WorldWideScience

Sample records for 3d inhomogeneous models

  1. 3D modeling of GJ1214b's atmosphere: formation of inhomogeneous high clouds and observational implications

    Charnay, Benjamin; Misra, Amit; Leconte, Jérémy; Arney, Giada

    2015-01-01

    The warm sub-Neptune GJ1214b has a featureless transit spectrum which may be due to the presence of high and thick clouds or haze. Here, we simulate the atmosphere of GJ1214b with a 3D General Circulation Model for cloudy hydrogen-dominated atmospheres, including cloud radiative effects. We show that the atmospheric circulation is strong enough to transport micrometric cloud particles to the upper atmosphere and generally leads to a minimum of cloud at the equator. By scattering stellar light, clouds increase the planetary albedo to 0.4-0.6 and cool the atmosphere below 1 mbar. However, the heating by ZnS clouds leads to the formation of a stratospheric thermal inversion above 10 mbar, with temperatures potentially high enough on the dayside to evaporate KCl clouds. We show that flat transit spectra consistent with HST observations are possible if cloud particle radii are around 0.5 micron, and that such clouds should be optically thin at wavelengths > 3 microns. Using simulated cloudy atmospheres that fit th...

  2. 3D Digital Modelling

    Hundebøl, Jesper

    wave of new building information modelling tools demands further investigation, not least because of industry representatives' somewhat coarse parlance: Now the word is spreading -3D digital modelling is nothing less than a revolution, a shift of paradigm, a new alphabet... Research qeustions. Based...... on empirical probes (interviews, observations, written inscriptions) within the Danish construction industry this paper explores the organizational and managerial dynamics of 3D Digital Modelling. The paper intends to - Illustrate how the network of (non-)human actors engaged in the promotion (and arrest) of 3......D Modelling (in Denmark) stabilizes - Examine how 3D Modelling manifests itself in the early design phases of a construction project with a view to discuss the effects hereof for i.a. the management of the building process. Structure. The paper introduces a few, basic methodological concepts...

  3. Tangible 3D Modelling

    Hejlesen, Aske K.; Ovesen, Nis

    2012-01-01

    This paper presents an experimental approach to teaching 3D modelling techniques in an Industrial Design programme. The approach includes the use of tangible free form models as tools for improving the overall learning. The paper is based on lecturer and student experiences obtained through...

  4. Multifractal modelling and 3D lacunarity analysis

    This study presents a comparative evaluation of lacunarity of 3D grey level models with different types of inhomogeneity. A new method based on the 'Relative Differential Box Counting' was developed to estimate the lacunarity features of grey level volumes. To validate our method, we generated a set of 3D grey level multifractal models with random, anisotropic and hierarchical properties. Our method gives a lacunarity measurement correlated with the theoretical one and allows a better model classification compared with a classical approach.

  5. Multifractal modelling and 3D lacunarity analysis

    Hanen, Akkari, E-mail: bettaieb.hanen@topnet.t [Laboratoire de biophysique, TIM, Faculte de Medecine (Tunisia); Imen, Bhouri, E-mail: bhouri_imen@yahoo.f [Unite de recherche ondelettes et multifractals, Faculte des sciences (Tunisia); Asma, Ben Abdallah, E-mail: asma.babdallah@cristal.rnu.t [Laboratoire de biophysique, TIM, Faculte de Medecine (Tunisia); Patrick, Dubois, E-mail: pdubois@chru-lille.f [INSERM, U 703, Lille (France); Hedi, Bedoui Mohamed, E-mail: medhedi.bedoui@fmm.rnu.t [Laboratoire de biophysique, TIM, Faculte de Medecine (Tunisia)

    2009-09-28

    This study presents a comparative evaluation of lacunarity of 3D grey level models with different types of inhomogeneity. A new method based on the 'Relative Differential Box Counting' was developed to estimate the lacunarity features of grey level volumes. To validate our method, we generated a set of 3D grey level multifractal models with random, anisotropic and hierarchical properties. Our method gives a lacunarity measurement correlated with the theoretical one and allows a better model classification compared with a classical approach.

  6. 3D modelling and recognition

    Rodrigues, Marcos; Robinson, Alan; Alboul, Lyuba; Brink, Willie

    2006-01-01

    3D face recognition is an open field. In this paper we present a method for 3D facial recognition based on Principal Components Analysis. The method uses a relatively large number of facial measurements and ratios and yields reliable recognition. We also highlight our approach to sensor development for fast 3D model acquisition and automatic facial feature extraction.

  7. 3D Face Appearance Model

    Lading, Brian; Larsen, Rasmus; Åström, Kalle

    2006-01-01

    We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}......We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}...

  8. 3D Face Apperance Model

    Lading, Brian; Larsen, Rasmus; Astrom, K

    2006-01-01

    We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations......We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations...

  9. Making Inexpensive 3-D Models

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  10. 3D Face Appearance Model

    Lading, Brian; Larsen, Rasmus; Åström, Kalle

    2006-01-01

    We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}

  11. 3D Face Apperance Model

    Lading, Brian; Larsen, Rasmus; Astrom, K

    2006-01-01

    We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations

  12. Making Inexpensive 3-D Models

    Manos, Harry

    2016-03-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the TPT theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity well tailored to specific class lessons. Most of the supplies are readily available in the home or at school: rubbing alcohol, a rag, two colors of spray paint, art brushes, and masking tape. The cost of these supplies, if you don't have them, is less than 20.

  13. Post processing of 3D models for 3D printing

    Pikovnik, Tomaž

    2015-01-01

    According to the opinion of some experts the additive manufacturing or 3D printing will change manufacturing industry, because any individual could print their own model according to his or her wishes. In this graduation thesis some of the additive manufacturing technologies are presented. Furthermore in the production of house scale model in 1:100 is presented, starting from modeling to printing. Special attention is given to postprocessing of the building model elements us...

  14. Modular 3-D Transport model

    MT3D was first developed by Chunmiao Zheng in 1990 at S.S. Papadopulos & Associates, Inc. with partial support from the U.S. Environmental Protection Agency (USEPA). Starting in 1990, MT3D was released as a pubic domain code from the USEPA. Commercial versions with enhanced capab...

  15. Crowdsourcing Based 3d Modeling

    Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.

    2016-06-01

    Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  16. 3D modelling for multipurpose cadastre

    Abduhl Rahman, A.; Van Oosterom, P.J.M.; Hua, T.C.; Sharkawi, K.H.; Duncan, E.E.; Azri, N.; Hassan, M.I.

    2012-01-01

    Three-dimensional (3D) modelling of cadastral objects (such as legal spaces around buildings, around utility networks and other spaces) is one of the important aspects for a multipurpose cadastre (MPC). This paper describes the 3D modelling of the objects for MPC and its usage to the knowledge of 3D

  17. Face Detection with a 3D Model

    Barbu, Adrian; Lay, Nathan; Gramajo, Gary

    2014-01-01

    This paper presents a part-based face detection approach where the spatial relationship between the face parts is represented by a hidden 3D model with six parameters. The computational complexity of the search in the six dimensional pose space is addressed by proposing meaningful 3D pose candidates by image-based regression from detected face keypoint locations. The 3D pose candidates are evaluated using a parameter sensitive classifier based on difference features relative to the 3D pose. A...

  18. FROM 3D MODEL DATA TO SEMANTICS

    My Abdellah Kassimi

    2012-01-01

    Full Text Available The semantic-based 3D models retrieval systems have become necessary since the increase of 3D modelsdatabases. In this paper, we propose a new method for the mapping problem between 3D model data andsemantic data involved in semantic based retrieval for 3D models given by polygonal meshes. First, wefocused on extracting invariant descriptors from the 3D models and analyzing them to efficient semanticannotation and to improve the retrieval accuracy. Selected shape descriptors provide a set of termscommonly used to describe visually a set of objects using linguistic terms and are used as semanticconcept to label 3D model. Second, spatial relationship representing directional, topological anddistance relationships are used to derive other high-level semantic features and to avoid the problem ofautomatic 3D model annotation. Based on the resulting semantic annotation and spatial concepts, anontology for 3D model retrieval is constructed and other concepts can be inferred. This ontology is usedto find similar 3D models for a given query model. We adopted the query by semantic example approach,in which the annotation is performed mostly automatically. The proposed method is implemented in our3D search engine (SB3DMR, tested using the Princeton Shape Benchmark Database.

  19. The 3D-city model

    Holmgren, Steen; Rüdiger, Bjarne; Tournay, Bruno

    2001-01-01

    We have worked with the construction and use of 3D city models for about ten years. This work has given us valuable experience concerning model methodology. In addition to this collection of knowledge, our perception of the concept of city models has changed radically. In order to explain...... of 3D city models....

  20. Spatial data modelling for 3D GIS

    Abdul-Rahman, Alias

    2007-01-01

    This book covers fundamental aspects of spatial data modelling specifically on the aspect of three-dimensional (3D) modelling and structuring. Realisation of ""true"" 3D GIS spatial system needs a lot of effort, and the process is taking place in various research centres and universities in some countries. The development of spatial data modelling for 3D objects is the focus of this book.

  1. Scattering and emission from inhomogeneous vegetation canopy and alien target beneath by using three-dimensional vector radiative transfer (3D-VRT) equation

    To solve the 3D-VRT equation for the model of spatially inhomogeneous scatter media, the finite enclosure of the scatter media is geometrically divided, in both vertical z and transversal (x,y) directions, to form very thin multi-boxes. The zeroth order emission, first-order Mueller matrix of each thin box and an iterative approach of high-order radiative transfer are applied to derive high-order scattering and emission of whole inhomogeneous scatter media. Numerical results of polarized brightness temperature at microwave frequency and under different radiometer resolutions from inhomogeneous scatter model such as vegetation canopy and alien target beneath canopy are simulated and discussed

  2. Compression of 3D models with NURBS

    Santa Cruz Ducci, Diego; Ebrahimi, Touradj

    2005-01-01

    With recent progress in computing, algorithmics and telecommunications, 3D models are increasingly used in various multimedia applications. Examples include visualization, gaming, entertainment and virtual reality. In the multimedia domain 3D models have been traditionally represented as polygonal meshes. This piecewise planar representation can be thought of as the analogy of bitmap images for 3D surfaces. As bitmap images, they enjoy great flexibility and are particularly well suited to des...

  3. 3D modelling for multipurpose cadastre

    Abduhl Rahman, A.; P. J. M. Van Oosterom; T. C. Hua; Sharkawi, K.H.; E. E. Duncan; Azri, N.; Hassan, M. I.

    2012-01-01

    Three-dimensional (3D) modelling of cadastral objects (such as legal spaces around buildings, around utility networks and other spaces) is one of the important aspects for a multipurpose cadastre (MPC). This paper describes the 3D modelling of the objects for MPC and its usage to the knowledge of 3D cadastre since more and more related agencies attempt to develop or embed 3D components into the MPC. We also intend to describe the initiative by Malaysian national mapping and cadastral agency (...

  4. Simple inhomogeneous cosmological (toy) models

    I., Eddy G Chirinos; Zimdahl, Winfried

    2016-01-01

    Based on the Lema\\^itre-Tolman-Bondi (LTB) metric we consider two flat inhomogeneous big-bang models. We aim at clarifying, as far as possible analytically, basic features of the dynamics of the simplest inhomogeneous models and to point out the potential usefulness of exact inhomogeneous solutions as generalizations of the homogeneous configurations of the cosmological standard model. We discuss explicitly partial successes but also potential pitfalls of these simplest models. Although primarily seen as toy models, the relevant free parameters are fixed by best-fit values using the Joint Light-curve Analysis (JLA)-sample data. On the basis of a likelihood analysis we find that a local hump provides a better description of the observations than a local void. Future redshift-drift measurements are discussed as a promising tool to discriminate between inhomogeneous configurations and the $\\Lambda$CDM model.

  5. Curating Architectural 3D CAD Models

    MacKenzie Smith

    2009-06-01

    Full Text Available Normal 0 Increasing demand to manage and preserve 3-dimensional models for a variety of physical phenomena (e.g., building and engineering designs, computer games, or scientific visualizations is creating new challenges for digital archives. Preserving 3D models requires identifying technical formats for the models that can be maintained over time, and the available formats offer different advantages and disadvantages depending on the intended future uses of the models. Additionally, the metadata required to manage 3D models is not yet standardized, and getting intellectual proposal rights for digital models is uncharted territory.  The FACADE Project at MIT is investigating these challenges in the architecture, engineering and construction (AEC industry and has developed recommendations and systems to support digital archives in dealing with digital 3D models and related data. These results can also be generalized to other domains doing 3D modeling.

  6. Computer Modelling of 3D Geological Surface

    Kodge, B G

    2011-01-01

    The geological surveying presently uses methods and tools for the computer modeling of 3D-structures of the geographical subsurface and geotechnical characterization as well as the application of geoinformation systems for management and analysis of spatial data, and their cartographic presentation. The objectives of this paper are to present a 3D geological surface model of Latur district in Maharashtra state of India. This study is undertaken through the several processes which are discussed in this paper to generate and visualize the automated 3D geological surface model of a projected area.

  7. 3-D Human Modeling and Animation

    Ratner, Peter

    2012-01-01

    3-D Human Modeling and Animation Third Edition All the tools and techniques you need to bring human figures to 3-D life Thanks to today's remarkable technology, artists can create and animate realistic, three-dimensional human figures that were not possible just a few years ago. This easy-to-follow book guides you through all the necessary steps to adapt your own artistic skill in figure drawing, painting, and sculpture to this exciting digital canvas. 3-D Human Modeling and Animation, Third Edition starts you off with simple modeling, then prepares you for more advanced techniques for crea

  8. Computer Modelling of 3D Geological Surface

    Kodge B. G.

    2011-02-01

    Full Text Available The geological surveying presently uses methods and tools for the computer modeling of 3D-structures of the geographical subsurface and geotechnical characterization as well as the application of geoinformation systems for management and analysis of spatial data, and their cartographic presentation. The objectives of this paper are to present a 3D geological surface model of Latur district in Maharashtra state of India. This study is undertaken through the several processes which are discussed in this paper to generate and visualize the automated 3D geological surface model of a projected area.

  9. 3D face modeling, analysis and recognition

    Daoudi, Mohamed; Veltkamp, Remco

    2013-01-01

    3D Face Modeling, Analysis and Recognition presents methodologies for analyzing shapes of facial surfaces, develops computational tools for analyzing 3D face data, and illustrates them using state-of-the-art applications. The methodologies chosen are based on efficient representations, metrics, comparisons, and classifications of features that are especially relevant in the context of 3D measurements of human faces. These frameworks have a long-term utility in face analysis, taking into account the anticipated improvements in data collection, data storage, processing speeds, and application s

  10. Automatic balancing of 3D models

    Christiansen, Asger Nyman; Schmidt, Ryan; Bærentzen, Jakob Andreas

    2014-01-01

    3D printing technologies allow for more diverse shapes than are possible with molds and the cost of making just one single object is negligible compared to traditional production methods. However, not all shapes are suitable for 3D print. One of the remaining costs is therefore human time spent......, in these cases, we will apply a rotation of the object which only deforms the shape a little near the base. No user input is required but it is possible to specify manufacturing constraints related to specific 3D print technologies. Several models have successfully been balanced and printed using both polyjet...

  11. Creating a 3D Game Character Model

    Paasikivi, Joni

    2014-01-01

    This thesis goes through the process of modeling a low poly 3D model for a video game project from the perspective of a novice 3D artist. The goal was to prepare a stylized low polygon model of less than 6000 triangles, based on pre-made design and a living person. The program used in this project was 3Ds Max. The process starts with the creation of the reference images for the 3Ds Max and goes through the process of modeling the wireframe model, unwrapping the model for texturizing, and crea...

  12. Measuring Visual Closeness of 3-D Models

    Morales, Jose A.

    2012-09-01

    Measuring visual closeness of 3-D models is an important issue for different problems and there is still no standardized metric or algorithm to do it. The normal of a surface plays a vital role in the shading of a 3-D object. Motivated by this, we developed two applications to measure visualcloseness, introducing normal difference as a parameter in a weighted metric in Metro’s sampling approach to obtain the maximum and mean distance between 3-D models using 3-D and 6-D correspondence search structures. A visual closeness metric should provide accurate information on what the human observers would perceive as visually close objects. We performed a validation study with a group of people to evaluate the correlation of our metrics with subjective perception. The results were positive since the metrics predicted the subjective rankings more accurately than the Hausdorff distance.

  13. 3D Modeling Engine Representation Summary Report

    Steven Prescott; Ramprasad Sampath; Curtis Smith; Timothy Yang

    2014-09-01

    Computers have been used for 3D modeling and simulation, but only recently have computational resources been able to give realistic results in a reasonable time frame for large complex models. This summary report addressed the methods, techniques, and resources used to develop a 3D modeling engine to represent risk analysis simulation for advanced small modular reactor structures and components. The simulations done for this evaluation were focused on external events, specifically tsunami floods, for a hypothetical nuclear power facility on a coastline.

  14. Gamma Knife 3-D dose distribution near the area of tissue inhomogeneities by normoxic gel dosimetry.

    Isbakan, Fatih; Ulgen, Yekta; Bilge, Hatice; Ozen, Zeynep; Agus, Onur; Buyuksarac, Bora

    2007-05-01

    The accuracy of the Leksell GammaPlan, the dose planning system of the Gamma Knife Model-B, was evaluated near tissue inhomogeneities, using the gel dosimetry method. The lack of electronic equilibrium around the small-diameter gamma beams can cause dose calculation errors in the neighborhood of an air-tissue interface. An experiment was designed to investigate the effects of inhomogeneity near the paranosal sinuses cavities. The homogeneous phantom was a spherical glass balloon of 16 cm diameter, filled with MAGIC gel; i.e., the normoxic polymer gel. Two hollow PVC balls of 2 cm radius, filled with N2 gas, represented the air cavities inside the inhomogeneous phantom. For dose calibration purposes, 100 ml gel-containing vials were irradiated at predefined doses, and then scanned in a MR unit. Linearity was observed between the delivered dose and the reciprocal of the T2 relaxation time constant of the gel. Dose distributions are the results of a single shot of irradiation, obtained by collimating all 201 cobalt sources to a known target in the phantom. Both phantoms were irradiated at the same dose level at the same coordinates. Stereotactic frames and fiducial markers were attached to the phantoms prior to MR scanning. The dose distribution predicted by the Gamma Knife planning system was compared with that of the gel dosimetry. As expected, for the homogeneous phantom the isodose diameters measured by the gel dosimetry and the GammaPlan differed by 5% at most. However, with the inhomogeneous phantom, the dose maps in the axial, coronal and sagittal planes were spatially different. The diameters of the 50% isodose curves differed 43% in the X axis and 32% in the Y axis for the Z =90 mm axial plane; by 44% in the X axis and 24% in the Z axis for the Y=90 mm coronal plane; and by 32% in the Z axis and 42% in the Y axis for the X=92 mm sagittal plane. The lack of ability of the GammaPlan to predict the rapid dose fall off, due to the air cavities behind or near the

  15. Gamma Knife 3-D dose distribution near the area of tissue inhomogeneities by normoxic gel dosimetry

    The accuracy of the Leksell GammaPlan registered , the dose planning system of the Gamma Knife Model-B, was evaluated near tissue inhomogeneities, using the gel dosimetry method. The lack of electronic equilibrium around the small-diameter gamma beams can cause dose calculation errors in the neighborhood of an air-tissue interface. An experiment was designed to investigate the effects of inhomogeneity near the paranosal sinuses cavities. The homogeneous phantom was a spherical glass balloon of 16 cm diameter, filled with MAGIC gel; i.e., the normoxic polymer gel. Two hollow PVC balls of 2 cm radius, filled with N2 gas, represented the air cavities inside the inhomogeneous phantom. For dose calibration purposes, 100 ml gel-containing vials were irradiated at predefined doses, and then scanned in a MR unit. Linearity was observed between the delivered dose and the reciprocal of the T2 relaxation time constant of the gel. Dose distributions are the results of a single shot of irradiation, obtained by collimating all 201 cobalt sources to a known target in the phantom. Both phantoms were irradiated at the same dose level at the same coordinates. Stereotactic frames and fiducial markers were attached to the phantoms prior to MR scanning. The dose distribution predicted by the Gamma Knife planning system was compared with that of the gel dosimetry. As expected, for the homogeneous phantom the isodose diameters measured by the gel dosimetry and the GammaPlan registered differed by 5% at most. However, with the inhomogeneous phantom, the dose maps in the axial, coronal and sagittal planes were spatially different. The diameters of the 50% isodose curves differed 43% in the X axis and 32% in the Y axis for the Z=90 mm axial plane; by 44% in the X axis and 24% in the Z axis for the Y=90 mm coronal plane; and by 32% in the Z axis and 42% in the Y axis for the X=92 mm sagittal plane. The lack of ability of the GammaPlan registered to predict the rapid dose fall off, due to the

  16. Simple inhomogeneous cosmological (toy) models

    Chirinos Isidro, Eddy G.; Zuñiga Vargas, Cristofher; Zimdahl, Winfried

    2016-05-01

    Based on the Lemaître-Tolman-Bondi (LTB) metric we consider two flat inhomogeneous big-bang models. We aim at clarifying, as far as possible analytically, basic features of the dynamics of the simplest inhomogeneous models and to point out the potential usefulness of exact inhomogeneous solutions as generalizations of the homogeneous configurations of the cosmological standard model. We discuss explicitly partial successes but also potential pitfalls of these simplest models. Although primarily seen as toy models, the relevant free parameters are fixed by best-fit values using the Joint Light-curve Analysis (JLA)-sample data. On the basis of a likelihood analysis we find that a local hump with an extension of almost 2 Gpc provides a better description of the observations than a local void for which we obtain a best-fit scale of about 30 Mpc. Future redshift-drift measurements are discussed as a promising tool to discriminate between inhomogeneous configurations and the ΛCDM model.

  17. 3D gender recognition using cognitive modeling

    Fagertun, Jens; Andersen, Tobias; Hansen, Thomas;

    2013-01-01

    We use 3D scans of human faces and cognitive modeling to estimate the “gender strength”. The “gender strength” is a continuous class variable of the gender, superseding the traditional binary class labeling. To visualize some of the visual trends humans use when performing gender classification, we...

  18. 3D gender recognition using cognitive modeling

    Fagertun, Jens; Andersen, Tobias; Hansen, Thomas; Paulsen, Rasmus Reinhold

    2013-01-01

    We use 3D scans of human faces and cognitive modeling to estimate the “gender strength”. The “gender strength” is a continuous class variable of the gender, superseding the traditional binary class labeling. To visualize some of the visual trends humans use when performing gender classification, ...

  19. 3D object-oriented image analysis in 3D geophysical modelling

    Fadel, I.; van der Meijde, M.; Kerle, N.;

    2015-01-01

    Non-uniqueness of satellite gravity interpretation has traditionally been reduced by using a priori information from seismic tomography models. This reduction in the non-uniqueness has been based on velocity-density conversion formulas or user interpretation of the 3D subsurface structures (objects......) based on the seismic tomography models and then forward modelling these objects. However, this form of object-based approach has been done without a standardized methodology on how to extract the subsurface structures from the 3D models. In this research, a 3D object-oriented image analysis (3D OOA......) approach was implemented to extract the 3D subsurface structures from geophysical data. The approach was applied on a 3D shear wave seismic tomography model of the central part of the East African Rift System. Subsequently, the extracted 3D objects from the tomography model were reconstructed in the 3D...

  20. Debris Dispersion Model Using Java 3D

    Thirumalainambi, Rajkumar; Bardina, Jorge

    2004-01-01

    This paper describes web based simulation of Shuttle launch operations and debris dispersion. Java 3D graphics provides geometric and visual content with suitable mathematical model and behaviors of Shuttle launch. Because the model is so heterogeneous and interrelated with various factors, 3D graphics combined with physical models provides mechanisms to understand the complexity of launch and range operations. The main focus in the modeling and simulation covers orbital dynamics and range safety. Range safety areas include destruct limit lines, telemetry and tracking and population risk near range. If there is an explosion of Shuttle during launch, debris dispersion is explained. The shuttle launch and range operations in this paper are discussed based on the operations from Kennedy Space Center, Florida, USA.

  1. Illustrating the disassembly of 3D models

    Guo, Jianwei

    2013-10-01

    We present a framework for the automatic disassembly of 3D man-made models and the illustration of the disassembly process. Given an assembled 3D model, we first analyze the individual parts using sharp edge loops and extract the contact faces between each pair of neighboring parts. The contact faces are then used to compute the possible moving directions of each part. We then present a simple algorithm for clustering the sets of the individual parts into meaningful sub-assemblies, which can be used for a hierarchical decomposition. We take the stability of sub-assemblies into account during the decomposition process by considering the upright orientation of the input models. Our framework also provides a user-friendly interface to enable the superimposition of the constraints for the decomposition. Finally, we visualize the disassembly process by generating an animated sequence. The experiments demonstrate that our framework works well for a variety of complex models. © 2013 Elsevier Ltd.

  2. Integrated Biogeomorphological Modeling Using Delft3D

    Ye, Q.; Jagers, B.

    2011-12-01

    The skill of numerical morphological models has improved significantly from the early 2D uniform, total load sediment models (with steady state or infrequent wave updates) to recent 3D hydrodynamic models with multiple suspended and bed load sediment fractions and bed stratigraphy (online coupled with waves). Although there remain many open questions within this combined field of hydro- and morphodynamics, we observe an increasing need to include biological processes in the overall dynamics. In riverine and inter-tidal environments, there is often an important influence by riparian vegetation and macrobenthos. Over the past decade more and more researchers have started to extend the simulation environment with wrapper scripts and other quick code hacks to estimate their influence on morphological development in coastal, estuarine and riverine environments. Although one can in this way quickly analyze different approaches, these research tools have generally not been designed with reuse, performance and portability in mind. We have now implemented a reusable, flexible, and efficient two-way link between the Delft3D open source framework for hydrodynamics, waves and morphology, and the water quality and ecology modules. The same link will be used for 1D, 2D and 3D modeling on networks and both structured and unstructured grids. We will describe the concepts of the overall system, and illustrate it with some first results.

  3. Adaptive Enhancement of 3D Scenes using Hierarchical Registration of Texture-Mapped 3D Models

    Ramalingam, Srikumar; Lodha, Suresh

    2003-01-01

    Adaptive fusion of new information in a 3D urban scene is an important goal to achieve in computer vision, graphics, and visualization. In this work we acquire new image pairs of a scene from closer distances and extract 3D models of successively higher resolutions. We present a new hierarchical approach to register these texture-mapped 3D models with a coarse 3D texture mapped model of an urban scene. First, we use the standard reconstruction algorithm to construct 3D models after establishi...

  4. Sensing and compressing 3-D models

    Krumm, J. [Sandia National Labs., Albuquerque, NM (United States). Intelligent System Sensors and Controls Dept.

    1998-02-01

    The goal of this research project was to create a passive and robust computer vision system for producing 3-D computer models of arbitrary scenes. Although the authors were unsuccessful in achieving the overall goal, several components of this research have shown significant potential. Of particular interest is the application of parametric eigenspace methods for planar pose measurement of partially occluded objects in gray-level images. The techniques presented provide a simple, accurate, and robust solution to the planar pose measurement problem. In addition, the representational efficiency of eigenspace methods used with gray-level features were successfully extended to binary features, which are less sensitive to illumination changes. The results of this research are presented in two papers that were written during the course of this project. The papers are included in sections 2 and 3. The first section of this report summarizes the 3-D modeling efforts.

  5. GENERATING 3D MODEL FROM VIDEO

    Svetlana Mijakovska

    2014-12-01

    Full Text Available In this paper the process of 3D modelling from video is presented. Analysed previous research related to this process, and specifically described algorithms for detecting and matching key points. We described their advantages and disadvantages, and made a critical analysis of algorithms. In this paper, the three detectors (SUSAN, Plessey and Förstner are tested and compare. We used video taken with hand held camera of a cube and compare these detectors on it (taking into account their parameters of accuracy and repeatability. In conclusion, we practically made 3D model of the cube from video used these detectors in the first step of the process and three algorithms (RANSAC, MSAC and MLESAC for matching data.

  6. Robust hashing for 3D models

    Berchtold, Waldemar; Schäfer, Marcel; Rettig, Michael; Steinebach, Martin

    2014-02-01

    3D models and applications are of utmost interest in both science and industry. With the increment of their usage, their number and thereby the challenge to correctly identify them increases. Content identification is commonly done by cryptographic hashes. However, they fail as a solution in application scenarios such as computer aided design (CAD), scientific visualization or video games, because even the smallest alteration of the 3D model, e.g. conversion or compression operations, massively changes the cryptographic hash as well. Therefore, this work presents a robust hashing algorithm for 3D mesh data. The algorithm applies several different bit extraction methods. They are built to resist desired alterations of the model as well as malicious attacks intending to prevent correct allocation. The different bit extraction methods are tested against each other and, as far as possible, the hashing algorithm is compared to the state of the art. The parameters tested are robustness, security and runtime performance as well as False Acceptance Rate (FAR) and False Rejection Rate (FRR), also the probability calculation of hash collision is included. The introduced hashing algorithm is kept adaptive e.g. in hash length, to serve as a proper tool for all applications in practice.

  7. Volatile transport on inhomogeneous surfaces: II. Numerical calculations (VT3D)

    Young, Leslie A

    2015-01-01

    Several distant icy worlds have atmospheres that are in vapor-pressure equilibrium with their surface volatiles, including Pluto, Triton, and, probably, several large KBOs near perihelion. Studies of the volatile and thermal evolution of these have been limited by computational speed, especially for models that treat surfaces that vary with both latitude and longitude. In order to expedite such work, I present a new numerical model for the seasonal behavior of Pluto and Triton which (i) uses initial conditions that improve convergence, (ii) uses an expedient method for handling the transition between global and non-global atmospheres, (iii) includes local conservation of energy and global conservation of mass to partition energy between heating, conduction, and sublimation or condensation, (iv) uses time-stepping algorithms that ensure stability while allowing larger timesteps, and (v) can include longitudinal variability. This model, called VT3D, has been used in Young (2012), Young (2013), Olkin et al. (201...

  8. 3D modeling of buildings outstanding sites

    Héno, Rapha?le

    2014-01-01

    Conventional topographic databases, obtained by capture on aerial or spatial images provide a simplified 3D modeling of our urban environment, answering the needs of numerous applications (development, risk prevention, mobility management, etc.). However, when we have to represent and analyze more complex sites (monuments, civil engineering works, archeological sites, etc.), these models no longer suffice and other acquisition and processing means have to be implemented. This book focuses on the study of adapted lifting means for "notable buildings". The methods tackled in this book cover las

  9. Porting a 3d-modeler plugin

    Alfredsson, Jonas

    2008-01-01

    This report describes the work and the results found when comparing three different 3d modeler applications. The programs are 3ds Max, Maya and Cinema 4D. The comparisons focus on the possibilities/the amount of freedom these programs interface offer to its plugins. The comparisons are made from the point of view of a tool for creating animations developed as a plugin for these modelers. This plugins demands on the system it is loaded into have been analyzed and from the results of this analy...

  10. Diffraction of Gaussian beam in a 3D smoothly inhomogeneous media: eikonal-based complex geometrical optics approach

    Berczynski, P.; Bliokh, K. Yu.; Kravtsov, Yu. A.; Stateczny, A.

    2005-01-01

    The paper presents an ab initio account of the paraxial complex geometrical optics (CGO) in application to a scalar Gaussian beam propagation and diffraction in a 3D smoothly inhomogeneous medium. The paraxial CGO deals with quadratic expansion of the complex eikonal and reduces the wave problem to the solution of ordinary differential equations of Riccati type. This substantially simplifies description of Gaussian beams diffraction as compared to full wave or parabolic (quasi-optics) equatio...

  11. The dual gonihedric 3D Ising model

    Johnston, D A [Department of Mathematics, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS (United Kingdom); Ranasinghe, R P K C M, E-mail: D.A.Johnston@hw.ac.uk [Department of Mathematics, University of Sri Jayewardenepura, Gangodawila (Sri Lanka)

    2011-07-22

    We investigate the dual of the {kappa} = 0 gonihedric Ising model on a 3D cubic lattice, which may be written as an anisotropically coupled Ashkin-Teller model. The original {kappa} = 0 gonihedric model has a purely plaquette interaction, displays a first order transition and possesses a highly degenerate ground state. We find that the dual model admits a similar large ground state degeneracy as a result of the anisotropic couplings and investigate the coupled mean-field equations for the model on a single cube. We also carry out Monte Carlo simulations which confirm a first order phase transition in the model and suggest that the ground state degeneracy persists throughout the low temperature phase. Some exploratory cooling simulations also hint at non-trivial dynamical behaviour.

  12. The dual gonihedric 3D Ising model

    We investigate the dual of the κ = 0 gonihedric Ising model on a 3D cubic lattice, which may be written as an anisotropically coupled Ashkin-Teller model. The original κ = 0 gonihedric model has a purely plaquette interaction, displays a first order transition and possesses a highly degenerate ground state. We find that the dual model admits a similar large ground state degeneracy as a result of the anisotropic couplings and investigate the coupled mean-field equations for the model on a single cube. We also carry out Monte Carlo simulations which confirm a first order phase transition in the model and suggest that the ground state degeneracy persists throughout the low temperature phase. Some exploratory cooling simulations also hint at non-trivial dynamical behaviour.

  13. 3D Model of Surfactant Replacement Therapy

    Grotberg, James; Tai, Cheng-Feng; Filoche, Marcel

    2015-11-01

    Surfactant Replacement Therapy (SRT) involves instillation of a liquid-surfactant mixture directly into the lung airway tree. Though successful in neonatal applications, its use in adults had early success followed by failure. We present the first mathematical model of 3D SRT where a liquid plug propagates through the tree from forced inspiration. In two separate modeling steps, the plug first deposits a coating film on the airway wall which subtracts from its volume, a ``coating cost''. Then the plug splits unevenly at the airway bifurcation due to gravity. The steps are repeated until a plug ruptures or reaches the tree endpoint alveoli/acinus. The model generates 3D images of the resulting acinar distribution and calculates two global indexes, efficiency and homogeneity. Simulating published literature, the earlier successful adult SRT studies show comparatively good index values, while the later failed studies do not. Those unsuccessful studies used smaller dose volumes with higher concentration mixtures, apparently assuming a well mixed compartment. The model shows that adult lungs are not well mixed in SRT due to the coating cost and gravity effects. Returning to the higher dose volume protocols could save many thousands of lives annually in the US. Supported by NIH Grants HL85156, HL84370 and Agence Nationale de la Recherche, ANR no. 2010-BLAN-1119-05.

  14. Design and Implementation of 3D Model Database for General-Purpose 3D GIS

    XU Weiping; ZHU Qing; DU Zhiqiang; ZHANG Yeting

    2010-01-01

    To improve the reusability of three-dimensional (3D) models and simplify the complexity of natural scene reconstruction, this paper presents a 3D model database for universal 3D GIS. After the introduction of its extensible function architecture,accompanied by the conclusion of implicit spatial-temporal hierarchy of models in any reconstructed scene of 3D GIS for general purpose, several key issues are discussed in detail, such as the storage and management of 3D models and related retrieval and load method, as well as the interfaces for further on-demand development. Finally, the validity and feasibility of this model database are proved through its application in the development of 3D visualization system of railway operation.

  15. 3D Model Assisted Image Segmentation

    Jayawardena, Srimal; Hutter, Marcus

    2012-01-01

    The problem of segmenting a given image into coherent regions is important in Computer Vision and many industrial applications require segmenting a known object into its components. Examples include identifying individual parts of a component for process control work in a manufacturing plant and identifying parts of a car from a photo for automatic damage detection. Unfortunately most of an object's parts of interest in such applications share the same pixel characteristics, having similar colour and texture. This makes segmenting the object into its components a non-trivial task for conventional image segmentation algorithms. In this paper, we propose a "Model Assisted Segmentation" method to tackle this problem. A 3D model of the object is registered over the given image by optimising a novel gradient based loss function. This registration obtains the full 3D pose from an image of the object. The image can have an arbitrary view of the object and is not limited to a particular set of views. The segmentation...

  16. Using 3D Scanning in 3D Character Modeling and Game Figure Production

    guo, Jun

    2008-01-01

    The theme of this thesis was to discuss the theory of 3D scanning, focus on the flowchart of using 3D NextEngine Desktop Scanner hardware and software as well as the 3D game character exporting and importing in both 3ds Max and CryENGINE2 Sandbox2. The purpose of this final-year project was to scan models made of modeling paste using the 3D NextEngine ScanStudio. The models were developed and imported as raw files into 3dsMax. At the same step, the skeletons were adjusted an...

  17. TIMOC-72, 3-D Time-Dependent Homogeneous or Inhomogeneous Neutron Transport by Monte-Carlo

    1 - Nature of physical problem solved: TIMOC solves the energy and time dependent (or stationary) homogeneous or inhomogeneous neutron transport equation in three-dimensional geometries. The program can treat all commonly used scattering kernels, such as absorption, fission, isotropic and anisotropic elastic scattering, level excitation, the evaporation model, and the energy transfer matrix model, which includes (n,2n) reactions. The exchangeable geometry routines consist at present of (a) periodical multilayer slab, spherical and cylindrical lattices, (b) an elaborate three-dimensional cylindrical geometry which allows all kinds of subdivisions, (c) the very flexible O5R geometry routine which is able to describe any body combinations with surfaces of second order. The program samples the stationary or time-energy-region dependent fluxes as well as the transmission ratios between geometrical regions and the following integral quantities or eigenvalues, the leakage rate, the slowing down density, the production to source ratio, the multiplication factor based on flux and collision estimator, the mean production time, the mean destruction time, time distribution of production and destruction, the fission rates, the energy dependent absorption rates, the energy deposition due to elastic scattering for the different geometrical regions. 2 - Method of solution: TIMOC is a Monte Carlo program and uses several, partially optional variance reducing techniques, such as the method of expected values (weight factor), Russian roulette, the method of fractional generated neutrons, double sampling, semi-systematic sampling and the method of expected leakage probability. Within the neutron lifetime a discrete energy value is given after each collision process. The nuclear data input is however done by group averaged cross sections. The program can generate the neutron fluxes either resulting from an external source or in the form of fundamental mode distributions by a special

  18. MC3D modelling of stratified explosion

    It is known that a steam explosion can occur in a stratified geometry and that the observed yields are lower than in the case of explosion in a premixture configuration. However, very few models are available to quantify the amount of melt which can be involved and the pressure peak that can be developed. In the stratified application of the MC3D code, mixing and fragmentation of the melt are explained by the growth of Kelvin Helmholtz instabilities due to the shear flow of the two phase coolant above the melt. Such a model is then used to recalculate the Frost-Ciccarelli tin-water experiment. Pressure peak, speed of propagation, bubble shape and erosion height are well reproduced as well as the influence of the inertial constraint (height of the water pool). (author)

  19. Regional geothermal 3D modelling in Denmark

    Poulsen, S. E.; Balling, N.; Bording, T. S.; Nielsen, S. B.

    2012-04-01

    In the pursuit of sustainable and low carbon emission energy sources, increased global attention has been given to the exploration and exploitation of geothermal resources within recent decades. In 2009 a national multi-disciplinary geothermal research project was established. As a significant part of this project, 3D temperature modelling is to be carried out, with special emphasis on temperatures of potential geothermal reservoirs in the Danish area. The Danish subsurface encompasses low enthalpy geothermal reservoirs of mainly Triassic and Jurassic age. Geothermal plants at Amager (Copenhagen) and Thisted (Northern Jutland) have the capacity of supplying the district heating network with up to 14 MW and 7 MW, respectively, by withdrawing warm pore water from the Gassum (Lower Jurassic/Upper Triassic) and Bunter (Lower Triassic) sandstone reservoirs, respectively. Explorative studies of the subsurface temperature regime typically are based on a combination of observations and modelling. In this study, the open-source groundwater modelling code MODFLOW is modified to simulate the subsurface temperature distribution in three dimensions by taking advantage of the mathematical similarity between saturated groundwater flow (Darcy flow) and heat conduction. A numerical model of the subsurface geology in Denmark is built and parameterized from lithological information derived from joint interpretation of seismic surveys and borehole information. Boundary conditions are constructed from knowledge about the heat flow from the Earth's interior and the shallow ground temperature. Matrix thermal conductivities have been estimated from analysis of high-resolution temperature logs measured in deep wells and porosity-depth relations are included using interpreted main lithologies. The model takes into account the dependency of temperature and pressure on thermal conductivity. Moreover, a transient model based correction of the paleoclimatic thermal disturbance caused by the

  20. RELAP5-3D Compressor Model

    A compressor model has been implemented in the RELAP5-3D code. The model is similar to that of the existing pump model, and performs the same function on a gas as the pump performs on a single-phase or two-phase fluid. The compressor component consists of an inlet junction and a control volume, and optionally, an outlet junction. This feature permits cascading compressor components in series. The equations describing the physics of the compressor are derived from first principles. These equations are used to obtain the head, the torque, and the energy dissipation. Compressor performance is specified using a map, specific to the design of the machine, in terms of the ratio of outlet-to-inlet total (or stagnation) pressure and adiabatic efficiency as functions of rotational velocity and flow rate. The input quantities are specified in terms of dimensionless variables, which are corrected to stagnation density and stagnation sound speed. A small correction was formulated for the input of efficiency to account for the error introduced by assumption of constant density when integrating the momentum equation. Comparison of the results of steady-state operation of the compressor model to those of the MIT design calculation showed excellent agreement for both pressure ratio and power

  1. 3D Geological Modeling under Extremely Complex Geological Conditions

    Yanlin Shao; Ailing Zheng; Youbin He; Keyan Xiao

    2012-01-01

    3D modeling method is divided into geospatial modeling and 3D geological modeling. 3D geological modeling technique has become a favorable tool for people to observe and analyze the geological body enriched in mineral resources. Unlike geospatial modeling, 3D geological modeling must consider various geological conditions affecting spatial shape and petrophysical distribution of geological body for its complexity. This article analyzes the uncertainty, complexity and diversity of geological b...

  2. Quantitative evaluation of ultrasonic wave propagation in inhomogeneous anisotropic austenitic welds using 3D ray tracing method. Numerical and experimental validation

    Austenitic welds and dissimilar welds are extensively used in primary circuit pipes and pressure vessels in nuclear power plants, chemical industries and fossil fuelled power plants because of their high fracture toughness, resistance to corrosion and creep at elevated temperatures. However, cracks may initiate in these weld materials during fabrication process or stress operations in service. Thus, it is very important to evaluate the structural integrity of these materials using highly reliable non-destructive testing (NDT) methods. Ultrasonic non-destructive inspection of austenitic welds and dissimilar weld components is complicated because of anisotropic columnar grain structure leading to beam splitting and beam deflection. Simulation tools play an important role in developing advanced reliable ultrasonic testing (UT) techniques and optimizing experimental parameters for inspection of austenitic welds and dissimilar weld components. The main aim of the thesis is to develop a 3D ray tracing model for quantitative evaluation of ultrasonic wave propagation in an inhomogeneous anisotropic austenitic weld material. Inhomogenity in the anisotropic weld material is represented by discretizing into several homogeneous layers. According to ray tracing model, ultrasonic ray paths are traced during its energy propagation through various discretized layers of the material and at each interface the problem of reflection and transmission is solved. The influence of anisotropy on ultrasonic reflection and transmission behaviour in an anisotropic austenitic weld material are quantitatively analyzed in three dimensions. The ultrasonic beam directivity in columnar grained austenitic steel material is determined three dimensionally using Lamb's reciprocity theorem. The developed ray tracing model evaluates the transducer excited ultrasonic fields accurately by taking into account the directivity of the transducer, divergence of the ray bundle, density of rays and phase

  3. 3D Models of Stellar Interactions

    Mohamed, S.; Podsiadlowski, Ph.; Booth, R.; Maercker, M.; Ramstedt, S.; Vlemmings, W.; Harries, T.; Mackey, J.; Langer, N.; Corradi, R.

    2014-04-01

    Symbiotic binaries consist of a cool, evolved mass-losing giant and an accreting compact companion. As symbiotic nebulae show similar morphologies to those in planetary nebulae (so much so that it is often difficult to distinguish between the two), they are ideal laboratories for understanding the role a binary companion plays in shaping the circumstellar envelopes in these evolved systems. We will present 3D Smoothed Particle Hydrodynamics (SPH) models of interacting binaries, e.g. R Aquarii and Mira, and discuss the formation of spiral outflows, arcs, shells and equatorial density enhancements.We will also discuss the implications of the former for planetary nebulae, e.g. the Egg Nebula and Cat's Eye, and the latter for the formation of bipolar geometries, e.g. M2-9. We also investigate accretion and angular momentum evolution in symbiotic binaries which may be important to understand the formation of jets and more episodic mass-loss features we see in circumstellar envelopes and the orbital characteristics of binary central stars of planetary nebulae.

  4. Efficient 3D scene modeling and mosaicing

    Nicosevici, Tudor

    2013-01-01

    This book proposes a complete pipeline for monocular (single camera) based 3D mapping of terrestrial and underwater environments. The aim is to provide a solution to large-scale scene modeling that is both accurate and efficient. To this end, we have developed a novel Structure from Motion algorithm that increases mapping accuracy by registering camera views directly with the maps. The camera registration uses a dual approach that adapts to the type of environment being mapped.   In order to further increase the accuracy of the resulting maps, a new method is presented, allowing detection of images corresponding to the same scene region (crossovers). Crossovers then used in conjunction with global alignment methods in order to highly reduce estimation errors, especially when mapping large areas. Our method is based on Visual Bag of Words paradigm (BoW), offering a more efficient and simpler solution by eliminating the training stage, generally required by state of the art BoW algorithms.   Also, towards dev...

  5. Measurement of inhomogeneous strength in weld joint by 3D image correlation technique

    It is possible for stress corrosion cracking to occur in weld joints and their neighborhood of nuclear power plants. Crack growth prediction and fracture assessment based on fitness-for-service is applied to initiated cracks. Yield point and tensile strength of material is used for fracture assessment. However, the material strength distribution of a welded part is usually not uniform. Therefore, to assess structural integrity correctly, it is important to understand the inhomogeneous strength distribution. In this study, identification of an inhomogeneous material strength distribution of a welded part was tried using a digital image correlation technique (DIC). A specimen was taken from a butt welded joint and the displacement of the specimen surface during a tensile test was measured using the DIC. It was shown that the nominal stress-local strain curves on a specimen surface and 0.2% proof strength distribution around the weld part could be corrected by the DIC. Furthermore, change in the cross-section during the tensile test was estimated by the DIC, and the local stress (true stress) at an arbitrary cross-section of the specimen could be identified. (author)

  6. VIRTUAL 3D CITY MODELING: TECHNIQUES AND APPLICATIONS

    S. P. Singh; K. Jain; V. R. Mandla

    2013-01-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as Building, Tree, Vegetation, and some manmade feature belonging to urban area. There are various terms used for 3D city models such as "Cybertown", "Cybercity", "Virtual City", or "Digital City". 3D city models are basically a computerized or digital model of a city contains the graphic representation of buildings and other objects in 2.5 or 3D. Generally three main Geomatics approach ...

  7. 3D dose distribution in gamma knife treatment near tissue inhomogeneities

    The treatment planning system, GammaPlan, uses CT, MR or angiographic images to calculate and simulate the dose distribution in a matrix volume of interest assuming that tissues in human head are homogeneous and water equivalent. The absence of electronic equilibrium in the vicinity of air-tissue inhomogeneity in the head will misrepresent the deposited dose under the above assumption. Polymer gel dosimetry has already been used in different scenarios of radiotherapy dosimetry; however, little work has been reported for polymer gel phantoms with air cavities irradiated in Gamma Knife surgery. Increasing dose levels are reflected into lower MR relaxation time constants T1 and T2, in the neighbouring water protons. The MAGIC Gel was manufactured under normal atmospheric conditions using the formulation proposed by Fong, et al.: 8% Gelatine Type A from porcine skin Sigma Bloom 300; 10mmol/l Hydroquinone, 99%; 2 mmol/l Ascorbic Acid, 99%; 0,02 mmol/l CuSO4*5 H2O; 9% Methacrylic acid, and 83% distilled water. For the paranosal sinuses cavity experiment (a lesion in the head near the paranosal sinuses is simulated), two spherical glass balloons with a volume of 2 liter each were the phantom containers. Both glass balloons were filled with the MAGIC gel. The inhomogeneous phantom was prepared by placing a cylindrical cork to represent the air cavity: the diameter was 2,5 cm and the length 8 cm (3). The homogeneous phantom simulates the physical structure considered in the GammaPlan. Seven plastic vials of 100 ml were filled with the gel and were irradiated with doses of 0, 3, 5, 10, 15, 20 and 25 Gy with the Cobalt-60 TeleTherapy machine to obtain the calibration curve in order to derive the equivalent dose values from GammaPLan. The simulated tumour was given one shot with a dose of 20 Gray in the Gamma Knife using the 18 mm Helmet. A week following the irradiation, the phantoms and vials were scanned in a clinical Siemens 1.5 Tesla MR unit. For calculating the dose

  8. Building 3D models with modo 701

    García, Juan Jiménez

    2013-01-01

    The book will focus on creating a sample application throughout the book, building gradually from chapter to chapter.If you are new to the 3D world, this is the key to getting started with a modern software in the modern visualization industry. Only minimal previous knowledge is needed.If you have some previous knowledge about 3D content creation, you will find useful tricks that will differentiate the learning experience from a typical user manual from this, a practical guide concerning the most common problems and situations and how to solve them.

  9. 3D fast wavelet network model-assisted 3D face recognition

    Said, Salwa; Jemai, Olfa; Zaied, Mourad; Ben Amar, Chokri

    2015-12-01

    In last years, the emergence of 3D shape in face recognition is due to its robustness to pose and illumination changes. These attractive benefits are not all the challenges to achieve satisfactory recognition rate. Other challenges such as facial expressions and computing time of matching algorithms remain to be explored. In this context, we propose our 3D face recognition approach using 3D wavelet networks. Our approach contains two stages: learning stage and recognition stage. For the training we propose a novel algorithm based on 3D fast wavelet transform. From 3D coordinates of the face (x,y,z), we proceed to voxelization to get a 3D volume which will be decomposed by 3D fast wavelet transform and modeled after that with a wavelet network, then their associated weights are considered as vector features to represent each training face . For the recognition stage, an unknown identity face is projected on all the training WN to obtain a new vector features after every projection. A similarity score is computed between the old and the obtained vector features. To show the efficiency of our approach, experimental results were performed on all the FRGC v.2 benchmark.

  10. Using Insight3D to produce a 3D building model

    Natlačen, Daša

    2015-01-01

    The leadership in object 3D modeling was in the past decade taken over by integration of close range photogrammetry and computer vision. Major progress was achieved in the development of software tools, which enable obtaining spatial data from series of images taken from different perspectives. In order to gain new experience, Insight3D application was chosen to be addressed in this master’s thesis out of the rich set of software tools available on the market. The main goal of ...

  11. 3D Modeling Techniques for Print and Digital Media

    Stephens, Megan Ashley

    In developing my thesis, I looked to gain skills using ZBrush to create 3D models, 3D scanning, and 3D printing. The models created compared the hearts of several vertebrates and were intended for students attending Comparative Vertebrate Anatomy. I used several resources to create a model of the human heart and was able to work from life while creating heart models from other vertebrates. I successfully learned ZBrush and 3D scanning, and successfully printed 3D heart models. ZBrush allowed me to create several intricate models for use in both animation and print media. The 3D scanning technique did not fit my needs for the project, but may be of use for later projects. I was able to 3D print using two different techniques as well.

  12. Verification of Rapid Arc™ planning with AAA algorithm using an inhomogeneous 3D phantom

    New technologies have been developed to improve the quality assurance of the planning with modulated beams. One way to deal with the high costs of the dosimetry equipment was to develop a 3D phantom, using TLDs and radiochromic film, designed by the Radiotherapy Quality Program of INCa. The calculus was done using the AAA algorithm with heterogeneity correction, making the phantom rather heterogeneous. Five measurements related to the Rapid Arc™ planning were taken, once there was the phantom CT for optimization. The purpose of this work is a 3D verification of the dose distribution in the heterogeneous phantom. The mean deviation in planning target volumes was lower than ±5%. On the other side, the results dispersion for the others heterogeneities was higher, the maximum mean deviation obtained, for example, for the heterogeneity related to the bladder, was 7.41%. The maximum standard deviation found for both cases was around 9% for the target heterogeneity and 11% for the other heterogeneities. The phantom might be an interesting tool in order to verify the Rapid Arc™ planning, however, more statistical data is necessary as to achieve better results for the analysis of dose distribution. (author)heterogeneous phantom. The mean deviation in planning target volumes was lower than ±5%. On the other side, the results dispersion for the others heterogeneities was higher, the maximum mean deviation obtained, for example, for the heterogeneity related to the bladder, was 7.41%. The maximum standard deviation found for both cases was around 9% for the target heterogeneity and 11% for the other heterogeneities. The phantom might be an interesting tool in order to verify the Rapid Arc™ planning, however, more statistical data is necessary as to achieve better results for the analysis of dose distribution. (author)

  13. Planning for brachytherapy using a 3D-simulation model

    A 3D-simulation model made with a milling system was applied to HDR-brachytherapy. The 3D-simulation model is used to simulate the 3D-structure of the lesion and the surrounding organs before the actual catheterization for brachytherapy. The first case was recurrent prostatic cancer in a 61-year-old man. The other case was lymph node recurrence of a 71-year-old woman's upper gum cancer. In both cases, the 3D-simulation model was very useful to simulate the 3D-conformation, to plan the treatment process and to avoid the risk accompanying treatment. (author)

  14. Diffraction of Gaussian beam in 3D smoothly inhomogeneous media: eikonal-based complex geometrical optics approach

    Berczynski, P; Kravtsov, Y A; Stateczny, A; Kravtsov, Yu.A.

    2005-01-01

    A simple and effective method based on the eikonal form of complex geometrical optics is presented to describe scalar Gaussian beams propagation and diffraction in arbitrary 3D smoothly inhomogeneous medium. Similarly to paraxial WKB approach the method reduces the wave problem to a set of ordinary differential equations of Riccati type. This substantially simplifies the solution as compared to full wave or quasy-optics equations. The method assumes the complex eikonal equation to be solved in paraxial approximation in curvilinear coordinate frame, which is associated with the central ray of the beam and performs Levi-Civita parallel transport. In this way the system of Riccati-type equations is obtained for complex parameters, which characterize both the beam cross-section and the shape of the phase front. For Gaussian beam propagating in homogeneous medium or along the symmetry axis in lens-like medium, these equations possess analytical solutions, otherwise they can be readily solved numerically. In contra...

  15. Integrating 3D modeling, photogrammetry and design

    Foster, Shaun

    2014-01-01

    This book looks at the convergent nature of technology and its relationship to the field of photogrammetry and 3D design. This is a facet of a broader discussion of the nature of technology itself and the relationship of technology to art, as well as an examination of the educational process. In the field of technology-influenced design-based education it is natural to push for advanced technology, yet within a larger institution the constraints of budget and adherence to tradition must be accepted. These opposing forces create a natural balance; in some cases constraints lead to greater creat

  16. 3D modeling of metallic grain growth

    George, D.; Carlson, N.; Gammel, J.T.; Kuprat, A.

    1999-06-01

    This paper will describe simulating metallic grain growth using the Gradient Weighted Moving Finite Elements code, GRAIN3D. The authors also describe the set of mesh topology change operations developed to respond to changes in the physical topology such as the collapse of grains and to maintain uniform calculational mesh quality. Validation of the method is demonstrated by comparison to analytic calculations. The authors present results of multigrain simulations where grain boundaries evolve by mean curvature motion and include results which incorporate grain boundary orientation dependence.

  17. Percolation and lasing in real 3D crystals with inhomogeneous distributed random pores

    We systematically study the percolation phase transition in real 3D crystals where not only the state of pores but also their radius r and displacement s are random valued numbers. The mean values R=〈r〉 and S=〈s〉 emerge as additional spatial scales in such an extended network. This leads to variations of the threshold (critical) percolation probability pC and the percolation order parameter P that become to be the intricate functions of R and S. Our numerical simulations have shown that in such extended system the incipient spanning cluster can arise even for situations where for simple periodical system the percolation does not exist. We analyzed the validity of the nearest neighbor's approximation and found that such approximation is not valid for materials with large dispersivity of pores. The lasing of nanoemitters incorporated in such percolating spanning cluster is studied too. This effect can open interesting perspectives in modern nano- and micro-information technologies

  18. APPLICATION OF 3D MODELING IN 3D PRINTING FOR THE LOWER JAW RECONSTRUCTION

    Yu. Yu. Dikov

    2015-01-01

    Full Text Available Aim of study: improvement of functional and aesthetic results of microsurgery reconstructions of the lower jaw due to the use of the methodology of 3D modeling and 3D printing. Application of this methodology has been demonstrated on the example of treatment of 4 patients with locally distributed tumors of the mouth cavity, who underwent excision of the tumor with simultaneous reconstruction of the lower jaw with revascularized fibular graft.Before, one patient has already undergo segmental resection of the lower jaw with the defect replacement with the avascular ileac graft and a reconstruction plate. Then, a relapse of the disease and lysis of the graft has developed with him. Modeling of the graft according to the shape of the lower jaw was performed by making osteotomies of the bone part of the graft using three-dimensional virtual models created by computed tomography data. Then these 3D models were printed with a 3D printer of plastic with the scale of 1:1 with the fused deposition modeling (FDM technology and were used during the surgery in the course of modeling of the graft. Sterilizing of the plastic model was performed in the formalin chamber.This methodology allowed more specific reconstruction of the resected fragment of the lower jaw and get better functional and aesthetic results and prepare patients to further dental rehabilitation. Advantages of this methodology are the possibility of simultaneous performance of stages of reconstruction and resection and shortening of the time of surgery.

  19. PERFORMANCE EVALUATION OF 3D MODELING SOFTWARE FOR UAV PHOTOGRAMMETRY

    Yanagi, H; H. Chikatsu

    2016-01-01

    UAV (Unmanned Aerial Vehicle) photogrammetry, which combines UAV and freely available internet-based 3D modeling software, is widely used as a low-cost and user-friendly photogrammetry technique in the fields such as remote sensing and geosciences. In UAV photogrammetry, only the platform used in conventional aerial photogrammetry is changed. Consequently, 3D modeling software contributes significantly to its expansion. However, the algorithms of the 3D modelling software are black box algori...

  20. OCTG Premium Threaded Connection 3D Parametric Finite Element Model

    Ahsan, Nabeel

    2016-01-01

    Full 360 degree 3D finite element models are the most complete representation of Oil Country Tubular Goods (OCTG) premium threaded connections. Full 3D models can represent helical threads and boundary conditions required to simulate make-up and service loading. A methodology is developed to create a 360 degree full 3D parametric finite element model with helical threads as an effective design and analysis tool. The approach is demonstrated with the creation of a metal-to-metal seal integral ...

  1. Summary on Several Key Techniques in 3D Geological Modeling

    Gang Mei

    2014-01-01

    Several key techniques in 3D geological modeling including planar mesh generation, spatial interpolation, and surface intersection are summarized in this paper. Note that these techniques are generic and widely used in various applications but play a key role in 3D geological modeling. There are two essential procedures in 3D geological modeling: the first is the simulation of geological interfaces using geometric surfaces and the second is the building of geological objects by means of vario...

  2. Statistical Model of the 3-D Braided Composites Strength

    XIAO Laiyuan; ZUO Weiwei; CAI Ganwei; LIAO Daoxun

    2007-01-01

    Based on the statistical model for the tensile statistical strength of unidirectional composite materials and the stress analysis of 3-D braided composites, a new method is proposed to calculate the tensile statistical strength of the 3-D braided composites. With this method, the strength of 3-D braided composites can be calculated with very large accuracy, and the statistical parameters of 3-D braided composites can be determined. The numerical result shows that the tensile statistical strength of 3-D braided composites can be predicted using this method.

  3. Life in 3D is never flat: 3D models to optimise drug delivery.

    Fitzgerald, Kathleen A; Malhotra, Meenakshi; Curtin, Caroline M; O' Brien, Fergal J; O' Driscoll, Caitriona M

    2015-10-10

    The development of safe, effective and patient-acceptable drug products is an expensive and lengthy process and the risk of failure at different stages of the development life-cycle is high. Improved biopharmaceutical tools which are robust, easy to use and accurately predict the in vivo response are urgently required to help address these issues. In this review the advantages and challenges of in vitro 3D versus 2D cell culture models will be discussed in terms of evaluating new drug products at the pre-clinical development stage. Examples of models with a 3D architecture including scaffolds, cell-derived matrices, multicellular spheroids and biochips will be described. The ability to simulate the microenvironment of tumours and vital organs including the liver, kidney, heart and intestine which have major impact on drug absorption, distribution, metabolism and toxicity will be evaluated. Examples of the application of 3D models including a role in formulation development, pharmacokinetic profiling and toxicity testing will be critically assessed. Although utilisation of 3D cell culture models in the field of drug delivery is still in its infancy, the area is attracting high levels of interest and is likely to become a significant in vitro tool to assist in drug product development thus reducing the requirement for unnecessary animal studies. PMID:26220617

  4. 3D Hilbert Space Filling Curves in 3D City Modeling for Faster Spatial Queries

    Ujang, Uznir; Antón Castro, Francesc/François; Azri, Suhaibah;

    2014-01-01

    The advantages of three dimensional (3D) city models can be seen in various applications including photogrammetry, urban and regional planning, computer games, etc. They expand the visualization and analysis capabilities of Geographic Information Systems on cities, and they can be developed using...

  5. Automatic Generation of 3D Building Models for Sustainable Development

    Sugihara, Kenichi

    2015-01-01

    3D city models are important in urban planning for sustainable development. Urban planners draw maps for efficient land use and a compact city. 3D city models based on these maps are quite effective in understanding what, if this alternative plan is realized, the image of a sustainable city will be. However, enormous time and labour has to be consumed to create these 3D models, using 3D modelling software such as 3ds Max or SketchUp. In order to automate the laborious steps, a GIS and CG inte...

  6. Importing a 3D model from an industrial design

    Tran Thi, Thien

    2015-01-01

    In the media industry, sharing and transferring a 3D model to other programs for different stages of design is widely used. The final year project was carried out based on a case study in which a 3D model was imported from an industrial design to Autodesk 3ds Max. The thesis focuses on defining the workflow for importing a third-party 3D model to the 3ds Max program. In general, importing a 3D model made by one program to another one always presents many challenges. The purposes of this s...

  7. 3D scene modeling from multiple range views

    Sequeira, Vitor; Goncalves, Joao G. M.; Ribeiro, M. Isabel

    1995-09-01

    This paper presents a new 3D scene analysis system that automatically reconstructs the 3D geometric model of real-world scenes from multiple range images acquired by a laser range finder on board of a mobile robot. The reconstruction is achieved through an integrated procedure including range data acquisition, geometrical feature extraction, registration, and integration of multiple views. Different descriptions of the final 3D scene model are obtained: a polygonal triangular mesh, a surface description in terms of planar and biquadratics surfaces, and a 3D boundary representation. Relevant experimental results from the complete 3D scene modeling are presented. Direct applications of this technique include 3D reconstruction and/or update of architectual or industrial plans into a CAD model, design verification of buildings, navigation of autonomous robots, and input to virtual reality systems.

  8. Visualization of 3D Geological Models on Google Earth

    Choi, Y.; Um, J.; Park, M.

    2013-05-01

    Google Earth combines satellite imagery, aerial photography, thematic maps and various data sets to make a three-dimensional (3D) interactive image of the world. Currently, Google Earth is a popular visualization tool in a variety of fields and plays an increasingly important role not only for private users in daily life, but also for scientists, practitioners, policymakers and stakeholders in research and application. In this study, a method to visualize 3D geological models on Google Earth is presented. COLLAborative Design Activity (COLLADA, an open standard XML schema for establishing interactive 3D applications) was used to represent different 3D geological models such as borehole, fence section, surface-based 3D volume and 3D grid by triangle meshes (a set of triangles connected by their common edges or corners). In addition, we designed Keyhole Markup Language (KML, the XML-based scripting language of Google Earth) codes to import the COLLADA files into the 3D render window of Google Earth. The method was applied to the Grosmont formation in Alberta, Canada. The application showed that the combination of COLLADA and KML enables Google Earth to effectively visualize 3D geological structures and properties.; Visualization of the (a) boreholes, (b) fence sections, (c) 3D volume model and (d) 3D grid model of Grossmont formation on Google Earth

  9. IVIS-3D: A tool for interactive 3D-visualisation of gravity models

    Klesper, C.

    EDV-based interactive visualisation methods have become a very essential part in the modelling and analysing of three-dimensional models in geoscience. The value of enhanced 3D-visualization for the process of modelling and validation of complex models increases with the number of capabilities to change independently display parameters and to combine different data, like model and process information. But this value also falls with increasing information and methods which slow down user interaction and confuses the user with too much information and the complexity of user interfaces (Houlding, 1994). Especially for interactive 3D-visualization and validation of geometric models, existing modelling systems can meet the user requirements only inadequate. So lacks of functionality are often compensated by the user with a patchwork of different programs. Now the task was to find or create new visualisation methods, to combine the capabilities of interactive 3D-visualization with an intuitive environment and to adapt these features to the existing gravity and magnetic modelling program IGMAS (Götze et al., 1988); (Schmidt, 1996).

  10. a Fast Method for Measuring the Similarity Between 3d Model and 3d Point Cloud

    Zhang, Zongliang; Li, Jonathan; Li, Xin; Lin, Yangbin; Zhang, Shanxin; Wang, Cheng

    2016-06-01

    This paper proposes a fast method for measuring the partial Similarity between 3D Model and 3D point Cloud (SimMC). It is crucial to measure SimMC for many point cloud-related applications such as 3D object retrieval and inverse procedural modelling. In our proposed method, the surface area of model and the Distance from Model to point Cloud (DistMC) are exploited as measurements to calculate SimMC. Here, DistMC is defined as the weighted distance of the distances between points sampled from model and point cloud. Similarly, Distance from point Cloud to Model (DistCM) is defined as the average distance of the distances between points in point cloud and model. In order to reduce huge computational burdens brought by calculation of DistCM in some traditional methods, we define SimMC as the ratio of weighted surface area of model to DistMC. Compared to those traditional SimMC measuring methods that are only able to measure global similarity, our method is capable of measuring partial similarity by employing distance-weighted strategy. Moreover, our method is able to be faster than other partial similarity assessment methods. We demonstrate the superiority of our method both on synthetic data and laser scanning data.

  11. A 3D Geometry Model Search Engine to Support Learning

    Tam, Gary K. L.; Lau, Rynson W. H.; Zhao, Jianmin

    2009-01-01

    Due to the popularity of 3D graphics in animation and games, usage of 3D geometry deformable models increases dramatically. Despite their growing importance, these models are difficult and time consuming to build. A distance learning system for the construction of these models could greatly facilitate students to learn and practice at different…

  12. From 2D to 3D: Using Illumination Cones to Build 3d Face Model

    To solve the problem derivate by lighting condition and position of the camera, a new method using illumination cones to build 3d face model has been proposed. Due to illumination variability, the same object can show dramatic difference even as being viewed in fixed pose. To handle this variability, an object recognition system must employ a representation that is either invariant to, or can model this variability. The proposed technique presents an appearance-based method for modeling the variability due to illumination in the images of objects. The method differs from past appearance-based methods. Evenmore, a small set of training images is used to generate a representation that the illumination cone models the complete set of images of an object with Lambertian reflectance surface under a combination of arbitrary point light sources at infinity. After building up the illumination cones, researches focus on how to present the 3d model of the face. Combining illumination and texture feature to build up 3d model of the face make it easy solving the problem in recognition of face under different pose

  13. From 2D to 3D: Using Illumination Cones to Build 3d Face Model

    Xiao, S S; Jin, M [TianJin University, Collage of Precision Instrument and Opto-Ectronics Engineering (China)

    2006-10-15

    To solve the problem derivate by lighting condition and position of the camera, a new method using illumination cones to build 3d face model has been proposed. Due to illumination variability, the same object can show dramatic difference even as being viewed in fixed pose. To handle this variability, an object recognition system must employ a representation that is either invariant to, or can model this variability. The proposed technique presents an appearance-based method for modeling the variability due to illumination in the images of objects. The method differs from past appearance-based methods. Evenmore, a small set of training images is used to generate a representation that the illumination cone models the complete set of images of an object with Lambertian reflectance surface under a combination of arbitrary point light sources at infinity. After building up the illumination cones, researches focus on how to present the 3d model of the face. Combining illumination and texture feature to build up 3d model of the face make it easy solving the problem in recognition of face under different pose.

  14. Numerical 3-D Modelling of Overflows

    Larsen, Torben; Nielsen, L.; Jensen, B.; Christensen, E. D.

    2008-01-01

    -dimensional so-called Volume of Fluid Models (VOF-models) based on the full Navier-Stokes equations (named NS3 and developed by DHI Water & Environment) As a general conclusion, the two numerical models show excellent results when compared with measurements. However, considerable errors occur when......The present study uses laboratory experiments to evaluate the reliability of two types of numerical models of sewers systems: - 1-dimensional model based on the extended Saint-Venant equation including the term for curvature of the water surface (the so-called Boussinesq approximation) - 2- and 3...

  15. Værkanalyse med digitale 3D modeller

    Villaume, René Domine; Ørstrup, Finn Rude

    2006-01-01

    Projektet afprøve muligheder for Værkanalyse af danske arkitekturværker med anvendelse af digitale 3D modeller. Arkitektstuderende har i en workshop udarbejdet en 3D model af Arkitekt Vilhelm Lauritzens bygning til  Københavns Lufthavn fra 1939. Modellen er herefter videreudviklet og yderligere...

  16. Inhomogeneous Markov Models for Describing Driving Patterns

    Iversen, Jan Emil Banning; Møller, Jan Kloppenborg; Morales González, Juan Miguel; Madsen, Henrik

    . Specically, an inhomogeneous Markov model that captures the diurnal variation in the use of a vehicle is presented. The model is dened by the time-varying probabilities of starting and ending a trip and is justied due to the uncertainty associated with the use of the vehicle. The model is tted to data...... collected from the actual utilization of a vehicle. Inhomogeneous Markov models imply a large number of parameters. The number of parameters in the proposed model is reduced using B-splines....

  17. Octree-based Robust Watermarking for 3D Model

    Su Cai

    2011-02-01

    Full Text Available Three robust blind watermarking methods of 3D models based on Octree are proposed in this paper: OTC-W, OTP-W and Zero-W. Primary Component Analysis and Octree partition are used on 3D meshes. A scrambled binary image for OTC-W and a scrambled RGB image for OTP-W are separately embedded adaptively into the single child nodes at the bottom level of Octree structure. The watermark can be extracted without the original image and 3D model. Those two methods have high embedding capacity for 3D meshes. Meanwhile, they are robust against geometric transformation (like translation, rotation, uniform scaling and vertex reordering attacks. For Zero-W, higher nodes of Octree are used to construct ‘Zero-watermark’, which can resist simplification, noise and remeshing attacks. All those three methods are fit for 3D point cloud data and arbitrary 3D meshes.Three robust blind watermarking methods of 3D models based on Octree are proposed in this paper: OTC-W, OTP-W and Zero-W. Primary Component Analysis and Octree partition are used on 3D meshes. A scrambled binary image for OTC-W and a scrambled RGB image for OTP-W are separately embedded adaptively into the single child nodes at the bottom level of Octree structure. The watermark can be extracted without the original image and 3D model. Those two methods have high embedding capacity for 3D meshes. Meanwhile, they are robust against geometric transformation (like translation, rotation, uniform scaling and vertex reordering attacks. For Zero-W, higher nodes of Octree are used to construct ‘Zero-watermark’, which can resist simplification, noise and remeshing attacks. All those three methods are fit for 3D point cloud data and arbitrary 3D meshes.

  18. An Automated 3d Indoor Topological Navigation Network Modelling

    Jamali, A.; Rahman, A. A.; Boguslawski, P.; Gold, C. M.

    2015-10-01

    Indoor navigation is important for various applications such as disaster management and safety analysis. In the last decade, indoor environment has been a focus of wide research; that includes developing techniques for acquiring indoor data (e.g. Terrestrial laser scanning), 3D indoor modelling and 3D indoor navigation models. In this paper, an automated 3D topological indoor network generated from inaccurate 3D building models is proposed. In a normal scenario, 3D indoor navigation network derivation needs accurate 3D models with no errors (e.g. gap, intersect) and two cells (e.g. rooms, corridors) should touch each other to build their connections. The presented 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. For reducing time and cost of indoor building data acquisition process, Trimble LaserAce 1000 as surveying instrument is used. The modelling results were validated against an accurate geometry of indoor building environment which was acquired using Trimble M3 total station.

  19. Highway 3D model from image and lidar data

    Chen, Jinfeng; Chu, Henry; Sun, Xiaoduan

    2014-05-01

    We present a new method of highway 3-D model construction developed based on feature extraction in highway images and LIDAR data. We describe the processing road coordinate data that connect the image frames to the coordinates of the elevation data. Image processing methods are used to extract sky, road, and ground regions as well as significant objects (such as signs and building fronts) in the roadside for the 3D model. LIDAR data are interpolated and processed to extract the road lanes as well as other features such as trees, ditches, and elevated objects to form the 3D model. 3D geometry reasoning is used to match the image features to the 3D model. Results from successive frames are integrated to improve the final model.

  20. EDGE REMOVAL OF 3D POLYGONAL MODEL USING MAYA API

    SAMEER ARORA

    2010-09-01

    Full Text Available In various applications of computer graphics, 3D polygonal modeling is used, which consists millions of triangular polygon. In this polygon attributes – vertices, edges and faces’ details are to be stored. In order to control the processing time, storing space, and transfer speed, it is often required to reduce the information ofthese polygonal 3D models. In this paper an effort is made to reduce the number of edges. There are various methods to reduce faces and edges of these 3D models. A C++ dynamic link library as Maya Plugin has been created to remove number of edges of 3D triangular polygon model using the Quadric Error Metrics (QEM in MAYA v2010 x64 API. QEM allows fast and accurate geometric simplification of 3D models.

  1. Several Strategies on 3D Modeling of Manmade Objects

    SHAO Zhenfeng; LI Deren; CHENG Qimin

    2004-01-01

    Several different strategies of 3D modeling are adopted for different kinds of manmade objects. Firstly, for those manmade objects with regular structure, if 2D information is available and elevation information can be obtained conveniently, then 3D modeling of them can be executed directly. Secondly, for those manmade objects with complicated structure comparatively and related stereo images pair can be acquired, in the light of topology-based 3D model we finish 3D modeling of them by integrating automatic and semi-automatic object extraction. Thirdly, for the most complicated objects whose geometrical information cannot be got from stereo images pair completely, we turn to topological 3D model based on CAD.

  2. An Automatic Registration Algorithm for 3D Maxillofacial Model

    Qiu, Luwen; Zhou, Zhongwei; Guo, Jixiang; Lv, Jiancheng

    2016-09-01

    3D image registration aims at aligning two 3D data sets in a common coordinate system, which has been widely used in computer vision, pattern recognition and computer assisted surgery. One challenging problem in 3D registration is that point-wise correspondences between two point sets are often unknown apriori. In this work, we develop an automatic algorithm for 3D maxillofacial models registration including facial surface model and skull model. Our proposed registration algorithm can achieve a good alignment result between partial and whole maxillofacial model in spite of ambiguous matching, which has a potential application in the oral and maxillofacial reparative and reconstructive surgery. The proposed algorithm includes three steps: (1) 3D-SIFT features extraction and FPFH descriptors construction; (2) feature matching using SAC-IA; (3) coarse rigid alignment and refinement by ICP. Experiments on facial surfaces and mandible skull models demonstrate the efficiency and robustness of our algorithm.

  3. NASA 3D Models: Cassini Assembly

    National Aeronautics and Space Administration — Includes orbiter from CAD models. Accurate (to a fault) except no thermal blanketing is shown (this would cover most of the central structure of the spacecraft)....

  4. A 3D Model Reconstruction Method Using Slice Images

    LI Hong-an; KANG Bao-sheng

    2013-01-01

    Aiming at achieving the high accuracy 3D model from slice images, a new model reconstruction method using slice im-ages is proposed. Wanting to extract the outermost contours from slice images, the method of the improved GVF-Snake model with optimized force field and ray method is employed. And then, the 3D model is reconstructed by contour connection using the im-proved shortest diagonal method and judgment function of contour fracture. The results show that the accuracy of reconstruction 3D model is improved.

  5. Virtual 3d City Modeling: Techniques and Applications

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2013-08-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as Building, Tree, Vegetation, and some manmade feature belonging to urban area. There are various terms used for 3D city models such as "Cybertown", "Cybercity", "Virtual City", or "Digital City". 3D city models are basically a computerized or digital model of a city contains the graphic representation of buildings and other objects in 2.5 or 3D. Generally three main Geomatics approach are using for Virtual 3-D City models generation, in first approach, researcher are using Conventional techniques such as Vector Map data, DEM, Aerial images, second approach are based on High resolution satellite images with LASER scanning, In third method, many researcher are using Terrestrial images by using Close Range Photogrammetry with DSM & Texture mapping. We start this paper from the introduction of various Geomatics techniques for 3D City modeling. These techniques divided in to two main categories: one is based on Automation (Automatic, Semi-automatic and Manual methods), and another is Based on Data input techniques (one is Photogrammetry, another is Laser Techniques). After details study of this, finally in short, we are trying to give the conclusions of this study. In the last, we are trying to give the conclusions of this research paper and also giving a short view for justification and analysis, and present trend for 3D City modeling. This paper gives an overview about the Techniques related with "Generation of Virtual 3-D City models using Geomatics Techniques" and the Applications of Virtual 3D City models. Photogrammetry, (Close range, Aerial, Satellite), Lasergrammetry, GPS, or combination of these modern Geomatics techniques play a major role to create a virtual 3-D City model. Each and every techniques and method has some advantages and some drawbacks. Point cloud model is a modern trend for virtual 3-D city model. Photo-realistic, Scalable, Geo-referenced virtual 3

  6. Isotropic singularity in inhomogeneous brane cosmological models

    We discuss the asymptotic dynamical evolution of spatially inhomogeneous brane-world cosmological models close to the initial singularity. By introducing suitable scale-invariant dependent variables and a suitable gauge, we write the evolution equations of the spatially inhomogeneous G2 brane cosmological models with one spatial degree of freedom as a system of autonomous first-order partial differential equations. We study the system numerically, and we find that there always exists an initial singularity, which is characterized by the fact that spatial derivatives are dynamically negligible. More importantly, from the numerical analysis we conclude that there is an initial isotropic singularity in all these spatially inhomogeneous brane cosmologies for a range of parameter values which include the physically important cases of radiation and a scalar field source. The numerical results are supported by a qualitative dynamical analysis and a calculation of the past asymptotic decay rates. Although the analysis is local in nature, the numerics indicate that the singularity is isotropic for all relevant initial conditions. Therefore this analysis, and a preliminary investigation of general inhomogeneous (G0) models, indicates that it is plausible that the initial singularity is isotropic in spatially inhomogeneous brane-world cosmological models and consequently that brane cosmology naturally gives rise to a set of initial data that provide the conditions for inflation to subsequently take place

  7. Image based 3D city modeling : Comparative study

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2014-06-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing rapidly for various engineering and non-engineering applications. Generally four main image based approaches were used for virtual 3D city models generation. In first approach, researchers were used Sketch based modeling, second method is Procedural grammar based modeling, third approach is Close range photogrammetry based modeling and fourth approach is mainly based on Computer Vision techniques. SketchUp, CityEngine, Photomodeler and Agisoft Photoscan are the main softwares to represent these approaches respectively. These softwares have different approaches & methods suitable for image based 3D city modeling. Literature study shows that till date, there is no complete such type of comparative study available to create complete 3D city model by using images. This paper gives a comparative assessment of these four image based 3D modeling approaches. This comparative study is mainly based on data acquisition methods, data processing techniques and output 3D model products. For this research work, study area is the campus of civil engineering department, Indian Institute of Technology, Roorkee (India). This 3D campus acts as a prototype for city. This study also explains various governing parameters, factors and work experiences. This research work also gives a brief introduction, strengths and weakness of these four image based techniques. Some personal comment is also given as what can do or what can't do from these softwares. At the last, this study shows; it concluded that, each and every software has some advantages and limitations. Choice of software depends on user requirements of 3D project. For normal visualization project, SketchUp software is a good option. For 3D documentation record, Photomodeler gives good result. For Large city

  8. Modelling Polymer Deformation during 3D Printing

    McIlroy, Claire; Olmsted, Peter

    Three-dimensional printing has the potential to transform manufacturing processes, yet improving the strength of printed parts, to equal that of traditionally-manufactured parts, remains an underlying issue. The fused deposition modelling technique involves melting a thermoplastic, followed by layer-by-layer extrusion to fabricate an object. The key to ensuring strength at the weld between layers is successful inter-diffusion. However, prior to welding, both the extrusion process and the cooling temperature profile can significantly deform the polymer micro-structure and, consequently, how well the polymers are able to ``re-entangle'' across the weld. In particular, polymer alignment in the flow can cause de-bonding of the layers and create defects. We have developed a simple model of the non-isothermal extrusion process to explore the effects that typical printing conditions and material rheology have on the conformation of a polymer melt. In particular, we incorporate both stretch and orientation using the Rolie-Poly constitutive equation to examine the melt structure as it flows through the nozzle, the subsequent alignment with the build plate and the resulting deformation due to the fixed nozzle height, which is typically less than the nozzle radius.

  9. Technology for creating interactive 3D model printing equipment

    Розенберг, О. А.; Хохлова, Розалія Анатоліївна

    2013-01-01

    The article analyzed the software to create interactive 3D models of printing equipment. The analysis revealed the advantages and disadvantages presented by the editors and determined the direction of research. The main parameters that influence the choice of software for interactive 3D simulation models, study models of production technologies in different applications are constructed classification software.The recommendations on the choice of the software to model, depending on the particu...

  10. 3D Model Retrieval Based on Semantic and Shape Indexes

    Kassimi, My Abdellah

    2011-01-01

    The size of 3D models used on the web or stored in databases is becoming increasingly high. Then, an efficient method that allows users to find similar 3D objects for a given 3D model query has become necessary. Keywords and the geometry of a 3D model cannot meet the needs of users' retrieval because they do not include the semantic information. In this paper, a new method has been proposed to 3D models retrieval using semantic concepts combined with shape indexes. To obtain these concepts, we use the machine learning methods to label 3D models by k-means algorithm in measures and shape indexes space. Moreover, semantic concepts have been organized and represented by ontology language OWL and spatial relationships are used to disambiguate among models of similar appearance. The SPARQL query language has been used to question the information displayed in this language and to compute the similarity between two 3D models. We interpret our results using the Princeton Shape Benchmark Database and the results show ...

  11. 3D PIC Modeling of Microcavity Discharge

    Hopkins, Matthew; Manginell, Ronald; Moore, Christopher; Yee, Benjamin; Moorman, Matthew

    2015-09-01

    We present a number of techniques and challenges in simulating the transient behavior of a microcavity discharge. Our microcavities are typically cylindrical with diameters approximately 50 - 100 μm, heights of 50 - 200 μm, pressure near atmospheric, and operate at a few hundred volts. We employ a fully kinetic simulation methodology, the Particle-in-Cell (PIC) method, with interparticle collisions handled via methods based on direct simulation Monte Carlo (DSMC). In particular, we explicitly include kinetic electrons. Some of the challenges we encounter include variations in number densities, external circuit coupling, and time step resolution constraints. By employing dynamic particle weighting (particle weights vary over time by species and location) we can mitigate some of the challenges modeling systems with 107 variations in number densities. Smoothing mechanisms have been used to attempt to mitigate external circuit response. We perform our simulations on hundreds or thousands of processing cores to accommodate the computational work inherent in using relatively small time step sizes (e.g., 50 fs for a 100 ns calculation). In addition, particle weighting issues inherent to three-dimensional low temperature plasma systems will be mentioned. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under Contract DE-AC04-94AL85000.

  12. Performance Analysis of a 3D Ionosphere Tomographic Model

    Liu Zhi-zhao; Gao Yang

    2003-01-01

    A 3D high precision ionospheric model is developed based on tomography technique. This tomographic model employs GPS data observed by an operational network of dual-frequency GPS receivers. The methodology of developing a 3D ionospheric tomography model is briefly summarized. However emphasis is put on the analysis and evaluation of the accuracy variation of 3D ionosphere modeling with respect to the change of GPS data cutoff angle.Three typical cutoff angle values (15°, 20° and 25°) are tested. For each testing cutoff angle, the performances of the3D ionospheric model constructed using tomography technique are assessed by calibrating the model predicted ionospheric TEC with the GPS measured TEC and by employing the model predicted TEC to a practical GPS positioning application single point positioning (SPP).Test results indicate the 3D model predicted VTEC has about 0.4 TECU improvement in accuracy when cutoff angle rises from 15° to 20°. However, no apparent improvement is found from 20° to 25°. The model's improvement is also validated by the better SPP accuracy of 3D model than its counterpart-dual frequency model in the 20° and 25° cases.

  13. Tangible 3D modeling of coherent and themed structures

    Walther, Jeppe Ullè; Bærentzen, J. Andreas; Aanæs, Henrik

    2016-01-01

    We present CubeBuilder, a system for interactive, tangible 3D shape modeling. CubeBuilder allows the user to create a digital 3D model by placing physical, non-interlocking cubic blocks. These blocks may be placed in a completely arbitrary fashion and combined with other objects. In effect, this...... turns the task of 3D modeling into a playful activity that hardly requires any learning on the part of the user. The blocks are registered using a depth camera and entered into the cube graph where each block is a node and adjacent blocks are connected by edges. From the cube graph, we transform the...

  14. The 3D model: explaining densification and deformation mechanisms by using 3D parameter plots.

    Picker, Katharina M

    2004-04-01

    The aim of the study was to analyze very differently deforming materials using 3D parameter plots and consequently to gain deeper insights into the densification and deformation process described with the 3D model in order to define an ideal tableting excipient. The excipients used were dicalcium phosphate dihydrate (DCPD), sodium chloride (NaCl), microcrystalline cellulose (MCC), xylitol, mannitol, alpha-lactose monohydrate, maltose, hydroxypropyl methylcellulose (HPMC), sodium carboxymethylcellulose (NaCMC), cellulose acetate (CAC), maize starch, potato starch, pregelatinized starch, and maltodextrine. All of the materials were tableted to graded maximum relative densities (rhorel, max) using an eccentric tableting machine. The data which resulted, namely force, displacement, and time, were analyzed by the application of 3D modeling. Different particle size fractions of DCPD, CAC, and MCC were analyzed in addition. Brittle deforming materials such as DCPD exhibited a completely different 3D parameter plot, with low time plasticity, d, and low pressure plasticity, e, and a strong decrease in omega values when densification increased, in contrast to the plastically deforming MCC, which had much higher d, e, and omega values. e and omega values changed only slightly when densification increased for MCC. NaCl showed less of a decrease in omega values than DCPD did, and the d and e values were between those of MCC and DCPD. The sugar alcohols, xylitol and mannitol, behaved in a similar fashion to sodium chloride. This is also valid for the crystalline sugars, alpha-lactose monohydrate, and maltose. However, the sugars are more brittle than the sugar alcohols. The cellulose derivatives, HPMC, NaCMC, and CAC, are as plastic as MCC, however, their elasticity depends on substitution indicated by lower (more elastic) or higher (less elastic) omega values. The native starches, maize starch and potato starch, are very elastic, and pregelatinized starch and maltodextrine are

  15. Inhomogeneous spacetimes as a dark energy model

    LemaItre-Tolman-Bondi inhomogeneous spacetimes are used as a cosmological model for type Ia supernova data. It is found that with certain parameter choices the model fits the data as well as the standard ΛCDM cosmology does

  16. The 3-Dimensional Core Model DYN3D

    Mittag, Siegfried; Rohde, Ulrich; Grundmann, Ulrich

    2010-01-01

    Analyzing the safety margins in transients and accidents of nuclear reactors 3-dimensional models of the core were used to avoid conservative assumptions needed for point kinetics or 1-dimensional models. Therefore the 3D code DYN3D has been developed for the analysis of reactivity initiated accidents (RIA) in thermal nuclear reactors. The power distributions are calculated with the help of nodal expansion methods (NEM) for hexagonal and Cartesian geometry. The fuel rod model and the thermohy...

  17. Detailed Primitive-Based 3d Modeling of Architectural Elements

    Remondino, F.; Lo Buglio, D.; Nony, N.; De Luca, L.

    2012-07-01

    The article describes a pipeline, based on image-data, for the 3D reconstruction of building façades or architectural elements and the successive modeling using geometric primitives. The approach overcome some existing problems in modeling architectural elements and deliver efficient-in-size reality-based textured 3D models useful for metric applications. For the 3D reconstruction, an opensource pipeline developed within the TAPENADE project is employed. In the successive modeling steps, the user manually selects an area containing an architectural element (capital, column, bas-relief, window tympanum, etc.) and then the procedure fits geometric primitives and computes disparity and displacement maps in order to tie visual and geometric information together in a light but detailed 3D model. Examples are reported and commented.

  18. 3-D network model and its parameter calibration

    LIU; Xiaoyu(刘晓宇); LIANG; Naigang(梁乃刚); LI; Min(李敏)

    2002-01-01

    A material model, whose framework is parallel spring-bundles oriented in 3-D space, isproposed. Based on a discussion of the discrete schemes and optimum discretization of the solidangles, a 3-D network cell consisted of one-dimensional components is developed with its geomet-rical and physical parameters calibrated. It is proved that the 3-D network model is able to exactlysimulate materials with arbitrary Poisson ratio from 0 to 1/2, breaking through the limit that the pre-vious models in the literature are only suitable for materials with Poisson ratio from 0 to 1/3. A sim-plified model is also proposed to realize high computation accuracy within Iow computation cost.Examples demonstrate that the 3-D network model has particular superiority in the simulation ofshort-fiber reinforced composites.

  19. 3D Servicescape Model: Atmospheric Qualities of Virtual Reality Retailing

    Aasim Munir Dad

    2016-02-01

    Full Text Available The purpose of this paper is to provide a 3D servicescape conceptual model which explores the potential effect of 3D virtual reality retail stores’ environment on shoppers' behaviour. Extensive review of literature within two different domains, namely: servicescape models, and retail atmospherics, was carried out in order to propose a conceptual model. Further, eight detailed interviews were conducted to confirm the stimulus dimension of the conceptual model. A 3D servicescape conceptual model is offered on the basis of stimulus-organism-dimension, which proposes that a 3D virtual reality retail (VRR store environment consists of physical, social, socially symbolic and natural dimensions. These dimensions are proposed to affect shoppers’ behaviour through the mediating variables of emotions (pleasure and arousal. An interrelationship between pleasure and arousal, as mediating variables, is also proposed. This research opens a number of new avenues for further research through the proposed model of shoppers’ behaviour in a VRR store environment. Further, a systematic taxonomy development of VRR store environment is attempted through this proposed model that may prove to be an important step in theory building. A comprehensive 3D service scape model along with a large number of propositions is made to define a 3D VRR store environment.

  20. 3D Image Modelling and Specific Treatments in Orthodontics Domain

    Dionysis Goularas

    2007-01-01

    Full Text Available In this article, we present a 3D specific dental plaster treatment system for orthodontics. From computer tomography scanner images, we propose first a 3D image modelling and reconstruction method of the Mandible and Maxillary based on an adaptive triangulation allowing management of contours meant for the complex topologies. Secondly, we present two specific treatment methods directly achieved on obtained 3D model allowing the automatic correction for the setting in occlusion of the Mandible and the Maxillary, and the teeth segmentation allowing more specific dental examinations. Finally, these specific treatments are presented via a client/server application with the aim of allowing a telediagnosis and treatment.

  1. A method of 3D modeling and codec

    QI Yue; YANG Shen; CAI Su; HOU Fei; SHEN XuKun; ZHAO QinPing

    2009-01-01

    3D modeling and codec of real objects are hot Issues in the field of virtual reality. In this paper, we propose an automatic registration two range Images method and a cycle based automatic global reg-istration algorithm for rapidly and automatically registering all range Images and constructing a real-istic 3D model. Besides, to meet the requirement of huge data transmission over Internet, we present a 3D mesh encoding/decoding method for encoding geometry, topology and attribute data with high compression ratio and supporting progressive transmission. The research results have already been applied successfully in digital museum.

  2. Surface modelling in 3D city information system

    Igor Petz

    2009-10-01

    Full Text Available Geographical information systems deal with terrain, cartographical and urban information; these systems allow gathering, maintaining and presentation of the included data. The approach of combininggeographical information systems with visualization methods of virtual reality is presented in this article. Virtual 3D City Information System is a project which purpose is to model parts of the city to 3D graphics using polygonal modelling for modelling objects by representing their surfaces using polygons. Realappearance is provided by using textures. Usually 3D exterior contains large data set of polygons. Presented system contains three parts: editor (modelling part, database and visualisation part. Thesystem is controlled by script (Python language using too. In conclusion are described some results of visualization of 3D scene that is represented as Košice city part.

  3. Interactive 3D computer model of the human corneolimbal region

    Molvaer, Rikke Kongshaug; Andreasen, Arne; Heegaard, Steffen;

    2013-01-01

    plan. In all, one low-magnification and 24 high-magnification interactive 3D models were created. Immunohistochemistry against stem cell markers p63 and ΔNp63α was performed as a supplement to the 3D models. RESULTS: Using the interactive 3D models, we identified three types of stem cell niches......PURPOSE: This study aims to clarify the existence of and to map the localization of different proposed stem cell niches in the corneal limbal region. MATERIALS AND METHODS: One human eye was cut into 2200 consecutive sections. Every other section was stained with haematoxylin and eosin, digitized...... in the superior limbal region and one LEC, six LCs and 12 FSPs in the inferior limbal region. Only few LECs, LCs and FSPs were localized nasally and temporally. CONCLUSION: Interactive 3D models are a powerful tool that may help to shed more light on the existence and spatial localization of the different stem...

  4. Animation of 3D Model of Human Head

    V. Michalcin

    2007-04-01

    Full Text Available The paper deals with the new algorithm of animation of 3D model of the human head in combination with its global motion. The designed algorithm is very fast and with low calculation requirements, because it does not need the synthesis of the input videosequence for estimation of the animation parameters as well as the parameters of global motion. The used 3D model Candide generates different expressions using its animation units which are controlled by the animation parameters. These ones are estimated on the basis of optical flow without the need of extracting of the feature points in the frames of the input videosequence because they are given by the selected vertices of the animation units of the calibrated 3D model Candide. The established multiple iterations inside the designed animation algorithm of 3D model of the human head between two successive frames significantly improved its accuracy above all for the large motion.

  5. Formal representation of 3D structural geological models

    Wang, Zhangang; Qu, Honggang; Wu, Zixing; Yang, Hongjun; Du, Qunle

    2016-05-01

    The development and widespread application of geological modeling methods has increased demands for the integration and sharing services of three dimensional (3D) geological data. However, theoretical research in the field of geological information sciences is limited despite the widespread use of Geographic Information Systems (GIS) in geology. In particular, fundamental research on the formal representations and standardized spatial descriptions of 3D structural models is required. This is necessary for accurate understanding and further applications of geological data in 3D space. In this paper, we propose a formal representation method for 3D structural models using the theory of point set topology, which produces a mathematical definition for the major types of geological objects. The spatial relationships between geologic boundaries, structures, and units are explained in detail using the 9-intersection model. Reasonable conditions for describing the topological space of 3D structural models are also provided. The results from this study can be used as potential support for the standardized representation and spatial quality evaluation of 3D structural models, as well as for specific needs related to model-based management, query, and analysis.

  6. Spectral models of strongly inhomogeneous turbulence

    Bragg, Andrew; Kurien, Susan; Clark, Timothy

    2015-11-01

    We compare results from a spectral model for inhomogeneous turbulence (Besnard et al., Theor. Comp. Fluid. Dyn., vol. 8, pp 1-35, 1996) with DNS data of a shear-free mixing layer (SFML) (Tordella et al., Phys. Rev. E, vol. 77, 016309, 2008). The SFML is used as a test case in which the efficacy of the model closure for the physical-space energy transport can be tested in a flow with strong inhomogeneity, without the additional complexity of mean-flow coupling. The model is able to capture certain features of the SFML quite well for intermediate to long-times, including the evolution of the mixing-layer width and turbulent kinetic energy. At short-times, and for more sensitive statistics such as the generation of the velocity field anisotropy, the model does not work so well. It may be argued that the discrepancy arises due to the local approximation to the intrinsically non-local pressure transport in physical-space, the effect of which would be particularly strong at short-times when the inhomogeneity of the SFML is strongest. Motivated by these results, we briefly discuss a new model that captures the non-local transport effects, for arbitrarily strong inhomogeneities of the flow.

  7. 3D models for teaching and learning geosciences

    Ward, Emma

    2011-01-01

    Although 3D geological models have been used in teaching as early as 1841, recent developments in 3D geological modelling methods and visualisation at the British Geological Survey (BGS) are providing unique resources for teaching and learning geoscience in the 21st century. Today’s geoscience students utilise a variety of cognitive processes and spatial skills during their learning experience. These include the application of schema’s, image construction, detecting patterns...

  8. Numerical modelling of 3D woven preform deformations

    Green, S D; Long, A.C.; El Said, B. S. F.; Hallett, S. R.

    2014-01-01

    In order to accurately predict the performance of 3D woven composites, it is necessary that realistic textile geometry is considered, since failure typically initiates at regions of high deformation or resin pockets. This paper presents the development of a finite element model based on the multi-chain digital element technique, as applied to simulate weaving and compaction of an orthogonal 3D woven composite. The model was reduced to the scale of the unit cell facilitating high fidelity resu...

  9. Performance Evaluation of 3d Modeling Software for Uav Photogrammetry

    Yanagi, H.; Chikatsu, H.

    2016-06-01

    UAV (Unmanned Aerial Vehicle) photogrammetry, which combines UAV and freely available internet-based 3D modeling software, is widely used as a low-cost and user-friendly photogrammetry technique in the fields such as remote sensing and geosciences. In UAV photogrammetry, only the platform used in conventional aerial photogrammetry is changed. Consequently, 3D modeling software contributes significantly to its expansion. However, the algorithms of the 3D modelling software are black box algorithms. As a result, only a few studies have been able to evaluate their accuracy using 3D coordinate check points. With this motive, Smart3DCapture and Pix4Dmapper were downloaded from the Internet and commercial software PhotoScan was also employed; investigations were performed in this paper using check points and images obtained from UAV.

  10. Automatic Texture Mapping of Architectural and Archaeological 3d Models

    Kersten, T. P.; Stallmann, D.

    2012-07-01

    Today, detailed, complete and exact 3D models with photo-realistic textures are increasingly demanded for numerous applications in architecture and archaeology. Manual texture mapping of 3D models by digital photographs with software packages, such as Maxon Cinema 4D, Autodesk 3Ds Max or Maya, still requires a complex and time-consuming workflow. So, procedures for automatic texture mapping of 3D models are in demand. In this paper two automatic procedures are presented. The first procedure generates 3D surface models with textures by web services, while the second procedure textures already existing 3D models with the software tmapper. The program tmapper is based on the Multi Layer 3D image (ML3DImage) algorithm and developed in the programming language C++. The studies showing that the visibility analysis using the ML3DImage algorithm is not sufficient to obtain acceptable results of automatic texture mapping. To overcome the visibility problem the Point Cloud Painter algorithm in combination with the Z-buffer-procedure will be applied in the future.

  11. Virtual Vixens 3D character modeling and scene placement

    von Koenigsmarck, Arndt

    2007-01-01

    Features software workshops for 3ds Max, Maya, CINEMA 4D, Lightwave, and Softimage XSI.Hot, hotter, hottest. See how today''s leading modeling artists create 3D characters that sizzle and get the techniques you''ll need to create your own virtual vixens.Steven Stahlberg, Liam Kemp, Marco Patrito, and Sze Jones from Blur Studio are just a few of the 3D artists who share their secrets for making the fantasy females you wish were real. You''ll get their personal stories, insights into the profession, and new ways to conceive and construct your own 3D characters.Then, seven hands-on workshops demo

  12. 3-D numerical modelling of flow around a groin

    Miller, R.; Roulund, A.; Sumer, B. Mutlu;

    2003-01-01

    A 3-D flow code, EllipSys3D, has been implemented to simulate the 3-D flow around a groin in steady current. The k  turbulence model has been used for closure. Two kinds of groins are considered: (1) A vertical-wall groin, and (2) A groin with a side slope. Steady-flow simulations were conducted....... The paper reports early results of the investigation. The simulations capture main features of the flow around the groin. The horseshoe vortex in front of the vertical-wall groin is resolved. The vortex shedding at the head is not resolved because no transient flow simulations have been conducted at...

  13. Validation of multipoint kinetics model against 3D Trikin Code

    Validation of multipoint kinetics formulation for RELAP5 code has been carried out against 3D TRIKIN code. Core behavior of an asymmetric reactivity transient has been simulated through artificial tuning of lattice constants in 3D code. Individual node normalized reactivity has been conserved and power estimates from multipoint model have been compared with 3D simulation. It has been observed that localized peak power estimates from multipoint simulation are on higher side and therefore are conservative in nature. Improvements in multipoint formulation in regards to evolving coupling coefficients and involving more number of nodes can help in improving its accuracy to some extent. (author)

  14. Gis-Based Smart Cartography Using 3d Modeling

    Malinverni, E. S.; Tassetti, A. N.

    2013-08-01

    3D City Models have evolved to be important tools for urban decision processes and information systems, especially in planning, simulation, analysis, documentation and heritage management. On the other hand existing and in use numerical cartography is often not suitable to be used in GIS because not geometrically and topologically correctly structured. The research aim is to 3D structure and organize a numeric cartography for GIS and turn it into CityGML standardized features. The work is framed around a first phase of methodological analysis aimed to underline which existing standard (like ISO and OGC rules) can be used to improve the quality requirement of a cartographic structure. Subsequently, from this technical specifics, it has been investigated the translation in formal contents, using an owner interchange software (SketchUp), to support some guide lines implementations to generate a GIS3D structured in GML3. It has been therefore predisposed a test three-dimensional numerical cartography (scale 1:500, generated from range data captured by 3D laser scanner), tested on its quality according to the previous standard and edited when and where necessary. Cad files and shapefiles are converted into a final 3D model (Google SketchUp model) and then exported into a 3D city model (CityGML LoD1/LoD2). The GIS3D structure has been managed in a GIS environment to run further spatial analysis and energy performance estimate, not achievable in a 2D environment. In particular geometrical building parameters (footprint, volume etc.) are computed and building envelop thermal characteristics are derived from. Lastly, a simulation is carried out to deal with asbestos and home renovating charges and show how the built 3D city model can support municipal managers with risk diagnosis of the present situation and development of strategies for a sustainable redevelop.

  15. Research on 3D Distribution of Meandering River Sand Body Using Sedimentary Facies Method and 3D Geological Modeling

    WU Jian; CAO Dai-yong

    2006-01-01

    Sedimentary facies study is an important method in describing the property and distribution of reservoir. 3D geological modeling is a powerful tool in 3D characterization of geological bodies. By combining the sedimentary facies study with 3D geological modeling to generate 3D sedimentary facies model, the 3D geometry and distribution feature of sand bodies can be more accurately characterized, particularly in 3D view. In Liuchu oilfield of Jizhong depression, the Ed2IV formation was recognized as meandering river deposition facies and five sedimentary facies were identified, which include point bar sand, levee, channel margin, abandoned channel and floodplain. All the 24 sand body facies in Ed2IV were mapped and the 3D sedimentary facies model established based on 2D facies maps. The result shows that the 3D sedimentary facies model is well matched for the research result of sedimentary facies. Being an extension of traditional sedimentary study, the 3D sedimentary facies model can be used to describe the 3D geometry and distribution orders of a single sand body more reliably and more accurately.

  16. Creating physical 3D stereolithograph models of brain and skull.

    Daniel J Kelley

    Full Text Available The human brain and skull are three dimensional (3D anatomical structures with complex surfaces. However, medical images are often two dimensional (2D and provide incomplete visualization of structural morphology. To overcome this loss in dimension, we developed and validated a freely available, semi-automated pathway to build 3D virtual reality (VR and hand-held, stereolithograph models. To evaluate whether surface visualization in 3D was more informative than in 2D, undergraduate students (n = 50 used the Gillespie scale to rate 3D VR and physical models of both a living patient-volunteer's brain and the skull of Phineas Gage, a historically famous railroad worker whose misfortune with a projectile tamping iron provided the first evidence of a structure-function relationship in brain. Using our processing pathway, we successfully fabricated human brain and skull replicas and validated that the stereolithograph model preserved the scale of the VR model. Based on the Gillespie ratings, students indicated that the biological utility and quality of visual information at the surface of VR and stereolithograph models were greater than the 2D images from which they were derived. The method we developed is useful to create VR and stereolithograph 3D models from medical images and can be used to model hard or soft tissue in living or preserved specimens. Compared to 2D images, VR and stereolithograph models provide an extra dimension that enhances both the quality of visual information and utility of surface visualization in neuroscience and medicine.

  17. 3D Bioprinting of Tissue/Organ Models.

    Pati, Falguni; Gantelius, Jesper; Svahn, Helene Andersson

    2016-04-01

    In vitro tissue/organ models are useful platforms that can facilitate systematic, repetitive, and quantitative investigations of drugs/chemicals. The primary objective when developing tissue/organ models is to reproduce physiologically relevant functions that typically require complex culture systems. Bioprinting offers exciting prospects for constructing 3D tissue/organ models, as it enables the reproducible, automated production of complex living tissues. Bioprinted tissues/organs may prove useful for screening novel compounds or predicting toxicity, as the spatial and chemical complexity inherent to native tissues/organs can be recreated. In this Review, we highlight the importance of developing 3D in vitro tissue/organ models by 3D bioprinting techniques, characterization of these models for evaluating their resemblance to native tissue, and their application in the prioritization of lead candidates, toxicity testing, and as disease/tumor models. PMID:26895542

  18. 3D web visualization of huge CityGML models

    Prandi, F.; Devigili, F.; Soave, M.; Di Staso, U.; De Amicis, R.

    2015-08-01

    Nowadays, rapid technological development into acquiring geo-spatial information; joined to the capabilities to process these data in a relative short period of time, allows the generation of detailed 3D textured city models that will become an essential part of the modern city information infrastructure (Spatial Data Infrastructure) and, can be used to integrate various data from different sources for public accessible visualisation and many other applications. One of the main bottlenecks, which at the moment limit the use of these datasets to few experts, is a lack on efficient visualization systems through the web and interoperable frameworks that allow standardising the access to the city models. The work presented in this paper tries to satisfy these two requirements developing a 3D web-based visualization system based on OGC standards and effective visualization concepts. The architectural framework, based on Services Oriented Architecture (SOA) concepts, provides the 3D city data to a web client designed to support the view process in a very effective way. The first part of the work is to design a framework compliant to the 3D Portrayal Service drafted by the of the Open Geospatial Consortium (OGC) 3D standardization working group. The latter is related to the development of an effective web client able to render in an efficient way the 3D city models.

  19. Arbitrary modeling of TSVs for 3D integrated circuits

    Salah, Khaled; El-Rouby, Alaa

    2014-01-01

    This book presents a wide-band and technology independent, SPICE-compatible RLC model for through-silicon vias (TSVs) in 3D integrated circuits. This model accounts for a variety of effects, including skin effect, depletion capacitance and nearby contact effects. Readers will benefit from in-depth coverage of concepts and technology such as 3D integration, Macro modeling, dimensional analysis and compact modeling, as well as closed form equations for the through silicon via parasitics. Concepts covered are demonstrated by using TSVs in applications such as a spiral inductor?and inductive-based

  20. 3D Modelling of Biological Systems for Biomimetics

    Shujun Zhang; Kevin Hapeshi; Ashok K. Bhattacharya

    2004-01-01

    With the advanced development of computer-based enabling technologies, many engineering, medical, biology,chemistry, physics and food science etc have developed to the unprecedented levels, which lead to many research and development interests in various multi-discipline areas. Among them, biomimetics is one of the most promising and attractive branches of study. Biomimetics is a branch of study that uses biological systems as a model to develop synthetic systems.To learn from nature, one of the fundamental issues is to understand the natural systems such animals, insects, plants and human beings etc. The geometrical characterization and representation of natural systems is an important fundamental work for biomimetics research. 3D modeling plays a key role in the geometrical characterization and representation, especially in computer graphical visualization. This paper firstly presents the typical procedure of 3D modelling methods and then reviews the previous work of 3D geometrical modelling techniques and systems developed for industrial, medical and animation applications. Especially the paper discusses the problems associated with the existing techniques and systems when they are applied to 3D modelling of biological systems. Based upon the discussions, the paper proposes some areas of research interests in 3D modelling of biological systems and for Biomimetics.

  1. A spherical harmonics intensity model for 3D segmentation and 3D shape analysis of heterochromatin foci.

    Eck, Simon; Wörz, Stefan; Müller-Ott, Katharina; Hahn, Matthias; Biesdorf, Andreas; Schotta, Gunnar; Rippe, Karsten; Rohr, Karl

    2016-08-01

    The genome is partitioned into regions of euchromatin and heterochromatin. The organization of heterochromatin is important for the regulation of cellular processes such as chromosome segregation and gene silencing, and their misregulation is linked to cancer and other diseases. We present a model-based approach for automatic 3D segmentation and 3D shape analysis of heterochromatin foci from 3D confocal light microscopy images. Our approach employs a novel 3D intensity model based on spherical harmonics, which analytically describes the shape and intensities of the foci. The model parameters are determined by fitting the model to the image intensities using least-squares minimization. To characterize the 3D shape of the foci, we exploit the computed spherical harmonics coefficients and determine a shape descriptor. We applied our approach to 3D synthetic image data as well as real 3D static and real 3D time-lapse microscopy images, and compared the performance with that of previous approaches. It turned out that our approach yields accurate 3D segmentation results and performs better than previous approaches. We also show that our approach can be used for quantifying 3D shape differences of heterochromatin foci. PMID:27037463

  2. Inversion identities for inhomogeneous face models

    Frahm, Holger; Karaiskos, Nikos

    2014-10-15

    We derive exact inversion identities satisfied by the transfer matrix of inhomogeneous interaction-round-a-face (IRF) models with arbitrary boundary conditions using the underlying integrable structure and crossing properties of the local Boltzmann weights. For the critical restricted solid-on-solid (RSOS) models these identities together with some information on the analytical properties of the transfer matrix determine the spectrum completely and allow to derive the Bethe equations for both periodic and general open boundary conditions.

  3. Inversion identities for inhomogeneous face models

    Frahm, Holger; Karaiskos, Nikos

    2014-10-01

    We derive exact inversion identities satisfied by the transfer matrix of inhomogeneous interaction-round-a-face (IRF) models with arbitrary boundary conditions using the underlying integrable structure and crossing properties of the local Boltzmann weights. For the critical restricted solid-on-solid (RSOS) models these identities together with some information on the analytical properties of the transfer matrix determine the spectrum completely and allow to derive the Bethe equations for both periodic and general open boundary conditions.

  4. Inversion identities for inhomogeneous face models

    We derive exact inversion identities satisfied by the transfer matrix of inhomogeneous interaction-round-a-face (IRF) models with arbitrary boundary conditions using the underlying integrable structure and crossing properties of the local Boltzmann weights. For the critical restricted solid-on-solid (RSOS) models these identities together with some information on the analytical properties of the transfer matrix determine the spectrum completely and allow to derive the Bethe equations for both periodic and general open boundary conditions

  5. Support Vector Machine active learning for 3D model retrieval

    2007-01-01

    In this paper, we present a novel Support Vector Machine active learning algorithm for effective 3D model retrieval using the concept of relevance feedback. The proposed method learns from the most informative objects which are marked by the user, and then creates a boundary separating the relevant models from irrelevant ones. What it needs is only a small number of 3D models labelled by the user. It can grasp the user's semantic knowledge rapidly and accurately. Experimental results showed that the proposed algorithm significantly improves the retrieval effectiveness. Compared with four state-of-the-art query refinement schemes for 3D model retrieval, it provides superior retrieval performance after no more than two rounds of relevance feedback.

  6. 3D-modeling of Norrköping

    Chau, Chieu Vinh

    2007-01-01

    The interest for a detailed and high solution city model has been large within the project” Optical signature analysis” at the department for Sensor Technology in FOI, Linköping. Thus, a textured 3D-model over Norrköping is needed, which later can be imported into simulation software to study optical signature in urban environment. The aim with this thesis work is to be able to use the result as a multi-used 3D-model within applications of the Swedish defence force for future usage. It is imp...

  7. Modeling real conditions of 'Ukrytie' object in 3D measurement

    The article covers a technology of creation on soft products basis for designing: AutoCad, and computer graphics and animation 3D Studio, 3DS MAX, of 3D model of geometrical parameters of current conditions of building structures, technological equipment, fuel-containing materials, concrete, water of ruined Unit 4, 'Ukryttia' object, of Chernobyl NPP. The model built using the above technology will be applied in the future as a basis when automating the design and computer modeling of processes at the 'Ukryttia' object

  8. Potential of 3D City Models to assess flood vulnerability

    Schröter, Kai; Bochow, Mathias; Schüttig, Martin; Nagel, Claus; Ross, Lutz; Kreibich, Heidi

    2016-04-01

    Vulnerability, as the product of exposure and susceptibility, is a key factor of the flood risk equation. Furthermore, the estimation of flood loss is very sensitive to the choice of the vulnerability model. Still, in contrast to elaborate hazard simulations, vulnerability is often considered in a simplified manner concerning the spatial resolution and geo-location of exposed objects as well as the susceptibility of these objects at risk. Usually, area specific potential flood loss is quantified on the level of aggregated land-use classes, and both hazard intensity and resistance characteristics of affected objects are represented in highly simplified terms. We investigate the potential of 3D City Models and spatial features derived from remote sensing data to improve the differentiation of vulnerability in flood risk assessment. 3D City Models are based on CityGML, an application scheme of the Geography Markup Language (GML), which represents the 3D geometry, 3D topology, semantics and appearance of objects on different levels of detail. As such, 3D City Models offer detailed spatial information which is useful to describe the exposure and to characterize the susceptibility of residential buildings at risk. This information is further consolidated with spatial features of the building stock derived from remote sensing data. Using this database a spatially detailed flood vulnerability model is developed by means of data-mining. Empirical flood damage data are used to derive and to validate flood susceptibility models for individual objects. We present first results from a prototype application in the city of Dresden, Germany. The vulnerability modeling based on 3D City Models and remote sensing data is compared i) to the generally accepted good engineering practice based on area specific loss potential and ii) to a highly detailed representation of flood vulnerability based on a building typology using urban structure types. Comparisons are drawn in terms of

  9. 3D head model classification using optimized EGI

    Tong, Xin; Wong, Hau-san; Ma, Bo

    2006-02-01

    With the general availability of 3D digitizers and scanners, 3D graphical models have been used widely in a variety of applications. This has led to the development of search engines for 3D models. Especially, 3D head model classification and retrieval have received more and more attention in view of their many potential applications in criminal identifications, computer animation, movie industry and medical industry. This paper addresses the 3D head model classification problem using 2D subspace analysis methods such as 2D principal component analysis (2D PCA[3]) and 2D fisher discriminant analysis (2DLDA[5]). It takes advantage of the fact that the histogram is a 2D image, and we can extract the most useful information from these 2D images to get a good result accordingingly. As a result, there are two main advantages: First, we can perform less calculation to obtain the same rate of classification; second, we can reduce the dimensionality more than PCA to obtain a higher efficiency.

  10. 3D model of amphioxus steroid receptor complexed with estradiol

    The origins of signaling by vertebrate steroids are not fully understood. An important advance was the report that an estrogen-binding steroid receptor [SR] is present in amphioxus, a basal chordate with a similar body plan as vertebrates. To investigate the evolution of estrogen-binding to steroid receptors, we constructed a 3D model of amphioxus SR complexed with estradiol. This 3D model indicates that although the SR is activated by estradiol, some interactions between estradiol and human ERα are not conserved in the SR, which can explain the low affinity of estradiol for the SR. These differences between the SR and ERα in the steroid-binding domain are sufficient to suggest that another steroid is the physiological regulator of the SR. The 3D model predicts that mutation of Glu-346 to Gln will increase the affinity of testosterone for amphioxus SR and elucidate the evolution of steroid-binding to nuclear receptors.

  11. Statistical 3D damage accumulation model for ion implant simulators

    Hernandez-Mangas, J M; Enriquez, L E; Bailon, L; Barbolla, J; Jaraiz, M

    2003-01-01

    A statistical 3D damage accumulation model, based on the modified Kinchin-Pease formula, for ion implant simulation has been included in our physically based ion implantation code. It has only one fitting parameter for electronic stopping and uses 3D electron density distributions for different types of targets including compound semiconductors. Also, a statistical noise reduction mechanism based on the dose division is used. The model has been adapted to be run under parallel execution in order to speed up the calculation in 3D structures. Sequential ion implantation has been modelled including previous damage profiles. It can also simulate the implantation of molecular and cluster projectiles. Comparisons of simulated doping profiles with experimental SIMS profiles are presented. Also comparisons between simulated amorphization and experimental RBS profiles are shown. An analysis of sequential versus parallel processing is provided.

  12. Modeling inhomogeneous DNA replication kinetics.

    Michel G Gauthier

    Full Text Available In eukaryotic organisms, DNA replication is initiated at a series of chromosomal locations called origins, where replication forks are assembled proceeding bidirectionally to replicate the genome. The distribution and firing rate of these origins, in conjunction with the velocity at which forks progress, dictate the program of the replication process. Previous attempts at modeling DNA replication in eukaryotes have focused on cases where the firing rate and the velocity of replication forks are homogeneous, or uniform, across the genome. However, it is now known that there are large variations in origin activity along the genome and variations in fork velocities can also take place. Here, we generalize previous approaches to modeling replication, to allow for arbitrary spatial variation of initiation rates and fork velocities. We derive rate equations for left- and right-moving forks and for replication probability over time that can be solved numerically to obtain the mean-field replication program. This method accurately reproduces the results of DNA replication simulation. We also successfully adapted our approach to the inverse problem of fitting measurements of DNA replication performed on single DNA molecules. Since such measurements are performed on specified portion of the genome, the examined DNA molecules may be replicated by forks that originate either within the studied molecule or outside of it. This problem was solved by using an effective flux of incoming replication forks at the model boundaries to represent the origin activity outside the studied region. Using this approach, we show that reliable inferences can be made about the replication of specific portions of the genome even if the amount of data that can be obtained from single-molecule experiments is generally limited.

  13. 3D subsurface temperature model of Europe for geothermal exploration

    Limberger, J.; Wees, J.D. van

    2014-01-01

    For the assessment of geothermal resources in Europe we constructed a digital 3D temperature model of the European crust and sedimentary basins, incorporating publicly available temperature data. Using European crustal thickness models and indirect parameters such as surface heat flow measurements,

  14. Diffusion approximation for modeling of 3-D radiation distributions

    A three-dimensional transport code DIF3D, based on the diffusion approximation, is used to model the spatial distribution of radiation energy arising from volumetric isotropic sources. Future work will be concerned with the determination of irradiances and modeling of realistic scenarios, relevant to the battlefield conditions. 8 refs., 4 figs

  15. 3D Shape Modeling Using High Level Descriptors

    Andersen, Vedrana

    The goal of this Ph.D. project is to investigate and improve the methods for describing the surface of 3D objects, with focus on modeling geometric texture on surfaces. Surface modeling being a large field of research, the work done during this project concentrated around a few smaller areas...

  16. Validation of a 3-D hemispheric nested air pollution model

    Frohn, L. M.; Christensen, J.H.; Brandt, J; C. Geels; Hansen, K. M.

    2003-01-01

    Several air pollution transport models have been developed at the National Environmental Research Institute in Denmark over the last decade (DREAM, DEHM, ACDEP and DEOM). A new 3-D nested Eulerian transport-chemistry model: REGIonal high resolutioN Air pollution model (REGINA) is based on modules and parameterisations from these models as well as new methods. The model covers the majority of the Northern Hemisphere with currently one nest...

  17. ENHANCED LOD CONCEPTS FOR VIRTUAL 3D CITY MODELS

    Benner, J.; Geiger, A; G. Gröger; Häfele, K.-H.; Löwner, M.-O.

    2013-01-01

    Virtual 3D city models contain digital three dimensional representations of city objects like buildings, streets or technical infrastructure. Because size and complexity of these models continuously grow, a Level of Detail (LoD) concept effectively supporting the partitioning of a complete model into alternative models of different complexity and providing metadata, addressing informational content, complexity and quality of each alternative model is indispensable. After a short over...

  18. Round table session on '3D-city-modeling'

    Rüdiger, Bjarne; Tournay, Bruno

    According to eCAADe's mission, the exchange and collaboration within the area of computer aided architectural design education and research, while respecting the pedagogical and administrative approaches in the different schools and countries, can be regarded as a core activity. On the occasion of...... eCAADe 2001 in Helsinki a working session on the topic "3D-City-Modeling" was held, in which a varietybundle of papers was presented. The eCAADe 2002 round table session on "3D-City-Modeling" is opening up for an intensive discussion on a number of goals which were elaborated by a working group in...

  19. Round table session on '3D-city-modeling

    Rüdiger, Bjarne; Tournay, Bruno

    According to eCAADs's mission, the exchange and collaboration within the area of computer aided architectural design education and research, while respecting the pedagogical and administrative approaches in the different schools and countries, can be regarded as a core activity. On the occasion of...... eCAADe 2001 in Helsinki a working session on the topic "3D-City-Modeling" was held, in which a varietybundle of papers was presented. The eCAADe 2002 round table session on "3D-City-Modeling" is opening up for an intensive discussion on a number of goals which were elaborated by a working group in...

  20. Modelling Gaia CCD pixels with Silvaco 3D engineering software

    Seabroke, G. M.; Prod'Homme, T.; Hopkinson, G.; Burt, D.; Robbins, M.; Holland, A.

    2011-02-01

    Gaia will only achieve its unprecedented measurement accuracy requirements with detailed calibration and correction for radiation damage. We present our Silvaco 3D engineering software model of the Gaia CCD pixel and two of its applications for Gaia: (1) physically interpreting supplementary buried channel (SBC) capacity measurements (pocket-pumping and first pixel response) in terms of e2v manufacturing doping alignment tolerances; and (2) deriving electron densities within a charge packet as a function of the number of constituent electrons and 3D position within the charge packet as input to microscopic models being developed to simulate radiation damage.

  1. Design and modeling for 3D ICS and interposers

    Swaminathan, Madhavan

    2013-01-01

    3D Integration is being touted as the next semiconductor revolution. This book provides a comprehensive coverage on the design and modeling aspects of 3D integration, in particularly, focus on its electrical behavior. Looking from the perspective the Silicon Via (TSV) and Glass Via (TGV) technology, the book introduces 3DICs and Interposers as a technology, and presents its application in numerical modeling, signal integrity, power integrity and thermal integrity. The authors underscored the potential of this technology in design exchange formats and power distribution.

  2. Automatic Generation of 3D Building Models with Multiple Roofs

    Kenichi Sugihara; Yoshitugu Hayashi

    2008-01-01

    Based on building footprints (building polygons) on digital maps, we are proposing the GIS and CG integrated system that automatically generates 3D building models with multiple roofs. Most building polygons' edges meet at right angles (orthogonal polygon). The integrated system partitions orthogonal building polygons into a set of rectangles and places rectangular roofs and box-shaped building bodies on these rectangles. In order to partition an orthogonal polygon, we proposed a useful polygon expression in deciding from which vertex a dividing line is drawn. In this paper, we propose a new scheme for partitioning building polygons and show the process of creating 3D roof models.

  3. Modelling Gaia CCD pixels with Silvaco 3D engineering software

    Seabroke, G M; Hopkinson, G; Burt, D; Robbins, M; Holland, A

    2010-01-01

    Gaia will only achieve its unprecedented measurement accuracy requirements with detailed calibration and correction for radiation damage. We present our Silvaco 3D engineering software model of the Gaia CCD pixel and two of its applications for Gaia: (1) physically interpreting supplementary buried channel (SBC) capacity measurements (pocket-pumping and first pixel response) in terms of e2v manufacturing doping alignment tolerances; and (2) deriving electron densities within a charge packet as a function of the number of constituent electrons and 3D position within the charge packet as input to microscopic models being developed to simulate radiation damage.

  4. Probabilistic reasoning for assembly-based 3D modeling

    Chaudhuri, Siddhartha

    2011-01-01

    Assembly-based modeling is a promising approach to broadening the accessibility of 3D modeling. In assembly-based modeling, new models are assembled from shape components extracted from a database. A key challenge in assembly-based modeling is the identification of relevant components to be presented to the user. In this paper, we introduce a probabilistic reasoning approach to this problem. Given a repository of shapes, our approach learns a probabilistic graphical model that encodes semantic and geometric relationships among shape components. The probabilistic model is used to present components that are semantically and stylistically compatible with the 3D model that is being assembled. Our experiments indicate that the probabilistic model increases the relevance of presented components. © 2011 ACM.

  5. Observational aspects of locally inhomogeneous cosmological models

    The observational consequences of a locally inhomogeneous mass distribution, on the scale of galaxies for example, in a model of the universe which is homogeneous and isotropic on some sufficiently large scale are considered. The analysis is in the geometric-optics approximation using the optical scalar equations for the two relevent optical scalars, i.e. the rate of expansion and rate of shearing of a beam of light. (author)

  6. Parallel Optimization of 3D Cardiac Electrophysiological Model Using GPU

    Yong Xia

    2015-01-01

    Full Text Available Large-scale 3D virtual heart model simulations are highly demanding in computational resources. This imposes a big challenge to the traditional computation resources based on CPU environment, which already cannot meet the requirement of the whole computation demands or are not easily available due to expensive costs. GPU as a parallel computing environment therefore provides an alternative to solve the large-scale computational problems of whole heart modeling. In this study, using a 3D sheep atrial model as a test bed, we developed a GPU-based simulation algorithm to simulate the conduction of electrical excitation waves in the 3D atria. In the GPU algorithm, a multicellular tissue model was split into two components: one is the single cell model (ordinary differential equation and the other is the diffusion term of the monodomain model (partial differential equation. Such a decoupling enabled realization of the GPU parallel algorithm. Furthermore, several optimization strategies were proposed based on the features of the virtual heart model, which enabled a 200-fold speedup as compared to a CPU implementation. In conclusion, an optimized GPU algorithm has been developed that provides an economic and powerful platform for 3D whole heart simulations.

  7. Geospatial Modelling Approach for 3d Urban Densification Developments

    Koziatek, O.; Dragićević, S.; Li, S.

    2016-06-01

    With growing populations, economic pressures, and the need for sustainable practices, many urban regions are rapidly densifying developments in the vertical built dimension with mid- and high-rise buildings. The location of these buildings can be projected based on key factors that are attractive to urban planners, developers, and potential buyers. Current research in this area includes various modelling approaches, such as cellular automata and agent-based modelling, but the results are mostly linked to raster grids as the smallest spatial units that operate in two spatial dimensions. Therefore, the objective of this research is to develop a geospatial model that operates on irregular spatial tessellations to model mid- and high-rise buildings in three spatial dimensions (3D). The proposed model is based on the integration of GIS, fuzzy multi-criteria evaluation (MCE), and 3D GIS-based procedural modelling. Part of the City of Surrey, within the Metro Vancouver Region, Canada, has been used to present the simulations of the generated 3D building objects. The proposed 3D modelling approach was developed using ESRI's CityEngine software and the Computer Generated Architecture (CGA) language.

  8. Vizuelizacija 3D modela geopodataka i njihova primjena : Visualisation of the 3D geodata models and their application

    Mirko Borisov

    2014-12-01

    Full Text Available U radu se opisuju 3D modeli geopodataka i njihova primjena. Na geodetskim planovima i topografskim kartama najčešće se primjenjuju metode prikaza terena (reljefa pomoću kota i izohipsi. Međutim, sa pojavom novih tehnologija mijenja se način vizualizacije i naglašava koncept 3D modela geopodataka. Pritom, koriste se različiti pojmovi: digitalni model visina (DMV, digitalni model terena (DMT, digitalni model površi (DMP i drugo. Infrastruktura i 3D modeli geopodataka su standardizovani, ali se vizualizacija i detaljnost sadržaja mijenja i usklađuje prema namjeni i razmjeri prikaza. Primjena 3D modela geopodataka u digitalnom obliku (raster ili vektor postaje sve više aktuelna i putem interneta. Zato je važno razlikovati navedene pojmove i odlike 3D modela geopodataka kao i mogućnosti njihove primjene. : This paper describes the 3D geodata models and their application. On geodetic plans and topographic maps commonly applied methods of terrain (relief by spots elevation and contour lines. However, with the advent of new technologies the way of the visualisation is changing and highlights the concept 3D geodata model. Namely, there are different concepts: digital elevation model (DEM, digital terrain model (DTM, digital surface model (DSP and so on. Infrastructure and 3D geodata models are standardized, while the visualization and details of information change and adjust the needs and aspect ratio display. Application of 3D geodata models in digital format (raster or vector is becoming increasingly topical over the internet. Therefore, it is important to distinguish between certain concepts and features of 3D geodata models and the possibility of their application.

  9. 3D Model Generation From the Engineering Drawing

    Vaský, Jozef; Eliáš, Michal; Bezák, Pavol; Červeňanská, Zuzana; Izakovič, Ladislav

    2010-01-01

    The contribution deals with the transformation of engineering drawings in a paper form into a 3D computer representation. A 3D computer model can be further processed in CAD/CAM system, it can be modified, archived, and a technical drawing can be then generated from it as well. The transformation process from paper form to the data one is a complex and difficult one, particularly owing to the different types of drawings, forms of displayed objects and encountered errors and deviations from technical standards. The algorithm for 3D model generating from an orthogonal vector input representing a simplified technical drawing of the rotational part is described in this contribution. The algorithm was experimentally implemented as ObjectARX application in the AutoCAD system and the test sample as the representation of the rotational part was used for verificaton.

  10. Robust model-based 3d/3D fusion using sparse matching for minimally invasive surgery.

    Neumann, Dominik; Grbic, Sasa; John, Matthias; Navab, Nassir; Hornegger, Joachim; Ionasec, Razvan

    2013-01-01

    Classical surgery is being disrupted by minimally invasive and transcatheter procedures. As there is no direct view or access to the affected anatomy, advanced imaging techniques such as 3D C-arm CT and C-arm fluoroscopy are routinely used for intra-operative guidance. However, intra-operative modalities have limited image quality of the soft tissue and a reliable assessment of the cardiac anatomy can only be made by injecting contrast agent, which is harmful to the patient and requires complex acquisition protocols. We propose a novel sparse matching approach for fusing high quality pre-operative CT and non-contrasted, non-gated intra-operative C-arm CT by utilizing robust machine learning and numerical optimization techniques. Thus, high-quality patient-specific models can be extracted from the pre-operative CT and mapped to the intra-operative imaging environment to guide minimally invasive procedures. Extensive quantitative experiments demonstrate that our model-based fusion approach has an average execution time of 2.9 s, while the accuracy lies within expert user confidence intervals. PMID:24505663

  11. Causal Dynamical Triangulation of 3D Tensor Model

    Kawabe, Hiroshi

    2016-01-01

    We extend the string field theory of the two dimensional (2D) generalized causal dynamical triangulation (GCDT) with the Ishibashi-Kawai (IK-) type interaction formulated by the matrix model, to the three dimensional (3D) model of the surface field theory. Based on the loop gas model, we construct a tensor model for the discretized surface field and then apply it the stochastic quantization method. In the double scaling limit, the model is characterized by two scaling dimensions $D$ and $D_N$, the power indices of the minimal length as the scaling parameter. The continuum GCDT model with the IK-type interaction is realized with the similar restriction in the $D_N$-$D$ space, to the 2D model. The distinct property in the 3D model is that the quantum effect contains the IK-type interaction only, while the ordinary splitting interaction is excluded.

  12. Geodiversity: Exploration of 3D geological model space

    Lindsay, M. D.; Jessell, M. W.; Ailleres, L.; Perrouty, S.; de Kemp, E.; Betts, P. G.

    2013-05-01

    The process of building a 3D model necessitates the reconciliation of field observations, geophysical interpretation, geological data uncertainty and the prevailing tectonic evolution hypotheses and interpretations. Uncertainty is compounded when clustered data points collected at local scales are statistically upscaled to one or two points for use in regional models. Interpretation is required to interpolate between sparse field data points using ambiguous geophysical data in covered terranes. It becomes clear that multiple interpretations are possible during model construction. The various interpretations are considered as potential natural representatives, but pragmatism typically dictates that just a single interpretation is offered by the modelling process. Uncertainties are introduced into the 3D model during construction from a variety of sources and through data set optimisation that produces a single model. Practices such as these are likely to result in a model that does not adequately represent the target geology. A set of geometrical ‘geodiversity’ metrics are used to analyse a 3D model of the Gippsland Basin, southeastern Australia after perturbing geological input data via uncertainty simulation. The resulting sets of perturbed geological observations are used to calculate a suite of geological 3D models that display a range of geological architectures. The concept of biodiversity has been adapted for the geosciences to quantify geometric variability, or geodiversity, between models in order to understand the effect uncertainty has models geometry. Various geometrical relationships (depth, volume, contact surface area, curvature and geological complexity) are used to describe the range of possibilities exhibited throughout the model suite. End-member models geodiversity metrics are classified in a similar manner to taxonomic descriptions. Further analysis of the model suite is performed using principal component analysis (PCA) to determine

  13. Improving Semantic Updating Method on 3d City Models Using Hybrid Semantic-Geometric 3d Segmentation Technique

    Sharkawi, K.-H.; Abdul-Rahman, A.

    2013-09-01

    Cities and urban areas entities such as building structures are becoming more complex as the modern human civilizations continue to evolve. The ability to plan and manage every territory especially the urban areas is very important to every government in the world. Planning and managing cities and urban areas based on printed maps and 2D data are getting insufficient and inefficient to cope with the complexity of the new developments in big cities. The emergence of 3D city models have boosted the efficiency in analysing and managing urban areas as the 3D data are proven to represent the real world object more accurately. It has since been adopted as the new trend in buildings and urban management and planning applications. Nowadays, many countries around the world have been generating virtual 3D representation of their major cities. The growing interest in improving the usability of 3D city models has resulted in the development of various tools for analysis based on the 3D city models. Today, 3D city models are generated for various purposes such as for tourism, location-based services, disaster management and urban planning. Meanwhile, modelling 3D objects are getting easier with the emergence of the user-friendly tools for 3D modelling available in the market. Generating 3D buildings with high accuracy also has become easier with the availability of airborne Lidar and terrestrial laser scanning equipments. The availability and accessibility to this technology makes it more sensible to analyse buildings in urban areas using 3D data as it accurately represent the real world objects. The Open Geospatial Consortium (OGC) has accepted CityGML specifications as one of the international standards for representing and exchanging spatial data, making it easier to visualize, store and manage 3D city models data efficiently. CityGML able to represents the semantics, geometry, topology and appearance of 3D city models in five well-defined Level-of-Details (LoD), namely LoD0

  14. Estimation of shape model parameters for 3D surfaces

    Erbou, Søren Gylling Hemmingsen; Darkner, Sune; Fripp, Jurgen; Ourselin, Sébastien; Ersbøll, Bjarne Kjær

    surfaces using distance maps, which enables the estimation of model parameters without the requirement of point correspondence. For applications with acquisition limitations such as speed and cost, this formulation enables the fitting of a statistical shape model to arbitrarily sampled data. The method is......Statistical shape models are widely used as a compact way of representing shape variation. Fitting a shape model to unseen data enables characterizing the data in terms of the model parameters. In this paper a Gauss-Newton optimization scheme is proposed to estimate shape model parameters of 3D...... applied to a database of 3D surfaces from a section of the porcine pelvic bone extracted from 33 CT scans. A leave-one-out validation shows that the parameters of the first 3 modes of the shape model can be predicted with a mean difference within [-0.01,0.02] from the true mean, with a standard deviation...

  15. Teaching the geological subsurface with 3D models

    Thorpe, Steve; Ward, Emma

    2014-05-01

    3D geological models have great potential as a resource when teaching geological concepts as it allows the student to visualise and interrogate UK geology. They are especially useful when dealing with the conversion of 2D field, map and GIS outputs into three dimensional geological units, which is a common problem for many students. Today's earth science students use a variety of skills and processes during their learning experience including spatial thinking, image construction, detecting patterns, making predictions and deducing the orientation of themselves. 3D geological models can reinforce spatial thinking strategies and encourage students to think about processes and properties, in turn helping the student to recognise pre-learnt geological principles in the field and to convert what they see at the surface into a picture of what is going on at depth. The British Geological Survey (BGS) has been producing digital 3D geological models for over 10 years. The models produced are revolutionising the working practices, data standards and products of the BGS. Sharing our geoscience information with academia is highlighted throughout the BGS strategy as is instilling practical skills in future geoscience professionals, such as model building and interpretation. In 2009 a project was launched to investigate the potential of the models as a teaching resource. The study included justifying if and how the models help students to learn, how models have been used historically, and how other forms of modelling are being used today. BGS now produce 3D geological models for use by anyone teaching or learning geoscience. They incorporate educational strategies that will develop geospatial skills and alleviate potential problems that some students experience. They are contained within contemporary case studies and show standard geological concepts, structures, sedimentary rocks, cross sections and field techniques. 3D geological models of the Isle of Wight and Ingleborough

  16. 3D Geological Model for "LUSI" - a Deep Geothermal System

    Sohrabi, Reza; Jansen, Gunnar; Mazzini, Adriano; Galvan, Boris; Miller, Stephen A.

    2016-04-01

    Geothermal applications require the correct simulation of flow and heat transport processes in porous media, and many of these media, like deep volcanic hydrothermal systems, host a certain degree of fracturing. This work aims to understand the heat and fluid transport within a new-born sedimentary hosted geothermal system, termed Lusi, that began erupting in 2006 in East Java, Indonesia. Our goal is to develop conceptual and numerical models capable of simulating multiphase flow within large-scale fractured reservoirs such as the Lusi region, with fractures of arbitrary size, orientation and shape. Additionally, these models can also address a number of other applications, including Enhanced Geothermal Systems (EGS), CO2 sequestration (Carbon Capture and Storage CCS), and nuclear waste isolation. Fractured systems are ubiquitous, with a wide-range of lengths and scales, making difficult the development of a general model that can easily handle this complexity. We are developing a flexible continuum approach with an efficient, accurate numerical simulator based on an appropriate 3D geological model representing the structure of the deep geothermal reservoir. Using previous studies, borehole information and seismic data obtained in the framework of the Lusi Lab project (ERC grant n°308126), we present here the first 3D geological model of Lusi. This model is calculated using implicit 3D potential field or multi-potential fields, depending on the geological context and complexity. This method is based on geological pile containing the geological history of the area and relationship between geological bodies allowing automatic computation of intersections and volume reconstruction. Based on the 3D geological model, we developed a new mesh algorithm to create hexahedral octree meshes to transfer the structural geological information for 3D numerical simulations to quantify Thermal-Hydraulic-Mechanical-Chemical (THMC) physical processes.

  17. APROS 3-D core models for simulators and plant analyzers

    The 3-D core models of APROS simulation environment can be used in simulator and plant analyzer applications, as well as in safety analysis. The key feature of APROS models is that the same physical models can be used in all applications. For three-dimensional reactor cores the APROS models cover both quadratic BWR and PWR cores and the hexagonal lattice VVER-type cores. In APROS environment the user can select the number of flow channels in the core and either five- or six-equation thermal hydraulic model for these channels. The thermal hydraulic model and the channel description have a decisive effect on the calculation time of the 3-D core model and thus just these selection make at present the major difference between a safety analysis model and a training simulator model. The paper presents examples of various types of 3-D LWR-type core descriptions for simulator and plant analyzer use and discusses the differences of calculation speed and physical results between a typical safety analysis model description and a real-time simulator model description in transients. (author)

  18. Monocular model-based 3D tracking of rigid objects

    Lepetit, Vincent

    2014-01-01

    Many applications require tracking complex 3D objects. These include visual serving of robotic arms on specific target objects, Augmented Reality systems that require real time registration of the object to be augmented, and head tracking systems that sophisticated interfaces can use. Computer vision offers solutions that are cheap, practical and non-invasive. ""Monocular Model-Based 3D Tracking of Rigid Objects"" reviews the different techniques and approaches that have been developed by industry and research. First, important mathematical tools are introduced: camera representation, robust e

  19. Automatic 3D Modeling of the Urban Landscape

    Esteban, I.; Dijk, J.; Groen, F.A.

    2010-01-01

    In this paper we present a fully automatic system for building 3D models of urban areas at the street level. We propose a novel approach for the accurate estimation of the scale consistent camera pose given two previous images. We employ a new method for global optimization and use a novel sampling

  20. 3D Property Modeling of Void Ratio by Cokriging

    Yao Lingqing; Pan Mao; Cheng Qiuming

    2008-01-01

    Void ratio measures compactness of ground soil in geotechnical engineering. When samples are collected in certain area for mapping void ratios, other relevant types of properties such as water content may be also analyzed. To map the spatial distribution of void ratio in the area based on these types of point, observation data interpolation is often needed. Owing to the variance of sampling density along the horizontal and vertical directions, special consideration is required to handle anisotropy of estimator. 3D property modeling aims at predicting the overall distribution of property values from limited samples, and geostatistical method can he employed naturally here because they help to minimize the mean square error of estimation. To construct 3D property model of void ratio, cokriging was used considering its mutual correlation with water content, which is another important soil parameter. Moreover, K-D tree was adopted to organize the samples to accelerate neighbor query in 3D space during the above modeling process. At last, spatial configuration of void ratio distribution in an engineering body was modeled through 3D visualization, which provides important information for civil engineering purpose.

  1. Building a 3-D Appearance Model of the Human Face

    Sjöstrand, Karl; Larsen, Rasmus; Lading, Brian

    2003-01-01

    This paper describes a method for building an appearance model from three-dimensional data of human faces. The data consists of 3-D vertices, polygons and a texture map. The method uses a set of nine manually placed landmarks to automatically form a dense correspondence of thousands of points. This makes sure the model is able to capture the subtle details of a face. The model can be used for face segmentation and fully automated face registration.

  2. Building a 3-D Appearance Model of the Human Face

    Sjöstrand, Karl; Larsen, Rasmus; Lading, Brian

    2003-01-01

    This paper describes a method for building an appearance model from three-dimensional data of human faces. The data consists of 3-D vertices, polygons and a texture map. The method uses a set of nine manually placed landmarks to automatically form a dense correspondence of thousands of points. This...... makes sure the model is able to capture the subtle details of a face. The model can be used for face segmentation and fully automated face registration....

  3. The 3-D distribution of random velocity inhomogeneities in southwestern Japan and the western part of the Nankai subduction zone

    Takahashi, Tsutomu; Obana, Koichiro; Yamamoto, Yojiro; Nakanishi, Ayako; Kodaira, Shuichi; Kaneda, Yoshiyuki

    2013-05-01

    waves at high frequencies (>1 Hz) show collapsed and broadened wave trains caused by multiple scattering in the lithosphere. This study analyzed the envelopes of direct S waves in southwestern Japan and on the western side of the Nankai trough and estimated the spatial distribution of random inhomogeneities by assuming a von Kármán type power spectral density function (PSDF). Strongly inhomogeneous media have been mostly imaged at shallow depth (0-20 km depth) in the onshore area of southwestern Japan, and their PSDF is represented as P(m) ≈ 0.05m-3.7 km3, with m being the spatial wave number, whereas most of the other area shows weak inhomogeneities of which PSDF is P(m) ≈ 0.005m-4.5 km3. At Hyuga-nada in Nankai trough, there is an anomaly of inhomogeneity of which PSDF is estimated as P(m) ≈ 0.01m-4.5 km3. This PSDF has the similar spectral gradient with the weakly inhomogeneous media, but has larger power spectral density than other offshore areas. This anomalous region is broadly located in the subducted Kyushu Palau ridge, which was identified by using velocity structures and bathymetry, and it shows no clear correlation with the fault zones of large earthquakes in past decades. These spatial correlations suggest that possible origins of inhomogeneities at Hyuga-nada are ancient volcanic activity in the oceanic plate or deformed structures due to the subduction of the Kyushu Palau ridge.

  4. Thermal 3D Modeling of Geothermal Area Using Terrestrial Photogrammetry

    Akcay, Ozgun; Cuneyt Erenoglu, Ramazan; Erenoglu, Oya; Yılmazturk, Ferruh; Karaca, Zeki

    2015-04-01

    Photogrammetry and computer vision, sciences producing high accuracy 3D models from digital images based on projective geometry. 3D models can also be produced using thermal camera images using photogrammetry and computer vision techniques. Thermal images are capable of displaying hotspots on geothermal areas as a heat source in details. In the research, Tuzla geothermal area in Çanakkale province of Turkey is inspected using imaging techniques of terrestrial photogrammetry. Both a digital camera Canon EOS 650D and an infrared camera Optris PI 450 are used to obtain images of the thermal site. Calibration parameters (focal length, principle point, distortion coefficients) of thermal and digital cameras are determined using the calibration test field at the laboratory before the field work. In order to provide the georeferencing and the robustness of the 3D model, aluminum discs having diameter of 30 centimeters as ground control points (GCPs) are set to the geothermal area appropriately before imaging. Aluminum targets are chosen as the GCP because they are determined on the image depending on the contrast reflectance rate of the aluminum. Using GNSS RTK receivers supplying ±1 cm accuracy positioning, GCPs are measured so as to implement photogrammetric process successfully with thermal images. Numerous corresponding points are detected on the overlapped images with image matching techniques. Later on, bundle block adjustment is applied to calculate the revised interior orientation parameters of camera and exterior orientation parameters of camera positions. The 3D model showing details of the surface temperatures of the geothermal area are produced with multi view stereo (MVS) technique. The technique is able to produce 3D representation (point cloud, mesh and textured surface) of the field from both the thermal and digital images. The research presents that photogrammetric evaluation of thermal images is a noteworthy method to obtain a quick- accurate 3D

  5. 3D geometric modelling of hand-woven textile

    Shidanshidi, H.; Naghdy, F.; Naghdy, G.; Conroy, D. Wood

    2008-02-01

    Geometric modeling and haptic rendering of textile has attracted significant interest over the last decade. A haptic representation is created by adding the physical properties of an object to its geometric configuration. While research has been conducted into geometric modeling of fabric, current systems require time-consuming manual recognition of textile specifications and data entry. The development of a generic approach for construction of the 3D geometric model of a woven textile is pursued in this work. The geometric model would be superimposed by a haptic model in the future work. The focus at this stage is on hand-woven textile artifacts for display in museums. A fuzzy rule based algorithm is applied to the still images of the artifacts to generate the 3D model. The derived model is exported as a 3D VRML model of the textile for visual representation and haptic rendering. An overview of the approach is provided and the developed algorithm is described. The approach is validated by applying the algorithm to different textile samples and comparing the produced models with the actual structure and pattern of the samples.

  6. Use Models like Maps in a 3D SDI

    Gietzel, Jan; Gabriel, Paul; Schaeben, Helmut; Le, Hai Ha

    2013-04-01

    Digital geological applications have become 3D up to 4D modelling of the underground. The modellers are working very heterogeneously in terms of its applied software systems. On the other hand the 3D/4D modelling of the subsurface has become part of the geological surveys all around the world. This implies a wide spread group of users working in different institutions aiming to work together on one subsurface model. Established 3D/4D-modelling software systems mainly use a file based approach to store data, which is in a high contrast to the needs of a central administrated and network based data transfer approach. At the department of geophysics and geo information sciences at the Technical University Bergakademie Freiberg, the GST system for managing 3D and 4D geosciences data in a databases system was developed and is now continued by the company GiGa infosystems. The GST-Framework includes a storage engine, a web service for sharing and a number of client software including a browser based client interface for visualising, accessing and manipulating geological CAD data. Including a check out system GST supports multi user editing on huge models, designed to manage seamless high resolution models of the subsurface. While working on complex projects various software is used for the creation of the model, the prediction of properties and final simulation. A problem rising from the use of several software is the interoperability of the models. Due to conversion errors different working groups use mainly different raw data. This results in different models, which have to be corrected with additional effort. One platform sharing the models is strongly demanded. One high potential solution is a centralized and software independent storage, which will be presented.

  7. Statistical skull models from 3D X-ray images

    Berar, M; Bailly, G; Payan, Y; Berar, Maxime; Desvignes, Michel; Payan, Yohan

    2006-01-01

    We present 2 statistical models of the skull and mandible built upon an elastic registration method of 3D meshes. The aim of this work is to relate degrees of freedom of skull anatomy, as static relations are of main interest for anthropology and legal medicine. Statistical models can effectively provide reconstructions together with statistical precision. In our applications, patient-specific meshes of the skull and the mandible are high-density meshes, extracted from 3D CT scans. All our patient-specific meshes are registrated in a subject-shared reference system using our 3D-to-3D elastic matching algorithm. Registration is based upon the minimization of a distance between the high density mesh and a shared low density mesh, defined on the vertexes, in a multi resolution approach. A Principal Component analysis is performed on the normalised registrated data to build a statistical linear model of the skull and mandible shape variation. The accuracy of the reconstruction is under the millimetre in the shape...

  8. Anisotropic 3D Modeling for Long Offset VSP Survey Design

    Today's seismic techniques allow the geoscientist to do the interpretation more quantitatively. AVO and anisotropy measurements are the examples of DHI (Direct Hydrocarbon Indication). These measurements can be done accurately using long offset borehole seismic survey such as walk away VSP, having the geophones located down hole close to the target formation. This paper will show the importance 3D seismic modeling prior to the survey, by simulating the seismic wave propagation in three-dimensional volume filled with continuous material properties. This pre-survey modeling can help us suppressing the uncertainties and narrowing the error bars on the real survey. Some examples from offshore Nigeria showed dramatic geometrical differences between ordinary 2D compared to 3D observations Assumption that the seismic wave travels in 2D plane is not always acceptable for survey design. The examples also demonstrated the ability to observe some critical information such as the limit of incidence angle, compromise between resolution and image coverage, effects of velocity anomalies, anisotropy and dipping formations on lateral coverage. Fluid effect in 3D modeling will also be discussed here. Amplitude anomalies are predicted by replacing different type of fluids effect in the target reservoirs, as well as various types of AVO classes. A well-prepared long offset VSP survey is very critical to provide us high quality and high accuracy information that can be used to calibrate and optimise the full 3D seismic processing and interpretation in the area. This process is known as Well Driven Seismic (WDS)

  9. 3D Geological modelling - towards a European level infrastructure

    Lee, Kathryn A.; van der Krogt, Rob; Busschers, Freek S.

    2013-04-01

    The joint European Geological Surveys are preparing the ground for a "European Geological Data Infrastructure" (EGDI), under the framework of the FP7-project EGDI-Scope. This scoping study, started in June 2012, for a pan-European e-Infrastructure is based on the successes of earlier joint projects including 'OneGeology-Europe' and aims to provide the backbone for serving interoperable, geological data currently held by European Geological Surveys. Also data from past, ongoing and future European projects will be incorporated. The scope will include an investigation of the functional and technical requirements for serving 3D geological models and will look to research the potential for providing a framework to integrate models at different scales, and form a structure for enabling the development of new and innovative model delivery mechanisms. The EGDI-scope project encourages pan-European inter-disciplinary collaboration between all European Geological Surveys. It aims to enhance emerging web based technologies that will facilitate the delivery of geological data to user communities involved in European policy making and international industry, but also to geoscientific research communities and the general public. Therefore, stakeholder input and communication is imperative to the success, as is the collaboration with all the Geological Surveys of Europe. The most important functional and technical requirements for delivery of such information at pan-European level will be derived from exchanges with relevant European stakeholder representatives and providers of geological data. For handling and delivering 3D geological model data the project will need to address a number of strategic issues: • Which are the most important issues and queries for the relevant stakeholders, requiring 3D geological models? How can this be translated to functional requirements for development and design of an integrated European application? • How to handle the very large

  10. Extension of the inhomogeneous MUSIG model for bubble condensation

    Highlights: ► The inhomogenous MUSIG model allows 3D simulations for poly-dispersed bubbly flows. ► The model is now extended to consider flows with phase transfer. ► Experimental data for the condensation of steam bubbles in sub-cooled vertical pipe flow are used for validation. ► There is a good agreement between experimental data and CFD simulations with the ANSYS-CFX code. - Abstract: Bubble condensation plays an important role, e.g. in sub-cooled boiling or steam injection into pools. Since the condensation rate is proportional to the interfacial area density, bubble size distributions have to be considered in an adequate modeling of the condensation process. The effect of bubble sizes was clearly shown in experimental investigations done previously at the TOPFLOW facility of FZD. Steam bubbles were injected into a sub-cooled upward pipe flow via orifices in the pipe wall located at different distances from measuring plane. 1 mm and 4 mm injection orifices were used to vary the initial bubble size distribution. Measurements were done using a wire-mesh sensor. Condensation is clearly faster in case of the injection via the smaller orifices, i.e. in case of smaller bubble sizes. Recently the Inhomogeneous MUSIG model was implemented into the CFD code CFX from ANSYS enabling the simulation of poly-dispersed flows including the effects of separation of small and large bubbles due to bubble size dependent lift force inversion. It allows to divide the dispersed phase into size classes regarding the mass as well as regarding the momentum balance. Up to now transfers between the classes in the mass balance can be considered only by bubble coalescence and breakup (population balance). Here an extension of the model is proposed to include the effects due to phase transfer. The paper focuses on the derivation of equations for the extension of the Inhomogeneous MUSIG model and presents some first results for verification and validation.

  11. Concurrence in the inhomogeneous Tavis-Cummings model

    We study the problem of a collection of two-level atoms interacting inhomogeneously with a quantized mode of the electromagnetic field, that is, an inhomogeneous version of the Tavis-Cummings model. In this system we analyze the entanglement properties of the eigenstate spectrum and analytically we found strong dependence on the inhomogeneity

  12. Entanglement properties in the inhomogeneous Tavis-Cummings model

    We study the properties of atomic entanglement in the eigenstates spectrum of the inhomogeneous Tavis-Cummings model. The inhomogeneity is present in the coupling among the atoms with quantum electromagnetic field. We calculate analytical expressions for the concurrence, and we find that this exhibits a strong dependence on the inhomogeneity

  13. Quasi-3D Multi-scale Modeling Framework Development

    Arakawa, A.; Jung, J.

    2008-12-01

    When models are truncated in or near an energetically active range of the spectrum, model physics must be changed as the resolution changes. The model physics of GCMs and that of CRMs are, however, quite different from each other and at present there is no unified formulation of model physics that automatically provides transition between these model physics. The Quasi-3D (Q3D) Multi-scale Modeling Framework (MMF) is an attempt to bridge this gap. Like the recently proposed Heterogeneous Multiscale Method (HMM) (E and Engquist 2003), MMF combines a macroscopic model, GCM, and a microscopic model, CRM. Unlike the traditional multiscale methods such as the multi-grid and adapted mesh refinement techniques, HMM and MMF are for solving multi-physics problems. They share the common objective "to design combined macroscopic-microscopic computational methods that are much more efficient than solving the full microscopic model and at the same time give the information we need" (E et al. 2008). The question is then how to meet this objective in practice, which can be highly problem dependent. In HHM, the efficiency is gained typically by localization of the microscale problem. Following the pioneering work by Grabowski and Smolarkiewicz (1999) and Grabowski (2001), MMF takes advantage of the fact that 2D CRMs are reasonably successful in simulating deep clouds. In this approach, the efficiency is gained by sacrificing the three-dimensionality of cloud-scale motion. It also "localizes" the algorithm through embedding a CRM in each GCM grid box using cyclic boundary condition. The Q3D MMF is an attempt to reduce the expense due to these constraints by partially including the cloud-scale 3D effects and extending the CRM beyond individual GCM grid boxes. As currently formulated, the Q3D MMF is a 4D estimation/prediction framework that combines a GCM with a 3D anelastic cloud-resolving vector vorticity equation model (VVM) applied to a network of horizontal grids. The network

  14. Modeling Perception of 3D Forms Using Fuzzy Knowledge Bases

    Achiche, Sofiane; Ahmed, Saeema

    the aesthetics of their products are likely to be perceived are of value. In this paper the authors propose an approach to formalize the relationship between geometric information of a 3D object and the intended perception using fuzzy logic. 3D objects (shapes) created by design engineering students...... to evoke a certain perception were analysed. Three different fuzzy logic models, with different input variables, for evaluating massiveness and lightness in a form are proposed. The uthors identified geometric information as inputs of the fuzzy model and developed a set of fuzzy if/then rules to map...... the relationships between the fuzzy sets on each input premise and the output premise. In our case the output premise of the fuzzy logic model is the level of belonging to the design context (perception). An evaluation of how users perceived the shapes was conducted to validate the fuzzy logic models...

  15. Integrated modeling and 3D visualization for mine complex fields

    LI Zhong-xue; SUN En-ji; LI Cui-ping; MA Bin

    2007-01-01

    Proposed a novel approach to the problem of mine complex fields in a perspective of digital modeling and visual representation, and it aimed at developing a theoretical framework for mine complex fields with the factors and their relationships delineated in a unified manner and at building a prototype for an integrated system of methods, models,and techniques with mine complex fields modeled digitally and represented visually. Specifically, the paper addressed the issues of data mining and knowledge discovery techniques as used in the processing of geological and ore deposit samples, digital modeling techniques as used in the description of mine complex fields, 3D visual simulation techniques as used in the representation of ore bodies and underground excavations, seamless interfacing techniques with other systems such as CAD and web GIS as used in the restructuring of 2D data into 3D models and mapping of 3D models onto 2D graphics, and implementation techniques as used in the case of building a web based prototype system for the integrated modeling and visualization of underground mines.

  16. A 3D Babcock-Leighton Solar Dynamo Model

    Miesch, Mark S

    2014-01-01

    We present a 3D kinematic solar dynamo model in which poloidal field is generated by the emergence and dispersal of tilted sunspot pairs (more generally Bipolar Magnetic Regions, or BMRs). The axisymmetric component of this model functions similarly to previous 2D Babcock-Leighton (BL) dynamo models that employ a double-ring prescription for poloidal field generation but we generalize this prescription into a 3D flux emergence algorithm that places BMRs on the surface in response to the dynamo-generated toroidal field. In this way, the model can be regarded as a unification of BL dynamo models (2D in radius/latitude) and surface flux transport models (2D in latitude/longitude) into a more self-consistent framework that captures the full 3D structure of the evolving magnetic field. The model reproduces some basic features of the solar cycle including an 11-yr periodicity, equatorward migration of toroidal flux in the deep convection zone, and poleward propagation of poloidal flux at the surface. The poleward-p...

  17. 3D model of the Bernese Part of the Swiss Molasse Basin: visualization of uncertainties in a 3D model

    Mock, Samuel; Allenbach, Robin; Reynolds, Lance; Wehrens, Philip; Kurmann-Matzenauer, Eva; Kuhn, Pascal; Michael, Salomè; Di Tommaso, Gennaro; Herwegh, Marco

    2016-04-01

    The Swiss Molasse Basin comprises the western and central part of the North Alpine Foreland Basin. In recent years it has come under closer scrutiny due to its promising geopotentials such as geothermal energy and CO2 sequestration. In order to adress these topics good knowledge of the subsurface is a key prerequisite. For that matter, geological 3D models serve as valuable tools. In collaboration with the Swiss Geological Survey (swisstopo) and as part of the project GeoMol CH, a geological 3D model of the Swiss Molasse Basin in the Canton of Bern has been built. The model covers an area of 1810 km2and reaches depth of up to 6.7 km. It comprises 10 major Cenozoic and Mesozoic units and numerous faults. The 3D model is mainly based on 2D seismic data complemented by information from few deep wells. Additionally, data from geological maps and profiles were used for refinement at shallow depths. In total, 1163 km of reflection seismic data, along 77 seismic lines, have been interpreted by different authors with respect to stratigraphy and structures. Both, horizons and faults, have been interpreted in 2D and modelled in 3D using IHS's Kingdom Suite and Midland Valley's MOVE software packages, respectively. Given the variable degree of subsurface information available, each 3D model is subject of uncertainty. With the primary input data coming from interpretation of reflection seismic data, a variety of uncertainties comes into play. Some of them are difficult to address (e.g. author's style of interpretation) while others can be quantified (e.g. mis-tie correction, well-tie). An important source of uncertainties is the quality of seismic data; this affects the traceability and lateral continuation of seismic reflectors. By defining quality classes we can semi-quantify this source of uncertainty. In order to visualize the quality and density of the input data in a meaningful way, we introduce quality-weighted data density maps. In combination with the geological 3D

  18. Model of non-stationary, inhomogeneous turbulence

    Bragg, Andrew D.; Kurien, Susan; Clark, Timothy T.

    2016-07-01

    We compare results from a spectral model for non-stationary, inhomogeneous turbulence (Besnard et al. in Theor Comp Fluid Dyn 8:1-35, 1996) with direct numerical simulation (DNS) data of a shear-free mixing layer (SFML) (Tordella et al. in Phys Rev E 77:016309, 2008). The SFML is used as a test case in which the efficacy of the model closure for the physical-space transport of the fluid velocity field can be tested in a flow with inhomogeneity, without the additional complexity of mean-flow coupling. The model is able to capture certain features of the SFML quite well for intermediate to long times, including the evolution of the mixing-layer width and turbulent kinetic energy. At short-times, and for more sensitive statistics such as the generation of the velocity field anisotropy, the model is less accurate. We propose two possible causes for the discrepancies. The first is the local approximation to the pressure-transport and the second is the a priori spherical averaging used to reduce the dimensionality of the solution space of the model, from wavevector to wavenumber space. DNS data are then used to gauge the relative importance of both possible deficiencies in the model.

  19. Building Statistical Shape Spaces for 3D Human Modeling

    Pishchulin, Leonid; Wuhrer, Stefanie; Helten, Thomas; Theobalt, Christian; Schiele, Bernt

    2015-01-01

    Statistical models of 3D human shape and pose learned from scan databases have developed into valuable tools to solve a variety of vision and graphics problems. Unfortunately, most publicly available models are of limited expressiveness as they were learned on very small databases that hardly reflect the true variety in human body shapes. In this paper, we contribute by rebuilding a widely used statistical body representation from the largest commercially available scan database, and making t...

  20. Geometric and Colour Data Fusion for Outdoor 3D Models

    Ricardo Chacón

    2012-05-01

    Full Text Available This paper deals with the generation of accurate, dense and coloured 3D models of outdoor scenarios from scanners. This is a challenging research field in which several problems still remain unsolved. In particular, the process of 3D model creation in outdoor scenes may be inefficient if the scene is digitalized under unsuitable technical (specific scanner on-board camera and environmental (rain, dampness, changing illumination conditions. We address our research towards the integration of images and range data to produce photorealistic models. Our proposal is based on decoupling the colour integration and geometry reconstruction stages, making them independent and controlled processes. This issue is approached from two different viewpoints. On the one hand, given a complete model (geometry plus texture, we propose a method to modify the original texture provided by the scanner on-board camera with the colour information extracted from external images taken at given moments and under specific environmental conditions. On the other hand, we propose an algorithm to directly assign external images onto the complete geometric model, thus avoiding tedious on-line calibration processes. We present the work conducted on two large Roman archaeological sites dating from the first century A.D., namely, the Theatre of Segobriga and the Fori Porticus of Emerita Augusta, both in Spain. The results obtained demonstrate that our approach could be useful in the digitalization and 3D modelling fields.

  1. Towards a 3d Spatial Urban Energy Modelling Approach

    Bahu, J.-M.; Koch, A.; Kremers, E.; Murshed, S. M.

    2013-09-01

    Today's needs to reduce the environmental impact of energy use impose dramatic changes for energy infrastructure and existing demand patterns (e.g. buildings) corresponding to their specific context. In addition, future energy systems are expected to integrate a considerable share of fluctuating power sources and equally a high share of distributed generation of electricity. Energy system models capable of describing such future systems and allowing the simulation of the impact of these developments thus require a spatial representation in order to reflect the local context and the boundary conditions. This paper describes two recent research approaches developed at EIFER in the fields of (a) geo-localised simulation of heat energy demand in cities based on 3D morphological data and (b) spatially explicit Agent-Based Models (ABM) for the simulation of smart grids. 3D city models were used to assess solar potential and heat energy demand of residential buildings which enable cities to target the building refurbishment potentials. Distributed energy systems require innovative modelling techniques where individual components are represented and can interact. With this approach, several smart grid demonstrators were simulated, where heterogeneous models are spatially represented. Coupling 3D geodata with energy system ABMs holds different advantages for both approaches. On one hand, energy system models can be enhanced with high resolution data from 3D city models and their semantic relations. Furthermore, they allow for spatial analysis and visualisation of the results, with emphasis on spatially and structurally correlations among the different layers (e.g. infrastructure, buildings, administrative zones) to provide an integrated approach. On the other hand, 3D models can benefit from more detailed system description of energy infrastructure, representing dynamic phenomena and high resolution models for energy use at component level. The proposed modelling strategies

  2. Technical illustration based on 3D CSG models

    GENG Wei-dong; DING Lei; YU Hong-feng; PAN Yun-he

    2005-01-01

    This paper presents an automatic non-photorealistic rendering approach to generating technical illustration from 3D models. It first decomposes the 3D object into a set of CSG primitives, and then performs the hidden surface removal based on the prioritized list, in which the rendition order of CSG primitives is sorted out by depth. Then, each primitive is illustrated by the pre-defined empirical lighting model, and the system mimics the stroke-drawing by user-specified style. In order to artistically and flexibly modulate the illumination, the empirical lighting model is defined by three major components: parameters of multi-level lighting intensities, parametric spatial occupations for each lighting level, and an interpolation method to calculate the lighting units into the spatial occupation of CSG primitives, instead of"pixel-by-pixel" painting. This region-by-region shading facilitates the simulation of illustration styles.

  3. 3D Babcock-Leighton Solar Dynamo Models

    Miesch, Mark S.; Hazra, Gopal; Karak, Bidya Binay; Teweldebirhan, Kinfe; Upton, Lisa

    2016-05-01

    We present results from the new STABLE (Surface flux Transport and Babcock Leighton) Dynamo Model. STABLE is a 3D Babcock-Leighton/Flux Transport dynamo model in which the source of poloidal field is the explicit emergence, distortion, and dispersal of bipolar magnetic regions (BMRs). In this talk I will discuss initial results with axisymmetric flow fields, focusing on the operation of the model, the general features of the cyclic solutions, and the challenge of achieving supercritical dynamo solutions using only the Babcock-Leighton source term. Then I will present dynamo simulations that include 3D convective flow fields based on the observed velocity power spectrum inferred from photospheric Dopplergrams. I'll use these simulations to assess how the explicit transport and amplification of fields by surface convection influences the operation of the dynamo. I will also discuss the role of surface magnetic fields in regulating the subsurface toroidal flux budget.

  4. 3-D model-based tracking for UAV indoor localization.

    Teulière, Céline; Marchand, Eric; Eck, Laurent

    2015-05-01

    This paper proposes a novel model-based tracking approach for 3-D localization. One main difficulty of standard model-based approach lies in the presence of low-level ambiguities between different edges. In this paper, given a 3-D model of the edges of the environment, we derive a multiple hypotheses tracker which retrieves the potential poses of the camera from the observations in the image. We also show how these candidate poses can be integrated into a particle filtering framework to guide the particle set toward the peaks of the distribution. Motivated by the UAV indoor localization problem where GPS signal is not available, we validate the algorithm on real image sequences from UAV flights. PMID:25099967

  5. Engineering cancer microenvironments for in vitro 3-D tumor models

    Waseem Asghar

    2015-12-01

    Full Text Available The natural microenvironment of tumors is composed of extracellular matrix (ECM, blood vasculature, and supporting stromal cells. The physical characteristics of ECM as well as the cellular components play a vital role in controlling cancer cell proliferation, apoptosis, metabolism, and differentiation. To mimic the tumor microenvironment outside the human body for drug testing, two-dimensional (2-D and murine tumor models are routinely used. Although these conventional approaches are employed in preclinical studies, they still present challenges. For example, murine tumor models are expensive and difficult to adopt for routine drug screening. On the other hand, 2-D in vitro models are simple to perform, but they do not recapitulate natural tumor microenvironment, because they do not capture important three-dimensional (3-D cell–cell, cell–matrix signaling pathways, and multi-cellular heterogeneous components of the tumor microenvironment such as stromal and immune cells. The three-dimensional (3-D in vitro tumor models aim to closely mimic cancer microenvironments and have emerged as an alternative to routinely used methods for drug screening. Herein, we review recent advances in 3-D tumor model generation and highlight directions for future applications in drug testing.

  6. GPU-accelerated 3-D model-based tracking

    Model-based approaches to tracking the pose of a 3-D object in video are effective but computationally demanding. While statistical estimation techniques, such as the particle filter, are often employed to minimize the search space, real-time performance remains unachievable on current generation CPUs. Recent advances in graphics processing units (GPUs) have brought massively parallel computational power to the desktop environment and powerful developer tools, such as NVIDIA Compute Unified Device Architecture (CUDA), have provided programmers with a mechanism to exploit it. NVIDIA GPUs' single-instruction multiple-thread (SIMT) programming model is well-suited to many computer vision tasks, particularly model-based tracking, which requires several hundred 3-D model poses to be dynamically configured, rendered, and evaluated against each frame in the video sequence. Using 6 degree-of-freedom (DOF) rigid hand tracking as an example application, this work harnesses consumer-grade GPUs to achieve real-time, 3-D model-based, markerless object tracking in monocular video.

  7. A 3D alcoholic liver disease model on a chip.

    Lee, JaeSeo; Choi, BongHwan; No, Da Yoon; Lee, GeonHui; Lee, Seung-Ri; Oh, HyunJik; Lee, Sang-Hoon

    2016-03-14

    Alcohol is one of the main causes of liver diseases, and the development of alcoholic liver disease (ALD) treatment methods has been one of the hottest issues. For this purpose, development of in vitro models mimicking the in vivo physiology is one of the critical requirements, and they help to determine the disease mechanisms and to discover the treatment method. Herein, a three-dimensional (3D) ALD model was developed and its superior features in mimicking the in vivo condition were demonstrated. A spheroid-based microfluidic chip was employed for the development of the 3D in vitro model of ALD progression. We co-cultured rat primary hepatocytes and hepatic stellate cells (HSCs) in a fluidic chip to investigate the role of HSCs in the recovery of liver with ALD. An interstitial level of flow derived by an osmotic pump was applied to the chip to provide in vivo mimicking of fluid activity. Using this in vitro tool, we were able to observe structural changes and decreased hepatic functions with the increase in ethanol concentration. The recovery process of liver injured by alcohol was observed by providing fresh culture medium to the damaged 3D liver tissue for few days. A reversibly- and irreversibly-injured ALD model was established. The proposed model can not only be used for the research of alcoholic disease mechanism, but also has the potential for use in studies of hepatotoxicity and drug screening applications. PMID:26857817

  8. 3D modeling of dual-gate FinFET.

    Mil'shtein, Samson; Devarakonda, Lalitha; Zanchi, Brian; Palma, John

    2012-01-01

    The tendency to have better control of the flow of electrons in a channel of field-effect transistors (FETs) did lead to the design of two gates in junction field-effect transistors, field plates in a variety of metal semiconductor field-effect transistors and high electron mobility transistors, and finally a gate wrapping around three sides of a narrow fin-shaped channel in a FinFET. With the enhanced control, performance trends of all FETs are still challenged by carrier mobility dependence on the strengths of the electrical field along the channel. However, in cases when the ratio of FinFET volume to its surface dramatically decreases, one should carefully consider the surface boundary conditions of the device. Moreover, the inherent non-planar nature of a FinFET demands 3D modeling for accurate analysis of the device performance. Using the Silvaco modeling tool with quantization effects, we modeled a physical FinFET described in the work of Hisamoto et al. (IEEE Tran. Elec. Devices 47:12, 2000) in 3D. We compared it with a 2D model of the same device. We demonstrated that 3D modeling produces more accurate results. As 3D modeling results came close to experimental measurements, we made the next step of the study by designing a dual-gate FinFET biased at Vg1 >Vg2. It is shown that the dual-gate FinFET carries higher transconductance than the single-gate device. PMID:23148493

  9. Inhomogeneity of the $\\Lambda$LTB models

    Sundell, Peter

    2016-01-01

    The Lema\\'itre-Toman-Bondi (LTB) models have reported to suffer from incompatibility with cosmological observations and fine-tuning of the observer's location. Further analysis of these issues indicates that they could be resolved by models that are compatible with the supernova Ia data, but less inhomogeneous than those that have been presented in the literature so far. We study if such models exist by employing the degrees of freedom of the LTB models in a novel manner. We discovered two scenarios which may meet the expectations, but extensive numerical and analytical investigation showed them inviable. We extended our studies to the $\\Lambda$LTB models, which generalizes the LTB models by including a non-zero cosmological constant $\\Lambda$ in Einsteins equations. This adds an additional degree of freedom for the earlier scenarios and introduces a new scenario capable of meeting the expectations. However, extensive numerical and analytical investigation reveals that inclusion of $\\Lambda$ does not enhance ...

  10. Error Analysis Of 3d Polygonal Model:A Survey

    Devendra Singh Rajput

    2012-05-01

    Full Text Available Various applications of computer graphics, (like animation, scientific visualization, and virtual reality involve the manipulation of geometric models. They are generally represented by triangular meshes due to its wide acceptance to process on rendering systems. The need of realism and high visual fidelity and the latest advances on scanning devices has increased complexity and size of triangular meshes. The original 3D model gets modified because of activities like approximation, transmission, processing and storage etc. Mostly the modification occurs due to simplification approaches which primarily use geometric distance metric as their simplification criteria. But it is hard to measure a small distance error accurately whereas other geometric or appearance error (like high curvature, thin region, color, texture, normals and volumetric has greater importance. Hence it is essential to understand the applicability of various parameters to evaluate the quality of 3D model. This paper briefly surveys the various errors analysis techniques, error metrics and tools to assess the quality of 3D mesh models.

  11. CityGML - Interoperable semantic 3D city models

    Gröger, Gerhard; Plümer, Lutz

    2012-07-01

    CityGML is the international standard of the Open Geospatial Consortium (OGC) for the representation and exchange of 3D city models. It defines the three-dimensional geometry, topology, semantics and appearance of the most relevant topographic objects in urban or regional contexts. These definitions are provided in different, well-defined Levels-of-Detail (multiresolution model). The focus of CityGML is on the semantical aspects of 3D city models, its structures, taxonomies and aggregations, allowing users to employ virtual 3D city models for advanced analysis and visualization tasks in a variety of application domains such as urban planning, indoor/outdoor pedestrian navigation, environmental simulations, cultural heritage, or facility management. This is in contrast to purely geometrical/graphical models such as KML, VRML, or X3D, which do not provide sufficient semantics. CityGML is based on the Geography Markup Language (GML), which provides a standardized geometry model. Due to this model and its well-defined semantics and structures, CityGML facilitates interoperable data exchange in the context of geo web services and spatial data infrastructures. Since its standardization in 2008, CityGML has become used on a worldwide scale: tools from notable companies in the geospatial field provide CityGML interfaces. Many applications and projects use this standard. CityGML is also having a strong impact on science: numerous approaches use CityGML, particularly its semantics, for disaster management, emergency responses, or energy-related applications as well as for visualizations, or they contribute to CityGML, improving its consistency and validity, or use CityGML, particularly its different Levels-of-Detail, as a source or target for generalizations. This paper gives an overview of CityGML, its underlying concepts, its Levels-of-Detail, how to extend it, its applications, its likely future development, and the role it plays in scientific research. Furthermore, its

  12. 3D fracture permeability modelling in offshore Arabian Gulf reservoir

    Bushara, M.N.; El Tawel, A.; Borougha, H.; Dabbouk, C. [Zakum Development Co., Abu Dhabi (United Arab Emirates); Daly, C. [Roxar Ltd., Dubai (United Arab Emirates)

    2001-06-01

    A stochastic method has been developed to predict fracture permeability distribution for oil fields. This new method does a better job than current methods in determining water encroachment trends. The method was developed based on a study conducted on a carbonate reservoir located offshore Abu Dhabi. The 3D model allows petroleum engineers to assess fractures and to better understand their geologic control in terms of permeability in reservoirs with single porosity models. In this study, strain field over the reservoir, which correlated with test permeability, was obtained from curvature analysis and calibrated to strain calculated from core fractures. Curvature analysis included some uncertainties such as strain estimates, details of fracture spatial geometry and shear/strike-slip movements. It was concluded that these uncertainties could be eliminated with better strain field determination and 3D seismic data. 4 refs., 5 figs.

  13. 3D root canal modeling for advanced endodontic treatment

    Hong, Shane Y.; Dong, Janet

    2002-06-01

    More than 14 million teeth receive endodontic (root canal) treatment annually. Before a clinician's inspection and diagnosis, destructive access preparation by removing teeth crown and dentin is usually needed. This paper presents a non-invasive method for accessing internal tooth geometry by building 3-D tooth model from 2-D radiographic and endoscopic images to be used for an automatic prescription system of computer-aided treatment procedure planning, and for the root canal preparation by an intelligent micro drilling machine with on-line monitoring. It covers the techniques specific for dental application in the radiographic images acquirement, image enhancement, image segmentation and feature recognition, distance measurement and calibration, merging 2D image into 3D mathematical model representation and display. Included also are the methods to form references for irregular teeth geometry and to do accurately measurement with self-calibration.

  14. Lensing effects in inhomogeneous cosmological models

    Ghassemi, Sima; Mansouri, Reza

    2009-01-01

    Concepts developed in the gravitational lensing techniques such as shear, convergence, tangential and radial arcs maybe used to see how tenable inhomogeneous models proposed to explain the acceleration of the universe models are. We study the widely discussed LTB cosmological models. It turns out that for the observer sitting at origin of a global LTB solution the shear vanishes as in the FRW models, while the value of convergence is different which may lead to observable cosmological effects. We also consider Swiss-cheese models proposed recently based on LTB with an observer sitting in the FRW part. It turns out that they have different behavior as far as the formation of radial and tangential arcs are concerned.

  15. Modeling 2D and 3D Horizontal Wells Using CVFA

    Chen, Zhangxin; Huan, Guanren; Li, Baoyan

    2003-01-01

    In this paper we present an application of the recently developed control volume function approximation (CVFA) method to the modeling and simulation of 2D and 3D horizontal wells in petroleum reservoirs. The base grid for this method is based on a Voronoi grid. One of the features of the CVFA is that the flux at the interfaces of control volumes can be accurately computed via function approximations. Also, it reduces grid orientation effects and applies to any shape of eleme...

  16. Study of 3D-modelling software environments

    Егорова, Ирина Николаевна; Гайдамащук, Алиса Владимировна

    2013-01-01

    The study of three-dimensional modeling software packages such as Autodesk Maya, Autodesk 3Ds Studio Max, Lightwave 3D, Maxon Cinema 4D, Blender, ZBrush was conducted in the paper. The analysis of software packages allowed to identify the most effective ones. These were Autodesk Maya, Autodesk 3Ds Studio Max and ZBrush packages. The selected software packages were used for the creation of a computer scene, the main elements of which are interior, character and animation. Practical research al...

  17. Camera Calibration by Registration Stereo Reconstruction to 3D Model

    Klečka, J.

    2015-01-01

    Paper aims at unusual way to camera calibration. The main idea is that by registration of uncalibrated stereo reconstruction to 3D model of the same scene is eliminated ambiguity of the reconstruction. The reason for this is that exact metric scene reconstruction from image pair can be understate as information equivalent to calibration of the source camera pair. Described principles were verified by experiment on real data and results are presented at the end of the paper.

  18. Registration of 3D Face Scans with Average Face Models

    Salah, Albert Ali; Alyuz, N.; Akarun, L.

    2008-01-01

    The accuracy of a 3D face recognition system depends on a correct registration that aligns the facial surfaces and makes a comparison possible. The best results obtained so far use a costly one-to-all registration approach, which requires the registration of each facial surface to all faces in the gallery. We explore the approach of registering the new facial surface to an average face model (AFM), which automatically establishes correspondence to the pre-registered gallery faces. We propose ...

  19. The Solar Photospheric Oxygen Abundance and the Role of 3D Model Atmospheres

    Caffau, E.; Steffen, M.; Ludwig, H.-G.

    2008-09-01

    The solar oxygen abundance has undergone a major downward revision in the last decade, reputedly as a result of employing 3D hydrodynamical simulations to model the inhomogeneous structure of the solar photosphere. The very low oxygen abundance advocated by Asplund et al. 2004, A(O)=8.66, together with the downward revision of the abundances of other key elements, has created serious problems for solar models to explain the helioseismic measurements. In an effort to contribute to the dispute of whether the Sun has "solar" or "sub-solar" abundances, we have re-derived its photospheric abundance of oxygen, nitrogen, and other elements, independently of previous analyses. We applied a state-of-the art 3D (CO5BOLD) hydrodynamical simulation of the solar granulation as well as different 1D model atmospheres for the line by line spectroscopic abundance determinations. The analysis is based on both standard disk-center and full-disk spectral atlases; for oxygen we acquired in addition spectra at different heliocentric angles. The derived abundances are the result of equivalent width and/or line profile fitting of the available atomic lines. Our recommended oxygen abundance is A(O)=8.76+- 0.07, 0.1 dex higher than the value of Asplund et al. (2004). Our current estimate of the overall solar metallicity is 0.014< Z<0.016. Questions we discuss include: (i) Is the general downward revision of the solar abundances a 3D effect? (ii) How large are the abundance corrections due to horizontal inhomogeneities? (iii) What is the main reason for the differences between the abundances obtained in our study and those derived by Apslund and coworkers? (iv) How large are the uncertainties in the observed solar spectra? (v) What is the reason why the two forbidden oxygen lines, [OI] lambda 630 nm and [OI] lambda 636.3 nm, give significantly different answers for the solar oxygen abundance?

  20. PIXIE3D: An efficient, fully implicit, parallel, 3D extended MHD code for fusion plasma modeling

    PIXIE3D is a modern, parallel, state-of-the-art extended MHD code that employs fully implicit methods for efficiency and accuracy. It features a general geometry formulation, and is therefore suitable for the study of many magnetic fusion configurations of interest. PIXIE3D advances the state of the art in extended MHD modeling in two fundamental ways. Firstly, it employs a novel conservative finite volume scheme which is remarkably robust and stable, and demands very small physical and/or numerical dissipation. This is a fundamental requirement when one wants to study fusion plasmas with realistic conductivities. Secondly, PIXIE3D features fully-implicit time stepping, employing Newton-Krylov methods for inverting the associated nonlinear systems. These methods have been shown to be scalable and efficient when preconditioned properly. Novel preconditioned ideas (so-called physics based), which were prototypes in the context of reduced MHD, have been adapted for 3D primitive-variable resistive MHD in PIXIE3D, and are currently being extended to Hall MHD. PIXIE3D is fully parallel, employing PETSc for parallelism. PIXIE3D has been thoroughly benchmarked against linear theory and against other available extended MHD codes on nonlinear test problems (such as the GEM reconnection challenge). We are currently in the process of extending such comparisons to fusion-relevant problems in realistic geometries. In this talk, we will describe both the spatial discretization approach and the preconditioning strategy employed for extended MHD in PIXIE3D. We will report on recent benchmarking studies between PIXIE3D and other 3D extended MHD codes, and will demonstrate its usefulness in a variety of fusion-relevant configurations such as Tokamaks and Reversed Field Pinches. (Author)

  1. Modeling 3D faces from samplings via compressive sensing

    Sun, Qi; Tang, Yanlong; Hu, Ping

    2013-07-01

    3D data is easier to acquire for family entertainment purpose today because of the mass-production, cheapness and portability of domestic RGBD sensors, e.g., Microsoft Kinect. However, the accuracy of facial modeling is affected by the roughness and instability of the raw input data from such sensors. To overcome this problem, we introduce compressive sensing (CS) method to build a novel 3D super-resolution scheme to reconstruct high-resolution facial models from rough samples captured by Kinect. Unlike the simple frame fusion super-resolution method, this approach aims to acquire compressed samples for storage before a high-resolution image is produced. In this scheme, depth frames are firstly captured and then each of them is measured into compressed samples using sparse coding. Next, the samples are fused to produce an optimal one and finally a high-resolution image is recovered from the fused sample. This framework is able to recover 3D facial model of a given user from compressed simples and this can reducing storage space as well as measurement cost in future devices e.g., single-pixel depth cameras. Hence, this work can potentially be applied into future applications, such as access control system using face recognition, and smart phones with depth cameras, which need high resolution and little measure time.

  2. Prototype coupling of the CFD code ANSYS CFX with the 3D neutron kinetic core model DYN3D

    Analyses of postulated reactivity initiated accidents in nuclear reactors are carried out using 3D neutron kinetic core models. The feedback is usually calculated using 1D thermal hydraulic models for channel flow, partly with the possibility of cross flow between these channels. A different possibility is the use of subchannel codes for the determination of the feedback. The code DYN3D developed at Forschungszentrum Dresden-Rossendorf is an example for a 3D neutron kinetic core model. In its basic version, the code contains models for the solution of the 3D neutron diffusion equation in two energy groups for fuel assemblies with rectangular and hexagonal cross section. Recently the code was extended to an arbitrary number of energy groups. Further, a simplified transport approximation for the flux calculation was implemented for fuel assemblies with quadratic cross section. The CFD code ANSYS CFX is the reference CFD code of the German CFD Network in Nuclear Reactor Safety. One of the goals of the co-operation inside this network is the development of CFD software for the simulation of multi-dimensional flows in reactor cooling systems. This includes the coupling of the CFD code ANSYS CFX with the 3D neutron kinetic core model DYN3D. (orig.)

  3. 3-D modelling and analysis of Dst C-responses in the North Pacific Ocean region, revisited

    Kuvshinov, A.; Utada, H.; Avdeev, D.; Koyama, T.

    2005-01-01

    During the last decade a number of one-dimensional (1-D) conductivity profiles have been constructed for the upper and mid-mantle of the North Pacific Ocean region. These profiles differ significantly, and from our point of view it is still unclear which profile is the best candidate for the upper...... dense grids in modelling, by considering 3-D models which include not only an inhomogeneous surface layer but also inhomogeneous deeper structures. (3) To derive an alternative 1-D upper and mid-mantle section for the North Pacific Ocean by carefully selecting the data for interpretation and by using 3......-responses if the published 1-D sections with conducting uppermost 400 km are considered as the upper and mid-mantle sections. Our 3-D simulations and reinterpretation of the data also confirm the recent finding that the upper and mid-mantle beneath North Pacific Ocean in the depth range down to 400 km is much...

  4. Modelling of aspherical nebulae. I. A quick pseudo-3D photoionization code

    Morisset, C; Peña, M

    2005-01-01

    We describe a pseudo-3D photoionization code, NEBU_3D and its associated visualization tool, VIS_NEB3D, which are able to easily and rapidly treat a wide variety of nebular geometries, by combining models obtained with a 1D photoionization code. The only requirement for the code to work is that the ionization source is uniqu e and not extended. It is applicable as long as the diffuse ionizing radiation f ield is not dominant and strongly inhomogeneous. As examples of the capabilities of these new tools, we consider two very differ ent theoretical cases. One is that of a high excitation planetary nebula that ha s an ellipsoidal shape with two polar density knots. The other one is that of a blister HII region, for which we have also constructed a spherical model (the sp herical impostor) which has exactly the same Hbeta surface brightness distrib ution as the blister model and the same ionizing star. These two examples warn against preconceived ideas when interpreting spectroscop ic and imaging data of HII regi...

  5. Right approach to 3D modeling using CAD tools

    Baddam, Mounica Reddy

    The thesis provides a step-by-step methodology to enable an instructor dealing with CAD tools to optimally guide his/her students through an understandable 3D modeling approach which will not only enhance their knowledge about the tool's usage but also enable them to achieve their desired result in comparatively lesser time. In the known practical field, there is particularly very little information available to apply CAD skills to formal beginners' training sessions. Additionally, advent of new software in 3D domain cumulates updating into a more difficult task. Keeping up to the industry's advanced requirements emphasizes the importance of more skilled hands in the field of CAD development, rather than just prioritizing manufacturing in terms of complex software features. The thesis analyses different 3D modeling approaches specified to the varieties of CAD tools currently available in the market. Utilizing performance-time databases, learning curves have been generated to measure their performance time, feature count etc. Based on the results, improvement parameters have also been provided for (Asperl, 2005).

  6. 3D-printer visualization of neuron models

    Robert A McDougal

    2015-06-01

    Full Text Available Neurons come in a wide variety of shapes and sizes. In a quest to understand this neuronal diversity, researchers have three-dimensionally traced tens of thousands of neurons; many of these tracings are freely available through online repositories like NeuroMorpho.Org and ModelDB. Tracings can be visualized on the computer screen, used for statistical analysis of the properties of different cell types, used to simulate neuronal behavior, and more. We introduce the use of 3D printing as a technique for visualizing traced morphologies. Our method for generating printable versions of a cell or group of cells is to expand dendrite and axon diameters and then to transform the wireframe tracing into a 3D object with a neuronal surface generating algorithm like Constructive Tessellated Neuronal Geometry (CTNG. We show that 3D printed cells can be readily examined, manipulated, and compared with other neurons to gain insight into both the biology and the reconstruction process. We share our printable models in a new database, 3DModelDB, and encourage others to do the same with cells that they generate using our code or other methods. To provide additional context, 3DModelDB provides a simulatable version of each cell, links to papers that use or describe it, and links to associated entries in other databases.

  7. Effective 3-D surface modeling for geographic information systems

    K. Yüksek

    2013-11-01

    Full Text Available In this work, we propose a dynamic, flexible and interactive urban digital terrain platform (DTP with spatial data and query processing capabilities of Geographic Information Systems (GIS, multimedia database functionality and graphical modeling infrastructure. A new data element, called Geo-Node, which stores image, spatial data and 3-D CAD objects is developed using an efficient data structure. The system effectively handles data transfer of Geo-Nodes between main memory and secondary storage with an optimized Directional Replacement Policy (DRP based buffer management scheme. Polyhedron structures are used in Digital Surface Modeling (DSM and smoothing process is performed by interpolation. The experimental results show that our framework achieves high performance and works effectively with urban scenes independent from the amount of spatial data and image size. The proposed platform may contribute to the development of various applications such as Web GIS systems based on 3-D graphics standards (e.g. X3-D and VRML and services which integrate multi-dimensional spatial information and satellite/aerial imagery.

  8. Effective 3-D surface modeling for geographic information systems

    Yüksek, K.; Alparslan, M.; Mendi, E.

    2016-01-01

    In this work, we propose a dynamic, flexible and interactive urban digital terrain platform with spatial data and query processing capabilities of geographic information systems, multimedia database functionality and graphical modeling infrastructure. A new data element, called Geo-Node, which stores image, spatial data and 3-D CAD objects is developed using an efficient data structure. The system effectively handles data transfer of Geo-Nodes between main memory and secondary storage with an optimized directional replacement policy (DRP) based buffer management scheme. Polyhedron structures are used in digital surface modeling and smoothing process is performed by interpolation. The experimental results show that our framework achieves high performance and works effectively with urban scenes independent from the amount of spatial data and image size. The proposed platform may contribute to the development of various applications such as Web GIS systems based on 3-D graphics standards (e.g., X3-D and VRML) and services which integrate multi-dimensional spatial information and satellite/aerial imagery.

  9. 3D climate modeling of close-in land planets: Circulation patterns, climate moist bistability, and habitability

    Leconte, J; Forget, F.; Charnay, B.; Wordsworth, R.; Selsis, F.; Millour, E.; Spiga, A.

    2013-01-01

    The inner edge of the classical habitable zone is often defined by the critical flux needed to trigger the runaway greenhouse instability. This 1D notion of a critical flux, however, may not be so relevant for inhomogeneously irradiated planets, or when the water content is limited (land planets). Here, based on results from our 3D global climate model, we find that the circulation pattern can shift from super-rotation to stellar/anti stellar circulation when the equatorial Rossby deformation...

  10. Underwater 3d Modeling: Image Enhancement and Point Cloud Filtering

    Sarakinou, I.; Papadimitriou, K.; Georgoula, O.; Patias, P.

    2016-06-01

    This paper examines the results of image enhancement and point cloud filtering on the visual and geometric quality of 3D models for the representation of underwater features. Specifically it evaluates the combination of effects from the manual editing of images' radiometry (captured at shallow depths) and the selection of parameters for point cloud definition and mesh building (processed in 3D modeling software). Such datasets, are usually collected by divers, handled by scientists and used for geovisualization purposes. In the presented study, have been created 3D models from three sets of images (seafloor, part of a wreck and a small boat's wreck) captured at three different depths (3.5m, 10m and 14m respectively). Four models have been created from the first dataset (seafloor) in order to evaluate the results from the application of image enhancement techniques and point cloud filtering. The main process for this preliminary study included a) the definition of parameters for the point cloud filtering and the creation of a reference model, b) the radiometric editing of images, followed by the creation of three improved models and c) the assessment of results by comparing the visual and the geometric quality of improved models versus the reference one. Finally, the selected technique is tested on two other data sets in order to examine its appropriateness for different depths (at 10m and 14m) and different objects (part of a wreck and a small boat's wreck) in the context of an ongoing research in the Laboratory of Photogrammetry and Remote Sensing.

  11. 3D Geologic Model of the San Diego Area

    Danskin, W. R.; Cromwell, G.; Glockhoff, C.; Martin, D.

    2015-12-01

    Prior geologic studies of the San Diego area, including northern Baja California, Mexico, focused on site investigations, characterization of rock formations, or earthquake hazards. No comprehensive, quantitative model characterizing the three-dimensional (3D) geology of the entire area has been developed. The lack of such a model limits understanding of large-scale processes, such as development of ancient landforms, and groundwater movement and availability. To evaluate these regional processes, the United States Geological Survey (USGS) conducted a study to better understand the geologic structure of the San Diego area. A cornerstone of this study is the installation and analysis of 77 wells at 12 multiple-depth monitoring-well sites. Geologic information from these wells was combined with lithologic data from 81 oil exploration wells and municipal and private water wells, gravity and seismic interpretations, and paleontological interpretations. These data were analyzed in conjunction with geologic maps and digital elevation models to develop a 3D geologic model of the San Diego area, in particular of the San Diego embayment. Existing interpretations of regional surficial geology, faulting, and tectonic history provided the framework for this model, which was refined by independent evaluation of subsurface geology. Geologic formations were simplified into five sedimentary units (Quaternary, Plio-Pleistocene, Oligocene, Eocene and Cretaceous ages), and one basal crystalline unit (primarily Cretaceous and Jurassic). Complex fault systems are represented in the model by ten fault strands that maintain overall displacement. The 3D geologic model corroborates existing geologic concepts of the San Diego area, refines the extent of subsurface geology, and allows users to holistically evaluate subsurface structures and regional hydrogeology.

  12. Etruscans in 3D - Surveying and 3D modeling for a better access and understanding of heritage -

    B. Jiménez Fernández-Palacios; Rizzi., A; F. Remondino

    2013-01-01

    Archaeological 3D digital documentation of monuments and historical sites should be considered a precious source of information and it can be very useful for preservation, conservation, restoration and reconstruction of Cultural Heritage. This paper reports a work dealing with 3D surveying and modeling of different Etruscan heritage sites, featuring necropolis with underground frescoed tombs dating back to VII-IV century B.C., located in the area corresponding roughly to the actual central It...

  13. 3D computer model of the VINCY cyclotron magnet

    The VINCY Cyclotron magnetic field simulation was performed with the help of the three-dimensional (3D) software. The following aspects of the system were considered: 3D calculation of the magnetic field in the median plane, 3D calculation of the magnetic field in the extraction region, 3D calculation of the stray magnetic field. 8 refs., 17 figs., 3 tabs

  14. 3D Massive MIMO Systems: Channel Modeling and Performance Analysis

    Nadeem, Qurrat-Ul-Ain

    2015-03-01

    Multiple-input-multiple-output (MIMO) systems of current LTE releases are capable of adaptation in the azimuth only. More recently, the trend is to enhance the system performance by exploiting the channel\\'s degrees of freedom in the elevation through the dynamic adaptation of the vertical antenna beam pattern. This necessitates the derivation and characterization of three-dimensional (3D) channels. Over the years, channel models have evolved to address the challenges of wireless communication technologies. In parallel to theoretical studies on channel modeling, many standardized channel models like COST-based models, 3GPP SCM, WINNER, ITU have emerged that act as references for industries and telecommunication companies to assess system-level and link-level performances of advanced signal processing techniques over real-like channels. Given the existing channels are only two dimensional (2D) in nature; a large effort in channel modeling is needed to study the impact of the channel component in the elevation direction. The first part of this work sheds light on the current 3GPP activity around 3D channel modeling and beamforming, an aspect that to our knowledge has not been extensively covered by a research publication. The standardized MIMO channel model is presented, that incorporates both the propagation effects of the environment and the radio effects of the antennas. In order to facilitate future studies on the use of 3D beamforming, the main features of the proposed 3D channel model are discussed. A brief overview of the future 3GPP 3D channel model being outlined for the next generation of wireless networks is also provided. In the subsequent part of this work, we present an information-theoretic channel model for MIMO systems that supports the elevation dimension. The model is based on the principle of maximum entropy, which enables us to determine the distribution of the channel matrix consistent with the prior information on the angles of departure and

  15. Subduction zone guided waves: 3D modelling and attenuation effects

    Garth, T.; Rietbrock, A.

    2013-12-01

    Waveform modelling is an important tool for understanding complex seismic structures such as subduction zone waveguides. These structures are often simplified to 2D structures for modelling purposes to reduce computational costs. In the case of subduction zone waveguide affects, 2D models have shown that dispersed arrivals are caused by a low velocity waveguide, inferred to be subducted oceanic crust and/or hydrated outer rise normal faults. However, due to the 2D modelling limitations the inferred seismic properties such as velocity contrast and waveguide thickness are still debated. Here we test these limitations with full 3D waveform modelling. For waveguide effects to be observable the waveform must be accurately modelled to relatively high frequencies (> 2 Hz). This requires a small grid spacing due to the high seismic velocities present in subduction zones. A large area must be modelled as well due to the long propagation distances (400 - 600 km) of waves interacting with subduction zone waveguides. The combination of the large model area and small grid spacing required means that these simulations require a large amount of computational resources, only available at high performance computational centres like the UK National super computer HECTOR (used in this study). To minimize the cost of modelling for such a large area, the width of the model area perpendicular to the subduction trench (the y-direction) is made as small as possible. This reduces the overall volume of the 3D model domain. Therefore the wave field is simulated in a model ';corridor' of the subduction zone velocity structure. This introduces new potential sources of error particularly from grazing wave side reflections in the y-direction. Various dampening methods are explored to reduce these grazing side reflections, including perfectly matched layers (PML) and more traditional exponential dampening layers. Defining a corridor model allows waveguide affects to be modelled up to at least 2

  16. Image-Based 3D Face Modeling System

    Vladimir Vezhnevets

    2005-08-01

    Full Text Available This paper describes an automatic system for 3D face modeling using frontal and profile images taken by an ordinary digital camera. The system consists of four subsystems including frontal feature detection, profile feature detection, shape deformation, and texture generation modules. The frontal and profile feature detection modules automatically extract the facial parts such as the eye, nose, mouth, and ear. The shape deformation module utilizes the detected features to deform the generic head mesh model such that the deformed model coincides with the detected features. A texture is created by combining the facial textures augmented from the input images and the synthesized texture and mapped onto the deformed generic head model. This paper provides a practical system for 3D face modeling, which is highly automated by aggregating, customizing, and optimizing a bunch of individual computer vision algorithms. The experimental results show a highly automated process of modeling, which is sufficiently robust to various imaging conditions. The whole model creation including all the optional manual corrections takes only 2∼3 minutes.

  17. 3D statistical shape models incorporating 3D random forest regression voting for robust CT liver segmentation

    Norajitra, Tobias; Meinzer, Hans-Peter; Maier-Hein, Klaus H.

    2015-03-01

    During image segmentation, 3D Statistical Shape Models (SSM) usually conduct a limited search for target landmarks within one-dimensional search profiles perpendicular to the model surface. In addition, landmark appearance is modeled only locally based on linear profiles and weak learners, altogether leading to segmentation errors from landmark ambiguities and limited search coverage. We present a new method for 3D SSM segmentation based on 3D Random Forest Regression Voting. For each surface landmark, a Random Regression Forest is trained that learns a 3D spatial displacement function between the according reference landmark and a set of surrounding sample points, based on an infinite set of non-local randomized 3D Haar-like features. Landmark search is then conducted omni-directionally within 3D search spaces, where voxelwise forest predictions on landmark position contribute to a common voting map which reflects the overall position estimate. Segmentation experiments were conducted on a set of 45 CT volumes of the human liver, of which 40 images were randomly chosen for training and 5 for testing. Without parameter optimization, using a simple candidate selection and a single resolution approach, excellent results were achieved, while faster convergence and better concavity segmentation were observed, altogether underlining the potential of our approach in terms of increased robustness from distinct landmark detection and from better search coverage.

  18. Mathematical Modeling of Extinction of Inhomogeneous Populations.

    Karev, G P; Kareva, I

    2016-04-01

    Mathematical models of population extinction have a variety of applications in such areas as ecology, paleontology and conservation biology. Here we propose and investigate two types of sub-exponential models of population extinction. Unlike the more traditional exponential models, the life duration of sub-exponential models is finite. In the first model, the population is assumed to be composed of clones that are independent from each other. In the second model, we assume that the size of the population as a whole decreases according to the sub-exponential equation. We then investigate the "unobserved heterogeneity," i.e., the underlying inhomogeneous population model, and calculate the distribution of frequencies of clones for both models. We show that the dynamics of frequencies in the first model is governed by the principle of minimum of Tsallis information loss. In the second model, the notion of "internal population time" is proposed; with respect to the internal time, the dynamics of frequencies is governed by the principle of minimum of Shannon information loss. The results of this analysis show that the principle of minimum of information loss is the underlying law for the evolution of a broad class of models of population extinction. Finally, we propose a possible application of this modeling framework to mechanisms underlying time perception. PMID:27090117

  19. Line defects in the 3d Ising model

    Billó, M; Gaiotto, D; Gliozzi, F; Meineri, M; Pellegrini, R

    2013-01-01

    We investigate the properties of the twist line defect in the critical 3d Ising model using Monte Carlo simulations. In this model the twist line defect is the boundary of a surface of frustrated links or, in a dual description, the Wilson line of the Z2 gauge theory. We test the hypothesis that the twist line defect flows to a conformal line defect at criticality and evaluate numerically the low-lying spectrum of anomalous dimensions of the local operators which live on the defect as well as mixed correlation functions of local operators in the bulk and on the defect.

  20. Towards Forward Modeling of 3D Heterogeneity in D" region

    To, A.; Capdeville, Y.; Romanowicz, B.

    2002-12-01

    The presence of strong lateral heterogeneity in D" is now well documented. While tomographic modeling provides constraints on the large scale patterns, strong variations on shorter scales are best addressed by forward modeling. Appropriate tools are needed for forward modeling that will handle strong 3D heterogeneity, at relatively short periods and including diffracted waves. We use a coupled mode/SEM (Spectral Element Method) to compute synthetic seismograms in 3D models of the D" layer down to 1/12s. This coupled method (Capdeville, 2001) affords faster computations than SEM in cases where heterogeneity can be restricted to a specific layer. We compare them with observed waveforms for several events in the Western Pacific. Observed and synthetic travel time trends are very consistent, although in most cases the observed residuals are significantly larger. Waveform amplitudes are less consistent. In order to understand the origin of the amplitude difference, we test the effect of 3D heterogeneity on Sdiff phase. In particular, the results show opposite trends in the amplitude of Sdiff due to heterogeneity located near the CMB or well above it. This provides constraints on the location of the causative velocity heterogeneity. Because the forward modeling approach requires many iterations, the coupled mode/SEM approach is still computationally intensive. It is more efficient to use a less accurate traditional approach to first get closer to a final model, and only then use coupled mode/SEM to refine the model. Ray theory is the most expedient way to calculate travel times. However, it is an infinite frequency approximation and not appropriate to handle diffracting waves. We show that ray theory predicts larger travel time anomaly for Sdiff phase than the one obtained by coupled mode/SEM. Although it is based on a weak heterogeneity assumption, Non-linear Asymptotic Coupling Theory(NACT) (Li and Romanowicz, 1995) helps to overcome this difficulty. It can handle

  1. On Angular Sampling Methods for 3-D Spatial Channel Models

    Fan, Wei; Jämsä, Tommi; Nielsen, Jesper Ødum; Pedersen, Gert Frølund

    2015-01-01

    This paper discusses generating three dimensional (3D) spatial channel models with emphasis on the angular sampling methods. Three angular sampling methods, i.e. modified uniform power sampling, modified uniform angular sampling, and random pairing methods are proposed and investigated in detail....... The random pairing method, which uses only twenty sinusoids in the ray-based model for generating the channels, presents good results if the spatial channel cluster is with a small elevation angle spread. For spatial clusters with large elevation angle spreads, however, the random pairing method would...

  2. 3-D Rigid Models from Partial Views - Global Factorization

    Aguiar, Pedro M Q; Gonçalves, Bruno B

    2010-01-01

    The so-called factorization methods recover 3-D rigid structure from motion by factorizing an observation matrix that collects 2-D projections of features. These methods became popular due to their robustness - they use a large number of views, which constrains adequately the solution - and computational simplicity - the large number of unknowns is computed through an SVD, avoiding non-linear optimization. However, they require that all the entries of the observation matrix are known. This is unlikely to happen in practice, due to self-occlusion and limited field of view. Also, when processing long videos, regions that become occluded often appear again later. Current factorization methods process these as new regions, leading to less accurate estimates of 3-D structure. In this paper, we propose a global factorization method that infers complete 3-D models directly from the 2-D projections in the entire set of available video frames. Our method decides whether a region that has become visible is a region tha...

  3. Discrete Method of Images for 3D Radio Propagation Modeling

    Novak, Roman

    2016-09-01

    Discretization by rasterization is introduced into the method of images (MI) in the context of 3D deterministic radio propagation modeling as a way to exploit spatial coherence of electromagnetic propagation for fine-grained parallelism. Traditional algebraic treatment of bounding regions and surfaces is replaced by computer graphics rendering of 3D reflections and double refractions while building the image tree. The visibility of reception points and surfaces is also resolved by shader programs. The proposed rasterization is shown to be of comparable run time to that of the fundamentally parallel shooting and bouncing rays. The rasterization does not affect the signal evaluation backtracking step, thus preserving its advantage over the brute force ray-tracing methods in terms of accuracy. Moreover, the rendering resolution may be scaled back for a given level of scenario detail with only marginal impact on the image tree size. This allows selection of scene optimized execution parameters for faster execution, giving the method a competitive edge. The proposed variant of MI can be run on any GPU that supports real-time 3D graphics.

  4. Digital 3D Borobudur - Integration of 3D surveying and modeling techniques

    Suwardhi, D.; Menna, F.; Remondino, F.; Hanke, K.; Akmalia, R.

    2015-08-01

    The Borobudur temple (Indonesia) is one of the greatest Buddhist monuments in the world, now listed as an UNESCO World Heritage Site. The present state of the temple is the result of restorations after being exposed to natural disasters several times. Today there is still a growing rate of deterioration of the building stones whose causes need further researches. Monitoring programs, supported at institutional level, have been effectively executed to observe the problem. The paper presents the latest efforts to digitally document the Borobudur Temple and its surrounding area in 3D with photogrammetric techniques. UAV and terrestrial images were acquired to completely digitize the temple, produce DEM, orthoimages and maps at 1:100 and 1:1000 scale. The results of the project are now employed by the local government organizations to manage the heritage area and plan new policies for the conservation and preservation of the UNESCO site. In order to help data management and policy makers, a web-based information system of the heritage area was also built to visualize and easily access all the data and achieved 3D results.

  5. Simulation of current generation in a 3-D plasma model

    Two wires carrying current in the same direction will attract each other, and two wires carrying current in the opposite direction will repel each other. Now, consider a test charge in a plasma. If the test charge carries current parallel to the plasma, then it will be pulled toward the plasma core, and if the test charge carries current anti-parallel to the plasma, then it will be pushed to the edge. The electromagnetic coupling between the plasma and a test charge (i.e., the Aparallel circ vparallel term in the test charge's Hamiltonian) breaks the symmetry in the parallel direction, and gives rise to a diffusion coefficient which is dependent on the particle's parallel velocity. This is the basis for the open-quotes preferential lossclose quotes mechanism described in the work by Nunan et al. In our previous 2+1/2 D work, in both cylindrical and toroidal geometries, showed that if the plasma column is centrally fueled, then an initial current increases steadily. The results in straight, cylindrical plasmas showed that self generated parallel current arises without trapped particle or neoclassical diffusion, as assumed by the bootstrap theory. It suggests that the fundamental mechanism seems to be the conservation of particles canonical momenta in the direction of the ignorable coordinate. We have extended the simulation to 3D to verify the model put forth. A scalable 3D EM-PIC code, with a localized field-solver, has been implemented to run on a large class of parallel computers. On the 512-node SP2 at Cornell Theory Center, we have benchmarked the 2+1/2 D calculations using 32 grids in the previously ignored direction, and a 100-fold increase in the number of particles. Our preliminary results show good agreements between the 2+1/2 D and the 3D calculations. We will present our 3D results at the meeting

  6. Testing Mercury Porosimetry with 3D Printed Porosity Models

    Hasiuk, F.; Ewing, R. P.; Hu, Q.

    2014-12-01

    Mercury intrusion porosimetry is one of the most widely used techniques to study the porous nature of a geological and man-made materials. In the geosciences, it is commonly used to describe petroleum reservoir and seal rocks as well as to grade aggregates for the design of asphalt and portland cement concretes. It's wide utility stems from its ability to characterize a wide range of pore throat sizes (from nanometers to around a millimeter). The fundamental physical model underlying mercury intrusion porosimetry, the Washburn Equation, is based on the assumption that rock porosity can be described as a bundle of cylindrical tubes. 3D printing technology, also known as rapid prototyping, allows the construction of intricate and accurate models, exactly what is required to build models of rock porosity. We evaluate the applicability of the Washburn Equation by comparing properties (like porosity, pore and pore throat size distribution, and surface area) computed on digital porosity models (built from CT data, CAD designs, or periodic geometries) to properties measured via mercury intrusion porosimetry on 3D printed versions of the same digital porosity models.

  7. Inferring 3D Articulated Models for Box Packaging Robot

    Yang, Heran; Cong, Matthew; Saxena, Ashutosh

    2011-01-01

    Given a point cloud, we consider inferring kinematic models of 3D articulated objects such as boxes for the purpose of manipulating them. While previous work has shown how to extract a planar kinematic model (often represented as a linear chain), such planar models do not apply to 3D objects that are composed of segments often linked to the other segments in cyclic configurations. We present an approach for building a model that captures the relation between the input point cloud features and the object segment as well as the relation between the neighboring object segments. We use a conditional random field that allows us to model the dependencies between different segments of the object. We test our approach on inferring the kinematic structure from partial and noisy point cloud data for a wide variety of boxes including cake boxes, pizza boxes, and cardboard cartons of several sizes. The inferred structure enables our robot to successfully close these boxes by manipulating the flaps.

  8. Exploiting Textured 3D Models for Developing Serious Games

    Kontogianni, G.; Georgopoulos, A.

    2015-08-01

    Digital technologies have affected significantly many fields of computer graphics such as Games and especially the field of the Serious Games. These games are usually used for educational proposes in many fields such as Health Care, Military applications, Education, Government etc. Especially Digital Cultural Heritage is a scientific area that Serious Games are applied and lately many applications appear in the related literature. Realistic 3D textured models which have been produced using different photogrammetric methods could be a useful tool for the creation of Serious Game applications in order to make the final result more realistic and close to the reality. The basic goal of this paper is how 3D textured models which are produced by photogrammetric methods can be useful for developing a more realistic environment of a Serious Game. The application of this project aims at the creation of an educational game for the Ancient Agora of Athens. The 3D models used vary not only as far as their production methods (i.e. Time of Flight laser scanner, Structure from Motion, Virtual historical reconstruction etc.) is concerned, but also as far as their era as some of them illustrated according to their existing situation and some others according to how these monuments looked like in the past. The Unity 3D® game developing environment was used for creating this application, in which all these models were inserted in the same file format. For the application two diachronic virtual tours of the Athenian Agora were produced. The first one illustrates the Agora as it is today and the second one at the 2nd century A.D. Finally the future perspective for the evolution of this game is presented which includes the addition of some questions that the user will be able to answer. Finally an evaluation is scheduled to be performed at the end of the project.

  9. 3D model tools for architecture and archaeology reconstruction

    Vlad, Ioan; Herban, Ioan Sorin; Stoian, Mircea; Vilceanu, Clara-Beatrice

    2016-06-01

    The main objective of architectural and patrimonial survey is to provide a precise documentation of the status quo of the surveyed objects (monuments, buildings, archaeological object and sites) for preservation and protection, for scientific studies and restoration purposes, for the presentation to the general public. Cultural heritage documentation includes an interdisciplinary approach having as purpose an overall understanding of the object itself and an integration of the information which characterize it. The accuracy and the precision of the model are directly influenced by the quality of the measurements realized on field and by the quality of the software. The software is in the process of continuous development, which brings many improvements. On the other side, compared to aerial photogrammetry, close range photogrammetry and particularly architectural photogrammetry is not limited to vertical photographs with special cameras. The methodology of terrestrial photogrammetry has changed significantly and various photographic acquisitions are widely in use. In this context, the present paper brings forward a comparative study of TLS (Terrestrial Laser Scanner) and digital photogrammetry for 3D modeling. The authors take into account the accuracy of the 3D models obtained, the overall costs involved for each technology and method and the 4th dimension - time. The paper proves its applicability as photogrammetric technologies are nowadays used at a large scale for obtaining the 3D model of cultural heritage objects, efficacious in their assessment and monitoring, thus contributing to historic conservation. Its importance also lies in highlighting the advantages and disadvantages of each method used - very important issue for both the industrial and scientific segment when facing decisions such as in which technology to invest more research and funds.

  10. The Engelbourg's ruins: from 3D TLS point cloud acquisition to 3D virtual and historic models

    Koehl, Mathieu; Berger, Solveig; Nobile, Sylvain

    2014-05-01

    The Castle of Engelbourg was built at the beginning of the 13th century, at the top of the Schlossberg. It is situated on the territory of the municipality of Thann (France), at the crossroads of Alsace and Lorraine, and dominates the outlet of the valley of Thur. Its strategic position was one of the causes of its systematic destructions during the 17th century, and Louis XIV finished his fate by ordering his demolition in 1673. Today only few vestiges remain, of which a section of the main tower from about 7m of diameter and 4m of wide laying on its slice, unique characteristic in the regional castral landscape. It is visible since the valley, was named "the Eye of the witch", and became a key attraction of the region. The site, which extends over approximately one hectare, is for several years the object of numerous archaeological studies and is at the heart of a project of valuation of the vestiges today. It was indeed a key objective, among the numerous planned works, to realize a 3D model of the site in its current state, in other words, a virtual model "such as seized", exploitable as well from a cultural and tourist point of view as by scientists and in archaeological researches. The team of the ICube/INSA lab had in responsibility the realization of this model, the acquisition of the data until the delivery of the virtual model, thanks to 3D TLS and topographic surveying methods. It was also planned to integrate into this 3D model, data of 2D archives, stemming from series of former excavations. The objectives of this project were the following ones: • Acquisition of 3D digital data of the site and 3D modelling • Digitization of the 2D archaeological data and integration in the 3D model • Implementation of a database connected to the 3D model • Virtual Visit of the site The obtained results allowed us to visualize every 3D object individually, under several forms (point clouds, 3D meshed objects and models, etc.) and at several levels of detail