3D PIC Modeling of Microcavity Discharge
Hopkins, Matthew; Manginell, Ronald; Moore, Christopher; Yee, Benjamin; Moorman, Matthew
2015-09-01
We present a number of techniques and challenges in simulating the transient behavior of a microcavity discharge. Our microcavities are typically cylindrical with diameters approximately 50 - 100 μm, heights of 50 - 200 μm, pressure near atmospheric, and operate at a few hundred volts. We employ a fully kinetic simulation methodology, the Particle-in-Cell (PIC) method, with interparticle collisions handled via methods based on direct simulation Monte Carlo (DSMC). In particular, we explicitly include kinetic electrons. Some of the challenges we encounter include variations in number densities, external circuit coupling, and time step resolution constraints. By employing dynamic particle weighting (particle weights vary over time by species and location) we can mitigate some of the challenges modeling systems with 107 variations in number densities. Smoothing mechanisms have been used to attempt to mitigate external circuit response. We perform our simulations on hundreds or thousands of processing cores to accommodate the computational work inherent in using relatively small time step sizes (e.g., 50 fs for a 100 ns calculation). In addition, particle weighting issues inherent to three-dimensional low temperature plasma systems will be mentioned. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under Contract DE-AC04-94AL85000.
Parallel 3D Finite Element Particle-in-Cell Simulations with Pic3P
Candel, A.; Kabel, A.; Lee, L.; Li, Z.; Ng, C.; Schussman, G.; Ko, K.; /SLAC; Ben-Zvi, I.; Kewisch, J.; /Brookhaven
2009-06-19
SLAC's Advanced Computations Department (ACD) has developed the parallel 3D Finite Element electromagnetic Particle-In-Cell code Pic3P. Designed for simulations of beam-cavity interactions dominated by space charge effects, Pic3P solves the complete set of Maxwell-Lorentz equations self-consistently and includes space-charge, retardation and boundary effects from first principles. Higher-order Finite Element methods with adaptive refinement on conformal unstructured meshes lead to highly efficient use of computational resources. Massively parallel processing with dynamic load balancing enables large-scale modeling of photoinjectors with unprecedented accuracy, aiding the design and operation of next-generation accelerator facilities. Applications include the LCLS RF gun and the BNL polarized SRF gun.
Recent progress in 3D EM/EM-PIC simulation with ARGUS and parallel ARGUS
ARGUS is an integrated, 3-D, volumetric simulation model for systems involving electric and magnetic fields and charged particles, including materials embedded in the simulation region. The code offers the capability to carry out time domain and frequency domain electromagnetic simulations of complex physical systems. ARGUS offers a boolean solid model structure input capability that can include essentially arbitrary structures on the computational domain, and a modular architecture that allows multiple physics packages to access the same data structure and to share common code utilities. Physics modules are in place to compute electrostatic and electromagnetic fields, the normal modes of RF structures, and self-consistent particle-in-cell (PIC) simulation in either a time dependent mode or a steady state mode. The PIC modules include multiple particle species, the Lorentz equations of motion, and algorithms for the creation of particles by emission from material surfaces, injection onto the grid, and ionization. In this paper, we present an updated overview of ARGUS, with particular emphasis given in recent algorithmic and computational advances. These include a completely rewritten frequency domain solver which efficiently treats lossy materials and periodic structures, a parallel version of ARGUS with support for both shared memory parallel vector (i.e. CRAY) machines and distributed memory massively parallel MIMD systems, and numerous new applications of the code
Ngirmang, Gregory K; Feister, Scott; Morrison, John T; Chowdhury, Enam A; Frische, Kyle; Roquemore, W M
2015-01-01
We present 3D Particle-in-Cell (PIC) modeling of an ultra-intense laser experiment by the Extreme Light group at the Air Force Research Laboratory (AFRL) using the PIC code LSP. This is the first time PIC simulations have been performed in 3D for this experiment which involves an ultra-intense, short-pulse (30 fs) laser interacting with a water jet target at normal incidence. These 3D PIC simulation results are compared to results from 2D(3$v$) PIC simulations for both $5.4\\cdot10^{17}$ W cm$^{-2}$ and $3\\cdot10^{18}$ W cm$^{-2}$ intensities. Comparing the 2D(3$v$) and 3D simulation results, the laser-energy-to-ejected-electron-energy conversion efficiencies were comparable, but the angular distribution of ejected electrons show interesting differences with qualitative differences at higher intensity. An analytic plane-wave model is provided that provides some explanation for the angular distribution and energies of ejected electrons in the 2D(3$v$) simulations. We also performed a 3D simulation with circular...
3D PiC code investigations of Auroral Kilometric Radiation mechanisms
Efficient (∼1%) electron cyclotron radio emissions are known to originate in the X mode from regions of locally depleted plasma in the Earths polar magnetosphere. These emissions are commonly referred to as the Auroral Kilometric Radiation (AKR). AKR occurs naturally in these polar regions where electrons are accelerated by electric fields into the increasing planetary magnetic dipole. Here conservation of the magnetic moment converts axial to rotational momentum forming a horseshoe distribution in velocity phase space. This distribution is unstable to cyclotron emission with radiation emitted in the X-mode. Initial studies were conducted in the form of 2D PiC code simulations [1] and a scaled laboratory experiment that was constructed to reproduce the mechanism of AKR. As studies progressed, 3D PiC code simulations were conducted to enable complete investigation of the complex interaction dimensions. A maximum efficiency of 1.25% is predicted from these simulations in the same mode and frequency as measured in the experiment. This is also consistent with geophysical observations and the predictions of theory.
Study of negative hydrogen ion beam optics using the 3D3V PIC model
Miyamoto, K., E-mail: kmiyamot@naruto-u.ac.jp [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima, 772-8502 (Japan); Nishioka, S.; Goto, I.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522 (Japan); Hanada, M.; Kojima, A. [Japan Atomic Energy Agency, 801-1,Mukoyama, Naka, 319-0913 (Japan)
2015-04-08
The mechanism of negative ion extraction under real conditions with the complex magnetic field is studied by using the 3D PIC simulation code. The extraction region of the negative ion source for the negative ion based neutral beam injection system in fusion reactors is modelled. It is shown that the E x B drift of electrons is caused by the magnetic filter and the electron suppression magnetic field, and the resultant asymmetry of the plasma meniscus. Furthermore, it is indicated that that the asymmetry of the plasma meniscus results in the asymmetry of negative ion beam profile including the beam halo. It could be demonstrated theoretically that the E x B drift is not significantly weakened by the elastic collisions of the electrons with neutral particles.
Study of negative hydrogen ion beam optics using the 3D3V PIC model
The mechanism of negative ion extraction under real conditions with the complex magnetic field is studied by using the 3D PIC simulation code. The extraction region of the negative ion source for the negative ion based neutral beam injection system in fusion reactors is modelled. It is shown that the E x B drift of electrons is caused by the magnetic filter and the electron suppression magnetic field, and the resultant asymmetry of the plasma meniscus. Furthermore, it is indicated that that the asymmetry of the plasma meniscus results in the asymmetry of negative ion beam profile including the beam halo. It could be demonstrated theoretically that the E x B drift is not significantly weakened by the elastic collisions of the electrons with neutral particles
MAXWELL3, 3-D FEM Electromagnetism
1 - Description of program or function: MAXWELL3 is a linear, time domain, finite element code designed for simulation of electromagnetic fields interacting with three-dimensional objects. The simulation region is discretized into 6-sided, 8-nodded elements which need not form a logically regular grid. Scatterers may be perfectly conducting or dielectric. Restart capability and a Muer-type radiating boundary are included. MAXWELL3 can be run in a two-dimensional mode or on infinitesimally thin geometries. The output of time histories on surfaces, or shells, in addition to volumes, is allowed. Two post-processors are included - HIST2XY, which splits the MAXWELL3 history file into simple xy data files, and FFTABS, which performs fast Fourier transformations on the xy data. 2 - Method of solution: The numerical method requires that the model be discretized with a mesh generator. MAXWELL3 then uses the mesh and computes the time domain electric and magnetic fields by integrating Maxwell's divergence-free curl equations over time. The output from MAXWELL3 can then be used with a post-processor to get the desired information in a graphical form. The explicit time integration is done with a leap-frog technique that alternates evaluating the electric and magnetic fields at half time steps. This allows for centered time differencing accurate in second order. The algorithm is naturally robust and requires no parameters. 3 - Restrictions on the complexity of the problem: MAXWELL3 has no mesh generation capabilities. Anisotropic, nonlinear, and magnetic materials cannot be modeled. Material interfaces only account for dielectric changes and neglect any surface charges that would be present at the surface of a partially conducting material. The radiation boundary algorithm is only accurate for normally incident fields and becomes less accurate as the angle of incidence increases. Thus, only models using scattered fields should use the radiation boundary. This limits MAXWELL3's
The MICHELLE 2D/3D ES PIC Code Advances and Applications
Petillo, John; De Ford, John F; Dionne, Norman J; Eppley, Kenneth; Held, Ben; Levush, Baruch; Nelson, Eric M; Panagos, Dimitrios; Zhai, Xiaoling
2005-01-01
MICHELLE is a new 2D/3D steady-state and time-domain particle-in-cell (PIC) code* that employs electrostatic and now magnetostatic finite-element field solvers. The code has been used to design and analyze a wide variety of devices that includes multistage depressed collectors, gridded guns, multibeam guns, annular-beam guns, sheet-beam guns, beam-transport sections, and ion thrusters. Latest additions to the MICHELLE/Voyager tool are as follows: 1) a prototype 3D self magnetic field solver using the curl-curl finite-element formulation for the magnetic vector potential, employing edge basis functions and accumulating current with MICHELLE's new unstructured grid particle tracker, 2) the electrostatic field solver now accommodates dielectric media, 3) periodic boundary conditions are now functional on all grids, not just structured grids, 4) the addition of a global optimization module to the user interface where both electrical parameters (such as electrode voltages)can be optimized, and 5) adaptive mesh ref...
Low frequency electromagnetic wave propagation in 3D plasma configurations
Popovitch, Pavel
2004-01-01
We investigate low-frequency electromagnetic wave propagation and absorption properties in 2D and 3D plasma configurations. For these purposes, we have developed a new full-wave 3D code LEMan that determines a global solution of the wave equation in bounded stellarator plasmas excited with an external antenna. No assumption on the wavelength compared to the plasma size is made, all the effects of the 3D geometry and finite plasma extent are included. The equation is formulated in terms of ele...
Analysis of the beam halo in negative ion sources by using 3D3V PIC code
Miyamoto, K., E-mail: kmiyamot@naruto-u.ac.jp [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Nishioka, S.; Goto, I.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Hanada, M.; Kojima, A.; Hiratsuka, J. [Japan Atomic Energy Agency, 801-1 Mukouyama, Naka 319-0913 (Japan)
2016-02-15
The physical mechanism of the formation of the negative ion beam halo and the heat loads of the multi-stage acceleration grids are investigated with the 3D PIC (particle in cell) simulation. The following physical mechanism of the beam halo formation is verified: The beam core and the halo consist of the negative ions extracted from the center and the periphery of the meniscus, respectively. This difference of negative ion extraction location results in a geometrical aberration. Furthermore, it is shown that the heat loads on the first acceleration grid and the second acceleration grid are quantitatively improved compared with those for the 2D PIC simulation result.
Analysis of the beam halo in negative ion sources by using 3D3V PIC code
Miyamoto, K.; Nishioka, S.; Goto, I.; Hatayama, A.; Hanada, M.; Kojima, A.; Hiratsuka, J.
2016-02-01
The physical mechanism of the formation of the negative ion beam halo and the heat loads of the multi-stage acceleration grids are investigated with the 3D PIC (particle in cell) simulation. The following physical mechanism of the beam halo formation is verified: The beam core and the halo consist of the negative ions extracted from the center and the periphery of the meniscus, respectively. This difference of negative ion extraction location results in a geometrical aberration. Furthermore, it is shown that the heat loads on the first acceleration grid and the second acceleration grid are quantitatively improved compared with those for the 2D PIC simulation result.
Analysis of the beam halo in negative ion sources by using 3D3V PIC code
The physical mechanism of the formation of the negative ion beam halo and the heat loads of the multi-stage acceleration grids are investigated with the 3D PIC (particle in cell) simulation. The following physical mechanism of the beam halo formation is verified: The beam core and the halo consist of the negative ions extracted from the center and the periphery of the meniscus, respectively. This difference of negative ion extraction location results in a geometrical aberration. Furthermore, it is shown that the heat loads on the first acceleration grid and the second acceleration grid are quantitatively improved compared with those for the 2D PIC simulation result
3-D electromagnetic plasma particle simulations on the Intel Delta parallel computer
A three-dimensional electromagnetic PIC code has been developed on the 512 node Intel Touchstone Delta MIMD parallel computer. This code is based on the General Concurrent PIC algorithm which uses a domain decomposition to divide the computation among the processors. The 3D simulation domain can be partitioned into 1-, 2-, or 3-dimensional sub-domains. Particles must be exchanged between processors as they move among the subdomains. The Intel Delta allows one to use this code for very-large-scale simulations (i.e. over 108 particles and 106 grid cells). The parallel efficiency of this code is measured, and the overall code performance on the Delta is compared with that on Cray supercomputers. It is shown that their code runs with a high parallel efficiency of ≥ 95% for large size problems. The particle push time achieved is 115 nsecs/particle/time step for 162 million particles on 512 nodes. Comparing with the performance on a single processor Cray C90, this represents a factor of 58 speedup. The code uses a finite-difference leap frog method for field solve which is significantly more efficient than fast fourier transforms on parallel computers. The performance of this code on the 128 node Cray T3D will also be discussed
3D Hot Test Simulations of a 220 GHz Folded Waveguide Traveling Wave Tube Using a CFDTD PIC Method
Lin, Ming-Chieh; Song, Heather
2015-11-01
Millimeter or sub-THz wave sources centered at 220 GHz is of interest due to the potential for its commercial and military applications including high resolution radar, remote sensing, and high-data-rate communications. It has been demonstrated via 3D cold test finite element method (FEM) simulations that a folded waveguide traveling wave tube (FWTWT) can be designed and optimized at this frequency range with a small signal gain of 18 dB over a comparatively broad (-3 dB) bandwidth of ~ 10%. On the other hand, 3D hot test simulations of a V-band ladder TWT have been successfully demonstrated using a conformal finite-difference time-domain (CFDTD) particle-in-cell (PIC) method for center frequency of 50 GHz. In the present work, the 220 GHz FWTWT designs have been reviewed and studied. 3D Cold test simulations using both the CFDTD and FEM methods have been carried out and compared with each other as basis for 3D hot test CFDTD PIC simulations. The preliminary simulation result shows that the gain-bandwidth features at 220 GHz are achievable while carefully avoiding beam interceptions. Our study shows that the interaction characteristics are very sensitive to the operating beam parameters. Detail simulation results and discussions will be presented.
3D-PIC simulation of an inductively coupled ion source
Henrich, Robert; Muehlich, Nina Sarah; Becker, Michael; Heiliger, Christian
2015-09-01
Inductively coupled ion sources are applied to a wide range of plasma applications, especially surface modifications. The knowledge of the behavior and precise information of the plasma parameters are of main importance. These values are tedious to measure without influencing the discharge. By applying our fully three-dimensional PlasmaPIC tool we are able to reach these plasma parameters with a spatial and temporal resolution which is quite hard to achieve experimentally. PlasmaPIC is used for modeling discharges in arbitrary geometries without limitations to any symmetry. By this means we are able to demonstrate that the plasma density has an irrotational character. Furthermore, we will show the dependence of the plasma parameters of different working conditions. We will show that for gridded inductively coupled ion sources the neutral gas pressure inside the discharge chamber depends on the extraction of ions. This effect is considered in PlasmaPIC by a self-consistent coupling of the neutral gas simulation and the plasma simulation whereas the neutral gas distribution is calculated using the direct simulation Monte Carlo method (DSMC). This work has been supported by the ``Bundesministerium fuer Wirtschaft und Energie.'' Grant 50RS1507.
Simulations of 3D LPI's relevant to IFE using the PIC code OSIRIS
Tsung, F. S.; Mori, W. B.; Winjum, B. J.
2014-10-01
We will study three dimensional effects of laser plasma instabilities, including backward raman scattering, the high frequency hybrid instability, and the two plasmon instability using OSIRIS in 3D Cartesian geometry and cylindrical 2D OSIRIS with azimuthal mode decompositions. With our new capabilities we hope to demonstrate that we are capable of studying single speckle physics relevant to IFE in an efficent manner.
Solution accelerators for large scale 3D electromagnetic inverse problems
We provide a framework for preconditioning nonlinear 3D electromagnetic inverse scattering problems using nonlinear conjugate gradient (NLCG) and limited memory (LM) quasi-Newton methods. Key to our approach is the use of an approximate adjoint method that allows for an economical approximation of the Hessian that is updated at each inversion iteration. Using this approximate Hessian as a preconditoner, we show that the preconditioned NLCG iteration converges significantly faster than the non-preconditioned iteration, as well as converging to a data misfit level below that observed for the non-preconditioned method. Similar conclusions are also observed for the LM iteration; preconditioned with the approximate Hessian, the LM iteration converges faster than the non-preconditioned version. At this time, however, we see little difference between the convergence performance of the preconditioned LM scheme and the preconditioned NLCG scheme. A possible reason for this outcome is the behavior of the line search within the LM iteration. It was anticipated that, near convergence, a step size of one would be approached, but what was observed, instead, were step lengths that were nowhere near one. We provide some insights into the reasons for this behavior and suggest further research that may improve the performance of the LM methods
Development of a 3D-3V PIC code to study PSI processes in tokamak divertor region
A limited overview of the theoretical understanding as well as PIC simulation of edge plasmas in fusion devices is given. The effect of grazing angle on solid surface (divertor) erosion due to ion sputtering in magnetic fusion devices is studied by a 3D-3V PIC-MCC code. For an oblique magnetic field, there exists a different kind of region in front of the solid surface named as Chodura sheath (CS). Important factors like ion energy and impact angle for physical sputtering are highlighted. Because of the presence of the surface itself, the ion distribution in front of the wall is generally not Maxwellian. In spite of this even for an unmagnetized case, presence of sheath can modify the ion distribution, which has been found in different numerical simulation and laboratory experiments. For magnetized plasmas, the distribution can have several peaks at different energies, which brings further complexity in erosion calculation. The dependence of these two parameters on grazing angle is investigated in detail. The code has been written in java and the plots has been generated in VTK based software Paraview developed by Los Alamos National Laboratory. (author)
2D and 3D PIC-MCC simulations of a low temperature magnetized plasma on CPU and GPU
Claustre, Jonathan; Chaudhury, Bhaskar; Fubiani, Gwenael; Boeuf, Jean-Pierre
2012-10-01
A Particle-In-Cell Monte Carlo Collisions model is used to described plasma transport in a low temperature magnetized plasma under conditions similar to those of the negative ion source for the neutral beam injector of ITER. A large diamagnetic electron current is present in the plasma because of the electron pressure gradient between the ICP driver of the source and the entrance of the magnetic filter, and is directed toward the chamber walls. The plasma potential adjusts to limit the diamagnetic electron current to the wall, leading to large electron current flow through the filter, and to a non uniform plasma density in the region between magnetic filter and extracting grids. On the basis of the PIC-MCC simulation results, we describe the plasma properties and electron current density distributions through the filter in 2D and 3D situations and use these models to better understand plasma transport across the filter in these conditions. We also present comparisons between computation times of two PIC-MCC simulation codes that have been developed for operations on standard CPU (Central Processing Units, code in Fortran) and on GPU (Graphics Processing Units, code in CUDA). The results show that the GPU simulation is about 25 times faster than the CPU one for a 2D domain with 512x512 grid points. The computation time ratio increases with the number of grid points.
Gillespie, K. M.; Speirs, D. C.; Ronald, K.; McConville, S. L.; Phelps, A. D. R.; Bingham, R.; Cross, A. W.; Robertson, C. W.; Whyte, C. G.; He, W.; Vorgul, I.; Cairns, R. A.; Kellett, B. J.
2008-12-01
Auroral Kilometric Radiation (AKR), occurs naturally in the polar regions of the Earth's magnetosphere where electrons are accelerated by electric fields into the increasing planetary magnetic dipole. Here conservation of the magnetic moment converts axial to rotational momentum forming a horseshoe distribution in velocity phase space. This distribution is unstable to cyclotron emission with radiation emitted in the X-mode. In a scaled laboratory reproduction of this process, a 75-85 keV electron beam of 5-40 A was magnetically compressed by a system of solenoids and emissions were observed for cyclotron frequencies of 4.42 GHz and 11.7 GHz resonating with near cut-off TE0,1 and TE0,3 modes, respectively. Here we compare these measurements with numerical predictions from the 3D PiC code KARAT. The 3D simulations accurately predicted the radiation modes and frequencies produced by the experiment. The predicted conversion efficiency between electron kinetic and wave field energy of around 1% is close to the experimental measurements and broadly consistent with quasi-linear theoretical analysis and geophysical observations.
Gillespie, K M; Speirs, D C; Ronald, K; McConville, S L; Phelps, A D R; Bingham, R; Cross, A W; Robertson, C W; Whyte, C G; He, W [SUPA Department of Physics, John Anderson Building, 107 Rottenrow, University of Strathclyde, Glasgow, G4 0NG (United Kingdom); Vorgul, I; Cairns, R A [School of Mathematics and Statistics, University of St Andrews, St Andrews, KY16 9SS (United Kingdom); Kellett, B J [Space Science and Technology Department, STFC Rutherford Appleton Laboratory, Didcot, OX11 0QX (United Kingdom)], E-mail: karen.gillespie@strath.ac.uk
2008-12-15
Auroral Kilometric Radiation (AKR), occurs naturally in the polar regions of the Earth's magnetosphere where electrons are accelerated by electric fields into the increasing planetary magnetic dipole. Here conservation of the magnetic moment converts axial to rotational momentum forming a horseshoe distribution in velocity phase space. This distribution is unstable to cyclotron emission with radiation emitted in the X-mode. In a scaled laboratory reproduction of this process, a 75-85 keV electron beam of 5-40 A was magnetically compressed by a system of solenoids and emissions were observed for cyclotron frequencies of 4.42 GHz and 11.7 GHz resonating with near cut-off TE{sub 0,1} and TE{sub 0,3} modes, respectively. Here we compare these measurements with numerical predictions from the 3D PiC code KARAT. The 3D simulations accurately predicted the radiation modes and frequencies produced by the experiment. The predicted conversion efficiency between electron kinetic and wave field energy of around 1% is close to the experimental measurements and broadly consistent with quasi-linear theoretical analysis and geophysical observations.
Auroral Kilometric Radiation (AKR), occurs naturally in the polar regions of the Earth's magnetosphere where electrons are accelerated by electric fields into the increasing planetary magnetic dipole. Here conservation of the magnetic moment converts axial to rotational momentum forming a horseshoe distribution in velocity phase space. This distribution is unstable to cyclotron emission with radiation emitted in the X-mode. In a scaled laboratory reproduction of this process, a 75-85 keV electron beam of 5-40 A was magnetically compressed by a system of solenoids and emissions were observed for cyclotron frequencies of 4.42 GHz and 11.7 GHz resonating with near cut-off TE0,1 and TE0,3 modes, respectively. Here we compare these measurements with numerical predictions from the 3D PiC code KARAT. The 3D simulations accurately predicted the radiation modes and frequencies produced by the experiment. The predicted conversion efficiency between electron kinetic and wave field energy of around 1% is close to the experimental measurements and broadly consistent with quasi-linear theoretical analysis and geophysical observations.
Origin of extracted negative ions by 3D PIC-MCC modeling. Surface vs Volume comparison
The development of a high performance negative ion (NI) source constitutes a crucial step in the construction of Neutral Beam Injector (NBI) of the future fusion reactor ITER. NI source should deliver 40 A of H-(or D-), which is a technical and scientific challenge, and requires a deeper understanding of the underlying physics of the source and its magnetic filter. The present knowledge of the ion extraction mechanism from the negative ion source is limited and concerns magnetized plasma sheaths used to avoid electrons being co-extracted from the plasma together with the NI. Moreover, due to the asymmetry induced by the ITER crossed magnetic configuration used to filter the electrons, any realistic study of this problem must consider the three spatial dimensions. To address this problem, a 3D Particles-in-Cell electrostatic collisional code was developed, specifically designed for this system. Binary collisions between the particles are introduced using Monte Carlo Collision scheme. The complex orthogonal magnetic field that is applied to deflect electrons is also taken into account. This code, called ONIX (Orsay Negative Ion eXtraction), was used to investigate the plasma properties and the transport of the charged particles close to a typical extraction aperture [1]. This contribution focuses on the limits for the extracted NI current from both, plasma volume and aperture wall. Results of production, destruction, and transport of H- in the extraction region are presented. The extraction efficiency of H- from the volume is compared to the one of H- coming from the wall.
High-Fidelity RF Gun Simulations with the Parallel 3D Finite Element Particle-In-Cell Code Pic3P
Candel, A; Kabel, A.; Lee, L.; Li, Z.; Limborg, C.; Ng, C.; Schussman, G.; Ko, K.; /SLAC
2009-06-19
SLAC's Advanced Computations Department (ACD) has developed the first parallel Finite Element 3D Particle-In-Cell (PIC) code, Pic3P, for simulations of RF guns and other space-charge dominated beam-cavity interactions. Pic3P solves the complete set of Maxwell-Lorentz equations and thus includes space charge, retardation and wakefield effects from first principles. Pic3P uses higher-order Finite Elementmethods on unstructured conformal meshes. A novel scheme for causal adaptive refinement and dynamic load balancing enable unprecedented simulation accuracy, aiding the design and operation of the next generation of accelerator facilities. Application to the Linac Coherent Light Source (LCLS) RF gun is presented.
Rolich, Tomislav; Grundler, Darko
2012-01-01
This paper presents genetic algorithm based method for antenna placement in 3D space and parameter determination satisfying environmental electromagnetic field pollution constraints. The main goal is to find out antenna parameters (power, position in 3D, azimuth and elevation) in the area of interest so that electromagnetic field satisfies minimal electromagnetic field strength for service availability and, at the same time, be below prescribed limit in restricted subareas (people populated a...
Numerical modeling of the Linac4 negative ion source extraction region by 3D PIC-MCC code ONIX
Mochalskyy, S; Minea, T; Lifschitz, AF; Schmitzer, C; Midttun, O; Steyaert, D
2013-01-01
At CERN, a high performance negative ion (NI) source is required for the 160 MeV H- linear accelerator Linac4. The source is planned to produce 80 mA of H- with an emittance of 0.25 mm mradN-RMS which is technically and scientifically very challenging. The optimization of the NI source requires a deep understanding of the underling physics concerning the production and extraction of the negative ions. The extraction mechanism from the negative ion source is complex involving a magnetic filter in order to cool down electrons’ temperature. The ONIX (Orsay Negative Ion eXtraction) code is used to address this problem. The ONIX is a selfconsistent 3D electrostatic code using Particles-in-Cell Monte Carlo Collisions (PIC-MCC) approach. It was written to handle the complex boundary conditions between plasma, source walls, and beam formation at the extraction hole. Both, the positive extraction potential (25kV) and the magnetic field map are taken from the experimental set-up, in construction at CERN. This contrib...
3D PIC-MCC simulations of discharge inception around a sharp anode in nitrogen/oxygen mixtures
Teunissen, Jannis; Ebert, Ute
2016-08-01
We investigate how photoionization, electron avalanches and space charge affect the inception of nanosecond pulsed discharges. Simulations are performed with a 3D PIC-MCC (particle-in-cell, Monte Carlo collision) model with adaptive mesh refinement for the field solver. This model, whose source code is available online, is described in the first part of the paper. Then we present simulation results in a needle-to-plane geometry, using different nitrogen/oxygen mixtures at atmospheric pressure. In these mixtures non-local photoionization is important for the discharge growth. The typical length scale for this process depends on the oxygen concentration. With 0.2% oxygen the discharges grow quite irregularly, due to the limited supply of free electrons around them. With 2% or more oxygen the development is much smoother. An almost spherical ionized region can form around the electrode tip, which increases in size with the electrode voltage. Eventually this inception cloud destabilizes into streamer channels. In our simulations, discharge velocities are almost independent of the oxygen concentration. We discuss the physical mechanisms behind these phenomena and compare our simulations with experimental observations.
A curvilinear, fully implicit, conservative electromagnetic PIC algorithm in multiple dimensions
Chacón, L.; Chen, G.
2016-07-01
We extend a recently proposed fully implicit PIC algorithm for the Vlasov-Darwin model in multiple dimensions (Chen and Chacón (2015) [1]) to curvilinear geometry. As in the Cartesian case, the approach is based on a potential formulation (ϕ, A), and overcomes many difficulties of traditional semi-implicit Darwin PIC algorithms. Conservation theorems for local charge and global energy are derived in curvilinear representation, and then enforced discretely by a careful choice of the discretization of field and particle equations. Additionally, the algorithm conserves canonical-momentum in any ignorable direction, and preserves the Coulomb gauge ∇ ṡ A = 0 exactly. An asymptotically well-posed fluid preconditioner allows efficient use of large cell sizes, which are determined by accuracy considerations, not stability, and can be orders of magnitude larger than required in a standard explicit electromagnetic PIC simulation. We demonstrate the accuracy and efficiency properties of the algorithm with numerical experiments in mapped meshes in 1D-3V and 2D-3V.
Development and Test of 2.5-Dimensional Electromagnetic PIC Simulation Code
Lee, Sang-Yun; Lee, Ensang; Kim, Khan-Hyuk; Seon, Jongho; Lee, Dong-Hun; Ryu, Kwang-Sun
2015-03-01
We have developed a 2.5-dimensional electromagnetic particle simulation code using the particle-in-cell (PIC) method to investigate electromagnetic phenomena that occur in space plasmas. Our code is based on the leap-frog method and the centered difference method for integration and differentiation of the governing equations. We adopted the relativistic Buneman-Boris method to solve the Lorentz force equation and the Esirkepov method to calculate the current density while maintaining charge conservation. Using the developed code, we performed test simulations for electron two-stream instability and electron temperature anisotropy induced instability with the same initial parameters as used in previously reported studies. The test simulation results are almost identical with those of the previous papers.
3D simulation of superconducting microwave devices with an electromagnetic-field simulator
Takeuchi, N.; Yamanashi, Yuki; Saito, Y; Yoshikawa, Nobuyuki
2009-01-01
High-frequency microwave applications, such as filters, delay lines, and resonators, are quite important for superconducting electronic devices. In order to design the superconducting microwave devices, circuit parameters should be precisely extracted from the physical structure of the devices. A 3-dimentional electromagnetic-field simulators is very useful for designing microwave devices. However, designing of superconducting microwave devices using a conventional 3D electromagnetic-field si...
PIC-MCC simulation of electromagnetic wave attenuation in partially ionized plasmas
With the use of measured electron–neutral cross sections, the transmission properties of an electromagnetic (EM) wave in a nitrogen (N2) plasma and a helium (He) plasma are studied by means of PIC-MCC (the particle-in-cell method with collision modeling by the Monte Carlo method) simulation. The plasmas are assumed to be uniform, collisional and non-magnetized. Each type of species presented in the plasmas is treated by the PIC method and the electron–neutral collisions are treated by direct Monte Carlo simulation of particle trajectories. And then the dependence of power attenuation of the EM wave on plasma parameters and wave parameters is obtained and discussed. It is found that power attenuation of the EM wave is strongly affected by the plasma density, species of neutral gas, density of neutral gas and the frequency of the EM wave. Moreover, it is also found that the stopband (passband) of EM wave propagation turns out to be narrower (wider) in collisional plasmas both numerically and analytically. (paper)
3D inversion of airborne electromagnetic data using a moving footprint
Cox, Leif H.; Wilson, Glenn A.; Zhdanov, Michael S.
2010-12-01
It is often argued that 3D inversion of entire airborne electromagnetic (AEM) surveys is impractical, and that 1D methods provide the only viable option for quantitative interpretation. However, real geological formations are 3D by nature and 3D inversion is required to produce accurate images of the subsurface. To that end, we show that it is practical to invert entire AEM surveys to 3D conductivity models with hundreds of thousands if not millions of elements. The key to solving a 3D AEM inversion problem is the application of a moving footprint approach. We have exploited the fact that the area of the footprint of an AEM system is significantly smaller than the area of an AEM survey, and developed a robust 3D inversion method that uses a moving footprint. Our implementation is based on the 3D integral equation method for computing data and sensitivities, and uses the re-weighted regularised conjugate gradient method for minimising the objective functional. We demonstrate our methodology with the 3D inversion of AEM data acquired for salinity mapping over the Bookpurnong Irrigation District in South Australia. We have inverted 146 line km of RESOLVE data for a 3D conductivity model with ~310000 elements in 45min using just five processors of a multi-processor workstation.
Preparation for a 3D Electromagnetic inversion-Application to GREATEM data
Abd allah, S.; Mogi, T.; Kim, H.; Fomenko, E.
2013-12-01
Previous studies conducted by the Grounded Electrical-Source Airborne Transient Electromagnetic (GREATEM) have shown that, this system is a promising method for modelling 3D resistivity structures in coastal areas. To expand the application of the GREATEM system in the future for studying hazardous wastes, sea water incursion and hydrocarbon exploration, a 3D-resistivity modelling that considers large lateral resistivity variations is required in case of large resistivity contrasts between land and sea in surveys of coastal areas where 1D resistivity model that assumes a horizontally layered structure might be inaccurate. In this abstract we present the preparation for developing a consistent three dimensional electromagnetic inversion algorithm to calculate the EM response over arbitrary 3D conductivity structure using GREATEM system. In forward modelling the second order partial differential equations for scalar and vector potential are discretized on a staggered-grid using the finite difference method (Fomenko and Mogi, 2002, Mogi et al., 2011). In the inversion method the 3D model discretized into a large number of rectangular cells of constant conductivity and the final solution is obtained by minimizing a global objective function composed of the model objective function and data misfit. To deal with a huge number of grids and wide range of frequencies in air borne data sets, a method for approximating sensitivities is introduced for the efficient 3-D inversion. Approximate sensitivities are derived by replacing adjoint secondary electric fields with those computed in the previous iteration. These sensitivities can reduce the computation time, without significant loss of accuracy when constructing a full sensitivity matrix for 3-D inversion, based on the Gauss-Newton method (N. Han et al., 2008). Now, we tested the algorithm in the frequency domain electromagnetic response of synthetic model considering a 3D conductor. Frequency-domain computation is executed
Using the CAVE virtual-reality environment as an aid to 3-D electromagnetic field computation
One of the major problems in three-dimensional (3-D) field computation is visualizing the resulting 3-D field distributions. A virtual-reality environment, such as the CAVE, (CAVE Automatic Virtual Environment) is helping to overcome this problem, thus making the results of computation more usable for designers and users of magnets and other electromagnetic devices. As a demonstration of the capabilities of the CAVE, the elliptical multipole wiggler (EMW), an insertion device being designed for the Advanced Photon Source (APS) now being commissioned at Argonne National Laboratory (ANL), wa made visible, along with its fields and beam orbits. Other uses of the CAVE in preprocessing and postprocessing computation for electromagnetic applications are also discussed
Quantitative 3D electromagnetic field determination of 1D nanostructures from single projection.
Phatak, C.; de Knoop, L.; Houdellier, F.; Gatel, C.; Hytch, M. J.; Masseboeuf, A.
2016-05-01
One-dimensional (1D) nanostructures have been regarded as the most promising building blocks for nanoelectronics and nanocomposite material systems as well as for alternative energy applications. Although they result in confinement of a material, their properties and interactions with other nanostructures are still very much three-dimensional (3D) in nature. In this work, we present a novel method for quantitative determination of the 3D electromagnetic fields in and around 1D nanostructures using a single electron wave phase image, thereby eliminating the cumbersome acquisition of tomographic data. Using symmetry arguments, we have reconstructed the 3D magnetic field of a nickel nanowire as well as the 3D electric field around a carbon nanotube field emitter, from one single projection. The accuracy of quantitative values determined here is shown to be a better fit to the physics at play than the value obtained by conventional analysis. Moreover the 3D reconstructions can then directly be visualized and used in the design of functional 3D architectures built using 1D nanostructures.
Quantitative 3D electromagnetic field determination of 1D nanostructures from single projection.
Phatak, C; de Knoop, L; Houdellier, F; Gatel, C; Hÿtch, M J; Masseboeuf, A
2016-05-01
One-dimensional (1D) nanostructures have been regarded as the most promising building blocks for nanoelectronics and nanocomposite material systems as well as for alternative energy applications. Although they result in confinement of a material, their properties and interactions with other nanostructures are still very much three-dimensional (3D) in nature. In this work, we present a novel method for quantitative determination of the 3D electromagnetic fields in and around 1D nanostructures using a single electron wave phase image, thereby eliminating the cumbersome acquisition of tomographic data. Using symmetry arguments, we have reconstructed the 3D magnetic field of a nickel nanowire as well as the 3D electric field around a carbon nanotube field emitter, from one single projection. The accuracy of quantitative values determined here is shown to be a better fit to the physics at play than the value obtained by conventional analysis. Moreover the 3D reconstructions can then directly be visualized and used in the design of functional 3D architectures built using 1D nanostructures. PMID:26998702
We have integrated the electron-cloud code POSINST [1] with WARP [2]--a 3-D parallel Particle-In-Cell accelerator code developed for Heavy Ion Inertial Fusion--so that the two can interoperate. Both codes are run in the same process, communicate through a Python interpreter (already used in WARP), and share certain key arrays (so far, particle positions and velocities). Currently, POSINST provides primary and secondary sources of electrons, beam bunch kicks, a particle mover, and diagnostics. WARP provides the field solvers and diagnostics. Secondary emission routines are provided by the Tech-X package CMEE
Finite-Element 2D and 3D PIC Modeling of RF Devices with Applications to Multipacting
De Ford, John F; Petillo, John
2005-01-01
Multipacting currently limits the performance of many high power radio-frequency (RF) devices, particularly couplers and windows. Models have helped researchers understand and mitigate this problem in 2D structures, but useful multipacting models for complicated 3D structures are still a challenge. A combination of three recent technologies that have been developed in the Analyst and MICHELLE codes begin to address this challenge: high-order adaptive finite-element RF field calculations, advanced particle tracking on unstructured grids, and comprehensive secondary emission models. Analyst employs high-order adaptive finite-element methods to accurately compute driven RF fields and eigenmodes in complex geometries, particularly near edges, corners, and curved surfaces. To perform a multipacting analysis, we use the mesh and fields from Analyst in a modified version of the self-consistent, finite-element gun code MICHELLE. MICHELLE has both a fast, accurate, and reliable particle tracker for unstructured grids ...
3D Finite Volume Modeling of ENDE Using Electromagnetic T-Formulation
Yue Li
2012-01-01
Full Text Available An improved method which can analyze the eddy current density in conductor materials using finite volume method is proposed on the basis of Maxwell equations and T-formulation. The algorithm is applied to solve 3D electromagnetic nondestructive evaluation (E’NDE benchmark problems. The computing code is applied to study an Inconel 600 work piece with holes or cracks. The impedance change due to the presence of the crack is evaluated and compared with the experimental data of benchmark problems No. 1 and No. 2. The results show a good agreement between both calculated and measured data.
Yi, Hee-Gyeong; Kang, Kyung Shin; Hong, Jung Min; Jang, Jinah; Park, Moon Nyeo; Jeong, Young Hun; Cho, Dong-Woo
2016-07-01
In cartilage tissue engineering, electromagnetic field (EMF) therapy has been reported to have a modest effect on promoting cartilage regeneration. However, these studies were conducted using different frequencies of EMF to stimulate chondrocytes. Thus, it is necessary to investigate the effect of EMF frequency on cartilage formation. In addition to the stimulation, a scaffold is required to satisfy the characteristics of cartilage such as its hydrated and dense extracellular matrix, and a mechanical resilience to applied loads. Therefore, we 3D-printed a composite construct composed of a polymeric framework and a chondrocyte-laden hydrogel. Here, we observed frequency-dependent positive and negative effects on chondrogenesis using a 3D cell-printed cartilage tissue. We found that a frequency of 45 Hz promoted gene expression and secretion of extracellular matrix molecules of chondrocytes. In contrast, a frequency of 7.5 Hz suppressed chondrogenic differentiation in vitro. Additionally, the EMF-treated composite constructs prior to implantation showed consistent results with those of in vitro, suggesting that in vitro pre-treatment with different EMF frequencies provides different capabilities for the enhancement of cartilage formation in vivo. This correlation between EMF frequency and 3D-printed chondrocytes suggests the necessity for optimization of EMF parameters when this physical stimulus is applied to engineered cartilage. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1797-1804, 2016. PMID:26991030
Koldan, Jelena
2013-01-01
The growing significance, technical development and employment of electromagnetic (EM) methods in exploration geophysics have led to the increasing need for reliable and fast techniques of interpretation of 3-D EM data sets acquired in complex geological environments. The first and most important step to creating an inversion method is the development of a solver for the forward problem. In order to create an efficient, reliable and practical 3-D EM inversion, it is necessary to have a 3-D EM...
2.5D relativistic electromagnetic PIC code for simulation of the beam interaction with plasma in axial-symmetric geometry was developed. Accurate charge weighting scheme and difference schemes near the system axis were introduced. Simulation tests of electromagnetic wave interaction with inhomogeneous plasma were carried out.
Ullmann, A.; Scheunert, M.; Afanasjew, M.; Börner, R.-U.; Siemon, B.; Spitzer, K.
2016-07-01
As a standard procedure, multi-frequency helicopter-borne electromagnetic (HEM) data are inverted to conductivity-depth models using 1-D inversion methods, which may, however, fail in areas of strong lateral conductivity contrasts (so-called induction anomalies). Such areas require more realistic multi-dimensional modelling. Since the full 3-D inversion of an entire HEM data set is still extremely time consuming, our idea is to combine fast 1-D and accurate but numerically expensive 3-D inversion of HEM data in such a way that the full 3-D inversion is only carried out for those parts of a HEM survey which are affected by induction anomalies. For all other parts, a 1-D inversion method is sufficient. We present a newly developed algorithm for identification, selection, and extraction of induction anomalies in HEM data sets and show how the 3-D inversion model of the anomalous area is re-integrated into the quasi-1-D background. Our proposed method is demonstrated to work properly on a synthetic and a field HEM data set from the Cuxhaven tunnel valley in Germany. We show that our 1-D/3-D approach yields better results compared to 1-D inversions in areas where 3-D effects occur.
QU Zhaoming; WANG Qingguo; LEI Yisan; ZHANG Ruigang
2013-01-01
To develop electromagnetic protection composites with integrated structure-function properties,the three-dimension (3D) braided nickel plated carbon fiber/epoxy resin (Ni-CF3D/EP) composites were prepared based on 3D five-directional braiding,unitary nickel plating and mold compression shaping.The electromagnetic protection properties of Ni-CF3D/EP composites including shielding effectiveness (SE) and reflection loss against plane electromagnetic wave,shielding properties against electromagnetic pulse (EMP) were investigated.The test results show that the novel composites have good electromagnetic protection properties in a wide frequency range of 14 kHz～ 18 GHz with SE of 42 dB～95 dB,the absorption bandwidth of-5 dB in 2 GHz～ 18 GHz can reach 10 GHz and the pulse peak SE against EMP is 43.7 dB which can reduce the electromagnetic energy greatly.Meanwhile,the mechanic properties were also investigated and the results indicate that the Ni-CF3D/EP composites can replace metal materials for loading-bearing structural applications because of their excellent mechanic properties.
Zhang Jian-Guo; Wu Xin; Qi You-Zheng; Huang Ling; Fang Guang-You
2013-01-01
In order to suppress the airwave noise in marine controlled-source electromagnetic (CSEM) data, we propose a 3D deconvolution (3DD) interferometry method with a synthetic aperture source and obtain the relative anomaly coefficient (RAC) of the EM field reflection responses to show the degree for suppressing the airwave. We analyze the potential of the proposed method for suppressing the airwave, and compare the proposed method with traditional methods in their effectiveness. A method to select synthetic source length is derived and the effect of the water depth on RAC is examined via numerical simulations. The results suggest that 3DD interferometry method with a synthetic source can effectively suppress the airwave and enhance the potential of marine CSEM to hydrocarbon exploration.
Compute extremely low-frequency electromagnetic field exposure by 3-D impendance method
无
2007-01-01
A 3-D impedance method has been introduced to compute the electric currents induced in a human body exposed to extremely low-frequency electromagnetic field.The 3-D impedance method has been deduced from Maxwell equations and is put into the computation and simulation effectively to the visible human body model, which has 196×114×626 cells and more than 40 types of tissues.As the result, two representative cases are investigated.One is exposure of the human body to 100 μT (1 000 mG), the limit recommended by the International Commission on Non-Ionizing Radiation Protection for the public and the other one is the exposure of human body to 0.4 μT (4 mG), the level at which a statistical link appears with a doubled risk of development of childhood leukaemia.The distribution of induced current density can be obtained and the maximum of induced current are found to be 16 mA/m2 and 0.07 mA/m2.
Electromagnetic 3D subsurface imaging with source sparsity for a synthetic object
Pursiainen, Sampsa
2016-01-01
This paper concerns electromagnetic 3D subsurface imaging in connection with sparsity of signal sources. We explored an imaging approach that can be implemented in situations that allow obtaining a large amount of data over a surface or a set of orbits but at the same time require sparsity of the signal sources. Characteristic to such a tomography scenario is that it necessitates the inversion technique to be genuinely three-dimensional: For example, slicing is not possible due to the low number of sources. Here, we primarily focused on astrophysical subsurface exploration purposes. As an example target of our numerical experiments we used a synthetic small planetary object containing three inclusions, e.g. voids, of the size of the wavelength. A tetrahedral arrangement of source positions was used, it being the simplest symmetric point configuration in 3D. Our results suggest that somewhat reliable inversion results can be produced within the present a priori assumptions, if the data can be recorded at a spe...
Positional accuracy and transmitter orientation of the 3D electromagnetic tracking system
This research investigates the positional accuracy and effects of transmitter orientation of a 3D electromagnetic tracking (EMT) system. EMT systems, capable of real-time position and orientation monitoring, are commonly used in computer-aided surgical navigation and path monitoring. In this study, positional information is evaluated for accuracy by comparing the EMT system against laser interferometer measurements in three orthogonal axes with step sizes between 0.1 and 0.5 mm. The effect of transmitter orientation is evaluated by placing the transmitter with either the front or the side facing the magnetic sensor. Gauge repeatability and reproducibility results demonstrate that the EMT system can accurately measure the motion with a tolerance of 0.2 mm with 0.5 s measurement time. The transmitter oriented with the front facing the sensor has a higher positional accuracy than that of the side transmitter orientation. High accuracy of the EMT system combined with the knowledge of transmitter orientation information presents the potential for accurate navigation and path monitoring in medical procedures. (paper)
Poulin, Eric; Racine, Emmanuel; Beaulieu, Luc, E-mail: Luc.Beaulieu@phy.ulaval.ca [Département de physique, de génie physique et d’optique et Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, Québec G1V 0A6, Canada and Département de radio-oncologie et Axe Oncologie du Centre de recherche du CHU de Québec, CHU de Québec, 11 Côte du Palais, Québec, Québec G1R 2J6 (Canada); Binnekamp, Dirk [Integrated Clinical Solutions and Marketing, Philips Healthcare, Veenpluis 4-6, Best 5680 DA (Netherlands)
2015-03-15
Purpose: In high dose rate brachytherapy (HDR-B), current catheter reconstruction protocols are relatively slow and error prone. The purpose of this technical note is to evaluate the accuracy and the robustness of an electromagnetic (EM) tracking system for automated and real-time catheter reconstruction. Methods: For this preclinical study, a total of ten catheters were inserted in gelatin phantoms with different trajectories. Catheters were reconstructed using a 18G biopsy needle, used as an EM stylet and equipped with a miniaturized sensor, and the second generation Aurora{sup ®} Planar Field Generator from Northern Digital Inc. The Aurora EM system provides position and orientation value with precisions of 0.7 mm and 0.2°, respectively. Phantoms were also scanned using a μCT (GE Healthcare) and Philips Big Bore clinical computed tomography (CT) system with a spatial resolution of 89 μm and 2 mm, respectively. Reconstructions using the EM stylet were compared to μCT and CT. To assess the robustness of the EM reconstruction, five catheters were reconstructed twice and compared. Results: Reconstruction time for one catheter was 10 s, leading to a total reconstruction time inferior to 3 min for a typical 17-catheter implant. When compared to the μCT, the mean EM tip identification error was 0.69 ± 0.29 mm while the CT error was 1.08 ± 0.67 mm. The mean 3D distance error was found to be 0.66 ± 0.33 mm and 1.08 ± 0.72 mm for the EM and CT, respectively. EM 3D catheter trajectories were found to be more accurate. A maximum difference of less than 0.6 mm was found between successive EM reconstructions. Conclusions: The EM reconstruction was found to be more accurate and precise than the conventional methods used for catheter reconstruction in HDR-B. This approach can be applied to any type of catheters and applicators.
Purpose: In high dose rate brachytherapy (HDR-B), current catheter reconstruction protocols are relatively slow and error prone. The purpose of this technical note is to evaluate the accuracy and the robustness of an electromagnetic (EM) tracking system for automated and real-time catheter reconstruction. Methods: For this preclinical study, a total of ten catheters were inserted in gelatin phantoms with different trajectories. Catheters were reconstructed using a 18G biopsy needle, used as an EM stylet and equipped with a miniaturized sensor, and the second generation Aurora® Planar Field Generator from Northern Digital Inc. The Aurora EM system provides position and orientation value with precisions of 0.7 mm and 0.2°, respectively. Phantoms were also scanned using a μCT (GE Healthcare) and Philips Big Bore clinical computed tomography (CT) system with a spatial resolution of 89 μm and 2 mm, respectively. Reconstructions using the EM stylet were compared to μCT and CT. To assess the robustness of the EM reconstruction, five catheters were reconstructed twice and compared. Results: Reconstruction time for one catheter was 10 s, leading to a total reconstruction time inferior to 3 min for a typical 17-catheter implant. When compared to the μCT, the mean EM tip identification error was 0.69 ± 0.29 mm while the CT error was 1.08 ± 0.67 mm. The mean 3D distance error was found to be 0.66 ± 0.33 mm and 1.08 ± 0.72 mm for the EM and CT, respectively. EM 3D catheter trajectories were found to be more accurate. A maximum difference of less than 0.6 mm was found between successive EM reconstructions. Conclusions: The EM reconstruction was found to be more accurate and precise than the conventional methods used for catheter reconstruction in HDR-B. This approach can be applied to any type of catheters and applicators
Finite-Difference Algorithm for Simulating 3D Electromagnetic Wavefields in Conductive Media
Aldridge, D. F.; Bartel, L. C.; Knox, H. A.
2013-12-01
Electromagnetic (EM) wavefields are routinely used in geophysical exploration for detection and characterization of subsurface geological formations of economic interest. Recorded EM signals depend strongly on the current conductivity of geologic media. Hence, they are particularly useful for inferring fluid content of saturated porous bodies. In order to enhance understanding of field-recorded data, we are developing a numerical algorithm for simulating three-dimensional (3D) EM wave propagation and diffusion in heterogeneous conductive materials. Maxwell's equations are combined with isotropic constitutive relations to obtain a set of six, coupled, first-order partial differential equations governing the electric and magnetic vectors. An advantage of this system is that it does not contain spatial derivatives of the three medium parameters electric permittivity, magnetic permeability, and current conductivity. Numerical solution methodology consists of explicit, time-domain finite-differencing on a 3D staggered rectangular grid. Temporal and spatial FD operators have order 2 and N, where N is user-selectable. We use an artificially-large electric permittivity to maximize the FD timestep, and thus reduce execution time. For the low frequencies typically used in geophysical exploration, accuracy is not unduly compromised. Grid boundary reflections are mitigated via convolutional perfectly matched layers (C-PMLs) imposed at the six grid flanks. A shared-memory-parallel code implementation via OpenMP directives enables rapid algorithm execution on a multi-thread computational platform. Good agreement is obtained in comparisons of numerically-generated data with reference solutions. EM wavefields are sourced via point current density and magnetic dipole vectors. Spatially-extended inductive sources (current carrying wire loops) are under development. We are particularly interested in accurate representation of high-conductivity sub-grid-scale features that are common
Sasaki, Y. [Kyushu University, Fukuoka (Japan). Faculty of Engineering
1996-10-01
Analytical methods considering 3-D resistivity distribution, in particular, finite element method (FEM) were studied to improve the reliability of electromagnetic exploration. Integral equation, difference calculus, FEM and hybrid method are generally used as computational 3-D modeling method. FEM is widely used in various fields because FEM can easily handle complicated shapes and boundaries. However, in electromagnetic method, the assumption of continuous electric field is pointed out as important problem. The normal (orthogonal) component of current density should be continuous at the boundary between media with different conductivities, while this means that the normal component of electric field is discontinuous. In FEM, this means that current channeling is not properly considered, resulting in poor accuracy. Unless this problem is solved, FEM modeling is not practical. As one of the solutions, it is promising to specifically incorporate interior boundary conditions into element equation. 4 refs., 11 figs.
Li, Ji-Jiao; Li, Bo; Peng, Qin-Mei; Zhou, Ji; Li, Long-Tu
2014-09-01
Three groups of three-dimensional (3D) TiO2 woodpile electromagnetic gap materials with tailed rheological properties were developed for direct-written fabrication. Appropriate amount of polyethyleneimine (PEI) dispersants allow the preparation of TiO2 inks with a high solid content of 42 vol.%, which enables them to flow through the nozzles easily. The inks exhibit pseudoplastic behavior. The measured microwave characteristics of the results agree well with simulations based on plane wave expansion (PWE).
3D Airborne Electromagnetic Inversion: A case study from the Musgrave Region, South Australia
Cox, L. H.; Wilson, G. A.; Zhdanov, M. S.; Sunwall, D. A.
2012-12-01
Geophysicists know and accept that geology is inherently 3D, and is resultant from complex, overlapping processes related to genesis, metamorphism, deformation, alteration, weathering, and/or hydrogeology. Yet, the geophysics community has long relied on qualitative analysis, conductivity depth imaging (CDIs), 1D inversion, and/or plate modeling. There are many reasons for this deficiency, not the least of which has been the lack of capacity for historic 3D AEM inversion algorithms to invert entire surveys so as to practically affect exploration decisions. Our recent introduction of a moving sensitivity domain (footprint) methodology has been a paradigm shift in AEM interpretation. The basis of this method is that one needs only to calculate the responses and sensitivities for that part of the 3D earth model that is within the AEM system's sensitivity domain (footprint), and then superimpose all sensitivity domains into a single, sparse sensitivity matrix for the entire 3D earth model which is then updated in a regularized inversion scheme. This has made it practical to rigorously invert entire surveys with thousands of line kilometers of AEM data to mega-cell 3D models in hours using multi-processor workstations. Since 2010, over eighty individual projects have been completed for Aerodat, AEROTEM, DIGHEM, GEOTEM, HELITEM, HoisTEM, MEGATEM, RepTEM, RESOLVE, SkyTEM, SPECTREM, TEMPEST, and VTEM data from Australia, Brazil, Canada, Finland, Ghana, Peru, Tanzania, the US, and Zambia. Examples of 3D AEM inversion have been published for a variety of applications, including mineral exploration, oil sands exploration, salinity, permafrost, and bathymetry mapping. In this paper, we present a comparison of 3D inversions for SkyTEM, SPECTREM, TEMPET and VTEM data acquired over the same area in the Musgrave region of South Australia for exploration under cover.
3D relaxation MHD modeling with FOI-PERFECT code for electromagnetically driven HED systems
Wang, Ganghua; Duan, Shuchao; Xie, Weiping; Kan, Mingxian; Institute of Fluid Physics Collaboration
2015-11-01
One of the challenges in numerical simulations of electromagnetically driven high energy density (HED) systems is the existence of vacuum region. The electromagnetic part of the conventional model adopts the magnetic diffusion approximation (magnetic induction model). The vacuum region is approximated by artificially increasing the resistivity. On one hand the phase/group velocity is superluminal and hence non-physical in the vacuum region, on the other hand a diffusion equation with large diffusion coefficient can only be solved by implicit scheme. Implicit method is usually difficult to parallelize and converge. A better alternative is to solve the full electromagnetic equations for the electromagnetic part. Maxwell's equations coupled with the constitutive equation, generalized Ohm's law, constitute a relaxation model. The dispersion relation is given to show its transition from electromagnetic propagation in vacuum to resistive MHD in plasma in a natural way. The phase and group velocities are finite for this system. A better time stepping is adopted to give a 3rd full order convergence in time domain without the stiff relaxation term restriction. Therefore it is convenient for explicit & parallel computations. Some numerical results of FOI-PERFECT code are also given. Project supported by the National Natural Science Foundation of China (Grant No. 11172277,11205145).
Wong, Kenneth H.; Tang, Jonathan; Zhang, Hui J.; Varghese, Emmanuel; Cleary, Kevin R.
2005-04-01
An effective treatment method for organs that move with respiration (such as the lungs, pancreas, and liver) is a major goal of radiation medicine. In order to treat such tumors, we need (1) real-time knowledge of the current location of the tumor, and (2) the ability to adapt the radiation delivery system to follow this constantly changing location. In this study, we used electromagnetic tracking in a swine model to address the first challenge, and to determine if movement of a marker attached to the skin could accurately predict movement of an internal marker embedded in an organ. Under approved animal research protocols, an electromagnetically tracked needle was inserted into a swine liver and an electromagnetically tracked guidewire was taped to the abdominal skin of the animal. The Aurora (Northern Digital Inc., Waterloo, Canada) electromagnetic tracking system was then used to monitor the position of both of these sensors every 40 msec. Position readouts from the sensors were then tested to see if any of the movements showed correlation. The strongest correlations were observed between external anterior-posterior motion and internal inferior-superior motion, with many other axes exhibiting only weak correlation. We also used these data to build a predictive model of internal motion by taking segments from the data and using them to derive a general functional relationship between the internal needle and the external guidewire. For the axis with the strongest correlation, this model enabled us to predict internal organ motion to within 1 mm.
Three groups of three-dimensional (3D) TiO2 woodpile electromagnetic gap materials with tailed rheological properties were developed for direct-written fabrication. Appropriate amount of polyethyleneimine (PEI) dispersants allow the preparation of TiO2 inks with a high solid content of 42 vol.%, which enables them to flow through the nozzles easily. The inks exhibit pseudoplastic behavior. The measured microwave characteristics of the results agree well with simulations based on plane wave expansion (PWE). (interdisciplinary physics and related areas of science and technology)
Kuvshinov, A.; Sabaka, T.; Olsen, Nils
2006-01-01
An approach is presented to detect deep-seated regional conductivity anomalies by analysis of magnetic observations taken by low-Earth-orbiting satellites. The approach deals with recovery of C-responses on a regular grid and starts with a determination of time series of external and internal...... validation of the approach, 3 years of realistic synthetic data at Simulated orbits of the forthcoming Swarm constellation of 3 satellites have been used. To obtain the synthetic data for a given 3-D conductivity Earth's model a time-domain scheme has been applied which relies oil a Fourier transformation of...... the inducing field, and oil a frequency domain forward modelling. The conductivity model consists of a thin Surface layer of realistic conductance and a 3-D mantle that incorporates a hypothetic deep regional anomaly beneath the Pacific Ocean plate. To establish the ability of the approach to capture...
Finite Element Analysis of 3-D Electromagnetic Field in Bloom Continuous Casting Mold
LIU Xu-dong; YANG Xiao-dong; ZHU Miao-yong; CHEN Yong; YANG Su-bo
2007-01-01
Three-dimensional finite element model of electromagnetic stirrer was built to predict magnetic field in a bloom continuous casting mold for steel during operation. The effects of current intensity, current frequency, and mold copper plate thickness on the magnetic field distribution in the mold were investigated. The results show that the magnetic induction intensity increases linearly with the increase in current intensity and decreases with the increase in current frequency. Increasing current intensity and frequency is available in increasing the electromagnetic force. The Joule heat decreases gradually from surface to center of bloom, and a maximum Joule heat can be found on corner of bloom. The prediction of magnetic induction intensity is in good agreement with the measured values.
Electromagnetic fields in 3-D for various cavity antennas and Faraday shields
Maxwell's Equations are solved for vectors E and H for various cavities of interest. The results are shown to be in agreement with existing theory for the fundamental resonance of a long ridge wave guide. This analysis has been applied to the testing cavity antenna for D-III. The method can include the addition of an arbitrarily-shaped Faraday shield. We have explored the electromagnetic effects of Faraday shield by measurement and computation. This correlation of theory and experiments is then used to predict power limits of an antenna by voltage- and current-limitations
Within the ITER-like wall project at the JET, the original plasma facing divertor tiles made of tungsten coated carbon fibre composite (CFC) are to be replaced by bulk tungsten. The design concept should comply with the power and energy handling requirements, the electromagnetic (EM) forces and the mechanical constraints of the existing remote handling system. Through a number of intermediate design options the '' lamella '' option has been developed. Each divertor block consists of three main parts: the plasma facing tiles, the inconel wedge holding the tiles and the inconel interface plate attaching the wedge to the JET CFC base plate. In order to minimize eddy currents the wedge is equipped with slits and the lamellae are isolated from each other. Defined electrical contact from lamellae via wedge to the base plate is required for defined path of halo currents. Eight tungsten lamella stacks are attached to the wedge. The individual lamellae are isolated from each other by means of insulated spacers. Tie rods keep the stack of tungsten lamellae and ceramic coated spacers together. The aim of this study is verification of the divertor block design with the load bearing septum replacement plate (LB-SRP) with respect to electromagnetic loads in the block components by means of essentially 3-D Finite Element (FE) electromagnetic and stress analyses. The following problems have been simulated and studied: · 3-D FE modeling of eddy and halo currents distribution for different cases of plasma current ramp down · Calculation of EM loads arising in the structure components due to interaction of the currents with external electromagnetic fields for different possible directions of magnetic fields · Selection of the worst load combination cases performed during post-processing of results of EM FE analysis · 3-D multi-contact non-linear stress analysis for the worst load combinations with paying attention to the system integrity at the elements separation planes. As a
Nishikawa, Ken-Ichi; Cao. D/ S/; Lembege, B.
2008-01-01
Three dimensional PIC simulations are performed in order to analyse the dynamics of the magnetotail as the interplanetary magnetic field (IMF) rotates from northward to southward direction. This dynamics reveals to be quite different within meridian/equatorial planes over two successive phases of this rotation. First, as IMF rotates from North to Dawn-Dusk direction, the X-Point (magnetic reconnection) evidenced in the magnetotail (meridian plane) is moving earthward (from x=-35 Re to x=-17.5 ) distance at which it stabilizes. This motion is coupled with the formation of "Crosstail-S" patterns (within the plane perpendicular to the Sun-Earth mine) through the neutral sheet in the nearby magnetotail. Second, as IMF rotates from dawn-dusk to South, the minimum B field region is expanding within the equatorial plane and forms a ring. This two-steps dynamics is analyzed in strong association with the cross field magnetotail current Jy, in order to recover the signatures of substorms triggering.
Xu, Fujun; Yao, Lan; Zhao, Da; Jiang, Muwen; Qiu, Yipping
2013-10-01
A three-dimensionally integrated microstrip antenna (3DIMA) is a microstrip antenna woven into the three-dimensional woven composite for load bearing while functioning as an antenna. In this study, the effect of weaving direction of conductive yarns on electromagnetic performance of 3DIMAs are investigated by designing, simulating and experimental testing of two microstrip antennas with different weaving directions of conductive yarns: one has the conductive yarns along the antenna feeding direction (3DIMA-Exp1) and the other has the conductive yarns perpendicular the antenna feeding direction (3DIMA-Exp2). The measured voltage standing wave ratio (VSWR) of 3DIMA-Exp1 was 1.4 at the resonant frequencies of 1.39 GHz; while that of 3DIMA-Exp2 was 1.2 at the resonant frequencies of 1.35 GHz. In addition, the measured radiation pattern of the 3DIMA-Exp1 has smaller back lobe and higher gain value than those of the 3DIMA-Exp2. This result indicates that the waving direction of conductive yarns may have a significant impact on electromagnetic performance of textile structural antennas.
A novel electromagnetic energy harvester (EH) with multiple vibration modes has been developed and characterized using three-dimensional (3D) excitation at different frequencies. The device consists of a movable circular-mass patterned with three sets of double-layer aluminum (Al) coils, a circular-ring system incorporating a magnet and a supporting beam. The 3D dynamic behavior and performance analysis of the device shows that the first vibration mode of 1285 Hz is an out-of-plane motion, while the second and third modes of 1470 and 1550 Hz, respectively, are in-plane at angles of 60° (240°) and 150° (330°) to the horizontal (x-) axis. For an excitation acceleration of 1 g, the maximum power density achieved are 0.444, 0.242 and 0.125 µW cm−3 at vibration modes of I, II and III, respectively. The experimental results are in good agreement with the simulation and indicate a good potential in the development of a 3D EH device. (paper)
Quantum 3D spin-glass system on the scales of space-time period of external electromagnetic field
Full text: (author)The quantum 3D spin-glass system was investigated under the influence of external electromagnetic fields. Using Birgoff ergodic hypothesis the considered problem was reduced on two conditionally separable 1D problems. The first 1D problem describes N-body disordered quantum system on the space-time scales of external fields, with taking into account relaxation effects in the environment. Mathematically the problem is formulated in the limits of stochastic differential equation (SDE) for complex probabilistic processes. Using SDE type of Langevin-Schrodinger for the quantum distribution partial differential equation of second order is obtained. The second problem describes ensemble of 1D steric spin-chains with the certain length which are interacting randomly. For the description of this ensemble the system of the algebraic equations is obtained. These equations allows to build stable spin-chains and correspondingly to calculate statistical sum of ensemble at equilibrium. It is shown that combining of these two problems allows investigating 3D quantum spin-glass system along the external fields' propagation. In particular to investigate collective orientational effects which can leads to phase transitions of the first order and the order formation in disordered 3D quantum system
In these paper is presented a methodology for numerical determination and complex analysis of the electromagnetic characteristics of the Solid Salient Poles Synchronous Motor, with rated data: 2.5 kW, 240 V and 1500 r.p.m.. A mathematical model and original algorithm for the nonlinear and iterative calculations by using Finite Element Method in 3D domain will be given. The program package FEM-3D will be used to perform automatically mesh generation of the finite elements in the 3D domain, calculation of the magnetic field distribution, as well as electromagnetic characteristics and Static torque in SSPSM. (Author)
Vay, J.-L.; Furman, M.A.; Azevedo, A.W.; Cohen, R.H.; Friedman, A.; Grote, D.P.; Stoltz, P.H.
2004-04-19
We have integrated the electron-cloud code POSINST [1] with WARP [2]--a 3-D parallel Particle-In-Cell accelerator code developed for Heavy Ion Inertial Fusion--so that the two can interoperate. Both codes are run in the same process, communicate through a Python interpreter (already used in WARP), and share certain key arrays (so far, particle positions and velocities). Currently, POSINST provides primary and secondary sources of electrons, beam bunch kicks, a particle mover, and diagnostics. WARP provides the field solvers and diagnostics. Secondary emission routines are provided by the Tech-X package CMEE.
Morgan, F. Dale; Sogade, John
2004-12-14
This project was designed as a broad foundational study of spectral induced polarization (SIP) for characterization of contaminated sites. It encompassed laboratory studies of the effects of chemistry on induced polarization, development of 3D forward modeling and inversion codes, and investigations of inductive and capacitive coupling problems. In the laboratory part of the project a physico-chemical model developed in this project was used to invert laboratory IP spectra for the grain size and the effective grain size distribution of the sedimentary rocks as well as the formation factor, porosity, specific surface area, and the apparent fractal dimension. Furthermore, it was established that the IP response changed with the solution chemistry, the concentration of a given solution chemistry, valence of the constituent ions, and ionic radius. In the field part of the project, a 3D complex forward and inverse model was developed. It was used to process data acquired at two frequencies (1/16 Hz and 1/ 4Hz) in a cross-borehole configuration at the A-14 outfall area of the Savannah River Site (SRS) during March 2003 and June 2004. The chosen SRS site was contaminated with Tetrachloroethylene (TCE) and Trichloroethylene (PCE) that were disposed in this area for several decades till the 1980s. The imaginary conductivity produced from the inverted 2003 data correlated very well with the log10 (PCE) concentration derived from point sampling at 1 ft spacing in five ground-truth boreholes drilled after the data acquisition. The equivalent result for the 2004 data revealed that there were significant contaminant movements during the period March 2003 and June 2004, probably related to ground-truth activities and nearby remediation activities. Therefore SIP was successfully used to develop conceptual models of volume distributions of PCE/TCE contamination. In addition, the project developed non-polarizing electrodes that can be deployed in boreholes for years. A total of 28
Efficient computational methods for electromagnetic imaging with applications to 3D magnetotellurics
Kordy, Michal Adam
The motivation for this work is the forward and inverse problem for magnetotellurics, a frequency domain electromagnetic remote-sensing geophysical method used in mineral, geothermal, and groundwater exploration. The dissertation consists of four papers. In the first paper, we prove the existence and uniqueness of a representation of any vector field in H(curl) by a vector lying in H(curl) and H(div). It allows us to represent electric or magnetic fields by another vector field, for which nodal finite element approximation may be used in the case of non-constant electromagnetic properties. With this approach, the system matrix does not become ill-posed for low-frequency. In the second paper, we consider hexahedral finite element approximation of an electric field for the magnetotelluric forward problem. The near-null space of the system matrix for low frequencies makes the numerical solution unstable in the air. We show that the proper solution may obtained by applying a correction on the null space of the curl. It is done by solving a Poisson equation using discrete Helmholtz decomposition. We parallelize the forward code on multicore workstation with large RAM. In the next paper, we use the forward code in the inversion. Regularization of the inversion is done by using the second norm of the logarithm of conductivity. The data space Gauss-Newton approach allows for significant savings in memory and computational time. We show the efficiency of the method by considering a number of synthetic inversions and we apply it to real data collected in Cascade Mountains. The last paper considers a cross-frequency interpolation of the forward response as well as the Jacobian. We consider Pade approximation through model order reduction and rational Krylov subspace. The interpolating frequencies are chosen adaptively in order to minimize the maximum error of interpolation. Two error indicator functions are compared. We prove a theorem of almost always lucky failure in the
Noritaka Yusa
2016-05-01
Full Text Available This study demonstrates that 3D printing technology offers a simple, easy, and cost-effective method to fabricate artificial flaws simulating real cracks from the viewpoint of eddy current testing. The method does not attempt to produce a flaw whose morphology mirrors that of a real crack but instead produces a relatively simple artificial flaw. The parameters of this flaw that have dominant effects on eddy current signals can be quantitatively controlled. Three artificial flaws in type 316L austenitic stainless steel plates were fabricated using a powderbed-based laser metal additive manufacturing machine. The three artificial flaws were designed to have the same length, depth, and opening but different branching and electrical contacts between flaw surfaces. The flaws were measured by eddy current testing using an absolute type pancake probe. The signals due to the three flaws clearly differed from each other although the flaws had the same length and depth. These results were supported by subsequent destructive tests and finite element analyses.
Smirnov, M. Yu.; Korja, T.; Pedersen, L. B.
2009-04-01
Two electromagnetic arrays are used in the EMMA project to study conductivity structure of the Archaean lithosphere in the Fennoscandian Shield. The first array was operated during almost one year, while the second one was running only during the summer time. Twelve 5-components magnetotelluric instruments with fluxgate magnetometers recorded simultaneously time variations of Earth's natural electromagnetic field at the sites separated by c. 30 km. To better control the source field and to obtain galvanic distortion free responses we have applied horizontal spatial gradient (HSG) technique to the data. The study area is highly inhomogeneous, thus classical HSG might give erroneous results. The method was extended to include anomalous field effects by implementing multivariate analysis. The HSG transfer functions were then used to control static shift distortions of apparent resistivities. During the BEAR experiment 1997-2002, the conductance map of entire Fennoscandia was assembled and finally converted into 3D volume resistivity model. We have used the model, refined it to get denser grid around measurement area and calculated MT transfer functions after 3D modeling. We have used trial-and-error method in order to further improve the model. The data set was also inverted using 3D code of Siripunvaraporn (2005). In the first stage we have used homogeneous halfspace as starting model for the inversion. In the next step we have used final 3D forward model as apriori model. The usage of apriori information significantly stabilizes the inverse solution, especially in case of a limited amount of data available. The results show that in the Archaean Domain a conductive layer is found in the upper/middle crust on contrary to previous results from other regions of the Archaean crust in the Fennoscandian Shield. Data also suggest enhanced conductivity at the depth of c. 100 km. Conductivity below the depth of 200-250 km is lower than that of the laboratory based estimates
Brosten, T.R.; Day-Lewis, F. D.; Schultz, G.M.; Curtis, G.P.; Lane, J.W.
2011-01-01
Electromagnetic induction (EMI) instruments provide rapid, noninvasive, and spatially dense data for characterization of soil and groundwater properties. Data from multi-frequency EMI tools can be inverted to provide quantitative electrical conductivity estimates as a function of depth. In this study, multi-frequency EMI data collected across an abandoned uranium mill site near Naturita, Colorado, USA, are inverted to produce vertical distribution of electrical conductivity (EC) across the site. The relation between measured apparent electrical conductivity (ECa) and hydraulic conductivity (K) is weak (correlation coefficient of 0.20), whereas the correlation between the depth dependent EC obtained from the inversions, and K is sufficiently strong to be used for hydrologic estimation (correlation coefficient of -0.62). Depth-specific EC values were correlated with co-located K measurements to develop a site-specific ln(EC)-ln(K) relation. This petrophysical relation was applied to produce a spatially detailed map of K across the study area. A synthetic example based on ECa values at the site was used to assess model resolution and correlation loss given variations in depth and/or measurement error. Results from synthetic modeling indicate that optimum correlation with K occurs at ~0.5m followed by a gradual correlation loss of 90% at 2.3m. These results are consistent with an analysis of depth of investigation (DOI) given the range of frequencies, transmitter-receiver separation, and measurement errors for the field data. DOIs were estimated at 2.0??0.5m depending on the soil conductivities. A 4-layer model, with varying thicknesses, was used to invert the ECa to maximize available information within the aquifer region for improved correlations with K. Results show improved correlation between K and the corresponding inverted EC at similar depths, underscoring the importance of inversion in using multi-frequency EMI data for hydrologic estimation. ?? 2011.
Simulations of electromagnetic field and design study of slow-wave structure (SWS) for millimeter tunneladder coupled-cavity TWT (travelling-wave tube) have been performed and cold-test parameters such as dispersion, interaction impedance and attenuation in this system are obtained by using 3D electromagnetic code CST-MWS and symmetric field of high frequency structure. For verification of mastering code, firstly, simulated are the dispersion characteristics parameters of a sample tube from Huges Co., the United States, which are completely consistent with those tested and theoretically calculated results published from Huges Co., and probably better. Furthermore, also using this code, cold-test parameters at Ka frequency range such as dispersion, interaction impedance and attenuation have been simulated, calculated and compared respectively for the tunneladder structures of linear coupled-cavity, single stagger tuning coupled-cavity and double stagger tuning coupled-cavity. It is concluded from these results that compared to the slow-wave system without stagger tuning coupled-cavity, pass bandwidth and interaction impedance of those with a single (double) stagger tuning coupled-cavity can be considerably improved
Yan, X.; Cai, D.; Nishikawa, K.; Lembege, B.
2004-12-01
We made our efforts to parallelize the global 3D HPF Electromagnetic particle model (EMPM) for several years and have also reported our meaningful simulation results that revealed the essential physics involved in interaction of the solar wind with the Earth's magnetosphere using this EMPM (Nishikawa et al., 1995; Nishikawa, 1997, 1998a, b, 2001, 2002) in our PC cluster and supercomputer(D.S. Cai et al., 2001, 2003). Sash patterns and related phenomena have been observed and reported in some satellite observations (Fujumoto et al. 1997; Maynard, 2001), and have motivated 3D MHD simulations (White and al., 1998). We also investigated it with our global 3D parallelized HPF EMPM with dawnward IMF By (K.-I. Nishikawa, 1998) and recently new simulation with dusk-ward IMF By was accomplished in the new VPP5000 supercomputer. In the new simulations performed on the new VPP5000 supercomputer of Tsukuba University, we used larger domain size, 305×205×205, smaller grid size (Δ ), 0.5R E(the radium of the Earth), more total particle number, 220,000,000 (about 8 pairs per cell). At first, we run this code until we get the so-called quasi-stationary status; After the quasi-stationary status was established, we applied a northward IMF (B z=0.2), and then wait until the IMF arrives around the magnetopuase. After the arrival of IMF, we begin to change the IMF from northward to duskward (IMF B y=-0.2). The results revealed that the groove structure at the day-side magnetopause, that causes particle entry into inner magnetosphere and the cross structure or S-structure at near magneto-tail are formed. Moreover, in contrast with MHD simulations, kinetic characteristic of this event is also analyzed self-consistently with this simulation. The new simulation provides new and more detailed insights for the observed sash event.
Scheunert, M.; Ullmann, A.; Afanasjew, M.; Börner, R.-U.; Siemon, B.; Spitzer, K.
2016-06-01
We present an inversion concept for helicopter-borne frequency-domain electromagnetic (HEM) data capable of reconstructing 3-D conductivity structures in the subsurface. Standard interpretation procedures often involve laterally constrained stitched 1-D inversion techniques to create pseudo-3-D models that are largely representative for smoothly varying conductivity distributions in the subsurface. Pronounced lateral conductivity changes may, however, produce significant artifacts that can lead to serious misinterpretation. Still, 3-D inversions of entire survey data sets are numerically very expensive. Our approach is therefore based on a cut-&-paste strategy whereupon the full 3-D inversion needs to be applied only to those parts of the survey where the 1-D inversion actually fails. The introduced 3-D Gauss-Newton inversion scheme exploits information given by a state-of-the-art (laterally constrained) 1-D inversion. For a typical HEM measurement, an explicit representation of the Jacobian matrix is inevitable which is caused by the unique transmitter-receiver relation. We introduce tensor quantities which facilitate the matrix assembly of the forward operator as well as the efficient calculation of the Jacobian. The finite difference forward operator incorporates the displacement currents because they may seriously affect the electromagnetic response at frequencies above 100. Finally, we deliver the proof of concept for the inversion using a synthetic data set with a noise level of up to 5%.
In this paper, the general electromagnetic design process of a 10-MW-class high-temperature superconducting (HTS) synchronous generator that is intended to be utilized for large scale offshore wind generator is discussed. This paper presents three-dimensional (3D) electromagnetic design proposal and electrical characteristic analysis results of a 10-MW-class HTS synchronous generator for wind power. For more detailed design by reducing the errors of a two-dimensional (2D) design owing to leakage flux in air-gap, we redesign and analyze the 2D conceptual electromagnetic design model of the HTS synchronous generator using 3D finite element analysis (FEA) software. Then electrical characteristics which include the no-load and full-load voltage of generator, harmonic contents of these two load conditions, voltage regulation and losses of generator are analyzed by commercial 3D FEA software.
Koldan, Jelena; Puzyrev, Vladimir; de la Puente, Josep; Houzeaux, Guillaume; Cela, José María
2014-06-01
We present an elaborate preconditioning scheme for Krylov subspace methods which has been developed to improve the performance and reduce the execution time of parallel node-based finite-element (FE) solvers for 3-D electromagnetic (EM) numerical modelling in exploration geophysics. This new preconditioner is based on algebraic multigrid (AMG) that uses different basic relaxation methods, such as Jacobi, symmetric successive over-relaxation (SSOR) and Gauss-Seidel, as smoothers and the wave front algorithm to create groups, which are used for a coarse-level generation. We have implemented and tested this new preconditioner within our parallel nodal FE solver for 3-D forward problems in EM induction geophysics. We have performed series of experiments for several models with different conductivity structures and characteristics to test the performance of our AMG preconditioning technique when combined with biconjugate gradient stabilized method. The results have shown that, the more challenging the problem is in terms of conductivity contrasts, ratio between the sizes of grid elements and/or frequency, the more benefit is obtained by using this preconditioner. Compared to other preconditioning schemes, such as diagonal, SSOR and truncated approximate inverse, the AMG preconditioner greatly improves the convergence of the iterative solver for all tested models. Also, when it comes to cases in which other preconditioners succeed to converge to a desired precision, AMG is able to considerably reduce the total execution time of the forward-problem code-up to an order of magnitude. Furthermore, the tests have confirmed that our AMG scheme ensures grid-independent rate of convergence, as well as improvement in convergence regardless of how big local mesh refinements are. In addition, AMG is designed to be a black-box preconditioner, which makes it easy to use and combine with different iterative methods. Finally, it has proved to be very practical and efficient in the
Ren, Zhengyong; Kalscheuer, Thomas; Greenhalgh, Stewart; Maurer, Hansruedi
2014-02-01
A novel hybrid boundary element-finite element scheme which is accelerated by an adaptive multi-level fast multipole algorithm is presented to simulate 3D plane wave electromagnetic induction responses in the Earth. The remarkable advantages of this novel scheme are the complete removal of the volume discretization of the air space and the capability of simulating large-scale complicated geo-electromagnetic induction problems. To achieve this goal, first the Galerkin edge-based finite-element method (FEM) using unstructured meshes is adopted to solve the electric field differential equation in the heterogeneous Earth, where arbitrary distributions of conductivity, magnetic permeability and dielectric permittivity are allowed for. Second, the point collocation boundary-element method (BEM) is used to solve a surface integral formula in terms of the reduced electrical vector potential on the arbitrarily shaped air-Earth interface. Third, to avoid explicit storage of the system matrix arising from large-scale problems and to reduce the horrendous time complexity of the product of the system matrix with an initial vector of unknowns, the adaptive multilevel fast multipole method is applied. This leads to a matrix-free form suitable for the application of iterative solvers. Furthermore, a highly sparse problem-dependent preconditioner is developed to significantly reduce the number of iterations used by the iterative solvers. The efficacy of the presented hybrid scheme is verified on two synthetic examples against different numerical techniques such as goal-oriented adaptive finite-element methods. Numerical experiments show that at low frequencies, where the quasi-static approximation is applicable, standard FEM methods prove to be superior to our hybrid BEM-FEM solutions in terms of computational time, because the FEM method requires only a coarse discretization of the air domain and offers an advantageous sparsity of the system matrix. At radio
Petrov, P.; Newman, G. A.
2010-12-01
-Fourier domain we had developed 3D code for full-wave field simulation in the elastic media which take into account nonlinearity introduced by free-surface effects. Our approach is based on the velocity-stress formulation. In the contrast to conventional formulation we defined the material properties such as density and Lame constants not at nodal points but within cells. This second order finite differences method formulated in the cell-based grid, generate numerical solutions compatible with analytical ones within the range errors determinate by dispersion analysis. Our simulator will be embedded in an inversion scheme for joint seismic- electromagnetic imaging. It also offers possibilities for preconditioning the seismic wave propagation problems in the frequency domain. References. Shin, C. & Cha, Y. (2009), Waveform inversion in the Laplace-Fourier domain, Geophys. J. Int. 177(3), 1067- 1079. Shin, C. & Cha, Y. H. (2008), Waveform inversion in the Laplace domain, Geophys. J. Int. 173(3), 922-931. Commer, M. & Newman, G. (2008), New advances in three-dimensional controlled-source electromagnetic inversion, Geophys. J. Int. 172(2), 513-535. Newman, G. A., Commer, M. & Carazzone, J. J. (2010), Imaging CSEM data in the presence of electrical anisotropy, Geophysics, in press.
In this work we introduce a generalization of the Jauch and Rohrlich quantum Stokes operators when the arrival direction from the source is unknown a priori. We define the generalized Stokes operators as the Jordan-Schwinger map of a triplet of harmonic oscillators with the Gell-Mann and Ne'eman matrices of the SU(3) symmetry group. We show that the elements of the Jordan-Schwinger map are the constants of motion of the three-dimensional isotropic harmonic oscillator. Also, we show that the generalized Stokes operators together with the Gell-Mann and Ne'eman matrices may be used to expand the polarization matrix. By taking the expectation value of the Stokes operators in a three-mode coherent state of the electromagnetic field, we obtain the corresponding generalized classical Stokes parameters. Finally, by means of the constants of motion of the classical 3D isotropic harmonic oscillator we describe the geometrical properties of the polarization ellipse
Fadhil Mezghani
2015-01-01
Full Text Available The optical properties of metallic nanoparticles are well known, but the study of their thermal behavior is in its infancy. However the local heating of surrounding medium, induced by illuminated nanostructures, opens the way to new sensors and devices. Consequently the accurate calculation of the electromagnetically induced heating of nanostructures is of interest. The proposed multiphysics problem cannot be directly solved with the classical refinement method of Comsol Multiphysics and a 3D adaptive remeshing process based on an a posteriori error estimator is used. In this paper the efficiency of three remeshing strategies for solving the multiphysics problem is compared. The first strategy uses independent remeshing for each physical quantity to reach a given accuracy. The second strategy only controls the accuracy on temperature. The third strategy uses a linear combination of the two normalized targets (the electric field intensity and the temperature. The analysis of the performance of each strategy is based on the convergence of the remeshing process in terms of number of elements. The efficiency of each strategy is also characterized by the number of computation iterations, the number of elements, the CPU time, and the RAM required to achieve a given target accuracy.
Djouder, M. [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri de Tizi-ouzou, BP 17 RP, 15000 Tizi-Ouzou (Algeria); Lamrous, O., E-mail: omarlamrous@mail.ummto.dz [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri de Tizi-ouzou, BP 17 RP, 15000 Tizi-Ouzou (Algeria); Mitiche, M.D. [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri de Tizi-ouzou, BP 17 RP, 15000 Tizi-Ouzou (Algeria); Itina, T.E. [Laboratoire Hubert Curien, UMR CNRS 5516/Université Jean Monnet, 18 rue de Professeur Benoît Lauras, 42000 Saint-Etienne (France); Zemirli, M. [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri de Tizi-ouzou, BP 17 RP, 15000 Tizi-Ouzou (Algeria)
2013-09-01
The particle in cell (PIC) method coupled to the finite-difference time-domain (FDTD) method is used to model the formation of laser induced periodic surface structures (LIPSS) at the early stage of femtosecond laser irradiation of smooth metal surface. The theoretical results were analyzed and compared with experimental data taken from the literature. It was shown that the optical properties of the target are not homogeneous and the ejection of electrons is such that ripples in the electron density were obtained. The Coulomb explosion mechanism was proposed to explain the ripples formation under the considered conditions.
The particle in cell (PIC) method coupled to the finite-difference time-domain (FDTD) method is used to model the formation of laser induced periodic surface structures (LIPSS) at the early stage of femtosecond laser irradiation of smooth metal surface. The theoretical results were analyzed and compared with experimental data taken from the literature. It was shown that the optical properties of the target are not homogeneous and the ejection of electrons is such that ripples in the electron density were obtained. The Coulomb explosion mechanism was proposed to explain the ripples formation under the considered conditions.
PIC: Protein Interactions Calculator
Tina, KG; Bhadra, R.; Srinivasan, N.
2007-01-01
Interactions within a protein structure and interactions between proteins in an assembly are essential considerations in understanding molecular basis of stability and functions of proteins and their complexes. There are several weak and strong interactions that render stability to a protein structure or an assembly. Protein Interactions Calculator (PIC) is a server which, given the coordinate set of 3D structure of a protein or an assembly, computes various interactions such as disulphide bo...
Castillo-Reyes, Octavio; de la Puente, Josep; Puzyrev, Vladimir; Cela, José M.
2015-01-01
This paper deals with the most relevant parallel and numerical issues that arise when applying the Edge Element Method in the solution of electromagnetic problems in exploration geophysics. In this sense, in recent years the application of land and marine controlled-source electromagnetic (CSEM) surveys has gained tremendous interest among the offshore exploration community. This method is especially significant in detecting hydrocarbon in shallow/deep waters. On the other hand, in Finite Ele...
We study statistical properties of 3D classical spin glass under the influence of external fields. It is proved that in the framework of the nearest-neighboring model, 3D spin-glass problem at performing of Birkhoff's ergodic hypothesis regarding the orientations of spins in 3D space can be reduced to the problem of disordered 1D spatial spin-chains (SSC) ensemble, where each spin chain interacts with a random environment. The 1D SSC is defined as a periodic 1D lattice, where spins in nodes are randomly oriented in 3D space, in addition, they all interact with each other randomly. For minimization of the Hamiltonian in an arbitrary node of 1D lattice the recurrent equations and corresponding Sylvester's criterion are obtained, which allow one to find the energy local minimum. On the basis of these equations, the high-performance parallel algorithm is developed, which allows one to calculate all statistical parameters of 3D spin glass, including distribution of a constant of spin-spin interaction, from the first principles of the classical mechanics.
Koldan, Jelena; Puzyrev, Vladimir; de la Puente, Josep; Houzeaux, Guillaume; José M. Cela
2014-01-01
We present an elaborate preconditioning scheme for Krylov subspace methods which has been developed to improve the performance and reduce the execution time of parallel node-based finite-element solvers for three-dimensional electromagnetic numerical modelling in exploration geophysics. This new preconditioner is based on algebraic multigrid that uses different basic relaxation methods, such as Jacobi, symmetric successive over-relaxation and Gauss-Seidel, as smoothers and the wav...
Gubchenko, V. M.
2015-12-01
In part I of the work, the physical effects responsible for the formation of low-speed flows in plasma coronas, coupled with formation of coronas magnetosphere-like structures, are described qualitatively. Coronal domain structures form if we neglect scales of spatial plasma dispersion: high-speed flows are accumulated in magnetic tubes of the open domains, while magnetic structures and low-speed flows are concentrated within boundaries of domains. The inductive electromagnetic process occurring in flows of the hot collisionless plasma is shown to underlie the formation of magnetosphere-like structures. Depending on the form of the velocity distribution function of particles (PDF), a hot flow differently reveals its electromagnetic properties, which are expressed by the induction of resistive and diamagnetic scales of spatial dispersion. These determine the magnetic structure scales and structure reconstruction. The inductive electromagnetic process located in lines of the plasma nontransparency and absorption, in which the structures of excited fields are spatially aperiodic and skinned to the magnetic field sources. The toroidal and dipole magnetic sources of different configurations are considered for describing the corona structures during the solar maximum and solar minimum.
Wu, Hui-Chun
2011-01-01
Author developed the parallel fully kinetic particle-in-cell (PIC) code JPIC based on updated and advanced algorithms (e.g. numerical-dispersion-free electromagnetic field solver) for simulating laser plasma interactions. Basic technical points and hints of PIC programming and parallel programming by message passing interface (MPI) are reviewed. Most of contents come from Author's notes when writing up JPIC and experiences when using the code to solve different problems. Enough "how-to-do-it" information should help a new beginner to effectively build up his/her own PIC code. General advices on how to use a PIC code are also given.
Schultz, A.
2010-12-01
3D forward solvers lie at the core of inverse formulations used to image the variation of electrical conductivity within the Earth's interior. This property is associated with variations in temperature, composition, phase, presence of volatiles, and in specific settings, the presence of groundwater, geothermal resources, oil/gas or minerals. The high cost of 3D solutions has been a stumbling block to wider adoption of 3D methods. Parallel algorithms for modeling frequency domain 3D EM problems have not achieved wide scale adoption, with emphasis on fairly coarse grained parallelism using MPI and similar approaches. The communications bandwidth as well as the latency required to send and receive network communication packets is a limiting factor in implementing fine grained parallel strategies, inhibiting wide adoption of these algorithms. Leading Graphics Processor Unit (GPU) companies now produce GPUs with hundreds of GPU processor cores per die. The footprint, in silicon, of the GPU's restricted instruction set is much smaller than the general purpose instruction set required of a CPU. Consequently, the density of processor cores on a GPU can be much greater than on a CPU. GPUs also have local memory, registers and high speed communication with host CPUs, usually through PCIe type interconnects. The extremely low cost and high computational power of GPUs provides the EM geophysics community with an opportunity to achieve fine grained (i.e. massive) parallelization of codes on low cost hardware. The current generation of GPUs (e.g. NVidia Fermi) provides 3 billion transistors per chip die, with nearly 500 processor cores and up to 6 GB of fast (DDR5) GPU memory. This latest generation of GPU supports fast hardware double precision (64 bit) floating point operations of the type required for frequency domain EM forward solutions. Each Fermi GPU board can sustain nearly 1 TFLOP in double precision, and multiple boards can be installed in the host computer system. We
Shemelya, Corey M.; Rivera, Armando; Perez, Angel Torrado; Rocha, Carmen; Liang, Min; Yu, Xiaoju; Kief, Craig; Alexander, David; Stegeman, James; Xin, Hao; Wicker, Ryan B.; MacDonald, Eric; Roberson, David A.
2015-08-01
Material-extrusion three-dimensional (3D) printing has recently attracted much interest because of its process flexibility, rapid response to design alterations, and ability to create structures "on-the-go". For this reason, 3D printing has possible applications in rapid creation of space-based devices, for example cube satellites (CubeSat). This work focused on fabrication and characterization of tungsten-doped polycarbonate polymer matrix composites specifically designed for x-ray radiation-shielding applications. The polycarbonate-tungsten polymer composite obtained intentionally utilizes low loading levels to provide x-ray shielding while limiting effects on other properties of the material, for example weight, electromagnetic functionality, and mechanical strength. The fabrication process, from tungsten functionalization to filament extrusion and material characterization, is described, including printability, determination of x-ray attenuation, tensile strength, impact resistance, and gigahertz permittivity, and failure analysis. The proposed materials are uniquely advantageous when implemented in 3D printed structures, because even a small volume fraction of tungsten has been shown to substantially alter the properties of the resulting composite.
Commer, Michael; Helwig, Stefan, L.; Hordt, Andreas; Scholl,Carsten; Tezkan, Bulent
2006-06-14
Three long-offset transient electromagnetic (LOTEM) surveyswerecarried out at the active volcano Merapi in Central Java (Indonesia)during the years 1998, 2000, and 2001. The measurements focused on thegeneral resistivity structure of the volcanic edifice at depths of 0.5-2km and the further investigation of a southside anomaly. The measurementswere insufficient for a full 3D inversion scheme, which could enable theimaging of finely discretized resistivity distributions. Therefore, astable, damped least-squares joint-inversion approach is used to optimize3D models with a limited number of parameters. The mode ls feature therealistic simulation of topography, a layered background structure, andadditional coarse 3D blocks representing conductivity anomalies.Twenty-eight LOTEM transients, comprising both horizontal and verticalcomponents of the magnetic induction time derivative, were analyzed. Inview of the few unknowns, we were able to achieve reasonable data fits.The inversion results indicate an upwelling conductor below the summit,suggesting hydrothermal activity in the central volcanic complex. Ashallow conductor due to a magma-filled chamber, at depths down to 1 kmbelow the summit, suggested by earlier seismic studies, is not indicatedby the inversion results. In conjunction with an anomalous-density model,derived from arecent gravity study, our inversion results provideinformation about the southern geological structure resulting from amajor sector collapse during the Middle Merapi period. The density modelallows to assess a porosity range andthus an estimated vertical salinityprofile to explain the high conductivities on a larger scale, extendingbeyond the foothills of Merapi.
Transport of 3D space charge dominated beams
In this paper we present the theoretical analysis and the computer code design for the intense pulsed beam transport. Intense beam dynamics is a very important issue in low-energy high-current accelerators and beam transport systems. This problem affects beam transmission and beam qualities. Therefore, it attracts the attention of the accelerator physicists worldwide. The analysis and calculation for the intense beam dynamics are very complicated, because the state of particle motion is dominated not only by the applied electromagnetic fields, but also by the beam-induced electromagnetic fields (self-fields). Moreover, the self-fields are related to the beam dimensions and particle distributions. So, it is very difficult to get the self-consistent solutions of particle motion analytically. For this reason, we combine the Lie algebraic method and the particle in cell (PIC) scheme together to simulate intense 3D beam transport. With the Lie algebraic method we analyze the particle nonlinear trajectories in the applied electromagnetic fields up to third order approximation, and with the PIC algorithm we calculate the space charge effects to the particle motion. Based on the theoretical analysis, we have developed a computer code, which calculates beam transport systems consisting of electrostatic lenses, electrostatic accelerating columns, solenoid lenses, magnetic and electric quadruples, magnetic sextupoles, octopuses and different kinds of electromagnetic analyzers. The optimization calculations and the graphic display for the calculated results are provided by the code. (authors)
PIC simulation of high efficiency and high power 14 vane industrial magnetron
Vyas, Sandeep; Maurya, Shivendra; Singh, V. V. P.
2016-03-01
This paper presents a 3D Particle in cell (PIC) simulation of a CW 2.450±0.050 GHz 10 kW industrial magnetron. The electromagnetic and PIC simulation of magnetron has been carried out using CST microwave studio andCST particle studio. A virtual prototype of 14 vane magnetron has been simulated on computer. The cold frequency of magnetron is found 2.495 GHz. The unloaded quality factor and circuit efficiency are found 1970 and 92% from electromagnetic simulation. The output power is achieved 12.4 KW for anode voltage 12.7 kV and magnetic field 2900 Gauss. The anode current is found anode current 1.22 A. The total efficiency is 78.76 %.
Streamer and leader formation in high pressure devices is dynamic process involving a broad range of physical phenomena. These include elastic and inelastic particle collisions in the gas, radiation generation, transport and absorption, and electrode interactions. Accurate modeling of these physical processes is essential for a number of applications, including high-current, laser-triggered gas switches. Towards this end, we present a new 3D implicit particle-in-cell simulation model of gas breakdown leading to streamer formation in electronegative gases. The model uses a Monte Carlo treatment for all particle interactions and includes discrete photon generation, transport, and absorption for ultra-violet and soft x-ray radiation. Central to the realization of this fully kinetic particle treatment is an algorithm that manages the total particle count by species while preserving the local momentum distribution functions and conserving charge [D. R. Welch, T. C. Genoni, R. E. Clark, and D. V. Rose, J. Comput. Phys. 227, 143 (2007)]. The simulation model is fully electromagnetic, making it capable of following, for example, the evolution of a gas switch from the point of laser-induced localized breakdown of the gas between electrodes through the successive stages of streamer propagation, initial electrode current connection, and high-current conduction channel evolution, where self-magnetic field effects are likely to be important. We describe the model details and underlying assumptions used and present sample results from 3D simulations of streamer formation and propagation in SF6.
PIC simulations of relativistic magnetized plasmas
This talk will summarize several recent results from the PIC simulations of strongly magnetized relativistic plasmas. These include particle acceleration in EM-dominated expansion, collisions of relativistic plasmas, relativistic Weibel and 2-stream instabilities, and magnetic turbulence cascade. We will present results of both 2.5-D and 3-D PIC simulations. The radiation power output of some of these plasmas will also be discussed. (author)
Wu, Hui-Chun
2011-01-01
Author developed the parallel fully kinetic particle-in-cell (PIC) code JPIC based on updated and advanced algorithms (e.g. numerical-dispersion-free electromagnetic field solver) for simulating laser plasma interactions. Basic technical points and hints of PIC programming and parallel programming by message passing interface (MPI) are reviewed. Most of contents come from Author's notes when writing up JPIC and experiences when using the code to solve different problems. Enough "how-to-do-it"...
Poulin, E; Racine, E; Beaulieu, L [CHU de Quebec - Universite Laval, Quebec, Quebec (Canada); Binnekamp, D [Integrated Clinical Solutions and Marketing, Philips Healthcare, Best, DA (Netherlands)
2014-06-15
Purpose: In high dose rate brachytherapy (HDR-B), actual catheter reconstruction protocols are slow and errors prompt. The purpose of this study was to evaluate the accuracy and robustness of an electromagnetic (EM) tracking system for improved catheter reconstruction in HDR-B protocols. Methods: For this proof-of-principle, a total of 10 catheters were inserted in gelatin phantoms with different trajectories. Catheters were reconstructed using a Philips-design 18G biopsy needle (used as an EM stylet) and the second generation Aurora Planar Field Generator from Northern Digital Inc. The Aurora EM system exploits alternating current technology and generates 3D points at 40 Hz. Phantoms were also scanned using a μCT (GE Healthcare) and Philips Big Bore clinical CT system with a resolution of 0.089 mm and 2 mm, respectively. Reconstructions using the EM stylet were compared to μCT and CT. To assess the robustness of the EM reconstruction, 5 catheters were reconstructed twice and compared. Results: Reconstruction time for one catheter was 10 seconds or less. This would imply that for a typical clinical implant of 17 catheters, the total reconstruction time would be less than 3 minutes. When compared to the μCT, the mean EM tip identification error was 0.69 ± 0.29 mm while the CT error was 1.08 ± 0.67 mm. The mean 3D distance error was found to be 0.92 ± 0.37 mm and 1.74 ± 1.39 mm for the EM and CT, respectively. EM 3D catheter trajectories were found to be significantly more accurate (unpaired t-test, p < 0.05). A mean difference of less than 0.5 mm was found between successive EM reconstructions. Conclusion: The EM reconstruction was found to be faster, more accurate and more robust than the conventional methods used for catheter reconstruction in HDR-B. This approach can be applied to any type of catheters and applicators. We would like to disclose that the equipments, used in this study, is coming from a collaboration with Philips Medical.
Simulation of intense beam bunching using 3D PIC method
Most of the ion sources produce continuous beam of charged particles. In a cyclotron using such an external ion source, only a small fraction of the injected continuous beam is accepted in the central region for further acceleration. By transforming the continuous beam into a suitably bunched beam using a buncher prior to injection, the amount of accepted particles in the central region of cyclotron can be increased. To compress the continuous beam longitudinally one needs to impose a velocity modulation at the buncher gap which results in density modulation as the beam advances. In the case of low beam current the velocity modulation of the beam has very little effect on the transverse envelope of the beam. However, in the case of high intensity beams, the space-charge force introduces much collective behaviour and increase of current in the specified bunch width affects the transverse dynamics
The authors present the results of three electromagnetic field problems for compressed magnetic field generators and their associated power flow channels. The first problem is the computation of the transient magnetic field in a two-dimensional model of a helical generator during loading. The second problem is the three-dimensional eddy current patterns in a section of an armature beneath a bifurcation point of a helical winding. The authors' third problem is the calculation of the three-dimensional electrostatic fields in a region known as the post-hole convolute in which a rod connects the inner and outer walls of a system of three concentric cylinders through a hole in the middle cylinder. While analytic solutions exist for many electromagnetic filed problems in cases of special and ideal geometries, the solution of these and similar problems for the proper analysis and design of compressed magnetic field generators and their related hardware require computer simulations
Marraccini, Philip J.; Jezzini, Moises A.; Peters, Frank H.
2016-05-01
Designing photonic integrated circuits (PICs) with packaging in mind is important since this impacts the performance of the final product. In coherent optical communication applications there are a large number of DC and RF lines that need routed to connect the PIC to the outer packaging. These RF lines should be impedance matched to the devices, isolated from each other, low loss and protected against electromagnetic interference (EMI) over the frequency range of interest to achieve the performance required for the application. Multilevel low temperature co-fired ceramic (LTCC) boards can be used as a carrier board connecting the PIC to the packaging due to its good RF performance, machinability, compatibility with hermetic sealing, and ability to integrate drivers into the board. Flexibility with layer numbers enables additional layers for shielding against electromagnetic interference or increased space for routing electrical connections. In this paper the design, simulations, and measured results for a set of 4 phase matched transmission lines in LTCC that would be used with an IQ MZM are presented. The measured 3dB bandwidth for a set of four phase matched transmission lines for an IQ MZM was measured to be 19.8 GHz.
Without the electromagnetic force, you would not be solid. The atoms of your body are held together by electromagnetism: negatively charged electrons are held around the positively charged nucleus. Atoms share electrons to form molecules, so building up the structure of matter. As its name suggests, electromagnetism has a double nature: a moving electric charge creates a magnetic field. This intimate connection between electricity and magnetism was described by James Maxwell in 1864. The electromagnetic force can be both positive and negative : opposite charges attract, whereas like charges repel. Electromagnetic radiation, such as radio, microwaves, light and X-rays, is emitted by charges when they are made to move. For example, an oscillating current in a wire emits radio waves. Text for the interactive: Why do the needles move when you switch on the current ?
Tiberi, Gianluigi; Fontana, Nunzia; Monorchio, Agostino; Stara, Riccardo; Retico, Alessandra; Tosetti, Michela
2015-12-01
A procedure for evaluating radio-frequency electromagnetic fields in anatomical human models for any matching and coupling conditions is introduced. The procedure resorts to the extraction of basis functions: such basis functions, which represent the fields produced by each individual port without any residual coupling, are derived through an algebraic procedure which uses the S parameter matrix and the fields calculated in one (only) full-wave simulation. The basis functions are then used as building-blocks for calculating the fields for any other S parameter matrix. The proposed approach can be used both for volume coil driven in quadrature and for parallel transmission configuration.
Based on the principle of abnormal field algorithms, Helmholtz equations for electromagnetic field have been deduced. We made the electric field Helmholtz equation the governing equation, and derived the corresponding system of vector finite element method equations using the Galerkin method. For solving the governing equation using the vector finite element method, we divided the computing domain into homogenous brick elements, and used Whitney-type vector basis functions. After obtaining the electric field's anomaly field in the Laplace domain using the vector finite element method, we used the Gaver–Stehfest algorithm to transform the electric field's anomaly field to the time domain, and obtained the impulse response of magnetic field's anomaly field through the Faraday law of electromagnetic induction. By comparing 1D analytic solutions of quasi-H-type geoelectric models, the accuracy of the vector finite element method is tested. For the low resistivity brick geoelectric model, the plot shape of electromotive force computed using the vector finite element method coincides with that of the integral equation method and finite difference in time domain solutions
罗玲; 李丹; 吕晓威; 王震
2012-01-01
According to the special structure and complex electromagnetic field distribution of axial flux coreless permanent magnet synchronous generator, a 3D prototype model was established and its boundary conditions was set for solving by using electromagnetic finite element simulation software MagNet. No-load air-gap magnetic field was analyzed by using 3D static solver and no-load back-electromotive force at different speed was calculated by using 3D transient with motion solver. Finally, no-load characteristic of the prototype generator was tested. The test results show that the simulation model is reasonable and the analysis method is effective.%针对盘式无铁心永磁同步风力发电机结构的特殊性及其电磁场分布的复杂性,采用电磁场有限元分析软件MagNet对一台样机进行了3D建模；设置了求解所需的边界条件；利用静态求解器得到了磁场分布规律；通过动态求解器计算了不同转速下的空载电压,并绘制了样机的空载特性曲线；最后通过空载试验验证了仿真模型的合理性及计算方法的正确性.
[PIC Program Evaluation Forms.
Short, N. J.
These 4 questionnaires are designed to elicit teacher and parent evaluations of the Prescriptive Instruction Center (PIC) program. Included are Teacher Evaluation of Program Effectiveness (14 items), M & M Evaluation of Program Implementation (methods and materials specialists; 11 items), Teacher Evaluation of Program Effectiveness--Case Study…
Montgomery, H. Wynn
1988-01-01
The author discusses the establishment and objectives of private industry councils (PICs). Such topics as local decision making, private sector representation, on-site evaluations, and summer jobs programs are covered. Emphasis is on the Atlanta, Georgia PIC. (CH)
Simulation of current generation in a 3-D plasma model
Two wires carrying current in the same direction will attract each other, and two wires carrying current in the opposite direction will repel each other. Now, consider a test charge in a plasma. If the test charge carries current parallel to the plasma, then it will be pulled toward the plasma core, and if the test charge carries current anti-parallel to the plasma, then it will be pushed to the edge. The electromagnetic coupling between the plasma and a test charge (i.e., the Aparallel circ vparallel term in the test charge's Hamiltonian) breaks the symmetry in the parallel direction, and gives rise to a diffusion coefficient which is dependent on the particle's parallel velocity. This is the basis for the open-quotes preferential lossclose quotes mechanism described in the work by Nunan et al. In our previous 2+1/2 D work, in both cylindrical and toroidal geometries, showed that if the plasma column is centrally fueled, then an initial current increases steadily. The results in straight, cylindrical plasmas showed that self generated parallel current arises without trapped particle or neoclassical diffusion, as assumed by the bootstrap theory. It suggests that the fundamental mechanism seems to be the conservation of particles canonical momenta in the direction of the ignorable coordinate. We have extended the simulation to 3D to verify the model put forth. A scalable 3D EM-PIC code, with a localized field-solver, has been implemented to run on a large class of parallel computers. On the 512-node SP2 at Cornell Theory Center, we have benchmarked the 2+1/2 D calculations using 32 grids in the previously ignored direction, and a 100-fold increase in the number of particles. Our preliminary results show good agreements between the 2+1/2 D and the 3D calculations. We will present our 3D results at the meeting
Lucas, Laurent; Loscos, Céline
2013-01-01
While 3D vision has existed for many years, the use of 3D cameras and video-based modeling by the film industry has induced an explosion of interest for 3D acquisition technology, 3D content and 3D displays. As such, 3D video has become one of the new technology trends of this century.The chapters in this book cover a large spectrum of areas connected to 3D video, which are presented both theoretically and technologically, while taking into account both physiological and perceptual aspects. Stepping away from traditional 3D vision, the authors, all currently involved in these areas, provide th
Beane, Andy
2012-01-01
The essential fundamentals of 3D animation for aspiring 3D artists 3D is everywhere--video games, movie and television special effects, mobile devices, etc. Many aspiring artists and animators have grown up with 3D and computers, and naturally gravitate to this field as their area of interest. Bringing a blend of studio and classroom experience to offer you thorough coverage of the 3D animation industry, this must-have book shows you what it takes to create compelling and realistic 3D imagery. Serves as the first step to understanding the language of 3D and computer graphics (CG)Covers 3D anim
Artyomov, K. P.; Ryzhov, V. V.; Naumenko, G. A.; Shevelev, M. V.
2012-05-01
Different types of polarization radiation generated by a relativistic electron beam are simulated using fully electromagnetic particle-in-cell (PIC) code KARAT. The simulation results for diffraction radiation, transition radiation, Smith-Purcell radiation and Vavilov-Cherenkov radiation are in a good agreement with experimental data and analytical models. Modern PIC simulation is a good tool to check and predict experimental results.
Different types of polarization radiation generated by a relativistic electron beam are simulated using fully electromagnetic particle-in-cell (PIC) code KARAT. The simulation results for diffraction radiation, transition radiation, Smith-Purcell radiation and Vavilov-Cherenkov radiation are in a good agreement with experimental data and analytical models. Modern PIC simulation is a good tool to check and predict experimental results.
On the Numerical Dispersion of Electromagnetic Particle-In-Cell Code : Finite Grid Instability
Meyers, Michael David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Univ. of California, Los Angeles, CA (United States) Dept. of Physics and Astronomy; Huang, Chengkun [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zeng, Yong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yi, Sunghwan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Albright, Brian James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2014-07-15
The Particle-In-Cell (PIC) method is widely used in relativistic particle beam and laser plasma modeling. However, the PIC method exhibits numerical instabilities that can render unphysical simulation results or even destroy the simulation. For electromagnetic relativistic beam and plasma modeling, the most relevant numerical instabilities are the finite grid instability and the numerical Cherenkov instability. We review the numerical dispersion relation of the electromagnetic PIC algorithm to analyze the origin of these instabilities. We rigorously derive the faithful 3D numerical dispersion of the PIC algorithm, and then specialize to the Yee FDTD scheme. In particular, we account for the manner in which the PIC algorithm updates and samples the fields and distribution function. Temporal and spatial phase factors from solving Maxwell's equations on the Yee grid with the leapfrog scheme are also explicitly accounted for. Numerical solutions to the electrostatic-like modes in the 1D dispersion relation for a cold drifting plasma are obtained for parameters of interest. In the succeeding analysis, we investigate how the finite grid instability arises from the interaction of the numerical 1D modes admitted in the system and their aliases. The most significant interaction is due critically to the correct representation of the operators in the dispersion relation. We obtain a simple analytic expression for the peak growth rate due to this interaction.
PIC Simulation of Nonlinear Regime Wake Field Excitation in Cylindrical Resonator
The nonlinear mechanism of saturation of wake field amplitude, exited in the cylindrical resonator partially filled with dielectric by relativistic train of electron bunches numerically simulated by means of a specially elaborated 2.5 dimensional electromagnetic PIC-code
Grant, Ian S
1990-01-01
The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition F. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw the Physics of Stars Second Edition A. C. Phillips Computing for Scient
D. Pletinckx
2012-09-01
Full Text Available The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.
This book explains modeling of solid works 3D and application of 3D CAD/CAM. The contents of this book are outline of modeling such as CAD and 2D and 3D, solid works composition, method of sketch, writing measurement fixing, selecting projection, choosing condition of restriction, practice of sketch, making parts, reforming parts, modeling 3D, revising 3D modeling, using pattern function, modeling necessaries, assembling, floor plan, 3D modeling method, practice floor plans for industrial engineer data aided manufacturing, processing of CAD/CAM interface.
Particle Acceleration in 3D Magnetic Reconnection
Dahlin, J.; Drake, J. F.; Swisdak, M.
2015-12-01
Magnetic reconnection is an important driver of energetic particles in phenomena such as magnetospheric storms and solar flares. Using kinetic particle-in-cell (PIC) simulations, we show that the stochastic magnetic field structure which develops during 3D reconnection plays a vital role in particle acceleration and transport. In a 2D system, electrons are trapped in magnetic islands which limits their energy gain. In a 3D system, however, the stochastic magnetic field enables the energetic electrons to access volume-filling acceleration regions and therefore gain energy much more efficiently than in the 2D system. We also examine the relative roles of two important acceleration drivers: parallel electric fields and a Fermi mechanism associated with reflection of charged particles from contracting field lines. We find that parallel electric fields are most important for accelerating low energy particles, whereas Fermi reflection dominates energetic particle production. We also find that proton energization is reduced in the 3D system.
3D Electromagnetic characterization ofimplantable electrodes
Marozzi, Paolo
2013-01-01
Bioimpedance is a common feature of every tissue and its analysis allows the understanding of the physiological state of the tissue under test as well as its changes. The increase of glucose concentration can be detected by monitoring the tissue bioimpedance. In high risk situations and subjects like athletes, several checks with high accuracy are required each day. The scientific community has focused its efforts to find an integrated solution for in-vivo implantable bioimpedance measurement...
Felician ALECU
2010-01-01
Full Text Available Many professionals and 3D artists consider Blender as being the best open source solution for 3D computer graphics. The main features are related to modeling, rendering, shading, imaging, compositing, animation, physics and particles and realtime 3D/game creation.
3d-3d correspondence revisited
Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr
2016-04-01
In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.
An, Zhenguo; Zhang, Jingjie; Pan, Shunlong
2010-04-14
Novel 3D urchin-like glass/Ni-Ni(3)P/Co(2)P(2)O(7) core/shell/shell composite hollow structures are fabricated for the first time by controlled stepwise assembly of granular Ni-Ni(3)P alloy and ribbon-like Co(2)P(2)O(7) nanocrystals on hollow glass spheres in aqueous solutions at mild conditions. It is found that the shell structure and the overall morphology of the products can be tailored by properly tuning the annealing temperature. The as-obtained composite core/shell/shell products possess low density (ca. 1.18 g cm(-3)) and shape-dependent magnetic and microwave absorbing properties, and thus may have some promising applications in the fields of low-density magnetic materials, microwave absorbers, etc. Based on a series of contrast experiments, the probable formation mechanism of the core/shell/shell hierarchical structures is proposed. This work provides an additional strategy to prepare core/shell composite spheres with tailored shell morphology and electromagnetic properties. PMID:20379530
Brdnik, Lovro
2015-01-01
Diplomsko delo analizira trenutno stanje 3D tiskalnikov na trgu. Prikazan je razvoj in principi delovanja 3D tiskalnikov. Predstavljeni so tipi 3D tiskalnikov, njihove prednosti in slabosti. Podrobneje je predstavljena zgradba in delovanje koračnih motorjev. Opravljene so meritve koračnih motorjev. Opisana je programska oprema za rokovanje s 3D tiskalniki in komponente, ki jih potrebujemo za izdelavo. Diploma se oklepa vprašanja, ali je izdelava 3D tiskalnika bolj ekonomična kot pa naložba v ...
杨超; 龙继东; 王平; 廖方燕; 夏蒙重; 刘腊群
2013-01-01
In this article, we study the physical mechanism of the Penning discharge, develop a full three-dimensional particle simulation software of high-quality algorithm (PIC), design and add the corresponding physical scenario of Monte Carlo collisions (MCC) module, and track electron, hydrogen molecular ion (H+2 ), hydrogen positive ion (H+), and tri-n-hydrogen ion (H+3 ) at the same time, and successfully develop a full three-dimensional electromagnetic PIC/MCC numerical algorithm. Combined with the Penning discharge model extensively studied in china, the algorithm is verified through simulation. The simulation results show that the use of effective filtering algorithm can suppress the electromagnetic numerical noise. Electron energy is of Maxwell distribution. Due to the radial drift and accelerate of electrons, the H+2 yield is larger at the top of the ion source.%深入研究潘宁放电的物理机制，研制了全三维高品质算法粒子模拟软件(PIC)，设计并添加了相应物理情景的蒙特卡罗碰撞模块(MCC)，并对电子、氢分子离子(H+2)、氢正离子(H+)、氢三正离子(H+3)同时进行了跟踪，成功研制了全三维电磁PIC/MCC数值算法。结合国内研究较热的潘宁放电模型，对该算法进行模拟验证。模拟结果显示：采用有效的滤波算法能抑制电磁数值噪声，电子能量呈麦克斯韦分布，由于电子的径向漂移和加速导致离子源顶端H+2产量较大。
Numerical Schemes for Charged Particle Movement in PIC Simulations
A PIC model of plasma fibers is developed in the Department of Physics of the Czech Technical University for several years. The program code was written in FORTRAN 95, free-style (without compulsory columns). Fortran compiler and linker were used from Compaq Visual Fortran 6.1A embedded in the Microsoft Development studio GUI. Fully three-dimensional code with periodical boundary conditions was developed. Electromagnetic fields are localized on a grid and particles move freely through this grid. One of the partial problems of the PIC model is the numerical particle solver, which will be discussed in this paper. (author)
Meulien Ohlmann, Odile
2013-02-01
Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?
Navascues, D. Barrado y; Stauffer, J. R.; Song, I.; Caillault, J-P.
1999-01-01
We have reanalyzed data for the proposed moving group associated with beta Pic in order to determine if the group (or part of it) is real, and, if so, to derive an improved age estimate for beta Pic. By using new, more accurate proper motions from PPM and Hipparcos and a few new radial velocities, we conclude that on kinematic grounds, two M dwarfs have space motions that coincide with that of beta Pic to within 1 km/s with small error bars. Based on a CM diagram derived from accurate photome...
PIC microcomputer guide for beginner
Shin, Chulho
2001-03-15
This book comprised of four parts. The first part deals with computer one chip, voltage current, resistance, electronic components, logical element, TTL and CMOS, memory and I/O and MDS. The second part is about PIC16C84 which describes its memory structure, registers and PIC16C84 command. The third part deals with LED control program, jet car LED, quiz buzzer program, LED spectrum, digital dice, two digital dices and time bomb. The last part introduces PIC16C71 and temperature controller.
PIC microcomputer guide for beginner
This book comprised of four parts. The first part deals with computer one chip, voltage current, resistance, electronic components, logical element, TTL and CMOS, memory and I/O and MDS. The second part is about PIC16C84 which describes its memory structure, registers and PIC16C84 command. The third part deals with LED control program, jet car LED, quiz buzzer program, LED spectrum, digital dice, two digital dices and time bomb. The last part introduces PIC16C71 and temperature controller.
Lorentz boosted frame simulation of Laser wakefield acceleration in quasi-3D geometry
Yu, Peicheng; Davidson, Asher; Tableman, Adam; Dalichaouch, Thamine; Meyers, Michael D; Tsung, Frank S; Decyk, Viktor K; Fiuza, Frederico; Vieira, Jorge; Fonseca, Ricardo A; Lu, Wei; Silva, Luis O; Mori, Warren B
2015-01-01
When modeling laser wakefield acceleration (LWFA) using the particle-in-cell (PIC) algorithm in a Lorentz boosted frame, the plasma is drifting relativistically at $\\beta_b c$ towards the laser, which can lead to a computational speedup of $\\sim \\gamma_b^2=(1-\\beta_b^2)^{-1}$. Meanwhile, when LWFA is modeled in the quasi-3D geometry in which the electromagnetic fields and current are decomposed into a limited number of azimuthal harmonics, speedups are achieved by modeling three dimensional problems with the computation load on the order of two dimensional $r-z$ simulations. Here, we describe how to combine the speed ups from the Lorentz boosted frame and quasi-3D algorithms. The key to the combination is the use of a hybrid Yee-FFT solver in the quasi-3D geometry that can be used to effectively eliminate the Numerical Cerenkov Instability (NCI) that inevitably arises in a Lorentz boosted frame due to the unphysical coupling of Langmuir modes and EM modes of the relativistically drifting plasma in these simul...
陈华毅; 杨明发
2015-01-01
Deals with 3D temperature estimation for the asynchronous motor Y100L2-4. According to the structure characteristics and electromagnetic parameters, the thermal fields of steady state operation with rated load has been analyzed to extract the heat source of the motor, as the foundation of the steady temperature distribution. The heat dissipation coefficient of each part in motor and the equivalent heat transfer coefficient of air gap between the rotor and stator were analyzed. According to the boundary condition and the equivalent hypothesis and material properties of the motor, the temperature field was derive by One-way coupled simulation of finite element software, based on the simulation results of electromagnetic field. the simulation results have higher accuracy was verify by comparing with the experimental data.%以型号为Y100L2-4的异步电机为对象，建立了三维有限元模型。根据样机的结构特征和电磁参数，仿真计算出了样机额定负载下运行至稳态的电磁场，用以提取较为精确的发热源，进而计算其稳态温度分布。分析了电机各部分散热系数、定转子间气隙的等效传热系数，依据电机的边界条件、等效假设和材料属性，以电磁场仿真结果为基础，利用有限元软件单向耦合出相应的温度场分布图。最后通过与试验数据对比，验证仿真结果有更高的准确性。
Tournay, Bruno; Rüdiger, Bjarne
2006-01-01
3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s.......3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s....
Roberto Rinaldi
2014-12-01
Full Text Available After an experimental phase of many years, 3D filming is now effective and successful. Improvements are still possible, but the film industry achieved memorable success on 3D movie’s box offices due to the overall quality of its products. Special environments such as space (“Gravity” and the underwater realm look perfect to be reproduced in 3D. “Filming in space” was possible in “Gravity” using special effects and computer graphic. The underwater realm is still difficult to be handled. Underwater filming in 3D was not that easy and effective as filming in 2D, since not long ago. After almost 3 years of research, a French, Austrian and Italian team realized a perfect tool to film underwater, in 3D, without any constrains. This allows filmmakers to bring the audience deep inside an environment where they most probably will never have the chance to be.
3D Reconstruction in Magnetic Resonance Imaging
Mikulka, J.; Bartušek, Karel
Cambridge : The Electromagnetics Academy, 2010, s. 1043-1046. ISBN 978-1-934142-14-1. [PIERS 2010 Cambridge. Cambridge (US), 05.07.2010-08.07.2010] R&D Projects: GA ČR GA102/09/0314 Institutional research plan: CEZ:AV0Z20650511 Keywords : 3D reconstruction * magnetic resonance imaging Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering
Valenza, Enrico
2015-01-01
This book is aimed at the professionals that already have good 3D CGI experience with commercial packages and have now decided to try the open source Blender and want to experiment with something more complex than the average tutorials on the web. However, it's also aimed at the intermediate Blender users who simply want to go some steps further.It's taken for granted that you already know how to move inside the Blender interface, that you already have 3D modeling knowledge, and also that of basic 3D modeling and rendering concepts, for example, edge-loops, n-gons, or samples. In any case, it'
On the numerical dispersion of electromagnetic particle-in-cell code: Finite grid instability
The Particle-In-Cell (PIC) method is widely used in relativistic particle beam and laser plasma modeling. However, the PIC method exhibits numerical instabilities that can render unphysical simulation results or even destroy the simulation. For electromagnetic relativistic beam and plasma modeling, the most relevant numerical instabilities are the finite grid instability and the numerical Cherenkov instability. We review the numerical dispersion relation of the Electromagnetic PIC model. We rigorously derive the faithful 3-D numerical dispersion relation of the PIC model, for a simple, direct current deposition scheme, which does not conserve electric charge exactly. We then specialize to the Yee FDTD scheme. In particular, we clarify the presence of alias modes in an eigenmode analysis of the PIC model, which combines both discrete and continuous variables. The manner in which the PIC model updates and samples the fields and distribution function, together with the temporal and spatial phase factors from solving Maxwell's equations on the Yee grid with the leapfrog scheme, is explicitly accounted for. Numerical solutions to the electrostatic-like modes in the 1-D dispersion relation for a cold drifting plasma are obtained for parameters of interest. In the succeeding analysis, we investigate how the finite grid instability arises from the interaction of the numerical modes admitted in the system and their aliases. The most significant interaction is due critically to the correct representation of the operators in the dispersion relation. We obtain a simple analytic expression for the peak growth rate due to this interaction, which is then verified by simulation. We demonstrate that our analysis is readily extendable to charge conserving models
On the numerical dispersion of electromagnetic particle-in-cell code: Finite grid instability
Meyers, M.D., E-mail: mdmeyers@physics.ucla.edu [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095 (United States); Huang, C.-K., E-mail: huangck@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Zeng, Y.; Yi, S.A.; Albright, B.J. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
2015-09-15
The Particle-In-Cell (PIC) method is widely used in relativistic particle beam and laser plasma modeling. However, the PIC method exhibits numerical instabilities that can render unphysical simulation results or even destroy the simulation. For electromagnetic relativistic beam and plasma modeling, the most relevant numerical instabilities are the finite grid instability and the numerical Cherenkov instability. We review the numerical dispersion relation of the Electromagnetic PIC model. We rigorously derive the faithful 3-D numerical dispersion relation of the PIC model, for a simple, direct current deposition scheme, which does not conserve electric charge exactly. We then specialize to the Yee FDTD scheme. In particular, we clarify the presence of alias modes in an eigenmode analysis of the PIC model, which combines both discrete and continuous variables. The manner in which the PIC model updates and samples the fields and distribution function, together with the temporal and spatial phase factors from solving Maxwell's equations on the Yee grid with the leapfrog scheme, is explicitly accounted for. Numerical solutions to the electrostatic-like modes in the 1-D dispersion relation for a cold drifting plasma are obtained for parameters of interest. In the succeeding analysis, we investigate how the finite grid instability arises from the interaction of the numerical modes admitted in the system and their aliases. The most significant interaction is due critically to the correct representation of the operators in the dispersion relation. We obtain a simple analytic expression for the peak growth rate due to this interaction, which is then verified by simulation. We demonstrate that our analysis is readily extendable to charge conserving models.
Hundebøl, Jesper
wave of new building information modelling tools demands further investigation, not least because of industry representatives' somewhat coarse parlance: Now the word is spreading -3D digital modelling is nothing less than a revolution, a shift of paradigm, a new alphabet... Research qeustions. Based...... on empirical probes (interviews, observations, written inscriptions) within the Danish construction industry this paper explores the organizational and managerial dynamics of 3D Digital Modelling. The paper intends to - Illustrate how the network of (non-)human actors engaged in the promotion (and arrest) of 3......D Modelling (in Denmark) stabilizes - Examine how 3D Modelling manifests itself in the early design phases of a construction project with a view to discuss the effects hereof for i.a. the management of the building process. Structure. The paper introduces a few, basic methodological concepts...
Lively, Michael
2010-01-01
Professional Papervision3D describes how Papervision3D works and how real world applications are built, with a clear look at essential topics such as building websites and games, creating virtual tours, and Adobe's Flash 10. Readers learn important techniques through hands-on applications, and build on those skills as the book progresses. The companion website contains all code examples, video step-by-step explanations, and a collada repository.
邰春艳; 殷小玮; 张立同; 成来飞; 刘建功
2012-01-01
3D carbon/carbon （C/C） composite materials with different porosities and bulk densities were fabricated by repeated precursor infiltration and pyrolysis （PIP） process, and the electromagnetic interference shielding （EMI） effectiveness of C/C composites at 8.2 - 12.4 GHz （X band） with different porosities were studied. The results indicate that both EMI absorption shielding effectiveness and the total EMI shielding effectiveness of C/C composites could be improved by reducing the porosity appropriately. When the open porosity is 33.4~, the C/C composite material shows a maximum shielding effectiveness of 40 dB, and the EIM apsorption shielding effectiveness（30 dB） is much higher than EMI reflection shielding effectiveness（12 dB））. Porous C/C composite is one kind of excellent EMI shielding materials with high absorption and low reflection.%通过多次重复先驱体浸渍裂解（PIP）工艺过程，改变材料的孔隙率和体密度，制备不同孔隙率的三维针刺碳／碳（C／C）复合材料，并研究了在8．2-12．4GHz频率范围内（x波段）不同孔隙率C／C复合材料的电磁屏蔽效能。结果表明：适当降低孔隙率有利于提高C／C复合材料的总电磁屏蔽效能和电磁吸收屏蔽效能，当开气孔率为33．4％时，C／C复合材料具有最大的电磁屏蔽效能（40dB），且电磁吸收屏蔽效能（30dB）远大于电磁反射屏蔽效能（12dB），是极具潜力的高吸收低反射电磁屏蔽材料。
3D Spectroscopic Instrumentation
Bershady, Matthew A
2009-01-01
In this Chapter we review the challenges of, and opportunities for, 3D spectroscopy, and how these have lead to new and different approaches to sampling astronomical information. We describe and categorize existing instruments on 4m and 10m telescopes. Our primary focus is on grating-dispersed spectrographs. We discuss how to optimize dispersive elements, such as VPH gratings, to achieve adequate spectral resolution, high throughput, and efficient data packing to maximize spatial sampling for 3D spectroscopy. We review and compare the various coupling methods that make these spectrographs ``3D,'' including fibers, lenslets, slicers, and filtered multi-slits. We also describe Fabry-Perot and spatial-heterodyne interferometers, pointing out their advantages as field-widened systems relative to conventional, grating-dispersed spectrographs. We explore the parameter space all these instruments sample, highlighting regimes open for exploitation. Present instruments provide a foil for future development. We give an...
Halskov, Kim; Johansen, Stine Liv; Bach Mikkelsen, Michelle
2014-01-01
Three-dimensional projection installations are particular kinds of augmented spaces in which a digital 3-D model is projected onto a physical three-dimensional object, thereby fusing the digital content and the physical object. Based on interaction design research and media studies, this article...... contributes to the understanding of the distinctive characteristics of such a new medium, and identifies three strategies for designing 3-D projection installations: establishing space; interplay between the digital and the physical; and transformation of materiality. The principal empirical case, From...... Fingerplan to Loop City, is a 3-D projection installation presenting the history and future of city planning for the Copenhagen area in Denmark. The installation was presented as part of the 12th Architecture Biennale in Venice in 2010....
Francisco R. Feito Higueruela
2010-04-01
Full Text Available Applications of Geographical Information Systems on several Archeology fields have been increasing during the last years. Recent avances in these technologies make possible to work with more realistic 3D models. In this paper we introduce a new paradigm for this system, the GIS Thetrahedron, in which we define the fundamental elements of GIS, in order to provide a better understanding of their capabilities. At the same time the basic 3D characteristics of some comercial and open source software are described, as well as the application to some samples on archeological researchs
Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran
2016-03-01
We study the conformal bootstrap for a 4-point function of fermions in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge C T . We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N . We also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.
Villaume, René Domine; Ørstrup, Finn Rude
2002-01-01
Projektet undersøger potentialet for interaktiv 3D design via Internettet. Arkitekt Jørn Utzons projekt til Espansiva blev udviklet som et byggesystem med det mål, at kunne skabe mangfoldige planmuligheder og mangfoldige facade- og rumudformninger. Systemets bygningskomponenter er digitaliseret som...... 3D elementer og gjort tilgængelige. Via Internettet er det nu muligt at sammenstille og afprøve en uendelig række bygningstyper som systemet blev tænkt og udviklet til....
Kotek, L.
2015-01-01
This paper is about 3D scan of plaster dental casts. The main aim of the work is a hardware and software proposition of 3D scan system for scanning of dental casts. There were used camera, projector and rotate table for this scanning system. Surface triangulation was used, taking benefits of projections of structured light on object, which is being scanned. The rotate table is controlled by PC. The camera, projector and rotate table are synchronized by PC. Controlling of stepper motor is prov...
Ms. Swapnali R. Ghadge
2013-01-01
In today’s ever-shifting media landscape, it can be a complex task to find effective ways to reach your desired audience. As traditional media such as television continue to lose audience share, one venue in particular stands out for its ability to attract highly motivated audiences and for its tremendous growth potential the 3D Internet. The concept of '3D Internet' has recently come into the spotlight in the R&D arena, catching the attention of many people, and leading to a lot o...
Hejlesen, Aske K.; Ovesen, Nis
2012-01-01
This paper presents an experimental approach to teaching 3D modelling techniques in an Industrial Design programme. The approach includes the use of tangible free form models as tools for improving the overall learning. The paper is based on lecturer and student experiences obtained through...
Stenholt, Rasmus; Madsen, Claus B.
2011-01-01
Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data...
M.M. Voormolen
2007-01-01
textabstractThree dimensional (3D) echocardiography has recently developed from an experimental technique in the â€™90 towards an imaging modality for the daily clinical practice. This dissertation describes the considerations, implementation, validation and clinical application of a unique
Numerical experiments on unstructured PIC stability.
Day, David Minot
2011-04-01
Particle-In-Cell (PIC) is a method for plasmas simulation. Particles are pushed with Verlet time integration. Fields are modeled using finite differences on a tensor product mesh (cells). The Unstructured PIC methods studied here use instead finite element discretizations on unstructured (simplicial) meshes. PIC is constrained by stability limits (upper bounds) on mesh and time step sizes. Numerical evidence (2D) and analysis will be presented showing that similar bounds constrain unstructured PIC.
Klusoň, Jindřich
2010-01-01
Computer animation has a growing importance and application in the world. With expansion of technologies increases quality of the final animation as well as number of 3D animation software. This thesis is currently mapped animation software for creating animation in film, television industry and video games which are advisable users requirements. Of them were selected according to criteria the best - Autodesk Maya 2011. This animation software is unique with tools for creating special effects...
Bai, Xianchen; Yang, Jianhua; Zhang, Jiande
2012-08-01
By using an electromagnetic particle-in-cell (PIC) code, an S-band two-cavity wide-gap klystron amplifier (WKA) loaded with washers/rods structure is designed and investigated for high power injection application. Influences of the washers/rods structure on the high frequency characteristics and the basic operation of the amplifier are presented. Generally, the rod structure has great impacts on the space-charge potential depression and the resonant frequency of the cavities. Nevertheless, if only the resonant frequency is tuned to the desired operation frequency, effects of the rod size on the basic operation of the amplifier are expected to be very weak. The 3-dimension (3-D) PIC simulation results show an output power of 0.98 GW corresponding to an efficiency of 33% for the WKA, with a 594 keV, 5 kA electron beam guided by an external magnetic field of 1.5 Tesla. Moreover, if a conductive plane is placed near the output gap, such as the electron collector, the beam potential energy can be further released, and the RF power can be increased to about 1.07 GW with the conversion efficiency of about 36%.
SD card projects using the PIC microcontroller
Ibrahim, Dogan
2010-01-01
PIC Microcontrollers are a favorite in industry and with hobbyists. These microcontrollers are versatile, simple, and low cost making them perfect for many different applications. The 8-bit PIC is widely used in consumer electronic goods, office automation, and personal projects. Author, Dogan Ibrahim, author of several PIC books has now written a book using the PIC18 family of microcontrollers to create projects with SD cards. This book is ideal for those practicing engineers, advanced students, and PIC enthusiasts that want to incorporate SD Cards into their devices. SD cards are che
PIC code simulations on NRL gyro-amplifiers
Choi, J.J. [Science Applications International Corp., McLean, VA (United States); Ahn, S.; Danly, B.G.; Levush, B.; Parker, R.K. [Naval Research lab., Washington, DC (United States). Vacuum Electronics Branch; Ganguly, A.K.; Park, G.S. [Omega-P, Inc., New Haven, CT (United States)
1996-12-31
Developments on high power millimeter wave gyro-amplifiers are currently underway at NRL. Recent experiments on a folded waveguide circuit demonstrated a strong electron cyclotron instability, producing a high efficiency (> 20%) oscillation at 32.8 GHz. The interaction was first predicted from a particle-in-cell (PIC) code, MAGIC and agreed reasonably well with the measured performance. A design study on a 200 kW, 35 GHz two-cavity gyroklystron amplifier is in progress by the use of slow-time scale non-linear codes for beam-wave interactions, a finite element electromagnetic code, HFSS and a CASCADE code for cold cavity problems. MAGIC and SOS are also utilized to compare with those predictions. PIC-code simulation techniques and its comparison with measurements will be presented.
Barbancho AnaM
2010-01-01
Full Text Available In this paper, a piano chords detector based on parallel interference cancellation (PIC is presented. The proposed system makes use of the novel idea of modeling a segment of music as a third generation mobile communications signal, specifically, as a CDMA (Code Division Multiple Access signal. The proposed model considers each piano note as a CDMA user in which the spreading code is replaced by a representative note pattern. The lack of orthogonality between the note patterns will make necessary to design a specific thresholding matrix to decide whether the PIC outputs correspond to the actual notes composing the chord or not. An additional stage that performs an octave test and a fifth test has been included that improves the error rate in the detection of these intervals that are specially difficult to detect. The proposed system attains very good results in both the detection of the notes that compose a chord and the estimation of the polyphony number.
Barbancho, Ana M.; Tardón, Lorenzo J.; Barbancho, Isabel
2010-12-01
In this paper, a piano chords detector based on parallel interference cancellation (PIC) is presented. The proposed system makes use of the novel idea of modeling a segment of music as a third generation mobile communications signal, specifically, as a CDMA (Code Division Multiple Access) signal. The proposed model considers each piano note as a CDMA user in which the spreading code is replaced by a representative note pattern. The lack of orthogonality between the note patterns will make necessary to design a specific thresholding matrix to decide whether the PIC outputs correspond to the actual notes composing the chord or not. An additional stage that performs an octave test and a fifth test has been included that improves the error rate in the detection of these intervals that are specially difficult to detect. The proposed system attains very good results in both the detection of the notes that compose a chord and the estimation of the polyphony number.
Understanding Partners in Compliance (PIC)
Partners in Compliance (PIC) is a motor carrier safety and compliance program that rewards carriers for their commitment to highway safety. Carriers voluntarily commit to a high level of compliance to eight benchmark criteria and monitor their operations. They submit reports on a monthly basis and understand that they can be subject to random government audits with respect to any of the benchmark areas. The eight benchmark criteria are: (1) safety and driver qualifications, (2) reportable collision data and analysis, (3) equipment inspection and repair, (4) driver's hours of service, (5) dangerous goods, (6) vehicle weight and dimensional management, (7) IFTA and Treasury compliance, and (8) pro-rate and registries compliance. It was emphasized that PIC is not a carrier self-regulation program, it is an investment in highway safety, a sharing in responsibility between regulators and carriers, a sign of a paradigm shift in thinking about transportation safety
Andringa, Roel; de Roo, Mees; Hohm, Olaf; Sezgin, Ergin; Townsend, Paul K
2009-01-01
We construct the N=1 three-dimensional supergravity theory with cosmological, Einstein-Hilbert, Lorentz Chern-Simons, and general curvature squared terms. We determine the general supersymmetric configuration, and find a family of supersymmetric adS vacua with the supersymmetric Minkowski vacuum as a limiting case. Linearizing about the Minkowski vacuum, we find three classes of unitary theories; one is the supersymmetric extension of the recently discovered `massive 3D gravity'. Another is a `new topologically massive supergravity' (with no Einstein-Hilbert term) that propagates a single (2,3/2) helicity supermultiplet.
Andringa, Roel; Bergshoeff, Eric A; De Roo, Mees; Hohm, Olaf [Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Sezgin, Ergin [George and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Townsend, Paul K, E-mail: E.A.Bergshoeff@rug.n, E-mail: O.Hohm@rug.n, E-mail: sezgin@tamu.ed, E-mail: P.K.Townsend@damtp.cam.ac.u [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)
2010-01-21
We construct the N=1 three-dimensional supergravity theory with cosmological, Einstein-Hilbert, Lorentz Chern-Simons, and general curvature squared terms. We determine the general supersymmetric configuration, and find a family of supersymmetric adS vacua with the supersymmetric Minkowski vacuum as a limiting case. Linearizing about the Minkowski vacuum, we find three classes of unitary theories; one is the supersymmetric extension of the recently discovered 'massive 3D gravity'. Another is a 'new topologically massive supergravity' (with no Einstein-Hilbert term) that propagates a single (2,3/2) helicity supermultiplet.
PIC simulation of electron acceleration in an underdense plasma
S Darvish Molla
2011-06-01
Full Text Available One of the interesting Laser-Plasma phenomena, when the laser power is high and ultra intense, is the generation of large amplitude plasma waves (Wakefield and electron acceleration. An intense electromagnetic laser pulse can create plasma oscillations through the action of the nonlinear pondermotive force. electrons trapped in the wake can be accelerated to high energies, more than 1 TW. Of the wide variety of methods for generating a regular electric field in plasmas with strong laser radiation, the most attractive one at the present time is the scheme of the Laser Wake Field Accelerator (LWFA. In this method, a strong Langmuir wave is excited in the plasma. In such a wave, electrons are trapped and can acquire relativistic energies, accelerated to high energies. In this paper the PIC simulation of wakefield generation and electron acceleration in an underdense plasma with a short ultra intense laser pulse is discussed. 2D electromagnetic PIC code is written by FORTRAN 90, are developed, and the propagation of different electromagnetic waves in vacuum and plasma is shown. Next, the accuracy of implementation of 2D electromagnetic code is verified, making it relativistic and simulating the generating of wakefield and electron acceleration in an underdense plasma. It is shown that when a symmetric electromagnetic pulse passes through the plasma, the longitudinal field generated in plasma, at the back of the pulse, is weaker than the one due to an asymmetric electromagnetic pulse, and thus the electrons acquire less energy. About the asymmetric pulse, when front part of the pulse has smaller time rise than the back part of the pulse, a stronger wakefield generates, in plasma, at the back of the pulse, and consequently the electrons acquire more energy. In an inverse case, when the rise time of the back part of the pulse is bigger in comparison with that of the back part, a weaker wakefield generates and this leads to the fact that the electrons
Ms. Swapnali R. Ghadge
2013-08-01
Full Text Available In today’s ever-shifting media landscape, it can be a complex task to find effective ways to reach your desired audience. As traditional media such as television continue to lose audience share, one venue in particular stands out for its ability to attract highly motivated audiences and for its tremendous growth potential the 3D Internet. The concept of '3D Internet' has recently come into the spotlight in the R&D arena, catching the attention of many people, and leading to a lot of discussions. Basically, one can look into this matter from a few different perspectives: visualization and representation of information, and creation and transportation of information, among others. All of them still constitute research challenges, as no products or services are yet available or foreseen for the near future. Nevertheless, one can try to envisage the directions that can be taken towards achieving this goal. People who take part in virtual worlds stay online longer with a heightened level of interest. To take advantage of that interest, diverse businesses and organizations have claimed an early stake in this fast-growing market. They include technology leaders such as IBM, Microsoft, and Cisco, companies such as BMW, Toyota, Circuit City, Coca Cola, and Calvin Klein, and scores of universities, including Harvard, Stanford and Penn State.
Murakami, Y. [Geological Survey of Japan, Tsukuba (Japan); Saito, A.; Oya, T. [Mitsui Mineral Development Engineering Co. Ltd., Tokyo (Japan)
1996-10-01
This paper describes the calculation method of 3-D underground structures in TDME method which measures only field components. Recently, FDTD method was developed as calculation method in time domain difference calculus, and the forward analysis accuracy of 3-D fields was rapidly improved. The survey results using a large-scale loop (600m{times}360m) were numerically analyzed by FDTD method. 16 measuring lines were prepared in both X and Y directions, and measuring points were prepared on intersection points of the measuring lines. Since signal current is staircase one, step and impulse responses of the ground were determined by calculating magnetic field and its time differentiation. The rectangular body (120m{times}120m{times}100m) of 0.2S/m in conductivity (5 ohm m in resistivity) was installed 160m under the ground as 3-D resistivity anomaly. The ground of 0.01S/m (100 ohm m) was assumed. Time variation in horizontal magnetic field vector plot of impulse responses of the uniform ground could be observed. The position of the resistivity anomaly could be also determined from spacial differentiation of magnetic field of grid pattern measuring points. 1 ref., 6 figs.
Elimination of the numerical Cerenkov instability for spectral EM-PIC codes
Yu, Peicheng; Decyk, Viktor K; Fiuza, F; Vieira, Jorge; Tsung, Frank S; Fonseca, Ricardo A; Lu, Wei; Silva, Luis O; Mori, Warren B
2014-01-01
When using an electromagnetic particle-in-cell (EM-PIC) code to simulate a relativistically drifting plasma, a violent numerical instability known as the numerical Cerenkov instability (NCI) occurs. The NCI is due to the unphysical coupling of electromagnetic waves on a grid to wave-particle resonances, including aliased resonances, i.e., $\\omega + 2\\pi\\mu/\\Delta t=(k_1+ 2\\pi\
Output couplers for 3D photonic crystal waveguides
Full text: One crucial practical problem facing 3D photonic crystal applications is finding a way to couple electromagnetic energy efficiently into and out of a 3D photonic crystal waveguide. We investigate two approaches for solving this problem: the photonic crystal horn antenna; and the conventional waveguide to 3D photonic crystal waveguide mode coupler. We demonstrate both approaches theoretically using numerical simulations, and experimentally using prototypes operating at microwave frequencies. Both methods succeed in providing highly efficient coupling into and out of the 3D photonic crystal waveguide over a wide bandwidth, thereby demonstrating two solutions to the output coupling problem. Copyright (2005) Australian Institute of Physics
Hausman, Kalani Kirk
2014-01-01
Get started printing out 3D objects quickly and inexpensively! 3D printing is no longer just a figment of your imagination. This remarkable technology is coming to the masses with the growing availability of 3D printers. 3D printers create 3-dimensional layered models and they allow users to create prototypes that use multiple materials and colors. This friendly-but-straightforward guide examines each type of 3D printing technology available today and gives artists, entrepreneurs, engineers, and hobbyists insight into the amazing things 3D printing has to offer. You'll discover methods for
Szkandera, Jan
2009-01-01
Tato bakalářská práce se zabývá návrhem a realizací systému, který umožní obraz scény zobrazovaný na ploše vnímat prostorově. Prostorové vnímání 2D obrazové informace je umožněno jednak stereopromítáním a jednak tím, že se obraz mění v závislosti na poloze pozorovatele. Tato práce se zabývá hlavně druhým z těchto problémů. This Bachelor's thesis goal is to design and realize system, which allows user to perceive 2D visual information as three-dimensional. 3D visual preception of 2D image i...
Mobile tomographs often have the problem that high spatial resolution is impossible owing to the position or setup of the tomograph. While the tree tomograph developed by Messrs. Isotopenforschung Dr. Sauerwein GmbH worked well in practice, it is no longer used as the spatial resolution and measuring time are insufficient for many modern applications. The paper shows that the mechanical base of the method is sufficient for 3D CT measurements with modern detectors and X-ray tubes. CT measurements with very good statistics take less than 10 min. This means that mobile systems can be used, e.g. in examinations of non-transportable cultural objects or monuments. Enhancement of the spatial resolution of mobile tomographs capable of measuring in any position is made difficult by the fact that the tomograph has moving parts and will therefore have weight shifts. With the aid of tomographies whose spatial resolution is far higher than the mechanical accuracy, a correction method is presented for direct integration of the Feldkamp algorithm
Charge-conserving FEM-PIC schemes on general grids
Particle-In-Cell (PIC) solvers are a major tool for the understanding of the complex behavior of a plasma or a particle beam in many situations. An important issue for electromagnetic PIC solvers, where the fields are computed using Maxwell's equations, is the problem of discrete charge conservation. In this article, we aim at proposing a general mathematical formulation for charge-conserving finite-element Maxwell solvers coupled with particle schemes. In particular, we identify the finite-element continuity equations that must be satisfied by the discrete current sources for several classes of time-domain Vlasov-Maxwell simulations to preserve the Gauss law at each time step, and propose a generic algorithm for computing such consistent sources. Since our results cover a wide range of schemes (namely curl-conforming finite element methods of arbitrary degree, general meshes in two or three dimensions, several classes of time discretization schemes, particles with arbitrary shape factors and piecewise polynomial trajectories of arbitrary degree), we believe that they provide a useful roadmap in the design of high-order charge-conserving FEM-PIC numerical schemes. (authors)
Cramer, Richard D.
2010-01-01
The average error of pIC50 prediction reported for 140 structures in make-and-test applications of topomer CoMFA by four discovery organizations is 0.5. This remarkable accuracy can be understood to result from a topomer pose’s goal of generating field differences only at lattice intersections adjacent to intended structural change.
X3D: Extensible 3D Graphics Standard
Daly, Leonard; Brutzman, Don
2007-01-01
The article of record as published may be located at http://dx.doi.org/10.1109/MSP.2007.905889 Extensible 3D (X3D) is the open standard for Web-delivered three-dimensional (3D) graphics. It specifies a declarative geometry definition language, a run-time engine, and an application program interface (API) that provide an interactive, animated, real-time environment for 3D graphics. The X3D specification documents are freely available, the standard can be used without paying any royalties,...
3D game environments create professional 3D game worlds
Ahearn, Luke
2008-01-01
The ultimate resource to help you create triple-A quality art for a variety of game worlds; 3D Game Environments offers detailed tutorials on creating 3D models, applying 2D art to 3D models, and clear concise advice on issues of efficiency and optimization for a 3D game engine. Using Photoshop and 3ds Max as his primary tools, Luke Ahearn explains how to create realistic textures from photo source and uses a variety of techniques to portray dynamic and believable game worlds.From a modern city to a steamy jungle, learn about the planning and technological considerations for 3D modelin
3D Erosion Simulation Method and Analysis of Electromagnetic Rail Mechanism%导轨式电磁驱动装置三维烧蚀仿真方法及分析
关晓存; 鲁军勇; 康军; 张晓
2014-01-01
Based on multi-field coupling theory (assuming that the armature surface wear was mostly melted wear),electromagnetic-temperature field coupled physics equations were derived by use of considering armature erosion.APDL language was used to work out the correspond-ing program,and electromagnetic field and temperature field distribution of armature were ana-lyzed with the help of considering the armature three-dimensional erosion.Finally,armature three-dimensional erosion distribution was compared with the distribution of IAT armature test results,and the results showed that:in the movement of block armature,the erosion firstly occurs in the front contact surface between the guide rail and the armature.Under the condi-tion of only considering the Joule heat,the armature was distributed more consistent,and the difference between the edges on both sides of the armature was larger;under the conditions of consi-dering and not considering the erosion,the distributions of electromagnetic field and tem-perature field were very different.This research can provide theoretical basis for revealing the erosion mechanism of the electromagnetic rail gun.%基于多场耦合理论，推导出考虑烧蚀的电磁场-温度场耦合的物理方程。利用 APDL 语言编制相应程序，分析了在考虑电枢烧蚀条件下的电流密度和温度的分布状况。电枢三维烧蚀分布与 IAT试验结果分布进行对比结果表明块状电枢在导轨间运动过程中，烧蚀首先发生在导轨与电枢接触面前端边缘。在仅考虑焦耳热情况下，电枢前端烧蚀分布比较一致，电枢两侧边缘差别较大；考虑烧蚀和不考虑烧蚀情况下电磁场和温度场分布存在很大不同。此研究为揭示电磁驱动装置烧蚀机理奠定理论基础。
Aboufadel, Edward F.
2014-01-01
The purpose of this short paper is to describe a project to manufacture a regular octohedron on a 3D printer. We assume that the reader is familiar with the basics of 3D printing. In the project, we use fundamental ideas to calculate the vertices and faces of an octohedron. Then, we utilize the OPENSCAD program to create a virtual 3D model and an STereoLithography (.stl) file that can be used by a 3D printer.
Rodrigues, Marcos; Robinson, Alan; Alboul, Lyuba; Brink, Willie
2006-01-01
3D face recognition is an open field. In this paper we present a method for 3D facial recognition based on Principal Components Analysis. The method uses a relatively large number of facial measurements and ratios and yields reliable recognition. We also highlight our approach to sensor development for fast 3D model acquisition and automatic facial feature extraction.
3-D contextual Bayesian classifiers
Larsen, Rasmus
distribution for the pixel values as well as a prior distribution for the configuration of class variables within the cross that is made of a pixel and its four nearest neighbours. We will extend these algorithms to 3-D, i.e. we will specify a simultaneous Gaussian distribution for a pixel and its 6 nearest 3......-D neighbours, and generalise the class variable configuration distributions within the 3-D cross given in 2-D algorithms. The new 3-D algorithms are tested on a synthetic 3-D multivariate dataset....
Taming Supersymmetric Defects in 3d-3d Correspondence
Gang, Dongmin; Romo, Mauricio; Yamazaki, Masahito
2015-01-01
We study knots in 3d Chern-Simons theory with complex gauge group $SL(N,\\mathbb{C})$, in the context of its relation with 3d $\\mathcal{N}=2$ theory (the so-called 3d-3d correspondence). The defect has either co-dimension 2 or co-dimension 4 inside the 6d $(2,0)$ theory, which is compactified on a 3-manifold $\\hat{M}$. We identify such defects in various corners of the 3d-3d correspondence, namely in 3d $SL(N,\\mathbb{C})$ Chern-Simons theory, in 3d $\\mathcal{N}=2$ theory, in 5d $\\mathcal{N}=2$ super Yang-Mills theory, and in the M-theory holographic dual. We can make quantitative checks of the 3d-3d correspondence by computing partition functions at each of these theories. This Letter is a companion to a longer paper, which contains more details and more results.
PIC (PRODUCTS OF INCOMPLETE COMBUSTION) ANALYSIS METHODS
The report gives results of method evaluations for products of incomplete combustion (PICs): 36 proposed PICs were evaluated by previously developed gas chromatography/flame ionization detection (GC/FID) and gas chromatography/mass spectroscopy (GC/MS) methods. It also gives resu...
3D Printing Functional Nanocomposites
Leong, Yew Juan
2016-01-01
3D printing presents the ability of rapid prototyping and rapid manufacturing. Techniques such as stereolithography (SLA) and fused deposition molding (FDM) have been developed and utilized since the inception of 3D printing. In such techniques, polymers represent the most commonly used material for 3D printing due to material properties such as thermo plasticity as well as its ability to be polymerized from monomers. Polymer nanocomposites are polymers with nanomaterials composited into the ...
3D Elevation Program—Virtual USA in 3D
Lukas, Vicki; Stoker, J.M.
2016-01-01
The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.
3D IBFV : Hardware-Accelerated 3D Flow Visualization
Telea, Alexandru; Wijk, Jarke J. van
2003-01-01
We present a hardware-accelerated method for visualizing 3D flow fields. The method is based on insertion, advection, and decay of dye. To this aim, we extend the texture-based IBFV technique for 2D flow visualization in two main directions. First, we decompose the 3D flow visualization problem in a
Connell, Ellery
2011-01-01
Helping graphic designers expand their 2D skills into the 3D space The trend in graphic design is towards 3D, with the demand for motion graphics, animation, photorealism, and interactivity rapidly increasing. And with the meteoric rise of iPads, smartphones, and other interactive devices, the design landscape is changing faster than ever.2D digital artists who need a quick and efficient way to join this brave new world will want 3D for Graphic Designers. Readers get hands-on basic training in working in the 3D space, including product design, industrial design and visualization, modeling, ani
Larsen, Rasmus
1997-01-01
. This includes the specification of a Gaussian distribution for the pixel values as well as a prior distribution for the configuration of class variables within the cross that is m ade of a pixel and its four nearest neighbours. We will extend this algorithm to 3-D, i.e. we will specify a simultaneous Gaussian...... distr ibution for a pixel and its 6 nearest 3-D neighbours, and generalise the class variable configuration distribution within the 3-D cross. The algorithm is tested on a synthetic 3-D multivariate dataset....
3D Bayesian contextual classifiers
Larsen, Rasmus
2000-01-01
We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours.......We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours....
Interactive 3D multimedia content
Cellary, Wojciech
2012-01-01
The book describes recent research results in the areas of modelling, creation, management and presentation of interactive 3D multimedia content. The book describes the current state of the art in the field and identifies the most important research and design issues. Consecutive chapters address these issues. These are: database modelling of 3D content, security in 3D environments, describing interactivity of content, searching content, visualization of search results, modelling mixed reality content, and efficient creation of interactive 3D content. Each chapter is illustrated with example a
Griffey, Jason
2014-01-01
As the maker movement continues to grow and 3-D printers become more affordable, an expanding group of hobbyists is keen to explore this new technology. In the time-honored tradition of introducing new technologies, many libraries are considering purchasing a 3-D printer. Jason Griffey, an early enthusiast of 3-D printing, has researched the marketplace and seen several systems first hand at the Consumer Electronics Show. In this report he introduces readers to the 3-D printing marketplace, covering such topics asHow fused deposition modeling (FDM) printing workBasic terminology such as build
Extending PIC schemes for the study of physics in ultra-strong laser fields
Gonoskov, A; Efimenko, E; Ilderton, A; Marklund, M; Meyerov, I; Muraviev, A; Surmin, I; Wallin, E
2014-01-01
Progress in laser technology has opened up possibilities using intense light to probe fundamental physics of ultra-strong electromagnetic fields. A commensurate interest has arisen in large-scale numerical simulations of laser-matter interactions, and here we describe the extension of particle-in-cell (PIC) schemes to account for strong field phenomena. We describe here the numerical implementation of strong-field processes such as quantized emission and electron-positron pair production, and provide solutions for related methodological and algorithmic problems of radiation double counting, low-energy cutoffs in particle emission, memory overload due to cascades of particle production, control of computational costs for statistical routines, and the limitations on time steps due to the quantized nature of emission. We also present a unified technical interface for including the processes of interest in different PIC implementations. The PIC codes PICADOR and ELMIS, which support this interface, are briefly re...
SoftPIC - the disembedded microcontroller
Forcer, Tim
2000-01-01
Although the Microchip PIC is very popular with hobbyists and experimenters, and its Harvard architecture has attractions for introductory teaching of microprocessors, it is not widely used for practical work relating to such teaching because the actions of the processor are hidden behind the IC's ports. Since 1998, Southampton University staff and third-year project students have been developing SoftPIC - an FPGA-based hardware emulation of a PIC. In AY 2000/1 this will be used to give first...
无
2003-01-01
The disadvantage remaining in 3D scanning system and its reasons are discussed. A new host-and-slave structure with high speed image acquisition and processing system is proposed to quicken the image processing and improve the performance of 3D scanning system.
ECT Team, Purdue
2015-01-01
Building Bytes, by Brian Peters, is a project that uses desktop 3D printers to print bricks for architecture. Instead of using an expensive custom-made printer, it uses a normal standard 3D printer which is available for everyone and makes it more accessible and also easier for fabrication.
MT3D was first developed by Chunmiao Zheng in 1990 at S.S. Papadopulos & Associates, Inc. with partial support from the U.S. Environmental Protection Agency (USEPA). Starting in 1990, MT3D was released as a pubic domain code from the USEPA. Commercial versions with enhanced capab...
Wood, Jo; Kirschenbauer, Sabine; Döllner, Jürgen;
2005-01-01
The notion of three-dimensionality is applied to five stages of the visualization pipeline. While 3D visulization is most often associated with the visual mapping and representation of data, this chapter also identifies its role in the management and assembly of data, and in the media used...... to display 3D imagery. The extra cartographic degree of freedom offered by using 3D is explored and offered as a motivation for employing 3D in visualization. The use of VR and the construction of virtual environments exploit navigational and behavioral realism, but become most usefil when combined...... with abstracted representations embedded in a 3D space. The interactions between development of geovisualization, the technology used to implement it and the theory surrounding cartographic representation are explored. The dominance of computing technologies, driven particularly by the gaming industry...
PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
Candel, A.; Kabel, A.; Lee, L.; Li, Z.; Limborg, C.; Ng, C.; Prudencio, E.; Schussman, G.; Uplenchwar, R.; Ko, K.; /SLAC
2009-06-19
Over the past years, SLAC's Advanced Computations Department (ACD), under SciDAC sponsorship, has developed a suite of 3D (2D) parallel higher-order finite element (FE) codes, T3P (T2P) and Pic3P (Pic2P), aimed at accurate, large-scale simulation of wakefields and particle-field interactions in radio-frequency (RF) cavities of complex shape. The codes are built on the FE infrastructure that supports SLAC's frequency domain codes, Omega3P and S3P, to utilize conformal tetrahedral (triangular)meshes, higher-order basis functions and quadratic geometry approximation. For time integration, they adopt an unconditionally stable implicit scheme. Pic3P (Pic2P) extends T3P (T2P) to treat charged-particle dynamics self-consistently using the PIC (particle-in-cell) approach, the first such implementation on a conformal, unstructured grid using Whitney basis functions. Examples from applications to the International Linear Collider (ILC), Positron Electron Project-II (PEP-II), Linac Coherent Light Source (LCLS) and other accelerators will be presented to compare the accuracy and computational efficiency of these codes versus their counterparts using structured grids.
ADT-3D Tumor Detection Assistant in 3D
Jaime Lazcano Bello
2008-12-01
Full Text Available The present document describes ADT-3D (Three-Dimensional Tumor Detector Assistant, a prototype application developed to assist doctors diagnose, detect and locate tumors in the brain by using CT scan. The reader may find on this document an introduction to tumor detection; ADT-3D main goals; development details; description of the product; motivation for its development; result’s study; and areas of applicability.
José Ailton Oliveira Carneiro
2010-12-01
Full Text Available A detecção precoce de distúrbios posturais é fundamental para a promoção de intervenções adequadas para pacientes com desequilíbrios. OBJETIVO: Este é um estudo piloto que descreve uma nova ferramenta para avaliação do equilíbrio postural estático. FORMA DE ESTUDO: Coorte contemporânea com corte transversal. MATERIAL E MÉTODO: Foram avaliados 25 voluntários (15 mulheres e 10 homens. Idade média de 25,8±4,2anos, peso 63,9±13,1Kg, estatura 1,68±0,08m e índice de massa corporal 22,3±3,3kg/m2. A posturografia foi realizada por meio da análise de oscilação postural utilizando um equipamento eletromagnético com um sensor fixado sobre o processo espinhoso da 1ª vértebra torácica. Os testes foram realizados com os sujeitos na posição ortostática durante 90 segundos, para as condições de olhos abertos (OA e fechados (OF em superfície estável e instável. RESULTADOS: Quando analisada a influência da superfície (estável x instável para o equilíbrio postural na condição OA, foram observadas diferenças significativas nos parâmetros de trajetória médio-lateral (m-l (p=0.004 e total (p=0.014 e de velocidade m-l (p=0.004 e total (p=0.014. Na condição OF, foram observadas diferenças significativas em todos os parâmetros estudados (pEarly detection of postural disorders is essential for timely interventions in patients with imbalance. AIM: A pilot study describing a new tool for evaluating static postural balance. STUDY DESIGN: A cross-sectional study of a contemporary series. MATERIAL AND METHOD: Twenty-five volunteers (15 women and 10 men were evaluated. The mean age was 25.8 ± 4.2 years, the mean weight was 63.9 ± 13.1Kg, the mean height was 1.68 ± 0.08 m and the body mass index was 22.3±3.3kg/m2. Posturography was done by analysing postural sway with an electromagnetic system; a sensor was attached to the skin over the spinous process of the first thoracic vertebra. Tests were carried out with the
Unassisted 3D camera calibration
Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.
2012-03-01
With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.
Programming 16-Bit PIC Microcontrollers in C Learning to Fly the PIC 24
Di Jasio, Lucio
2011-01-01
New in the second edition: * MPLAB X support and MPLAB C for the PIC24F v3 and later libraries * I2C™ interface * 100% assembly free solutions * Improved video, PAL/NTSC * Improved audio, RIFF files decoding * PIC24F GA1, GA2, GB1 and GB2 support Most readers will associate Microchip's name with the ubiquitous 8-bit PIC microcontrollers but it is the new 16-bit PIC24F family that is truly stealing the scene. Orders of magnitude increases of performance, memory size and the rich peripheral set make programming these devices in C a must. This new guide by Microchip insid
Grutle, Øyvind Kallevik
2015-01-01
3D printers have in recent years become extremely popular. Even though 3D printing technology have existed since the late 1980's, it is now considered one of the most significant technological breakthroughs of the twenty-first century. Several different 3D printing processes have been invented during the years. But it is the fused deposition modeling (FDM) which was one of the first invented that is considered the most popular today. Even though the FDM process is the most popular, it still s...
Garrou , Philip; Ramm , Peter
2014-01-01
Edited by key figures in 3D integration and written by top authors from high-tech companies and renowned research institutions, this book covers the intricate details of 3D process technology.As such, the main focus is on silicon via formation, bonding and debonding, thinning, via reveal and backside processing, both from a technological and a materials science perspective. The last part of the book is concerned with assessing and enhancing the reliability of the 3D integrated devices, which is a prerequisite for the large-scale implementation of this emerging technology. Invaluable reading fo
Lin, Zeyu
2014-01-01
3D printing technology is introduced and defined in this Thesis. Some methods of 3D printing are illustrated and their principles are explained with pictures. Most of the essential parts are presented with pictures and their effects are explained within the whole system. Problems on Up! Plus 3D printer are solved and a DIY product is made with this machine. The processes of making product are recorded and the items which need to be noticed during the process are the highlight in this th...
Tuotekehitysprojekti: 3D-tulostin
Pihlajamäki, Janne
2011-01-01
Opinnäytetyössä tutustuttiin 3D-tulostamisen teknologiaan. Työssä käytiin läpi 3D-tulostimesta tehty tuotekehitysprojekti. Sen lisäksi esiteltiin yleisellä tasolla tuotekehitysprosessi ja syntyneiden tulosten mahdollisia suojausmenetelmiä. Tavoitteena tässä työssä oli kehittää markkinoilta jo löytyvää kotitulostin-tasoista 3D-laiteteknologiaa lähemmäksi ammattilaistason ratkaisua. Tavoitteeseen pyrittiin keskittymällä parantamaan laitteella saavutettavaa tulostustarkkuutta ja -nopeutt...
无
2002-01-01
This paper presents a principle and a method of col or 3D laser scanning measurement. Based on the fundamental monochrome 3D measureme nt study, color information capture, color texture mapping, coordinate computati on and other techniques are performed to achieve color 3D measurement. The syste m is designed and composed of a line laser light emitter, one color CCD camera, a motor-driven rotary filter, a circuit card and a computer. Two steps in captu ring object's images in the measurement process: Firs...
3-D neutron transport benchmarks
A set of 3-D neutron transport benchmark problems proposed by the Osaka University to NEACRP in 1988 has been calculated by many participants and the corresponding results are summarized in this report. The results of Keff, control rod worth and region-averaged fluxes for the four proposed core models, calculated by using various 3-D transport codes are compared and discussed. The calculational methods used were: Monte Carlo, Discrete Ordinates (Sn), Spherical Harmonics (Pn), Nodal Transport and others. The solutions of the four core models are quite useful as benchmarks for checking the validity of 3-D neutron transport codes
Puntar, Matej
2012-01-01
The purpose of this thesis is the presentation of already established and new technologies of displaying 3D content in a web browser. The thesis begins with a short presentation of the history of 3D content available on the internet and its development together with advantages and disadvantages of individual technologies. The latter two are described in detail as well is their use and the differences among them. Special emphasis has been given to WebGL, the newest technology of 3D conte...
PIC simulations of SMLWFA for 35fs class lasers
Adam, J. C.; Tsung, F. S.; Ren, Chuang; Mori, W. B.; Fonseca, R. A.; Silva, L. O.
2001-10-01
In the self-modulated laser wakefield regime a laser pulse several to many 2 π c/ ωp long breaks up via Raman scattering type instabilities producing large wakes. In some cases these wakes can trap background electrons generating a beam of accelerated electrons with a large energy spread. PIC simulations have shown that this process is highly sensitive to the laser intensity, pulse length, and plasma density [K-C.Tzeng et al., PRL 76, 3332 (1996), K-C.Tzeng et al., PRL 79, 5258 (1997)]. There have been some recent experimental results in which 35fs laser pulses have been used. In this case the pulses are at most only a few 2 π c/ ωp long even for the highest densities 10**20 cm-3. We report here on 1D, 2D, and 3D PIC simulations using OSIRIS for parameters closely related to the LULI/LOA results [V.Malka et al., Phys. Plasmas 8, 2605 (2001)].
Yang, Xu; Zhang, Yong; Yang, Chenghua; Xu, Lu; Wang, Qiang; Zhao, Yuan
2016-06-01
Conventional three dimensional (3D) ghost imaging measures range of target based on pulse fight time measurement method. Due to the limit of data acquisition system sampling rate, range resolution of the conventional 3D ghost imaging is usually low. In order to take off the effect of sampling rate to range resolution of 3D ghost imaging, a heterodyne 3D ghost imaging (HGI) system is presented in this study. The source of HGI is a continuous wave laser instead of pulse laser. Temporal correlation and spatial correlation of light are both utilized to obtain the range image of target. Through theory analysis and numerical simulations, it is demonstrated that HGI can obtain high range resolution image with low sampling rate.
Conducting polymer 3D microelectrodes
Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi;
2010-01-01
Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained...
Main: TATCCAYMOTIFOSRAMY3D [PLACE
Full Text Available TATCCAYMOTIFOSRAMY3D S000256 01-August-2006 (last modified) kehi TATCCAY motif found in rice (O. ... otif and G motif (see S000130) are responsible for sugar ... repression (Toyofuku et al. 1998); GATA; amylase; ...
Combinatorial 3D Mechanical Metamaterials
Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin
2015-03-01
We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.
Lading, Brian; Larsen, Rasmus; Åström, Kalle
2006-01-01
We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}......We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}...
Lading, Brian; Larsen, Rasmus; Astrom, K
2006-01-01
We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations......We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations...
Ahmed, Zeeshan
2010-01-01
In this short paper I briefly discuss 3D war Game based on artificial intelligence concepts called AI WAR. Going in to the details, I present the importance of CAICL language and how this language is used in AI WAR. Moreover I also present a designed and implemented 3D War Cybug for AI WAR using CAICL and discus the implemented strategy to defeat its enemies during the game life.
Challenges of PIC Simulations at High Laser Intensity
Luedtke, Scott V.; Arefiev, Alexey V.; Toncian, Toma; Hegelich, Bjorn Manuel
2015-11-01
New lasers with very high intensity pulses (I >1022 W/cm2) are being commissioned to explore new regimes of laser-matter interactions. These lasers require accurate particle-in-cell (PIC) simulations, which may require new computational approaches to efficiently produce physically accurate results. We examine the constraints on PIC simulations at high field intensity imposed by both the particle pusher and field solver. As proposed by Arefiev, et al. (Physics of Plasmas 22, 013103 (2015)), we implement adaptive sub-cycling in the Boris pusher of the EPOCH code and demonstrate its effectiveness in efficiently reducing errors from the pusher. It is well know that the use of a finite-difference scheme also modifies the electromagnetic wave dispersion relation. We examine the effect of the resulting discrepancy in the phase velocity on electron acceleration, and demonstrate that relatively small errors in the phase velocity lead to substantial changes in the electron energy gain from the laser pulse. We discuss the corresponding conditions for the field solver. These results are relevant to direct laser acceleration and underdense ionization experiments. This work was supported by NNSA cooperative agreement DE-NA0002008, the Defense Advanced Research Projects Agency's PULSE program (12-63-PULSE-FP014) and the Air Force Office of Scientific Research (FA9550-14-1-0045).
Edge-based electric field formulation in 3D CSEM simulations: A parallel approach
Castillo-Reyes, Octavio; de la Puente, Josep; Puzyrev, Vladimir; Cela, José M.
2015-01-01
This paper presents a parallel computing scheme for the data computation that arise when applying one of the most popular electromagnetic methods in exploration geophysics, namely, controlled-source electromagnetic (CSEM). The computational approach is based on linear edge finite element method in 3D isotropic domains. The total electromagnetic field is decomposed into primary and secondary electromagnetic field. The primary field is calculated analytically using an horizontal layered-e...
3-D magnetic field calculations for wiggglers using MAGNUS-3D
The recent but steady trend toward increased magnetic and geometric complexity in the design of wigglers and undulators, of which tapered wigglers, hybrid structures, laced electromagnetic wigglers, magnetic cladding, twisters and magic structures are examples, has caused a need for reliable 3-D computer models and a better understanding of the behavior of magnetic systems in three dimensions. The capabilities of the MAGNUS-3D Group of Programs are ideally suited to solve this class of problems and provide insight into 3-D effects. MAGNUS-3D can solve any problem of Magnetostatics involving permanent magnets, linear or nonlinear ferromagnetic materials and electric conductors of any shape in space. The magnetic properties of permanent magnets are described by the complete nonlinear demagnetization curve as provided by the manufacturer, or, at the user's choice, by a simpler approximation involving the coercive force, the residual induction and the direction of magnetization. The ferromagnetic materials are described by a magnetization table and an accurate interpolation relation. An internal library with properties of common industrial steels is available. The conductors are independent of the mesh and are described in terms of conductor elements from an internal library
Particle-in-cell (PIC) simulations of beam instabilities in gyrotrons
Extensive simulations are performed to investigate effects of electron cyclotron instabilities on the gyrotron beam quality, using two-dimensional axisymmetric particle-in-cell (PIC) codes. Both electrostatic and electromagnetic models, as well as realistic geometries of the gyrotron are considered. It is found that a large beam density can lead to an electrostatic-instability-induced energy spread which substantially degrades the gyrotron efficiency. (author) 11 figs., 14 refs
Enhancements to the opera-3d suite
The OPERA-3D suite of programs has been enhanced to include 2 additional 3 dimensional finite element based solvers, with complimentary features in the pre- and postprocessing. SOPRANO computes electromagnetic fields at high frequency including displacement current effects. It has 2 modules emdash a deterministic solution at a user defined frequency and an eigenvalue solution for modal analysis. It is suitable for designing microwave structures and cavities found in particle accelerators. SCALA computes electrostatic fields in the presence of space charge from charged particle beams. The user may define the emission characteristics of electrodes or plasma surfaces and compute the resultant space charge limited beams, including the presence of magnetic fields. Typical applications in particle accelerators are electron guns and ion sources. Other enhancements to the suite include additional capabilities in TOSCA and ELEKTRA, the static and dynamic solvers. copyright 1997 American Institute of Physics
Enhancements to the opera-3d suite
The OPERA-3D suite of programs has been enhanced to include 2 additional 3 dimensional finite element based solvers, with complimentary features in the pre- and postprocessing. SOPRANO computes electromagnetic fields at high frequency including displacement current effects. It has 2 modules--a deterministic solution at a user defined frequency and an eigenvalue solution for modal analysis. It is suitable for designing microwave structures and cavities found in particle accelerators. SCALA computes electrostatic fields in the presence of space charge from charged particle beams. The user may define the emission characteristics of electrodes or plasma surfaces and compute the resultant space charge limited beams, including the presence of magnetic fields. Typical applications in particle accelerators are electron guns and ion sources. Other enhancements to the suite include additional capabilities in TOSCA and ELEKTRA, the static and dynamic solvers
Enhancements to the opera-3d suite
Riley, C.P. [Vector Fields Ltd., 24 Bankside, Kidlington, Oxford OX5 1JE (United Kingdom)
1997-02-01
The OPERA-3D suite of programs has been enhanced to include 2 additional 3 dimensional finite element based solvers, with complimentary features in the pre- and postprocessing. SOPRANO computes electromagnetic fields at high frequency including displacement current effects. It has 2 modules{emdash}a deterministic solution at a user defined frequency and an eigenvalue solution for modal analysis. It is suitable for designing microwave structures and cavities found in particle accelerators. SCALA computes electrostatic fields in the presence of space charge from charged particle beams. The user may define the emission characteristics of electrodes or plasma surfaces and compute the resultant space charge limited beams, including the presence of magnetic fields. Typical applications in particle accelerators are electron guns and ion sources. Other enhancements to the suite include additional capabilities in TOSCA and ELEKTRA, the static and dynamic solvers. {copyright} {ital 1997 American Institute of Physics.}
Enhancements to the opera-3d suite
Riley, Christopher P.
1997-02-01
The OPERA-3D suite of programs has been enhanced to include 2 additional 3 dimensional finite element based solvers, with complimentary features in the pre- and postprocessing. SOPRANO computes electromagnetic fields at high frequency including displacement current effects. It has 2 modules—a deterministic solution at a user defined frequency and an eigenvalue solution for modal analysis. It is suitable for designing microwave structures and cavities found in particle accelerators. SCALA computes electrostatic fields in the presence of space charge from charged particle beams. The user may define the emission characteristics of electrodes or plasma surfaces and compute the resultant space charge limited beams, including the presence of magnetic fields. Typical applications in particle accelerators are electron guns and ion sources. Other enhancements to the suite include additional capabilities in TOSCA and ELEKTRA, the static and dynamic solvers.
Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.
2014-08-01
In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers
YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters
Schild, Jonas; Seele, Sven; Masuch, Maic
2012-03-01
Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.
Remote 3D Medical Consultation
Welch, Greg; Sonnenwald, Diane H.; Fuchs, Henry; Cairns, Bruce; Mayer-Patel, Ketan; Yang, Ruigang; State, Andrei; Towles, Herman; Ilie, Adrian; Krishnan, Srinivas; Söderholm, Hanna M.
Two-dimensional (2D) video-based telemedical consultation has been explored widely in the past 15-20 years. Two issues that seem to arise in most relevant case studies are the difficulty associated with obtaining the desired 2D camera views, and poor depth perception. To address these problems we are exploring the use of a small array of cameras to synthesize a spatially continuous range of dynamic three-dimensional (3D) views of a remote environment and events. The 3D views can be sent across wired or wireless networks to remote viewers with fixed displays or mobile devices such as a personal digital assistant (PDA). The viewpoints could be specified manually or automatically via user head or PDA tracking, giving the remote viewer virtual head- or hand-slaved (PDA-based) remote cameras for mono or stereo viewing. We call this idea remote 3D medical consultation (3DMC). In this article we motivate and explain the vision for 3D medical consultation; we describe the relevant computer vision/graphics, display, and networking research; we present a proof-of-concept prototype system; and we present some early experimental results supporting the general hypothesis that 3D remote medical consultation could offer benefits over conventional 2D televideo.
Materialedreven 3d digital formgivning
Hansen, Flemming Tvede
2010-01-01
Formålet med forskningsprojektet er for det første at understøtte keramikeren i at arbejde eksperimenterende med digital formgivning, og for det andet at bidrage til en tværfaglig diskurs om brugen af digital formgivning. Forskningsprojektet fokuserer på 3d formgivning og derved på 3d digital...... formgivning og Rapid Prototyping (RP). RP er en fællesbetegnelse for en række af de teknikker, der muliggør at overføre den digitale form til 3d fysisk form. Forskningsprojektet koncentrerer sig om to overordnede forskningsspørgsmål. Det første handler om, hvordan viden og erfaring indenfor det keramiske...... fagområde kan blive udnyttet i forhold til 3d digital formgivning. Det andet handler om, hvad en sådan tilgang kan bidrage med, og hvordan den kan blive udnyttet i et dynamisk samspil med det keramiske materiale i formgivningen af 3d keramiske artefakter. Materialedreven formgivning er karakteriseret af en...
Dagiuklas, Tasos
2015-01-01
This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The contributions are based on the results of the FP7 European Project ROMEO, which focuses on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the future Internet. The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of consistent video quality to fixed and mobile users. ROMEO will present hybrid networking solutions that combine the DVB-T2 and DVB-NGH broadcas...
Dagiuklas, Tasos
2014-01-01
This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The main contributions are based on the results of the FP7 European Projects ROMEO, which focus on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the Future Internet (www.ict-romeo.eu). The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of constant video quality to both fixed and mobile users. ROMEO will design and develop hybrid-networking solutions that co...
Modification of 3D milling machine to 3D printer
Halamíček, Lukáš
2015-01-01
Tato práce se zabývá přestavbou gravírovací frézky na 3D tiskárnu. V první části se práce zabývá možnými technologiemi 3D tisku a možností jejich využití u přestavby. Dále jsou popsány a vybrány vhodné součásti pro přestavbu. V další části je realizováno řízení ohřevu podložky, trysky a řízení posuvu drátu pomocí softwaru TwinCat od společnosti Beckhoff na průmyslovém počítači. Výsledkem práce by měla být oživená 3D tiskárna. This thesis deals with rebuilding of engraving machine to 3D pri...
3D Imager and Method for 3D imaging
Kumar, P.; Staszewski, R.; Charbon, E.
2013-01-01
3D imager comprising at least one pixel, each pixel comprising a photodetectorfor detecting photon incidence and a time-to-digital converter system configured for referencing said photon incidence to a reference clock, and further comprising a reference clock generator provided for generating the re
TRAB-3D is a reactor dynamics code with three-dimensional neutronics coupled to core and circuit thermal-hydraulics. The code, entirely developed at VTT, can be used in transient and accident analyses of boiling (BWR) and pressurized water (PWR) reactors with rectangular fuel bundle geometry. The validation history of TRAB-3D includes calculation of international benchmark exercises, as well as comparisons with measured data from real plant transients. The most recent validation case is a load rejection test performed at the Olkiluoto 1 nuclear power plant in 1998 in connection with the power uprating project. The fact that there is local power measurement data available from this test makes it a suitable case for three-dimensional core model validation. The agreement between the results of the TRAB-3D calculation and the measurements is very good. (orig.)
Becker, T; Roth, M M; Becker, Thomas; Fabrika, Sergei; Roth, Martin M.
2003-01-01
The quantitative spectroscopy of stellar objects in complex environments is mainly limited by the ability of separating the object from the background. Standard slit spectroscopy, restricting the field of view to one dimension, is obviously not the proper technique in general. The emerging Integral Field (3D) technique with spatially resolved spectra of a two-dimensional field of view provides a great potential for applying advanced subtraction methods. In this paper an image reconstruction algorithm to separate point sources and a smooth background is applied to 3D data. Several performance tests demonstrate the photometric quality of the method. The algorithm is applied to real 3D observations of a sample Planetary Nebula in M31, whose spectrum is contaminated by the bright and complex galaxy background. The ability of separating sources is also studied in a crowded stellar field in M33.
Walder, Christian; Breidt, Martin; Bulthoff, Heinrich;
2009-01-01
We present a novel algorithm for the markerless tracking of deforming surfaces such as faces. We acquire a sequence of 3D scans along with color images at 40Hz. The data is then represented by implicit surface and color functions, using a novel partition-of-unity type method of efficiently...... combining local regressors using nearest neighbor searches. Both these functions act on the 4D space of 3D plus time, and use temporal information to handle the noise in individual scans. After interactive registration of a template mesh to the first frame, it is then automatically deformed to track...... the scanned surface, using the variation of both shape and color as features in a dynamic energy minimization problem. Our prototype system yields high-quality animated 3D models in correspondence, at a rate of approximately twenty seconds per timestep. Tracking results for faces and other objects...
Pihl, Michael Johannes
The main purpose of this PhD project is to develop an ultrasonic method for 3D vector flow imaging. The motivation is to advance the field of velocity estimation in ultrasound, which plays an important role in the clinic. The velocity of blood has components in all three spatial dimensions, yet...... conventional methods can estimate only the axial component. Several approaches for 3D vector velocity estimation have been suggested, but none of these methods have so far produced convincing in vivo results nor have they been adopted by commercial manufacturers. The basis for this project is the Transverse...... on the TO fields are suggested. They can be used to optimize the TO method. In the third part, a TO method for 3D vector velocity estimation is proposed. It employs a 2D phased array transducer and decouples the velocity estimation into three velocity components, which are estimated simultaneously based on 5...
3D-grafiikkamoottori mobiililaitteille
Vahlman, Lauri
2014-01-01
Tässä insinöörityössä käydään läpi mobiililaitteille suunnatun yksinkertaisen 3D-grafiikkamoottorin suunnittelu ja toteutus käyttäen OpenGL ES -rajapintaa. Työssä esitellään grafiikkamoottorin toteutuksessa käytettyjä tekniikoita sekä tutustutaan moottorin rakenteeseen ja toteutuksellisiin yksityiskohtiin. Työn alkupuolella tutustutaan myös modernin 3D-grafiikan yleisiin periaatteisiin ja toimintaan sekä käydään läpi 3D-grafiikkaan liittyviä suorituskykyongelmia. Työn loppupuolella esitel...
3-D Printed High Power Microwave Magnetrons
Jordan, Nicholas; Greening, Geoffrey; Exelby, Steven; Gilgenbach, Ronald; Lau, Y. Y.; Hoff, Brad
2015-11-01
The size, weight, and power requirements of HPM systems are critical constraints on their viability, and can potentially be improved through the use of additive manufacturing techniques, which are rapidly increasing in capability and affordability. Recent experiments on the UM Recirculating Planar Magnetron (RPM), have explored the use of 3-D printed components in a HPM system. The system was driven by MELBA-C, a Marx-Abramyan system which delivers a -300 kV voltage pulse for 0.3-1.0 us, with a 0.15-0.3 T axial magnetic field applied by a pair of electromagnets. Anode blocks were printed from Water Shed XC 11122 photopolymer using a stereolithography process, and prepared with either a spray-coated or electroplated finish. Both manufacturing processes were compared against baseline data for a machined aluminum anode, noting any differences in power output, oscillation frequency, and mode stability. Evolution and durability of the 3-D printed structures were noted both visually and by tracking vacuum inventories via a residual gas analyzer. Research supported by AFOSR (grant #FA9550-15-1-0097) and AFRL.
3D Computations and Experiments
Couch, R; Faux, D; Goto, D; Nikkel, D
2004-04-05
This project consists of two activities. Task A, Simulations and Measurements, combines all the material model development and associated numerical work with the materials-oriented experimental activities. The goal of this effort is to provide an improved understanding of dynamic material properties and to provide accurate numerical representations of those properties for use in analysis codes. Task B, ALE3D Development, involves general development activities in the ALE3D code with the focus of improving simulation capabilities for problems of mutual interest to DoD and DOE. Emphasis is on problems involving multi-phase flow, blast loading of structures and system safety/vulnerability studies.
Focused high energy ion beam micromachining is the newest of the micromachining techniques. There are about 50 scanning proton microprobe facilities worldwide, but so far only few of them showed activity in this promising field. High energy ion beam micromachining using a direct-write scanning MeV ion beam is capable of producing 3D microstructures and components with well defined lateral and depth geometry. The technique has high potential in the manufacture of 3D molds, stamps, and masks for X-ray lithography (LIGA), and also in the rapid prototyping of microcomponents either for research purposes or for components testing prior to batch production. (R.P.)
Study of plasma meniscus formation and beam halo in negative ion source using the 3D3VPIC model
Nishioka, S.; Goto, I.; Hatayama, A. [Graduate school of Science and Technology, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Fukano, A. [Tokyo Metropolitan Collage of Industrial Technology, Higashioi, Shinagawa, Tokyo 140-0011 (Japan)
2015-04-08
In this paper, the effect of the electron confinement time on the plasma meniscus and the fraction of the beam halo is investigated by 3D3V-PIC (three dimension in real space and three dimension in velocity space) (Particle in Cell) simulation in the extraction region of negative ion source. The electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of diffusion across the magnetic field. Our 3D3V-PIC results support the previous result by 2D3V-PIC results i.e., it is confirmed that the penetration of the plasma meniscus becomes deep into the source plasma region when the effective confinement time is short.
Study of plasma meniscus formation and beam halo in negative ion source using the 3D3VPIC model
In this paper, the effect of the electron confinement time on the plasma meniscus and the fraction of the beam halo is investigated by 3D3V-PIC (three dimension in real space and three dimension in velocity space) (Particle in Cell) simulation in the extraction region of negative ion source. The electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of diffusion across the magnetic field. Our 3D3V-PIC results support the previous result by 2D3V-PIC results i.e., it is confirmed that the penetration of the plasma meniscus becomes deep into the source plasma region when the effective confinement time is short
Electrostatic PIC with adaptive Cartesian mesh
Kolobov, Vladimir I
2016-01-01
We describe an initial implementation of an electrostatic Particle-in-Cell (ES-PIC) module with adaptive Cartesian mesh in our Unified Flow Solver framework. Challenges of PIC method with cell-based adaptive mesh refinement (AMR) are related to a decrease of the particle-per-cell number in the refined cells with a corresponding increase of the numerical noise. The developed ES-PIC solver is validated for capacitively coupled plasma, its AMR capabilities are demonstrated for simulations of streamer development during high-pressure gas breakdown. It is shown that cell-based AMR provides a convenient particle management algorithm for exponential multiplications of electrons and ions in the ionization events.
Electrostatic PIC with adaptive Cartesian mesh
Kolobov, Vladimir; Arslanbekov, Robert
2016-05-01
We describe an initial implementation of an electrostatic Particle-in-Cell (ES-PIC) module with adaptive Cartesian mesh in our Unified Flow Solver framework. Challenges of PIC method with cell-based adaptive mesh refinement (AMR) are related to a decrease of the particle-per-cell number in the refined cells with a corresponding increase of the numerical noise. The developed ES-PIC solver is validated for capacitively coupled plasma, its AMR capabilities are demonstrated for simulations of streamer development during high-pressure gas breakdown. It is shown that cell-based AMR provides a convenient particle management algorithm for exponential multiplications of electrons and ions in the ionization events.
Manos, Harry
2016-01-01
Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…
Lading, Brian; Larsen, Rasmus; Åström, Kalle
2006-01-01
We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}
Lading, Brian; Larsen, Rasmus; Astrom, K
2006-01-01
We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations
3D Printing: Exploring Capabilities
Samuels, Kyle; Flowers, Jim
2015-01-01
As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…
Pedersen, Pernille Klarskov; Strikwerda, Andrew; Wang, Tianwu;
2013-01-01
We present a characterization of THz beams generated in both a two-color air plasma and in a LiNbO3 crystal. Using a commercial THz camera, we record intensity images as a function of distance through the beam waist, from which we extract 2D beam profiles and visualize our measurements into 3D beam...
Krajnović, Davor
2016-01-01
Thanks to a technique that reveals galaxies in 3D, astronomers can now show that many galaxies have been wrongly classified. Davor Krajnovi\\'c argues that the classification scheme proposed 85 years ago by Edwin Hubble now needs to be revised.
Priprava 3D modelov za 3D tisk
Pikovnik, Tomaž
2015-01-01
Po mnenju nekaterih strokovnjakov bo aditivna proizvodnja (ali 3D tiskanje) spremenila proizvodnjo industrijo, saj si bo vsak posameznik lahko natisnil svoj objekt po želji. V diplomski nalogi so predstavljene nekatere tehnologije aditivne proizvodnje. V nadaljevanju diplomske naloge je predstavljena izdelava makete hiše v merilu 1:100, vse od modeliranja do tiskanja. Poseben poudarek je posvečen predelavi modela, da je primeren za tiskanje, kjer je razvit pristop za hitrejše i...