WorldWideScience

Sample records for 3b-3c cleavage site

  1. Cleavage site analysis in picornaviral polyproteins

    Blom, Nikolaj; Hansen, Jan; Blaas, Dieter;

    1996-01-01

    Picornaviral proteinases are responsible for maturation cleavages of the viral polyprotein, but also catalyze the degradation of cellular targets. Using graphical visualization techniques and neural network algorithms, we have investigated the sequence specificity of the two proteinases 2Apro and 3......Cpro. The cleavage of VP0 (giving rise to VP2 and VP4), which is carried out by a so-far unknown proteinase, was also examined. In combination with a novel surface exposure prediction algorithm, our neural network approach successfully distinguishes known cleavage sites from nocleavage sites and yields...... a more consistent definition of features common to these sites. The method is able to predict experimentally determined cleavage sites in cellular proteins. We present a list of mammalian and other proteins that are predicted to be possible targets for the viral proteinases. Whether these proteins...

  2. Prediction of proprotein convertase cleavage sites

    Duckert, Peter; Brunak, Søren; Blom, Nikolaj

    2004-01-01

    has created additional focus on proprotein processing. We have developed a method for prediction of cleavage sites for PCs based on artificial neural networks. Two different types of neural networks have been constructed: a furin-specific network based on experimental results derived from the...

  3. Cleavage site analysis in picornaviral polyproteins

    Blom, Nikolaj; Hansen, Jan; Blaas, Dieter; Brunak, Søren

    1996-01-01

    are indeed cleaved awaits experimental verification. Additionally, we report several errors detected in the protein databases. A computer server for prediction of cleavage sites by picornaviral proteinases is publicly available at the e-mail address NetPicoRNA@cbs.dtu.dk or via WWW at http://www.cbs.dtu.dk/services/NetPicoRNA...

  4. SVM-based prediction of caspase substrate cleavage sites

    Wee, Lawrence JK; Tan, Tin Wee; Ranganathan, Shoba

    2006-01-01

    Background Caspases belong to a class of cysteine proteases which function as critical effectors in apoptosis and inflammation by cleaving substrates immediately after unique sites. Prediction of such cleavage sites will complement structural and functional studies on substrates cleavage as well as discovery of new substrates. Recently, different computational methods have been developed to predict the cleavage sites of caspase substrates with varying degrees of success. As the support vector...

  5. Deletion Mapping of the Encephalomyocarditis Virus Primary Cleavage Site

    Hahn, Harry; Palmenberg, Ann C.

    2001-01-01

    The cotranslational, primary self-cleavage reaction of cardiovirus polyprotein relies on a highly conserved, short segment of amino acids at the 2A-2B protein boundary. The amino terminus of the required element for encephalomyocarditis virus has now been mapped to include Tyr126 of the 2A protein, the 18th amino acid before the cleavage site.

  6. Cross talk between the +73/294 interaction and the cleavage site in RNase P RNA mediated cleavage

    Brännvall, Mathias; Kikovska, Ema; Kirsebom, Leif A.

    2004-01-01

    To monitor functionally important metal ions and possible cross talk in RNase P RNA mediated cleavage we studied cleavage of substrates, where the 2′OH at the RNase P cleavage site (at −1) and/or at position +73 had been replaced with a 2′ amino group (or 2′H). Our data showed that the presence of 2′ modifications at these positions affected cleavage site recognition, ground state binding of substrate and/or rate of cleavage. Cleavage of 2′ amino substituted substrates at different pH showed ...

  7. Pripper: prediction of caspase cleavage sites from whole proteomes

    Salmi Jussi

    2010-06-01

    Full Text Available Abstract Background Caspases are a family of proteases that have central functions in programmed cell death (apoptosis and inflammation. Caspases mediate their effects through aspartate-specific cleavage of their target proteins, and at present almost 400 caspase substrates are known. There are several methods developed to predict caspase cleavage sites from individual proteins, but currently none of them can be used to predict caspase cleavage sites from multiple proteins or entire proteomes, or to use several classifiers in combination. The possibility to create a database from predicted caspase cleavage products for the whole genome could significantly aid in identifying novel caspase targets from tandem mass spectrometry based proteomic experiments. Results Three different pattern recognition classifiers were developed for predicting caspase cleavage sites from protein sequences. Evaluation of the classifiers with quality measures indicated that all of the three classifiers performed well in predicting caspase cleavage sites, and when combining different classifiers the accuracy increased further. A new tool, Pripper, was developed to utilize the classifiers and predict the caspase cut sites from an arbitrary number of input sequences. A database was constructed with the developed tool, and it was used to identify caspase target proteins from tandem mass spectrometry data from two different proteomic experiments. Both known caspase cleavage products as well as novel cleavage products were identified using the database demonstrating the usefulness of the tool. Pripper is not restricted to predicting only caspase cut sites, but it gives the possibility to scan protein sequences for any given motif(s and predict cut sites once a suitable cut site prediction model for any other protease has been developed. Pripper is freely available and can be downloaded from http://users.utu.fi/mijopi/Pripper. Conclusions We have developed Pripper, a tool for

  8. Regulated Cleavage of Prothrombin by Prothrombinase: REPOSITIONING A CLEAVAGE SITE REVEALS THE UNIQUE KINETIC BEHAVIOR OF THE ACTION OF PROTHROMBINASE ON ITS COMPOUND SUBSTRATE*♦

    Bradford, Harlan N.; Micucci, Joseph A.; Krishnaswamy, Sriram

    2009-01-01

    Prothrombinase converts prothrombin to thrombin via cleavage at Arg320 followed by cleavage at Arg271. Exosite-dependent binding of prothrombin to prothrombinase facilitates active site docking by Arg320 and initial cleavage at this site. Precise positioning of the Arg320 site for cleavage is implied by essentially normal cleavage at Arg320 in recombinant prothrombin variants...

  9. Mutational analysis of a type II topoisomerase cleavage site: distinct requirements for enzyme and inhibitors.

    Freudenreich, C H; Kreuzer, K. N.

    1993-01-01

    We have analyzed the DNA sequence requirements for cleavage of a 30 bp oligonucleotide that contains a strong bacteriophage T4 type II topoisomerase site. A novel method was used to generate substrates with each of the four nucleotides at 10 positions surrounding the cleavage site, and mutant substrates were also prepared for the four internal positions of the staggered cleavage site. The substrates were tested for cleavage in the presence of several inhibitors that induce enzyme-mediated cle...

  10. Mutagenesis of the yellow fever virus NS2B/3 cleavage site: determinants of cleavage site specificity and effects on polyprotein processing and viral replication.

    Chambers, T J; Nestorowicz, A.; Rice, C.M.

    1995-01-01

    The determinants of cleavage site specificity of the yellow fever virus (YF) NS3 proteinase for its 2B/3 cleavage site have been studied by using site-directed mutagenesis. Mutations at residues within the GARR decreases S sequence were tested for effects on cis cleavage of an NS2B-3(181) polyprotein during cell-free translation. At the P1 position, only the conservative substitution R-->K exhibited significant levels of cleavage. Conservative and nonconservative substitutions were tolerated ...

  11. Catalysts of DNA Strand Cleavage at Apurinic/Apyrimidinic Sites.

    Minko, Irina G; Jacobs, Aaron C; de Leon, Arnie R; Gruppi, Francesca; Donley, Nathan; Harris, Thomas M; Rizzo, Carmelo J; McCullough, Amanda K; Lloyd, R Stephen

    2016-01-01

    Apurinic/apyrimidinic (AP) sites are constantly formed in cellular DNA due to instability of the glycosidic bond, particularly at purines and various oxidized, alkylated, or otherwise damaged nucleobases. AP sites are also generated by DNA glycosylases that initiate DNA base excision repair. These lesions represent a significant block to DNA replication and are extremely mutagenic. Some DNA glycosylases possess AP lyase activities that nick the DNA strand at the deoxyribose moiety via a β- or β,δ-elimination reaction. Various amines can incise AP sites via a similar mechanism, but this non-enzymatic cleavage typically requires high reagent concentrations. Herein, we describe a new class of small molecules that function at low micromolar concentrations as both β- and β,δ-elimination catalysts at AP sites. Structure-activity relationships have established several characteristics that appear to be necessary for the formation of an iminium ion intermediate that self-catalyzes the elimination at the deoxyribose ring. PMID:27363485

  12. Peptidase specificity from the substrate cleavage collection in the MEROPS database and a tool to measure cleavage site conservation.

    Rawlings, Neil D

    2016-03-01

    One peptidase can usually be distinguished from another biochemically by its action on proteins, peptides and synthetic substrates. Since 1996, the MEROPS database (http://merops.sanger.ac.uk) has accumulated a collection of cleavages in substrates that now amounts to 66,615 cleavages. The total number of peptidases for which at least one cleavage is known is 1700 out of a total of 2457 different peptidases. This paper describes how the cleavages are obtained from the scientific literature, how they are annotated and how cleavages in peptides and proteins are cross-referenced to entries in the UniProt protein sequence database. The specificity profiles of 556 peptidases are shown for which ten or more substrate cleavages are known. However, it has been proposed that at least 40 cleavages in disparate proteins are required for specificity analysis to be meaningful, and only 163 peptidases (6.6%) fulfil this criterion. Also described are the various displays shown on the website to aid with the understanding of peptidase specificity, which are derived from the substrate cleavage collection. These displays include a logo, distribution matrix, and tables to summarize which amino acids or groups of amino acids are acceptable (or not acceptable) in each substrate binding pocket. For each protein substrate, there is a display to show how it is processed and degraded. Also described are tools on the website to help with the assessment of the physiological relevance of cleavages in a substrate. These tools rely on the hypothesis that a cleavage site that is conserved in orthologues is likely to be physiologically relevant, and alignments of substrate protein sequences are made utilizing the UniRef50 database, in which in each entry sequences are 50% or more identical. Conservation in this case means substitutions are permitted only if the amino acid is known to occupy the same substrate binding pocket from at least one other substrate cleaved by the same peptidase. PMID

  13. RNase II is important for A-site mRNA cleavage during ribosome pausing

    Garza-Sánchez, Fernando; Shoji, Shinichiro; Fredrick, Kurt; Hayes, Christopher S.

    2009-01-01

    In Escherichia coli, translational arrest can elicit cleavage of codons within the ribosomal A site. This A-site mRNA cleavage is independent of RelE, and has been proposed to be an endonucleolytic activity of the ribosome. Here, we show that the 3′→5′ exonuclease RNase II plays an important role in RelE-independent A-site cleavage. Instead of A-site cleavage, translational pausing in ΔRNase II cells produces transcripts that are truncated +12 and +28 nucleotides downstream of the A-site codo...

  14. Coronavirus 3CL(pro) proteinase cleavage sites: Possible relevance to SARS virus pathology

    Kiemer, Lars; Lund, Ole; Brunak, Søren;

    2004-01-01

    in proteins such as the cystic fibrosis transmembrane conductance regulator ( CFTR), transcription factors CREB-RP and OCT-I, and components of the ubiquitin pathway. Conclusions: Our prediction method NetCorona predicts coronavirus cleavage sites with high specificity and several potential cleavage...

  15. Cleavage Site Localization Differentially Controls Interleukin-6 Receptor Proteolysis by ADAM10 and ADAM17.

    Riethmueller, Steffen; Ehlers, Johanna C; Lokau, Juliane; Düsterhöft, Stefan; Knittler, Katharina; Dombrowsky, Gregor; Grötzinger, Joachim; Rabe, Björn; Rose-John, Stefan; Garbers, Christoph

    2016-01-01

    Limited proteolysis of the Interleukin-6 Receptor (IL-6R) leads to the release of the IL-6R ectodomain. Binding of the cytokine IL-6 to the soluble IL-6R (sIL-6R) results in an agonistic IL-6/sIL-6R complex, which activates cells via gp130 irrespective of whether the cells express the IL-6R itself. This signaling pathway has been termed trans-signaling and is thought to mainly account for the pro-inflammatory properties of IL-6. A Disintegrin And Metalloprotease 10 (ADAM10) and ADAM17 are the major proteases that cleave the IL-6R. We have previously shown that deletion of a ten amino acid long stretch within the stalk region including the cleavage site prevents ADAM17-mediated cleavage, whereas the receptor retained its full biological activity. In the present study, we show that deletion of a triple serine (3S) motif (Ser-359 to Ser-361) adjacent to the cleavage site is sufficient to prevent IL-6R cleavage by ADAM17, but not ADAM10. We find that the impaired shedding is caused by the reduced distance between the cleavage site and the plasma membrane. Positioning of the cleavage site in greater distance towards the plasma membrane abrogates ADAM17-mediated shedding and reveals a novel cleavage site of ADAM10. Our findings underline functional differences in IL-6R proteolysis by ADAM10 and ADAM17. PMID:27151651

  16. Cleavage sites within the poliovirus capsid protein precursors

    Partial amino-terminal sequence analysis was performed on radiolabeled poliovirus capsid proteins VP1, VP2, and VP3. A computer-assisted comparison of the amino acid sequences obtained with that predicted by the nucleotide sequence of the poliovirus genome allows assignment of the amino terminus of each capsid protein to a unique position within the virus polyprotein. Sequence analysis of trypsin-digested VP4, which has a blocked amino terminus, demonstrates that VP4 is encoded at or very near to the amino terminus of the polyprotein. The gene order of the capsid proteins is VP4-VP2-VP3-VP1. Cleavage of VP0 to VP4 and VP2 is shown to occur between asparagine and serine, whereas the cleavages that separate VP2/VP3 and VP3/VP1 occur between glutamine and glycine residues. This finding supports the hypothesis that the cleavage of VP0, which occurs during virion morphogenesis, is distinct from the cleavages that separate functional regions of the polyprotein

  17. Processing of pestivirus polyprotein: cleavage site between autoprotease and nucleocapsid protein of classical swine fever virus.

    Stark, R; Meyers, G; Rümenapf, T.; Thiel, H J

    1993-01-01

    The polyprotein of classical swine fever virus starts with the nonstructural protein p23, which is followed by the nucleocapsid protein p14. Proteolytic cleavage between p23 and p14 was demonstrated in a cell-free transcription-translation system. Successive truncation of the cDNA used for the transcription indicated that the proteolytic activity responsible for the cleavage between p23 and p14 resides within p23. In order to determine the cleavage site between these two proteins, the respect...

  18. Identification of BACE1 cleavage sites in human voltage-gated sodium channel beta 2 subunit

    Kovacs Dora M

    2010-12-01

    Full Text Available Abstract Background The voltage-gated sodium channel β2 subunit (Navβ2 is a physiological substrate of BACE1 (β-site APP cleaving enzyme and γ-secretase, two proteolytic enzymes central to Alzheimer's disease pathogenesis. Previously, we have found that the processing of Navβ2 by BACE1 and γ-secretase regulates sodium channel metabolism in neuronal cells. In the current study we identified the BACE1 cleavage sites in human Navβ2. Results We found a major (147-148 L↓M, where ↓ indicates the cleavage site and a minor (144145 L↓Q BACE1 cleavage site in the extracellular domain of human Navβ2 using a cell-free BACE1 cleavage assay followed by mass spectrometry. Next, we introduced two different double mutations into the identified major BACE1 cleavage site in human Navβ2: 147LM/VI and 147LM/AA. Both mutations dramatically decreased the cleavage of human Navβ2 by endogenous BACE1 in cell-free BACE1 cleavage assays. Neither of the two mutations affected subcellular localization of Navβ2 as confirmed by confocal fluorescence microscopy and subcellular fractionation of cholesterol-rich domains. Finally, wildtype and mutated Navβ2 were expressed along BACE1 in B104 rat neuroblastoma cells. In spite of α-secretase still actively cleaving the mutant proteins, Navβ2 cleavage products decreased by ~50% in cells expressing Navβ2 (147LM/VI and ~75% in cells expressing Navβ2 (147LM/AA as compared to cells expressing wildtype Navβ2. Conclusion We identified a major (147-148 L↓M and a minor (144-145 L↓Q BACE1 cleavage site in human Navβ2. Our in vitro and cell-based results clearly show that the 147-148 L↓M is the major BACE1 cleavage site in human Navβ2. These findings expand our understanding of the role of BACE1 in voltage-gated sodium channel metabolism.

  19. A Data Mining Approach for the Prediction of Hepatitis C Virus protease Cleavage Sites

    Ahmed mohamed samir ali gamal eldin

    2011-12-01

    Full Text Available Summary: Several papers have been published about the prediction of hepatitis C virus (HCV polyprotein cleavage sites, using symbolic and non-symbolic machine learning techniques. The published papers achieved different Levels of prediction accuracy. the achieved results depends on the used technique and the availability of adequate and accurate HCV polyprotein sequences with known cleavage sites. We tried here to achieve more accurate prediction results, and more Informative knowledge about the HCV protein cleavage sites using Decision tree algorithm. There are several factors that can affect the overall prediction accuracy. One of the most important factors is the availably of acceptable and accurate HCV polyproteins sequences with known cleavage sites. We collected latest accurate data sets to build the prediction model. Also we collected another dataset for the model testing. Motivation: Hepatitis C virus is a global health problem affecting a significant portion of the world’s population. The World Health Organization estimated that in1999; 170 million hepatitis C virus (HCV carriers were present worldwide, with 3 to 4 million new cases per year. Several approaches have been performed to analyze HCV life cycle to find out the important factors of the viral replication process. HCV polyprotein processing by the viral protease has a vital role in the virus replication. The prediction of HCV protease cleavage sites can help the biologists in the design of suitable viral inhibitors. Results: The ease to use and to understand of the decision tree enabled us to create simple prediction model. We used here the latest accurate viral datasets. Decision tree achieved here acceptable prediction accuracy results. Also it generated informative knowledge about the cleavage process itself. These results can help the researchers in the development of effective viral inhibitors. Using decision tree to predict HCV protein cleavage sites achieved high

  20. A hingeless Fc fusion system for site-specific cleavage by IdeS.

    Novarra, Shabazz; Grinberg, Luba; Rickert, Keith W; Barnes, Arnita; Wilson, Susan; Baca, Manuel

    2016-01-01

    Fusion of proteins to the Fc region of IgG is widely used to express cellular receptors and other extracellular proteins, but cleavage of the fusion partner is sometimes required for downstream applications. Immunoglobulin G-degrading enzyme of Streptococcus pyogenes (IdeS) is a protease with exquisite specificity for human IgG, and it can also cleave Fc-fusion proteins at a single site in the N-terminal region of the CH2 domain. However, the site of IdeS cleavage results in the disulfide-linked hinge region partitioning with the released protein, complicating downstream usage of the cleaved product. To tailor the Fc fragment for release of partner proteins by IdeS treatment, we investigated the effect of deleting regions of IgG-derived sequence that are upstream of the cleavage site. Elimination of the IgG-derived hinge sequence along with several residues of the CH2 domain had negligible effects on expression and purity of the fusion protein, while retaining efficient processing by IdeS. An optimal Fc fragment comprising residues 235-447 of the human IgG1 heavy chain sufficed for efficient production of fusion proteins and minimized the amount of residual Ig-derived sequence on the cleavage product following IdeS treatment. Pairing of this truncated Fc fragment with IdeS cleavage enables highly specific cleavage of Fc-fusion proteins, thus eliminating the need to engineer extraneous cleavage sequences. This system should be helpful for producing Fc-fusion proteins requiring downstream cleavage, particularly those that are sensitive to internal miscleavage if treated with alternative proteases. PMID:27210548

  1. Site-specific cleavage of genomic DNA mediated by triple helix formation

    Strobel, S.A.

    1992-01-01

    Physical isolation of large segments of chromosomal DNA is a major goal of human genetics. This would be greatly assisted by a generalizable technique for the cleavage of chromosomal DNA at a single site. Pyrimidine oligonucleotide directed triple helix formation is a generalizable motif for the site specific recognition of duplex DNA. This thesis describes the application of oligonucleotide directed triple helix formation to bind unique target sites in bacteriophage [lambda], yeast, and human genomic DNA. Cleavage at the binding sites are achieved by affinity cleaving with EDTA[center dot]Fe(II) derivatized oligonucleotides, alkylation with bromoacetyl derivatized oligonucleotides, and by site specific triple helix mediated methylase inhibition followed by digestion with the cognate endonuclease. Cleavage of genomic substrates with progressively greater complexity is described. Bacteriophage [lambda] genomic DNA (48.5 kilobase pairs) was targeted at a single endogenous homopurine site within the origin of replication. This substrate was also used to demonstrate cooperative binding of heterologous oligonucleotides to duplex DNA at contiguous binding sites. An engineered target site on yeast chromosome III (340 kilobase pairs) was cut quantitatively at a single site within total yeast genomic DNA (14 megabase pairs) by both chemical and enzymatic techniques. Techniques for the identification of endogenous triple helix target sites within unsequenced genetic markers were developed and successfully used to characterize a target site on human chromosome 4, proximal to the Huntington disease gene. As a test for the site specific cleavage of gigabase DNA, this site near the end of human chromosome 4 was cleaved by triple helix mediated enzymatic cleavage. This generated a specific 3.6 Mb fragment in greater than 80% yield that contained the entire candidate region for the Huntington mutation.

  2. Coronavirus 3CLpro proteinase cleavage sites: Possible relevance to SARS virus pathology

    Blom Nikolaj

    2004-06-01

    Full Text Available Abstract Background Despite the passing of more than a year since the first outbreak of Severe Acute Respiratory Syndrome (SARS, efficient counter-measures are still few and many believe that reappearance of SARS, or a similar disease caused by a coronavirus, is not unlikely. For other virus families like the picornaviruses it is known that pathology is related to proteolytic cleavage of host proteins by viral proteinases. Furthermore, several studies indicate that virus proliferation can be arrested using specific proteinase inhibitors supporting the belief that proteinases are indeed important during infection. Prompted by this, we set out to analyse and predict cleavage by the coronavirus main proteinase using computational methods. Results We retrieved sequence data on seven fully sequenced coronaviruses and identified the main 3CL proteinase cleavage sites in polyproteins using alignments. A neural network was trained to recognise the cleavage sites in the genomes obtaining a sensitivity of 87.0% and a specificity of 99.0%. Several proteins known to be cleaved by other viruses were submitted to prediction as well as proteins suspected relevant in coronavirus pathology. Cleavage sites were predicted in proteins such as the cystic fibrosis transmembrane conductance regulator (CFTR, transcription factors CREB-RP and OCT-1, and components of the ubiquitin pathway. Conclusions Our prediction method NetCorona predicts coronavirus cleavage sites with high specificity and several potential cleavage candidates were identified which might be important to elucidate coronavirus pathology. Furthermore, the method might assist in design of proteinase inhibitors for treatment of SARS and possible future diseases caused by coronaviruses. It is made available for public use at our website: http://www.cbs.dtu.dk/services/NetCorona/.

  3. Analysis of the cleavage site of the human immunodeficiency virus type 1 glycoprotein: requirement of precursor cleavage for glycoprotein incorporation.

    Dubay, J W; Dubay, S R; Shin, H. J.; Hunter, E

    1995-01-01

    Endoproteolytic cleavage of the glycoprotein precursor to the mature SU and TM proteins is an essential step in the maturation of retroviral glycoproteins. Cleavage of the precursor polyprotein occurs at a conserved, basic tetrapeptide sequence and is carried out by a cellular protease. The glycoprotein of the human immunodeficiency virus type 1 contains two potential cleavage sequences immediately preceding the N terminus of the TM protein. To determine the functional significance of these t...

  4. PROSPER: an integrated feature-based tool for predicting protease substrate cleavage sites.

    Jiangning Song

    Full Text Available The ability to catalytically cleave protein substrates after synthesis is fundamental for all forms of life. Accordingly, site-specific proteolysis is one of the most important post-translational modifications. The key to understanding the physiological role of a protease is to identify its natural substrate(s. Knowledge of the substrate specificity of a protease can dramatically improve our ability to predict its target protein substrates, but this information must be utilized in an effective manner in order to efficiently identify protein substrates by in silico approaches. To address this problem, we present PROSPER, an integrated feature-based server for in silico identification of protease substrates and their cleavage sites for twenty-four different proteases. PROSPER utilizes established specificity information for these proteases (derived from the MEROPS database with a machine learning approach to predict protease cleavage sites by using different, but complementary sequence and structure characteristics. Features used by PROSPER include local amino acid sequence profile, predicted secondary structure, solvent accessibility and predicted native disorder. Thus, for proteases with known amino acid specificity, PROSPER provides a convenient, pre-prepared tool for use in identifying protein substrates for the enzymes. Systematic prediction analysis for the twenty-four proteases thus far included in the database revealed that the features we have included in the tool strongly improve performance in terms of cleavage site prediction, as evidenced by their contribution to performance improvement in terms of identifying known cleavage sites in substrates for these enzymes. In comparison with two state-of-the-art prediction tools, PoPS and SitePrediction, PROSPER achieves greater accuracy and coverage. To our knowledge, PROSPER is the first comprehensive server capable of predicting cleavage sites of multiple proteases within a single substrate

  5. Active site specificity profiling of the matrix metalloproteinase family: Proteomic identification of 4300 cleavage sites by nine MMPs explored with structural and synthetic peptide cleavage analyses.

    Eckhard, Ulrich; Huesgen, Pitter F; Schilling, Oliver; Bellac, Caroline L; Butler, Georgina S; Cox, Jennifer H; Dufour, Antoine; Goebeler, Verena; Kappelhoff, Reinhild; Keller, Ulrich Auf dem; Klein, Theo; Lange, Philipp F; Marino, Giada; Morrison, Charlotte J; Prudova, Anna; Rodriguez, David; Starr, Amanda E; Wang, Yili; Overall, Christopher M

    2016-01-01

    Secreted and membrane tethered matrix metalloproteinases (MMPs) are key homeostatic proteases regulating the extracellular signaling and structural matrix environment of cells and tissues. For drug targeting of proteases, selectivity for individual molecules is highly desired and can be met by high yield active site specificity profiling. Using the high throughput Proteomic Identification of protease Cleavage Sites (PICS) method to simultaneously profile both the prime and non-prime sides of the cleavage sites of nine human MMPs, we identified more than 4300 cleavages from P6 to P6' in biologically diverse human peptide libraries. MMP specificity and kinetic efficiency were mainly guided by aliphatic and aromatic residues in P1' (with a ~32-93% preference for leucine depending on the MMP), and basic and small residues in P2' and P3', respectively. A wide differential preference for the hallmark P3 proline was found between MMPs ranging from 15 to 46%, yet when combined in the same peptide with the universally preferred P1' leucine, an unexpected negative cooperativity emerged. This was not observed in previous studies, probably due to the paucity of approaches that profile both the prime and non-prime sides together, and the masking of subsite cooperativity effects by global heat maps and iceLogos. These caveats make it critical to check for these biologically highly important effects by fixing all 20 amino acids one-by-one in the respective subsites and thorough assessing of the inferred specificity logo changes. Indeed an analysis of bona fide MEROPS physiological substrate cleavage data revealed that of the 37 natural substrates with either a P3-Pro or a P1'-Leu only 5 shared both features, confirming the PICS data. Upon probing with several new quenched-fluorescent peptides, rationally designed on our specificity data, the negative cooperativity was explained by reduced non-prime side flexibility constraining accommodation of the rigidifying P3 proline with

  6. Kinetics and regulation of site-specific endonucleolytic cleavage of human IGF-II mRNAs

    van Dijk, Erwin L.; Sussenbach, John S.; Holthuizen, P. Elly

    2001-01-01

    Human insulin-like growth factor II (IGF-II) mRNA can be cleaved at a specific site in its 4 kb long 3′-UTR. This yields a stable 3′ cleavage product of 1.8 kb consisting of a 3′-UTR and a poly(A) tail and an unstable 5′ cleavage product containing the IGF-II coding region. After cleavage, the 5′ cleavage product is targeted to rapid degradation and consequently is no longer involved in IGF-II protein synthesis. Cleavage is therefore thought to provide an addit...

  7. The intramembrane cleavage site of the amyloid precursor protein depends on the length of its transmembrane domain

    Lichtenthaler, Stefan F.; Beher, Dirk; Heike S Grimm; Wang, Rong; Shearman, Mark S.; Masters, Colin L.; Beyreuther, Konrad

    2002-01-01

    Proteolytic processing of the amyloid precursor protein by β-secretase generates C99, which subsequently is cleaved by γ-secretase, yielding the amyloid β peptide (Aβ). This γ-cleavage occurs within the transmembrane domain (TMD) of C99 and is similar to the intramembrane cleavage of Notch. However, Notch and C99 differ in their site of intramembrane cleavage. The main γ-cleavage of C99 occurs in the middle of the TMD, whereas the cleavage of Notch occurs close to the C-terminal end of the TM...

  8. Defining a similarity threshold for a functional proteinsequence pattern: The signal peptide cleavage site

    Nielsen, Henrik; Engelbrecht, Jacob; von Heijne, Gunnar;

    1996-01-01

    . Results are presented for the case of prediction of cleavage sites in signal peptides. By inspection of the false positives, several errors in the database were found. The procedure presented may be used as a general outline for finding a problem-specific similarity measure and threshold value for...

  9. Sperm retention site and its influence on cleavage rate and early development following intracytoplasmic sperm injection

    Yanaihara, Atsushi; Iwasaki, Shinji; Negishi, Momoko; Okai, Takashi

    2006-01-01

    Background: Intracytoplasmic sperm injection (ICSI) has risen to the forefront of reproductive technology. In the present study, the location of the sperm injection was noted, and a prospective study was conducted to evaluate the effect of the sperm retention site on cleavage rates and embryo quality after ICSI.

  10. Caspase cleavage sites in the human proteome: CaspDB, a database of predicted substrates.

    Sonu Kumar

    Full Text Available Caspases are enzymes belonging to a conserved family of cysteine-dependent aspartic-specific proteases that are involved in vital cellular processes and play a prominent role in apoptosis and inflammation. Determining all relevant protein substrates of caspases remains a challenging task. Over 1500 caspase substrates have been discovered in the human proteome according to published data and new substrates are discovered on a daily basis. To aid the discovery process we developed a caspase cleavage prediction method using the recently published curated MerCASBA database of experimentally determined caspase substrates and a Random Forest classification method. On both internal and external test sets, the ranking of predicted cleavage positions is superior to all previously developed prediction methods. The in silico predicted caspase cleavage positions in human proteins are available from a relational database: CaspDB. Our database provides information about potential cleavage sites in a verified set of all human proteins collected in Uniprot and their orthologs, allowing for tracing of cleavage motif conservation. It also provides information about the positions of disease-annotated single nucleotide polymorphisms, and posttranslational modifications that may modulate the caspase cleaving efficiency.

  11. Caspase cleavage sites in the human proteome: CaspDB, a database of predicted substrates.

    Kumar, Sonu; van Raam, Bram J; Salvesen, Guy S; Cieplak, Piotr

    2014-01-01

    Caspases are enzymes belonging to a conserved family of cysteine-dependent aspartic-specific proteases that are involved in vital cellular processes and play a prominent role in apoptosis and inflammation. Determining all relevant protein substrates of caspases remains a challenging task. Over 1500 caspase substrates have been discovered in the human proteome according to published data and new substrates are discovered on a daily basis. To aid the discovery process we developed a caspase cleavage prediction method using the recently published curated MerCASBA database of experimentally determined caspase substrates and a Random Forest classification method. On both internal and external test sets, the ranking of predicted cleavage positions is superior to all previously developed prediction methods. The in silico predicted caspase cleavage positions in human proteins are available from a relational database: CaspDB. Our database provides information about potential cleavage sites in a verified set of all human proteins collected in Uniprot and their orthologs, allowing for tracing of cleavage motif conservation. It also provides information about the positions of disease-annotated single nucleotide polymorphisms, and posttranslational modifications that may modulate the caspase cleaving efficiency. PMID:25330111

  12. Hemoglobin cleavage site-specificity of the Plasmodium falciparum cysteine proteases falcipain-2 and falcipain-3.

    Shoba Subramanian

    Full Text Available The Plasmodium falciparum cysteine proteases falcipain-2 and falcipain-3 degrade host hemoglobin to provide free amino acids for parasite protein synthesis. Hemoglobin hydrolysis has been described as an ordered process initiated by aspartic proteases, but cysteine protease inhibitors completely block the process, suggesting that cysteine proteases can also initiate hemoglobin hydrolysis. To characterize the specific roles of falcipains, we used three approaches. First, using random P(1 - P(4 amino acid substrate libraries, falcipain-2 and falcipain-3 demonstrated strong preference for cleavage sites with Leu at the P(2 position. Second, with overlapping peptides spanning alpha and beta globin and proteolysis-dependent (18O labeling, hydrolysis was seen at many cleavage sites. Third, with intact hemoglobin, numerous cleavage products were identified. Our results suggest that hemoglobin hydrolysis by malaria parasites is not a highly ordered process, but rather proceeds with rapid cleavage by falcipains at multiple sites. However, falcipain-2 and falcipain-3 show strong specificity for P(2 Leu in small peptide substrates, in agreement with the specificity in optimized small molecule inhibitors that was identified previously. These results are consistent with a principal role of falcipain-2 and falcipain-3 in the hydrolysis of hemoglobin by P. falciparum and with the possibility of developing small molecule inhibitors with optimized specificity as antimalarial agents.

  13. A Python analytical pipeline to identify prohormone precursors and predict prohormone cleavage sites

    Bruce Southey

    2008-12-01

    Full Text Available Neuropeptides and hormones are signaling molecules that support cell-cell communication in the central nervous system. Experimentally characterizing neuropeptides requires significant efforts because of the complex and variable processing of prohormone precursor proteins into neuropeptides and hormones. We demonstrate the power and flexibility of the Python language to develop components of an bioinformatic analytical pipeline to identify precursors from genomic data and to predict cleavage as these precursors are en route to the final bioactive peptides. We identified 75 precursors in the rhesus genome, predicted cleavage sites using support vector machines and compared the rhesus predictions to putative assignments based on homology to human sequences. The correct classification rate of cleavage using the support vector machines was over 97% for both human and rhesus data sets. The functionality of Python has been important to develop and maintain NeuroPred (http://neuroproteomics.scs.uiuc.edu/neuropred.html, a user-centered web application for the neuroscience community that provides cleavage site prediction from a wide range of models, precision and accuracy statistics, post-translational modifications, and the molecular mass of potential peptides. The combined results illustrate the suitability of the Python language to implement an all-inclusive bioinformatics approach to predict neuropeptides that encompasses a large number of interdependent steps, from scanning genomes for precursor genes to identification of potential bioactive neuropeptides.

  14. Restricted Active Site Docking by Enzyme-bound Substrate Enforces the Ordered Cleavage of Prothrombin by Prothrombinase*

    Hacisalihoglu, Ayse; Panizzi, Peter; Bock, Paul E.; Camire, Rodney M.; Krishnaswamy, Sriram

    2007-01-01

    The preferred pathway for prothrombin activation by prothrombinase involves initial cleavage at Arg320 to produce meizothrombin, which is then cleaved at Arg271 to liberate thrombin. Exosite binding drives substrate affinity and is independent of the bond being cleaved. The pathway for cleavage is determined by large differences in Vmax for cleavage at the two sites within intact prothrombin. By fluorescence binding studies in the absence of catalysis, we have assessed the ability of the indi...

  15. In vitro cleavage of the simian virus 40 early polyadenylation site adjacent to a required downstream TG sequence.

    Sperry, A O; Berget, S M

    1986-01-01

    Exogenous RNA containing the simian virus 40 early polyadenylation site was efficiently and accurately polyadenylated in in vitro nuclear extracts. Correct cleavage required ATP. In the absence of ATP, nonpoly(A)+ products accumulated which were 18 to 20 nucleotides longer than the RNA generated by correct cleavage; the longer RNA terminated adjacent to the downstream TG element required for polyadenylation. In the presence of ATP analogs, alternate cleavage was not observed; instead, correct...

  16. Transcriptome-Wide Cleavage Site Mapping on Cellular mRNAs Reveals Features Underlying Sequence-Specific Cleavage by the Viral Ribonuclease SOX.

    Marta Maria Gaglia

    2015-12-01

    Full Text Available Many viruses express factors that reduce host gene expression through widespread degradation of cellular mRNA. An example of this class of proteins is the mRNA-targeting endoribonuclease SOX from the gamma-herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV. Previous studies indicated that cleavage of messenger RNAs (mRNA by SOX occurs at specific locations defined by the sequence of the target RNA, which is at odds with the down-regulation of a large portion of cellular transcripts. In this study, we address this paradox by using high-throughput sequencing of cleavage intermediates combined with a custom bioinformatics-based analysis pipeline to identify SOX cleavage sites across the mRNA transcriptome. These data, coupled with targeted mutagenesis, reveal that while cleavage sites are specific and reproducible, they are defined by a degenerate sequence motif containing a small number of conserved residues rather than a strong consensus sequence. This degenerate element is well represented in both human and KSHV mRNA, and its presence correlates with RNA destabilization by SOX. This represents a new endonuclease targeting strategy, in which use of a degenerate targeting element enables RNA cleavage at specific locations without restricting the range of targets. Furthermore, it shows that strong target selectivity can be achieved without a high degree of sequence specificity.

  17. Identification of RNA sequences and structures involved in site-specific cleavage of IGF-II mRNAs.

    van Dijk, E L; Sussenbach, J S; Holthuizen, P E

    1998-01-01

    Insulin-like growth factor-II (IGF-II) mRNAs are subject to site-specific endonucleolytic cleavage in the 3' untranslated region (UTR), rendering an unstable 5' cleavage product containing the coding region and a very stable 3' cleavage product of 1.8 kb consisting of the 3'-UTR sequence and the poly(A) tail. Previously, it was established that two widely separated elements in the 3'-UTR (elements I and II), that can form a duplex structure, are necessary and sufficient for cleavage. To furth...

  18. Conservation of a proteinase cleavage site between an insect retrovirus (gypsy) Env protein and a baculovirus envelope fusion protein

    The predicted Env protein of insect retroviruses (errantiviruses) is related to the envelope fusion protein of a major division of the Baculoviridae. The highest degree of homology is found in a region that contains a furin cleavage site in the baculovirus proteins and an adjacent sequence that has the properties of a fusion peptide. In this investigation, the homologous region in the Env protein of the gypsy retrovirus of Drosophila melanogaster (DmegypV) was investigated. Alteration of the predicted DmegypV Env proteinase cleavage site from RIAR to AIAR significantly reduced cleavage of Env in both Spodoptera frugiperda (Sf-9) and D. melanogaster (S2) cell lines. When the predicted DmegypV Env cleavage site RIAR was substituted for the cleavage sequence RRKR in the Lymantria dispar nucleopolyhedrovirus fusion protein (LD130) sequence, cleavage of the hybrid LD130 molecules still occurred, although at a reduced level. The conserved 21-amino acid sequence just downstream of the cleavage site, which is thought to be the fusion peptide in LD130, was also characterized. When this sequence from DmegypV Env was substituted for the homologous sequence in LD130, cleavage still occurred, but no fusion was observed in either cell type. In addition, although a DmegypV-Env-green fluorescent protein construct localized to cell membranes, no cell fusion was observed

  19. Selection of a remote cleavage site by I-tevI, the td intron-encoded endonuclease.

    Bryk, M; Belisle, M; Mueller, J E; Belfort, M

    1995-03-24

    I-TevI, a double-strand DNA endonuclease involved in the mobility of the td intron of phage T4, is highly unusual in that it binds and cleaves intronless td alleles (td homing sites) in a site-specific but sequence-tolerant manner. The endonuclease binds to sequences flanking the intron insertion site and near the remote cleavage site, located 23 and 25 nucleotides away on the top and bottom strands, respectively. Mapping studies indicate that I-TevI has both sequence and distance sensors that function during cut-site selection. Although I-TevI cleavage of many insertion and deletion variants of the homing site is impaired, double-strand breaks are generated at positions that collectively span two turns of the helix, indicating that the interaction is extraordinarily flexible. However, the endonuclease does exhibit spacing preferences between its binding domains, and sequence preferences near the cleavage site, with the G:C pair at -23 implicated as a cleavage determinant. Furthermore, I-TevI appears to function through interactions across the minor groove at the cleavage site, as it does at the intron insertion site, and to be capable of cleaving sequentially, first on the bottom and then on the top strand. These properties of I-TevI are incorporated in a model wherein the endonuclease effects distant cleavage via a flexible hinge. PMID:7707369

  20. Single-site cleavage in the 5'-untranslated region of Leishmaniavirus RNA is mediated by the viral capsid protein.

    MacBeth, K J; Patterson, J L

    1995-01-01

    Leishmaniavirus (LRV) is a double-stranded RNA virus that persistently infects the protozoan parasite Leishmania. LRV produces a short RNA transcript, corresponding to the 5' end of positive-sense viral RNA, both in vivo and in in vitro polymerase assays. The short transcript is generated by a single site-specific cleavage event in the 5' untranslated region of the 5.3-kb genome. This cleavage event can be reproduced in vitro with purified viral particles and a substrate RNA transcript possessing the viral cleavage site. A region of nucleotides required for cleavage was identified by analyzing the cleavage sites yielding the short transcripts of various LRV isolates. A 6-nt deletion at this cleavage site completely abolished RNA processing. In an in vitro cleavage assay, baculovirus-expressed capsid protein possessed an endonuclease activity identical to that of native virions, showing that the viral capsid protein is the RNA endonuclease. Identification of the LRV capsid protein as an RNA endonuclease is unprecedented among known viral capsid proteins. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7568059

  1. Analysis of the Proteolytic Processing of ABCA3: Identification of Cleavage Site and Involved Proteases.

    Nicole Hofmann

    Full Text Available ABCA3 is a lipid transporter in the limiting membrane of lamellar bodies in alveolar type II cells. Mutations in the ABCA3 gene cause respiratory distress syndrome in new-borns and childhood interstitial lung disease. ABCA3 is N-terminally cleaved by an as yet unknown protease, a process believed to regulate ABCA3 activity.The exact site where ABCA3 is cleaved was localized using mass spectrometry (MS. Proteases involved in ABCA3 processing were identified using small molecule inhibitors and siRNA mediated gene knockdown. Results were verified by in vitro digestion of a synthetic peptide substrate mimicking ABCA3's cleavage region, followed by MS analysis.We found that cleavage of ABCA3 occurs after Lys174 which is located in the proteins' first luminal loop. Inhibition of cathepsin L and, to a lesser extent, cathepsin B resulted in attenuation of ABCA3 cleavage. Both enzymes showed activity against the ABCA3 peptide in vitro with cathepsin L being more active.We show here that, like some other proteins of the lysosomal membrane, ABCA3 is a substrate of cathepsin L. Therefore, cathepsin L may represent a potential target to therapeutically influence ABCA3 activity in ABCA3-associated lung disease.

  2. The Prediction of Calpain Cleavage Sites with the mRMR and IFS Approaches

    Wenyi Zhang

    2013-01-01

    Full Text Available Calpains are an important family of the Ca2+-dependent cysteine proteases which catalyze the limited proteolysis of many specific substrates. Calpains play crucial roles in basic physiological and pathological processes, and identification of the calpain cleavage sites may facilitate the understanding of the molecular mechanisms and biological function. But traditional experiment approaches to predict the sites are accurate, and are always labor-intensive and time-consuming. Thus, it is common to see that computational methods receive increasing attention due to their convenience and fast speed in recent years. In this study, we develop a new predictor based on the support vector machine (SVM with the maximum relevance minimum redundancy (mRMR method followed by incremental feature selection (IFS. And we concern the feature of physicochemical/biochemical properties, sequence conservation, residual disorder, secondary structure, and solvent accessibility to represent the calpain cleavage sites. Experimental results show that the performance of our predictor is better than several other state-of- the-art predictors, whose average prediction accuracy is 79.49%, sensitivity is 62.31%, and specificity is 88.12%. Since user-friendly and publicly accessible web servers represent the future direction for developing practically more useful predictors, here we have provided a web-server for the method presented in this paper.

  3. Photosensitized cleavage of dynein heavy chains. Cleavage at the V1 site by irradiation at 365 nm in the presence of ATP and vanadate

    Gibbons, I.R.; Lee-Eiford, A.; Mocz, G.; Phillipson, C.A.; Tang, W.J.; Gibbons, B.H.

    1987-02-25

    Irradiation of soluble dynein 1 from sea urchin sperm flagella at 365 nm in the presence of MgATP and 0.05-50 microM vanadate (Vi) cleaves the alpha and beta heavy chains (Mr 428,000) at their V1 sites to give peptides of Mr 228,000 and 200,000, without the nonspecific side effects produced by irradiation at 254 nm as described earlier. The decrease in intact heavy chain material is biphasic; in 10 microM Vi, approximately 80% occurs with a half-time of 7 min and the remainder with a half-time of about 90 min, and the yield of cleavage peptides is better than 90%. Loss of dynein ATPase activity appears to be a direct result of the cleavage process and is not significantly affected by the presence of up to 0.1 M cysteamine (CA, 60-23-1) or 2-aminoethyl carbamimidothioic acid dihydrobromide (CA, 56-10-0) as free radical trapping agents. The concentration of Vi required for 50% maximal initial cleavage rate is 4.5 microM, while that for 50% ATPase inhibition is 0.8 microM, both in a 0.6 M NaCl medium. In the presence of 20 microM Vi, CTP and UTP support cleavage at about half the rate of ATP, whereas GTP and ITP support cleavage only if the Vi concentration is raised to about 200 microM. Substitution of any of the transition metal cations Cr2+, Mn2+, Fe2+, or Co2+ for the usual Mg2+ suppresses the photocleavage, presumably by quenching the excited chromophore prior to scission of the heavy chain. The photocleaved dynein 1 binds to dynein-depleted flagella similarly to intact dynein 1, but upon reactivation of the flagella with 1 mM ATP their motility is partially inhibited, rather than being augmented as with intact dynein.

  4. Coincidence of cleavage sites of intron endonuclease I-TevI and critical sequences of the host thymidylate synthase gene.

    Edgell, David R; Stanger, Matthew J; Belfort, Marlene

    2004-11-01

    To maximize spread of their host intron or intein, many homing endonucleases recognize nucleotides that code for important and conserved amino acid residues of the target gene. Here, we examine the cleavage requirements for I-TevI, which binds a stretch of thymidylate synthase (TS) DNA that codes for functionally critical residues in the TS active site. Using an in vitro selection scheme, we identified two base-pairs in the I-TevI cleavage site region as important for cleavage efficiency. These were confirmed by comparison of I-TevI cleavage efficiencies on mutant and on wild-type substrates. We also showed that nicking of the bottom strand by I-TevI is not affected by mutation of residues surrounding the bottom-strand cleavage site, unlike other homing endonucleases. One of these two base-pairs is universally conserved in all TS sequences, and is identical with a previously identified cleavage determinant of I-BmoI, a related GIY-YIG endonuclease that binds a homologous stretch of TS-encoding DNA. The other base-pair is conserved only in a subset of TS genes that includes the I-TevI, but not the I-BmoI, target sequence. Both the I-TevI and I-BmoI cleavage site requirements correspond to functionally critical residues involved in an extensive hydrogen bond network within the TS active site. Remarkably, these cleavage requirements correlate with TS phylogeny in bacteria, suggesting that each endonuclease has individually adapted to efficiently cleave distinct TS substrates. PMID:15491609

  5. Efficient site-specific cleavage by RNase MRP requires interaction with two evolutionarily conserved mitochondrial RNA sequences.

    Bennett, J L.; Clayton, D A

    1990-01-01

    RNase MRP is a site-specific endonuclease that processes primer mitochondrial RNA from the leading-strand origin of mitochondrial DNA replication. Using deletional analysis and saturation mutagenesis, we have determined the substrate requirements for cleavage by mouse mitochondrial RNase MRP. Two regions of sequence homology among vertebrate mitochondrial RNA primers, conserved sequence blocks II and III, were found to be critical for both efficient and accurate cleavage; a third region of se...

  6. prpC-related signal transduction is influenced by copper, membrane integrity and the alpha cleavage site

    Cathryn L Haigh; Victoria A Lewis; Laura J Vella; Colin L Masters; Andrew F Hill; Victoria A Lawson; Steven J Collins

    2009-01-01

    The copper-binding, membrane-anchored, cellular prion protein (PrPC) has two constitutive cleavage sites pro-ducing distinct N- and C-terminal fragments (N1/C1 and N2/C2). Using RKI3 cells expressing either human PrPC, mouse PrPC or mouse PrPC carrying the 3F4 epitope, this study explored the influence of the PrPC primary sequence on endoproteolytic cleavage and one putative PrPC function, MAP kinase signal transduction, in response to exoge-nous copper with or without a perturbed membrane environment. PrPC primary sequence, especially that around the N1/C1 cleavage site, appeared to influence basal levels of proteolysis at this location and extracellular signal-regulat-ed kinase 1/2 (ERK1/2) phosphorylation, with increased processing demonstrating an inverse relationship with basal ERK1/2 activation. Human PrPC showed increased N1/C1 cleavage in response to copper alone, accompanied by spe-cific p38 and JNK/SAPK phosphorylation. Combined exposure to copper plus the cholesterol-sequestering antibiotic filipin resulted in a mouse PrPC-specific substantial increase in signal protein phosphorylation, accompanied by an increase in N1/C1 cleavage. Mouse PrPC harboring the human N1/C1 cleavage site assumed more human-like profiles basally and in response to copper and altered membrane environments. Our results demonstrate that the PrPC pri-mary sequence around the N1/C1 cleavage site influences endoproteolytic processing at this location, which appears linked to MAP kinase signal transduction both basally and in response to copper. Further, the primary sequence ap-pears to confer a mutual dependence of N1/C1 cleavage and membrane integrity on the fidelity of prpC-related signal transduction in response to exogenous stimuli.

  7. CTAG-containing cleavage site profiling to delineate Salmonella into natural clusters.

    Le Tang

    Full Text Available The bacterial genus Salmonella contains thousands of serotypes that infect humans or other hosts, causing mild gastroenteritis to potentially fatal systemic infections in humans. Pathogenically distinct Salmonella serotypes have been classified as individual species or as serological variants of merely one or two species, causing considerable confusion in both research and clinical settings. This situation reflects a long unanswered question regarding whether the Salmonella serotypes exist as discrete genetic clusters (natural species of organisms or as phenotypic (e.g. pathogenic variants of a single (or two natural species with a continuous spectrum of genetic divergence among them. Our recent work, based on genomic sequence divergence analysis, has demonstrated that genetic boundaries exist among Salmonella serotypes, circumscribing them into clear-cut genetic clusters of bacteria.To further test the genetic boundary concept for delineating Salmonella into clearly defined natural lineages (e.g., species, we sampled a small subset of conserved genomic DNA sequences, i.e., the endonuclease cleavage sites that contain the highly conserved CTAG sequence such as TCTAGA for XbaI. We found that the CTAG-containing cleavage sequence profiles could be used to resolve the genetic boundaries as reliably and efficiently as whole genome sequence comparisons but with enormously reduced requirements for time and resources.Profiling of CTAG sequence subsets reflects genetic boundaries among Salmonella lineages and can delineate these bacteria into discrete natural clusters.

  8. Diverse endonucleolytic cleavage sites in the mammalian transcriptome depend upon microRNAs, Drosha, and additional nucleases.

    Karginov, Fedor V; Cheloufi, Sihem; Chong, Mark M W; Stark, Alexander; Smith, Andrew D; Hannon, Gregory J

    2010-06-25

    The life span of a mammalian mRNA is determined, in part, by the binding of regulatory proteins and small RNA-guided complexes. The conserved endonuclease activity of Argonaute2 requires extensive complementarity between a small RNA and its target and is not used by animal microRNAs, which pair with their targets imperfectly. Here we investigate the endonucleolytic function of Ago2 and other nucleases by transcriptome-wide profiling of mRNA cleavage products retaining 5' phosphate groups in mouse embryonic stem cells (mESCs). We detect a prominent signature of Ago2-dependent cleavage events and validate several such targets. Unexpectedly, a broader class of Ago2-independent cleavage sites is also observed, indicating participation of additional nucleases in site-specific mRNA cleavage. Within this class, we identify a cohort of Drosha-dependent mRNA cleavage events that functionally regulate mRNA levels in mESCs, including one in the Dgcr8 mRNA. Together, these results highlight the underappreciated role of endonucleolytic cleavage in controlling mRNA fates in mammals. PMID:20620951

  9. DNA cleavage at the AP site via β-elimination mediated by the AP site-binding ligands.

    Abe, Yukiko S; Sasaki, Shigeki

    2016-02-15

    DNA is continuously damaged by endogenous and exogenous factors such as oxidation and alkylation. In the base excision repair pathway, the damaged nucleobases are removed by DNA N-glycosylase to form the abasic sites (AP sites). The alkylating antitumor agent exhibits cytotoxicity through the formation of the AP site. Therefore blockage or modulation of the AP site repair pathway may enhance the antitumor efficacy of DNA alkylating agents. In this study, we have examined the effects of the nucleobase-polyamine conjugated ligands (G-, A-, C- and T-ligands) on the cleavage of the AP site. The G- and A-ligands cleaved DNA at the AP site by promoting β-elimination in a non-selective manner by the G-ligand, and in a selective manner for the opposing dT by the A-ligand. These results suggest that the nucleobase-polyamine conjugate ligands may have the potential for enhancement of the cytotoxicities of the AP site. PMID:26777298

  10. ChloroP, a neural network-based method for predicting chloroplast transitpeptides and their cleavage sites

    Emanuelsson, O.; Nielsen, Henrik; von Heijne, Gunnar

    1999-01-01

    We present a neural network based method (ChloroP) for identifying chloroplast transit peptides and their cleavage sites. Using cross-validation, 88% of the sequences in our homology reduced training set were correctly classified as transit peptides or nontransit peptides. This performance level is...... the cleavage sites given in SWISS-PROT. An analysis of 715 Arabidopsis thaliana sequences from SWISS-PROT suggests that the ChloroP method should be useful for the identification of putative transit peptides in genome-wide sequence data. The ChloroP predictor is available as a web-server at http......://www.cbs.dtu.dk/services/ ChloroP/. 0...

  11. Identification of two subcellular sites for γ-glutamyltranspeptidase propeptide cleavage

    Renal intracellular and brush border membranes were purified from rats injected with [35S]methionine. Solubilized transpeptidase (γGT) was immunoprecipitated and analyzed by SDS-polyacrylamide gel electrophresis (PAGE). The initial precipitates contain 3 bands corresponding to the core glycosylated propeptide (75K) and the mature heterodimer subunits (50K and 30K). The propeptide represents 75% of the radioactivity in γGT from 5 to 45 min postinjection consistent with cotranslational cleavage of 25% of the propeptide to subunits. By 20 min postinjection all three bands are more diffuse and endoglycosidase H-resistant. Between 20 and 30 min postinjection, propeptide and heterodimer coincidentally reach the brush border membrane. Propeptide then rapidly disappears (t/sub 1/2/ < 1 h) whereas heterodimer accumulates for 4 h then disappears with a t/sub 1/2/ of 2.5 d. The basis for these two distinct subcellular sites of γGT propeptide cleavage is unknown. Both purified γGT heterodimer and immunoprecipitates of labeled γGT occasionally exhibit high M/sub r/ bands (85K and 100K) on SDS-PAGE. Individual subunits and high M/sub r/ species were eluted from SDS gel slices, subjected to SDS-PAGE and analyzed on immunoblots with IgG affinity-purified against individual subunits. The cumulative data show that the subunits can form both stable homodimers (60K and 100K) and heterodimers (85K) during SDS-PAGE. Thus, these high M/sub r/ species do not represent biosynthetic intermediates of γGT

  12. A neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites

    Nielsen, Henrik; Engelbrecht, Jacob; Brunak, Søren;

    1997-01-01

    We have developed a new method for the identication of signal peptides and their cleavage sites based on neural networks trained on separate sets of prokaryotic and eukaryotic sequences. The method performs signicantly better than previous prediction schemes, and can easily be applied to genome...

  13. Avian paramyxovirus serotype 1 strains of low virulence with unusual fusion protein cleavage sites isolated from poultry species

    Avian paramyxo-serotype-1 viruses (APMV1) with fusion cleavage sites containing two basic amino acids and a phenylalanine (F) at position 117 have been isolated from poultry species in two states from 2007-2009. The intracerebral pathogenicity indices for these viruses are of low virulence at 0.00 ...

  14. A mutational study of the site-specific cleavage of EC83, a multicopy single-stranded DNA (msDNA): nucleotides at the msDNA stem are important for its cleavage.

    Kim, K.(Korea University, Seoul, 136-713, South Korea); D. Jeong; Lim, D.

    1997-01-01

    Multicopy single-stranded DNA (msDNA) molecules consist of single-stranded DNA covalently linked to RNA. Such molecules are encoded by genetic elements called retrons. Unlike other retrons, retron EC83 isolated from Escherichia coli 161 produces RNA-free msDNA by site-specific cleavage of msDNA at 5'-TTGA/A-3', where the slash indicates the cleavage site. In order to investigate factors responsible for the msDNA cleavage, retron EC83 was treated with hydroxylamine and colonies were screened f...

  15. Single-site cleavage in the 5'-untranslated region of Leishmaniavirus RNA is mediated by the viral capsid protein.

    MacBeth, K J; Patterson, J. L.

    1995-01-01

    Leishmaniavirus (LRV) is a double-stranded RNA virus that persistently infects the protozoan parasite Leishmania. LRV produces a short RNA transcript, corresponding to the 5' end of positive-sense viral RNA, both in vivo and in in vitro polymerase assays. The short transcript is generated by a single site-specific cleavage event in the 5' untranslated region of the 5.3-kb genome. This cleavage event can be reproduced in vitro with purified viral particles and a substrate RNA transcript posses...

  16. A fungal anticodon nuclease ribotoxin exploits a secondary cleavage site to evade tRNA repair.

    Meineke, Birthe; Kast, Alene; Schwer, Beate; Meinhardt, Friedhelm; Shuman, Stewart; Klassen, Roland

    2012-09-01

    PaOrf2 and γ-toxin subunits of Pichia acaciae toxin (PaT) and Kluyveromyces lactis zymocin are tRNA anticodon nucleases. These secreted ribotoxins are assimilated by Saccharomyces cerevisiae, wherein they arrest growth by depleting specific tRNAs. Toxicity can be recapitulated by induced intracellular expression of PaOrf2 or γ-toxin in S. cerevisiae. Mutational analysis of γ-toxin has identified amino acids required for ribotoxicity in vivo and RNA transesterification in vitro. Here, we report that PaOrf2 residues Glu9 and His287 (putative counterparts of γ-toxin Glu9 and His209) are essential for toxicity. Our results suggest a similar basis for RNA transesterification by PaOrf2 and γ-toxin, despite their dissimilar primary structures and distinctive tRNA target specificities. PaOrf2 makes two sequential incisions in tRNA, the first of which occurs 3' from the mcm(5)s(2)U wobble nucleoside and depends on mcm(5). A second incision two nucleotides upstream results in the net excision of a di-nucleotide. Expression of phage and plant tRNA repair systems can relieve PaOrf2 toxicity when tRNA cleavage is restricted to the secondary site in elp3 cells that lack the mcm(5) wobble U modification. Whereas the endogenous yeast tRNA ligase Trl1 can heal tRNA halves produced by PaOrf2 cleavage in elp3 cells, its RNA sealing activity is inadequate to complete the repair. Compatible sealing activity can be provided in trans by plant tRNA ligase. The damage-rescuing ability of tRNA repair systems is lost when PaOrf2 can break tRNA at both sites. These results highlight the logic of a two-incision mechanism of tRNA anticodon damage that evades productive repair by tRNA ligases. PMID:22836353

  17. Compensatory substitutions in the HCV NS3/4A protease cleavage sites are not observed in patients treated unsuccessfully with telaprevir combination treatment

    Sullivan James C

    2012-08-01

    Full Text Available Abstract Background Development of compensatory mutations within the HIV p7/p1 and p1/p6 protease cleavage site region has been observed in HIV-infected patients treated with protease inhibitors. Mechanisms of fitness compensation may occur in HCV populations upon treatment of HCV protease inhibitors as well. Findings In this study, we investigated whether substitutions in protease cleavage site regions of HCV occur in response to a treatment regimen containing the NS3/4A protease inhibitor telaprevir (TVR. Evaluation of viral populations from 569 patients prior to treatment showed that the four NS3/4A cleavage sites were well conserved. Few changes in the cleavage site regions were observed in the 159 patients who failed TVR combination treatment, and no residues displayed evidence of directional selection after the acquisition of TVR-resistance. Conclusions Cleavage site mutations did not occur after treatment with the HCV protease inhibitor telaprevir.

  18. A mutation abolishing the ZMPSTE24 cleavage site in prelamin A causes a progeroid disorder.

    Wang, Yuexia; Lichter-Konecki, Uta; Anyane-Yeboa, Kwame; Shaw, Jessica E; Lu, Jonathan T; Östlund, Cecilia; Shin, Ji-Yeon; Clark, Lorraine N; Gundersen, Gregg G; Nagy, Peter L; Worman, Howard J

    2016-05-15

    In 1994 in the Journal of Cell Science, Hennekes and Nigg reported that changing valine to arginine at the endoproteolytic cleavage site in chicken prelamin A abolishes its conversion to lamin A. The consequences of this mutation in an organism have remained unknown. We now report that the corresponding mutation in a human subject leads to accumulation of prelamin A and causes a progeroid disorder. Next generation sequencing of the subject and her parents' exomes identified a de novo mutation in the lamin A/C gene (LMNA) that resulted in a leucine to arginine amino acid substitution at residue 647 in prelamin A. The subject's fibroblasts accumulated prelamin A, a farnesylated protein, which led to an increased percentage of cultured cells with morphologically abnormal nuclei. Treatment with a protein farnesyltransferase inhibitor improved abnormal nuclear morphology. This case demonstrates that accumulation of prelamin A, independent of the loss of function of ZMPSTE24 metallopeptidase that catalyzes processing of prelamin A, can cause a progeroid disorder and that a cell biology assay could be used in precision medicine to identify a potential therapy. PMID:27034136

  19. Broad coverage identification of multiple proteolytic cleavage site sequences in complex high molecular weight proteins using quantitative proteomics as a complement to edman sequencing.

    Doucet, Alain; Overall, Christopher M

    2011-05-01

    Proteolytic processing modifies the pleiotropic functions of many large, complex, and modular proteins and can generate cleavage products with new biological activity. The identification of exact proteolytic cleavage sites in the extracellular matrix laminins, fibronectin, and other extracellular matrix proteins is not only important for understanding protein turnover but is needed for the identification of new bioactive cleavage products. Several such products have recently been recognized that are suggested to play important cellular regulatory roles in processes, including angiogenesis. However, identifying multiple cleavage sites in extracellular matrix proteins and other large proteins is challenging as N-terminal Edman sequencing of multiple and often closely spaced cleavage fragments on SDS-PAGE gels is difficult, thus limiting throughput and coverage. We developed a new liquid chromatography-mass spectrometry approach we call amino-terminal oriented mass spectrometry of substrates (ATOMS) for the N-terminal identification of protein cleavage fragments in solution. ATOMS utilizes efficient and low cost dimethylation isotopic labeling of original N-terminal and proteolytically generated N termini of protein cleavage fragments followed by quantitative tandem mass spectrometry analysis. Being a peptide-centric approach, ATOMS is not dependent on the SDS-PAGE resolution limits for protein fragments of similar mass. We demonstrate that ATOMS reliably identifies multiple proteolytic sites per reaction in complex proteins. Fifty-five neutrophil elastase cleavage sites were identified in laminin-1 and fibronectin-1 with 34 more identified by matrix metalloproteinase cleavage. Hence, our degradomics approach offers a complimentary alternative to Edman sequencing with broad applicability in identifying N termini such as cleavage sites in complex high molecular weight extracellular matrix proteins after in vitro cleavage assays. ATOMS can therefore be useful in

  20. Broad Coverage Identification of Multiple Proteolytic Cleavage Site Sequences in Complex High Molecular Weight Proteins Using Quantitative Proteomics as a Complement to Edman Sequencing*

    Doucet, Alain; Christopher M Overall

    2010-01-01

    Proteolytic processing modifies the pleiotropic functions of many large, complex, and modular proteins and can generate cleavage products with new biological activity. The identification of exact proteolytic cleavage sites in the extracellular matrix laminins, fibronectin, and other extracellular matrix proteins is not only important for understanding protein turnover but is needed for the identification of new bioactive cleavage products. Several such products have recently been recognized t...

  1. Crystal structures of yellowtail ascites virus VP4 protease: trapping an internal cleavage site trans acyl-enzyme complex in a native Ser/Lys dyad active site.

    Chung, Ivy Yeuk Wah; Paetzel, Mark

    2013-05-01

    Yellowtail ascites virus (YAV) is an aquabirnavirus that causes ascites in yellowtail, a fish often used in sushi. Segment A of the YAV genome codes for a polyprotein (pVP2-VP4-VP3), where processing by its own VP4 protease yields the capsid protein precursor pVP2, the ribonucleoprotein-forming VP3, and free VP4. VP4 protease utilizes the rarely observed serine-lysine catalytic dyad mechanism. Here we have confirmed the existence of an internal cleavage site, preceding the VP4/VP3 cleavage site. The resulting C-terminally truncated enzyme (ending at Ala(716)) is active, as shown by a trans full-length VP4 cleavage assay and a fluorometric peptide cleavage assay. We present a crystal structure of a native active site YAV VP4 with the internal cleavage site trapped as trans product complexes and trans acyl-enzyme complexes. The acyl-enzyme complexes confirm directly the role of Ser(633) as the nucleophile. A crystal structure of the lysine general base mutant (K674A) reveals the acyl-enzyme and empty binding site states of VP4, which allows for the observation of structural changes upon substrate or product binding. These snapshots of three different stages in the VP4 protease reaction mechanism will aid in the design of anti-birnavirus compounds, provide insight into previous site-directed mutagenesis results, and contribute to understanding of the serine-lysine dyad protease mechanism. In addition, we have discovered that this protease contains a channel that leads from the enzyme surface (adjacent to the substrate binding groove) to the active site and the deacylating water. PMID:23511637

  2. Acquisition of a novel eleven amino acid insertion directly N-terminal to a tetrabasic cleavage site confers intracellular cleavage of an H7N7 influenza virus hemagglutinin

    Hamilton, Brian S.; Sun, Xiangjie; Chung, Changik [Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca NY 14853 (United States); New York Center of Excellence for Influenza Research and Surveillance, University of Rochester Medical Center, Rochester NY 14627 (United States); Whittaker, Gary R., E-mail: grw7@cornell.edu [Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca NY 14853 (United States); New York Center of Excellence for Influenza Research and Surveillance, University of Rochester Medical Center, Rochester NY 14627 (United States)

    2012-12-05

    A critical feature of highly pathogenic avian influenza viruses (H5N1 and H7N7) is the efficient intracellular cleavage of the hemagglutinin (HA) protein. H7N7 viruses also exist in equine species, and a unique feature of the equine H7N7 HA is the presence of an eleven amino acid insertion directly N-terminal to a tetrabasic cleavage site. Here, we show that three histidine residues within the unique insertion of the equine H7N7 HA are essential for intracellular cleavage. An asparagine residue within the insertion-derived glycosylation site was also found to be essential for intracellular cleavage. The presence of the histidine residues also appear to be involved in triggering fusion, since mutation of the histidine residues resulted in a destabilizing effect. Importantly, the addition of a tetrabasic site and the eleven amino acid insertion conferred efficient intracellular cleavage to the HA of an H7N3 low pathogenicity avian influenza virus. Our studies show that acquisition of the eleven amino acid insertion offers an alternative mechanism for intracellular cleavage of influenza HA.

  3. Acquisition of a novel eleven amino acid insertion directly N-terminal to a tetrabasic cleavage site confers intracellular cleavage of an H7N7 influenza virus hemagglutinin

    A critical feature of highly pathogenic avian influenza viruses (H5N1 and H7N7) is the efficient intracellular cleavage of the hemagglutinin (HA) protein. H7N7 viruses also exist in equine species, and a unique feature of the equine H7N7 HA is the presence of an eleven amino acid insertion directly N-terminal to a tetrabasic cleavage site. Here, we show that three histidine residues within the unique insertion of the equine H7N7 HA are essential for intracellular cleavage. An asparagine residue within the insertion-derived glycosylation site was also found to be essential for intracellular cleavage. The presence of the histidine residues also appear to be involved in triggering fusion, since mutation of the histidine residues resulted in a destabilizing effect. Importantly, the addition of a tetrabasic site and the eleven amino acid insertion conferred efficient intracellular cleavage to the HA of an H7N3 low pathogenicity avian influenza virus. Our studies show that acquisition of the eleven amino acid insertion offers an alternative mechanism for intracellular cleavage of influenza HA.

  4. FGF-1 and proteolytically-mediated cleavage site presentation influence 3D fibroblast invasion in biomimetic PEGDA hydrogels

    Sokic, Sonja; Papavasiliou, Georgia

    2012-01-01

    Controlled scaffold degradation is a critical design criterion for the clinical success of tissue engineered constructs. Here, we exploited a biomimetic poly(ethylene glycol) diacrylate (PEGDA) hydrogel system immobilized with tethered YRGDS as the cell adhesion ligand and with either single (SSite) or multiple (MSite) collagenase-sensitive domains between crosslinks, to systematically study the effect of proteolytic cleavage site presentation on hydrogel degradation rate and 3D fibroblast in...

  5. Substrate recognition and cleavage-site selection by a single-subunit protein-only RNase P.

    Brillante, Nadia; Gößringer, Markus; Lindenhofer, Dominik; Toth, Ursula; Rossmanith, Walter; Hartmann, Roland K

    2016-03-18

    RNase P is the enzyme that removes 5' extensions from tRNA precursors. With its diversity of enzyme forms-either protein- or RNA-based, ranging from single polypeptides to multi-subunit ribonucleoproteins-the RNase P enzyme family represents a unique model system to compare the evolution of enzymatic mechanisms. Here we present a comprehensive study of substrate recognition and cleavage-site selection by the nuclear single-subunit proteinaceous RNase P PRORP3 from Arabidopsis thaliana. Compared to bacterial RNase P, the best-characterized RNA-based enzyme form, PRORP3 requires a larger part of intact tRNA structure, but little to no determinants at the cleavage site or interactions with the 5' or 3' extensions of the tRNA. The cleavage site depends on the combined dimensions of acceptor stem and T domain, but also requires the leader to be single-stranded. Overall, the single-subunit PRORP appears mechanistically more similar to the complex nuclear ribonucleoprotein enzymes than to the simpler bacterial RNase P. Mechanistic similarity or dissimilarity among different forms of RNase P thus apparently do not necessarily reflect molecular composition or evolutionary relationship. PMID:26896801

  6. Sequence Features of Drosha and Dicer Cleavage Sites Affect the Complexity of IsomiRs

    Julia Starega-Roslan; Witkos, Tomasz M.; Paulina Galka-Marciniak; Krzyzosiak, Wlodzimierz J.

    2015-01-01

    The deep-sequencing of small RNAs has revealed that different numbers and proportions of miRNA variants called isomiRs are formed from single miRNA genes and that this effect is attributable mainly to imprecise cleavage by Drosha and Dicer. Factors that influence the degree of cleavage precision of Drosha and Dicer are under investigation, and their identification may improve our understanding of the mechanisms by which cells modulate the regulatory potential of miRNAs. In this study, we focu...

  7. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites

    Nielsen, Henrik; Engelbrecht, Jacob; Brunak, Søren;

    1997-01-01

    We have developed a new method for the identification of signal peptides and their cleavage based on neural networks trained on separate sets of prokaryotic and eukaryotic sequence. The method performs significantly better than previous prediction schemes and can easily be applied on genome...

  8. Identification of proteolytic cleavage sites within the gag-analogue protein of Ty1 virus-like particles.

    Martin-Rendon, E; Hurd, D W; Marfany, G; Kingsman, S M; Kingsman, A J

    1996-12-01

    Like retroviruses, the yeast retrotransposon Ty1 produces its proteins as precursors that are subsequently cleaved by a protease encoded by the element. These cleavage events are essential for transposition as they release the active reverse transcriptase and integrase and they modify the structure of the virus-like particles in a way that is analogous to the morphological changes that occur during retrovirus core maturation. Using a combination of epitope tagging, amino acid analysis and mutagenesis, we have identified the major cleavage sites for the Ty1 protease within the particle-forming protein, p1, at 407S/408N. In addition, we present evidence indicating that the Ty1 protease may be a 17 kDa protein. PMID:8971723

  9. Site-specific cleavage of the host poly(A) binding protein by the encephalomyocarditis virus 3C proteinase stimulates viral replication.

    Kobayashi, Mariko; Arias, Carolina; Garabedian, Alexandra; Palmenberg, Ann C; Mohr, Ian

    2012-10-01

    Although picornavirus RNA genomes contain a 3'-terminal poly(A) tract that is critical for their replication, the impact of encephalomyocarditis virus (EMCV) infection on the host poly(A)-binding protein (PABP) remains unknown. Here, we establish that EMCV infection stimulates site-specific PABP proteolysis, resulting in accumulation of a 45-kDa N-terminal PABP fragment in virus-infected cells. Expression of a functional EMCV 3C proteinase was necessary and sufficient to stimulate PABP cleavage in uninfected cells, and bacterially expressed 3C cleaved recombinant PABP in vitro in the absence of any virus-encoded or eukaryotic cellular cofactors. N-terminal sequencing of the resulting C-terminal PABP fragment identified a 3C(pro) cleavage site on PABP between amino acids Q437 and G438, severing the C-terminal protein-interacting domain from the N-terminal RNA binding fragment. Single amino acid substitution mutants with changes at Q437 were resistant to 3C(pro) cleavage in vitro and in vivo, validating that this is the sole detectable PABP cleavage site. Finally, while ongoing protein synthesis was not detectably altered in EMCV-infected cells expressing a cleavage-resistant PABP variant, viral RNA synthesis and infectious virus production were both reduced. Together, these results establish that the EMCV 3C proteinase mediates site-specific PABP cleavage and demonstrate that PABP cleavage by 3C regulates EMCV replication. PMID:22837200

  10. Identification of E-cadherin signature motifs functioning as cleavage sites for Helicobacter pylori HtrA.

    Schmidt, Thomas P; Perna, Anna M; Fugmann, Tim; Böhm, Manja; Jan Hiss; Haller, Sarah; Götz, Camilla; Tegtmeyer, Nicole; Hoy, Benjamin; Rau, Tilman T; Neri, Dario; Backert, Steffen; Schneider, Gisbert; Wessler, Silja

    2016-01-01

    The cell adhesion protein and tumour suppressor E-cadherin exhibits important functions in the prevention of gastric cancer. As a class-I carcinogen, Helicobacter pylori (H. pylori) has developed a unique strategy to interfere with E-cadherin functions. In previous studies, we have demonstrated that H. pylori secretes the protease high temperature requirement A (HtrA) which cleaves off the E-cadherin ectodomain (NTF) on epithelial cells. This opens cell-to-cell junctions, allowing bacterial transmigration across the polarised epithelium. Here, we investigated the molecular mechanism of the HtrA-E-cadherin interaction and identified E-cadherin cleavage sites for HtrA. Mass-spectrometry-based proteomics and Edman degradation revealed three signature motifs containing the [VITA]-[VITA]-x-x-D-[DN] sequence pattern, which were preferentially cleaved by HtrA. Based on these sites, we developed a substrate-derived peptide inhibitor that selectively bound and inhibited HtrA, thereby blocking transmigration of H. pylori. The discovery of HtrA-targeted signature sites might further explain why we detected a stable 90 kDa NTF fragment during H. pylori infection, but also additional E-cadherin fragments ranging from 105 kDa to 48 kDa in in vitro cleavage experiments. In conclusion, HtrA targets E-cadherin signature sites that are accessible in in vitro reactions, but might be partially masked on epithelial cells through functional homophilic E-cadherin interactions. PMID:26983597

  11. Site-specific cleavage of RNA by Fe(II).bleomycin.

    Carter, B J; de Vroom, E; Long, E C; van der Marel, G A; van Boom, J H; Hecht, S M

    1990-01-01

    Bleomycin is an antitumor agent whose activity has long been thought to derive from its ability to degrade DNA. Recent findings suggest that cellular RNA may be a therapeutically relevant locus. At micromolar concentrations, Fe(II)-bleomycin readily cleaved a Bacillus subtilis tRNAHis precursor in a highly selective fashion, but Escherichia coli tRNA(Tyr) precursor was largely unaffected even under more forcing conditions. Other substrates included an RNA transcript encoding a large segment of the reverse transcriptase from human immunodeficiency virus 1. RNA cleavage was oxidative, approximately 10-fold more selective than DNA cleavage, and largely unaffected by nonsubstrate RNAs. RNA sequence analysis suggested recognition of RNA tertiary structure, rather than recognition of specific sequences; subsets of nucleotides at the junction of single- and double-stranded regions were especially susceptible to cleavage. The ready accessibility of cellular RNAs to xenobiotic agents, the high selectivity of bleomycin action on RNAs, and the paucity of mechanisms for RNA repair suggest that RNA may be a therapeutically relevant target for bleomycin. Images PMID:1701259

  12. SegG endonuclease promotes marker exclusion and mediates co-conversion from a distant cleavage site.

    Liu, Qingqing; Belle, Archana; Shub, David A; Belfort, Marlene; Edgell, David R

    2003-11-14

    Bacteriophages T2 and T4 are closely related T-even phages. However, T4 genetic markers predominate in the progeny of mixed infections, a phenomenon termed marker exclusion. One region previously mapped where the frequency of T2 markers in the progeny is extremely low is located around gene 32. Here, we describe SegG, a GIY-YIG family endonuclease adjacent to gene 32 of phage T4 that is absent from phage T2. In co-infections with T2 and T4, cleavage in T2 gene 32 by T4-encoded SegG initiates a gene conversion event that results in replacement of T2 gene 32 markers with the corresponding T4 sequence. Interestingly, segG inheritance is limited, apparently because of the physical separation of its cleavage and insertion sites, which are 332 base-pairs apart. This contrasts with efficient inheritance of the phage T4 td group I intron and its endonuclease, I-TevI, for which the distance separating the I-TevI cleavage site and td insertion site is 23 base-pairs. Furthermore, we show that co-conversion tracts generated by repair of SegG and I-TevI double-strand breaks contribute to the localized exclusion of T2 markers. Our results demonstrate that the endonuclease activities of SegG and I-TevI promote the spread of these two endonucleases to progeny phage, consistent with their role as selfish genetic elements, and also provide a mechanism by which the genetic contribution of T2 markers to progeny phage is reduced. PMID:14596796

  13. The prototype HIV-1 maturation inhibitor, bevirimat, binds to the CA-SP1 cleavage site in immature Gag particles

    Nguyen Albert T

    2011-12-01

    Full Text Available Abstract Background Bevirimat, the prototype Human Immunodeficiency Virus type 1 (HIV-1 maturation inhibitor, is highly potent in cell culture and efficacious in HIV-1 infected patients. In contrast to inhibitors that target the active site of the viral protease, bevirimat specifically inhibits a single cleavage event, the final processing step for the Gag precursor where p25 (CA-SP1 is cleaved to p24 (CA and SP1. Results In this study, photoaffinity analogs of bevirimat and mass spectrometry were employed to map the binding site of bevirimat to Gag within immature virus-like particles. Bevirimat analogs were found to crosslink to sequences overlapping, or proximal to, the CA-SP1 cleavage site, consistent with previous biochemical data on the effect of bevirimat on Gag processing and with genetic data from resistance mutations, in a region predicted by NMR and mutational studies to have α-helical character. Unexpectedly, a second region of interaction was found within the Major Homology Region (MHR. Extensive prior genetic evidence suggests that the MHR is critical for virus assembly. Conclusions This is the first demonstration of a direct interaction between the maturation inhibitor, bevirimat, and its target, Gag. Information gained from this study sheds light on the mechanisms by which the virus develops resistance to this class of drug and may aid in the design of next-generation maturation inhibitors.

  14. SVM-based prediction of propeptide cleavage sites in spider toxins identifies toxin innovation in an Australian tarantula.

    Emily S W Wong

    Full Text Available Spider neurotoxins are commonly used as pharmacological tools and are a popular source of novel compounds with therapeutic and agrochemical potential. Since venom peptides are inherently toxic, the host spider must employ strategies to avoid adverse effects prior to venom use. It is partly for this reason that most spider toxins encode a protective proregion that upon enzymatic cleavage is excised from the mature peptide. In order to identify the mature toxin sequence directly from toxin transcripts, without resorting to protein sequencing, the propeptide cleavage site in the toxin precursor must be predicted bioinformatically. We evaluated different machine learning strategies (support vector machines, hidden Markov model and decision tree and developed an algorithm (SpiderP for prediction of propeptide cleavage sites in spider toxins. Our strategy uses a support vector machine (SVM framework that combines both local and global sequence information. Our method is superior or comparable to current tools for prediction of propeptide sequences in spider toxins. Evaluation of the SVM method on an independent test set of known toxin sequences yielded 96% sensitivity and 100% specificity. Furthermore, we sequenced five novel peptides (not used to train the final predictor from the venom of the Australian tarantula Selenotypus plumipes to test the accuracy of the predictor and found 80% sensitivity and 99.6% 8-mer specificity. Finally, we used the predictor together with homology information to predict and characterize seven groups of novel toxins from the deeply sequenced venom gland transcriptome of S. plumipes, which revealed structural complexity and innovations in the evolution of the toxins. The precursor prediction tool (SpiderP is freely available on ArachnoServer (http://www.arachnoserver.org/spiderP.html, a web portal to a comprehensive relational database of spider toxins. All training data, test data, and scripts used are available from

  15. SVM-based prediction of propeptide cleavage sites in spider toxins identifies toxin innovation in an Australian tarantula.

    Wong, Emily S W; Hardy, Margaret C; Wood, David; Bailey, Timothy; King, Glenn F

    2013-01-01

    Spider neurotoxins are commonly used as pharmacological tools and are a popular source of novel compounds with therapeutic and agrochemical potential. Since venom peptides are inherently toxic, the host spider must employ strategies to avoid adverse effects prior to venom use. It is partly for this reason that most spider toxins encode a protective proregion that upon enzymatic cleavage is excised from the mature peptide. In order to identify the mature toxin sequence directly from toxin transcripts, without resorting to protein sequencing, the propeptide cleavage site in the toxin precursor must be predicted bioinformatically. We evaluated different machine learning strategies (support vector machines, hidden Markov model and decision tree) and developed an algorithm (SpiderP) for prediction of propeptide cleavage sites in spider toxins. Our strategy uses a support vector machine (SVM) framework that combines both local and global sequence information. Our method is superior or comparable to current tools for prediction of propeptide sequences in spider toxins. Evaluation of the SVM method on an independent test set of known toxin sequences yielded 96% sensitivity and 100% specificity. Furthermore, we sequenced five novel peptides (not used to train the final predictor) from the venom of the Australian tarantula Selenotypus plumipes to test the accuracy of the predictor and found 80% sensitivity and 99.6% 8-mer specificity. Finally, we used the predictor together with homology information to predict and characterize seven groups of novel toxins from the deeply sequenced venom gland transcriptome of S. plumipes, which revealed structural complexity and innovations in the evolution of the toxins. The precursor prediction tool (SpiderP) is freely available on ArachnoServer (http://www.arachnoserver.org/spiderP.html), a web portal to a comprehensive relational database of spider toxins. All training data, test data, and scripts used are available from the Spider

  16. Intron-encoded endonuclease I-TevI binds as a monomer to effect sequential cleavage via conformational changes in the td homing site.

    Mueller, J E; Smith, D; Bryk, M; Belfort, M

    1995-11-15

    I-TevI, the intron-encoded endonuclease from the thymidylate synthase (td) gene of bacteriophage T4, binds its DNA substrate across the minor groove in a sequence-tolerant fashion. We demonstrate here that the 28 kDa I-TevI binds the extensive 37 bp td homing site as a monomer and significantly distorts its substrate. In situ cleavage assays and phasing analyses indicate that upon nicking the bottom strand of the td homing site, I-TevI induces a directed bend of 38 degrees towards the major groove near the cleavage site. Formation of the bent I-TevI-DNA complex is proposed to promote top-strand cleavage of the homing site. Furthermore, reductions in the degree of distortion and in the efficiency of binding base-substitution variants of the td homing site indicate that sequences flanking the cleavage site contribute to the I-TevI-induced conformational change. These results, combined with genetic, physical and computer-modeling studies, form the basis of a model, wherein I-TevI acts as a hinged monomer to induce a distortion that widens the minor groove, facilitating access to the top-strand cleavage site. The model is compatible with both unmodified DNA and glucosylated hydroxymethylcytosine-containing DNA, as exists in the T-even phages. PMID:8521829

  17. Predictions of Cleavability of Calpain Proteolysis by Quantitative Structure-Activity Relationship Analysis Using Newly Determined Cleavage Sites and Catalytic Efficiencies of an Oligopeptide Array.

    Shinkai-Ouchi, Fumiko; Koyama, Suguru; Ono, Yasuko; Hata, Shoji; Ojima, Koichi; Shindo, Mayumi; duVerle, David; Ueno, Mika; Kitamura, Fujiko; Doi, Naoko; Takigawa, Ichigaku; Mamitsuka, Hiroshi; Sorimachi, Hiroyuki

    2016-04-01

    Calpains are intracellular Ca(2+)-regulated cysteine proteases that are essential for various cellular functions. Mammalian conventional calpains (calpain-1 and calpain-2) modulate the structure and function of their substrates by limited proteolysis. Thus, it is critically important to determine the site(s) in proteins at which calpains cleave. However, the calpains' substrate specificity remains unclear, because the amino acid (aa) sequences around their cleavage sites are very diverse. To clarify calpains' substrate specificities, 84 20-mer oligopeptides, corresponding to P10-P10' of reported cleavage site sequences, were proteolyzed by calpains, and the catalytic efficiencies (kcat/Km) were globally determined by LC/MS. This analysis revealed 483 cleavage site sequences, including 360 novel ones. Thekcat/Kms for 119 sites ranged from 12.5-1,710 M(-1)s(-1) Although most sites were cleaved by both calpain-1 and -2 with a similarkcat/Km, sequence comparisons revealed distinct aa preferences at P9-P7/P2/P5'. The aa compositions of the novel sites were not statistically different from those of previously reported sites as a whole, suggesting calpains have a strict implicit rule for sequence specificity, and that the limited proteolysis of intact substrates is because of substrates' higher-order structures. Cleavage position frequencies indicated that longer sequences N-terminal to the cleavage site (P-sites) were preferred for proteolysis over C-terminal (P'-sites). Quantitative structure-activity relationship (QSAR) analyses using partial least-squares regression and >1,300 aa descriptors achievedkcat/Kmprediction withr= 0.834, and binary-QSAR modeling attained an 87.5% positive prediction value for 132 reported calpain cleavage sites independent of our model construction. These results outperformed previous calpain cleavage predictors, and revealed the importance of the P2, P3', and P4' sites, and P1-P2 cooperativity. Furthermore, using our binary-QSAR model

  18. Determination of the protease cleavage site repertoire—The RNase H but not the RT domain is essential for foamy viral protease activity

    Spannaus, Ralf; Bodem, Jochen, E-mail: Jochen.Bodem@vim.uni-wuerzburg.de

    2014-04-15

    In contrast to orthoretroviruses, the foamy virus protease is only active as a protease-reverse transcriptase fusion protein and requires viral RNA for activation. Maturation of foamy viral proteins seems to be restricted to a single cleavage site in Gag and Pol. We provide evidence that unprocessed Gag is required for optimal infectivity, which is unique among retroviruses. Analyses of the cleavage site sequences of the Gag and Pol cleavage sites revealed a high similarity compared to those of Lentiviruses. We show that positions P2' and P2 are invariant and that Gag and Pol cleavage sites are processed with similar efficiencies. The RNase H domain is essential for protease activity, but can functionally be substituted by RNase H domains of other retroviruses. Thus, the RNase H domain might be involved in the stabilization of the protease dimer, while the RT domain is essential for RNA dependent protease activation. - Highlights: • Unprocessed Gag is required for optimal infectivity of foamy viruses. • Positions P2 and P2' are invariant in the foamy viral cleavage sites. • The RNaseH domain is essential for protease activity. • The RNaseH domains of other retroviruses support foamy viral protease activity.

  19. Determination of the protease cleavage site repertoire—The RNase H but not the RT domain is essential for foamy viral protease activity

    In contrast to orthoretroviruses, the foamy virus protease is only active as a protease-reverse transcriptase fusion protein and requires viral RNA for activation. Maturation of foamy viral proteins seems to be restricted to a single cleavage site in Gag and Pol. We provide evidence that unprocessed Gag is required for optimal infectivity, which is unique among retroviruses. Analyses of the cleavage site sequences of the Gag and Pol cleavage sites revealed a high similarity compared to those of Lentiviruses. We show that positions P2' and P2 are invariant and that Gag and Pol cleavage sites are processed with similar efficiencies. The RNase H domain is essential for protease activity, but can functionally be substituted by RNase H domains of other retroviruses. Thus, the RNase H domain might be involved in the stabilization of the protease dimer, while the RT domain is essential for RNA dependent protease activation. - Highlights: • Unprocessed Gag is required for optimal infectivity of foamy viruses. • Positions P2 and P2' are invariant in the foamy viral cleavage sites. • The RNaseH domain is essential for protease activity. • The RNaseH domains of other retroviruses support foamy viral protease activity

  20. Distinct oxidative cleavage and modification of bovine [Cu- Zn]-SOD by an ascorbic acid/Cu(II) system: Identification of novel copper binding site on SOD molecule.

    Uehara, Hiroshi; Luo, Shen; Aryal, Baikuntha; Levine, Rodney L; Rao, V Ashutosh

    2016-05-01

    We investigated the combined effect of ascorbate and copper [Asc/Cu(II)] on the integrity of bovine [Cu-Zn]-superoxide dismutase (bSOD1) as a model system to study the metal catalyzed oxidation (MCO) and fragmentation of proteins. We found Asc/Cu(II) mediates specific cleavage of bSOD1 and generates 12.5 and 3.2kDa fragments in addition to oxidation/carbonylation of the protein. The effect of other tested transition metals, a metal chelator, and hydrogen peroxide on the cleavage and oxidation indicated that binding of copper to a previously unknown site on SOD1 is responsible for the Asc/Cu(II) specific cleavage and oxidation. We utilized tandem mass spectrometry to identify the specific cleavage sites of Asc/Cu(II)-treated bSOD1. Analyses of tryptic- and AspN-peptides have demonstrated the cleavage to occur at Gly31 with peptide bond breakage with Thr30 and Ser32 through diamide and α-amidation pathways, respectively. The three-dimensional structure of bSOD1 reveals the imidazole ring of His19 localized within 5Å from the α-carbon of Gly31 providing a structural basis that copper ion, most likely coordinated by His19, catalyzes the specific cleavage reaction. PMID:26872685

  1. Positive selection pressure introduces secondary mutations at Gag cleavage sites in human immunodeficiency virus type 1 harboring major protease resistance mutations

    Banke, S.; Lillemark, M.R.; Gerstoft, J.;

    2009-01-01

    mutations). Additional sequences from 13 patients were included for longitudinal analysis. We assessed positive selection pressure on the gag/protease region using a test for the overall influence of positive selection and a total of five tests to identify positively selected single codons. We found that...... positive selection pressure was the driving evolutionary force for the gag region in all three patient groups. An increase in positive selection was observed in gag cleavage site regions p7/p1/p6 only after the acquisition of major PI mutations, suggesting that amino acids in gag cleavage sites under...

  2. Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage

    Yuan,Y.; Pei, Y.; Ma, J.; Kuryavyi, V.; Zhadina, M.; Meister, G.; Chen, H.; Dauter, Z.; Tuschi, T.; Patel, D.

    2005-01-01

    Argonaute (Ago) proteins constitute a key component of the RNA-induced silencing complex (RISC). We report the crystal structure of Aquifex aeolicus Ago (Aa-Ago) together with binding and cleavage studies, which establish this eubacterial Ago as a bona fide guide DNA strand-mediated site-specific RNA endonuclease. We have generated a stereochemically robust model of the complex, where the guide DNA-mRNA duplex is positioned within a basic channel spanning the bilobal interface, such that the 5' phosphate of the guide strand can be anchored in a basic pocket, and the mRNA can be positioned for site-specific cleavage by RNase H-type divalent cation-coordinated catalytic Asp residues of the PIWI domain. Domain swap experiments involving chimeras of human Ago (hAgo1) and cleavage-competent hAgo2 reinforce the role of the PIWI domain in 'slicer' activity. We propose a four-step Ago-mediated catalytic cleavage cycle model, which provides distinct perspectives into the mechanism of guide strand-mediated mRNA cleavage within the RISC.

  3. Prohormone convertases 1/3 and 2 together orchestrate the site-specific cleavages of progastrin to release gastrin-34 and gastrin-17

    Zhu, X.; Norrbom, C.; Bundgaard, J.R.; Johnsen, A.H.; Nielsen, J.E.; Vikesaa, J.; Stein, J.; Dey, A.; Steiner, D.F.; Friis-Hansen, L.; Rehfeld, Jens Frederik

    2008-01-01

    Cellular synthesis of peptide hormones requires PCs (prohormone convertases) for the endoproteolysis of prohormones. Antral G-cells synthesize the most gastrin and express PC1/3, 2 and 5/6 in the rat and human. But the cleavage sites in progastrin for each PC have not been determined. Therefore, ...

  4. Cleavage of nucleic acids

    Prudent, James R. (Madison, WI); Hall, Jeff G. (Madison, WI); Lyamichev, Victor L. (Madison, WI); Brow, Mary Ann D. (Madison, WI); Dahlberg, James E. (Madison, WI)

    2007-12-11

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  5. Cleavage of nucleic acids

    Prudent, James R. (Madison, WI); Hall, Jeff G. (Waunakee, WI); Lyamichev, Victor I. (Madison, WI); Brow; Mary Ann D. (Madison, WI); Dahlberg, James E. (Madison, WI)

    2010-11-09

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  6. Cleavage of nucleic acids

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.

    2000-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  7. ALKBH1 is dispensable for abasic site cleavage during base excision repair and class switch recombination.

    Müller, Tina A; Yu, Kefei; Hausinger, Robert P; Meek, Katheryn

    2013-01-01

    Potential roles of the abasic site lyase activity associated with AlkB homolog 1 (ALKBH1) were assessed by studies focusing on the two cellular processes that create abasic sites as intermediates: base excision repair and class switch recombination. Alkbh1(-/-) pups (lacking exon 3) were born at a lower than expected frequency from heterozygous parents, suggesting a reduced survival rate and non-Mendelian inheritance, and they exhibited a gender bias in favor of males (70% males and 30% females). To study ALKBH1's potential involvement in DNA repair, fibroblasts were isolated from Alkbh1(-/-) mice, spontaneously immortalized and tested for resistance to DNA damaging agents. Alkbh1(-/-) and isogenic cells expressing hALKBH1 showed no difference in survival to the DNA damaging agents methyl-methionine sulfate or H2O2. This result indicates that ALKBH1 does not play a major role in the base excision repair pathway. To assess ALKBH1's role in class switch recombination, splenic B cells were isolated from Alkbh1(-/-) and Alkbh1(+/+) mice and subjected to switching from IgM to IgG1. No differences were found in IgG1 switching, suggesting that Alkbh1 is not involved in class switch recombination of the immunoglobulin heavy chain during B lymphocyte activation. PMID:23825659

  8. ALKBH1 is dispensable for abasic site cleavage during base excision repair and class switch recombination.

    Tina A Müller

    Full Text Available Potential roles of the abasic site lyase activity associated with AlkB homolog 1 (ALKBH1 were assessed by studies focusing on the two cellular processes that create abasic sites as intermediates: base excision repair and class switch recombination. Alkbh1(-/- pups (lacking exon 3 were born at a lower than expected frequency from heterozygous parents, suggesting a reduced survival rate and non-Mendelian inheritance, and they exhibited a gender bias in favor of males (70% males and 30% females. To study ALKBH1's potential involvement in DNA repair, fibroblasts were isolated from Alkbh1(-/- mice, spontaneously immortalized and tested for resistance to DNA damaging agents. Alkbh1(-/- and isogenic cells expressing hALKBH1 showed no difference in survival to the DNA damaging agents methyl-methionine sulfate or H2O2. This result indicates that ALKBH1 does not play a major role in the base excision repair pathway. To assess ALKBH1's role in class switch recombination, splenic B cells were isolated from Alkbh1(-/- and Alkbh1(+/+ mice and subjected to switching from IgM to IgG1. No differences were found in IgG1 switching, suggesting that Alkbh1 is not involved in class switch recombination of the immunoglobulin heavy chain during B lymphocyte activation.

  9. The Role of G-Protein-Coupled Receptor Proteolysis Site Cleavage of Polycystin-1 in Renal Physiology and Polycystic Kidney Disease

    Marie Trudel

    2016-01-01

    Full Text Available Polycystin-1 (PC1 plays an essential role in renal tubular morphogenesis, and PC1 dysfunction causes human autosomal dominant polycystic kidney disease. A fundamental characteristic of PC1 is post-translational modification via cleavage at the juxtamembrane GPCR proteolysis site (GPS motif that is part of the larger GAIN domain. Given the considerable biochemical complexity of PC1 molecules generated in vivo by this process, GPS cleavage has several profound implications on the intracellular trafficking and localization in association with their particular function. The critical nature of GPS cleavage is further emphasized by the increasing numbers of PKD1 mutations that significantly affect this cleavage process. The GAIN domain with the GPS motif therefore represents the key structural element with fundamental importance for PC1 and might be polycystic kidney disease’s (PKD Achilles’ heel in a large spectrum of PKD1 missense mutations. We highlight the central roles of PC1 cleavage for the regulation of its biogenesis, intracellular trafficking and function, as well as its significance in polycystic kidney disease.

  10. A single amino acid change, Q114R, in the cleavage-site sequence of Newcastle disease virus fusion protein attenuates viral replication and pathogenicity.

    Samal, Sweety; Kumar, Sachin; Khattar, Sunil K; Samal, Siba K

    2011-10-01

    A key determinant of Newcastle disease virus (NDV) virulence is the amino acid sequence at the fusion (F) protein cleavage site. The NDV F protein is synthesized as an inactive precursor, F(0), and is activated by proteolytic cleavage between amino acids 116 and 117 to produce two disulfide-linked subunits, F(1) and F(2). The consensus sequence of the F protein cleavage site of virulent [(112)(R/K)-R-Q-(R/K)-R↓F-I(118)] and avirulent [(112)(G/E)-(K/R)-Q-(G/E)-R↓L-I(118)] strains contains a conserved glutamine residue at position 114. Recently, some NDV strains from Africa and Madagascar were isolated from healthy birds and have been reported to contain five basic residues (R-R-R-K-R↓F-I/V or R-R-R-R-R↓F-I/V) at the F protein cleavage site. In this study, we have evaluated the role of this conserved glutamine residue in the replication and pathogenicity of NDV by using the moderately pathogenic Beaudette C strain and by making Q114R, K115R and I118V mutants of the F protein in this strain. Our results showed that changing the glutamine to a basic arginine residue reduced viral replication and attenuated the pathogenicity of the virus in chickens. The pathogenicity was further reduced when the isoleucine at position 118 was substituted for valine. PMID:21677091

  11. Crystal structure of Bombyx mori arylphorins reveals a 3:3 heterohexamer with multiple papain cleavage sites.

    Hou, Yong; Li, Jianwei; Li, Yi; Dong, Zhaoming; Xia, Qingyou; Yuan, Y Adam

    2014-06-01

    In holometabolous insects, the accumulation and utilization of storage proteins (SPs), including arylphorins and methionine-rich proteins, are critical for the insect metamorphosis. SPs function as amino acids reserves, which are synthesized in fat body, secreted into the larval hemolymph and taken up by fat body shortly before pupation. However, the detailed molecular mechanisms of digestion and utilization of SPs during development are largely unknown. Here, we report the crystal structure of Bombyx mori arylphorins at 2.8 Å, which displays a heterohexameric structural arrangement formed by trimerization of dimers comprising two structural similar arylphorins. Our limited proteolysis assay and microarray data strongly suggest that papain-like proteases are the major players for B. mori arylphorins digestion in vitro and in vivo. Consistent with the biochemical data, dozens of papain cleavage sites are mapped on the surface of the heterohexameric structure of B. mori arylphorins. Hence, our results provide the insightful information to understand the metamorphosis of holometabolous insects at molecular level. PMID:24639361

  12. Inhibition of Lassa virus glycoprotein cleavage and multicycle replication by site 1 protease-adapted alpha(1-antitrypsin variants.

    Anna Maisa

    Full Text Available BACKGROUND: Proteolytic processing of the Lassa virus envelope glycoprotein precursor GP-C by the host proprotein convertase site 1 protease (S1P is a prerequisite for the incorporation of the subunits GP-1 and GP-2 into viral particles and, hence, essential for infectivity and virus spread. Therefore, we tested in this study the concept of using S1P as a target to block efficient virus replication. METHODOLOGY/PRINCIPAL FINDING: We demonstrate that stable cell lines inducibly expressing S1P-adapted alpha(1-antitrypsin variants inhibit the proteolytic maturation of GP-C. Introduction of the S1P recognition motifs RRIL and RRLL into the reactive center loop of alpha(1-antitrypsin resulted in abrogation of GP-C processing by endogenous S1P to a similar level observed in S1P-deficient cells. Moreover, S1P-specific alpha(1-antitrypsins significantly inhibited replication and spread of a replication-competent recombinant vesicular stomatitis virus expressing the Lassa virus glycoprotein GP as well as authentic Lassa virus. Inhibition of viral replication correlated with the ability of the different alpha(1-antitrypsin variants to inhibit the processing of the Lassa virus glycoprotein precursor. CONCLUSIONS/SIGNIFICANCE: Our data suggest that glycoprotein cleavage by S1P is a promising target for the development of novel anti-arenaviral strategies.

  13. Site-specific O-Glycosylation on the MUC2 Mucin Protein Inhibits Cleavage by the Porphyromonas gingivalis Secreted Cysteine Protease (RgpB)

    van der Post, Sjoerd; Subramani, Durai B; Bäckström, Malin;

    2013-01-01

    The colonic epithelial surface is protected by an inner mucus layer that the commensal microflora cannot penetrate. We previously demonstrated that Entamoeba histolytica secretes a protease capable of dissolving this layer that is required for parasite penetration. Here, we asked whether there are...... bacteria that can secrete similar proteases. We screened bacterial culture supernatants for such activity using recombinant fragments of the MUC2 mucin, the major structural component, and the only gel-forming mucin in the colonic mucus. MUC2 has two central heavily O-glycosylated mucin domains that are...... was isolated and identified as Arg-gingipain B (RgpB). Two cleavage sites were localized to IR↓TT and NR↓QA. IR↓TT cleavage will disrupt the MUC2 polymers. Because this site has two potential O-glycosylation sites, we tested whether recombinant GalNAc-transferases (GalNAc-Ts) could glycosylate a...

  14. The 'cleavage' activities of foot-and-mouth disease virus 2A site-directed mutants and naturally occurring '2A-like' sequences.

    Donnelly, M L; Hughes, L E; Luke, G; Mendoza, H; ten Dam, E; Gani, D; Ryan, M D

    2001-05-01

    The 2A/2B cleavage of aphtho- and cardiovirus 2A polyproteins is mediated by their 2A proteins 'cleaving' at their own C termini. We have analysed this activity using artificial reporter polyprotein systems comprising green fluorescent protein (GFP) linked via foot-and-mouth disease virus (FMDV) 2A to beta-glucuronidase (GUS) -- forming a single, long, open reading frame. Analysis of the distribution of radiolabel showed a high proportion of the in vitro translation products (approximately 90%) were in the form of the 'cleavage' products GUS and [GFP2A]. Alternative models have been proposed to account for the 'cleavage' activity: proteolysis by a host-cell proteinase, autoproteolysis or a translational effect. To investigate the mechanism of this cleavage event constructs encoding site-directed mutant and naturally occurring '2A-like' sequences were used to program in vitro translation systems and the gel profiles analysed. Analysis of site-directed mutant 2A sequences showed that 'cleavage' occurred in constructs in which all the candidate nucleophilic residues were substituted -- with the exception of aspartate-12. This residue is not, however, conserved amongst all functional '2A-like' sequences. '2A-like' sequences were identified within insect virus polyproteins, the NS34 protein of type C rotaviruses, repeated sequences in Trypanosoma spp. and a eubacterial alpha-glucosiduronasesequence(Thermatoga maritima aguA). All of the 2A-like sequences analysed were active (to various extents), other than the eubacterial alpha-glucosiduronase 2A-like sequence. This method of control of protein biogenesis may well not, therefore, be confined to members of the PICORNAVIRIDAE: Taken together, these data provide additional evidence that neither FMDV 2A nor '2A-like' sequences are autoproteolytic elements. PMID:11297677

  15. Mutational analysis of the cleavage of the cancer-associated laminin receptor by stromelysin-3 reveals the contribution of flanking sequences to site recognition and cleavage efficiency

    Fiorentino, Maria; Fu, Liezhen; Shi, Yun-Bo

    2009-01-01

    The matrix metalloproteinase stromelysin-3 (ST3) has long been implicated to play an important role in cell fate determination during normal and pathological processes. Using the thyroid hormone-dependent Xenopus laevis metamorphosis as a model, we have previously shown that ST3 is required for apoptosis during intestinal remodeling and that laminin receptor (LR) is an in vivo substrate of ST3 during this process. ST3 cleaves LR at two distinct sites that are conserved in mammalian LR. Human ...

  16. Crystal Structure of A. aeolicus Argonaute, a Site-Specific DNA-Guided Endoribonuclease, Provides Insights into RISC-Mediated mRNA Cleavage

    Yuan, Yu-Ren; Pei, Yi; Ma, Jin-Biao; Kuryavyi, Vitaly; Zhadina, Maria; Meister, Gunter; Chen, Hong-Ying; Dauter, Zbigniew; Tuschl, Thomas; Patel, Dinshaw J.

    2005-01-01

    Argonaute (Ago) proteins constitute a key component of the RNA-induced silencing complex (RISC). We report the crystal structure of Aquifex aeolicus Ago (Aa-Ago) together with binding and cleavage studies, which establish this eubacterial Ago as a bona fide guide DNA strand-mediated site-specific RNA endonuclease. We have generated a stereochemically robust model of the complex, where the guide DNA-mRNA duplex is positioned within a basic channel spanning the bilobal interface, such that the ...

  17. GFP is Efficiently Expressed by Wheat Streak Mosaic Virus Using a Range of Tritimovirus NIa Cleavage Sites and Forms Dense Aggregates in Cereal Hosts

    Wheat streak mosaic virus (WSMV)-based transient expression vector was developed to express GFP as a marker protein. The GFP cistron was engineered between the P1 and HC-Pro cistrons in an infectious cDNA clone of WSMV. The cleavage sites, P3/6KI, 6KI/CI, NIa/NIb, or NIb/CP, from WSMV were fused to ...

  18. SVM-Based Prediction of Propeptide Cleavage Sites in Spider Toxins Identifies Toxin Innovation in an Australian Tarantula

    Wong, Emily S. W.; Hardy, Margaret C.; David Wood; Timothy Bailey; Glenn F. King

    2013-01-01

    Spider neurotoxins are commonly used as pharmacological tools and are a popular source of novel compounds with therapeutic and agrochemical potential. Since venom peptides are inherently toxic, the host spider must employ strategies to avoid adverse effects prior to venom use. It is partly for this reason that most spider toxins encode a protective proregion that upon enzymatic cleavage is excised from the mature peptide. In order to identify the mature toxin sequence directly from toxin tran...

  19. Diverse endonucleolytic cleavage sites in the mammalian transcriptome depend upon microRNAs, Drosha, and additional nucleases

    Karginov, Fedor V.; Cheloufi, Sihem; Chong, Mark M.W.; Stark, Alexander; Smith, Andrew D; Hannon, Gregory J.

    2010-01-01

    The lifespan of a mammalian mRNA is determined, in part, by the binding of regulatory proteins and small RNA-guided complexes. The conserved endonuclease activity of Argonaute2 requires extensive complementarity between a small RNA and its target and is not used by animal microRNAs, which pair with their targets imperfectly. Here, we investigate the endonucleolytic function of Ago2 and other nucleases by transcriptome-wide profiling of mRNA cleavage products retaining 5′-phosphate groups in m...

  20. Reversed DNA strand cleavage specificity in initiation of Cre-LoxP recombination induced by the His289Ala active-site substitution.

    Gelato, Kathy A; Martin, Shelley S; Baldwin, Enoch P

    2005-11-25

    During the first steps of site-specific recombination, Cre protein cleaves and religates a specific homologous pair of LoxP strands to form a Holliday junction (HJ) intermediate. The HJ is resolved into recombination products through exchange of the second homologous strand pair. CreH289A, containing a His to Ala substitution in the conserved R-H-R catalytic motif, has a 150-fold reduced recombination rate and accumulates HJs. However, to produce these HJs, CreH289A exchanges the opposite set of strands compared to wild-type Cre (CreWT). To investigate how CreH289A and CreWT impose strand exchange order, we characterized their reactivities and strand cleavage preferences toward LoxP duplex and HJ substrates containing 8bp spacer substitutions. Remarkably, CreH289A had different and often opposite strand exchange preferences compared to CreWT with nearly all substrates. CreH289N was much less perturbed, implying that overall recombination rate and strand exchange depend more on His289 hydrogen bonding capability than on its acid/base properties. LoxP substitutions immediately 5' (S1 nucleotide) or 3' (S1' nucleotide) of the scissile phosphate had large effects on substrate utilization and strand exchange order. S1' substitutions, designed to alter base-unstacking events concomitant with Cre-induced LoxP bending, caused HJ accumulation and dramatically inverted the cleavage preferences. That pre-formed HJs were resolved via either strand in vitro suggests that inhibition of the "conformational switch" isomerization required to trigger the second strand exchange accounts for the observed HJ accumulation. Rather than reflecting CreWT behavior, CreH289A accumulates HJs of opposite polarity through a combination of its unique cleavage specificity and an HJ isomerization defect. The overall implication is that cleavage specificity is mediated by sequence-dependent DNA deformations that influence the scissile phosphate positioning and reactivity. A role of His289 may be to

  1. Reversed DNA Strand Cleavage Specificity in Initiation of Cre–LoxP Recombination Induced by the His289Ala Active-site Substitution

    Gelato, Kathy A.; Martin, Shelley S.; Baldwin, Enoch P.

    2010-01-01

    During the first steps of site-specific recombination, Cre protein cleaves and religates a specific homologous pair of LoxP strands to form a Holliday junction (HJ) intermediate. The HJ is resolved into recombination products through exchange of the second homologous strand pair. CreH289A, containing a His to Ala substitution in the conserved R-H-R catalytic motif, has a 150-fold reduced recombination rate and accumulates HJs. However, to produce these HJs, CreH289A exchanges the opposite set of strands compared to wild-type Cre (CreWT). To investigate how CreH289A and CreWT impose strand exchange order, we characterized their reactivities and strand cleavage preferences toward LoxP duplex and HJ substrates containing 8 bp spacer substitutions. Remarkably, CreH289A had different and often opposite strand exchange preferences compared to CreWT with nearly all substrates. CreH289N was much less perturbed, implying that overall recombination rate and strand exchange depend more on His289 hydrogen bonding capability than on its acid/base properties. LoxP substitutions immediately 5′(S1 nucleotide) or 3′(S1′nucleotide) of the scissile phosphate had large effects on substrate utilization and strand exchange order. S1′substitutions, designed to alter base-unstacking events concomitant with Cre-induced LoxP bending, caused HJ accumulation and dramatically inverted the cleavage preferences. That pre-formed HJs were resolved via either strand in vitro suggests that inhibition of the “conformational switch” isomerization required to trigger the second strand exchange accounts for the observed HJ accumulation. Rather than reflecting CreWT behavior, CreH289A accumulates HJs of opposite polarity through a combination of its unique cleavage specificity and an HJ isomerization defect. The overall implication is that cleavage specificity is mediated by sequence-dependent DNA deformations that influence the scissile phosphate positioning and reactivity. A role of His289

  2. Mutations in the fusion protein cleavage site of avian paramyxovirus serotype 4 confer increased replication and syncytium formation in vitro but not increased replication and pathogenicity in chickens and ducks.

    Kim, Shin-Hee; Xiao, Sa; Shive, Heather; Collins, Peter L; Samal, Siba K

    2013-01-01

    To evaluate the role of the F protein cleavage site in the replication and pathogenicity of avian paramyxoviruses (APMVs), we constructed a reverse genetics system for recovery of infectious recombinant APMV-4 from cloned cDNA. The recovered recombinant APMV-4 resembled the biological virus in growth characteristics in vitro and in pathogenicity in vivo. The F cleavage site sequence of APMV-4 (DIQPR↓F) contains a single basic amino acid, at the -1 position. Six mutant APMV-4 viruses were recovered in which the F protein cleavage site was mutated to contain increased numbers of basic amino acids or to mimic the naturally occurring cleavage sites of several paramyxoviruses, including neurovirulent and avirulent strains of NDV. The presence of a glutamine residue at the -3 position was found to be important for mutant virus recovery. In addition, cleavage sites containing the furin protease motif conferred increased replication and syncytium formation in vitro. However, analysis of viral pathogenicity in 9-day-old embryonated chicken eggs, 1-day-old and 2-week-old chickens, and 3-week-old ducks showed that none the F protein cleavage site mutations altered the replication, tropism, and pathogenicity of APMV-4, and no significant differences were observed among the parental and mutant APMV-4 viruses in vivo. Although parental and mutant viruses replicated somewhat better in ducks than in chickens, they all were highly restricted and avirulent in both species. These results suggested that the cleavage site sequence of the F protein is not a limiting determinant of APMV-4 pathogenicity in chickens and ducks. PMID:23341874

  3. Enhanced Protective Efficacy of H5 Subtype Influenza Vaccine with Modification of the Multibasic Cleavage Site of Hemagglutinin in Retroviral Pseudotypes

    Ling Tao; JianJun Chen; Jin Meng; Yao Chen; Hongxia Li; Yan Liu; Zhenhua Zheng

    2013-01-01

    Traditionally,the multibasic cleavage site (MBCS) of surface protein H5-hemagglutinin (HA) is converted to a monobasic one so as to weaken the virulence of recombinant H5N1 influenza viruses and to produce inactivated and live attenuated vaccines.Whether such modification benefits new candidate vaccines has not been adequately investigated.We previously used retroviral vectors to generate wtH5N1 pseudotypes containing the wild-type HA (wtH5) from A/swine/Anhui/ca/2004 (H5N1) virus.Here,we generated mtH5N1 pseudotypes,which contained a mutant-type HA (mtH5) with a modified monobasic cleavage site.Groups of mice were subcutaneously injected with the two types of influenza pseudotypes.Compared to the group immunized with wtH5N1 pseudotypes,the inoculation of mtH5N1 pseudotypes induced significantly higher levels of HA specific IgG and IFN-γ in immunized mice,and enhanced protection against the challenge of mouse-adapted avian influenza virus A/Chicken/Henan/12/2004 (H5N1).This study suggests modification of the H5-hemagglutinin MBCS in retroviral pseudotypes enhances protection efficacy in mice and this information may be helpful for development of vaccines from mammalian cells to fight against H5N1 influenza viruses.

  4. Invasive cleavage of nucleic acids

    Prudent, James R. (Madison, WI); Hall, Jeff G. (Madison, WI); Lyamichev, Victor I. (Madison, WI); Brow, Mary Ann D. (Madison, WI); Dahlberg, James E. (Madison, WI)

    2002-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  5. Invasive cleavage of nucleic acids

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.

    1999-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  6. Fluorescence quenching of graphene oxide combined with the site-specific cleavage of restriction endonuclease for deoxyribonucleic acid demethylase activity assay

    Ji, Lijuan; Qian, Yingdan; Wu, Ping; Zhang, Hui; Cai, Chenxin, E-mail: cxcai@njnu.edu.cn

    2015-04-15

    Highlights: • An approach for sensitive and selective DNA demethylase activity assay is reported. • This assay is based on the fluorescence quenching of GO and site-specific cleavage of endonuclease. • It can determine as low as 0.05 ng mL{sup −1} of MBD2 with a linear range of 0.2–300 ng mL{sup −1}. • It has an ability to recognize MBD2 from other possibly coexisting proteins and cancer cell extracts. • It can avoid false signals, requiring no bisulfite conversion, PCR amplification, radioisotope-labeling. - Abstract: We report on the development of a sensitive and selective deoxyribonucleic acid (DNA) demethylase (using MBD2 as an example) activity assay by coupling the fluorescence quenching of graphene oxide (GO) with the site-specific cleavage of HpaII endonuclease to improve the selectivity. This approach was developed by designing a single-stranded probe (P1) that carries a binding region to facilitate the interaction with GO, which induces fluorescence quenching of the labeled fluorophore (FAM, 6-carboxyfluorescein), and a sensing region, which contains a hemi-methylated site of 5′-CmCGG-3′, to specifically recognize the target (T1, a 32-mer DNA from the promoter region of p53 gene) and hybridize with it to form a P1/T1 duplex. After demethylation with MBD2, the duplex can be specifically cleaved using HpaII, which releases the labeled FAM from the GO surface and results in the recovery of fluorescence. However, this cleavage is blocked by the hemi-methylation of this site. Thus, the magnitude of the recovered fluorescence signal is related to the MBD2 activity, which establishes the basis of the DNA demethylase activity assay. This assay can determine as low as ∼(0.05 ± 0.01) ng mL{sup −1} (at a signal/noise of 3) of MBD2 with a linear range of 0.2–300 ng mL{sup −1} and recognize MBD2 from other possibly coexisting proteins and cancer cell extracts. The advantage of this assay is its ability to avoid false signals and no

  7. Fluorescence quenching of graphene oxide combined with the site-specific cleavage of restriction endonuclease for deoxyribonucleic acid demethylase activity assay

    Highlights: • An approach for sensitive and selective DNA demethylase activity assay is reported. • This assay is based on the fluorescence quenching of GO and site-specific cleavage of endonuclease. • It can determine as low as 0.05 ng mL−1 of MBD2 with a linear range of 0.2–300 ng mL−1. • It has an ability to recognize MBD2 from other possibly coexisting proteins and cancer cell extracts. • It can avoid false signals, requiring no bisulfite conversion, PCR amplification, radioisotope-labeling. - Abstract: We report on the development of a sensitive and selective deoxyribonucleic acid (DNA) demethylase (using MBD2 as an example) activity assay by coupling the fluorescence quenching of graphene oxide (GO) with the site-specific cleavage of HpaII endonuclease to improve the selectivity. This approach was developed by designing a single-stranded probe (P1) that carries a binding region to facilitate the interaction with GO, which induces fluorescence quenching of the labeled fluorophore (FAM, 6-carboxyfluorescein), and a sensing region, which contains a hemi-methylated site of 5′-CmCGG-3′, to specifically recognize the target (T1, a 32-mer DNA from the promoter region of p53 gene) and hybridize with it to form a P1/T1 duplex. After demethylation with MBD2, the duplex can be specifically cleaved using HpaII, which releases the labeled FAM from the GO surface and results in the recovery of fluorescence. However, this cleavage is blocked by the hemi-methylation of this site. Thus, the magnitude of the recovered fluorescence signal is related to the MBD2 activity, which establishes the basis of the DNA demethylase activity assay. This assay can determine as low as ∼(0.05 ± 0.01) ng mL−1 (at a signal/noise of 3) of MBD2 with a linear range of 0.2–300 ng mL−1 and recognize MBD2 from other possibly coexisting proteins and cancer cell extracts. The advantage of this assay is its ability to avoid false signals and no requirement of bisulfite

  8. The Molybdenum Active Site of Formate Dehydrogenase Is Capable of Catalyzing C-H Bond Cleavage and Oxygen Atom Transfer Reactions.

    Hartmann, Tobias; Schrapers, Peer; Utesch, Tillmann; Nimtz, Manfred; Rippers, Yvonne; Dau, Holger; Mroginski, Maria Andrea; Haumann, Michael; Leimkühler, Silke

    2016-04-26

    Formate dehydrogenases (FDHs) are capable of performing the reversible oxidation of formate and are enzymes of great interest for fuel cell applications and for the production of reduced carbon compounds as energy sources from CO2. Metal-containing FDHs in general contain a highly conserved active site, comprising a molybdenum (or tungsten) center coordinated by two molybdopterin guanine dinucleotide molecules, a sulfido and a (seleno-)cysteine ligand, in addition to a histidine and arginine residue in the second coordination sphere. So far, the role of these amino acids in catalysis has not been studied in detail, because of the lack of suitable expression systems and the lability or oxygen sensitivity of the enzymes. Here, the roles of these active site residues is revealed using the Mo-containing FDH from Rhodobacter capsulatus. Our results show that the cysteine ligand at the Mo ion is displaced by the formate substrate during the reaction, the arginine has a direct role in substrate binding and stabilization, and the histidine elevates the pKa of the active site cysteine. We further found that in addition to reversible formate oxidation, the enzyme is further capable of reducing nitrate to nitrite. We propose a mechanistic scheme that combines both functionalities and provides important insights into the distinct mechanisms of C-H bond cleavage and oxygen atom transfer catalyzed by formate dehydrogenase. PMID:27054466

  9. The T210M Substitution in the HLA-a*02:01 gp100 Epitope Strongly Affects Overall Proteasomal Cleavage Site Usage and Antigen Processing.

    Textoris-Taube, Kathrin; Keller, Christin; Liepe, Juliane; Henklein, Petra; Sidney, John; Sette, Alessandro; Kloetzel, Peter M; Mishto, Michele

    2015-12-18

    MHC class I-restricted epitopes, which carry a tumor-specific mutation resulting in improved MHC binding affinity, are preferred T cell receptor targets in innovative adoptive T cell therapies. However, T cell therapy requires efficient generation of the selected epitope. How such mutations may affect proteasome-mediated antigen processing has so far not been studied. Therefore, we analyzed by in vitro experiments the effect on antigen processing and recognition of a T210M exchange, which previously had been introduced into the melanoma gp100209-217 tumor epitope to improve the HLA-A*02:01 binding and its immunogenicity. A quantitative analysis of the main steps of antigen processing shows that the T210M exchange affects proteasomal cleavage site usage within the mutgp100201-230 polypeptide, leading to the generation of an unique set of cleavage products. The T210M substitution qualitatively affects the proteasome-catalyzed generation of spliced and non-spliced peptides predicted to bind HLA-A or -B complexes. The T210M substitution also induces an enhanced production of the mutgp100209-217 epitope and its N-terminally extended peptides. The T210M exchange revealed no effect on ERAP1-mediated N-terminal trimming of the precursor peptides. However, mutant N-terminally extended peptides exhibited significantly increased HLA-A*02:01 binding affinity and elicited CD8(+) T cell stimulation in vitro similar to the wtgp100209-217 epitope. Thus, our experiments demonstrate that amino acid exchanges within an epitope can result in the generation of an altered peptide pool with new antigenic peptides and in a wider CD8(+) T cell response also towards N-terminally extended versions of the minimal epitope. PMID:26507656

  10. Virulence of Newcastle disease virus is determined by the cleavage site of the fusion protein and by both the stem region and globular head of the haemagglutinin-neuraminidase protein

    Leeuw, de O.S.; Koch, G.; Hartog, L.; Ravenshorst, N.; Peeters, B.P.H.

    2005-01-01

    Virulence of Newcastle disease virus (NDV) is mainly determined by the amino acid sequence surrounding the fusion (F) protein cleavage site, since host proteases that cleave the F protein of virulent strains are present in more tissues than those that cleave the F protein of non-virulent strains. Ne

  11. Comparative biosynthesis, covalent post-translational modifications and efficiency of prosegment cleavage of the prohormone convertases PC1 and PC2: glycosylation, sulphation and identification of the intracellular site of prosegment cleavage of PC1 and PC2.

    Benjannet, S; Rondeau, N; Paquet, L; Boudreault, A; Lazure, C; Chrétien, M; Seidah, N G

    1993-09-15

    We present herein the pulse-chase analysis of the biosynthesis of the prohormone convertases PC1 and PC2 in the endocrine GH4C1 cells infected with vaccinia virus recombinants expressing these convertases. Characterization of the pulse-labelled enzymes demonstrated that pro-PC1 (88 kDa) is cleaved into PC1 (83 kDa) and pro-PC2 (75 kDa) into PC2 (68 kDa). Secretion of glycosylated and sulphated PC1 (84 kDa) occurs about 30 min after the onset of biosynthesis, whereas glycosylated and sulphated PC2 (68 kDa) is detected in the medium after between 1 and 2 h. Furthermore, in the case of pro-PC2 only, we observed that a fraction of this precursor escapes glycosylation. A small proportion (about 5%) of the intracellular glycosylated pro-PC2 (75 kDa) is sulphated, and it is this glycosylated and sulphated precursor that is cleaved into the secretable 68 kDa form of PC2. Major differences in the carbohydrate structures of PC1 and PC2 are demonstrated by the resistance of the secreted PC1 to endoglycosidase H digestion and sensitivity of the secreted PC2 to this enzyme. Inhibition of N-glycosylation with tunicamycin caused a dramatic intracellular degradation of these convertases within the endoplasmic reticulum, with the net effect of a reduction in the available activity of PC1 and PC2. These results emphasize the importance of N-glycosylation in the folding and stability of PC1 and PC2. Pulse-labelling experiments in uninfected mouse beta TC3 and rat Rin m5F insulinoma cells, which endogenously synthesize PC2, showed that, as in infected GH4C1 cells, pro-PC2 predominates intracellularly. In order to define the site of prosegment cleavage, pulse-chase analysis was performed at low temperature (15 degrees C) or after treatment of GH4C1 cells with either brefeldin A or carbonyl cyanide m-chlorophenylhydrazone. These results demonstrated that the onset of the conversions of pro-PC1 into PC1 and non-glycosylated pro-PC2 into PC2 (65 kDa) occur in a pre-Golgi compartment

  12. Isolation and characterization of S. cerevisiae mutants defective in somatostatin expression: cloning and functional role of a yeast gene encoding an aspartyl protease in precursor processing at monobasic cleavage sites.

    Bourbonnais, Y; Ash, J.; Daigle, M.; Thomas, D. Y.

    1993-01-01

    The peptide somatostatin exists as two different molecular species. In addition to the most common form, somatostatin-14, there is also a fourteen amino acid N-terminally extended form of the tetradecapeptide, somatostatin-28. Both peptides are synthesized as larger precursors containing paired basic and monobasic amino acids at their processing sites, which upon cleavage generate either somatostatin-14 or -28, respectively. In some species of fish two distinct, but homologous, precursors (pr...

  13. Autoproteolytic Cleavage and Activation of Human Acid Ceramidase*

    Shtraizent, Nataly; Eliyahu, Efrat; Park, Jae-Ho; He, Xingxuan; Shalgi, Ruth; Schuchman, Edward H.

    2008-01-01

    Herein we report the mechanism of human acid ceramidase (AC; N-acylsphingosine deacylase) cleavage and activation. A highly purified, recombinant human AC precursor underwent self-cleavage into α and β subunits, similar to other members of the N-terminal nucleophile hydrolase superfamily. This reaction proceeded with first order kinetics, characteristic of self-cleavage. AC self-cleavage occurred most rapidly at acidic pH, but also at neutral pH. Site-directed mutagene...

  14. Teraherts spectra of A3B3C62 crystals under gamma-irradiation

    Nano-dimension topologic-disorder materials constitute an important feature in the development of modern electronics. Among such materials, low-dimensional (1D and 2D) compounds, show amazing properties, for example highly anisotropic super ionic conductivity. Here it is shown that in the THz spectrum of such materials, which exhibit strong absorption lines that could be attributed to the libration oscillation of the nanofibers. In classical THz time-domain spectroscopy (THz-TDS), one records the temporal waveforms impinging onto and transmitted by the sample. Then a numerical FFT of both signals is performed. The ratio of the transmitted and incident FFT spectra gives the transmission coefficient of the sample. If the origin of time is preserved between the two requested measurements, then the FFT gives both modulus and phase of the transmission coefficient. If the sample is a slab with parallel sides, the index of refraction and the coefficient of absorption could be accurately determined using an inverse electromagnetic method. For materials exhibiting high absorption bands, the transmission coefficient is almost zero in modulus, and its phase is unknown. The usual solution to this problem is to perform THz-TDS in reflection. Here it is proposed a combined technique, which takes benefit of both transmission and reflection THz-TDS's. The basic idea is to derive a rough estimation of the refractive index from reflection data, while both refractive index and absorption coefficient are also calculated from transmission data. A Kramers-Kronig calculation allows to determine the refractive index from the absorption spectrum measured in transmission. In the spectral regions of transparency, both refractive indices determined from reflection and from the Kramers-Kronig calculation should be superimposed. The method had been applied to determine the index of refraction of low dimensional compounds. Refractive index (full circles) and absorption (dashed line) spectra of the crystal, showing strong absorption bands.

  15. Characterization of the psbH precursor RNAs reveals a precise endoribonuclease cleavage site in the psbT/psbH intergenic region that is dependent on psbN gene expression.

    Chevalier, Fabien; Ghulam, Mustafa Malik; Rondet, Damien; Pfannschmidt, Thomas; Merendino, Livia; Lerbs-Mache, Silva

    2015-07-01

    The plastid psbB operon harbours 5 genes, psbB, psbT, psbH, petB and petD. A sixth gene, the psbN gene, is located on the opposite DNA strand in the psbT/psbH intergenic region. Its transcription produces antisense RNA to a large part of the psbB pentacistronic mRNA. We have investigated whether transcription of the psbN gene, i.e. production of antisense RNA, influences psbT/psbH intergenic processing. Results reveal the existence of four different psbH precursor RNAs. Three of them result from processing and one is produced by transcription initiation. One of the processed RNAs is probably created by site-specific RNA cleavage. This RNA is absent in plants where the psbN gene is not transcribed suggesting that cleavage at this site is dependent on the formation of sense/antisense double-stranded RNA. In order to characterize the nuclease that might be responsible for double-stranded RNA cleavage, we analysed csp41a and csp41b knock-out mutants and the corresponding double mutant. Both CSP41 proteins are known to interact physically and CSP41a had been shown to cleave within 3'-untranslated region stem-loop structures, which contain double-stranded RNA, in vitro. We demonstrate that the psbH RNA, that is absent in plants where the psbN gene is not transcribed, is also strongly diminished in all csp41 plants. Altogether, results reveal a site-specific endoribonuclease cleavage event that seems to depend on antisense RNA and might implicate endoribonuclease activity of CSP41a. PMID:26012647

  16. Centralspindlin in Rappaport's cleavage signaling.

    Mishima, Masanori

    2016-05-01

    Cleavage furrow in animal cell cytokinesis is formed by cortical constriction driven by contraction of an actomyosin network activated by Rho GTPase. Although the role of the mitotic apparatus in furrow induction has been well established, there remain discussions about the detailed molecular mechanisms of the cleavage signaling. While experiments in large echinoderm embryos highlighted the role of astral microtubules, data in smaller cells indicate the role of central spindle. Centralspindlin is a constitutive heterotetramer of MKLP1 kinesin and the non-motor CYK4 subunit and plays crucial roles in formation of the central spindle and recruitment of the downstream cytokinesis factors including ECT2, the major activator of Rho during cytokinesis, to the site of division. Recent reports have revealed a role of this centralspindlin-ECT2 pathway in furrow induction both by the central spindle and by the astral microtubules. Here, a unified view of the stimulation of cortical contractility by this pathway is discussed. Cytokinesis, the division of the whole cytoplasm, is an essential process for cell proliferation and embryonic development. In animal cells, cytokinesis is executed using a contractile network of actin filaments driven by a myosin-II motor that constricts the cell cortex (cleavage furrow ingression) into a narrow channel between the two daughter cells, which is resolved by scission (abscission) [1-3]. The anaphase-specific organization of the mitotic apparatus (MA, spindle with chromosomes plus asters) positions the cleavage furrow and plays a major role in spatial coupling between mitosis and cytokinesis [4-6]. The nucleus and chromosomes are dispensable for furrow specification [7-10], although they contribute to persistent furrowing and robust completion in some cell types [11,12]. Likewise, centrosomes are not essential for cytokinesis, but they contribute to the general fidelity of cell division [10,13-15]. Here, classical models of cleavage furrow

  17. H9N2 influenza virus acquires intravenous pathogenicity on the introduction of a pair of di-basic amino acid residues at the cleavage site of the hemagglutinin and consecutive passages in chickens

    Sakoda Yoshihiro

    2011-02-01

    Full Text Available Abstract Background Outbreaks of avian influenza (AI caused by infection with low pathogenic H9N2 viruses have occurred in poultry, resulting in serious economic losses in Asia and the Middle East. It has been difficult to eradicate the H9N2 virus because of its low pathogenicity, frequently causing in apparent infection. It is important for the control of AI to assess whether the H9N2 virus acquires pathogenicity as H5 and H7 viruses. In the present study, we investigated whether a non-pathogenic H9N2 virus, A/chicken/Yokohama/aq-55/2001 (Y55 (H9N2, acquires pathogenicity in chickens when a pair of di-basic amino acid residues is introduced at the cleavage site of its HA molecule. Results rgY55sub (H9N2, which had four basic amino acid residues at the HA cleavage site, replicated in MDCK cells in the absence of trypsin after six consecutive passages in the air sacs of chicks, and acquired intravenous pathogenicity to chicken after four additional passages. More than 75% of chickens inoculated intravenously with the passaged virus, rgY55sub-P10 (H9N2, died, indicating that it is pathogenic comparable to that of highly pathogenic avian influenza viruses (HPAIVs defined by World Organization for Animal Health (OIE. The chickens inoculated with the virus via the intranasal route, however, survived without showing any clinical signs. On the other hand, an avirulent H5N1 strain, A/duck/Hokkaido/Vac-1/2004 (Vac1 (H5N1, acquired intranasal pathogenicity after a pair of di-basic amino acid residues was introduced into the cleavage site of the HA, followed by two passages by air sac inoculation in chicks. Conclusion The present results demonstrate that an H9N2 virus has the potential to acquire intravenous pathogenicity in chickens although the morbidity via the nasal route of infection is lower than that of H5N1 HPAIV.

  18. The effect of structure in a long target RNA on ribozyme cleavage efficiency.

    Campbell, T B; McDonald, C K; Hagen, M.

    1997-01-01

    Inhibition of gene expression by catalytic RNA (ribozymes) requires that ribozymes efficiently cleave specific sites within large target RNAs. However, the cleavage of long target RNAs by ribozymes is much less efficient than cleavage of short oligonucleotide substrates because of higher order structure in the long target RNA. To further study the effects of long target RNA structure on ribozyme cleavage efficiency, we determined the accessibility of seven hammerhead ribozyme cleavage sites i...

  19. Cleavage factor Im (CFIm) as a regulator of alternative polyadenylation.

    Hardy, Jessica G; Norbury, Chris J

    2016-08-15

    Most mammalian protein coding genes are subject to alternative cleavage and polyadenylation (APA), which can generate distinct mRNA 3'UTRs with differing regulatory potential. Although this process has been intensely studied in recent years, it remains unclear how and to what extent cleavage site selection is regulated under different physiological conditions. The cleavage factor Im (CFIm) complex is a core component of the mammalian cleavage machinery, and the observation that its depletion causes transcriptome-wide changes in cleavage site use makes it a key candidate regulator of APA. This review aims to summarize current knowledge of the CFIm complex, and explores the evidence surrounding its potential contribution to regulation of APA. PMID:27528751

  20. Selective cleavage of pepsin by molybdenum metallopeptidase

    Yenjai, Sudarat; Malaikaew, Pinpinat; Liwporncharoenvong, Teerayuth [Department of Chemistry, Faculty of Science, Srinakharinwirot University, Sukhumvit 23, Bangkok 10110 (Thailand); Buranaprapuk, Apinya, E-mail: apinyac@swu.ac.th [Department of Chemistry, Faculty of Science, Srinakharinwirot University, Sukhumvit 23, Bangkok 10110 (Thailand)

    2012-03-02

    Graphical abstract: Molybdenum metallopeptidase: the Mo(VI) cluster with six molybdenum cations has the ability to cleave protein under mild conditions (37 Degree-Sign C, pH 7) without reducing agents. The reaction required only low concentration of ammonium heptamolybdatetetrahydrate ((NH{sub 4}){sub 6}Mo{sub 7}O{sub 24}{center_dot}4H{sub 2}O) (0.125 mM). The reaction undergoes possibly via a hydrolytic mechanism. This is the first demonstration of protein cleavage by a molybdenum cluster. Highlights: Black-Right-Pointing-Pointer This is the first demonstration of protein cleavage by a Mo(VI) cluster with six molybdenum cations. Black-Right-Pointing-Pointer The cleavage reaction undergoes at mild conditions. Black-Right-Pointing-Pointer No need of reducing agents. Black-Right-Pointing-Pointer Only low concentration of Mo(VI) cluster and short time of incubation are needed. -- Abstract: In this study, the cleavage of protein by molybdenum cluster is reported for the first time. The protein target used is porcine pepsin. The data presented in this study show that pepsin is cleaved to at least three fragments with molecular weights of {approx}23, {approx}19 and {approx}16 kDa when the mixture of the protein and ammonium heptamolybdate tetrahydrate ((NH{sub 4}){sub 6}Mo{sub 7}O{sub 24}{center_dot}4H{sub 2}O) was incubated at 37 Degree-Sign C for 24 h. No self cleavage of pepsin occurs at 37 Degree-Sign C, 24 h indicating that the reaction is mediated by the metal ions. N-terminal sequencing of the peptide fragments indicated three cleavage sites of pepsin between Leu 112-Tyr 113, Leu 166-Leu 167 and Leu 178-Asn 179. The cleavage reaction occurs after incubation of the mixture of pepsin and (NH{sub 4}){sub 6}Mo{sub 7}O{sub 24}{center_dot}4H{sub 2}O) only for 2 h. However, the specificity of the cleavage decreases when incubation time is longer than 48 h. The mechanism for cleavage of pepsin is expected to be hydrolytic chemistry of the amide bonds in the protein

  1. Selective cleavage of pepsin by molybdenum metallopeptidase

    Graphical abstract: Molybdenum metallopeptidase: the Mo(VI) cluster with six molybdenum cations has the ability to cleave protein under mild conditions (37 °C, pH 7) without reducing agents. The reaction required only low concentration of ammonium heptamolybdatetetrahydrate ((NH4)6Mo7O24·4H2O) (0.125 mM). The reaction undergoes possibly via a hydrolytic mechanism. This is the first demonstration of protein cleavage by a molybdenum cluster. Highlights: ► This is the first demonstration of protein cleavage by a Mo(VI) cluster with six molybdenum cations. ► The cleavage reaction undergoes at mild conditions. ► No need of reducing agents. ► Only low concentration of Mo(VI) cluster and short time of incubation are needed. -- Abstract: In this study, the cleavage of protein by molybdenum cluster is reported for the first time. The protein target used is porcine pepsin. The data presented in this study show that pepsin is cleaved to at least three fragments with molecular weights of ∼23, ∼19 and ∼16 kDa when the mixture of the protein and ammonium heptamolybdate tetrahydrate ((NH4)6Mo7O24·4H2O) was incubated at 37 °C for 24 h. No self cleavage of pepsin occurs at 37 °C, 24 h indicating that the reaction is mediated by the metal ions. N-terminal sequencing of the peptide fragments indicated three cleavage sites of pepsin between Leu 112-Tyr 113, Leu 166-Leu 167 and Leu 178-Asn 179. The cleavage reaction occurs after incubation of the mixture of pepsin and (NH4)6Mo7O24·4H2O) only for 2 h. However, the specificity of the cleavage decreases when incubation time is longer than 48 h. The mechanism for cleavage of pepsin is expected to be hydrolytic chemistry of the amide bonds in the protein backbone.

  2. Fe2+-Tetracycline-Mediated Cleavage of the Tn10 Tetracycline Efflux Protein TetA Reveals a Substrate Binding Site near Glutamine 225 in Transmembrane Helix 7

    McMurry, Laura M.; Aldema-Ramos, Mila L.; Levy, Stuart B.

    2002-01-01

    TetA specified by Tn10 is a class B member of a group of related bacterial transport proteins of 12 transmembrane alpha helices that mediate resistance to the antibiotic tetracycline. A tetracycline-divalent metal cation complex is expelled from the cell in exchange for a entering proton. The site(s) where tetracycline binds to this export pump is not known. We found that, when chelated to tetracycline, Fe2+ cleaved the backbone of TetA predominantly at a single position, glutamine 225 in tra...

  3. Prediction of proteasome cleavage motifs by neural networks

    Kesimir, C.; Nussbaum, A.K.; Schild, H.;

    2002-01-01

    We present a predictive method that can simulate an essential step in the antigen presentation in higher vertebrates, namely the step involving the proteasomal degradation of polypeptides into fragments which have the potential to bind to MHC Class I molecules. Proteasomal cleavage prediction...... the prediction of MHC Class I ligand boundaries more accurate: 65% of the cleavage sites and 85% of the non-cleavage sites are correctly determined. Moreover, we show that the neural networks trained on the constitutive proteasome data learns a specificity that differs from that of the networks...

  4. H9N2 avian influenza virus-derived natural reassortant H5N2 virus in swan containing the hemagglutinin segment from Eurasian H5 avian influenza virus with an in-frame deletion of four basic residues in the polybasic hemagglutinin cleavage site.

    Wang, Youling; Yuan, Xiaoyuan; Qi, Lihong; Zhang, Yuxia; Xu, Huaiying; Yang, Jinxing; Ai, Wu; Qi, Wenbao; Liao, Ming; Wang, Dan; Song, Minxun; Li, Feng

    2016-06-01

    We isolated a novel H5N2 avian influenza virus from swans in China. The virus was derived from a widespread H9N2 avian influenza virus but acquired the hemagglutinin gene from Eurasian H5 subtype with a naturally occurring in-frame deletion of four basic residues in the polybasic hemagglutinin cleavage site. PMID:26910357

  5. Peptide Synthesis through Cell-Free Expression of Fusion Proteins Incorporating Modified Amino Acids as Latent Cleavage Sites for Peptide Release.

    Liutkus, Mantas; Fraser, Samuel A; Caron, Karine; Stigers, Dannon J; Easton, Christopher J

    2016-05-17

    Chlorinated analogues of Leu and Ile are incorporated during cell-free expression of peptides fused to protein, by exploiting the promiscuity of the natural biosynthetic machinery. They then act as sites for clean and efficient release of the peptides simply by brief heat treatment. Dehydro analogues of Leu and Ile are similarly incorporated as latent sites for peptide release through treatment with iodine under cold conditions. These protocols complement enzyme-catalyzed methods and have been used to prepare calcitonin, gastrin-releasing peptide, cholecystokinin-7, and prolactin-releasing peptide prohormones, as well as analogues substituted with unusual amino acids, thus illustrating their practical utility as alternatives to more traditional chemical peptide synthesis. PMID:26918308

  6. Reversed DNA Strand Cleavage Specificity in Initiation of Cre–LoxP Recombination Induced by the His289Ala Active-site Substitution

    Gelato, Kathy A.; Martin, Shelley S.; Baldwin, Enoch P.

    2005-01-01

    During the first steps of site-specific recombination, Cre protein cleaves and religates a specific homologous pair of LoxP strands to form a Holliday junction (HJ) intermediate. The HJ is resolved into recombination products through exchange of the second homologous strand pair. CreH289A, containing a His to Ala substitution in the conserved R-H-R catalytic motif, has a 150-fold reduced recombination rate and accumulates HJs. However, to produce these HJs, CreH289A exchanges the opposite set...

  7. Mechanism of intramembrane cleavage of alcadeins by γ-secretase.

    Yi Piao

    Full Text Available BACKGROUND: Alcadein proteins (Alcs; Alcα, Alcβand Alcγ are predominantly expressed in neurons, as is Alzheimer's β-amyloid (Aβ precursor protein (APP. Both Alcs and APP are cleaved by primary α- or β-secretase to generate membrane-associated C-terminal fragments (CTFs. Alc CTFs are further cleaved by γ-secretase to secrete p3-Alc peptide along with the release of intracellular domain fragment (Alc ICD from the membrane. In the case of APP, APP CTFβ is initially cleaved at the ε-site to release the intracellular domain fragment (AICD and consequently the γ-site is determined, by which Aβ generates. The initial ε-site is thought to define the final γ-site position, which determines whether Aβ40/43 or Aβ42 is generated. However, initial intracellular ε-cleavage sites of Alc CTF to generate Alc ICD and the molecular mechanism that final γ-site position is determined remains unclear in Alcs. METHODOLOGY: Using HEK293 cells expressing Alcs plus presenilin 1 (PS1, a catalytic unit of γ-secretase and the membrane fractions of these cells, the generation of p3-Alc possessing C-terminal γ-cleavage site and Alc ICD possessing N-terminal ε-cleavage site were analysed with MALDI-TOF/MS. We determined the initial ε-site position of all Alcα, Alcβ and Alcγ, and analyzed the relationship between the initially determined ε-site position and the final γ-cleavage position. CONCLUSIONS: The initial ε-site position does not always determine the final γ-cleavage position in Alcs, which differed from APP. No additional γ-cleavage sites are generated from artificial/non-physiological positions of ε-cleavage for Alcs, while the artificial ε-cleavage positions can influence in selection of physiological γ-site positions. Because alteration of γ-secretase activity is thought to be a pathogenesis of sporadic Alzheimer's disease, Alcs are useful and sensitive substrate to detect the altered cleavage of substrates by γ-secretase, which may

  8. Specific proteolysis of native alanine racemases from Salmonella typhimurium: identification of the cleavage site and characterization of the clipped two-domain proteins

    Native DadB and Alr alanine racemases (M/sub r/ 39,000) from Salmonella typhimurium are proteolyzed at homologous positions by α-chymotrypsin, trypsin, and subtilisin to generate in all cases two nonoverlapping polypeptides of M/sub r/ 28,000 and 11,000. Under nondenaturing conditions, chymotryptic digest results in an associated form of the two fragments which possesses 3% of the original catalytic activity, incorporates 0.76 equiv of the mechanism-based inactivator β-chloro-[14C]-D-alanine, and exhibits a UV circular dichroism profile identical with that of native enzyme. Protein sequence analysis of the denatured chymotryptic fragments indicates the presence of a tetrapeptide interdomain hinge (DadB, residues 254-257; Alr, residues 256-259) that is attacked at both ends during proteolysis. Under the previously employed digest conditions, NaB3H4-reduced DadB holoenzyme is resistant to α-chymotrypsin and trypsin and is labile only toward subtilisin. These data suggest that the hinge structure is essential for a catalytically efficient enzyme species and is sensitive to active site geometry. The sequence at the hinge region is also conserved in alanine racemases from Gram-positive bacteria

  9. Specific Cleavage of the Nucleoprotein of Fish Rhabdovirus.

    Zhou, G-Z; Yi, Y-J; Chen, Z-Y; Zhang, Q-Y

    2015-11-01

    Siniperca chuatsi rhabdovirus (SCRV) is one of myriad rhabdoviruses recorded in fish. Preliminary data show that inhibition of the SCRV nucleoprotein (N) could significantly reduce the progeny virus titers in infected Epithelioma papulosum cyprinid (EPC) cells. Here, the authors propose that cleavage of the viral 47-kDa N protein is caspase-mediated based on caspase inhibition experiments, transient expression in EPC transfection, and analysis of cleavage sites. Cleavage of the SCRV N protein in culture was prevented by a pan-caspase inhibitor, z-VAD-FMK (z-Val-Ala-DL-Asp-fluoromethyl ketone). Subsequently, N was transiently expressed in EPC cells, the results of which indicated that the specific cleavage of N also occurred in the cells transfected with N-GFP plasmid. Several truncated fragments of the N gene were constructed and transiently transfected into EPC cells. Immunoblotting results indicated that D324 and D374 are the cleavage sites of N by caspases. The authors also found that z-VAD-FMK could inhibit the cytopathic effect in SCRV-infected EPC cells but not affect the production of infectious progeny, suggesting that the caspase-mediated cleavage of N protein is not required for in vitro SCRV replication. To the authors' knowledge, this is the first report on the cleavage of rhabdovirus proteins. PMID:25689989

  10. Photoaffinity labeling of human serum vitamin D binding protein and chemical cleavage of the labeled protein: Identification of an 11.5-kDa peptide containing the putative 25-hydroxyvitamin D3 binding site

    In this paper, the authors describe photoaffinity labeling and related studies of human serum vitamin D binding protein (hDBP) with 25-hydroxyvitamin D3 3β-3'-[N-(4-azido-2-nitrophenyl)amino]propyl ether (25-ANE) and its radiolabeled counterpart, i.e., 25-hydroxyvitamin D3 3β-3'-[N-(4-azido-2-nitro-[3,5-3H]phenyl)amino]propyl ether (3H-25-ANE). They have carried out studies to demonstrate that (1) 25-ANE competes with 25-OH-D3 for the binding site of the latter in hDBP and (2) 3H-25-ANE is capable of covalently labeling the hDBP molecule when exposed ot UV light. Treatment of a sample of purified hDBP, labeled with 3H-25-ANE, with BNPS-skatole produced two Coomassie Blue stained peptide fragments, and the majority of the radioactivity was assoicated with the smaller of the two peptide fragments (16.5 kDa). On the other hand, cleavage of the labeled protein with cyanogen bromide produced a peptide (11.5 kDa) containing most of the covalently attached radioactivity. Considering the primary amino acid structure of hDBP, this peptide fragment (11.5 kDa) represents the N-terminus through residue 108 of the intact protein. Thus, the results tentatively identify this segment of the protein containing the binding pocket for 25-OH-D3

  11. Detection of nucleic acid sequences by invader-directed cleavage

    Brow, Mary Ann D. (Madison, WI); Hall, Jeff Steven Grotelueschen (Madison, WI); Lyamichev, Victor (Madison, WI); Olive, David Michael (Madison, WI); Prudent, James Robert (Madison, WI)

    1999-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The 5' nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based by charge.

  12. Detection of nucleic acid sequences by invader-directed cleavage

    Brow, Mary Ann D.; Hall, Jeff Steven Grotelueschen; Lyamichev, Victor; Olive, David Michael; Prudent, James Robert

    1999-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The 5' nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based by charge.

  13. Fusion function of the Semliki Forest virus spike is activated by proteolytic cleavage of the envelope glycoprotein precursor p62.

    Lobigs, M; Garoff, H

    1990-01-01

    The precursor protein p62 of the prototype alphavirus Semliki Forest virus (SFV) undergoes during transport to the cell surface a proteolytic cleavage to form the mature envelope glycoprotein E2. To investigate the biological significance of this cleavage event, single amino acid substitutions were introduced at the cleavages site through mutagenesis of cDNA corresponding to the structural region of the SFV genome. The phenotypes of the cleavage site mutants were studied in BHK cells by using...

  14. Hairpin DNA Sequences Bound Strongly by Bleomycin Exhibit Enhanced Double-Strand Cleavage

    Roy, Basab; Hecht, Sidney M.

    2014-01-01

    Clinically used bleomycin A5 has been employed in a study of double-strand cleavage of a library of 10 hairpin DNAs originally selected on the basis of their strong binding to bleomycin. Each of the DNAs underwent double-strand cleavage at more than one site, and all of the cleavage sites were within, or in close proximity to, an eight-base-pair region of the duplex that had been randomized to create the original library. A total of 31 double-strand cleavage sites were identified on the 10 DN...

  15. Prediction of proprotein convertase cleavage sites

    Duckert, Peter; Brunak, Søren; Blom, Nikolaj

    2004-01-01

    members of the subtilisin/kexin-like proprotein convertase (PC) family. In mammals, seven members have been identified, with furin being the one first discovered and best characterized. Recently, the involvement of furin in diseases ranging from Alzheimer's disease and cancer to anthrax and Ebola fever...

  16. Photoaffinity labeling of human serum vitamin D binding protein and chemical cleavage of the labeled protein: Identification of an 11. 5-kDa peptide containing the putative 25-hydroxyvitamin D sub 3 binding site

    Ray, R.; Holick, M.F. (Boston Univ., MA (United States)); Bouillon, R.; Baelen, H.V. (Laboratorium voor Experimentele Geneeskunde en Endocrinologie, Leuven (Belgium))

    1991-07-30

    In this paper, the authors describe photoaffinity labeling and related studies of human serum vitamin D binding protein (hDBP) with 25-hydroxyvitamin D{sub 3} 3{beta}-3{prime}-(N-(4-azido-2-nitrophenyl)amino)propyl ether (25-ANE) and its radiolabeled counterpart, i.e., 25-hydroxyvitamin D{sub 3} 3{beta}-3{prime}-(N-(4-azido-2-nitro-(3,5-{sup 3}H)phenyl)amino)propyl ether ({sup 3}H-25-ANE). They have carried out studies to demonstrate that (1) 25-ANE competes with 25-OH-D{sub 3} for the binding site of the latter in hDBP and (2) {sup 3}H-25-ANE is capable of covalently labeling the hDBP molecule when exposed ot UV light. Treatment of a sample of purified hDBP, labeled with {sup 3}H-25-ANE, with BNPS-skatole produced two Coomassie Blue stained peptide fragments, and the majority of the radioactivity was assoicated with the smaller of the two peptide fragments (16.5 kDa). On the other hand, cleavage of the labeled protein with cyanogen bromide produced a peptide (11.5 kDa) containing most of the covalently attached radioactivity. Considering the primary amino acid structure of hDBP, this peptide fragment (11.5 kDa) represents the N-terminus through residue 108 of the intact protein. Thus, the results tentatively identify this segment of the protein containing the binding pocket for 25-OH-D{sub 3}.

  17. Detection of nucleic acids by multiple sequential invasive cleavages 02

    Hall, Jeff G. (Madison, WI); Lyamichev, Victor I. (Madison, WI); Mast, Andrea L. (Madison, WI); Brow, Mary Ann D. (Madison, WI)

    2002-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based on charge. The present invention also provides methods for the detection of non-target cleavage products via the formation of a complete and activated protein binding region. The invention further provides sensitive and specific methods for the detection of human cytomegalovirus nucleic acid in a sample.

  18. Detection of nucleic acids by multiple sequential invasive cleavages

    Hall, Jeff G. (Madison, WI); Lyamichev, Victor I. (Madison, WI); Mast, Andrea L. (Madison, WI); Brow, Mary Ann D. (Madison, WI)

    1999-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based on charge. The present invention also provides methods for the detection of non-target cleavage products via the formation of a complete and activated protein binding region. The invention further provides sensitive and specific methods for the detection of human cytomegalovirus nucleic acid in a sample.

  19. Detection of nucleic acids by multiple sequential invasive cleavages

    Hall, Jeff G; Lyamichev, Victor I; Mast, Andrea L; Brow, Mary Ann D

    2012-10-16

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based on charge. The present invention also provides methods for the detection of non-target cleavage products via the formation of a complete and activated protein binding region. The invention further provides sensitive and specific methods for the detection of human cytomegalovirus nucleic acid in a sample.

  20. Sequence specific inhibition of DNA restriction enzyme cleavage by PNA

    Nielsen, P.E.; Egholm, M.; Berg, R.H.;

    1993-01-01

    Plasmids containing double-stranded 10-mer PNA (peptide nucleic acid chimera) targets proximally flanked by two restriction enzyme sites were challenged with the complementary PNA or PNAs having one or two mismatches, and the effect on the restriction enzyme cleavage of the flanking sites was...

  1. Cleavage behaviors in nuclear vessel steels

    Cleavage behaviors of nuclear vessel steels in the transition temperature range are reviewed. Viewpoints are presented to assist understanding of cleavage crack speed, cleavage initiation, cleavage arrest, and the sensitivity of fracture toughness to constraint and temperature. The importance of high local stress elevations by high strain rate is emphasized. This report is designated as HSST Report No. 149

  2. Intrinsic transcript cleavage activity of RNA polymerase.

    Orlova, M; Newlands, J; Das, A; Goldfarb, A; Borukhov, S

    1995-01-01

    The GreA and GreB transcript cleavage factors of Escherichia coli suppress elongation arrest and may have a proofreading role in transcription. With the use of E. coli greA-greB- mutant, RNA polymerase is demonstrated to possess substantial intrinsic transcript cleavage activity. Mildly alkaline pH mimics the effect of the Gre proteins by inducing transcript cleavage in ternary complexes and antagonizing elongation arrest through a cleavage-and-restart reaction. Thus, transcript cleavage cons...

  3. Efficient and stable expression of GFP through Wheat streak mosaic virus-based vectors in cereal hosts using a range of cleavage sites: Formation of dense fluorescent aggregates for sensitive virus tracking

    A series of Wheat streak mosaic virus (WSMV)-based expression vectors were developed by engineering cycle 3 GFP (GFP) cistron between P1 and HC-Pro cistrons with several catalytic/cleavage peptides at the C-terminus of GFP. WSMV-GFP vectors with the Foot-and-mouth disease virus 1D/2A or 2A catalytic...

  4. A pathway sensor for genome-wide screens of intracellular proteolytic cleavage

    Ketteler, Robin; Sun, Zairen; Kovacs, Karl F; He, Wei-Wu; Seed, Brian

    2008-01-01

    Protein cleavage is a central event in many regulated biological processes. We describe a system for detecting intracellular proteolysis based on non-conventional secretion of Gaussia luciferase (GLUC). GLUC exits the cell without benefit of a secretory leader peptide, but can be anchored in the cell by fusion to \\(\\beta\\)-actin. By including protease cleavage sites between GLUC and \\(\\beta\\)-actin, proteolytic cleavage can be detected. Using this assay, we have identified regulators of autop...

  5. A real-time assay for monitoring nucleic acid cleavage by quadruplex formation

    Kankia, Besik I.

    2006-01-01

    Direct and straightforward methods to follow nucleic acid cleavage are needed. A spectrophotometric quadruplex formation assay (QFA) was developed, which allows real-time monitoring of site-specific cleavage of nucleic acids. QFA was applied to study both protein and nucleic acid restriction enzymes, and was demonstrated to accurately determine Michaelis–Menten parameters for the cleavage reaction catalyzed by EcoRI. QFA can be used to study the mechanisms of protein–nucleic acid recognition....

  6. Cleavage of RseA by RseP requires a carboxyl-terminal hydrophobic amino acid following DegS cleavage

    Li, Xiaochun; Wang, Boyuan; Feng, Lihui; Kang, Hui; Qi, Yang; Wang, Jiawei; Shi, Yigong

    2009-01-01

    Regulated intramembrane proteolysis (RIP) by the Site-2 protease (S2P) results in the release of a transmembrane signaling protein. Curiously, however, S2P cleavage must be preceded by the action of the Site-1 protease (S1P). To decipher the underlying mechanism, we reconstituted sequential, in vitro cleavages of the Escherichia coli transmembrane protein RseA by DegS (S1P) and RseP (S2P). After DegS cleavage, the newly exposed carboxyl-terminal residue Val-148 of RseA plays an essential role...

  7. Unexpected tolerance of alpha-cleavage of the prion protein to sequence variations.

    José B Oliveira-Martins

    Full Text Available The cellular form of the prion protein, PrP(C, undergoes extensive proteolysis at the alpha site (109K [see text]H110. Expression of non-cleavable PrP(C mutants in transgenic mice correlates with neurotoxicity, suggesting that alpha-cleavage is important for PrP(C physiology. To gain insights into the mechanisms of alpha-cleavage, we generated a library of PrP(C mutants with mutations in the region neighbouring the alpha-cleavage site. The prevalence of C1, the carboxy adduct of alpha-cleavage, was determined for each mutant. In cell lines of disparate origin, C1 prevalence was unaffected by variations in charge and hydrophobicity of the region neighbouring the alpha-cleavage site, and by substitutions of the residues in the palindrome that flanks this site. Instead, alpha-cleavage was size-dependently impaired by deletions within the domain 106-119. Almost no cleavage was observed upon full deletion of this domain. These results suggest that alpha-cleavage is executed by an alpha-PrPase whose activity, despite surprisingly limited sequence specificity, is dependent on the size of the central region of PrP(C.

  8. Microscopic investigation of cleavage initiation in modified A508B pressure vessel steel

    A microscopic study on ductile-brittle crack growth in a modified version of the A508B pressure vessel steel has been performed. Small SEN(B)-specimens tested at different temperatures in and above the transition region have been thoroughly examined with a scanning electron microscope. Focus was directed towards: amount of ductile crack growth prior to cleavage, distance from the crack front to cleavage initiation sites, and type of defect that caused the cleavage initiation. The results show, among other things, that cleavage facets are present in specimens tested at all temperatures, even on the upper shelf where no global failure by cleavage was observed. These preliminary results give an indication that the ability of the matrix material to arrest and sustain small cleavage cracks can be crucial in explaining why ferritic steels show a transition behaviour. (orig.)

  9. Sequence-Specific Ultrasonic Cleavage of DNA

    Grokhovsky, Sergei L.; Il'icheva, Irina A.; Nechipurenko, Dmitry Yu.; Golovkin, Michail V.; Panchenko, Larisa A.; Polozov, Robert V.; Nechipurenko, Yury D.

    2011-01-01

    We investigated the phenomenon of ultrasonic cleavage of DNA by analyzing a large set of cleavage patterns of DNA restriction fragments using polyacrylamide gel electrophoresis. The cleavage intensity of individual phosphodiester bonds was found to depend on the nucleotide sequence and the position of the bond with respect to the ends of the fragment. The relative intensities of cleavage of the central phosphodiester bond in 16 dinucleotides and 256 tetranucleotides were determined by multiva...

  10. Short RNA guides cleavage by eukaryotic RNase III.

    Bruno Lamontagne

    Full Text Available In eukaryotes, short RNAs guide a variety of enzymatic activities that range from RNA editing to translation repression. It is hypothesized that pre-existing proteins evolved to bind and use guide RNA during evolution. However, the capacity of modern proteins to adopt new RNA guides has never been demonstrated. Here we show that Rnt1p, the yeast orthologue of the bacterial dsRNA-specific RNase III, can bind short RNA transcripts and use them as guides for sequence-specific cleavage. Target cleavage occurred at a constant distance from the Rnt1p binding site, leaving the guide RNA intact for subsequent cleavage. Our results indicate that RNase III may trigger sequence-specific RNA degradation independent of the RNAi machinery, and they open the road for a new generation of precise RNA silencing tools that do not trigger a dsRNA-mediated immune response.

  11. Zinc-dependent cleavage in the catalytic core of the hammerhead ribozyme: evidence for a pH-dependent conformational change

    Borda, Emily J.; Markley, John C.; Sigurdsson, Snorri Th.

    2003-01-01

    We have characterized a novel Zn2+-catalyzed cleavage site between nucleotides C3 and U4 in the catalytic core of the hammerhead ribozyme. In contrast to previously described divalent metal-ion-dependent cleavage of RNA, U4 cleavage is only observed in the presence of Zn2+. This new cleavage site has an unusual pH dependence, in that U4 cleavage products are only observed above pH 7.9 and reach a maximum yield at about pH 8.5. These data, together with the fact that no metal ion-binding site ...

  12. Irreversible and reversible topoisomerase II DNA cleavage stimulated by clerocidin: sequence specificity and structural drug determinants.

    Binaschi, M; Zagotto, G; Palumbo, M; Zunino, F; Farinosi, R; Capranico, G

    1997-05-01

    In contrast to other topoisomerase II poisons, the microbial terpenoid clerocidin was shown to stimulate irreversible topoisomerase II-mediated DNA cleavage. To establish the structural determinants for drug activity, in this study we have investigated intensity patterns and sequence specificity of clerocidin-stimulated DNA cleavage using 5'-end 32P-labeled DNA fragments. At a majority of the sites, clerocidin-stimulated cleavage did not revert upon NaCl addition; nevertheless, at some sites, cleavage completely reverted. Statistical analyses showed that drug-preferred bases were different in the two cases: guanine and cytosine were highly preferred at position -1 at irreversible and reversible sites, respectively. These results demonstrated that cleavage irreversibility was site selective and required a guanine at the 3' end of the cut. Further experiments revealed that some irreversible sites showed an abnormal electrophoretic mobility in sequencing gels with respect to cleaved bands generated by 4-(9-acridinylamino)methanesulfon-m-anisidide, suggesting a chemical alteration of the DNA strand. Interestingly, the ability to stimulate irreversible cleavage progressively decreased over time when clerocidin was stored in ethanol. Under these conditions, nuclear magnetic resonance measurements demonstrated that the drug underwent structural modifications that involved the C-12-C-15 side chain. Thus, the results indicate that a specific moiety of clerocidin may react with the DNA (guanine at -1) in the ternary complex, resulting in cleavage irreversibility and in altered DNA mobility in sequencing gels. PMID:9135013

  13. An investigation into the role of ATP in the mammalian pre-mRNA 3' cleavage reaction.

    Khleborodova, Asya; Pan, Xiaozhou; Nagre, Nagaraja N; Ryan, Kevin

    2016-06-01

    RNA Polymerase II transcribes beyond what later becomes the 3' end of a mature messenger RNA (mRNA). The formation of most mRNA 3' ends results from pre-mRNA cleavage followed by polyadenylation. In vitro studies have shown that low concentrations of ATP stimulate the 3' cleavage reaction while high concentrations inhibit it, but the origin of these ATP effects is unknown. ATP might enable a cleavage factor kinase or activate a cleavage factor directly. To distinguish between these possibilities, we tested several ATP structural analogs in a pre-mRNA 3' cleavage reaction reconstituted from DEAE-fractionated cleavage factors. We found that adenosine 5'-(β,γ-methylene)triphosphate (AMP-PCP) is an effective in vitro 3' cleavage inhibitor with an IC50 of ∼300 μM, but that most other ATP analogs, including adenosine 5'-(β,γ-imido)triphosphate, which cannot serve as a protein kinase substrate, promoted 3' cleavage but less efficiently than ATP. In combination with previous literature data, our results do not support ATP stimulation of 3' cleavage through cleavage factor phosphorylation in vitro. Instead, the more likely mechanism is that ATP stimulates cleavage factor activity through direct cleavage factor binding. The mammalian 3' cleavage factors known to bind ATP include the cleavage factor II (CF IIm) Clp1 subunit, the CF Im25 subunit and poly(A) polymerase alpha (PAP). The yeast homolog of the CF IIm complex also binds ATP through yClp1. To investigate the mammalian complex, we used a cell-line expressing FLAG-tagged Clp1 to co-immunoprecipitate Pcf11 as a function of ATP concentration. FLAG-Clp1 co-precipitated Pcf11 with or without ATP and the complex was not affected by AMP-PCP. Diadenosine tetraphosphate (Ap4A), an ATP analog that binds the Nudix domain of the CF Im25 subunit with higher affinity than ATP, neither stimulated 3' cleavage in place of ATP nor antagonized ATP-stimulated 3' cleavage. The ATP-binding site of PAP was disrupted by site

  14. Specific pre-cleavage and post-cleavage complexes involved in the formation of SV40 late mRNA 3' termini in vitro.

    Zarkower, D; Wickens, M

    1987-01-01

    Complexes form between processing factors present in a crude nuclear extract from HeLa cells and a simian virus 40 (SV40) late pre-mRNA which spans the polyadenylation [poly(A)] site. A specific 'pre-cleavage complex' forms on the pre-mRNA before cleavage. Formation of this complex requires the highly conserved sequence AAUAAA: it is prevented by mutations in AAUAAA, and by annealing DNA oligonucleotides to that sequence. After cleavage, the 5' half-molecule is found in a distinct 'post-cleav...

  15. Sequence specificity of DNA cleavage by Micrococcus luteus gamma endonuclease

    Gamma irradiation induces the formation of lesions in DNA that are cleaved by an endonuclease activity in Micrococcus luteus extract. DNA fragments of defined sequence an DNA sequencing techniques were used to determine the sites of cleavage by this activity. /sup 32/P end-labelled DNA restriction fragments were gamma irradiated under N/sub 2/ and in the presence of KI (conditions which maximize the enzyme sensitive site to strand break ratio), treated with M. luteus extract, and analyzed by electrophoresis on denaturing polyacrylamide gels. Irradiated DNA was preferentially cleaved by the extract at sites of cytosine and thymine. Little or no cleavage was observed at purines. Scission of 3' end-labelled DNA at altered pyrimidines resulted in fragments that had electrophoretic mobilities similar to those of DNA fragments that were phosphorylated at the 5' terminus. The presence of a 5' phosphate was confirmed by a change in electrophoretic mobility after phosphatase treatment of the fragments. The sites of endonucleolytic cleavage by M. luteus extract were compared to those of the purified Escherichia coli endonuclease III, which has been shown to be active against x-irradiated DNA. Preliminary results from velocity sedimentation studies indicate that these two enzyme preparations differ in specificity

  16. Ratcheting of the substrate from the zymogen to proteinase conformations directs the sequential cleavage of prothrombin by prothrombinase

    Bianchini, Elsa P.; Orcutt, Steven J.; Panizzi, Peter; Bock, Paul E.; Krishnaswamy, Sriram

    2005-01-01

    Prothrombinase catalyzes thrombin formation by the ordered cleavage of two peptide bonds in prothrombin. Although these bonds are likely ≈36 Å apart, sequential cleavage of prothrombin at Arg-320 to produce meizothrombin, followed by its cleavage at Arg-271, are both accomplished by equivalent exosite interactions that tether each substrate to the enzyme and facilitate presentation of the scissile bond to the active site of the catalyst. We show that impairing the conformational transition fr...

  17. The Role of the Methyltransferase Domain of Bifunctional Restriction Enzyme RM.BpuSI in Cleavage Activity

    Arthur Sarrade-Loucheur; Shuang-yong Xu; Siu-Hong Chan

    2013-01-01

    Restriction enzyme (REase) RM.BpuSI can be described as a Type IIS/C/G REase for its cleavage site outside of the recognition sequence (Type IIS), bifunctional polypeptide possessing both methyltransferase (MTase) and endonuclease activities (Type IIC) and endonuclease activity stimulated by S-adenosyl-L-methionine (SAM) (Type IIG). The stimulatory effect of SAM on cleavage activity presents a major paradox: a co-factor of the MTase activity that renders the substrate unsusceptible to cleavag...

  18. Kinetics of hairpin ribozyme cleavage in yeast.

    Donahue, C P; Fedor, M J

    1997-01-01

    Hairpin ribozymes catalyze a self-cleavage reaction that provides a simple model for quantitative analyses of intracellular mechanisms of RNA catalysis. Decay rates of chimeric mRNAs containing self-cleaving ribozymes give a direct measure of intracellular cleavage kinetics in yeast. Intracellular ribozyme-mediated cleavage occurs at similar rates and shows similar inhibition by ribozyme mutations as ribozyme-mediated reactions in vitro, but only when ribozymes are located in a favorable mRNA...

  19. The role of the methyltransferase domain of bifunctional restriction enzyme RM.BpuSI in cleavage activity.

    Arthur Sarrade-Loucheur

    Full Text Available Restriction enzyme (REase RM.BpuSI can be described as a Type IIS/C/G REase for its cleavage site outside of the recognition sequence (Type IIS, bifunctional polypeptide possessing both methyltransferase (MTase and endonuclease activities (Type IIC and endonuclease activity stimulated by S-adenosyl-L-methionine (SAM (Type IIG. The stimulatory effect of SAM on cleavage activity presents a major paradox: a co-factor of the MTase activity that renders the substrate unsusceptible to cleavage enhances the cleavage activity. Here we show that the RM.BpuSI MTase activity modifies both cleavage substrate and product only when they are unmethylated. The MTase activity is, however, much lower than that of M1.BpuSI and is thought not to be the major MTase for host DNA protection. SAM and sinefungin (SIN increase the Vmax of the RM.BpuSI cleavage activity with a proportional change in Km, suggesting the presence of an energetically more favorable pathway is taken. We further showed that RM.BpuSI undergoes substantial conformational changes in the presence of Ca(2+, SIN, cleavage substrate and/or product. Distinct conformers are inferred as the pre-cleavage/cleavage state (in the presence of Ca(2+, substrate or both and MTase state (in the presence of SIN and substrate, SIN and product or product alone. Interestingly, RM.BpuSI adopts a unique conformation when only SIN is present. This SIN-bound state is inferred as a branch point for cleavage and MTase activity and an intermediate to an energetically favorable pathway for cleavage, probably through increasing the binding affinity of the substrate to the enzyme under cleavage conditions. Mutation of a SAM-binding residue resulted in altered conformational changes in the presence of substrate or Ca(2+ and eliminated cleavage activity. The present study underscores the role of the MTase domain as facilitator of efficient cleavage activity for RM.BpuSI.

  20. Selective cleavage enhanced by acetylating the side chain of lysine.

    Fu, Leixiaomeng; Chen, Tingting; Xue, Gaiqing; Zu, Lily; Fang, Weihai

    2013-01-01

    Selective cleavage is of great interest in mass spectrometry studies as it can help sequence identification by promoting simple fragmentation pattern of peptides and proteins. In this work, the collision-induced dissociation of peptides containing internal lysine and acetylated lysine residues were studied. The experimental and computational results revealed that multiple fragmentation pathways coexisted when the lysine residue was two amino acid residues away from N-terminal of the peptide. After acetylation of the lysine side-chain, b(n)+ ions were the most abundant primary fragment products and the Lys(Ac)-Gly amide bond became the dominant cleavage site via an oxazolone pathway. Acetylating the side-chain of lysine promoted the selective cleavage of Lys-Xxx amide bond and generated much more information of the peptide backbone sequence. The results re-evaluate the selective cleavage due to the lysine basic side-chain and provide information for studying the post-translational modification of proteins and other bio-molecules containing Lys residues. PMID:23303756

  1. I-TevI, the endonuclease encoded by the mobile td intron, recognizes binding and cleavage domains on its DNA target.

    Bell-Pedersen, D; Quirk, S M; Bryk, M; Belfort, M

    1991-09-01

    Mobility of the phage T4 td intron depends on activity of an intron-encoded endonuclease (I-TevI), which cleaves a homologous intronless (delta In) target gene. The double-strand break initiates a recombination event that leads to intron transfer. We found previously that I-TevI cleaves td delta In target DNA 23-26 nucleotides upstream of the intron insertion site. DNase I-footprinting experiments and gel-shift assays indicate that I-TevI makes primary contacts around the intron insertion site. A synthetic DNA duplex spanning the insertion site but lacking the cleavage site was shown to bind I-TevI specifically, and when cloned, to direct cleavage into vector sequences. The behavior of the cloned duplex and that of deletion and insertion mutants support a primary role for sequences surrounding the insertion site in directing I-TevI binding, conferring cleavage ability, and determining cleavage polarity. On the other hand, sequences around the cleavage site were shown to influence cleavage efficiency and cut-site selection. The role of cleavage-site sequences in determining cleavage distance argues against a strict "ruler" mechanism for cleavage by I-TevI. The complex nature of the homing site recognized by this unusual type of endonuclease is considered in the context of intron spread. PMID:1881913

  2. Developing a programmed restriction endonuclease for highly specific DNA cleavage

    Eisenschmidt, Kristin; Lanio, Thomas; Simoncsits, András; Jeltsch, Albert; Pingoud, Vera; Wende, Wolfgang; Pingoud, Alfred

    2005-01-01

    Specific cleavage of large DNA molecules at few sites, necessary for the analysis of genomic DNA or for targeting individual genes in complex genomes, requires endonucleases of extremely high specificity. Restriction endonucleases (REase) that recognize DNA sequences of 4–8 bp are not sufficiently specific for this purpose. In principle, the specificity of REases can be extended by fusion to sequence recognition modules, e.g. specific DNA-binding domains or triple-helix forming oligonucleotid...

  3. Cleavage speed and implantation potential of early-cleavage embryos in IVF or ICSI cycles

    Lee, Meng-Ju; Lee, Robert Kuo-Kuang; Lin, Ming-Huei; Hwu, Yuh-Ming

    2012-01-01

    We examined whether there is a correlation among early embryo cleavage, speed of cleavage, and implantation potential for in-vitro fertilization (IVF) treatment and intracytoplasmic sperm injection (ICSI). This retrospective study examined 112 cycles of IVF and 82 cycles of ICSI in patients less than 40 years of age. Early cleavage was defined as embryonic mitosis occurring 25–27 h after insemination. These day-3 embryos were then grouped according to cleavage speed (rapid, normal, and slow) ...

  4. Pre-mRNA 3’ Cleavage is Reversibly Inhibited In Vitro by Cleavage Factor Dephosphorylation

    Ryan, Kevin

    2007-01-01

    During 3' end formation most pre-mRNAs undergo endonucleolytic cleavage and polyadenylation in the 3' untranslated region. Very little is known concerning the role that post-translational modifications play in the function and regulation of the factors required for 3' cleavage. Using the reconstituted pre-mRNA cleavage reaction, we find that non-specific dephosphorylation of HeLa cell nuclear extract leads to the loss of 3' cleavage activity. A variety of serine/threonine phosphatases inhibit...

  5. Hyperphosphorylation and cleavage at D421 enhance tau secretion.

    Vanessa Plouffe

    Full Text Available It is well established that tau pathology propagates in a predictable manner in Alzheimer's disease (AD. Moreover, tau accumulates in the cerebrospinal fluid (CSF of AD's patients. The mechanisms underlying the propagation of tau pathology and its accumulation in the CSF remain to be elucidated. Recent studies have reported that human tau was secreted by neurons and non-neuronal cells when it was overexpressed indicating that tau secretion could contribute to the spreading of tau pathology in the brain and could lead to its accumulation in the CSF. In the present study, we showed that the overexpression of human tau resulted in its secretion by Hela cells. The main form of tau secreted by these cells was cleaved at the C-terminal. Surprisingly, secreted tau was dephosphorylated at several sites in comparison to intracellular tau which presented a strong immunoreactivity to all phospho-dependent antibodies tested. Our data also revealed that phosphorylation and cleavage of tau favored its secretion by Hela cells. Indeed, the mimicking of phosphorylation at 12 sites known to be phosphorylated in AD enhanced tau secretion. A mutant form of tau truncated at D421, the preferential cleavage site of caspase-3, was also significantly more secreted than wild-type tau. Taken together, our results indicate that hyperphosphorylation and cleavage of tau by favoring its secretion could contribute to the propagation of tau pathology in the brain and its accumulation in the CSF.

  6. The short transcript of Leishmania RNA virus is generated by RNA cleavage.

    MacBeth, K J; Patterson, J L

    1995-01-01

    Leishmania RNA virus 1 produces a short viral RNA transcript corresponding to the 5' end of positive-sense single-stranded RNAs both in virally infected cells and in in vitro polymerase assays. We hypothesized that this short transcript was generated via cleavage of full-length positive-sense single-stranded RNA. A putative cleavage site was mapped by primer extension analysis to nucleotide 320 of the viral genome. To address the hypothesis that the short transcript is generated via cleavage at this site, two substrate RNAs that possessed viral sequence encompassing the putative cleavage site were created. When incubated with sucrose-purified viral particles, these substrate RNAs were site-specifically cleaved. The cleavage site of the in vitro-processed RNAs also mapped to viral nucleotide 320. The short-transcript-generating activity could be specifically abolished by proteinase K treatment of sucrose-purified viral particles and high concentrations of EGTA [ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid], suggesting that the activity requires a proteinaceous factor and possibly intact viral particles. The cleavage activity is directly associated with short-transcript-generating activity, since only viral particle preparations which were capable of generating the short transcript in polymerase assays were also active in the cleavage assay. Furthermore, the short-transcript-generating activity is independent of the viral polymerase's transcriptase and replicase activities. We present a working model whereby cleavage of Leishmaniavirus RNA transcripts functions in the maintenance of a low-level persistent infection. PMID:7745692

  7. The short transcript of Leishmania RNA virus is generated by RNA cleavage.

    MacBeth, K J; Patterson, J. L.

    1995-01-01

    Leishmania RNA virus 1 produces a short viral RNA transcript corresponding to the 5' end of positive-sense single-stranded RNAs both in virally infected cells and in in vitro polymerase assays. We hypothesized that this short transcript was generated via cleavage of full-length positive-sense single-stranded RNA. A putative cleavage site was mapped by primer extension analysis to nucleotide 320 of the viral genome. To address the hypothesis that the short transcript is generated via cleavage ...

  8. SARS coronavirus nsp1 protein induces template-dependent endonucleolytic cleavage of mRNAs: viral mRNAs are resistant to nsp1-induced RNA cleavage.

    Cheng Huang

    2011-12-01

    Full Text Available SARS coronavirus (SCoV nonstructural protein (nsp 1, a potent inhibitor of host gene expression, possesses a unique mode of action: it binds to 40S ribosomes to inactivate their translation functions and induces host mRNA degradation. Our previous study demonstrated that nsp1 induces RNA modification near the 5'-end of a reporter mRNA having a short 5' untranslated region and RNA cleavage in the encephalomyocarditis virus internal ribosome entry site (IRES region of a dicistronic RNA template, but not in those IRES elements from hepatitis C or cricket paralysis viruses. By using primarily cell-free, in vitro translation systems, the present study revealed that the nsp1 induced endonucleolytic RNA cleavage mainly near the 5' untranslated region of capped mRNA templates. Experiments using dicistronic mRNAs carrying different IRESes showed that nsp1 induced endonucleolytic RNA cleavage within the ribosome loading region of type I and type II picornavirus IRES elements, but not that of classical swine fever virus IRES, which is characterized as a hepatitis C virus-like IRES. The nsp1-induced RNA cleavage of template mRNAs exhibited no apparent preference for a specific nucleotide sequence at the RNA cleavage sites. Remarkably, SCoV mRNAs, which have a 5' cap structure and 3' poly A tail like those of typical host mRNAs, were not susceptible to nsp1-mediated RNA cleavage and importantly, the presence of the 5'-end leader sequence protected the SCoV mRNAs from nsp1-induced endonucleolytic RNA cleavage. The escape of viral mRNAs from nsp1-induced RNA cleavage may be an important strategy by which the virus circumvents the action of nsp1 leading to the efficient accumulation of viral mRNAs and viral proteins during infection.

  9. Fracto—emissions in Catastrophic Cleavage Process

    HonglaiTAN; WeiYANG

    1996-01-01

    Fracto-emissions accompanying crack propagation are observed in the recent experiments.The energy impulses during and after fracture stimulate the fracto-emissions.Model concerning atomic scale cleavage processes is proposed to formulate a catastrophic fracure theory relevant to these phenomena.A criterion for catastrophic jump of the cleavage potential is applied to representative crystals.

  10. Microstructure and cleavage in lath martensitic steels

    In this paper we discuss the microstructure of lath martensitic steels and the mechanisms by which it controls cleavage fracture. The specific experimental example is a 9Ni (9 wt% Ni) steel annealed to have a large prior austenite grain size, then examined and tested in the as-quenched condition to produce a relatively coarse lath martensite. The microstructure is shown to approximate the recently identified ‘classic’ lath martensite structure: prior austenite grains are divided into packets, packets are subdivided into blocks, and blocks contain interleaved laths whose variants are the two Kurjumov–Sachs relations that share the same Bain axis of the transformation. When the steel is fractured in brittle cleavage, the laths in the block share {100} cleavage planes and cleave as a unit. However, cleavage cracks deflect or blunt at the boundaries between blocks with different Bain axes. It follows that, as predicted, the block size governs the effective grain size for cleavage. (paper)

  11. Spatial organization of topoisomerase I-mediated DNA cleavage induced by camptothecin–oligonucleotide conjugates

    Arimondo, Paola B.; Angenault, Stéphane; Halby, Ludovic; Boutorine, Alexandre; Schmidt, Frédéric; Monneret, Claude; Garestier, Thérèse; Sun, Jian-Sheng; Bailly, Christian; Hélène, Claude

    2003-01-01

    Triple helix-forming oligonucleotides covalently linked to topoisomerase I inhibitors, in particular the antitumor agent camptothecin, trigger topoisomerase I-mediated DNA cleavage selectively in the proximity of the binding site of the oligonucleotide vector. In the present study, we have performed a systematic analysis of the DNA cleavage efficiency as a function of the positioning of the camptothecin derivative, either on the 3′ or the 5′ side of the triplex, and the location of the cleava...

  12. Evidence that Transcript Cleavage Is Essential for RNA Polymerase II Transcription and Cell Viability

    Sigurdsson, Stefan; Dirac-Svejstrup, A. Barbara; Svejstrup, Jesper Q.

    2010-01-01

    Summary During transcript elongation in vitro, backtracking of RNA polymerase II (RNAPII) is a frequent occurrence that can lead to transcriptional arrest. The polymerase active site can cleave the transcript during such backtracking, allowing transcription to resume. Transcript cleavage is either stimulated by elongation factor TFIIS or occurs much more slowly in its absence. However, whether backtracking actually occurs in vivo, and whether transcript cleavage is important to escape it, has...

  13. Association of polyadenylation cleavage factor I with U1 snRNP

    Awasthi, Sita; Alwine, James C.

    2003-01-01

    Splicing and polyadenylation factors interact for the control of polyadenylation and the coupling of splicing and polyadenylation. We document an interaction between the U1 snRNP and mammalian polyadenylation cleavage factor I (CF Im), one of several polyadenylation factors needed for the cleavage of the pre-mRNA at the polyadenylation site. Sucrose density gradient centrifugation demonstrated that CF Im separated into two fractions, a light fraction which contained the known CF Im subunits (...

  14. Evidence that flavivirus NS1-NS2A cleavage is mediated by a membrane-bound host protease in the endoplasmic reticulum.

    Falgout, B; Markoff, L

    1995-01-01

    Previous deletion mutagenesis studies have shown that the flavivirus NS1-NS2A clevage requires the eight C-terminal residues of NS1, constituting the cleavage recognition sequence, and sequences in NS2A far downstream of the cleavage site. We now demonstrate that replacement of all of NS1 upstream of the cleavage recognition sequence with prM sequences still allows cleavage in vivo. Thus, other than the eight C-terminal residues, NS1 is dispensable for NS1-NS2A cleavage. However, deletion of ...

  15. Long-range RNA interaction of two sequence elements required for endonucleolytic cleavage of human insulin-like growth factor II mRNAs.

    Scheper, W; Meinsma, D; Holthuizen, P E; Sussenbach, J S

    1995-01-01

    Human insulin-like growth factor II (IGF-II) mRNAs are subject to site-specific endonucleolytic cleavage in the 3' untranslated region, leading to an unstable 5' cleavage product containing the IGF-II coding region and a very stable 3' cleavage product of 1.8 kb. This endonucleolytic cleavage is most probably the first and rate-limiting step in degradation of IGF-II mRNAs. Two sequence elements within the 3' untranslated region are required for cleavage: element I, located approximately 2 kb ...

  16. Programmable RNA recognition and cleavage by CRISPR/Cas9

    O’Connell, Mitchell R.; Oakes, Benjamin L.; Sternberg, Samuel H.; East-Seletsky, Alexandra; Kaplan, Matias; Doudna, Jennifer A.

    2014-01-01

    The CRISPR-associated protein Cas9 is an RNA-guided DNA endonuclease that uses RNA:DNA complementarity to identify target sites for sequence-specific doublestranded DNA (dsDNA) cleavage 1-5 . In its native context, Cas9 acts on DNA substrates exclusively because both binding and catalysis require recognition of a short DNA sequence, the protospacer adjacent motif (PAM), next to and on the strand opposite the 20-nucleotide target site in dsDNA 4-7 . Cas9 has proven to be a versatile tool for g...

  17. Sequence specificity of DNA cleavage by Micrococcus luteus γ endonuclease

    DNA fragments of defined sequence have been used to determine the sites of cleavage by γ-endonuclease activity in extracts prepared from Micrococcus luteus. End-labeled DNA restriction fragments of pBR322 DNA that had been irradiated under nitrogen in the presence of potassium iodide or t-butanol were treated with M. luteus γ endonuclease and analyzed on irradiated DNA preferentially at the positions of cytosines and thymines. DNA cleavage occurred immediately to the 3' side of pyrimidines in irradiated DNA and resulted in fragments that terminate in a 5'-phosphoryl group. These studies indicate that both altered cytosines and thymines may be important DNA lesions requiring repair after exposure to γ radiation

  18. Experiments on schistosity and slaty cleavage

    Becker, George Ferdinand

    1904-01-01

    Schistosity as a structure is important, and it is a part of the business of geologists to explain its origin. Slaty cleavage has further and greater importance as a possible tectonic feature. Scarcely a great mountain range exists, or has existed, along the course of which belts of slaty rock are not found, the dip of the cleavage usually approaching verticality. Are these slate belts equivalent to minutely distributed step faults of great total throw, or do they indicate compression perpendicular to the cleavage without attendant relative dislocation? Evidently the answer to this question is of first importance in the interpretation of orogenic phenomena.

  19. Intracellular ribozyme-catalyzed trans-cleavage of RNA monitored by fluorescence resonance energy transfer.

    Vitiello, D; Pecchia, D B; Burke, J M

    2000-04-01

    Small catalytic RNAs like the hairpin ribozyme are proving to be useful intracellular tools; however, most attempts to demonstrate trans-cleavage of RNA by ribozymes in cells have been frustrated by rapid cellular degradation of the cleavage products. Here, we describe a fluorescence resonance energy transfer (FRET) assay that directly monitors cleavage of target RNA in tissue-culture cells. An oligoribonucleotide substrate was modified to inhibit cellular ribonuclease degradation without interfering with ribozyme cleavage, and donor (fluorescein) and acceptor (tetramethylrhodamine) fluorophores were introduced at positions flanking the cleavage site. In simple buffers, the intact substrate produces a strong FRET signal that is lost upon cleavage, resulting in a red-to-green shift in dominant fluorescence emission. Hairpin ribozyme and fluorescent substrate were microinjected into murine fibroblasts under conditions in which substrate cleavage can occur only inside the cell. A strong FRET signal was observed by fluorescence microscopy when substrate was injected, but rapid decay of the FRET signal occurred when an active, cognate ribozyme was introduced with the substrate. No acceleration in cleavage rates was observed in control experiments utilizing a noncleavable substrate, inactive ribozyme, or an active ribozyme with altered substrate specificity. Subsequently, the fluorescent substrates were injected into clonal cell lines that expressed cognate or noncognate ribozymes. A decrease in FRET signal was observed only when substrate was microinjected into cells expressing its cognate ribozyme. These results demonstrate trans-cleavage of RNA within mammalian cells, and provide an experimental basis for quantitative analysis of ribozyme activity and specificity within the cell. PMID:10786853

  20. Expression and in vitro cleavage activity of anti-caspase-7 hammerhead ribozymes

    Wei Zhang; Qing Xie; Xia-Qiu Zhou; Shan Jiang; You-Xin Jin

    2004-01-01

    AIM: To prepare hammerhead ribozymes against mouse caspase-7 and identify their cleavage activityin vitro, in order to select a ribozyme with specific cleavage activity against mouse caspase-7 as a potential gene therapy for apoptosis-related diseases.METHODS: Anti-caspase-7 ribozymes targeting sites 333and 394 (named Rz333 and Rz394) were designed by computer software, and their DNA sequences encoding ribozymes were synthesized. Caspase-7 DNA sequence was acquired by RT-PCR. Ribozymes and caspase-7 DNA obtained byin vitro transcription were cloned into pBSKneo U6' and pGEM-T vectors, respectively. The cleavage activity of ribozymes against mouse caspase-7 was identified by cleavage experimentsin vitro.RESULTS: Rz333 and Rz394 were designed and their DNA sequences were synthesized respectively. The expression vector of caspase-7 and plasmids containing Rz333 and Rz394 were reconstructed successfully. Ribozymes and caspase-7 mRNA were expressed byin vitro transcription.In vitro cleavage experiment showed that 243-nt and 744-nt segments were produced after caspase-7 mRNA was mixed with Rz333 in equivalent, and the cleavage efficiency was 67.98%. No cleaved segment was observed when caspase-7 mRNA was mixed with Rz394.CONCLUSION: Rz333 can site-specific cleave mouse caspase-7 mRNA, and it shows a potential for gene therapy of apoptosis-related diseases by down-regulating gene expression of caspase-7.

  1. Centrosomes: CNN's Broadcast Reaches the Cleavage Furrow

    Sullivan, William

    2009-01-01

    Centrosomin (CNN), a core Drosophila centrosome protein, interacts with the newly identified protein Centrocortin to promote cleavage furrow formation in the early embryo. Significantly, this activity is distinct from CNN's well-established role in centrosome-based microtubule organization.

  2. Sequences within the Herpesvirus-Conserved pac1 and pac2 Motifs Are Required for Cleavage and Packaging of the Murine Cytomegalovirus Genome

    McVoy, Michael A.; Nixon, Daniel E.; Adler, Stuart P.; Mocarski, Edward S.

    1998-01-01

    The DNA sequence motifs pac1 [an A-rich region flanked by poly(C) runs] and pac2 (CGCGGCG near an A-rich region) are conserved near herpesvirus genomic termini and are believed to mediate cleavage of genomes from replicative concatemers. To determine their importance in the cleavage process, we constructed a number of recombinant murine cytomegaloviruses with a second cleavage site inserted at an ectopic location within the viral genome. Cleavage at a wild-type ectopic site occurred as freque...

  3. Exogenous AdoMet and its analogue sinefungin differentially influence DNA cleavage by R.EcoP151 - Usefulness in SAGE

    Raghavendra, Nidhanapati K.; Rao, Desirazu N.

    2005-01-01

    While it has been demonstrated that AdoMet is required for DNA cleavage by Type III restriction enzymes, here we show that in the presence of exogenous AdoMet, the head-to-head oriented recognition sites are cleaved only on a supercoiled DNA. On a linear DNA. exogenous AdoMet strongly drives methylation while inhibiting cleavage reaction.Strikingly, AdoMet analogue sine fungin results in cleavage at all recognition sites irrespective of the topology of DNA. The cleavage reaction in the presen...

  4. Does Cleavage Work at Work? Men, but Not Women, Falsely Believe Cleavage Sells a Weak Product

    Glick, Peter; Chrislock, Karyna; Petersik, Korinne; Vijay, Madhuri; Turek, Aleksandra

    2008-01-01

    We examined whether men, but not women, would be distracted by a female sales representative's exposed cleavage, leading to greater perceived efficacy for a weak, but not for a strong product. A community sample of 88 men and 97 women viewed a video of a female pharmaceutical sales representative who (a) had exposed cleavage or dressed modestly…

  5. The role of the plasma membrane and a non-lysosomal compartment in the disulfide cleavage of endocytosed macromolecules

    The cleavage of disulfide bonds in endocytosed macromolecules was investigated using new disulfide containing macromolecular conjugates. A conjugate, in which (125I-tyr) was linked to the nondegradable macromolecular carrier poly D-lysine (PDL) through a disulfide spacer (125I-tyr-SS-PDL), was used to monitor disulfide cleavage in adsorptive endocytosis in Chinese hamster ovary cells. Reductive cleavage of this probe released 3-thiopropionyl-125125I-tyramine, measurable as acid soluble radioactivity. In pulse experiments, reductive cleavage of 125I-tyr-SS-PDL differed in its kinetics from the proteolysis of 125I-labeled Poly L-lysine. Proteolytic degradation began after a 15 to 30 min lag, i.e. the time required for transport of poly(lysine) to heavy lysosomes, while reductive cleavage increased linearly between 0 and 15 min. In the first hour of chase, proteolytic and reductive cleavage amounted to 30% and 7% of the total cell bound radioactivity, respectively. The reductive cleavage observed during the first 30 min of chase was inhibited by 80-90% with cell impermeant sulfhydryl reagents [dithiobis-(2-nitrobenzoic acid) and p-chloromercuriphenyl-sulfonate], which indicated that cleavage occurred at the cell surface. In contrast, disulfide cleavage observed after 1 hr chase was not significantly inhibited by these reagents and, therefore, resulted from an intracellular process. Subcellular fractionation demonstrated that lysosomes could be excluded as a site of disulfide cleavage, but that a subcellular fraction characterized by a buoyant density of 1.03g/ml was associated with the cleavage of 125I-tyr-SS-PDL. Of the relevant structures which constitute this subcellular fraction, early endosomes and plasma membrane could be excluded as the reducing structures on the basis of kinetic considerations

  6. Foot-and-mouth disease virus 2A protease mediates cleavage in attenuated Sabin 3 poliovirus vectors engineered for delivery of foreign antigens.

    Mattion, N M; Harnish, E C; Crowley, J C; Reilly, P A

    1996-01-01

    Poliovirus vectors are being studied as potential vaccine delivery systems, with foreign genetic sequences incorporated as part of the viral genome. The foreign sequences are expressed as part of the viral polyprotein. Addition of proteolytic cleavage sites at the junction of the foreign polypeptide and the viral proteins results in cleavage during polyprotein processing. The ability of foot-and-mouth disease virus (FMDV) 2A to mediate proteolytic cleavage in the context of poliovirus vectors...

  7. Cleavage specificity analysis of six type II transmembrane serine proteases (TTSPs using PICS with proteome-derived peptide libraries.

    Olivier Barré

    Full Text Available BACKGROUND: Type II transmembrane serine proteases (TTSPs are a family of cell membrane tethered serine proteases with unclear roles as their cleavage site specificities and substrate degradomes have not been fully elucidated. Indeed just 52 cleavage sites are annotated in MEROPS, the database of proteases, their substrates and inhibitors. METHODOLOGY/PRINCIPAL FINDING: To profile the active site specificities of the TTSPs, we applied Proteomic Identification of protease Cleavage Sites (PICS. Human proteome-derived database searchable peptide libraries were assayed with six human TTSPs (matriptase, matriptase-2, matriptase-3, HAT, DESC and hepsin to simultaneously determine sequence preferences on the N-terminal non-prime (P and C-terminal prime (P' sides of the scissile bond. Prime-side cleavage products were isolated following biotinylation and identified by tandem mass spectrometry. The corresponding non-prime side sequences were derived from human proteome databases using bioinformatics. Sequencing of 2,405 individual cleaved peptides allowed for the development of the family consensus protease cleavage site specificity revealing a strong specificity for arginine in the P1 position and surprisingly a lysine in P1' position. TTSP cleavage between R↓K was confirmed using synthetic peptides. By parsing through known substrates and known structures of TTSP catalytic domains, and by modeling the remainder, structural explanations for this strong specificity were derived. CONCLUSIONS: Degradomics analysis of 2,405 cleavage sites revealed a similar and characteristic TTSP family specificity at the P1 and P1' positions for arginine and lysine in unfolded peptides. The prime side is important for cleavage specificity, thus making these proteases unusual within the tryptic-enzyme class that generally has overriding non-prime side specificity.

  8. Copper-dependent cleavage of DNA of bleomycin

    DNA strand scission by bleomycin in the presence of Cu and Fe was further characterized. It was found that DNA degradation occurred readily upon admixture of Cu(I) or Cu(II) + dithiothreitol + bleomycin, but only where the order of addition precluded initial formation of Cu(II)-bleomycin or where sufficient time was permitted for reduction of formed Cu(II)-bleomycin to Cu(I)-bleomycin. DNA strand scission mediated by Cu + dithiothreitol + bleomycin was inhibited by the copper-selective agent bathocuproine when the experiment was carried out under conditions consistent with Cu chelation by bathocuproine on the time scale of the experiment. Remarkably, it was found that the extent of DNA degradation obtained with bleomycin in the presence of Fe and Cu was greater than that obtained with either metal ion alone. A comparison of the sequence selectivity of bleomycin in the presence of Cu and Fe using32P-end-labeled DNA duplexes as substrates revealed significant differences in sites of DNA cleavage and in the extent of cleavage at sites shared in common. For deglycobleomycin and decarbamoylbleomycin, whose metal ligation is believed to differ from that of bleomycin itself, it was found that the relative extents of DNA cleavage in the presence of Cu were not in the same order as those obtained in the presence of Fe. The results of these experiments are entirely consistent with the work of Sugiura who first demonstrate the generation of reactive oxygen species upon admixture of O2 and Cu(I)-bleomycin

  9. Synthesis and enzymatic cleavage of dual-ligand quantum dots

    Sewell, Sarah L. [Department of Biomedical Engineering, Vanderbilt University, Nashville, TN (United States); Giorgio, Todd D., E-mail: todd.d.giorgio@vanderbilt.edu [Department of Biomedical Engineering, Vanderbilt University, Nashville, TN (United States); Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN (United States)

    2009-05-05

    Site directed therapy promises to minimize treatment-limiting systemic effects associated with cytotoxic agents that have no specificity for pathologic tissues. One general strategy is to target cell surface receptors uniquely presented on particular tissues. Highly specific in vivo targeting of an emerging neoplasm through a single molecular recognition mechanism has not generally been successful. Nonspecific binding and specific binding to non-target cells compromise the therapeutic index of small molecule, ubiquitous cancer targeting ligands. In this work, we have designed and fabricated a nanoparticle (NP) construct that could potentially overcome the current limitations of targeted in vivo delivery. Quantum dots (QDs) were functionalized with a poly(ethylene glycol) (PEG) modified to enable specific cleavage by matrix metalloprotease-7 (MMP-7). The QDs were further functionalized with folic acid, a ligand for a cell surface receptor that is overexpressed in many tumors, but also expressed in some normal tissues. The nanomolecular construct is designed so that the PEG initially conceals the folate ligand and construct binding to cells is inhibited. MMP-7 activated peptide cleavage and subsequent unmasking of the folate ligand occurs only near tumor tissue, resulting in a proximity activated (PA) targeting system. QDs functionalized with both the MMP-7 cleavable substrate and folic acid were successfully synthesized and characterized. The proteolytic capability of the dual ligand QD construct was quantitatively assessed by fluorometric analysis and compared to a QD construct functionalized with only the PA ligand. The dual ligand PA nanoparticles studied here exhibit significant susceptibility to cleavage by MMP-7 at physiologically relevant conditions. The capacity to autonomously convert a biopassivated nanostructure to a tissue-specific targeted delivery agent in vivo represents a paradigm change for site-directed therapies.

  10. Synthesis and enzymatic cleavage of dual-ligand quantum dots

    Site directed therapy promises to minimize treatment-limiting systemic effects associated with cytotoxic agents that have no specificity for pathologic tissues. One general strategy is to target cell surface receptors uniquely presented on particular tissues. Highly specific in vivo targeting of an emerging neoplasm through a single molecular recognition mechanism has not generally been successful. Nonspecific binding and specific binding to non-target cells compromise the therapeutic index of small molecule, ubiquitous cancer targeting ligands. In this work, we have designed and fabricated a nanoparticle (NP) construct that could potentially overcome the current limitations of targeted in vivo delivery. Quantum dots (QDs) were functionalized with a poly(ethylene glycol) (PEG) modified to enable specific cleavage by matrix metalloprotease-7 (MMP-7). The QDs were further functionalized with folic acid, a ligand for a cell surface receptor that is overexpressed in many tumors, but also expressed in some normal tissues. The nanomolecular construct is designed so that the PEG initially conceals the folate ligand and construct binding to cells is inhibited. MMP-7 activated peptide cleavage and subsequent unmasking of the folate ligand occurs only near tumor tissue, resulting in a proximity activated (PA) targeting system. QDs functionalized with both the MMP-7 cleavable substrate and folic acid were successfully synthesized and characterized. The proteolytic capability of the dual ligand QD construct was quantitatively assessed by fluorometric analysis and compared to a QD construct functionalized with only the PA ligand. The dual ligand PA nanoparticles studied here exhibit significant susceptibility to cleavage by MMP-7 at physiologically relevant conditions. The capacity to autonomously convert a biopassivated nanostructure to a tissue-specific targeted delivery agent in vivo represents a paradigm change for site-directed therapies.

  11. Eurosceptism: the Birth of a New Cleavage?

    Lorenzo Viviani

    2010-05-01

    Full Text Available Euroscepticism is an ambivalent and polysemic concept, consisting of the theme of the European identity, the construction of European Union as new polity, the development of an opposition as expression of new social cleavage, and finally the perspective of an ideological politicization of the european integration by national and supranational political actors. The article attempts to make light on the nature and on the dynamics of development of the euroscepticism through a sequence of analysis that starts from the identity of Europe (what we mean by euroscepticism, then addresses the social dimension of Europe (what we mean by the new european cleavage, and it finally examines the political dimension (the risks and opportunities of politicization by political parties of the european cleavage.

  12. Cleavage-induced termination in U2 snRNA gene expression

    Nabavi, Sadeq [Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada); Nazar, Ross N., E-mail: rnnazar@uoguelph.ca [Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada)

    2010-03-12

    The maturation of many small nuclear RNAs is dependent on RNase III-like endonuclease mediated cleavage, which generates a loading site for the exosome complex that trims the precursor at its 3' end. Using a temperature sensitive Pac1 nuclease, here we show that the endonuclease cleavage is equally important in terminating the transcription of the U2 snRNA in Schizosaccharomyces pombe. Using a temperature sensitive Dhp1p 5' {yields} 3' exonuclease, we demonstrate that it also is an essential component of the termination pathway. Taken together the results support a 'reversed torpedoes' model for the termination and maturation of the U2 snRNA; the Pac1 endonuclease cleavage provides entry sites for the 3' and 5' exonuclease activities, leading to RNA maturation in one direction and transcript termination in the other.

  13. Cleavage-induced termination in U2 snRNA gene expression

    The maturation of many small nuclear RNAs is dependent on RNase III-like endonuclease mediated cleavage, which generates a loading site for the exosome complex that trims the precursor at its 3' end. Using a temperature sensitive Pac1 nuclease, here we show that the endonuclease cleavage is equally important in terminating the transcription of the U2 snRNA in Schizosaccharomyces pombe. Using a temperature sensitive Dhp1p 5' → 3' exonuclease, we demonstrate that it also is an essential component of the termination pathway. Taken together the results support a 'reversed torpedoes' model for the termination and maturation of the U2 snRNA; the Pac1 endonuclease cleavage provides entry sites for the 3' and 5' exonuclease activities, leading to RNA maturation in one direction and transcript termination in the other.

  14. Cleavage of cytoplasm within the oligonucleate zoosporangia of allomyces macrogynus.

    Ji, Yunjeong; Song, Youngsun; Kim, Namhun; Youn, Hyunjoo; Kang, Minkook; Song, Yurim; Cho, Chungwon

    2014-01-01

    Allomyces macrogynus produces zoosporangia that discharge uninucleate zoospores after cleavage of multinucleate cytoplasm. Cleavage of cytoplasm within the oligonucleate zoosporangia of A. macrogynus was visualized by constructing three-dimensional models based on electron micrographs and confocal images. In oligonucleate zoosporangia, three adjacent nuclei can form three cleavage planes with a line of intersection of the planes. The position and boundary of the cleavage planes are thought to be determined by the relative positions of the nuclei. The establishment of three cleavage planes by cleavage membranes occurred sequentially, and the nuclear axis connecting the centers of two nuclei affected the development of cleavage membranes on each cleavage plane. In multinucleate zoosporangia, groups of three neighboring nuclei near the cell cortex may initiate the sequential establishment of cleavage planes and then may interact with the nuclei further from the cortex until the interactions of nuclei are propagated to the central region of the cytoplasm. PMID:24871589

  15. Reductive cleavage of the peptide bond

    Holian, J.; Garrison, W. M.

    1973-01-01

    In many biological research efforts, long chain organic molecules are studied by breaking large molecules into smaller components. Cleavage technique of recent interest is the use of solvated electrons. These are formed when aqueous solutions are bombarded with gamma radiation. Solvated electron is very reactive and can reduce most any species present, even to form free radicals.

  16. Can laccases catalyze bond cleavage in lignin?

    Munk, Line; Sitarz, Anna Katarzyna; Kalyani, Dayanand;

    2015-01-01

    these enzymes may help degrading lignin, using oxygen as the oxidant. Laccases can catalyze polymerization of lignin, but the question is whether and how laccases can directly catalyze modification of lignin via catalytic bond cleavage. Via a thorough review of the available literature and detailed...

  17. RNase III cleavage of Escherichia coli beta-galactosidase and tryptophan operon mRNA.

    Shen, V; Imamoto, F; Schlessinger, D

    1982-01-01

    Purified RNase III of Escherichia coli cleaved the initial 479-nucleotide sequence of lac operon mRNA at four specific sites and also gave limited cleavage of trp operon mRNA. This action explains the inactivation of mRNA coding capacity by RNase III in vitro.

  18. Expression of a naturally occurring angiotensin AT1 receptor cleavage fragment elicits caspase-activation and apoptosis

    Cook, Julia L.; Singh, Akannsha; DeHaro, Dawn; Alam, Jawed; Re, Richard N.

    2011-01-01

    Several transmembrane receptors are documented to accumulate in nuclei, some as holoreceptors and others as cleaved receptor products. Our prior studies indicate that a population of the 7-transmembrane angiotensin type-1 receptor (AT1R) is cleaved in a ligand-augmented manner after which the cytoplasmic, carboxy-terminal cleavage fragment (CF) traffics to the nucleus. In the present report, we determine the precise cleavage site within the AT1R by mass spectrometry and Edman sequencing. Clea...

  19. Mapping small DNA ligand hydroxyl radical footprinting and affinity cleavage products for capillary electrophoresis.

    He, Gaofei; Vasilieva, Elena; Bashkin, James K; Dupureur, Cynthia M

    2013-08-15

    The mapping of DNA footprints and affinity cleavage sites for small DNA ligands is affected by the choice of sequencing chemistry and end label, and the potential for indexing errors can be significant when mapping small ligand-DNA interactions. Described here is a mechanism for avoiding such errors based on a summary of standard labeling, cleavage, and indexing chemistries and a comparison among them for analysis of these interactions by capillary electrophoresis. The length dependence of the difference between Sanger and Maxam-Gilbert indexing is examined for a number of duplexes of mixed sequence. PMID:23608054

  20. Tomato ringspot nepovirus protease: characterization and cleavage site specificity

    Hans, F.; Sanfacon, H.

    1995-01-01

    We have cloned the region of tomato ringspot nepovirus (TomRSV) RNA-1 coding for the putative TomRSV 3C-related protease (amino acids 1213 to 1508) in a transcription vector and in a transient expression vector. Using cell-free transcription and translation systems and plant protoplasts, we have dem

  1. Predicting proteasomal cleavage sites: a comparison of available methods

    Saxova, P.; Buus, S.; Brunak, Søren;

    2003-01-01

    The proteasome plays an essential role in the immune responses of vertebrates. By degrading intercellular proteins from self and non-self, the proteasome produces the majority of the peptides that are presented to cytotoxic T cells (CTL). There is accumulating evidence that the C-terminal, in par...

  2. Bacillus subtilis trp Leader RNA: RNase J1 endonuclease cleavage specificity and PNPase processing.

    Deikus, Gintaras; Bechhofer, David H

    2009-09-25

    In the presence of ample tryptophan, transcription from the Bacillus subtilis trp operon promoter terminates to give a 140-nucleotide trp leader RNA. Turnover of trp leader RNA has been shown to depend on RNase J1 cleavage at a single-stranded, AU-rich region just upstream of the 3' transcription terminator. The small size of trp leader RNA and its strong dependence on RNase J1 cleavage for decay make it a suitable substrate for analyzing the requirements for RNase J1 target site specificity. trp leader RNAs with nucleotide changes around the RNase J1 target site were more stable than wild-type trp leader RNA, showing that sequences on either side of the cleavage site contribute to RNase J1 recognition. An analysis of decay intermediates from these mutants suggested limited 3'-to-5' exonuclease processing from the native 3' end. trp leader RNAs were designed that contained wild-type or mutant RNase J1 targets elsewhere on the molecule. The presence of an additional RNase J1 cleavage site resulted in faster RNA decay, depending on its location. Addition of a 5' tail containing 7 A residues caused destabilization of trp leader RNAs. Surprisingly, addition at the 5' end of a strong stem loop structure that is known to stabilize other RNAs did not result in a longer trp leader RNA half-life, suggesting that the RNase J1 cleavage site may be accessed directly. In the course of these experiments, we found evidence that polynucleotide phosphorylase processivity was inhibited by a GCGGCCGC sequence. PMID:19638340

  3. Polymorphism identification and quantitative detection of genomic DNA by invasive cleavage of oligonucleotide probes

    Lyamichev, V.; Mast, A.L.; Hall, J.G. [Third Wave Technologies, Madison, WI (United States)] [and others

    1999-03-01

    Flap endonucleases (FENs) isolated from archaea are shown to recognize and cleave a structure formed when two overlapping oligonucleotides hybridize to a target DNA strand. The downstream oligonucleotide probe is cleaved, and the precise site of cleavage is dependent on the amount of overlap with the upstream oligonucleotide. The authors have demonstrated that use of thermostable archaeal FENs allows the reaction to be performed at temperatures that promote probe turnover without the need for temperature cycling. The resulting amplification of the cleavage signal enables the detection of specific DNA targets at sub-attomole levels within complex mixtures. Moreover, the authors provide evidence that this cleavage is sufficiently specific to enable discrimination of single-base differences and can differentiate homozygotes from heterozygotes in single-copy genes in genomic DNA.

  4. TMPRSS2 Independency for Haemagglutinin Cleavage In Vivo Differentiates Influenza B Virus from Influenza A Virus

    Sakai, Kouji; Ami, Yasushi; Nakajima, Noriko; Nakajima, Katsuhiro; Kitazawa, Minori; Anraku, Masaki; Takayama, Ikuyo; Sangsriratanakul, Natthanan; Komura, Miyuki; Sato, Yuko; Asanuma, Hideki; Takashita, Emi; Komase, Katsuhiro; Takehara, Kazuaki; Tashiro, Masato; Hasegawa, Hideki; Odagiri, Takato; Takeda, Makoto

    2016-01-01

    Influenza A and B viruses show clear differences in their host specificity and pandemic potential. Recent studies have revealed that the host protease TMPRSS2 plays an essential role for proteolytic activation of H1, H3, and H7 subtype strains of influenza A virus (IAV) in vivo. IAV possessing a monobasic cleavage site in the haemagglutinin (HA) protein replicates poorly in TMPRSS2 knockout mice owing to insufficient HA cleavage. In the present study, human isolates of influenza B virus (IBV) strains and a mouse-adapted IBV strain were analysed. The data showed that IBV successfully underwent HA cleavage in TMPRSS2 knockout mice, and that the mouse-adapted strain was fully pathogenic to these mice. The present data demonstrate a clear difference between IAV and IBV in their molecular mechanisms for spreading in vivo. PMID:27389476

  5. TMPRSS2 Independency for Haemagglutinin Cleavage In Vivo Differentiates Influenza B Virus from Influenza A Virus.

    Sakai, Kouji; Ami, Yasushi; Nakajima, Noriko; Nakajima, Katsuhiro; Kitazawa, Minori; Anraku, Masaki; Takayama, Ikuyo; Sangsriratanakul, Natthanan; Komura, Miyuki; Sato, Yuko; Asanuma, Hideki; Takashita, Emi; Komase, Katsuhiro; Takehara, Kazuaki; Tashiro, Masato; Hasegawa, Hideki; Odagiri, Takato; Takeda, Makoto

    2016-01-01

    Influenza A and B viruses show clear differences in their host specificity and pandemic potential. Recent studies have revealed that the host protease TMPRSS2 plays an essential role for proteolytic activation of H1, H3, and H7 subtype strains of influenza A virus (IAV) in vivo. IAV possessing a monobasic cleavage site in the haemagglutinin (HA) protein replicates poorly in TMPRSS2 knockout mice owing to insufficient HA cleavage. In the present study, human isolates of influenza B virus (IBV) strains and a mouse-adapted IBV strain were analysed. The data showed that IBV successfully underwent HA cleavage in TMPRSS2 knockout mice, and that the mouse-adapted strain was fully pathogenic to these mice. The present data demonstrate a clear difference between IAV and IBV in their molecular mechanisms for spreading in vivo. PMID:27389476

  6. The role of spaced cleavage on the porosity and permeability within a reservoir unit

    Thorn, P.A.; Lageson, D.R. [Montana State Univ., Bozeman, MT (United States)

    1996-06-01

    Tectonic deformation plays a significant role in both the enhancement and degradation of the porosity and permeability within a reservoir unit. Enhancing mechanisms generally include fracturing and brecciation, whereas reducing mechanisms include cataclasis and pressure solution. Spaced cleavage is common within argillaceous limestone in foreland fold and thrust belts, including the Sawtooth Range, Montana. The presence of spaced cleavage will have a significant impact on both the permeability and porosity within a reservoir. Spaced cleavage is formed by pressure solution, where calcite is dissolved as a tectonic stress is applied. As the calcite is being removed, relatively insoluble minerals, predominately clay and quartz, are concentrated along the dissolution sites and form thin domains. The minerals within these domains are compacted and aligned perpendicular to the direction of maximum stress. Due to the nature of the aligned minerals, fluid flow will be restricted across these domains, creating severe reservoir anisotropy within the unit. Once the calcite has been dissolved, it must re-precipitate out. This will generally occur in the pores and open fractures present in the cleaved unit, significantly reducing the porosity present in the reservoir rock. However, if the cleavage has been folded during a later deformational event, these domains, which represent weaknesses in the rock, could open up around the crests of folds and provide a pathway for increased fluid migration parallel to the cleavage trend.

  7. Effects of retroviral envelope-protein cleavage upon trafficking, incorporation, and membrane fusion

    Retroviral envelope glycoproteins undergo proteolytic processing by cellular subtilisin-like proprotein convertases at a polybasic amino-acid site in order to produce the two functional subunits, SU and TM. Most previous studies have indicated that envelope-protein cleavage is required for rendering the protein competent for promoting membrane fusion and for virus infectivity. We have investigated the role of proteolytic processing of the Moloney murine leukemia virus envelope-protein through site-directed mutagenesis of the residues near the SU-TM cleavage site and have established that uncleaved glycoprotein is unable either to be incorporated into virus particles efficiently or to induce membrane fusion. Additionally, the results suggest that cleavage of the envelope protein plays an important role in intracellular trafficking of protein via the cellular secretory pathway. Based on our results it was concluded that a positively charged residue located at either P2 or P4 along with the arginine at P1 is essential for cleavage.

  8. Calcium waves along the cleavage furrows in cleavage-stage Xenopus embryos and its inhibition by heparin

    1996-01-01

    Calcium signaling is known to be associated with cytokinesis; however, the detailed spatio-temporal pattern of calcium dynamics has remained unclear. We have studied changes of intracellular free calcium in cleavage-stage Xenopus embryos using fluorescent calcium indicator dyes, mainly Calcium Green-1. Cleavage formation was followed by calcium transients that localized to cleavage furrows and propagated along the furrows as calcium waves. The calcium transients at the cleavage furrows were o...

  9. Position- and orientation-specific enhancement of topoisomerase I cleavage complexes by triplex DNA structures

    Antony, Smitha; Arimondo, Paola B.; Sun, Jian-Sheng; Pommier, Yves

    2004-01-01

    Topoisomerase I (Top1) activities are sensitive to various endogenous base modifications, and anticancer drugs including the natural alkaloid camptothecin. Here, we show that triple helix-forming oligonucleotides (TFOs) can enhance Top1-mediated DNA cleavage by affecting either or both the nicking and the closing activities of Top1 depending on the position and the orientation of the triplex DNA structure relative to the Top1 site. TFO binding 1 bp downstream from the Top1 site enhances cleav...

  10. Cleavage crystallography of liquid metal embrittled aluminum alloys

    Reynolds, A. P.; Stoner, G. E.

    1991-01-01

    The crystallography of liquid metal-induced transgranular cleavage in six aluminum alloys having a variety of microstructures has been determined via Laue X-ray back reflection. The cleavage crystallography was independent of alloy microstructure, and the cleavage plane was 100-plane oriented in all cases. It was further determined that the cleavage crystallography was not influenced by alloy texture. Examination of the fracture surface indicated that there was not a unique direction of crack propagation. In addition, the existence of 100-plane cleavage on alloy 2024 fracture surfaces was inferred by comparison of secondary cleavage crack intersection geometry on the 2024 surfaces with the geometry of secondary cleavage crack intersections on the test alloys.

  11. Regioselectivity in the Reductive Bond Cleavage of Diarylalkylsulfonium Salts

    Kampmeier, Jack; Mansurul Hoque, AKM; D. Saeva, Franklin;

    2009-01-01

    This investigation was stimulated by reports that one-electron reductions of monoaryldialkylsulfonium salts never give aryl bond cleavage whereas reductions of diarylmonoalkylsulfonium salts preferentially give aryl bond cleavage. We studied the product ratios from the reductive cleavage of di-4......- tolylethylsulfonium and di-4-tolyl-2-phenylethylsulfonium salts by a variety of one-electron reducing agents ranging in potential from -0.77 to +2.5 eV (vs SCE) and including thermal reductants, indirect electrolyses mediated by a series of cyanoaromatics, and excited singlet states. We report that the cleavage...... products vary from regiospecific alkyl cleavage to predominant aryl cleavage as a function of the potential of the reducing agent. We conclude that differences between the reductive cleavages of mono- and diarylsulfonium salts are direct consequences of the structures of the sulfuranyl radical...

  12. Computational analysis and modeling of cleavage by the immunoproteasome and the constitutive proteasome

    Lafuente Esther M

    2010-09-01

    Full Text Available Abstract Background Proteasomes play a central role in the major histocompatibility class I (MHCI antigen processing pathway. They conduct the proteolytic degradation of proteins in the cytosol, generating the C-terminus of CD8 T cell epitopes and MHCI-peptide ligands (P1 residue of cleavage site. There are two types of proteasomes, the constitutive form, expressed in most cell types, and the immunoproteasome, which is constitutively expressed in mature dendritic cells. Protective CD8 T cell epitopes are likely generated by the immunoproteasome and the constitutive proteasome, and here we have modeled and analyzed the cleavage by these two proteases. Results We have modeled the immunoproteasome and proteasome cleavage sites upon two non-overlapping sets of peptides consisting of 553 CD8 T cell epitopes, naturally processed and restricted by human MHCI molecules, and 382 peptides eluted from human MHCI molecules, respectively, using N-grams. Cleavage models were generated considering different epitope and MHCI-eluted fragment lengths and the same number of C-terminal flanking residues. Models were evaluated in 5-fold cross-validation. Judging by the Mathew's Correlation Coefficient (MCC, optimal cleavage models for the proteasome (MCC = 0.43 ± 0.07 and the immunoproteasome (MCC = 0.36 ± 0.06 were obtained from 12-residue peptide fragments. Using an independent dataset consisting of 137 HIV1-specific CD8 T cell epitopes, the immunoproteasome and proteasome cleavage models achieved MCC values of 0.30 and 0.18, respectively, comparatively better than those achieved by related methods. Using ROC analyses, we have also shown that, combined with MHCI-peptide binding predictions, cleavage predictions by the immunoproteasome and proteasome models significantly increase the discovery rate of CD8 T cell epitopes restricted by different MHCI molecules, including A*0201, A*0301, A*2402, B*0702, B*2705. Conclusions We have developed models that are specific

  13. Transcriptional down-regulation and rRNA cleavage in Dictyostelium discoideum mitochondria during Legionella pneumophila infection.

    Chenyu Zhang

    Full Text Available Bacterial pathogens employ a variety of survival strategies when they invade eukaryotic cells. The amoeba Dictyostelium discoideum is used as a model host to study the pathogenic mechanisms that Legionella pneumophila, the causative agent of Legionnaire's disease, uses to kill eukaryotic cells. Here we show that the infection of D. discoideum by L. pneumophila results in a decrease in mitochondrial messenger RNAs, beginning more than 8 hours prior to detectable host cell death. These changes can be mimicked by hydrogen peroxide treatment, but not by other cytotoxic agents. The mitochondrial large subunit ribosomal RNA (LSU rRNA is also cleaved at three specific sites during the course of infection. Two LSU rRNA fragments appear first, followed by smaller fragments produced by additional cleavage events. The initial LSU rRNA cleavage site is predicted to be on the surface of the large subunit of the mitochondrial ribosome, while two secondary sites map to the predicted interface with the small subunit. No LSU rRNA cleavage was observed after exposure of D. discoideum to hydrogen peroxide, or other cytotoxic chemicals that kill cells in a variety of ways. Functional L. pneumophila type II and type IV secretion systems are required for the cleavage, establishing a correlation between the pathogenesis of L. pneumophila and D. discoideum LSU rRNA destruction. LSU rRNA cleavage was not observed in L. pneumophila infections of Acanthamoeba castellanii or human U937 cells, suggesting that L. pneumophila uses distinct mechanisms to interrupt metabolism in different hosts. Thus, L. pneumophila infection of D. discoideum results in dramatic decrease of mitochondrial RNAs, and in the specific cleavage of mitochondrial rRNA. The predicted location of the cleavage sites on the mitochondrial ribosome suggests that rRNA destruction is initiated by a specific sequence of events. These findings suggest that L. pneumophila specifically disrupts mitochondrial

  14. Initiation of cleavage in a low alloy steel: effect of a ductile damage localized around inclusions

    The fracture mechanism in a low alloy steel, used in the pressurised water reactor vessel, has been studied in the ductile to brittle transition temperature range. We used the local approach of fracture in conjunction with both fractographic observations and numerical simulations. Previous studies suggested the onset of cleavage to be favoured by the presence of nearby manganese sulphide (MnS) clusters: the ductile damaged zone localised inside a cluster increases the stress around it, and so contribute to the triggering of cleavage due to nearby classical sites, like carbides. The experimental study of size dependence and anisotropy on the global fracture behaviour, together with fractographic observations, give here the proof of the influence of MnS clusters on the onset of cleavage in this steel. Fracture behaviour of pre-cracked specimens tested in the transition regime has then been simulated, by three dimensional finite element method computations. Ductile tearing process preceding the cleavage onset at those temperatures regime was well reproduced by the Rousselier's model. Failure probabilities, related to given stress states, has been given by post-processor calculations, using a probabilistic model based on the specific cleavage fracture process. Fracture toughness scatter of the steel, tested in the transition regime, is then well reproduced by those calculations. However, the critical cleavage stress of an elementary volume, that scales for the fracture process, is still assumed to be temperature dependant. Numerical simulations of the local fracture process suggest that this temperature effect can partly be explained by the temperature dependant decrease of the stress amplification due to the MnS clusters. (author)

  15. Cleavage efficient 2A peptides for high level monoclonal antibody expression in CHO cells.

    Chng, Jake; Wang, Tianhua; Nian, Rui; Lau, Ally; Hoi, Kong Meng; Ho, Steven C L; Gagnon, Peter; Bi, Xuezhi; Yang, Yuansheng

    2015-01-01

    Linking the heavy chain (HC) and light chain (LC) genes required for monoclonal antibodies (mAb) production on a single cassette using 2A peptides allows control of LC and HC ratio and reduces non-expressing cells. Four 2A peptides derived from the foot-and-mouth disease virus (F2A), equine rhinitis A virus (E2A), porcine teschovirus-1 (P2A) and Thosea asigna virus (T2A), respectively, were compared for expression of 3 biosimilar IgG1 mAbs in Chinese hamster ovary (CHO) cell lines. HC and LC were linked by different 2A peptides both in the absence and presence of GSG linkers. Insertion of a furin recognition site upstream of 2A allowed removal of 2A residues that would otherwise be attached to the HC. Different 2A peptides exhibited different cleavage efficiencies that correlated to the mAb expression level. The relative cleavage efficiency of each 2A peptide remains similar for expression of different IgG1 mAbs in different CHO cells. While complete cleavage was not observed for any of the 2A peptides, GSG linkers did enhance the cleavage efficiency and thus the mAb expression level. T2A with the GSG linker (GT2A) exhibited the highest cleavage efficiency and mAb expression level. Stably amplified CHO DG44 pools generated using GT2A had titers 357, 416 and 600 mg/L for the 3 mAbs in shake flask batch cultures. Incomplete cleavage likely resulted in incorrectly processed mAb species and aggregates, which were removed with a chromatin-directed clarification method and protein A purification. The vector and methods presented provide an easy process beneficial for both mAb development and manufacturing. PMID:25621616

  16. Distance determination by GIY-YIG intron endonucleases: discrimination between repression and cleavage functions.

    Liu, Qingqing; Derbyshire, Victoria; Belfort, Marlene; Edgell, David R

    2006-01-01

    GIY-YIG homing endonucleases are modular proteins, with conserved N-terminal catalytic domains connected by linkers to C-terminal DNA-binding domains. I-TevI, the T4 phage GIY-YIG intron endonuclease, functions both in promoting td intron homing, and in acting as a transcriptional autorepressor. Repression is achieved by binding to an operator, which is cleaved at 100-fold reduced efficiency relative to the intronless homing site. The linker includes a zinc finger, which functions in distance determination, to constrain the catalytic domain to cleave the homing site at a fixed position. Here we show that I-BmoI, a related GIY-YIG endonuclease lacking a zinc finger, also possesses some cleavage distance discrimination. Furthermore, hybrid endonucleases constructed by swapping the domains of I-BmoI and I-TevI are active, precise and demonstrate that features other than the zinc finger facilitate distance determination. Most importantly, I-TevI zinc finger mutants cleave the operator more efficiently than the homing site, the converse of wild-type protein. These results are consistent with the zinc finger acting as a measuring device, directing efficient cleavage of the homing site to promote intron mobility, while reducing cleavage at the operator to ensure transcriptional autorepression and phage viability. PMID:16582101

  17. A Historical Trend of Ethnic Cleavages in Contemporary Iran

    Hussein Mohammadzadeh

    2013-10-01

    Full Text Available The goal of this study is evaluation social and historical content of social cleavage in contemporary Iran. Analytical framework rooted in Rokan theory. Rokan believed that social cleavage appearance post of revolutions. Method of study was historical comparatives.The method of this research is comparative historical in which we used of historical documents and data. In this field, I have compared data of indexes of socio-economic of ethnic states.Assessment of data and documents show that social cleavages and particularly ethnic cleavages rise after Reza shah revolution. He established centralized and dictated government and divided society of Iran and institutionalization the inequality in social structure. Sense of deprivation about inequality and suited circumstance activated ethnic cleavage in Iran. Decrease of inequality and justice could decrease of social deprivation and deactivated social cleavages.

  18. Modeling and Inferring Cleavage Patterns in Proliferating Epithelia

    Patel, Ankit B.; Gibson, William T.; Gibson, Matthew C; Radhika Nagpal

    2009-01-01

    The regulation of cleavage plane orientation is one of the key mechanisms driving epithelial morphogenesis. Still, many aspects of the relationship between local cleavage patterns and tissue-level properties remain poorly understood. Here we develop a topological model that simulates the dynamics of a 2D proliferating epithelium from generation to generation, enabling the exploration of a wide variety of biologically plausible cleavage patterns. We investigate a spectrum of models that incorp...

  19. Sequence features associated with the cleavage efficiency of CRISPR/Cas9 system

    Liu, Xiaoxi; Homma, Ayaka; Sayadi, Jamasb; Yang, Shu; Ohashi, Jun; Takumi, Toru

    2016-01-01

    The CRISPR-Cas9 system has recently emerged as a versatile tool for biological and medical research. In this system, a single guide RNA (sgRNA) directs the endonuclease Cas9 to a targeted DNA sequence for site-specific manipulation. In addition to this targeting function, the sgRNA has also been shown to play a role in activating the endonuclease activity of Cas9. This dual function of the sgRNA likely underlies observations that different sgRNAs have varying on-target activities. Currently, our understanding of the relationship between sequence features of sgRNAs and their on-target cleavage efficiencies remains limited, largely due to difficulties in assessing the cleavage capacity of a large number of sgRNAs. In this study, we evaluated the cleavage activities of 218 sgRNAs using in vitro Surveyor assays. We found that nucleotides at both PAM-distal and PAM-proximal regions of the sgRNA are significantly correlated with on-target efficiency. Furthermore, we also demonstrated that the genomic context of the targeted DNA, the GC percentage, and the secondary structure of sgRNA are critical factors contributing to cleavage efficiency. In summary, our study reveals important parameters for the design of sgRNAs with high on-target efficiencies, especially in the context of high throughput applications. PMID:26813419

  20. Sequence/structure selective thermal and photochemical cleavage of yeast-tRNA(Phe) by UO(2)2+

    Nielsen, Peter E.; Møllegaard, N E

    1997-01-01

    The uranyl(VI) ion, UO(2)2+, cleaves yeast tRNA(Phe) both thermally and photochemically. Photochemical cleavage takes place at all positions but exhibits maxima at G10, G18, G30, A38, C49 and A62. Furthermore, in the presence of stoichiometric concentrations of citrate, the cleavage is generally...... suppressed except that strong cleavage at positions G10 and C48-U50 persists, indicating the presence of a high-affinity metal-ion binding site. It is proposed that these photocleavage sites reflect the tertiary structure of the yeast tRNA(Phe) molecule in terms of D-loop/T-loop interaction and anticodon...

  1. Impaired Cleavage of Preproinsulin Signal Peptide Linked to Autosomal-Dominant Diabetes

    Liu, Ming; Lara-Lemus, Roberto; Shan, Shu-ou; Wright, Jordan; Haataja, Leena; Barbetti, Fabrizio; Guo, Huan; Larkin, Dennis; Arvan, Peter

    2012-01-01

    Recently, missense mutations upstream of preproinsulin’s signal peptide (SP) cleavage site were reported to cause mutant INS gene-induced diabetes of youth (MIDY). Our objective was to understand the molecular pathogenesis using metabolic labeling and assays of proinsulin export and insulin and C-peptide production to examine the earliest events of insulin biosynthesis, highlighting molecular mechanisms underlying β-cell failure plus a novel strategy that might ameliorate the MIDY syndrome. W...

  2. Evolutionary tree for apes and humans based on cleavage maps of mitochondrial DNA.

    Ferris, S D; Wilson, A C; Brown, W. M.

    1981-01-01

    The high rate of evolution of mitochondrial DNA makes this molecule suitable for genealogical research on such closely related species as humans and apes. Because previous approaches failed to establish the branching order of the lineages leading to humans, gorillas, and chimpanzees, we compared human mitochondrial DNA to mitochondrial DNA from five species of ape (common chimpanzee, pygmy chimpanzee, gorilla, orangutan, and gibbon). About 50 restriction endonuclease cleavage sites were mappe...

  3. Cleavage of Armadillo/beta-catenin by the caspase DrICE in Drosophila apoptotic epithelial cells

    Kessler Thomas

    2009-02-01

    Full Text Available Abstract Background During apoptosis cells become profoundly restructured through concerted cleavage of cellular proteins by caspases. In epithelial tissues, apoptotic cells loose their apical/basal polarity and are extruded from the epithelium. We used the Drosophila embryo as a system to investigate the regulation of components of the zonula adherens during apoptosis. Since Armadillo/beta-catenin (Arm is a major regulator of cadherin-mediated adhesion, we analyzed the mechanisms of Arm proteolysis in apoptosis. Results We define early and late apoptotic stages and find that early in apoptosis Dα-catenin remains relatively stable, while Arm and DE-cadherin protein levels are strongly reduced. Arm is cleaved by caspases in embryo extracts and we provide evidence that the caspase-3 homolog drICE cleaves Arm in vitro and in vivo. Cleavage by drICE creates a stable protein fragment that remains associated with the plasma membrane early in apoptosis. To further understand the role of caspase-mediated cleavage of Arm, we examined potential caspase cleavage sites and found that drICE cleaves Arm at a unique DQVD motif in the N-terminal domain of the protein. Mutation of the drICE cleavage site in Arm results in a protein that is not cleaved in vitro and in vivo. Furthermore we provide evidence that cleavage of Arm plays a role in the removal of DE-cadherin from the plasma membrane during apoptosis. Conclusion This study defines the specificity of caspase cleavage of Arm in Drosophila apoptotic cells. Our data suggest that N-terminal truncation of Arm by caspases is evolutionarily conserved and thus might provide a principal mechanism involved in the disassembly of adherens junctions during apoptosis.

  4. Structural and functional basis for RNA cleavage by Ire1

    Stroud Robert M

    2011-07-01

    Full Text Available Abstract Background The unfolded protein response (UPR controls the protein folding capacity of the endoplasmic reticulum (ER. Central to this signaling pathway is the ER-resident bifunctional transmembrane kinase/endoribonuclease Ire1. The endoribonuclease (RNase domain of Ire1 initiates a non-conventional mRNA splicing reaction, leading to the production of a transcription factor that controls UPR target genes. The mRNA splicing reaction is an obligatory step of Ire1 signaling, yet its mechanism has remained poorly understood due to the absence of substrate-bound crystal structures of Ire1, the lack of structural similarity between Ire1 and other RNases, and a scarcity of quantitative enzymological data. Here, we experimentally define the active site of Ire1 RNase and quantitatively evaluate the contribution of the key active site residues to catalysis. Results This analysis and two new crystal structures suggest that Ire1 RNase uses histidine H1061 and tyrosine Y1043 as the general acid-general base pair contributing ≥ 7.6 kcal/mol and 1.4 kcal/mol to transition state stabilization, respectively, and asparagine N1057 and arginine R1056 for coordination of the scissile phosphate. Investigation of the stem-loop recognition revealed that additionally to the stem-loops derived from the classic Ire1 substrates HAC1 and Xbp1 mRNA, Ire1 can site-specifically and rapidly cleave anticodon stem-loop (ASL of unmodified tRNAPhe, extending known substrate specificity of Ire1 RNase. Conclusions Our data define the catalytic center of Ire1 RNase and suggest a mechanism of RNA cleavage: each RNase monomer apparently contains a separate catalytic apparatus for RNA cleavage, whereas two RNase subunits contribute to RNA stem-loop docking. Conservation of the key residues among Ire1 homologues suggests that the mechanism elucidated here for yeast Ire1 applies to Ire1 in metazoan cells, and to the only known Ire1 homologue RNase L.

  5. Presence of Meiotic Spindles Indicates Early Cleavage of Embryos

    2007-01-01

    Objective To assess whether the detection of the meiotic spindle could anticipate the appearance of early cleavage.Methods Oocytes were obtained from stimulated ovaries of consenting patients undergoing oocytes retrieval for ICSI.Spindles were imaged with the Polscope.After ICSI,oocytes with or without spindles were cultured for examination of early cleavage and embryo development.A total of 328 oocytes from 50 cycles were examined with the Polscope and inseminated by ICSI.Results Spindles were imaged in 81.7% of oocytes.After ICSI,more oocytes with spindles (78.4%) fertilized normally than oocytes without spindles (53.3%)(P<0.001).At 25-27 h post ICSI.more fertilized oocytes developed from oocytes with spindles (81.9%) were detected early cleavage than those from oocytes without spindles(28.1%)(P<0.001).Significantly more embryos with early cleavage (82.2%) developed to high quality embryos at d 3 compared with the embryos without early cleavage(48.3%)(P=0.001).The value of rs related to the relationship between spindles and early cleavage was 0.420(P<0.0001).Conclusion The existing of the early cleavage may have a predictive value on the opportunity of high quality embryos and the existing of the spindle may have a predictive value in the appearance of early cleavage.

  6. Si(111) cleavage and the (2 x 1) reconstruction process

    Pearson, E. M.; Halicioglu, T.; Tiller, W. A.

    1987-01-01

    Using a computer simulation technique with a semiempirical potential, a Si crystal was cleaved along the (111) plane. The pi-bonded chain structural features of the Si(111) cleavage surface are observed and found to be a consequence of the dynamics of this cleavage process and seem not to be influenced by the final energetics.

  7. A photoinduced cleavage of DNA useful for determining T residues.

    Simoncsits, A; Török, I

    1982-01-01

    Irradiation of 5'-[32P]-phosphate labeled DNA fragments with ultraviolet light in the presence of primary amines followed by piperidine treatment resulted in base-specific cleavage of the DNA chain at T residues, accompanied by a less intensive G reaction. This simple, T greater than G cleavage offers an alternative method for determining T residues in chemical DNA sequencing.

  8. Carbon-carbon bond cleavage and rearrangement of benzene by a trinuclear titanium hydride

    Hu, Shaowei; Shima, Takanori; Hou, Zhaomin

    2014-08-01

    The cleavage of carbon-carbon (C-C) bonds by transition metals is of great interest, especially as this transformation can be used to produce fuels and other industrially important chemicals from natural resources such as petroleum and biomass. Carbon-carbon bonds are quite stable and are consequently unreactive under many reaction conditions. In the industrial naphtha hydrocracking process, the aromatic carbon skeleton of benzene can be transformed to methylcyclopentane and acyclic saturated hydrocarbons through C-C bond cleavage and rearrangement on the surfaces of solid catalysts. However, these chemical transformations usually require high temperatures and are fairly non-selective. Microorganisms can degrade aromatic compounds under ambient conditions, but the mechanistic details are not known and are difficult to mimic. Several transition metal complexes have been reported to cleave C-C bonds in a selective fashion in special circumstances, such as relief of ring strain, formation of an aromatic system, chelation-assisted cyclometallation and β-carbon elimination. However, the cleavage of benzene by a transition metal complex has not been reported. Here we report the C-C bond cleavage and rearrangement of benzene by a trinuclear titanium polyhydride complex. The benzene ring is transformed sequentially to a methylcyclopentenyl and a 2-methylpentenyl species through the cleavage of the aromatic carbon skeleton at the multi-titanium sites. Our results suggest that multinuclear titanium hydrides could serve as a unique platform for the activation of aromatic molecules, and may facilitate the design of new catalysts for the transformation of inactive aromatics.

  9. Coupled adaptations affecting cleavage of the VP1/2A junction by 3C protease in foot-and-mouth disease virus infected cells

    Gullberg, Maria; Polacek, Charlotta; Belsham, Graham

    The foot-and-mouth disease virus (FMDV) capsid protein precursor P1-2A is cleaved by the 3C protease to produce VP0, VP3, VP1 and 2A. It was shown previously that modification of a single amino acid residue (K210) within the VP1 protein, close to the VP1/2A cleavage site, inhibited cleavage...

  10. Caspase-dependent proteolytic cleavage of STAT3α in ES cells, in mammary glands undergoing forced involution and in breast cancer cell lines

    The STAT (Signal Transducers and Activators of Transcription) transcription factor family mediates cellular responses to a wide range of cytokines. Activated STATs (particularly STAT3) are found in a range of cancers. Further, STAT3 has anti-apoptotic functions in a range of tumour cell lines. After observing a proteolytic cleavage in STAT3α close to a potential apoptotic caspase protease cleavage site we investigated whether STAT3α might be a caspase substrate. STAT3α status was investigated in vitro in several cell systems:- HM-1 murine embryonic stem (ES) cells following various interventions; IOUD2 murine ES cells following induction to differentiate along neural or adipocyte lineages; and in a number of breast cancer cell lines. STAT3α status was also analysed in vivo in wild type murine mammary glands undergoing controlled, forced involution. Immunoblotting for STAT3α in HM-1 ES cell extracts detected amino and carboxy terminal species of approximately 48 kDa and 43 kDa respectively – which could be diminished dose-dependently by cell treatment with the nitric oxide (NO) donor drug sodium nitroprusside (SNP). UV irradiation of HM-1 ES cells triggered the STAT3α cleavage (close to a potential caspase protease cleavage site). Interestingly, the pan-caspase inhibitor z-Val-Ala-DL-Asp-fluoromethylketone (z-VAD-FMK) and the JAK2 tyrosine kinase inhibitor AG490 both inhibited cleavage dose-dependently, and cleavage was significantly lower in a heterozygous JAK2 knockout ES cell clone. STAT3α cleavage also occurred in vivo in normal murine mammary glands undergoing forced involution, coinciding with a pulse of phosphorylation of residue Y705 on full-length STAT3α. Cleavage also occurred during IOUD2 ES cell differentiation (most strikingly along the neural lineage) and in several human breast cancer cell lines, correlating strongly with Y705 phosphorylation. This study documents a proteolytic cleavage of STAT3α into 48 kDa amino and 43 kDa carboxyl

  11. Recovery of Recombinant Crimean Congo Hemorrhagic Fever Virus Reveals a Function for Non-structural Glycoproteins Cleavage by Furin.

    Bergeron, Éric; Zivcec, Marko; Chakrabarti, Ayan K; Nichol, Stuart T; Albariño, César G; Spiropoulou, Christina F

    2015-05-01

    Crimean Congo hemorrhagic fever virus (CCHFV) is a negative-strand RNA virus of the family Bunyaviridae (genus: Nairovirus). In humans, CCHFV causes fever, hemorrhage, severe thrombocytopenia, and high fatality. A major impediment in precisely determining the basis of CCHFV's high pathogenicity has been the lack of methodology to produce recombinant CCHFV. We developed a reverse genetics system based on transfecting plasmids into BSR-T7/5 and Huh7 cells. In our system, bacteriophage T7 RNA polymerase produced complementary RNA copies of the viral S, M, and L segments that were encapsidated with the support, in trans, of CCHFV nucleoprotein and L polymerase. The system was optimized to systematically recover high yields of infectious CCHFV. Additionally, we tested the ability of the system to produce specifically designed CCHFV mutants. The M segment encodes a polyprotein that is processed by host proprotein convertases (PCs), including the site-1 protease (S1P) and furin-like PCs. S1P and furin cleavages are necessary for producing the non-structural glycoprotein GP38, while S1P cleavage yields structural Gn. We studied the role of furin cleavage by rescuing a recombinant CCHFV encoding a virus glycoprotein precursor lacking a functional furin cleavage motif (RSKR mutated to ASKA). The ASKA mutation blocked glycoprotein precursor's maturation to GP38, and Gn precursor's maturation to Gn was slightly diminished. Furin cleavage was not essential for replication, as blocking furin cleavage resulted only in transient reduction of CCHFV titers, suggesting that either GP38 and/or decreased Gn maturation accounted for the reduced virion production. Our data demonstrate that nairoviruses can be produced by reverse genetics, and the utility of our system uncovered a function for furin cleavage. This viral rescue system could be further used to study the CCHFV replication cycle and facilitate the development of efficacious vaccines to counter this biological and public

  12. Binding of MAGP2 to microfibrils is regulated by proprotein convertase cleavage.

    Miyamoto, Alison; Donovan, Lauren J; Perez, Edgar; Connett, Breanna; Cervantes, Richard; Lai, Khang; Withers, Gordon; Hogrebe, Gregory

    2014-11-01

    MAGP2 is a small extracellular protein with both tumor angiogenesis and cell signaling activity. MAGP2 was originally isolated biochemically from microfibril-rich connective tissue. The localization of MAGP2 to microfibrils has been confirmed by both immunohistochemistry and immunogold electron microscopy. Whether MAGP2 binding to microfibrils is regulated post-translationally is still unclear, however, and a better understanding of this process would be instructive to understanding the angiogenesis and signaling functions ascribed to MAGP2. Here we show via immunofluorescence studies that the T3 cell line, derived from ovarian mouse tumor cells, produces abundant fibrillin-2 microfibrils to which MAGP2 can bind. Co-localization of MAGP2 and fibrillin-2 can be detected either when MAGP2 is overexpressed in, or exogenously introduced to, the cells. As expected, matrix association of MAGP2 required its conserved Matrix Binding Domain. Matrix association was positively regulated by proprotein convertase (PC) cleavage of MAGP2; mutation of the MAGP2 PC consensus site reduced the amount of matrix-associated MAGP2. Deletion analysis of the C-terminal 20-amino acid domain that is defined by the PC cleavage site suggests that this domain also positively modulates matrix localization of MAGP2, in a manner that requires the amino-terminal half of the protein. Together, our data indicate that matrix localization of MAGP2 by its Matrix Binding Domain is promoted by PC cleavage and the presence of its C-terminal 20 amino acids. PMID:25153248

  13. Use of Cleavage as an Aid in the Optical Determination of Minerals.

    Ehlers, Ernest G.

    1980-01-01

    Described is the use of cleavage as an aid to microscopic determination of unknown minerals by immersion methods. Cleavages are examined in relation to fragment shapes, types of extinction, and cleavage-optical relationships. (Author/DS)

  14. A Subset of Membrane-Altering Agents and γ-Secretase Modulators Provoke Nonsubstrate Cleavage by Rhomboid Proteases

    Siniša Urban

    2014-09-01

    Full Text Available Rhomboid proteases are integral membrane enzymes that regulate cell signaling, adhesion, and organelle homeostasis pathways, making substrate specificity a key feature of their function. Interestingly, we found that perturbing the membrane pharmacologically in living cells had little effect on substrate processing but induced inappropriate cleavage of nonsubstrates by rhomboid proteases. A subclass of drugs known to modulate γ-secretase activity acted on the membrane directly and induced nonsubstrate cleavage by rhomboid proteases but left true substrate cleavage sites unaltered. These observations highlight an active role for the membrane in guiding rhomboid selectivity and caution that membrane-targeted drugs should be evaluated for cross-activity against membrane-resident enzymes that are otherwise unrelated to the intended drug target. Furthermore, some γ-secretase-modulating activity or toxicity could partly result from global membrane effects.

  15. Bundled slaty cleavage in laminated argillite, north-central minnesota

    Southwick, D.L.

    1987-01-01

    Exceptional bundled slaty cleavage (defined herein) has been found in drill cores of laminated, folded, weakly metamorphosed argillite at several localities in the early Proterozoic Animikie basin of north-central Minnesota. The cleavage domains are more closely spaced within the cleavage bundles than outside them, the mean tectosilicate grain size of siltstone layers, measured normal to cleavage, is less in the cleavage bundles than outside them, and the cleavage bundles are enriched in opaque phases and phyllosilicates relative to extra-bundle segments. These facts suggest that pressure solution was a major factor in bundle development. If it is assumed that opaque phases have been conserved during pressure solution, the modal differences in composition between intra-bundle and extra-bundle segments of beds provide a means for estimating bulk material shortening normal to cleavage. Argillite samples from the central part of the Animikie basin have been shortened a minimum of about 22%, as estimated by this method. These estimates are similar to the shortening values derived from other strain markers in other rock types interbedded with the argillite, and are also consistent with the regional pattern of deformation. ?? 1987.

  16. Measurement of temperature rise during Si cleavage

    A transient temperature change has been measured during the cleavage of Si(100) wafers both in air and in vacuum (5xl06 torr). A fine thermocouple(TC) (E type) formed by wires of diameter 25 μm was placed in a groove cut on the (100) surface where the crack was to occur. A tiny drop of thermal transfer compound was applied to enhance the thermal conduction between TC and sample surface. The thermocouple signal was recorded by a digital storage adaptor after an amplification of 10,000 by a special low noise amplifier. The width of the pulse appeared to be narrower in vacuum than in air. The difference is ascribed to effects of adsorption. Great care was taken to avoid spurious effects. The technique was tested by experiments on perspex and glass, where the results show reasonable agreement with those from previous work. Theoretical analysis of the measurements shows that the freshly cleaved surface can temporarily attain high temperatures, which is very significant for formation of surface structures

  17. A cleavage toughness master curve model

    Development of fusion power will require a fracture toughness database, derived largely from small specimen tests, closely integrated with methods to assess first wall and blanket structural integrities. A master curve-shift (MC-ΔT) method has been proposed as an engineering expedient to treat the effects of structural geometry, irradiation, loading rates and safety margins. However, a number of issues related to the MC-ΔT method remain to be resolved, including the universality of MC shapes. A new micromechanical model of fracture toughness in the cleavage transition regime is proposed that combines analytical representations of finite element analysis simulations of crack-tip stress fields with a local critical stress-critical stressed area (σ*-A*) fracture criterion. This model, has been successful in predicting geometry effects, as well as high loading rate and irradiation hardening-induced Charpy shifts. By incorporating a modest temperature dependence in σ*(T), an inconsistency between model predictions and an observed universal-type MC shape is resolved

  18. Localized Calcium Signals along the Cleavage Furrow of the Xenopus Egg Are Not Involved in Cytokinesis

    Noguchi, Tatsuhiko; Mabuchi, Issei

    2002-01-01

    It has been proposed that a localized calcium (Ca) signal at the growing end of the cleavage furrow triggers cleavage furrow formation in large eggs. We have examined the possible role of a Ca signal in cleavage furrow formation in the Xenopus laevis egg during the first cleavage. We were able to detect two kinds of Ca waves along the cleavage furrow. However, the Ca waves appeared after cleavage furrow formation in late stages of the first cleavage. In addition, cleavage was not affected by ...

  19. Cleavage of Model Substrates by Arabidopsis thaliana PRORP1 Reveals New Insights into Its Substrate Requirements.

    Mao, Guanzhong; Chen, Tien-Hao; Srivastava, Abhishek S; Kosek, David; Biswas, Pradip K; Gopalan, Venkat; Kirsebom, Leif A

    2016-01-01

    Two broad classes of RNase P trim the 5' leader of precursor tRNAs (pre-tRNAs): ribonucleoprotein (RNP)- and proteinaceous (PRORP)-variants. These two RNase P types, which use different scaffolds for catalysis, reflect independent evolutionary paths. While the catalytic RNA-based RNP form is present in all three domains of life, the PRORP family is restricted to eukaryotes. To obtain insights on substrate recognition by PRORPs, we examined the 5' processing ability of recombinant Arabidopsis thaliana PRORP1 (AtPRORP1) using a panel of pre-tRNASer variants and model hairpin-loop derivatives (pATSer type) that consist of the acceptor-T-stem stack and the T-/D-loop. Our data indicate the importance of the identity of N-1 (the residue immediately 5' to the cleavage site) and the N-1:N+73 base pair for cleavage rate and site selection of pre-tRNASer and pATSer. The nucleobase preferences that we observed mirror the frequency of occurrence in the complete suite of organellar pre-tRNAs in eight algae/plants that we analyzed. The importance of the T-/D-loop in pre-tRNASer for tight binding to AtPRORP1 is indicated by the 200-fold weaker binding of pATSer compared to pre-tRNASer, while the essentiality of the T-loop for cleavage is reflected by the near-complete loss of activity when a GAAA-tetraloop replaced the T-loop in pATSer. Substituting the 2'-OH at N-1 with 2'-H also resulted in no detectable cleavage, hinting at the possible role of this 2'-OH in coordinating Mg2+ ions critical for catalysis. Collectively, our results indicate similarities but also key differences in substrate recognition by the bacterial RNase P RNP and AtPRORP1: while both forms exploit the acceptor-T-stem stack and the elbow region in the pre-tRNA, the RNP form appears to require more recognition determinants for cleavage-site selection. PMID:27494328

  20. Cleavage of Model Substrates by Arabidopsis thaliana PRORP1 Reveals New Insights into Its Substrate Requirements

    Srivastava, Abhishek S.; Kosek, David; Biswas, Pradip K.; Gopalan, Venkat; Kirsebom, Leif A.

    2016-01-01

    Two broad classes of RNase P trim the 5' leader of precursor tRNAs (pre-tRNAs): ribonucleoprotein (RNP)- and proteinaceous (PRORP)-variants. These two RNase P types, which use different scaffolds for catalysis, reflect independent evolutionary paths. While the catalytic RNA-based RNP form is present in all three domains of life, the PRORP family is restricted to eukaryotes. To obtain insights on substrate recognition by PRORPs, we examined the 5' processing ability of recombinant Arabidopsis thaliana PRORP1 (AtPRORP1) using a panel of pre-tRNASer variants and model hairpin-loop derivatives (pATSer type) that consist of the acceptor-T-stem stack and the T-/D-loop. Our data indicate the importance of the identity of N-1 (the residue immediately 5' to the cleavage site) and the N-1:N+73 base pair for cleavage rate and site selection of pre-tRNASer and pATSer. The nucleobase preferences that we observed mirror the frequency of occurrence in the complete suite of organellar pre-tRNAs in eight algae/plants that we analyzed. The importance of the T-/D-loop in pre-tRNASer for tight binding to AtPRORP1 is indicated by the 200-fold weaker binding of pATSer compared to pre-tRNASer, while the essentiality of the T-loop for cleavage is reflected by the near-complete loss of activity when a GAAA-tetraloop replaced the T-loop in pATSer. Substituting the 2'-OH at N-1 with 2'-H also resulted in no detectable cleavage, hinting at the possible role of this 2'-OH in coordinating Mg2+ ions critical for catalysis. Collectively, our results indicate similarities but also key differences in substrate recognition by the bacterial RNase P RNP and AtPRORP1: while both forms exploit the acceptor-T-stem stack and the elbow region in the pre-tRNA, the RNP form appears to require more recognition determinants for cleavage-site selection. PMID:27494328

  1. Implementation of a combinatorial cleavage and deprotection scheme

    Nielsen, John; Rasmussen, Palle H.

    1996-01-01

    Phthalhydrazide libraries are synthesized in solution from substituted hydrazines and phthalimides in several different library formats including single compounds, indexed sub-libraries and a full library. When carried out during solid-phase synthesis, this combinatorial cleavage and deprotection...

  2. Scanning tunneling microscopy of the cleavage surface of bismuth crystals

    The results of in situ studies of the surface structure of the cleavages of bismuth crystals by the method of scanning tunneling microscopy are presented. It is established that cleavage 'opens' the (111) surface with atomically smooth terraces of diatomic steps whose heights are equal to 0.4 nm or a multiple of this value. If the cleavage is made at room temperature, the boundaries of the terraces are usually curved and diffuse owing to the thermal motion with the activation energy of ∼700 K. The cleavage at liquid nitrogen or helium temperatures provides the formation of straight boundaries along the atomic rows on the surface. Twin interlayers of the quantized width of ∼7 nm are revealed. This width value indicates that the atomic planes on both sides of such interlayers intergrow with the interlayer planes inclined to them at a small angle

  3. Modeling study on the cleavage step of the self-splicing reaction in group I introns

    Setlik, R. F.; Garduno-Juarez, R.; Manchester, J. I.; Shibata, M.; Ornstein, R. L.; Rein, R.

    1993-01-01

    A three-dimensional model of the Tetrahymena thermophila group I intron is used to further explore the catalytic mechanism of the transphosphorylation reaction of the cleavage step. Based on the coordinates of the catalytic core model proposed by Michel and Westhof (Michel, F., Westhof, E. J. Mol. Biol. 216, 585-610 (1990)), we first converted their ligation step model into a model of the cleavage step by the substitution of several bases and the removal of helix P9. Next, an attempt to place a trigonal bipyramidal transition state model in the active site revealed that this modified model for the cleavage step could not accommodate the transition state due to insufficient space. A lowering of P1 helix relative to surrounding helices provided the additional space required. Simultaneously, it provided a better starting geometry to model the molecular contacts proposed by Pyle et al. (Pyle, A. M., Murphy, F. L., Cech, T. R. Nature 358, 123-128. (1992)), based on mutational studies involving the J8/7 segment. Two hydrated Mg2+ complexes were placed in the active site of the ribozyme model, using the crystal structure of the functionally similar Klenow fragment (Beese, L.S., Steitz, T.A. EMBO J. 10, 25-33 (1991)) as a guide. The presence of two metal ions in the active site of the intron differs from previous models, which incorporate one metal ion in the catalytic site to fulfill the postulated roles of Mg2+ in catalysis. The reaction profile is simulated based on a trigonal bipyramidal transition state, and the role of the hydrated Mg2+ complexes in catalysis is further explored using molecular orbital calculations.

  4. Mechanisms for ribotoxin-induced ribosomal RNA cleavage

    He, Kaiyu [Department of Microbiology and Molecular Genetics (United States); Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824 (United States); Zhou, Hui-Ren [Food Science and Human Nutrition (United States); Pestka, James J., E-mail: pestka@msu.edu [Department of Microbiology and Molecular Genetics (United States); Food Science and Human Nutrition (United States); Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824 (United States)

    2012-11-15

    The Type B trichothecene deoxynivalenol (DON), a ribotoxic mycotoxin known to contaminate cereal-based foods, induces ribosomal RNA (rRNA) cleavage in the macrophage via p38-directed activation of caspases. Here we employed the RAW 264.7 murine macrophage model to test the hypothesis that this rRNA cleavage pathway is similarly induced by other ribotoxins. Capillary electrophoresis confirmed that the antibiotic anisomycin (≥ 25 ng/ml), the macrocylic trichothecene satratoxin G (SG) (≥ 10 ng/ml) and ribosome-inactivating protein ricin (≥ 300 ng/ml) induced 18s and 28s rRNA fragmentation patterns identical to that observed for DON. Also, as found for DON, inhibition of p38, double-stranded RNA-activated kinase (PKR) and hematopoietic cell kinase (Hck) suppressed MAPK anisomycin-induced rRNA cleavage, while, in contrast, their inhibition did not affect SG- and ricin-induced rRNA fragmentation. The p53 inhibitor pifithrin-μ and pan caspase inhibitor Z-VAD-FMK suppressed rRNA cleavage induced by anisomycin, SG and ricin, indicating that these ribotoxins shared with DON a conserved downstream pathway. Activation of caspases 8, 9 and 3 concurrently with apoptosis further suggested that rRNA cleavage occurred in parallel with both extrinsic and intrinsic pathways of programmed cell death. When specific inhibitors of cathepsins L and B (lysosomal cysteine cathepsins active at cytosolic neutral pH) were tested, only the former impaired anisomycin-, SG-, ricin- and DON-induced rRNA cleavage. Taken together, the data suggest that (1) all four ribotoxins induced p53-dependent rRNA cleavage via activation of cathepsin L and caspase 3, and (2) activation of p53 by DON and anisomycin involved p38 whereas SG and ricin activated p53 by an alternative mechanism. Highlights: ► Deoxynivalenol (DON) anisomycin, satratoxin G (SG) and ricin are ribotoxins. ► Ribotoxins induce 18s and 28s rRNA cleavage in the RAW 264.7 macrophage model. ► Ribotoxins induce rRNA cleavage via

  5. Mechanisms for ribotoxin-induced ribosomal RNA cleavage

    The Type B trichothecene deoxynivalenol (DON), a ribotoxic mycotoxin known to contaminate cereal-based foods, induces ribosomal RNA (rRNA) cleavage in the macrophage via p38-directed activation of caspases. Here we employed the RAW 264.7 murine macrophage model to test the hypothesis that this rRNA cleavage pathway is similarly induced by other ribotoxins. Capillary electrophoresis confirmed that the antibiotic anisomycin (≥ 25 ng/ml), the macrocylic trichothecene satratoxin G (SG) (≥ 10 ng/ml) and ribosome-inactivating protein ricin (≥ 300 ng/ml) induced 18s and 28s rRNA fragmentation patterns identical to that observed for DON. Also, as found for DON, inhibition of p38, double-stranded RNA-activated kinase (PKR) and hematopoietic cell kinase (Hck) suppressed MAPK anisomycin-induced rRNA cleavage, while, in contrast, their inhibition did not affect SG- and ricin-induced rRNA fragmentation. The p53 inhibitor pifithrin-μ and pan caspase inhibitor Z-VAD-FMK suppressed rRNA cleavage induced by anisomycin, SG and ricin, indicating that these ribotoxins shared with DON a conserved downstream pathway. Activation of caspases 8, 9 and 3 concurrently with apoptosis further suggested that rRNA cleavage occurred in parallel with both extrinsic and intrinsic pathways of programmed cell death. When specific inhibitors of cathepsins L and B (lysosomal cysteine cathepsins active at cytosolic neutral pH) were tested, only the former impaired anisomycin-, SG-, ricin- and DON-induced rRNA cleavage. Taken together, the data suggest that (1) all four ribotoxins induced p53-dependent rRNA cleavage via activation of cathepsin L and caspase 3, and (2) activation of p53 by DON and anisomycin involved p38 whereas SG and ricin activated p53 by an alternative mechanism. Highlights: ► Deoxynivalenol (DON) anisomycin, satratoxin G (SG) and ricin are ribotoxins. ► Ribotoxins induce 18s and 28s rRNA cleavage in the RAW 264.7 macrophage model. ► Ribotoxins induce rRNA cleavage via

  6. A Historical Trend of Ethnic Cleavages in Contemporary Iran

    Hussein Mohammadzadeh

    2013-01-01

    The goal of this study is evaluation social and historical content of social cleavage in contemporary Iran. Analytical framework rooted in Rokan theory. Rokan believed that social cleavage appearance post of revolutions. Method of study was historical comparatives.The method of this research is comparative historical in which we used of historical documents and data. In this field, I have compared data of indexes of socio-economic of ethnic states.Assessment of data and documents show that so...

  7. Microbial cleavage of organic C-S bonds

    Kilbane, II, John J.

    1994-01-01

    A microbial process for selective cleavage of organic C--S bonds which may be used for reducing the sulfur content of sulfur-containing organic carbonaceous materials, Microorganisms of Rhodococcus rhodochrous and Bacillus sphaericus have been found which have the ability of selective cleavage of organic C--S bonds. Particularly preferred microorganisms are Rhodococcus rhodochrous strain ATCC 53968 and Bacillus sphaericus strain ATCC 53969 and their derivatives.

  8. Mutational analysis of the encephalomyocarditis virus primary cleavage.

    Hahn, H.; Palmenberg, A C

    1996-01-01

    Sixteen substitution mutations of the conserved DvExNPGP sequence, implicated in cardiovirus and aphthovirus primary polyprotein cleavage, were created in encephalomyocarditis virus cDNA, expressed, and characterized for processing activity. Nearly all the mutations severely decreased the efficiency of the primary cleavage reaction during cell-free synthesis of viral precursors, indicating a stringent requirement for the natural sequence in this processing event. When representative mutations...

  9. Cleavage of a viral polyprotein by a cellular proteolytic activity.

    Tian, Y. C.; Shih, D S

    1986-01-01

    The 200,000-dalton polyprotein encoded by the bottom component RNA of cowpea mosaic virus was synthesized in rabbit reticulocyte lysates, and this in vitro-synthesized protein was isolated from the lysate reaction mixture by sucrose density gradient centrifugation. Incubation of the isolated polyprotein with buffer caused no change in the protein, but incubation with reticulocyte lysates or with fractionated lysate proteins resulted in cleavage of the protein into the expected cleavage produc...

  10. Evidence for intramolecular self-cleavage of picornaviral replicase precursors.

    Palmenberg, A C; Rueckert, R R

    1982-01-01

    It has previously been shown that when encephalomyocarditis viral RNA is translated in cell-free extracts of rabbit reticulocytes, it synthesizes a virus-coded protease, p22, which is derived by cleavage of a precursor protein, C. Protein C is shown here to be cleaved by two different mechanisms, which were distinguished by their sensitivity to dilution. One mechanism was sensitive to dilution; the other was not. The biphasic cleavage behavior was unchanged by diluting incubation mixtures wit...

  11. Structural Basis for Accelerated Cleavage of Bovine Pancreatic Trypsin Inhibitor (BPTI) by Human Mesotrypsin

    Salameh,M.; Soares, A.; Hockla, A.; Radisky, E.

    2008-01-01

    Human mesotrypsin is an isoform of trypsin that displays unusual resistance to polypeptide trypsin inhibitors and has been observed to cleave several such inhibitors as substrates. Whereas substitution of arginine for the highly conserved glycine 193 in the trypsin active site has been implicated as a critical factor in the inhibitor resistance of mesotrypsin, how this substitution leads to accelerated inhibitor cleavage is not clear. Bovine pancreatic trypsin inhibitor (BPTI) forms an extremely stable and cleavage-resistant complex with trypsin, and thus provides a rigorous challenge of mesotrypsin catalytic activity toward polypeptide inhibitors. Here, we report kinetic constants for mesotrypsin and the highly homologous (but inhibitor sensitive) human cationic trypsin, describing inhibition by, and cleavage of BPTI, as well as crystal structures of the mesotrypsin-BPTI and human cationic trypsin-BPTI complexes. We find that mesotrypsin cleaves BPTI with a rate constant accelerated 350-fold over that of human cationic trypsin and 150,000-fold over that of bovine trypsin. From the crystal structures, we see that small conformational adjustments limited to several side chains enable mesotrypsin-BPTI complex formation, surmounting the predicted steric clash introduced by Arg-193. Our results show that the mesotrypsin-BPTI interface favors catalysis through (a) electrostatic repulsion between the closely spaced mesotrypsin Arg-193 and BPTI Arg-17, and (b) elimination of two hydrogen bonds between the enzyme and the amine leaving group portion of BPTI. Our model predicts that these deleterious interactions accelerate leaving group dissociation and deacylation.

  12. Internal guide RNA interactions interfere with Cas9-mediated cleavage

    Thyme, Summer B.; Akhmetova, Laila; Montague, Tessa G.; Valen, Eivind; Schier, Alexander F.

    2016-01-01

    The CRISPR/Cas system uses guide RNAs (gRNAs) to direct sequence-specific DNA cleavage. Not every gRNA elicits cleavage and the mechanisms that govern gRNA activity have not been resolved. Low activity could result from either failure to form a functional Cas9–gRNA complex or inability to recognize targets in vivo. Here we show that both phenomena influence Cas9 activity by comparing mutagenesis rates in zebrafish embryos with in vitro cleavage assays. In vivo, our results suggest that genomic factors such as CTCF inhibit mutagenesis. Comparing near-identical gRNA sequences with different in vitro activities reveals that internal gRNA interactions reduce cleavage. Even though gRNAs containing these structures do not yield cleavage-competent complexes, they can compete with active gRNAs for binding to Cas9. These results reveal that both genomic context and internal gRNA interactions can interfere with Cas9-mediated cleavage and illuminate previously uncharacterized features of Cas9–gRNA complex formation. PMID:27282953

  13. Deletion of the thrombin cleavage domain of osteopontin mediates breast cancer cell adhesion, proteolytic activity, tumorgenicity, and metastasis

    Postenka Carl O

    2011-01-01

    Full Text Available Abstract Background Osteopontin (OPN is a secreted phosphoprotein often overexpressed at high levels in the blood and primary tumors of breast cancer patients. OPN contains two integrin-binding sites and a thrombin cleavage domain located in close proximity to each other. Methods To study the role of the thrombin cleavage site of OPN, MDA-MB-468 human breast cancer cells were stably transfected with either wildtype OPN (468-OPN, mutant OPN lacking the thrombin cleavage domain (468-ΔTC or an empty vector (468-CON and assessed for in vitro and in vivo functional differences in malignant/metastatic behavior. Results All three cell lines were found to equivalently express thrombin, tissue factor, CD44, αvβ5 integrin and β1 integrin. Relative to 468-OPN and 468-CON cells, 468-ΔTC cells expressing OPN with a deleted thrombin cleavage domain demonstrated decreased cell adhesion (p in vitro. Furthermore, injection of 468-ΔTC cells into the mammary fat pad of nude mice resulted in decreased primary tumor latency time (p Conclusions The results presented here suggest that expression of thrombin-uncleavable OPN imparts an early tumor formation advantage as well as a metastatic advantage for breast cancer cells, possibly due to increased proteolytic activity and decreased adhesion and apoptosis. Clarification of the mechanisms responsible for these observations and the translation of this knowledge into the clinic could ultimately provide new therapeutic opportunities for combating breast cancer.

  14. Evidence of Alternative Cystatin C Signal Sequence Cleavage Which Is Influenced by the A25T Polymorphism.

    Annie Nguyen

    Full Text Available Cystatin C (Cys C is a small, potent, cysteine protease inhibitor. An Ala25Thr (A25T polymorphism in Cys C has been associated with both macular degeneration and late-onset Alzheimer's disease. Previously, studies have suggested that this polymorphism may compromise the secretion of Cys C. Interestingly, we found that untagged A25T, A25T tagged C-terminally with FLAG, or A25T FLAG followed by green fluorescent protein (GFP, were all secreted as efficiently from immortalized human cells as their wild-type (WT counterparts (e.g., 112%, 100%, and 88% of WT levels from HEK-293T cells, respectively. Supporting these observations, WT and A25T Cys C variants also showed similar intracellular steady state levels. Furthermore, A25T Cys C did not activate the unfolded protein response and followed the same canonical endoplasmic reticulum (ER-Golgi trafficking pathway as WT Cys C. WT Cys C has been shown to undergo signal sequence cleavage between residues Gly26 and Ser27. While the A25T polymorphism did not affect Cys C secretion, we hypothesized that it may alter where the Cys C signal sequence is preferentially cleaved. Under normal conditions, WT and A25T Cys C have the same signal sequence cleavage site after Gly26 (referred to as 'site 2' cleavage. However, in particular circumstances when the residues around site 2 are modified (such as by the presence of an N-terminal FLAG tag immediately after Gly26, or by a Gly26Lys (G26K mutation, A25T has a significantly higher likelihood than WT Cys C of alternative signal sequence cleavage after Ala20 ('site 1' or even earlier in the Cys C sequence. Overall, our results indicate that the A25T polymorphism does not cause a significant reduction in Cys C secretion, but instead predisposes the protein to be cleaved at an alternative signal sequence cleavage site if site 2 is hindered. Additional N-terminal amino acids resulting from alternative signal sequence cleavage may, in turn, affect the protease

  15. Catalytic Properties of Intramembrane Aspartyl Protease Substrate Hydrolysis Evaluated Using a FRET Peptide Cleavage Assay.

    Naing, Swe-Htet; Vukoti, Krishna M; Drury, Jason E; Johnson, Jennifer L; Kalyoncu, Sibel; Hill, Shannon E; Torres, Matthew P; Lieberman, Raquel L

    2015-09-18

    Chemical details of intramembrane proteolysis remain elusive despite its prevalence throughout biology. We developed a FRET peptide assay for the intramembrane aspartyl protease (IAP) from Methanoculleus marisnigri JR1 in combination with quantitative mass spectrometry cleavage site analysis. IAP can hydrolyze the angiotensinogen sequence, a substrate for the soluble aspartyl protease renin, at a predominant cut site, His-Thr. Turnover is slow (min(-1) × 10(-3)), affinity and Michaelis constant (Km) values are in the low micromolar range, and both catalytic rates and cleavage sites are the same in detergent as reconstituted into bicelles. Three well-established, IAP-directed inhibitors were directly confirmed as competitive, albeit with modest inhibitor constant (Ki) values. Partial deletion of the first transmembrane helix results in a biophysically similar but less active enzyme than full-length IAP, indicating a catalytic role. Our study demonstrates previously unappreciated similarities with soluble aspartyl proteases, provides new biochemical features of IAP and inhibitors, and offers tools to study other intramembrane protease family members in molecular detail. PMID:26118406

  16. Small molecule activators of pre-mRNA 3′ cleavage

    Ryan, Kevin; Khleborodova, Asya; Pan, Jingyi; Ryan, Xiaozhou P.

    2009-01-01

    3′ Cleavage and polyadenylation are obligatory steps in the biogenesis of most mammalian pre-mRNAs. In vitro reconstitution of the 3′ cleavage reaction from human cleavage factors requires high concentrations of creatine phosphate (CP), though how CP activates cleavage is not known. Previously, we proposed that CP might work by competitively inhibiting a cleavage-suppressing serine/threonine (S/T) phosphatase. Here we show that fluoride/EDTA, a general S/T phosphatase inhibitor, activates in ...

  17. Cell-surface acceleration of urokinase-catalyzed receptor cleavage

    Høyer-Hansen, G; Ploug, M; Behrendt, N;

    1997-01-01

    or indirectly mediated by uPA itself. In a soluble system, uPA can cleave purified uPAR, but the low efficiency of this reaction has raised doubts as to whether uPA is directly responsible for uPAR cleavage on the cells. We now report that uPA-catalyzed cleavage of uPAR on the cell surface is...... strongly favored relative to the reaction in solution. The time course of uPA-catalyzed cleavage of cell-bound uPAR was studied using U937 cells stimulated with phorbol 12-myristate 13-acetate. Only 30 min was required for 10 nM uPA to cleave 50% of the cell-bound uPAR. This uPA-catalyzed cleavage reaction...... was inhibited by a prior incubation of the cells with uPA inactivated by diisopropyl fluorophosphate, demonstrating a requirement for specific receptor binding of the active uPA to obtain the high-efficiency cleavage of cell-bound uPAR. Furthermore, amino-terminal sequence analysis revealed that u...

  18. ZFN-Site searches genomes for zinc finger nuclease target sites and off-target sites

    Iseli Christian

    2011-05-01

    Full Text Available Abstract Background Zinc Finger Nucleases (ZFNs are man-made restriction enzymes useful for manipulating genomes by cleaving target DNA sequences. ZFNs allow therapeutic gene correction or creation of genetically modified model organisms. ZFN specificity is not absolute; therefore, it is essential to select ZFN target sites without similar genomic off-target sites. It is important to assay for off-target cleavage events at sites similar to the target sequence. Results ZFN-Site is a web interface that searches multiple genomes for ZFN off-target sites. Queries can be based on the target sequence or can be expanded using degenerate specificity to account for known ZFN binding preferences. ZFN off-target sites are outputted with links to genome browsers, facilitating off-target cleavage site screening. We verified ZFN-Site using previously published ZFN half-sites and located their target sites and their previously described off-target sites. While we have tailored this tool to ZFNs, ZFN-Site can also be used to find potential off-target sites for other nucleases, such as TALE nucleases. Conclusions ZFN-Site facilitates genome searches for possible ZFN cleavage sites based on user-defined stringency limits. ZFN-Site is an improvement over other methods because the FetchGWI search engine uses an indexed search of genome sequences for all ZFN target sites and possible off-target sites matching the half-sites and stringency limits. Therefore, ZFN-Site does not miss potential off-target sites.

  19. Direct measurement of acylenzyme hydrolysis demonstrates rate-limiting deacylation in cleavage of physiological sequences by the processing protease Kex2.

    Rockwell, N C; Fuller, R S

    2001-03-27

    Saccharomyces cerevisiae Kex2 protease is the prototype for the family of eukaryotic proprotein convertases that includes furin, PC1/3, and PC2. These enzymes belong to the subtilase superfamily of serine proteases and are distinguished from degradative subtilisins by structural features and by their much more stringent substrate specificity. Pre-steady-state studies have shown that both Kex2 and furin exhibit an initial burst of 7-amino-4-methylcoumarin release in cleavage of peptidyl methylcoumarinamide substrates that are based on physiological cleavage sites. Thus, in cleavage of such substrates, formation of the acylenzyme intermediate is fast relative to some later step (deacylation or N-terminal product release). This behavior is significant, because Kex2 also exhibits burst kinetics in cleavage of peptide bonds. k(cat) for cleavage of a tetrapeptidyl methylcoumarinamide substrate based on the physiological yeast substrate pro-alpha-factor exhibits a weak solvent isotope effect, but neither this isotope effect nor temperature dependence studies with this substrate conclusively identify the rate-limiting step for Kex2 cleavage of this substrate. We therefore developed an assay to measure deacylation directly by pulse-chase incorporation of H(2)(18)O in a rapid-quenched-flow mixer followed by mass spectrometric quantitation. The results given by this assay rule out rate-limiting product release for cleavage of this substrate by Kex2. These experiments demonstrate that cleavage of the acylenzyme ester bond, as opposed to either the initial attack on the amide bond or product release, is rate-limiting for the action of Kex2 at physiological sequences. This work demonstrates a fundamental difference in the catalytic strategy of proprotein processing enzymes and degradative subtilisins. PMID:11297433

  20. Synthesis, DNA recognition and cleavage studies of novel tetrapeptide complexes, Cu(II)/Zn(II)-Ala-Pro-Ala-Pro

    Arjmand, Farukh; Jamsheera, A.; Mohapatra, D. K.

    2013-05-01

    New tetrapeptide complexes Cu(II)·Ala-Pro-Ala-Pro (1) and Zn(II)·Ala-Pro-Ala-Pro (2) were synthesized from the reaction of tetrapeptide, Ala-Pro-Ala-Pro and CuCl2/ZnCl2 and were thoroughly characterized by elemental analysis, IR,1H and 13C NMR (in case of 2), ESI-MS, UV and molar conductance measurements. The solution stability study was carried out employing UV-vis absorption titrations over a broad range of pH which suggested the stability of the complexes in solution. In vitro interaction of complexes 1 and 2 with CT-DNA was studied employing UV-vis, fluorescence, circular dichroic and viscometry studies. To throw insight into molecular binding event at the target site, UV-vis titrations of 1 and 2 with mononucleotides of interest viz.; 5'-GMP and 5'-TMP were carried out. Cleavage activity of the complexes with pBR322 plasmid DNA was evaluated by agarose gel electrophoresis and, the electrophoresis pattern demonstrated that both the complexes 1 and 2 are efficient cleavage agents. Further, the Cu(II) complex displayed efficient oxidative cleavage of supercoiled DNA while various reactive oxygen species are responsible for the cleavage in Zn(II) complex.

  1. Analytical model for intergrain expansion and cleavage: random grain boundaries

    A description of rigid-body grain boundary relaxation and cleavage in tungsten is performed using a pair-wise Morse interatomic potential in real and reciprocal spaces. Cleavage energies and grain boundary dilatation of random grain boundaries were formulated and computed using atomic layer interaction energies. These values were determined using a model for a relaxed random grain boundary that consists of rigid grains on either side of the boundary plane that are allowed to float to reach the equilibrium position. Expressions are given that describe in real space the energy of interatomic interaction on random grain boundaries with twist orientation. It was shown that grain-boundary expansion and cleavage energies of the most widespread random grain boundaries are mainly determined by grain boundary atomic density

  2. A new cultural cleavage in post-modern society

    Jan-Erik Lane

    2007-09-01

    Full Text Available The attitudes towards gender and homosexuality tend to be linked at the micro level (individuals, which explains the political saliency of this newly emerging cleavage. At the macro level (country, the main finding is that the value orientations towards gender and homosexuality are strongly embedded in the basic cultural or civilisation differences among countries. As developing countries modernise and enter post-modernity, they will also experience the gender cleavage, especially when they adhere to an individualistic culture. Cultural cleavages in the post-modern society, whether in rich or developing countries, can only be properly researched by the survey method. It opens up a large area for both micro and macro analyses in the social sciences.

  3. Three-dimensional interpretation of cleavage fracture tests of cladded specimens with local approach to cleavage fracture

    Electricite de France has conducted during these last years an experimental and numerical research programme in order to evaluate fracture mechanics analyses used in nuclear reactor pressure vessels integrity assessment, regarding the risk of brittle fracture. Two cladded specimens made of ferritic steel A508 Cl3 with stainless steel cladding, and containing shallow subclad flaws, have been tested in four point bending at very low temperature to obtain cleavage failure. The crack instability was obtained in base metal by cleavage fracture, without crack arrest. The tests have been interpreted by local approach to cleavage fracture (Beremin model) using three-dimensional finite element computations. After the elastic-plastic computation of stress intensity factor KJ along the crack front, the probability of cleavage failure of each specimen is evaluated using m, σu Beremin model parameters identified on the same material. The failure of two specimens is conservatively predicted by both analyses. The elastic-plastic stress intensity factor KJ in base metal is always greater than base metal fracture toughness K1c. The calculated probabilities of cleavage failure are in agreement with experimental results. The sensitivity of Beremin model to numerical aspects is finally exposed. (orig.)

  4. A potent inhibitor of endothelial cell proliferation is generated by proteolytic cleavage of the chemokine platelet factor 4.

    Gupta, S K; Hassel, T; Singh, J. P.

    1995-01-01

    Platelet factor 4 (PF-4) is an archetype of the "chemokine" family of low molecular weight proteins that play an important role in injury responses and inflammation. From activated human leukocyte culture supernatants, we have isolated a form of PF-4 that acts as a potent inhibitor of endothelial cell proliferation. The PF-4 derivative is generated by peptide bond cleavage between Thr-16 and Ser-17, a site located downstream from the highly conserved and structurally important CXC motif. The ...

  5. Characterization of CRISPR RNA Biogenesis and Cas6 Cleavage-Mediated Inhibition of a Provirus in the Haloarchaeon Haloferax mediterranei

    Li, Ming; Liu, Hailong; Han, Jing; Liu, Jingfang; Wang, Rui; Zhao, Dahe; Zhou, Jian; Xiang, Hua

    2013-01-01

    The adaptive immune system comprising CRISPR (clustered regularly interspaced short palindromic repeats) arrays and cas (CRISPR-associated) genes has been discovered in a wide range of bacteria and archaea and has recently attracted comprehensive investigations. However, the subtype I-B CRISPR-Cas system in haloarchaea has been less characterized. Here, we investigated Cas6-mediated RNA processing in Haloferax mediterranei. The Cas6 cleavage site, as well as the CRISPR transcription start sit...

  6. Synthesis, antioxidant and DNA cleavage activities of novel indole derivatives.

    Biradar, J S; Sasidhar, B S; Parveen, R

    2010-09-01

    A new series of novel indole derivatives containing barbitone moiety (5a-i) are synthesized by simple and efficient condensation of chalcones (3a-i) with barbituric acid (4). The synthesized compounds are screened for their antioxidant (free radical scavenging, total antioxidant capacity and ferric reducing antioxidant power) and DNA cleavage activities were evaluated. Among the synthesized compounds (5a), (5d) and (5g) exhibited excellent antioxidant activity and all the tested compounds in the series have exhibited promising DNA cleavage activities. The structures of the synthesized compounds are assigned on the basis of elemental analysis, IR, (1)H NMR, (13)C NMR and mass spectral data. PMID:20594623

  7. Sensitive and fast mutation detection by solid phase chemical cleavage

    Hansen, Lise Lotte; Justesen, Just; Kruse, Torben A

    1996-01-01

    We have developed a solid phase chemical cleavage method (SpCCM) for screening large DNA fragments for mutations. All reactions can be carried out in microtiterwells from the first amplification of the patient (or test) DNA through the search for mutations. The reaction time is significantly...... reduced compared to the conventional chemical cleavage method (CCM), and even by using a uniformly labelled probe, the exact position and nature of the mutation can be revealed. The SpCCM is suitable for automatization using a workstation to carry out the reactions and a fluorescent detection-based DNA...

  8. Detection of endopeptidase activity and analysis of cleavage specificity using a radiometric solid-phase enzymatic assay

    A radiometric procedure to detect the presence of proteolytic enzymes and analyze their substrate specificity is described. The enzymatic activity is first measured by the release into solution of a radiolabeled reporter group from an immobilized peptidyl substrate. Two peptidyl substrates encompassing multiple cleavage sites, a derivative of Leu-enkephalin and a peptide related to the bait region of human α 2-macroglobulin, are prepared and linked via a spacer molecule to an insoluble support. The labeled peptides released are then separated by high-performance liquid chromatography. The position of the released peptides upon chromatography allows direct identification of the sites of cleavage. The assay, using a radioactive iodinated tyrosine residue as reporter group, is extremely sensitive (less than 0.02 pg/ml of trypsin), reproducible, and easy to perform while yielding unambiguous identification of the sites of cleavage. This assay can be used to detect the presence of enzymatic activities and/or of enzyme inhibitors. Furthermore, it can be easily adapted to detect from a variety of sources all four classes of enzymes known by using appropriate peptidyl substrate sequences, buffer, pH, and incubation conditions

  9. TRAIL-induced cleavage and inactivation of SPAK sensitizes cells to apoptosis

    Ste20-related proline-alanine-rich kinase (SPAK) has been linked to various cellular processes, including proliferation, differentiation, and ion transport regulation. Recently, we showed that SPAK mediates signaling by the TNF receptor, RELT. The presence of a caspase cleavage site in SPAK prompted us to study its involvement in apoptotic signaling induced by another TNF member, TRAIL. We show that TRAIL stimulated caspase 3-like proteases that cleaved SPAK at two distinct sites. Cleavage had little effect on the activity of SPAK but removed its substrate-binding domain. In addition, TRAIL reduced the activity of SPAK in HeLa cells in a caspase-independent manner. Thus, TRAIL inhibited SPAK by two mechanisms: activation of caspases, which removed its substrate-binding domain, and caspase-independent down-regulation of SPAK activity. Furthermore, reducing the amount of SPAK by siRNA increased the sensitivity of HeLa cells to TRAIL-induced apoptosis. Thus, TRAIL down-regulation of SPAK is an important event that enhances its apoptotic effects

  10. Fe-Catalyzed Oxidative Cleavage of Unsaturated Fatty Acids

    Spannring, P.

    2013-01-01

    The oxidative cleavage of unsaturated fatty acids into aldehydes or carboxylic acids gives access to valuable products. The products can be used as chemical building blocks, as emulsifiers or in the paint or polymer industry. Ozonolysis is applied industrially to cleave the fatty acid oleic acid int

  11. Perceiving Social Cleavages and Inequalities: The Case of Israeli Adolescents.

    Dar, Yechezkel; Erhard, Rachel; Resh, Nura

    1998-01-01

    An analysis of perceptions of social cleavage and inequality among approximately 9000 Israeli eighth and ninth graders showed students accurately comprehended a multifaceted society with major social divisions. A social map with inequality was revealed in which ethnicity played the least prominent role. Personal and social traits influenced…

  12. The pattern of DNA cleavage intensity around indels.

    Chen, Wei; Zhang, Liqing

    2015-01-01

    Indels (insertions and deletions) are the second most common form of genetic variations in the eukaryotic genomes and are responsible for a multitude of genetic diseases. Despite its significance, detailed molecular mechanisms for indel generation are still unclear. Here we examined 2,656,597 small human and mouse germline indels, 16,742 human somatic indels, 10,599 large human insertions, and 5,822 large chimpanzee insertions and systematically analyzed the patterns of DNA cleavage intensities in the 200 base pair regions surrounding these indels. Our results show that DNA cleavage intensities close to the start and end points of indels are significantly lower than other regions, for both small human germline and somatic indels and also for mouse small indels. Compared to small indels, the patterns of DNA cleavage intensity around large indels are more complex, and there are two low intensity regions near each end of the indels that are approximately 13 bp apart from each other. Detailed analyses of a subset of indels show that there is slight difference in cleavage intensity distribution between insertion indels and deletion indels that could be contributed by their respective enrichment of different repetitive elements. These results will provide new insight into indel generation mechanisms. PMID:25660536

  13. Phosphate diester cleavage promoted by the novel artificial biomimetic agent

    Bím, Daniel; Rulíšek, Lubomír; Hodačová, J.

    Praha: Czech Chemical Society, 2014. s. 51. [Liblice 2014. Advances in Organic, Bioorganic and Pharmaceutical Chemistry /49./. 07.11.2014-09.11.2014, Lázně Bělohrad] Institutional support: RVO:61388963 Keywords : phosphate diesters * bond cleavage Subject RIV: CF - Physical ; Theoretical Chemistry

  14. Modeling Radial Holoblastic Cleavage: A Laboratory Activity for Developmental Biology.

    Ellis, Linda K.

    2000-01-01

    Introduces a laboratory activity designed for an undergraduate developmental biology course. Uses Play-Doh (plastic modeling clay) to build a multicellular embryo in order to provide a 3-D demonstration of cleavage. Includes notes for the instructor and student directions. (YDS)

  15. Rhodium-catalyzed C-C bond cleavage reactions

    Nečas, D.; Kotora, Martin

    2007-01-01

    Roč. 11, č. 17 (2007), s. 1566-1591. ISSN 1385-2728 Institutional research plan: CEZ:AV0Z40550506 Keywords : rhodium * catalysis * C-C bond cleavage Subject RIV: CC - Organic Chemistry Impact factor: 3.961, year: 2007

  16. Cleavage of a recombinant human immunoglobulin A2 (IgA2)-IgA1 hybrid antibody by certain bacterial IgA1 proteases

    Senior, B; Dunlop, JI; Batten, MR;

    2000-01-01

    melaninogenica, Streptococcus pneumoniae, S. sanguis, Neisseria meningitidis types 1 and 2, N. gonorrhoeae types 1 and 2, and Haemophilus influenzae type 2. Thus, for these enzymes the recognition site for IgA1 cleavage is contained within half of the IgA1 hinge region; additional distal elements, if required...

  17. Cleavage of nicotinamide adenine dinucleotide by the ribosome-inactivating protein from Momordica charantia.

    Vinkovic, M; Dunn, G; Wood, G E; Husain, J; Wood, S P; Gill, R

    2015-09-01

    The interaction of momordin, a type 1 ribosome-inactivating protein from Momordica charantia, with NADP(+) and NADPH has been investigated by X-ray diffraction analysis of complexes generated by co-crystallization and crystal soaking. It is known that the proteins of this family readily cleave the adenine-ribose bond of adenosine and related nucleotides in the crystal, leaving the product, adenine, bound to the enzyme active site. Surprisingly, the nicotinamide-ribose bond of oxidized NADP(+) is cleaved, leaving nicotinamide bound in the active site in the same position but in a slightly different orientation to that of the five-membered ring of adenine. No binding or cleavage of NADPH was observed at pH 7.4 in these experiments. These observations are in accord with current views of the enzyme mechanism and may contribute to ongoing searches for effective inhibitors. PMID:26323301

  18. Crack tip blunting and cleavage under dynamic conditions

    Rajan, V. P.; Curtin, W. A.

    2016-05-01

    In structural materials with both brittle and ductile phases, cracks often initiate within the brittle phase and propagate dynamically towards the ductile phase. The macroscale, quasistatic toughness of the material thus depends on the outcome of this microscale, dynamic process. Indeed, dynamics has been hypothesized to suppress dislocation emission, which may explain the occurrence of brittle transgranular fracture in mild steels at low temperatures (Lin et al., 1987). Here, crack tip blunting and cleavage under dynamic conditions are explored using continuum mechanics and molecular dynamics simulations. The focus is on two questions: (1) whether dynamics can affect the energy barriers for dislocation emission and cleavage, and (2) what happens in the dynamic "overloaded" situation, in which both processes are energetically possible. In either case, dynamics may shift the balance between brittle cleavage and ductile blunting, thereby affecting the intrinsic ductility of the material. To explore these effects in simulation, a novel interatomic potential is used for which the intrinsic ductility is tunable, and a novel simulation technique is employed, termed as a "dynamic cleavage test", in which cracks can be run dynamically at a prescribed energy release rate into a material. Both theory and simulation reveal, however, that the intrinsic ductility of a material is unaffected by dynamics. The energy barrier to dislocation emission appears to be identical in quasi-static and dynamic conditions, and, in the overloaded situation, ductile crack tip behavior ultimately prevails since a single emission event can blunt and arrest the crack, preventing further cleavage. Thus, dynamics cannot embrittle a ductile material, and the origin of brittle failure in certain alloys (e.g., mild steels) appears unrelated to dynamic effects at the crack tip.

  19. Cleavage of highly structured viral RNA molecules by combinatorial libraries of hairpin ribozymes. The most effective ribozymes are not predicted by substrate selection rules.

    Yu, Q; Pecchia, D B; Kingsley, S L; Heckman, J E; Burke, J M

    1998-09-01

    Combinatorial libraries of hairpin ribozymes representing all possible cleavage specificities (>10(5)) were used to evaluate all ribozyme cleavage sites within a large (4.2-kilobase) and highly structured viral mRNA, the 26 S subgenomic RNA of Sindbis virus. The combinatorial approach simultaneously accounts for target site structure and dynamics, together with ribozyme folding, and the sequences that result in a ribozyme-substrate complex with maximal activity. Primer extension was used to map and rank the relative activities of the ribozyme pool against individual sites and revealed two striking findings. First, only a small fraction of potential recognition sites are effectively cleaved (activity-selected sites). Second, nearly all of the most effectively cleaved sites deviated substantially from the established consensus selection rules for the hairpin ribozyme and were not predicted by examining the sequence, or through the use of computer-assisted predictions of RNA secondary structure. In vitro selection methods were used to isolate ribozymes with increased activity against substrates that deviate from the GUC consensus sequence. trans-Acting ribozymes targeting nine of the activity-selected sites were synthesized, together with ribozymes targeting four sites with a perfect match to the cleavage site consensus (sequence-selected sites). Activity-selected ribozymes have much higher cleavage activity against the long, structured RNA molecules than do sequence-selected ribozymes, although the latter are effective in cleaving oligoribonucleotides, as predicted. These results imply that, for Sindbis virus 26 S RNA, designing ribozymes based on matches to the consensus sequence may be an ineffective strategy. PMID:9722591

  20. School Desegregation and Racial Cleavage, 1954-1970: A Review of the Literature

    Carithers, Martha W.

    1970-01-01

    Reviews the empirical studies dealing with school desegregation and racial cleavage which have appeared since the 1954 Supreme Court decision. Focuses on patterns and consequences of interracial association, and attitude change relevant to racial cleavage. (DM)

  1. Cleavage patterns and the topology of the metazoan tree of life

    Valentine, James W.

    1997-01-01

    Several major alliances of metazoan phyla have been identified by small subunit rRNA sequence comparisons. It is possible to arrange the phyla to produce a parsimonious distribution of cleavage types, requiring only one change from a radial ancestral condition to spiral cleavage and one other to “idiosyncratic” cleavage; this arrangement is consistent with most of the recent molecular phylogenies. The cleavage shifts are correlated with changes in many of the features that once were used to d...

  2. Specific in vitro cleavage of Mason-Pfizer monkey virus capsid protein: evidence for a potential role of retroviral protease in early stages of infection

    Processing of Gag polyproteins by viral protease (PR) leads to reorganization of immature retroviral particles and formation of a ribonucleoprotein core. In some retroviruses, such as HIV and RSV, cleavage of a spacer peptide separating capsid and nucleocapsid proteins is essential for the core formation. We show here that no similar spacer peptide is present in the capsid-nucleocapsid (CA-NC) region of Mason-Pfizer monkey virus (M-PMV) and that the CA protein is cleaved in vitro by the PR within the major homology region (MHR) and the NC protein in several sites at the N-terminus. The CA cleavage product was also identified shortly after penetration of M-PMV into COS cells, suggesting that the protease-catalyzed cleavage is involved in core disintegration

  3. Post-translational processing of progastrin: inhibition of cleavage, phosphorylation and sulphation by brefeldin A.

    Varro, A; Dockray, G J

    1993-11-01

    The precursor for the acid-stimulating hormone gastrin provides a useful model for studies of post-translational processing because defined sites of cleavage, amidation, sulphation and phosphorylation occur within a dodecapeptide sequence. The factors determining these post-translational processing events are still poorly understood. We have used brefeldin A, which disrupts transport from rough endoplasmic reticulum to the Golgi complex, to examine the mechanisms of cleavage, phosphorylation and sulphation of rat progastrin-derived peptides. Biosynthetic products were detected after immunoprecipitation using antibodies specific for the extreme C-terminus of progastrin, followed by reversed-phase and ion-exchange h.p.l.c. Gastrin cells incorporated [3H]tyrosine, [32P]phosphate and [35S]sulphate into both progastrin and its extreme C-terminal tryptic (nona-) peptide. Ion-exchange chromatography resolved four forms of the C-terminal tryptic fragment of progastrin which differed in whether they were phosphorylated at Ser96, sulphated at Tyr103, both or neither. The specific activity of [3H]tyrosine in the peak that was both phosphorylated and sulphated was higher than in the others. Brefeldin A inhibited the appearance of [3H]tyrosine-labelled C-terminal tryptic fragment but there was an accumulation of labelled progastrin and a peptide corresponding to the C-terminal 46 residues of progastrin. Brefeldin A also inhibited incorporation of 32P and 35S into both progastrin and its C-terminal fragment. Thus phosphorylation of Ser96, sulphation of Tyr103 and cleavage at Arg94-Arg95 depend on passage of newly synthesized progastrin along the secretory pathway; as brefeldin A is thought to act proximal to the trans-Golgi, these processing steps would appear to occur distal to this point. The data also indicate that the stores of unphosphorylated C-terminal tryptic fragment are not available for phosphorylation, implying that this modification occurs proximal to the secretory

  4. Translocation-coupled DNA cleavage by the Type ISP restriction-modification enzymes.

    Chand, Mahesh K; Nirwan, Neha; Diffin, Fiona M; van Aelst, Kara; Kulkarni, Manasi; Pernstich, Christian; Szczelkun, Mark D; Saikrishnan, Kayarat

    2015-11-01

    Production of endonucleolytic double-strand DNA breaks requires separate strand cleavage events. Although catalytic mechanisms for simple, dimeric endonucleases are known, there are many complex nuclease machines that are poorly understood. Here we studied the single polypeptide Type ISP restriction-modification (RM) enzymes, which cleave random DNA between distant target sites when two enzymes collide after convergent ATP-driven translocation. We report the 2.7-Å resolution X-ray crystal structure of a Type ISP enzyme-DNA complex, revealing that both the helicase-like ATPase and nuclease are located upstream of the direction of translocation, an observation inconsistent with simple nuclease-domain dimerization. Using single-molecule and biochemical techniques, we demonstrate that each ATPase remodels its DNA-protein complex and translocates along DNA without looping it, leading to a collision complex in which the nuclease domains are distal. Sequencing of the products of single cleavage events suggests a previously undescribed endonuclease model, where multiple, stochastic strand-nicking events combine to produce DNA scission. PMID:26389736

  5. Multiple nucleic acid cleavage modes in divergent type III CRISPR systems

    Zhang, Jing; Graham, Shirley; Tello, Agnes; Liu, Huanting; White, Malcolm F.

    2016-01-01

    CRISPR-Cas is an RNA-guided adaptive immune system that protects bacteria and archaea from invading nucleic acids. Type III systems (Cmr, Csm) have been shown to cleave RNA targets in vitro and some are capable of transcription-dependent DNA targeting. The crenarchaeon Sulfolobus solfataricus has two divergent subtypes of the type III system (Sso-IIID and a Cmr7-containing variant of Sso-IIIB). Here, we report that both the Sso-IIID and Sso-IIIB complexes cleave cognate RNA targets with a ruler mechanism and 6 or 12 nt spacing that relates to the organization of the Cas7 backbone. This backbone-mediated cleavage activity thus appears universal for the type III systems. The Sso-IIIB complex is also known to possess a distinct ‘UA’ cleavage mode. The predominant activity observed in vitro depends on the relative molar concentration of protein and target RNA. The Sso-IIID complex can cleave plasmid DNA targets in vitro, generating linear DNA products with an activity that is dependent on both the cyclase and HD nuclease domains of the Cas10 subunit, suggesting a role for both nuclease active sites in the degradation of double-stranded DNA targets. PMID:26801642

  6. Location of spermine and other polyamines on DNA as revealed by photoaffinity cleavage with polyaminobenzenediazonium salts

    Although polyamines interact strongly with nucleic acids, X-ray and NMR studies have not revealed much structural information about spermine-DNA complexes. Therefore, it was of interest to look at the binding of polyamines to 32P-labeled DNA restriction fragments by sequencing gel electrophoresis of the photoaffinity cleavage products induced by polyaminobenzenediazonium salts. The shift of cleavage patterns observed on opposite strands as well as competition experiments with distamycin shows polyamines to be located in the minor groove of B-DNA and to depend on the nucleic acid polymorphism, jumping to the major groove in the A-form. The sequence selectivities of various polycations (spermine, putrescine, and cobalt(III) hexaammine) are similar and slightly favor A,T-rich regions. Taken together, these results show that polycations which are not point charges are guided by the electronegative potential along the nucleic acid and suggest fast crawling of the polyamine within the minor groove, due to individual NH2+ jumping between multiple equidistant and isoenergetic bidentate hydrogen-bonding sites. Such a picture could be the clue to the unexpected NMR and to the frequently silent X-ray behavior of polyamines when bound to DNA

  7. Caspase cleavage of cytochrome c1 disrupts mitochondrial function and enhances cytochrome c release

    Yushan Zhu; Min Li; Xiaohui Wang; Haijing Jin; Shusen Liu; Jianxin Xu; Quan Chen

    2012-01-01

    Mitochondrial catastrophe can be the cause or consequence of apoptosis and is associated with a number of pathophysiological conditions.The exact relationship between mitochondrial catastrophe and caspase activation is not completely understood.Here we addressed the underlying mechanism,explaining how activated caspase could feedback to attack mitochondria to amplify further cytochrome e (cyto.c) release.We discovered that cytochrome c1 (cyto.c1) in the bc1 complex of the mitochondrial respiration chain was a novel substrate of caspase 3 (casp.3).We found that cyto.c1 was cleaved at the site of D106,which is critical for binding with cyto.c,following apoptotic stresses or targeted expression of casp.3 into tbe mitochondrial intermembrane space.We demonstrated that this cleavage was closely linked with further cyto.c release and mitochondrial catastrophe.These mitochondrial events could be effectively blocked by expressing non-cleavable cyto.c1 (D106A) or by caspase inhibitor z-VAD-fmk.Our results demonstrate that the cleavage of cyto.c1 represents a critical step for the feedback amplification of cyto.c release by caspases and subsequent mitochondrial catastrophe.

  8. Deletion of the thrombin cleavage domain of osteopontin mediates breast cancer cell adhesion, proteolytic activity, tumorgenicity, and metastasis

    Osteopontin (OPN) is a secreted phosphoprotein often overexpressed at high levels in the blood and primary tumors of breast cancer patients. OPN contains two integrin-binding sites and a thrombin cleavage domain located in close proximity to each other. To study the role of the thrombin cleavage site of OPN, MDA-MB-468 human breast cancer cells were stably transfected with either wildtype OPN (468-OPN), mutant OPN lacking the thrombin cleavage domain (468-ΔTC) or an empty vector (468-CON) and assessed for in vitro and in vivo functional differences in malignant/metastatic behavior. All three cell lines were found to equivalently express thrombin, tissue factor, CD44, αvβ5 integrin and β1 integrin. Relative to 468-OPN and 468-CON cells, 468-ΔTC cells expressing OPN with a deleted thrombin cleavage domain demonstrated decreased cell adhesion (p < 0.001), decreased mRNA expression of MCAM, maspin and TRAIL (p < 0.01), and increased uPA expression and activity (p < 0.01) in vitro. Furthermore, injection of 468-ΔTC cells into the mammary fat pad of nude mice resulted in decreased primary tumor latency time (p < 0.01) and increased primary tumor growth and lymph node metastatic burden (p < 0.001) compared to 468-OPN and 468-CON cells. The results presented here suggest that expression of thrombin-uncleavable OPN imparts an early tumor formation advantage as well as a metastatic advantage for breast cancer cells, possibly due to increased proteolytic activity and decreased adhesion and apoptosis. Clarification of the mechanisms responsible for these observations and the translation of this knowledge into the clinic could ultimately provide new therapeutic opportunities for combating breast cancer

  9. Construction of Multi-ribozyme Expression System and Its Characterization of Cleavage on the MDR1/MRP1 Double Target Substrate in vitro

    TIAN Sheng-li; ZHENG Suo; LIU Shi-de; ZHANG Jian-hua; XU Dong-ping; OHNUMA Takao

    2009-01-01

    To improve catalytic activity of ribozyme on its substrate,the multi-ribozyme expression system was designed and constructed from 20 cis-acting hammerhead ribozymes undergoing self-cleavage with 10 trans-acting hammerhead ribozymes inserted altematively regularly and the plasmid of pGEM-MDRI/MRPI used to transcribe the M DRI/MRPI(196/210) substrate containing double target sites was also constructed by DNA recombination.Endonuclease digestion analysis and DNA sequencing indicate all the recombinant plasmids were correct.The cleavage activities were evaluated for the multi-ribozyme expression system on the MDR1/MRP1 substrate in the cell free system.The results demonstrate that the cis-acting hammerhead ribozymes in the multi-ribozyme expression system were able to cleave themselves and the 72 nt of 196Rz and the 71 nt of 210Rz trans-acting hammerhead ribozymes were liberated effectively,and the trans-acting hammerhead ribozymes released were able to act on the MDR1/MRP1 double target RNA substrate and cleave the target RNA at specific sites effectively.The multiribozyme expression system of the [Coat'A196Rz/Coat'B210Rz]5 is more significantly superior to that of the [Coat'A 196Rz/Coat'B210Rz]1 in cleavage of RNA substrate.The fractions cleaved by [Coat'A196Rz/Coat'B210Rz]5 on the MDR1/MRP1 substrate for 8 h at observed temperatures showed no marked difference.The studies of Mg2+ on cleavage efficiency indicate that cleavage reaction is dependent on Mg2+ ions concentration.The plot of Ig(kobs) vs.Igc(Mg2+) displays a linear relationship between 2.5 mmol/L and 20 mmol/L Mg2..It suggests that Mg2+ ions play a crucial role in multi-ribozyme cleavage on the substrate.

  10. Small Molecule-Mediated Cleavage of RNA in Living Cells

    Guan, Lirui; Disney, Matthew D.

    2012-01-01

    Antisense oligonucleotides and small interfering RNAs (siRNAs) control gene expression by triggering the degradation of a mRNA via recruitment of RNase H or the RNA-induced silencing complex (RISC), respectively.[1] These approaches are hampered, however, by the poor cellular permeability of oligonucleotides. A small molecule approach to cleave RNA targets could obviate uptake issues. Several compounds can induce RNA cleavage in vitro,[2] however, to the best of our knowledge no small molecul...

  11. Effects of Cysteamine on Sheep Embryo Cleavage Rates

    ENGİNLER, Sinem Ö; ÖZDAŞ, Özen B.; SANDAL, Asiye İ.; ARICI, Ramazan; GÜNDÜZ, Mehmet C.; BARAN, Alper; TEK, Çağatay; KILIÇARSLAN, Mehmet R.; Ak, Kemal

    2015-01-01

    Oxidative stress during in vitro culture leads to defects in development of gametes and embryos. Several antioxidants such as cysteamine, L-ascorbic acid, beta mercaptoethanol, cysteine, glutathione, proteins, vitamins have been used to supplement culture media to counter the oxidative stress. This study was conducted to detect the effect of adding cysteamine to the maturation medium to subsequent cleavage rates of sheep embryos. Totally 604 ovaries were obtained by ten replica and 2060 oocyt...

  12. Interrelation between local and global characteristics of cleavage fracture

    Grishchenko, W.; Kotrechko, S.; Mamedov, S.; Zatsarna, O.; Dlouhý, Ivo

    Zurich : Trans Tech Publications, 2014 - (Šandera, P.), s. 221-224 ISBN 978-3-03785-934-6. ISSN 1013-9826. - (Key Engineering Materials. 592-593). [MSMF 7 - International Conference on Materials Structure and Micromechanics of Fracture /7./. Brno (CZ), 01.07.2013-03.07.2013] Institutional support: RVO:68081723 Keywords : local stress * fracture * cleavage * embrittlement * strength Subject RIV: JL - Materials Fatigue, Friction Mechanics

  13. Fe-Catalyzed Oxidative Cleavage of Unsaturated Fatty Acids

    Spannring, P.

    2013-01-01

    The oxidative cleavage of unsaturated fatty acids into aldehydes or carboxylic acids gives access to valuable products. The products can be used as chemical building blocks, as emulsifiers or in the paint or polymer industry. Ozonolysis is applied industrially to cleave the fatty acid oleic acid into the aldehydes nonanal and 9-oxo-nonanoic acid or into pelargonic and azelaic acid. Considerable hazards, including explosion risks, are associated with the use of ozone, and alternative processes...

  14. The pattern of DNA cleavage intensity around indels

    Wei Chen; Liqing Zhang

    2015-01-01

    Indels (insertions and deletions) are the second most common form of genetic variations in the eukaryotic genomes and are responsible for a multitude of genetic diseases. Despite its significance, detailed molecular mechanisms for indel generation are still unclear. Here we examined 2,656,597 small human and mouse germline indels, 16,742 human somatic indels, 10,599 large human insertions, and 5,822 large chimpanzee insertions and systematically analyzed the patterns of DNA cleavage intensiti...

  15. Mycothiol synthesis by an anomerization reaction through endocyclic cleavage

    2016-01-01

    Summary Mycothiol is found in Gram-positive bacteria, where it helps in maintaining a reducing intracellular environment and it plays an important role in protecting the cell from toxic chemicals. The inhibition of the mycothiol biosynthesis is considered as a treatment for tuberculosis. Mycothiol contains an α-aminoglycoside, which is difficult to prepare stereoselectively by a conventional glycosylation reaction. In this study, mycothiol was synthesized by an anomerization reaction from an easily prepared β-aminoglycoside through endocyclic cleavage. PMID:26977192

  16. Centrocortin Cooperates with Centrosomin to Organize Drosophila Embryonic Cleavage Furrows

    Kao, Ling-Rong; Timothy L Megraw

    2009-01-01

    In the Drosophila early embryo the centrosome coordinates assembly of cleavage furrows [1–3]. Currently, the molecular pathway that links the centrosome and the cortical microfilaments is unknown. In centrosomin (cnn) mutants, where the centriole forms but the centrosome pericentriolar material (PCM) fails to assemble [4, 5], actin microfilaments are not organized into furrows at the syncytial cortex [6]. While CNN is required for centrosome assembly and function [4, 6, 7], little is known of...

  17. Embryo apoptosis identification: Oocyte grade or cleavage stage?

    Bakri, Noraina Mohd; Ibrahim, Siti Fatimah; Osman, Nurul Atikah; Hasan, Nurhaslina; Jaffar, Farah Hanan Fathihah; Rahman, Zulaiha Abdul; Osman, Khairul

    2015-01-01

    Apoptosis is a programed cell death that is vital for tissue homeostasis. However, embryo apoptosis had been known to be related to embryo fragmentation which should be avoided in in vitro fertilization (IVF). The purpose of this study was to evaluate the relationship of embryo apoptosis with the grade of immature oocytes and cleavage stage of in vitro produced (IVP) cattle embryos. This study consisted of 345 oocytes collected through ovary slicing. Immature oocytes were graded as A, B and C...

  18. DNAzyme-Controlled Cleavage of Dimer and Trimer Origami Tiles.

    Wu, Na; Willner, Itamar

    2016-04-13

    Dimers of origami tiles are bridged by the Pb(2+)-dependent DNAzyme sequence and its substrate or by the histidine-dependent DNAzyme sequence and its substrate to yield the dimers T1-T2 and T3-T4, respectively. The dimers are cleaved to monomer tiles in the presence of Pb(2+)-ions or histidine as triggers. Similarly, trimers of origami tiles are constructed by bridging the tiles with the Pb(2+)-ion-dependent DNAzyme sequence and the histidine-dependent DNAzyme sequence and their substrates yielding the trimer T1-T5-T4. In the presence of Pb(2+)-ions and/or histidine as triggers, the programmed cleavage of trimer proceeds. Using Pb(2+) or histidine as trigger cleaves the trimer to yield T5-T4 and T1 or the dimer T1-T5 and T4, respectively. In the presence of Pb(2+)-ions and histidine as triggers, the cleavage products are the monomer tiles T1, T5, and T4. The different cleavage products are identified by labeling the tiles with 0, 1, or 2 streptavidin labels and AFM imaging. PMID:26931508

  19. Cleavage mechanoluminescence in elemental and III-V semiconductors

    Chandra, B P; Gour, A S; Chandra, V K; Gupta, R K

    2003-01-01

    The present paper reports the theory of mechanoluminescence (ML) produced during cleavage of elemental and III-V semiconductors. It seems that the formation of crack-induced localized states is responsible for the ML excitation produced during the cleavage of elemental and III-V semiconductors. According to this mechanism, as the atoms are drawn away from each other in an advancing crack tip, the decreasing wave function overlap across the crack may result in localized states which is associated with increasing electron energy. If the energy of these localized states approach that of the conduction band, transition to the conduction band via tunnelling would be possible, creating minority carriers, and consequently the electron-hole recombination may give rise to mechanoluminescence. When an elemental or III-V semiconductor is cleaved, initially the ML intensity increases with time, attains a peak value I sub m at the time t sub m corresponding to completion of the cleavage of the semiconductor, and then it d...

  20. Mechanism of metabolic cleavage of a furan ring

    Kobayashi, T.; Sugihara, J.; Harigaya, S.

    1987-11-01

    We studied the mechanism of metabolic cleavage of a furan ring, using a new hypolipidemic agent, ethyl 2-(4-chlorophenyl)-5-(2-furyl)oxazole-4-acetate (TA-1801), as a model compound. A TA-1801 analogue labeled with deuterium at the 5-position of its furan ring was administered orally to rats. The analysis of urinary metabolites by GC/MS revealed that the deuterium of the furan was retained in the ring-opened metabolite (M3). Metabolic cleavage of furan has been generally considered to proceed by hydroxylation of the 5-position followed by tautomerism and hydrolysis of the resulting 5-hydroxyfuran derivative. However, if the cleavage proceeded by this pathway, the deuterium of the 5-position would be eliminated during hydroxylation. Therefore, we propose that the ring was cleaved directly to form an unsaturated aldehyde, considering the mechanism of oxidation by cytochrome P-450. Although this intermediate was not detected in the biological specimens, a synthetic unsaturated aldehyde was transformed to the actual urinary metabolites M2 and M3 (major ring-opened metabolites) in the isolated rat liver.

  1. Mechanism of metabolic cleavage of a furan ring

    We studied the mechanism of metabolic cleavage of a furan ring, using a new hypolipidemic agent, ethyl 2-(4-chlorophenyl)-5-(2-furyl)oxazole-4-acetate (TA-1801), as a model compound. A TA-1801 analogue labeled with deuterium at the 5-position of its furan ring was administered orally to rats. The analysis of urinary metabolites by GC/MS revealed that the deuterium of the furan was retained in the ring-opened metabolite (M3). Metabolic cleavage of furan has been generally considered to proceed by hydroxylation of the 5-position followed by tautomerism and hydrolysis of the resulting 5-hydroxyfuran derivative. However, if the cleavage proceeded by this pathway, the deuterium of the 5-position would be eliminated during hydroxylation. Therefore, we propose that the ring was cleaved directly to form an unsaturated aldehyde, considering the mechanism of oxidation by cytochrome P-450. Although this intermediate was not detected in the biological specimens, a synthetic unsaturated aldehyde was transformed to the actual urinary metabolites M2 and M3 (major ring-opened metabolites) in the isolated rat liver

  2. Cleavage mechanoluminescence in elemental and III-V semiconductors

    The present paper reports the theory of mechanoluminescence (ML) produced during cleavage of elemental and III-V semiconductors. It seems that the formation of crack-induced localized states is responsible for the ML excitation produced during the cleavage of elemental and III-V semiconductors. According to this mechanism, as the atoms are drawn away from each other in an advancing crack tip, the decreasing wave function overlap across the crack may result in localized states which is associated with increasing electron energy. If the energy of these localized states approach that of the conduction band, transition to the conduction band via tunnelling would be possible, creating minority carriers, and consequently the electron-hole recombination may give rise to mechanoluminescence. When an elemental or III-V semiconductor is cleaved, initially the ML intensity increases with time, attains a peak value Im at the time tm corresponding to completion of the cleavage of the semiconductor, and then it decreases following power law decay. Expressions are derived for the ML intensity Im corresponding to the peak of the ML intensity versus time curve and for the total ML intensity IT. It is shown that both Im and IT should increase directly with the area of the newly created surfaces of the crystals. From the measurements of the ML intensity, the velocity of crack propagation in material can be determined by using the relation v=H/tm

  3. Demethylation and cleavage of dimethylsulfoniopropionate in marine intertidal sediments

    Visscher, P.T.; Kiene, R.P.; Taylor, B.F.

    1994-01-01

    Demethylation and cleavage of dimethylsulfoniopropionate (DMSP) was measured in three different types of,intertidal marine sediments: a cyanobacterial mat, a diatom-covered tidal flat and a carbonate sediment. Consumption rates of added DMSP were highest in cyanobacterial mat slurries (59 ?? mol DMSP l-1 slurry h-1) and lower in slurries from a diatom mat and a carbonate tidal sediment (24 and 9 ??mol DMSP l-1 h-1, respectively). Dimethyl sulfide (DMS) and 3-mercaptopropionate (MPA) were produced simultaneously during DMSP consumption, indicating that cleavage and demethylation occurred at the same time. Viable counts of DMSP-utilizing bacteria revealed a population of 2 x 107 cells cm-3 sediment (90% of these cleaved DMSP to DMS, 10% demethylated DMSP to MPA) in the cyanobacterial mat, 7 x 105 cells cm-3 in the diatom mat (23% cleavers, 77% demethylators), and 9 x 104 cells cm-3 (20% cleavers and 80% demethylators) in the carbonate sediment. In slurries of the diatom mat, the rate of MPA production from added 3-methiolpropionate (MMPA) was 50% of the rate of MPA formation from DMSP. The presence of a large population of demethylating bacteria and the production of MPA from DMSP suggest that the demethylation pathway, in addition to cleavage, contributes significantly to DMSP consumption in coastal sediments.

  4. Numerical modeling of ductile tearing effects on cleavage fracture toughness

    Experimental studies demonstrate a significant effect of specimen size, a/W ratio and prior ductile tearing on cleavage fracture toughness values (Jc) measured in the ductile-to-brittle transition region of ferritic materials. In the lower-transition region, cleavage fracture often occurs under conditions of large-scale yielding but without prior ductile crack extension. The increased toughness develops when plastic zones formed at the crack tip interact with nearby specimen surfaces which relaxes crack-tip constraint (stress triaxiality). In the mid-to-upper transition region, small amounts of ductile crack extension (often c-values. Previous work by the authors described a micromechanics fracture model to correct measured Jc-values for the mechanistic effects of large-scale yielding. This new work extends the model to also include the influence of ductile crack extension prior to cleavage. The paper explores development of the new model, provides necessary graphs and procedures for its application and demonstrates the effects of the model on fracture data sets for two pressure vessel steels (A533B and A515)

  5. Regioselective Cleavage of Thioether Linkages in Microcystin Conjugates.

    Zemskov, Ivan; Kropp, Heike M; Wittmann, Valentin

    2016-07-25

    Microcystins are cyanobacterial toxins that can be found in fresh and coastal waters during algal blooms. Microcystin contamination of water can cause severe poisoning of animals and humans. Quantification of these toxins in biological samples is complicated because a major proportion of microcystins is covalently linked to proteins through thioether bonds formed through a Michael-type addition of cysteine residues of proteins to an N-methyldehydroalanine residue in the microcystins. We investigated chemical methods that can be used to cleave such thioether bonds by means of an elimination reaction that leaves the microcystin backbone intact for subsequent analysis. The known reagent O-mesitylenesulfonylhydroxylamine (MSH) led to regioselective thioether cleavage, but a large excess of reagent was needed, thus making purification challenging. An unexpected side reaction observed during the investigation of the base-induced elimination inspired us to develop a new thioether-cleavage methodology based on the addition of propargylamine as a nucleophile that can trap the elimination product. This methodology could be successfully applied to the quantitative cleavage of a microcystin-LF-glutathione conjugate. The alkyne moiety introduced by this procedure offers the possibility for further reactions with azides by using click chemistry, which might be useful for the derivatization or isolation of microcystins. PMID:27346324

  6. CsrA activates flhDC expression by protecting flhDC mRNA from RNase E-mediated cleavage.

    Yakhnin, Alexander V; Baker, Carol S; Vakulskas, Christopher A; Yakhnin, Helen; Berezin, Igor; Romeo, Tony; Babitzke, Paul

    2013-02-01

    Csr is a conserved global regulatory system that controls expression of several hundred Escherichia coli genes. CsrA protein represses translation of numerous genes by binding to mRNA and inhibiting ribosome access. CsrA also activates gene expression, although an activation mechanism has not been reported. CsrA activates flhDC expression, encoding the master regulator of flagellum biosynthesis and chemotaxis, by stabilizing the mRNA. Computer modelling, gel mobility shift and footprint analyses identified two CsrA binding sites extending from positions 1-12 (BS1) and 44-55 (BS2) of the 198 nt flhDC leader transcript. flhD'-'lacZ expression was reduced by mutations in csrA and/or the CsrA binding sites. The position of BS1 suggested that bound CsrA might inhibit 5' end-dependent RNase E cleavage of flhDC mRNA. Consistent with this hypothesis, CsrA protected flhDC leader RNA from RNase E cleavage in vitro and protection depended on BS1 and BS2. Primer extension studies identified flhDC decay intermediates in vivo that correspond to in vitro RNase E cleavage sites. Deletion of these RNase E cleavage sites resulted in increased flhD'-'lacZ expression. Data from mRNA decay studies and quantitative primer extension assays support a model in which bound CsrA activates flhDC expression by inhibiting the 5' end-dependent RNase E cleavage pathway. PMID:23305111

  7. Unique features of monoclonal IgG2b in the cleavage reaction with pepsin.

    Sumii,Hiroshi

    1989-06-01

    Full Text Available Preparations of IgG2b purified from several mouse hybridoma clones were highly susceptible, compared to other subclasses, to peptic digestion under conditions usually used to prepare F (ab'2 fragments. Analyses of the digestion products revealed that no F (ab'2 was produced and that the main product was a Fab-like fragment. Demonstration of the hinge disulfides in the Fc portion clearly indicated that in IgG2b the primary peptic cleavage occurs on the NH2-terminal side of the inter-heavy chain disulfide bridge. The resulting Fab failed to bind with antigen, suggesting the importance of the CH1-hinge region in maintaining the native conformation of the antigen-binding site.

  8. Corticosteroid-binding globulin cleavage is paradoxically reduced in alpha-1 antitrypsin deficiency: Implications for cortisol homeostasis.

    Nenke, Marni A; Holmes, Mark; Rankin, Wayne; Lewis, John G; Torpy, David J

    2016-01-15

    High-affinity corticosteroid-binding globulin (haCBG) is cleaved by neutrophil elastase (NE) resulting in permanent transition to the low cortisol-binding affinity form (laCBG), thereby increasing cortisol availability at inflammatory sites. Alpha-1 antitrypsin (AAT) is the major inhibitor of NE. AAT deficiency (AATD) predisposes patients to early-onset emphysema due to increased proteolytic destruction from the inherent proteinase-antiproteinase imbalance. We hypothesized that AATD may result in increased CBG cleavage in vivo. We collected demographic data and blood samples from 10 patients with AATD and 28 healthy controls measuring total CBG and haCBG levels by parallel in-house ELISAs, as well as AAT, total and free cortisol levels. haCBG was higher (median [range]); 329 [210-551] vs. 250 [175-365] nmol/L; PAAT levels (P<0.05, R=-0.64). Paradoxically, proteolytic cleavage of CBG was reduced in AATD, despite the recognized increase in NE activity. This implies that NE activity is not the mechanism for systemic CBG cleavage in basal, low inflammatory conditions. Relatively low levels of laCBG may have implications for cortisol action in AATD. PMID:26522656

  9. Aspartyl Protease-Mediated Cleavage of BAG6 Is Necessary for Autophagy and Fungal Resistance in Plants.

    Li, Yurong; Kabbage, Mehdi; Liu, Wende; Dickman, Martin B

    2016-01-01

    The Bcl-2-associated athanogene (BAG) family is an evolutionarily conserved group of cochaperones that modulate numerous cellular processes. Previously we found that Arabidopsis thaliana BAG6 is required for basal immunity against the fungal phytopathogen Botrytis cinerea. However, the mechanisms by which BAG6 controls immunity are obscure. Here, we address this important question by determining the molecular mechanisms responsible for BAG6-mediated basal resistance. We show that Arabidopsis BAG6 is cleaved in vivo in a caspase-1-like-dependent manner and via a combination of pull-downs, mass spectrometry, yeast two-hybrid assays, and chemical genomics, we demonstrate that BAG6 interacts with a C2 GRAM domain protein (BAGP1) and an aspartyl protease (APCB1), both of which are required for BAG6 processing. Furthermore, fluorescence and transmission electron microscopy established that BAG6 cleavage triggers autophagy in the host that coincides with disease resistance. Targeted inactivation of BAGP1 or APCB1 results in the blocking of BAG6 processing and loss of resistance. Mutation of the cleavage site blocks cleavage and inhibits autophagy in plants; disease resistance is also compromised. Taken together, these results identify a mechanism that couples an aspartyl protease with a molecular cochaperone to trigger autophagy and plant defense, providing a key link between fungal recognition and the induction of cell death and resistance. PMID:26739014

  10. Targeted cleavage of hepatitis E virus 3' end RNA mediated by hammerhead ribozymes inhibits viral RNA replication

    The 3' end of hepatitis E virus (HEV) contains cis-acting regulatory element, which plays an important role in viral replication. To develop specific replication inhibitor at the molecular level, mono- and di-hammerhead ribozymes (Rz) were designed and synthesized against the conserved 3' end sequences of HEV, which cleave at nucleotide positions 7125 and 7112/7125, respectively. Di-hammerhead ribozyme with two catalytic motifs in tandem was designed to cleave simultaneously at two sites spaced 13 nucleotides apart, which increases the overall cleavage efficiency and prevents the development of escape mutants. Specific cleavage products were obtained with both the ribozymes in vitro at physiological conditions. The inactive control ribozymes showed no cleavage. The ribozymes showed specific inhibition of HEV 3' end fused-luciferase reporter gene expression by ∼37 and ∼60%, respectively in HepG2 cells. These results demonstrate a feasible approach to inhibit the HEV replication to a limited extent by targeting the cis-acting 3' end of HEV with hammerhead ribozymes

  11. A microRNA of infectious laryngotracheitis virus can downregulate and direct cleavage of ICP4 mRNA.

    Waidner, Lisa A; Burnside, Joan; Anderson, Amy S; Bernberg, Erin L; German, Marcelo A; Meyers, Blake C; Green, Pamela J; Morgan, Robin W

    2011-03-01

    Viral microRNAs regulate gene expression using either translational repression or mRNA cleavage and decay. Two microRNAs from infectious laryngotracheitis virus (ILTV), iltv-miR-I5 and iltv-miR-I6, map antisense to the ICP4 gene. Post-transcriptional repression by these microRNAs was tested against a portion of the ICP4 coding sequence cloned downstream of firefly luciferase. Luciferase activity was downregulated by approximately 60% with the iltv-miR-I5 mimic. Addition of an iltv-miR-I5 antagomiR or mutagenesis of the target seed sequence alleviated this effect. The iltv-miR-I5 mimic, when co-transfected with a plasmid expressing ICP4, reduced ICP4 transcript levels by approximately 50%, and inhibition was relieved by an iltv-miR-I5 antagomiR. In infected cells, iltv-miR-I5 mediated cleavage at the canonical site, as indicated by modified RACE analysis. Thus, in this system, iltv-miR-I5 decreased ILTV ICP4 mRNA levels via transcript cleavage and degradation. Downregulation of ICP4 could impact the balance between the lytic and latent states of the virus in vivo. PMID:21232778

  12. Endogenous N-terminal Domain Cleavage Modulates α1D-Adrenergic Receptor Pharmacodynamics.

    Kountz, Timothy S; Lee, Kyung-Soon; Aggarwal-Howarth, Stacey; Curran, Elizabeth; Park, Ji-Min; Harris, Dorathy-Ann; Stewart, Aaron; Hendrickson, Joseph; Camp, Nathan D; Wolf-Yadlin, Alejandro; Wang, Edith H; Scott, John D; Hague, Chris

    2016-08-26

    The α1D-adrenergic receptor (ADRA1D) is a key regulator of cardiovascular, prostate, and central nervous system functions. This clinically relevant G protein-coupled receptor has proven difficult to study, as it must form an obligate modular homodimer containing the PDZ proteins scribble and syntrophin or become retained in the endoplasmic reticulum as non-functional protein. We previously determined that targeted removal of the N-terminal (NT) 79 amino acids facilitates ADRA1D plasma membrane expression and agonist-stimulated functional responses. However, whether such an event occurs in physiological contexts was unknown. Herein, we report the ADRA1D is subjected to innate NT processing in cultured human cells. SNAP near-infrared imaging and tandem-affinity purification revealed the ADRA1D is expressed as both full-length and NT truncated forms in multiple human cell lines. Serial truncation mapping identified the cleavage site as Leu(90)/Val(91) in the 95-amino acid ADRA1D NT domain, suggesting human cells express a Δ1-91 ADRA1D species. Tandem-affinity purification MS/MS and co-immunoprecipitation analysis indicate NT processing of ADRA1D is not required to form scribble-syntrophin macromolecular complexes. Yet, label-free dynamic mass redistribution signaling assays demonstrate that Δ1-91 ADRA1D agonist responses were greater than WT ADRA1D. Mutagenesis of the cleavage site nullified the processing event, resulting in ADRA1D agonist responses less than the WT receptor. Thus, we propose that processing of the ADRA1D NT domain is a physiological mechanism employed by cells to generate a functional ADRA1D isoform with optimal pharmacodynamic properties. PMID:27382054

  13. Detection of Strand Cleavage And Oxidation Damage Using Model DNA Molecules Captured in a Nanoscale Pore

    Vercoutere, W.; Solbrig, A.; DeGuzman, V.; Deamer, D.; Akeson, M.

    2003-01-01

    We use a biological nano-scale pore to distinguish among individual DNA hairpins that differ by a single site of oxidation or a nick in the sugar-phosphate backbone. In earlier work we showed that the protein ion channel alpha-hemolysin can be used as a detector to distinguish single-stranded from double-stranded DNA, single base pair and single nucleotide differences. This resolution is in part a result of sensitivity to structural changes that influence the molecular dynamics of nucleotides within DNA. The strand cleavage products we examined here included a 5-base-pair (5-bp) hairpin with a 5-prime five-nucleotide overhang, and a complementary five-nucleotide oligomer. These produced predictable shoulder-spike and rapid near-full blockade signatures, respectively. When combined, strand annealing was monitored in real time. The residual current level dropped to a lower discrete level in the shoulder-spike blockade signatures, and the duration lengthened. However, these blockade signatures had a shorter duration than the unmodified l0bp hairpin. To test the pore sensitivity to nucleotide oxidation, we examined a 9-bp hairpin with a terminal 8-oxo-deoxyguanosine (8-oxo-dG), or a penultimate 8-oxo-dG. Each produced blockade signatures that differed from the otherwise identical control 9bp hairpins. This study showed that DNA structure is modified sufficiently by strand cleavage or oxidation damage at a single site to alter in a predictable manner the ionic current blockade signatures produced. This technique improves the ability to assess damage to DNA, and can provide a simple means to help characterize the risks of radiation exposure. It may also provide a method to test radiation protection.

  14. The cleavage specificity of the aspartic protease of cocoa beans involved in the generation of the cocoa-specific aroma precursors.

    Janek, Katharina; Niewienda, Agathe; Wöstemeyer, Johannes; Voigt, Jürgen

    2016-11-15

    Particular peptides generated from the vicilin-class(7S) globulin of the cocoa beans by acid-induced proteolysis during cocoa fermentation are essential precursors of the cocoa-specific aroma notes. As revealed by in vitro studies, the formation of the cocoa-specific aroma precursors depends on the particular cleavage specificity of the cocoa aspartic protease, which cannot be substituted by pepsin. Therefore, we have investigated the effects of aspartic protease inhibitors on both enzymes and comparatively studied their cleavage specificities using different protein substrates and MALDI-TOF mass spectrometric analyses of the generated oligopeptides. Three classes of cleavage sites have been identified and characterized: (I) sequences exclusively cleaved by the cocoa enzyme, (II) sequences cleaved by both pepsin and the cocoa enzyme, and (III) those cleaved exclusively by pepsin. In contrast to most aspartic proteases from other origins, basic amino acid residues, particularly lysine, were found to be abundant in the specific cleavage sites of the cocoa enzyme. PMID:27283639

  15. SKI2 mediates degradation of RISC 5'-cleavage fragments and prevents secondary siRNA production from miRNA targets in Arabidopsis

    Branscheid, Anja; Marchais, Antonin; Schott, Gregory; Lange, Heike; Gagliardi, Dominique; Andersen, Stig Uggerhøj; Voinnet, Olivier; Brodersen, Peter

    2015-01-01

    Small regulatory RNAs are fundamental in eukaryotic and prokaryotic gene regulation. In plants, an important element of post-transcriptional control is effected by 20-24 nt microRNAs (miRNAs) and short interfering RNAs (siRNAs) bound to the ARGONAUTE1 (AGO1) protein in an RNA induced silencing...... complex (RISC). AGO1 may cleave target mRNAs with small RNA complementarity, but the fate of the resulting cleavage fragments remains incompletely understood. Here, we show that SKI2, SKI3 and SKI8, subunits of a cytoplasmic cofactor of the RNA exosome, are required for degradation of RISC 5', but not 3......'-cleavage fragments in Arabidopsis. In the absence of SKI2 activity, many miRNA targets produce siRNAs via the RNA-dependent RNA polymerase 6 (RDR6) pathway. These siRNAs are low-abundant, and map close to the cleavage site. In most cases, siRNAs were produced 5' to the cleavage site, but several examples...

  16. Cleavage by Caspase 8 and Mitochondrial Membrane Association Activate the BH3-only Protein Bid during TRAIL-induced Apoptosis.

    Huang, Kai; Zhang, Jingjing; O'Neill, Katelyn L; Gurumurthy, Channabasavaiah B; Quadros, Rolen M; Tu, Yaping; Luo, Xu

    2016-05-27

    The BH3-only protein Bid is known as a critical mediator of the mitochondrial pathway of apoptosis following death receptor activation. However, since full-length Bid possesses potent apoptotic activity, the role of a caspase-mediated Bid cleavage is not established in vivo In addition, due to the fact that multiple caspases cleave Bid at the same site in vitro, the identity of the Bid-cleaving caspase during death receptor signaling remains uncertain. Moreover, as Bid maintains its overall structure following its cleavage by caspase 8, it remains unclear how Bid is activated upon cleavage. Here, Bid-deficient (Bid KO) colon cancer cells were generated by gene editing, and were reconstituted with wild-type or mutants of Bid. While the loss of Bid blocked apoptosis following treatment by TNF-related apoptosis inducing ligand (TRAIL), this blockade was relieved by re-introduction of the wild-type Bid. In contrast, the caspase-resistant mutant Bid(D60E) and a BH3 defective mutant Bid(G94E) failed to restore TRAIL-induced apoptosis. By generating Bid/Bax/Bak-deficient (TKO) cells, we demonstrated that Bid is primarily cleaved by caspase 8, not by effector caspases, to give rise to truncated Bid (tBid) upon TRAIL treatment. Importantly, despite the presence of an intact BH3 domain, a tBid mutant lacking the mitochondrial targeting helices (α6 and α7) showed diminished apoptotic activity. Together, these results for the first time establish that cleavage by caspase 8 and the subsequent association with the outer mitochondrial membrane are two critical events that activate Bid during death receptor-mediated apoptosis. PMID:27053107

  17. High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice.

    Jin Hee Kim

    Full Text Available When expression of more than one gene is required in cells, bicistronic or multicistronic expression vectors have been used. Among various strategies employed to construct bicistronic or multicistronic vectors, an internal ribosomal entry site (IRES has been widely used. Due to the large size and difference in expression levels between genes before and after IRES, however, a new strategy was required to replace IRES. A self-cleaving 2A peptide could be a good candidate to replace IRES because of its small size and high cleavage efficiency between genes upstream and downstream of the 2A peptide. Despite the advantages of the 2A peptides, its use is not widespread because (i there are no publicly available cloning vectors harboring a 2A peptide gene and (ii comprehensive comparison of cleavage efficiency among various 2A peptides reported to date has not been performed in different contexts. Here, we generated four expression plasmids each harboring different 2A peptides derived from the foot-and-mouth disease virus, equine rhinitis A virus, Thosea asigna virus and porcine teschovirus-1, respectively, and evaluated their cleavage efficiency in three commonly used human cell lines, zebrafish embryos and adult mice. Western blotting and confocal microscopic analyses revealed that among the four 2As, the one derived from porcine teschovirus-1 (P2A has the highest cleavage efficiency in all the contexts examined. We anticipate that the 2A-harboring cloning vectors we generated and the highest efficiency of the P2A peptide we demonstrated would help biomedical researchers easily adopt the 2A technology when bicistronic or multicistronic expression is required.

  18. Role of the interdomain linker in distance determination for remote cleavage by homing endonuclease I-TevI.

    Liu, Qingqing; Dansereau, John T; Puttamadappa, Shadakshara S; Shekhtman, Alexander; Derbyshire, Victoria; Belfort, Marlene

    2008-06-20

    I-TevI is a modular intron-encoded endonuclease, consisting of an N-terminal catalytic domain and a C-terminal DNA-binding domain, joined by a 75 amino acid linker. This linker can be divided into three regions, starting at the N terminus: the deletion-intolerant (DI) region; the deletion-tolerant (DT) region; and a zinc finger, which acts as a distance determinant for cleavage. To further explore linker function, we generated deletion and substitution mutants that were tested for their preference to cleave at a particular distance or at the correct sequence. Our results demonstrate that the I-TevI linker is multi-functional, a property that sets it apart from junction sequences in most other proteins. First, the linker DI region has a role in I-TevI cleavage activity. Second, the DT linker region participates in distance determination, as evident from DT mutants that display a phenotype similar to that of the zinc-finger mutants in their selection of a cleavage site. Finally, NMR analysis of a freestanding 56 residue linker segment showed an unstructured stretch corresponding to the DI region and a portion of the DT region, followed by a beta-strand corresponding to the remainder of the DT region and containing a key distance-determining arginine, R129. Mutation of this arginine to alanine abolished distance determination and disrupted the beta-strand, indicating that the structure of the DT linker region has a role in cleavage at a fixed distance. PMID:18499124

  19. Structural and functional characterization of cleavage and inactivation of human serine protease inhibitors by the bacterial SPATE protease EspPα from enterohemorrhagic E. coli.

    André Weiss

    Full Text Available EspPα and EspI are serine protease autotransporters found in enterohemorrhagic Escherichia coli. They both belong to the SPATE autotransporter family and are believed to contribute to pathogenicity via proteolytic cleavage and inactivation of different key host proteins during infection. Here, we describe the specific cleavage and functional inactivation of serine protease inhibitors (serpins by EspPα and compare this activity with the related SPATE EspI. Serpins are structurally related proteins that regulate vital protease cascades, such as blood coagulation and inflammatory host response. For the rapid determination of serpin cleavage sites, we applied direct MALDI-TOF-MS or ESI-FTMS analysis of coincubations of serpins and SPATE proteases and confirmed observed cleavage positions using in-gel-digest of SDS-PAGE-separated degradation products. Activities of both serpin and SPATE protease were assessed in a newly developed photometrical assay using chromogenic peptide substrates. EspPα cleaved the serpins α1-protease inhibitor (α1-PI, α1-antichymotrypsin, angiotensinogen, and α2-antiplasmin. Serpin cleavage led to loss of inhibitory function as demonstrated for α1-PI while EspPα activity was not affected. Notably, EspPα showed pronounced specificity and cleaved procoagulatory serpins such as α2-antiplasmin while the anticoagulatory antithrombin III was not affected. Together with recently published research, this underlines the interference of EspPα with hemostasis or inflammatory responses during infection, while the observed interaction of EspI with serpins is likely to be not physiologically relevant. EspPα-mediated serpin cleavage occurred always in flexible loops, indicating that this structural motif might be required for substrate recognition.

  20. Stable intermediates determine proteins' primary unfolding sites in the presence of surfactants

    Petersen, Steen Vang; Andersen, Kell kleiner; Enghild, Jan J.;

    2009-01-01

    cationic (DTAC) surfactant concentrations corresponding to specific conformational transitions, using the surfactant-robust broad-specificity proteases Savinase and Alcalase. Cleavage sites are identified by SDS-PAGE and N-terminal sequencing. We observe well-defined cleavage fragments, which suggest that...

  1. Embryo apoptosis identification: Oocyte grade or cleavage stage?

    Bakri, Noraina Mohd; Ibrahim, Siti Fatimah; Osman, Nurul Atikah; Hasan, Nurhaslina; Jaffar, Farah Hanan Fathihah; Rahman, Zulaiha Abdul; Osman, Khairul

    2016-01-01

    Apoptosis is a programed cell death that is vital for tissue homeostasis. However, embryo apoptosis had been known to be related to embryo fragmentation which should be avoided in in vitro fertilization (IVF). The purpose of this study was to evaluate the relationship of embryo apoptosis with the grade of immature oocytes and cleavage stage of in vitro produced (IVP) cattle embryos. This study consisted of 345 oocytes collected through ovary slicing. Immature oocytes were graded as A, B and C. This grading was based on cumulus cell thickness and compactness. All oocytes then underwent an in vitro maturation (IVM) procedure. An IVF was done 24 h after IVM culture. Prior to staining, stage of cleaved embryos was determined and classified as either 2, 4, 8 or >8-cell embryo stage. Apoptosis status of cleaved IVP embryos was determined by using annexin V-FITC staining technique at 48 and 72 h post insemination (hpi). Apoptosis status for each embryo was classified as either early or late. The result showed that there was no significant difference (p > 0.05) of apoptosis status among grade A, B and C embryos. All grades of oocytes showed embryo apoptosis where 1.5% late apoptosis for grade A, 4.5% and 10.4% of early and late apoptosis for grade B and grade C. Early apoptosis was not seen in grade A embryo. We also noted no significant difference (p > 0.05) of apoptosis status between 2, 4, 8 and >8-cell embryo stage. Early apoptosis was also not seen in >8-cell stage. Even though there were no differences in apoptosis expression between the three classes, the cleavage rate of grade A oocytes was significantly higher (p quality and the cleavage stage of the embryo produced. PMID:26858565

  2. Features of Controlled Laser Thermal Cleavage of Crystalline Silicon

    Controlled laser thermal cleavage of crystalline silicon has been numerically simulated. A 3D analysis of the thermoelastic fields formed in a single-crystal silicon wafer as a result of successive laser heating and exposure to a coolant was performed for three different versions of anisotropy. The simulation was performed for laser irradiation with different wavelengths: 1.06 and 0.808 μm. The calculation results have been experimentally verified using a YAG laser. The results can be used in the electronics industry to optimize the precise separation of silicon wafers into crystals.

  3. Sequence-specific double-strand cleavage of DNA by penta-N-methylpyrrolecarboxamide-EDTA·Fe(II)

    Schultz, Peter G.; Dervan, Peter B.

    1983-01-01

    In the presence of O2 and 5 mM dithiothreitol, penta-N-methylpyrrolecarboxamide-EDTA·Fe(II) [P5E·Fe(II)] at 0.5 µ M cleaves pBR322 plasmid DNA (50 µ M in base pairs) on opposite strands to afford discrete DNA fragments as analyzed by agarose gel electrophoresis. High-resolution denaturing gel electrophoresis of a 32P-end-labeled 517-base-pair restriction fragment containing a major cleavage site reveals that P5E·Fe(II) cleaves 3-5 base pairs contiguous to a 6-base-pair sequence, 5'-T-T-T-T-T-...

  4. Sequence-specific double-strand cleavage of DNA by penta-N-methylpyrrolecarboxamide-EDTA X Fe(II).

    Schultz, P G; Dervan, P B

    1983-01-01

    In the presence of O2 and 5 mM dithiothreitol, penta-N-methylpyrrolecarboxamide-EDTA X Fe(II) [P5E X Fe(II)] at 0.5 microM cleaves pBR322 plasmid DNA (50 microM in base pairs) on opposite strands to afford discrete DNA fragments as analyzed by agarose gel electrophoresis. High-resolution denaturing gel electrophoresis of a 32P-end-labeled 517-base-pair restriction fragment containing a major cleavage site reveals that P5E X Fe(II) cleaves 3-5 base pairs contiguous to a 6-base-pair sequence, 5...

  5. Reductive cleavage of the O-O bond in multicopper oxidases: a QM/MM and QM study

    Srnec, Martin; Ryde, Ulf; Rulisek, Lubomir

    2011-01-01

    The key step in the reaction mechanism of multicopper oxidases (MCOs)-the cleavage of the O-O bond in O-2-has been investigated using combined quantum mechanical and molecular mechanical (QM/MM) methods. This process represents a reaction pathway from the peroxy intermediate after it accepts one electron from the nearby type-1 Cu site to the experimentally-observed native intermediate, which is the only fully oxidised catalytically relevant state in MCOs. Scans of the QM(DFT)/MM potential ene...

  6. Trans-spliced Cas9 allows cleavage of HBB and CCR5 genes in human cells using compact expression cassettes

    Fine, Eli J; Appleton, Caleb M.; Douglas E. White; Brown, Matthew T.; Harshavardhan Deshmukh; Kemp, Melissa L.; Gang Bao

    2015-01-01

    CRISPR/Cas9 systems have been used in a wide variety of biological studies; however, the large size of CRISPR/Cas9 presents challenges in packaging it within adeno-associated viruses (AAVs) for clinical applications. We identified a two-cassette system expressing pieces of the S. pyogenes Cas9 (SpCas9) protein which splice together in cellula to form a functional protein capable of site-specific DNA cleavage. With specific CRISPR guide strands, we demonstrated the efficacy of this system in c...

  7. Comparison of the cleavage of pyrimidine dimers by the bacteriophage T4 and Micrococcus luteus uv-specific endonucleases

    A comparison was made of the activity of the uv-specific endonucleases of bacteriophage T4 (T4 endonuclease V) and of Micrococcus luteus on ultraviolet light-irradiated DNA substrates of defined sequence. The two enzyms cleave DNA at the site of pyrimidine dimers with the same frequency. The products of the cleavage reaction are the same. The pyrimidine dimer DNA-glycosylase activity of both enzymes is more active on double-stranded DNA than it is on single-stranded DNA

  8. Cleavage of phosphorothioated DNA and methylated DNA by the type IV restriction endonuclease ScoMcrA.

    Guang Liu

    Full Text Available Many taxonomically diverse prokaryotes enzymatically modify their DNA by replacing a non-bridging oxygen with a sulfur atom at specific sequences. The biological implications of this DNA S-modification (phosphorothioation were unknown. We observed that simultaneous expression of the dndA-E gene cluster from Streptomyces lividans 66, which is responsible for the DNA S-modification, and the putative Streptomyces coelicolor A(32 Type IV methyl-dependent restriction endonuclease ScoA3McrA (Sco4631 leads to cell death in the same host. A His-tagged derivative of ScoA3McrA cleaved S-modified DNA and also Dcm-methylated DNA in vitro near the respective modification sites. Double-strand cleavage occurred 16-28 nucleotides away from the phosphorothioate links. DNase I footprinting demonstrated binding of ScoA3McrA to the Dcm methylation site, but no clear binding could be detected at the S-modified site under cleavage conditions. This is the first report of in vitro endonuclease activity of a McrA homologue and also the first demonstration of an enzyme that specifically cleaves S-modified DNA.

  9. Sequence-specific interactions of drugs interfering with the topoisomerase-DNA cleavage complex.

    Palumbo, Manlio; Gatto, Barbara; Moro, Stefano; Sissi, Claudia; Zagotto, Giuseppe

    2002-07-18

    DNA-processing enzymes, such as the topoisomerases (tops), represent major targets for potent anticancer (and antibacterial) agents. The drugs kill cells by poisoning the enzymes' catalytic cycle. Understanding the molecular details of top poisoning is a fundamental requisite for the rational development of novel, more effective antineoplastic drugs. In this connection, sequence-specific recognition of the top-DNA complex is a key step to preferentially direct the action of the drugs onto selected genomic sequences. In fact, the (reversible) interference of drugs with the top-DNA complex exhibits well-defined preferences for DNA bases in the proximity of the cleavage site, each drug showing peculiarities connected to its structural features. A second level of selectivity can be observed when chemically reactive groups are present in the structure of the top-directed drug. In this case, the enzyme recognizes or generates a unique site for covalent drug-DNA binding. This will further subtly modulate the drug's efficiency in stimulating DNA damage at selected sites. Finally, drugs can discriminate not only among different types of tops, but also among different isoenzymes, providing an additional level of specific selection. Once the molecular basis for DNA sequence-dependent recognition has been established, the above-mentioned modes to generate selectivity in drug poisoning can be rationally exploited, alone or in combination, to develop tailor-made drugs targeted at defined loci in cancer cells. PMID:12084456

  10. Cleavage of silicon by laser-based shock waves: Interpretation by nanoscopic length scales

    Cleavage along the weakest Si{1 1 1} cleavage plane is measured by impulsive fracture using surface acoustic waves (SAWs) with steep shock fronts, generated by pulsed laser irradiation and recorded with a laser probe–beam-deflection setup. The theoretical cleavage strength, obtained by ab initio calculations for perfect single-crystal silicon lattices is compared with the strength resulting from an improved Polanyi–Orowan cleavage model. The critical strength of a real silicon crystal, measured by using calibrated elastic surface pulses with shocks, was employed to extract the corresponding critical length scale characterizing the cleavage process on the basis of the modified cleavage model. The extracted length scale of 7 nm can be connected with the size of the microstructural defect initiating failure. Usually stress generating surface defects are responsible for the nucleation of brittle fracture, especially in nanoscale systems with large surface areas.

  11. Study of mechanism of cleavage fracture at low temperature

    Chen, J. H.; Wang, G. Z.

    1992-02-01

    In this investigation, a series of crack opening displacement (COD) tests were carried out at several low temperatures for C-Mn weld steel. Some of the specimens were loaded until fracture, and the mechanical properties and microscopic parameters on fracture surfaces were measured. Other specimens were unloaded before fracture at different applied loads. The distributions of the elongated cavities and the cleavage microcracks ahead of fatigue crack tips were observed in detail. Based on the experimental results, the combined criterion of a critical strain ɛ p ≥ ɛc) for initiating a crack nucleus, a critical stress triaxiality (σ m/σ ≥ tc) for preventing it from blunting, and a critical normal stress (σ yy/σf) for the cleavage extension was proposed again, and the critical values of ɛp and σm/-σ for the C-Mn weld steel were measured. The reason why the minimum COD value could not be zero is explained. The mechanism of generation of the lower limit COD value on the lower shelf of the toughness transition curve is proposed.

  12. Drosha regulates gene expression independently of RNA cleavage function

    Gromak, Natalia; Dienstbier, Martin; Macias, Sara;

    2013-01-01

    Drosha is the main RNase III-like enzyme involved in the process of microRNA (miRNA) biogenesis in the nucleus. Using whole-genome ChIP-on-chip analysis, we demonstrate that, in addition to miRNA sequences, Drosha specifically binds promoter-proximal regions of many human genes in a transcription......-terminal protein-interaction domain, which associates with the RNA-binding protein CBP80 and RNA Polymerase II. Consequently, we uncover a previously unsuspected RNA cleavage-independent function of Drosha in the regulation of human gene expression.......Drosha is the main RNase III-like enzyme involved in the process of microRNA (miRNA) biogenesis in the nucleus. Using whole-genome ChIP-on-chip analysis, we demonstrate that, in addition to miRNA sequences, Drosha specifically binds promoter-proximal regions of many human genes in a transcription......-dependent manner. This binding is not associated with miRNA production or RNA cleavage. Drosha knockdown in HeLa cells downregulated nascent gene transcription, resulting in a reduction of polyadenylated mRNA produced from these gene regions. Furthermore, we show that this function of Drosha is dependent on its N...

  13. Intracellular ribozyme-catalyzed trans-cleavage of RNA monitored by fluorescence resonance energy transfer.

    Vitiello, D; Pecchia, D B; Burke, J M

    2000-01-01

    Small catalytic RNAs like the hairpin ribozyme are proving to be useful intracellular tools; however, most attempts to demonstrate trans-cleavage of RNA by ribozymes in cells have been frustrated by rapid cellular degradation of the cleavage products. Here, we describe a fluorescence resonance energy transfer (FRET) assay that directly monitors cleavage of target RNA in tissue-culture cells. An oligoribonucleotide substrate was modified to inhibit cellular ribonuclease degradation without int...

  14. Determination of cleavage planes and fracture characterization of Ni-based single crystal superalloys

    Merrill, John M.; Wilcox, Roy C.

    1992-01-01

    The room temperature fracture behavior of the Ge Rene N-4, CMSX-2, and CMSX-4C single crystal Ni-based superalloys was studied. All crystals were grown along the (001) direction and tensile tested in both helium and hydrogen atmospheres. A stereoscopic technique developed for use with a scanning electron microscope was applied to determine cleavage planes. Planar gamma(') morphologies also were examined to help determine cleavage planes. Helium charged specimens failed on a number of planes including the (111), (110), and (320). In most cases planes of the (111)-type initiated at the notch region and became smaller and smaller as they moved in radially. Tensile strengths in helium averaged 1000 MPa higher than that of the hydrogen charged specimens. Specimens tested in hydrogen generally failed on (100)-type planes originating from the notch region. This (100) region comprised 60 to 80 percent of the total fracture surface on most samples and appeared as large flat planes perpendicular to the growth direction of the crystal. The interior regions contained (100)-type planes as well as (321), (320), (210), and (111)-types. Hydrogen charged specimens also showed a high percentage of large cracks oriented at 90 deg to one another, indicative of the (100)-type fracture. The Ge Rene N4 and the CMSX-4C samples contained 3-5 percent gamma/gamma(') eutectic, while the CMSX-2 samples had little or no gamma/gamma(') eutectic. The relationship between gamma/gamma(') eutectic and the fracture surface has not been fully determined, but it is thought that the gamma/gamma(') eutectic may serve as a possible trapping site for hydrogen.

  15. Energy-dependent reversal of secondary isotope effects on simple cleavage reactions: tertiary amine radical cations with deuterium at remote positions

    Deuterium substitution at remote sites gives rise to inverse secondary kinetic isotope effects on the α-cleavage of a number of tertiary amines in the ion source, but to normal isotope effects on reactions occurring in the field-free regions. The change from normal to inverse secondary isotope effects when the internal energy of the reacting ions increases is consistent with transition-state models that involve slight lowering of vibrational frequencies also for bonds well removed from the site of cleavage. The isotope effect on the reactions of ions of high internal energy is caused by the influence that even small changes of isotope-dependent frequencies have on the state sums (a statistical weight effect favouring loss of the labelled radical), whereas the behaviour of low-energy ions is determined by the zero-point energy changes which favour loss of the unlabelled fragment. (author)

  16. The First Example of Cation Radical Induced Ether Cleavage of Benzyl Phenyl Ether

    A thermally stable benzyl phenyl ether has been shown to cleavage under mild conditions. The new reaction described herein further expands the chemistry of the ether cleavage by cation radicals. Over the last several years, our lab has discovered cation radical-induced oxidative C-O bond cleavages such as carbonates (eq 1), carbamates (eq 2), peroxides (eq 3), and alcohols (eq 4), where R is either tert-butyl or benzyl. It was recognized from those reactions that carbocationic chemistry with C-O bond cleavages was predominant, with a 2:1 stoichiometry of Th+·:oxidized molecules

  17. Chemical feasibility of the general acid/base mechanism of glmS ribozyme self-cleavage.

    Dubecký, Matúš; Walter, Nils G; Šponer, Jiří; Otyepka, Michal; Banáš, Pavel

    2015-10-01

    In numerous Gram-positive bacteria, the glmS ribozyme or catalytic riboswitch regulates the expression of glucosamine-6-phosphate (GlcN6P) synthase via site-specific cleavage of its sugar-phosphate backbone in response to GlcN6P ligand binding. Biochemical data have suggested a crucial catalytic role for an active site guanine (G40 in Thermoanaerobacter tengcongensis, G33 in Bacillus anthracis). We used hybrid quantum chemical/molecular mechanical (QM/MM) calculations to probe the mechanism where G40 is deprotonated and acts as a general base. The calculations suggest that the deprotonated guanine G40(-) is sufficiently reactive to overcome the thermodynamic penalty arising from its rare protonation state, and thus is able to activate the A-1(2'-OH) group toward nucleophilic attack on the adjacent backbone. Furthermore, deprotonation of A-1(2'-OH) and nucleophilic attack are predicted to occur as separate steps, where activation of A-1(2'-OH) precedes nucleophilic attack. Conversely, the transition state associated with the rate-determining step corresponds to concurrent nucleophilic attack and protonation of the G1(O5') leaving group by the ammonium moiety of the GlcN6P cofactor. Overall, our calculations help to explain the crucial roles of G40 (as a general base) and GlcN6P (as a general acid) during glmS ribozyme self-cleavage. In addition, we show that the QM/MM description of the glmS ribozyme self-cleavage reaction is significantly more sensitive to the size of the QM region and the quality of the QM-MM coupling than that of other small ribozymes. PMID:25858644

  18. Nuclear distribution and chromatin association of DNA polymerase α-primase is affected by TEV protease cleavage of Cdc23 (Mcm10 in fission yeast

    Gregan Juraj

    2005-06-01

    Full Text Available Abstract Background Cdc23/Mcm10 is required for the initiation and elongation steps of DNA replication but its biochemical function is unclear. Here, we probe its function using a novel approach in fission yeast, involving Cdc23 cleavage by the TEV protease. Results Insertion of a TEV protease cleavage site into Cdc23 allows in vivo removal of the C-terminal 170 aa of the protein by TEV protease induction, resulting in an S phase arrest. This C-terminal fragment of Cdc23 is not retained in the nucleus after cleavage, showing that it lacks a nuclear localization signal and ability to bind to chromatin. Using an in situ chromatin binding procedure we have determined how the S phase chromatin association of DNA polymerase α-primase and the GINS (Sld5-Psf1-Psf2-Psf3 complex is affected by Cdc23 inactivation. The chromatin binding and sub-nuclear distribution of DNA primase catalytic subunit (Spp1 is affected by Cdc23 cleavage and also by inactivation of Cdc23 using a degron allele, implying that DNA polymerase α-primase function is dependent on Cdc23. In contrast to the effect on Spp1, the chromatin association of the Psf2 subunit of the GINS complex is not affected by Cdc23 inactivation. Conclusion An important function of Cdc23 in the elongation step of DNA replication may be to assist in the docking of DNA polymerase α-primase to chromatin.

  19. Translation termination factor eRF3 is targeted for caspase-mediated proteolytic cleavage and degradation during DNA damage-induced apoptosis.

    Hashimoto, Yoshifumi; Hosoda, Nao; Datta, Pinaki; Alnemri, Emad S; Hoshino, Shin-ichi

    2012-12-01

    Polypeptide chain release factor eRF3 plays pivotal roles in translation termination and post-termination events including ribosome recycling and mRNA decay. It is not clear, however, if eRF3 is targeted for the regulation of gene expression. Here we show that DNA-damaging agents (UV and etoposide) induce the immediate cleavage and degradation of eRF3 in a caspase-dependent manner. The effect is selective since the binding partners of eRF3, eRF1 and PABP, and an unrelated control, GAPDH, were not affected. Point mutations of aspartate residues within overlapping DXXD motifs near the amino terminus of eRF3 prevented the appearance of the UV-induced cleavage product, identifying D32 as the major cleavage site. The cleavage and degradation occurred in a similar time-dependent manner to those of eIF4G, a previously established caspase-3 target involved in the inhibition of translation during apoptosis. siRNA-mediated knockdown of eRF3 led to inhibition of cellular protein synthesis, supporting the idea that the decrease in the amount of eRF3 caused by the caspase-mediated degradation contributes to the inhibition of translation during apoptosis. This is the first report showing that eRF3 could serve as a target in the regulation of gene expression. PMID:23054082

  20. Investigation on the evaluation of cleavage fracture toughness using PCCv specimens in the ductile-brittle transition range of reactor pressure vessel steels (contract research)

    Onizawa, Kunio; Tobita, Tohru; Suzuki, Masahide [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    To obtain a reliable fracture toughness value for the cleavage fracture initiation in the ductile-brittle transition range of RPV steels, the applicability of precracked Charpy-v (PCCv) specimens was investigated. An approach based on the weakest link theory and fractographic observation were applied to analyze the specimen size effect and the scatter of fracture toughness values. The materials used were four kinds of ASTM A533B class 1 steels that were all manufactured by Japanese steel makers. The specimen size effect on cleavage fracture toughness was seen between PCCv and 1T-CT specimens. To obtain the equivalent data from PCCv specimens to 1T-CT specimens, the size correction scheme based on the weakest link theory was applied to the PCCv data. However, it was found that the size effect was still remained to some extent. The fracture toughness transition curve was evaluated by means of the master curve approach which was being proposed by the ASTM. The master curve determined by PCCv data tended to overestimate the fracture toughness at the upper transition range where PCCv data would be invalid. According to the master curve approach using valid PCCv data sets, it was shown that the shift of the master curve by irradiation was somewhat greater than the Charpy 41J shift. Through fractographic observation, the ductile crack growth before a cleavage fracture was characterized and the initiation site of cleavage fracture was determined. (author)

  1. Proteolytic processing of the cilium adhesin MHJ_0194 (P123J ) in Mycoplasma hyopneumoniae generates a functionally diverse array of cleavage fragments that bind multiple host molecules.

    Raymond, Benjamin B A; Jenkins, Cheryl; Seymour, Lisa M; Tacchi, Jessica L; Widjaja, Michael; Jarocki, Veronica M; Deutscher, Ania T; Turnbull, Lynne; Whitchurch, Cynthia B; Padula, Matthew P; Djordjevic, Steven P

    2015-03-01

    Mycoplasma hyopneumoniae, the aetiological agent of porcine enzootic pneumonia, regulates the presentation of proteins on its cell surface via endoproteolysis, including those of the cilial adhesin P123 (MHJ_0194). These proteolytic cleavage events create functional adhesins that bind to proteoglycans and glycoproteins on the surface of ciliated and non-ciliated epithelial cells and to the circulatory host molecule plasminogen. Two dominant cleavage events of the P123 preprotein have been previously characterized; however, immunoblotting studies suggest that more complex processing events occur. These extensive processing events are characterized here. The functional significance of the P97 cleavage fragments is also poorly understood. Affinity chromatography using heparin, fibronectin and plasminogen as bait and peptide arrays were used to expand our knowledge of the adhesive capabilities of P123 cleavage fragments and characterize a novel binding motif in the C-terminus of P123. Further, we use immunohistochemistry to examine in vivo, the biological significance of interactions between M. hyopneumoniae and fibronectin and show that M. hyopneumoniae induces fibronectin deposition at the site of infection on the ciliated epithelium. Our data supports the hypothesis that M. hyopneumoniae possesses the molecular machinery to influence key molecular communication pathways in host cells. PMID:25293691

  2. Sequence adaptations affecting cleavage of the VP1/2A junction by the 3C protease in foot-and-mouth disease virus-infected cells

    Gullberg, Maria; Polacek, Charlotta; Belsham, Graham

    2014-01-01

    The foot-and-mouth disease virus (FMDV) capsid protein precursor P1-2A is cleaved by the virus-encoded 3C protease to VP0, VP3, VP1 and 2A. It was shown previously that modification of a single amino acid residue (K210E) within the VP1 protein and close to the VP1/2A cleavage site, inhibited...

  3. Embryo apoptosis identification: Oocyte grade or cleavage stage?

    Bakri, Noraina Mohd; Ibrahim, Siti Fatimah; Osman, Nurul Atikah; Hasan, Nurhaslina; Jaffar, Farah Hanan Fathihah; Rahman, Zulaiha Abdul; Osman, Khairul

    2015-01-01

    Apoptosis is a programed cell death that is vital for tissue homeostasis. However, embryo apoptosis had been known to be related to embryo fragmentation which should be avoided in in vitro fertilization (IVF). The purpose of this study was to evaluate the relationship of embryo apoptosis with the grade of immature oocytes and cleavage stage of in vitro produced (IVP) cattle embryos. This study consisted of 345 oocytes collected through ovary slicing. Immature oocytes were graded as A, B and C. This grading was based on cumulus cell thickness and compactness. All oocytes then underwent an in vitro maturation (IVM) procedure. An IVF was done 24 h after IVM culture. Prior to staining, stage of cleaved embryos was determined and classified as either 2, 4, 8 or >8-cell embryo stage. Apoptosis status of cleaved IVP embryos was determined by using annexin V-FITC staining technique at 48 and 72 h post insemination (hpi). Apoptosis status for each embryo was classified as either early or late. The result showed that there was no significant difference (p > 0.05) of apoptosis status among grade A, B and C embryos. All grades of oocytes showed embryo apoptosis where 1.5% late apoptosis for grade A, 4.5% and 10.4% of early and late apoptosis for grade B and grade C. Early apoptosis was not seen in grade A embryo. We also noted no significant difference (p > 0.05) of apoptosis status between 2, 4, 8 and >8-cell embryo stage. Early apoptosis was also not seen in >8-cell stage. Even though there were no differences in apoptosis expression between the three classes, the cleavage rate of grade A oocytes was significantly higher (p < 0.01) than grade B and grade C. In conclusion, the apoptosis expression in the embryo can occur regardless of the oocyte quality and the cleavage stage of the embryo produced. PMID:26858565

  4. Cleavage of an amide bond by a ribozyme

    Dai, X.; De Mesmaeker, A.; Joyce, G. F.; Miller, S. L. (Principal Investigator)

    1995-01-01

    A variant form of a group I ribozyme, optimized by in vitro evolution for its ability to catalyze magnesium-dependent phosphoester transfer reactions involving DNA substrates, also catalyzes the cleavage of an unactivated alkyl amide when that linkage is presented in the context of an oligodeoxynucleotide analog. Substrates containing an amide bond that joins either two DNA oligos, or a DNA oligo and a short peptide, are cleaved in a magnesium-dependent fashion to generate the expected products. The first-order rate constant, kcat, is 0.1 x 10(-5) min-1 to 1 x 10(-5) min-1 for the DNA-flanked substrates, which corresponds to a rate acceleration of more than 10(3) as compared with the uncatalyzed reaction.

  5. Dinitrogen cleavage and hydrogenation by a trinuclear titanium polyhydride complex.

    Shima, Takanori; Hu, Shaowei; Luo, Gen; Kang, Xiaohui; Luo, Yi; Hou, Zhaomin

    2013-06-28

    Both the Haber-Bosch and biological ammonia syntheses are thought to rely on the cooperation of multiple metals in breaking the strong N≡N triple bond and forming an N-H bond. This has spurred investigations of the reactivity of molecular multimetallic hydrides with dinitrogen. We report here the reaction of a trinuclear titanium polyhydride complex with dinitrogen, which induces dinitrogen cleavage and partial hydrogenation at ambient temperature and pressure. By (1)H and (15)N nuclear magnetic resonance, x-ray crystallographic, and computational studies of some key reaction steps and products, we have determined that the dinitrogen (N2) reduction proceeds sequentially through scission of a N2 molecule bonded to three Ti atoms in a μ-η(1):η(2):η(2)-end-on-side-on fashion to give a μ2-N/μ3-N dinitrido species, followed by intramolecular hydrogen migration from Ti to the μ2-N nitrido unit. PMID:23812710

  6. Bond cleavages of adenosine 5'-triphosphate induced by monochromatic soft X-rays

    To investigate which type of bond is likely to be cleaved by soft X-ray exposure to an adenosine 5'-triphosphate (ATP), we observed spectral changes in X-ray absorption near edge structure (XANES) around nitrogen and oxygen K-edge of an ATP film by soft X-ray irradiation. Experiments were performed at a synchrotron soft X-ray beamline at SPring-8, Japan. The XANES spectra around the nitrogen and oxygen .K-edge slightly varied by exposure to 560 eV soft X-rays. These changes are originated from the cleavage of C-N bonds between a sugar and a nucleobase site and of C-O, P-O or O-H bond of sugar and phosphate site. From the comparison between the change in XANES intensity of σ* peak at nitrogen and that at oxygen K-edges, it is inferred that the C-O, P-O or O-H bond of sugar and phosphate is much efficiently cleaved than the C-N of N-glycoside bond by the exposure of 560 eV soft X-ray to ATP film.

  7. Modelling of ductile and cleavage fracture by local approach

    This report describes the modelling of ductile and cleavage fracture processes by local approach. It is now well known that the conventional fracture mechanics method based on single parameter criteria is not adequate to model the fracture processes. It is because of the existence of effect of size and geometry of flaw, loading type and rate on the fracture resistance behaviour of any structure. Hence, it is questionable to use same fracture resistance curves as determined from standard tests in the analysis of real life components because of existence of all the above effects. So, there is need to have a method in which the parameters used for the analysis will be true material properties, i.e. independent of geometry and size. One of the solutions to the above problem is the use of local approaches. These approaches have been extensively studied and applied to different materials (including SA33 Gr.6) in this report. Each method has been studied and reported in a separate section. This report has been divided into five sections. Section-I gives a brief review of the fundamentals of fracture process. Section-II deals with modelling of ductile fracture by locally uncoupled type of models. In this section, the critical cavity growth parameters of the different models have been determined for the primary heat transport (PHT) piping material of Indian pressurised heavy water reactor (PHWR). A comparative study has been done among different models. The dependency of the critical parameters on stress triaxiality factor has also been studied. It is observed that Rice and Tracey's model is the most suitable one. But, its parameters are not fully independent of triaxiality factor. For this purpose, a modification to Rice and Tracery's model is suggested in Section-III. Section-IV deals with modelling of ductile fracture process by locally coupled type of models. Section-V deals with the modelling of cleavage fracture process by Beremins model, which is based on Weibulls

  8. Delay of HeLa cell cleavage into interphase using dihydrocytochalasin B: retention of a postmitotic spindle and telophase disc correlates with synchronous cleavage recovery

    1995-01-01

    The molecular signals that determine the position and timing of the cleavage furrow during mammalian cell cytokinesis are presently unknown. We have studied in detail the effect of dihydrocytochalasin B (DCB), a drug that interferes with actin assembly, on specific late mitotic events in synchronous HeLa cells. When cleavage furrow formation is blocked at 10 microM DCB, cells return to interphase by the criteria of reformation of nuclei with lamin borders, degradation of the cyclin B componen...

  9. Cleavage of DAP5 by coxsackievirus B3 2A protease facilitates viral replication and enhances apoptosis by altering translation of IRES-containing genes.

    Hanson, P J; Ye, X; Qiu, Y; Zhang, H M; Hemida, M G; Wang, F; Lim, T; Gu, A; Cho, B; Kim, H; Fung, G; Granville, D J; Yang, D

    2016-05-01

    Cleavage of eukaryotic translation initiation factor 4G (eIF4G) by enterovirus proteases during infection leads to the shutoff of cellular cap-dependent translation, but does not affect the initiation of cap-independent translation of mRNAs containing an internal ribosome entry site (IRES). Death-associated protein 5 (DAP5), a structural homolog of eIF4G, is a translation initiation factor specific for IRES-containing mRNAs. Coxsackievirus B3 (CVB3) is a positive single-stranded RNA virus and a primary causal agent of human myocarditis. Its RNA genome harbors an IRES within the 5'-untranslated region and is translated by a cap-independent, IRES-driven mechanism. Previously, we have shown that DAP5 is cleaved during CVB3 infection. However, the protease responsible for cleavage, cleavage site and effects on the translation of target genes during CVB3 infection have not been investigated. In the present study, we demonstrated that viral protease 2A but not 3C is responsible for DAP5 cleavage, generating 45- and 52-kDa N- (DAP5-N) and C-terminal (DAP5-C) fragments, respectively. By site-directed mutagenesis, we found that DAP5 is cleaved at amino acid G434. Upon cleavage, DAP5-N largely translocated to the nucleus at the later time points of infection, whereas the DAP5-C largely remained in the cytoplasm. Overexpression of these DAP5 truncates demonstrated that DAP5-N retained the capability of initiating IRES-driven translation of apoptosis-associated p53, but not the prosurvival Bcl-2 (B-cell lymphoma 2) when compared with the full-length DAP5. Similarly, DAP5-N expression promoted CVB3 replication and progeny release; on the other hand, DAP5-C exerted a dominant-negative effect on cap-dependent translation. Taken together, viral protease 2A-mediated cleavage of DAP5 results in the production of two truncates that exert differential effects on protein translation of the IRES-containing genes, leading to enhanced host cell death. PMID:26586572

  10. Cleavage-based voting behavior in cross-national perspective : Evidence from six postwar democracies

    Brooks, Clem; Nieuwbeerta, Paul; Manza, Jeff

    2006-01-01

    We investigate trends and cross-national variation in the impact of class, religious, and gender cleavages on voting behavior in six advanced capitalist democracies in the postwar period. Earlier research on cleavage voting has been criticized for utilizing outdated ‘‘two-class’’ models of class str

  11. Cleavage-based voting behavior in cross-national perspective: evidence from six postwar democracies

    Brooks, Clem; Nieuwbeerta, Paul; Manza, Jeff

    2006-01-01

    We investigate trends and cross-national variation in the impact of class, religious, and gender cleavages on voting behavior in six advanced capitalist democracies in the postwar period. Earlier research on cleavage voting has been criticized for utilizing outdated “two-class” models of class struc

  12. Inhibition of RecA-mediated cleavage in covalent dimers of UmuD.

    Lee, M. H.; Guzzo, A; Walker, G C

    1996-01-01

    Disulfide-cross-linked UmuD2 derivatives were cleaved poorly upon incubation with activated RecA. Reducing the disulfide bonds prior to incubating the derivatives with RecA dramatically increased their extent of cleavage. These observations suggest that the UmuD monomer is a better substrate for the RecA-mediated cleavage reaction than the dimer.

  13. The influences of hinge length and composition on the susceptibility of human IgA to cleavage by diverse bacterial IgA1 proteases.

    Senior, Bernard W; Woof, Jenny M

    2005-06-15

    The influences of IgA hinge length and composition on its susceptibility to cleavage by bacterial IgA1 proteases were examined using a panel of IgA hinge mutants. The IgA1 proteases of Streptococcus pneumoniae, Streptococcus sanguis strains SK4 and SK49, Neisseria meningitidis, Neisseria gonorrhoeae, and Haemophilus influenzae cleaved IgA2-IgA1 half hinge, an Ab featuring half of the IgA1 hinge incorporated into the equivalent site in IgA1 protease-resistant IgA2, whereas those of Streptococcus mitis, Streptococcus oralis, and S. sanguis strain SK1 did not. Hinge length reduction by removal of two of the four C-terminal proline residues rendered IgA2-IgA1 half hinge resistant to all streptococcal IgA1 metalloproteinases but it remained sensitive to cleavage by the serine-type IgA1 proteases of Neisseria and Haemophilus spp. The four C-terminal proline residues could be substituted by alanine residues or transferred to the N-terminal extremity of the hinge without affect on the susceptibility of the Ab to cleavage by serine-type IgA1 proteases. However, their removal rendered the Ab resistant to cleavage by all the IgA1 proteases. We conclude that the serine-type IgA1 proteases of Neisseria and Haemophilus require the Fab and Fc regions to be separated by at least ten (or in the case of N. gonorrhoeae type I protease, nine) amino acids between Val(222) and Cys(241) (IgA1 numbering) for efficient access and cleavage. By contrast, the streptococcal IgA1 metalloproteinases require 12 or more appropriate amino acids between the Fab and Fc to maintain a minimum critical distance between the scissile bond and the start of the Fc. PMID:15944283

  14. A vitellogenin polyserine cleavage site: highly disordered conformation protected from proteolysis by phosphorylation.

    Havukainen, Heli; Underhaug, Jarl; Wolschin, Florian; Amdam, Gro; Halskau, Øyvind

    2012-06-01

    Vitellogenin (Vg) is an egg-yolk precursor protein in most oviparous species. In honeybee (Apis mellifera), the protein (AmVg) also affects social behavior and life-span plasticity. Despite its manifold functions, the AmVg molecule remains poorly understood. The subject of our structure-oriented AmVg study is its polyserine tract - a little-investigated repetitive protein segment mostly found in insects. We previously reported that AmVg is tissue specifically cleaved in the vicinity of this tract. Here, we show that, despite its potential for an open, disordered structure, AmVg is unexpectedly resistant to trypsin/chymotrypsin digestion at the tract. Our findings suggest that multiple phosphorylation plays a role in this resilience. Sequence variation is highly pronounced at the polyserine region in insect Vgs. We demonstrate that sequence differences in this region can lead to structural variation, as NMR and circular dichroism (CD) evidence assign different conformational propensities to polyserine peptides from the honeybee and the jewel wasp Nasonia vitripennis; the former is extended and disordered and the latter more compact and helical. CD analysis of the polyserine region of bumblebee Bombus ignitus and wasp Pimpla nipponica supports a random coil structure in these species. The spectroscopic results strengthen our model of the AmVg polyserine tract as a flexible domain linker shielded by phosphorylation. PMID:22573762

  15. A fungal anticodon nuclease ribotoxin exploits a secondary cleavage site to evade tRNA repair

    Meineke, Birthe; Kast, Alene; Schwer, Beate; Meinhardt, Friedhelm; Shuman, Stewart; Klassen, Roland

    2012-01-01

    The PaOrf2 and γ-toxin subunits of Pichia acaciae toxin (PaT) and Kluyveromyces lactis zymocin are tRNA anticodon nucleases encoded by cytoplasmic DNA plasmids. Toxicity can be recapitulated conveniently by induced intracellular expression of PaOrf2 or γ-toxin in Saccharomyces cerevisiae. Mutational analysis of γ-toxin has identified amino acids required for ribotoxicity in vivo and RNA transesterification in vitro. Here, the authors report that PaOrf2 residues Glu9 and His287 (putative count...

  16. Caspase cleavage sites in the human proteome: CaspDB, a database of predicted substrates

    Cieplak, Piotr

    2015-01-01

    Caspases are enzymes belonging to a conserved family of cysteine-dependent aspartic-specific proteases that are involved in vital cellular processes and play a prominent role in apoptosis and inflammation. Determining all relevant protein substrates of caspases remains a challenging task. Over 1500 caspase substrates have been discovered in the human proteome according to published data and new substrates are discovered on a daily basis. To aid the discovery process we devel...

  17. Evolutionarily distinct bacteriophage endolysins featuring conserved peptidoglycan cleavage sites protect mice from MRSA infection

    Staphylococcus aureus is a Gram-positive pathogen relevant for both human and animal health. With multi-drug resistant S. aureus strains becoming increasingly prevalent, alternative therapeutics are urgently needed. Bacteriophage endolysins (peptidoglycan hydrolases, PGH) are capable of killing Gra...

  18. Ultrasensitive monitoring of ribozyme cleavage product using molecular-beacon-ligation system

    MENG XiangXian; TANG ZhiWen; WANG KeMin; TAN WeiHong; YANG XiaoHai; LI Jun; GUO QiuPing

    2007-01-01

    This paper reports a new approach to detect ribozyme cleavage product based on the molecular- beacon-ligation system. The molecular beacon, designed in such a way that one-half of its loop is complementary to ribozyme cleavage product, is used to monitor ligation process of RNA/DNA complex in a homogeneous solution and to convert directly cleavage product information into fluorescence signal. The method need not label ribozyme and ribozyme substrate, which is fast, simple and ultrasensitive for detection of cleavage product. Detection limit of the assay is 0.05 nmol/L. The cleavage product of hammerhead ribozyme against hepatitis C virus RNA (HCV-RNA) was detected perfectly based on this assay. Owing to its ultrasensitivity, excellent specificity, convenience and fidelity, this method might hold out great promise in ribozyme reaction and ribozyme gene therapy.

  19. Review and perspective on approaches of evaluating cleavage fracture toughness of pressure vessel steels

    Although efforts have been made to establish cleavage fracture model in the past 30 years or so, uncertainties remain in predicting the cleavage fracture toughness behavior of reactor pressure vessel steels in the transition region. Confusions may be raised in cases such as that there are still outliers while ASME fracture toughness curve indexed to the reference temperature is generally considered as very conservative. The advantage and potentials of using Finite Element method to predict the cleavage fracture behavior of irradiated materials are obvious. However, its effectiveness depends on the rightness of the physical model and criteria established. In this paper, approaches of describing cleavage fracture toughness of pressure vessel steels in the transition region are discussed and compared. The need for focusing on the physical fundamental and criteria of cleavage fracture is addressed. (authors)

  20. Expression of a naturally occurring angiotensin AT(1) receptor cleavage fragment elicits caspase-activation and apoptosis.

    Cook, Julia L; Singh, Akannsha; DeHaro, Dawn; Alam, Jawed; Re, Richard N

    2011-11-01

    Several transmembrane receptors are documented to accumulate in nuclei, some as holoreceptors and others as cleaved receptor products. Our prior studies indicate that a population of the 7-transmembrane angiotensin type-1 receptor (AT(1)R) is cleaved in a ligand-augmented manner after which the cytoplasmic, carboxy-terminal cleavage fragment (CF) traffics to the nucleus. In the present report, we determine the precise cleavage site within the AT(1)R by mass spectrometry and Edman sequencing. Cleavage occurs between Leu(305) and Gly(306) at the junction of the seventh transmembrane domain and the intracellular cytoplasmic carboxy-terminal domain. To evaluate the function of the CF distinct from the holoreceptor, we generated a construct encoding the CF as an in-frame yellow fluorescent protein fusion. The CF accumulates in nuclei and induces apoptosis in CHO-K1 cells, rat aortic smooth muscle cells (RASMCs), MCF-7 human breast adenocarcinoma cells, and H9c2 rat cardiomyoblasts. All cell types show nuclear fragmentation and disintegration, as well as evidence for phosphotidylserine displacement in the plasma membrane and activated caspases. RASMCs specifically showed a 5.2-fold increase (P < 0.001) in CF-induced active caspases compared with control and a 7.2-fold increase (P < 0.001) in cleaved caspase-3 (Asp174). Poly(ADP-ribose)polymerase was upregulated 4.8-fold (P < 0.001) in CF expressing cardiomyoblasts and colocalized with terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL). CF expression also induces DNA laddering, the gold-standard for apoptosis in all cell types studied. CF-induced apoptosis, therefore, appears to be a general phenomenon as it is observed in multiple cell types including smooth muscle cells and cardiomyoblasts. PMID:21813711

  1. Molecular Basis of Catalytic Chamber-assisted Unfolding and Cleavage of Human Insulin by Human Insulin-degrading Enzyme

    Manolopoulou, Marika; Guo, Qing; Malito, Enrico; Schilling, Alexander B.; Tang, Wei-Jen; (UC); (UIC)

    2009-06-02

    Insulin is a hormone vital for glucose homeostasis, and insulin-degrading enzyme (IDE) plays a key role in its clearance. IDE exhibits a remarkable specificity to degrade insulin without breaking the disulfide bonds that hold the insulin A and B chains together. Using Fourier transform ion cyclotron resonance (FTICR) mass spectrometry to obtain high mass accuracy, and electron capture dissociation (ECD) to selectively break the disulfide bonds in gas phase fragmentation, we determined the cleavage sites and composition of human insulin fragments generated by human IDE. Our time-dependent analysis of IDE-digested insulin fragments reveals that IDE is highly processive in its initial cleavage at the middle of both the insulin A and B chains. This ensures that IDE effectively splits insulin into inactive N- and C-terminal halves without breaking the disulfide bonds. To understand the molecular basis of the recognition and unfolding of insulin by IDE, we determined a 2.6-A resolution insulin-bound IDE structure. Our structure reveals that IDE forms an enclosed catalytic chamber that completely engulfs and intimately interacts with a partially unfolded insulin molecule. This structure also highlights how the unique size, shape, charge distribution, and exosite of the IDE catalytic chamber contribute to its high affinity ( approximately 100 nm) for insulin. In addition, this structure shows how IDE utilizes the interaction of its exosite with the N terminus of the insulin A chain as well as other properties of the catalytic chamber to guide the unfolding of insulin and allowing for the processive cleavages.

  2. Extension of microwave-accelerated residue-specific acid cleavage to proteins with carbohydrate side chains and disulfide linkages

    Li, Jinxi; Shefcheck, Kevin; Callahan, John; Fenselau, Catherine

    2008-01-01

    This laboratory has introduced a chemical method for residue-specific protein cleavage and has provided a preliminary assessment of the suitability of microwave accelerated acid cleavage as a proteomic tool. This report is a continuing assessment of the fate of common protein modifications in microwave-accelerated acid cleavage. We have examined the cleavage of ribonuclease A and the related N-linked glycoprotein ribonuclease B, and the O-linked glycoprotein alpha crystallin A chain, using MA...

  3. Not all social cleavages are the same: On the relationship between religious diversity and party system fragmentation

    Raymond, Christopher D.

    2016-01-01

    Most studies examining the relationship between social cleavages and party system fragmentation maintain that higher levels of social diversity lead to greater party system fragmentation. However, most aggregate-level studies focus on one type of social cleavage:ethnic diversity. In order to develop a better understanding of how different cleavages impact electoral competition, this paper considers another type of social cleavage: religious diversity.Contrary to previous literature, higher le...

  4. Party agency and the religious-secular cleavage in post-Communist countries: The case of Romania

    Raymond, Christopher

    2014-01-01

    Research focusing on several post-communist countries has found evidence of social cleavage effects on political behaviour similar to those found in Western Europe. In some post-communist countries, however, social cleavage effects appear far weaker (if at all). To understand why this is the case, I perform a case study of Romania, focusing on the religious–secular cleavage. Drawing upon research that emphasises the role of parties in forming cleavages, I argue that the reason for the absence...

  5. Modulation of enteroviral proteinase cleavage of poly(A)-binding protein (PABP) by conformation and PABP-associated factors

    Rivera, Carlos I.; Lloyd, Richard E.

    2008-01-01

    Poliovirus (PV) causes a drastic inhibition of cellular cap-dependant protein synthesis due to the cleavage of translation factors eukaryotic initiation factor 4G (eIF4G) and poly (A) binding protein (PABP). Only about half of cellular PABP is cleaved by viral 2A and 3C proteinases during infection. We have investigated PABP cleavage determinants that regulate this partial cleavage. PABP cleavage kinetics analyses indicate that PABP exists in multiple conformations, some of which are resistan...

  6. Role of early cleavage in predicting success of intra cytoplasmic sperm injection in assisted reproductive technologies

    Manjula Gopalakrishnan, Sanjeeva Reddy Nellapalli, Muthiah sinvaniah surulimuthu

    2014-07-01

    Full Text Available Aim and Objective: The present study is aimed to carry out the impact of early cleavage over late cleavage in assessing the pregnancy outcome using of Intra Cytoplasmic Sperm Injection (ICSI in assisted reproductive technologies. Materials and Methods A total of 154 patients enrolled for Intra Cytoplasmic Sperm Injection (ICSI fulfilling the selection criteria were recruited for the study at a tertiary care assisted reproductive centre. ICSI was performed 3–5 h after oocyte aspiration with the prepared sperm. All embryos were checked for early cleavage at 27 hours post intra cytoplasmic sperm injection. They were divided into two groups. Group I- Embryos which cleaved before 27 hours after Intra Cytoplasmic Sperm Injection (ICSI. Group II- Embryos which cleaved after 27 hours. The pregnancy rates were compared between the two groups. Results: All the 154 patients were analysed. There was no difference in the mean age, duration of ovarian stimulation, number of oocytes retrieved, fertilization, cleavage rates and embryo quality between the two groups. Early cleavage was observed in 98 patients (63.64 %. Late cleavage was observed in 56 patients (36.36%. The clinical pregnancy was confirmed in 59 patients (60.20% in Group I and 20 patients (35.71% in Group II which was statistically significant P <0.001. Conclusion: Early cleavage is a strong predictor of embryo quality and can predict ICSI outcome.

  7. Sox11 Reduces Caspase-6 Cleavage and Activity.

    Elaine Waldron-Roby

    Full Text Available The apoptotic cascade is an orchestrated event, whose final stages are mediated by effector caspases. Regulatory binding proteins have been identified for caspases such as caspase-3, -7, -8, and -9. Many of these proteins belong to the inhibitor of apoptosis (IAP family. By contrast, caspase-6 is not believed to be influenced by IAPs, and little is known about its regulation. We therefore performed a yeast-two-hybrid screen using a constitutively inactive form of caspase-6 for bait in order to identify novel regulators of caspase-6 activity. Sox11 was identified as a potential caspase-6 interacting protein. Sox11 was capable of dramatically reducing caspase-6 activity, as well as preventing caspase-6 self- cleavage. Several regions, including amino acids 117-214 and 362-395 within sox11 as well as a nuclear localization signal (NLS all contributed to the reduction in caspase-6 activity. Furthermore, sox11 was also capable of decreasing other effector caspase activity but not initiator caspases -8 and -9. The ability of sox11 to reduce effector caspase activity was also reflected in its capacity to reduce cell death following toxic insult. Interestingly, other sox proteins also had the ability to reduce caspase-6 activity but to a lesser extent than sox11.

  8. Calpain-mediated cleavage of DARPP-32 in Alzheimer's disease.

    Cho, Kwangmin; Cho, Mi-Hyang; Seo, Jung-Han; Peak, Jongjin; Kong, Kyoung-Hye; Yoon, Seung-Yong; Kim, Dong-Hou

    2015-10-01

    Toxicity induced by aberrant protein aggregates in Alzheimer's disease (AD) causes synaptic disconnection and concomitant progressive neurodegeneration that eventually impair cognitive function. cAMP-response element-binding protein (CREB) is a transcription factor involved in the molecular switch that converts short-term to long-term memory. Although disturbances in CREB function have been suggested to cause memory deficits in both AD and AD animal models, the mechanism of CREB dysfunction is still unclear. Here, we show that the dopamine- and cAMP-regulated phosphoprotein 32 kDa (DARPP-32), a key inhibitor of protein phosphate-1 (PP-1) that regulates CREB phosphorylation, is cleaved by activated calpain in both AD brains and neuronal cells treated with amyloid-β or okadaic acid, a protein phosphatase-2A inhibitor that induces tau hyperphosphorylation and neuronal death. We found that DARPP-32 is mainly cleaved at Thr(153) by calpain and that this cleavage of DARPP-32 reduces CREB phosphorylation via loss of its inhibitory function on PP1. Our results suggest a novel mechanism of DARPP-32-CREB signalling dysregulation in AD. PMID:26178297

  9. Large volume loss during cleavage formation, Hamburg sequence, Pennsylvania

    Beutner, Edward C.; Charles, Emmanuel G.

    1985-11-01

    Green reduction spots in red slate of the Hamburg sequence exposed near Shartlesville, Pennsylvania, have axial ratios of 1.42:1.0:0.28 on the limbs of near-isoclinal folds and 1.0:0.79:0.41 in fold hinge zones. Conodont cusps and denticles within the reduction spots have been brittlely pulled apart and give independent measures of extension in various directions. Comparison of conodont extensions with reduction spot shapes on limbs and hinges indicates that sedimentary compaction of 44% preceded the tectonic strain associated with cleavage formation. This strain, having identical maximum extensions but greater shortening in fold hinges as compared to limbs, was characterized by 41% extension in X, no change in Y, 50% to 59% shortening in Z, and 29% to 42% tectonic volume loss. The general lack of directed overgrowths on grains reflects the large volume loss and contrasts with other slates, where deformation was an almost constant volume process and extension in X compensated for shortening in Z. *Present address: Department of Geology, Miami University, Oxford, Ohio 45056

  10. Essential Structural and Functional Roles of the Cmr4 Subunit in RNA Cleavage by the Cmr CRISPR-Cas Complex

    Nancy F. Ramia

    2014-12-01

    Full Text Available The Cmr complex is the multisubunit effector complex of the type III-B clustered regularly interspaced short palindromic repeats (CRISPR-Cas immune system. The Cmr complex recognizes a target RNA through base pairing with the integral CRISPR RNA (crRNA and cleaves the target at multiple regularly spaced locations within the complementary region. To understand the molecular basis of the function of this complex, we have assembled information from electron microscopic and X-ray crystallographic structural studies and mutagenesis of a complete Pyrococcus furiosus Cmr complex. Our findings reveal that four helically packed Cmr4 subunits, which make up the backbone of the Cmr complex, act as a platform to support crRNA binding and target RNA cleavage. Interestingly, we found a hook-like structural feature associated with Cmr4 that is likely the site of target RNA binding and cleavage. Our results also elucidate analogies in the mechanisms of crRNA and target molecule binding by the distinct Cmr type III-A and Cascade type I-E complexes.

  11. DNA binding, DNA cleavage, antioxidant and cytotoxicity studies on ruthenium(II) complexes of benzaldehyde 4-methyl-3-thiosemicarbazones

    Sampath, Krishnan; Sathiyaraj, Subbaiyan; Jayabalakrishnan, Chinnasamy

    2013-03-01

    Four new ruthenium(II) complexes with N(4)-methyl thiosemicarbazone ligands, (E)-2-(2-chlorobenzylidene)-N-methylhydrazinecarbothioamide (HL1) and (E)-N-methyl-2-(2-nitrobenzylidene)hydrazinecarbothioamide (HL2), were prepared and fully characterized by various spectro-analytical techniques. The Schiff bases act as bidentate, monobasic chelating ligands with S and N as the donor sites and are preferably found in the thiol form in all the complexes studied. The molecular structure of HL1 and HL2 were determined by single crystal X-ray diffraction method. DNA binding of the compounds was investigated by absorption spectroscopy which indicated that the complexes bind to DNA via intercalation. The oxidative cleavage of the complexes with CT-DNA inferred that the effects of cleavage are dose dependent. Antioxidant studies of the ligands and complexes showed the significant antioxidant activity against DPPH radical. In addition, the in vitro cytotoxicity of the ligands and complexes against MCF-7 cell line was assayed which showed higher cytotoxic activity with the lower IC50 values indicating their efficiency in killing the cancer cells even at low concentrations.

  12. Amino acid sequence requirements in the hinge of human immunoglobulin A1 (IgA1) for cleavage by streptococcal IgA1 proteases.

    Batten, Margaret R; Senior, Bernard W; Kilian, Mogens; Woof, Jenny M

    2003-03-01

    The amino acid sequence requirements in the hinge of human immunoglobulin A1 (IgA1) for cleavage by IgA1 proteases of different species of Streptococcus were investigated. Recombinant IgA1 antibodies were generated with point mutations at proline 227 and threonine 228, the residues lying on either side of the peptide bond at which all streptococcal IgA1 proteases cleave wild-type human IgA1. The amino acid substitutions produced no major effect upon the structure of the mutant IgA1 antibodies or their functional ability to bind to Fcalpha receptors. However, the substitutions had a substantial effect upon sensitivity to cleavage with some streptococcal IgA1 proteases, with, in some cases, a single point mutation rendering the antibody resistant to a particular IgA1 protease. This effect was least marked with the IgA1 protease from Streptococcus pneumoniae, which showed no absolute requirement for either proline or threonine at residues 227 to 228. By contrast, the IgA1 proteases of Streptococcus oralis, Streptococcus sanguis, and Streptococcus mitis had an absolute requirement for proline at 227 but not for threonine at 228, which could be replaced by valine. There was evidence in S. mitis that proteases from different strains may have different amino acid requirements for cleavage. Remarkably, some streptococcal proteases appeared able to cleave the hinge at a distant alternative site if substitution prevented efficient cleavage of the original site. Hence, this study has identified key residues required for the recognition of the IgA1 hinge as a substrate by streptococcal IgA1 proteases, and it marks a preliminary step towards development of specific enzyme inhibitors. PMID:12595464

  13. Characterization of the (0001) cleavage surface of antimony single crystals using scanning probe microscopy: Atomic structure, vacancies, cleavage steps, and twinned interlayers

    Stegemann, Bert; Ritter, Claudia; Kaiser, Bernhard; Rademann, Klaus

    2004-04-01

    Atomically resolved scanning tunneling microscopy images of the unreconstructed hexagonal structure of surface atoms on Sb(0001) are presented. Lateral and vertical lattice parameters have been determined. The interatomic spacing of 4.31 Å (±0.05 Å) on the Sb(0001) surface corresponds to the known bulk data. Cleavage has been found to occur always between adjacent double layers, yielding at least diatomic cleavage steps of 3.75 Å (±0.10 Å) height. Different kinds of defect structures on the cleavage plane have been imaged with atomic resolution. Point defects, caused by a single or by three missing surface atoms, have been uncovered. Stable imaging of cleavage steps, which were found to be straight along the atomic rows, has been achieved. Twinned interlayers formed upon cleavage of Sb even at room temperature have been revealed by atomic force microscopy. The mean twinning angle of 2.42° (±0.20°) is quantitatively in accord with the value of 2.45° predicted by the model of twinning in Sb crystals. The observed features are discussed with respect to other layered materials and with regard to their relevance for the use of Sb(0001) as a support of nanostructures.

  14. Cleavage of phage DNA by the Streptococcus thermophilus CRISPR3-Cas system.

    Alfonso H Magadán

    Full Text Available Streptococcus thermophilus, similar to other Bacteria and Archaea, has developed defense mechanisms to protect cells against invasion by foreign nucleic acids, such as virus infections and plasmid transformations. One defense system recently described in these organisms is the CRISPR-Cas system (Clustered Regularly Interspaced Short Palindromic Repeats loci coupled to CRISPR-associated genes. Two S. thermophilus CRISPR-Cas systems, CRISPR1-Cas and CRISPR3-Cas, have been shown to actively block phage infection. The CRISPR1-Cas system interferes by cleaving foreign dsDNA entering the cell in a length-specific and orientation-dependant manner. Here, we show that the S. thermophilus CRISPR3-Cas system acts by cleaving phage dsDNA genomes at the same specific position inside the targeted protospacer as observed with the CRISPR1-Cas system. Only one cleavage site was observed in all tested strains. Moreover, we observed that the CRISPR1-Cas and CRISPR3-Cas systems are compatible and, when both systems are present within the same cell, provide increased resistance against phage infection by both cleaving the invading dsDNA. We also determined that overall phage resistance efficiency is correlated to the total number of newly acquired spacers in both CRISPR loci.

  15. 5' End-independent RNase J1 endonuclease cleavage of Bacillus subtilis model RNA.

    Deikus, Gintaras; Bechhofer, David H

    2011-10-01

    Bacillus subtilis trp leader RNA is a small (140-nucleotide) RNA that results from attenuation of trp operon transcription upon binding of the regulatory TRAP complex. Previously, endonucleolytic cleavage by ribonuclease RNase J1 in a 3'-proximal, single-stranded region was shown to be critical for initiation of trp leader RNA decay. RNase J1 is a dual-specificity enzyme, with both 5' exonucleolytic and endonucleolytic activities. Here, we provide in vivo and in vitro evidence that RNase J1 accesses its internal target site on trp leader RNA in a 5' end-independent manner. This has important implications for the role of RNase J1 in RNA decay. We also tested the involvement in trp leader RNA decay of the more recently discovered endonuclease RNase Y. Half-lives of several trp leader RNA constructs, which were designed to probe pathways of endonucleolytic versus exonucleolytic decay, were measured in an RNase Y-deficient mutant. Remarkably, the half-lives of these constructs were indistinguishable from their half-lives in an RNase J1-deficient mutant. These results suggest that lowering RNase Y concentration may affect RNA decay indirectly via an effect on RNase J1, which is thought to exist with RNase Y in a degradosome complex. To generalize our findings with trp leader RNA to other RNAs, we show that the mechanism of trp leader RNA decay is not dependent on TRAP binding. PMID:21862575

  16. The Structural Basis of [beta]-Peptide-Specific Cleavage by the Serine Protease Cyanophycinase

    Law, Adrienne M.; Lai, Sandy W.S.; Tavares, John; Kimber, Matthew S.; (Guelph)

    2010-10-01

    Cyanophycin, or poly-L-Asp-multi-L-Arg, is a non-ribosomally synthesized peptidic polymer that is used for nitrogen storage by cyanobacteria and other select eubacteria. Upon synthesis, it self-associates to form insoluble granules, the degradation of which is uniquely catalyzed by a carboxy-terminal-specific protease, cyanophycinase. We have determined the structure of cyanophycinase from the freshwater cyanobacterium Synechocystis sp. PCC6803 at 1.5-{angstrom} resolution, showing that the structure is dimeric, with individual protomers resembling aspartyl dipeptidase. Kinetic characterization of the enzyme demonstrates that the enzyme displays Michaelis-Menten kinetics with a k{sub cat} of 16.5 s{sup -1} and a k{sub cat}/K{sub M} of 7.5 x 10{sup -6} M{sup -1} s{sup -1}. Site-directed mutagenesis experiments confirm that cyanophycinase is a serine protease and that Gln101, Asp172, Gln173, Arg178, Arg180 and Arg183, which form a conserved pocket adjacent to the catalytic Ser132, are functionally critical residues. Modeling indicates that cyanophycinase binds the {beta}-Asp-Arg dipeptide residue immediately N-terminal to the scissile bond in an extended conformation in this pocket, primarily recognizing this penultimate {beta}-Asp-Arg residue of the polymeric chain. Because binding and catalysis depend on substrate features unique to {beta}-linked aspartyl peptides, cyanophycinase is able to act within the cytosol without non-specific cleavage events disrupting essential cellular processes.

  17. Genetic stability of attenuated mengovirus vectors with duplicate primary cleavage sequences

    Short poly(C)-tract Mengoviruses have proven vaccine efficacy in many species of animals. A novel vector for the delivery of foreign proteins was created by insertion of a second autoproteolytic primary cleavage cassette linked to a multiple cloning site (MCS) into an attenuated variant of Mengo. Nineteen cDNAs from foreign sequences that ranged from 39 to 1653 bases were cloned into the MCS. The viral reading frame was maintained and translation resulted in dual, autocatalytic excision of the foreign peptides without disruption of any Mengo proteins. All cDNAs except those with the largest insertions produced viable virus. Active proteins such as GFP, CAT, and SIV p27 were expressed within infected cells. Relative to parental Mengo, the growth kinetics and genetic stability of each vector was inversely proportional to the size of the inserted sequence. While segments up to 1000 bases could be carried, inserts greater than 500-600 bases were usually reduced in size during serial passage. The limit on carrying capacity was probably due to difficulties in virion assembly or particle stability. Yet for inserts less than 500-600 bases, the Mengo vectors provided an effective system for the delivery of foreign epitopes into cells and mice

  18. Methylase-limited partial NotI cleavage for physical mapping of genomic DNA.

    Hanish, J; McClelland, M

    1990-01-01

    Partial cleavage of DNA with the restriction endonuclease NotI (5'...GC/GGCCGC...3') is an important technique for genomic mapping. However, partial genomic cleavage with this enzyme is impaired by the agarose matrix in which the DNA must be suspended. To solve this problem we have purified the blocking methylase M. BspRI (5'...GGmCC...3') for competition digests with NotI. The resulting methylase-limited partial DNA cleavage is shown to be superior to standard techniques on bacterial genomic...

  19. Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage.

    Billinghurst, R.C.; Dahlberg, L; Ionescu, M.; Reiner, A; Bourne, R; Rorabeck, C; Mitchell, P; Hambor, J; Diekmann, O.; Tschesche, H; Chen, J; Van Wart, H; Poole, A. R.

    1997-01-01

    We demonstrate the direct involvement of increased collagenase activity in the cleavage of type II collagen in osteoarthritic human femoral condylar cartilage by developing and using antibodies reactive to carboxy-terminal (COL2-3/4C(short)) and amino-terminal (COL2-1/4N1) neoepitopes generated by cleavage of native human type II collagen by collagenase matrix metalloproteinase (MMP)-1 (collagenase-1), MMP-8 (collagenase-2), and MMP-13 (collagenase-3). A secondary cleavage followed the initia...

  20. Preferential DNA Cleavage under Anaerobic Conditions by a DNA Binding Ruthenium Dimer

    Janaratne, Thamara K.; Ongeri, Fiona; Yadav, Abishek; MacDonnell, Frederick M.

    2007-01-01

    In the absence of O2, the cationic complex, [(phen)2Ru(tatpp)Ru(phen)2]4+ (P4+), undergoes in situ reduction by glutathione (GSH) to form a species that induces DNA cleavage. Exposure to air strongly attenuates the cleavage activity, even in the presence of a large excess of reducing agent (e.g., 40 equiv GSH per P4+) suggesting the complex may be useful in targeting cells with a low oxygen microenvironment (hypoxia) for destruction via DNA cleavage. The active species is identified as the do...

  1. Mechanisms of RNAi: mRNA cleavage fragments may indicate stalled RISC

    Holen, Torgeir

    2005-01-01

    The molecular mechanism of RNA interference (RNAi) is under intense investigation. We previously demonstrated the existence of inactive siRNAs and also of mRNA cleavage in vivo in human cells. Here it is shown that some siRNAs with low activity leave mRNA cleavage fragments while an siRNA with higher activity does not. The pattern is consistent with both short-term (4-24 hours) and long-term (1-4 days) time-series. Analysis of the putative 3′ mRNA cleavage product showed high GC content immed...

  2. Guest-host interactions in the cleavage of phenylphenyl acetates by -cyclodextrin in alkaline medium

    V Raj; T Chandrakala; K Rajasekaran

    2008-05-01

    Kinetics of cleavage of phenylphenyl acetates (PPA) and several para-substituted PPAs in basic aqueous sodium carbonate-bicarbonate buffer containing -cyclodextrin (CD) have been studied. The reaction exhibits saturation type kinetics and CD accelerates the rate of cleavage by the formation of 1G : 1H inclusion complex. The kinetic results indicate that aryloxy moiety of PPA is included in the hydrophobic cavity of CD. The overall rate constants for the cleavage of the [CD-ester] complex correlate with the Hammett -constants and Hansch hydrophobicity parameters . At higher concentrations of CD, there is an additional catalysis due to the formation of weak 1G : 2H complex.

  3. Human pre-mRNA cleavage factor II(m) contains homologs of yeast proteins and bridges two other cleavage factors

    de Vries, H.; Rüegsegger, U.; Hübner, W; Friedlein, A.; van Langen, H; Keller, W.

    2000-01-01

    Six different protein factors are required in vitro for 3' end formation of mammalian pre-mRNAs by endonucleolytic cleavage and polyadenylation. Five of the factors have been purified and most of their components cloned, but cleavage factor II(m) (CF II(m)) remained uncharacterized. We have purified CF II(m) from HeLa cell nuclear extract by several chromatographic steps. During purification, CF II(m) activity separated into two components, one essential (CF IIA(m)) and one stimulatory (CF II...

  4. Dynamic propagation and cleavage crack arrest in bainitic steel

    In complement of the studies of harmfulness of defects, generally realized in term of initiation, the concept of crack arrest could be used as complementary analyses to the studies of safety. The stop occurs when the stress intensity factor becomes lower than crack arrest toughness (KIa) calculated in elasto-statics (KI ≤ KIa). The aim of this thesis is to understand and predict the stop of a crack propagating at high speed in a 18MND5 steel used in the pressure water reactor (PWR). The test chosen to study crack arrest is the disc thermal shock test. The observations under the scanning electron microscope of the fracture surface showed that the crack arrest always occurs in cleavage mode and that the critical microstructural entity with respect to the propagation and crack arrest corresponds to at least the size of the prior austenitic grain. The numerical analyses in elasto-statics confirm the conservatism of the codified curve of the RCC-M with respect to the values of KIa. The dynamic numerical analyses show that the deceleration of the crack measured at the end of the propagation is related to the global dynamic of the structure (vibrations). The transferability to components of crack arrest toughness obtained from tests analysed in static is thus not assured. The disc thermal shock tests were also modelled by considering a criterion of propagation and arrest of the type 'RKR' characterized by a critical stress sc which depends on the temperature. The results obtained account well for the crack jump measured in experiments as well as the shape of the crack arrest front. (author)

  5. Urokinase-catalysed cleavage of the urokinase receptor requires an intact glycolipid anchor

    Høyer-Hansen, G; Pessara, U; Holm, A;

    2001-01-01

    reaction, even though the actual cleavage occurs between the first and second domains. Purified full-length GPI-anchored uPAR (GPI-uPAR) proved much more susceptible to uPA-mediated cleavage than recombinant truncated soluble uPAR (suPAR), which lacks the glycolipid anchor. This was not a general...... difference in proteolytic susceptibility since GPI-uPAR and suPAR were cleaved with equal efficiency by plasmin. Since the amino acid sequences of GPI-uPAR and suPAR are identical except for the C-terminal truncation, the different cleavage patterns suggest that the two uPAR variants differ in the......PAR, purified from plasma, was found to have a similar resistance to uPA cleavage as phospholipase C-treated GPI-uPAR and recombinant suPAR....

  6. Proteolytic Cleavage of the Red Blood Cell Glycocalyx in a Genetic Form of Hypertension

    Pot, Cécile; Chen, Angela Y.; Ha, Jessica N.; Schmid-Schönbein, Geert W

    2011-01-01

    Recent evidence suggests that the spontaneously hypertensive rat (SHR) has an elevated level of proteases, including matrix metalloproteinases (MMPs), involved in cell membrane receptor cleavage. We hypothesize that SHR red blood cells (RBCs) may be subject to an enhanced glycocalyx cleavage compared to the RBCs of the normotensive Wistar-Kyoto (WKY) rats. By direct observation of RBC rouleaux, we found no significant difference in RBC aggregation for unseparated SHR and WKY RBCs. However, li...

  7. Cleavage Fracture in a Ferritic Steel Weld: Characterization of Second Phase Particles

    S. Schilling, N. Chapeau, A.P. Jivkov, E. Keim, S.R. Ortner, M.G. Burke

    2013-01-01

    Cleavage fracture can initiate by the cracking of second phase particles in metals. Understanding the size distribution, morphologies and compositions of initiating particles for a particular material is key to successful micromechanical modelling of cleavage. The second phase particles responsible for the fracture initiation in P141 CAC-S7, a reactor pressure vessel (RPV) weld metal from the EU-funded PERFORM 60 Multiscale Modelling Programme, have been identified and characterised in order ...

  8. Specific detection of the cleavage activity of mycobacterial enzymes using a quantum dot based DNA nanosensor

    Jepsen, Morten Leth; Harmsen, Charlotte; Godbole, Adwait Anand; Nagaraja, Valakunja; Knudsen, Birgitta R.; Ho, Yi-Ping

    2015-12-01

    We present a quantum dot based DNA nanosensor specifically targeting the cleavage step in the reaction cycle of the essential DNA-modifying enzyme, mycobacterial topoisomerase I. The design takes advantages of the unique photophysical properties of quantum dots to generate visible fluorescence recovery upon specific cleavage by mycobacterial topoisomerase I. This report, for the first time, demonstrates the possibility to quantify the cleavage activity of the mycobacterial enzyme without the pre-processing sample purification or post-processing signal amplification. The cleavage induced signal response has also proven reliable in biological matrices, such as whole cell extracts prepared from Escherichia coli and human Caco-2 cells. It is expected that the assay may contribute to the clinical diagnostics of bacterial diseases, as well as the evaluation of treatment outcomes.We present a quantum dot based DNA nanosensor specifically targeting the cleavage step in the reaction cycle of the essential DNA-modifying enzyme, mycobacterial topoisomerase I. The design takes advantages of the unique photophysical properties of quantum dots to generate visible fluorescence recovery upon specific cleavage by mycobacterial topoisomerase I. This report, for the first time, demonstrates the possibility to quantify the cleavage activity of the mycobacterial enzyme without the pre-processing sample purification or post-processing signal amplification. The cleavage induced signal response has also proven reliable in biological matrices, such as whole cell extracts prepared from Escherichia coli and human Caco-2 cells. It is expected that the assay may contribute to the clinical diagnostics of bacterial diseases, as well as the evaluation of treatment outcomes. Electronic supplementary information (ESI) available: Characterization of the QD-based DNA Nanosensor. See DOI: 10.1039/c5nr06326d

  9. Engineering a ribozyme cleavage-induced split fluorescent aptamer complementation assay

    Ausländer, Simon; Fuchs, David; Hürlemann, Samuel; Ausländer, David; Fussenegger, Martin

    2016-01-01

    Hammerhead ribozymes are self-cleaving RNA molecules capable of regulating gene expression in living cells. Their cleavage performance is strongly influenced by intra-molecular loop–loop interactions, a feature not readily accessible through modern prediction algorithms. Ribozyme engineering and efficient implementation of ribozyme-based genetic switches requires detailed knowledge of individual self-cleavage performances. By rational design, we devised fluorescent aptamer-ribozyme RNA archit...

  10. Nanorelief of the natural cleavage surface of triglycine sulphate crystals with substitutional and interstitial impurities

    Ferroelectric triglycine sulphate crystals (TGS) with substitutional (LADTGS+ADP, DTGS) and interstitial (Cr) impurities have been studied by atomic-force microscopy, X-ray diffraction, and X-ray fluorescence. The nanorelief parameters of the mirror cleavage TGS(010) surface have been measured with a high accuracy. A correlation between the crystal defect density in the bulk and the cleavage surface nanorelief is revealed at the submicrometer level.

  11. Reductive cleavage of dichalcogenide bonds. Communication 3. Selectivity of electron exchange in diaryldichalcogenide-bispyridinium systems

    The kinetics of reductive cleavage of the dichalcogenide bond in dimeric Schiff's bases ArEEAr (E = S, Te) induced by indirect electron transfer by the in situ generated bridged bispyridinium radical cations and biradicals was studied by cyclic voltammetry. It is found that the dependence between the apparent rate constants of intermolecular electron transfer and the electron-withdrawing properties of diaryldichalcogenides is violated. The mechanisms of homogeneous (chemical) and heterogeneous (electrochemical) reductive cleavage of diaryldichalcogenides are discussed

  12. Protein cleavage strategies for an improved analysis of the membrane proteome

    Poetsch Ansgar; Fischer Frank

    2006-01-01

    Abstract Background Membrane proteins still remain elusive in proteomic studies. This is in part due to the distribution of the amino acids lysine and arginine, which are less frequent in integral membrane proteins and almost absent in transmembrane helices. As these amino acids are cleavage targets for the commonly used protease trypsin, alternative cleavage conditions, which should improve membrane protein analysis, were tested by in silico digestion for the three organisms Saccharomyces ce...

  13. Specific cleavage of human type III and IV collagens by Pseudomonas aeruginosa elastase.

    Heck, L W; Morihara, K; McRae, W B; Miller, E J

    1986-01-01

    Purified Pseudomonas aeruginosa elastase cleaved human type III and IV collagens with the formation of specific cleavage products. Furthermore, type I collagen appeared to be slowly cleaved by both P. aeruginosa elastase and alkaline protease. These cleavage fragments from type III and IV collagens were separated from the intact collagen chains by SDS polyacrylamide gradient gel electrophoresis run under reducing conditions, and they were detected by their characteristic Coomassie blue staini...

  14. Tomato carotenoid cleavage dioxygenases 1A and 1B: Relaxed double bond specificity leads to a plenitude of dialdehydes, mono-apocarotenoids and isoprenoid volatiles

    Andrea Ilg

    2014-01-01

    Full Text Available The biosynthetic processes leading to many of the isoprenoid volatiles released by tomato fruits are still unknown, though previous reports suggested a clear correlation with the carotenoids contained within the fruit. In this study, we investigated the activity of the tomato (Solanum lycopersicum carotenoid cleavage dioxygenase (SlCCD1B, which is highly expressed in fruits, and of its homolog SlCCD1A. Using in vitro assays performed with purified recombinant enzymes and by analyzing products formed by the two enzymes in carotene-accumulating Escherichia coli strains, we demonstrate that SlCCD1A and, to a larger extent, SlCCD1B, have a very relaxed specificity for both substrate and cleavage site, mediating the oxidative cleavage of cis- and all-trans-carotenoids as well as of different apocarotenoids at many more double bonds than previously reported. This activity gives rise to a plenitude of volatiles, mono-apocarotenoids and dialdehyde products, including cis-pseudoionone, neral, geranial, and farnesylacetone. Our results provide a direct evidence for a carotenoid origin of these compounds and point to CCD1s as the enzymes catalyzing the formation of the vast majority of tomato isoprenoid volatiles, many of which are aroma constituents.

  15. Tomato carotenoid cleavage dioxygenases 1A and 1B: Relaxed double bond specificity leads to a plenitude of dialdehydes, mono-apocarotenoids and isoprenoid volatiles

    Ilg, Andrea

    2014-06-25

    The biosynthetic processes leading to many of the isoprenoid volatiles released by tomato fruits are still unknown, though previous reports suggested a clear correlation with the carotenoids contained within the fruit. In this study, we investigated the activity of the tomato (Solanum lycopersicum) carotenoid cleavage dioxygenase (SlCCD1B), which is highly expressed in fruits, and of its homolog SlCCD1A. Using in vitro assays performed with purified recombinant enzymes and by analyzing products formed by the two enzymes in carotene-accumulating Escherichia coli strains, we demonstrate that SlCCD1A and, to a larger extent, SlCCD1B, have a very relaxed specificity for both substrate and cleavage site, mediating the oxidative cleavage of cis- and all-. trans-carotenoids as well as of different apocarotenoids at many more double bonds than previously reported. This activity gives rise to a plenitude of volatiles, mono-apocarotenoids and dialdehyde products, including cis-pseudoionone, neral, geranial, and farnesylacetone. Our results provide a direct evidence for a carotenoid origin of these compounds and point to CCD1s as the enzymes catalyzing the formation of the vast majority of tomato isoprenoid volatiles, many of which are aroma constituents. © 2014 The Authors.

  16. Application of the local fracture stress model on the cleavage fracture of the reactor pressure vessel steels in the transition temperature region

    The fracture toughness in the ductile-brittle transition region of reactor pressure vessel steels was evaluated by means of an RKR-type model which describes the temperature dependence of the cleavage fracture toughness based on the constant fracture stress σf. The fracture stress σf and the characteristic distance are two main parameters in the RKR model. In order to apply the RKR model to the transition temperature region, these two parameters were investigated in different manners. In this study, the local fracture stress, σf*, was determined from the pre-cracked specimens. The results showed that the local fracture stress σf* determined from the pre-cracked specimens was higher than the fracture stress σf from the notched specimens, while those values were practically independent of the temperatures. The CID (cleavage initiation distance), which represents the distance from the crack tip to the cleavage initiation site, was measured in every fractured specimen. The measured CID values were strongly dependent on the test temperatures. Besides, the fracture toughness KJC in the transition region was dependent on the measured CID. The RKR model, when the local fracture stress σf* and the measured CIDs were applied, could describe the temperature dependency of the median transition fracture toughness KJC(med)

  17. Altered cleavage patterns in human tripronuclear embryos and their association to fertilization method

    Joergensen, Mette Warming; Agerholm, Inge; Hindkjaer, Johnny;

    2014-01-01

    stage (p < 0.001), and arrested development from the compaction stage and onwards (p < 0.001). For the IVF embryos, the 2nd and 3rd cleavage cycles were completed within the expected time frame. However, timing of the cell divisions within the cleavage cycles differed between the two groups. In contrast......, the completion of the 1st, 2nd, and 3rd cleavage cycle was delayed, but with a similar division pattern for 3PN ICSI compared with the 2PN ICSI embryos. 3PN, more often than 2PN ICSI embryos, displayed early cleavage into 3 cells (p = 0.03) and arrested development from the compaction stage and......PURPOSE: To analyze the cleavage patterns in dipronuclear (2PN) and tripronuclear (3PN) embryos in relation to fertilization method. METHOD: Time-lapse analysis. RESULTS: Compared to 2PN, more 3PN IVF embryos displayed early cleavage into 3 cells (p < 0.001), displayed longer duration of the 3-cell...

  18. Quantum mechanical/molecular mechanical free energy simulations of the self-cleavage reaction in the hepatitis delta virus ribozyme.

    Ganguly, Abir; Thaplyal, Pallavi; Rosta, Edina; Bevilacqua, Philip C; Hammes-Schiffer, Sharon

    2014-01-29

    The hepatitis delta virus (HDV) ribozyme catalyzes a self-cleavage reaction using a combination of nucleobase and metal ion catalysis. Both divalent and monovalent ions can catalyze this reaction, although the rate is slower with monovalent ions alone. Herein, we use quantum mechanical/molecular mechanical (QM/MM) free energy simulations to investigate the mechanism of this ribozyme and to elucidate the roles of the catalytic metal ion. With Mg(2+) at the catalytic site, the self-cleavage mechanism is observed to be concerted with a phosphorane-like transition state and a free energy barrier of ∼13 kcal/mol, consistent with free energy barrier values extrapolated from experimental studies. With Na(+) at the catalytic site, the mechanism is observed to be sequential, passing through a phosphorane intermediate, with free energy barriers of 2-4 kcal/mol for both steps; moreover, proton transfer from the exocyclic amine of protonated C75 to the nonbridging oxygen of the scissile phosphate occurs to stabilize the phosphorane intermediate in the sequential mechanism. To explain the slower rate observed experimentally with monovalent ions, we hypothesize that the activation of the O2' nucleophile by deprotonation and orientation is less favorable with Na(+) ions than with Mg(2+) ions. To explore this hypothesis, we experimentally measure the pKa of O2' by kinetic and NMR methods and find it to be lower in the presence of divalent ions rather than only monovalent ions. The combined theoretical and experimental results indicate that the catalytic Mg(2+) ion may play three key roles: assisting in the activation of the O2' nucleophile, acidifying the general acid C75, and stabilizing the nonbridging oxygen to prevent proton transfer to it. PMID:24383543

  19. BCL10GFP fusion protein as a substrate for analysis of determinants required for Mucosa-Associated Lymphoid Tissue 1 (MALT1-mediated cleavage

    Jou Shin-Yi

    2012-10-01

    Full Text Available Abstract Background MALT1 belongs to a family of paracaspase and modulates NF-κB signaling pathways through its scaffolding function and proteolytic activity. MALT1 cleaves protein substrates after a positively charged Arginine residue. BCL10, a 233 amino acids polypeptide, is identified as one of the MALT1 proteolytic substrates. MALT1 cleaves BCL10 at the C-terminal end of Arg228. A mere 5 amino acids difference between the substrate and the proteolytic product made it difficult to tell whether the cleavage event took place by using a simple western blot analysis. Here, BCL10GFP was constructed and utilized to examine the specificity and domain determinants for MALT1 cleavage in cells. Methods Various BCL10GFP constructs were transfected into HEK293T cell with MALT1 construct by using calcium phosphate-DNA precipitation method. Lysates of transfectants were resolved by SDS/PAGE and analyzed by western blot analysis. Results BCL10GFP was proteolytically processed by MALT1 as BCL10. The integrity of caspase recruitment domain (CARD and MALT1-interacting domain on BCL10 were required for MALT1 proteolytic activity. Besides the invariant P1 cleavage site Arg228, P4 Leu225 played a role in defining BCL10 as a good substrate for MALT1. Conclusions We offered a way of monitoring the catalytic activity of MALT1 in HEK293T cells using BCL10GFP as a substrate. BCL10GFP can be utilized as a convenient tool for studying the determinants for efficient MALT1 cleavage in HEK293T cells

  20. DNA binding and cleavage studies of new sulfasalazine-derived dipeptide Zn(II) complex: Validation for specific recognition with 5 Prime -TMP

    Tabassum, Sartaj, E-mail: tsartaj62@yahoo.com [Department of Chemistry, Aligarh Muslim University, Aligarh, UP 202002 (India); Al-Asbahy, Waddhaah M.; Afzal, Mohd.; Shamsi, Manal; Arjmand, Farukh [Department of Chemistry, Aligarh Muslim University, Aligarh, UP 202002 (India)

    2012-11-15

    A new water soluble complex [Zn(glygly)(ssz)(H{sub 2}O)]{center_dot}6H{sub 2}O, 1 derived from dipeptide (glycyl glycine) and sulfasalazine was synthesized and characterized by spectroscopic (IR, UV-vis, NMR, ESI-MS) and analytical methods. The in vitro DNA binding studies of complex 1 with calf-thymus DNA were carried out by employing various biophysical methods and molecular docking technique which reveals strong electrostatic binding via phosphate backbone of DNA helix, in addition to partial intercalation. To gain further insight into the molecular recognition at the target site, interaction studies of complex 1 with 5 Prime -TMP and 5 Prime -GMP were carried out by UV-vis titration which was validated by {sup 1}H and {sup 31}P NMR with 5 Prime -TMP, which implicate the preferential selectivity of 1 towards N3 of thymine. Complex 1 is accessible to minor groove of DNA and cleaved pBR322 DNA via hydrolytic pathway (validated by T4 ligase assay). - Graphical abstract: Synthesis, characterization, DNA binding and cleavage studies of [Zn(glygly)(ssz)(H{sub 2}O)]{center_dot}6H{sub 2}O (1) containing glycyl glycine and sulfasalazine ligand. Complex 1 recognize minor groove of DNA and show hydrolytic DNA cleavage. Highlights: Black-Right-Pointing-Pointer Novel Zn(II) complex 1 bearing bioactive glycyl glycine and sulfasalazine ligand scaffold. Black-Right-Pointing-Pointer Cleavage activity of 1 was enhanced in presence of activators: H{sub 2}O{sub 2}>MPA>GSH>Asc. Black-Right-Pointing-Pointer Complex 1 recognize minor groove as depicted in the cleavage pattern and molecular docking. Black-Right-Pointing-Pointer Complex 1 cleaves pBR322 DNA via hydrolytic mechanism and validated by T4 DNA ligase experiments.

  1. DNA binding and cleavage studies of new sulfasalazine-derived dipeptide Zn(II) complex: Validation for specific recognition with 5′–TMP

    A new water soluble complex [Zn(glygly)(ssz)(H2O)]·6H2O, 1 derived from dipeptide (glycyl glycine) and sulfasalazine was synthesized and characterized by spectroscopic (IR, UV–vis, NMR, ESI–MS) and analytical methods. The in vitro DNA binding studies of complex 1 with calf–thymus DNA were carried out by employing various biophysical methods and molecular docking technique which reveals strong electrostatic binding via phosphate backbone of DNA helix, in addition to partial intercalation. To gain further insight into the molecular recognition at the target site, interaction studies of complex 1 with 5′-TMP and 5′-GMP were carried out by UV–vis titration which was validated by 1H and 31P NMR with 5′-TMP, which implicate the preferential selectivity of 1 towards N3 of thymine. Complex 1 is accessible to minor groove of DNA and cleaved pBR322 DNA via hydrolytic pathway (validated by T4 ligase assay). - Graphical abstract: Synthesis, characterization, DNA binding and cleavage studies of [Zn(glygly)(ssz)(H2O)]·6H2O (1) containing glycyl glycine and sulfasalazine ligand. Complex 1 recognize minor groove of DNA and show hydrolytic DNA cleavage. Highlights: ► Novel Zn(II) complex 1 bearing bioactive glycyl glycine and sulfasalazine ligand scaffold. ► Cleavage activity of 1 was enhanced in presence of activators: H2O2>MPA>GSH>Asc. ► Complex 1 recognize minor groove as depicted in the cleavage pattern and molecular docking. ► Complex 1 cleaves pBR322 DNA via hydrolytic mechanism and validated by T4 DNA ligase experiments.

  2. Social economy partnerships and the public/private cleavages

    Joxerramon Bengoetxea

    2012-06-01

    Full Text Available Public/Private Partnerships can be seen as one particular topos where the divide between the public domain, all levels of the Public Administration and the private initiative and private property is turned into a joint venture rather than a confrontation or a cleavage. Some of the possible combinations of public and private and where public/private partnerships might fit are displayed analytically. The importance of political theory or ideology in conceiving the relationships between ‘public’ and ‘private’, and the conceptions of a market economy as opposed to a social market economy cannot be exaggerated enough, but equally important are the legal or regulatory framework and the underlying dominant legal culture and legal principles, and of course the economic and financial situation. Public/private partnerships thrive in some conditions, but seem to wane in others, and the current predicament is not favourable, taking into account that only the regulatory framework is supportive of these ventures. Los partenariados público-privados se pueden entender como un espacio particular, en el que el sector público, todos los niveles de la administración pública, y la iniciativa privada y la propiedad privada, abordan una empresa conjunta, en lugar mantener posturas contrapuestas. Se muestran algunas de las posibles combinaciones del sector público y privado, en las que tendrían cabida los partenariados público/privados. Es patente la importancia de la teoría o la ideología política para entender las relaciones entre lo público y lo privado, y las concepciones de una economía de mercado frente a una economía social, pero tampoco se puede negar la importancia del marco legal o reglamentario y la cultura jurídica dominante subyacente, y los principios jurídicos, sin olvidar la situación económica y financiera. Los partenariados público-privados prosperan en algunas condiciones, pero no lo hacen siempre, y la situación econ

  3. Initiation of cleavage in a low alloy steel: effect of a ductile damage localized around inclusions; Declenchement du clivage dans un acier faiblement allie: role de l'endommagement ductile localise autour des inclusions

    Carassou, S

    2000-07-01

    The fracture mechanism in a low alloy steel, used in the pressurised water reactor vessel, has been studied in the ductile to brittle transition temperature range. We used the local approach of fracture in conjunction with both fractographic observations and numerical simulations. Previous studies suggested the onset of cleavage to be favoured by the presence of nearby manganese sulphide (MnS) clusters: the ductile damaged zone localised inside a cluster increases the stress around it, and so contribute to the triggering of cleavage due to nearby classical sites, like carbides. The experimental study of size dependence and anisotropy on the global fracture behaviour, together with fractographic observations, give here the proof of the influence of MnS clusters on the onset of cleavage in this steel. Fracture behaviour of pre-cracked specimens tested in the transition regime has then been simulated, by three dimensional finite element method computations. Ductile tearing process preceding the cleavage onset at those temperatures regime was well reproduced by the Rousselier's model. Failure probabilities, related to given stress states, has been given by post-processor calculations, using a probabilistic model based on the specific cleavage fracture process. Fracture toughness scatter of the steel, tested in the transition regime, is then well reproduced by those calculations. However, the critical cleavage stress of an elementary volume, that scales for the fracture process, is still assumed to be temperature dependant. Numerical simulations of the local fracture process suggest that this temperature effect can partly be explained by the temperature dependant decrease of the stress amplification due to the MnS clusters. (author)

  4. Beta-scission of alkoxyl radicals on peptides and proteins can give rise to backbone cleavage and loss of side-chains

    Full text: Exposure of proteins to radicals in the presence of O2 brings about multiple changes including side-chain oxidation, backbone fragmentation, cross-linking, unfolding, changes in hydrophobicity and conformation, altered susceptibility to proteolytic enzymes and formation of new reactive groups (e.g. hydroperoxides and 3,4-dihydroxyphenylalanine). All of these processes can result in loss of structural or enzymatic activity. The mechanisms that give rise to backbone cleavage are only partly understood. Whilst it is known that direct hydrogen atom abstraction at a-carbon sites gives backbone cleavages it has also been proposed that initial attack at side-chain sites might also give rise to backbone cleavage. In this study we have examined whether initial attack at the β- (C-3) position can give rise to α-carbon radicals (and hence backbone cleavage) via the formation, and subsequent β- scission, of C-3 alkoxyl radicals. This process has been observed previously with protected amino acids in organic solvents (J. Chem. Soc. Perkin Trans. 2, 1997, 503-507) but the occurrence of such reactions with proteins in aqueous solution has not been explored. Alkoxyl radicals were generated at the C-3 position of a variety of protected amino acids and small peptides by two methods: metal-ion catalysed decomposition of hydroperoxides formed as a result of γ-radiolysis in the presence of O2, and UV photolysis of nitrate esters. In most cases radicals have been detected by EPR spectroscopy using nitroso and nitrone spin traps, which can be assigned by comparison with literature data to α-carbon radicals; in some case assignments were confirmed by the generation of the putative species by other routes. With Ala peptide hydroperoxides and nitrate esters, and MNP as the spin trap, the major radical detected in each case has been assigned to the adduct of an α-carbon radical with partial structure - NH-.CH-C(O) - consistent with the rapid occurrence of the above reaction

  5. A new strategy for the on-column exopeptidase cleavage of poly-histidine tagged proteins.

    Kuo, Wen-Hui K; Chase, Howard A

    2011-10-15

    This paper describes a new strategy, which aims to make on-column poly-histidine tag removal more useful in the production of recombinant proteins by improving the yield and efficiency of on-column exopeptidase cleavage. This involves improvement of the on-column cleavage condition by using imidazole concentrations in the range of 100-500 mM in the cleavage buffer. At 300 mM imidazole, maximum on-column cleavage yield (in excess of 99%) was achieved in 3h of incubation. However, as a result of the increased imidazole concentration, this new strategy of on-column cleavage results in some residual uncleaved poly-histidine tagged proteins (~0.1%) and the production of cleaved dipeptides, both of which need to be further removed in a subsequent step. A method involving the recirculation of recovered proteins and peptides through the immobilized metal affinity chromatography (IMAC) column (same-column recirculation) was found to be superior to subtractive IMAC for the purpose of contaminant clearance. Recovery of the detagged target proteins was achieved using 10 column volumes of recovery buffer, which had the effect of diluting the imidazole concentration to a suitably low level for contaminant removal by same-column recirculation. This strategy was also applicable at a higher adsorbent loading of 10 mg protein/mL adsorbent with an optimal ratio of 200 mU of DAPase per mg of adsorbed tagged maltose binding protein (MBP), giving a cleavage yield of 99.1% in 3 h. Finally, on-column cleavage conditions including the effect of protease concentration and incubation time on the new strategy have been investigated and comparisons are made for different tag removal strategies. PMID:21925974

  6. Knockdown of pre-mRNA cleavage factor Im 25 kDa promotes neurite outgrowth

    Highlights: ► CFIm25 knockdown promoted NGF-induced neurite out growth from PC12 cells. ► Depletion of CFIm25 did not influence the morphology of proliferating PC12 cells. ► CFIm regulated NGF-induced neurite outgrowth via coordinating RhoA activity. ► CFIm25 knockdown increase the number of primary dendrites of hippocampal neurons. -- Abstract: Mammalian precursor mRNA (pre-mRNA) cleavage factor I (CFIm) plays important roles in the selection of poly(A) sites in a 3′-untranslated region (3′-UTR), producing mRNAs with variable 3′ ends. Because 3′-UTRs often contain cis elements that impact stability or localization of mRNA or translation, alternative polyadenylation diversifies utilization of primary transcripts in mammalian cells. However, the physiological role of CFIm remains unclear. CFIm acts as a heterodimer comprising a 25 kDa subunit (CFIm25) and one of the three large subunits—CFIm59, CFIm68, or CFIm72. CFIm25 binds directly to RNA and introduces and anchors the larger subunit. To examine the physiological roles of CFIm, we knocked down the CFIm25 gene in neuronal cells using RNA interference. Knockdown of CFIm25 increased the number of primary dendrites of developing hippocampal neurons and promoted nerve growth factor (NGF)-induced neurite extension from rat pheochromocytoma PC12 cells without affecting the morphology of proliferating PC12 cells. On the other hand, CFIm25 knockdown did not influence constitutively active or dominantly negative RhoA suppression or promotion of NGF-induced neurite extension from PC12 cells, respectively. Taken together, our results indicate that endogenous CFIm may promote neuritogenesis in developing neurons by coordinating events upstream of NGF-induced RhoA inactivation.

  7. Cleavage Fracture Initiation at M-A Constituents in Intercritically Coarse-Grained Heat-Affected Zone of a HSLA Steel

    Mohseni, Peyman; Solberg, Jan Ketil; Karlsen, Morten; Akselsen, Odd Magne; Østby, Erling

    2014-01-01

    Local brittle zones, i.e., martensite-austenite (M-A) islands, are formed within the coarse-grained heat-affected zone (CGHAZ) and the intercritically reheated CGHAZ (ICCGHAZ) during welding of many HSLA steels. In the current study, the M-A constituents in the microstructure of simulated ICCGHAZ of an API X80 pipeline steel were investigated using transmission electron microscopy and scanning electron microscopy. The focused ion beam technique was applied to make TEM specimens of M-A constituents that were located in the initiation sites of cleavage cracks. The main purpose of the study was to identify crack-initiation sites of cleavage fracture in ICCGHAZ and to prove the presence of M-A constituents in such initiation sites. Twinned martensite was detected in all local brittle zones that were investigated in the current study, demonstrating that they are M-A constituents. It was also demonstrated that the fracture initiation occurred preferentially at M-A constituents by a debonding mechanism rather than cracking of the M-A constituents.

  8. DSP-PP precursor protein cleavage by tolloid-related-1 protein and by bone morphogenetic protein-1.

    Helena H Ritchie

    Full Text Available Dentin sialoprotein (DSP and phosphophoryn (PP, acidic proteins critical to dentin mineralization, are translated from a single transcript as a DSP-PP precursor that undergoes specific proteolytic processing to generate DSP and PP. The cleavage mechanism continues to be controversial, in part because of the difficulty of obtaining DSP-PP from mammalian cells and dentin matrix. We have infected Sf9 cells with a recombinant baculovirus to produce large amounts of secreted DSP-PP(240, a variant form of rat DSP-PP. Mass spectrometric analysis shows that DSP-PP(240 secreted by Sf9 cells undergoes specific cleavage at the site predicted from the N-terminal sequence of PP extracted from dentin matrix: SMQG(447↓D(448DPN. DSP-PP(240 is cleaved after secretion by a zinc-dependent activity secreted by Sf9 cells, generating DSP(430 and PP(240 products that are stable in the medium. DSP-PP processing activity is constitutively secreted by Sf9 cells, but secretion is diminished 3 days after infection. Using primers corresponding to the highly conserved catalytic domain of Drosophila melanogaster tolloid (a mammalian BMP1 homolog, we isolated a partial cDNA for a Spodopotera frugiperda tolloid-related-1 protein (TLR1 that is 78% identical to Drosophila TLR1 but only 65% identical to Drosophila tolloid. Tlr1 mRNA decreased rapidly in Sf9 cells after baculovirus infection and was undetectable 4d after infection, paralleling the observed decrease in secretion of the DSP-PP(240 processing activity after infection. Human BMP1 is more similar to Sf9 and Drosophila TLR1 than to tolloid, and Sf9 TLR1 is more similar to BMP1 than to other mammalian homologs. Recombinant human BMP1 correctly processed baculovirus-expressed DSP-PP(240 in a dose-dependent manner. Together, these data suggest that the physiologically accurate cleavage of mammalian DSP-PP(240 in the Sf9 cell system represents the action of a conserved processing enzyme and support the proposed role of BMP

  9. Distinct mechanisms for DNA cleavage by myoglobin with a designed heme active center.

    Zhao, Yuan; Du, Ke-Jie; Gao, Shu-Qin; He, Bo; Wen, Ge-Bo; Tan, Xiangshi; Lin, Ying-Wu

    2016-03-01

    Heme proteins perform diverse biological functions, of which myoglobin (Mb) is a representative protein. In this study, the O2 carrier Mb was shown to cleave double stranded DNA upon aerobic dithiothreitol-induced reduction, which is fine-tuned by an additional distal histidine, His29 or His43, engineered in the heme active center. Spectroscopic (UV-vis and EPR) and inhibition studies suggested that free radicals including singlet oxygen and hydroxyl radical are responsible for efficient DNA cleavage via an oxidative cleavage mechanism. On the other hand, L29E Mb, with a distinct heme active center involving three water molecules in the met form, was found to exhibit an excellent DNA cleavage activity that was not depending on O2. Inhibition and ligation studies demonstrated for the first time that L29E Mb cleaves double stranded DNA into both the nicked circular and linear forms via a hydrolytic cleavage mechanism, which resembles native endonucleases. This study provides valuable insights into the distinct mechanisms for DNA cleavage by heme proteins, and lays down a base for creating artificial DNA endonucleases by rational design of heme proteins. Moreover, this study suggests that the diverse functions of heme proteins can be fine-tuned by rational design of the heme active center with a hydrogen-bonding network. PMID:26775281

  10. Characteristics of the fast electron emission produced during the cleavage of crystals

    B P Chandra; N L Patel; S S Rahangdale; R P Patel; V K Patle

    2003-01-01

    The present paper reports the fast electron emission produced during the cleavage of alkali halide crystals and models the dynamics of the process. The mechano-emission arises as a result of the ionization of surface traps at the expense of the energy which is released in the annihilation of the defects which are formed during cleavage. The slow electrons which appear upon the ionization of surface traps are subsequently accelerated in the field of negatively charged segment of the freshly cleaved surface. Considering the basic mechanism of fast electron emission, expressions are derived which are able to explain satisfactorily the temporal, thermal, charge, surface, coloration, water adsorption and other characteristics of the fast electron emission produced during the cleavage of crystals. The decay time of the charges on the newly created surfaces, and the velocity of cracks can be determined from the measurements of fast electron emission produced during the cleavage of crystals. It is shown that two types of diffusing centres are responsible for the charge relaxation and thereby for the emission of fast electrons produced during the cleavage of alkali halide crystals.

  11. Focal adhesions control cleavage furrow shape and spindle tilt during mitosis

    Taneja, Nilay; Fenix, Aidan M.; Rathbun, Lindsay; Millis, Bryan A.; Tyska, Matthew J.; Hehnly, Heidi; Burnette, Dylan T.

    2016-01-01

    The geometry of the cleavage furrow during mitosis is often asymmetric in vivo and plays a critical role in stem cell differentiation and the relative positioning of daughter cells during development. Early observations of adhesive cell lines revealed asymmetry in the shape of the cleavage furrow, where the bottom (i.e., substrate attached side) of the cleavage furrow ingressed less than the top (i.e., unattached side). This data suggested substrate attachment could be regulating furrow ingression. Here we report a population of mitotic focal adhesions (FAs) controls the symmetry of the cleavage furrow. In single HeLa cells, stronger adhesion to the substrate directed less ingression from the bottom of the cell through a pathway including paxillin, focal adhesion kinase (FAK) and vinculin. Cell-cell contacts also direct ingression of the cleavage furrow in coordination with FAs in epithelial cells—MDCK—within monolayers and polarized cysts. In addition, mitotic FAs established 3D orientation of the mitotic spindle and the relative positioning of mother and daughter centrosomes. Therefore, our data reveals mitotic FAs as a key link between mitotic cell shape and spindle orientation, and may have important implications in our understanding stem cell homeostasis and tumorigenesis. PMID:27432211

  12. Protein cleavage strategies for an improved analysis of the membrane proteome

    Poetsch Ansgar

    2006-03-01

    Full Text Available Abstract Background Membrane proteins still remain elusive in proteomic studies. This is in part due to the distribution of the amino acids lysine and arginine, which are less frequent in integral membrane proteins and almost absent in transmembrane helices. As these amino acids are cleavage targets for the commonly used protease trypsin, alternative cleavage conditions, which should improve membrane protein analysis, were tested by in silico digestion for the three organisms Saccharomyces cerevisiae, Halobacterium sp. NRC-1, and Corynebacterium glutamicum as hallmarks for eukaryotes, archea and eubacteria. Results For the membrane proteomes from all three analyzed organisms, we identified cleavage conditions that achieve better sequence and proteome coverage than trypsin. Greater improvement was obtained for bacteria than for yeast, which was attributed to differences in protein size and GRAVY. It was demonstrated for bacteriorhodopsin that the in silico predictions agree well with the experimental observations. Conclusion For all three examined organisms, it was found that a combination of chymotrypsin and staphylococcal peptidase I gave significantly better results than trypsin. As some of the improved cleavage conditions are not more elaborate than trypsin digestion and have been proven useful in practice, we suppose that the cleavage at both hydrophilic and hydrophobic amino acids should facilitate in general the analysis of membrane proteins for all organisms.

  13. Two-step cleavage of hairpin RNA with 5' overhangs by human DICER

    Suzuki Harukazu

    2011-02-01

    Full Text Available Abstract Background DICER is an RNase III family endoribonuclease that processes precursor microRNAs (pre-miRNAs and long double-stranded RNAs, generating microRNA (miRNA duplexes and short interfering RNA duplexes with 20~23 nucleotides (nts in length. The typical form of pre-miRNA processed by the Drosha protein is a hairpin RNA with 2-nt 3' overhangs. On the other hand, production of mature miRNA from an endogenous hairpin RNA with 5' overhangs has also been reported, although the mechanism for this process is unknown. Results In this study, we show that human recombinant DICER protein (rDICER processes a hairpin RNA with 5' overhangs in vitro and generates an intermediate duplex with a 29 nt-5' strand and a 23 nt-3' strand, which was eventually cleaved into a canonical miRNA duplex via a two-step cleavage. The previously identified endogenous pre-miRNA with 5' overhangs, pre-mmu-mir-1982 RNA, is also determined to be a substrate of rDICER through the same two-step cleavage. Conclusions The two-step cleavage of a hairpin RNA with 5' overhangs shows that DICER releases double-stranded RNAs after the first cleavage and binds them again in the inverse direction for a second cleavage. These findings have implications for how DICER may be able to interact with or process differing precursor structures.

  14. Non-Enzymatic DNA Cleavage Reaction Induced by 5-Ethynyluracil in Methylamine Aqueous Solution and Application to DNA Concatenation

    Ikeda, Shuji; Tainaka, Kazuki; Matsumoto, Katsuhiko; Shinohara, Yuta; Koji L Ode; Susaki, Etsuo A; Ueda, Hiroki R

    2014-01-01

    DNA can be concatenated by hybridization of DNA fragments with protruding single-stranded termini. DNA cleavage occurring at a nucleotide containing a DNA base analogue is a useful method to obtain DNA with designed protruding termini. Here, we report a novel non-enzymatic DNA cleavage reaction for DNA concatenation. We found that DNA is cleaved at a nucleotide containing 5-ethynyluracil in a methylamine aqueous solution to generate 5′-phosphorylated DNA fragment as a cleavage product. We dem...

  15. Sequences downstream of AAUAAA signals affect pre-mRNA cleavage and polyadenylation in vitro both directly and indirectly.

    Ryner, L C; Takagaki, Y; Manley, J L

    1989-01-01

    To investigate the role of sequences lying downstream of the conserved AAUAAA hexanucleotide in pre-mRNA cleavage and polyadenylation, deletions or substitutions were constructed in polyadenylation signals from simian virus 40 and adenovirus, and their effects were assayed in both crude and fractionated HeLa cell nuclear extracts. As expected, these sequences influenced the efficiency of both cleavage and polyadenylation as well as the accuracy of the cleavage reaction. Sequences near or upst...

  16. Dinitrogen Binding and Cleavage by Multinuclear Iron Complexes

    McWilliams, Sean F.; Holland, Patrick L.

    2015-01-01

    Conspectus The iron–molybdenum cofactor of nitrogenase has unprecedented coordination chemistry, including a high-spin iron cluster called the iron-molybdenum cofactor (FeMoco). Thus, understanding the mechanism of nitrogenase challenges coordination chemists to understand the fundamental N2 chemistry of high-spin iron sites. This Account summarizes a series of studies in which we have synthesized a number of new compounds with multiple iron atoms, characterized them using crystallography and...

  17. In Situ Raman Monitoring of Silver(I)-Aided Laser-Driven Cleavage Reaction of Cyclobutane.

    Chen, Dengtai; Han, Xijiang; Du, Yunchen; Wang, Hsing-Lin; Xu, Ping

    2016-01-01

    The cyclobutane cleavage reaction is an important process and has received continuous interest. Herein, we demonstrate the visible laser-driven cleavage reaction of cyclobutane in crystal form by using in situ Raman spectroscopy. Silver(I) coordination-induced strain and thermal effects from the laser irradiation are the two main driving forces for the cleavage of cyclobutane crystals. This work may open up a new avenue for studying cyclobutane cleavage reactions, as compared to the conventional routes using ex situ techniques. PMID:26510491

  18. Evidence for proteolytic cleavage of the 120-kilodalton outer membrane protein of rickettsiae: identification of an avirulent mutant deficient in processing.

    Hackstadt, T; Messer, R; Cieplak, W; Peacock, M G

    1992-01-01

    The 120-kDa rickettsial outer membrane protein (rOmpB) is encoded by a gene with the capacity to encode a protein of approximately 168 kDa. The carboxy-terminal end of the molecule is apparently cleaved to yield 120- and 32-kDa products. Both polypeptides are surface exposed and remain associated with the outer membrane of intact rickettsiae. All species of rickettsiae examined display similar cleavage of rOmpB. Comparison of diverse species of rickettsiae demonstrate a conserved N terminus of the 32-kDa fragment, with a predicted procaryotic secretory signal peptide immediately upstream of the proposed cleavage site. Coprecipitation of the 120-kDa rOmpB protein and the 32-kDa peptide by monoclonal antibodies specific for the 120-kDa portion of the molecule suggests that the two fragments remain noncovalently associated on the surface of rickettsiae. Analysis of an avirulent mutant of Rickettsia rickettsii revealed reduced amounts of the 120- and 32-kDa fragments, but with a correspondingly larger rOmpB protein that displayed properties expected of the putative precursor. This avirulent mutant grows intracellularly but fails to cause the lysis of infected cells that is typical of R. rickettsii. DNA sequence analysis of the region of the gene encoding the cleavage site of the avirulent strain revealed no difference from the sequence obtained from virulent R. rickettsii. The 168-kDa putative precursor of the avirulent strain of R. rickettsii was not extracted from the surface by dilute buffers, as is the 120-kDa protein of virulent R. rickettsii or R. prowazekii. These latter results suggest that the 32-kDa C-terminal region of the molecule may serve as a membrane anchor domain. Images PMID:1729180

  19. Cleavage of a recombinant human immunoglobulin A2 (IgA2)-IgA1 hybrid antibody by certain bacterial IgA1 proteases.

    Senior, B W; Dunlop, J I; Batten, M R; Kilian, M; Woof, J M

    2000-02-01

    To understand more about the factors influencing the cleavage of immunoglobulin A1 (IgA1) by microbial IgA1 proteases, a recombinant human IgA2/IgA1 hybrid molecule was generated. In the hybrid, termed IgA2/A1 half hinge, a seven-amino-acid sequence corresponding to one half of the duplicated sequence making up the IgA1 hinge was incorporated into the equivalent site in IgA2. Insertion of the IgA1 half hinge into IgA2 did not affect antigen binding capacity or the functional activity of the hybrid molecule, as judged by its ability to bind to IgA Fcalpha receptors and trigger respiratory bursts in neutrophils. Although the IgA2/A1 hybrid contained only half of the IgA1 hinge, it was found to be cleaved by a variety of different bacterial IgA1 proteases, including representatives of those that cleave IgA1 in the different duplicated halves of the hinge, namely, those of Prevotella melaninogenica, Streptococcus pneumoniae, S. sanguis, Neisseria meningitidis types 1 and 2, N. gonorrhoeae types 1 and 2, and Haemophilus influenzae type 2. Thus, for these enzymes the recognition site for IgA1 cleavage is contained within half of the IgA1 hinge region; additional distal elements, if required, are provided by either an IgA1 or an IgA2 framework. In contrast, the IgA2/A1 hybrid appeared to be resistant to cleavage with S. oralis and some H. influenzae type 1 IgA1 proteases, suggesting these enzymes require additional determinants for efficient substrate recognition. PMID:10639405

  20. High cell density and latent membrane protein 1 expression induce cleavage of the mixed lineage leukemia gene at 11q23 in nasopharyngeal carcinoma cell line

    Sim Sai-Peng

    2010-09-01

    Full Text Available Abstract Background Nasopharyngeal carcinoma (NPC is commonly found in Southern China and South East Asia. Epstein-Barr virus (EBV infection is well associated with NPC and has been implicated in its pathogenesis. Moreover, various chromosome rearrangements were reported in NPC. However, the underlying mechanism of chromosome rearrangement remains unclear. Furthermore, the relationship between EBV and chromosome rearrangement with respect to the pathogenesis of NPC has not been established. We hypothesize that during virus- or stress-induced apoptosis, chromosomes are initially cleaved at the base of the chromatin loop domain structure. Upon DNA repair, cell may survive with rearranged chromosomes. Methods In this study, cells were seeded at various densities to induce apoptosis. Genomic DNA extracted was processed for Southern hybridization. In order to investigate the role of EBV, especially the latent membrane protein 1 (LMP1, LMP1 gene was overexpressed in NPC cells and chromosome breaks were analyzed by inverse polymerase chain (IPCR reaction. Results Southern analysis revealed that high cell density resulted in cleavage of the mixed lineage leukemia (MLL gene within the breakpoint cluster region (bcr. This high cell density-induced cleavage was significantly reduced by caspase inhibitor, Z-DEVD-FMK. Similarly, IPCR analysis showed that LMP1 expression enhanced cleavage of the MLL bcr. Breakpoint analysis revealed that these breaks occurred within the matrix attachment region/scaffold attachment region (MAR/SAR. Conclusions Since MLL locates at 11q23, a common deletion site in NPC, our results suggest a possibility of stress- or virus-induced apoptosis in the initiation of chromosome rearrangements at 11q23. The breakpoint analysis results also support the role of chromatin structure in defining the site of chromosome rearrangement.

  1. Metabolic cleavage of cell-penetrating peptides in contact with epithelial models

    Tréhin, Rachel; Nielsen, Hanne Mørck; Jahnke, Heinz-Georg;

    2004-01-01

    We assessed the metabolic degradation kinetics and cleavage patterns of some selected CPP (cell-penetrating peptides) after incubation with confluent epithelial models. Synthesis of N-terminal CF [5(6)-carboxyfluorescein]-labelled CPP, namely hCT (human calcitonin)-derived sequences, Tat(47-57) and...... penetratin(43-58), was through Fmoc (fluoren-9-ylmethoxycarbonyl) chemistry. Metabolic degradation kinetics of the tested CPP in contact with three cell-cultured epithelial models, MDCK (Madin-Darby canine kidney), Calu-3 and TR146, was evaluated by reversed-phase HPLC. Identification of the resulting...... models and the CPP. The Calu-3 model exhibited the highest proteolytic activity. The patterns of metabolic cleavage of hCT(9-32) were similar in all three models. Initial cleavage of this peptide occurred at the N-terminal domain, possibly by endopeptidase activity yielding both the N- and the C...

  2. Prenatal organophosphates exposure alternates the cleavage plane orientation of apical neural progenitor in developing neocortex.

    Xiao-Ping Chen

    Full Text Available Prenatal organophosphate exposure elicits long-term brain cytoarchitecture and cognitive function impairments, but the mechanism underlying the onset and development of neural progenitors remain largely unclear. Using precise positioned brain slices, we observed an alternated cleavage plane bias that emerged in the mitotic neural progenitors of embryonal neocortex with diazinion (DZN and chlorpyrifos (CPF pretreatment. In comparison with the control, DZN and CPF treatment induced decrease of vertical orientation, increase of oblique orientation, and increase of horizontal orientation. That is, the cleavage plane orientation bias had been rotated from vertical to horizontal after DZN and CPF treatment. Meanwhile, general morphology and mitotic index of the progenitors were unchanged. Acephate (ACP, another common organophosphate, had no significant effects on the cleavage plane orientation, cell morphology and mitotic index. These results represent direct evidence for the toxicity mechanism in onset multiplication of neural progenitors.

  3. Cleavage of fibrinogen by proteinases elicits allergic responses through Toll-like receptor 4.

    Millien, Valentine Ongeri; Lu, Wen; Shaw, Joanne; Yuan, Xiaoyi; Mak, Garbo; Roberts, Luz; Song, Li-Zhen; Knight, J Morgan; Creighton, Chad J; Luong, Amber; Kheradmand, Farrah; Corry, David B

    2013-08-16

    Proteinases and the innate immune receptor Toll-like receptor 4 (TLR4) are essential for expression of allergic inflammation and diseases such as asthma. A mechanism that links these inflammatory mediators is essential for explaining the fundamental basis of allergic disease but has been elusive. Here, we demonstrate that TLR4 is activated by airway proteinase activity to initiate both allergic airway disease and antifungal immunity. These outcomes were induced by proteinase cleavage of the clotting protein fibrinogen, yielding fibrinogen cleavage products that acted as TLR4 ligands on airway epithelial cells and macrophages. Thus, allergic airway inflammation represents an antifungal defensive strategy that is driven by fibrinogen cleavage and TLR4 activation. These findings clarify the molecular basis of allergic disease and suggest new therapeutic strategies. PMID:23950537

  4. Alkene Cleavage Catalysed by Heme and Nonheme Enzymes: Reaction Mechanisms and Biocatalytic Applications

    Francesco G. Mutti

    2012-01-01

    Full Text Available The oxidative cleavage of alkenes is classically performed by chemical methods, although they display several drawbacks. Ozonolysis requires harsh conditions (−78°C, for a safe process and reducing reagents in a molar amount, whereas the use of poisonous heavy metals such as Cr, Os, or Ru as catalysts is additionally plagued by low yield and selectivity. Conversely, heme and nonheme enzymes can catalyse the oxidative alkene cleavage at ambient temperature and atmospheric pressure in an aqueous buffer, showing excellent chemo- and regioselectivities in certain cases. This paper focuses on the alkene cleavage catalysed by iron cofactor-dependent enzymes encompassing the reaction mechanisms (in case where it is known and the application of these enzymes in biocatalysis.

  5. An investigation of crack-tip stress field criteria of predicting cleavage-crack initiation

    Cleavage-crack initiation in large-scale wide-plate (WP) specimens could not be accurately predicted from small, compact (CT) specimens by using a linear-elastic fracture-mechanics, KIc, methodology. In the wide-plate tests conducted by the Heavy-Section Steel Technology Program at Oak Ridge National Laboratory, crack initiation has consistently occurred at stress-intensity (KI) values ranging from two to four times those predicted by the CT specimens. Studies were initiated to develop crack-tip stress field criteria incorporating effects of geometry, size, and constraint that will lead to improved predictions of cleavage initiation in WP specimens from CT specimens. The work centers around nonlinear two-and three-dimensional finite-element analyses of the crack-tip stress fields in these geometries. Analyses were conducted on CT and WP specimens for which cleavage initiation fracture had been measured in laboratory tests. The local crack-tip field generated for these specimens were then used in the evaluation of fracture correlation parameters to augment the KI parameter for predicting cleavage initiation. Parameters of hydrostatic constraint and of maximum principal stress, measured volumetrically, are included in these evaluations. The results suggest that the cleavage initiation process can be correlated with the local crack-tip fields via a maximum principal stress criterion based on achieving a critical area within a critical stress contour. This criterion has been successfully applied to correlate cleavage initiation in 2T-CT and WP specimen geometries. 23 refs., 16 figs., 5 tabs

  6. O2 Protonation Controls Threshold Behavior for N-Glycosidic Bond Cleavage of Protonated Cytosine Nucleosides.

    Wu, R R; Rodgers, M T

    2016-06-01

    IRMPD action spectroscopy studies of protonated 2'-deoxycytidine and cytidine, [dCyd+H](+) and [Cyd+H](+), have established that both N3 and O2 protonated conformers coexist in the gas phase. Threshold collision-induced dissociation (CID) of [dCyd+H](+) and [Cyd+H](+) is investigated here using guided ion beam tandem mass spectrometry techniques to elucidate the mechanisms and energetics for N-glycosidic bond cleavage. N-Glycosidic bond cleavage is observed as the major dissociation pathways resulting in competitive elimination of either protonated or neutral cytosine for both protonated cytosine nucleosides. Electronic structure calculations are performed to map the potential energy surfaces (PESs) for both N-glycosidic bond cleavage pathways observed. The molecular parameters derived from theoretical calculations are employed for thermochemical analysis of the energy-dependent CID data to determine the minimum energies required to cleave the N-glycosidic bond along each pathway. B3LYP and MP2(full) computed activation energies for N-glycosidic bond cleavage associated with elimination of protonated and neutral cytosine, respectively, are compared to measured values to evaluate the efficacy of these theoretical methods in describing the dissociation mechanisms and PESs for N-glycosidic bond cleavage. The 2'-hydroxyl of [Cyd+H](+) is found to enhance the stability of the N-glycosidic bond vs that of [dCyd+H](+). O2 protonation is found to control the threshold energies for N-glycosidic bond cleavage as loss of neutral cytosine from the O2 protonated conformers is found to require ∼25 kJ/mol less energy than the N3 protonated analogues, and the activation energies and reaction enthalpies computed using B3LYP exhibit excellent agreement with the measured thresholds for the O2 protonated conformers. PMID:27159774

  7. ADAM17-mediated CD44 cleavage promotes orasphere formation or stemness and tumorigenesis in HNSCC

    CD44, an extracellular matrix (ECM) receptor, has been described as a cancer stem cell marker in multiple cancers, including head and neck squamous cell carcinoma (HNSCC). HNSCC orasphere formation or stemness was characterized by cleavage of CD44, and thus we hypothesized that this proteolytic processing may be critical to stemness and tumorigenesis. We tested this hypothesis by examining the mechanisms that regulate this process in vitro and in vivo, and by exploring its clinical relevance in human specimens. Sphere assays have been used to evaluate stemness in vitro. Spheres comprised of HNSCC cells or oraspheres and an oral cancer mouse model were used to examine the significance of CD44 cleavage using stable suppression and inhibition approaches. These mechanisms were also examined in HNSCC specimens. Oraspheres exhibited increased levels of CD44 cleavage compared to their adherent counterparts. Given that disintegrin and metalloproteinase domain-containing protein 17 (ADAM17) is a major matrix metalloproteinase known to cleave CD44, we chemically inhibited and stably suppressed ADAM17 expression in HNSCC cells and found that these treatments blocked CD44 cleavage and abrogated orasphere formation. Furthermore, stable suppression of ADAM17 in HNSCC cells also diminished tumorigenesis in an oral cancer mouse model. Consistently, stable suppression of CD44 in HNSCC cells abrogated orasphere formation and inhibited tumorigenesis in vivo. The clinical relevance of these findings was confirmed in matched primary and metastatic human HNSCC specimens, which exhibited increased levels of ADAM17 expression and concomitant CD44 cleavage compared to controls. CD44 cleavage by ADAM17 is critical to orasphere formation or stemness and HNSCC tumorigenesis

  8. Initial activation of EpCAM cleavage via cell-to-cell contact

    Epithelial cell adhesion molecule EpCAM is a transmembrane glycoprotein, which is frequently over-expressed in simple epithelia, progenitors, embryonic and tissue stem cells, carcinoma and cancer-initiating cells. Besides functioning as a homophilic adhesion protein, EpCAM is an oncogenic receptor that requires regulated intramembrane proteolysis for activation of its signal transduction capacity. Upon cleavage, the extracellular domain EpEX is released as a soluble ligand while the intracellular domain EpICD translocates into the cytoplasm and eventually into the nucleus in combination with four-and-a-half LIM domains protein 2 (FHL2) and β-catenin, and drives cell proliferation. EpCAM cleavage, induction of the target genes, and transmission of proliferation signals were investigated under varying density conditions using confocal laser scanning microscopy, immunoblotting, cell counting, and conditional cell systems. EpCAM cleavage, induction of the target genes, and transmission of proliferation signals were dependent on adequate cell-to-cell contact. If cell-to-cell contact was prohibited EpCAM did not provide growth advantages. If cells were allowed to undergo contact to each other, EpCAM transmitted proliferation signals based on signal transduction-related cleavage processes. Accordingly, the pre-cleaved version EpICD was not dependent on cell-to-cell contact in order to induce c-myc and cell proliferation, but necessitated nuclear translocation. For the case of contact-inhibited cells, although cleavage of EpCAM occurred, nuclear translocation of EpICD was reduced, as were EpCAM effects. Activation of EpCAM's cleavage and oncogenic capacity is dependent on cellular interaction (juxtacrine) to provide for initial signals of regulated intramembrane proteolysis, which then support signalling via soluble EpEX (paracrine)

  9. Cleavage strain in the Variscan fold belt, County Cork, Ireland, estimated from stretched arsenopyrite rosettes

    Ford, M.; Ferguson, C.C.

    1985-01-01

    In south-west Ireland, hydrothermally formed arsenopyrite crystals in a Devonian mudstone have responded to Variscan deformation by brittle extension fracture and fragment separation. The interfragment gaps and terminal extension zones of each crystal are infilled with fibrous quartz. Stretches within the cleavage plane have been calculated by the various methods available, most of which can be modified to incorporate terminal extension zones. The Strain Reversal Method is the most accurate currently available but still gives a minimum estimate of the overall strain. The more direct Hossain method, which gives only slightly lower estimates with this data, is more practical for field use. A strain ellipse can be estimated from each crystal rosette composed of three laths (assuming the original interlimb angles were all 60??) and, because actual rather than relative stretches are estimated, this provides a lower bound to the area increase in the plane of cleavage. Based on the average of our calculated strain ellipses this area increase is at least 114% and implies an average shortening across the cleavage of at least 53%. However, several lines of evidence suggest that the cleavage deformation was more intense and more oblate than that calculated, and we argue that a 300% area increase in the cleavage plane and 75% shortening across the cleavage are more realistic estimates of the true strain. Furthermore, the along-strike elongation indicated is at least 80%, which may be regionally significant. Estimates of orogenic contraction derived from balanced section construction should therefore take into account the possibility of a substantial strike elongation, and tectonic models that can accommodate such elongations need to be developed. ?? 1985.

  10. The potato carotenoid cleavage dioxygenase 4 catalyzes a single cleavage of β-ionone ring-containing carotenes and non-epoxidated xanthophylls.

    Bruno, Mark; Beyer, Peter; Al-Babili, Salim

    2015-04-15

    Down-regulation of the potato carotenoid cleavage dioxygenase 4 (StCCD4) transcript level led to tubers with altered morphology and sprouting activity, which also accumulated higher levels of violaxanthin and lutein leading to elevated carotenoid amounts. This phenotype indicates a role of this enzyme in tuber development, which may be exerted by a cleavage product. In this work, we investigated the enzymatic activity of StCCD4, by expressing the corresponding cDNA in carotenoid accumulating Escherichia coli strains and by performing in vitro assays with heterologously expressed enzyme. StCCD4 catalyzed the cleavage of all-trans-β-carotene at the C9'-C10' double bond, leading to β-ionone and all-trans-β-apo-10'-carotenal, both in vivo and in vitro. The enzyme also cleaved β,β-cryptoxanthin, zeaxanthin and lutein either at the C9'-C10' or the C9-C10 double bond in vitro. In contrast, we did not observe any conversion of violaxanthin and only traces of activity with 9-cis-β-carotene, which led to 9-cis-β-apo-10'-carotenal. Our data indicate that all-trans-β-carotene is the likely substrate of StCCD4 in planta, and that this carotene may be precursor of an unknown compound involved in tuber development. PMID:25703194

  11. The potato carotenoid cleavage dioxygenase 4 catalyzes a single cleavage of β-ionone ring-containing carotenes and non-epoxidated xanthophylls

    Bruno, Mark

    2015-04-01

    Down-regulation of the potato carotenoid cleavage dioxygenase 4 (StCCD4) transcript level led to tubers with altered morphology and sprouting activity, which also accumulated higher levels of violaxanthin and lutein leading to elevated carotenoid amounts. This phenotype indicates a role of this enzyme in tuber development, which may be exerted by a cleavage product. In this work, we investigated the enzymatic activity of StCCD4, by expressing the corresponding cDNA in carotenoid accumulating Escherichia coli strains and by performing in vitro assays with heterologously expressed enzyme. StCCD4 catalyzed the cleavage of all-. trans-β-carotene at the C9\\'-C10\\' double bond, leading to β-ionone and all-. trans-β-apo-10\\'-carotenal, both in vivo and in vitro. The enzyme also cleaved β,β-cryptoxanthin, zeaxanthin and lutein either at the C9\\'-C10\\' or the C9-C10 double bond in vitro. In contrast, we did not observe any conversion of violaxanthin and only traces of activity with 9-. cis-β-carotene, which led to 9-. cis-β-apo-10\\'-carotenal. Our data indicate that all-. trans-β-carotene is the likely substrate of StCCD4 in planta, and that this carotene may be precursor of an unknown compound involved in tuber development.

  12. Low-temperature side-chain cleavage and decarboxylation of polythiophene esters by acid catalysis

    Søndergaard, Roar; Norrman, Kion; Krebs, Frederik C

    2012-01-01

    substituents have been examined by TGA‐MS using different sulphonic acids. A substantial lowering of the cleavage temperature is observed, and the ester cleavage can even be performed in situ on roll‐to‐roll‐coated films on polyethylene terephthalate (PET). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A......Solubility switching of polymers is very useful in thin layer processing of conjugated polymers, as it allows for multilayer processing and increases the stability of the polymer. Acid catalyzed thermocleavage of ester groups from thiophene polymers carrying primary, secondary, and tertiary......: Polym Chem, 2012...

  13. Exon size affects competition between splicing and cleavage-polyadenylation in the immunoglobulin mu gene.

    Peterson, M L; Bryman, M B; Peiter, M; Cowan, C

    1994-01-01

    The alternative RNA processing of microseconds and microns mRNAs from a single primary transcript depends on competition between a cleavage-polyadenylation reaction to produce microseconds mRNA and a splicing reaction to produce microns mRNA. The ratio of microseconds to microns mRNA is regulated during B-cell maturation; relatively more spliced microns mRNA is made in B cells than in plasma cells. The balance between the efficiencies of splicing and cleavage-polyadenylation is critical to th...

  14. Influence of the austenitizing temperature in the cleavage facet size of Niocor 2

    Convetional Charpy specimens of Niocor 2 steel cooled in air from various austenitizing temperatures were fractured at -1960 C so as to insure failure by cleavage. The cleavage facet size distribution was determined and then correlated with the grain size and other aspects of the microstructure. The results that the average facet size can be increased through a coarsening of the microstructure. For the case where the γ→α transformation products are predominantely acicular, the facet size is shown to depend on substructural aspects primarily the lath packet size. (Author)

  15. LNA nucleotides improve cleavage efficiency of singular and binary hammerhead ribozymes

    Christiansen, Janne K; Lobedanz, Sune; Arar, Khalil;

    2007-01-01

    concentrations, it was found that insertion of LNA monomers into the substrate binding arms allowed these to be shortened and results in a very active enzyme under both single and multiple turnover conditions. Incorporation of a mix of LNA and DNA residues further increased the multiple turnover cleavage...... activity. At high Mg(2+) concentrations or high substrate and ribozyme concentrations, the enhancing effect of LNA incorporation was even more prominent. Using LNA in the stem of Helix II diminished cleavage activity, but allowed deletion of the tetra-loop and thus separating the ribozyme into two...

  16. An energy approach to predict cleavage fracture under non-proportional loading

    The paper provides an energy approach to predict cleavage fracture under non-proportional loading. It is based on an energy minimization and uses a notch model to represent the crack. An energy based cleavage criterion is defined. Validation is conducted in the context of two European programmes, showing that the approach accounts for both shallow crack and warm pre-stress effects. All these results are analyzed and discussed by referring to the classical Beremin model. This approach can be seen as a simple extension of the classical J approach, providing a tool of common and practical use for engineers. (authors)

  17. Proteolytic cleavage in an endolysosomal compartment is required for Toll-like receptor 9 activation

    Park, Boyoun; Brinkmann, Melanie M.; Spooner, Eric; Lee, Clarissa C.; Kim, You-Me; Ploegh, Hidde L.

    2008-01-01

    Toll-like receptors (TLRs) activate the innate immune system in response to pathogens. Here we showed that TLR9 proteolytic cleavage is a prerequisite for TLR9 signaling. Inhibition of lysosomal proteolysis rendered TLR9 inactive. The C-terminal fragment of TLR9 thus generated included a portion of the TLR9 ectodomain, as well as the transmembrane and cytoplasmic domains. This cleavage fragment bound to the TLR9 ligand CpG, and, when expressed in Tlr9−/− dendritic cells, restored CpG-induced ...

  18. Proteolytic cleavage of the Chlamydia pneumoniae major outer membrane protein in the absence of Pmp10

    Juul, Nicolai Stefan; Timmerman, E; Gevaert, K;

    2007-01-01

    compared the proteome of the CWL029 isolate with the proteome of the subcloned strain and identified a specific cleavage of the C-terminal part of the major outer membrane protein (MOMP), which occurred only in the absence of Pmp10. In contrast, when Pmp10 was expressed we predominantly observed full......-length MOMP. No other proteins appeared to be regulated according to the presence or absence of Pmp10. These results suggest a close association between MOMP and Pmp10, where Pmp10 may protect the C-terminal part of MOMP from proteolytic cleavage....

  19. Grain boundary effect on the nature of cleavage fracture in copper crystallite under pulsed loading

    The computer modeling of cleavage fracture in the copper crystallite, containing grain boundary under pulsed loading, is carried out. It is shown that tendency to material destruction along the grain boundary is increasing by initiation of packages of several isolated compression pulses (ICP) in the material. Increase in the ICP number in the package leads to the cleavage fracture along the boundaries, outlying over a great distance from the free surface. The cleaved fragments decompose with time into smaller ones due to growing spread of atomic velocities

  20. Formation of C-terminally truncated version of the Taz1 protein employs cleavage-box structure in mRNA

    When expressed in various hosts the taz1+ gene encoding the fission yeast telomere-binding protein produces two forms of polypeptides: full-length (Taz1p) and truncated (Taz1pΔC) version lacking almost entire Myb-domain. Whereas Taz1p binds telomeric DNA in vitro, Taz1pΔC forms long filaments unable of DNA binding. The formation of Taz1pΔC is a result of neither site-specific proteolysis, nor premature termination of transcription. In silico analysis of the taz1+ RNA transcript revealed a stem-loop structure at the site of cleavage (cleavage box; CB). In order to explore whether it possesses inherent destabilizing effects, we cloned CB sequence into the open reading frame (ORF) of glutathione-S-transferase (GST) and observed that when expressed in Escherichia coli the engineered gene produced two forms of the reporter protein. The formation of the truncated version of GST was abolished, when CB was replaced with recoded sequence containing synonymous codons thus indicating that the truncation is based on structural properties of taz1+ mRNA.

  1. The regulated production of mu m and mu s mRNA is dependent on the relative efficiencies of mu s poly(A) site usage and the c mu 4-to-M1 splice.

    Peterson, M L; Perry, R P

    1989-01-01

    The relative abundance of the mRNAs encoding the membrane (mu m) and secreted (mu s) forms of immunoglobulin mu heavy chain is regulated during B-cell maturation by a change in the mode of RNA processing. Current models to explain this regulation involve either competition between cleavage-polyadenylation at the proximal (mu s) poly(A) site and cleavage-polyadenylation at the distal (mu m) poly(A) site [poly(A) site model] or competition between cleavage-polyadenylation at the mu s poly(A) si...

  2. RNA cleavage products generated by antisense oligonucleotides and siRNAs are processed by the RNA surveillance machinery.

    Lima, Walt F; De Hoyos, Cheryl L; Liang, Xue-Hai; Crooke, Stanley T

    2016-04-20

    DNA-based antisense oligonucleotides (ASOs) elicit cleavage of the targeted RNA by the endoribonuclease RNase H1, whereas siRNAs mediate cleavage through the RNAi pathway. To determine the fates of the cleaved RNA in cells, we lowered the levels of the factors involved in RNA surveillance prior to treating cells with ASOs or siRNA and analyzed cleavage products by RACE. The cytoplasmic 5' to 3' exoribonuclease XRN1 was responsible for the degradation of the downstream cleavage products generated by ASOs or siRNA targeting mRNAs. In contrast, downstream cleavage products generated by ASOs targeting nuclear long non-coding RNA Malat 1 and pre-mRNA were degraded by nuclear XRN2. The downstream cleavage products did not appear to be degraded in the 3' to 5' direction as the majority of these products contained intact poly(A) tails and were bound by the poly(A) binding protein. The upstream cleavage products of Malat1 were degraded in the 3' to 5' direction by the exosome complex containing the nuclear exoribonuclease Dis3. The exosome complex containing Dis3 or cytoplasmic Dis3L1 degraded mRNA upstream cleavage products, which were not bound by the 5'-cap binding complex and, consequently, were susceptible to degradation in the 5' to 3' direction by the XRN exoribonucleases. PMID:26843429

  3. Observation of Early Cleavage in Animal Development: A Simple Technique for Obtaining the Eggs of Rhabditis (Nematoda)

    Hinchliffe, J. R.

    1973-01-01

    Outlines the advantages of using the readily available eggs of the nematode Rhabditis in studying the early cleavage stages of animal development. Discusses the identification and life history of Rhabditis, how to culture and examine the organism, the cleavage stages and cell lineage, and sources of visual aids. (JR)

  4. Factors affecting the first cleavage interval and effects of parental generation on tetraploid production in rainbow trout (Oncorhynchus mykiss)

    Tetraploidy is induced in rainbow trout by applying a pressure shock at a specific time point between insemination and first cleavage, or the first cleavage interval (FCI). Previous studies suggested that variation in the FCI among individuals and populations of fish prevents the identification of ...

  5. Consequences of Cas9 cleavage in the chromosome of Escherichia coli.

    Cui, Lun; Bikard, David

    2016-05-19

    The RNA-guided Cas9 nuclease from CRISPR-Cas systems has emerged as a powerful biotechnological tool. The specificity of Cas9 can be reprogrammed to cleave desired sequences in a cell's chromosome simply by changing the sequence of a small guide RNA. Unlike in most eukaryotes, Cas9 cleavage in the chromosome of bacteria has been reported to kill the cell. However, the mechanism of cell death remains to be investigated. Bacteria mainly rely on homologous recombination (HR) with sister chromosomes to repair double strand breaks. Here, we show that the simultaneous cleavage of all copies of the Escherichia coli chromosome at the same position cannot be repaired, leading to cell death. However, inefficient cleavage can be tolerated through continuous repair by the HR pathway. In order to kill cells reliably, HR can be blocked using the Mu phage Gam protein. Finally, the introduction of the non-homologous end joining (NHEJ) pathway from Mycobacterium tuberculosis was not able to rescue the cells from Cas9-mediated killing, but did introduce small deletions at a low frequency. This work provides a better understanding of the consequences of Cas9 cleavage in bacterial chromosomes which will be instrumental in the development of future CRISPR tools. PMID:27060147

  6. Oxidative cleavage of erucic acid for the synthesis of brassylic acid

    Mohammed J. Nasrullah; Pooja Thapliyal; Erica N. Pfarr; Nicholas S. Dusek; Kristofer L. Schiele; James A. Bahr

    2010-10-29

    The main focus of this work is to synthesize Brassylic Acid (BA) using oxidative cleavage of Erucic Acid (EA). Crambe (Crambe abyssinica) is an industrial oilseed grown in North Dakota. Crambe has potential as an industrial fatty acid feedstock as a source of Erucic acid (EA). It has approximately 50-60 % of EA, a C{sub 22} monounsaturated fatty acid. Oxidative cleavage of unsaturated fatty acids derived from oilseeds produces long chain (9, 11, and 13 carbon atoms) dibasic and monobasic acids. These acids are known commercial feedstocks for the preparation of nylons, polyesters, waxes, surfactants, and perfumes. Other sources of EA are Rapeseed seed oil which 50-60 % of EA. Rapeseed is grown outside USA. The oxidative cleavage of EA was done using a high throughput parallel pressure reactor system. Kinetics of the reaction shows that BA yields reach a saturation at 12 hours. H{sub 2}WO{sub 4} was found to be the best catalyst for the oxidative cleavage of EA. High yields of BA were obtained at 80 C with bubbling of O{sub 2} or 10 bar of O{sub 2} for 12 hours.

  7. Multielectron redox reactions involving C-C coupling and cleavage in uranium Schiff base complexes

    The reaction of U(III) with Schiff base ligands and the reduction of U(IV) Schiff base complexes both promote C-C bond formation to afford dinuclear or mononuclear U(IV) amido complexes, which can release up to four electrons to substrates through the oxidative cleavage of the C-C bond. (authors)

  8. The mitochondrion-like organelle of Trimastix pyriformis contains the complete glycine cleavage system

    Zubáčová, Z.; Novák, L.; Bublíková, J.; Vacek, V.; Fousek, Jan; Rídl, Jakub; Tachezy, J.; Doležal, P.; Vlček, Čestmír; Hampl, V.

    2013-01-01

    Roč. 8, č. 3 (2013), e55417. E-ISSN 1932-6203 R&D Projects: GA ČR GAP506/12/1010 Institutional support: RVO:68378050 Keywords : transcriptome sequencing * Trimastix * mitochondrion-like organelle * glycine cleavage complex Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.534, year: 2013

  9. Caspase-Dependent Apoptosis Induced by Telomere Cleavage and TRF2 Loss

    Asha S. Multani

    2000-07-01

    Full Text Available Chromosomal abnormalities involving telomeric associations (TAs often precede replicative senescence and abnormal chromosome configurations. We report here that telomere cleavage following exposure to proapoptotic agents is an early event in apoptosis. Exposure of human and murine cancer cells to a variety of pro-apoptotic stimuli (staurosporine, thapsigargin, anti-Fas antibody, cancer chemotherapeutic agents resulted in telomere cleavage and aggregation, finally their extrusion from the nuclei. Telomere loss was associated with arrest of cells in G2/M phase and preceded DNA fragmentation. Telomere erosion and subsequent large-scale chromatin cleavage were inhibited by overexpression of the anti -apoptotic protein, bcl-2, two peptide caspase inhibitors (BACMK and zVADfmk, indicating that both events are regulated by caspase activation. The results demonstrate that telomere cleavage is an early chromatin alteration detected in various cancer cell lines leading to drug-induced apoptosis, suggest that this event contributes to mitotic catastrophe and induction of cell death. Results also suggest that the decrease of telomeric-repeat binding factor 2 (TRF2 may be the earliest event in the ara-C-induced telomere shortening, induction of endoreduplication and chromosomal fragmentation leading to cell death.

  10. Cleavage and protection of locked nucleic acid-modified DNA by restriction endonucleases

    Crouzier, Lucile; Dubois, Camille; Wengel, Jesper;

    2012-01-01

    Locked nucleic acid (LNA) is one of the most prominent nucleic acid analogues reported so far. We herein for the first time report cleavage by restriction endonuclease of LNA-modified DNA oligonucleotides. The experiments revealed that RsaI is an efficient enzyme capable of recognizing and cleaving...

  11. Adolescents' Perceptions of Equal Opportunities and Social Cleavages in Israeli Society.

    Erhard, Rachel; And Others

    A study was done of perceptions of equality of opportunities for access to social resources and of social cleavages in Israeli society among Israeli students in grades 8 and 9. The study population included 9,000 students in 273 classes in a national sample of 47 secular junior high schools. Subjects were asked to assess equality of opportunities…

  12. DNA cleavage enzymes for treatment of persistent viral infections: Recent advances and the pathway forward

    Treatment for most persistent viral infections consists of palliative drug options rather than curative approaches. This is often because long-lasting viral DNA in infected cells is not affected by current antivirals, providing a source for viral persistence and reactivation. Targeting latent viral DNA itself could therefore provide a basis for novel curative strategies. DNA cleavage enzymes can be used to induce targeted mutagenesis of specific genes, including those of exogenous viruses. Although initial in vitro and even in vivo studies have been carried out using DNA cleavage enzymes targeting various viruses, many questions still remain concerning the feasibility of these strategies as they transition into preclinical research. Here, we review the most recent findings on DNA cleavage enzymes for human viral infections, consider the most relevant animal models for several human viral infections, and address issues regarding safety and enzyme delivery. Results from well-designed in vivo studies will ideally provide answers to the most urgent remaining questions, and allow continued progress toward clinical application. - Highlights: • Recent in vitro and in vivo results for DNA cleavage enzymes targeting persistent viral infections. • Analysis of the best animal models for testing enzymes for HBV, HSV, HIV and HPV. • Challenges facing in vivo delivery of therapeutic enzymes for persistent viral infections. • Safety issues to be addressed with proper animal studies

  13. Racial Cleavage in Local Voting: The Case of School and Tax Issue Referendums.

    Button, James

    1993-01-01

    Explores voting behavior of African Americans and whites in local school and tax referenda to determine whether racial conflict is still a primal factor in noncandidate elections. Results for voters in 5 counties in Florida (over 1,699,000 voters) reveal African-American underregistration and the continuing importance of racial cleavage. (SLD)

  14. Critical cleavage fracture stress characterization of A508 nuclear pressure vessel steels

    The critical cleavage fracture stress of SA508 Gr.4N and SA508 Gr.3 low alloy reactor pressure vessel (RPV) steels was studied through the combination of experiments and finite element method (FEM) analysis. The results showed that the value of the local cleavage fracture stress, σF, of SA508 Gr.4N steel was significantly higher than that of SA508 Gr.3 steel. Detailed microstructural analysis was carried out using FEGSEM which revealed much smaller grains, finer and more homogenous carbide particles formed in SA508 Gr.4N steel. Compared with the SA508 Gr.3 steel currently used in the nuclear industry, the SA508 Gr.4N steel possesses higher strength and notch toughness as well as improved cleavage fracture behavior, and is considered a better candidate RPV steel for the next generation nuclear reactors. - Highlights: • Critical cleavage fracture stress was calculated through experiments and FEM. • Effects of both grain and carbide particle sizes on σF were discussed. • The SA508 Gr.4N steel is a better candidate for the next generation nuclear reactors

  15. Cleavage enhancement of specific chemical bonds in DNA-Cisplatin complexes induced by X-rays

    The chemical bond transformation of cisplatin-DNA complexes can be probed efficiently by XPS which provides a concomitant X-ray irradiation source as well. The presence to Pt could considerably increase formation of the SE induced by X-ray and that the further interaction of these LEE with DNA leads to the enhancement of bond cleavages.

  16. Cleavage of Maize chlorotic dwarf virus R78 protein by the viral 3C protease

    Maize chlorotic dwarf virus (MCDV) is a member of the genus Waikavirus and encodes a 389 kDa polyprotein from its 11784 nt genomic RNA. Like many polyprotein-encoding viruses, MCDV contains a 3C-like virus protease that is presumably responsible for maturation cleavages of the polyprotein. However,...

  17. Synthesis of sulfonamides via copper-catalyzed oxidative C-N bond cleavage of tertiary amines.

    Ji, Jing; Liu, Zhengyi; Liu, Ping; Sun, Peipei

    2016-08-01

    A copper-catalyzed coupling reaction of sulfonyl chlorides with tertiary amines via the oxidative C-N bond cleavage of tertiary amines was developed. Sulfonamides were synthesized using this strategy in moderate to good yields. The reaction was applicable to various tertiary amines, as well as sulfonyl chlorides. PMID:27356858

  18. A potent reporter applicable to the monitoring of caspase-3-dependent proteolytic cleavage.

    Park, Kyoungsook; Kang, Hyo-Jin; Ahn, Junhyoung; Yi, So Yeon; Han, Sang Hee; Park, Hye-Jung; Chung, Sang J; Chung, Bong Hyun; Kim, Moonil

    2008-11-01

    In this study, we developed a chimeric caspase-3 substrate (GST:DEVD:EGFP) comprised of glutathione-S transferase (GST) and enhanced green fluorescent protein (EGFP) with a specialized linker peptide harboring the caspase-3 cleavage sequence, DEVD. Using this reporter, we assessed the proteolytic cleavage of the artificial caspase-3 substrate for caspase-3. The common feature of this approach is that the presence of the DEVD sequence between GST and EGFP allows for caspase-3-dependent cleavage after the Asp (D) residue, resulting in the elimination of EGFP from the GST:DEVD:EGFP reporter. To the best of our knowledge, this study reports the first application employing a chimeric protein substrate, with the similar accuracy level compared to the conventional methods such as fluorometric assays. As a result, using this GST:DEVD:EGFP reporter, caspase-3 activation based on proteolytic properties could be monitored via a variety of bioanalytical techniques such as immunoblot analysis, glutathione-agarose bead assay, and on-chip visualization, providing both technical and economical advantages over the extensively utilized fluorogenic peptide assay. Our results convincingly showed that this versatile reporter (GST:DEVD:EGFP) constitutes a useful system for the monitoring of caspase-3 activation, potentially enabling the monitoring of the proteolytic activities of different intra-cellular proteases via the substitution of the cleavage sequence within the same schematic construct. PMID:18775457

  19. DNA cleavage enzymes for treatment of persistent viral infections: Recent advances and the pathway forward

    Weber, Nicholas D., E-mail: nweber@fhcrc.org [Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, E5-110, Seattle, WA 98109 (United States); Department of Laboratory Medicine, University of Washington, Seattle, WA 98195 (United States); Aubert, Martine, E-mail: maubert@fhcrc.org [Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, E5-110, Seattle, WA 98109 (United States); Dang, Chung H., E-mail: cdang@fhcrc.org [Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, E5-110, Seattle, WA 98109 (United States); Stone, Daniel, E-mail: dstone2@fhcrc.org [Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, E5-110, Seattle, WA 98109 (United States); Jerome, Keith R., E-mail: kjerome@fhcrc.org [Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, E5-110, Seattle, WA 98109 (United States); Department of Laboratory Medicine, University of Washington, Seattle, WA 98195 (United States); Department of Microbiology, University of Washington, Seattle, WA 98195 (United States)

    2014-04-15

    Treatment for most persistent viral infections consists of palliative drug options rather than curative approaches. This is often because long-lasting viral DNA in infected cells is not affected by current antivirals, providing a source for viral persistence and reactivation. Targeting latent viral DNA itself could therefore provide a basis for novel curative strategies. DNA cleavage enzymes can be used to induce targeted mutagenesis of specific genes, including those of exogenous viruses. Although initial in vitro and even in vivo studies have been carried out using DNA cleavage enzymes targeting various viruses, many questions still remain concerning the feasibility of these strategies as they transition into preclinical research. Here, we review the most recent findings on DNA cleavage enzymes for human viral infections, consider the most relevant animal models for several human viral infections, and address issues regarding safety and enzyme delivery. Results from well-designed in vivo studies will ideally provide answers to the most urgent remaining questions, and allow continued progress toward clinical application. - Highlights: • Recent in vitro and in vivo results for DNA cleavage enzymes targeting persistent viral infections. • Analysis of the best animal models for testing enzymes for HBV, HSV, HIV and HPV. • Challenges facing in vivo delivery of therapeutic enzymes for persistent viral infections. • Safety issues to be addressed with proper animal studies.

  20. The party politics of economic reform: Public opinion, party positions and partisan cleavages

    Padgett, Stephen

    2005-01-01

    This article focuses on the capacity of parties to cultivate public opinion to accept welfare state reform. 'Preference shaping', it is argued, depends on the intensity of party 'messages', which will be at their strongest where there are sharply defined partisan cleavages in opinion. The aversion o

  1. Rhodium-catalyzed C-C Bond Cleavage Reactions - An Update

    Korotvička, A.; Nečas, D.; Kotora, Martin

    2012-01-01

    Roč. 16, č. 10 (2012), s. 1170-1214. ISSN 1385-2728 Grant ostatní: GA MŠk(CZ) LC06070 Institutional research plan: CEZ:AV0Z40550506 Keywords : rhodium * C-C bond cleavage * catalysis * synthesis Subject RIV: CC - Organic Chemistry Impact factor: 3.039, year: 2012

  2. Facile P-C/C-H Bond Cleavage Reactivity of Nickel Bis(diphosphine) Complexes

    Zhang, Shaoguang; Li, Haixia; Appel, Aaron M.; Hall, Michael B.; Bullock, R. Morris

    2016-07-04

    Unusual cleavage of P-C and C-H bonds of the P2N2 ligand in heteroleptic [Ni(P2N2)(diphosphine)]2+ complexes results in the formation of an iminium formyl nickelate featuring a C,P,P-tridentate coordination mode.

  3. Metabolic Engineering to Develop a Pathway for the Selective Cleavage of Carbon-Nitrogen Bonds

    John J. Kilbane II

    2005-10-01

    The objective of the project is to develop a biochemical pathway for the selective cleavage of C-N bonds in molecules found in petroleum. Specifically a novel biochemical pathway will be developed for the selective cleavage of C-N bonds in carbazole. The cleavage of the first C-N bond in carbazole is accomplished by the enzyme carbazole dioxygenase, that catalyzes the conversion of carbazole to 2-aminobiphenyl-2,3-diol. The genes encoding carbazole dioxygenase were cloned from Sphingomonas sp. GTIN11 and from Pseudomonas resinovorans CA10. The selective cleavage of the second C-N bond has been challenging, and efforts to overcome that challenge have been the focus of recent research in this project. Enrichment culture experiments succeeded in isolating bacterial cultures that can metabolize 2-aminobiphenyl, but no enzyme capable of selectively cleaving the C-N bond in 2-aminobiphenyl has been identified. Aniline is very similar to the structure of 2-aminobiphenyl and aniline dioxygenase catalyzes the conversion of aniline to catechol and ammonia. For the remainder of the project the emphasis of research will be to simultaneously express the genes for carbazole dioxygenase and for aniline dioxygenase in the same bacterial host and then to select for derivative cultures capable of using carbazole as the sole source of nitrogen.

  4. Linear mapping of tryptophan residues in Vesiculovirus M and N proteins by partial chemical cleavage.

    Brown, E.; Prevec, L.

    1982-01-01

    Nonlimit chemical cleavage at tryptophan residues of protein labeled at the amino terminus afforded a simple procedure for generating specific fragments and for mapping tryptophan positions. A comparison of the matrix (M) and nucleocapsid (N) proteins of four members of the Vesiculovirus group by this procedure suggests considerable conservation of tryptophan number and location in the four serotypes examined.

  5. Thermodynamic Strategies for C-O Bond Formation and Cleavage via Tandem Catalysis.

    Lohr, Tracy L; Li, Zhi; Marks, Tobin J

    2016-05-17

    To reduce global reliance on fossil fuels, new renewable sources of energy that can be used with the current infrastructure are required. Biomass represents a major source of renewable carbon based fuel; however, the high oxygen content (∼40%) limits its use as a conventional fuel. To utilize biomass as an energy source, not only with current infrastructure, but for maximum energy return, the oxygen content must be reduced. One method to achieve this is to develop selective catalytic methods to cleave C-O bonds commonly found in biomass (aliphatic and aromatic ethers and esters) for the eventual removal of oxygen in the form of volatile H2O or carboxylic acids. Once selective methods of C-O cleavage are understood and perfected, application to processing real biomass feedstocks such as lignin can be undertaken. This Laboratory previously reported that recyclable "green" lanthanide triflates are excellent catalysts for C-O bond-forming hydroalkoxylation reactions. Based on the virtues of microscopic reversibility, the same lanthanide triflate catalyst should catalyze the reverse C-O cleavage process, retrohydroalkoxylation, to yield an alcohol and an alkene. However, ether C-O bond-forming (retrohydroalkoxylation) to form an alcohol and alkene is endothermic. Guided by quantum chemical analysis, our strategy is to couple endothermic, in tandem, ether C-O bond cleavage with exothermic alkene hydrogenation, thereby leveraging the combined catalytic cycles thermodynamically to form an overall energetically favorable C-O cleavage reaction. This Account reviews recent developments on thermodynamically leveraged tandem catalysis for ether and more recently, ester C-O bond cleavage undertaken at Northwestern University. First, the fundamentals of lanthanide-catalyzed hydroelementation are reviewed, with particular focus on ether C-O bond formation (hydroalkoxylation). Next, the reverse C-O cleavage/retrohydroalkoxylation processes enabled by tandem catalysis are

  6. Dinitrogen binding and cleavage by multinuclear iron complexes.

    McWilliams, Sean F; Holland, Patrick L

    2015-07-21

    The iron-molybdenum cofactor of nitrogenase has unprecedented coordination chemistry, including a high-spin iron cluster called the iron-molybdenum cofactor (FeMoco). Thus, understanding the mechanism of nitrogenase challenges coordination chemists to understand the fundamental N2 chemistry of high-spin iron sites. This Account summarizes a series of studies in which we have synthesized a number of new compounds with multiple iron atoms, characterized them using crystallography and spectroscopy, and studied their reactions in detail. These studies show that formally iron(I) and iron(0) complexes with three- and four-coordinate metal atoms have the ability to weaken and break the triple bond of N2. These reactions occur at or below room temperature, indicating that they are kinetically facile. This in turn implies that iron sites in the FeMoco are chemically reasonable locations for N2 binding and reduction. The careful evaluation of these compounds and their reaction pathways has taught important lessons about what characteristics make iron more effective for N2 activation. Cooperation of two iron atoms can lengthen and weaken the N-N bond, while three working together enables iron atoms to completely cleave the N-N bond to nitrides. Alkali metals (typically introduced into the reaction as part of the reducing agent) are thermodynamically useful because the alkali metal cations stabilize highly reduced complexes, pull electron density into the N2 unit, and make reduced nitride products more stable. Alkali metals can also play a kinetic role, because cation-π interactions with the supporting ligands can hold iron atoms near enough to one another to facilitate the cooperation of multiple iron atoms. Many of these principles may also be relevant to the iron-catalyzed Haber-Bosch process, at which collections of iron atoms (often promoted by the addition of alkali metals) break the N-N bond of N2. The results of these studies teach more general lessons as well. They

  7. Anaerobic DNA cleavage in red light by dicopper(II) complexes on disulphide bond activation

    Debojyoti Lahiri; Ritankar Majumdar; Ashis K Patra; Akhil R Chakravarty

    2010-05-01

    Binuclear complexes [Cu(-RSSR)]2 (1) and [M2(-PDS)(H2O)]2 (M = Cu(II), 2; Fe(II), 3), where H2RSSR is a reduced Schiff base derived from 2-(thioethyl)salicylaldimine having a disulphide moiety and H2PDS is derived from dimerization of D-penicillamine, have been prepared, structurally characterized, and their photo-induced DNA cleavage activity studied. The crystal structure of 1 shows the complex as a discrete binuclear species with each metal in a CuN2O2 square-planar geometry (Cu…Cu, 6.420 Å). The tetradentate RSSR2- acts as a bridging ligand. The sulphur atoms in the disulphide unit do not interact with the metal ions. Complexes 1-3 do not show any DNA cleavage activity in darkness. The copper(II) complexes exhibit chemical nuclease activity in the presence of 3-mercaptopropionic acid. Cleavage of supercoiled DNA has been observed in UV-A light of 365 nm for 1 and red light of 647.1 nm for both 1 and 2 in air. Mechanistic data reveal the involvement of the disulphide unit as photosensitizer generating hydroxyl radicals ($^{\\bullet}$OH) as the reactive species. Photo-induced DNA cleavage in red light seems to involve sulphide radicals in a type-I process and hydroxyl radicals. The dicopper(II) complexes show significant anaerobic photo-induced DNA cleavage activity in red light under argon following type-I pathway without involving any reactive oxygen species.

  8. Thatcher’s Victims vs. Beveridge’s Sons: The New Cleavage of European Parties

    Roberto Segatori

    2015-03-01

    Full Text Available The Rokkans’ theory of cleavages has traditionally been a valid helpful instrument, although questionable, to interpret the nexus between social dynamics and party models. Thanks also to this theo-ry, during the hundred years between 1885 and 1985, European political party classification, at least where their origins are concerned, is reasonably straightforward. At the end of the sixties of ‘900, the per-formance of the political actors in terms of policy stimulated a level of feedback on the social conditions of populations to the point of reducing the impact of the traditional cleavages. The thirty-year “Golden Age” steadily led the population to believe in a world where the affirmation of universalistic social rights was an acquired right regardless of offsetting economic measures. But in the following forty years, with this con-viction still holding, the economic conditions for the sustainability of that model were overturned, and the prospect, therefore, of social benefits for all changed radically. Especially after the 2008 crisis, a new cleavage explodes with such an intensity that it actually squares the interests of the “protected” (state employees with steady jobs, workers of large and medium-sized firms protected by the Unions with the “non-protected” (the unemployed, self-employed and seasonal labourers, in other words those of the established and non-established. In this framework, if they want to survive, the political parties both old and new, are continually being pressurised by an agitated electorate to realign themselves. And while in the short term gain votes populist and nationalist parties, the nature of the latest cleavage seems there-fore to be a challenge especially for those parties which find themselves managing the “social blocs”, gen-erated from the classic cleavages, and the identity nuclei.

  9. Cytoplasmic translocation, aggregation, and cleavage of TDP-43 by enteroviral proteases modulate viral pathogenesis.

    Fung, G; Shi, J; Deng, H; Hou, J; Wang, C; Hong, A; Zhang, J; Jia, W; Luo, H

    2015-12-01

    We have previously demonstrated that infection by coxsackievirus B3 (CVB3), a positive-stranded RNA enterovirus, results in the accumulation of insoluble ubiquitin-protein aggregates, which resembles the common feature of neurodegenerative diseases. The importance of protein aggregation in viral pathogenesis has been recognized; however, the underlying regulatory mechanisms remain ill-defined. Transactive response DNA-binding protein-43 (TDP-43) is an RNA-binding protein that has an essential role in regulating RNA metabolism at multiple levels. Cleavage and cytoplasmic aggregation of TDP-43 serves as a major molecular marker for amyotrophic lateral sclerosis and frontotemporal lobar degeneration and contributes significantly to disease progression. In this study, we reported that TDP-43 is translocated from the nucleus to the cytoplasm during CVB3 infection through the activity of viral protease 2A, followed by the cleavage mediated by viral protease 3C. Cytoplasmic translocation of TDP-43 is accompanied by reduced solubility and increased formation of protein aggregates. The cleavage takes place at amino-acid 327 between glutamine and alanine, resulting in the generation of an N- and C-terminal cleavage fragment of ~35 and ~8 kDa, respectively. The C-terminal product of TDP-43 is unstable and quickly degraded through the proteasome degradation pathway, whereas the N-terminal truncation of TDP-43 acts as a dominant-negative mutant that inhibits the function of native TDP-43 in alternative RNA splicing. Lastly, we demonstrated that knockdown of TDP-43 results in an increase in viral titers, suggesting a protective role for TDP-43 in CVB3 infection. Taken together, our findings suggest a novel model by which cytoplasmic redistribution and cleavage of TDP-43 as a consequence of CVB3 infection disrupts the solubility and transcriptional activity of TDP-43. Our results also reveal a mechanism evolved by enteroviruses to support efficient viral infection. PMID

  10. Abelson murine leukemia virus P120: identification and characterization of tyrosine phosphorylation sites.

    Reynolds, F H; Oroszlan, S; Stephenson, J R

    1982-01-01

    Tryptic peptides containing two major in vivo P120gag-abl tyrosine phosphorylation acceptor sites were identified, phosphorylated in vitro, and purified to homogeneity. The tyrosine site in peptide a is localized at a position six residues distal to its trypsin cleavage site, whereas the tyrosine acceptor site in peptide b is at residue seven. A third peptide, c, contains an amino-terminal phosphotyrosine residue: phosphorylation of this latter peptide only occurs to a significant extent in v...

  11. DNA cleavage by CgII and NgoAVII requires interaction between N- and R-proteins and extensive nucleotide hydrolysis.

    Zaremba, Mindaugas; Toliusis, Paulius; Grigaitis, Rokas; Manakova, Elena; Silanskas, Arunas; Tamulaitiene, Giedre; Szczelkun, Mark D; Siksnys, Virginijus

    2014-12-16

    The stress-sensitive restriction-modification (RM) system CglI from Corynebacterium glutamicum and the homologous NgoAVII RM system from Neisseria gonorrhoeae FA1090 are composed of three genes: a DNA methyltransferase (M.CglI and M.NgoAVII), a putative restriction endonuclease (R.CglI and R.NgoAVII, or R-proteins) and a predicted DEAD-family helicase/ATPase (N.CglI and N.NgoAVII or N-proteins). Here we report a biochemical characterization of the R- and N-proteins. Size-exclusion chromatography and SAXS experiments reveal that the isolated R.CglI, R.NgoAVII and N.CglI proteins form homodimers, while N.NgoAVII is a monomer in solution. Moreover, the R.CglI and N.CglI proteins assemble in a complex with R2N2 stoichiometry. Next, we show that N-proteins have ATPase activity that is dependent on double-stranded DNA and is stimulated by the R-proteins. Functional ATPase activity and extensive ATP hydrolysis (∼170 ATP/s/monomer) are required for site-specific DNA cleavage by R-proteins. We show that ATP-dependent DNA cleavage by R-proteins occurs at fixed positions (6-7 nucleotides) downstream of the asymmetric recognition sequence 5'-GCCGC-3'. Despite similarities to both Type I and II restriction endonucleases, the CglI and NgoAVII enzymes may employ a unique catalytic mechanism for DNA cleavage. PMID:25429977

  12. Molecular Basis of Catalytic Chamber-assisted Unfolding and Cleavage of Human Insulin by Human Insulin-degrading Enzyme*S⃞

    Manolopoulou, Marika; Guo, Qing; Malito, Enrico; Schilling, Alexander B.; Tang, Wei-Jen

    2009-01-01

    Insulin is a hormone vital for glucose homeostasis, and insulin-degrading enzyme (IDE) plays a key role in its clearance. IDE exhibits a remarkable specificity to degrade insulin without breaking the disulfide bonds that hold the insulin A and B chains together. Using Fourier transform ion cyclotron resonance (FTICR) mass spectrometry to obtain high mass accuracy, and electron capture dissociation (ECD) to selectively break the disulfide bonds in gas phase fragmentation, we determined the cleavage sites and composition of human insulin fragments generated by human IDE. Our time-dependent analysis of IDE-digested insulin fragments reveals that IDE is highly processive in its initial cleavage at the middle of both the insulin A and B chains. This ensures that IDE effectively splits insulin into inactive N- and C-terminal halves without breaking the disulfide bonds. To understand the molecular basis of the recognition and unfolding of insulin by IDE, we determined a 2.6-Å resolution insulin-bound IDE structure. Our structure reveals that IDE forms an enclosed catalytic chamber that completely engulfs and intimately interacts with a partially unfolded insulin molecule. This structure also highlights how the unique size, shape, charge distribution, and exosite of the IDE catalytic chamber contribute to its high affinity (∼100 nm) for insulin. In addition, this structure shows how IDE utilizes the interaction of its exosite with the N terminus of the insulin A chain as well as other properties of the catalytic chamber to guide the unfolding of insulin and allowing for the processive cleavages. PMID:19321446

  13. Cleavage at both Arg306 and Arg506 is required and sufficient for timely and efficient inactivation of factor Va by activated protein C*

    Barhoover, Melissa A.; Kalafatis, Michael

    2011-01-01

    Background Activated protein C (APC) inactivates membrane-bound factor Va following cleavages of the heavy chain at Arg306, Arg506, and Arg679. Objectives To examine which cleavage is most important for inactivation, recombinant factor V molecules were constructed as follows: factor V306Q (R306→Q), factor V506Q (R506→Q), and factor V306Q/506Q (R306→Q and R506→Q). Methods The recombinant molecules were expressed in mammalian cells, purified, and assayed prior and after incubation with APC and lipids for 30 min (factor Vai) in clotting assays and in an assay using purified reagents and saturating concentrations of factor Va. Results Clotting assays demonstrated that factor VaiWT, factor Vai306Q and factor Vai506Q were devoid of activity, while factor Vai306Q/506Q maintained ~70% activity following a 30 minute incubation with APC. Prothrombinase assembled with all mutant cofactor molecules before and after treatment with APC had Km values similar to values found with prothrombinase assembled with factor VaWT. Prothrombinase assembled with factor VaiWT demonstrated 20-fold reduction in kcat, while prothrombinase assembled with factor Vai506Q had a 2-fold reduction in kcat as compared to prothrombinase assembled with factor VaWT. In contrast, factor Vai306Q and factor Vai306Q/506Q didn’t show any loss in kcat under similar experimental conditions. Conclusion Our data demonstrate that: 1) the activity of an APC-treated factor Va molecule bearing a single mutation at Arg306 or Arg506 depends on the assay used; and 2) regardless of the assay employed, in the absence of the APC-cleavage sites at Arg306 and Arg506, the active cofactor is unable to be significantly inactivated by APC in the presence of a membrane surface. PMID:21467919

  14. Molecular Basis for the Recognition and Cleavages of IGF-II, TGF-[alpha], and Amylin by Human Insulin-Degrading Enzyme

    Guo, Qing; Manolopoulou, Marika; Bian, Yao; Schilling, Alexander B.; Tang, Wei-Jen (UC); (UIC)

    2010-02-11

    Insulin-degrading enzyme (IDE) is involved in the clearance of many bioactive peptide substrates, including insulin and amyloid-{beta}, peptides vital to the development of diabetes and Alzheimer's disease, respectively. IDE can also rapidly degrade hormones that are held together by intramolecular disulfide bond(s) without their reduction. Furthermore, IDE exhibits a remarkable ability to preferentially degrade structurally similar peptides such as the selective degradation of insulin-like growth factor (IGF)-II and transforming growth factor-{alpha} (TGF-{alpha}) over IGF-I and epidermal growth factor, respectively. Here, we used high-accuracy mass spectrometry to identify the cleavage sites of human IGF-II, TGF-{alpha}, amylin, reduced amylin, and amyloid-{beta} by human IDE. We also determined the structures of human IDE-IGF-II and IDE-TGF-{alpha} at 2.3 {angstrom} and IDE-amylin at 2.9 {angstrom}. We found that IDE cleaves its substrates at multiple sites in a biased stochastic manner. Furthermore, the presence of a disulfide bond in amylin allows IDE to cut at an additional site in the middle of the peptide (amino acids 18-19). Our amylin-bound IDE structure offers insight into how the structural constraint from a disulfide bond in amylin can alter IDE cleavage sites. Together with NMR structures of amylin and the IGF and epidermal growth factor families, our work also reveals the structural basis of how the high dipole moment of substrates complements the charge distribution of the IDE catalytic chamber for the substrate selectivity. In addition, we show how the ability of substrates to properly anchor their N-terminus to the exosite of IDE and undergo a conformational switch upon binding to the catalytic chamber of IDE can also contribute to the selective degradation of structurally related growth factors.

  15. Molecular basis for the recognition and cleavages of IGF-II, TGF-α, and amylin by human insulin degrading enzyme

    Guo, Qing; Manolopoulou, Marika; Bian, Yao; Schilling, Alexander B.; Tang, Wei-Jen

    2009-01-01

    Insulin-degrading enzyme (IDE) is involved in the clearance of many bioactive peptide substrates, including insulin and amyloid-β (Aβ), peptides vital to the development of diabetes and Alzheimer's disease, respectively. IDE can also rapidly degrade hormones that are held together by intra-molecular disulfide bond(s) without their reduction. Furthermore, IDE exhibits a remarkable ability to preferentially degrade structurally similar peptides such as the selective degradation of insulin-growth factor-II (IGF-II) and transforming growth factor-α (TGF-α) over IGF-I and epidermal growth factor (EGF), respectively. Here, we used high accuracy mass spectrometry to identify the cleavage sites of human IGF-II, TGF-α, amylin, reduced amylin, and Aβ by human IDE. We also determined the structures of human IDE-IGF-II and IDE-TGF-α at 2.3 Å and IDE-amylin at 2.9 Å. We found that IDE cleaves its substrates at multiple sites in a biased stochastic manner. Furthermore, the presence of a disulfide bond in amylin allows IDE to cut at an additional site in the middle of the peptide (aa 18-19). Our amylin-bound IDE structure offers insight into how the structural constraint from a disulfide bond in amylin can alter IDE cleavage sites. Together with NMR structures of amylin and the IGF and EGF families, our work also reveals the structural basis of how the high dipole moment of substrates complements the charge distribution of the IDE catalytic chamber for the substrate selectivity. In addition, we show how the ability of substrates to properly anchor their N-terminus to the exosite of IDE and undergo a conformational switch upon binding to the catalytic chamber of IDE can also contribute to the selective degradation of structurally related growth factors. PMID:19896952

  16. Selective enzymatic cleavage and labeling for sensitive capillary electrophoresis laser-induced fluorescence analysis of oxidized DNA bases.

    Li, Cuiping; Wang, Hailin

    2015-08-01

    Oxidatively generated DNA damage is considered to be a significant contributing factor to cancer, aging, and age-related human diseases. It is important to detect oxidatively generated DNA damage to understand and clinically diagnosis diseases caused by oxidative damage. In this study, using selective enzymatic cleavage and quantum dot (QD) labeling, we developed a novel capillary electrophoresis-laser induced fluorescence method for the sensitive detection of oxidized DNA bases. First, oxidized DNA bases are recognized and removed by one DNA base excision repair glycosylase, leaving apurinic and apyrimidinic sites (AP sites) at the oxidized positions. The AP sites are further excised by the AP nicking activity of the chosen glycosylase, generating a nucleotide gap with 5'- and 3'- phosphate groups. After dephosphorylation with one alkaline phosphatase, a biotinylated ddNTP is introduced into the nucleotide space within the DNA strand by DNA polymerase I. The biotin-tagged DNA is further labeled with a QD-streptavidin conjugate via non-covalent interactions. The DNA-bound QD is well-separated from excess DNA-unbound QD by highly efficient capillary electrophoresis and is sensitively detected by online coupled laser-induced fluorescence analysis. Using this method, we can assess the trace levels of oxidized DNA bases induced by the Fenton reaction and UV irradiation. Interestingly, the use of the formamidopyrimidine glycosylase (FPG) protein and endonuclease VIII enables the detection of oxidized purine and pyrimidine bases, respectively. Using the synthesized standard DNA, the approach has low limits of detection of 1.1×10(-19)mol in mass and 2.9pM in concentration. PMID:26105778

  17. Modulation of the kinetics of cholesterol side-chain cleavage by an activator and by an inhibitor isolated from the cytosol of the cortex of bovine adrenals.

    Warne, P A; Greenfield, N J; Lieberman, S.

    1983-01-01

    Two modulators of sterol side-chain cleavage activity have been detected in the cytosol from the cortex of bovine adrenals. One is an inhibitor of side-chain cleavage which increases the Km of a purified and reconstituted mitochondrial side-chain cleavage system for both cholesterol and cholesterol sulfate. It also lowers the Vmax of cleavage when cholesterol sulfate is the substrate. The other modulator is a low molecular weight protein which in the reconstituted system increases the Vmax of...

  18. Cleavage Specificity of Mycobacterium tuberculosis ClpP1P2 Protease and Identification of Novel Peptide Substrates and Boronate Inhibitors with Anti-bacterial Activity*

    Akopian, Tatos; Kandror, Olga; Tsu, Christopher; Lai, Jack H.; Wu, Wengen; Liu, Yuxin; Zhao, Peng; Park, Annie; Wolf, Lisa; Dick, Lawrence R.; Rubin, Eric J.; Bachovchin, William; Goldberg, Alfred L.

    2015-01-01

    The ClpP1P2 protease complex is essential for viability in Mycobacteria tuberculosis and is an attractive drug target. Using a fluorogenic tripeptide library (Ac-X3X2X1-aminomethylcoumarin) and by determining specificity constants (kcat/Km), we show that ClpP1P2 prefers Met ≫ Leu > Phe > Ala in the X1 position, basic residues or Trp in the X2 position, and Pro ≫ Ala > Trp in the X3 position. We identified peptide substrates that are hydrolyzed up to 1000 times faster than the standard ClpP substrate. These positional preferences were consistent with cleavage sites in the protein GFPssrA by ClpXP1P2. Studies of ClpP1P2 with inactive ClpP1 or ClpP2 indicated that ClpP1 was responsible for nearly all the peptidase activity, whereas both ClpP1 and ClpP2 contributed to protein degradation. Substrate-based peptide boronates were synthesized that inhibit ClpP1P2 peptidase activity in the submicromolar range. Some of them inhibited the growth of Mtb cells in the low micromolar range indicating that cleavage specificity of Mtb ClpP1P2 can be used to design novel anti-bacterial agents. PMID:25759383

  19. Assessment of preferential cleavage of an actively transcribed retroviral hybrid gene in murine cells by deoxyribonuclease I, bleomycin, neocarzinostatin, or ionizing radiation

    Preferential cleavage induced by bleomycin, neocarzinostatin, or ionizing radiation in a transcribed cellular gene was evaluated through comparisons with deoxyribonuclease I. The glucocorticoid-inducible LTL gene previously described served as the specific DNA target. A Southern blot analysis was used to specifically assess cleavage of the LTL gene in nuclei isolated from cells either treated or untreated with the synthetic glucocorticoid dexamethasone. Hypersensitivity of the gene to bleomycin or neocarzinostatin, which paralleled deoxyribonuclease I hypersensitivity, was evident only in nuclei isolated from dexamethasone-treated cells. Like deoxyribonuclease I, sites of dexamethasone-inducible drug hypersensitivity were coincident with the binding region for the glucocorticoid receptor found within the regulatory sequences of the LTL gene. In contrast, no hypersensitivity to ionizing radiation was evident. Although bleomycin and neocarzinostatin showed qualitatively similar preferences for the threshold LTL gene, quantitative evaluations of damage to total cellular DNA by filter elution showed that the relative specificity of bleomycin for the hypersensitive region was much less than that of either deoxyribonuclease I or neocarzinostatin

  20. Mixed ligand ruthenium(III) complexes of benzaldehyde 4-methyl-3-thiosemicarbazones with triphenylphosphine/triphenylarsine co-ligands: Synthesis, DNA binding, DNA cleavage, antioxidative and cytotoxic activity

    Sampath, K.; Sathiyaraj, S.; Raja, G.; Jayabalakrishnan, C.

    2013-08-01

    The new ruthenium(III) complexes with 4-methyl-3-thiosemicarbazone ligands, (E)-2-(2-chlorobenzylidene)-N-methylhydrazinecarbothioamide (HL1) and (E)-2-(2-nitrobenzylidene)-N-methylhydrazinecarbothioamide (HL2), were prepared and characterized by various physico-chemical and spectroscopic methods. The title compounds act as bidentate, monobasic chelating ligands with S and N as the donor sites and are preferably found in the thiol form in all the complexes studied. The molecular structure of HL1 and HL2 were determined by single crystal X-ray diffraction method. DNA binding of the ligands and complexes were investigated by absorption spectroscopy and IR spectroscopy. It reveals that the compounds bind to nitrogenous bases of DNA via intercalation. The oxidative cleavage of the complexes with CT-DNA inferred that the effects of cleavage are dose dependent. Antioxidant study of the ligands and complexes showed the significant antioxidant activity against DPPH radical. In addition, the in vitro cytotoxicity of the ligands and complexes against MCF-7 cell line was assayed which showed higher cytotoxic activity with the lower IC50 values indicating their efficiency in killing the cancer cells even at low concentrations.

  1. Status report on experiments and modelling of the cleavage fracture behaviour of F82Hmod using local fracture grid. Task TTMS-005

    Within the European Fusion Technology Programme framework, a fracture mechanics description of the material behaviour in the ductile to brittle transition-regime is developed using local fracture criteria. Based on experimental results using axisymmetrically notched and pre-cracked specimens together with a numerical stress analysis at fracture load, a statistical evaluation of cleavage fracture parameters can be performed along the lines described in various code schemes such as the British Energy R6-Code or the ESIS P6 procedure. The report contains results of the experimental characterization of the deformation and fracture behaviour of the fusion candidate RAFM steel variant F82Hmod, details and background of the numerical procedure for cleavage fracture parameter determination as well as additional statistical inference methods for transferability analysis. Fractographic results give important information about fracture mode and fracture origin sites and their location. Numerical prediction of fracture origin distribution is an important tool for transferability assessment. Future issues comprise constraint effect and ductile damage as well as incorporation of irradiation effects, which are topically addressed. The methodology developed and described in the present report will be applied to characterize material behaviour of future RAFM variants as the EUROFER 97, for which analysis is currently under way. (orig.)

  2. Effect of thermal denaturation, inhibition, and cleavage of disulfide bonds on the low-frequency Raman and FTIR spectra of chymotrypsin and albumin

    Brandt, Nikolay N.; Chikishev, Andrey Yu; Mankova, Anna A.; Sakodynskaya, Inna K.

    2015-05-01

    The analysis of the structure-function relationship is extremely important in the study of proteins. The importance of function-related motions of large parts or subglobules of protein molecules stimulates the spectroscopic study in the low-frequency (terahertz) domain. However, only tentative assignments are available and the spectroscopic data are insufficiently discussed in terms of structural changes. This work is aimed at the analysis of regularities of changes in the low-frequency (100 to 600 cm-1) FTIR and Raman spectra of proteins related to their structural modifications. We study the spectra of two proteins with substantially different structures (albumin and chymotrypsin) and the spectra of samples in which the structures of protein molecules are modified using inhibition, thermal denaturation, and cleavage of disulfide bonds. The results indicate that the low-frequency spectral interval can be used to characterize protein conformations. Correlated variations in the intensities of several low-frequency bands are revealed in the spectra of the modified proteins. The strongest spectral changes are caused by thermal denaturation of proteins, and the effect of cleavage of disulfide bonds is generally weaker. It is demonstrated that the inhibitor binding in the active site causes spectral changes that can be compared to the changes induced by thermal denaturation.

  3. Evaluation of DNA-binding, DNA cleavage, antioxidant and cytotoxic activity of mononuclear ruthenium(II) carbonyl complexes of benzaldehyde 4-phenyl-3-thiosemicarbazones

    Sampath, Krishnan; Sathiyaraj, Subbaiyan; Jayabalakrishnan, Chinnasamy

    2013-11-01

    Two 4-phenyl-3-thiosemicarbazone ligands, (E)-2-(2-chlorobenzylidene)-N-phenylhydrazinecarbothioamide (HL1) and (E)-2-(2-nitrobenzylidene)-N-phenylhydrazinecarbothioamide (HL2), and its ruthenium(II) complexes were synthesized and characterized by physico-chemical and spectroscopic methods. The Schiff bases act as bidentate, monobasic chelating ligands with S and N as the donor sites and are preferably found in the thiol form in all the complexes studied. The molecular structure of HL1 and HL2 were determined by single crystal X-ray diffraction method. DNA binding of the compounds was investigated by absorption spectroscopy which indicated that the compounds bind to DNA via intercalation. The oxidative cleavage of the complexes with CT-DNA inferred that the effects of cleavage are dose dependent. Antioxidant study of the ligands and complexes showed significant antioxidant activity against DPPH radical. In addition, the in vitro cytotoxicity of the ligands and complexes assayed against HeLa and MCF-7 cell lines showed higher cytotoxic activity with the lower IC50 values indicating their efficiency in killing the cancer cells even at low concentrations.

  4. Posttranslational proteolytic processing of Leda-1/Pianp involves cleavage by MMPs, ADAM10/17 and gamma-secretase.

    Biswas, Siladitta; Adrian, Monica; Weber, Jochen; Evdokimov, Konstantin; Winkler, Manuel; Géraud, Cyrill

    2016-09-01

    Leda-1/Pianp is a type I transmembrane protein expressed by CNS cells, murine melanoma cell line B16F10 and rat liver sinusoidal endothelial cells. The early steps of posttranslational modifications of Leda-1/Pianp have been described to include glycosylation and processing by proprotein convertases. Here, we comprehensively characterized the subsequent steps of proteolytic processing of Leda-1/Pianp. For this purpose specific protease inhibitors and cell lines deficient in PS1, PS2, PS1/PS2 and ADAM10/17 were deployed. Leda-1/Pianp was cleaved at numerous cleavage sites within the N-terminal extracellular domain. The sheddases involved included MMPs and ADAM10/17. Ectodomain shedding yielded C-terminal fragments (CTF) of ∼15 kDa. The CTF was further processed by the γ (gamma)-secretase complex to generate the intracellular domain (ICD) of ∼10 kDa. Although PS1 was the dominant intramembrane protease, PS2 was also able to cleave Leda-1/Pianp in the absence of PS1. Thus, Leda-1/Pianp is constitutively processed by proprotein convertases, sheddases including MMPs and ADAM10/17 and intramembrane protease γ-secretase. PMID:27349870

  5. GUIDE-Seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases

    Nguyen, Nhu T.; Liebers, Matthew; Topkar, Ved V.; Thapar, Vishal; Wyvekens, Nicolas; Khayter, Cyd; Iafrate, A. John; Le, Long P.; Aryee, Martin J.; Joung, J. Keith

    2014-01-01

    CRISPR RNA-guided nucleases (RGNs) are widely used genome-editing reagents, but methods to delineate their genome-wide off-target cleavage activities have been lacking. Here we describe an approach for global detection of DNA double-stranded breaks (DSBs) introduced by RGNs and potentially other nucleases. This method, called Genome-wide Unbiased Identification of DSBs Enabled by Sequencing (GUIDE-Seq), relies on capture of double-stranded oligodeoxynucleotides into breaks Application of GUIDE-Seq to thirteen RGNs in two human cell lines revealed wide variability in RGN off-target activities and unappreciated characteristics of off-target sequences. The majority of identified sites were not detected by existing computational methods or ChIP-Seq. GUIDE-Seq also identified RGN-independent genomic breakpoint ‘hotspots’. Finally, GUIDE-Seq revealed that truncated guide RNAs exhibit substantially reduced RGN-induced off-target DSBs. Our experiments define the most rigorous framework for genome-wide identification of RGN off-target effects to date and provide a method for evaluating the safety of these nucleases prior to clinical use. PMID:25513782

  6. Peptidomics of Peptic Digest of Selected Potato Tuber Proteins: Post-Translational Modifications and Limited Cleavage Specificity.

    C K Rajendran, Subin R; Mason, Beth; Udenigwe, Chibuike C

    2016-03-23

    Bioinformatic tools are useful in predicting bioactive peptides from food proteins. This study was focused on using bioinformatics and peptidomics to evaluate the specificity of peptide release and post-translational modifications (PTMs) in a peptic digest of potato protein isolate. Peptides in the protein hydrolysate were identified by LC-MS/MS and subsequently aligned to their parent potato tuber proteins. Five major proteins were selected for further analysis, namely, lipoxygenase, α-1,4-glucan phosphorylase, annexin, patatin, and polyubiquitin, based on protein coverage, abundance, confidence levels, and function. Comparison of the in silico peptide profile generated with ExPASy PeptideCutter and experimental peptidomics data revealed several differences. The experimental peptic cleavage sites were found to vary in number and specificity from PeptideCutter predictions. Average peptide chain length was also found to be higher than predicted with hexapeptides as the smallest detected peptides. Moreover, PTMs, particularly Met oxidation and Glu/Asp deamidation, were observed in some peptides, and these were unaccounted for during in silico analysis. PTMs can be formed during aging of potato tubers, or as a result of processing conditions during protein isolation and hydrolysis. The findings provide insights on the limitations of current bioinformatics tools for predicting bioactive peptide release from proteins, and on the existence of structural modifications that can alter the peptide bioactivity and functionality. PMID:26947758

  7. T-cell receptor downregulation by ceramide-induced caspase activation and cleavage of the zeta chain

    Menné, C; Lauritsen, Jens Peter Holst; Dietrich, J;

    2001-01-01

    gamma L-based motif-dependent and the tyrosine kinase-dependent pathways. This pathway is dependent on ceramide-induced activation of caspases and correlate with caspase-mediated cleavage of the zeta chain. Thus, a 10--15% downregulation of the TCR was induced following the treatment of the T cells with...... ceramide for 4 h. A close correlation between TCR downregulation, caspase activation, and cleavage of the zeta chain was found. Furthermore, the caspase inhibitors abolished the cleavage of the zeta chain and TCR downregulation in parallel with the inhibition of the caspase activity....

  8. Graves' Disease Mechanisms: The Role of Stimulating, Blocking, and Cleavage Region TSH Receptor Antibodies.

    Morshed, S A; Davies, T F

    2015-09-01

    The immunologic processes involved in Graves' disease (GD) have one unique characteristic--the autoantibodies to the TSH receptor (TSHR)--which have both linear and conformational epitopes. Three types of TSHR antibodies (stimulating, blocking, and cleavage) with different functional capabilities have been described in GD patients, which induce different signaling effects varying from thyroid cell proliferation to thyroid cell death. The establishment of animal models of GD by TSHR antibody transfer or by immunization with TSHR antigen has confirmed its pathogenic role and, therefore, GD is the result of a breakdown in TSHR tolerance. Here we review some of the characteristics of TSHR antibodies with a special emphasis on new developments in our understanding of what were previously called "neutral" antibodies and which we now characterize as autoantibodies to the "cleavage" region of the TSHR ectodomain. PMID:26361259

  9. Cleavage e identità: una chiave di lettura della società europea

    Carlo Colloca

    2010-05-01

    Full Text Available L’articolo si sofferma sulle componenti culturali e territoriali del concetto di cleavage al fine di problematizzare il ruolo che può avere per un’analisi della società europea contemporanea. Seguendo un approccio multidimensionale si propone una combinazione fra la categoria analitica di cleavage e i processi di exit, voice e loyalty che caratterizzano il Vecchio Continente e le sfide critiche che l’attraversano. In particolare con riferimento ai processi di loyalty si evidenzia l’interazione fra attori istituzionali e società civile e le iniziative dell’agenda comunitaria urbana e regionale per la costruzione di uno spazio pubblico europeo. La riflessione si conclude con l’analisi delle rappresentazioni che i giovani europei hanno dell’essere politicamente attivi con l’intento di tratteggiare alcuni profili che esprimono valori e identità culturali di riferimento molto diversi fra loro.

  10. Electro-catalytic oxidative cleavage of lignin in a protic ionic liquid.

    Reichert, Elena; Wintringer, Reiner; Volmer, Dietrich A; Hempelmann, Rolf

    2012-04-21

    Lignin is a component of lignocellulosic biomass and a promising matrix for recovering important renewable aromatic compounds. We present a new approach of electro-oxidative cleavage of lignin, dissolved in a special protic ionic liquid, using an anode with particular electro-catalytic activity. As appropriate ionic liquid triethylammonium methanesulfonate was identified, synthesised, explored for dissolution of alkali-lignin and used for electrolysis of 5 wt.% lignin solutions. As appropriate anode material, oxidation-stable ruthenium-vanadium-titanium mixed oxide electrodes were prepared and explored for their electro-catalytic activity. The electrolysis was performed at several potentials in the range from 1.0 V to 1.5 V (vs. an Ag pseudo reference electrode). A wide range of aromatic fragments was identified as cleavage products by means of GC-MS and HPLC measurements. PMID:22398694

  11. Efficient non-enzymatic cleavage of Staphylococcus aureus plasmid DNAs mediated by neodymium ions.

    Zovčáková, Monika; Španová, Alena; Pantůček, Roman; Doškař, Jiří; Rittich, Bohuslav

    2016-08-15

    Staphylococcus aureus plasmids are the main factor in the spreading of antibacterial resistance among bacterial strains that has emerged on a worldwide scale. Plasmids recovered from 12 clinical and food isolates of S. aureus were treated with 10 mM free lanthanide Nd(3+) ions (non-enzymatic cleavage agent) in Hepes buffer (pH 7.5) at 70 °C. Topological forms of plasmids-closed circular (ccc), open circular (oc), and linear (lin)-produced by cleavage at different times were separated using pulsed-field agarose gel electrophoresis. The method is proposed to detect and differentiate several plasmids in the same bacterial strain according to their size. PMID:27237372

  12. Minor dehydrogenated and cleavaged dammarane-type saponins from the steamed roots of Panax notoginseng.

    Gu, Cheng-Zhen; Lv, Jun-Jiang; Zhang, Xiao-Xia; Yan, Hui; Zhu, Hong-Tao; Luo, Huai-Rong; Wang, Dong; Yang, Chong-Ren; Xu, Min; Zhang, Ying-Jun

    2015-06-01

    Nine new minor dehydrogenated and cleavaged dammarane-type triterpenoid saponins, namely notoginsenosides ST6-ST14 (1-9) were isolated from the steamed roots of Panax notoginseng, together with 14 known ones. Among them, 5-7 and 21-22 were protopanaxadiol type and the left 18 compounds, including 1-4, 8-20, and 23 were protopanaxatriol type saponins. Their structures were identified by extensive analysis of MS, 1D and 2D NMR spectra, and acidic hydrolysis. Resulted from the side chain cleavage, the new saponins 1 and 2 featured in a ketone group at C-25, and 3-5 had an aldehyde unit at C-23. The known saponins 12, 16 and 18 displayed the enhancing potential of neurite outgrowth of NGF-mediated PC12 cells at a concentration of 10 μM, while 20 exhibited acetyl cholinesterase inhibitory activity, with IC50 value of 13.97 μM. PMID:25797537

  13. The Importance of Actor Cleavages in Negotiating the European Constitutional Treaty

    Hosli, Madeleine O.; Arnold, Christine

    2007-01-01

    This paper aims to explore government preferences, cleavages, and pat-terns of coalition-formation among a variety of actors in the bargaining process on the European Constitution, across the range of twenty-five European Union (EU) member states. The study focuses on preferences concerning socio-economic policy-making and explores whether divisions can be discerned between preferences held by actors according to locations on the left-right policy scale, actors in older as compared to newer E...

  14. Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis

    Frusciante, Sarah; Diretto, Gianfranco; Bruno, Mark; Ferrante, Paola; Pietrella, Marco; Prado-Cabrero, Alfonso; Rubio-Moraga, Angela; Beyer, Peter; Gomez-Gomez, Lourdes; Al-Babili, Salim; Giuliano, Giovanni

    2014-01-01

    Saffron is a triploid, sterile species whose red stigmas constitute the most expensive spice on Earth. The color, the taste, and the aroma of the spice are owed to the crocus-specific apocarotenoid accumulation of crocetin/crocins, picrocrocin, and safranal. Through deep transcriptome analysis, we identified a novel carotenoid cleavage dioxygenase (CCD) whose expression profile parallels the production of crocetin. Using in bacterio, in vitro, and in planta functional assays, we demonstrate t...

  15. Subcellular RNA profiling links splicing and nuclear DICER1 to alternative cleavage and polyadenylation

    Furger, AM; Neve, J; Burger, K; Patel, R.; Gullerova, M; Li, W.; Hoque, M.; Tian, B.

    2015-01-01

    Alternative cleavage and polyadenylation (APA) plays a crucial role in the regulation of gene expression across eukaryotes. Although APA is extensively studied, its regulation within cellular compartments and its physiological impact remains largely enigmatic. Here, we employed a rigorous subcellular fractionation approach to compare APA profiles of cytoplasmic and nuclear RNA fractions from human cell lines. This approach allowed us to extract APA isoforms that are subjected t...

  16. Structural dynamics effects on the ultrafast chemical bond cleavage of a photodissociation reaction

    Corrales, Maria E.; Loriot, Vincent; Balerdi, Garikoitz; González-Vázquez, Jesús; de Nalda, Rebeca; Bañares, Luis; Zewail, Ahmed H.

    2014-01-01

    The correlation between chemical structure and dynamics has been explored in a series of molecules with increasing structural complexity in order to investigate its influence on bond cleavage reaction times in a photodissociation event. Femtosecond time-resolved velocity map imaging spectroscopy reveals specificity of the ultrafast carbon–iodine (C–I) bond breakage for a series of linear (unbranched) and branched alkyl iodides, due to the interplay between the pure reaction coordinate and the...

  17. BEHAB/brevican requires ADAMTS-mediated proteolytic cleavage to promote glioma invasion

    Viapiano, Mariano Sebastian; Hockfield, Susan; Matthews, Russell Thomas

    2008-01-01

    Malignant gliomas are the most common and deadly primary brain tumors, due to their infiltrative invasion of the normal neural tissue that makes them virtually impossible to completely eliminate. We have previously identified and characterized the proteoglycan BEHAB/brevican in gliomas and have demonstrated that upregulation and cleavage of this CNS-specific molecule promote glioma invasion. Here, we have further investigated if the proteolytic processing of BEHAB/brevican by metalloproteases...

  18. Carbon–carbon bond cleavage for Cu-mediated aromatic trifluoromethylations and pentafluoroethylations

    Tsuyuka Sugiishi

    2015-12-01

    Full Text Available This short review highlights the copper-mediated fluoroalkylation using perfluoroalkylated carboxylic acid derivatives. Carbon–carbon bond cleavage of perfluoroalkylated carboxylic acid derivatives takes place in fluoroalkylation reactions at high temperature (150–200 °C or under basic conditions to generate fluoroalkyl anion sources for the formation of fluoroalkylcopper species. The fluoroalkylation reactions, which proceed through decarboxylation or tetrahedral intermediates, are useful protocols for the synthesis of fluoroalkylated aromatics.

  19. pH-independent and -dependent cleavage of proinsulin in the same secretory vesicle

    1994-01-01

    By quantitative immunoelectron microscopy and HPLC, we have studied the effect of disrupting pH gradients, by ammonium chloride, on proinsulin conversion in the insulin-producing B-cells of the islets of langerhans. Proinsulin content and pH in single secretory vesicles were measured on consecutive serial sections immunostained alternately with anti-proinsulin or anti-dinitrophenol (to reveal the pH-sensitive probe DAMP) antibodies. Radioactivity labeled proinsulin, proinsulin cleavage interm...

  20. Inhibition of influenza virus infection and hemagglutinin cleavage by the protease inhibitor HAI-2

    Highlights: • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza HA cleavage activation. • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza virus infection. • Comparative analysis of HAI-2 for vesicular stomatitis virus and human parainfluenza virus type-1. • Analysis of the activity of HAI-2 in a mouse model of influenza. - Abstract: Influenza virus remains a significant concern to public health, with the continued potential for a high fatality pandemic. Vaccination and antiviral therapeutics are effective measures to circumvent influenza virus infection, however, multiple strains have emerged that are resistant to the antiviral therapeutics currently on the market. With this considered, investigation of alternative antiviral therapeutics is being conducted. One such approach is to inhibit cleavage activation of the influenza virus hemagglutinin (HA), which is an essential step in the viral replication cycle that permits viral-endosome fusion. Therefore, targeting trypsin-like, host proteases responsible for HA cleavage in vivo may prove to be an effective therapeutic. Hepatocyte growth factor activator inhibitor 2 (HAI-2) is naturally expressed in the respiratory tract and is a potent inhibitor of trypsin-like serine proteases, some of which have been determined to cleave HA. In this study, we demonstrate that HAI-2 is an effective inhibitor of cleavage of HA from the human-adapted H1 and H3 subtypes. HAI-2 inhibited influenza virus H1N1 infection in cell culture, and HAI-2 administration showed protection in a mouse model of influenza. HAI-2 has the potential to be an effective, alternative antiviral therapeutic for influenza