WorldWideScience

Sample records for 3d electromagnetic pic

  1. 3D PIC Modeling of Microcavity Discharge

    Hopkins, Matthew; Manginell, Ronald; Moore, Christopher; Yee, Benjamin; Moorman, Matthew

    2015-09-01

    We present a number of techniques and challenges in simulating the transient behavior of a microcavity discharge. Our microcavities are typically cylindrical with diameters approximately 50 - 100 μm, heights of 50 - 200 μm, pressure near atmospheric, and operate at a few hundred volts. We employ a fully kinetic simulation methodology, the Particle-in-Cell (PIC) method, with interparticle collisions handled via methods based on direct simulation Monte Carlo (DSMC). In particular, we explicitly include kinetic electrons. Some of the challenges we encounter include variations in number densities, external circuit coupling, and time step resolution constraints. By employing dynamic particle weighting (particle weights vary over time by species and location) we can mitigate some of the challenges modeling systems with 107 variations in number densities. Smoothing mechanisms have been used to attempt to mitigate external circuit response. We perform our simulations on hundreds or thousands of processing cores to accommodate the computational work inherent in using relatively small time step sizes (e.g., 50 fs for a 100 ns calculation). In addition, particle weighting issues inherent to three-dimensional low temperature plasma systems will be mentioned. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under Contract DE-AC04-94AL85000.

  2. Parallel 3D Finite Element Particle-in-Cell Simulations with Pic3P

    Candel, A.; Kabel, A.; Lee, L.; Li, Z.; Ng, C.; Schussman, G.; Ko, K.; /SLAC; Ben-Zvi, I.; Kewisch, J.; /Brookhaven

    2009-06-19

    SLAC's Advanced Computations Department (ACD) has developed the parallel 3D Finite Element electromagnetic Particle-In-Cell code Pic3P. Designed for simulations of beam-cavity interactions dominated by space charge effects, Pic3P solves the complete set of Maxwell-Lorentz equations self-consistently and includes space-charge, retardation and boundary effects from first principles. Higher-order Finite Element methods with adaptive refinement on conformal unstructured meshes lead to highly efficient use of computational resources. Massively parallel processing with dynamic load balancing enables large-scale modeling of photoinjectors with unprecedented accuracy, aiding the design and operation of next-generation accelerator facilities. Applications include the LCLS RF gun and the BNL polarized SRF gun.

  3. Recent progress in 3D EM/EM-PIC simulation with ARGUS and parallel ARGUS

    ARGUS is an integrated, 3-D, volumetric simulation model for systems involving electric and magnetic fields and charged particles, including materials embedded in the simulation region. The code offers the capability to carry out time domain and frequency domain electromagnetic simulations of complex physical systems. ARGUS offers a boolean solid model structure input capability that can include essentially arbitrary structures on the computational domain, and a modular architecture that allows multiple physics packages to access the same data structure and to share common code utilities. Physics modules are in place to compute electrostatic and electromagnetic fields, the normal modes of RF structures, and self-consistent particle-in-cell (PIC) simulation in either a time dependent mode or a steady state mode. The PIC modules include multiple particle species, the Lorentz equations of motion, and algorithms for the creation of particles by emission from material surfaces, injection onto the grid, and ionization. In this paper, we present an updated overview of ARGUS, with particular emphasis given in recent algorithmic and computational advances. These include a completely rewritten frequency domain solver which efficiently treats lossy materials and periodic structures, a parallel version of ARGUS with support for both shared memory parallel vector (i.e. CRAY) machines and distributed memory massively parallel MIMD systems, and numerous new applications of the code

  4. 3D PIC simulations of electron beams created via reflection of intense laser light from a water target

    Ngirmang, Gregory K; Feister, Scott; Morrison, John T; Chowdhury, Enam A; Frische, Kyle; Roquemore, W M

    2015-01-01

    We present 3D Particle-in-Cell (PIC) modeling of an ultra-intense laser experiment by the Extreme Light group at the Air Force Research Laboratory (AFRL) using the PIC code LSP. This is the first time PIC simulations have been performed in 3D for this experiment which involves an ultra-intense, short-pulse (30 fs) laser interacting with a water jet target at normal incidence. These 3D PIC simulation results are compared to results from 2D(3$v$) PIC simulations for both $5.4\\cdot10^{17}$ W cm$^{-2}$ and $3\\cdot10^{18}$ W cm$^{-2}$ intensities. Comparing the 2D(3$v$) and 3D simulation results, the laser-energy-to-ejected-electron-energy conversion efficiencies were comparable, but the angular distribution of ejected electrons show interesting differences with qualitative differences at higher intensity. An analytic plane-wave model is provided that provides some explanation for the angular distribution and energies of ejected electrons in the 2D(3$v$) simulations. We also performed a 3D simulation with circular...

  5. 3D PiC code investigations of Auroral Kilometric Radiation mechanisms

    Efficient (∼1%) electron cyclotron radio emissions are known to originate in the X mode from regions of locally depleted plasma in the Earths polar magnetosphere. These emissions are commonly referred to as the Auroral Kilometric Radiation (AKR). AKR occurs naturally in these polar regions where electrons are accelerated by electric fields into the increasing planetary magnetic dipole. Here conservation of the magnetic moment converts axial to rotational momentum forming a horseshoe distribution in velocity phase space. This distribution is unstable to cyclotron emission with radiation emitted in the X-mode. Initial studies were conducted in the form of 2D PiC code simulations [1] and a scaled laboratory experiment that was constructed to reproduce the mechanism of AKR. As studies progressed, 3D PiC code simulations were conducted to enable complete investigation of the complex interaction dimensions. A maximum efficiency of 1.25% is predicted from these simulations in the same mode and frequency as measured in the experiment. This is also consistent with geophysical observations and the predictions of theory.

  6. Study of negative hydrogen ion beam optics using the 3D3V PIC model

    Miyamoto, K., E-mail: kmiyamot@naruto-u.ac.jp [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima, 772-8502 (Japan); Nishioka, S.; Goto, I.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522 (Japan); Hanada, M.; Kojima, A. [Japan Atomic Energy Agency, 801-1,Mukoyama, Naka, 319-0913 (Japan)

    2015-04-08

    The mechanism of negative ion extraction under real conditions with the complex magnetic field is studied by using the 3D PIC simulation code. The extraction region of the negative ion source for the negative ion based neutral beam injection system in fusion reactors is modelled. It is shown that the E x B drift of electrons is caused by the magnetic filter and the electron suppression magnetic field, and the resultant asymmetry of the plasma meniscus. Furthermore, it is indicated that that the asymmetry of the plasma meniscus results in the asymmetry of negative ion beam profile including the beam halo. It could be demonstrated theoretically that the E x B drift is not significantly weakened by the elastic collisions of the electrons with neutral particles.

  7. Study of negative hydrogen ion beam optics using the 3D3V PIC model

    The mechanism of negative ion extraction under real conditions with the complex magnetic field is studied by using the 3D PIC simulation code. The extraction region of the negative ion source for the negative ion based neutral beam injection system in fusion reactors is modelled. It is shown that the E x B drift of electrons is caused by the magnetic filter and the electron suppression magnetic field, and the resultant asymmetry of the plasma meniscus. Furthermore, it is indicated that that the asymmetry of the plasma meniscus results in the asymmetry of negative ion beam profile including the beam halo. It could be demonstrated theoretically that the E x B drift is not significantly weakened by the elastic collisions of the electrons with neutral particles

  8. MAXWELL3, 3-D FEM Electromagnetism

    1 - Description of program or function: MAXWELL3 is a linear, time domain, finite element code designed for simulation of electromagnetic fields interacting with three-dimensional objects. The simulation region is discretized into 6-sided, 8-nodded elements which need not form a logically regular grid. Scatterers may be perfectly conducting or dielectric. Restart capability and a Muer-type radiating boundary are included. MAXWELL3 can be run in a two-dimensional mode or on infinitesimally thin geometries. The output of time histories on surfaces, or shells, in addition to volumes, is allowed. Two post-processors are included - HIST2XY, which splits the MAXWELL3 history file into simple xy data files, and FFTABS, which performs fast Fourier transformations on the xy data. 2 - Method of solution: The numerical method requires that the model be discretized with a mesh generator. MAXWELL3 then uses the mesh and computes the time domain electric and magnetic fields by integrating Maxwell's divergence-free curl equations over time. The output from MAXWELL3 can then be used with a post-processor to get the desired information in a graphical form. The explicit time integration is done with a leap-frog technique that alternates evaluating the electric and magnetic fields at half time steps. This allows for centered time differencing accurate in second order. The algorithm is naturally robust and requires no parameters. 3 - Restrictions on the complexity of the problem: MAXWELL3 has no mesh generation capabilities. Anisotropic, nonlinear, and magnetic materials cannot be modeled. Material interfaces only account for dielectric changes and neglect any surface charges that would be present at the surface of a partially conducting material. The radiation boundary algorithm is only accurate for normally incident fields and becomes less accurate as the angle of incidence increases. Thus, only models using scattered fields should use the radiation boundary. This limits MAXWELL3's

  9. The MICHELLE 2D/3D ES PIC Code Advances and Applications

    Petillo, John; De Ford, John F; Dionne, Norman J; Eppley, Kenneth; Held, Ben; Levush, Baruch; Nelson, Eric M; Panagos, Dimitrios; Zhai, Xiaoling

    2005-01-01

    MICHELLE is a new 2D/3D steady-state and time-domain particle-in-cell (PIC) code* that employs electrostatic and now magnetostatic finite-element field solvers. The code has been used to design and analyze a wide variety of devices that includes multistage depressed collectors, gridded guns, multibeam guns, annular-beam guns, sheet-beam guns, beam-transport sections, and ion thrusters. Latest additions to the MICHELLE/Voyager tool are as follows: 1) a prototype 3D self magnetic field solver using the curl-curl finite-element formulation for the magnetic vector potential, employing edge basis functions and accumulating current with MICHELLE's new unstructured grid particle tracker, 2) the electrostatic field solver now accommodates dielectric media, 3) periodic boundary conditions are now functional on all grids, not just structured grids, 4) the addition of a global optimization module to the user interface where both electrical parameters (such as electrode voltages)can be optimized, and 5) adaptive mesh ref...

  10. Low frequency electromagnetic wave propagation in 3D plasma configurations

    Popovitch, Pavel

    2004-01-01

    We investigate low-frequency electromagnetic wave propagation and absorption properties in 2D and 3D plasma configurations. For these purposes, we have developed a new full-wave 3D code LEMan that determines a global solution of the wave equation in bounded stellarator plasmas excited with an external antenna. No assumption on the wavelength compared to the plasma size is made, all the effects of the 3D geometry and finite plasma extent are included. The equation is formulated in terms of ele...

  11. Analysis of the beam halo in negative ion sources by using 3D3V PIC code

    Miyamoto, K., E-mail: kmiyamot@naruto-u.ac.jp [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Nishioka, S.; Goto, I.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Hanada, M.; Kojima, A.; Hiratsuka, J. [Japan Atomic Energy Agency, 801-1 Mukouyama, Naka 319-0913 (Japan)

    2016-02-15

    The physical mechanism of the formation of the negative ion beam halo and the heat loads of the multi-stage acceleration grids are investigated with the 3D PIC (particle in cell) simulation. The following physical mechanism of the beam halo formation is verified: The beam core and the halo consist of the negative ions extracted from the center and the periphery of the meniscus, respectively. This difference of negative ion extraction location results in a geometrical aberration. Furthermore, it is shown that the heat loads on the first acceleration grid and the second acceleration grid are quantitatively improved compared with those for the 2D PIC simulation result.

  12. Analysis of the beam halo in negative ion sources by using 3D3V PIC code

    Miyamoto, K.; Nishioka, S.; Goto, I.; Hatayama, A.; Hanada, M.; Kojima, A.; Hiratsuka, J.

    2016-02-01

    The physical mechanism of the formation of the negative ion beam halo and the heat loads of the multi-stage acceleration grids are investigated with the 3D PIC (particle in cell) simulation. The following physical mechanism of the beam halo formation is verified: The beam core and the halo consist of the negative ions extracted from the center and the periphery of the meniscus, respectively. This difference of negative ion extraction location results in a geometrical aberration. Furthermore, it is shown that the heat loads on the first acceleration grid and the second acceleration grid are quantitatively improved compared with those for the 2D PIC simulation result.

  13. Analysis of the beam halo in negative ion sources by using 3D3V PIC code

    The physical mechanism of the formation of the negative ion beam halo and the heat loads of the multi-stage acceleration grids are investigated with the 3D PIC (particle in cell) simulation. The following physical mechanism of the beam halo formation is verified: The beam core and the halo consist of the negative ions extracted from the center and the periphery of the meniscus, respectively. This difference of negative ion extraction location results in a geometrical aberration. Furthermore, it is shown that the heat loads on the first acceleration grid and the second acceleration grid are quantitatively improved compared with those for the 2D PIC simulation result

  14. 3-D electromagnetic plasma particle simulations on the Intel Delta parallel computer

    A three-dimensional electromagnetic PIC code has been developed on the 512 node Intel Touchstone Delta MIMD parallel computer. This code is based on the General Concurrent PIC algorithm which uses a domain decomposition to divide the computation among the processors. The 3D simulation domain can be partitioned into 1-, 2-, or 3-dimensional sub-domains. Particles must be exchanged between processors as they move among the subdomains. The Intel Delta allows one to use this code for very-large-scale simulations (i.e. over 108 particles and 106 grid cells). The parallel efficiency of this code is measured, and the overall code performance on the Delta is compared with that on Cray supercomputers. It is shown that their code runs with a high parallel efficiency of ≥ 95% for large size problems. The particle push time achieved is 115 nsecs/particle/time step for 162 million particles on 512 nodes. Comparing with the performance on a single processor Cray C90, this represents a factor of 58 speedup. The code uses a finite-difference leap frog method for field solve which is significantly more efficient than fast fourier transforms on parallel computers. The performance of this code on the 128 node Cray T3D will also be discussed

  15. 3D Hot Test Simulations of a 220 GHz Folded Waveguide Traveling Wave Tube Using a CFDTD PIC Method

    Lin, Ming-Chieh; Song, Heather

    2015-11-01

    Millimeter or sub-THz wave sources centered at 220 GHz is of interest due to the potential for its commercial and military applications including high resolution radar, remote sensing, and high-data-rate communications. It has been demonstrated via 3D cold test finite element method (FEM) simulations that a folded waveguide traveling wave tube (FWTWT) can be designed and optimized at this frequency range with a small signal gain of 18 dB over a comparatively broad (-3 dB) bandwidth of ~ 10%. On the other hand, 3D hot test simulations of a V-band ladder TWT have been successfully demonstrated using a conformal finite-difference time-domain (CFDTD) particle-in-cell (PIC) method for center frequency of 50 GHz. In the present work, the 220 GHz FWTWT designs have been reviewed and studied. 3D Cold test simulations using both the CFDTD and FEM methods have been carried out and compared with each other as basis for 3D hot test CFDTD PIC simulations. The preliminary simulation result shows that the gain-bandwidth features at 220 GHz are achievable while carefully avoiding beam interceptions. Our study shows that the interaction characteristics are very sensitive to the operating beam parameters. Detail simulation results and discussions will be presented.

  16. 3D-PIC simulation of an inductively coupled ion source

    Henrich, Robert; Muehlich, Nina Sarah; Becker, Michael; Heiliger, Christian

    2015-09-01

    Inductively coupled ion sources are applied to a wide range of plasma applications, especially surface modifications. The knowledge of the behavior and precise information of the plasma parameters are of main importance. These values are tedious to measure without influencing the discharge. By applying our fully three-dimensional PlasmaPIC tool we are able to reach these plasma parameters with a spatial and temporal resolution which is quite hard to achieve experimentally. PlasmaPIC is used for modeling discharges in arbitrary geometries without limitations to any symmetry. By this means we are able to demonstrate that the plasma density has an irrotational character. Furthermore, we will show the dependence of the plasma parameters of different working conditions. We will show that for gridded inductively coupled ion sources the neutral gas pressure inside the discharge chamber depends on the extraction of ions. This effect is considered in PlasmaPIC by a self-consistent coupling of the neutral gas simulation and the plasma simulation whereas the neutral gas distribution is calculated using the direct simulation Monte Carlo method (DSMC). This work has been supported by the ``Bundesministerium fuer Wirtschaft und Energie.'' Grant 50RS1507.

  17. Simulations of 3D LPI's relevant to IFE using the PIC code OSIRIS

    Tsung, F. S.; Mori, W. B.; Winjum, B. J.

    2014-10-01

    We will study three dimensional effects of laser plasma instabilities, including backward raman scattering, the high frequency hybrid instability, and the two plasmon instability using OSIRIS in 3D Cartesian geometry and cylindrical 2D OSIRIS with azimuthal mode decompositions. With our new capabilities we hope to demonstrate that we are capable of studying single speckle physics relevant to IFE in an efficent manner.

  18. Solution accelerators for large scale 3D electromagnetic inverse problems

    We provide a framework for preconditioning nonlinear 3D electromagnetic inverse scattering problems using nonlinear conjugate gradient (NLCG) and limited memory (LM) quasi-Newton methods. Key to our approach is the use of an approximate adjoint method that allows for an economical approximation of the Hessian that is updated at each inversion iteration. Using this approximate Hessian as a preconditoner, we show that the preconditioned NLCG iteration converges significantly faster than the non-preconditioned iteration, as well as converging to a data misfit level below that observed for the non-preconditioned method. Similar conclusions are also observed for the LM iteration; preconditioned with the approximate Hessian, the LM iteration converges faster than the non-preconditioned version. At this time, however, we see little difference between the convergence performance of the preconditioned LM scheme and the preconditioned NLCG scheme. A possible reason for this outcome is the behavior of the line search within the LM iteration. It was anticipated that, near convergence, a step size of one would be approached, but what was observed, instead, were step lengths that were nowhere near one. We provide some insights into the reasons for this behavior and suggest further research that may improve the performance of the LM methods

  19. Development of a 3D-3V PIC code to study PSI processes in tokamak divertor region

    A limited overview of the theoretical understanding as well as PIC simulation of edge plasmas in fusion devices is given. The effect of grazing angle on solid surface (divertor) erosion due to ion sputtering in magnetic fusion devices is studied by a 3D-3V PIC-MCC code. For an oblique magnetic field, there exists a different kind of region in front of the solid surface named as Chodura sheath (CS). Important factors like ion energy and impact angle for physical sputtering are highlighted. Because of the presence of the surface itself, the ion distribution in front of the wall is generally not Maxwellian. In spite of this even for an unmagnetized case, presence of sheath can modify the ion distribution, which has been found in different numerical simulation and laboratory experiments. For magnetized plasmas, the distribution can have several peaks at different energies, which brings further complexity in erosion calculation. The dependence of these two parameters on grazing angle is investigated in detail. The code has been written in java and the plots has been generated in VTK based software Paraview developed by Los Alamos National Laboratory. (author)

  20. 2D and 3D PIC-MCC simulations of a low temperature magnetized plasma on CPU and GPU

    Claustre, Jonathan; Chaudhury, Bhaskar; Fubiani, Gwenael; Boeuf, Jean-Pierre

    2012-10-01

    A Particle-In-Cell Monte Carlo Collisions model is used to described plasma transport in a low temperature magnetized plasma under conditions similar to those of the negative ion source for the neutral beam injector of ITER. A large diamagnetic electron current is present in the plasma because of the electron pressure gradient between the ICP driver of the source and the entrance of the magnetic filter, and is directed toward the chamber walls. The plasma potential adjusts to limit the diamagnetic electron current to the wall, leading to large electron current flow through the filter, and to a non uniform plasma density in the region between magnetic filter and extracting grids. On the basis of the PIC-MCC simulation results, we describe the plasma properties and electron current density distributions through the filter in 2D and 3D situations and use these models to better understand plasma transport across the filter in these conditions. We also present comparisons between computation times of two PIC-MCC simulation codes that have been developed for operations on standard CPU (Central Processing Units, code in Fortran) and on GPU (Graphics Processing Units, code in CUDA). The results show that the GPU simulation is about 25 times faster than the CPU one for a 2D domain with 512x512 grid points. The computation time ratio increases with the number of grid points.

  1. 3D PiC code simulations for a laboratory experimental investigation of Auroral Kilometric Radiation mechanisms

    Gillespie, K. M.; Speirs, D. C.; Ronald, K.; McConville, S. L.; Phelps, A. D. R.; Bingham, R.; Cross, A. W.; Robertson, C. W.; Whyte, C. G.; He, W.; Vorgul, I.; Cairns, R. A.; Kellett, B. J.

    2008-12-01

    Auroral Kilometric Radiation (AKR), occurs naturally in the polar regions of the Earth's magnetosphere where electrons are accelerated by electric fields into the increasing planetary magnetic dipole. Here conservation of the magnetic moment converts axial to rotational momentum forming a horseshoe distribution in velocity phase space. This distribution is unstable to cyclotron emission with radiation emitted in the X-mode. In a scaled laboratory reproduction of this process, a 75-85 keV electron beam of 5-40 A was magnetically compressed by a system of solenoids and emissions were observed for cyclotron frequencies of 4.42 GHz and 11.7 GHz resonating with near cut-off TE0,1 and TE0,3 modes, respectively. Here we compare these measurements with numerical predictions from the 3D PiC code KARAT. The 3D simulations accurately predicted the radiation modes and frequencies produced by the experiment. The predicted conversion efficiency between electron kinetic and wave field energy of around 1% is close to the experimental measurements and broadly consistent with quasi-linear theoretical analysis and geophysical observations.

  2. 3D PiC code simulations for a laboratory experimental investigation of Auroral Kilometric Radiation mechanisms

    Gillespie, K M; Speirs, D C; Ronald, K; McConville, S L; Phelps, A D R; Bingham, R; Cross, A W; Robertson, C W; Whyte, C G; He, W [SUPA Department of Physics, John Anderson Building, 107 Rottenrow, University of Strathclyde, Glasgow, G4 0NG (United Kingdom); Vorgul, I; Cairns, R A [School of Mathematics and Statistics, University of St Andrews, St Andrews, KY16 9SS (United Kingdom); Kellett, B J [Space Science and Technology Department, STFC Rutherford Appleton Laboratory, Didcot, OX11 0QX (United Kingdom)], E-mail: karen.gillespie@strath.ac.uk

    2008-12-15

    Auroral Kilometric Radiation (AKR), occurs naturally in the polar regions of the Earth's magnetosphere where electrons are accelerated by electric fields into the increasing planetary magnetic dipole. Here conservation of the magnetic moment converts axial to rotational momentum forming a horseshoe distribution in velocity phase space. This distribution is unstable to cyclotron emission with radiation emitted in the X-mode. In a scaled laboratory reproduction of this process, a 75-85 keV electron beam of 5-40 A was magnetically compressed by a system of solenoids and emissions were observed for cyclotron frequencies of 4.42 GHz and 11.7 GHz resonating with near cut-off TE{sub 0,1} and TE{sub 0,3} modes, respectively. Here we compare these measurements with numerical predictions from the 3D PiC code KARAT. The 3D simulations accurately predicted the radiation modes and frequencies produced by the experiment. The predicted conversion efficiency between electron kinetic and wave field energy of around 1% is close to the experimental measurements and broadly consistent with quasi-linear theoretical analysis and geophysical observations.

  3. 3D PiC code simulations for a laboratory experimental investigation of Auroral Kilometric Radiation mechanisms

    Auroral Kilometric Radiation (AKR), occurs naturally in the polar regions of the Earth's magnetosphere where electrons are accelerated by electric fields into the increasing planetary magnetic dipole. Here conservation of the magnetic moment converts axial to rotational momentum forming a horseshoe distribution in velocity phase space. This distribution is unstable to cyclotron emission with radiation emitted in the X-mode. In a scaled laboratory reproduction of this process, a 75-85 keV electron beam of 5-40 A was magnetically compressed by a system of solenoids and emissions were observed for cyclotron frequencies of 4.42 GHz and 11.7 GHz resonating with near cut-off TE0,1 and TE0,3 modes, respectively. Here we compare these measurements with numerical predictions from the 3D PiC code KARAT. The 3D simulations accurately predicted the radiation modes and frequencies produced by the experiment. The predicted conversion efficiency between electron kinetic and wave field energy of around 1% is close to the experimental measurements and broadly consistent with quasi-linear theoretical analysis and geophysical observations.

  4. Origin of extracted negative ions by 3D PIC-MCC modeling. Surface vs Volume comparison

    The development of a high performance negative ion (NI) source constitutes a crucial step in the construction of Neutral Beam Injector (NBI) of the future fusion reactor ITER. NI source should deliver 40 A of H-(or D-), which is a technical and scientific challenge, and requires a deeper understanding of the underlying physics of the source and its magnetic filter. The present knowledge of the ion extraction mechanism from the negative ion source is limited and concerns magnetized plasma sheaths used to avoid electrons being co-extracted from the plasma together with the NI. Moreover, due to the asymmetry induced by the ITER crossed magnetic configuration used to filter the electrons, any realistic study of this problem must consider the three spatial dimensions. To address this problem, a 3D Particles-in-Cell electrostatic collisional code was developed, specifically designed for this system. Binary collisions between the particles are introduced using Monte Carlo Collision scheme. The complex orthogonal magnetic field that is applied to deflect electrons is also taken into account. This code, called ONIX (Orsay Negative Ion eXtraction), was used to investigate the plasma properties and the transport of the charged particles close to a typical extraction aperture [1]. This contribution focuses on the limits for the extracted NI current from both, plasma volume and aperture wall. Results of production, destruction, and transport of H- in the extraction region are presented. The extraction efficiency of H- from the volume is compared to the one of H- coming from the wall.

  5. High-Fidelity RF Gun Simulations with the Parallel 3D Finite Element Particle-In-Cell Code Pic3P

    Candel, A; Kabel, A.; Lee, L.; Li, Z.; Limborg, C.; Ng, C.; Schussman, G.; Ko, K.; /SLAC

    2009-06-19

    SLAC's Advanced Computations Department (ACD) has developed the first parallel Finite Element 3D Particle-In-Cell (PIC) code, Pic3P, for simulations of RF guns and other space-charge dominated beam-cavity interactions. Pic3P solves the complete set of Maxwell-Lorentz equations and thus includes space charge, retardation and wakefield effects from first principles. Pic3P uses higher-order Finite Elementmethods on unstructured conformal meshes. A novel scheme for causal adaptive refinement and dynamic load balancing enable unprecedented simulation accuracy, aiding the design and operation of the next generation of accelerator facilities. Application to the Linac Coherent Light Source (LCLS) RF gun is presented.

  6. Genetic Algorithm Aided Antenna Placement in 3D and Parameter Determination Considering Electromagnetic Field Pollution Constraints

    Rolich, Tomislav; Grundler, Darko

    2012-01-01

    This paper presents genetic algorithm based method for antenna placement in 3D space and parameter determination satisfying environmental electromagnetic field pollution constraints. The main goal is to find out antenna parameters (power, position in 3D, azimuth and elevation) in the area of interest so that electromagnetic field satisfies minimal electromagnetic field strength for service availability and, at the same time, be below prescribed limit in restricted subareas (people populated a...

  7. Numerical modeling of the Linac4 negative ion source extraction region by 3D PIC-MCC code ONIX

    Mochalskyy, S; Minea, T; Lifschitz, AF; Schmitzer, C; Midttun, O; Steyaert, D

    2013-01-01

    At CERN, a high performance negative ion (NI) source is required for the 160 MeV H- linear accelerator Linac4. The source is planned to produce 80 mA of H- with an emittance of 0.25 mm mradN-RMS which is technically and scientifically very challenging. The optimization of the NI source requires a deep understanding of the underling physics concerning the production and extraction of the negative ions. The extraction mechanism from the negative ion source is complex involving a magnetic filter in order to cool down electrons’ temperature. The ONIX (Orsay Negative Ion eXtraction) code is used to address this problem. The ONIX is a selfconsistent 3D electrostatic code using Particles-in-Cell Monte Carlo Collisions (PIC-MCC) approach. It was written to handle the complex boundary conditions between plasma, source walls, and beam formation at the extraction hole. Both, the positive extraction potential (25kV) and the magnetic field map are taken from the experimental set-up, in construction at CERN. This contrib...

  8. 3D PIC-MCC simulations of discharge inception around a sharp anode in nitrogen/oxygen mixtures

    Teunissen, Jannis; Ebert, Ute

    2016-08-01

    We investigate how photoionization, electron avalanches and space charge affect the inception of nanosecond pulsed discharges. Simulations are performed with a 3D PIC-MCC (particle-in-cell, Monte Carlo collision) model with adaptive mesh refinement for the field solver. This model, whose source code is available online, is described in the first part of the paper. Then we present simulation results in a needle-to-plane geometry, using different nitrogen/oxygen mixtures at atmospheric pressure. In these mixtures non-local photoionization is important for the discharge growth. The typical length scale for this process depends on the oxygen concentration. With 0.2% oxygen the discharges grow quite irregularly, due to the limited supply of free electrons around them. With 2% or more oxygen the development is much smoother. An almost spherical ionized region can form around the electrode tip, which increases in size with the electrode voltage. Eventually this inception cloud destabilizes into streamer channels. In our simulations, discharge velocities are almost independent of the oxygen concentration. We discuss the physical mechanisms behind these phenomena and compare our simulations with experimental observations.

  9. A curvilinear, fully implicit, conservative electromagnetic PIC algorithm in multiple dimensions

    Chacón, L.; Chen, G.

    2016-07-01

    We extend a recently proposed fully implicit PIC algorithm for the Vlasov-Darwin model in multiple dimensions (Chen and Chacón (2015) [1]) to curvilinear geometry. As in the Cartesian case, the approach is based on a potential formulation (ϕ, A), and overcomes many difficulties of traditional semi-implicit Darwin PIC algorithms. Conservation theorems for local charge and global energy are derived in curvilinear representation, and then enforced discretely by a careful choice of the discretization of field and particle equations. Additionally, the algorithm conserves canonical-momentum in any ignorable direction, and preserves the Coulomb gauge ∇ ṡ A = 0 exactly. An asymptotically well-posed fluid preconditioner allows efficient use of large cell sizes, which are determined by accuracy considerations, not stability, and can be orders of magnitude larger than required in a standard explicit electromagnetic PIC simulation. We demonstrate the accuracy and efficiency properties of the algorithm with numerical experiments in mapped meshes in 1D-3V and 2D-3V.

  10. Development and Test of 2.5-Dimensional Electromagnetic PIC Simulation Code

    Lee, Sang-Yun; Lee, Ensang; Kim, Khan-Hyuk; Seon, Jongho; Lee, Dong-Hun; Ryu, Kwang-Sun

    2015-03-01

    We have developed a 2.5-dimensional electromagnetic particle simulation code using the particle-in-cell (PIC) method to investigate electromagnetic phenomena that occur in space plasmas. Our code is based on the leap-frog method and the centered difference method for integration and differentiation of the governing equations. We adopted the relativistic Buneman-Boris method to solve the Lorentz force equation and the Esirkepov method to calculate the current density while maintaining charge conservation. Using the developed code, we performed test simulations for electron two-stream instability and electron temperature anisotropy induced instability with the same initial parameters as used in previously reported studies. The test simulation results are almost identical with those of the previous papers.

  11. 3D simulation of superconducting microwave devices with an electromagnetic-field simulator

    Takeuchi, N.; Yamanashi, Yuki; Saito, Y; Yoshikawa, Nobuyuki

    2009-01-01

    High-frequency microwave applications, such as filters, delay lines, and resonators, are quite important for superconducting electronic devices. In order to design the superconducting microwave devices, circuit parameters should be precisely extracted from the physical structure of the devices. A 3-dimentional electromagnetic-field simulators is very useful for designing microwave devices. However, designing of superconducting microwave devices using a conventional 3D electromagnetic-field si...

  12. PIC-MCC simulation of electromagnetic wave attenuation in partially ionized plasmas

    With the use of measured electron–neutral cross sections, the transmission properties of an electromagnetic (EM) wave in a nitrogen (N2) plasma and a helium (He) plasma are studied by means of PIC-MCC (the particle-in-cell method with collision modeling by the Monte Carlo method) simulation. The plasmas are assumed to be uniform, collisional and non-magnetized. Each type of species presented in the plasmas is treated by the PIC method and the electron–neutral collisions are treated by direct Monte Carlo simulation of particle trajectories. And then the dependence of power attenuation of the EM wave on plasma parameters and wave parameters is obtained and discussed. It is found that power attenuation of the EM wave is strongly affected by the plasma density, species of neutral gas, density of neutral gas and the frequency of the EM wave. Moreover, it is also found that the stopband (passband) of EM wave propagation turns out to be narrower (wider) in collisional plasmas both numerically and analytically. (paper)

  13. 3D inversion of airborne electromagnetic data using a moving footprint

    Cox, Leif H.; Wilson, Glenn A.; Zhdanov, Michael S.

    2010-12-01

    It is often argued that 3D inversion of entire airborne electromagnetic (AEM) surveys is impractical, and that 1D methods provide the only viable option for quantitative interpretation. However, real geological formations are 3D by nature and 3D inversion is required to produce accurate images of the subsurface. To that end, we show that it is practical to invert entire AEM surveys to 3D conductivity models with hundreds of thousands if not millions of elements. The key to solving a 3D AEM inversion problem is the application of a moving footprint approach. We have exploited the fact that the area of the footprint of an AEM system is significantly smaller than the area of an AEM survey, and developed a robust 3D inversion method that uses a moving footprint. Our implementation is based on the 3D integral equation method for computing data and sensitivities, and uses the re-weighted regularised conjugate gradient method for minimising the objective functional. We demonstrate our methodology with the 3D inversion of AEM data acquired for salinity mapping over the Bookpurnong Irrigation District in South Australia. We have inverted 146 line km of RESOLVE data for a 3D conductivity model with ~310000 elements in 45min using just five processors of a multi-processor workstation.

  14. Preparation for a 3D Electromagnetic inversion-Application to GREATEM data

    Abd allah, S.; Mogi, T.; Kim, H.; Fomenko, E.

    2013-12-01

    Previous studies conducted by the Grounded Electrical-Source Airborne Transient Electromagnetic (GREATEM) have shown that, this system is a promising method for modelling 3D resistivity structures in coastal areas. To expand the application of the GREATEM system in the future for studying hazardous wastes, sea water incursion and hydrocarbon exploration, a 3D-resistivity modelling that considers large lateral resistivity variations is required in case of large resistivity contrasts between land and sea in surveys of coastal areas where 1D resistivity model that assumes a horizontally layered structure might be inaccurate. In this abstract we present the preparation for developing a consistent three dimensional electromagnetic inversion algorithm to calculate the EM response over arbitrary 3D conductivity structure using GREATEM system. In forward modelling the second order partial differential equations for scalar and vector potential are discretized on a staggered-grid using the finite difference method (Fomenko and Mogi, 2002, Mogi et al., 2011). In the inversion method the 3D model discretized into a large number of rectangular cells of constant conductivity and the final solution is obtained by minimizing a global objective function composed of the model objective function and data misfit. To deal with a huge number of grids and wide range of frequencies in air borne data sets, a method for approximating sensitivities is introduced for the efficient 3-D inversion. Approximate sensitivities are derived by replacing adjoint secondary electric fields with those computed in the previous iteration. These sensitivities can reduce the computation time, without significant loss of accuracy when constructing a full sensitivity matrix for 3-D inversion, based on the Gauss-Newton method (N. Han et al., 2008). Now, we tested the algorithm in the frequency domain electromagnetic response of synthetic model considering a 3D conductor. Frequency-domain computation is executed

  15. Using the CAVE virtual-reality environment as an aid to 3-D electromagnetic field computation

    One of the major problems in three-dimensional (3-D) field computation is visualizing the resulting 3-D field distributions. A virtual-reality environment, such as the CAVE, (CAVE Automatic Virtual Environment) is helping to overcome this problem, thus making the results of computation more usable for designers and users of magnets and other electromagnetic devices. As a demonstration of the capabilities of the CAVE, the elliptical multipole wiggler (EMW), an insertion device being designed for the Advanced Photon Source (APS) now being commissioned at Argonne National Laboratory (ANL), wa made visible, along with its fields and beam orbits. Other uses of the CAVE in preprocessing and postprocessing computation for electromagnetic applications are also discussed

  16. Quantitative 3D electromagnetic field determination of 1D nanostructures from single projection.

    Phatak, C.; de Knoop, L.; Houdellier, F.; Gatel, C.; Hytch, M. J.; Masseboeuf, A.

    2016-05-01

    One-dimensional (1D) nanostructures have been regarded as the most promising building blocks for nanoelectronics and nanocomposite material systems as well as for alternative energy applications. Although they result in confinement of a material, their properties and interactions with other nanostructures are still very much three-dimensional (3D) in nature. In this work, we present a novel method for quantitative determination of the 3D electromagnetic fields in and around 1D nanostructures using a single electron wave phase image, thereby eliminating the cumbersome acquisition of tomographic data. Using symmetry arguments, we have reconstructed the 3D magnetic field of a nickel nanowire as well as the 3D electric field around a carbon nanotube field emitter, from one single projection. The accuracy of quantitative values determined here is shown to be a better fit to the physics at play than the value obtained by conventional analysis. Moreover the 3D reconstructions can then directly be visualized and used in the design of functional 3D architectures built using 1D nanostructures.

  17. Quantitative 3D electromagnetic field determination of 1D nanostructures from single projection.

    Phatak, C; de Knoop, L; Houdellier, F; Gatel, C; Hÿtch, M J; Masseboeuf, A

    2016-05-01

    One-dimensional (1D) nanostructures have been regarded as the most promising building blocks for nanoelectronics and nanocomposite material systems as well as for alternative energy applications. Although they result in confinement of a material, their properties and interactions with other nanostructures are still very much three-dimensional (3D) in nature. In this work, we present a novel method for quantitative determination of the 3D electromagnetic fields in and around 1D nanostructures using a single electron wave phase image, thereby eliminating the cumbersome acquisition of tomographic data. Using symmetry arguments, we have reconstructed the 3D magnetic field of a nickel nanowire as well as the 3D electric field around a carbon nanotube field emitter, from one single projection. The accuracy of quantitative values determined here is shown to be a better fit to the physics at play than the value obtained by conventional analysis. Moreover the 3D reconstructions can then directly be visualized and used in the design of functional 3D architectures built using 1D nanostructures. PMID:26998702

  18. Status report on the 'Merging' of the Electron-Cloud Code POSINST with the 3-D Accelerator PIC CODE WARP

    We have integrated the electron-cloud code POSINST [1] with WARP [2]--a 3-D parallel Particle-In-Cell accelerator code developed for Heavy Ion Inertial Fusion--so that the two can interoperate. Both codes are run in the same process, communicate through a Python interpreter (already used in WARP), and share certain key arrays (so far, particle positions and velocities). Currently, POSINST provides primary and secondary sources of electrons, beam bunch kicks, a particle mover, and diagnostics. WARP provides the field solvers and diagnostics. Secondary emission routines are provided by the Tech-X package CMEE

  19. Finite-Element 2D and 3D PIC Modeling of RF Devices with Applications to Multipacting

    De Ford, John F; Petillo, John

    2005-01-01

    Multipacting currently limits the performance of many high power radio-frequency (RF) devices, particularly couplers and windows. Models have helped researchers understand and mitigate this problem in 2D structures, but useful multipacting models for complicated 3D structures are still a challenge. A combination of three recent technologies that have been developed in the Analyst and MICHELLE codes begin to address this challenge: high-order adaptive finite-element RF field calculations, advanced particle tracking on unstructured grids, and comprehensive secondary emission models. Analyst employs high-order adaptive finite-element methods to accurately compute driven RF fields and eigenmodes in complex geometries, particularly near edges, corners, and curved surfaces. To perform a multipacting analysis, we use the mesh and fields from Analyst in a modified version of the self-consistent, finite-element gun code MICHELLE. MICHELLE has both a fast, accurate, and reliable particle tracker for unstructured grids ...

  20. 3D Finite Volume Modeling of ENDE Using Electromagnetic T-Formulation

    Yue Li

    2012-01-01

    Full Text Available An improved method which can analyze the eddy current density in conductor materials using finite volume method is proposed on the basis of Maxwell equations and T-formulation. The algorithm is applied to solve 3D electromagnetic nondestructive evaluation (E’NDE benchmark problems. The computing code is applied to study an Inconel 600 work piece with holes or cracks. The impedance change due to the presence of the crack is evaluated and compared with the experimental data of benchmark problems No. 1 and No. 2. The results show a good agreement between both calculated and measured data.

  1. Effects of electromagnetic field frequencies on chondrocytes in 3D cell-printed composite constructs.

    Yi, Hee-Gyeong; Kang, Kyung Shin; Hong, Jung Min; Jang, Jinah; Park, Moon Nyeo; Jeong, Young Hun; Cho, Dong-Woo

    2016-07-01

    In cartilage tissue engineering, electromagnetic field (EMF) therapy has been reported to have a modest effect on promoting cartilage regeneration. However, these studies were conducted using different frequencies of EMF to stimulate chondrocytes. Thus, it is necessary to investigate the effect of EMF frequency on cartilage formation. In addition to the stimulation, a scaffold is required to satisfy the characteristics of cartilage such as its hydrated and dense extracellular matrix, and a mechanical resilience to applied loads. Therefore, we 3D-printed a composite construct composed of a polymeric framework and a chondrocyte-laden hydrogel. Here, we observed frequency-dependent positive and negative effects on chondrogenesis using a 3D cell-printed cartilage tissue. We found that a frequency of 45 Hz promoted gene expression and secretion of extracellular matrix molecules of chondrocytes. In contrast, a frequency of 7.5 Hz suppressed chondrogenic differentiation in vitro. Additionally, the EMF-treated composite constructs prior to implantation showed consistent results with those of in vitro, suggesting that in vitro pre-treatment with different EMF frequencies provides different capabilities for the enhancement of cartilage formation in vivo. This correlation between EMF frequency and 3D-printed chondrocytes suggests the necessity for optimization of EMF parameters when this physical stimulus is applied to engineered cartilage. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1797-1804, 2016. PMID:26991030

  2. Numerical solution of 3-D electromagnetic problems in exploration geophysics and its implementation on massively parallel computers

    Koldan, Jelena

    2013-01-01

    The growing significance, technical development and employment of electromagnetic (EM) methods in exploration geophysics have led to the increasing need for reliable and fast techniques of interpretation of 3-D EM data sets acquired in complex geological environments. The first and most important step to creating an inversion method is the development of a solver for the forward problem. In order to create an efficient, reliable and practical 3-D EM inversion, it is necessary to have a 3-D EM...

  3. 2.5D relativistic electromagnetic PIC code for simulation of the beam interaction with plasma in axial-symmetric geometry

    2.5D relativistic electromagnetic PIC code for simulation of the beam interaction with plasma in axial-symmetric geometry was developed. Accurate charge weighting scheme and difference schemes near the system axis were introduced. Simulation tests of electromagnetic wave interaction with inhomogeneous plasma were carried out.

  4. A cut-&-paste strategy for the 3-D inversion of helicopter-borne electromagnetic data - II. Combining regional 1-D and local 3-D inversion

    Ullmann, A.; Scheunert, M.; Afanasjew, M.; Börner, R.-U.; Siemon, B.; Spitzer, K.

    2016-07-01

    As a standard procedure, multi-frequency helicopter-borne electromagnetic (HEM) data are inverted to conductivity-depth models using 1-D inversion methods, which may, however, fail in areas of strong lateral conductivity contrasts (so-called induction anomalies). Such areas require more realistic multi-dimensional modelling. Since the full 3-D inversion of an entire HEM data set is still extremely time consuming, our idea is to combine fast 1-D and accurate but numerically expensive 3-D inversion of HEM data in such a way that the full 3-D inversion is only carried out for those parts of a HEM survey which are affected by induction anomalies. For all other parts, a 1-D inversion method is sufficient. We present a newly developed algorithm for identification, selection, and extraction of induction anomalies in HEM data sets and show how the 3-D inversion model of the anomalous area is re-integrated into the quasi-1-D background. Our proposed method is demonstrated to work properly on a synthetic and a field HEM data set from the Cuxhaven tunnel valley in Germany. We show that our 1-D/3-D approach yields better results compared to 1-D inversions in areas where 3-D effects occur.

  5. Research on 3D Braided Nickel Plated Carbon Fiber/epoxy Resin Composites and Their Electromagnetic Protection Properties

    QU Zhaoming; WANG Qingguo; LEI Yisan; ZHANG Ruigang

    2013-01-01

    To develop electromagnetic protection composites with integrated structure-function properties,the three-dimension (3D) braided nickel plated carbon fiber/epoxy resin (Ni-CF3D/EP) composites were prepared based on 3D five-directional braiding,unitary nickel plating and mold compression shaping.The electromagnetic protection properties of Ni-CF3D/EP composites including shielding effectiveness (SE) and reflection loss against plane electromagnetic wave,shielding properties against electromagnetic pulse (EMP) were investigated.The test results show that the novel composites have good electromagnetic protection properties in a wide frequency range of 14 kHz~ 18 GHz with SE of 42 dB~95 dB,the absorption bandwidth of-5 dB in 2 GHz~ 18 GHz can reach 10 GHz and the pulse peak SE against EMP is 43.7 dB which can reduce the electromagnetic energy greatly.Meanwhile,the mechanic properties were also investigated and the results indicate that the Ni-CF3D/EP composites can replace metal materials for loading-bearing structural applications because of their excellent mechanic properties.

  6. Research on 3D marine electromagnetic interferometry with synthetic sources for suppressing the airwave interference

    Zhang Jian-Guo; Wu Xin; Qi You-Zheng; Huang Ling; Fang Guang-You

    2013-01-01

    In order to suppress the airwave noise in marine controlled-source electromagnetic (CSEM) data, we propose a 3D deconvolution (3DD) interferometry method with a synthetic aperture source and obtain the relative anomaly coefficient (RAC) of the EM field reflection responses to show the degree for suppressing the airwave. We analyze the potential of the proposed method for suppressing the airwave, and compare the proposed method with traditional methods in their effectiveness. A method to select synthetic source length is derived and the effect of the water depth on RAC is examined via numerical simulations. The results suggest that 3DD interferometry method with a synthetic source can effectively suppress the airwave and enhance the potential of marine CSEM to hydrocarbon exploration.

  7. Compute extremely low-frequency electromagnetic field exposure by 3-D impendance method

    2007-01-01

    A 3-D impedance method has been introduced to compute the electric currents induced in a human body exposed to extremely low-frequency electromagnetic field.The 3-D impedance method has been deduced from Maxwell equations and is put into the computation and simulation effectively to the visible human body model, which has 196×114×626 cells and more than 40 types of tissues.As the result, two representative cases are investigated.One is exposure of the human body to 100 μT (1 000 mG), the limit recommended by the International Commission on Non-Ionizing Radiation Protection for the public and the other one is the exposure of human body to 0.4 μT (4 mG), the level at which a statistical link appears with a doubled risk of development of childhood leukaemia.The distribution of induced current density can be obtained and the maximum of induced current are found to be 16 mA/m2 and 0.07 mA/m2.

  8. Electromagnetic 3D subsurface imaging with source sparsity for a synthetic object

    Pursiainen, Sampsa

    2016-01-01

    This paper concerns electromagnetic 3D subsurface imaging in connection with sparsity of signal sources. We explored an imaging approach that can be implemented in situations that allow obtaining a large amount of data over a surface or a set of orbits but at the same time require sparsity of the signal sources. Characteristic to such a tomography scenario is that it necessitates the inversion technique to be genuinely three-dimensional: For example, slicing is not possible due to the low number of sources. Here, we primarily focused on astrophysical subsurface exploration purposes. As an example target of our numerical experiments we used a synthetic small planetary object containing three inclusions, e.g. voids, of the size of the wavelength. A tetrahedral arrangement of source positions was used, it being the simplest symmetric point configuration in 3D. Our results suggest that somewhat reliable inversion results can be produced within the present a priori assumptions, if the data can be recorded at a spe...

  9. Positional accuracy and transmitter orientation of the 3D electromagnetic tracking system

    This research investigates the positional accuracy and effects of transmitter orientation of a 3D electromagnetic tracking (EMT) system. EMT systems, capable of real-time position and orientation monitoring, are commonly used in computer-aided surgical navigation and path monitoring. In this study, positional information is evaluated for accuracy by comparing the EMT system against laser interferometer measurements in three orthogonal axes with step sizes between 0.1 and 0.5 mm. The effect of transmitter orientation is evaluated by placing the transmitter with either the front or the side facing the magnetic sensor. Gauge repeatability and reproducibility results demonstrate that the EMT system can accurately measure the motion with a tolerance of 0.2 mm with 0.5 s measurement time. The transmitter oriented with the front facing the sensor has a higher positional accuracy than that of the side transmitter orientation. High accuracy of the EMT system combined with the knowledge of transmitter orientation information presents the potential for accurate navigation and path monitoring in medical procedures. (paper)

  10. Fast, automatic, and accurate catheter reconstruction in HDR brachytherapy using an electromagnetic 3D tracking system

    Poulin, Eric; Racine, Emmanuel; Beaulieu, Luc, E-mail: Luc.Beaulieu@phy.ulaval.ca [Département de physique, de génie physique et d’optique et Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, Québec G1V 0A6, Canada and Département de radio-oncologie et Axe Oncologie du Centre de recherche du CHU de Québec, CHU de Québec, 11 Côte du Palais, Québec, Québec G1R 2J6 (Canada); Binnekamp, Dirk [Integrated Clinical Solutions and Marketing, Philips Healthcare, Veenpluis 4-6, Best 5680 DA (Netherlands)

    2015-03-15

    Purpose: In high dose rate brachytherapy (HDR-B), current catheter reconstruction protocols are relatively slow and error prone. The purpose of this technical note is to evaluate the accuracy and the robustness of an electromagnetic (EM) tracking system for automated and real-time catheter reconstruction. Methods: For this preclinical study, a total of ten catheters were inserted in gelatin phantoms with different trajectories. Catheters were reconstructed using a 18G biopsy needle, used as an EM stylet and equipped with a miniaturized sensor, and the second generation Aurora{sup ®} Planar Field Generator from Northern Digital Inc. The Aurora EM system provides position and orientation value with precisions of 0.7 mm and 0.2°, respectively. Phantoms were also scanned using a μCT (GE Healthcare) and Philips Big Bore clinical computed tomography (CT) system with a spatial resolution of 89 μm and 2 mm, respectively. Reconstructions using the EM stylet were compared to μCT and CT. To assess the robustness of the EM reconstruction, five catheters were reconstructed twice and compared. Results: Reconstruction time for one catheter was 10 s, leading to a total reconstruction time inferior to 3 min for a typical 17-catheter implant. When compared to the μCT, the mean EM tip identification error was 0.69 ± 0.29 mm while the CT error was 1.08 ± 0.67 mm. The mean 3D distance error was found to be 0.66 ± 0.33 mm and 1.08 ± 0.72 mm for the EM and CT, respectively. EM 3D catheter trajectories were found to be more accurate. A maximum difference of less than 0.6 mm was found between successive EM reconstructions. Conclusions: The EM reconstruction was found to be more accurate and precise than the conventional methods used for catheter reconstruction in HDR-B. This approach can be applied to any type of catheters and applicators.

  11. Fast, automatic, and accurate catheter reconstruction in HDR brachytherapy using an electromagnetic 3D tracking system

    Purpose: In high dose rate brachytherapy (HDR-B), current catheter reconstruction protocols are relatively slow and error prone. The purpose of this technical note is to evaluate the accuracy and the robustness of an electromagnetic (EM) tracking system for automated and real-time catheter reconstruction. Methods: For this preclinical study, a total of ten catheters were inserted in gelatin phantoms with different trajectories. Catheters were reconstructed using a 18G biopsy needle, used as an EM stylet and equipped with a miniaturized sensor, and the second generation Aurora® Planar Field Generator from Northern Digital Inc. The Aurora EM system provides position and orientation value with precisions of 0.7 mm and 0.2°, respectively. Phantoms were also scanned using a μCT (GE Healthcare) and Philips Big Bore clinical computed tomography (CT) system with a spatial resolution of 89 μm and 2 mm, respectively. Reconstructions using the EM stylet were compared to μCT and CT. To assess the robustness of the EM reconstruction, five catheters were reconstructed twice and compared. Results: Reconstruction time for one catheter was 10 s, leading to a total reconstruction time inferior to 3 min for a typical 17-catheter implant. When compared to the μCT, the mean EM tip identification error was 0.69 ± 0.29 mm while the CT error was 1.08 ± 0.67 mm. The mean 3D distance error was found to be 0.66 ± 0.33 mm and 1.08 ± 0.72 mm for the EM and CT, respectively. EM 3D catheter trajectories were found to be more accurate. A maximum difference of less than 0.6 mm was found between successive EM reconstructions. Conclusions: The EM reconstruction was found to be more accurate and precise than the conventional methods used for catheter reconstruction in HDR-B. This approach can be applied to any type of catheters and applicators

  12. Finite-Difference Algorithm for Simulating 3D Electromagnetic Wavefields in Conductive Media

    Aldridge, D. F.; Bartel, L. C.; Knox, H. A.

    2013-12-01

    Electromagnetic (EM) wavefields are routinely used in geophysical exploration for detection and characterization of subsurface geological formations of economic interest. Recorded EM signals depend strongly on the current conductivity of geologic media. Hence, they are particularly useful for inferring fluid content of saturated porous bodies. In order to enhance understanding of field-recorded data, we are developing a numerical algorithm for simulating three-dimensional (3D) EM wave propagation and diffusion in heterogeneous conductive materials. Maxwell's equations are combined with isotropic constitutive relations to obtain a set of six, coupled, first-order partial differential equations governing the electric and magnetic vectors. An advantage of this system is that it does not contain spatial derivatives of the three medium parameters electric permittivity, magnetic permeability, and current conductivity. Numerical solution methodology consists of explicit, time-domain finite-differencing on a 3D staggered rectangular grid. Temporal and spatial FD operators have order 2 and N, where N is user-selectable. We use an artificially-large electric permittivity to maximize the FD timestep, and thus reduce execution time. For the low frequencies typically used in geophysical exploration, accuracy is not unduly compromised. Grid boundary reflections are mitigated via convolutional perfectly matched layers (C-PMLs) imposed at the six grid flanks. A shared-memory-parallel code implementation via OpenMP directives enables rapid algorithm execution on a multi-thread computational platform. Good agreement is obtained in comparisons of numerically-generated data with reference solutions. EM wavefields are sourced via point current density and magnetic dipole vectors. Spatially-extended inductive sources (current carrying wire loops) are under development. We are particularly interested in accurate representation of high-conductivity sub-grid-scale features that are common

  13. Accuracy of FEM 3-D modeling in the electromagnetic methods; Denjiho ni okeru FEM 3 jigen modeling no seido

    Sasaki, Y. [Kyushu University, Fukuoka (Japan). Faculty of Engineering

    1996-10-01

    Analytical methods considering 3-D resistivity distribution, in particular, finite element method (FEM) were studied to improve the reliability of electromagnetic exploration. Integral equation, difference calculus, FEM and hybrid method are generally used as computational 3-D modeling method. FEM is widely used in various fields because FEM can easily handle complicated shapes and boundaries. However, in electromagnetic method, the assumption of continuous electric field is pointed out as important problem. The normal (orthogonal) component of current density should be continuous at the boundary between media with different conductivities, while this means that the normal component of electric field is discontinuous. In FEM, this means that current channeling is not properly considered, resulting in poor accuracy. Unless this problem is solved, FEM modeling is not practical. As one of the solutions, it is promising to specifically incorporate interior boundary conditions into element equation. 4 refs., 11 figs.

  14. Fabrication and characterization of direct-written 3D TiO2 woodpile electromagnetic bandgap structures

    Li, Ji-Jiao; Li, Bo; Peng, Qin-Mei; Zhou, Ji; Li, Long-Tu

    2014-09-01

    Three groups of three-dimensional (3D) TiO2 woodpile electromagnetic gap materials with tailed rheological properties were developed for direct-written fabrication. Appropriate amount of polyethyleneimine (PEI) dispersants allow the preparation of TiO2 inks with a high solid content of 42 vol.%, which enables them to flow through the nozzles easily. The inks exhibit pseudoplastic behavior. The measured microwave characteristics of the results agree well with simulations based on plane wave expansion (PWE).

  15. 3D Airborne Electromagnetic Inversion: A case study from the Musgrave Region, South Australia

    Cox, L. H.; Wilson, G. A.; Zhdanov, M. S.; Sunwall, D. A.

    2012-12-01

    Geophysicists know and accept that geology is inherently 3D, and is resultant from complex, overlapping processes related to genesis, metamorphism, deformation, alteration, weathering, and/or hydrogeology. Yet, the geophysics community has long relied on qualitative analysis, conductivity depth imaging (CDIs), 1D inversion, and/or plate modeling. There are many reasons for this deficiency, not the least of which has been the lack of capacity for historic 3D AEM inversion algorithms to invert entire surveys so as to practically affect exploration decisions. Our recent introduction of a moving sensitivity domain (footprint) methodology has been a paradigm shift in AEM interpretation. The basis of this method is that one needs only to calculate the responses and sensitivities for that part of the 3D earth model that is within the AEM system's sensitivity domain (footprint), and then superimpose all sensitivity domains into a single, sparse sensitivity matrix for the entire 3D earth model which is then updated in a regularized inversion scheme. This has made it practical to rigorously invert entire surveys with thousands of line kilometers of AEM data to mega-cell 3D models in hours using multi-processor workstations. Since 2010, over eighty individual projects have been completed for Aerodat, AEROTEM, DIGHEM, GEOTEM, HELITEM, HoisTEM, MEGATEM, RepTEM, RESOLVE, SkyTEM, SPECTREM, TEMPEST, and VTEM data from Australia, Brazil, Canada, Finland, Ghana, Peru, Tanzania, the US, and Zambia. Examples of 3D AEM inversion have been published for a variety of applications, including mineral exploration, oil sands exploration, salinity, permafrost, and bathymetry mapping. In this paper, we present a comparison of 3D inversions for SkyTEM, SPECTREM, TEMPET and VTEM data acquired over the same area in the Musgrave region of South Australia for exploration under cover.

  16. 3D relaxation MHD modeling with FOI-PERFECT code for electromagnetically driven HED systems

    Wang, Ganghua; Duan, Shuchao; Xie, Weiping; Kan, Mingxian; Institute of Fluid Physics Collaboration

    2015-11-01

    One of the challenges in numerical simulations of electromagnetically driven high energy density (HED) systems is the existence of vacuum region. The electromagnetic part of the conventional model adopts the magnetic diffusion approximation (magnetic induction model). The vacuum region is approximated by artificially increasing the resistivity. On one hand the phase/group velocity is superluminal and hence non-physical in the vacuum region, on the other hand a diffusion equation with large diffusion coefficient can only be solved by implicit scheme. Implicit method is usually difficult to parallelize and converge. A better alternative is to solve the full electromagnetic equations for the electromagnetic part. Maxwell's equations coupled with the constitutive equation, generalized Ohm's law, constitute a relaxation model. The dispersion relation is given to show its transition from electromagnetic propagation in vacuum to resistive MHD in plasma in a natural way. The phase and group velocities are finite for this system. A better time stepping is adopted to give a 3rd full order convergence in time domain without the stiff relaxation term restriction. Therefore it is convenient for explicit & parallel computations. Some numerical results of FOI-PERFECT code are also given. Project supported by the National Natural Science Foundation of China (Grant No. 11172277,11205145).

  17. Prediction of 3D internal organ position from skin surface motion: results from electromagnetic tracking studies

    Wong, Kenneth H.; Tang, Jonathan; Zhang, Hui J.; Varghese, Emmanuel; Cleary, Kevin R.

    2005-04-01

    An effective treatment method for organs that move with respiration (such as the lungs, pancreas, and liver) is a major goal of radiation medicine. In order to treat such tumors, we need (1) real-time knowledge of the current location of the tumor, and (2) the ability to adapt the radiation delivery system to follow this constantly changing location. In this study, we used electromagnetic tracking in a swine model to address the first challenge, and to determine if movement of a marker attached to the skin could accurately predict movement of an internal marker embedded in an organ. Under approved animal research protocols, an electromagnetically tracked needle was inserted into a swine liver and an electromagnetically tracked guidewire was taped to the abdominal skin of the animal. The Aurora (Northern Digital Inc., Waterloo, Canada) electromagnetic tracking system was then used to monitor the position of both of these sensors every 40 msec. Position readouts from the sensors were then tested to see if any of the movements showed correlation. The strongest correlations were observed between external anterior-posterior motion and internal inferior-superior motion, with many other axes exhibiting only weak correlation. We also used these data to build a predictive model of internal motion by taking segments from the data and using them to derive a general functional relationship between the internal needle and the external guidewire. For the axis with the strongest correlation, this model enabled us to predict internal organ motion to within 1 mm.

  18. Fabrication and characterization of direct-written 3D TiO2 woodpile electromagnetic bandgap structures

    Three groups of three-dimensional (3D) TiO2 woodpile electromagnetic gap materials with tailed rheological properties were developed for direct-written fabrication. Appropriate amount of polyethyleneimine (PEI) dispersants allow the preparation of TiO2 inks with a high solid content of 42 vol.%, which enables them to flow through the nozzles easily. The inks exhibit pseudoplastic behavior. The measured microwave characteristics of the results agree well with simulations based on plane wave expansion (PWE). (interdisciplinary physics and related areas of science and technology)

  19. 3-D electromagnetic induction studies using the Swarm constellation: Mapping conductivity anomalies in the Earth's mantle

    Kuvshinov, A.; Sabaka, T.; Olsen, Nils

    2006-01-01

    An approach is presented to detect deep-seated regional conductivity anomalies by analysis of magnetic observations taken by low-Earth-orbiting satellites. The approach deals with recovery of C-responses on a regular grid and starts with a determination of time series of external and internal...... validation of the approach, 3 years of realistic synthetic data at Simulated orbits of the forthcoming Swarm constellation of 3 satellites have been used. To obtain the synthetic data for a given 3-D conductivity Earth's model a time-domain scheme has been applied which relies oil a Fourier transformation of...... the inducing field, and oil a frequency domain forward modelling. The conductivity model consists of a thin Surface layer of realistic conductance and a 3-D mantle that incorporates a hypothetic deep regional anomaly beneath the Pacific Ocean plate. To establish the ability of the approach to capture...

  20. Finite Element Analysis of 3-D Electromagnetic Field in Bloom Continuous Casting Mold

    LIU Xu-dong; YANG Xiao-dong; ZHU Miao-yong; CHEN Yong; YANG Su-bo

    2007-01-01

    Three-dimensional finite element model of electromagnetic stirrer was built to predict magnetic field in a bloom continuous casting mold for steel during operation. The effects of current intensity, current frequency, and mold copper plate thickness on the magnetic field distribution in the mold were investigated. The results show that the magnetic induction intensity increases linearly with the increase in current intensity and decreases with the increase in current frequency. Increasing current intensity and frequency is available in increasing the electromagnetic force. The Joule heat decreases gradually from surface to center of bloom, and a maximum Joule heat can be found on corner of bloom. The prediction of magnetic induction intensity is in good agreement with the measured values.

  1. Electromagnetic fields in 3-D for various cavity antennas and Faraday shields

    Maxwell's Equations are solved for vectors E and H for various cavities of interest. The results are shown to be in agreement with existing theory for the fundamental resonance of a long ridge wave guide. This analysis has been applied to the testing cavity antenna for D-III. The method can include the addition of an arbitrarily-shaped Faraday shield. We have explored the electromagnetic effects of Faraday shield by measurement and computation. This correlation of theory and experiments is then used to predict power limits of an antenna by voltage- and current-limitations

  2. 3-D Finite Element Electromagnetic and Stress Analyses of the JET LB-SRP Divertor Element (Tungsten Lamella Design)

    Within the ITER-like wall project at the JET, the original plasma facing divertor tiles made of tungsten coated carbon fibre composite (CFC) are to be replaced by bulk tungsten. The design concept should comply with the power and energy handling requirements, the electromagnetic (EM) forces and the mechanical constraints of the existing remote handling system. Through a number of intermediate design options the '' lamella '' option has been developed. Each divertor block consists of three main parts: the plasma facing tiles, the inconel wedge holding the tiles and the inconel interface plate attaching the wedge to the JET CFC base plate. In order to minimize eddy currents the wedge is equipped with slits and the lamellae are isolated from each other. Defined electrical contact from lamellae via wedge to the base plate is required for defined path of halo currents. Eight tungsten lamella stacks are attached to the wedge. The individual lamellae are isolated from each other by means of insulated spacers. Tie rods keep the stack of tungsten lamellae and ceramic coated spacers together. The aim of this study is verification of the divertor block design with the load bearing septum replacement plate (LB-SRP) with respect to electromagnetic loads in the block components by means of essentially 3-D Finite Element (FE) electromagnetic and stress analyses. The following problems have been simulated and studied: · 3-D FE modeling of eddy and halo currents distribution for different cases of plasma current ramp down · Calculation of EM loads arising in the structure components due to interaction of the currents with external electromagnetic fields for different possible directions of magnetic fields · Selection of the worst load combination cases performed during post-processing of results of EM FE analysis · 3-D multi-contact non-linear stress analysis for the worst load combinations with paying attention to the system integrity at the elements separation planes. As a

  3. 3D PIC Simulation of the Magnetosphere during IMF Rotation from North to South: Signatures of Substorm Triggering in the Magnetotail

    Nishikawa, Ken-Ichi; Cao. D/ S/; Lembege, B.

    2008-01-01

    Three dimensional PIC simulations are performed in order to analyse the dynamics of the magnetotail as the interplanetary magnetic field (IMF) rotates from northward to southward direction. This dynamics reveals to be quite different within meridian/equatorial planes over two successive phases of this rotation. First, as IMF rotates from North to Dawn-Dusk direction, the X-Point (magnetic reconnection) evidenced in the magnetotail (meridian plane) is moving earthward (from x=-35 Re to x=-17.5 ) distance at which it stabilizes. This motion is coupled with the formation of "Crosstail-S" patterns (within the plane perpendicular to the Sun-Earth mine) through the neutral sheet in the nearby magnetotail. Second, as IMF rotates from dawn-dusk to South, the minimum B field region is expanding within the equatorial plane and forms a ring. This two-steps dynamics is analyzed in strong association with the cross field magnetotail current Jy, in order to recover the signatures of substorms triggering.

  4. Effect of Weaving Direction of Conductive Yarns on Electromagnetic Performance of 3D Integrated Microstrip Antenna

    Xu, Fujun; Yao, Lan; Zhao, Da; Jiang, Muwen; Qiu, Yipping

    2013-10-01

    A three-dimensionally integrated microstrip antenna (3DIMA) is a microstrip antenna woven into the three-dimensional woven composite for load bearing while functioning as an antenna. In this study, the effect of weaving direction of conductive yarns on electromagnetic performance of 3DIMAs are investigated by designing, simulating and experimental testing of two microstrip antennas with different weaving directions of conductive yarns: one has the conductive yarns along the antenna feeding direction (3DIMA-Exp1) and the other has the conductive yarns perpendicular the antenna feeding direction (3DIMA-Exp2). The measured voltage standing wave ratio (VSWR) of 3DIMA-Exp1 was 1.4 at the resonant frequencies of 1.39 GHz; while that of 3DIMA-Exp2 was 1.2 at the resonant frequencies of 1.35 GHz. In addition, the measured radiation pattern of the 3DIMA-Exp1 has smaller back lobe and higher gain value than those of the 3DIMA-Exp2. This result indicates that the waving direction of conductive yarns may have a significant impact on electromagnetic performance of textile structural antennas.

  5. Feasibility study of a 3D vibration-driven electromagnetic MEMS energy harvester with multiple vibration modes

    A novel electromagnetic energy harvester (EH) with multiple vibration modes has been developed and characterized using three-dimensional (3D) excitation at different frequencies. The device consists of a movable circular-mass patterned with three sets of double-layer aluminum (Al) coils, a circular-ring system incorporating a magnet and a supporting beam. The 3D dynamic behavior and performance analysis of the device shows that the first vibration mode of 1285 Hz is an out-of-plane motion, while the second and third modes of 1470 and 1550 Hz, respectively, are in-plane at angles of 60° (240°) and 150° (330°) to the horizontal (x-) axis. For an excitation acceleration of 1 g, the maximum power density achieved are 0.444, 0.242 and 0.125 µW cm−3 at vibration modes of I, II and III, respectively. The experimental results are in good agreement with the simulation and indicate a good potential in the development of a 3D EH device. (paper)

  6. Quantum 3D spin-glass system on the scales of space-time period of external electromagnetic field

    Full text: (author)The quantum 3D spin-glass system was investigated under the influence of external electromagnetic fields. Using Birgoff ergodic hypothesis the considered problem was reduced on two conditionally separable 1D problems. The first 1D problem describes N-body disordered quantum system on the space-time scales of external fields, with taking into account relaxation effects in the environment. Mathematically the problem is formulated in the limits of stochastic differential equation (SDE) for complex probabilistic processes. Using SDE type of Langevin-Schrodinger for the quantum distribution partial differential equation of second order is obtained. The second problem describes ensemble of 1D steric spin-chains with the certain length which are interacting randomly. For the description of this ensemble the system of the algebraic equations is obtained. These equations allows to build stable spin-chains and correspondingly to calculate statistical sum of ensemble at equilibrium. It is shown that combining of these two problems allows investigating 3D quantum spin-glass system along the external fields' propagation. In particular to investigate collective orientational effects which can leads to phase transitions of the first order and the order formation in disordered 3D quantum system

  7. Electromagnetic characteristics and static torque of a solid salient poles synchronous motor computed by 3D-finite element method magnetics

    In these paper is presented a methodology for numerical determination and complex analysis of the electromagnetic characteristics of the Solid Salient Poles Synchronous Motor, with rated data: 2.5 kW, 240 V and 1500 r.p.m.. A mathematical model and original algorithm for the nonlinear and iterative calculations by using Finite Element Method in 3D domain will be given. The program package FEM-3D will be used to perform automatically mesh generation of the finite elements in the 3D domain, calculation of the magnetic field distribution, as well as electromagnetic characteristics and Static torque in SSPSM. (Author)

  8. Status report on the 'Merging' of the Electron-Cloud Code POSINST with the 3-D Accelerator PIC CODE WARP

    Vay, J.-L.; Furman, M.A.; Azevedo, A.W.; Cohen, R.H.; Friedman, A.; Grote, D.P.; Stoltz, P.H.

    2004-04-19

    We have integrated the electron-cloud code POSINST [1] with WARP [2]--a 3-D parallel Particle-In-Cell accelerator code developed for Heavy Ion Inertial Fusion--so that the two can interoperate. Both codes are run in the same process, communicate through a Python interpreter (already used in WARP), and share certain key arrays (so far, particle positions and velocities). Currently, POSINST provides primary and secondary sources of electrons, beam bunch kicks, a particle mover, and diagnostics. WARP provides the field solvers and diagnostics. Secondary emission routines are provided by the Tech-X package CMEE.

  9. Induced Polarization with Electromagnetic Coupling: 3D Spectral Imaging Theory, EMSP Project No. 73836

    Morgan, F. Dale; Sogade, John

    2004-12-14

    This project was designed as a broad foundational study of spectral induced polarization (SIP) for characterization of contaminated sites. It encompassed laboratory studies of the effects of chemistry on induced polarization, development of 3D forward modeling and inversion codes, and investigations of inductive and capacitive coupling problems. In the laboratory part of the project a physico-chemical model developed in this project was used to invert laboratory IP spectra for the grain size and the effective grain size distribution of the sedimentary rocks as well as the formation factor, porosity, specific surface area, and the apparent fractal dimension. Furthermore, it was established that the IP response changed with the solution chemistry, the concentration of a given solution chemistry, valence of the constituent ions, and ionic radius. In the field part of the project, a 3D complex forward and inverse model was developed. It was used to process data acquired at two frequencies (1/16 Hz and 1/ 4Hz) in a cross-borehole configuration at the A-14 outfall area of the Savannah River Site (SRS) during March 2003 and June 2004. The chosen SRS site was contaminated with Tetrachloroethylene (TCE) and Trichloroethylene (PCE) that were disposed in this area for several decades till the 1980s. The imaginary conductivity produced from the inverted 2003 data correlated very well with the log10 (PCE) concentration derived from point sampling at 1 ft spacing in five ground-truth boreholes drilled after the data acquisition. The equivalent result for the 2004 data revealed that there were significant contaminant movements during the period March 2003 and June 2004, probably related to ground-truth activities and nearby remediation activities. Therefore SIP was successfully used to develop conceptual models of volume distributions of PCE/TCE contamination. In addition, the project developed non-polarizing electrodes that can be deployed in boreholes for years. A total of 28

  10. Efficient computational methods for electromagnetic imaging with applications to 3D magnetotellurics

    Kordy, Michal Adam

    The motivation for this work is the forward and inverse problem for magnetotellurics, a frequency domain electromagnetic remote-sensing geophysical method used in mineral, geothermal, and groundwater exploration. The dissertation consists of four papers. In the first paper, we prove the existence and uniqueness of a representation of any vector field in H(curl) by a vector lying in H(curl) and H(div). It allows us to represent electric or magnetic fields by another vector field, for which nodal finite element approximation may be used in the case of non-constant electromagnetic properties. With this approach, the system matrix does not become ill-posed for low-frequency. In the second paper, we consider hexahedral finite element approximation of an electric field for the magnetotelluric forward problem. The near-null space of the system matrix for low frequencies makes the numerical solution unstable in the air. We show that the proper solution may obtained by applying a correction on the null space of the curl. It is done by solving a Poisson equation using discrete Helmholtz decomposition. We parallelize the forward code on multicore workstation with large RAM. In the next paper, we use the forward code in the inversion. Regularization of the inversion is done by using the second norm of the logarithm of conductivity. The data space Gauss-Newton approach allows for significant savings in memory and computational time. We show the efficiency of the method by considering a number of synthetic inversions and we apply it to real data collected in Cascade Mountains. The last paper considers a cross-frequency interpolation of the forward response as well as the Jacobian. We consider Pade approximation through model order reduction and rational Krylov subspace. The interpolating frequencies are chosen adaptively in order to minimize the maximum error of interpolation. Two error indicator functions are compared. We prove a theorem of almost always lucky failure in the

  11. Fabrication of imitative cracks by 3D printing for electromagnetic nondestructive testing and evaluations

    Noritaka Yusa

    2016-05-01

    Full Text Available This study demonstrates that 3D printing technology offers a simple, easy, and cost-effective method to fabricate artificial flaws simulating real cracks from the viewpoint of eddy current testing. The method does not attempt to produce a flaw whose morphology mirrors that of a real crack but instead produces a relatively simple artificial flaw. The parameters of this flaw that have dominant effects on eddy current signals can be quantitatively controlled. Three artificial flaws in type 316L austenitic stainless steel plates were fabricated using a powderbed-based laser metal additive manufacturing machine. The three artificial flaws were designed to have the same length, depth, and opening but different branching and electrical contacts between flaw surfaces. The flaws were measured by eddy current testing using an absolute type pancake probe. The signals due to the three flaws clearly differed from each other although the flaws had the same length and depth. These results were supported by subsequent destructive tests and finite element analyses.

  12. Electromagnetic mini arrays (EMMA project). 3D modeling/inversion for mantle conductivity in the Archaean of the Fennoscandian Shield

    Smirnov, M. Yu.; Korja, T.; Pedersen, L. B.

    2009-04-01

    Two electromagnetic arrays are used in the EMMA project to study conductivity structure of the Archaean lithosphere in the Fennoscandian Shield. The first array was operated during almost one year, while the second one was running only during the summer time. Twelve 5-components magnetotelluric instruments with fluxgate magnetometers recorded simultaneously time variations of Earth's natural electromagnetic field at the sites separated by c. 30 km. To better control the source field and to obtain galvanic distortion free responses we have applied horizontal spatial gradient (HSG) technique to the data. The study area is highly inhomogeneous, thus classical HSG might give erroneous results. The method was extended to include anomalous field effects by implementing multivariate analysis. The HSG transfer functions were then used to control static shift distortions of apparent resistivities. During the BEAR experiment 1997-2002, the conductance map of entire Fennoscandia was assembled and finally converted into 3D volume resistivity model. We have used the model, refined it to get denser grid around measurement area and calculated MT transfer functions after 3D modeling. We have used trial-and-error method in order to further improve the model. The data set was also inverted using 3D code of Siripunvaraporn (2005). In the first stage we have used homogeneous halfspace as starting model for the inversion. In the next step we have used final 3D forward model as apriori model. The usage of apriori information significantly stabilizes the inverse solution, especially in case of a limited amount of data available. The results show that in the Archaean Domain a conductive layer is found in the upper/middle crust on contrary to previous results from other regions of the Archaean crust in the Fennoscandian Shield. Data also suggest enhanced conductivity at the depth of c. 100 km. Conductivity below the depth of 200-250 km is lower than that of the laboratory based estimates

  13. Inversion of multi-frequency electromagnetic induction data for 3D characterization of hydraulic conductivity

    Brosten, T.R.; Day-Lewis, F. D.; Schultz, G.M.; Curtis, G.P.; Lane, J.W.

    2011-01-01

    Electromagnetic induction (EMI) instruments provide rapid, noninvasive, and spatially dense data for characterization of soil and groundwater properties. Data from multi-frequency EMI tools can be inverted to provide quantitative electrical conductivity estimates as a function of depth. In this study, multi-frequency EMI data collected across an abandoned uranium mill site near Naturita, Colorado, USA, are inverted to produce vertical distribution of electrical conductivity (EC) across the site. The relation between measured apparent electrical conductivity (ECa) and hydraulic conductivity (K) is weak (correlation coefficient of 0.20), whereas the correlation between the depth dependent EC obtained from the inversions, and K is sufficiently strong to be used for hydrologic estimation (correlation coefficient of -0.62). Depth-specific EC values were correlated with co-located K measurements to develop a site-specific ln(EC)-ln(K) relation. This petrophysical relation was applied to produce a spatially detailed map of K across the study area. A synthetic example based on ECa values at the site was used to assess model resolution and correlation loss given variations in depth and/or measurement error. Results from synthetic modeling indicate that optimum correlation with K occurs at ~0.5m followed by a gradual correlation loss of 90% at 2.3m. These results are consistent with an analysis of depth of investigation (DOI) given the range of frequencies, transmitter-receiver separation, and measurement errors for the field data. DOIs were estimated at 2.0??0.5m depending on the soil conductivities. A 4-layer model, with varying thicknesses, was used to invert the ECa to maximize available information within the aquifer region for improved correlations with K. Results show improved correlation between K and the corresponding inverted EC at similar depths, underscoring the importance of inversion in using multi-frequency EMI data for hydrologic estimation. ?? 2011.

  14. Simulations of 3D electromagnetic field and design study of SWS for millimeter tunneladder coupled-cavity TWT

    Simulations of electromagnetic field and design study of slow-wave structure (SWS) for millimeter tunneladder coupled-cavity TWT (travelling-wave tube) have been performed and cold-test parameters such as dispersion, interaction impedance and attenuation in this system are obtained by using 3D electromagnetic code CST-MWS and symmetric field of high frequency structure. For verification of mastering code, firstly, simulated are the dispersion characteristics parameters of a sample tube from Huges Co., the United States, which are completely consistent with those tested and theoretically calculated results published from Huges Co., and probably better. Furthermore, also using this code, cold-test parameters at Ka frequency range such as dispersion, interaction impedance and attenuation have been simulated, calculated and compared respectively for the tunneladder structures of linear coupled-cavity, single stagger tuning coupled-cavity and double stagger tuning coupled-cavity. It is concluded from these results that compared to the slow-wave system without stagger tuning coupled-cavity, pass bandwidth and interaction impedance of those with a single (double) stagger tuning coupled-cavity can be considerably improved

  15. Particle entry through "Sash" groove simulated by Global 3D Electromagnetic Particle code with duskward IMF By

    Yan, X.; Cai, D.; Nishikawa, K.; Lembege, B.

    2004-12-01

    We made our efforts to parallelize the global 3D HPF Electromagnetic particle model (EMPM) for several years and have also reported our meaningful simulation results that revealed the essential physics involved in interaction of the solar wind with the Earth's magnetosphere using this EMPM (Nishikawa et al., 1995; Nishikawa, 1997, 1998a, b, 2001, 2002) in our PC cluster and supercomputer(D.S. Cai et al., 2001, 2003). Sash patterns and related phenomena have been observed and reported in some satellite observations (Fujumoto et al. 1997; Maynard, 2001), and have motivated 3D MHD simulations (White and al., 1998). We also investigated it with our global 3D parallelized HPF EMPM with dawnward IMF By (K.-I. Nishikawa, 1998) and recently new simulation with dusk-ward IMF By was accomplished in the new VPP5000 supercomputer. In the new simulations performed on the new VPP5000 supercomputer of Tsukuba University, we used larger domain size, 305×205×205, smaller grid size (Δ ), 0.5R E(the radium of the Earth), more total particle number, 220,000,000 (about 8 pairs per cell). At first, we run this code until we get the so-called quasi-stationary status; After the quasi-stationary status was established, we applied a northward IMF (B z=0.2), and then wait until the IMF arrives around the magnetopuase. After the arrival of IMF, we begin to change the IMF from northward to duskward (IMF B y=-0.2). The results revealed that the groove structure at the day-side magnetopause, that causes particle entry into inner magnetosphere and the cross structure or S-structure at near magneto-tail are formed. Moreover, in contrast with MHD simulations, kinetic characteristic of this event is also analyzed self-consistently with this simulation. The new simulation provides new and more detailed insights for the observed sash event.

  16. A cut-&-paste strategy for the 3-D inversion of helicopter-borne electromagnetic data - I. 3-D inversion using the explicit Jacobian and a tensor-based formulation

    Scheunert, M.; Ullmann, A.; Afanasjew, M.; Börner, R.-U.; Siemon, B.; Spitzer, K.

    2016-06-01

    We present an inversion concept for helicopter-borne frequency-domain electromagnetic (HEM) data capable of reconstructing 3-D conductivity structures in the subsurface. Standard interpretation procedures often involve laterally constrained stitched 1-D inversion techniques to create pseudo-3-D models that are largely representative for smoothly varying conductivity distributions in the subsurface. Pronounced lateral conductivity changes may, however, produce significant artifacts that can lead to serious misinterpretation. Still, 3-D inversions of entire survey data sets are numerically very expensive. Our approach is therefore based on a cut-&-paste strategy whereupon the full 3-D inversion needs to be applied only to those parts of the survey where the 1-D inversion actually fails. The introduced 3-D Gauss-Newton inversion scheme exploits information given by a state-of-the-art (laterally constrained) 1-D inversion. For a typical HEM measurement, an explicit representation of the Jacobian matrix is inevitable which is caused by the unique transmitter-receiver relation. We introduce tensor quantities which facilitate the matrix assembly of the forward operator as well as the efficient calculation of the Jacobian. The finite difference forward operator incorporates the displacement currents because they may seriously affect the electromagnetic response at frequencies above 100. Finally, we deliver the proof of concept for the inversion using a synthetic data set with a noise level of up to 5%.

  17. 3D electromagnetic design and electrical characteristics analysis of a 10-MW-class hightemperature superconducting synchronous generator for wind power

    In this paper, the general electromagnetic design process of a 10-MW-class high-temperature superconducting (HTS) synchronous generator that is intended to be utilized for large scale offshore wind generator is discussed. This paper presents three-dimensional (3D) electromagnetic design proposal and electrical characteristic analysis results of a 10-MW-class HTS synchronous generator for wind power. For more detailed design by reducing the errors of a two-dimensional (2D) design owing to leakage flux in air-gap, we redesign and analyze the 2D conceptual electromagnetic design model of the HTS synchronous generator using 3D finite element analysis (FEA) software. Then electrical characteristics which include the no-load and full-load voltage of generator, harmonic contents of these two load conditions, voltage regulation and losses of generator are analyzed by commercial 3D FEA software.

  18. Algebraic multigrid preconditioning within parallel finite-element solvers for 3-D electromagnetic modelling problems in geophysics

    Koldan, Jelena; Puzyrev, Vladimir; de la Puente, Josep; Houzeaux, Guillaume; Cela, José María

    2014-06-01

    We present an elaborate preconditioning scheme for Krylov subspace methods which has been developed to improve the performance and reduce the execution time of parallel node-based finite-element (FE) solvers for 3-D electromagnetic (EM) numerical modelling in exploration geophysics. This new preconditioner is based on algebraic multigrid (AMG) that uses different basic relaxation methods, such as Jacobi, symmetric successive over-relaxation (SSOR) and Gauss-Seidel, as smoothers and the wave front algorithm to create groups, which are used for a coarse-level generation. We have implemented and tested this new preconditioner within our parallel nodal FE solver for 3-D forward problems in EM induction geophysics. We have performed series of experiments for several models with different conductivity structures and characteristics to test the performance of our AMG preconditioning technique when combined with biconjugate gradient stabilized method. The results have shown that, the more challenging the problem is in terms of conductivity contrasts, ratio between the sizes of grid elements and/or frequency, the more benefit is obtained by using this preconditioner. Compared to other preconditioning schemes, such as diagonal, SSOR and truncated approximate inverse, the AMG preconditioner greatly improves the convergence of the iterative solver for all tested models. Also, when it comes to cases in which other preconditioners succeed to converge to a desired precision, AMG is able to considerably reduce the total execution time of the forward-problem code-up to an order of magnitude. Furthermore, the tests have confirmed that our AMG scheme ensures grid-independent rate of convergence, as well as improvement in convergence regardless of how big local mesh refinements are. In addition, AMG is designed to be a black-box preconditioner, which makes it easy to use and combine with different iterative methods. Finally, it has proved to be very practical and efficient in the

  19. A hybrid boundary element-finite element approach to modeling plane wave 3D electromagnetic induction responses in the Earth

    Ren, Zhengyong; Kalscheuer, Thomas; Greenhalgh, Stewart; Maurer, Hansruedi

    2014-02-01

    A novel hybrid boundary element-finite element scheme which is accelerated by an adaptive multi-level fast multipole algorithm is presented to simulate 3D plane wave electromagnetic induction responses in the Earth. The remarkable advantages of this novel scheme are the complete removal of the volume discretization of the air space and the capability of simulating large-scale complicated geo-electromagnetic induction problems. To achieve this goal, first the Galerkin edge-based finite-element method (FEM) using unstructured meshes is adopted to solve the electric field differential equation in the heterogeneous Earth, where arbitrary distributions of conductivity, magnetic permeability and dielectric permittivity are allowed for. Second, the point collocation boundary-element method (BEM) is used to solve a surface integral formula in terms of the reduced electrical vector potential on the arbitrarily shaped air-Earth interface. Third, to avoid explicit storage of the system matrix arising from large-scale problems and to reduce the horrendous time complexity of the product of the system matrix with an initial vector of unknowns, the adaptive multilevel fast multipole method is applied. This leads to a matrix-free form suitable for the application of iterative solvers. Furthermore, a highly sparse problem-dependent preconditioner is developed to significantly reduce the number of iterations used by the iterative solvers. The efficacy of the presented hybrid scheme is verified on two synthetic examples against different numerical techniques such as goal-oriented adaptive finite-element methods. Numerical experiments show that at low frequencies, where the quasi-static approximation is applicable, standard FEM methods prove to be superior to our hybrid BEM-FEM solutions in terms of computational time, because the FEM method requires only a coarse discretization of the air domain and offers an advantageous sparsity of the system matrix. At radio

  20. Using 3D Simulation of Elastic Wave Propagation in Laplace Domain for Electromagnetic-Seismic Inverse Modeling

    Petrov, P.; Newman, G. A.

    2010-12-01

    -Fourier domain we had developed 3D code for full-wave field simulation in the elastic media which take into account nonlinearity introduced by free-surface effects. Our approach is based on the velocity-stress formulation. In the contrast to conventional formulation we defined the material properties such as density and Lame constants not at nodal points but within cells. This second order finite differences method formulated in the cell-based grid, generate numerical solutions compatible with analytical ones within the range errors determinate by dispersion analysis. Our simulator will be embedded in an inversion scheme for joint seismic- electromagnetic imaging. It also offers possibilities for preconditioning the seismic wave propagation problems in the frequency domain. References. Shin, C. & Cha, Y. (2009), Waveform inversion in the Laplace-Fourier domain, Geophys. J. Int. 177(3), 1067- 1079. Shin, C. & Cha, Y. H. (2008), Waveform inversion in the Laplace domain, Geophys. J. Int. 173(3), 922-931. Commer, M. & Newman, G. (2008), New advances in three-dimensional controlled-source electromagnetic inversion, Geophys. J. Int. 172(2), 513-535. Newman, G. A., Commer, M. & Carazzone, J. J. (2010), Imaging CSEM data in the presence of electrical anisotropy, Geophysics, in press.

  1. Jordan-Schwinger map, 3D harmonic oscillator constants of motion, and classical and quantum parameters characterizing electromagnetic wave polarization

    In this work we introduce a generalization of the Jauch and Rohrlich quantum Stokes operators when the arrival direction from the source is unknown a priori. We define the generalized Stokes operators as the Jordan-Schwinger map of a triplet of harmonic oscillators with the Gell-Mann and Ne'eman matrices of the SU(3) symmetry group. We show that the elements of the Jordan-Schwinger map are the constants of motion of the three-dimensional isotropic harmonic oscillator. Also, we show that the generalized Stokes operators together with the Gell-Mann and Ne'eman matrices may be used to expand the polarization matrix. By taking the expectation value of the Stokes operators in a three-mode coherent state of the electromagnetic field, we obtain the corresponding generalized classical Stokes parameters. Finally, by means of the constants of motion of the classical 3D isotropic harmonic oscillator we describe the geometrical properties of the polarization ellipse

  2. Comparison of 3D Adaptive Remeshing Strategies for Finite Element Simulations of Electromagnetic Heating of Gold Nanoparticles

    Fadhil Mezghani

    2015-01-01

    Full Text Available The optical properties of metallic nanoparticles are well known, but the study of their thermal behavior is in its infancy. However the local heating of surrounding medium, induced by illuminated nanostructures, opens the way to new sensors and devices. Consequently the accurate calculation of the electromagnetically induced heating of nanostructures is of interest. The proposed multiphysics problem cannot be directly solved with the classical refinement method of Comsol Multiphysics and a 3D adaptive remeshing process based on an a posteriori error estimator is used. In this paper the efficiency of three remeshing strategies for solving the multiphysics problem is compared. The first strategy uses independent remeshing for each physical quantity to reach a given accuracy. The second strategy only controls the accuracy on temperature. The third strategy uses a linear combination of the two normalized targets (the electric field intensity and the temperature. The analysis of the performance of each strategy is based on the convergence of the remeshing process in terms of number of elements. The efficiency of each strategy is also characterized by the number of computation iterations, the number of elements, the CPU time, and the RAM required to achieve a given target accuracy.

  3. Electromagnetic particle-in-cell (PIC) method for modeling the formation of metal surface structures induced by femtosecond laser radiation

    Djouder, M. [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri de Tizi-ouzou, BP 17 RP, 15000 Tizi-Ouzou (Algeria); Lamrous, O., E-mail: omarlamrous@mail.ummto.dz [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri de Tizi-ouzou, BP 17 RP, 15000 Tizi-Ouzou (Algeria); Mitiche, M.D. [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri de Tizi-ouzou, BP 17 RP, 15000 Tizi-Ouzou (Algeria); Itina, T.E. [Laboratoire Hubert Curien, UMR CNRS 5516/Université Jean Monnet, 18 rue de Professeur Benoît Lauras, 42000 Saint-Etienne (France); Zemirli, M. [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri de Tizi-ouzou, BP 17 RP, 15000 Tizi-Ouzou (Algeria)

    2013-09-01

    The particle in cell (PIC) method coupled to the finite-difference time-domain (FDTD) method is used to model the formation of laser induced periodic surface structures (LIPSS) at the early stage of femtosecond laser irradiation of smooth metal surface. The theoretical results were analyzed and compared with experimental data taken from the literature. It was shown that the optical properties of the target are not homogeneous and the ejection of electrons is such that ripples in the electron density were obtained. The Coulomb explosion mechanism was proposed to explain the ripples formation under the considered conditions.

  4. Electromagnetic particle-in-cell (PIC) method for modeling the formation of metal surface structures induced by femtosecond laser radiation

    The particle in cell (PIC) method coupled to the finite-difference time-domain (FDTD) method is used to model the formation of laser induced periodic surface structures (LIPSS) at the early stage of femtosecond laser irradiation of smooth metal surface. The theoretical results were analyzed and compared with experimental data taken from the literature. It was shown that the optical properties of the target are not homogeneous and the ejection of electrons is such that ripples in the electron density were obtained. The Coulomb explosion mechanism was proposed to explain the ripples formation under the considered conditions.

  5. PIC: Protein Interactions Calculator

    Tina, KG; Bhadra, R.; Srinivasan, N.

    2007-01-01

    Interactions within a protein structure and interactions between proteins in an assembly are essential considerations in understanding molecular basis of stability and functions of proteins and their complexes. There are several weak and strong interactions that render stability to a protein structure or an assembly. Protein Interactions Calculator (PIC) is a server which, given the coordinate set of 3D structure of a protein or an assembly, computes various interactions such as disulphide bo...

  6. Parallel and numerical issues of the edge finite element method for 3D controlled-source electromagnetic surveys

    Castillo-Reyes, Octavio; de la Puente, Josep; Puzyrev, Vladimir; Cela, José M.

    2015-01-01

    This paper deals with the most relevant parallel and numerical issues that arise when applying the Edge Element Method in the solution of electromagnetic problems in exploration geophysics. In this sense, in recent years the application of land and marine controlled-source electromagnetic (CSEM) surveys has gained tremendous interest among the offshore exploration community. This method is especially significant in detecting hydrocarbon in shallow/deep waters. On the other hand, in Finite Ele...

  7. New algorithm for simulation of 3D classical spin glasses under the influence of external electromagnetic fields

    We study statistical properties of 3D classical spin glass under the influence of external fields. It is proved that in the framework of the nearest-neighboring model, 3D spin-glass problem at performing of Birkhoff's ergodic hypothesis regarding the orientations of spins in 3D space can be reduced to the problem of disordered 1D spatial spin-chains (SSC) ensemble, where each spin chain interacts with a random environment. The 1D SSC is defined as a periodic 1D lattice, where spins in nodes are randomly oriented in 3D space, in addition, they all interact with each other randomly. For minimization of the Hamiltonian in an arbitrary node of 1D lattice the recurrent equations and corresponding Sylvester's criterion are obtained, which allow one to find the energy local minimum. On the basis of these equations, the high-performance parallel algorithm is developed, which allows one to calculate all statistical parameters of 3D spin glass, including distribution of a constant of spin-spin interaction, from the first principles of the classical mechanics.

  8. Algebraic multigrid preconditioning within parallel finite-element solvers for 3-D electromagnetic modelling problems in geophysics

    Koldan, Jelena; Puzyrev, Vladimir; de la Puente, Josep; Houzeaux, Guillaume; José M. Cela

    2014-01-01

    We present an elaborate preconditioning scheme for Krylov subspace methods which has been developed to improve the performance and reduce the execution time of parallel node-based finite-element solvers for three-dimensional electromagnetic numerical modelling in exploration geophysics. This new preconditioner is based on algebraic multigrid that uses different basic relaxation methods, such as Jacobi, symmetric successive over-relaxation and Gauss-Seidel, as smoothers and the wav...

  9. Kinetic description of the 3D electromagnetic structures formation in flows of expanding plasma coronas. Part 1: General

    Gubchenko, V. M.

    2015-12-01

    In part I of the work, the physical effects responsible for the formation of low-speed flows in plasma coronas, coupled with formation of coronas magnetosphere-like structures, are described qualitatively. Coronal domain structures form if we neglect scales of spatial plasma dispersion: high-speed flows are accumulated in magnetic tubes of the open domains, while magnetic structures and low-speed flows are concentrated within boundaries of domains. The inductive electromagnetic process occurring in flows of the hot collisionless plasma is shown to underlie the formation of magnetosphere-like structures. Depending on the form of the velocity distribution function of particles (PDF), a hot flow differently reveals its electromagnetic properties, which are expressed by the induction of resistive and diamagnetic scales of spatial dispersion. These determine the magnetic structure scales and structure reconstruction. The inductive electromagnetic process located in lines of the plasma nontransparency and absorption, in which the structures of excited fields are spatially aperiodic and skinned to the magnetic field sources. The toroidal and dipole magnetic sources of different configurations are considered for describing the corona structures during the solar maximum and solar minimum.

  10. JPIC & How to make a PIC code

    Wu, Hui-Chun

    2011-01-01

    Author developed the parallel fully kinetic particle-in-cell (PIC) code JPIC based on updated and advanced algorithms (e.g. numerical-dispersion-free electromagnetic field solver) for simulating laser plasma interactions. Basic technical points and hints of PIC programming and parallel programming by message passing interface (MPI) are reviewed. Most of contents come from Author's notes when writing up JPIC and experiences when using the code to solve different problems. Enough "how-to-do-it" information should help a new beginner to effectively build up his/her own PIC code. General advices on how to use a PIC code are also given.

  11. Massive parallelization of a 3D finite difference electromagnetic forward solution using domain decomposition methods on multiple CUDA enabled GPUs

    Schultz, A.

    2010-12-01

    3D forward solvers lie at the core of inverse formulations used to image the variation of electrical conductivity within the Earth's interior. This property is associated with variations in temperature, composition, phase, presence of volatiles, and in specific settings, the presence of groundwater, geothermal resources, oil/gas or minerals. The high cost of 3D solutions has been a stumbling block to wider adoption of 3D methods. Parallel algorithms for modeling frequency domain 3D EM problems have not achieved wide scale adoption, with emphasis on fairly coarse grained parallelism using MPI and similar approaches. The communications bandwidth as well as the latency required to send and receive network communication packets is a limiting factor in implementing fine grained parallel strategies, inhibiting wide adoption of these algorithms. Leading Graphics Processor Unit (GPU) companies now produce GPUs with hundreds of GPU processor cores per die. The footprint, in silicon, of the GPU's restricted instruction set is much smaller than the general purpose instruction set required of a CPU. Consequently, the density of processor cores on a GPU can be much greater than on a CPU. GPUs also have local memory, registers and high speed communication with host CPUs, usually through PCIe type interconnects. The extremely low cost and high computational power of GPUs provides the EM geophysics community with an opportunity to achieve fine grained (i.e. massive) parallelization of codes on low cost hardware. The current generation of GPUs (e.g. NVidia Fermi) provides 3 billion transistors per chip die, with nearly 500 processor cores and up to 6 GB of fast (DDR5) GPU memory. This latest generation of GPU supports fast hardware double precision (64 bit) floating point operations of the type required for frequency domain EM forward solutions. Each Fermi GPU board can sustain nearly 1 TFLOP in double precision, and multiple boards can be installed in the host computer system. We

  12. Mechanical, Electromagnetic, and X-ray Shielding Characterization of a 3D Printable Tungsten-Polycarbonate Polymer Matrix Composite for Space-Based Applications

    Shemelya, Corey M.; Rivera, Armando; Perez, Angel Torrado; Rocha, Carmen; Liang, Min; Yu, Xiaoju; Kief, Craig; Alexander, David; Stegeman, James; Xin, Hao; Wicker, Ryan B.; MacDonald, Eric; Roberson, David A.

    2015-08-01

    Material-extrusion three-dimensional (3D) printing has recently attracted much interest because of its process flexibility, rapid response to design alterations, and ability to create structures "on-the-go". For this reason, 3D printing has possible applications in rapid creation of space-based devices, for example cube satellites (CubeSat). This work focused on fabrication and characterization of tungsten-doped polycarbonate polymer matrix composites specifically designed for x-ray radiation-shielding applications. The polycarbonate-tungsten polymer composite obtained intentionally utilizes low loading levels to provide x-ray shielding while limiting effects on other properties of the material, for example weight, electromagnetic functionality, and mechanical strength. The fabrication process, from tungsten functionalization to filament extrusion and material characterization, is described, including printability, determination of x-ray attenuation, tensile strength, impact resistance, and gigahertz permittivity, and failure analysis. The proposed materials are uniquely advantageous when implemented in 3D printed structures, because even a small volume fraction of tungsten has been shown to substantially alter the properties of the resulting composite.

  13. New results on the resistivity structure of Merapi Volcano(Indonesia), derived from 3D restricted inversion of long-offsettransient electromagnetic data

    Commer, Michael; Helwig, Stefan, L.; Hordt, Andreas; Scholl,Carsten; Tezkan, Bulent

    2006-06-14

    Three long-offset transient electromagnetic (LOTEM) surveyswerecarried out at the active volcano Merapi in Central Java (Indonesia)during the years 1998, 2000, and 2001. The measurements focused on thegeneral resistivity structure of the volcanic edifice at depths of 0.5-2km and the further investigation of a southside anomaly. The measurementswere insufficient for a full 3D inversion scheme, which could enable theimaging of finely discretized resistivity distributions. Therefore, astable, damped least-squares joint-inversion approach is used to optimize3D models with a limited number of parameters. The mode ls feature therealistic simulation of topography, a layered background structure, andadditional coarse 3D blocks representing conductivity anomalies.Twenty-eight LOTEM transients, comprising both horizontal and verticalcomponents of the magnetic induction time derivative, were analyzed. Inview of the few unknowns, we were able to achieve reasonable data fits.The inversion results indicate an upwelling conductor below the summit,suggesting hydrothermal activity in the central volcanic complex. Ashallow conductor due to a magma-filled chamber, at depths down to 1 kmbelow the summit, suggested by earlier seismic studies, is not indicatedby the inversion results. In conjunction with an anomalous-density model,derived from arecent gravity study, our inversion results provideinformation about the southern geological structure resulting from amajor sector collapse during the Middle Merapi period. The density modelallows to assess a porosity range andthus an estimated vertical salinityprofile to explain the high conductivities on a larger scale, extendingbeyond the foothills of Merapi.

  14. Transport of 3D space charge dominated beams

    In this paper we present the theoretical analysis and the computer code design for the intense pulsed beam transport. Intense beam dynamics is a very important issue in low-energy high-current accelerators and beam transport systems. This problem affects beam transmission and beam qualities. Therefore, it attracts the attention of the accelerator physicists worldwide. The analysis and calculation for the intense beam dynamics are very complicated, because the state of particle motion is dominated not only by the applied electromagnetic fields, but also by the beam-induced electromagnetic fields (self-fields). Moreover, the self-fields are related to the beam dimensions and particle distributions. So, it is very difficult to get the self-consistent solutions of particle motion analytically. For this reason, we combine the Lie algebraic method and the particle in cell (PIC) scheme together to simulate intense 3D beam transport. With the Lie algebraic method we analyze the particle nonlinear trajectories in the applied electromagnetic fields up to third order approximation, and with the PIC algorithm we calculate the space charge effects to the particle motion. Based on the theoretical analysis, we have developed a computer code, which calculates beam transport systems consisting of electrostatic lenses, electrostatic accelerating columns, solenoid lenses, magnetic and electric quadruples, magnetic sextupoles, octopuses and different kinds of electromagnetic analyzers. The optimization calculations and the graphic display for the calculated results are provided by the code. (authors)

  15. PIC simulation of high efficiency and high power 14 vane industrial magnetron

    Vyas, Sandeep; Maurya, Shivendra; Singh, V. V. P.

    2016-03-01

    This paper presents a 3D Particle in cell (PIC) simulation of a CW 2.450±0.050 GHz 10 kW industrial magnetron. The electromagnetic and PIC simulation of magnetron has been carried out using CST microwave studio andCST particle studio. A virtual prototype of 14 vane magnetron has been simulated on computer. The cold frequency of magnetron is found 2.495 GHz. The unloaded quality factor and circuit efficiency are found 1970 and 92% from electromagnetic simulation. The output power is achieved 12.4 KW for anode voltage 12.7 kV and magnetic field 2900 Gauss. The anode current is found anode current 1.22 A. The total efficiency is 78.76 %.

  16. Towards a fully kinetic 3D electromagnetic particle-in-cell model of streamer formation and dynamics in high-pressure electronegative gases

    Streamer and leader formation in high pressure devices is dynamic process involving a broad range of physical phenomena. These include elastic and inelastic particle collisions in the gas, radiation generation, transport and absorption, and electrode interactions. Accurate modeling of these physical processes is essential for a number of applications, including high-current, laser-triggered gas switches. Towards this end, we present a new 3D implicit particle-in-cell simulation model of gas breakdown leading to streamer formation in electronegative gases. The model uses a Monte Carlo treatment for all particle interactions and includes discrete photon generation, transport, and absorption for ultra-violet and soft x-ray radiation. Central to the realization of this fully kinetic particle treatment is an algorithm that manages the total particle count by species while preserving the local momentum distribution functions and conserving charge [D. R. Welch, T. C. Genoni, R. E. Clark, and D. V. Rose, J. Comput. Phys. 227, 143 (2007)]. The simulation model is fully electromagnetic, making it capable of following, for example, the evolution of a gas switch from the point of laser-induced localized breakdown of the gas between electrodes through the successive stages of streamer propagation, initial electrode current connection, and high-current conduction channel evolution, where self-magnetic field effects are likely to be important. We describe the model details and underlying assumptions used and present sample results from 3D simulations of streamer formation and propagation in SF6.

  17. PIC simulations of relativistic magnetized plasmas

    This talk will summarize several recent results from the PIC simulations of strongly magnetized relativistic plasmas. These include particle acceleration in EM-dominated expansion, collisions of relativistic plasmas, relativistic Weibel and 2-stream instabilities, and magnetic turbulence cascade. We will present results of both 2.5-D and 3-D PIC simulations. The radiation power output of some of these plasmas will also be discussed. (author)

  18. JPIC & How to make a PIC code

    Wu, Hui-Chun

    2011-01-01

    Author developed the parallel fully kinetic particle-in-cell (PIC) code JPIC based on updated and advanced algorithms (e.g. numerical-dispersion-free electromagnetic field solver) for simulating laser plasma interactions. Basic technical points and hints of PIC programming and parallel programming by message passing interface (MPI) are reviewed. Most of contents come from Author's notes when writing up JPIC and experiences when using the code to solve different problems. Enough "how-to-do-it"...

  19. WE-A-17A-10: Fast, Automatic and Accurate Catheter Reconstruction in HDR Brachytherapy Using An Electromagnetic 3D Tracking System

    Poulin, E; Racine, E; Beaulieu, L [CHU de Quebec - Universite Laval, Quebec, Quebec (Canada); Binnekamp, D [Integrated Clinical Solutions and Marketing, Philips Healthcare, Best, DA (Netherlands)

    2014-06-15

    Purpose: In high dose rate brachytherapy (HDR-B), actual catheter reconstruction protocols are slow and errors prompt. The purpose of this study was to evaluate the accuracy and robustness of an electromagnetic (EM) tracking system for improved catheter reconstruction in HDR-B protocols. Methods: For this proof-of-principle, a total of 10 catheters were inserted in gelatin phantoms with different trajectories. Catheters were reconstructed using a Philips-design 18G biopsy needle (used as an EM stylet) and the second generation Aurora Planar Field Generator from Northern Digital Inc. The Aurora EM system exploits alternating current technology and generates 3D points at 40 Hz. Phantoms were also scanned using a μCT (GE Healthcare) and Philips Big Bore clinical CT system with a resolution of 0.089 mm and 2 mm, respectively. Reconstructions using the EM stylet were compared to μCT and CT. To assess the robustness of the EM reconstruction, 5 catheters were reconstructed twice and compared. Results: Reconstruction time for one catheter was 10 seconds or less. This would imply that for a typical clinical implant of 17 catheters, the total reconstruction time would be less than 3 minutes. When compared to the μCT, the mean EM tip identification error was 0.69 ± 0.29 mm while the CT error was 1.08 ± 0.67 mm. The mean 3D distance error was found to be 0.92 ± 0.37 mm and 1.74 ± 1.39 mm for the EM and CT, respectively. EM 3D catheter trajectories were found to be significantly more accurate (unpaired t-test, p < 0.05). A mean difference of less than 0.5 mm was found between successive EM reconstructions. Conclusion: The EM reconstruction was found to be faster, more accurate and more robust than the conventional methods used for catheter reconstruction in HDR-B. This approach can be applied to any type of catheters and applicators. We would like to disclose that the equipments, used in this study, is coming from a collaboration with Philips Medical.

  20. Simulation of intense beam bunching using 3D PIC method

    Most of the ion sources produce continuous beam of charged particles. In a cyclotron using such an external ion source, only a small fraction of the injected continuous beam is accepted in the central region for further acceleration. By transforming the continuous beam into a suitably bunched beam using a buncher prior to injection, the amount of accepted particles in the central region of cyclotron can be increased. To compress the continuous beam longitudinally one needs to impose a velocity modulation at the buncher gap which results in density modulation as the beam advances. In the case of low beam current the velocity modulation of the beam has very little effect on the transverse envelope of the beam. However, in the case of high intensity beams, the space-charge force introduces much collective behaviour and increase of current in the specified bunch width affects the transverse dynamics

  1. Applications of the computer codes FLUX2D and PHI3D for the electromagnetic analysis of compressed magnetic field generators and power flow channels

    The authors present the results of three electromagnetic field problems for compressed magnetic field generators and their associated power flow channels. The first problem is the computation of the transient magnetic field in a two-dimensional model of a helical generator during loading. The second problem is the three-dimensional eddy current patterns in a section of an armature beneath a bifurcation point of a helical winding. The authors' third problem is the calculation of the three-dimensional electrostatic fields in a region known as the post-hole convolute in which a rod connects the inner and outer walls of a system of three concentric cylinders through a hole in the middle cylinder. While analytic solutions exist for many electromagnetic filed problems in cases of special and ideal geometries, the solution of these and similar problems for the proper analysis and design of compressed magnetic field generators and their related hardware require computer simulations

  2. Conductor backed and shielded multi-layer coplanar waveguide designs on LTCC for RF carrier boards for packaging PICs

    Marraccini, Philip J.; Jezzini, Moises A.; Peters, Frank H.

    2016-05-01

    Designing photonic integrated circuits (PICs) with packaging in mind is important since this impacts the performance of the final product. In coherent optical communication applications there are a large number of DC and RF lines that need routed to connect the PIC to the outer packaging. These RF lines should be impedance matched to the devices, isolated from each other, low loss and protected against electromagnetic interference (EMI) over the frequency range of interest to achieve the performance required for the application. Multilevel low temperature co-fired ceramic (LTCC) boards can be used as a carrier board connecting the PIC to the packaging due to its good RF performance, machinability, compatibility with hermetic sealing, and ability to integrate drivers into the board. Flexibility with layer numbers enables additional layers for shielding against electromagnetic interference or increased space for routing electrical connections. In this paper the design, simulations, and measured results for a set of 4 phase matched transmission lines in LTCC that would be used with an IQ MZM are presented. The measured 3dB bandwidth for a set of four phase matched transmission lines for an IQ MZM was measured to be 19.8 GHz.

  3. Electromagnetism

    Without the electromagnetic force, you would not be solid. The atoms of your body are held together by electromagnetism: negatively charged electrons are held around the positively charged nucleus. Atoms share electrons to form molecules, so building up the structure of matter. As its name suggests, electromagnetism has a double nature: a moving electric charge creates a magnetic field. This intimate connection between electricity and magnetism was described by James Maxwell in 1864. The electromagnetic force can be both positive and negative : opposite charges attract, whereas like charges repel. Electromagnetic radiation, such as radio, microwaves, light and X-rays, is emitted by charges when they are made to move. For example, an oscillating current in a wire emits radio waves. Text for the interactive: Why do the needles move when you switch on the current ?

  4. Evaluation of 3D radio-frequency electromagnetic fields for any matching and coupling conditions by the use of basis functions

    Tiberi, Gianluigi; Fontana, Nunzia; Monorchio, Agostino; Stara, Riccardo; Retico, Alessandra; Tosetti, Michela

    2015-12-01

    A procedure for evaluating radio-frequency electromagnetic fields in anatomical human models for any matching and coupling conditions is introduced. The procedure resorts to the extraction of basis functions: such basis functions, which represent the fields produced by each individual port without any residual coupling, are derived through an algebraic procedure which uses the S parameter matrix and the fields calculated in one (only) full-wave simulation. The basis functions are then used as building-blocks for calculating the fields for any other S parameter matrix. The proposed approach can be used both for volume coil driven in quadrature and for parallel transmission configuration.

  5. 3D numerical simulation for the transient electromagnetic field excited by the central loop based on the vector finite-element method

    Based on the principle of abnormal field algorithms, Helmholtz equations for electromagnetic field have been deduced. We made the electric field Helmholtz equation the governing equation, and derived the corresponding system of vector finite element method equations using the Galerkin method. For solving the governing equation using the vector finite element method, we divided the computing domain into homogenous brick elements, and used Whitney-type vector basis functions. After obtaining the electric field's anomaly field in the Laplace domain using the vector finite element method, we used the Gaver–Stehfest algorithm to transform the electric field's anomaly field to the time domain, and obtained the impulse response of magnetic field's anomaly field through the Faraday law of electromagnetic induction. By comparing 1D analytic solutions of quasi-H-type geoelectric models, the accuracy of the vector finite element method is tested. For the low resistivity brick geoelectric model, the plot shape of electromotive force computed using the vector finite element method coincides with that of the integral equation method and finite difference in time domain solutions

  6. 盘式无铁心永磁同步发电机3D电磁场分析%3D Electromagnetic Field Analysis of Axial Flux Coreless Permanent Magnet Synchronous Generator

    罗玲; 李丹; 吕晓威; 王震

    2012-01-01

    According to the special structure and complex electromagnetic field distribution of axial flux coreless permanent magnet synchronous generator, a 3D prototype model was established and its boundary conditions was set for solving by using electromagnetic finite element simulation software MagNet. No-load air-gap magnetic field was analyzed by using 3D static solver and no-load back-electromotive force at different speed was calculated by using 3D transient with motion solver. Finally, no-load characteristic of the prototype generator was tested. The test results show that the simulation model is reasonable and the analysis method is effective.%针对盘式无铁心永磁同步风力发电机结构的特殊性及其电磁场分布的复杂性,采用电磁场有限元分析软件MagNet对一台样机进行了3D建模;设置了求解所需的边界条件;利用静态求解器得到了磁场分布规律;通过动态求解器计算了不同转速下的空载电压,并绘制了样机的空载特性曲线;最后通过空载试验验证了仿真模型的合理性及计算方法的正确性.

  7. [PIC Program Evaluation Forms.

    Short, N. J.

    These 4 questionnaires are designed to elicit teacher and parent evaluations of the Prescriptive Instruction Center (PIC) program. Included are Teacher Evaluation of Program Effectiveness (14 items), M & M Evaluation of Program Implementation (methods and materials specialists; 11 items), Teacher Evaluation of Program Effectiveness--Case Study…

  8. What Makes a PIC Tick?

    Montgomery, H. Wynn

    1988-01-01

    The author discusses the establishment and objectives of private industry councils (PICs). Such topics as local decision making, private sector representation, on-site evaluations, and summer jobs programs are covered. Emphasis is on the Atlanta, Georgia PIC. (CH)

  9. Simulation of current generation in a 3-D plasma model

    Two wires carrying current in the same direction will attract each other, and two wires carrying current in the opposite direction will repel each other. Now, consider a test charge in a plasma. If the test charge carries current parallel to the plasma, then it will be pulled toward the plasma core, and if the test charge carries current anti-parallel to the plasma, then it will be pushed to the edge. The electromagnetic coupling between the plasma and a test charge (i.e., the Aparallel circ vparallel term in the test charge's Hamiltonian) breaks the symmetry in the parallel direction, and gives rise to a diffusion coefficient which is dependent on the particle's parallel velocity. This is the basis for the open-quotes preferential lossclose quotes mechanism described in the work by Nunan et al. In our previous 2+1/2 D work, in both cylindrical and toroidal geometries, showed that if the plasma column is centrally fueled, then an initial current increases steadily. The results in straight, cylindrical plasmas showed that self generated parallel current arises without trapped particle or neoclassical diffusion, as assumed by the bootstrap theory. It suggests that the fundamental mechanism seems to be the conservation of particles canonical momenta in the direction of the ignorable coordinate. We have extended the simulation to 3D to verify the model put forth. A scalable 3D EM-PIC code, with a localized field-solver, has been implemented to run on a large class of parallel computers. On the 512-node SP2 at Cornell Theory Center, we have benchmarked the 2+1/2 D calculations using 32 grids in the previously ignored direction, and a 100-fold increase in the number of particles. Our preliminary results show good agreements between the 2+1/2 D and the 3D calculations. We will present our 3D results at the meeting

  10. 3D video

    Lucas, Laurent; Loscos, Céline

    2013-01-01

    While 3D vision has existed for many years, the use of 3D cameras and video-based modeling by the film industry has induced an explosion of interest for 3D acquisition technology, 3D content and 3D displays. As such, 3D video has become one of the new technology trends of this century.The chapters in this book cover a large spectrum of areas connected to 3D video, which are presented both theoretically and technologically, while taking into account both physiological and perceptual aspects. Stepping away from traditional 3D vision, the authors, all currently involved in these areas, provide th

  11. 3D Animation Essentials

    Beane, Andy

    2012-01-01

    The essential fundamentals of 3D animation for aspiring 3D artists 3D is everywhere--video games, movie and television special effects, mobile devices, etc. Many aspiring artists and animators have grown up with 3D and computers, and naturally gravitate to this field as their area of interest. Bringing a blend of studio and classroom experience to offer you thorough coverage of the 3D animation industry, this must-have book shows you what it takes to create compelling and realistic 3D imagery. Serves as the first step to understanding the language of 3D and computer graphics (CG)Covers 3D anim

  12. PIC code KARAT simulation of different types of polarization radiation generated by relativistic electron beam

    Artyomov, K. P.; Ryzhov, V. V.; Naumenko, G. A.; Shevelev, M. V.

    2012-05-01

    Different types of polarization radiation generated by a relativistic electron beam are simulated using fully electromagnetic particle-in-cell (PIC) code KARAT. The simulation results for diffraction radiation, transition radiation, Smith-Purcell radiation and Vavilov-Cherenkov radiation are in a good agreement with experimental data and analytical models. Modern PIC simulation is a good tool to check and predict experimental results.

  13. PIC code KARAT simulation of different types of polarization radiation generated by relativistic electron beam

    Different types of polarization radiation generated by a relativistic electron beam are simulated using fully electromagnetic particle-in-cell (PIC) code KARAT. The simulation results for diffraction radiation, transition radiation, Smith-Purcell radiation and Vavilov-Cherenkov radiation are in a good agreement with experimental data and analytical models. Modern PIC simulation is a good tool to check and predict experimental results.

  14. On the Numerical Dispersion of Electromagnetic Particle-In-Cell Code : Finite Grid Instability

    Meyers, Michael David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Univ. of California, Los Angeles, CA (United States) Dept. of Physics and Astronomy; Huang, Chengkun [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zeng, Yong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yi, Sunghwan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Albright, Brian James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-07-15

    The Particle-In-Cell (PIC) method is widely used in relativistic particle beam and laser plasma modeling. However, the PIC method exhibits numerical instabilities that can render unphysical simulation results or even destroy the simulation. For electromagnetic relativistic beam and plasma modeling, the most relevant numerical instabilities are the finite grid instability and the numerical Cherenkov instability. We review the numerical dispersion relation of the electromagnetic PIC algorithm to analyze the origin of these instabilities. We rigorously derive the faithful 3D numerical dispersion of the PIC algorithm, and then specialize to the Yee FDTD scheme. In particular, we account for the manner in which the PIC algorithm updates and samples the fields and distribution function. Temporal and spatial phase factors from solving Maxwell's equations on the Yee grid with the leapfrog scheme are also explicitly accounted for. Numerical solutions to the electrostatic-like modes in the 1D dispersion relation for a cold drifting plasma are obtained for parameters of interest. In the succeeding analysis, we investigate how the finite grid instability arises from the interaction of the numerical 1D modes admitted in the system and their aliases. The most significant interaction is due critically to the correct representation of the operators in the dispersion relation. We obtain a simple analytic expression for the peak growth rate due to this interaction.

  15. PIC Simulation of Nonlinear Regime Wake Field Excitation in Cylindrical Resonator

    The nonlinear mechanism of saturation of wake field amplitude, exited in the cylindrical resonator partially filled with dielectric by relativistic train of electron bunches numerically simulated by means of a specially elaborated 2.5 dimensional electromagnetic PIC-code

  16. Electromagnetism

    Grant, Ian S

    1990-01-01

    The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition F. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw the Physics of Stars Second Edition A. C. Phillips Computing for Scient

  17. EUROPEANA AND 3D

    D. Pletinckx

    2012-09-01

    Full Text Available The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  18. Solid works 3D

    This book explains modeling of solid works 3D and application of 3D CAD/CAM. The contents of this book are outline of modeling such as CAD and 2D and 3D, solid works composition, method of sketch, writing measurement fixing, selecting projection, choosing condition of restriction, practice of sketch, making parts, reforming parts, modeling 3D, revising 3D modeling, using pattern function, modeling necessaries, assembling, floor plan, 3D modeling method, practice floor plans for industrial engineer data aided manufacturing, processing of CAD/CAM interface.

  19. Particle Acceleration in 3D Magnetic Reconnection

    Dahlin, J.; Drake, J. F.; Swisdak, M.

    2015-12-01

    Magnetic reconnection is an important driver of energetic particles in phenomena such as magnetospheric storms and solar flares. Using kinetic particle-in-cell (PIC) simulations, we show that the stochastic magnetic field structure which develops during 3D reconnection plays a vital role in particle acceleration and transport. In a 2D system, electrons are trapped in magnetic islands which limits their energy gain. In a 3D system, however, the stochastic magnetic field enables the energetic electrons to access volume-filling acceleration regions and therefore gain energy much more efficiently than in the 2D system. We also examine the relative roles of two important acceleration drivers: parallel electric fields and a Fermi mechanism associated with reflection of charged particles from contracting field lines. We find that parallel electric fields are most important for accelerating low energy particles, whereas Fermi reflection dominates energetic particle production. We also find that proton energization is reduced in the 3D system.

  20. 3D Electromagnetic characterization ofimplantable electrodes

    Marozzi, Paolo

    2013-01-01

    Bioimpedance is a common feature of every tissue and its analysis allows the understanding of the physiological state of the tissue under test as well as its changes. The increase of glucose concentration can be detected by monitoring the tissue bioimpedance. In high risk situations and subjects like athletes, several checks with high accuracy are required each day. The scientific community has focused its efforts to find an integrated solution for in-vivo implantable bioimpedance measurement...

  1. Open 3D Projects

    Felician ALECU

    2010-01-01

    Full Text Available Many professionals and 3D artists consider Blender as being the best open source solution for 3D computer graphics. The main features are related to modeling, rendering, shading, imaging, compositing, animation, physics and particles and realtime 3D/game creation.

  2. 3d-3d correspondence revisited

    Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-01

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  3. Facile aqueous synthesis and electromagnetic properties of novel 3D urchin-like glass/Ni-Ni(3)P/Co(2)P(2)O(7) core/shell/shell composite hollow structures.

    An, Zhenguo; Zhang, Jingjie; Pan, Shunlong

    2010-04-14

    Novel 3D urchin-like glass/Ni-Ni(3)P/Co(2)P(2)O(7) core/shell/shell composite hollow structures are fabricated for the first time by controlled stepwise assembly of granular Ni-Ni(3)P alloy and ribbon-like Co(2)P(2)O(7) nanocrystals on hollow glass spheres in aqueous solutions at mild conditions. It is found that the shell structure and the overall morphology of the products can be tailored by properly tuning the annealing temperature. The as-obtained composite core/shell/shell products possess low density (ca. 1.18 g cm(-3)) and shape-dependent magnetic and microwave absorbing properties, and thus may have some promising applications in the fields of low-density magnetic materials, microwave absorbers, etc. Based on a series of contrast experiments, the probable formation mechanism of the core/shell/shell hierarchical structures is proposed. This work provides an additional strategy to prepare core/shell composite spheres with tailored shell morphology and electromagnetic properties. PMID:20379530

  4. IZDELAVA TISKALNIKA 3D

    Brdnik, Lovro

    2015-01-01

    Diplomsko delo analizira trenutno stanje 3D tiskalnikov na trgu. Prikazan je razvoj in principi delovanja 3D tiskalnikov. Predstavljeni so tipi 3D tiskalnikov, njihove prednosti in slabosti. Podrobneje je predstavljena zgradba in delovanje koračnih motorjev. Opravljene so meritve koračnih motorjev. Opisana je programska oprema za rokovanje s 3D tiskalniki in komponente, ki jih potrebujemo za izdelavo. Diploma se oklepa vprašanja, ali je izdelava 3D tiskalnika bolj ekonomična kot pa naložba v ...

  5. The full three-dimensional electromagnetic PIC/MCC numerical algorithm research of Penning ion source discharge%潘宁源放电的全三维电磁粒子模拟/蒙特卡罗碰撞数值算法研究

    杨超; 龙继东; 王平; 廖方燕; 夏蒙重; 刘腊群

    2013-01-01

    In this article, we study the physical mechanism of the Penning discharge, develop a full three-dimensional particle simulation software of high-quality algorithm (PIC), design and add the corresponding physical scenario of Monte Carlo collisions (MCC) module, and track electron, hydrogen molecular ion (H+2 ), hydrogen positive ion (H+), and tri-n-hydrogen ion (H+3 ) at the same time, and successfully develop a full three-dimensional electromagnetic PIC/MCC numerical algorithm. Combined with the Penning discharge model extensively studied in china, the algorithm is verified through simulation. The simulation results show that the use of effective filtering algorithm can suppress the electromagnetic numerical noise. Electron energy is of Maxwell distribution. Due to the radial drift and accelerate of electrons, the H+2 yield is larger at the top of the ion source.%深入研究潘宁放电的物理机制,研制了全三维高品质算法粒子模拟软件(PIC),设计并添加了相应物理情景的蒙特卡罗碰撞模块(MCC),并对电子、氢分子离子(H+2)、氢正离子(H+)、氢三正离子(H+3)同时进行了跟踪,成功研制了全三维电磁PIC/MCC数值算法。结合国内研究较热的潘宁放电模型,对该算法进行模拟验证。模拟结果显示:采用有效的滤波算法能抑制电磁数值噪声,电子能量呈麦克斯韦分布,由于电子的径向漂移和加速导致离子源顶端H+2产量较大。

  6. Numerical Schemes for Charged Particle Movement in PIC Simulations

    A PIC model of plasma fibers is developed in the Department of Physics of the Czech Technical University for several years. The program code was written in FORTRAN 95, free-style (without compulsory columns). Fortran compiler and linker were used from Compaq Visual Fortran 6.1A embedded in the Microsoft Development studio GUI. Fully three-dimensional code with periodical boundary conditions was developed. Electromagnetic fields are localized on a grid and particles move freely through this grid. One of the partial problems of the PIC model is the numerical particle solver, which will be discussed in this paper. (author)

  7. 3D and Education

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  8. The Age of Beta Pic

    Navascues, D. Barrado y; Stauffer, J. R.; Song, I.; Caillault, J-P.

    1999-01-01

    We have reanalyzed data for the proposed moving group associated with beta Pic in order to determine if the group (or part of it) is real, and, if so, to derive an improved age estimate for beta Pic. By using new, more accurate proper motions from PPM and Hipparcos and a few new radial velocities, we conclude that on kinematic grounds, two M dwarfs have space motions that coincide with that of beta Pic to within 1 km/s with small error bars. Based on a CM diagram derived from accurate photome...

  9. PIC microcomputer guide for beginner

    Shin, Chulho

    2001-03-15

    This book comprised of four parts. The first part deals with computer one chip, voltage current, resistance, electronic components, logical element, TTL and CMOS, memory and I/O and MDS. The second part is about PIC16C84 which describes its memory structure, registers and PIC16C84 command. The third part deals with LED control program, jet car LED, quiz buzzer program, LED spectrum, digital dice, two digital dices and time bomb. The last part introduces PIC16C71 and temperature controller.

  10. PIC microcomputer guide for beginner

    This book comprised of four parts. The first part deals with computer one chip, voltage current, resistance, electronic components, logical element, TTL and CMOS, memory and I/O and MDS. The second part is about PIC16C84 which describes its memory structure, registers and PIC16C84 command. The third part deals with LED control program, jet car LED, quiz buzzer program, LED spectrum, digital dice, two digital dices and time bomb. The last part introduces PIC16C71 and temperature controller.

  11. Lorentz boosted frame simulation of Laser wakefield acceleration in quasi-3D geometry

    Yu, Peicheng; Davidson, Asher; Tableman, Adam; Dalichaouch, Thamine; Meyers, Michael D; Tsung, Frank S; Decyk, Viktor K; Fiuza, Frederico; Vieira, Jorge; Fonseca, Ricardo A; Lu, Wei; Silva, Luis O; Mori, Warren B

    2015-01-01

    When modeling laser wakefield acceleration (LWFA) using the particle-in-cell (PIC) algorithm in a Lorentz boosted frame, the plasma is drifting relativistically at $\\beta_b c$ towards the laser, which can lead to a computational speedup of $\\sim \\gamma_b^2=(1-\\beta_b^2)^{-1}$. Meanwhile, when LWFA is modeled in the quasi-3D geometry in which the electromagnetic fields and current are decomposed into a limited number of azimuthal harmonics, speedups are achieved by modeling three dimensional problems with the computation load on the order of two dimensional $r-z$ simulations. Here, we describe how to combine the speed ups from the Lorentz boosted frame and quasi-3D algorithms. The key to the combination is the use of a hybrid Yee-FFT solver in the quasi-3D geometry that can be used to effectively eliminate the Numerical Cerenkov Instability (NCI) that inevitably arises in a Lorentz boosted frame due to the unphysical coupling of Langmuir modes and EM modes of the relativistically drifting plasma in these simul...

  12. 异步电机三维电磁场及温度场耦合仿真分析∗%Coupling Simulation of 3 D Electromagnetic Field and Thermal Field of Asynchronous Motor

    陈华毅; 杨明发

    2015-01-01

    Deals with 3D temperature estimation for the asynchronous motor Y100L2-4. According to the structure characteristics and electromagnetic parameters, the thermal fields of steady state operation with rated load has been analyzed to extract the heat source of the motor, as the foundation of the steady temperature distribution. The heat dissipation coefficient of each part in motor and the equivalent heat transfer coefficient of air gap between the rotor and stator were analyzed. According to the boundary condition and the equivalent hypothesis and material properties of the motor, the temperature field was derive by One-way coupled simulation of finite element software, based on the simulation results of electromagnetic field. the simulation results have higher accuracy was verify by comparing with the experimental data.%以型号为Y100L2-4的异步电机为对象,建立了三维有限元模型。根据样机的结构特征和电磁参数,仿真计算出了样机额定负载下运行至稳态的电磁场,用以提取较为精确的发热源,进而计算其稳态温度分布。分析了电机各部分散热系数、定转子间气隙的等效传热系数,依据电机的边界条件、等效假设和材料属性,以电磁场仿真结果为基础,利用有限元软件单向耦合出相应的温度场分布图。最后通过与试验数据对比,验证仿真结果有更高的准确性。

  13. 3D virtuel udstilling

    Tournay, Bruno; Rüdiger, Bjarne

    2006-01-01

    3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s.......3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s....

  14. Underwater 3D filming

    Roberto Rinaldi

    2014-12-01

    Full Text Available After an experimental phase of many years, 3D filming is now effective and successful. Improvements are still possible, but the film industry achieved memorable success on 3D movie’s box offices due to the overall quality of its products. Special environments such as space (“Gravity” and the underwater realm look perfect to be reproduced in 3D. “Filming in space” was possible in “Gravity” using special effects and computer graphic. The underwater realm is still difficult to be handled. Underwater filming in 3D was not that easy and effective as filming in 2D, since not long ago. After almost 3 years of research, a French, Austrian and Italian team realized a perfect tool to film underwater, in 3D, without any constrains. This allows filmmakers to bring the audience deep inside an environment where they most probably will never have the chance to be.

  15. 3D Reconstruction in Magnetic Resonance Imaging

    Mikulka, J.; Bartušek, Karel

    Cambridge : The Electromagnetics Academy, 2010, s. 1043-1046. ISBN 978-1-934142-14-1. [PIERS 2010 Cambridge. Cambridge (US), 05.07.2010-08.07.2010] R&D Projects: GA ČR GA102/09/0314 Institutional research plan: CEZ:AV0Z20650511 Keywords : 3D reconstruction * magnetic resonance imaging Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  16. Blender 3D cookbook

    Valenza, Enrico

    2015-01-01

    This book is aimed at the professionals that already have good 3D CGI experience with commercial packages and have now decided to try the open source Blender and want to experiment with something more complex than the average tutorials on the web. However, it's also aimed at the intermediate Blender users who simply want to go some steps further.It's taken for granted that you already know how to move inside the Blender interface, that you already have 3D modeling knowledge, and also that of basic 3D modeling and rendering concepts, for example, edge-loops, n-gons, or samples. In any case, it'

  17. On the numerical dispersion of electromagnetic particle-in-cell code: Finite grid instability

    The Particle-In-Cell (PIC) method is widely used in relativistic particle beam and laser plasma modeling. However, the PIC method exhibits numerical instabilities that can render unphysical simulation results or even destroy the simulation. For electromagnetic relativistic beam and plasma modeling, the most relevant numerical instabilities are the finite grid instability and the numerical Cherenkov instability. We review the numerical dispersion relation of the Electromagnetic PIC model. We rigorously derive the faithful 3-D numerical dispersion relation of the PIC model, for a simple, direct current deposition scheme, which does not conserve electric charge exactly. We then specialize to the Yee FDTD scheme. In particular, we clarify the presence of alias modes in an eigenmode analysis of the PIC model, which combines both discrete and continuous variables. The manner in which the PIC model updates and samples the fields and distribution function, together with the temporal and spatial phase factors from solving Maxwell's equations on the Yee grid with the leapfrog scheme, is explicitly accounted for. Numerical solutions to the electrostatic-like modes in the 1-D dispersion relation for a cold drifting plasma are obtained for parameters of interest. In the succeeding analysis, we investigate how the finite grid instability arises from the interaction of the numerical modes admitted in the system and their aliases. The most significant interaction is due critically to the correct representation of the operators in the dispersion relation. We obtain a simple analytic expression for the peak growth rate due to this interaction, which is then verified by simulation. We demonstrate that our analysis is readily extendable to charge conserving models

  18. On the numerical dispersion of electromagnetic particle-in-cell code: Finite grid instability

    Meyers, M.D., E-mail: mdmeyers@physics.ucla.edu [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095 (United States); Huang, C.-K., E-mail: huangck@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Zeng, Y.; Yi, S.A.; Albright, B.J. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2015-09-15

    The Particle-In-Cell (PIC) method is widely used in relativistic particle beam and laser plasma modeling. However, the PIC method exhibits numerical instabilities that can render unphysical simulation results or even destroy the simulation. For electromagnetic relativistic beam and plasma modeling, the most relevant numerical instabilities are the finite grid instability and the numerical Cherenkov instability. We review the numerical dispersion relation of the Electromagnetic PIC model. We rigorously derive the faithful 3-D numerical dispersion relation of the PIC model, for a simple, direct current deposition scheme, which does not conserve electric charge exactly. We then specialize to the Yee FDTD scheme. In particular, we clarify the presence of alias modes in an eigenmode analysis of the PIC model, which combines both discrete and continuous variables. The manner in which the PIC model updates and samples the fields and distribution function, together with the temporal and spatial phase factors from solving Maxwell's equations on the Yee grid with the leapfrog scheme, is explicitly accounted for. Numerical solutions to the electrostatic-like modes in the 1-D dispersion relation for a cold drifting plasma are obtained for parameters of interest. In the succeeding analysis, we investigate how the finite grid instability arises from the interaction of the numerical modes admitted in the system and their aliases. The most significant interaction is due critically to the correct representation of the operators in the dispersion relation. We obtain a simple analytic expression for the peak growth rate due to this interaction, which is then verified by simulation. We demonstrate that our analysis is readily extendable to charge conserving models.

  19. 3D Digital Modelling

    Hundebøl, Jesper

    wave of new building information modelling tools demands further investigation, not least because of industry representatives' somewhat coarse parlance: Now the word is spreading -3D digital modelling is nothing less than a revolution, a shift of paradigm, a new alphabet... Research qeustions. Based...... on empirical probes (interviews, observations, written inscriptions) within the Danish construction industry this paper explores the organizational and managerial dynamics of 3D Digital Modelling. The paper intends to - Illustrate how the network of (non-)human actors engaged in the promotion (and arrest) of 3......D Modelling (in Denmark) stabilizes - Examine how 3D Modelling manifests itself in the early design phases of a construction project with a view to discuss the effects hereof for i.a. the management of the building process. Structure. The paper introduces a few, basic methodological concepts...

  20. Professional Papervision3D

    Lively, Michael

    2010-01-01

    Professional Papervision3D describes how Papervision3D works and how real world applications are built, with a clear look at essential topics such as building websites and games, creating virtual tours, and Adobe's Flash 10. Readers learn important techniques through hands-on applications, and build on those skills as the book progresses. The companion website contains all code examples, video step-by-step explanations, and a collada repository.

  1. Influence of porosity on the electromagnetic shielding properties of 3D C/C composites%孔隙率对三维针刺C/C复合材料电磁屏蔽性能的影响

    邰春艳; 殷小玮; 张立同; 成来飞; 刘建功

    2012-01-01

    3D carbon/carbon (C/C) composite materials with different porosities and bulk densities were fabricated by repeated precursor infiltration and pyrolysis (PIP) process, and the electromagnetic interference shielding (EMI) effectiveness of C/C composites at 8.2 - 12.4 GHz (X band) with different porosities were studied. The results indicate that both EMI absorption shielding effectiveness and the total EMI shielding effectiveness of C/C composites could be improved by reducing the porosity appropriately. When the open porosity is 33.4~, the C/C composite material shows a maximum shielding effectiveness of 40 dB, and the EIM apsorption shielding effectiveness(30 dB) is much higher than EMI reflection shielding effectiveness(12 dB)). Porous C/C composite is one kind of excellent EMI shielding materials with high absorption and low reflection.%通过多次重复先驱体浸渍裂解(PIP)工艺过程,改变材料的孔隙率和体密度,制备不同孔隙率的三维针刺碳/碳(C/C)复合材料,并研究了在8.2-12.4GHz频率范围内(x波段)不同孔隙率C/C复合材料的电磁屏蔽效能。结果表明:适当降低孔隙率有利于提高C/C复合材料的总电磁屏蔽效能和电磁吸收屏蔽效能,当开气孔率为33.4%时,C/C复合材料具有最大的电磁屏蔽效能(40dB),且电磁吸收屏蔽效能(30dB)远大于电磁反射屏蔽效能(12dB),是极具潜力的高吸收低反射电磁屏蔽材料。

  2. 3D Spectroscopic Instrumentation

    Bershady, Matthew A

    2009-01-01

    In this Chapter we review the challenges of, and opportunities for, 3D spectroscopy, and how these have lead to new and different approaches to sampling astronomical information. We describe and categorize existing instruments on 4m and 10m telescopes. Our primary focus is on grating-dispersed spectrographs. We discuss how to optimize dispersive elements, such as VPH gratings, to achieve adequate spectral resolution, high throughput, and efficient data packing to maximize spatial sampling for 3D spectroscopy. We review and compare the various coupling methods that make these spectrographs ``3D,'' including fibers, lenslets, slicers, and filtered multi-slits. We also describe Fabry-Perot and spatial-heterodyne interferometers, pointing out their advantages as field-widened systems relative to conventional, grating-dispersed spectrographs. We explore the parameter space all these instruments sample, highlighting regimes open for exploitation. Present instruments provide a foil for future development. We give an...

  3. 3D Projection Installations

    Halskov, Kim; Johansen, Stine Liv; Bach Mikkelsen, Michelle

    2014-01-01

    Three-dimensional projection installations are particular kinds of augmented spaces in which a digital 3-D model is projected onto a physical three-dimensional object, thereby fusing the digital content and the physical object. Based on interaction design research and media studies, this article...... contributes to the understanding of the distinctive characteristics of such a new medium, and identifies three strategies for designing 3-D projection installations: establishing space; interplay between the digital and the physical; and transformation of materiality. The principal empirical case, From...... Fingerplan to Loop City, is a 3-D projection installation presenting the history and future of city planning for the Copenhagen area in Denmark. The installation was presented as part of the 12th Architecture Biennale in Venice in 2010....

  4. Herramientas SIG 3D

    Francisco R. Feito Higueruela

    2010-04-01

    Full Text Available Applications of Geographical Information Systems on several Archeology fields have been increasing during the last years. Recent avances in these technologies make possible to work with more realistic 3D models. In this paper we introduce a new paradigm for this system, the GIS Thetrahedron, in which we define the fundamental elements of GIS, in order to provide a better understanding of their capabilities. At the same time the basic 3D characteristics of some comercial and open source software are described, as well as the application to some samples on archeological researchs

  5. Bootstrapping 3D fermions

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-01

    We study the conformal bootstrap for a 4-point function of fermions in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge C T . We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N . We also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  6. Interaktiv 3D design

    Villaume, René Domine; Ørstrup, Finn Rude

    2002-01-01

    Projektet undersøger potentialet for interaktiv 3D design via Internettet. Arkitekt Jørn Utzons projekt til Espansiva blev udviklet som et byggesystem med det mål, at kunne skabe mangfoldige planmuligheder og mangfoldige facade- og rumudformninger. Systemets bygningskomponenter er digitaliseret som...... 3D elementer og gjort tilgængelige. Via Internettet er det nu muligt at sammenstille og afprøve en uendelig  række bygningstyper som  systemet blev tænkt og udviklet til....

  7. 3D Dental Scanner

    Kotek, L.

    2015-01-01

    This paper is about 3D scan of plaster dental casts. The main aim of the work is a hardware and software proposition of 3D scan system for scanning of dental casts. There were used camera, projector and rotate table for this scanning system. Surface triangulation was used, taking benefits of projections of structured light on object, which is being scanned. The rotate table is controlled by PC. The camera, projector and rotate table are synchronized by PC. Controlling of stepper motor is prov...

  8. TOWARDS: 3D INTERNET

    Ms. Swapnali R. Ghadge

    2013-01-01

    In today’s ever-shifting media landscape, it can be a complex task to find effective ways to reach your desired audience. As traditional media such as television continue to lose audience share, one venue in particular stands out for its ability to attract highly motivated audiences and for its tremendous growth potential the 3D Internet. The concept of '3D Internet' has recently come into the spotlight in the R&D arena, catching the attention of many people, and leading to a lot o...

  9. Tangible 3D Modelling

    Hejlesen, Aske K.; Ovesen, Nis

    2012-01-01

    This paper presents an experimental approach to teaching 3D modelling techniques in an Industrial Design programme. The approach includes the use of tangible free form models as tools for improving the overall learning. The paper is based on lecturer and student experiences obtained through...

  10. Shaping 3-D boxes

    Stenholt, Rasmus; Madsen, Claus B.

    2011-01-01

    Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data...

  11. 3D Harmonic Echocardiography:

    M.M. Voormolen

    2007-01-01

    textabstractThree dimensional (3D) echocardiography has recently developed from an experimental technique in the ’90 towards an imaging modality for the daily clinical practice. This dissertation describes the considerations, implementation, validation and clinical application of a unique

  12. Numerical experiments on unstructured PIC stability.

    Day, David Minot

    2011-04-01

    Particle-In-Cell (PIC) is a method for plasmas simulation. Particles are pushed with Verlet time integration. Fields are modeled using finite differences on a tensor product mesh (cells). The Unstructured PIC methods studied here use instead finite element discretizations on unstructured (simplicial) meshes. PIC is constrained by stability limits (upper bounds) on mesh and time step sizes. Numerical evidence (2D) and analysis will be presented showing that similar bounds constrain unstructured PIC.

  13. 3D animace

    Klusoň, Jindřich

    2010-01-01

    Computer animation has a growing importance and application in the world. With expansion of technologies increases quality of the final animation as well as number of 3D animation software. This thesis is currently mapped animation software for creating animation in film, television industry and video games which are advisable users requirements. Of them were selected according to criteria the best - Autodesk Maya 2011. This animation software is unique with tools for creating special effects...

  14. Design and 3D simulation of a two-cavity wide-gap relativistic klystron amplifier with high power injection

    Bai, Xianchen; Yang, Jianhua; Zhang, Jiande

    2012-08-01

    By using an electromagnetic particle-in-cell (PIC) code, an S-band two-cavity wide-gap klystron amplifier (WKA) loaded with washers/rods structure is designed and investigated for high power injection application. Influences of the washers/rods structure on the high frequency characteristics and the basic operation of the amplifier are presented. Generally, the rod structure has great impacts on the space-charge potential depression and the resonant frequency of the cavities. Nevertheless, if only the resonant frequency is tuned to the desired operation frequency, effects of the rod size on the basic operation of the amplifier are expected to be very weak. The 3-dimension (3-D) PIC simulation results show an output power of 0.98 GW corresponding to an efficiency of 33% for the WKA, with a 594 keV, 5 kA electron beam guided by an external magnetic field of 1.5 Tesla. Moreover, if a conductive plane is placed near the output gap, such as the electron collector, the beam potential energy can be further released, and the RF power can be increased to about 1.07 GW with the conversion efficiency of about 36%.

  15. SD card projects using the PIC microcontroller

    Ibrahim, Dogan

    2010-01-01

    PIC Microcontrollers are a favorite in industry and with hobbyists. These microcontrollers are versatile, simple, and low cost making them perfect for many different applications. The 8-bit PIC is widely used in consumer electronic goods, office automation, and personal projects. Author, Dogan Ibrahim, author of several PIC books has now written a book using the PIC18 family of microcontrollers to create projects with SD cards. This book is ideal for those practicing engineers, advanced students, and PIC enthusiasts that want to incorporate SD Cards into their devices. SD cards are che

  16. PIC code simulations on NRL gyro-amplifiers

    Choi, J.J. [Science Applications International Corp., McLean, VA (United States); Ahn, S.; Danly, B.G.; Levush, B.; Parker, R.K. [Naval Research lab., Washington, DC (United States). Vacuum Electronics Branch; Ganguly, A.K.; Park, G.S. [Omega-P, Inc., New Haven, CT (United States)

    1996-12-31

    Developments on high power millimeter wave gyro-amplifiers are currently underway at NRL. Recent experiments on a folded waveguide circuit demonstrated a strong electron cyclotron instability, producing a high efficiency (> 20%) oscillation at 32.8 GHz. The interaction was first predicted from a particle-in-cell (PIC) code, MAGIC and agreed reasonably well with the measured performance. A design study on a 200 kW, 35 GHz two-cavity gyroklystron amplifier is in progress by the use of slow-time scale non-linear codes for beam-wave interactions, a finite element electromagnetic code, HFSS and a CASCADE code for cold cavity problems. MAGIC and SOS are also utilized to compare with those predictions. PIC-code simulation techniques and its comparison with measurements will be presented.

  17. PIC Detector for Piano Chords

    Barbancho AnaM

    2010-01-01

    Full Text Available In this paper, a piano chords detector based on parallel interference cancellation (PIC is presented. The proposed system makes use of the novel idea of modeling a segment of music as a third generation mobile communications signal, specifically, as a CDMA (Code Division Multiple Access signal. The proposed model considers each piano note as a CDMA user in which the spreading code is replaced by a representative note pattern. The lack of orthogonality between the note patterns will make necessary to design a specific thresholding matrix to decide whether the PIC outputs correspond to the actual notes composing the chord or not. An additional stage that performs an octave test and a fifth test has been included that improves the error rate in the detection of these intervals that are specially difficult to detect. The proposed system attains very good results in both the detection of the notes that compose a chord and the estimation of the polyphony number.

  18. PIC Detector for Piano Chords

    Barbancho, Ana M.; Tardón, Lorenzo J.; Barbancho, Isabel

    2010-12-01

    In this paper, a piano chords detector based on parallel interference cancellation (PIC) is presented. The proposed system makes use of the novel idea of modeling a segment of music as a third generation mobile communications signal, specifically, as a CDMA (Code Division Multiple Access) signal. The proposed model considers each piano note as a CDMA user in which the spreading code is replaced by a representative note pattern. The lack of orthogonality between the note patterns will make necessary to design a specific thresholding matrix to decide whether the PIC outputs correspond to the actual notes composing the chord or not. An additional stage that performs an octave test and a fifth test has been included that improves the error rate in the detection of these intervals that are specially difficult to detect. The proposed system attains very good results in both the detection of the notes that compose a chord and the estimation of the polyphony number.

  19. Understanding Partners in Compliance (PIC)

    Partners in Compliance (PIC) is a motor carrier safety and compliance program that rewards carriers for their commitment to highway safety. Carriers voluntarily commit to a high level of compliance to eight benchmark criteria and monitor their operations. They submit reports on a monthly basis and understand that they can be subject to random government audits with respect to any of the benchmark areas. The eight benchmark criteria are: (1) safety and driver qualifications, (2) reportable collision data and analysis, (3) equipment inspection and repair, (4) driver's hours of service, (5) dangerous goods, (6) vehicle weight and dimensional management, (7) IFTA and Treasury compliance, and (8) pro-rate and registries compliance. It was emphasized that PIC is not a carrier self-regulation program, it is an investment in highway safety, a sharing in responsibility between regulators and carriers, a sign of a paradigm shift in thinking about transportation safety

  20. Massive 3D Supergravity

    Andringa, Roel; de Roo, Mees; Hohm, Olaf; Sezgin, Ergin; Townsend, Paul K

    2009-01-01

    We construct the N=1 three-dimensional supergravity theory with cosmological, Einstein-Hilbert, Lorentz Chern-Simons, and general curvature squared terms. We determine the general supersymmetric configuration, and find a family of supersymmetric adS vacua with the supersymmetric Minkowski vacuum as a limiting case. Linearizing about the Minkowski vacuum, we find three classes of unitary theories; one is the supersymmetric extension of the recently discovered `massive 3D gravity'. Another is a `new topologically massive supergravity' (with no Einstein-Hilbert term) that propagates a single (2,3/2) helicity supermultiplet.

  1. Massive 3D supergravity

    Andringa, Roel; Bergshoeff, Eric A; De Roo, Mees; Hohm, Olaf [Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Sezgin, Ergin [George and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Townsend, Paul K, E-mail: E.A.Bergshoeff@rug.n, E-mail: O.Hohm@rug.n, E-mail: sezgin@tamu.ed, E-mail: P.K.Townsend@damtp.cam.ac.u [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2010-01-21

    We construct the N=1 three-dimensional supergravity theory with cosmological, Einstein-Hilbert, Lorentz Chern-Simons, and general curvature squared terms. We determine the general supersymmetric configuration, and find a family of supersymmetric adS vacua with the supersymmetric Minkowski vacuum as a limiting case. Linearizing about the Minkowski vacuum, we find three classes of unitary theories; one is the supersymmetric extension of the recently discovered 'massive 3D gravity'. Another is a 'new topologically massive supergravity' (with no Einstein-Hilbert term) that propagates a single (2,3/2) helicity supermultiplet.

  2. PIC simulation of electron acceleration in an underdense plasma

    S Darvish Molla

    2011-06-01

    Full Text Available One of the interesting Laser-Plasma phenomena, when the laser power is high and ultra intense, is the generation of large amplitude plasma waves (Wakefield and electron acceleration. An intense electromagnetic laser pulse can create plasma oscillations through the action of the nonlinear pondermotive force. electrons trapped in the wake can be accelerated to high energies, more than 1 TW. Of the wide variety of methods for generating a regular electric field in plasmas with strong laser radiation, the most attractive one at the present time is the scheme of the Laser Wake Field Accelerator (LWFA. In this method, a strong Langmuir wave is excited in the plasma. In such a wave, electrons are trapped and can acquire relativistic energies, accelerated to high energies. In this paper the PIC simulation of wakefield generation and electron acceleration in an underdense plasma with a short ultra intense laser pulse is discussed. 2D electromagnetic PIC code is written by FORTRAN 90, are developed, and the propagation of different electromagnetic waves in vacuum and plasma is shown. Next, the accuracy of implementation of 2D electromagnetic code is verified, making it relativistic and simulating the generating of wakefield and electron acceleration in an underdense plasma. It is shown that when a symmetric electromagnetic pulse passes through the plasma, the longitudinal field generated in plasma, at the back of the pulse, is weaker than the one due to an asymmetric electromagnetic pulse, and thus the electrons acquire less energy. About the asymmetric pulse, when front part of the pulse has smaller time rise than the back part of the pulse, a stronger wakefield generates, in plasma, at the back of the pulse, and consequently the electrons acquire more energy. In an inverse case, when the rise time of the back part of the pulse is bigger in comparison with that of the back part, a weaker wakefield generates and this leads to the fact that the electrons

  3. TOWARDS: 3D INTERNET

    Ms. Swapnali R. Ghadge

    2013-08-01

    Full Text Available In today’s ever-shifting media landscape, it can be a complex task to find effective ways to reach your desired audience. As traditional media such as television continue to lose audience share, one venue in particular stands out for its ability to attract highly motivated audiences and for its tremendous growth potential the 3D Internet. The concept of '3D Internet' has recently come into the spotlight in the R&D arena, catching the attention of many people, and leading to a lot of discussions. Basically, one can look into this matter from a few different perspectives: visualization and representation of information, and creation and transportation of information, among others. All of them still constitute research challenges, as no products or services are yet available or foreseen for the near future. Nevertheless, one can try to envisage the directions that can be taken towards achieving this goal. People who take part in virtual worlds stay online longer with a heightened level of interest. To take advantage of that interest, diverse businesses and organizations have claimed an early stake in this fast-growing market. They include technology leaders such as IBM, Microsoft, and Cisco, companies such as BMW, Toyota, Circuit City, Coca Cola, and Calvin Klein, and scores of universities, including Harvard, Stanford and Penn State.

  4. On the calculation of scattered fields by 3-D structure in the time-domain electromagnetic (TDEM) method; Jikan ryoiki denjiho ni okeru sanjigen kozo kara no sanranba no keisan ni tsuite

    Murakami, Y. [Geological Survey of Japan, Tsukuba (Japan); Saito, A.; Oya, T. [Mitsui Mineral Development Engineering Co. Ltd., Tokyo (Japan)

    1996-10-01

    This paper describes the calculation method of 3-D underground structures in TDME method which measures only field components. Recently, FDTD method was developed as calculation method in time domain difference calculus, and the forward analysis accuracy of 3-D fields was rapidly improved. The survey results using a large-scale loop (600m{times}360m) were numerically analyzed by FDTD method. 16 measuring lines were prepared in both X and Y directions, and measuring points were prepared on intersection points of the measuring lines. Since signal current is staircase one, step and impulse responses of the ground were determined by calculating magnetic field and its time differentiation. The rectangular body (120m{times}120m{times}100m) of 0.2S/m in conductivity (5 ohm m in resistivity) was installed 160m under the ground as 3-D resistivity anomaly. The ground of 0.01S/m (100 ohm m) was assumed. Time variation in horizontal magnetic field vector plot of impulse responses of the uniform ground could be observed. The position of the resistivity anomaly could be also determined from spacial differentiation of magnetic field of grid pattern measuring points. 1 ref., 6 figs.

  5. Elimination of the numerical Cerenkov instability for spectral EM-PIC codes

    Yu, Peicheng; Decyk, Viktor K; Fiuza, F; Vieira, Jorge; Tsung, Frank S; Fonseca, Ricardo A; Lu, Wei; Silva, Luis O; Mori, Warren B

    2014-01-01

    When using an electromagnetic particle-in-cell (EM-PIC) code to simulate a relativistically drifting plasma, a violent numerical instability known as the numerical Cerenkov instability (NCI) occurs. The NCI is due to the unphysical coupling of electromagnetic waves on a grid to wave-particle resonances, including aliased resonances, i.e., $\\omega + 2\\pi\\mu/\\Delta t=(k_1+ 2\\pi\

  6. Output couplers for 3D photonic crystal waveguides

    Full text: One crucial practical problem facing 3D photonic crystal applications is finding a way to couple electromagnetic energy efficiently into and out of a 3D photonic crystal waveguide. We investigate two approaches for solving this problem: the photonic crystal horn antenna; and the conventional waveguide to 3D photonic crystal waveguide mode coupler. We demonstrate both approaches theoretically using numerical simulations, and experimentally using prototypes operating at microwave frequencies. Both methods succeed in providing highly efficient coupling into and out of the 3D photonic crystal waveguide over a wide bandwidth, thereby demonstrating two solutions to the output coupling problem. Copyright (2005) Australian Institute of Physics

  7. 3D printing for dummies

    Hausman, Kalani Kirk

    2014-01-01

    Get started printing out 3D objects quickly and inexpensively! 3D printing is no longer just a figment of your imagination. This remarkable technology is coming to the masses with the growing availability of 3D printers. 3D printers create 3-dimensional layered models and they allow users to create prototypes that use multiple materials and colors.  This friendly-but-straightforward guide examines each type of 3D printing technology available today and gives artists, entrepreneurs, engineers, and hobbyists insight into the amazing things 3D printing has to offer. You'll discover methods for

  8. 3D monitor

    Szkandera, Jan

    2009-01-01

    Tato bakalářská práce se zabývá návrhem a realizací systému, který umožní obraz scény zobrazovaný na ploše vnímat prostorově. Prostorové vnímání 2D obrazové informace je umožněno jednak stereopromítáním a jednak tím, že se obraz mění v závislosti na poloze pozorovatele. Tato práce se zabývá hlavně druhým z těchto problémů. This Bachelor's thesis goal is to design and realize system, which allows user to perceive 2D visual information as three-dimensional. 3D visual preception of 2D image i...

  9. Mobile 3D tomograph

    Mobile tomographs often have the problem that high spatial resolution is impossible owing to the position or setup of the tomograph. While the tree tomograph developed by Messrs. Isotopenforschung Dr. Sauerwein GmbH worked well in practice, it is no longer used as the spatial resolution and measuring time are insufficient for many modern applications. The paper shows that the mechanical base of the method is sufficient for 3D CT measurements with modern detectors and X-ray tubes. CT measurements with very good statistics take less than 10 min. This means that mobile systems can be used, e.g. in examinations of non-transportable cultural objects or monuments. Enhancement of the spatial resolution of mobile tomographs capable of measuring in any position is made difficult by the fact that the tomograph has moving parts and will therefore have weight shifts. With the aid of tomographies whose spatial resolution is far higher than the mechanical accuracy, a correction method is presented for direct integration of the Feldkamp algorithm

  10. Charge-conserving FEM-PIC schemes on general grids

    Particle-In-Cell (PIC) solvers are a major tool for the understanding of the complex behavior of a plasma or a particle beam in many situations. An important issue for electromagnetic PIC solvers, where the fields are computed using Maxwell's equations, is the problem of discrete charge conservation. In this article, we aim at proposing a general mathematical formulation for charge-conserving finite-element Maxwell solvers coupled with particle schemes. In particular, we identify the finite-element continuity equations that must be satisfied by the discrete current sources for several classes of time-domain Vlasov-Maxwell simulations to preserve the Gauss law at each time step, and propose a generic algorithm for computing such consistent sources. Since our results cover a wide range of schemes (namely curl-conforming finite element methods of arbitrary degree, general meshes in two or three dimensions, several classes of time discretization schemes, particles with arbitrary shape factors and piecewise polynomial trajectories of arbitrary degree), we believe that they provide a useful roadmap in the design of high-order charge-conserving FEM-PIC numerical schemes. (authors)

  11. Rethinking 3D-QSAR

    Cramer, Richard D.

    2010-01-01

    The average error of pIC50 prediction reported for 140 structures in make-and-test applications of topomer CoMFA by four discovery organizations is 0.5. This remarkable accuracy can be understood to result from a topomer pose’s goal of generating field differences only at lattice intersections adjacent to intended structural change.

  12. X3D: Extensible 3D Graphics Standard

    Daly, Leonard; Brutzman, Don

    2007-01-01

    The article of record as published may be located at http://dx.doi.org/10.1109/MSP.2007.905889 Extensible 3D (X3D) is the open standard for Web-delivered three-dimensional (3D) graphics. It specifies a declarative geometry definition language, a run-time engine, and an application program interface (API) that provide an interactive, animated, real-time environment for 3D graphics. The X3D specification documents are freely available, the standard can be used without paying any royalties,...

  13. 3D game environments create professional 3D game worlds

    Ahearn, Luke

    2008-01-01

    The ultimate resource to help you create triple-A quality art for a variety of game worlds; 3D Game Environments offers detailed tutorials on creating 3D models, applying 2D art to 3D models, and clear concise advice on issues of efficiency and optimization for a 3D game engine. Using Photoshop and 3ds Max as his primary tools, Luke Ahearn explains how to create realistic textures from photo source and uses a variety of techniques to portray dynamic and believable game worlds.From a modern city to a steamy jungle, learn about the planning and technological considerations for 3D modelin

  14. 3D Erosion Simulation Method and Analysis of Electromagnetic Rail Mechanism%导轨式电磁驱动装置三维烧蚀仿真方法及分析

    关晓存; 鲁军勇; 康军; 张晓

    2014-01-01

    Based on multi-field coupling theory (assuming that the armature surface wear was mostly melted wear),electromagnetic-temperature field coupled physics equations were derived by use of considering armature erosion.APDL language was used to work out the correspond-ing program,and electromagnetic field and temperature field distribution of armature were ana-lyzed with the help of considering the armature three-dimensional erosion.Finally,armature three-dimensional erosion distribution was compared with the distribution of IAT armature test results,and the results showed that:in the movement of block armature,the erosion firstly occurs in the front contact surface between the guide rail and the armature.Under the condi-tion of only considering the Joule heat,the armature was distributed more consistent,and the difference between the edges on both sides of the armature was larger;under the conditions of consi-dering and not considering the erosion,the distributions of electromagnetic field and tem-perature field were very different.This research can provide theoretical basis for revealing the erosion mechanism of the electromagnetic rail gun.%基于多场耦合理论,推导出考虑烧蚀的电磁场-温度场耦合的物理方程。利用 APDL 语言编制相应程序,分析了在考虑电枢烧蚀条件下的电流密度和温度的分布状况。电枢三维烧蚀分布与 IAT试验结果分布进行对比结果表明块状电枢在导轨间运动过程中,烧蚀首先发生在导轨与电枢接触面前端边缘。在仅考虑焦耳热情况下,电枢前端烧蚀分布比较一致,电枢两侧边缘差别较大;考虑烧蚀和不考虑烧蚀情况下电磁场和温度场分布存在很大不同。此研究为揭示电磁驱动装置烧蚀机理奠定理论基础。

  15. 3D Printing an Octohedron

    Aboufadel, Edward F.

    2014-01-01

    The purpose of this short paper is to describe a project to manufacture a regular octohedron on a 3D printer. We assume that the reader is familiar with the basics of 3D printing. In the project, we use fundamental ideas to calculate the vertices and faces of an octohedron. Then, we utilize the OPENSCAD program to create a virtual 3D model and an STereoLithography (.stl) file that can be used by a 3D printer.

  16. 3D modelling and recognition

    Rodrigues, Marcos; Robinson, Alan; Alboul, Lyuba; Brink, Willie

    2006-01-01

    3D face recognition is an open field. In this paper we present a method for 3D facial recognition based on Principal Components Analysis. The method uses a relatively large number of facial measurements and ratios and yields reliable recognition. We also highlight our approach to sensor development for fast 3D model acquisition and automatic facial feature extraction.

  17. 3-D contextual Bayesian classifiers

    Larsen, Rasmus

    distribution for the pixel values as well as a prior distribution for the configuration of class variables within the cross that is made of a pixel and its four nearest neighbours. We will extend these algorithms to 3-D, i.e. we will specify a simultaneous Gaussian distribution for a pixel and its 6 nearest 3......-D neighbours, and generalise the class variable configuration distributions within the 3-D cross given in 2-D algorithms. The new 3-D algorithms are tested on a synthetic 3-D multivariate dataset....

  18. Taming Supersymmetric Defects in 3d-3d Correspondence

    Gang, Dongmin; Romo, Mauricio; Yamazaki, Masahito

    2015-01-01

    We study knots in 3d Chern-Simons theory with complex gauge group $SL(N,\\mathbb{C})$, in the context of its relation with 3d $\\mathcal{N}=2$ theory (the so-called 3d-3d correspondence). The defect has either co-dimension 2 or co-dimension 4 inside the 6d $(2,0)$ theory, which is compactified on a 3-manifold $\\hat{M}$. We identify such defects in various corners of the 3d-3d correspondence, namely in 3d $SL(N,\\mathbb{C})$ Chern-Simons theory, in 3d $\\mathcal{N}=2$ theory, in 5d $\\mathcal{N}=2$ super Yang-Mills theory, and in the M-theory holographic dual. We can make quantitative checks of the 3d-3d correspondence by computing partition functions at each of these theories. This Letter is a companion to a longer paper, which contains more details and more results.

  19. PIC (PRODUCTS OF INCOMPLETE COMBUSTION) ANALYSIS METHODS

    The report gives results of method evaluations for products of incomplete combustion (PICs): 36 proposed PICs were evaluated by previously developed gas chromatography/flame ionization detection (GC/FID) and gas chromatography/mass spectroscopy (GC/MS) methods. It also gives resu...

  20. 3D Printing Functional Nanocomposites

    Leong, Yew Juan

    2016-01-01

    3D printing presents the ability of rapid prototyping and rapid manufacturing. Techniques such as stereolithography (SLA) and fused deposition molding (FDM) have been developed and utilized since the inception of 3D printing. In such techniques, polymers represent the most commonly used material for 3D printing due to material properties such as thermo plasticity as well as its ability to be polymerized from monomers. Polymer nanocomposites are polymers with nanomaterials composited into the ...

  1. 3D Elevation Program—Virtual USA in 3D

    Lukas, Vicki; Stoker, J.M.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  2. 3D IBFV : Hardware-Accelerated 3D Flow Visualization

    Telea, Alexandru; Wijk, Jarke J. van

    2003-01-01

    We present a hardware-accelerated method for visualizing 3D flow fields. The method is based on insertion, advection, and decay of dye. To this aim, we extend the texture-based IBFV technique for 2D flow visualization in two main directions. First, we decompose the 3D flow visualization problem in a

  3. 3D for Graphic Designers

    Connell, Ellery

    2011-01-01

    Helping graphic designers expand their 2D skills into the 3D space The trend in graphic design is towards 3D, with the demand for motion graphics, animation, photorealism, and interactivity rapidly increasing. And with the meteoric rise of iPads, smartphones, and other interactive devices, the design landscape is changing faster than ever.2D digital artists who need a quick and efficient way to join this brave new world will want 3D for Graphic Designers. Readers get hands-on basic training in working in the 3D space, including product design, industrial design and visualization, modeling, ani

  4. A 3-D Contextual Classifier

    Larsen, Rasmus

    1997-01-01

    . This includes the specification of a Gaussian distribution for the pixel values as well as a prior distribution for the configuration of class variables within the cross that is m ade of a pixel and its four nearest neighbours. We will extend this algorithm to 3-D, i.e. we will specify a simultaneous Gaussian...... distr ibution for a pixel and its 6 nearest 3-D neighbours, and generalise the class variable configuration distribution within the 3-D cross. The algorithm is tested on a synthetic 3-D multivariate dataset....

  5. 3D Bayesian contextual classifiers

    Larsen, Rasmus

    2000-01-01

    We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours.......We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours....

  6. Interactive 3D multimedia content

    Cellary, Wojciech

    2012-01-01

    The book describes recent research results in the areas of modelling, creation, management and presentation of interactive 3D multimedia content. The book describes the current state of the art in the field and identifies the most important research and design issues. Consecutive chapters address these issues. These are: database modelling of 3D content, security in 3D environments, describing interactivity of content, searching content, visualization of search results, modelling mixed reality content, and efficient creation of interactive 3D content. Each chapter is illustrated with example a

  7. 3-D printers for libraries

    Griffey, Jason

    2014-01-01

    As the maker movement continues to grow and 3-D printers become more affordable, an expanding group of hobbyists is keen to explore this new technology. In the time-honored tradition of introducing new technologies, many libraries are considering purchasing a 3-D printer. Jason Griffey, an early enthusiast of 3-D printing, has researched the marketplace and seen several systems first hand at the Consumer Electronics Show. In this report he introduces readers to the 3-D printing marketplace, covering such topics asHow fused deposition modeling (FDM) printing workBasic terminology such as build

  8. Extending PIC schemes for the study of physics in ultra-strong laser fields

    Gonoskov, A; Efimenko, E; Ilderton, A; Marklund, M; Meyerov, I; Muraviev, A; Surmin, I; Wallin, E

    2014-01-01

    Progress in laser technology has opened up possibilities using intense light to probe fundamental physics of ultra-strong electromagnetic fields. A commensurate interest has arisen in large-scale numerical simulations of laser-matter interactions, and here we describe the extension of particle-in-cell (PIC) schemes to account for strong field phenomena. We describe here the numerical implementation of strong-field processes such as quantized emission and electron-positron pair production, and provide solutions for related methodological and algorithmic problems of radiation double counting, low-energy cutoffs in particle emission, memory overload due to cascades of particle production, control of computational costs for statistical routines, and the limitations on time steps due to the quantized nature of emission. We also present a unified technical interface for including the processes of interest in different PIC implementations. The PIC codes PICADOR and ELMIS, which support this interface, are briefly re...

  9. SoftPIC - the disembedded microcontroller

    Forcer, Tim

    2000-01-01

    Although the Microchip PIC is very popular with hobbyists and experimenters, and its Harvard architecture has attractions for introductory teaching of microprocessors, it is not widely used for practical work relating to such teaching because the actions of the processor are hidden behind the IC's ports. Since 1998, Southampton University staff and third-year project students have been developing SoftPIC - an FPGA-based hardware emulation of a PIC. In AY 2000/1 this will be used to give first...

  10. Improvement of 3D Scanner

    2003-01-01

    The disadvantage remaining in 3D scanning system and its reasons are discussed. A new host-and-slave structure with high speed image acquisition and processing system is proposed to quicken the image processing and improve the performance of 3D scanning system.

  11. 3D Printing for Bricks

    ECT Team, Purdue

    2015-01-01

    Building Bytes, by Brian Peters, is a project that uses desktop 3D printers to print bricks for architecture. Instead of using an expensive custom-made printer, it uses a normal standard 3D printer which is available for everyone and makes it more accessible and also easier for fabrication.

  12. Modular 3-D Transport model

    MT3D was first developed by Chunmiao Zheng in 1990 at S.S. Papadopulos & Associates, Inc. with partial support from the U.S. Environmental Protection Agency (USEPA). Starting in 1990, MT3D was released as a pubic domain code from the USEPA. Commercial versions with enhanced capab...

  13. Using 3D in Visualization

    Wood, Jo; Kirschenbauer, Sabine; Döllner, Jürgen;

    2005-01-01

    The notion of three-dimensionality is applied to five stages of the visualization pipeline. While 3D visulization is most often associated with the visual mapping and representation of data, this chapter also identifies its role in the management and assembly of data, and in the media used...... to display 3D imagery. The extra cartographic degree of freedom offered by using 3D is explored and offered as a motivation for employing 3D in visualization. The use of VR and the construction of virtual environments exploit navigational and behavioral realism, but become most usefil when combined...... with abstracted representations embedded in a 3D space. The interactions between development of geovisualization, the technology used to implement it and the theory surrounding cartographic representation are explored. The dominance of computing technologies, driven particularly by the gaming industry...

  14. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  15. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  16. Parallel Higher-order Finite Element Method for Accurate Field Computations in Wakefield and PIC Simulations

    Candel, A.; Kabel, A.; Lee, L.; Li, Z.; Limborg, C.; Ng, C.; Prudencio, E.; Schussman, G.; Uplenchwar, R.; Ko, K.; /SLAC

    2009-06-19

    Over the past years, SLAC's Advanced Computations Department (ACD), under SciDAC sponsorship, has developed a suite of 3D (2D) parallel higher-order finite element (FE) codes, T3P (T2P) and Pic3P (Pic2P), aimed at accurate, large-scale simulation of wakefields and particle-field interactions in radio-frequency (RF) cavities of complex shape. The codes are built on the FE infrastructure that supports SLAC's frequency domain codes, Omega3P and S3P, to utilize conformal tetrahedral (triangular)meshes, higher-order basis functions and quadratic geometry approximation. For time integration, they adopt an unconditionally stable implicit scheme. Pic3P (Pic2P) extends T3P (T2P) to treat charged-particle dynamics self-consistently using the PIC (particle-in-cell) approach, the first such implementation on a conformal, unstructured grid using Whitney basis functions. Examples from applications to the International Linear Collider (ILC), Positron Electron Project-II (PEP-II), Linac Coherent Light Source (LCLS) and other accelerators will be presented to compare the accuracy and computational efficiency of these codes versus their counterparts using structured grids.

  17. ADT-3D Tumor Detection Assistant in 3D

    Jaime Lazcano Bello

    2008-12-01

    Full Text Available The present document describes ADT-3D (Three-Dimensional Tumor Detector Assistant, a prototype application developed to assist doctors diagnose, detect and locate tumors in the brain by using CT scan. The reader may find on this document an introduction to tumor detection; ADT-3D main goals; development details; description of the product; motivation for its development; result’s study; and areas of applicability.

  18. Análise do equilíbrio postural estático utilizando um sistema eletromagnético tridimensional Analysis of static postural balance using a 3d electromagnetic system

    José Ailton Oliveira Carneiro

    2010-12-01

    Full Text Available A detecção precoce de distúrbios posturais é fundamental para a promoção de intervenções adequadas para pacientes com desequilíbrios. OBJETIVO: Este é um estudo piloto que descreve uma nova ferramenta para avaliação do equilíbrio postural estático. FORMA DE ESTUDO: Coorte contemporânea com corte transversal. MATERIAL E MÉTODO: Foram avaliados 25 voluntários (15 mulheres e 10 homens. Idade média de 25,8±4,2anos, peso 63,9±13,1Kg, estatura 1,68±0,08m e índice de massa corporal 22,3±3,3kg/m2. A posturografia foi realizada por meio da análise de oscilação postural utilizando um equipamento eletromagnético com um sensor fixado sobre o processo espinhoso da 1ª vértebra torácica. Os testes foram realizados com os sujeitos na posição ortostática durante 90 segundos, para as condições de olhos abertos (OA e fechados (OF em superfície estável e instável. RESULTADOS: Quando analisada a influência da superfície (estável x instável para o equilíbrio postural na condição OA, foram observadas diferenças significativas nos parâmetros de trajetória médio-lateral (m-l (p=0.004 e total (p=0.014 e de velocidade m-l (p=0.004 e total (p=0.014. Na condição OF, foram observadas diferenças significativas em todos os parâmetros estudados (pEarly detection of postural disorders is essential for timely interventions in patients with imbalance. AIM: A pilot study describing a new tool for evaluating static postural balance. STUDY DESIGN: A cross-sectional study of a contemporary series. MATERIAL AND METHOD: Twenty-five volunteers (15 women and 10 men were evaluated. The mean age was 25.8 ± 4.2 years, the mean weight was 63.9 ± 13.1Kg, the mean height was 1.68 ± 0.08 m and the body mass index was 22.3±3.3kg/m2. Posturography was done by analysing postural sway with an electromagnetic system; a sensor was attached to the skin over the spinous process of the first thoracic vertebra. Tests were carried out with the

  19. Unassisted 3D camera calibration

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  20. Programming 16-Bit PIC Microcontrollers in C Learning to Fly the PIC 24

    Di Jasio, Lucio

    2011-01-01

    New in the second edition: * MPLAB X support and MPLAB C for the PIC24F v3 and later libraries * I2C™ interface * 100% assembly free solutions * Improved video, PAL/NTSC * Improved audio, RIFF files decoding * PIC24F GA1, GA2, GB1 and GB2 support   Most readers will associate Microchip's name with the ubiquitous 8-bit PIC microcontrollers but it is the new 16-bit PIC24F family that is truly stealing the scene. Orders of magnitude increases of performance, memory size and the rich peripheral set make programming these devices in C a must. This new guide by Microchip insid

  1. 5-axis 3D Printer

    Grutle, Øyvind Kallevik

    2015-01-01

    3D printers have in recent years become extremely popular. Even though 3D printing technology have existed since the late 1980's, it is now considered one of the most significant technological breakthroughs of the twenty-first century. Several different 3D printing processes have been invented during the years. But it is the fused deposition modeling (FDM) which was one of the first invented that is considered the most popular today. Even though the FDM process is the most popular, it still s...

  2. Handbook of 3D integration

    Garrou , Philip; Ramm , Peter

    2014-01-01

    Edited by key figures in 3D integration and written by top authors from high-tech companies and renowned research institutions, this book covers the intricate details of 3D process technology.As such, the main focus is on silicon via formation, bonding and debonding, thinning, via reveal and backside processing, both from a technological and a materials science perspective. The last part of the book is concerned with assessing and enhancing the reliability of the 3D integrated devices, which is a prerequisite for the large-scale implementation of this emerging technology. Invaluable reading fo

  3. Exploration of 3D Printing

    Lin, Zeyu

    2014-01-01

    3D printing technology is introduced and defined in this Thesis. Some methods of 3D printing are illustrated and their principles are explained with pictures. Most of the essential parts are presented with pictures and their effects are explained within the whole system. Problems on Up! Plus 3D printer are solved and a DIY product is made with this machine. The processes of making product are recorded and the items which need to be noticed during the process are the highlight in this th...

  4. Tuotekehitysprojekti: 3D-tulostin

    Pihlajamäki, Janne

    2011-01-01

    Opinnäytetyössä tutustuttiin 3D-tulostamisen teknologiaan. Työssä käytiin läpi 3D-tulostimesta tehty tuotekehitysprojekti. Sen lisäksi esiteltiin yleisellä tasolla tuotekehitysprosessi ja syntyneiden tulosten mahdollisia suojausmenetelmiä. Tavoitteena tässä työssä oli kehittää markkinoilta jo löytyvää kotitulostin-tasoista 3D-laiteteknologiaa lähemmäksi ammattilaistason ratkaisua. Tavoitteeseen pyrittiin keskittymällä parantamaan laitteella saavutettavaa tulostustarkkuutta ja -nopeutt...

  5. Color 3D Reverse Engineering

    2002-01-01

    This paper presents a principle and a method of col or 3D laser scanning measurement. Based on the fundamental monochrome 3D measureme nt study, color information capture, color texture mapping, coordinate computati on and other techniques are performed to achieve color 3D measurement. The syste m is designed and composed of a line laser light emitter, one color CCD camera, a motor-driven rotary filter, a circuit card and a computer. Two steps in captu ring object's images in the measurement process: Firs...

  6. 3-D neutron transport benchmarks

    A set of 3-D neutron transport benchmark problems proposed by the Osaka University to NEACRP in 1988 has been calculated by many participants and the corresponding results are summarized in this report. The results of Keff, control rod worth and region-averaged fluxes for the four proposed core models, calculated by using various 3-D transport codes are compared and discussed. The calculational methods used were: Monte Carlo, Discrete Ordinates (Sn), Spherical Harmonics (Pn), Nodal Transport and others. The solutions of the four core models are quite useful as benchmarks for checking the validity of 3-D neutron transport codes

  7. 3D on the internet

    Puntar, Matej

    2012-01-01

    The purpose of this thesis is the presentation of already established and new technologies of displaying 3D content in a web browser. The thesis begins with a short presentation of the history of 3D content available on the internet and its development together with advantages and disadvantages of individual technologies. The latter two are described in detail as well is their use and the differences among them. Special emphasis has been given to WebGL, the newest technology of 3D conte...

  8. PIC simulations of SMLWFA for 35fs class lasers

    Adam, J. C.; Tsung, F. S.; Ren, Chuang; Mori, W. B.; Fonseca, R. A.; Silva, L. O.

    2001-10-01

    In the self-modulated laser wakefield regime a laser pulse several to many 2 π c/ ωp long breaks up via Raman scattering type instabilities producing large wakes. In some cases these wakes can trap background electrons generating a beam of accelerated electrons with a large energy spread. PIC simulations have shown that this process is highly sensitive to the laser intensity, pulse length, and plasma density [K-C.Tzeng et al., PRL 76, 3332 (1996), K-C.Tzeng et al., PRL 79, 5258 (1997)]. There have been some recent experimental results in which 35fs laser pulses have been used. In this case the pulses are at most only a few 2 π c/ ωp long even for the highest densities 10**20 cm-3. We report here on 1D, 2D, and 3D PIC simulations using OSIRIS for parameters closely related to the LULI/LOA results [V.Malka et al., Phys. Plasmas 8, 2605 (2001)].

  9. Heterodyne 3D ghost imaging

    Yang, Xu; Zhang, Yong; Yang, Chenghua; Xu, Lu; Wang, Qiang; Zhao, Yuan

    2016-06-01

    Conventional three dimensional (3D) ghost imaging measures range of target based on pulse fight time measurement method. Due to the limit of data acquisition system sampling rate, range resolution of the conventional 3D ghost imaging is usually low. In order to take off the effect of sampling rate to range resolution of 3D ghost imaging, a heterodyne 3D ghost imaging (HGI) system is presented in this study. The source of HGI is a continuous wave laser instead of pulse laser. Temporal correlation and spatial correlation of light are both utilized to obtain the range image of target. Through theory analysis and numerical simulations, it is demonstrated that HGI can obtain high range resolution image with low sampling rate.

  10. Conducting polymer 3D microelectrodes

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi;

    2010-01-01

    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained...

  11. Main: TATCCAYMOTIFOSRAMY3D [PLACE

    Full Text Available TATCCAYMOTIFOSRAMY3D S000256 01-August-2006 (last modified) kehi TATCCAY motif found in rice (O. ... otif and G motif (see S000130) are responsible for sugar ... repression (Toyofuku et al. 1998); GATA; amylase; ...

  12. Combinatorial 3D Mechanical Metamaterials

    Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin

    2015-03-01

    We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.

  13. 3D Face Appearance Model

    Lading, Brian; Larsen, Rasmus; Åström, Kalle

    2006-01-01

    We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}......We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}...

  14. 3D Face Apperance Model

    Lading, Brian; Larsen, Rasmus; Astrom, K

    2006-01-01

    We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations......We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations...

  15. AI 3D Cybug Gaming

    Ahmed, Zeeshan

    2010-01-01

    In this short paper I briefly discuss 3D war Game based on artificial intelligence concepts called AI WAR. Going in to the details, I present the importance of CAICL language and how this language is used in AI WAR. Moreover I also present a designed and implemented 3D War Cybug for AI WAR using CAICL and discus the implemented strategy to defeat its enemies during the game life.

  16. Challenges of PIC Simulations at High Laser Intensity

    Luedtke, Scott V.; Arefiev, Alexey V.; Toncian, Toma; Hegelich, Bjorn Manuel

    2015-11-01

    New lasers with very high intensity pulses (I >1022 W/cm2) are being commissioned to explore new regimes of laser-matter interactions. These lasers require accurate particle-in-cell (PIC) simulations, which may require new computational approaches to efficiently produce physically accurate results. We examine the constraints on PIC simulations at high field intensity imposed by both the particle pusher and field solver. As proposed by Arefiev, et al. (Physics of Plasmas 22, 013103 (2015)), we implement adaptive sub-cycling in the Boris pusher of the EPOCH code and demonstrate its effectiveness in efficiently reducing errors from the pusher. It is well know that the use of a finite-difference scheme also modifies the electromagnetic wave dispersion relation. We examine the effect of the resulting discrepancy in the phase velocity on electron acceleration, and demonstrate that relatively small errors in the phase velocity lead to substantial changes in the electron energy gain from the laser pulse. We discuss the corresponding conditions for the field solver. These results are relevant to direct laser acceleration and underdense ionization experiments. This work was supported by NNSA cooperative agreement DE-NA0002008, the Defense Advanced Research Projects Agency's PULSE program (12-63-PULSE-FP014) and the Air Force Office of Scientific Research (FA9550-14-1-0045).

  17. Edge-based electric field formulation in 3D CSEM simulations: A parallel approach

    Castillo-Reyes, Octavio; de la Puente, Josep; Puzyrev, Vladimir; Cela, José M.

    2015-01-01

    This paper presents a parallel computing scheme for the data computation that arise when applying one of the most popular electromagnetic methods in exploration geophysics, namely, controlled-source electromagnetic (CSEM). The computational approach is based on linear edge finite element method in 3D isotropic domains. The total electromagnetic field is decomposed into primary and secondary electromagnetic field. The primary field is calculated analytically using an horizontal layered-e...

  18. 3-D magnetic field calculations for wiggglers using MAGNUS-3D

    The recent but steady trend toward increased magnetic and geometric complexity in the design of wigglers and undulators, of which tapered wigglers, hybrid structures, laced electromagnetic wigglers, magnetic cladding, twisters and magic structures are examples, has caused a need for reliable 3-D computer models and a better understanding of the behavior of magnetic systems in three dimensions. The capabilities of the MAGNUS-3D Group of Programs are ideally suited to solve this class of problems and provide insight into 3-D effects. MAGNUS-3D can solve any problem of Magnetostatics involving permanent magnets, linear or nonlinear ferromagnetic materials and electric conductors of any shape in space. The magnetic properties of permanent magnets are described by the complete nonlinear demagnetization curve as provided by the manufacturer, or, at the user's choice, by a simpler approximation involving the coercive force, the residual induction and the direction of magnetization. The ferromagnetic materials are described by a magnetization table and an accurate interpolation relation. An internal library with properties of common industrial steels is available. The conductors are independent of the mesh and are described in terms of conductor elements from an internal library

  19. Particle-in-cell (PIC) simulations of beam instabilities in gyrotrons

    Extensive simulations are performed to investigate effects of electron cyclotron instabilities on the gyrotron beam quality, using two-dimensional axisymmetric particle-in-cell (PIC) codes. Both electrostatic and electromagnetic models, as well as realistic geometries of the gyrotron are considered. It is found that a large beam density can lead to an electrostatic-instability-induced energy spread which substantially degrades the gyrotron efficiency. (author) 11 figs., 14 refs

  20. Enhancements to the opera-3d suite

    The OPERA-3D suite of programs has been enhanced to include 2 additional 3 dimensional finite element based solvers, with complimentary features in the pre- and postprocessing. SOPRANO computes electromagnetic fields at high frequency including displacement current effects. It has 2 modules emdash a deterministic solution at a user defined frequency and an eigenvalue solution for modal analysis. It is suitable for designing microwave structures and cavities found in particle accelerators. SCALA computes electrostatic fields in the presence of space charge from charged particle beams. The user may define the emission characteristics of electrodes or plasma surfaces and compute the resultant space charge limited beams, including the presence of magnetic fields. Typical applications in particle accelerators are electron guns and ion sources. Other enhancements to the suite include additional capabilities in TOSCA and ELEKTRA, the static and dynamic solvers. copyright 1997 American Institute of Physics

  1. Enhancements to the opera-3d suite

    The OPERA-3D suite of programs has been enhanced to include 2 additional 3 dimensional finite element based solvers, with complimentary features in the pre- and postprocessing. SOPRANO computes electromagnetic fields at high frequency including displacement current effects. It has 2 modules--a deterministic solution at a user defined frequency and an eigenvalue solution for modal analysis. It is suitable for designing microwave structures and cavities found in particle accelerators. SCALA computes electrostatic fields in the presence of space charge from charged particle beams. The user may define the emission characteristics of electrodes or plasma surfaces and compute the resultant space charge limited beams, including the presence of magnetic fields. Typical applications in particle accelerators are electron guns and ion sources. Other enhancements to the suite include additional capabilities in TOSCA and ELEKTRA, the static and dynamic solvers

  2. Enhancements to the opera-3d suite

    Riley, C.P. [Vector Fields Ltd., 24 Bankside, Kidlington, Oxford OX5 1JE (United Kingdom)

    1997-02-01

    The OPERA-3D suite of programs has been enhanced to include 2 additional 3 dimensional finite element based solvers, with complimentary features in the pre- and postprocessing. SOPRANO computes electromagnetic fields at high frequency including displacement current effects. It has 2 modules{emdash}a deterministic solution at a user defined frequency and an eigenvalue solution for modal analysis. It is suitable for designing microwave structures and cavities found in particle accelerators. SCALA computes electrostatic fields in the presence of space charge from charged particle beams. The user may define the emission characteristics of electrodes or plasma surfaces and compute the resultant space charge limited beams, including the presence of magnetic fields. Typical applications in particle accelerators are electron guns and ion sources. Other enhancements to the suite include additional capabilities in TOSCA and ELEKTRA, the static and dynamic solvers. {copyright} {ital 1997 American Institute of Physics.}

  3. Enhancements to the opera-3d suite

    Riley, Christopher P.

    1997-02-01

    The OPERA-3D suite of programs has been enhanced to include 2 additional 3 dimensional finite element based solvers, with complimentary features in the pre- and postprocessing. SOPRANO computes electromagnetic fields at high frequency including displacement current effects. It has 2 modules—a deterministic solution at a user defined frequency and an eigenvalue solution for modal analysis. It is suitable for designing microwave structures and cavities found in particle accelerators. SCALA computes electrostatic fields in the presence of space charge from charged particle beams. The user may define the emission characteristics of electrodes or plasma surfaces and compute the resultant space charge limited beams, including the presence of magnetic fields. Typical applications in particle accelerators are electron guns and ion sources. Other enhancements to the suite include additional capabilities in TOSCA and ELEKTRA, the static and dynamic solvers.

  4. From 3D view to 3D print

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  5. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  6. Remote 3D Medical Consultation

    Welch, Greg; Sonnenwald, Diane H.; Fuchs, Henry; Cairns, Bruce; Mayer-Patel, Ketan; Yang, Ruigang; State, Andrei; Towles, Herman; Ilie, Adrian; Krishnan, Srinivas; Söderholm, Hanna M.

    Two-dimensional (2D) video-based telemedical consultation has been explored widely in the past 15-20 years. Two issues that seem to arise in most relevant case studies are the difficulty associated with obtaining the desired 2D camera views, and poor depth perception. To address these problems we are exploring the use of a small array of cameras to synthesize a spatially continuous range of dynamic three-dimensional (3D) views of a remote environment and events. The 3D views can be sent across wired or wireless networks to remote viewers with fixed displays or mobile devices such as a personal digital assistant (PDA). The viewpoints could be specified manually or automatically via user head or PDA tracking, giving the remote viewer virtual head- or hand-slaved (PDA-based) remote cameras for mono or stereo viewing. We call this idea remote 3D medical consultation (3DMC). In this article we motivate and explain the vision for 3D medical consultation; we describe the relevant computer vision/graphics, display, and networking research; we present a proof-of-concept prototype system; and we present some early experimental results supporting the general hypothesis that 3D remote medical consultation could offer benefits over conventional 2D televideo.

  7. Materialedreven 3d digital formgivning

    Hansen, Flemming Tvede

    2010-01-01

    Formålet med forskningsprojektet er for det første at understøtte keramikeren i at arbejde eksperimenterende med digital formgivning, og for det andet at bidrage til en tværfaglig diskurs om brugen af digital formgivning. Forskningsprojektet fokuserer på 3d formgivning og derved på 3d digital...... formgivning og Rapid Prototyping (RP). RP er en fællesbetegnelse for en række af de teknikker, der muliggør at overføre den digitale form til 3d fysisk form. Forskningsprojektet koncentrerer sig om to overordnede forskningsspørgsmål. Det første handler om, hvordan viden og erfaring indenfor det keramiske...... fagområde kan blive udnyttet i forhold til 3d digital formgivning. Det andet handler om, hvad en sådan tilgang kan bidrage med, og hvordan den kan blive udnyttet i et dynamisk samspil med det keramiske materiale i formgivningen af 3d keramiske artefakter. Materialedreven formgivning er karakteriseret af en...

  8. Novel 3D media technologies

    Dagiuklas, Tasos

    2015-01-01

    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The contributions are based on the results of the FP7 European Project ROMEO, which focuses on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the future Internet. The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of consistent video quality to fixed and mobile users. ROMEO will present hybrid networking solutions that combine the DVB-T2 and DVB-NGH broadcas...

  9. 3D future internet media

    Dagiuklas, Tasos

    2014-01-01

    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The main contributions are based on the results of the FP7 European Projects ROMEO, which focus on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the Future Internet (www.ict-romeo.eu). The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of constant video quality to both fixed and mobile users. ROMEO will design and develop hybrid-networking solutions that co...

  10. Modification of 3D milling machine to 3D printer

    Halamíček, Lukáš

    2015-01-01

    Tato práce se zabývá přestavbou gravírovací frézky na 3D tiskárnu. V první části se práce zabývá možnými technologiemi 3D tisku a možností jejich využití u přestavby. Dále jsou popsány a vybrány vhodné součásti pro přestavbu. V další části je realizováno řízení ohřevu podložky, trysky a řízení posuvu drátu pomocí softwaru TwinCat od společnosti Beckhoff na průmyslovém počítači. Výsledkem práce by měla být oživená 3D tiskárna. This thesis deals with rebuilding of engraving machine to 3D pri...

  11. 3D Imager and Method for 3D imaging

    Kumar, P.; Staszewski, R.; Charbon, E.

    2013-01-01

    3D imager comprising at least one pixel, each pixel comprising a photodetectorfor detecting photon incidence and a time-to-digital converter system configured for referencing said photon incidence to a reference clock, and further comprising a reference clock generator provided for generating the re

  12. Validation of TRAB-3D

    TRAB-3D is a reactor dynamics code with three-dimensional neutronics coupled to core and circuit thermal-hydraulics. The code, entirely developed at VTT, can be used in transient and accident analyses of boiling (BWR) and pressurized water (PWR) reactors with rectangular fuel bundle geometry. The validation history of TRAB-3D includes calculation of international benchmark exercises, as well as comparisons with measured data from real plant transients. The most recent validation case is a load rejection test performed at the Olkiluoto 1 nuclear power plant in 1998 in connection with the power uprating project. The fact that there is local power measurement data available from this test makes it a suitable case for three-dimensional core model validation. The agreement between the results of the TRAB-3D calculation and the measurements is very good. (orig.)

  13. Crowded Field 3D Spectroscopy

    Becker, T; Roth, M M; Becker, Thomas; Fabrika, Sergei; Roth, Martin M.

    2003-01-01

    The quantitative spectroscopy of stellar objects in complex environments is mainly limited by the ability of separating the object from the background. Standard slit spectroscopy, restricting the field of view to one dimension, is obviously not the proper technique in general. The emerging Integral Field (3D) technique with spatially resolved spectra of a two-dimensional field of view provides a great potential for applying advanced subtraction methods. In this paper an image reconstruction algorithm to separate point sources and a smooth background is applied to 3D data. Several performance tests demonstrate the photometric quality of the method. The algorithm is applied to real 3D observations of a sample Planetary Nebula in M31, whose spectrum is contaminated by the bright and complex galaxy background. The ability of separating sources is also studied in a crowded stellar field in M33.

  14. Markerless 3D Face Tracking

    Walder, Christian; Breidt, Martin; Bulthoff, Heinrich;

    2009-01-01

    We present a novel algorithm for the markerless tracking of deforming surfaces such as faces. We acquire a sequence of 3D scans along with color images at 40Hz. The data is then represented by implicit surface and color functions, using a novel partition-of-unity type method of efficiently...... combining local regressors using nearest neighbor searches. Both these functions act on the 4D space of 3D plus time, and use temporal information to handle the noise in individual scans. After interactive registration of a template mesh to the first frame, it is then automatically deformed to track...... the scanned surface, using the variation of both shape and color as features in a dynamic energy minimization problem. Our prototype system yields high-quality animated 3D models in correspondence, at a rate of approximately twenty seconds per timestep. Tracking results for faces and other objects...

  15. 3D vector flow imaging

    Pihl, Michael Johannes

    The main purpose of this PhD project is to develop an ultrasonic method for 3D vector flow imaging. The motivation is to advance the field of velocity estimation in ultrasound, which plays an important role in the clinic. The velocity of blood has components in all three spatial dimensions, yet...... conventional methods can estimate only the axial component. Several approaches for 3D vector velocity estimation have been suggested, but none of these methods have so far produced convincing in vivo results nor have they been adopted by commercial manufacturers. The basis for this project is the Transverse...... on the TO fields are suggested. They can be used to optimize the TO method. In the third part, a TO method for 3D vector velocity estimation is proposed. It employs a 2D phased array transducer and decouples the velocity estimation into three velocity components, which are estimated simultaneously based on 5...

  16. 3D-grafiikkamoottori mobiililaitteille

    Vahlman, Lauri

    2014-01-01

    Tässä insinöörityössä käydään läpi mobiililaitteille suunnatun yksinkertaisen 3D-grafiikkamoottorin suunnittelu ja toteutus käyttäen OpenGL ES -rajapintaa. Työssä esitellään grafiikkamoottorin toteutuksessa käytettyjä tekniikoita sekä tutustutaan moottorin rakenteeseen ja toteutuksellisiin yksityiskohtiin. Työn alkupuolella tutustutaan myös modernin 3D-grafiikan yleisiin periaatteisiin ja toimintaan sekä käydään läpi 3D-grafiikkaan liittyviä suorituskykyongelmia. Työn loppupuolella esitel...

  17. 3-D Printed High Power Microwave Magnetrons

    Jordan, Nicholas; Greening, Geoffrey; Exelby, Steven; Gilgenbach, Ronald; Lau, Y. Y.; Hoff, Brad

    2015-11-01

    The size, weight, and power requirements of HPM systems are critical constraints on their viability, and can potentially be improved through the use of additive manufacturing techniques, which are rapidly increasing in capability and affordability. Recent experiments on the UM Recirculating Planar Magnetron (RPM), have explored the use of 3-D printed components in a HPM system. The system was driven by MELBA-C, a Marx-Abramyan system which delivers a -300 kV voltage pulse for 0.3-1.0 us, with a 0.15-0.3 T axial magnetic field applied by a pair of electromagnets. Anode blocks were printed from Water Shed XC 11122 photopolymer using a stereolithography process, and prepared with either a spray-coated or electroplated finish. Both manufacturing processes were compared against baseline data for a machined aluminum anode, noting any differences in power output, oscillation frequency, and mode stability. Evolution and durability of the 3-D printed structures were noted both visually and by tracking vacuum inventories via a residual gas analyzer. Research supported by AFOSR (grant #FA9550-15-1-0097) and AFRL.

  18. 3D Computations and Experiments

    Couch, R; Faux, D; Goto, D; Nikkel, D

    2004-04-05

    This project consists of two activities. Task A, Simulations and Measurements, combines all the material model development and associated numerical work with the materials-oriented experimental activities. The goal of this effort is to provide an improved understanding of dynamic material properties and to provide accurate numerical representations of those properties for use in analysis codes. Task B, ALE3D Development, involves general development activities in the ALE3D code with the focus of improving simulation capabilities for problems of mutual interest to DoD and DOE. Emphasis is on problems involving multi-phase flow, blast loading of structures and system safety/vulnerability studies.

  19. 3D proton beam micromachining

    Focused high energy ion beam micromachining is the newest of the micromachining techniques. There are about 50 scanning proton microprobe facilities worldwide, but so far only few of them showed activity in this promising field. High energy ion beam micromachining using a direct-write scanning MeV ion beam is capable of producing 3D microstructures and components with well defined lateral and depth geometry. The technique has high potential in the manufacture of 3D molds, stamps, and masks for X-ray lithography (LIGA), and also in the rapid prototyping of microcomponents either for research purposes or for components testing prior to batch production. (R.P.)

  20. Study of plasma meniscus formation and beam halo in negative ion source using the 3D3VPIC model

    Nishioka, S.; Goto, I.; Hatayama, A. [Graduate school of Science and Technology, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Fukano, A. [Tokyo Metropolitan Collage of Industrial Technology, Higashioi, Shinagawa, Tokyo 140-0011 (Japan)

    2015-04-08

    In this paper, the effect of the electron confinement time on the plasma meniscus and the fraction of the beam halo is investigated by 3D3V-PIC (three dimension in real space and three dimension in velocity space) (Particle in Cell) simulation in the extraction region of negative ion source. The electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of diffusion across the magnetic field. Our 3D3V-PIC results support the previous result by 2D3V-PIC results i.e., it is confirmed that the penetration of the plasma meniscus becomes deep into the source plasma region when the effective confinement time is short.

  1. Study of plasma meniscus formation and beam halo in negative ion source using the 3D3VPIC model

    In this paper, the effect of the electron confinement time on the plasma meniscus and the fraction of the beam halo is investigated by 3D3V-PIC (three dimension in real space and three dimension in velocity space) (Particle in Cell) simulation in the extraction region of negative ion source. The electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of diffusion across the magnetic field. Our 3D3V-PIC results support the previous result by 2D3V-PIC results i.e., it is confirmed that the penetration of the plasma meniscus becomes deep into the source plasma region when the effective confinement time is short

  2. Electrostatic PIC with adaptive Cartesian mesh

    Kolobov, Vladimir I

    2016-01-01

    We describe an initial implementation of an electrostatic Particle-in-Cell (ES-PIC) module with adaptive Cartesian mesh in our Unified Flow Solver framework. Challenges of PIC method with cell-based adaptive mesh refinement (AMR) are related to a decrease of the particle-per-cell number in the refined cells with a corresponding increase of the numerical noise. The developed ES-PIC solver is validated for capacitively coupled plasma, its AMR capabilities are demonstrated for simulations of streamer development during high-pressure gas breakdown. It is shown that cell-based AMR provides a convenient particle management algorithm for exponential multiplications of electrons and ions in the ionization events.

  3. Electrostatic PIC with adaptive Cartesian mesh

    Kolobov, Vladimir; Arslanbekov, Robert

    2016-05-01

    We describe an initial implementation of an electrostatic Particle-in-Cell (ES-PIC) module with adaptive Cartesian mesh in our Unified Flow Solver framework. Challenges of PIC method with cell-based adaptive mesh refinement (AMR) are related to a decrease of the particle-per-cell number in the refined cells with a corresponding increase of the numerical noise. The developed ES-PIC solver is validated for capacitively coupled plasma, its AMR capabilities are demonstrated for simulations of streamer development during high-pressure gas breakdown. It is shown that cell-based AMR provides a convenient particle management algorithm for exponential multiplications of electrons and ions in the ionization events.

  4. Making Inexpensive 3-D Models

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  5. 3D Face Appearance Model

    Lading, Brian; Larsen, Rasmus; Åström, Kalle

    2006-01-01

    We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}

  6. 3D Face Apperance Model

    Lading, Brian; Larsen, Rasmus; Astrom, K

    2006-01-01

    We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations

  7. 3D Printing: Exploring Capabilities

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  8. 3D terahertz beam profiling

    Pedersen, Pernille Klarskov; Strikwerda, Andrew; Wang, Tianwu;

    2013-01-01

    We present a characterization of THz beams generated in both a two-color air plasma and in a LiNbO3 crystal. Using a commercial THz camera, we record intensity images as a function of distance through the beam waist, from which we extract 2D beam profiles and visualize our measurements into 3D beam...

  9. Viewing galaxies in 3D

    Krajnović, Davor

    2016-01-01

    Thanks to a technique that reveals galaxies in 3D, astronomers can now show that many galaxies have been wrongly classified. Davor Krajnovi\\'c argues that the classification scheme proposed 85 years ago by Edwin Hubble now needs to be revised.

  10. Priprava 3D modelov za 3D tisk

    Pikovnik, Tomaž

    2015-01-01

    Po mnenju nekaterih strokovnjakov bo aditivna proizvodnja (ali 3D tiskanje) spremenila proizvodnjo industrijo, saj si bo vsak posameznik lahko natisnil svoj objekt po želji. V diplomski nalogi so predstavljene nekatere tehnologije aditivne proizvodnje. V nadaljevanju diplomske naloge je predstavljena izdelava makete hiše v merilu 1:100, vse od modeliranja do tiskanja. Poseben poudarek je posvečen predelavi modela, da je primeren za tiskanje, kjer je razvit pristop za hitrejše i...

  11. Post processing of 3D models for 3D printing

    Pikovnik, Tomaž

    2015-01-01

    According to the opinion of some experts the additive manufacturing or 3D printing will change manufacturing industry, because any individual could print their own model according to his or her wishes. In this graduation thesis some of the additive manufacturing technologies are presented. Furthermore in the production of house scale model in 1:100 is presented, starting from modeling to printing. Special attention is given to postprocessing of the building model elements us...

  12. 3D Cameras: 3D Computer Vision of Wide Scope

    May, Stefan; Pervoelz, Kai; Surmann, Hartmut

    2007-01-01

    First of all, a short comparison of range sensors and their underlying principles was given. The chapter further focused on 3D cameras. The latest innovations have given a significant improvement for the measurement accuracy, wherefore this technology has attracted attention in the robotics community. This was also the motivation for the examination in this chapter. On this account, several applications were presented, which represents common problems in the domain of autonomous robotics. For...

  13. DYNA3D2000*, Explicit 3-D Hydrodynamic FEM Program

    1 - Description of program or function: DYNA3D2000 is a nonlinear explicit finite element code for analyzing 3-D structures and solid continuum. The code is vectorized and available on several computer platforms. The element library includes continuum, shell, beam, truss and spring/damper elements to allow maximum flexibility in modeling physical problems. Many materials are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding, single surface contact and automatic contact generation. 2 - Method of solution: Discretization of a continuous model transforms partial differential equations into algebraic equations. A numerical solution is then obtained by solving these algebraic equations through a direct time marching scheme. 3 - Restrictions on the complexity of the problem: Recent software improvements have eliminated most of the user identified limitations with dynamic memory allocation and a very large format description that has pushed potential problem sizes beyond the reach of most users. The dominant restrictions remain in code execution speed and robustness, which the developers constantly strive to improve

  14. 3-D Relativistic MHD Simulations

    Nishikawa, K.-I.; Frank, J.; Koide, S.; Sakai, J.-I.; Christodoulou, D. M.; Sol, H.; Mutel, R. L.

    1998-12-01

    We present 3-D numerical simulations of moderately hot, supersonic jets propagating initially along or obliquely to the field lines of a denser magnetized background medium with Lorentz factors of W = 4.56 and evolving in a four-dimensional spacetime. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently in the simulations. This effect is analogous to pushing Japanese ``noren'' or vertical Venetian blinds out of the way while the slats are allowed to bend in 3-D space rather than as a 2-D slab structure.

  15. 3D Printed Robotic Hand

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  16. Forensic 3D Scene Reconstruction

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene

  17. Forensic 3D Scene Reconstruction

    LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN; SMALL,DANIEL E.

    1999-10-12

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  18. [Real time 3D echocardiography

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  19. Implementation of PIC Based LED Displays

    Htet Htet Thit San

    2014-09-01

    Full Text Available This paper explains the project which is a special kind of LED Display Board for performing dance movement according to the rhythm of music. Nowadays, LED display boards are widely used in advertising and other applications. LED display boards can also be used indoors or outdoors. The objective of this system is to design a display panel by using several dozens of LED matrix display. The display pattern can desire to be changed easily and modified by the user. This LED display board is overall in two major components; which are the microcontroller and LED display panel. Microcontrollers with programs are developed to generate characters and graphics for this module. In this system, when the LED display board is “ON”, it will display the messages and then dance movements by the rhythm of music using a PIC microcontroller. It is not needed to change the LED panel, only to change the input data in PIC program. In this system, LED panel is controlled by a program in microcontroller from serial to parallel shift registers using the scanning method. PIC microcontroller is for generating the output signal to output display board by using a program. Then, it will be run on the LED display board. This is very useful in area like railway platforms, streets, banks, training institutes and other applications to show data information on the large LED boards. As a result, this LED display board is useful as indoors or outdoors as it is also economic. This display consists of maximum 72 bright LEDs which are rotated to show the display. In this system, this display can show data information which will require a whopping 512 LEDs. Therefore hardware and cost minimization is achieved. PIC Basic Pro programming language will be used in PIC microcontroller. The simulation result will be tested with Proteus 8 Electronic Simulation Software.

  20. 3D modelling of near-surface, environmental effects on AEM data

    Beamish, David

    2004-01-01

    This study considers the three-dimensional (3D) modelling of compact, at-surface conductive bodies on frequency domain airborne electromagnetic (AEM) survey data. The context is the use of AEM data for environmental and land quality applications. The 3D structures encountered are typically conductive, of limited thickness (

  1. Twenty-fold acceleration of 3D projection reconstruction MPI

    Konkle, Justin J.; Goodwill, Patrick W.; Saritas, Emine Ulku; Zheng, Bo; Lu, Kuan; Conolly, Steven M.

    2013-01-01

    We experimentally demonstrate a 20-fold improvement in acquisition time in projection reconstruction (PR) magnetic particle imaging (MPI) relative to the state-of-the-art PR MPI imaging results. We achieve this acceleration in our imaging system by introducing an additional Helmholtz electromagnet pair, which creates a slow shift (focus) field. Because of magnetostimulation limits in humans, we show that scan time with three-dimensional (3D) PR MPI is theoretically within the same order of ma...

  2. Wireless 3D Chocolate Printer

    FROILAN G. DESTREZA

    2014-02-01

    Full Text Available This study is for the BSHRM Students of Batangas State University (BatStateU ARASOF for the researchers believe that the Wireless 3D Chocolate Printer would be helpful in their degree program especially on making creative, artistic, personalized and decorative chocolate designs. The researchers used the Prototyping model as procedural method for the successful development and implementation of the hardware and software. This method has five phases which are the following: quick plan, quick design, prototype construction, delivery and feedback and communication. This study was evaluated by the BSHRM Students and the assessment of the respondents regarding the software and hardware application are all excellent in terms of Accuracy, Effecitveness, Efficiency, Maintainability, Reliability and User-friendliness. Also, the overall level of acceptability of the design project as evaluated by the respondents is excellent. With regard to the observation about the best raw material to use in 3D printing, the chocolate is good to use as the printed material is slightly distorted,durable and very easy to prepare; the icing is also good to use as the printed material is not distorted and is very durable but consumes time to prepare; the flour is not good as the printed material is distorted, not durable but it is easy to prepare. The computation of the economic viability level of 3d printer with reference to ROI is 37.14%. The recommendation of the researchers in the design project are as follows: adding a cooling system so that the raw material will be more durable, development of a more simplified version and improving the extrusion process wherein the user do not need to stop the printing process just to replace the empty syringe with a new one.

  3. INGRID, 3-D Mesh Generator for Program DYNA3D and NIKE3D and FACET and TOPAZ3D

    1 - Description of program or function: INGRID is a general-purpose, three-dimensional mesh generator developed for use with finite element, nonlinear, structural dynamics codes. INGRID generates the large and complex input data files for DYNA3D (NESC 9909), NIKE3D (NESC 9725), FACET, and TOPAZ3D. One of the greatest advantages of INGRID is that virtually any shape can be described without resorting to wedge elements, tetrahedrons, triangular elements or highly distorted quadrilateral or hexahedral elements. Other capabilities available are in the areas of geometry and graphics. Exact surface equations and surface intersections considerably improve the ability to deal with accurate models, and a hidden line graphics algorithm is included which is efficient on the most complicated meshes. The most important new capability is associated with the boundary conditions, loads, and material properties required by nonlinear mechanics programs. Commands have been designed for each case to minimize user effort. This is particularly important since special processing is almost always required for each load or boundary condition. 2 - Method of solution: Geometries are described primarily using the index space notation of the INGEN program (NESC 975) with an additional type of notation, index progression. Index progressions provide a concise and simple method for describing complex structures; the concept was developed to facilitate defining multiple regions in index space. Rather than specifying the minimum and maximum indices for a region, one specifies the progression of indices along the I, J and K directions, respectively. The index progression method allows the analyst to describe most geometries including nodes and elements with roughly the same amount of input as a solids modeler

  4. Tehokas 3D-animaatiotuotanto

    Järvinen, Manu

    2009-01-01

    Opinnäytetyössä tutkittiin tehokasta tapaa toteuttaa minuutin mittainen animaatio Scene.org Awards -tapahtuman avajaisseremoniaan. Kyseinen video toteutettiin osana opinnäytetyötä. Työhön osallistui tekijän lisäksi 3D-mallintaja sekä muusikko. Työkaluina käytettiin pääasiassa Autodesk 3ds Max-, sekä Adobe After Effects- ja Adobe Photoshop -ohjelmia. Opinnäytetyö koostuu animaatioprojektin tuotantoputken ja tiedostonhallintamallin perinpohjaisesta läpikäymisestä sekä sen asian tutkimisesta...

  5. Making Inexpensive 3-D Models

    Manos, Harry

    2016-03-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the TPT theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity well tailored to specific class lessons. Most of the supplies are readily available in the home or at school: rubbing alcohol, a rag, two colors of spray paint, art brushes, and masking tape. The cost of these supplies, if you don't have them, is less than 20.

  6. How 3-D Movies Work

    吕铁雄

    2011-01-01

    难度:★★★★☆词数:450 建议阅读时间:8分钟 Most people see out of two eyes. This is a basic fact of humanity,but it’s what makes possible the illusion of depth(纵深幻觉) that 3-D movies create. Human eyes are spaced about two inches apart, meaning that each eye gives the brain a slightly different perspective(透视感)on the same object. The brain then uses this variance to quickly determine an object’s distance.

  7. Virtual 3-D Facial Reconstruction

    Martin Paul Evison

    2000-06-01

    Full Text Available Facial reconstructions in archaeology allow empathy with people who lived in the past and enjoy considerable popularity with the public. It is a common misconception that facial reconstruction will produce an exact likeness; a resemblance is the best that can be hoped for. Research at Sheffield University is aimed at the development of a computer system for facial reconstruction that will be accurate, rapid, repeatable, accessible and flexible. This research is described and prototypical 3-D facial reconstructions are presented. Interpolation models simulating obesity, ageing and ethnic affiliation are also described. Some strengths and weaknesses in the models, and their potential for application in archaeology are discussed.

  8. Recent advances in high-performance modeling of plasma-based acceleration using the full PIC method

    Vay, J.-L.; Lehe, R.; Vincenti, H.; Godfrey, B. B.; Haber, I.; Lee, P.

    2016-09-01

    Numerical simulations have been critical in the recent rapid developments of plasma-based acceleration concepts. Among the various available numerical techniques, the particle-in-cell (PIC) approach is the method of choice for self-consistent simulations from first principles. The fundamentals of the PIC method were established decades ago, but improvements or variations are continuously being proposed. We report on several recent advances in PIC-related algorithms that are of interest for application to plasma-based accelerators, including (a) detailed analysis of the numerical Cherenkov instability and its remediation for the modeling of plasma accelerators in laboratory and Lorentz boosted frames, (b) analytic pseudo-spectral electromagnetic solvers in Cartesian and cylindrical (with azimuthal modes decomposition) geometries, and (c) novel analysis of Maxwell's solvers' stencil variation and truncation, in application to domain decomposition strategies and implementation of perfectly matched layers in high-order and pseudo-spectral solvers.

  9. Designing Embedded Systems with PIC Microcontrollers Principles and Applications

    Wilmshurst, Tim

    2009-01-01

    PIC microcontrollers are used worldwide in commercial and industrial devices. The 8-bit PIC which this book focuses on is a versatile work horse that completes many designs. An engineer working with applications that include a microcontroller will no doubt come across the PIC sooner rather than later. It is a must to have a working knowledge of this 8-bit technology. This book takes the novice from introduction of embedded systems through to advanced development techniques for utilizing and optimizing the PIC family of microcontrollers in your device. To truly understand the PIC, assembly and

  10. PICs in the injector complex - what are we talking about?

    Hanke, K

    2014-01-01

    This presentation will identify PIC activities for the LHC injector chain, and point out borderline cases to pure consolidation and upgrade. The most important PIC items will be listed for each LIU project (PSB, PS, SPS) and categorized by a) the risk if not performed and b) the implications of doing them. This will in particular address the consequences on performance, schedule, reliability, commissioning time, operational complexity etc. The additional cost of PICs with regard to pure consolidation will be estimated and possible time lines for the implementation of the PICs will be discussed. In this context, it will be evaluated if the PICs can be implemented over several machine stops.

  11. Positional Awareness Map 3D (PAM3D)

    Hoffman, Monica; Allen, Earl L.; Yount, John W.; Norcross, April Louise

    2012-01-01

    The Western Aeronautical Test Range of the National Aeronautics and Space Administration s Dryden Flight Research Center needed to address the aging software and hardware of its current situational awareness display application, the Global Real-Time Interactive Map (GRIM). GRIM was initially developed in the late 1980s and executes on older PC architectures using a Linux operating system that is no longer supported. Additionally, the software is difficult to maintain due to its complexity and loss of developer knowledge. It was decided that a replacement application must be developed or acquired in the near future. The replacement must provide the functionality of the original system, the ability to monitor test flight vehicles in real-time, and add improvements such as high resolution imagery and true 3-dimensional capability. This paper will discuss the process of determining the best approach to replace GRIM, and the functionality and capabilities of the first release of the Positional Awareness Map 3D.

  12. 3D Printable Graphene Composite

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C-1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  13. 3D printed bionic ears.

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

  14. 3D Ion Temperature Reconstruction

    Tanabe, Hiroshi; You, Setthivoine; Balandin, Alexander; Inomoto, Michiaki; Ono, Yasushi

    2009-11-01

    The TS-4 experiment at the University of Tokyo collides two spheromaks to form a single high-beta compact toroid. Magnetic reconnection during the merging process heats and accelerates the plasma in toroidal and poloidal directions. The reconnection region has a complex 3D topology determined by the pitch of the spheromak magnetic fields at the merging plane. A pair of multichord passive spectroscopic diagnostics have been established to measure the ion temperature and velocity in the reconnection volume. One setup measures spectral lines across a poloidal plane, retrieving velocity and temperature from Abel inversion. The other, novel setup records spectral lines across another section of the plasma and reconstructs velocity and temperature from 3D vector and 2D scalar tomography techniques. The magnetic field linking both measurement planes is determined from in situ magnetic probe arrays. The ion temperature is then estimated within the volume between the two measurement planes and at the reconnection region. The measurement is followed over several repeatable discharges to follow the heating and acceleration process during the merging reconnection.

  15. LOTT RANCH 3D PROJECT

    The Lott Ranch 3D seismic prospect located in Garza County, Texas is a project initiated in September of 1991 by the J.M. Huber Corp., a petroleum exploration and production company. By today's standards the 126 square mile project does not seem monumental, however at the time it was conceived it was the most intensive land 3D project ever attempted. Acquisition began in September of 1991 utilizing GEO-SEISMIC, INC., a seismic data contractor. The field parameters were selected by J.M. Huber, and were of a radical design. The recording instruments used were GeoCor IV amplifiers designed by Geosystems Inc., which record the data in signed bit format. It would not have been practical, if not impossible, to have processed the entire raw volume with the tools available at that time. The end result was a dataset that was thought to have little utility due to difficulties in processing the field data. In 1997, Yates Energy Corp. located in Roswell, New Mexico, formed a partnership to further develop the project. Through discussions and meetings with Pinnacle Seismic, it was determined that the original Lott Ranch 3D volume could be vastly improved upon reprocessing. Pinnacle Seismic had shown the viability of improving field-summed signed bit data on smaller 2D and 3D projects. Yates contracted Pinnacle Seismic Ltd. to perform the reprocessing. This project was initiated with high resolution being a priority. Much of the potential resolution was lost through the initial summing of the field data. Modern computers that are now being utilized have tremendous speed and storage capacities that were cost prohibitive when this data was initially processed. Software updates and capabilities offer a variety of quality control and statics resolution, which are pertinent to the Lott Ranch project. The reprocessing effort was very successful. The resulting processed data-set was then interpreted using modern PC-based interpretation and mapping software. Production data, log data

  16. 3D Printing of Graphene Aerogels.

    Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong

    2016-04-01

    3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (printed graphene aerogel presents superelastic and high electrical conduction. PMID:26861680

  17. 3D biometrics systems and applications

    Zhang, David

    2013-01-01

    Includes discussions on popular 3D imaging technologies, combines them with biometric applications, and then presents real 3D biometric systems Introduces many efficient 3D feature extraction, matching, and fusion algorithms Techniques presented have been supported by experimental results using various 3D biometric classifications

  18. Acceleration of PIC simulation with GPU

    Particle-in-cell (PIC) is a simulation technique for plasma physics. The large number of particles in high-resolution plasma simulation increases the volume computation required, making it vital to increase computation speed. In this study, we attempt to accelerate computation speed on graphics processing units (GPUs) using KEMPO, a PIC simulation code package. We perform two tests for benchmarking, with small and large grid sizes. In these tests, we run KEMPO1 code using a CPU only, both a CPU and a GPU, and a GPU only. The results showed that performance using only a GPU was twice that of using a CPU alone. While, execution time for using both a CPU and GPU is comparable to the tests with a CPU alone, because of the significant bottleneck in communication between the CPU and GPU. (author)

  19. Development and Benchmarking of a Hybrid PIC Code For Dense Plasmas and Fast Ignition

    Witherspoon, F. Douglas [HyperV Technologies Corp.; Welch, Dale R. [Voss Scientific, LLC; Thompson, John R. [FAR-TECH, Inc.; MacFarlane, Joeseph J. [Prism Computational Sciences Inc.; Phillips, Michael W. [Advanced Energy Systems, Inc.; Bruner, Nicki [Voss Scientific, LLC; Mostrom, Chris [Voss Scientific, LLC; Thoma, Carsten [Voss Scientific, LLC; Clark, R. E. [Voss Scientific, LLC; Bogatu, Nick [FAR-TECH, Inc.; Kim, Jin-Soo [FAR-TECH, Inc.; Galkin, Sergei [FAR-TECH, Inc.; Golovkin, Igor E. [Prism Computational Sciences, Inc.; Woodruff, P. R. [Prism Computational Sciences, Inc.; Wu, Linchun [HyperV Technologies Corp.; Messer, Sarah J. [HyperV Technologies Corp.

    2014-05-20

    , restrike and advanced jet accelerator design. In addition, a strong linkage to diagnostic measurements was made by modeling plasma jet experiments on PLX to support benchmarking of the code. A large number of upgrades and improvements advancing hybrid PIC algorithms were implemented in LSP during the second funding cycle. These include development of fully 3D radiation transport algorithms, new boundary conditions for plasma-electrode interactions, and a charge conserving equation of state that permits multiply ionized high-Z ions. The final funding cycle focused on 1) mitigating the effects of a slow-growing grid instability which is most pronounced in plasma jet frame expansion problems using the two-fluid Eulerian remap algorithm, 2) extension of the Eulerian Smoothing Algorithm to allow EOS/Radiation modeling, 3) simulations of collisionless shocks formed by jet merging, 4) simulations of merging jets using high-Z gases, 5) generation of PROPACEOS EOS/Opacity databases, 6) simulations of plasma jet transport experiments, 7) simulations of plasma jet penetration through transverse magnetic fields, and 8) GPU PIC code development The tools developed during this project are applicable not only to the study of plasma jets, but also to a wide variety of HEDP plasmas of interest to DOE, including plasmas created in short-pulse laser experiments performed to study fast ignition concepts for inertial confinement fusion.

  20. Photopolymers in 3D printing applications

    Pandey, Ramji

    2014-01-01

    3D printing is an emerging technology with applications in several areas. The flexibility of the 3D printing system to use variety of materials and create any object makes it an attractive technology. Photopolymers are one of the materials used in 3D printing with potential to make products with better properties. Due to numerous applications of photopolymers and 3D printing technologies, this thesis is written to provide information about the various 3D printing technologies with particul...

  1. Natural fibre composites for 3D Printing

    Pandey, Kapil

    2015-01-01

    3D printing has been common option for prototyping. Not all the materials are suitable for 3D printing. Various studies have been done and still many are ongoing regarding the suitability of the materials for 3D printing. This thesis work discloses the possibility of 3D printing of certain polymer composite materials. The main objective of this thesis work was to study the possibility for 3D printing the polymer composite material composed of natural fibre composite and various different ...

  2. Applied electromagnetism

    Hammond, P

    2013-01-01

    Included topics: Electromagnetism and Electrical Engineering, Electromagentic Fields and their Sources, Time-varying Currents and Fields in Conductors, Electromagnetic Radiation I, Electromagnetic Problems.

  3. Advanced 3-D Ultrasound Imaging

    Rasmussen, Morten Fischer

    been completed. This allows for precise measurements of organs dimensions and makes the scan more operator independent. Real-time 3-D ultrasound imaging is still not as widespread in use in the clinics as 2-D imaging. A limiting factor has traditionally been the low image quality achievable using...... and removes the need to integrate custom made electronics into the probe. A downside of row-column addressing 2-D arrays is the creation of secondary temporal lobes, or ghost echoes, in the point spread function. In the second part of the scientific contributions, row-column addressing of 2-D arrays...... was investigated. An analysis of how the ghost echoes can be attenuated was presented.Attenuating the ghost echoes were shown to be achieved by minimizing the first derivative of the apodization function. In the literature, a circular symmetric apodization function was proposed. A new apodization layout...

  4. Conducting Polymer 3D Microelectrodes

    Jenny Emnéus

    2010-12-01

    Full Text Available Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described electrodes are possibly suitable for future in-vitro neurological measurements.

  5. Supernova Remnant in 3-D

    2009-01-01

    of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through. The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave. This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron. High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these structures, but their orientation and

  6. Kinetic instabilities in plasmas: from electromagnetic fluctuations to collisionless shocks

    Collisionless shocks play a major role in powerful astrophysical objects (e.g., gamma-ray bursts, supernova remnants, pulsar winds, etc.), where they are thought to be responsible for non-thermal particle acceleration and radiation. Numerical simulations have shown that, in the absence of an external magnetic field, these self-organizing structures originate from electromagnetic instabilities triggered by high-velocity colliding flows. These Weibel-like instabilities are indeed capable of producing the magnetic turbulence required for both efficient scattering and Fermi-type acceleration. Along with rapid advances in their theoretical understanding, intense effort is now underway to generate collisionless shocks in the laboratory using energetic lasers. In a first part we study the (w,k)-resolved electromagnetic thermal spectrum sustained by a drifting relativistic plasma. In particular, we obtain analytical formulae for the fluctuation spectra, the latter serving as seeds for growing magnetic modes in counterstreaming plasmas. Distinguishing between sub-luminal and supra-luminal thermal fluctuations, we derived analytical formulae of their respective spectral contributions. Comparisons with particle-in-cell (PIC) simulations are made, showing close agreement in the sub-luminal regime along with some discrepancy in the supra-luminal regime. Our formulae are then used to estimate the saturation time of the Weibel instability of relativistic pair plasmas. Our predictions are shown to match 2-D particle-in-cell (PIC) simulations over a three-decade range in flow energy. We then develop a predictive kinetic model of the nonlinear phase of the Weibel instability induced by two counter-streaming, symmetric and non-relativistic ion beams. This self consistent, fully analytical model allows us to follow the evolution of the beams' properties up to a stage close to complete isotropization and thus to shock formation. Its predictions are supported by 2D and 3D particle

  7. 3D multiplexed immunoplasmonics microscopy

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  8. Three-Dimensional PIC-MC Modeling for Relativistic Electron Beam Transport Through Dense Plasma

    CAO Lihua; CHANG Tieqiang; PEI Wenbing; LIU Zhanjun; LI Meng; ZHENG Chunyang

    2008-01-01

    We have developed a three dimensional (3D) PIC (particle-in-cell)-MC (Monte Carlo) code in order to simulate an electron beam transported into the dense matter based on our previous two dimensional code. The relativistic motion of fast electrons is treated by the particle-in-cell method under the influence of both a self-generated transverse magnetic field and an axial electric field, as well as collisions. The electric field generated by return current is ex-pressed by Ohm's law and the magnetic field is calculated from Faraday's law. The slowing down of monoenergy electrons in DT plasma is calculated and discussed.

  9. Kuvaus 3D-tulostamisesta hammastekniikassa

    Munne, Mauri; Mustonen, Tuomas; Vähäjylkkä, Jaakko

    2013-01-01

    3D-tulostaminen kehittyy nopeasti ja yleistyy koko ajan. Tulostimien tarkkuuksien kehittyessä 3D-tulostus on ottamassa myös jalansijaa hammastekniikan alalta. Tämän opinnäytetyön tarkoituksena on kuvata 3D-tulostamisen tilaa hammastekniikassa. 3D-tulostaminen on Suomessa vielä melko harvinaista, joten opinnäytetyön tavoitteena on koota yhteen kaikki mahdollinen tieto liittyen 3D-tulostamiseen hammastekniikassa. Tavoitteena on myös 3D-tulostimen testaaminen käytännössä aina suun skannaami...

  10. NIF Ignition Target 3D Point Design

    Jones, O; Marinak, M; Milovich, J; Callahan, D

    2008-11-05

    We have developed an input file for running 3D NIF hohlraums that is optimized such that it can be run in 1-2 days on parallel computers. We have incorporated increasing levels of automation into the 3D input file: (1) Configuration controlled input files; (2) Common file for 2D and 3D, different types of capsules (symcap, etc.); and (3) Can obtain target dimensions, laser pulse, and diagnostics settings automatically from NIF Campaign Management Tool. Using 3D Hydra calculations to investigate different problems: (1) Intrinsic 3D asymmetry; (2) Tolerance to nonideal 3D effects (e.g. laser power balance, pointing errors); and (3) Synthetic diagnostics.

  11. 3D multiplexed immunoplasmonics microscopy.

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-21

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K(+) channel subunit KV1.1) on human cancer CD44(+) EGFR(+) KV1.1(+) MDA-MB-231 cells and reference CD44(-) EGFR(-) KV1.1(+) 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third

  12. ORMGEN3D, 3-D Crack Geometry FEM Mesh Generator

    1 - Description of program or function: ORMGEN3D is a finite element mesh generator for computational fracture mechanics analysis. The program automatically generates a three-dimensional finite element model for six different crack geometries. These geometries include flat plates with straight or curved surface cracks and cylinders with part-through cracks on the outer or inner surface. Mathematical or user-defined crack shapes may be considered. The curved cracks may be semicircular, semi-elliptical, or user-defined. A cladding option is available that allows for either an embedded or penetrating crack in the clad material. 2 - Method of solution: In general, one eighth or one-quarter of the structure is modelled depending on the configuration or option selected. The program generates a core of special wedge or collapsed prism elements at the crack front to introduce the appropriate stress singularity at the crack tip. The remainder of the structure is modelled with conventional 20-node iso-parametric brick elements. Element group I of the finite element model consists of an inner core of special crack tip elements surrounding the crack front enclosed by a single layer of conventional brick elements. Eight element divisions are used in a plane orthogonal to the crack front, while the number of element divisions along the arc length of the crack front is user-specified. The remaining conventional brick elements of the model constitute element group II. 3 - Restrictions on the complexity of the problem: Maxima of 5,500 nodes, 4 layers of clad elements

  13. 3D multiplexed immunoplasmonics microscopy

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  14. Crowdsourcing Based 3d Modeling

    Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.

    2016-06-01

    Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  15. A gridding method for object-oriented PIC codes

    A simple, rule-based gridding method for object-oriented PIC codes is described which is not only capable of dealing with complicated structures such as multiply-connected regions, but is also computationally faster than classical gridding techniques. Using, these smart grids, vacant cells (e.g., cells enclosed by conductors) will never have to be stored or calculated, thus avoiding the usual situation of having to zero electromagnetic fields within conductors after valuable cpu time has been spent in calculating the fields within these cells in the first place. This object-oriented gridding technique makes use of encapsulating characteristics of actual physical objects (particles, fields, grids, etc.) in C++ classes and supporting software reuse of these entities through C++ class inheritance relations. It has been implemented in the form of a simple two-dimensional plasma particle-in-cell code, and forms the initial effort of an AFOSR research project to develop a flexible software simulation environment for particle-in-cell algorithms based on object-oriented technology

  16. Resolution of the Vlasov-Maxwell system by PIC Discontinuous Galerkin method on GPU with OpenCL

    Crestetto Anaïs; Helluy Philippe

    2011-01-01

    We present an implementation of a Vlasov-Maxwell solver for multicore processors. The Vlasov equation describes the evolution of charged particles in an electromagnetic field, solution of the Maxwell equations. The Vlasov equation is solved by a Particle-In-Cell method (PIC), while the Maxwell system is computed by a Discontinuous Galerkin method. We use the OpenCL framework, which allows our code to run on multicore processors or recent Graphic Processing Units (GPU). We present several...

  17. Will 3D printers manufacture your meals?

    Bommel, K.J.C. van

    2013-01-01

    These days, 3D printers are laying down plastics, metals, resins, and other materials in whatever configurations creative people can dream up. But when the next 3D printing revolution comes, you'll be able to eat it.

  18. Eesti 3D jaoks kitsas / Virge Haavasalu

    Haavasalu, Virge

    2009-01-01

    Produktsioonifirma Digitaalne Sputnik: Kaur ja Kaspar Kallas tegelevad filmide produtseerimise ning 3D digitaalkaamerate tootearendusega (Silicon Imaging LLC). Vendade Kallaste 3D-kaamerast. Kommenteerib Eesti Filmi Sihtasutuse direktor Marge Liiske

  19. 3D Printing Making the Digital Real .

    Miss Prachi More

    2013-07-01

    Full Text Available 3D printing is quickly expanding field, with the popularity and uses for 3D printers growing every day. 3D printing can be used to prototype, create replacement parts, and is even versatile enough to print prostheses and medical implants. It will have a growing impact on our world, as more and more people gain access to these amazing machines.[1] In this article, we would like to attempt to give an introduction of the technology. 3Dimensions printing is a method of converting a virtual 3D model into a physical object. 3D printing is a category of rapid prototyping technology. 3D printers typically work by printing successive layers on top of the previous to build up a three dimensional object. 3D printing is a revolutionary method for creating 3D models with the use of inkjet technology.[7

  20. Sliding Adjustment for 3D Video Representation

    Galpin Franck

    2002-01-01

    Full Text Available This paper deals with video coding of static scenes viewed by a moving camera. We propose an automatic way to encode such video sequences using several 3D models. Contrary to prior art in model-based coding where 3D models have to be known, the 3D models are automatically computed from the original video sequence. We show that several independent 3D models provide the same functionalities as one single 3D model, and avoid some drawbacks of the previous approaches. To achieve this goal we propose a novel algorithm of sliding adjustment, which ensures consistency of successive 3D models. The paper presents a method to automatically extract the set of 3D models and associate camera positions. The obtained representation can be used for reconstructing the original sequence, or virtual ones. It also enables 3D functionalities such as synthetic object insertion, lightning modification, or stereoscopic visualization. Results on real video sequences are presented.

  1. 3D Flash LIDAR Space Laser Project

    National Aeronautics and Space Administration — Advanced Scientific Concepts, Inc. (ASC) is a small business that has developed 3D Flash LIDAR systems for space and terrestrial applications. 3D Flash LIDAR is...

  2. Fast-ignition design transport studies: realistic electron source, integrated PIC-hydrodynamics, imposed magnetic fields

    Strozzi, D J; Larson, D J; Divol, L; Kemp, A J; Bellei, C; Marinak, M M; Key, M H

    2012-01-01

    Transport modeling of idealized, cone-guided fast ignition targets indicates the severe challenge posed by fast-electron source divergence. The hybrid particle-in-cell [PIC] code Zuma is run in tandem with the radiation-hydrodynamics code Hydra to model fast-electron propagation, fuel heating, and thermonuclear burn. The fast electron source is based on a 3D explicit-PIC laser-plasma simulation with the PSC code. This shows a quasi two-temperature energy spectrum, and a divergent angle spectrum (average velocity-space polar angle of 52 degrees). Transport simulations with the PIC-based divergence do not ignite for > 1 MJ of fast-electron energy, for a modest 70 micron standoff distance from fast-electron injection to the dense fuel. However, artificially collimating the source gives an ignition energy of 132 kJ. To mitigate the divergence, we consider imposed axial magnetic fields. Uniform fields ~50 MG are sufficient to recover the artificially collimated ignition energy. Experiments at the Omega laser facil...

  3. 3D Additive Manufacturing Symposium & Workshop

    Unver, Ertu; Taylor, Andrew

    2015-01-01

    The IMI /3M BIC 3D Additive Manufacturing Symposium and Workshop was hosted by 3M Buckley Innovation Centre on March 17th 2015. The event was attended by the major players in precision engineering, 3D additive design and manufacturing: Representatives from EOS, Renishaw, HK 3D Printing IMI Plc Senior Management team, design engineers, programmers and academics from the University of Huddersfield School of Art Design & Architecture, 3M Buckley centre 3D printing management and designers shared...

  4. Face Detection with a 3D Model

    Barbu, Adrian; Lay, Nathan; Gramajo, Gary

    2014-01-01

    This paper presents a part-based face detection approach where the spatial relationship between the face parts is represented by a hidden 3D model with six parameters. The computational complexity of the search in the six dimensional pose space is addressed by proposing meaningful 3D pose candidates by image-based regression from detected face keypoint locations. The 3D pose candidates are evaluated using a parameter sensitive classifier based on difference features relative to the 3D pose. A...

  5. 3D PHOTOGRAPHS IN CULTURAL HERITAGE

    Schuhr, W.; J. D. Lee; Kiel, St.

    2013-01-01

    This paper on providing "oo-information" (= objective object-information) on cultural monuments and sites, based on 3D photographs is also a contribution of CIPA task group 3 to the 2013 CIPA Symposium in Strasbourg. To stimulate the interest in 3D photography for scientists as well as for amateurs, 3D-Masterpieces are presented. Exemplary it is shown, due to their high documentary value ("near reality"), 3D photography support, e.g. the recording, the visualization, the interpret...

  6. 3D textiles for composite reinforcements

    Fangueiro, Raúl; Mingxing, Z.; Hong, H; Soutinho, Hélder Filipe Cunha; Gonçalves, P.; Araújo, Mário Duarte de

    2010-01-01

    This paper presents an overview on the last developments on 3D textile structures for composite reinforcements. The application of innovative 3D shaped weft-knitted preforms in GFRP tube joints is presented and discussed. Moreover, the mechanical behaviour of 3D hybrid basalt fiber reinforced composite material sis also presented and discussed.

  7. 3D modelling for multipurpose cadastre

    Abduhl Rahman, A.; Van Oosterom, P.J.M.; Hua, T.C.; Sharkawi, K.H.; Duncan, E.E.; Azri, N.; Hassan, M.I.

    2012-01-01

    Three-dimensional (3D) modelling of cadastral objects (such as legal spaces around buildings, around utility networks and other spaces) is one of the important aspects for a multipurpose cadastre (MPC). This paper describes the 3D modelling of the objects for MPC and its usage to the knowledge of 3D

  8. Developing novel 3D antennas using advanced additive manufacturing technology

    Mirzaee, Milad

    In today's world of wireless communication systems, antenna engineering is rapidly advancing as the wireless services continue to expand in support of emerging commercial applications. Antennas play a key role in the performance of advanced transceiver systems where they serve to convert electric power to electromagnetic waves and vice versa. Researchers have held significant interest in developing this crucial component for wireless communication systems by employing a variety of design techniques. In the past few years, demands for electrically small antennas continues to increase, particularly among portable and mobile wireless devices, medical electronics and aerospace systems. This trend toward smaller electronic devices makes the three dimensional (3D) antennas very appealing, since they can be designed in a way to use every available space inside the devise. Additive Manufacturing (AM) method could help to find great solutions for the antennas design for next generation of wireless communication systems. In this thesis, the design and fabrication of 3D printed antennas using AM technology is studied. To demonstrate this application of AM, different types of antennas structures have been designed and fabricated using various manufacturing processes. This thesis studies, for the first time, embedded conductive 3D printed antennas using PolyLactic Acid (PLA) and Acrylonitrile Butadiene Styrene (ABS) for substrate parts and high temperature carbon paste for conductive parts which can be a good candidate to overcome the limitations of direct printing on 3D surfaces that is the most popular method to fabricate conductive parts of the antennas. This thesis also studies, for the first time, the fabrication of antennas with 3D printed conductive parts which can contribute to the new generation of 3D printed antennas.

  9. 3-D Perspective Pasadena, California

    2000-01-01

    This perspective view shows the western part of the city of Pasadena, California, looking north towards the San Gabriel Mountains. Portions of the cities of Altadena and La Canada, Flintridge are also shown. The image was created from three datasets: the Shuttle Radar Topography Mission (SRTM) supplied the elevation data; Landsat data from November 11, 1986 provided the land surface color (not the sky) and U.S. Geological Survey digital aerial photography provides the image detail. The Rose Bowl, surrounded by a golf course, is the circular feature at the bottom center of the image. The Jet Propulsion Laboratory is the cluster of large buildings north of the Rose Bowl at the base of the mountains. A large landfill, Scholl Canyon, is the smooth area in the lower left corner of the scene. This image shows the power of combining data from different sources to create planning tools to study problems that affect large urban areas. In addition to the well-known earthquake hazards, Southern California is affected by a natural cycle of fire and mudflows. Wildfires strip the mountains of vegetation, increasing the hazards from flooding and mudflows for several years afterwards. Data such as shown on this image can be used to predict both how wildfires will spread over the terrain and also how mudflows will be channeled down the canyons. The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission was designed to collect three dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency

  10. PIC BASED SOLAR CHARGING CONTROLLER FOR BATTERY

    Mrs Jaya N. Ingole

    2012-02-01

    Full Text Available Solar resource is unlimited the government is trying to implement the use of Solar panels as an energy source in rural and sub urban areas for lighting the street lights, but the battery used to store the power gets affected due to overcharge & discharges. This paper presents the use of PIC16F72 based solar charger controller for controlling the overcharging and discharging of a solar cell. It works by continuously optimizing the interface between the solar array and battery. First, the variable supply is fixed at 12.8V dc—the voltage of a fully charged battery— and linked to the battery point of the circuit. Cut Off of battery from load voltage is 10.8 volt. A PIC16F72 for small size and inbuilt analog inputs is used to determine voltage level of battery and solar panel..It also describes how the disadvantages of analog circuit are overcome by this controller. The flow chart is also provided.

  11. The Pic du Midi solar survey

    Koechlin, L.

    2015-12-01

    We carry a long term survey of the solar activity with our coronagraphic system at Pic du Midi de Bigorre in the French Pyrenees (CLIMSO). It is a set of two solar telescopes and two coronagraphs, taking one frame per minute for each of the four channels : Solar disk in H-α (656.28 nm), prominences in H-α, disk in Ca II (393.3 nm), prominences in He I (1083 nm), all year long, weather permitting. Since 2015 we also take images of the FeXIII corona (1074.7 nm) at the rate of one every 10 minutes. These images cover a large field: 1.25 solar diameter, 2k*2K pixels, and are freely downloadable form a database. The improvements made since 2015 concern an autoguiding system for better centering of the solar disk behind the coronagraphic masks, and a new Fe XIII channel at λ=1074.7 nm. In the near future we plan to provide radial velocity maps of the disc and polarimetry maps of the disk and corona. This survey took its present form in 2007 and we plan to maintain image acquisition in the same or better experimental conditions for a long period: one or several solar cycles if possible. During the partial solar eclipse of March 20, 2015, the CLIMSO instruments and the staff at Pic du Midi operating it have provided several millions internet users with real time images of the Sun and Moon during all the phenomenon.

  12. Esiselvitys elintarvikkeiden 3D-tulostamisesta

    Teva, Arno

    2015-01-01

    Opinnäytetyön tavoitteena oli laatia esiselvitys 3D-tulostamisesta elintarvikealalla. 3D-tulostaminen on uusi ja jatkuvasti kehittyvä ala, joka tulee vaikuttamaan myös elintarvikealan kehittymiseen. Työn tarkoituksena oli selvittää elintarvikenäkökulmasta 3D-tulostamiseen liittyviä tekijöitä. Aiheen toimeksiantajana oli Hämeen ammattikorkeakoulu ja kohderyhmänä elintarvikealan Pk-yritykset. Opinnäytetyössä esitellään yleisimpiä 3D-tulostusmenetelmiä ja selvitetään 3D-tulostamista tietokone...

  13. PRIPRAVA MODELOV ZA 3D - TISK

    Črešnik, Igor

    2015-01-01

    V diplomskem delu predstavljamo pripravo modela na 3D-tisk. V prvem delu smo preleteli zgodovino tiska. Predstavili smo tehnologijo 3D-tiska ter različne tehnike tiskanja, ki jih uporabljajo določeni tiskalniki. V nadaljevanju smo pregledali različne tipe 3D-tiskalnikov, ki se uporabljajo za domačo ali komercialno uporabo ter izpostavili njihove prednosti in slabosti. V zadnjem delu diplomskega dela smo na praktičnem primeru 3D-modela hiše prikazali proces priprave modela za 3D-tisk. Pri delu...

  14. 3D-tulostimien tutkiminen painotalolle

    Toivonen, Aleksi

    2014-01-01

    Opinnäytetyön tavoitteena oli perehtyä 3D-tulostamiseen ja tutkia painotaloon sopivia 3D-tulostimia ja 3D-tulostamiseen liittyviä tekniikoita. Opinnäytetyön tavoitteena oli myös pohtia painotalolle mahdollisia 3D-tulostamiseen liittyviä tuotekonsepteja yrityksille ja yksityisille kuluttajille. Painoalan yrityksen tarkoituksena on sijoittaa lähitulevaisuudessa 3D-tulostimeen, joten opinnäytetyö oli ajankohtainen tutkimustyö yritykselle. Opinnäytetyön toimeksiantajana toimi painoalan yritys. ...

  15. BUILDING A HOMEMADE 3D PRINTER

    Tunc, Baran

    2015-01-01

    3D printing has been attracted much attention around the world due to its high potential of new application fields. In this respect, developing and inventing new filament materials for 3D printers or new techniques of 3D printing are the main interest of the many materials scientists. This paper reports a comprehensive overview of 3D printing followed by a summary of my ongoing study of building a composite homemade 3D printer. At this stage of this study, a CNC router was successfully conver...

  16. 3D Printing our future: Now

    Taylor, Andrew; Unver, Ertu

    2015-01-01

    This 3D Printing our Future:Now talk and visual presentation was given to delegates at the IMI 3D Workshop held at 3M Buckley Innovation Centre on 17th March 2015. The event was hosted by 3Mbuckley Innovation Centre for IMI plc a global engineering company, 3M, and leading 3D additive manufacturing technology providers: EOS, Renishaw and HK 3D printing to disseminate and share their experience on the latest 3D additive design and manufacturing technologies available to the engineering an...

  17. Investigating Mobile Stereoscopic 3D Touchscreen Interaction

    Colley, Ashley; Hakkila, Jonna; SCHOENING, Johannes; Posti, Maaret

    2013-01-01

    3D output is no longer limited to large screens in cinemas or living rooms. Nowadays more and more mobile devices are equipped with autostereoscopic 3D (S3D) touchscreens. As a consequence interaction with 3D content now also happens whilst users are on the move. In this paper we carried out a user study with 27 participants to assess how mobile interaction, i.e. whilst walking, with mobile S3D devices, differs from interaction with 2D mobile touchscreens. We investigate the difference in tou...

  18. ViHAP3D - Final report

    Scopigno, Roberto

    2005-01-01

    Nearly all of our cultural heritage is inherently three-dimensional. Recent hard- and software developments enabled 3D computer graphics to be one of the most powerful means to represent complex data sets. The ViHAP3D project (ViHAP3D is an acronym for Virtual Heritage - High Quality 3D Acquisition and Presentation) aimed therefore at preserving, presenting, accessing, and promoting cultural heritage using interactive, high-quality 3D graphics. The vision of the project was to create an exact...

  19. Wafer level 3-D ICs process technology

    Tan, Chuan Seng; Reif, L Rafael

    2009-01-01

    This book focuses on foundry-based process technology that enables the fabrication of 3-D ICs. The core of the book discusses the technology platform for pre-packaging wafer lever 3-D ICs. However, this book does not include a detailed discussion of 3-D ICs design and 3-D packaging. This is an edited book based on chapters contributed by various experts in the field of wafer-level 3-D ICs process technology. They are from academia, research labs and industry.

  20. View-based 3-D object retrieval

    Gao, Yue

    2014-01-01

    Content-based 3-D object retrieval has attracted extensive attention recently and has applications in a variety of fields, such as, computer-aided design, tele-medicine,mobile multimedia, virtual reality, and entertainment. The development of efficient and effective content-based 3-D object retrieval techniques has enabled the use of fast 3-D reconstruction and model design. Recent technical progress, such as the development of camera technologies, has made it possible to capture the views of 3-D objects. As a result, view-based 3-D object retrieval has become an essential but challenging res

  1. 3D Imaging of a Cavity Vacuum under Dissipation

    Lee, Moonjoo; Seo, Wontaek; Hong, Hyun-Gue; Song, Younghoon; Dasari, Ramachandra R; An, Kyungwon

    2013-01-01

    P. A. M. Dirac first introduced zero-point electromagnetic fields in order to explain the origin of atomic spontaneous emission. Since then, it has long been debated how the zero-point vacuum field is affected by dissipation. Here we report 3D imaging of vacuum fluctuations in a high-Q cavity and rms amplitude measurements of the vacuum field. The 3D imaging was done by the position-dependent emission of single atoms, resulting in dissipation-free rms amplitude of 0.97 +- 0.03 V/cm. The actual rms amplitude of the vacuum field at the antinode was independently determined from the onset of single-atom lasing at 0.86 +- 0.08 V/cm. Within our experimental accuracy and precision, the difference was noticeable, but it is not significant enough to disprove zero-point energy conservation.

  2. Towards manipulating relativistic laser pulses with 3D printed materials

    Ji, L L; Pukhov, A; Freeman, R R; Akli, K U

    2015-01-01

    Efficient coupling of intense laser pulses to solid-density matter is critical to many applications including ion acceleration for cancer therapy. At relativistic intensities, the focus has been mainly on investigating various laser beams irradiating initially flat interfaces with little or no control over the interaction. Here, we propose a novel approach that leverages recent advancements in 3D direct laser writing (DLW) of materials and high contrast lasers to manipulate the laser-matter interactions on the micro-scales. We demonstrate, via simulations, that usable intensities >10^23Wcm^(-2) could be achieved with current tabletop lasers coupled to 3D printed plasma lenses. We show that these plasma optical elements act not only as a lens to focus laser light, but also as an electromagnetic guide for secondary particle beams. These results open new paths to engineering light-matter interactions at ultra-relativistic intensities.

  3. Soft 3D acoustic metamaterial with negative index.

    Brunet, Thomas; Merlin, Aurore; Mascaro, Benoit; Zimny, Kevin; Leng, Jacques; Poncelet, Olivier; Aristégui, Christophe; Mondain-Monval, Olivier

    2015-04-01

    Many efforts have been devoted to the design and achievement of negative-refractive-index metamaterials since the 2000s. One of the challenges at present is to extend that field beyond electromagnetism by realizing three-dimensional (3D) media with negative acoustic indices. We report a new class of locally resonant ultrasonic metafluids consisting of a concentrated suspension of macroporous microbeads engineered using soft-matter techniques. The propagation of Gaussian pulses within these random distributions of 'ultra-slow' Mie resonators is investigated through in situ ultrasonic experiments. The real part of the acoustic index is shown to be negative (up to almost - 1) over broad frequency bandwidths, depending on the volume fraction of the microbeads as predicted by multiple-scattering calculations. These soft 3D acoustic metamaterials open the way for key applications such as sub-wavelength imaging and transformation acoustics, which require the production of acoustic devices with negative or zero-valued indices. PMID:25502100

  4. Soft 3D acoustic metamaterial with negative index

    Brunet, Thomas; Merlin, Aurore; Mascaro, Benoit; Zimny, Kevin; Leng, Jacques; Poncelet, Olivier; Aristégui, Christophe; Mondain-Monval, Olivier

    2015-04-01

    Many efforts have been devoted to the design and achievement of negative-refractive-index metamaterials since the 2000s. One of the challenges at present is to extend that field beyond electromagnetism by realizing three-dimensional (3D) media with negative acoustic indices. We report a new class of locally resonant ultrasonic metafluids consisting of a concentrated suspension of macroporous microbeads engineered using soft-matter techniques. The propagation of Gaussian pulses within these random distributions of ‘ultra-slow’ Mie resonators is investigated through in situ ultrasonic experiments. The real part of the acoustic index is shown to be negative (up to almost - 1) over broad frequency bandwidths, depending on the volume fraction of the microbeads as predicted by multiple-scattering calculations. These soft 3D acoustic metamaterials open the way for key applications such as sub-wavelength imaging and transformation acoustics, which require the production of acoustic devices with negative or zero-valued indices.

  5. A FLOSS Visual EM Simulator for 3D Antennas

    Koutsos, Christos A; Zimourtopoulos, Petros E

    2010-01-01

    This paper introduces the FLOSS Free Libre Open Source Software [VEMSA3D], a contraction of "Visual Electromagnetic Simulator for 3D Antennas", which are geometrically modeled, either exactly or approximately, as thin wire polygonal structures; presents its GUI Graphical User Interface capabilities, in interactive mode and/or in handling suitable formed antenna data files; demonstrates the effectiveness of its use in a number of practical antenna applications, with direct comparison to experimental measurements and other freeware results; and provides the inexperienced user with a specific list of instructions to successfully build the given source code by using only freely available IDE Integrated Development Environment tools-including a cross-platform one. The unrestricted access to source code, beyond the ability for immediate software improvement, offers to independent users and volunteer groups an expandable, in any way, visual antenna simulator, for a genuine research and development work in the field ...

  6. Web-based interactive visualization of 3D video mosaics using X3D standard

    CHON Jaechoon; LEE Yang-Won; SHIBASAKI Ryosuke

    2006-01-01

    We present a method of 3D image mosaicing for real 3D representation of roadside buildings, and implement a Web-based interactive visualization environment for the 3D video mosaics created by 3D image mosaicing. The 3D image mosaicing technique developed in our previous work is a very powerful method for creating textured 3D-GIS data without excessive data processing like the laser or stereo system. For the Web-based open access to the 3D video mosaics, we build an interactive visualization environment using X3D, the emerging standard of Web 3D. We conduct the data preprocessing for 3D video mosaics and the X3D modeling for textured 3D data. The data preprocessing includes the conversion of each frame of 3D video mosaics into concatenated image files that can be hyperlinked on the Web. The X3D modeling handles the representation of concatenated images using necessary X3D nodes. By employing X3D as the data format for 3D image mosaics, the real 3D representation of roadside buildings is extended to the Web and mobile service systems.

  7. Case study: Beauty and the Beast 3D: benefits of 3D viewing for 2D to 3D conversion

    Handy Turner, Tara

    2010-02-01

    From the earliest stages of the Beauty and the Beast 3D conversion project, the advantages of accurate desk-side 3D viewing was evident. While designing and testing the 2D to 3D conversion process, the engineering team at Walt Disney Animation Studios proposed a 3D viewing configuration that not only allowed artists to "compose" stereoscopic 3D but also improved efficiency by allowing artists to instantly detect which image features were essential to the stereoscopic appeal of a shot and which features had minimal or even negative impact. At a time when few commercial 3D monitors were available and few software packages provided 3D desk-side output, the team designed their own prototype devices and collaborated with vendors to create a "3D composing" workstation. This paper outlines the display technologies explored, final choices made for Beauty and the Beast 3D, wish-lists for future development and a few rules of thumb for composing compelling 2D to 3D conversions.

  8. PIC codes for plasma accelerators on emerging computer architectures (GPUS, Multicore/Manycore CPUS)

    Vincenti, Henri

    2016-03-01

    The advent of exascale computers will enable 3D simulations of a new laser-plasma interaction regimes that were previously out of reach of current Petasale computers. However, the paradigm used to write current PIC codes will have to change in order to fully exploit the potentialities of these new computing architectures. Indeed, achieving Exascale computing facilities in the next decade will be a great challenge in terms of energy consumption and will imply hardware developments directly impacting our way of implementing PIC codes. As data movement (from die to network) is by far the most energy consuming part of an algorithm future computers will tend to increase memory locality at the hardware level and reduce energy consumption related to data movement by using more and more cores on each compute nodes (''fat nodes'') that will have a reduced clock speed to allow for efficient cooling. To compensate for frequency decrease, CPU machine vendors are making use of long SIMD instruction registers that are able to process multiple data with one arithmetic operator in one clock cycle. SIMD register length is expected to double every four years. GPU's also have a reduced clock speed per core and can process Multiple Instructions on Multiple Datas (MIMD). At the software level Particle-In-Cell (PIC) codes will thus have to achieve both good memory locality and vectorization (for Multicore/Manycore CPU) to fully take advantage of these upcoming architectures. In this talk, we present the portable solutions we implemented in our high performance skeleton PIC code PICSAR to both achieve good memory locality and cache reuse as well as good vectorization on SIMD architectures. We also present the portable solutions used to parallelize the Pseudo-sepctral quasi-cylindrical code FBPIC on GPUs using the Numba python compiler.

  9. 3D laptop for defense applications

    Edmondson, Richard; Chenault, David

    2012-06-01

    Polaris Sensor Technologies has developed numerous 3D display systems using a US Army patented approach. These displays have been developed as prototypes for handheld controllers for robotic systems and closed hatch driving, and as part of a TALON robot upgrade for 3D vision, providing depth perception for the operator for improved manipulation and hazard avoidance. In this paper we discuss the prototype rugged 3D laptop computer and its applications to defense missions. The prototype 3D laptop combines full temporal and spatial resolution display with the rugged Amrel laptop computer. The display is viewed through protective passive polarized eyewear, and allows combined 2D and 3D content. Uses include robot tele-operation with live 3D video or synthetically rendered scenery, mission planning and rehearsal, enhanced 3D data interpretation, and simulation.

  10. User-centered 3D geovisualisation

    Nielsen, Anette Hougaard

    2004-01-01

    3D Geovisualisation is a multidisciplinary science mainly utilizing geographically related data, developing software systems for 3D visualisation and producing relevant models. In this paper the connection between geoinformation stored as 3D objects and the end user is of special interest....... In a broader perspective, the overall aim is to develop a language in 3D Geovisualisation gained through usability projects and the development of a theoretical background. A conceptual level of user-centered 3D Geovisualisation is introduced by applying a categorisation originating from Virtual Reality....... The conceptual level is used to structure and organise user-centered 3D Geovisualisation into four categories: representation, rendering, interface and interaction. The categories reflect a process of development of 3D Geovisualisation where objects can be represented verisimilar to the real world...

  11. 3D Chaotic Functions for Image Encryption

    Pawan N. Khade

    2012-05-01

    Full Text Available This paper proposes the chaotic encryption algorithm based on 3D logistic map, 3D Chebyshev map, and 3D, 2D Arnolds cat map for color image encryption. Here the 2D Arnolds cat map is used for image pixel scrambling and 3D Arnolds cat map is used for R, G, and B component substitution. 3D Chebyshev map is used for key generation and 3D logistic map is used for image scrambling. The use of 3D chaotic functions in the encryption algorithm provide more security by using the, shuffling and substitution to the encrypted image. The Chebyshev map is used for public key encryption and distribution of generated private keys.

  12. Constructing a short form of the hierarchical personality inventory for children (HiPIC): the HiPIC-30.

    Vollrath, Margarete E; Hampson, Sarah E; Torgersen, Svenn

    2016-05-01

    Children's personality traits are invaluable predictors of concurrent and later mental and physical health. Several validated longer inventories for assessing the widely recognized Five-Factor Model of personality in children are available, but short forms are scarce. This study aimed at constructing a 30-item form of the 144-item Hierarchical Personality Inventory for Children (HiPIC) (Mervielde & De Fruyt, ). Participants were 1543 children aged 6-12 years (sample 1) and 3895 children aged 8 years (sample 2). Sample 1 completed the full HiPIC, from which we constructed the HiPIC-30, and the Child Behaviour Checklist (Achenbach, ). Sample 2 completed the HiPIC-30. The HiPIC-30 personality domains correlated over r = .90 with the full HiPIC domains, had good Cronbach's alphas and correlated similarly with CBCL behaviour problems and gender as the full HiPIC. The factor structures of the HiPIC-30 were convergent across samples, but the imagination factor was not clear-cut. We conclude that the HiPIC-30 is a reliable and valid questionnaire for the Five-Factor personality traits in children. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27120426

  13. 3D UTD Modeling of a Measured Antenna Disturbed by a Dielectric Circular Cylinder in WBAN Context

    Plouhinec, Eric; Uguen, Bernard; Mhedhbi, Meriem; Avrillon, Stéphane

    2014-01-01

    This paper describes a work realized for On-Body antennas characterization: the 3D deterministic modeling of a measured antenna disturbed by a dielectric circular cylinder of finite length. This prediction model is based on the ray-tracing technique for the electromagnetic wave paths search and the Uniform Theory of Diffraction (UTD) for the modeling of the electromagnetic waves interactions with the cylinder. After a detailed description, the model is validated in 3D with measurements made f...

  14. PIC Simulations of the Ion Flow Induced by Radio Frequency Waves in Ion Cyclotron Frequency Range

    Full text: PIC simulations have been conducted to study the nonlinear interactions of plasmas and radio frequency wave in the ion cyclotron frequency range. It is found that in the presence of the mode conversion from an electromagnetic wave into an electrostatic wave (ion Bernstein wave), the ions near the lower hybrid resonance can be heated by nonlinear Landau damping via the parametric decay. As a result, the ion velocity distribution in the poloidal direction becomes asymmetric near the lower hybrid resonance and an ion poloidal flow is thus produced. The flow directions are opposite on both sides of the lower hybrid resonance. The poloidal flow is mainly produced by the nonlinear Reynolds stress and the electromagnetic force of the incident wave in the radial direction rather than poloidal direction predicted by the existing theories. (author)

  15. Improved surface-enhanced Raman scattering on arrays of gold quasi-3D nanoholes

    Yue, Weisheng

    2012-10-04

    Arrays of gold quasi-3D nanoholes were proposed and fabricated as substrates for surface-enhanced Raman scattering (SERS). By detecting rhodamine 6G (R6G) molecules, the gold quasi-3D nanoholes demonstrated an SERS intensity that was 25-62 times higher than that of two-dimensional nanoholes with the same geometrical shapes and periodicities. The larger SERS enhancement of the quasi-3D nanoholes is attributed to the enhanced electromagnetic field on the top-layer nanohole, the bottom nanodiscs and the field coupling between the two layers. In addition, the investigation of the shape dependence of the SERS on the quasi-3D nanoholes demonstrated that the quadratic, circular, triangular and rhombic holes exhibited different SERS properties. Numerical simulations of the electromagnetic properties on the nanostructures were performed with CST Microwave Studio, and the results agree with the experimental observations. © 2012 IOP Publishing Ltd.

  16. 3-D Technology Approaches for Biological Ecologies

    Liu, Liyu; Austin, Robert; U. S-China Physical-Oncology Sciences Alliance (PS-OA) Team

    Constructing three dimensional (3-D) landscapes is an inevitable issue in deep study of biological ecologies, because in whatever scales in nature, all of the ecosystems are composed by complex 3-D environments and biological behaviors. Just imagine if a 3-D technology could help complex ecosystems be built easily and mimic in vivo microenvironment realistically with flexible environmental controls, it will be a fantastic and powerful thrust to assist researchers for explorations. For years, we have been utilizing and developing different technologies for constructing 3-D micro landscapes for biophysics studies in in vitro. Here, I will review our past efforts, including probing cancer cell invasiveness with 3-D silicon based Tepuis, constructing 3-D microenvironment for cell invasion and metastasis through polydimethylsiloxane (PDMS) soft lithography, as well as explorations of optimized stenting positions for coronary bifurcation disease with 3-D wax printing and the latest home designed 3-D bio-printer. Although 3-D technologies is currently considered not mature enough for arbitrary 3-D micro-ecological models with easy design and fabrication, I hope through my talk, the audiences will be able to sense its significance and predictable breakthroughs in the near future. This work was supported by the State Key Development Program for Basic Research of China (Grant No. 2013CB837200), the National Natural Science Foundation of China (Grant No. 11474345) and the Beijing Natural Science Foundation (Grant No. 7154221).

  17. FROM 3D MODEL DATA TO SEMANTICS

    My Abdellah Kassimi

    2012-01-01

    Full Text Available The semantic-based 3D models retrieval systems have become necessary since the increase of 3D modelsdatabases. In this paper, we propose a new method for the mapping problem between 3D model data andsemantic data involved in semantic based retrieval for 3D models given by polygonal meshes. First, wefocused on extracting invariant descriptors from the 3D models and analyzing them to efficient semanticannotation and to improve the retrieval accuracy. Selected shape descriptors provide a set of termscommonly used to describe visually a set of objects using linguistic terms and are used as semanticconcept to label 3D model. Second, spatial relationship representing directional, topological anddistance relationships are used to derive other high-level semantic features and to avoid the problem ofautomatic 3D model annotation. Based on the resulting semantic annotation and spatial concepts, anontology for 3D model retrieval is constructed and other concepts can be inferred. This ontology is usedto find similar 3D models for a given query model. We adopted the query by semantic example approach,in which the annotation is performed mostly automatically. The proposed method is implemented in our3D search engine (SB3DMR, tested using the Princeton Shape Benchmark Database.

  18. On Hopkins' Picard Group Pic_2 at the prime 3

    Karamanov, Nasko

    2009-01-01

    In this paper we calculate the algebraic Hopkins' Picard group Pic_2^{alg} at the prime p=3, which is a subgroup of index 2 of the group of isomorphism classes of invertible K(2)-local spectra i.e. of the Hopkins' Picard group Pic_2.

  19. Perancangan Penampil Teks Berbasis Mikrokontroler PIC16F877A

    Kandar, Aris

    2011-01-01

    Tulisan ini membahas tentang rancangan penampil teks berjalan yang menggunakan LED yang disusun berbentuk matriks berukuran 7x72 yang dinyalakan dengan metode multiplexing. Pengendali utama pada rangakaian menggunakan mikrokontroler PIC16F877A. Mikrokontroler PIC16F877A diprogram dengan menggunakan bahasa assembly.

  20. 3D periodic dielectric composite homogenization based on the Generalized Source Method

    Shcherbakov, Alexey A.; Tishchenko, Alexandre V.

    2015-01-01

    The article encloses a new Fourier space method for rigorous optical simulation of 3D periodic dielectric structures. The method relies upon rigorous solution of Maxwell's equations in complex composite structures by the Generalized Source Method. Extremely fast GPU enabled calculations provide a possibility for an efficient search of eigenmodes in 3D periodic complex structures on the basis of rigorously obtained resonant electromagnetic response. The method is applied to the homogenization ...

  1. 3D Harmonic Maxwell Solutions on Vector and Parallel Computers using Controllability and Finite Element Methods

    Bristeau, Marie-Odile; Glowinski, Roland; Périaux, Jacques; Rossi, Tuomo

    1999-01-01

    We consider the scattering problem for 3-D electromagnetic harmonic waves. The time-domain Maxwell's equations are solved and Exact Controllability methods improve the convergence of the solutions to the time-periodic ones for nonconvex obstacles. A least-squares formulation solved by a preconditioned conjugate gradient is introduced. The discretization is achieved in time by a centered finite difference scheme and in space by Lagrange finite elements. Numerical results for 3-D nonconvex scat...

  2. 3D Systems” ‘Stuck in the Middle’ of the 3D Printer Boom?

    A. Hoffmann (Alan)

    2014-01-01

    textabstract3D Systems, the pioneer of 3D printing, predicted a future where "kids from 8 to 80" could design and print their ideas at home. By 2013, 9 years after the creation of the first working 3D printer, there were more than 30 major 3D printing companies competing for market share. 3DS and it

  3. Electromagnetic Waves

    This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis...

  4. Metal Detector By Using PIC Microcontroller Interfacing With PC

    Yin Min Theint

    2015-06-01

    Full Text Available Abstract This system proposes metal detector by using PIC microcontroller interfacing with PC. The system uses PIC microcontroller as the main controller whether the detected metal is ferrous metal or non-ferrous metal. Among various types of metal sensors and various types of metal detecting technologies concentric type induction coil sensor and VLF very low frequency metal detecting technology are used in this system. This system consists of two configurations Hardware configuration and Software configuration. The hardware components include induction coil sensors which senses the frequency changes of metal a PIC microcontroller personal computer PC buzzer light emitting diode LED and webcam. The software configuration includes a program controller interface. PIC MikroCprogramming language is used to implement the control system. This control system is based on the PIC 16F887 microcontroller.This system is mainly used in mining and high security places such as airport plaza shopping mall and governmental buildings.

  5. 3D-tulostus : case Printrbot

    Arvekari, Lassi

    2013-01-01

    Opinnäytetyön tavoitteena on selvittää 3D-tulostustekniikan perusteita ja 3D-tulostuksen nykytilannetta. 3D-tulostukseen sopivien mallien luomista tutkitaan ja mallin tekemiseen on etsitty toimivia ohjesääntöjä. Tärkeä osa työtä on tutkia mitä vaiheita 3D-tulostimen hankinnassa kotikäyttöön tulee vastaan. Käytännön kokeita varten opinnäytetyössä on case Printrbot, jossa on tutustuttu edulliseen 3D-tulostuslaitteeseen kokoonpanosta lähtien. Työn kuluessa selvisi että edulliset 3D-tulos...

  6. Identification of the transition arrays 3d74s-3d74p in Br X and 3d64s-3d64p in Br XI

    We report a beam-foil study of multiply ionized bromine in the region 400-1300A, performed with 6 and 8 MeV Br ions from a tandem accelerator. At these energies transitions belonging to Fe-like Br X and Mn-like Br XI are expected to be prominent. We have identified 31 lines as 3d74s-3d74p transitions in Br X, from which 16 levels of the previously unknown 3d74s configuration could be established. We have also added 6 new 3d74p levels to the 99 previously known. For Br XI we have classified 9 lines as 3d64s-3d64p combinations. The line identifications have been corroborated by isoelectronic comparisons and theoretical calculations using the superposition-of-configurations technique. (orig.)

  7. 3D Dynamic Echocardiography with a Digitizer

    Oshiro, Osamu; Matani, Ayumu; Chihara, Kunihiro

    1998-05-01

    In this paper,a three-dimensional (3D) dynamic ultrasound (US) imaging system,where a US brightness-mode (B-mode) imagetriggered with an R-wave of electrocardiogram (ECG)was obtained with an ultrasound diagnostic deviceand the location and orientation of the US probewere simultaneously measured with a 3D digitizer, is described.The obtained B-mode imagewas then projected onto a virtual 3D spacewith the proposed interpolation algorithm using a Gaussian operator.Furthermore, a 3D image was presented on a cathode ray tube (CRT)and stored in virtual reality modeling language (VRML).We performed an experimentto reconstruct a 3D heart image in systole using this system.The experimental results indicatethat the system enables the visualization ofthe 3D and internal structure of a heart viewed from any angleand has potential for use in dynamic imaging,intraoperative ultrasonography and tele-medicine.

  8. Simulations of drift waves in 3D magnetic configurations

    Drift waves are commonly held responsible for anomalous transport in tokamak configurations and in particular for the anomalously high heat loss. The next generation of stellarators on the other hand are hoped to be characterized by a much smaller neo-classical transport and by particle confinement close to that of tokamaks. There is nevertheless a strong interest in the stellarator community to study the properties of drift waves in 3D magnetic configurations. To serve this interest we have developed the first global gyrokinetic code, EUTERPE, aimed at the investigation of linear drift wave stability in general toroidal geometry. The physical model assumes electrostatic waves and adiabatic electrons. EUTERPE is a particle-in-cell (PIC) code in which the gyrokinetic Poisson equation is discretized with the finite element method defined in the PEST -1 system of magnetic coordinates. The magnetic geometry is provided by the magnetohydrodynamic (MHD) equilibrium code VMEC. The complete 3D model has been successfully validated in toroidal axisymmetric and straight helical geometries and has permitted the first simulation of unstable global ITG driven modes in non-axisymmetric toroidal configurations. As a first application, two configurations have been studied, the Quasi-Axially symmetric Stellarator with three fields periods (QAS3) currently one system under consideration at the Princeton Plasma Physics Laboratory and the Helically Symmetric experiment (HSX) which has recently started operation at the University of Wisconsin. QAS3 is characterized by a tokamak-Iike field in the outer part of the torus. In this structure the drift waves are mainly affected by the magnetic shear and barely by the shape of the plasma. Also, the results are very close to those obtained for a tokamak. On the other hand, results for the HSX configuration, which is characterized by a dominant helical magnetic field, show a clear 3D effect, namely a strong toroidal variation of the drift wave

  9. Rubber Impact on 3D Textile Composites

    Heimbs, Sebastian; Van Den Broucke, Björn; DUPLESSIS KERGOMARD, Yann; Dau, Frédéric; MALHERBE, Benoit

    2012-01-01

    A low velocity impact study of aircraft tire rubber on 3D textile-reinforced composite plates was performed experimentally and numerically. In contrast to regular unidirectional composite laminates, no delaminations occur in such a 3D textile composite. Yarn decohesions, matrix cracks and yarn ruptures have been identified as the major damage mechanisms under impact load. An increase in the number of 3D warp yarns is proposed to improve the impact damage resistance. The characteristic o...

  10. Spatial data modelling for 3D GIS

    Abdul-Rahman, Alias

    2007-01-01

    This book covers fundamental aspects of spatial data modelling specifically on the aspect of three-dimensional (3D) modelling and structuring. Realisation of ""true"" 3D GIS spatial system needs a lot of effort, and the process is taking place in various research centres and universities in some countries. The development of spatial data modelling for 3D objects is the focus of this book.

  11. MMDB: 3D structures and macromolecular interactions

    Madej, Thomas; Addess, Kenneth J.; Fong, Jessica H.; Geer, Lewis Y.; Geer, Renata C.; Lanczycki, Christopher J; Liu, Chunlei; Lu, Shennan; Marchler-Bauer, Aron; Panchenko, Anna R.; Chen, Jie; Thiessen, Paul A; Wang, Yanli; Zhang, Dachuan; Bryant, Stephen H.

    2011-01-01

    Close to 60% of protein sequences tracked in comprehensive databases can be mapped to a known three-dimensional (3D) structure by standard sequence similarity searches. Potentially, a great deal can be learned about proteins or protein families of interest from considering 3D structure, and to this day 3D structure data may remain an underutilized resource. Here we present enhancements in the Molecular Modeling Database (MMDB) and its data presentation, specifically pertaining to biologically...

  12. Compression of 3D models with NURBS

    Santa Cruz Ducci, Diego; Ebrahimi, Touradj

    2005-01-01

    With recent progress in computing, algorithmics and telecommunications, 3D models are increasingly used in various multimedia applications. Examples include visualization, gaming, entertainment and virtual reality. In the multimedia domain 3D models have been traditionally represented as polygonal meshes. This piecewise planar representation can be thought of as the analogy of bitmap images for 3D surfaces. As bitmap images, they enjoy great flexibility and are particularly well suited to des...

  13. Volume-Rendering-Based Interactive 3D Measurement for Quantitative Analysis of 3D Medical Images

    Yakang Dai; Jian Zheng; Yuetao Yang; Duojie Kuai; Xiaodong Yang

    2013-01-01

    3D medical images are widely used to assist diagnosis and surgical planning in clinical applications, where quantitative measurement of interesting objects in the image is of great importance. Volume rendering is widely used for qualitative visualization of 3D medical images. In this paper, we introduce a volume-rendering-based interactive 3D measurement framework for quantitative analysis of 3D medical images. In the framework, 3D widgets and volume clipping are integrated with volume render...

  14. Improvements of 3D finite element method for eddy current analysis and its application to fusion technology

    The 3D finite element method is improved so that both the computer storage and the CPU time can be reduced by examining the boundary conditions. The improved method is applied to the analysis of the Fusion Electromagnetic Induction Experiment (FELIX) facilities, and the characteristics of 3-D eddy current distributions are investigated. (orig.)

  15. 3D Printing Making the Digital Real .

    Miss Prachi More

    2013-01-01

    3D printing is quickly expanding field, with the popularity and uses for 3D printers growing every day. 3D printing can be used to prototype, create replacement parts, and is even versatile enough to print prostheses and medical implants. It will have a growing impact on our world, as more and more people gain access to these amazing machines.[1] In this article, we would like to attempt to give an introduction of the technology. 3Dimensions printing is a method of converting a virtual 3D mod...

  16. 3D-tulostuksen viipalointiohjelmien vertailu

    Virolainen, Ville

    2015-01-01

    Opinnäytetyön tavoitteena on selventää 3D-tulostamisen prosessia yksityisen käyttäjän näkökulmasta sekä luoda testitulostuksia, joiden perusteella pystytään vertailemaan prosessissa käytettävien viipalointiohjelmien toimintaa keskenään. Työssä perehdytään aluksi 3D-tulostuksen teoriataustaan, jonka jälkeen suoritetaan 3D-tulostimella testitulostukset käyttäen kolmea eri viipalointiohjelmaa. 3D-tulostamisella tarkoitetaan prosessia, jonka tarkoituksena on luoda kolmiulotteinen objekti käyt...

  17. Illustrating Mathematics using 3D Printers

    Knill, Oliver; Slavkovsky, Elizabeth

    2013-01-01

    3D printing technology can help to visualize proofs in mathematics. In this document we aim to illustrate how 3D printing can help to visualize concepts and mathematical proofs. As already known to educators in ancient Greece, models allow to bring mathematics closer to the public. The new 3D printing technology makes the realization of such tools more accessible than ever. This is an updated version of a paper included in book Low-Cost 3D Printing for science, education and Sustainable Devel...

  18. BIM tietomalli ja 3D-tulostus

    Myllykoski, Joonas; Palonen, Teemu

    2015-01-01

    Tämän opinnäytetyön tavoitteena oli selvittää miten Tekla Structures ohjelmalla luotu 3D-malli saadaan tulostettua koulun 3D-tulostimella sekä tutkittiin voidaanko Tekla Structuresin ominaisuuksia hyödyntää 3D-tulostamisessa ja miten tulostus onnistuu autocadilla. Selvitimme myös mahdollisia 3D-tulostusteknologian sovelluksia tulevaisuuden rakennustuotannossa ja sen näkymiä rakennusteollisuudessa sekä erilaisia tulostus menetelmiä joita voitaisiin mahdollisesti hyödyntää rakennusteollisuudess...

  19. A 3d game in python

    Xu, Minghui

    2014-01-01

    3D game has widely been accepted and loved by many game players. More and more different kinds of 3D games were developed to feed people’s needs. The most common programming language for development of 3D game is C++ nowadays. Python is a high-level scripting language. It is simple and clear. The concise syntax could speed up the development cycle. This project was to develop a 3D game using only Python. The game is about how a cat lives in the street. In order to live, the player need...

  20. Interaktiivinen 3D HTML5-selaimissa

    Aaltonen, Jani

    2013-01-01

    Insinöörityön tavoitteena oli tutkia Metropolia Ammattikorkeakoulun mahdollisuuksia tuottaa interaktiivista 3D:tä verkkoselaimiin WebGL:n avulla ja käyttäen ammattikorkeakoulun 3D-mallinnusohjelmaa. WebGL on ohjelmointirajapinta, jolla saadaan luotua 3D-grafiikkaa verkkoselaimeen ilman ylimääräisiä liitännäisiä. Insinöörityö tehtiin Metropolia Ammattikorkeakoululle, ja sen tuloksia käytetään sekä osana opetusta että mahdollisesti 3D-sisällön tuottamiseen ammattikorkeakoulua varten. Työssä...

  1. Calibration for 3D Structured Light Measurement

    2007-01-01

    A calibration procedure was developed for three-dimensional(3D) binocular structured light measurement systems. In virtue of a specially designed pattern, matching points in stereo images are extracted. And then sufficient 3D space points are obtained through pairs of images with the intrinsic and extrinsic parameters of each camera estimated prior and consequently some lights are calibrated by means of multi point fitting. Finally, a mathematical model is applied to interpolate and approximate all dynamic scanning lights based on geometry. The process of calibration method is successfully used in the binocular 3D measurement system based on structured lights and the 3D reconstruction results are satisfying.

  2. Getting started in 3D with Maya

    Watkins, Adam

    2012-01-01

    Deliver professional-level 3D content in no time with this comprehensive guide to 3D animation with Maya. With over 12 years of training experience, plus several award winning students under his belt, author Adam Watkins is the ideal mentor to get you up to speed with 3D in Maya. Using a structured and pragmatic approach Getting Started in 3D with Maya begins with basic theory of fundamental techniques, then builds on this knowledge using practical examples and projects to put your new skills to the test. Prepared so that you can learn in an organic fashion, each chapter builds on the know

  3. Can 3D Printing change your business?

    Unver, Ertu

    2013-01-01

    This presentation is given to businesses / companies with an interest in 3D Printing and Additive Manufacturing in West Yorkshire, UK Organised by the Calderdale and Kirklees Manufacturing Alliance. http://www.ckma.co.uk/ by Dr Ertu Unver Senior Lecturer / Product Design / MA 3D Digital Design / University of Huddersfield Location : 3M BIC, Date : 11th April, Time : 5.30 – 8pm Additive manufacturing or 3D printing is a process of making a three-dimensional (3D) objects from...

  4. Dimensional accuracy of 3D printed vertebra

    Ogden, Kent; Ordway, Nathaniel; Diallo, Dalanda; Tillapaugh-Fay, Gwen; Aslan, Can

    2014-03-01

    3D printer applications in the biomedical sciences and medical imaging are expanding and will have an increasing impact on the practice of medicine. Orthopedic and reconstructive surgery has been an obvious area for development of 3D printer applications as the segmentation of bony anatomy to generate printable models is relatively straightforward. There are important issues that should be addressed when using 3D printed models for applications that may affect patient care; in particular the dimensional accuracy of the printed parts needs to be high to avoid poor decisions being made prior to surgery or therapeutic procedures. In this work, the dimensional accuracy of 3D printed vertebral bodies derived from CT data for a cadaver spine is compared with direct measurements on the ex-vivo vertebra and with measurements made on the 3D rendered vertebra using commercial 3D image processing software. The vertebra was printed on a consumer grade 3D printer using an additive print process using PLA (polylactic acid) filament. Measurements were made for 15 different anatomic features of the vertebral body, including vertebral body height, endplate width and depth, pedicle height and width, and spinal canal width and depth, among others. It is shown that for the segmentation and printing process used, the results of measurements made on the 3D printed vertebral body are substantially the same as those produced by direct measurement on the vertebra and measurements made on the 3D rendered vertebra.

  5. 3D modelling for multipurpose cadastre

    Abduhl Rahman, A.; P. J. M. Van Oosterom; T. C. Hua; Sharkawi, K.H.; E. E. Duncan; Azri, N.; Hassan, M. I.

    2012-01-01

    Three-dimensional (3D) modelling of cadastral objects (such as legal spaces around buildings, around utility networks and other spaces) is one of the important aspects for a multipurpose cadastre (MPC). This paper describes the 3D modelling of the objects for MPC and its usage to the knowledge of 3D cadastre since more and more related agencies attempt to develop or embed 3D components into the MPC. We also intend to describe the initiative by Malaysian national mapping and cadastral agency (...

  6. FastScript3D - A Companion to Java 3D

    Koenig, Patti

    2005-01-01

    FastScript3D is a computer program, written in the Java 3D(TM) programming language, that establishes an alternative language that helps users who lack expertise in Java 3D to use Java 3D for constructing three-dimensional (3D)-appearing graphics. The FastScript3D language provides a set of simple, intuitive, one-line text-string commands for creating, controlling, and animating 3D models. The first word in a string is the name of a command; the rest of the string contains the data arguments for the command. The commands can also be used as an aid to learning Java 3D. Developers can extend the language by adding custom text-string commands. The commands can define new 3D objects or load representations of 3D objects from files in formats compatible with such other software systems as X3D. The text strings can be easily integrated into other languages. FastScript3D facilitates communication between scripting languages [which enable programming of hyper-text markup language (HTML) documents to interact with users] and Java 3D. The FastScript3D language can be extended and customized on both the scripting side and the Java 3D side.

  7. 3D PDF - a means of public access to geological 3D - objects, using the example of GTA3D

    Slaby, Mark-Fabian; Reimann, Rüdiger

    2013-04-01

    In geology, 3D modeling has become very important. In the past, two-dimensional data such as isolines, drilling profiles, or cross-sections based on those, were used to illustrate the subsurface geology, whereas now, we can create complex digital 3D models. These models are produced with special software, such as GOCAD ®. The models can be viewed, only through the software used to create them, or through viewers available for free. The platform-independent PDF (Portable Document Format), enforced by Adobe, has found a wide distribution. This format has constantly evolved over time. Meanwhile, it is possible to display CAD data in an Adobe 3D PDF file with the free Adobe Reader (version 7). In a 3D PDF, a 3D model is freely rotatable and can be assembled from a plurality of objects, which can thus be viewed from all directions on their own. In addition, it is possible to create moveable cross-sections (profiles), and to assign transparency to the objects. Based on industry-standard CAD software, 3D PDFs can be generated from a large number of formats, or even be exported directly from this software. In geoinformatics, different approaches to creating 3D PDFs exist. The intent of the Authority for Mining, Energy and Geology to allow free access to the models of the Geotectonic Atlas (GTA3D), could not be realized with standard software solutions. A specially designed code converts the 3D objects to VRML (Virtual Reality Modeling Language). VRML is one of the few formats that allow using image files (maps) as textures, and to represent colors and shapes correctly. The files were merged in Acrobat X Pro, and a 3D PDF was generated subsequently. A topographic map, a display of geographic directions and horizontal and vertical scales help to facilitate the use.

  8. Three-dimensional calculations using the quiet implicit PIC method

    Solution of the time-implicit moment equations for electron and ion species, combined with Maxwell's equations, is the kernel of the moment-implicit particle method and of the quiet implicit PIC method, a generalized δf method for electromagnetic plasma simulation. Previous implementations have used a variety of direct and iterative approaches for obtaining solutions to large sparse linear systems. These methods suffer from both excessive computational cost, sometimes negating the advantage of implicit time differencing; and from lack of convergence in some regimes of interest, rendering the method inapplicable. We describe a new formulation of the coupled problem, leading to a symmetric, positive definite system. We also show that this symmetric problem may be efficiently and reliably solved by a conjugate gradient method. A three-dimensional algorithm has been constructed, using a pseudospectral Fourier treatment of the poloidal and toroidal directions, and a finite difference treatment of the radial direction. The radially-dependent, poloidal and toroidal averaged operator is used as a preconditioner. Convergence is rapid, with a typical iteration count of 10 for 10-5 convergence. New results of the two-fluid form of this code to an internal m = 1 internal kink mode will be presented. The algorithm's ability to reproduce kinetic properties of plasmas is being tested with a one-dimensional code, which has recently been modified to permit periodic boundary conditions. When a nonuniform temperature distribution is imposed as an initial condition, the gradients axe reduced by long mean-free-path particles that stream parallel to the magnetic field. Tests of collisionless wave damping have also been conducted for the ion-cyclotron range of frequencies, and results axe compared with analytic predictions

  9. An aerial 3D printing test mission

    Hirsch, Michael; McGuire, Thomas; Parsons, Michael; Leake, Skye; Straub, Jeremy

    2016-05-01

    This paper provides an overview of an aerial 3D printing technology, its development and its testing. This technology is potentially useful in its own right. In addition, this work advances the development of a related in-space 3D printing technology. A series of aerial 3D printing test missions, used to test the aerial printing technology, are discussed. Through completing these test missions, the design for an in-space 3D printer may be advanced. The current design for the in-space 3D printer involves focusing thermal energy to heat an extrusion head and allow for the extrusion of molten print material. Plastics can be used as well as composites including metal, allowing for the extrusion of conductive material. A variety of experiments will be used to test this initial 3D printer design. High altitude balloons will be used to test the effects of microgravity on 3D printing, as well as parabolic flight tests. Zero pressure balloons can be used to test the effect of long 3D printing missions subjected to low temperatures. Vacuum chambers will be used to test 3D printing in a vacuum environment. The results will be used to adapt a current prototype of an in-space 3D printer. Then, a small scale prototype can be sent into low-Earth orbit as a 3-U cube satellite. With the ability to 3D print in space demonstrated, future missions can launch production hardware through which the sustainability and durability of structures in space will be greatly improved.

  10. 3D ultrafast ultrasound imaging in vivo

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra—and inter-observer variability. (fast track communication)

  11. 3-D structures of planetary nebulae

    Steffen, Wolfgang

    2016-01-01

    Recent advances in the 3-D reconstruction of planetary nebulae are reviewed. We include not only results for 3-D reconstructions, but also the current techniques in terms of general methods and software. In order to obtain more accurate reconstructions, we suggest to extend the widely used assumption of homologous nebula expansion to map spectroscopically measured velocity to position along the line of sight.

  12. 3D printing of functional structures

    Krijnen, G.J.M.

    2016-01-01

    The technology colloquial known as ‘3D printing’ has developed in such diversity in printing technologies and application fields that meanwhile it seems anything is possible. However, clearly the ideal 3D Printer, with high resolution, multi-material capability, fast printing, etc. is yet to be deve

  13. 3D Printed Block Copolymer Nanostructures

    Scalfani, Vincent F.; Turner, C. Heath; Rupar, Paul A.; Jenkins, Alexander H.; Bara, Jason E.

    2015-01-01

    The emergence of 3D printing has dramatically advanced the availability of tangible molecular and extended solid models. Interestingly, there are few nanostructure models available both commercially and through other do-it-yourself approaches such as 3D printing. This is unfortunate given the importance of nanotechnology in science today. In this…

  14. Perception of detail in 3D images

    Heyndrickx, I.; Kaptein, R.

    2009-01-01

    A lot of current 3D displays suffer from the fact that their spatial resolution is lower compared to their 2D counterparts. One reason for this is that the multiple views needed to generate 3D are often spatially multiplexed. Besides this, imperfect separation of the left- and right-eye view leads t

  15. 3D Reconstruction of NMR Images

    Peter Izak; Milan Smetana; Libor Hargas; Miroslav Hrianka; Pavol Spanik

    2007-01-01

    This paper introduces experiment of 3D reconstruction NMR images scanned from magnetic resonance device. There are described methods which can be used for 3D reconstruction magnetic resonance images in biomedical application. The main idea is based on marching cubes algorithm. For this task was chosen sophistication method by program Vision Assistant, which is a part of program LabVIEW.

  16. Stereo 3-D Vision in Teaching Physics

    Zabunov, Svetoslav

    2012-01-01

    Stereo 3-D vision is a technology used to present images on a flat surface (screen, paper, etc.) and at the same time to create the notion of three-dimensional spatial perception of the viewed scene. A great number of physical processes are much better understood when viewed in stereo 3-D vision compared to standard flat 2-D presentation. The…

  17. 3D, or Not to Be?

    Norbury, Keith

    2012-01-01

    It may be too soon for students to be showing up for class with popcorn and gummy bears, but technology similar to that behind the 3D blockbuster movie "Avatar" is slowly finding its way into college classrooms. 3D classroom projectors are taking students on fantastic voyages inside the human body, to the ruins of ancient Greece--even to faraway…

  18. The 3D-city model

    Holmgren, Steen; Rüdiger, Bjarne; Tournay, Bruno

    2001-01-01

    We have worked with the construction and use of 3D city models for about ten years. This work has given us valuable experience concerning model methodology. In addition to this collection of knowledge, our perception of the concept of city models has changed radically. In order to explain...... of 3D city models....

  19. Immersive 3D Geovisualization in Higher Education

    Philips, Andrea; Walz, Ariane; Bergner, Andreas; Graeff, Thomas; Heistermann, Maik; Kienzler, Sarah; Korup, Oliver; Lipp, Torsten; Schwanghart, Wolfgang; Zeilinger, Gerold

    2015-01-01

    In this study, we investigate how immersive 3D geovisualization can be used in higher education. Based on MacEachren and Kraak's geovisualization cube, we examine the usage of immersive 3D geovisualization and its usefulness in a research-based learning module on flood risk, called GEOSimulator. Results of a survey among participating students…

  20. Parametrizable cameras for 3D computational steering

    Mulder, J.D.; Wijk, J.J. van

    1997-01-01

    We present a method for the definition of multiple views in 3D interfaces for computational steering. The method uses the concept of a point-based parametrizable camera object. This concept enables a user to create and configure multiple views on his custom 3D interface in an intuitive graphical man

  1. Wow! 3D Content Awakens the Classroom

    Gordon, Dan

    2010-01-01

    From her first encounter with stereoscopic 3D technology designed for classroom instruction, Megan Timme, principal at Hamilton Park Pacesetter Magnet School in Dallas, sensed it could be transformative. Last spring, when she began pilot-testing 3D content in her third-, fourth- and fifth-grade classrooms, Timme wasn't disappointed. Students…

  2. 3D background aerodynamics using CFD

    Sørensen, Niels N.

    2002-01-01

    3D rotor computations for the Greek Geovilogiki (GEO) 44 meter rotor equipped with 19 meters blades are performed. The lift and drag polars are extracted at five spanvise locations r/R= (.37, .55, .71, .82, .93) based on identification of stagnationpoints between 2D and 3D computations. The inner...

  3. 3D directional coupler for impulse UWB

    Le Kernec, Julien; KLEPAL, Martin; Sokol, Vratislav

    2011-01-01

    The AWS Group developed a UWB radar and UWB transceiver for indoor people location and tracking. A radar concept has been developed. This paper will describe step by step the realization of a UWB directional coupler with a novel 3-D architecture. This paper gives a walkthrough of our design of the 3-D directional coupler.

  4. Limited Feedback for 3D Massive MIMO under 3D-UMa and 3D-UMi Scenarios

    Zheng Hu

    2015-01-01

    Full Text Available For three-dimensional (3D massive MIMO utilizing the uniform rectangular array (URA in the base station (BS, we propose a limited feedback transmission scheme in which the channel state information (CSI feedback operations for horizontal domain and vertical domain are separate. Compared to the traditional feedback scheme, the scheme can reduce the feedback overhead, code word index search complexity, and storage requirement. Also, based on the zenith of departure angle (ZoD distribution in 3D-Urban Macro Cell (3D-UMa and 3D-Urban Micro Cell (3D-UMi scenarios, we propose the angle quantization codebook for vertical domain, while the codebook of long term evolution-advanced (LTE-Advanced is still adopted in horizontal domain to preserve compatibility with the LTE-Advanced. Based on the angle quantization codebook, the subsampled 3-bit DFT codebook is designed for vertical domain. The system-level simulation results reveal that, to compromise the feedback overhead and system performance, 2-bit codebook for 3D-UMa scenario and 3-bit codebook for 3D-UMi scenario can meet requirements in vertical domain. The feedback period for vertical domain can also be extended appropriately to reduce the feedback overhead.

  5. Electromagnetic holographic imaging of bioimpedance

    Smith, Dexter G.; Ko, Harvey W.; Lee, Benjamin R.; Partin, Alan W.

    1998-05-01

    The electromagnetic bioimpedance method has successfully measured the very subtle conductivity changes associated with brain edema and prostate tumor. This method provides noninvasive measurements using non-ionizing magnetic fields applied with a small coil that avoids the use of contact electrodes. This paper introduces results from combining a holographic signal processing algorithm and a low power coil system that helps provide the 3D image of impedance contrast that should make the noninvasive electromagnetic bioimpedance method useful in health care.

  6. Terajets produced by 3D dielectric cuboids

    Pacheco-Peña, V; Minin, I V; Minin, O V

    2014-01-01

    The capability of generating terajets using 3D dielectric cuboids working at terahertz (THz) frequencies (as analogues of nanojets in the infrared band) are introduced and studied numerically. The focusing performance of the terajets are evaluated in terms of the transversal full width at half maximum along x- and y- directions using different refractive indexes for a 3D dielectric cuboid with a fixed geometry, obtaining a quasi-symmetric terajet with a subwavelength resolution of ~0.46{\\lambda}0 when the refractive index is n = 1.41. Moreover, the backscattering enhancement produced when metal particles are introduced in the terajet region is demonstrated for a 3D dielectric cuboid and compared with its 2D counterpart. The results of the jet generated for the 3D case are experimentally validated at sub-THz waves, demonstrating the ability to produce terajets using 3D cuboids.

  7. Fabrication of 3D Silicon Sensors

    Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; /SINTEF, Oslo; Kenney, C.; Hasi, J.; /SLAC; Da Via, C.; /Manchester U.; Parker, S.I.; /Hawaii U.

    2012-06-06

    Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.

  8. 3D-grafiikka ja pelimoottorit

    Sillanpää, Otto

    2014-01-01

    Tässä opinnäytetyössä tutkitaan miten 3D-mallit saadaan sellaiseen muotoon, että ne olisivat käytettävissä eri pelimoottoreissa. Tutkimuksen tarkoituksena on selvittää, miten luodaan 3D-malleja pelimoottoreihin, sekä miten 3D-mallinnusohjelmat ja pelimoottorit eroavat toisistaan, kun käsitellään 3D-malleja. Tässä työssä pelimoottoreina toimivat Valven Source sekä Epic Gamesin Unreal Engine 3. 3D-mallinnusohjelmista käytössä olivat Autodeskin 3ds Max 2014 ja Blender Foundationin Blender 2.7...

  9. Maintaining and troubleshooting your 3D printer

    Bell, Charles

    2014-01-01

    Maintaining and Troubleshooting Your 3D Printer by Charles Bell is your guide to keeping your 3D printer running through preventive maintenance, repair, and diagnosing and solving problems in 3D printing. If you've bought or built a 3D printer such as a MakerBot only to be confounded by jagged edges, corner lift, top layers that aren't solid, or any of a myriad of other problems that plague 3D printer enthusiasts, then here is the book to help you get past all that and recapture the joy of creative fabrication. The book also includes valuable tips for builders and those who want to modify the

  10. 6D Interpretation of 3D Gravity

    Herfray, Yannick; Scarinci, Carlos

    2016-01-01

    We show that 3D gravity, in its pure connection formulation, admits a natural 6D interpretation. The 3D field equations for the connection are equivalent to 6D Hitchin equations for the Chern-Simons 3-form in the total space of the principal bundle over the 3-dimensional base. Turning this construction around one gets an explanation of why the pure connection formulation of 3D gravity exists. More generally, we interpret 3D gravity as the dimensional reduction of the 6D Hitchin theory. To this end, we show that any SU(2) invariant closed 3-form in the total space of the principal SU(2) bundle can be parametrised by a connection together with a 2-form field on the base. The dimensional reduction of the 6D Hitchin theory then gives rise to 3D gravity coupled to a topological 2-form field.

  11. Discrete Method of Images for 3D Radio Propagation Modeling

    Novak, Roman

    2016-09-01

    Discretization by rasterization is introduced into the method of images (MI) in the context of 3D deterministic radio propagation modeling as a way to exploit spatial coherence of electromagnetic propagation for fine-grained parallelism. Traditional algebraic treatment of bounding regions and surfaces is replaced by computer graphics rendering of 3D reflections and double refractions while building the image tree. The visibility of reception points and surfaces is also resolved by shader programs. The proposed rasterization is shown to be of comparable run time to that of the fundamentally parallel shooting and bouncing rays. The rasterization does not affect the signal evaluation backtracking step, thus preserving its advantage over the brute force ray-tracing methods in terms of accuracy. Moreover, the rendering resolution may be scaled back for a given level of scenario detail with only marginal impact on the image tree size. This allows selection of scene optimized execution parameters for faster execution, giving the method a competitive edge. The proposed variant of MI can be run on any GPU that supports real-time 3D graphics.

  12. Wall-touching kink mode calculations with the M3D code

    This paper seeks to address a controversy regarding the applicability of the 3D nonlinear extended MHD code M3D [W. Park et al., Phys. Plasmas 6, 1796 (1999)] and similar codes to calculations of the electromagnetic interaction of a disrupting tokamak plasma with the surrounding vessel structures. M3D is applied to a simple test problem involving an external kink mode in an ideal cylindrical plasma, used also by the Disruption Simulation Code (DSC) as a model case for illustrating the nature of transient vessel currents during a major disruption. While comparison of the results with those of the DSC is complicated by effects arising from the higher dimensionality and complexity of M3D, we verify that M3D is capable of reproducing both the correct saturation behavior of the free boundary kink and the “Hiro” currents arising when the kink interacts with a conducting tile surface interior to the ideal wall

  13. Wall-touching kink mode calculations with the M3D code

    Breslau, J. A., E-mail: jbreslau@pppl.gov; Bhattacharjee, A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08542 (United States)

    2015-06-15

    This paper seeks to address a controversy regarding the applicability of the 3D nonlinear extended MHD code M3D [W. Park et al., Phys. Plasmas 6, 1796 (1999)] and similar codes to calculations of the electromagnetic interaction of a disrupting tokamak plasma with the surrounding vessel structures. M3D is applied to a simple test problem involving an external kink mode in an ideal cylindrical plasma, used also by the Disruption Simulation Code (DSC) as a model case for illustrating the nature of transient vessel currents during a major disruption. While comparison of the results with those of the DSC is complicated by effects arising from the higher dimensionality and complexity of M3D, we verify that M3D is capable of reproducing both the correct saturation behavior of the free boundary kink and the “Hiro” currents arising when the kink interacts with a conducting tile surface interior to the ideal wall.

  14. The psychology of the 3D experience

    Janicke, Sophie H.; Ellis, Andrew

    2013-03-01

    With 3D televisions expected to reach 50% home saturation as early as 2016, understanding the psychological mechanisms underlying the user response to 3D technology is critical for content providers, educators and academics. Unfortunately, research examining the effects of 3D technology has not kept pace with the technology's rapid adoption, resulting in large-scale use of a technology about which very little is actually known. Recognizing this need for new research, we conducted a series of studies measuring and comparing many of the variables and processes underlying both 2D and 3D media experiences. In our first study, we found narratives within primetime dramas had the power to shift viewer attitudes in both 2D and 3D settings. However, we found no difference in persuasive power between 2D and 3D content. We contend this lack of effect was the result of poor conversion quality and the unique demands of 3D production. In our second study, we found 3D technology significantly increased enjoyment when viewing sports content, yet offered no added enjoyment when viewing a movie trailer. The enhanced enjoyment of the sports content was shown to be the result of heightened emotional arousal and attention in the 3D condition. We believe the lack of effect found for the movie trailer may be genre-related. In our final study, we found 3D technology significantly enhanced enjoyment of two video games from different genres. The added enjoyment was found to be the result of an increased sense of presence.

  15. 3D Visualization Development of SIUE Campus

    Nellutla, Shravya

    Geographic Information Systems (GIS) has progressed from the traditional map-making to the modern technology where the information can be created, edited, managed and analyzed. Like any other models, maps are simplified representations of real world. Hence visualization plays an essential role in the applications of GIS. The use of sophisticated visualization tools and methods, especially three dimensional (3D) modeling, has been rising considerably due to the advancement of technology. There are currently many off-the-shelf technologies available in the market to build 3D GIS models. One of the objectives of this research was to examine the available ArcGIS and its extensions for 3D modeling and visualization and use them to depict a real world scenario. Furthermore, with the advent of the web, a platform for accessing and sharing spatial information on the Internet, it is possible to generate interactive online maps. Integrating Internet capacity with GIS functionality redefines the process of sharing and processing the spatial information. Enabling a 3D map online requires off-the-shelf GIS software, 3D model builders, web server, web applications and client server technologies. Such environments are either complicated or expensive because of the amount of hardware and software involved. Therefore, the second objective of this research was to investigate and develop simpler yet cost-effective 3D modeling approach that uses available ArcGIS suite products and the free 3D computer graphics software for designing 3D world scenes. Both ArcGIS Explorer and ArcGIS Online will be used to demonstrate the way of sharing and distributing 3D geographic information on the Internet. A case study of the development of 3D campus for the Southern Illinois University Edwardsville is demonstrated.

  16. 3D Modeling of Laser Propagation in Ionizing Gas and Plasma

    Cooley, J.; Antonsen, T., Jr.; Huang, C.; Mori, W.

    2003-10-01

    The interaction of a high intensity laser with ionizing gas and plasmas is of current interest for both Laser Wakefield Accelerators and x-ray generation. We have developed a 3D fluid simulation code based on the same quasistatic approximation used in the 2D code WAKE [1]. The object oriented structure of the code also allows it to couple to the quickPIC particle code [2]. We will present 3D studies of the ionization scattering instability [3], which occurs when a laser pulse propagates in an ionizing gas. [1] P. Mora and T. Antonsen, Jr., Phys. Plasmas 4(1), January 1997 [2] J. Cooley, T. Antonsen, Jr., C. Huang, etal., Proceedings, Advanced Accelerator Concepts, 2002 [3] Z. Bian and T. Antonsen, Jr., Phys. Plasmas 8(7), July 2001 * work supported by NSF and DOE

  17. Abstract Interpretation of PIC programs through Logic Programming

    Henriksen, Kim Steen; Gallagher, John Patrick

    , are applied to the logic based model of the machine. A small PIC microcontroller is used as a case study. An emulator for this microcontroller is written in Prolog, and standard programming transformations and analysis techniques are used to specialise this emulator with respect to a given PIC program....... The specialised emulator can now be further analysed to gain insight into the given program for the PIC microcontroller. The method describes a general framework for applying abstractions, illustrated here by linear constraints and convex hull analysis, to logic programs. Using these techniques on the...

  18. Semi- and virtual 3D dosimetry in clinical practice

    Korreman, S. S.

    2013-01-01

    In this review, 3D dosimetry is divided in three categories; "true" 3D, semi-3D and virtual 3D. Virtual 3D involves the use of measurement arrays either before or after beam entry in the patient/phantom, whereas semi-3D involves use of measurement arrays in phantoms mimicking the patient. True 3D...

  19. 3D Integral Model of Induction Heating of Thin Nonmagnetic Structures

    Barglik, J.; Doležel, Ivo; Škopek, M.; Šolín, Pavel; Ulrych, B.

    Perugia: University of Perugia, 2002. s. 276. [Biennial IEEE Conference on Electromagnetic Field Computation /10./. 16.06.2002-19.06.2002, Perugia] R&D Projects: GA MŠk ME 542 Keywords : 3D integral model * thin nonmagnetic structures Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  20. 3D object-oriented image analysis in 3D geophysical modelling

    Fadel, I.; van der Meijde, M.; Kerle, N.;

    2015-01-01

    Non-uniqueness of satellite gravity interpretation has traditionally been reduced by using a priori information from seismic tomography models. This reduction in the non-uniqueness has been based on velocity-density conversion formulas or user interpretation of the 3D subsurface structures (objects......) based on the seismic tomography models and then forward modelling these objects. However, this form of object-based approach has been done without a standardized methodology on how to extract the subsurface structures from the 3D models. In this research, a 3D object-oriented image analysis (3D OOA......) approach was implemented to extract the 3D subsurface structures from geophysical data. The approach was applied on a 3D shear wave seismic tomography model of the central part of the East African Rift System. Subsequently, the extracted 3D objects from the tomography model were reconstructed in the 3D...

  1. A Parallelized 3D Particle-In-Cell Method With Magnetostatic Field Solver And Its Applications

    Hsu, Kuo-Hsien; Chen, Yen-Sen; Wu, Men-Zan Bill; Wu, Jong-Shinn

    2008-10-01

    A parallelized 3D self-consistent electrostatic particle-in-cell finite element (PIC-FEM) code using an unstructured tetrahedral mesh was developed. For simulating some applications with external permanent magnet set, the distribution of the magnetostatic field usually also need to be considered and determined accurately. In this paper, we will firstly present the development of a 3D magnetostatic field solver with an unstructured mesh for the flexibility of modeling objects with complex geometry. The vector Poisson equation for magnetostatic field is formulated using the Galerkin nodal finite element method and the resulting matrix is solved by parallel conjugate gradient method. A parallel adaptive mesh refinement module is coupled to this solver for better resolution. Completed solver is then verified by simulating a permanent magnet array with results comparable to previous experimental observations and simulations. By taking the advantage of the same unstructured grid format of this solver, the developed PIC-FEM code could directly and easily read the magnetostatic field for particle simulation. In the upcoming conference, magnetron is simulated and presented for demonstrating the capability of this code.

  2. 3D Reconstruction Technique for Tomographic PIV

    姜楠; 包全; 杨绍琼

    2015-01-01

    Tomographic particle image velocimetry(Tomo-PIV) is a state-of-the-art experimental technique based on a method of optical tomography to achieve the three-dimensional(3D) reconstruction for three-dimensional three-component(3D-3C) flow velocity measurements. 3D reconstruction for Tomo-PIV is carried out herein. Meanwhile, a 3D simplified tomographic reconstruction model reduced from a 3D volume light inten-sity field with 2D projection images into a 2D Tomo-slice plane with 1D projecting lines, i.e., simplifying this 3D reconstruction into a problem of 2D Tomo-slice plane reconstruction, is applied thereafter. Two kinds of the most well-known algebraic reconstruction techniques, algebraic reconstruction technique(ART) and multiple algebraic reconstruction technique(MART), are compared as well. The principles of the two reconstruction algorithms are discussed in detail, which has been performed by a series of simulation images, yielding the corresponding recon-struction images that show different features between the ART and MART algorithm, and then their advantages and disadvantages are discussed. Further discussions are made for the standard particle image reconstruction when the background noise of the pre-initial particle image has been removed. Results show that the particle image recon-struction has been greatly improved. The MART algorithm is much better than the ART. Furthermore, the computa-tional analyses of two parameters(the particle density and the number of cameras), are performed to study their effects on the reconstruction. Lastly, the 3D volume particle field is reconstructed by using the improved algorithm based on the simplified 3D tomographic reconstruction model, which proves that the algorithm simplification is feasible and it can be applied to the reconstruction of 3D volume particle field in a Tomo-PIV system.

  3. Extra Dimensions: 3D in PDF Documentation

    Experimental science is replete with multi-dimensional information which is often poorly represented by the two dimensions of presentation slides and print media. Past efforts to disseminate such information to a wider audience have failed for a number of reasons, including a lack of standards which are easy to implement and have broad support. Adobe's Portable Document Format (PDF) has in recent years become the de facto standard for secure, dependable electronic information exchange. It has done so by creating an open format, providing support for multiple platforms and being reliable and extensible. By providing support for the ECMA standard Universal 3D (U3D) and the ISO PRC file format in its free Adobe Reader software, Adobe has made it easy to distribute and interact with 3D content. Until recently, Adobe's Acrobat software was also capable of incorporating 3D content into PDF files from a variety of 3D file formats, including proprietary CAD formats. However, this functionality is no longer available in Acrobat X, having been spun off to a separate company. Incorporating 3D content now requires the additional purchase of a separate plug-in. In this talk we present alternatives based on open source libraries which allow the programmatic creation of 3D content in PDF format. While not providing the same level of access to CAD files as the commercial software, it does provide physicists with an alternative path to incorporate 3D content into PDF files from such disparate applications as detector geometries from Geant4, 3D data sets, mathematical surfaces or tesselated volumes.

  4. PIC simulations of relativistic transverse magnetosonic shocks

    I will present the results of one-dimensional PIC simulations of magnetized ultrarelativistic shock waves in proton-electron-positron plasmas. Relativistic cyclotron instability, as the incoming particles encounter the increasing magnetic field within the shock front, provides the basic plasma heating mechanism. When the protons provide a sufficiently large fraction of the upstream flow energy density (including particle kinetic energy and Poynting flux), a substantial fraction of the shock heating goes into the formation of suprathermal power-law spectra of electrons and positrons. Cyclotron absorption by the pairs of the high harmonic ion cyclotron waves provides the nonthermal acceleration mechanism. The major new results come from simulations with mass ratio of 100 between ions and pairs, which show that electrons can be accelerated as efficiently as positrons when the proton fraction is small enough (pair plasma almost charge-symmetric). Both the acceleration efficiency and the non-thermal particles' spectra depend on the fraction of flow energy carried by the ions, suggesting that the varying power-law spectra observed in synchrotron sources powered by magnetized winds and jets might reflect the correlation of the proton-to-pair content enforced by the underlying electrodynamics of these sources' outflows. (author)

  5. An Improved Version of TOPAZ 3D

    Krasnykh, Anatoly K

    2003-01-01

    An improved version of the TOPAZ 3D gun code is presented as a powerful tool for beam optics simulation. In contrast to the previous version of TOPAZ 3D, the geometry of the device under test is introduced into TOPAZ 3D directly from a CAD program, such as Solid Edge or AutoCAD. In order to have this new feature, an interface was developed, using the GiD software package as a meshing code. The article describes this method with two models to illustrate the results.

  6. Matching Feature Points in 3D World

    Avdiu, Blerta

    2012-01-01

    This thesis work deals with the most actual topic in Computer Vision field which is scene understanding and this using matching of 3D feature point images. The objective is to make use of Saab’s latest breakthrough in extraction of 3D feature points, to identify the best alignment of at least two 3D feature point images. The thesis gives a theoretical overview of the latest algorithms used for feature detection, description and matching. The work continues with a brief description of the simu...

  7. 3-D Human Modeling and Animation

    Ratner, Peter

    2012-01-01

    3-D Human Modeling and Animation Third Edition All the tools and techniques you need to bring human figures to 3-D life Thanks to today's remarkable technology, artists can create and animate realistic, three-dimensional human figures that were not possible just a few years ago. This easy-to-follow book guides you through all the necessary steps to adapt your own artistic skill in figure drawing, painting, and sculpture to this exciting digital canvas. 3-D Human Modeling and Animation, Third Edition starts you off with simple modeling, then prepares you for more advanced techniques for crea

  8. General Concept of 3D SLAM

    Zhang, Peter; Millos, Evangelous; Gu, Jason

    2009-01-01

    This chapter established an approach to solve the full 3D SLAM problem, applied to an underwater environment. First, a general approach to the 3D SLAM problem was presented, which included the models in 3D case, data association and estimation algorithm. For an underwater mobile robot, a new measurement system was designed for large area's globally-consistent SLAM: buoys for long-range estimation, and camera for short-range estimation and map building. Globally-consistent results could be obt...

  9. FUN3D Manual: 12.5

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, William L.; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2014-01-01

    This manual describes the installation and execution of FUN3D version 12.5, including optional dependent packages. FUN3D is a suite of computational uid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables ecient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  10. FUN3D Manual: 13.0

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bill; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2016-01-01

    This manual describes the installation and execution of FUN3D version 13.0, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  11. FUN3D Manual: 12.9

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2016-01-01

    This manual describes the installation and execution of FUN3D version 12.9, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  12. FUN3D Manual: 12.4

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2014-01-01

    This manual describes the installation and execution of FUN3D version 12.4, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixedelement unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  13. 3D Media and the Semantic Web

    Spagnuolo, Michela; Falcidieno, Bianca

    2009-01-01

    3D content is widely recognized as the next wave of digital media. The success of 3D communities and mapping applications (for example, Second Life and GoogleEarth) and the decreasing costs of producing 3D environments are leading analysts to predict a dramatic shift in how people see and navigate the Internet. Greg Sterling, founder of the research fi rm Sterling Market Intelligence, suggests that"the Internet could very well be on its way to shifting from a text-based environment to a visua...

  14. 3D grafika a hry

    Vataščinová, Lenka

    2016-01-01

    In my bachelor thesis, I am going to introduce the topic of 3D graphics in the game environment. Firstly, I will provide a brief introduction of history of 3D graphics in general, but with the emphasis on history of game industry in particular. Next, I will present 3D graphics of RPG games in particular, and I will analyse the graphical side of digital work production. The main contribution of this thesis is provided in the practical part, which deals with creation of an environment for an an...

  15. An Improved Version of TOPAZ 3D

    An improved version of the TOPAZ 3D gun code is presented as a powerful tool for beam optics simulation. In contrast to the previous version of TOPAZ 3D, the geometry of the device under test is introduced into TOPAZ 3D directly from a CAD program, such as Solid Edge or AutoCAD. In order to have this new feature, an interface was developed, using the GiD software package as a meshing code. The article describes this method with two models to illustrate the results

  16. Robot Arms with 3D Vision Capabilities

    Borangiu, Theodor; Alexandru DUMITRACHE

    2010-01-01

    This chapter presented two applications of 3D vision in industrial robotics. The first one allows 3D reconstruction of decorative objects using a laser-based profile scanner mounted on a 6-DOF industrial robot arm, while the scanned part is placed on a rotary table. The second application uses the same profile scanner for 3D robot guidance along a complex path, which is learned automatically using the laser sensor and then followed using a physical tool. While the laser sensor is an expensive...

  17. Automatic balancing of 3D models

    Christiansen, Asger Nyman; Schmidt, Ryan; Bærentzen, Jakob Andreas

    2014-01-01

    3D printing technologies allow for more diverse shapes than are possible with molds and the cost of making just one single object is negligible compared to traditional production methods. However, not all shapes are suitable for 3D print. One of the remaining costs is therefore human time spent......, in these cases, we will apply a rotation of the object which only deforms the shape a little near the base. No user input is required but it is possible to specify manufacturing constraints related to specific 3D print technologies. Several models have successfully been balanced and printed using both polyjet...

  18. 3D Printing the ATLAS' barrel toroid

    Goncalves, Tiago Barreiro

    2016-01-01

    The present report summarizes my work as part of the Summer Student Programme 2016 in the CERN IR-ECO-TSP department (International Relations – Education, Communication & Outreach – Teacher and Student Programmes). Particularly, I worked closely with the S’Cool LAB team on a science education project. This project included the 3D designing, 3D printing, and assembling of a model of the ATLAS’ barrel toroid. A detailed description of the project' development is presented and a short manual on how to use 3D printing software and hardware is attached.

  19. Participation and 3D Visualization Tools

    Mullins, Michael; Jensen, Mikkel Holm; Henriksen, Sune;

    2004-01-01

    With a departure point in a workshop held at the VR Media Lab at Aalborg University , this paper deals with aspects of public participation and the use of 3D visualisation tools. The workshop grew from a desire to involve a broad collaboration between the many actors in the city through using new...... perceptions of architectural representation in urban design where 3D visualisation techniques are used. It is the authors? general finding that, while 3D visualisation media have the potential to increase understanding of virtual space for the lay public, as well as for professionals, the lay public require...

  20. The reactor dynamics code DYN3D

    The article provides an overview on the code DYN3D which is a three-dimensional core model for steady-state, dynamic and depletion calculations in reactor cores with quadratic or hexagonal fuel assembly geometry being developed by the Helmholtz-Zentrum Dresden-Rossendorf for more than 20 years. The current paper gives an overview on the basic DYN3D models and the available code couplings. The verification and validation status is shortly outlined. The paper concludes with the current developments of the DYN3D code. For more detailed information the reader is referred to the publications cited in the corresponding chapters.

  1. 3D-hahmojen toteutus mobiilipeliin

    Kemppainen, Matti

    2012-01-01

    Mobiilipelien suosio on kasvanut räjähdysmäisesti viime vuosina älypuhelinten kehittymisen myötä. Tässä opinnäytetyössä selvitetään kolmiulotteisen pelihahmon toteutusprosessi mobiilipeliin. Lisäksi pohditaan maksullisten ja ilmaisten ohjelmien eroja toteutuksessa. Pelihahmojen toteutus perustuu mobiilipeliprojektiin peliyrityksessä, jossa työskentelin graafikkona. Ohjelmien vertailussa on mukana 3D Studio Max, Blender 3D, Photoshop ja GIMP. Käytännön osuudessa käydään läpi 3D-pelihahmon...

  2. Pharmacophore definition and 3D searches.

    Langer, T; Wolber, G

    2004-12-01

    The most common pharmacophore building concepts based on either 3D structure of the target or ligand information are discussed together with the application of such models as queries for 3D database search. An overview of the key techniques available on the market is given and differences with respect to algorithms used and performance obtained are highlighted. Pharmacophore modelling and 3D database search are shown to be successful tools for enriching screening experiments aimed at the discovery of novel bio-active compounds.: PMID:24981486

  3. Computer Modelling of 3D Geological Surface

    Kodge B. G.

    2011-02-01

    Full Text Available The geological surveying presently uses methods and tools for the computer modeling of 3D-structures of the geographical subsurface and geotechnical characterization as well as the application of geoinformation systems for management and analysis of spatial data, and their cartographic presentation. The objectives of this paper are to present a 3D geological surface model of Latur district in Maharashtra state of India. This study is undertaken through the several processes which are discussed in this paper to generate and visualize the automated 3D geological surface model of a projected area.

  4. 3D face modeling, analysis and recognition

    Daoudi, Mohamed; Veltkamp, Remco

    2013-01-01

    3D Face Modeling, Analysis and Recognition presents methodologies for analyzing shapes of facial surfaces, develops computational tools for analyzing 3D face data, and illustrates them using state-of-the-art applications. The methodologies chosen are based on efficient representations, metrics, comparisons, and classifications of features that are especially relevant in the context of 3D measurements of human faces. These frameworks have a long-term utility in face analysis, taking into account the anticipated improvements in data collection, data storage, processing speeds, and application s

  5. Computer Modelling of 3D Geological Surface

    Kodge, B G

    2011-01-01

    The geological surveying presently uses methods and tools for the computer modeling of 3D-structures of the geographical subsurface and geotechnical characterization as well as the application of geoinformation systems for management and analysis of spatial data, and their cartographic presentation. The objectives of this paper are to present a 3D geological surface model of Latur district in Maharashtra state of India. This study is undertaken through the several processes which are discussed in this paper to generate and visualize the automated 3D geological surface model of a projected area.

  6. 3D tulostus - digitaalisesta mallista esineeksi

    Muurinen, Kimmo

    2013-01-01

    Tässä opinnäytetyössä esitellään 3D tulostuksen tekniikka ja materiaaleja, suunnitellaan ja tuotetaan esimerkkikappaleen digitaalinen malli, sekä tulostetaan muovinen esine digi-taalisen mallin pohjalta. Työn tavoitteena on perehdyttää lukija prosessiin, jossa itse tuotettu digitaalinen malli tulostetaan käyttäen harrastajakäyttöön tarkoitettua edullista 3D tulostinta. Esimerkkikappaleen eri osien mallinnusprosessi näytetään kokonaisuudessaan ja kerro-taan perusteita 3D mallinnuksesta...

  7. 3D-MR cholangio-angiography

    Ohkawa, Shinichi [Isehara Kyohdoh Hospital, Kanagawa (Japan); Hiramatsu, Kyoichi

    1995-04-01

    This report introduces a new 3D-MR cholangio-angiography technique using 3D Fast SE MR cholangiography and 3D phase contrast MR angiography for obstructive jaundice. In all eight cases, dilated biliary tracts as well as portal veins were clearly visualized in the same image. This new technique helped to determine the operability and surgical strategy for cases with obstructive jaundice. It also provided anatomical guidance for surgical procedures. This study suggests that this technique may replace the currently used modalities for obstructive jaundice. (author).

  8. A high capacity 3D steganography algorithm.

    Chao, Min-Wen; Lin, Chao-hung; Yu, Cheng-Wei; Lee, Tong-Yee

    2009-01-01

    In this paper, we present a very high-capacity and low-distortion 3D steganography scheme. Our steganography approach is based on a novel multilayered embedding scheme to hide secret messages in the vertices of 3D polygon models. Experimental results show that the cover model distortion is very small as the number of hiding layers ranges from 7 to 13 layers. To the best of our knowledge, this novel approach can provide much higher hiding capacity than other state-of-the-art approaches, while obeying the low distortion and security basic requirements for steganography on 3D models. PMID:19147891

  9. The Physics and Applications of a 3D Plasmonic Nanostructure

    Terranova, Brandon B.

    In this work, the dynamics of electromagnetic field interactions with free electrons in a 3D metallic nanostructure is evaluated theoretically. This dissertation starts by reviewing the relevant fundamentals of plasmonics and modern applications of plasmonic systems. Then, motivated by the need to have a simpler way of understanding the surface charge dynamics on complex plasmonic nanostructures, a new plasmon hybridization tree method is introduced. This method provides the plasmonicist with an intuitive way to determine the response of free electrons to incident light in complex nanostructures within the electrostatic regime. Next, a novel 3D plasmonic nanostructure utilizing reflective plasmonic coupling is designed to perform biosensing and plasmonic tweezing applications. By applying analytical and numerical methods, the effectiveness of this nanostructure at performing these applications is determined from the plasmonic response of the nanostructure to an excitation beam of coherent light. During this analysis, it was discovered that under certain conditions, this 3D nanostructure exhibits a plasmonic Fano resonance resulting from the interference of an in-plane dark mode and an out-of-plane bright mode. In evaluating this nanostructure for sensing changes in the local dielectric environment, a figure of merit of 68 is calculated, which is competitive with current localized surface plasmon resonance refractometric sensors. By evaluating the Maxwell stress tensor on a test particle in the vicinity of the nanostructure, it was found that under the right conditions, this plasmonic nanostructure design is capable of imparting forces greater than 10.5 nN on dielectric objects of nanoscale dimensions. The results obtained in these studies provides new routes to the design and engineering of 3D plasmonic nanostructures and Fano resonances in these systems. In addition, the nanostructure presented in this work and the design principles it utilizes have shown

  10. XML3D and Xflow: combining declarative 3D for the Web with generic data flows.

    Klein, Felix; Sons, Kristian; Rubinstein, Dmitri; Slusallek, Philipp

    2013-01-01

    Researchers have combined XML3D, which provides declarative, interactive 3D scene descriptions based on HTML5, with Xflow, a language for declarative, high-performance data processing. The result lets Web developers combine a 3D scene graph with data flows for dynamic meshes, animations, image processing, and postprocessing. PMID:24808080

  11. Water Level Indicator with Alarms Using PIC Microcontroller

    Ahmed Abdullah

    2015-07-01

    Full Text Available This paper shows a design of a water level indicator with PIC microcontroller. This design is applicable for both reservoir and main tank in home or industries.PIC 18F452 used in this design. There is also buzzer and LCD in this design. LCD used to show the level of water in both reservoir and main tank. Buzzer used to create a siren to stop the pump or water coming channel. There are 10 DIP switches used in this design. These switches indicate water level of both tanks. PIC microcontrollers also controls the motor which pumps the water in the tank from the reservoir. In the auto mode, motor is automatically turned on when water level reaches 20% in the tank and it is turned off when water level reaches 100%. Choose PIC microcontroller for programming flexibility, faster speed of execution since microcontrollers are fully integrated inside the processor

  12. 3-D Finite Element Analysis of Induction Logging in a Dipping Formation

    EVERETT,MARK E.; BADEA,EUGENE A.; SHEN,LIANG C.; MERCHANT,GULAMABBAS A.; WEISS,CHESTER J.

    2000-07-20

    Electromagnetic induction by a magnetic dipole located above a dipping interface is of relevance to the petroleum well-logging industry. The problem is fully three-dimensional (3-D) when formulated as above, but reduces to an analytically tractable one-dimensional (1-D) problem when cast as a small tilted coil above a horizontal interface. The two problems are related by a simple coordinate rotation. An examination of the induced eddy currents and the electric charge accumulation at the interface help to explain the inductive and polarization effects commonly observed in induction logs from dipping geological formations. The equivalence between the 1-D and 3-D formulations of the problem enables the validation of a previously published finite element solver for 3-D controlled-source electromagnetic induction.

  13. Fully 3D Particle-in-Cell Simulation of Double Post-Hole Convolute on PTS Facility

    Zhao, Hailong; Dong, Ye; Zhou, Haijing; Zou, Wenkang; Institute of Fluid Physics Collaboration; Institute of Applied Physics; Computational Mathematics Collaboration

    2015-11-01

    In order to get better understand of energy transforming and converging process during High Energy Density Physics (HEDP) experiments, fully 3D particle-in-cell (PIC) simulation code NEPTUNE3D was used to provide numerical approach towards parameters which could hardly be acquired through diagnostics. Cubic region (34cm × 34cm × 18cm) including the double post-hole convolute (DPHC) on the primary test stand (PTS) facility was chosen to perform a series of fully 3D PIC simulations, calculating ability of codes were tested and preliminary simulation results about DPHC on PTS facility were discussed. Taking advantages of 3D simulation codes and large-scale parallel computation, massive data (~ 250GB) could be acquired in less than 5 hours and clear process of current transforming and electron emission in DPHC were demonstrated with the help of visualization tools. Cold-chamber tests were performed during which only cathode electron emission was considered without temperature rise or ion emission, current loss efficiency was estimated to be 0.46% ~ 0.48% by comparisons between output magnetic field profiles with or without electron emission. Project supported by the National Natural Science Foundation of China (Grant No. 11205145, 11305015, 11475155).

  14. Nonlaser-based 3D surface imaging

    Lu, Shin-yee; Johnson, R.K.; Sherwood, R.J. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    3D surface imaging refers to methods that generate a 3D surface representation of objects of a scene under viewing. Laser-based 3D surface imaging systems are commonly used in manufacturing, robotics and biomedical research. Although laser-based systems provide satisfactory solutions for most applications, there are situations where non laser-based approaches are preferred. The issues that make alternative methods sometimes more attractive are: (1) real-time data capturing, (2) eye-safety, (3) portability, and (4) work distance. The focus of this presentation is on generating a 3D surface from multiple 2D projected images using CCD cameras, without a laser light source. Two methods are presented: stereo vision and depth-from-focus. Their applications are described.

  15. Curating Architectural 3D CAD Models

    MacKenzie Smith

    2009-06-01

    Full Text Available Normal 0 Increasing demand to manage and preserve 3-dimensional models for a variety of physical phenomena (e.g., building and engineering designs, computer games, or scientific visualizations is creating new challenges for digital archives. Preserving 3D models requires identifying technical formats for the models that can be maintained over time, and the available formats offer different advantages and disadvantages depending on the intended future uses of the models. Additionally, the metadata required to manage 3D models is not yet standardized, and getting intellectual proposal rights for digital models is uncharted territory.  The FACADE Project at MIT is investigating these challenges in the architecture, engineering and construction (AEC industry and has developed recommendations and systems to support digital archives in dealing with digital 3D models and related data. These results can also be generalized to other domains doing 3D modeling.

  16. 3D Visualization of Recent Sumatra Earthquake

    Nayak, Atul; Kilb, Debi

    2005-04-01

    Scientists and visualization experts at the Scripps Institution of Oceanography have created an interactive three-dimensional visualization of the 28 March 2005 magnitude 8.7 earthquake in Sumatra. The visualization shows the earthquake's hypocenter and aftershocks recorded until 29 March 2005, and compares it with the location of the 26 December 2004 magnitude 9 event and the consequent seismicity in that region. The 3D visualization was created using the Fledermaus software developed by Interactive Visualization Systems (http://www.ivs.unb.ca/) and stored as a ``scene'' file. To view this visualization, viewers need to download and install the free viewer program iView3D (http://www.ivs3d.com/products/iview3d).

  17. Transportstromen verschuiven door toepassing 3-D

    Janssen, G.R.

    2014-01-01

    3-D printing is aan een gestage opmars bezig.ln een paar jaar tijd is er een miljardenmarkt ontstaan die exponentieel groeit. TNO deed onderzoek naar de impact van deze ontwikkelingen op supply chains.

  18. 3DSEM: A 3D microscopy dataset.

    Tafti, Ahmad P; Kirkpatrick, Andrew B; Holz, Jessica D; Owen, Heather A; Yu, Zeyun

    2016-03-01

    The Scanning Electron Microscope (SEM) as a 2D imaging instrument has been widely used in many scientific disciplines including biological, mechanical, and materials sciences to determine the surface attributes of microscopic objects. However the SEM micrographs still remain 2D images. To effectively measure and visualize the surface properties, we need to truly restore the 3D shape model from 2D SEM images. Having 3D surfaces would provide anatomic shape of micro-samples which allows for quantitative measurements and informative visualization of the specimens being investigated. The 3DSEM is a dataset for 3D microscopy vision which is freely available at [1] for any academic, educational, and research purposes. The dataset includes both 2D images and 3D reconstructed surfaces of several real microscopic samples. PMID:26779561

  19. Copper Electrodeposition for 3D Integration

    Beica, Rozalia; Ritzdorf, Tom

    2008-01-01

    Two dimensional (2D) integration has been the traditional approach for IC integration. Due to increasing demands for providing electronic devices with superior performance and functionality in more efficient and compact packages, has driven the semiconductor industry to develop more advanced packaging technologies. Three-dimensional (3D) approaches address both miniaturization and integration required for advanced and portable electronic products. Vertical integration proved to be essential in achieving a greater integration flexibility of disparate technologies, reason for which a general trend of transition from 2D to 3D integration is currently being observed in the industry. 3D chip integration using through silicon via (TSV) copper is considered one of the most advanced technologies among all different types of 3D packaging technologies. Copper electrodeposition is one of technologies that enable the formation of TSV structures. Because of its well-known application for copper damascene, it was believed ...

  20. 3D-printed bioanalytical devices

    Bishop, Gregory W.; Satterwhite-Warden, Jennifer E.; Kadimisetty, Karteek; Rusling, James F.

    2016-07-01

    While 3D printing technologies first appeared in the 1980s, prohibitive costs, limited materials, and the relatively small number of commercially available printers confined applications mainly to prototyping for manufacturing purposes. As technologies, printer cost, materials, and accessibility continue to improve, 3D printing has found widespread implementation in research and development in many disciplines due to ease-of-use and relatively fast design-to-object workflow. Several 3D printing techniques have been used to prepare devices such as milli- and microfluidic flow cells for analyses of cells and biomolecules as well as interfaces that enable bioanalytical measurements using cellphones. This review focuses on preparation and applications of 3D-printed bioanalytical devices.

  1. Mobile 3D Viewer Supporting RFID System

    Kim, J. J.; Yang, S. W.; Choi, Y. [Chungang Univ., Seoul (Korea, Republic of)

    2007-07-01

    As hardware capabilities of mobile devices are being rapidly enhanced, applications based upon mobile devices are also being developed in wider areas. In this paper, a prototype mobile 3D viewer with the object identification through RFID system is presented. To visualize 3D engineering data such as CAD data, we need a process to compute triangulated data from boundary based surface like B-rep solid or trimmed surfaces. Since existing rendering engines on mobile devices do not provide triangulation capability, mobile 3D programs have focused only on an efficient handling with pre-tessellated geometry. We have developed a light and fast triangulation process based on constrained Delaunay triangulation suitable for mobile devices in the previous research. This triangulation software is used as a core for the mobile 3D viewer on a PDA with RFID system that may have potentially wide applications in many areas.

  2. Mobile 3D Viewer Supporting RFID System

    As hardware capabilities of mobile devices are being rapidly enhanced, applications based upon mobile devices are also being developed in wider areas. In this paper, a prototype mobile 3D viewer with the object identification through RFID system is presented. To visualize 3D engineering data such as CAD data, we need a process to compute triangulated data from boundary based surface like B-rep solid or trimmed surfaces. Since existing rendering engines on mobile devices do not provide triangulation capability, mobile 3D programs have focused only on an efficient handling with pre-tessellated geometry. We have developed a light and fast triangulation process based on constrained Delaunay triangulation suitable for mobile devices in the previous research. This triangulation software is used as a core for the mobile 3D viewer on a PDA with RFID system that may have potentially wide applications in many areas

  3. Pentingnya Pengetahuan Anatomi untuk 3D Artist

    Anton Sugito Kurniawan

    2011-03-01

    Full Text Available No matter how far the current technological advances, anatomical knowledge will still be needed as a basis for making a good character design. Understanding anatomy will help us in the placement of the articulation of muscles and joints, thus more realistic modeling of 3d characters will be achieved in the form and movement. As a 3d character artist, anatomy should be able to inform in every aspect of our work. Each 3D/CG (Computer Graphics-artist needs to know how to use software applications, but what differentiates a 3d artist with a computer operator is an artistic vision and understanding of the basic shape of the human body. Artistic vision could not easily be taught, but a CG-artist may study it on their own from which so many reference sources may help understand and deepen their knowledge of anatomy.

  4. Eyes on the Earth 3D

    Kulikov, anton I.; Doronila, Paul R.; Nguyen, Viet T.; Jackson, Randal K.; Greene, William M.; Hussey, Kevin J.; Garcia, Christopher M.; Lopez, Christian A.

    2013-01-01

    Eyes on the Earth 3D software gives scientists, and the general public, a realtime, 3D interactive means of accurately viewing the real-time locations, speed, and values of recently collected data from several of NASA's Earth Observing Satellites using a standard Web browser (climate.nasa.gov/eyes). Anyone with Web access can use this software to see where the NASA fleet of these satellites is now, or where they will be up to a year in the future. The software also displays several Earth Science Data sets that have been collected on a daily basis. This application uses a third-party, 3D, realtime, interactive game engine called Unity 3D to visualize the satellites and is accessible from a Web browser.

  5. Networked 3D Virtual Museum System

    2003-01-01

    Virtual heritage has become increasingly important in the conservation, preservation, and interpretation of our cultural and natural history. Moreover, rapid advances in digital technologies in recent years offer virtual heritage new direction. This paper introduces our approach toward a networked 3D virtual museum system, especially, how to model, manage, present virtual heritages and furthermore how to use computer network for the share of virtual heritage in the networked virtual environment. This paper first addresses a 3D acquisition and processing technique for virtual heritage modeling and shows some illustrative examples. Then, this paper describes a management of virtual heritage assets that are composed by various rich media. This paper introduces our schemes to present the virtual heritages, which include 3D virtual heritage browser system, CAVE system, and immersive VR theater. Finally, this paper presents the new direction of networked 3D virtual museum of which main idea is remote guide of the virtual heritage using the mixed reality technique.

  6. Advanced 3D Object Identification System Project

    National Aeronautics and Space Administration — Optra will build an Advanced 3D Object Identification System utilizing three or more high resolution imagers spaced around a launch platform. Data from each imager...

  7. 3D-printed bioanalytical devices.

    Bishop, Gregory W; Satterwhite-Warden, Jennifer E; Kadimisetty, Karteek; Rusling, James F

    2016-07-15

    While 3D printing technologies first appeared in the 1980s, prohibitive costs, limited materials, and the relatively small number of commercially available printers confined applications mainly to prototyping for manufacturing purposes. As technologies, printer cost, materials, and accessibility continue to improve, 3D printing has found widespread implementation in research and development in many disciplines due to ease-of-use and relatively fast design-to-object workflow. Several 3D printing techniques have been used to prepare devices such as milli- and microfluidic flow cells for analyses of cells and biomolecules as well as interfaces that enable bioanalytical measurements using cellphones. This review focuses on preparation and applications of 3D-printed bioanalytical devices. PMID:27250897

  8. 3D Biomaterial Microarrays for Regenerative Medicine

    Gaharwar, Akhilesh K.; Arpanaei, Ayyoob; Andresen, Thomas Lars;

    2015-01-01

    Three dimensional (3D) biomaterial microarrays hold enormous promise for regenerative medicine because of their ability to accelerate the design and fabrication of biomimetic materials. Such tissue-like biomaterials can provide an appropriate microenvironment for stimulating and controlling stem...

  9. Measuring Visual Closeness of 3-D Models

    Morales, Jose A.

    2012-09-01

    Measuring visual closeness of 3-D models is an important issue for different problems and there is still no standardized metric or algorithm to do it. The normal of a surface plays a vital role in the shading of a 3-D object. Motivated by this, we developed two applications to measure visualcloseness, introducing normal difference as a parameter in a weighted metric in Metro’s sampling approach to obtain the maximum and mean distance between 3-D models using 3-D and 6-D correspondence search structures. A visual closeness metric should provide accurate information on what the human observers would perceive as visually close objects. We performed a validation study with a group of people to evaluate the correlation of our metrics with subjective perception. The results were positive since the metrics predicted the subjective rankings more accurately than the Hausdorff distance.

  10. Lightning fast animation in Element 3D

    Audronis, Ty

    2014-01-01

    An easy-to-follow and all-inclusive guide, in which the underlying principles of 3D animation as well as their importance are explained in detail. The lessons are designed to teach you how to think of 3D animation in such a way that you can troubleshoot any problem, or animate any scene that comes your way.If you are a Digital Artist, Animation Artist, or a Game Programmer and you want to become an expert in Element 3D, this is the book for you. Although there are a lot of basics for beginners in this book, it includes some advanced techniques for both animating in Element 3D, and overcoming i

  11. 3D-FPA Hybridization Improvements Project

    National Aeronautics and Space Administration — Advanced Scientific Concepts, Inc. (ASC) is a small business, which has developed a compact, eye-safe 3D Flash LIDARTM Camera (FLC) well suited for real-time...

  12. 3D Flash LIDAR Space Laser Project

    National Aeronautics and Space Administration — Advanced Scientific Concepts, Inc (ASC) is a small business, which has developed a compact, eye-safe 3D Flash LIDARTM Camera (FLC) well suited for real-time...

  13. Boiled Water Temperature Measurement System Using PIC Microcontroller

    A.T.KARUPPIAH, AZHA. PERIASAMY, P.RAJKUMAR

    2013-01-01

    The measurement system for temperature of boiled water is a critical task in industry. In this paper we designed and implemented a PIC micro controller based boiled water temperature measurement system using PIC 18F452 and national semiconductors LM35 temperature sensor. The designing system is used to measure the tank I boiled water temperature value. If the temperature value reaches the set value high temperature relay board becomes ON to control the solenoid valve. The high temperature of ...

  14. Development of Inexpensive Static Var Compensator Using PIC

    Phinit Srithorn; Mongkol Danbumrungtrakul

    2014-01-01

    This study presents the design and construction of an economical static reactive power compensator using inexpensive Peripheral Interface Controller (PIC), with the aim to add dynamic response to local distribution power systems. As FACTS devices have been more prevalent to perform instantaneous power compensation providing the enhancement of transient voltage and system stability. For some distribution networks, its price and complicated operation make FACTS devices unfavorable. The PIC is p...

  15. Metal Detector By Using PIC Microcontroller Interfacing With PC

    Yin Min Theint; Myo Maung Maung; Hla Myo Tun

    2015-01-01

    Abstract This system proposes metal detector by using PIC microcontroller interfacing with PC. The system uses PIC microcontroller as the main controller whether the detected metal is ferrous metal or non-ferrous metal. Among various types of metal sensors and various types of metal detecting technologies concentric type induction coil sensor and VLF very low frequency metal detecting technology are used in this system. This system consists of two configurations Hardware configuration and Sof...

  16. 3D Reconstruction of NMR Images

    Peter Izak

    2007-01-01

    Full Text Available This paper introduces experiment of 3D reconstruction NMR images scanned from magnetic resonance device. There are described methods which can be used for 3D reconstruction magnetic resonance images in biomedical application. The main idea is based on marching cubes algorithm. For this task was chosen sophistication method by program Vision Assistant, which is a part of program LabVIEW.

  17. Recognition of Symmetric 3D Bodies

    Suk, Tomáš; Flusser, Jan

    2014-01-01

    Roč. 6, č. 3 (2014), s. 722-757. ISSN 2073-8994 R&D Projects: GA ČR GAP103/11/1552 Institutional support: RVO:67985556 Keywords : rotation symmetry * reflection symmetry * 3D complex moments * 3D rotation invariants Subject RIV: JD - Computer Applications, Robotics Impact factor: 0.826, year: 2014 http://library.utia.cas.cz/separaty/2014/ZOI/suk-0431156.pdf

  18. Multifractal modelling and 3D lacunarity analysis

    This study presents a comparative evaluation of lacunarity of 3D grey level models with different types of inhomogeneity. A new method based on the 'Relative Differential Box Counting' was developed to estimate the lacunarity features of grey level volumes. To validate our method, we generated a set of 3D grey level multifractal models with random, anisotropic and hierarchical properties. Our method gives a lacunarity measurement correlated with the theoretical one and allows a better model classification compared with a classical approach.

  19. Massive 3D gravity Big Bounce

    The properties of an extension of the new massive 3D gravity by scalar matter with Higgs-like self-interaction are investigated. Its perturbative unitarity consistency is verified for a family of cosmological bounce solutions found by the superpotential method. They correspond to the lower bound λ=-1 of the BHT unitarity window and describe eternally accelerated 3D Universe between two initial/final stable dS3 vacua states.

  20. 3D Printing for Tissue Engineering

    Richards, Dylan Jack; Tan, Yu; Jia, Jia; Yao, Hai; Mei, Ying

    2013-01-01

    Tissue engineering aims to fabricate functional tissue for applications in regenerative medicine and drug testing. More recently, 3D printing has shown great promise in tissue fabrication with a structural control from micro- to macro-scale by using a layer-by-layer approach. Whether through scaffold-based or scaffold-free approaches, the standard for 3D printed tissue engineering constructs is to provide a biomimetic structural environment that facilitates tissue formation and promotes host ...

  1. Ajosimulaation toteutus Unity 3D -pelimoottorilla

    Tapio, Tomi

    2014-01-01

    Opinnäytetyön aiheena oli ajosimulaation toteutus Unity 3D -pelimoottorilla. Työn idea syntyi, kun ENVI-oppimisympäristöön tarvittiin liikealustalla toimiva ambulanssisimulaattori, jonka avulla opiskelijat voisivat oppia erilaisia hoitotilanteita. ENVI on terveydenalan opiskelijoiden virtuaalinen oppimisympäristö. Työn toimeksiantaja oli ohjelmistotekniikan laboratorio pLAB, joka sijaitsee Lapin ammattikorkeakoulun tiloissa Rantavitikalla. Opinnäytetyön tavoitteena oli toteuttaa Unity 3D ...

  2. Luovasta konseptisuunnittelusta 3D-mainoselokuvaan

    Salo, Suvi

    2015-01-01

    Insinöörityön tavoite oli luoda 3D-mainoselokuva myynnin tueksi ja nostaa esiin IT-alan yrityksen ja sen yksikön tuottamien palveluiden laajuutta ja yrityksen tapaa tuottaa tulostuspalvelua. Toteutettu mainoselokuva on tarkoitettu julkaistavaksi verkossa yrityksen omalla Youtube-kanavalla ja verkkosivuilla. 3D-mainoselokuvan suunnittelussa käytettiin luovan konseptisuunnittelun keinoja jalostaa tarina kohderyhmälähtöiseksi. Aluksi selvitettiin asiakasrajapinnan haastattelujen avulla kohde...

  3. 3D printing: technology and processing

    Kurinov, Ilya

    2016-01-01

    The objective of the research was to improve the process of 3D printing on the laboratory machine. In the study processes of designing, printing and post-print-ing treatment were improved. The study was commissioned by Mikko Ruotsalainen, head of the laboratory. The data was collected during the test work. All the basic information about 3D printing was taken from the Internet or library. As the results of the project higher model accuracy, solutions for post-printing treatment, printin...

  4. 3D printing of functional structures

    Krijnen, G.J.M.

    2016-01-01

    The technology colloquial known as ‘3D printing’ has developed in such diversity in printing technologies and application fields that meanwhile it seems anything is possible. However, clearly the ideal 3D Printer, with high resolution, multi-material capability, fast printing, etc. is yet to be developed. Nevertheless, one can al- ready start to wonder what possibilities for electrical engineering applications will become available in the near future. Here I try to give a brief and balanced o...

  5. Massive 3D Gravity Big-Bounce

    Louzada, H L C; Sotkov, G M

    2010-01-01

    The properties of an extension of the New Massive 3D Gravity by scalar matter with Higgs-like self-interaction are investigated. Its perturbative unitarity consistency is verified for a family of cosmological Bounce solutions found by the superpotential method. They correspond to the lower bound ${\\lambda = -1}$ of the BHT unitarity window and describe eternally accelerated 3D Universe between two initial/final stable $dS_3$ vacua states.

  6. 3D Printing Electrically Small Spherical Antennas

    Kim, Oleksiy S.

    2013-01-01

    3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations.......3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations....

  7. Visual Attention in 3D Video Games.

    Seif El-Nasr, Magy; Yan, Su

    2006-01-01

    Understanding players’ visual attention patterns within an interactive 3D game environment is an important research area that can improve game level design and graphics. Several graphics techniques use a perception based rendering method to enhance graphics quality while achieving the fast rendering speed required for fast-paced 3D video games. Game designers can also enhance game play by adjusting the level design, texture and color choices, and objects’ locations, if such decisions are info...

  8. Embedding 3D into multipurpose cadastre

    A. A. Rahman; T. C. Hua; P. J. M. Van Oosterom

    2011-01-01

    There is no doubt that the cadastral map provides a useful entrance to information in a land parcel based information system. However, such information system could be made more meaningful and useful if it can be extended for multiple usages with multi data layers, and in three-dimensions (3D). Currently, many national mapping and cadastral agencies (NMCAs) and users deal with complex situations, and we believe that 3D could enhance the understanding of the situations better. This paper descr...

  9. Improving Accuracy for 3D RFID Localization

    Chun Hung Wong; Yan Shun Cheng; Tse Lung Wong; Jinsong Han; Yiyang Zhao

    2012-01-01

    Radio Frequency Identification (RFID) becomes a prevalent labeling and localizing technique in the recent years. Deploying indoor RFID localization systems facilitates many applications. Previous approaches, however, are most based on 2D design and cannot provide 3D location information. The lack of one-dimensional information may lead 2D-based systems to inaccurate localization. In this paper, we develop an indoor 3D RFID localization system based on active tag array. In particular, we emplo...

  10. LandSIM3D: modellazione in real time 3D di dati geografici

    Lambo Srl Lambo Srl

    2009-01-01

    LandSIM3D: realtime 3D modelling of geographic dataLandSIM3D allows to model in 3D an existing landscape in a few hours only and geo-referenced offering great landscape analysis and understanding tools. 3D projects can then be inserted into the existing landscape with ease and precision. The project alternatives and impact can then be visualized and studied into their immediate environmental. The complex evolution of the landscape in the future can also be simulated and the landscape model ca...

  11. Adaptive Enhancement of 3D Scenes using Hierarchical Registration of Texture-Mapped 3D Models

    Ramalingam, Srikumar; Lodha, Suresh

    2003-01-01

    Adaptive fusion of new information in a 3D urban scene is an important goal to achieve in computer vision, graphics, and visualization. In this work we acquire new image pairs of a scene from closer distances and extract 3D models of successively higher resolutions. We present a new hierarchical approach to register these texture-mapped 3D models with a coarse 3D texture mapped model of an urban scene. First, we use the standard reconstruction algorithm to construct 3D models after establishi...

  12. X3D Interoperability and X3D Progress, Common Problems versus Stable Growth [video

    Tourtelotte, Dale R.; Brutzman, Don

    2010-01-01

    In large measure, the vision of making it easier to create and use 3D spatial data has been achieved through The Extensible 3D (X3D) Earth project. This project created a standards-based 3D visualization infrastructure for visualizing all manner of real-world objects and information constructs in a geospatial context. The ability to archive models using stable commercial tools and noncommercial international standards ensures that 3D work can remain accessible and repeatable for many years to...

  13. Developing a 3D virtual geology field trip in Unity 3D: reflection of our experiences

    Minocha, Shailey

    2014-01-01

    As a part of The OpenScience Laboratory(), an initiative of The Open University, UK and The Wolfson Foundation, we have developed a 3D simulation of a Geology field trip (), using the Unity 3D software (). The learning activities within the 3D App are designed to mirror the experience of a real field trip. The design and development of the 3D App has involved people with diverse skills in a University environment while working closely with an external developer who brought in Unity and 3D mod...

  14. PRETVORBA 3D MODELOV IZ PROGRAMA BLENDER V BINARNI ZAPIS IGRALNEGA POGONA PRISM3D

    Lušenc, Simon

    2014-01-01

    Magistrsko delo predstavi binarni zapis 3D modelov, uporabljenih v igralnem pogonu Prism3D in razvoj dodatka za pretvorbo 3D modelov s programskim orodjem Blender, ki ga tudi najprej na kratko opišemo. V nadaljevanju analiziramo zapise uporabljenih datotek, kar nam omogoči razvoj dodatka za uvoz in izvoz 3D modela, uporabljenega v igralnem pogonu Prism3D. Po predstavljeni izdelavi dodatka z vizualno primerjavo ocenimo njegovo uspešnosti in podamo možne izboljšave.

  15. Auto convergence for stereoscopic 3D cameras

    Zhang, Buyue; Kothandaraman, Sreenivas; Batur, Aziz Umit

    2012-03-01

    Viewing comfort is an important concern for 3-D capable consumer electronics such as 3-D cameras and TVs. Consumer generated content is typically viewed at a close distance which makes the vergence-accommodation conflict particularly pronounced, causing discomfort and eye fatigue. In this paper, we present a Stereo Auto Convergence (SAC) algorithm for consumer 3-D cameras that reduces the vergence-accommodation conflict on the 3-D display by adjusting the depth of the scene automatically. Our algorithm processes stereo video in realtime and shifts each stereo frame horizontally by an appropriate amount to converge on the chosen object in that frame. The algorithm starts by estimating disparities between the left and right image pairs using correlations of the vertical projections of the image data. The estimated disparities are then analyzed by the algorithm to select a point of convergence. The current and target disparities of the chosen convergence point determines how much horizontal shift is needed. A disparity safety check is then performed to determine whether or not the maximum and minimum disparity limits would be exceeded after auto convergence. If the limits would be exceeded, further adjustments are made to satisfy the safety limits. Finally, desired convergence is achieved by shifting the left and the right frames accordingly. Our algorithm runs real-time at 30 fps on a TI OMAP4 processor. It is tested using an OMAP4 embedded prototype stereo 3-D camera. It significantly improves 3-D viewing comfort.

  16. Assessing 3d Photogrammetry Techniques in Craniometrics

    Moshobane, M. C.; de Bruyn, P. J. N.; Bester, M. N.

    2016-06-01

    Morphometrics (the measurement of morphological features) has been revolutionized by the creation of new techniques to study how organismal shape co-varies with several factors such as ecophenotypy. Ecophenotypy refers to the divergence of phenotypes due to developmental changes induced by local environmental conditions, producing distinct ecophenotypes. None of the techniques hitherto utilized could explicitly address organismal shape in a complete biological form, i.e. three-dimensionally. This study investigates the use of the commercial software, Photomodeler Scanner® (PMSc®) three-dimensional (3D) modelling software to produce accurate and high-resolution 3D models. Henceforth, the modelling of Subantarctic fur seal (Arctocephalus tropicalis) and Antarctic fur seal (Arctocephalus gazella) skulls which could allow for 3D measurements. Using this method, sixteen accurate 3D skull models were produced and five metrics were determined. The 3D linear measurements were compared to measurements taken manually with a digital caliper. In addition, repetitive measurements were recorded by varying researchers to determine repeatability. To allow for comparison straight line measurements were taken with the software, assuming that close accord with all manually measured features would illustrate the model's accurate replication of reality. Measurements were not significantly different demonstrating that realistic 3D skull models can be successfully produced to provide a consistent basis for craniometrics, with the additional benefit of allowing non-linear measurements if required.

  17. RAG-3D: a search tool for RNA 3D substructures.

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; Schlick, Tamar

    2015-10-30

    To address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D-a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool-designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally described in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding. PMID:26304547

  18. PICsIM - the INTEGRAL/IBIS/PICsIT Observation Simulation Tool for Prototype Software Evaluation

    Stephen, J B

    2001-01-01

    The INTEGRAL satellite is an observatory-class gamma-ray telescope due for launch in early 2002. It comprises two main instruments, one optimised for imaging (IBIS) and the other for spectroscopy (SPI). The PICsIT telescope is the high energy (150 keV - 10 MeV) plane of the IBIS imager and consists of 8 individual modules of 512 detection elements. The modules are arranged in a 4 x 2 pattern, while the pixels are in a 16 x 32 array. This layout, which includes a dead area equivalent to one pixel width between each module, together with the event selection procedure, which (in standard mode) does not allow the identification of coincidences between separate modules, leads to a non-uniformity of the background which is significantly different for single-site events and for multiple energy deposits. Other sources of background variations range from the separate low energy detector, situated immediately above the PICsIT plane, to the large mass of the SPI telescope at a short distance to one side. The algorithms ...

  19. 3-D SAR image formation from sparse aperture data using 3-D target grids

    Bhalla, Rajan; Li, Junfei; Ling, Hao

    2005-05-01

    The performance of ATR systems can potentially be improved by using three-dimensional (3-D) SAR images instead of the traditional two-dimensional SAR images or one-dimensional range profiles. 3-D SAR image formation of targets from radar backscattered data collected on wide angle, sparse apertures has been identified by AFRL as fundamental to building an object detection and recognition capability. A set of data has been released as a challenge problem. This paper describes a technique based on the concept of 3-D target grids aimed at the formation of 3-D SAR images of targets from sparse aperture data. The 3-D target grids capture the 3-D spatial and angular scattering properties of the target and serve as matched filters for SAR formation. The results of 3-D SAR formation using the backhoe public release data are presented.

  20. 3D-mallien muokkaus 3D-tulostamista varten CAD-ohjelmilla

    Lehtimäki, Jarmo

    2013-01-01

    Insinöörityössäni käsitellään 3D-mallien tulostamista ja erityisesti 3D-mallien mallintamista niin, että kappaleiden valmistaminen 3D-tulostimella onnistuisi mahdollisimman hyvin. Työ tehtiin Prohoc Oy:lle, joka sijaitsee Vaasassa. 3D-tulostuspalveluun tuli jatkuvasti 3D-malleja, joiden tulostuksessa oli ongelmia. Työssäni tutkin näiden ongelmien syntyä ja tein ohjeita eri 3D-mallinnusohjelmille, joiden tarkoituksena on auttaa tekemään helpommin tulostettavia 3D-malleja. Työhön kuului myös et...

  1. Study of Electron Acceleration and Multiple Dipolarization Fronts in 3D kinetic models

    Lapenta, Giovanni; Ashour-Abdalla, Maha; Walker, Raymond; El-Alaoui, Mostafa

    2014-05-01

    The THEMIS mission encountered a depolarization front (DF) during a magnetotail crossing in the interval 035600 - 035900 UT on February 15, 2008 [1]. We present the results of an innovative investigative approach: we combine a global MHD model of the full Earth environment with a local PIC simulation. The global MHD view is provided on the UCLA model applied to the conditions for the interval of interest on Feb 15, 2008. At the specific time of 034800UT, a reconnection site first appear at about x=-15RE, y=4RE. We then use this specific MHD state as the initial setup for a fully kinetic PIC simulation, performed with the iPic3D code [2]. We consider a one way coupling where the MHD state is used as initial state and boundary conditions for the kinetic study [3]. In the present case, the time span of the kinetic simulation is short form the perspective of the global MHD simulation and does not require a full coupling where the MHD then process the information received back from the kinetic run [4]. The fields and particles are advanced self-consistently from the MHD state using a completely kinetic treatment. Many features missed by the MHD model emerge. Most notably a fast reconnection pattern develops and an unsteady reconnection process develops. The typical signatures of fast kinetic reconnection (Hall field) are observed and particle acceleration is obtained self consistently in the fields generated by the PIC simulation. The focus of the presentation will be the mechanisms of unsteady reconnection leading to multiple DFs. We observe intense wave activity propagating off the separatrices. We conduct a spectral analysis to isolate the different wave components in the lower hybrid and whistler regime. The unsteady reconnection and multiple DFs are also analysed in their impact on the energy transfer. We track the conversion of magnetic energy to particle energy and Poynting flux. The processes observed in the simulation are then compared with in situ THEMIS data

  2. 3D-PRINTING OF BUILD OBJECTS

    SAVYTSKYI M. V.

    2016-03-01

    Full Text Available Raising of problem. Today, in all spheres of our life we can constate the permanent search for new, modern methods and technologies that meet the principles of sustainable development. New approaches need to be, on the one hand more effective in terms of conservation of exhaustible resources of our planet, have minimal impact on the environment and on the other hand to ensure a higher quality of the final product. Construction is not exception. One of the new promising technology is the technology of 3D -printing of individual structures and buildings in general. 3Dprinting - is the process of real object recreating on the model of 3D. Unlike conventional printer which prints information on a sheet of paper, 3D-printer allows you to display three-dimensional information, i.e. creates certain physical objects. Currently, 3D-printer finds its application in many areas of production: machine building elements, a variety of layouts, interior elements, various items. But due to the fact that this technology is fairly new, it requires the creation of detailed and accurate technologies, efficient equipment and materials, and development of common vocabulary and regulatory framework in this field. Research Aim. The analysis of existing methods of creating physical objects using 3D-printing and the improvement of technology and equipment for the printing of buildings and structures. Conclusion. 3D-printers building is a new generation of equipment for the construction of buildings, structures, and structural elements. A variety of building printing technics opens up wide range of opportunities in the construction industry. At this stage, printers design allows to create low-rise buildings of different configurations with different mortars. The scientific novelty of this work is to develop proposals to improve the thermal insulation properties of constructed 3D-printing objects and technological equipment. The list of key terms and notions of construction

  3. 3D Printing Multi-Functionality: Embedded RF Antennas and Components

    Shemelya, C. M.; Zemba, M.; Liang, M.; Espalin, D.; Kief, C.; Xin, H.; Wicker, R. B.; MacDonald, E. W.

    2015-01-01

    Significant research and press has recently focused on the fabrication freedom of Additive Manufacturing (AM) to create both conceptual models and final end-use products. This flexibility allows design modifications to be immediately reflected in 3D printed structures, creating new paradigms within the manufacturing process. 3D printed products will inevitably be fabricated locally, with unit-level customization, optimized to unique mission requirements. However, for the technology to be universally adopted, the processes must be enhanced to incorporate additional technologies; such as electronics, actuation, and electromagnetics. Recently, a novel 3D printing platform, Multi3D manufacturing, was funded by the presidential initiative for revitalizing manufacturing in the USA using 3D printing (America Makes - also known as the National Additive Manufacturing Innovation Institute). The Multi3D system specifically targets 3D printed electronics in arbitrary form; and building upon the potential of this system, this paper describes RF antennas and components fabricated through the integration of material extrusion 3D printing with embedded wire, mesh, and RF elements.

  4. Comparison of Integrators for Electromagnetic Particle in Cell Methods: Algorithms and Applications

    Geiser, Juergen; Riedel, Frederik

    2014-01-01

    In this paper, we present different types of integrators for electro-magnetic particle-in-cell (PIC) methods. While the integrator is an important tool of the PIC methods, it is necessary to characterize the different conservation approaches of the integrators, e.g. symplecticity, energy- or charge-conservation. We discuss the different principles, e.g. composition, filtering, explicit and implicit ideas. While, particle in cell methods are well-studied, the combination between the different ...

  5. PLOT3D Export Tool for Tecplot

    Alter, Stephen

    2010-01-01

    The PLOT3D export tool for Tecplot solves the problem of modified data being impossible to output for use by another computational science solver. The PLOT3D Exporter add-on enables the use of the most commonly available visualization tools to engineers for output of a standard format. The exportation of PLOT3D data from Tecplot has far reaching effects because it allows for grid and solution manipulation within a graphical user interface (GUI) that is easily customized with macro language-based and user-developed GUIs. The add-on also enables the use of Tecplot as an interpolation tool for solution conversion between different grids of different types. This one add-on enhances the functionality of Tecplot so significantly, it offers the ability to incorporate Tecplot into a general suite of tools for computational science applications as a 3D graphics engine for visualization of all data. Within the PLOT3D Export Add-on are several functions that enhance the operations and effectiveness of the add-on. Unlike Tecplot output functions, the PLOT3D Export Add-on enables the use of the zone selection dialog in Tecplot to choose which zones are to be written by offering three distinct options - output of active, inactive, or all zones (grid blocks). As the user modifies the zones to output with the zone selection dialog, the zones to be written are similarly updated. This enables the use of Tecplot to create multiple configurations of a geometry being analyzed. For example, if an aircraft is loaded with multiple deflections of flaps, by activating and deactivating different zones for a specific flap setting, new specific configurations of that aircraft can be easily generated by only writing out specific zones. Thus, if ten flap settings are loaded into Tecplot, the PLOT3D Export software can output ten different configurations, one for each flap setting.

  6. Effects from switching on PIC simulations: Geospace Environmental Modeling (GEM) reconnection setup revisited

    Bourdin, P. A.; Nakamura, T.; Narita, Y.

    2015-12-01

    Electromagnetic Parcile-In-Cell (PIC) simulations are widely used to study plasma phenomena where kinetic scales are coupled to fluid scales. One of these phenomena is the evolution of magnetic reconnection. Switch-on effects have been described earlier for magneto-/hydrodynamic (MHD and HD) simulations, where oscillations are ignited by the initial condition and the usual instantaneous way of starting a simulation run. Here we revisit the GEM setup (a Harris current sheet) and demonstrate the immediate generation of oscillations propagating perpendicular to the magnetic shear layer (in Bz). Also we show how these oscillations do not dissipate quickly and will later be mode-converted to generate wave power, first in By, much later also in Bx (pointing along the shear direction). One needs to take care not to interpret these oscillations as physical wave modes associated with the nature of reconnection. We propose a method to prevent such switch-on effects from the beginning, that should be considered for implementation in other PIC simulation codes as well.

  7. Polarization Control by Using Anisotropic 3D Chiral Structures

    Chen, Menglin L N; Sha, Wei E I; Choy, Wallace C H; Itoh, Tatsuo

    2016-01-01

    Due to the mirror symmetry breaking, chiral structures show fantastic electromagnetic (EM) properties involving negative refraction, giant optical activity, and asymmetric transmission. Aligned electric and magnetic dipoles excited in chiral structures contribute to extraordinary properties. However, the chiral structures that exhibit n-fold rotational symmetry show limited tuning capability. In this paper, we proposed a compact, light, and highly tunable anisotropic chiral structure to overcome this limitation and realize a linear-to-circular polarization conversion. The anisotropy is due to simultaneous excitations of two different pairs of aligned electric and magnetic dipoles. The 3D omega-like structure, etched on two sides of one PCB board and connected by metallic vias, achieves 60% of linearto- circular conversion (transmission) efficiency at the operating frequency of 9.2 GHz. The desired 90-degree phase shift between the two orthogonal linear polarization components is not only from the finite-thick...

  8. A microfluidic device for 2D to 3D and 3D to 3D cell navigation

    Shamloo, Amir; Amirifar, Leyla

    2016-01-01

    Microfluidic devices have received wide attention and shown great potential in the field of tissue engineering and regenerative medicine. Investigating cell response to various stimulations is much more accurate and comprehensive with the aid of microfluidic devices. In this study, we introduced a microfluidic device by which the matrix density as a mechanical property and the concentration profile of a biochemical factor as a chemical property could be altered. Our microfluidic device has a cell tank and a cell culture chamber to mimic both 2D to 3D and 3D to 3D migration of three types of cells. Fluid shear stress is negligible on the cells and a stable concentration gradient can be obtained by diffusion. The device was designed by a numerical simulation so that the uniformity of the concentration gradients throughout the cell culture chamber was obtained. Adult neural cells were cultured within this device and they showed different branching and axonal navigation phenotypes within varying nerve growth factor (NGF) concentration profiles. Neural stem cells were also cultured within varying collagen matrix densities while exposed to NGF concentrations and they experienced 3D to 3D collective migration. By generating vascular endothelial growth factor concentration gradients, adult human dermal microvascular endothelial cells also migrated in a 2D to 3D manner and formed a stable lumen within a specific collagen matrix density. It was observed that a minimum absolute concentration and concentration gradient were required to stimulate migration of all types of the cells. This device has the advantage of changing multiple parameters simultaneously and is expected to have wide applicability in cell studies.

  9. A microfluidic device for 2D to 3D and 3D to 3D cell navigation

    Microfluidic devices have received wide attention and shown great potential in the field of tissue engineering and regenerative medicine. Investigating cell response to various stimulations is much more accurate and comprehensive with the aid of microfluidic devices. In this study, we introduced a microfluidic device by which the matrix density as a mechanical property and the concentration profile of a biochemical factor as a chemical property could be altered. Our microfluidic device has a cell tank and a cell culture chamber to mimic both 2D to 3D and 3D to 3D migration of three types of cells. Fluid shear stress is negligible on the cells and a stable concentration gradient can be obtained by diffusion. The device was designed by a numerical simulation so that the uniformity of the concentration gradients throughout the cell culture chamber was obtained. Adult neural cells were cultured within this device and they showed different branching and axonal navigation phenotypes within varying nerve growth factor (NGF) concentration profiles. Neural stem cells were also cultured within varying collagen matrix densities while exposed to NGF concentrations and they experienced 3D to 3D collective migration. By generating vascular endothelial growth factor concentration gradients, adult human dermal microvascular endothelial cells also migrated in a 2D to 3D manner and formed a stable lumen within a specific collagen matrix density. It was observed that a minimum absolute concentration and concentration gradient were required to stimulate migration of all types of the cells. This device has the advantage of changing multiple parameters simultaneously and is expected to have wide applicability in cell studies. (paper)

  10. PIC modeling of negative ion extraction from a dust-seeded plasma

    Plasma behavior near the plasma grid of Negative Ion (NI) sources is studied by a 3D-electrostatic Particle-In-Cell (PIC) code. The computational domain is assumed to be a cuboid volume around a single hole of the plasma grid. The plasma is assumed to be seeded with Cs coated dusts that provides additional surfaces for NI production throughout the volume of the source. The dusts are not explicitly modeled; rather, constant charges are assumed to remain distributed randomly throughout the volume of the plasma mimicking the dust particles. The effect of dust on NI extraction is studied by considering its effect on controlling parameters like meniscus formation for different combination of the system variables. (author)

  11. ICER-3D Hyperspectral Image Compression Software

    Xie, Hua; Kiely, Aaron; Klimesh, matthew; Aranki, Nazeeh

    2010-01-01

    Software has been developed to implement the ICER-3D algorithm. ICER-3D effects progressive, three-dimensional (3D), wavelet-based compression of hyperspectral images. If a compressed data stream is truncated, the progressive nature of the algorithm enables reconstruction of hyperspectral data at fidelity commensurate with the given data volume. The ICER-3D software is capable of providing either lossless or lossy compression, and incorporates an error-containment scheme to limit the effects of data loss during transmission. The compression algorithm, which was derived from the ICER image compression algorithm, includes wavelet-transform, context-modeling, and entropy coding subalgorithms. The 3D wavelet decomposition structure used by ICER-3D exploits correlations in all three dimensions of sets of hyperspectral image data, while facilitating elimination of spectral ringing artifacts, using a technique summarized in "Improving 3D Wavelet-Based Compression of Spectral Images" (NPO-41381), NASA Tech Briefs, Vol. 33, No. 3 (March 2009), page 7a. Correlation is further exploited by a context-modeling subalgorithm, which exploits spectral dependencies in the wavelet-transformed hyperspectral data, using an algorithm that is summarized in "Context Modeler for Wavelet Compression of Hyperspectral Images" (NPO-43239), which follows this article. An important feature of ICER-3D is a scheme for limiting the adverse effects of loss of data during transmission. In this scheme, as in the similar scheme used by ICER, the spatial-frequency domain is partitioned into rectangular error-containment regions. In ICER-3D, the partitions extend through all the wavelength bands. The data in each partition are compressed independently of those in the other partitions, so that loss or corruption of data from any partition does not affect the other partitions. Furthermore, because compression is progressive within each partition, when data are lost, any data from that partition received

  12. 3D technologies in safeguards applications

    The Additional Protocol to the Non-Proliferation Treaty foresees improved verification of existing nuclear installations. To be effective new advanced capabilities must be developed and fielded to increase the accuracy of verification and detection of changes in the facilities. New systems need to be portable, simple to use and yet highly accurate and dependable. 3D laser technologies proved to be effective in Design Information Verification (DIV). IAEA has successfully used the system in Rokkasho Reprocessing Plant. The system allowed IAEA to carry out rapid and accurate DIVs far faster and more accurately than had been possible in the past. A typical example from a mockup area at the JRC is presented. A further application of 3D laser technologies is to perform the verification of the facility buildings. Typical plants are located on sites of few square kilometres with tens of buildings, housing process and storage facilities. This requires systems that are capable of measuring and verifying long distances and easy to handle in an outdoor environment. This paper presents an overview of the different 3D technologies and discusses its potential use in safeguards applications: - Design Information Verification. - 3D Surveillance (overcomes the flatten world of classical 2D Surveillance and provides accurate quantitative (i.e., distance) measurements. - Object self authentication (spatial forensics), including the verification of closure welds on containers. - Outdoor verification System or verification of the facility buildings and outdoor perimeters. For the verification of outdoor areas the paper presents a transportable system capable of acquiring on the fly 3D geometric data from a large installation. The proposed system is a scaled based approach combining different sensors and 3D reconstruction techniques depending on the size of the scene/objects to be modelled and accuracy of the final model. The system is mounted on a vehicle and integrates 3D laser

  13. 3-D Graphical Password Used For Authentication

    Vidya Mhaske-Dhamdhere

    2012-03-01

    Full Text Available In today’s world, security isimportant aspect in day to day life.So,everyone used various ways for securitypurpose. People use passwords for theirsecurity.Generally, everyone uses textualpassword. Textual password is combinationof alphabets and numbers. People keeptextual password as name of their favoritethings, actors or actress, dish andmeaningful word from dictionary. But theperson who is very close to that person caneasily guess the password.Graphical password is advancedversion of password. Graphical passwordshave received considerable attention latelyas Potential alternatives to text-basedpasswords.Graphical password is composedof images, parts of images, or sketches[4]-[7]. These passwords are very easy to useand remember. Biometric password is anextended feature of graphical passwords.Biometric password is consisting of facerecognition, thumb impression, eye retinaand heartbeats pulses[10].In this paper, we present andevaluate our contribution, i.e., the 3-Dpassword. The 3-D password is a multifactorauthentication scheme. To be authenticated,we present a 3-D virtual environment wherethe user navigates and interacts with variousobjects. The sequence of actions andinteractions toward the objects inside the 3-D environment constructs the user’s 3-Dpassword. The 3-D password can combinemost existing authentication schemes suchas textual passwords, graphical passwords,and various types of biometrics into a 3-Dvirtual environment. The design of the 3-Dvirtual environment and the type of objectsselected determine the 3-D password keyspace[10].

  14. Heat Equation to 3D Image Segmentation

    Nikolay Sirakov

    2006-04-01

    Full Text Available This paper presents a new approach, capable of 3D image segmentation and objects' surface reconstruction. The main advantages of the method are: large capture range; quick segmentation of a 3D scene/image to regions; multiple 3D objects reconstruction. The method uses centripetal force and penalty function to segment the entire 3D scene/image to regions containing a single 3D object. Each region is inscribed in a convex, smooth closed surface, which defines a centripetal force. Then the surface is evolved by the geometric heat differential equation toward the force's direction. The penalty function is defined to stop evolvement of those surface patches, whose normal vectors encountered object's surface. On the base of the theoretical model Forward Difference Algorithm was developed and coded by Mathematica. Stability convergence condition, truncation error and calculation complexity of the algorithm are determined. The obtained results, advantages and disadvantages of the method are discussed at the end of this paper.

  15. 3D bioprinting for engineering complex tissues.

    Mandrycky, Christian; Wang, Zongjie; Kim, Keekyoung; Kim, Deok-Ho

    2016-01-01

    Bioprinting is a 3D fabrication technology used to precisely dispense cell-laden biomaterials for the construction of complex 3D functional living tissues or artificial organs. While still in its early stages, bioprinting strategies have demonstrated their potential use in regenerative medicine to generate a variety of transplantable tissues, including skin, cartilage, and bone. However, current bioprinting approaches still have technical challenges in terms of high-resolution cell deposition, controlled cell distributions, vascularization, and innervation within complex 3D tissues. While no one-size-fits-all approach to bioprinting has emerged, it remains an on-demand, versatile fabrication technique that may address the growing organ shortage as well as provide a high-throughput method for cell patterning at the micrometer scale for broad biomedical engineering applications. In this review, we introduce the basic principles, materials, integration strategies and applications of bioprinting. We also discuss the recent developments, current challenges and future prospects of 3D bioprinting for engineering complex tissues. Combined with recent advances in human pluripotent stem cell technologies, 3D-bioprinted tissue models could serve as an enabling platform for high-throughput predictive drug screening and more effective regenerative therapies. PMID:26724184

  16. Lifting Object Detection Datasets into 3D.

    Carreira, Joao; Vicente, Sara; Agapito, Lourdes; Batista, Jorge

    2016-07-01

    While data has certainly taken the center stage in computer vision in recent years, it can still be difficult to obtain in certain scenarios. In particular, acquiring ground truth 3D shapes of objects pictured in 2D images remains a challenging feat and this has hampered progress in recognition-based object reconstruction from a single image. Here we propose to bypass previous solutions such as 3D scanning or manual design, that scale poorly, and instead populate object category detection datasets semi-automatically with dense, per-object 3D reconstructions, bootstrapped from:(i) class labels, (ii) ground truth figure-ground segmentations and (iii) a small set of keypoint annotations. Our proposed algorithm first estimates camera viewpoint using rigid structure-from-motion and then reconstructs object shapes by optimizing over visual hull proposals guided by loose within-class shape similarity assumptions. The visual hull sampling process attempts to intersect an object's projection cone with the cones of minimal subsets of other similar objects among those pictured from certain vantage points. We show that our method is able to produce convincing per-object 3D reconstructions and to accurately estimate cameras viewpoints on one of the most challenging existing object-category detection datasets, PASCAL VOC. We hope that our results will re-stimulate interest on joint object recognition and 3D reconstruction from a single image. PMID:27295458

  17. 3D analysis methods - Study and seminar

    The first part of the report results from a study that was performed as a Nordic co-operation activity with active participation from Studsvik Scandpower and Westinghouse Atom in Sweden, and VTT in Finland. The purpose of the study was to identify and investigate the effects rising from using the 3D transient com-puter codes in BWR safety analysis, and their influence on the transient analysis methodology. One of the main questions involves the critical power ratio (CPR) calculation methodology. The present way, where the CPR calculation is per-formed with a separate hot channel calculation, can be artificially conservative. In the investigated cases, no dramatic minimum CPR effect coming from the 3D calculation is apparent. Some cases show some decrease in the transient change of minimum CPR with the 3D calculation, which confirms the general thinking that the 1D calculation is conservative. On the other hand, the observed effect on neutron flux behaviour is quite large. In a slower transient the 3D effect might be stronger. The second part of the report is a summary of a related seminar that was held on the 3D analysis methods. The seminar was sponsored by the Reactor Safety part (NKS-R) of the Nordic Nuclear Safety Research Programme (NKS). (au)

  18. 3D camera tracking from disparity images

    Kim, Kiyoung; Woo, Woontack

    2005-07-01

    In this paper, we propose a robust camera tracking method that uses disparity images computed from known parameters of 3D camera and multiple epipolar constraints. We assume that baselines between lenses in 3D camera and intrinsic parameters are known. The proposed method reduces camera motion uncertainty encountered during camera tracking. Specifically, we first obtain corresponding feature points between initial lenses using normalized correlation method. In conjunction with matching features, we get disparity images. When the camera moves, the corresponding feature points, obtained from each lens of 3D camera, are robustly tracked via Kanade-Lukas-Tomasi (KLT) tracking algorithm. Secondly, relative pose parameters of each lens are calculated via Essential matrices. Essential matrices are computed from Fundamental matrix calculated using normalized 8-point algorithm with RANSAC scheme. Then, we determine scale factor of translation matrix by d-motion. This is required because the camera motion obtained from Essential matrix is up to scale. Finally, we optimize camera motion using multiple epipolar constraints between lenses and d-motion constraints computed from disparity images. The proposed method can be widely adopted in Augmented Reality (AR) applications, 3D reconstruction using 3D camera, and fine surveillance systems which not only need depth information, but also camera motion parameters in real-time.

  19. 3-D MRI for lumbar degenerative diseases

    Three-dimensional (3-D) magnetic resonance (MR) images obtained from 10 patients with lumbar degenerative diseases were retrospectively reviewed to determine how far 3-D MR imaging is capable of demonstrating nerve roots. In 8 of the 10 patients, the area up to the dorsal root ganglion was visualized on 3-D MR images. Thus, it is capable of detecting a wide area of nerve roots, thereby allowing the determination of running of nerve root, and size and location of dorsal root ganglion. In delineating the area from the dural canal to root cyst, 3-D MR imaging was equal to conventional myelography. The former was superior to the latter in detecting the positional relation between the degenerative intervertebral disc and the nerve root, and herniation-compressed root cyst. In 3 of 9 patients who presented with root symptoms, disturbed nerve roots were of high signal on 3-D MR images. This may suggest that it has the potential for selectively detecting root nerves associated with clinical manifestations. (N.K.)

  20. Magnetic Properties of 3D Printed Toroids

    Bollig, Lindsey; Otto, Austin; Hilpisch, Peter; Mowry, Greg; Nelson-Cheeseman, Brittany; Renewable Energy; Alternatives Lab (REAL) Team

    Transformers are ubiquitous in electronics today. Although toroidal geometries perform most efficiently, transformers are traditionally made with rectangular cross-sections due to the lower manufacturing costs. Additive manufacturing techniques (3D printing) can easily achieve toroidal geometries by building up a part through a series of 2D layers. To get strong magnetic properties in a 3D printed transformer, a composite filament is used containing Fe dispersed in a polymer matrix. How the resulting 3D printed toroid responds to a magnetic field depends on two structural factors of the printed 2D layers: fill factor (planar density) and fill pattern. In this work, we investigate how the fill factor and fill pattern affect the magnetic properties of 3D printed toroids. The magnetic properties of the printed toroids are measured by a custom circuit that produces a hysteresis loop for each toroid. Toroids with various fill factors and fill patterns are compared to determine how these two factors can affect the magnetic field the toroid can produce. These 3D printed toroids can be used for numerous applications in order to increase the efficiency of transformers by making it possible for manufacturers to make a toroidal geometry.