and of course training and communication. This paper proposes a workflow where 3D geocellular models are built by integrating all sources of information from outcrops (surface picking, sedimentological sections, structural and sedimentary dips…). The 3D geomodels that are reconstructed can be used at the reservoir scale, in order to compare the outcrop information with subsurface models: the detailed facies models of the outcrops are transferred into petrophysical and acoustic models, which are used to test different scenarios of seismic and fluid flow modelling. The detailed 3D models are also used to test new techniques of static reservoir modelling, based either on geostatistical approaches or on deterministic (process-based) simulation techniques. A modelling workflow has been designed to model reservoir geometries and properties from

  14. Rethinking Design Process: Using 3D Digital Models as an Interface in Collaborative Session

    Ding, Suining

    2008-01-01

    This paper describes a pilot study for an alternative design process by integrating a designer-user collaborative session with digital models. The collaborative session took place in a 3D AutoCAD class for a real world project. The 3D models served as an interface for designer-user collaboration during the design process. Students not only learned…

  15. Consistent plane stress-3D conversion of hardening models and yield criteria

    Riel, van M.; Boogaard, van den A.H.

    2007-01-01

    Material models in FE-simulations are used both in 3D and plane stress situations. In this paper it is shown that for models that include kinematic hardening, the conversion from a 3D to a plane stress algorithm needs more adaptations than only eliminating the thickness components. An example and a

  16. 3D Modeling from Multi-views Images for Cultural Heritage in Wat-Pho, Thailand

    Soontranon, N.; Srestasathiern, P.; Lawawirojwong, S.

    2015-08-01

    In Thailand, there are several types of (tangible) cultural heritages. This work focuses on 3D modeling of the heritage objects from multi-views images. The images are acquired by using a DSLR camera which costs around 1,500 (camera and lens). Comparing with a 3D laser scanner, the camera is cheaper and lighter than the 3D scanner. Hence, the camera is available for public users and convenient for accessing narrow areas. The acquired images consist of various sculptures and architectures in Wat-Pho which is a Buddhist temple located behind the Grand Palace (Bangkok, Thailand). Wat-Pho is known as temple of the reclining Buddha and the birthplace of traditional Thai massage. To compute the 3D models, a diagram is separated into following steps; Data acquisition, Image matching, Image calibration and orientation, Dense matching and Point cloud processing. For the initial work, small heritages less than 3 meters height are considered for the experimental results. A set of multi-views images of an interested object is used as input data for 3D modeling. In our experiments, 3D models are obtained from MICMAC (open source) software developed by IGN, France. The output of 3D models will be represented by using standard formats of 3D point clouds and triangulated surfaces such as .ply, .off, .obj, etc. To compute for the efficient 3D models, post-processing techniques are required for the final results e.g. noise reduction, surface simplification and reconstruction. The reconstructed 3D models can be provided for public access such as website, DVD, printed materials. The high accurate 3D models can also be used as reference data of the heritage objects that must be restored due to deterioration of a lifetime, natural disasters, etc.

  17. An Approach to Computer Modeling of Geological Faults in 3D and an Application

    ZHU Liang-feng; HE Zheng; PAN Xin; WU Xin-cai

    2006-01-01

    3D geological modeling, one of the most important applications in geosciences of 3D GIS, forms the basis and is a prerequisite for visualized representation and analysis of 3D geological data. Computer modeling of geological faults in 3D is currently a topical research area. Structural modeling techniques of complex geological entities containing reverse faults are discussed and a series of approaches are proposed. The geological concepts involved in computer modeling and visualization of geological fault in 3D are explained, the type of data of geological faults based on geological exploration is analyzed, and a normative database format for geological faults is designed. Two kinds of modeling approaches for faults are compared: a modeling technique of faults based on stratum recovery and a modeling technique of faults based on interpolation in subareas. A novel approach, called the Unified Modeling Technique for stratum and fault, is presented to solve the puzzling problems of reverse faults, syn-sedimentary faults and faults terminated within geological models. A case study of a fault model of bed rock in the Beijing Olympic Green District is presented in order to show the practical result of this method. The principle and the process of computer modeling of geological faults in 3D are discussed and a series of applied technical proposals established. It strengthens our profound comprehension of geological phenomena and the modeling approach, and establishes the basic techniques of 3D geological modeling for practical applications in the field of geosciences.

  18. Use of 3D Printed Models in Medical Education: A Randomized Control Trial Comparing 3D Prints versus Cadaveric Materials for Learning External Cardiac Anatomy

    Lim, Kah Heng Alexander; Loo, Zhou Yaw; Goldie, Stephen J.; Adams, Justin W.; McMenamin, Paul G.

    2016-01-01

    Three-dimensional (3D) printing is an emerging technology capable of readily producing accurate anatomical models, however, evidence for the use of 3D prints in medical education remains limited. A study was performed to assess their effectiveness against cadaveric materials for learning external cardiac anatomy. A double blind randomized…

  19. A model of 3D shape memory alloy materials

    Aiki, Toyohiko

    2005-01-01

    It is a crucial step how to describe the relationship between the strain, the stress and the temperature field, when we consider the mathematical modelling for shape memory alloy materials. From the experimental results we know that the relationship can be described by the hysteresis operators. In this paper we propose a new system consisting of differential equations as a mathematical model for shape memory alloy materials occupying the three dimensional domain. The key of the modelling is t...

  20. Reconstructing 3D building models from laser scanning to calculate the heat demand

    Neidhart, Hauke; Sester, Monika

    2008-09-15

    The objective of the project is to determine the heat demand of settlement areas using geospatial data, especially airborne laser scanning data. With airborne laser scanning it possible to record detailed 3D data for great areas. With this 3D data it is possible to reconstruct 3D building models. The geometry then can be used to derive information for the calculation of the heat demand

  1. Services Oriented Smart City Platform Based On 3d City Model Visualization

    Prandi, F.; Soave, M.; Devigili, F.; Andreolli, M.; De Amicis, R.

    2014-04-01

    The rapid technological evolution, which is characterizing all the disciplines involved within the wide concept of smart cities, is becoming a key factor to trigger true user-driven innovation. However to fully develop the Smart City concept to a wide geographical target, it is required an infrastructure that allows the integration of heterogeneous geographical information and sensor networks into a common technological ground. In this context 3D city models will play an increasingly important role in our daily lives and become an essential part of the modern city information infrastructure (Spatial Data Infrastructure). The work presented in this paper describes an innovative Services Oriented Architecture software platform aimed at providing smartcities services on top of 3D urban models. 3D city models are the basis of many applications and can became the platform for integrating city information within the Smart-Cites context. In particular the paper will investigate how the efficient visualisation of 3D city models using different levels of detail (LODs) is one of the pivotal technological challenge to support Smart-Cities applications. The goal is to provide to the final user realistic and abstract 3D representations of the urban environment and the possibility to interact with a massive amounts of semantic information contained into the geospatial 3D city model. The proposed solution, using OCG standards and a custom service to provide 3D city models, lets the users to consume the services and interact with the 3D model via Web in a more effective way.

  2. A Gaussian Mixture Model-Based Continuous Boundary Detection for 3D Sensor Networks

    Mitsuji Matsumoto

    2010-08-01

    Full Text Available This paper proposes a high precision Gaussian Mixture Model-based novel Boundary Detection 3D (BD3D scheme with reasonable implementation cost for 3D cases by selecting a minimum number of Boundary sensor Nodes (BNs in continuous moving objects. It shows apparent advantages in that two classes of boundary and non-boundary sensor nodes can be efficiently classified using the model selection techniques for finite mixture models; furthermore, the set of sensor readings within each sensor node’s spatial neighbors is formulated using a Gaussian Mixture Model; different from DECOMO [1] and COBOM [2], we also formatted a BN Array with an additional own sensor reading to benefit selecting Event BNs (EBNs and non-EBNs from the observations of BNs. In particular, we propose a Thick Section Model (TSM to solve the problem of transition between 2D and 3D. It is verified by simulations that the BD3D 2D model outperforms DECOMO and COBOM in terms of average residual energy and the number of BNs selected, while the BD3D 3D model demonstrates sound performance even for sensor networks with low densities especially when the value of the sensor transmission range (r is larger than the value of Section Thickness (d in TSM. We have also rigorously proved its correctness for continuous geometric domains and full robustness for sensor networks over 3D terrains.

  3. An object-oriented 3D integral data model for digital city and digital mine

    Wu, Lixin; Wang, Yanbing; Che, Defu; Xu, Lei; Chen, Xuexi; Jiang, Yun; Shi, Wenzhong

    2005-10-01

    With the rapid development of urban, city space extended from surface to subsurface. As the important data source for the representation of city spatial information, 3D city spatial data have the characteristics of multi-object, heterogeneity and multi-structure. It could be classified referring to the geo-surface into three kinds: above-surface data, surface data and subsurface data. The current research on 3D city spatial information system is divided naturally into two different branch, 3D City GIS (3D CGIS) and 3D Geological Modeling (3DGM). The former emphasizes on the 3D visualization of buildings and the terrain of city, while the latter emphasizes on the visualization of geological bodies and structures. Although, it is extremely important for city planning and construction to integrate all the city spatial information including above-surface, surface and subsurface objects to conduct integral analysis and spatial manipulation. However, either 3D CGIS or 3DGM is currently difficult to realize the information integration, integral analysis and spatial manipulation. Considering 3D spatial modeling theory and methodologies, an object-oriented 3D integral spatial data model (OO3D-ISDM) is presented and software realized. The model integrates geographical objects, surface buildings and geological objects together seamlessly with TIN being its coupling interface. This paper introduced the conceptual model of OO3D-ISDM, which is comprised of 4 spatial elements, i.e. point, line, face and body, and 4 geometric primitives, i.e. vertex, segment, triangle and generalized tri-prism (GTP). The spatial model represents the geometry of surface buildings and geographical objects with triangles, and geological objects with GTP. Any of the represented objects, no mater surface buildings, terrain or subsurface objects, could be described with the basic geometry element, i.e. triangle. So the 3D spatial objects, surface buildings, terrain and geological objects can be

  4. 3D Fluid-Structure Modeling of a Monofin

    Monier, L.; Razafimahery, F.; Rakotomanana, L.

    2010-10-01

    The purpose of this paper is to develop a numerical modelisation for the behaviour of a monofin. We have developped a fluid struture model simulating the movement of a fin in a swimming pool. We first present the geometry and the equations and then proceed to different numerical experiments in order to validate the model.

  5. Computational 3-D Model of the Human Respiratory System

    We are developing a comprehensive, morphologically-realistic computational model of the human respiratory system that can be used to study the inhalation, deposition, and clearance of contaminants, while being adaptable for age, race, gender, and health/disease status. The model ...

  6. Assessing a 3D smoothed seismicity model of induced earthquakes

    Zechar, Jeremy; Király, Eszter; Gischig, Valentin; Wiemer, Stefan

    2016-04-01

    As more energy exploration and extraction efforts cause earthquakes, it becomes increasingly important to control induced seismicity. Risk management schemes must be improved and should ultimately be based on near-real-time forecasting systems. With this goal in mind, we propose a test bench to evaluate models of induced seismicity based on metrics developed by the CSEP community. To illustrate the test bench, we consider a model based on the so-called seismogenic index and a rate decay; to produce three-dimensional forecasts, we smooth past earthquakes in space and time. We explore four variants of this model using the Basel 2006 and Soultz-sous-Forêts 2004 datasets to make short-term forecasts, test their consistency, and rank the model variants. Our results suggest that such a smoothed seismicity model is useful for forecasting induced seismicity within three days, and giving more weight to recent events improves forecast performance. Moreover, the location of the largest induced earthquake is forecast well by this model. Despite the good spatial performance, the model does not estimate the seismicity rate well: it frequently overestimates during stimulation and during the early post-stimulation period, and it systematically underestimates around shut-in. In this presentation, we also describe a robust estimate of information gain, a modification that can also benefit forecast experiments involving tectonic earthquakes.

  7. Plane extraction and error modeling of 3D data

    Viejo Hernando, Diego; Cazorla Quevedo, Miguel Ángel

    2006-01-01

    We are interested in using natural landmarks obtained by a stereo system not only in SLAM-like algorithms but also feature extraction, map building, and so on. Using a stereo camera we can extract planes and geometrical primitives like that. In order to use these primitives a perceptual model of landmarks is needed, due to error model can improve the results. In this paper we present a method to get the perceptual model of the plane extraction process. We will show that the use of this ...

  8. 3D City Models with Different Temporal Characteristica

    Bodum, Lars

    2005-01-01

    -built dynamic or a model suitable for visualization in realtime, it is required that modelling is done with level-of-detail and simplification of both the aesthetics and the geometry. If a temporal characteristic is combined with a visual characteristic, the situation can easily be seen as a t/v matrix where t...... variation in time is non-synchronous with real-time, usually more effort can be put on the fi delity in relation to the aesthetic and geometric representation. This means that the models are more realistic or contain another level of detail. However, if one looks at virtual environments with an in...

  9. Application of Novel Rotation Angular Model for 3D Mouse System Based on MEMS Accelerometers

    QIAN Li; CHEN Wen-yuan; XU Guo-ping

    2009-01-01

    A new scheme is proposed to model 3D angular motion of a revolving regular object with miniature, low-cost micro electro mechanical systems (MEMS) accelerometers (instead of gyroscope), which is employed in 3D mouse system. To sense 3D angular motion, the static property of MEMS accelerometer, sensitive to gravity acceleration, is exploited. With the three outputs of configured accelerometers, the proposed model is implemented to get the rotary motion of the rigid object. In order to validate the effectiveness of the proposed model, an input device is developed with the configuration of the scheme. Experimental results show that a simulated 3D cube can accurately track the rotation of the input device. The result indicates the feasibility and effectiveness of the proposed model in the 3D mouse system.

  10. A Micromechanical Constitutive Model of Progressive Crushing in Random Carbon Fiber Polymer Matrix Composites

    Lee, H.K.; Simunovic, S.

    1999-09-01

    A micromechanical damage constitutive model is presented to predict the overall elastoplastic behavior and damage evolution in random carbon fiber polymer matrix composites (RFPCs).To estimate the overall elastoplastic damage responses,an effective yield criterion is derived based on the ensemble-volume averaging process and first-order effects of eigenstrains due to the existence of spheroidal (prolate) fibers.The proposed effective yield criterion,to ether with the assumed overall associative plastic flow rule and hardening law, constitutes the analytical foundation for the estimation of effective elastoplastic behavior of ductile matrix composites.First,an effective elastoplastic constitutive dama e model for aligned fiber-reinforced composites is proposed.A micromechanical damage constitutive model for RFPCs is then developed.The average process over all orientations upon overning constitutive field equations and overall yield function for aligned fiber-reinforced composites i s performed to obtain the constitutive relations and effective yield function of RFPCs.The discrete numerical integration algorithms and the continuum tan ent operator are also presented to implement the proposed dama e constitutive model.The dama e constitutive model forms the basis for the pro ressive crushing in composite structures under impact loading.

  11. Micromechanics Modeling of Composites Subjected to Multiaxial Progressive Damage in the Constituents

    Bednarcyk, Brett A.; Aboudi, Jacob; Amold, Steven M.

    2010-01-01

    The high-fidelity generalized method of cells composite micromechanics model is extended to include constituent-scale progressive damage via a proposed damage model. The damage model assumes that all material nonlinearity is due to damage in the form of reduced stiffness, and it uses six scalar damage variables (three for tension and three for compression) to track the damage. Damage strains are introduced that account for interaction among the strain components and that also allow the development of the damage evolution equations based on the constituent material uniaxial stress strain response. Local final-failure criteria are also proposed based on mode-specific strain energy release rates and total dissipated strain energy. The coupled micromechanics-damage model described herein is applied to a unidirectional E-glass/epoxy composite and a proprietary polymer matrix composite. Results illustrate the capability of the coupled model to capture the vastly different character of the monolithic (neat) resin matrix and the composite in response to far-field tension, compression, and shear loading.

  12. 3D simulation studies of tokamak plasmas using MHD and extended-MHD models

    The M3D (Multi-level 3D) tokamak simulation project aims at the simulation of tokamak plasmas using a multi-level tokamak code package. Several current applications using MHD and Extended-MHD models are presented; high-β disruption studies in reversed shear plasmas using the MHD level MH3D code, ω*i stabilization and nonlinear island rotation studies using the two-fluid level MH3D-T code, studies of nonlinear saturation of TAE modes using the hybrid particle/MHD level MH3D-K code, and unstructured mesh MH3D++ code studies. In particular, three internal mode disruption mechanisms are identified from simulation results which agree well with experimental data

  13. 3D simulation studies of tokamak plasmas using MHD and extended-MHD models

    The M3D (Multi-level 3D) tokamak simulation project aims at the simulation of tokamak plasmas using a multi-level tokamak code package. Several current applications using MHD and Extended-MHD models are presented: high-β disruption studies in reversed shear plasmas using the MHD level MH3D code; ω*i stabilization and nonlinear island rotation studies using the two-fluid level MH3D-T code; studies of nonlinear saturation of TAE modes using the hybrid particle/MHD level MH3D-K code; and unstructured mesh MH3D++ code studies. In particular, three internal mode disruption mechanisms are identified from simulation results which agree well with experimental data. (author). 18 refs, 5 figs

  14. Congruence of 3-D Whole Mantle Models of Shear Velocity

    Dziewonski, A. M.; Lekic, V.; Romanowicz, B. A.

    2012-12-01

    The range of shear velocity anomalies in published whole mantle models is considerable. This impedes drawing conclusions of importance for geodynamic modeling and for interpretation of mineral physics results. However, if one considers only the models that were built using data that are sensitive to mantle structure at all depths, these models show robust features in their power spectra as a function of depth. On this basis we propose that there are five depth intervals with distinct spectral characteristics. 1. Heterosphere (Moho - 300 km) is characterized by strong power spectrum relatively flat up to degree 6. With lateral shear wavespeed variations as large as 15%, this zone accounts for more than 50% of the entire heterogeneity in the mantle. Differences among models for different tectonic regions decrease rapidly below 300 km depth. 2. Upper mantle buffer zone (300- 500 km) has a flat spectrum and the overall power of heterogeneity drops by an order of magnitude compared to the region above. There may be still weak difference between continents and oceans, but the oceanic regions lose their age dependence. The spectral characteristics do not change across the 410 km discontinuity. 3. Transition zone (500 - 650 km) The degree 2 anomaly becomes dominant. There are long wavelength anomalies in regions of the fastest plate subduction during the last 15-20 Ma, suggesting slab ponding above the 650 km discontinuity. Several slower-than-average anomalies of unknown origin are present in this depth range. 4. Lower mantle buffer zone (650 - 2300 km) has a weak, flat spectrum without long wavelength velocity anomalies that could be interpreted as unfragmented subducted slabs. However, there are three relatively narrow and short high velocity anomalies under Peru, Tonga and Indonesia that may indicate limited slab penetration. 5 Abyssal layer (2300 - CMB) Strong spectrum dominated by degrees 2 and 3. The amplitude is the largest at the CMB and decreases rapidly up to

  15. Possibility of reconstruction of dental plaster cast from 3D digital study models

    Kasparova, Magdalena; Grafova, Lucie; Dvorak, Petr; Dostalova, Tatjana; Prochazka, Ales; Eliasova, Hana; Prusa, Josef; Kakawand, Soroush

    2013-01-01

    Objectives To compare traditional plaster casts, digital models and 3D printed copies of dental plaster casts based on various criteria. To determine whether 3D printed copies obtained using open source system RepRap can replace traditional plaster casts in dental practice. To compare and contrast the qualities of two possible 3D printing options – open source system RepRap and commercially available 3D printing. Design and settings A method comparison study on 10 dental plaster casts from th...

  16. Engineered Polymeric Hydrogels for 3D Tissue Models

    Sujin Park

    2016-01-01

    Full Text Available Polymeric biomaterials are widely used in a wide range of biomedical applications due to their unique properties, such as biocompatibility, multi-tunability and easy fabrication. Specifically, polymeric hydrogel materials are extensively utilized as therapeutic implants and therapeutic vehicles for tissue regeneration and drug delivery systems. Recently, hydrogels have been developed as artificial cellular microenvironments because of the structural and physiological similarity to native extracellular matrices. With recent advances in hydrogel materials, many researchers are creating three-dimensional tissue models using engineered hydrogels and various cell sources, which is a promising platform for tissue regeneration, drug discovery, alternatives to animal models and the study of basic cell biology. In this review, we discuss how polymeric hydrogels are used to create engineered tissue constructs. Specifically, we focus on emerging technologies to generate advanced tissue models that precisely recapitulate complex native tissues in vivo.

  17. Methodology of High Accuracy and Resolution 3D Geological Model Generation and Application

    吴键; 曹代勇; 邓爱居; 李东津; 蒋涛; 翟光华

    2004-01-01

    By generating a high accuracy and high resolution geological model in Liuchu oil field, the technique of geological modeling is expanded and involved in primary geological study, making the sand bodies and reservoir be easily described in detail. The 3D visualization and 3D interactive editing of geological structure model are the key for modeling procedure. And a high accuracy and resolution geological model has been well applied in optimizing the production scheme.

  18. Integration of time-dependent features within 3D city model

    Fan, Hongchao

    2010-01-01

    This thesis presents an object-oriented event-state spatiotemporal data model for storage and management of both semantic and geometric changes of 3D building objects in a city. The data model is mainly composed of two parts: an event model that describes events happened to building objects; and a hierarchical spatial data model that describes 3D geometries and semantics of building objects including their valid time span. In this way, histories of building objects are modeled.

  19. Completion of PCFLOW3D Model for Simulation of Flow and Dispersion of Pollutants

    Kovšca, Jasna

    2007-01-01

    An upgrade of the three-dimensional baroclinic mathematical model PCFLOW3D with a new turbulence model Smagorinsky-vertical is presented. Several test cases were made to compare this new turbulence model with other turbulence models already built in the PCFLOW3D model. Additional verifications of the test results were performed using the commercial software CORMIX of which main purpose is to simulate the near field areas of pollution inflows. CORMIX is restricted to steady flow...

  20. Parallel processing for efficient 3D slope stability modelling

    Marchesini, Ivan; Mergili, Martin; Alvioli, Massimiliano; Metz, Markus; Schneider-Muntau, Barbara; Rossi, Mauro; Guzzetti, Fausto

    2014-05-01

    We test the performance of the GIS-based, three-dimensional slope stability model r.slope.stability. The model was developed as a C- and python-based raster module of the GRASS GIS software. It considers the three-dimensional geometry of the sliding surface, adopting a modification of the model proposed by Hovland (1977), and revised and extended by Xie and co-workers (2006). Given a terrain elevation map and a set of relevant thematic layers, the model evaluates the stability of slopes for a large number of randomly selected potential slip surfaces, ellipsoidal or truncated in shape. Any single raster cell may be intersected by multiple sliding surfaces, each associated with a value of the factor of safety, FS. For each pixel, the minimum value of FS and the depth of the associated slip surface are stored. This information is used to obtain a spatial overview of the potentially unstable slopes in the study area. We test the model in the Collazzone area, Umbria, central Italy, an area known to be susceptible to landslides of different type and size. Availability of a comprehensive and detailed landslide inventory map allowed for a critical evaluation of the model results. The r.slope.stability code automatically splits the study area into a defined number of tiles, with proper overlap in order to provide the same statistical significance for the entire study area. The tiles are then processed in parallel by a given number of processors, exploiting a multi-purpose computing environment at CNR IRPI, Perugia. The map of the FS is obtained collecting the individual results, taking the minimum values on the overlapping cells. This procedure significantly reduces the processing time. We show how the gain in terms of processing time depends on the tile dimensions and on the number of cores.

  1. 3D Multiscale Modelling of Angiogenesis and Vascular Tumour Growth

    Perfahl, H.

    2012-11-01

    We present a three-dimensional, multiscale model of vascular tumour growth, which couples nutrient/growth factor transport, blood flow, angiogenesis, vascular remodelling, movement of and interactions between normal and tumour cells, and nutrient-dependent cell cycle dynamics within each cell. We present computational simulations which show how a vascular network may evolve and interact with tumour and healthy cells. We also demonstrate how our model may be combined with experimental data, to predict the spatio-temporal evolution of a vascular tumour.

  2. 3-D rheologic model of earthquake preparation (Ⅲ): Precursor field

    2006-01-01

    On the basis of the theory of viscoelastic displacement and strain field for the three-dimensional rheologic model of earthquake preparation, this paper mainly studies the theoretical solution of precursor field for the three-dimensional rheologic model of earthquake preparation. We derive the viscoelastic analytical expressions of the ground tilt, underground water level, earth resistivity at an arbitrary point (x, y, z) in the rheologic medium, and analyzed the earth resistivity preliminarily, providing a certain theoretical basis for the precursor analysis of seismogenic process.

  3. SUSY 3D Georgi-Glashow model at finite temperature

    D. AntonovINFN, Pisa & Pisa U.; Kovner, A.

    2003-01-01

    We study the finite-temperature properties of the supersymmetric version of (2+1)D Georgi-Glashow model. As opposed to its nonsupersymmetric counterpart, the parity symmetry in this theory at zero temperature is spontaneously broken by the bilinear photino condensate. We find that as the temperature is raised, the deconfinement and the parity restoration occur in this model at the same point $T_c=g^2/8\\pi$. The transition is continuous, but is not of the Ising type as in non...

  4. The modeling of portable 3D vision coordinate measuring system

    Liu, Shugui; Huang, Fengshan; Peng, Kai

    2005-02-01

    The portable three-dimensional vision coordinate measuring system, which consists of a light pen, a CCD camera and a laptop computer, can be widely applied in most coordinate measuring fields especially on the industrial spots. On the light pen there are at least three point-shaped light sources (LEDs) acting as the measured control characteristic points and a touch trigger probe with a spherical stylus which is used to contact the point to be measured. The most important character of this system is that three light sources and the probe stylus are aligned in one line with known positions. In building and studying this measuring system, how to construct the system"s mathematical model is the most key problem called perspective of three-collinear-points problem, which is a particular case of perspective of three-points problem (P3P). On the basis of P3P and spatial analytical geometry theory, the system"s mathematical model is established in this paper. What"s more, it is verified that perspective of three-collinear-points problem has a unique solution. And the analytical equations of the measured point"s coordinates are derived by using the system"s mathematical model and the restrict condition that three light sources and the probe stylus are aligned in one line. Finally, the effectiveness of the mathematical model is confirmed by experiments.

  5. Solar Burst Analysis with 3D Loop Models

    Costa, Joaquim E R; Pinto, Tereza S N; Melnikov, Victor F

    2013-01-01

    A sample of Nobeyama flares was selected and analyzed using loop model for important flare parameters. The model for the flaring region consists of a three dimensional dipolar magnetic field, and spatial distributions of non-thermal electrons. We constructed a database by calculating the flare microwave emission for a wide range of these parameters. Out of this database with more than 5,000 cases we extracted general flare properties by comparing the observed and calculated microwave spectra. The analysis of NoRP data was mostly based in the center-to-limb variation of the flare properties with looptop and footpoint electron distributions and for NoRH maps on the resultant distribution of emission. One important aspect of this work is the comparison of the analysis of a flare using an inhomogeneous source model and a simplistic homogeneous source model. Our results show clearly that the homogeneous source hypothesis is not appropriate to describe the possible flare geometry and its use can easily produce misl...

  6. 3D-modelling of the stellar auroral radio emission

    Leto, P; Buemi, C S; Umana, G; Ingallinera, A; Cerrigone, L

    2016-01-01

    The electron cyclotron maser is the coherent emission process that gives rise to the radio lighthouse effect observed in the hot magnetic chemically peculiar star CU Virginis. It has also been proposed to explain the highly circularly polarized radio pulses observed on some ultra cool dwarfs, with spectral type earlier than M7. Such kind of coherent events resemble the auroral radio emission from the magnetized planets of the solar system. In this paper, we present a tridimensional model able to simulate the timing and profile of the pulses emitted by those stars characterized by a dipolar magnetic field by following the hypothesis of the laminar source model, used to explain the beaming of the terrestrial auroral kilometric radiation. This model proves to be a powerful tool to understand the auroral radio-emission phenomenon, allowing us to derive some general conclusions about the effects of the model's free parameters on the features of the coherent pulses, and to learn more about the detectability of such...

  7. 3D modelling of stellar auroral radio emission

    Leto, P.; Trigilio, C.; Buemi, C. S.; Umana, G.; Ingallinera, A.; Cerrigone, L.

    2016-06-01

    The electron cyclotron maser is the coherent emission process that gives rise to the radio lighthouse effect observed in the hot magnetic chemically peculiar star CU Virginis. It has also been proposed to explain the highly circularly polarized radio pulses observed in some ultracool dwarfs with spectral type earlier than M7. Coherent events of this kind resemble auroral radio emission from the magnetized planets of the Solar system. In this article, we present a three-dimensional model able to simulate the timing and profile of the pulses emitted by those stars characterized by a dipolar magnetic field by following the hypothesis of the laminar source model, used to explain the beaming of terrestrial auroral kilometric radiation. This model proves to be a powerful tool with which to understand the auroral radio emission phenomenon, allowing us to derive some general conclusions about the effects of the model's free parameters on the features of coherent pulses and to learn more about the detectability of such pulsed radio emission.

  8. Impact of the 3-D model strategy on science learning of the solar system

    Alharbi, Mohammed

    The purpose of this mixed method study, quantitative and descriptive, was to determine whether the first-middle grade (seventh grade) students at Saudi schools are able to learn and use the Autodesk Maya software to interact and create their own 3-D models and animations and whether their use of the software influences their study habits and their understanding of the school subject matter. The study revealed that there is value to the science students regarding the use of 3-D software to create 3-D models to complete science assignments. Also, this study aimed to address the middle-school students' ability to learn 3-D software in art class, and then ultimately use it in their science class. The success of this study may open the way to consider the impact of 3-D modeling on other school subjects, such as mathematics, art, and geography. When the students start using graphic design, including 3-D software, at a young age, they tend to develop personal creativity and skills. The success of this study, if applied in schools, will provide the community with skillful young designers and increase awareness of graphic design and the new 3-D technology. Experimental method was used to answer the quantitative research question, are there significant differences applying the learning method using 3-D models (no 3-D, premade 3-D, and create 3-D) in a science class being taught about the solar system and its impact on the students' science achievement scores? Descriptive method was used to answer the qualitative research questions that are about the difficulty of learning and using Autodesk Maya software, time that students take to use the basic levels of Polygon and Animation parts of the Autodesk Maya software, and level of students' work quality.

  9. 3D MHD modeling of twisted coronal loops

    Reale, F; Guarrasi, M; Mignone, A; Peres, G; Hood, A W; Priest, E R

    2016-01-01

    We perform MHD modeling of a single bright coronal loop to include the interaction with a non-uniform magnetic field. The field is stressed by random footpoint rotation in the central region and its energy is dissipated into heating by growing currents through anomalous magnetic diffusivity that switches on in the corona above a current density threshold. We model an entire single magnetic flux tube, in the solar atmosphere extending from the high-beta chromosphere to the low-beta corona through the steep transition region. The magnetic field expands from the chromosphere to the corona. The maximum resolution is ~30 km. We obtain an overall evolution typical of loop models and realistic loop emission in the EUV and X-ray bands. The plasma confined in the flux tube is heated to active region temperatures (~3 MK) after ~2/3 hr. Upflows from the chromosphere up to ~100 km/s fill the core of the flux tube to densities above 10^9 cm^-3. More heating is released in the low corona than the high corona and is finely ...

  10. Introducing a new 3D dynamical model for barred galaxies

    Jung, Christof

    2015-01-01

    The regular or chaotic dynamics of an analytical realistic three dimensional model composed of a spherically symmetric central nucleus, a bar and a flat disk is investigated. For describing the properties of the bar we introduce a new simple dynamical model and we explore the influence on the character of orbits of all the involved parameters of it, such as the mass and the scale length of the bar, the major semi-axis and the angular velocity of the bar as well as the energy. Regions of phase space with ordered and chaotic motion are identified in dependence on these parameters and for breaking the rotational symmetry. First we study in detail the dynamics in the invariant plane $z = p_z = 0$ using the Poincar\\'e map as a basic tool and then we study the full 3 dimensional case using the SALI method as principal tool for distinguishing between order and chaos. We also present strong evidence obtained through the numerical simulations that our new bar model can realistically describe the formation and the evol...

  11. Modelling circumstellar discs with 3D radiation hydrodynamics

    Acreman, David M; Rundle, David A

    2009-01-01

    We present results from combining a grid-based radiative transfer code with a Smoothed Particle Hydrodynamics code to produce a flexible system for modelling radiation hydrodynamics. We use a benchmark model of a circumstellar disc to determine a robust method for constructing a gridded density distribution from SPH particles. The benchmark disc is then used to determine the accuracy of the radiative transfer results. We find that the SED and the temperature distribution within the disc are sensitive to the representation of the disc inner edge, which depends critically on both the grid and SPH resolution. The code is then used to model a circumstellar disc around a T-Tauri star. As the disc adjusts towards equilibrium vertical motions in the disc are induced resulting in scale height enhancements which intercept radiation from the central star. Vertical transport of radiation enables these perturbations to influence the mid-plane temperature of the disc. The vertical motions decay over time and the disc ulti...

  12. The Martian Water Cycle Based on 3-D Modeling

    Houben, H.; Haberle, R. M.; Joshi, M. M.

    1999-01-01

    Understanding the distribution of Martian water is a major goal of the Mars Surveyor program. However, until the bulk of the data from the nominal missions of TES, PMIRR, GRS, MVACS, and the DS2 probes are available, we are bound to be in a state where much of our knowledge of the seasonal behavior of water is based on theoretical modeling. We therefore summarize the results of this modeling at the present time. The most complete calculations come from a somewhat simplified treatment of the Martian climate system which is capable of simulating many decades of weather. More elaborate meteorological models are now being applied to study of the problem. The results show a high degree of consistency with observations of aspects of the Martian water cycle made by Viking MAWD, a large number of ground-based measurements of atmospheric column water vapor, studies of Martian frosts, and the widespread occurrence of water ice clouds. Additional information is contained in the original extended abstract.

  13. Approximate analytic solutions to 3D unconfined groundwater flow within regional 2D models

    Luther, K.; Haitjema, H. M.

    2000-04-01

    We present methods for finding approximate analytic solutions to three-dimensional (3D) unconfined steady state groundwater flow near partially penetrating and horizontal wells, and for combining those solutions with regional two-dimensional (2D) models. The 3D solutions use distributed singularities (analytic elements) to enforce boundary conditions on the phreatic surface and seepage faces at vertical wells, and to maintain fixed-head boundary conditions, obtained from the 2D model, at the perimeter of the 3D model. The approximate 3D solutions are analytic (continuous and differentiable) everywhere, including on the phreatic surface itself. While continuity of flow is satisfied exactly in the infinite 3D flow domain, water balance errors can occur across the phreatic surface.

  14. GTP-based Integral Real-3D Spatial Model for Engineering Excavation GIS

    WU Lixin; SHI Wenzhong

    2004-01-01

    Engineering excavation GIS (E2GIS) is a real-3D GIS serving for geosciences related to geo-engineering, civil engineering and mining engineering based on generalized tri-prism (GTP) model. As two instances of GTP model, G-GTP is used for the real-3D modeling of subsurface geological bodies, and E-GTP is used for the real-3D modeling of subsurface engineering excavations.In the light of the discussions on the features and functions of E2GIS, the modeling principles of G-GTP and E-GTP are introduced. The two models couple together seamlessly to form an integral model for subsurface spatial objects including both geological bodies and excavations. An object-oriented integral real-3D data model and integral spatial topological relations are discussed.

  15. Temporal-spatial modeling of fast-moving and deforming 3D objects

    Wu, Xiaoliang; Wei, Youzhi

    1998-09-01

    This paper gives a brief description of the method and techniques developed for the modeling and reconstruction of fast moving and deforming 3D objects. A new approach using close-range digital terrestrial photogrammetry in conjunction with high speed photography and videography is proposed. A sequential image matching method (SIM) has been developed to automatically process pairs of images taken continuously of any fast moving and deforming 3D objects. Using the SIM technique a temporal-spatial model (TSM) of any fast moving and deforming 3D objects can be developed. The TSM would include a series of reconstructed surface models of the fast moving and deforming 3D object in the form of 3D images. The TSM allows the 3D objects to be visualized and analyzed in sequence. The SIM method, specifically the left-right matching and forward-back matching techniques are presented in the paper. An example is given which deals with the monitoring of a typical blast rock bench in a major open pit mine in Australia. With the SIM approach and the TSM model it is possible to automatically and efficiently reconstruct the 3D images of the blasting process. This reconstruction would otherwise be impossible to achieve using a labor intensive manual processing approach based on 2D images taken from conventional high speed cameras. The case study demonstrates the potential of the SIM approach and the TSM for the automatic identification, tracking and reconstruction of any fast moving and deforming 3D targets.

  16. 3D modelling of near-surface, environmental effects on AEM data

    Beamish, David

    2004-01-01

    This study considers the three-dimensional (3D) modelling of compact, at-surface conductive bodies on frequency domain airborne electromagnetic (AEM) survey data. The context is the use of AEM data for environmental and land quality applications. The 3D structures encountered are typically conductive, of limited thickness (

  17. 3D modeling of dual wind-up extensional rheometers

    Yu, Kaijia; Román Marín, José Manuel; Rasmussen, Henrik K.; Hassager, Ole

    Fully three-dimensional numerical simulations of a dual wind-up drum rheometer of the Sentmanat Extensional Rheometer (SER; Sentmanat, 2004 [1]) or the Extensional Viscosity Fixture (EVF; Garritano and Berting, 2006 [2]) type have been performed. In the SER and EVF a strip of rectangular shape is...... attached onto two drums, followed by a rotation of both drums in opposite direction. The numerical modeling is based on integral constitutive equations of the K-BKZ type. Generally, to ensure a proper uni-axial extensional deformation in dual wind-up drum rheometers the simulations show that a very small...

  18. Modeling the diffusion of phosphorus in silicon in 3-D

    Baker, K.R. [Univ. of Texas, Austin, TX (United States)

    1994-12-31

    The use of matrix preconditioning in semiconductor process simulation is examined. The simplified nonlinear single-species model for the diffusion of phosphorus into silicon is considered. The experimental three-dimensional simulator, PEPPER3, which uses finite differences and the numerical method of lines to implement the reaction-diffusion equation is modified to allow NSPCG to be called to solve the linear system in the inner Newton loop. Use of NSPCG allowed various accelerators such as Generalized Minimal Residual (GMRES) and Conjugate Gradient (CG) to be used in conjunction with preconditioners such as Richardson, Jacobi, and Incomplete Cholesky.

  19. 3D Monte Carlo radiation transfer modelling of photodynamic therapy

    Campbell, C. Louise; Christison, Craig; Brown, C. Tom A.; Wood, Kenneth; Valentine, Ronan M.; Moseley, Harry

    2015-06-01

    The effects of ageing and skin type on Photodynamic Therapy (PDT) for different treatment methods have been theoretically investigated. A multilayered Monte Carlo Radiation Transfer model is presented where both daylight activated PDT and conventional PDT are compared. It was found that light penetrates deeper through older skin with a lighter complexion, which translates into a deeper effective treatment depth. The effect of ageing was found to be larger for darker skin types. The investigation further strengthens the usage of daylight as a potential light source for PDT where effective treatment depths of about 2 mm can be achieved.

  20. Generation of a tumor spheroid in a microgravity environment as a 3D model of melanoma

    Marrero, Bernadette; Messina, Jane L.; Heller, Richard

    2009-01-01

    An in vitro 3D model was developed utilizing a synthetic microgravity environment to facilitate studying the cell interactions. 2D monolayer cell culture models have been successfully used to understand various cellular reactions that occur in vivo. There are some limitations to the 2D model that are apparent when compared to cells grown in a 3D matrix. For example, some proteins that are not expressed in a 2D model are found up-regulated in the 3D matrix. In this paper, we discuss techniques...

  1. Evaluation of field development plans using 3-D reservoir modelling

    Seifert, D.; Lewis, J.J.M. [Heriot-Watt Univ., Edinburgh (United Kingdom); Newbery, J.D.H. [Conoco, UK Ltd., Aberdeen (United Kingdom)] [and others

    1997-08-01

    Three-dimensional reservoir modelling has become an accepted tool in reservoir description and is used for various purposes, such as reservoir performance prediction or integration and visualisation of data. In this case study, a small Northern North Sea turbiditic reservoir was to be developed with a line drive strategy utilising a series of horizontal producer and injector pairs, oriented north-south. This development plan was to be evaluated and the expected outcome of the wells was to be assessed and risked. Detailed analyses of core, well log and analogue data has led to the development of two geological {open_quotes}end member{close_quotes} scenarios. Both scenarios have been stochastically modelled using the Sequential Indicator Simulation method. The resulting equiprobable realisations have been subjected to detailed statistical well placement optimisation techniques. Based upon bivariate statistical evaluation of more than 1000 numerical well trajectories for each of the two scenarios, it was found that the wells inclinations and lengths had a great impact on the wells success, whereas the azimuth was found to have only a minor impact. After integration of the above results, the actual well paths were redesigned to meet external drilling constraints, resulting in substantial reductions in drilling time and costs.

  2. Lightning Modelling: From 3D to Circuit Approach

    Moussa, H.; Abdi, M.; Issac, F.; Prost, D.

    2012-05-01

    The topic of this study is electromagnetic environment and electromagnetic interferences (EMI) effects, specifically the modelling of lightning indirect effects [1] on aircraft electrical systems present on deported and highly exposed equipments, such as nose landing gear (NLG) and nacelle, through a circuit approach. The main goal of the presented work, funded by a French national project: PREFACE, is to propose a simple equivalent electrical circuit to represent a geometrical structure, taking into account mutual, self inductances, and resistances, which play a fundamental role in the lightning current distribution. Then this model is intended to be coupled to a functional one, describing a power train chain composed of: a converter, a shielded power harness and a motor or a set of resistors used as a load for the converter. The novelty here, is to provide a pre-sizing qualitative approach allowing playing on integration in pre-design phases. This tool intends to offer a user-friendly way for replying rapidly to calls for tender, taking into account the lightning constraints. Two cases are analysed: first, a NLG that is composed of tubular pieces that can be easily approximated by equivalent cylindrical straight conductors. Therefore, passive R, L, M elements of the structure can be extracted through analytical engineer formulas such as those implemented in the partial element equivalent circuit (PEEC) [2] technique. Second, the same approach is intended to be applied on an electrical de-icing nacelle sub-system.

  3. Scaling of coercivity in a 3d random anisotropy model

    The random-anisotropy Heisenberg model is numerically studied on lattices containing over ten million spins. The study is focused on hysteresis and metastability due to topological defects, and is relevant to magnetic properties of amorphous and sintered magnets. We are interested in the limit when ferromagnetic correlations extend beyond the size of the grain inside which the magnetic anisotropy axes are correlated. In that limit the coercive field computed numerically roughly scales as the fourth power of the random anisotropy strength and as the sixth power of the grain size. Theoretical arguments are presented that provide an explanation of numerical results. Our findings should be helpful for designing amorphous and nanosintered materials with desired magnetic properties. - Highlights: • We study the random-anisotropy model on lattices containing up to ten million spins. • Irreversible behavior due to topological defects (hedgehogs) is elucidated. • Hysteresis loop area scales as the fourth power of the random anisotropy strength. • In nanosintered magnets the coercivity scales as the six power of the grain size

  4. Efficient use of 3d environment models for mobile robot simulation and localization

    Corominas Murtra, Andreu; Trulls, Eduard; Mirats-Tur, Josep M.; Sanfeliu, Alberto

    2010-01-01

    This paper provides a detailed description of a set of algorithms to efficiently manipulate 3D geometric models to compute physical constraints and range observation models, data that is usually required in real-time mobile robotics or simulation. Our approach uses a standard file format to describe the environment and processes the model using the openGL library, a widely-used programming interface for 3D scene manipulation. The paper also presents results on a test model for benchmarking, a...

  5. Simplified generation of biomedical 3D surface model data for embedding into 3D portable document format (PDF files for publication and education.

    Axel Newe

    Full Text Available The usefulness of the 3D Portable Document Format (PDF for clinical, educational, and research purposes has recently been shown. However, the lack of a simple tool for converting biomedical data into the model data in the necessary Universal 3D (U3D file format is a drawback for the broad acceptance of this new technology. A new module for the image processing and rapid prototyping framework MeVisLab does not only provide a platform-independent possibility to create surface meshes out of biomedical/DICOM and other data and to export them into U3D--it also lets the user add meta data to these meshes to predefine colors and names that can be processed by a PDF authoring software while generating 3D PDF files. Furthermore, the source code of the respective module is available and well documented so that it can easily be modified for own purposes.

  6. Micromechanical modelling of ductile damage and tearing. Results of a European numerical round robin

    'Local approaches' and 'micromechanical models' of damage have found increasing interest in fracture mechanics. Many unsolved problems exist, however, with respect to the uniqueness and transferability of parameter sets. Technical Committee 8, Numerical Methods, of the European Structural Integrity Society (ESIS), intends to be a platform for gathering and exchanging experience, discussing problems and, by this, improving the quality of numerical procedures and analyses. For this purpose, a numerical round robin on the application of 'Micromechanical Models' for characterising ductile tearing and cleavage of ferritic steels has been started. The present report summarises the contributions of 15 participants from nine European countries and from India to the ductile tearing exercise, namely the numerical simulations of - the deformation and failure of a standard smooth tensile specimen to characterise the material and identify critical damage parameters for ductile tearing and - the ductile crack growth in a C(T) specimen to predict a JR-curve. The numerical simulations are based on experimental data for the ferritic steel DIN 22 Ni Mo Cr 3 7 which where obtained in the European Project 'Fracture Toughness of Steel in the Ductile to Brittle Transition Regime' (Contract MAT1 CT 940080). The results of this round robin will be valuable for future discussions on guidelines for parameter determination strategies and handling of the damage models in respect to significant material characterisation and prediction of structural response. (orig.)

  7. Micromechanics Fatigue Damage Analysis Modeling for Fabric Reinforced Ceramic Matrix Composites

    Min, J. B.; Xue, D.; Shi, Y.

    2013-01-01

    A micromechanics analysis modeling method was developed to analyze the damage progression and fatigue failure of fabric reinforced composite structures, especially for the brittle ceramic matrix material composites. A repeating unit cell concept of fabric reinforced composites was used to represent the global composite structure. The thermal and mechanical properties of the repeating unit cell were considered as the same as those of the global composite structure. The three-phase micromechanics, the shear-lag, and the continuum fracture mechanics models were integrated with a statistical model in the repeating unit cell to predict the progressive damages and fatigue life of the composite structures. The global structure failure was defined as the loss of loading capability of the repeating unit cell, which depends on the stiffness reduction due to material slice failures and nonlinear material properties in the repeating unit cell. The present methodology is demonstrated with the analysis results evaluated through the experimental test performed with carbon fiber reinforced silicon carbide matrix plain weave composite specimens.

  8. A multilayer micromechanical model of the cuticle of Curculio longinasus Chittenden, 1927 (Coleoptera: Curculionidae).

    Andrew Jansen, M; Singh, Sudhanshu S; Chawla, Nikhilesh; Franz, Nico M

    2016-08-01

    Curculio longinasus Chittenden, 1927 (Coleoptera: Curculionidae), is a weevil species common throughout the southwestern United States that uses its rostrum - a very slender, curved, beak-like projection of the head - to excavate tunnels in plant organs (such as acorns) for egg laying (oviposition). Once the apical portion of the rostrum has been inserted into the preferred substrate for oviposition, the female begins rotating around the perimeter of the hole, elevating her head by extending the fore-legs, and rotating the head in place in a drilling motion. This action causes significant elastic deformation of the rostrum, which will bend until it becomes completely straight. To better understand the mechanical behavior of the cuticle as it undergoes deformation during the preparation of oviposition sites, we develop a comprehensive micro/macro model of the micromechanical structure and properties of the cuticle, spanning across all cuticular regions, and reliably mirroring the resultant macroscale properties of the cuticle. Our modeling approach relies on the use of multi-scale, hierarchical biomaterial representation, and employs various micromechanical schemata - e.g., Mori-Tanaka, effective field, and Maxwell - to calculate the homogenized properties of representative volume elements at each level in the hierarchy. We describe the configuration and behavior of this model in detail, and discuss the theoretical implications and limitations of this approach with emphasis on future biomechanical and comparative evolutionary research. Our detailed account of this approach can thereby serve as a methodological template for exploring the biomechanical behavior of new insect structures. PMID:27189867

  9. Radiation effects in concrete for nuclear power plants, Part II: Perspective from micromechanical modeling

    Highlights: • A micromechanical model for irradiated concrete is proposed. • Confrontation with literature data is successful. • Neutron radiation-induced volumetric expansion is a predominant degradation mode. • The nature of the aggregate alters the severity of damage to irradiated concrete. - Abstract: The need to understand and characterize the effects of neutron irradiation on concrete has become urgent because of the possible extension of service life of many nuclear power generating stations. Current knowledge is primarily based on a collection of data obtained in test reactors. These data are inherently difficult to interpret because materials and testing conditions are inconsistent. A micromechanical approach based on the Hashin composite sphere model is presented to derive a first-order separation of the effects of radiation on cement paste and aggregate, and, also, on their interaction. Although the scarcity of available data limits the validation of the model, it appears that, without negating a possible gamma-ray induced effect, the neutron-induced damage and swelling of aggregate plays a predominant role on the overall concrete expansion and the damage of the cement paste. The radiation-induced volumetric expansion (RIVE) effects can also be aided by temperature elevation and shrinkage in the cement paste

  10. Radiation effects in concrete for nuclear power plants, Part II: Perspective from micromechanical modeling

    Le Pape, Y., E-mail: lepapeym@ornl.gov; Field, K.G.; Remec, I.

    2015-02-15

    Highlights: • A micromechanical model for irradiated concrete is proposed. • Confrontation with literature data is successful. • Neutron radiation-induced volumetric expansion is a predominant degradation mode. • The nature of the aggregate alters the severity of damage to irradiated concrete. - Abstract: The need to understand and characterize the effects of neutron irradiation on concrete has become urgent because of the possible extension of service life of many nuclear power generating stations. Current knowledge is primarily based on a collection of data obtained in test reactors. These data are inherently difficult to interpret because materials and testing conditions are inconsistent. A micromechanical approach based on the Hashin composite sphere model is presented to derive a first-order separation of the effects of radiation on cement paste and aggregate, and, also, on their interaction. Although the scarcity of available data limits the validation of the model, it appears that, without negating a possible gamma-ray induced effect, the neutron-induced damage and swelling of aggregate plays a predominant role on the overall concrete expansion and the damage of the cement paste. The radiation-induced volumetric expansion (RIVE) effects can also be aided by temperature elevation and shrinkage in the cement paste.

  11. Micromechanical modelling of oil palm empty fruit bunch fibres containing silica bodies.

    Omar, Farah Nadia; Hanipah, Suhaiza Hanim; Xiang, Loo Yu; Mohammed, Mohd Afandi P; Baharuddin, Azhari Samsu; Abdullah, Jaafar

    2016-09-01

    Experimental and numerical investigation was conducted to study the micromechanics of oil palm empty fruit bunch fibres containing silica bodies. The finite viscoelastic-plastic material model called Parallel Rheological Network model was proposed, that fitted well with cyclic and stress relaxation tensile tests of the fibres. Representative volume element and microstructure models were developed using finite element method, where the models information was obtained from microscopy and X-ray micro-tomography analyses. Simulation results showed that difference of the fibres model with silica bodies and those without ones is larger under shear than compression and tension. However, in comparison to geometrical effect (i.e. silica bodies), it is suggested that ultrastructure components of the fibres (modelled using finite viscoelastic-plastic model) is responsible for the complex mechanical behaviour of oil palm fibres. This can be due to cellulose, hemicellulose and lignin components and the interface behaviour, as reported on other lignocellulosic materials. PMID:27183430

  12. Modelling the Corona of HD 189733 in 3D

    Strugarek, Antoine; Matt, Sean P; Réville, Victor; Donati, Jean-François; Moutou, Claire; Fares, Rim

    2014-01-01

    The braking of main sequence stars originates mainly from their stellar wind. The efficiency of this angular momentum extraction depends on the rotation rate of the star, the acceleration profile of the wind and the coronal magnetic field. The derivation of scaling laws parametrizing the stellar wind torque is important for our understanding of gyro-chronology and the evolution of the rotation rates of stars. In order to understand the impact of complex magnetic topologies on the stellar wind torque, we present three- dimensional, dynamical simulations of the corona of HD 189733. Using the observed complex topology of the magnetic field, we estimate how the torque associated with the wind scales with model parameters and compare those trends to previously published scaling laws.

  13. 3D downscaling model for radar-based precipitation fields

    Llort, X.; Berenguer, M.; Franco, M.; Sanchez-Diezma, R.; Sempere-Torres, D. [Grup de Recerca Aplicada en Hidrometeorologia, Univ. Politecnica de Catalunya (Spain)

    2006-10-15

    The generating of rainfall fields with a higher resolution than so far observed and with realistic features is a challenge with multiple applications. In particular it could be useful to quantify the uncertainty introduced by the different sources of error affecting radar measurements, in a controlled simulation framework. This paper proposes a method to generate three-dimensional high-resolution rainfall fields based on downscaling meteorological radar data. The technique performs a scale analysis of the first radar tilt field combining a wavelet model with Fourier analysis. In order to downscale the upper radar elevations and with the aim of preserving the vertical structure, a homotopy of the observed vertical profiles of reflectivity is performed. Preliminary evaluation of the technique shows that it is able to generate realistic extreme values and, at the same time, partially reproduce the structure of small scales. (orig.)

  14. From 3D TQFTs to 4D models with defects

    Delcamp, Clement

    2016-01-01

    (2+1) dimensional topological quantum field theories with defect excitations are by now quite well understood, while many questions are still open for (3+1) dimensional TQFTs. Here we propose a strategy to lift states and operators of a (2+1) dimensional TQFT to states and operators of a (3+1) dimensional theory with defects. The main technical tool are Heegard splittings, which allow to encode the topology of a three--dimensional manifold with line defects into a two--dimensional Heegard surface. We apply this idea to the example of BF theory which describes locally flat connections. This shows in particular how the curvature excitation generating surface operators of the (3+1) dimensional theory can be obtained from closed ribbon operators of the (2+1) dimensional BF theory. We hope that this technique allows the construction and study of more general models based on unitary fusion categories.

  15. A Log-Based 3D Model Retrieval Relevance Feedback Scheme Using Biased SVMs

    Zhiyong Zhang

    2010-12-01

    Full Text Available Retrieval relevance feedback is an iterative search technique to bridge the semantic gap between the high level user intention and low level data representation. This technique interactively determines a user's desired output or query concept by asking the user whether certain proposed 3D models are relevant or not. In the past, most research efforts in 3D model retrieval field have focused on designing algorithms for traditional relevance feedback. Given a 3D model retrieval system, it can collect and store users’ relevance feedback information in a history log, 3D model retrieval system can take advantage of the log data of users’ feedback to enhance its retrieval performance. In this paper, we propose a unified 3D model retrieval relevance feedback framework that integrates the log data into the traditional relevance feedback schemes to learn effectively the correlation between low-level 3D model features and high-level concepts. In this 3D model retrieval relevance feedback scheme, we use a learning technique for relevance feedback, named biased support vector machine based relevance feedback.  Experimental results show that this log-based scheme can achieves higher search accuracy than traditional query refinement schemes.  

  16. On Fundamental Evaluation Using Uav Imagery and 3d Modeling Software

    Nakano, K.; Suzuki, H.; Tamino, T.; Chikatsu, H.

    2016-06-01

    Unmanned aerial vehicles (UAVs), which have been widely used in recent years, can acquire high-resolution images with resolutions in millimeters; such images cannot be acquired with manned aircrafts. Moreover, it has become possible to obtain a surface reconstruction of a realistic 3D model using high-overlap images and 3D modeling software such as Context capture, Pix4Dmapper, Photoscan based on computer vision technology such as structure from motion and multi-view stereo. 3D modeling software has many applications. However, most of them seem to not have obtained appropriate accuracy control in accordance with the knowledge of photogrammetry and/or computer vision. Therefore, we performed flight tests in a test field using an UAV equipped with a gimbal stabilizer and consumer grade digital camera. Our UAV is a hexacopter and can fly according to the waypoints for autonomous flight and can record flight logs. We acquired images from different altitudes such as 10 m, 20 m, and 30 m. We obtained 3D reconstruction results of orthoimages, point clouds, and textured TIN models for accuracy evaluation in some cases with different image scale conditions using 3D modeling software. Moreover, the accuracy aspect was evaluated for different units of input image—course unit and flight unit. This paper describes the fundamental accuracy evaluation for 3D modeling using UAV imagery and 3D modeling software from the viewpoint of close-range photogrammetry.

  17. TLS for generating multi-LOD of 3D building model

    The popularity of Terrestrial Laser Scanners (TLS) to capture three dimensional (3D) objects has been used widely for various applications. Development in 3D models has also led people to visualize the environment in 3D. Visualization of objects in a city environment in 3D can be useful for many applications. However, different applications require different kind of 3D models. Since a building is an important object, CityGML has defined a standard for 3D building models at four different levels of detail (LOD). In this research, the advantages of TLS for capturing buildings and the modelling process of the point cloud can be explored. TLS will be used to capture all the building details to generate multi-LOD. This task, in previous works, involves usually the integration of several sensors. However, in this research, point cloud from TLS will be processed to generate the LOD3 model. LOD2 and LOD1 will then be generalized from the resulting LOD3 model. Result from this research is a guiding process to generate the multi-LOD of 3D building starting from LOD3 using TLS. Lastly, the visualization for multi-LOD model will also be shown

  18. Towards the development of a 3D full cell and external busbars thermo-electric model

    Taking advantage of the increasing power of computers, it is now practical to consider building a 3D full cell and external busbars thermo-electric model. In the present study, a 3D full cell quarter thermo-electric model and a 3D cathode half plus liquid zone and busbars thermo-electric model have been developed and solved using a PIll 800 MHz computer. Developing a 3D full cell and external busbars thermo-electric model will constitute a step further towards the development of a fully 'multi-physic' unified aluminium reduction cell model. Already, a full cell thermo-electric model will be able to interact with a MHD model by providing it with accurate liquid zone current density and potshell temperature data and by receiving from it local liquid/ledge interface heat transfer coefficients. (author)

  19. Modeling of SFR cores with Serpent–DYN3D codes sequence

    Highlights: ► Serpent–DYN3D sequence was used for the analysis of an SFR core. ► Homogenized cross sections were generated using Monte-Carlo code Serpent. ► The full core analysis was performed with the nodal diffusion code DYN3D. ► The DYN3D results were compared with those of ERANOS and full core Monte-Carlo solution. - Abstract: DYN3D reactor dynamics nodal diffusion code was originally developed for the analysis of Light Water Reactors. In this paper, we demonstrate the feasibility of using DYN3D for modeling of fast spectrum reactors. A homogenized cross sections data library was generated using continuous energy Monte-Carlo code Serpent which provides significant modeling flexibility compared with traditional deterministic lattice transport codes and tolerable execution time. A representative sodium cooled fast reactor core was modeled with the Serpent–DYN3D code sequence and the results were compared with those produced by ERANOS code and with a 3D full core Monte-Carlo solution. Very good agreement between the codes was observed for the core integral parameters and power distribution suggesting that the DYN3D code with cross section library generated using Serpent can be reliably used for the analysis of fast reactors

  20. Use of MCAM in creating 3D neutronics model for ITER building

    Highlights: ► We created a 3D neutronics model of the ITER building. ► The model was produced from the engineering CAD model by MCAM software. ► The neutron flux map in the ITER building was calculated. - Abstract: The three dimensional (3D) neutronics reference model of International Thermonuclear Experimental Reactor (ITER) only defines the tokamak machine and extends to the bio-shield. In order to meet further 3D neutronics analysis needs, it is necessary to create a 3D reference model of the ITER building. Monte Carlo Automatic Modeling Program for Radiation Transport Simulation (MCAM) was developed as a computer aided design (CAD) based bi-directional interface program between general CAD systems and Monte Carlo radiation transport simulation codes. With the help of MCAM version 4.8, the 3D neutronics model of ITER building was created based on the engineering CAD model. The calculation of the neutron flux map in ITER building during operation showed the correctness and usability of the model. This model is the first detailed ITER building 3D neutronics model and it will be made available to all international organization collaborators as a reference model.

  1. Micromechanical modeling of the deformation of HCP metals

    Graff, S. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Materialforschung

    2008-12-04

    Nowadays, intense research is conducted to understand the relation between microstructural features and mechanical properties of hexagonal close-packed (hcp) metals. Due to their hexagonal structure, hcp metals exhibit mechanical properties such as strong anisotropy, which is more pronounced than for construction metals with cubic crystal structure, and tension/compression asymmetry. Deformation mechanisms in hcp metals, dislocation motion on specific slip systems and activation of twinning, are not yet completely understood. The purpose of this work is to link the physical mechanisms developing during deformation of magnesium (Mg) on the microscale with the macroscopic yielding properties of texture Mg samples. It will be shown that the mechanical behavior of hcp metals may be understood and reproduced with the help of a visco-plastic model for crystal plasticity and a phenomenological yield criterion with appropriate hardening behavior. The study of single crystal specimens subjected to channel die compression tests reveals the active slip systems and twinning systems of the material considered. The material anisotropy at mesoscale is reproduced by using adequate critical resolved shear stresses (CRSS) for the considered deformation mechanisms. In order to describe the macroscopic behavior, texture is incorporated into polycrystalline Representative Volume Elements (RVEs) and various mechanical properties of extruded bars and rolled plates can be predicted. For RVEs exhibiting the texture of rolled plates the numerical results reveal the plate's anisotropic yielding and hardening behavior on a mesoscale. In order to extend the modeling possibilities to process simulations and to allow for time-saving simulations of structural behavior, a phenomenological yield surface accounting for anisotropy and tension/compression asymmetry has been established and implemented in a finite element code. Its numerous model parameters are calibrated by an optimization

  2. 3D, 9-C anisotropic seismic modeling and inversion

    Rusmanugroho, Herurisa

    The most complete representation of an elastic medium consists of an elastic tensor with 21 independent moduli. All 21 can be estimated from compressional and shear wave polarization and slowness vectors corresponding to wide apertures of polar and azimuth angles. In isotropic media, when seismic source and receiver components have the same orientation (such as XX and YY), the reflection amplitude contours align approximately perpendicular to the particle motions. The mixed components (such as XY and YX) have amplitude patterns that are in symmetrical pairs of either the same, or of opposite, polarity on either side of the diagonal of the 9-C response matrix. In anisotropic media, amplitude variations with azimuth show the same basic patterns and symmetries as for isotropic, but with a superimposed tendency for alignment parallel to the strike of the vertical cracks. Solutions for elastic tensor elements from synthetic slowness and polarization data calculated directly from the Christoffel equation are more sensitive to the polar angle aperture than to the azimuth aperture. Nine-component synthetic elastic vertical seismic profile data for a model with triclinic symmetry calculated by finite-differencing allows estimation of the elastic 21 tensor elements in the vicinity of a three-component borehole receiver. Wide polar angle and azimuth apertures are needed for accurately estimating the elastic tensor elements. The tensor elements become less independent as the data apertures decrease. Results obtained by extracting slowness and polarization data from the corresponding synthetic seismograms show similar results. The inversion algorithm has produced good results from field vertical seismic profile data set from the Weyburn Field in Southern Saskatchewan in Canada. Synthetic nine-component seismograms calculated from the extracted tensor are able to explain most of the significant features in the field data. The inverted stiffness elastic tensor shows orthorhombic

  3. A Spatial Reference Grid for Real-Time Autonomous Underwater Modeling using 3-D Sonar

    Auran, P.G.

    1996-12-31

    The offshore industry has recognized the need for intelligent underwater robotic vehicles. This doctoral thesis deals with autonomous underwater vehicles (AUVs) and concentrates on a data representation for real-time image formation and analysis. Its main objective is to develop a 3-D image representation suitable for autonomous perception objectives underwater, assuming active sonar as the main sensor for perception. The main contributions are: (1) A dynamical image representation for 3-D range data, (2) A basic electronic circuit and software system for 3-D sonar sampling and amplitude thresholding, (3) A model for target reliability, (4) An efficient connected components algorithm for 3-D segmentation, (5) A method for extracting general 3-D geometrical representations from segmented echo clusters, (6) Experimental results of planar and curved target modeling. 142 refs., 120 figs., 10 tabs.

  4. Applications of 3D City Models: State of the Art Review

    Filip Biljecki

    2015-12-01

    Full Text Available In the last decades, 3D city models appear to have been predominantly used for visualisation; however, today they are being increasingly employed in a number of domains and for a large range of tasks beyond visualisation. In this paper, we seek to understand and document the state of the art regarding the utilisation of 3D city models across multiple domains based on a comprehensive literature study including hundreds of research papers, technical reports and online resources. A challenge in a study such as ours is that the ways in which 3D city models are used cannot be readily listed due to fuzziness, terminological ambiguity, unclear added-value of 3D geoinformation in some instances, and absence of technical information. To address this challenge, we delineate a hierarchical terminology (spatial operations, use cases, applications, and develop a theoretical reasoning to segment and categorise the diverse uses of 3D city models. Following this framework, we provide a list of identified use cases of 3D city models (with a description of each, and their applications. Our study demonstrates that 3D city models are employed in at least 29 use cases that are a part of more than 100 applications. The classified inventory could be useful for scientists as well as stakeholders in the geospatial industry, such as companies and national mapping agencies, as it may serve as a reference document to better position their operations, design product portfolios, and to better understand the market.

  5. Laboratory Observation and Micromechanics-Based Modelling of Sandstone on Different Scales

    Li, Liming; Larsen, Idar; Holt, Rune M.

    2015-07-01

    The mechanical properties of sandstone are, to a large extent, controlled by its microstructure. When sandstone is loaded, the stress conditions and stress history can influence the sandstone in terms of the deformation parameters, strength parameters, failure modes, as well as acoustic properties and other petrophysical parameters. In this paper, we show how we may use a discrete element model to compute the mechanical behaviour based on the microstructure of the rock, as obtained from micro-computed tomography. The model is calibrated with triaxial test data obtained with three different sandstones. The key element in the model is a contact law, attempting to capture deformation and failure at the level of the grain scale. A micromechanics-based core-scale model was also suggested using the same contact law but without explicitly mimicking the rock microstructure. The simulation results from both the microscale model and the macroscale model were in reasonably good agreement with the laboratory measurements on sandstone specimens.

  6. Investigating the Paleoproterozoic glaciations with 3-D climate modeling

    Teitler, Yoram; Le Hir, Guillaume; Fluteau, Frédéric; Philippot, Pascal; Donnadieu, Yannick

    2014-06-01

    It is generally assumed that the Earth's surface was warm during most of its early history but that significant cooling occurred between 2.45 and 2.22 Ga leading to the first global and cyclical glacial epoch. This onset of snowball Earth conditions was coeval with a large pulse of oxygenation that permanently oxygenated the atmosphere and shallow oceans (Great Oxygenation Event, GOE), though it is not known whether one influenced the other or if they were independent events. Hereafter we used a General Circulation climate Model (GCM) to estimate the partial pressures of atmospheric CO2 (pCO2) and CH4 (pCH4) required to account for the onset of snowball Earth conditions during the Paleoproterozoic. We show that Earth's surface can be maintained in an ice-free state under atmospheric CO2 concentrations lower than 2.6×10-2 bar without invoking the need of high CH4 concentrations. Assuming that the cooling of the Earth's surface is related to the collapse of atmospheric greenhouse gases, we tested the relevance of different scenarios including (i) the collapse of pCH4 in response to the GOE and (ii) the drawdown of pCO2 due to both a decrease in volcanic outgassing rate and an increase in global weathering efficiency. We show that the cyclical character of Paleoproterozoic glaciations is best explained by a long-lasted decrease of pCO2. To support this scenario, we examine how the long-term carbon cycle and the equilibrium pCO2 respond to the emplacement of large subaerial basaltic provinces (LIPs) and to a temporary shutdown of volcanism as supported by geologic data. We show that the sink of pCO2 through silicate weathering is limited by the absence of terrestrial higher plants. In such conditions, the equilibrium pCO2 remains high enough to preclude the onset of snowball conditions regardless the intensity of the pCH4 collapse. The combination of an increase in weathering efficiency and a decrease in volcanic outgassing rate can significantly reduce the

  7. A Shell/3D Modeling Technique for the Analysis of Delaminated Composite Laminates

    Krueger, Ronald; OBrien, T. Kevin

    2000-01-01

    A shell/3D modeling technique was developed for which a local solid finite element model is used only in the immediate vicinity of the delamination front. The goal was to combine the accuracy of the full three-dimensional solution with the computational efficiency of a shell finite element model. Multi-point constraints provided a kinematically compatible interface between the local 3D model and the global structural model which has been meshed with shell finite elements. Double Cantilever Beam, End Notched Flexure, and Single Leg Bending specimens were analyzed first using full 3D finite element models to obtain reference solutions. Mixed mode strain energy release rate distributions were computed using the virtual crack closure technique. The analyses were repeated using the shell/3D technique to study the feasibility for pure mode I, mode II and mixed mode I/II cases. Specimens with a unidirectional layup and with a multidirectional layup were simulated. For a local 3D model, extending to a minimum of about three specimen thicknesses on either side of the delamination front, the results were in good agreement with mixed mode strain energy release rates obtained from computations where the entire specimen had been modeled with solid elements. For large built-up composite structures the shell/3D modeling technique offers a great potential for reducing the model size, since only a relatively small section in the vicinity of the delamination front needs to be modeled with solid elements.

  8. In vitro three-dimensional (3D) models in cancer research: an update.

    Kimlin, Lauren C; Casagrande, Giovanna; Virador, Victoria M

    2013-03-01

    Tissues are three-dimensional (3D) entities as is the tumor that arises within them. Though disaggregated cancerous tissues have produced numerous cell lines for basic and applied research, it is generally agreed that these lines are poor models of in vivo phenomena. In this review we focus on in vitro 3D models used in cancer research, particularly their contribution to molecular studies of the early stages of metastasis, angiogenesis, the tumor microenvironment, and cancer stem cells. We present a summary of the various formats used in the field of tissue bioengineering as they apply to mechanistic modeling of cancer stages or processes. In addition we list studies that model specific types of malignancies, highlight drastic differences in results between 3D in vitro models and classical monolayer culturing techniques, and establish the need for standardization of 3D models for meaningful preclinical and therapeutic testing. PMID:22162252

  9. The ModFOLD4 server for the quality assessment of 3D protein models

    McGuffin, Liam J; Buenavista, Maria T.; Roche, Daniel B.

    2013-01-01

    Once you have generated a 3D model of a protein, how do you know whether it bears any resemblance to the actual structure? To determine the usefulness of 3D models of proteins, they must be assessed in terms of their quality by methods that predict their similarity to the native structure. The ModFOLD4 server is the latest version of our leading independent server for the estimation of both the global and local (per-residue) quality of 3D protein models. The server produces both machine reada...

  10. CASE OF SUCCESSFUL APPLICATION OF METHOD FOR 3D VISUALIZATION AND MODELING IN THORACIC ONCOLOGY

    S. V. Shchadenko

    2016-01-01

    Full Text Available Aim. The application of method of 3D-visualization and modeling in thoracic oncology is described.Materials and methods. The block diagram of system of 3D-visualization and modeling consisting of six stages is shown. The reconstructions of anatomic computer 3D-models of rib cage and tumor were performed for the patient with cancer (plasma cell myeloma. The tumor size and its topographic anatomy relatively to neighboring organs, bones and soft tissues were identified. Results.The obtained data had been used to plan surgical intervention, which was successfully conducted at Thoracic surgery department ofTomskRegionalClinicalHospital. 

  11. 3D segmented model of head for modelling electrical activity of brain

    Egill A. Friðgeirsson

    2012-03-01

    Full Text Available Computer simulation and modelling of the human body and its behaviour are very useful tools in situations where it is either too risky to perform an invasive procedure or too costly for in vivo experiments or simply impossible for ethical reasons. In this paper we describe a method to model the electrical behaviour of human brain from segmented MR images. The aim of the work is to use these models to predict the electrical activity of human brain under normal and pathological conditions. The image processing software package MIMICS is used for 3D volume segmentation of MR images. These models have detailed 3D representation of major tissue surfaces within the head, with over 12 different tissues segmented. In addition, computational tools in Matlab were developed for calculating normal vectors on the brain surface and for associating this information to the equivalent electrical dipole sources as an input into the model.

  12. Micromechanical modeling of stress-induced strain in polycrystalline Ni–Mn–Ga by directional solidification

    Zhu, Yuping, E-mail: zhuyuping@126.com [Seismic Observation and Geophysical Imaging Laboratory, Institute of Geophysics, China Earthquake Administration, Beijing 100081 (China); Shi, Tao; Teng, Yao [Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013 (China)

    2015-10-05

    Highlights: • A micromechanical model of directional solidification Ni–Mn–Ga is developed. • The stress–strain curves in different directions are tested. • The martensite Young’s moduli in different directions are predicted. • The macro reorientation strains in different directions are investigated. - Abstract: Polycrystalline ferromagnetic shape memory alloy Ni–Mn–Ga produced by directional solidification possess unique properties. Its compressive stress–strain behaviors in loading–unloading cycle show nonlinear and anisotropic. Based on the self-consistent theory and thermodynamics principle, a micromechanical constitutive model of polycrystalline Ni–Mn–Ga by directional solidification is developed considering the generating mechanism of the macroscopic strain and anisotropy. Then, the stress induced strains at different angles to solidification direction are calculated, and the results agree well with the experimental data. The predictive curves of martensite Young’s modulus and macro reorientation strain in different directions are investigated. It may provide theoretical guidance for the design and use of ferromagnetic shape memory alloy.

  13. KENO3D Visualization Tool for KENO V.a and KENO-VI Geometry Models

    Criticality safety analyses often require detailed modeling of complex geometries. Effective visualization tools can enhance checking the accuracy of these models. This report describes the KENO3D visualization tool developed at the Oak Ridge National Laboratory (ORNL) to provide visualization of KENO V.a and KENO-VI criticality safety models. The development of KENO3D is part of the current efforts to enhance the SCALE (Standardized Computer Analyses for Licensing Evaluations) computer software system

  14. DART : a 3D model for remote sensing images and radiative budget of earth surfaces

    Gastellu-Etchegorry, J.P.; Grau, E.; Lauret, N.

    2012-01-01

    Modeling the radiative behavior and the energy budget of land surfaces is relevant for many scientific domains such as the study of vegetation functioning with remotely acquired information. DART model (Discrete Anisotropic Radiative Transfer) is developed since 1992. It is one of the most complete 3D models in this domain. It simulates radiative transfer (R.T.) in the optical domain: 3D radiative budget and remote sensing images (i.e., radiance, reflectance, brightness temperature) of vegeta...

  15. 3D Multiscale Integrated Modeling Approach of Complex Rock Mass Structures

    Mingchao Li; Yanqing Han; Gang Wang; Fugen Yan

    2014-01-01

    Based on abundant geological data of different regions and different scales in hydraulic engineering, a new approach of 3D engineering-scale and statistical-scale integrated modeling was put forward, considering the complex relationships among geological structures and discontinuities and hydraulic structures. For engineering-scale geological structures, the 3D rock mass model of the study region was built by the exact match modeling method and the reliability analysis technique. For statisti...

  16. AUTOMATIC MODEL SELECTION FOR 3D RECONSTRUCTION OF BUILDINGS FROM SATELLITE IMAGARY

    T. Partovi; H. Arefi; T. Krauß; P. Reinartz

    2013-01-01

    Through the improvements of satellite sensor and matching technology, the derivation of 3D models from space borne stereo data obtained a lot of interest for various applications such as mobile navigation, urban planning, telecommunication, and tourism. The automatic reconstruction of 3D building models from space borne point cloud data is still an active research topic. The challenging problem in this field is the relatively low quality of the Digital Surface Model (DSM) generated by stereo ...

  17. AUTOMATIC MODEL SELECTION FOR 3D RECONSTRUCTION OF BUILDINGS FROM SATELLITE IMAGARY

    T. Partovi; H. Arefi; T. Krauß; P. Reinartz

    2013-01-01

    Through the improvements of satellite sensor and matching technology, the derivation of 3D models from space borne stereo data obtained a lot of interest for various applications such as mobile navigation, urban planning, telecommunication, and tourism. The automatic reconstruction of 3D building models from space borne point cloud data is still an active research topic. The challenging problem in this field is the relatively low quality of the Digital Surface Model (DSM) generated by st...

  18. Der Semantic Building Modeler - Ein System zur prozeduralen Erzeugung von 3D-Gebäudemodellen

    Gunia, Patrick

    2013-01-01

    Computer generated 3d-models of buildings, cities and whole landscapes are constantly gaining importance throughout different fields of application. Starting with obvious domains like computer games or movies there are also lots of other areas, e.g. reconstructions of historic cities both for educational reasons and further research. The most widely used method for producing city models is the „manual“ creation. A 3d artist uses modeling software to design every single component by hand. ...

  19. KENO3D Visualization Tool for KENO V.a and KENO-VI Geometry Models

    Horwedel, J.E.; Bowman, S.M.

    2000-06-01

    Criticality safety analyses often require detailed modeling of complex geometries. Effective visualization tools can enhance checking the accuracy of these models. This report describes the KENO3D visualization tool developed at the Oak Ridge National Laboratory (ORNL) to provide visualization of KENO V.a and KENO-VI criticality safety models. The development of KENO3D is part of the current efforts to enhance the SCALE (Standardized Computer Analyses for Licensing Evaluations) computer software system.

  20. Micromechanical Failure Analyses for Finite Element Polymer Modeling

    CHAMBERS,ROBERT S.; REEDY JR.,EARL DAVID; LO,CHI S.; ADOLF,DOUGLAS B.; GUESS,TOMMY R.

    2000-11-01

    Polymer stresses around sharp corners and in constrained geometries of encapsulated components can generate cracks leading to system failures. Often, analysts use maximum stresses as a qualitative indicator for evaluating the strength of encapsulated component designs. Although this approach has been useful for making relative comparisons screening prospective design changes, it has not been tied quantitatively to failure. Accurate failure models are needed for analyses to predict whether encapsulated components meet life cycle requirements. With Sandia's recently developed nonlinear viscoelastic polymer models, it has been possible to examine more accurately the local stress-strain distributions in zones of likely failure initiation looking for physically based failure mechanisms and continuum metrics that correlate with the cohesive failure event. This study has identified significant differences between rubbery and glassy failure mechanisms that suggest reasonable alternatives for cohesive failure criteria and metrics. Rubbery failure seems best characterized by the mechanisms of finite extensibility and appears to correlate with maximum strain predictions. Glassy failure, however, seems driven by cavitation and correlates with the maximum hydrostatic tension. Using these metrics, two three-point bending geometries were tested and analyzed under variable loading rates, different temperatures and comparable mesh resolution (i.e., accuracy) to make quantitative failure predictions. The resulting predictions and observations agreed well suggesting the need for additional research. In a separate, additional study, the asymptotically singular stress state found at the tip of a rigid, square inclusion embedded within a thin, linear elastic disk was determined for uniform cooling. The singular stress field is characterized by a single stress intensity factor K{sub a} and the applicable K{sub a} calibration relationship has been determined for both fully bonded and

  1. Optimisation of Ionic Models to Fit Tissue Action Potentials: Application to 3D Atrial Modelling

    Amr Al Abed

    2013-01-01

    Full Text Available A 3D model of atrial electrical activity has been developed with spatially heterogeneous electrophysiological properties. The atrial geometry, reconstructed from the male Visible Human dataset, included gross anatomical features such as the central and peripheral sinoatrial node (SAN, intra-atrial connections, pulmonary veins, inferior and superior vena cava, and the coronary sinus. Membrane potentials of myocytes from spontaneously active or electrically paced in vitro rabbit cardiac tissue preparations were recorded using intracellular glass microelectrodes. Action potentials of central and peripheral SAN, right and left atrial, and pulmonary vein myocytes were each fitted using a generic ionic model having three phenomenological ionic current components: one time-dependent inward, one time-dependent outward, and one leakage current. To bridge the gap between the single-cell ionic models and the gross electrical behaviour of the 3D whole-atrial model, a simplified 2D tissue disc with heterogeneous regions was optimised to arrive at parameters for each cell type under electrotonic load. Parameters were then incorporated into the 3D atrial model, which as a result exhibited a spontaneously active SAN able to rhythmically excite the atria. The tissue-based optimisation of ionic models and the modelling process outlined are generic and applicable to image-based computer reconstruction and simulation of excitable tissue.

  2. Enhancing photogrammetric 3d city models with procedural modeling techniques for urban planning support

    This paper presents a workflow to increase the level of detail of reality-based 3D urban models. It combines the established workflows from photogrammetry and procedural modeling in order to exploit distinct advantages of both approaches. The combination has advantages over purely automatic acquisition in terms of visual quality, accuracy and model semantics. Compared to manual modeling, procedural techniques can be much more time effective while maintaining the qualitative properties of the modeled environment. In addition, our method includes processes for procedurally adding additional features such as road and rail networks. The resulting models meet the increasing needs in urban environments for planning, inventory, and analysis

  3. Use of 3-D modeling in the early development phase of pectin tablets

    Linda Salbu

    2012-03-01

    Full Text Available This study examines the contribution of a 3-D model in an early development of pectin tablets. The aim of this work was to extract as much information of the compression behavior from as few tablets as possible. Pectins with various degrees of methoxylation (DM were studied (4%-72%. The compressibility was evaluated using classic “in-die” Heckel and Kawakita analyses in addition to the 3-D modeling. For validation purposes well-known reference materials were included. 3-D modeling applied to data of single tablets yielded some information on their compressibility. When several tablets with different maximum relative densities (p rel, max were included, no additional information was obtained through classic evaluation. However, the 3-Dmodel provided additional information through the shape of the 3-D parameter plot. Pectins with a DM $ 25% consolidated predominantly by elastic deformation similarly to the 3-D parameter plot ofpregelatinized starch (PGS. The 3-D analysis also suggests some degree of fragmentation and, for some of the low-methoxylated pectins (DM <= 10%, viscoelastic deformation. This study showed that by applying 3-D modeling it is possible to differentiate between elastic and viscoelastic materials for tablets with different p rel,max values.

  4. Development of hybrid 3-D hydrological modeling for the NCAR Community Earth System Model (CESM)

    Zeng, Xubin [Univ. of Arizona, Tucson, AZ (United States); Troch, Peter [Univ. of Arizona, Tucson, AZ (United States); Pelletier, Jon [Univ. of Arizona, Tucson, AZ (United States); Niu, Guo-Yue [Univ. of Arizona, Tucson, AZ (United States); Gochis, David [NCAR Research Applications Lab., Boulder, CO (United States)

    2015-11-15

    This is the Final Report of our four-year (3-year plus one-year no cost extension) collaborative project between the University of Arizona (UA) and the National Center for Atmospheric Research (NCAR). The overall objective of our project is to develop and evaluate the first hybrid 3-D hydrological model with a horizontal grid spacing of 1 km for the NCAR Community Earth System Model (CESM).

  5. Modeling heterogeneous materials failure: 3D meso-scale models with embedded discontinuities

    Benkemoun, Nathan; Hautefeuille, Martin; Colliat, Jean-Baptiste; Ibrahimbegovic, Adnan

    2010-01-01

    We present a meso-scale model for failure of heterogeneous quasi-brittle materials. The model problem of heterogeneous materials that is addressed in detail is based on two-phase 3D representation of reinforced heterogeneous materials, such as concrete, where the inclusions are melt within the matrix. The quasi-brittle failure mechanisms are described by the spatial truss representation, which is defined by the chosen Voronoi mesh. In order to explicitly incorporate heterogeneities with no ne...

  6. Modeling facilities Architecture and Design using transfer files from AutoCAD to 3d Max Designe

    Hnitetska, T.; National Aviation University, Kyiv, Ukraine; Hnitetska, G. O.; National Aviation University, Kyiv, Ukraine

    2014-01-01

    This work is devoted to the possibility of modeling objects ofarchitecture and design in a single information space of two graphical editors AutoCAD and 3d Max Designe. Consider ways to create 3d objects in various ways, and automatic modification of 3d model in 3d Max Designe in amending its plan in AutoCAD.

  7. A micromechanics constitutive model of transformation plasticity with shear and dilatation effect

    Sun, Q. P.; Hwang, K. C.; Yu, S. W.

    B ASED on micromechanics, thermodynamics and microscale t → m transformation mechanism considerations a micromechanics constitutive model which takes into account both the dilatation and shear effects of the transformation is proposed to describe the plastic, pseudoelastic and shape memory behaviors of structural ceramics during transformation under different temperatures. In the derivation, a constitutive element (representative material sample) was used which contains many of the transformed m-ZrO 2 grains or precipitates as the second phase inclusions embedded in an elastic matrix. Under some basic assumptions, analytic expressions for the Helmholtz and complementary free energy of the constitutive element are derived in a self-consistent manner by using the Mori-Tanaka method which takes into account the interaction between the transformed inclusions. The derived free energy is a function of externally applied macroscopic stress (or strain), temperature, volume fraction of transformed phase and the averaged stressfree transformation strain (eigenstrain) of all the transformed inclusions in the constitutive element, the latter two quantities being considered to be the internal variables describing the micro-structural rearrangement in the constitutive element. In the framework of the Hill-Rice internal variable constitutive theory, the transformation yield function and incremental stress strain relations, in analogy to the theory of metal plasticity, for proportional and non-proportional loading histories are derived, respectively. The theoretical predictions are compared with the available experimental data of Mg-PSZ and Ce-TZP polycrystalline toughening ceramics.

  8. New Algorithm for 3D Facial Model Reconstruction and Its Application in Virtual Reality

    Rong-Hua Liang; Zhi-Geng Pan; Chun Chen

    2004-01-01

    3D human face model reconstruction is essential to the generation of facial animations that is widely used in the field of virtual reality(VR).The main issues of 3D facial model reconstruction based on images by vision technologies are in twofold: one is to select and match the corresponding features of face from two images with minimal interaction and the other is to generate the realistic-looking human face model.In this paper,a new algorithm for realistic-looking face reconstruction is presented based on stereo vision.Firstly,a pattern is printed and attached to a planar surface for camera calibration,and corners generation and corners matching between two images are performed by integrating modified image pyramid Lucas-Kanade(PLK)algorithm and local adjustment algorithm,and then 3D coordinates of corners are obtained by 3D reconstruction.Individual face model is generated by the deformation of general 3D model and interpolation of the features.Finally,realisticlooking human face model is obtained after texture mapping and eyes modeling.In addition,some application examples in the field of VR are given.Experimental result shows that the proposed algorithm is robust and the 3D model is photo-realistic.

  9. Use of 3D printed models in medical education: A randomized control trial comparing 3D prints versus cadaveric materials for learning external cardiac anatomy.

    Lim, Kah Heng Alexander; Loo, Zhou Yaw; Goldie, Stephen J; Adams, Justin W; McMenamin, Paul G

    2016-05-01

    Three-dimensional (3D) printing is an emerging technology capable of readily producing accurate anatomical models, however, evidence for the use of 3D prints in medical education remains limited. A study was performed to assess their effectiveness against cadaveric materials for learning external cardiac anatomy. A double blind randomized controlled trial was undertaken on undergraduate medical students without prior formal cardiac anatomy teaching. Following a pre-test examining baseline external cardiac anatomy knowledge, participants were randomly assigned to three groups who underwent self-directed learning sessions using either cadaveric materials, 3D prints, or a combination of cadaveric materials/3D prints (combined materials). Participants were then subjected to a post-test written by a third party. Fifty-two participants completed the trial; 18 using cadaveric materials, 16 using 3D models, and 18 using combined materials. Age and time since completion of high school were equally distributed between groups. Pre-test scores were not significantly different (P = 0.231), however, post-test scores were significantly higher for 3D prints group compared to the cadaveric materials or combined materials groups (mean of 60.83% vs. 44.81% and 44.62%, P = 0.010, adjusted P = 0.012). A significant improvement in test scores was detected for the 3D prints group (P = 0.003) but not for the other two groups. The finding of this pilot study suggests that use of 3D prints do not disadvantage students relative to cadaveric materials; maximally, results suggest that 3D may confer certain benefits to anatomy learning and supports their use and ongoing evaluation as supplements to cadaver-based curriculums. Anat Sci Educ 9: 213-221. © 2015 American Association of Anatomists. PMID:26468636

  10. Micromechanical investigation of soil plasticity using a discrete model of polygonal particles

    Alonso-Marroquin Fernando

    2008-01-01

    Full Text Available The mechanical behavior of soils has been traditionally described using continuum-mechanics-based models. These are empirical relations based on laboratory tests of soil specimens. The investigation of the soils at the grain scale using discrete element models has become possible in recent years. These models have provided valuable understanding of many micromechanical aspects of soil deformation. The aim of this work is to draw together these two approaches in the investigation of the plastic deformation of non-cohesive soils. A simple discrete element model has been used to evaluate the effect of anisotropy, force chains, and sliding contacts on different aspects of soil plasticity: dilatancy, shear bands, ratcheting etc. The discussion of these aspects raises important questions such as the width of shear bands, the origin of the stress-dilatancy relation, and the existence of a purely elastic regime in the deformation of granular materials.

  11. Micromechanical modeling of viscoelastic voided composites in the low-frequency approximation.

    Haberman, Michael R; Berthelot, Yves H; Jarzynski, J; Cherkaoui, Mohammed

    2002-11-01

    The self-consistent model of Cherkaoui et al. [J. Eng. Mater. Technol. 116, 274-278 (1994)] is used to compute the effective material moduli of a viscoelastic material containing coated spherical inclusions. Losses are taken into account by introducing the frequency-dependent, complex shear modulus of the viscoelastic matrix. Mode conversion appears through the localization tensors that govern the micromechanical behavior near the inclusions. The results are compared with the scattering model and the data of Baird et al. [J. Acoust. Soc. Am. 105, 1527-1538 (1999)]. The two models are in good agreement. The advantage of the self-consistent model is that it is applicable to the case of nonspherical inclusions embedded in anisotropic materials. PMID:12430805

  12. 3D Gravity Modeling of Complex Salt Features in the Southern Gulf of Mexico

    Mauricio Nava-Flores

    2016-01-01

    Full Text Available We present a three-dimensional (3D gravity modeling and inversion approach and its application to complex geological settings characterized by several allochthonous salt bodies embedded in terrigenous sediments. Synthetic gravity data were computed for 3D forward modeling of salt bodies interpreted from Prestack Depth Migration (PSDM seismic images. Density contrasts for the salt bodies surrounded by sedimentary units are derived from density-compaction curves for the northern Gulf of Mexico’s oil exploration surveys. By integrating results from different shape- and depth-source estimation algorithms, we built an initial model for the gravity anomaly inversion. We then applied a numerically optimized 3D simulated annealing gravity inversion method. The inverted 3D density model successfully retrieves the synthetic salt body ensemble. Results highlight the significance of integrating high-resolution potential field data for salt and subsalt imaging in oil exploration.

  13. A Secret 3D Model Sharing Scheme with Reversible Data Hiding Based on Space Subdivision

    Tsai, Yuan-Yu

    2016-03-01

    Secret sharing is a highly relevant research field, and its application to 2D images has been thoroughly studied. However, secret sharing schemes have not kept pace with the advances of 3D models. With the rapid development of 3D multimedia techniques, extending the application of secret sharing schemes to 3D models has become necessary. In this study, an innovative secret 3D model sharing scheme for point geometries based on space subdivision is proposed. Each point in the secret point geometry is first encoded into a series of integer values that fall within [0, p - 1], where p is a predefined prime number. The share values are derived by substituting the specified integer values for all coefficients of the sharing polynomial. The surface reconstruction and the sampling concepts are then integrated to derive a cover model with sufficient model complexity for each participant. Finally, each participant has a separate 3D stego model with embedded share values. Experimental results show that the proposed technique supports reversible data hiding and the share values have higher levels of privacy and improved robustness. This technique is simple and has proven to be a feasible secret 3D model sharing scheme.

  14. 3D integrated modeling approach to geo-engineering objects of hydraulic and hydroelectric projects

    2007-01-01

    Aiming at 3D modeling and analyzing problems of hydraulic and hydroelectric en-gineering geology,a complete scheme of solution is presented. The first basis was NURBS-TIN-BRep hybrid data structure. Then,according to the classified thought of the object-oriented technique,the different 3D models of geological and engi-neering objects were realized based on the data structure,including terrain class,strata class,fault class,and limit class;and the modeling mechanism was alterna-tive. Finally,the 3D integrated model was established by Boolean operations be-tween 3D geological objects and engineering objects. On the basis of the 3D model,a series of applied analysis techniques of hydraulic and hydroelectric engineering geology were illustrated. They include the visual modeling of rock-mass quality classification,the arbitrary slicing analysis of the 3D model,the geological analysis of the dam,and underground engineering. They provide powerful theoretical prin-ciples and technical measures for analyzing the geological problems encountered in hydraulic and hydroelectric engineering under complex geological conditions.

  15. 3D integrated modeling approach to geo-engineering objects of hydraulic and hydroelectric projects

    ZHONG DengHua; LI MingChao; LIU Jie

    2007-01-01

    Aiming at 3D modeling and analyzing problems of hydraulic and hydroelectric engineering geology, a complete scheme of solution is presented. The first basis was NURBS-TIN-BRep hybrid data structure. Then, according to the classified thought of the object-oriented technique, the different 3D models of geological and engineering objects were realized based on the data structure, including terrain class,strata class, fault class, and limit class; and the modeling mechanism was alternative. Finally, the 3D integrated model was established by Boolean operations between 3D geological objects and engineering objects. On the basis of the 3D model,a series of applied analysis techniques of hydraulic and hydroelectric engineering geology were illustrated. They include the visual modeling of rock-mass quality classification, the arbitrary slicing analysis of the 3D model, the geological analysis of the dam, and underground engineering. They provide powerful theoretical principles and technical measures for analyzing the geological problems encountered in hydraulic and hydroelectric engineering under complex geological conditions.

  16. 3D City Models and urban information: current issues and perspectives

    Billen, R; Cutting-Decelle, A.F.; Marina, O.; Almeida, J. P.; Caglioni, M.; Falcuet, G.; LEDUC, T; Metral, C; Moreau, G.; Perret, J.; San Jose, R.; Y. Yatskiv; Zlatanova, S.

    2014-01-01

    Considering sustainable development of cities implies investigating cities in a holistic way taking into account many interrelations between various urban or environmental issues. 3D city models are increasingly used in different cities and countries for an intended wide range of applications beyond mere visualization. Could these 3D City models be used to integrate urban and environmental knowledge? How could they be improved to fulfill such role? We believe that enriching the semantics of c...

  17. A 3D coupled hydro-mechanical granular model for the prediction of hot tearing formation

    Ludwig, A.; Sistaninia, M.; Phillion, A. B.; Drezet, J. -M.; Rappaz, M.

    2012-01-01

    A new 3D coupled hydro-mechanical granular model that simulates hot tearing formation in metallic alloys is presented. The hydro-mechanical model consists of four separate 3D modules. (I) The Solidification Module (SM) is used for generating the initial solid-liquid geometry. Based on a Voronoi tessellation of randomly distributed nucleation centers, this module computes solidification within each polyhedron using a finite element based solute diffusion calculation for each element within the...

  18. Numerical stability of coupling schemes in the 3d/0d modelling ofairflows and blood flows

    Fouchet-Incaux, Justine; Grandmont, Céline; Martin, Sebastien

    2014-01-01

    We consider models which are classically used in the simulation of airflows and blood flows andinvestigate the numerical stability of some discretization strategies. The geometrical complexity of the networksin which air/blood flows leads to a classical decomposition of two areas: a truncated 3D geometry correspondingto the largest contribution of the domain and a 0D part connected to the 3D part, modelling air/blood flowsin smaller airways/vessels. The resulting Navier-Stokes system in the 3...

  19. REMOTE VISUALIZATION AND NAVIGATION OF 3D MODELS OF ARCHEOLOGICAL SITES

    M. Callieri; Dellepiane, M; Scopigno, R.

    2015-01-01

    The remote visualization and navigation of 3D data directly inside the web browser is becoming a viable option, due to the recent efforts in standardizing the components for 3D rendering on the web platform. Nevertheless, handling complex models may be a challenge, especially when a more generic solution is needed to handle different cases. In particular, archeological and architectural models are usually hard to handle, since their navigation can be managed in several ways, and a co...

  20. Remote visualization and navigation of 3D models of archeological sites

    M. Callieri; Dellepiane, M; Scopigno, R.

    2015-01-01

    The remote visualization and navigation of 3D data directly inside the web browser is becoming a viable option, due to the recent efforts in standardizing the components for 3D rendering on the web platform. Nevertheless, handling complex models may be a challenge, especially when a more generic solution is needed to handle different cases. In particular, archeological and architectural models are usually hard to handle, since their navigation can be managed in several ways, and a co...

  1. 3D Gravity Modeling of Complex Salt Features in the Southern Gulf of Mexico

    Mauricio Nava-Flores; Carlos Ortiz-Aleman; Mauricio G. Orozco-del-Castillo; Jaime Urrutia-Fucugauchi; Alejandro Rodriguez-Castellanos; Carlos Couder-Castañeda; Alfredo Trujillo-Alcantara

    2016-01-01

    We present a three-dimensional (3D) gravity modeling and inversion approach and its application to complex geological settings characterized by several allochthonous salt bodies embedded in terrigenous sediments. Synthetic gravity data were computed for 3D forward modeling of salt bodies interpreted from Prestack Depth Migration (PSDM) seismic images. Density contrasts for the salt bodies surrounded by sedimentary units are derived from density-compaction curves for the northern Gulf of Mexic...

  2. A 3D Model as a Tool for Increasing the Effectiveness of E-Learning

    Valcheva, Donika; Todorova, Margarita; Asenov, Oleg

    2010-01-01

    The paper proposes a 3D model which could be used as a tool for increasing the effectiveness of e-learning. It also offers an approach for applying this 3D model for increasing the effectiveness of e-learning. This approach has methodical value in line with the idea for dynamic adjustment of the individual learning profile of each student in order to increase the personalization level in the e-learning process.

  3. Examining the Relationship between Forces During Stereolithography 3D Printing and Geometric Parameters of the Model

    Kovalenko Iaroslav; Garan Maryna; Shynkarenko Andrii; Zelený Petr; Šafka Jiří

    2016-01-01

    In the case of stereolithography 3D printing technology, detaching formed model from the tank with photopolymer is a lengthy process. Forces, which appear during removing of solid photopolymer layerformed in stereolithography 3D DLP printer, can destroy the built model. In this article the detachment force is measured, obtained results arestatistically analyzed and relation between detach force, area of produced layer and thickness of the layer are verified. Linear dependence between detach f...

  4. 3D MODELLING AND INTERACTIVE WEB-BASED VISUALIZATION OF CULTURAL HERITAGE OBJECTS

    Koeva, M. N.

    2016-01-01

    Nowadays, there are rapid developments in the fields of photogrammetry, laser scanning, computer vision and robotics, together aiming to provide highly accurate 3D data that is useful for various applications. In recent years, various LiDAR and image-based techniques have been investigated for 3D modelling because of their opportunities for fast and accurate model generation. For cultural heritage preservation and the representation of objects that are important for tourism and their interact...

  5. Quantitative Analysis and Modeling of 3-D TSV-Based Power Delivery Architectures

    He, Huanyu

    As 3-D technology enters the commercial production stage, it is critical to understand different 3-D power delivery architectures on the stacked ICs and packages with through-silicon vias (TSVs). Appropriate design, modeling, analysis, and optimization approaches of the 3-D power delivery system are of foremost significance and great practical interest to the semiconductor industry in general. Based on fundamental physics of 3-D integration components, the objective of this thesis work is to quantitatively analyze the power delivery for 3D-IC systems, develop appropriate physics-based models and simulation approaches, understand the key issues, and provide potential solutions for design of 3D-IC power delivery architectures. In this work, a hybrid simulation approach is adopted as the major approach along with analytical method to examine 3-D power networks. Combining electromagnetic (EM) tools and circuit simulators, the hybrid approach is able to analyze and model micrometer-scale components as well as centimeter-scale power delivery system with high accuracy and efficiency. The parasitic elements of the components on the power delivery can be precisely modeled by full-wave EM solvers. Stack-up circuit models for the 3-D power delivery networks (PDNs) are constructed through a partition and assembly method. With the efficiency advantage of the SPICE circuit simulation, the overall 3-D system power performance can be analyzed and the 3-D power delivery architectures can be evaluated in a short computing time. The major power delivery issues are the voltage drop (IR drop) and voltage noise. With a baseline of 3-D power delivery architecture, the on-chip PDNs of TSV-based chip stacks are modeled and analyzed for the IR drop and AC noise. The basic design factors are evaluated using the hybrid approach, such as the number of stacked chips, the number of TSVs, and the TSV arrangement. Analytical formulas are also developed to evaluate the IR drop in 3-D chip stack in

  6. Possibilities of Preoperative Medical Models Made by 3D Printing or Additive Manufacturing

    2016-01-01

    Most of the 3D printing applications of preoperative models have been focused on dental and craniomaxillofacial area. The purpose of this paper is to demonstrate the possibilities in other application areas and give examples of the current possibilities. The approach was to communicate with the surgeons with different fields about their needs related preoperative models and try to produce preoperative models that satisfy those needs. Ten different kinds of examples of possibilities were selected to be shown in this paper and aspects related imaging, 3D model reconstruction, 3D modeling, and 3D printing were presented. Examples were heart, ankle, backbone, knee, and pelvis with different processes and materials. Software types required were Osirix, 3Data Expert, and Rhinoceros. Different 3D printing processes were binder jetting and material extrusion. This paper presents a wide range of possibilities related to 3D printing of preoperative models. Surgeons should be aware of the new possibilities and in most cases help from mechanical engineering side is needed. PMID:27433470

  7. Possibilities of Preoperative Medical Models Made by 3D Printing or Additive Manufacturing

    Mika Salmi

    2016-01-01

    Full Text Available Most of the 3D printing applications of preoperative models have been focused on dental and craniomaxillofacial area. The purpose of this paper is to demonstrate the possibilities in other application areas and give examples of the current possibilities. The approach was to communicate with the surgeons with different fields about their needs related preoperative models and try to produce preoperative models that satisfy those needs. Ten different kinds of examples of possibilities were selected to be shown in this paper and aspects related imaging, 3D model reconstruction, 3D modeling, and 3D printing were presented. Examples were heart, ankle, backbone, knee, and pelvis with different processes and materials. Software types required were Osirix, 3Data Expert, and Rhinoceros. Different 3D printing processes were binder jetting and material extrusion. This paper presents a wide range of possibilities related to 3D printing of preoperative models. Surgeons should be aware of the new possibilities and in most cases help from mechanical engineering side is needed.

  8. Possibilities of Preoperative Medical Models Made by 3D Printing or Additive Manufacturing.

    Salmi, Mika

    2016-01-01

    Most of the 3D printing applications of preoperative models have been focused on dental and craniomaxillofacial area. The purpose of this paper is to demonstrate the possibilities in other application areas and give examples of the current possibilities. The approach was to communicate with the surgeons with different fields about their needs related preoperative models and try to produce preoperative models that satisfy those needs. Ten different kinds of examples of possibilities were selected to be shown in this paper and aspects related imaging, 3D model reconstruction, 3D modeling, and 3D printing were presented. Examples were heart, ankle, backbone, knee, and pelvis with different processes and materials. Software types required were Osirix, 3Data Expert, and Rhinoceros. Different 3D printing processes were binder jetting and material extrusion. This paper presents a wide range of possibilities related to 3D printing of preoperative models. Surgeons should be aware of the new possibilities and in most cases help from mechanical engineering side is needed. PMID:27433470

  9. Vulnerability mapping of groundwater contamination based on 3D lithostratigraphical models of porous aquifers.

    Ducci, Daniela; Sellerino, Mariangela

    2013-03-01

    The aim of this paper is to apply a methodology in order to reconstruct a lithostratigraphic 3D model of an aquifer so as to define some parameters involved in the evaluation of the aquifer vulnerability to contamination of porous aquifers. The DRASTIC, SINTACS and AVI methods have been applied to an alluvial coastal aquifer of southern Italy. The stratigraphic reconstruction has been obtained by interpolating stratigraphic data from more than one borehole per 2 km. The lithostratigraphic reconstruction of a 3D model has been applied and used for three-dimensional or two-dimensional representations. In the first two methods, the layers of the vadose zone and the aquifer media have been evaluated not only by the interpolation of the single boreholes and piezometers, but also by the 3D model, assigning the scores of the parameters of each layer of the 3D model. The comparison between the maps constructed from the weighted values in each borehole and the maps deriving from the attribution of the values of each layer of the 3D model, highlights that the second representation avoids or minimizes the "bullseye" effect linked to the presence of boreholes with higher or lower values. The study has demonstrated that it is possible to integrate a 3D lithostratigraphic model of an aquifer in the assessment of the parameters involved in the evaluation of the aquifer vulnerability to contamination by Point Count System methods. PMID:23391897

  10. Micromechanical modeling of sulphate corrosion in concrete: Influence of ettringite forming reaction

    Basista M.

    2008-01-01

    Full Text Available Two micromechanical models are developed to simulate the expansion of cementitious composites exposed to external sulphate attack. The difference between the two models lies in the form of chemical reaction of the ettringite formation (through-solution vs. topochemical. In both models the Fick's second law with reaction term is assumed to govern the transport of the sulphate ions. The Eshelby solution and the equivalent inclusion method are used to determine the eigenstrain of the expanding ettringite crystals in microcracked hardened cement paste. The degradation of transport properties is studied in the effective medium and the percolation regime. An initial-boundary value problem (2D of expansion of a mortar specimen immersed in a sodium sulphate solution is solved and compared with available test data. The obtained results indicate that the topochemical mechanism is the one capable of producing the experimentally observed amount of expansion.

  11. A micromechanics-based finite element model for the constitutive behavior of polycrystalline ferromagnets

    Binglei Wang; Changqing Chen; Yapeng Shen

    2006-01-01

    A micromechanics-based finite element model for the constitutive behavior of polycrystalline ferromagnets is developed. In the model, the polycrystalline solid is assumed to comprise numerous single crystals with randomly distributed crystallographic orientations, and the single crystals, in turn, consist of ferromagnetic domains, each of which is represented by a cubic element. The dipole directions of the domains are randomly assigned to simulate the crystallographic nature of ferromagnetic polycrystals. A switching criterion for the domains is specified at the microscopic level. The macroscopic constitutive behavior is obtained by averaging the microscopic/local behavior of each domain. The developed model has been applied to the simulation of a ferromagnetic material. With appropriate material parameters adopted, hysteresis loops of the predicted magnetic induction versus magnetic field and those of the strain versus magnetic field are shown to agree well with experimental observations.

  12. Modeling Images of Natural 3D Surfaces: Overview and Potential Applications

    Jalobeanu, Andre; Kuehnel, Frank; Stutz, John

    2004-01-01

    Generative models of natural images have long been used in computer vision. However, since they only describe the of 2D scenes, they fail to capture all the properties of the underlying 3D world. Even though such models are sufficient for many vision tasks a 3D scene model is when it comes to inferring a 3D object or its characteristics. In this paper, we present such a generative model, incorporating both a multiscale surface prior model for surface geometry and reflectance, and an image formation process model based on realistic rendering, the computation of the posterior model parameter densities, and on the critical aspects of the rendering. We also how to efficiently invert the model within a Bayesian framework. We present a few potential applications, such as asteroid modeling and Planetary topography recovery, illustrated by promising results on real images.

  13. Applications of Panoramic Images: from 720° Panorama to Interior 3d Models of Augmented Reality

    Lee, I.-C.; Tsai, F.

    2015-05-01

    A series of panoramic images are usually used to generate a 720° panorama image. Although panoramic images are typically used for establishing tour guiding systems, in this research, we demonstrate the potential of using panoramic images acquired from multiple sites to create not only 720° panorama, but also three-dimensional (3D) point clouds and 3D indoor models. Since 3D modeling is one of the goals of this research, the location of the panoramic sites needed to be carefully planned in order to maintain a robust result for close-range photogrammetry. After the images are acquired, panoramic images are processed into 720° panoramas, and these panoramas which can be used directly as panorama guiding systems or other applications. In addition to these straightforward applications, interior orientation parameters can also be estimated while generating 720° panorama. These parameters are focal length, principle point, and lens radial distortion. The panoramic images can then be processed with closerange photogrammetry procedures to extract the exterior orientation parameters and generate 3D point clouds. In this research, VisaulSFM, a structure from motion software is used to estimate the exterior orientation, and CMVS toolkit is used to generate 3D point clouds. Next, the 3D point clouds are used as references to create building interior models. In this research, Trimble Sketchup was used to build the model, and the 3D point cloud was added to the determining of locations of building objects using plane finding procedure. In the texturing process, the panorama images are used as the data source for creating model textures. This 3D indoor model was used as an Augmented Reality model replacing a guide map or a floor plan commonly used in an on-line touring guide system. The 3D indoor model generating procedure has been utilized in two research projects: a cultural heritage site at Kinmen, and Taipei Main Station pedestrian zone guidance and navigation system. The

  14. 3D Modeling Activity for Novel High Power Electron Guns at SLAC

    Krasnykh, Anatoly K

    2003-01-01

    The next generation of powerful electronic devices requires new approaches to overcome the known limitations of existing tube technology. Multi-beam and sheet beam approaches are novel concepts for the high power microwave devices. Direct and indirect modeling methods are being developed at SLAC to meet the new requirements in the 3D modeling. The direct method of solving of Poisson's equations for the multi-beam and sheet beam guns is employed in the TOPAZ 3D tool. The combination of TOPAZ 2D and EGUN (in the beginning) with MAFIA 3D and MAGIC 3D (at the end) is used in an indirect method to model the high power electron guns. Both methods complement each other to get reliable representation of the beam trajectories. Several gun ideas are under consideration at the present time. The collected results of these simulations are discussed.

  15. UAV PHOTOGRAMMETRY FOR MAPPING AND 3D MODELING – CURRENT STATUS AND FUTURE PERSPECTIVES

    F. Remondino

    2012-09-01

    Full Text Available UAV platforms are nowadays a valuable source of data for inspection, surveillance, mapping and 3D modeling issues. New applications in the short- and close-range domain are introduced, being the UAVs a low-cost alternatives to the classical manned aerial photogrammetry. Rotary or fixed wing UAVs, capable of performing the photogrammetric data acquisition with amateur or SLR digital cameras, can fly in manual, semi-automated and autonomous modes. With a typical photogrammetric pipeline, 3D results like DSM/DTM, contour lines, textured 3D models, vector data, etc. can be produced, in a reasonable automated way. The paper reports the latest developments of UAV image processing methods for photogrammetric applications, mapping and 3D modeling issues. Automation is nowadays necessary and feasible at the image orientation, DSM generation and orthophoto production stages, while accurate feature extraction is still an interactive procedure. New perspectives are also addressed.

  16. Evaluation of the 3d Urban Modelling Capabilities in Geographical Information Systems

    Dogru, A. O.; Seker, D. Z.

    2010-12-01

    Geographical Information System (GIS) Technology, which provides successful solutions to basic spatial problems, is currently widely used in 3 dimensional (3D) modeling of physical reality with its developing visualization tools. The modeling of large and complicated phenomenon is a challenging problem in terms of computer graphics currently in use. However, it is possible to visualize that phenomenon in 3D by using computer systems. 3D models are used in developing computer games, military training, urban planning, tourism and etc. The use of 3D models for planning and management of urban areas is very popular issue of city administrations. In this context, 3D City models are produced and used for various purposes. However the requirements of the models vary depending on the type and scope of the application. While a high level visualization, where photorealistic visualization techniques are widely used, is required for touristy and recreational purposes, an abstract visualization of the physical reality is generally sufficient for the communication of the thematic information. The visual variables, which are the principle components of cartographic visualization, such as: color, shape, pattern, orientation, size, position, and saturation are used for communicating the thematic information. These kinds of 3D city models are called as abstract models. Standardization of technologies used for 3D modeling is now available by the use of CityGML. CityGML implements several novel concepts to support interoperability, consistency and functionality. For example it supports different Levels-of-Detail (LoD), which may arise from independent data collection processes and are used for efficient visualization and efficient data analysis. In one CityGML data set, the same object may be represented in different LoD simultaneously, enabling the analysis and visualization of the same object with regard to different degrees of resolution. Furthermore, two CityGML data sets

  17. Land surface temperature from INSAT-3D imager data: Retrieval and assimilation in NWP model

    Singh, Randhir; Singh, Charu; Ojha, Satya P.; Kumar, A. Senthil; Kishtawal, C. M.; Kumar, A. S. Kiran

    2016-06-01

    A new algorithm is developed for retrieving the land surface temperature (LST) from the imager radiance observations on board geostationary operational Indian National Satellite (INSAT-3D). The algorithm is developed using the two thermal infrared channels (TIR1 10.3-11.3 µm and TIR2 11.5-12.5 µm) via genetic algorithm (GA). The transfer function that relates LST and thermal radiances is developed using radiative transfer model simulated database. The developed algorithm has been applied on the INSAT-3D observed radiances, and LST retrieved from the developed algorithm has been validated with Moderate Resolution Imaging Spectroradiometer land surface temperature (LST) product. The developed algorithm demonstrates a good accuracy, without significant bias and standard deviations of 1.78 K and 1.41 K during daytime and nighttime, respectively. The newly proposed algorithm performs better than the operational algorithm used for LST retrieval from INSAT-3D satellite. Further, a set of data assimilation experiments is conducted with the Weather Research and Forecasting (WRF) model to assess the impact of INSAT-3D LST on model forecast skill over the Indian region. The assimilation experiments demonstrated a positive impact of the assimilated INSAT-3D LST, particularly on the lower tropospheric temperature and moisture forecasts. The temperature and moisture forecast errors are reduced (as large as 8-10%) with the assimilation of INSAT-3D LST, when compared to forecasts that were obtained without the assimilation of INSAT-3D LST. Results of the additional experiments of comparative performance of two LST products, retrieved from operational and newly proposed algorithms, indicate that the impact of INSAT-3D LST retrieved using newly proposed algorithm is significantly larger compared to the impact of INSAT-3D LST retrieved using operational algorithm.

  18. Stereo-vision based 3D modeling for unmanned ground vehicles

    Se, Stephen; Jasiobedzki, Piotr

    2007-04-01

    Instant Scene Modeler (iSM) is a vision system for generating calibrated photo-realistic 3D models of unknown environments quickly using stereo image sequences. Equipped with iSM, Unmanned Ground Vehicles (UGVs) can capture stereo images and create 3D models to be sent back to the base station, while they explore unknown environments. Rapid access to 3D models will increase the operator situational awareness and allow better mission planning and execution, as the models can be visualized from different views and used for relative measurements. Current military operations of UGVs in urban warfare threats involve the operator hand-sketching the environment from live video feed. iSM eliminates the need for an additional operator as the 3D model is generated automatically. The photo-realism of the models enhances the situational awareness of the mission and the models can also be used for change detection. iSM has been tested on our autonomous vehicle to create photo-realistic 3D models while the rover traverses in unknown environments. Moreover, a proof-of-concept iSM payload has been mounted on an iRobot PackBot with Wayfarer technology, which is equipped with autonomous urban reconnaissance capabilities. The Wayfarer PackBot UGV uses wheel odometry for localization and builds 2D occupancy grid maps from a laser sensor. While the UGV is following walls and avoiding obstacles, iSM captures and processes images to create photo-realistic 3D models. Experimental results show that iSM can complement Wayfarer PackBot's autonomous navigation in two ways. The photo-realistic 3D models provide better situational awareness than 2D grid maps. Moreover, iSM also recovers the camera motion, also known as the visual odometry. As wheel odometry error grows over time, this can help improve the wheel odometry for better localization.

  19. Automatic Texture Reconstruction of 3d City Model from Oblique Images

    Kang, Junhua; Deng, Fei; Li, Xinwei; Wan, Fang

    2016-06-01

    In recent years, the photorealistic 3D city models are increasingly important in various geospatial applications related to virtual city tourism, 3D GIS, urban planning, real-estate management. Besides the acquisition of high-precision 3D geometric data, texture reconstruction is also a crucial step for generating high-quality and visually realistic 3D models. However, most of the texture reconstruction approaches are probably leading to texture fragmentation and memory inefficiency. In this paper, we introduce an automatic framework of texture reconstruction to generate textures from oblique images for photorealistic visualization. Our approach include three major steps as follows: mesh parameterization, texture atlas generation and texture blending. Firstly, mesh parameterization procedure referring to mesh segmentation and mesh unfolding is performed to reduce geometric distortion in the process of mapping 2D texture to 3D model. Secondly, in the texture atlas generation step, the texture of each segmented region in texture domain is reconstructed from all visible images with exterior orientation and interior orientation parameters. Thirdly, to avoid color discontinuities at boundaries between texture regions, the final texture map is generated by blending texture maps from several corresponding images. We evaluated our texture reconstruction framework on a dataset of a city. The resulting mesh model can get textured by created texture without resampling. Experiment results show that our method can effectively mitigate the occurrence of texture fragmentation. It is demonstrated that the proposed framework is effective and useful for automatic texture reconstruction of 3D city model.

  20. METHODOLOGY IMPLEMENTED FOR THE 3D-SEISMIC MODELLING USING GOCAD AND NORSAR 3D SOFTWARE APPLIED TO COMPLEX AREAS IN THE LLANOS FOOTHILLS

    Piedrahita Carlos

    2007-06-01

    Full Text Available A methodology has been applied in order to use seismic modeling and generate synthetic data which are compared with results from field data. This methodology has been applied to the Sirirí area and
    subsequently it has been extended to other geographic areas. To fully develop this methodology, the GOCAD and 3D NORSAR software packages were used to build respectively the geological and 3D seismic models. This methodology involves making structural modeling by edition of the different objects (horizons and faults in the structural module of GOCAD, with the help of available seismic and well data, in order to be consistent with reality. From this result a valid seismic model is imported to NORSAR 3D for making the seismic modeling, using ray tracing to get synthetic data. Finally, this information is compared with field data that has been processed.