WorldWideScience

Sample records for 3a zeolite desiccant

  1. Interaction of sulfur-loaded 3A zeolite with ethylene

    Munter, H.J.

    2006-01-01

    The sulfur-loaded 3A clay-bond molecular sieve exposed to ethylene at temperatures higher than 190°C loses its sulfur. Mainly hydrogen sulfide is formed. This behavior restricts its use as a cracking catalyst.

  2. Effect of heat treatment on the surface properties of zeolite-3A

    Concentration of potentially toxic metal chromium in sediments and liquid wastes samples of selected tanneries were measured by atomic absorption spectrophotometer, after digestion with nitric acid. The data obtained revealed elevated concentration chromium metal in wastes samples compared to the NEQS (national environmental quality standards levels. A new process namely, IERECHROM (Ion Exchange Removal of Chromium), has been developed for the removal, separation and recovery of Chromium from sediments using zeolite-3A. Zeolite - 3A was activated by heat treatment in a furnace at 500 degree centigrade for one hour. The factors that alters the chromium removal include the exchange concentration, pH, shaking time and temperature. The applicability of Freundlich, Dubinin-Redushkevich and Virial isotherms equations for the present system has been tested. The results of these research investigation suggested that natural aluminosilicates (zeolite-3A) can be utilized as low -cost ion exchange and sorbent materials, because of their selectivities for the removal of chromium and various other heavy metals. (author)

  3. Optimization of Manganese Reduction in Biotreated POME onto 3A Molecular Sieve and Clinoptilolite Zeolites.

    Jami, Mohammed S; Rosli, Nurul-Shafiqah; Amosa, Mutiu K

    2016-06-01

    Availability of quality-certified water is pertinent to the production of food and pharmaceutical products. Adverse effects of manganese content of water on the corrosion of vessels and reactors necessitate that process water is scrutinized for allowable concentration levels before being applied in the production processes. In this research, optimization of the adsorption process conditions germane to the removal of manganese from biotreated palm oil mill effluent (BPOME) using zeolite 3A subsequent to a comparative adsorption with clinoptilolite was studied. A face-centered central composite design (FCCCD) of the response surface methodology (RSM) was adopted for the study. Analysis of variance (ANOVA) for response surface quadratic model revealed that the model was significant with dosage and agitation speed connoting the main significant process factors for the optimization. R(2) of 0.9478 yielded by the model was in agreement with predicted R(2). Langmuir and pseudo-second-order suggest the adsorption mechanism involved monolayer adsorption and cation exchanging. PMID:26556067

  4. Solar-regenerated desiccant dehumidification

    Haves, P.

    1982-02-01

    The dehumidification requirements of buildings are discussed, and the most suitable desiccant material is identified as silica gel. Several conceptual designs for solar regenerated desiccant dehumidifiers using a solid desiccant are described. The construction and operation of a laboratory experiment to determine the performance of a packed bed of silica gel at low flow rate is described. The experimental results are presented and compared to the predictions of a simple computer model which assumes local equilibrium between the desiccant and the airstream. The simulations used to predict desiccant bed performance and the integration of the desiccant bed simulation with a simulation of the thermal performance of a passively cooled residence are described. Results for an average July day are presented. Sizing relationships derived from the simulation are described, and an economic analysis and recommendations for further work are presented.

  5. Desiccation tolerance of somatic embryoids.

    Tetteroo, F.A.A.

    1996-01-01

    This thesis describes the research performed on the subject "Desiccation tolerance in somatic embryoids". Somatic embryoids are bipolar structures formed in tissue culture, with both a shoot and a root apex, which resemble very much zygotic embryos found in seeds. Through simultaneous development of root and shoot, these embryoids can grow out into complete plantlets.In Chapter 2 we describe an optimized method to produce completely desiccation tolerant carrot ( Daucus carota ) embryoids. Usi...

  6. Quantifying defects in zeolites and zeolite membranes

    Hammond, Karl Daniel

    Zeolites are crystalline aluminosilicates that are frequently used as catalysts to transform chemical feedstocks into more useful materials in a size- or shape-selective fashion; they are one of the earliest forms of nanotechnology. Zeolites can also be used, especially in the form of zeolite membranes (layers of zeolite on a support), to separate mixtures based on the size of the molecules. Recent advances have also created the possibility of using zeolites as alkaline catalysts, in addition to their traditional applications as acid catalysts and catalytic supports. Transport and catalysis in zeolites are greatly affected by physical and chemical defects. Such defects can be undesirable (in the case of zeolite membranes), or desirable (in the case of nitrogen-doped alkaline zeolites). Studying zeolites at the relevant length scales requires indirect experimental methods such as vapor adsorption or atomic-scale modeling such as electronic structure calculations. This dissertation explores both experimental and theoretical characterization of zeolites and zeolite membranes. Physical defects, important in membrane permeation, are studied using physical adsorption experiments and models of membrane transport. The results indicate that zeolite membranes can be modeled as a zeolite powder on top of a support---a "supported powder," so to speak---for the purposes of adsorption. Mesoporosity that might be expected based on permeation and confocal microscopy measurements is not observed. Chemical defects---substitutions of nitrogen for oxygen---are studied using quantum mechanical models that predict spectroscopic properties. These models provide a method for simulating the 29Si NMR spectra of nitrogendefected zeolites. They also demonstrate that nitrogen substitutes into the zeolite framework (not just on the surface) under the proper reaction conditions. The results of these studies will be valuable to experimentalists and theorists alike in our efforts to understand the

  7. Seminar 14 - Desiccant Enhanced Air Conditioning: Desiccant Enhanced Evaporative Air Conditioning (Presentation)

    Kozubal, E.

    2013-02-01

    This presentation explains how liquid desiccant based coupled with an indirect evaporative cooler can efficiently produce cool, dry air, and how a liquid desiccant membrane air conditioner can efficiently provide cooling and dehumidification without the carryover problems of previous generations of liquid desiccant systems. It provides an overview to a liquid desiccant DX air conditioner that can efficiently provide cooling and dehumidification to high latent loads without the need for reheat, explains how liquid desiccant cooling and dehumidification systems can outperform vapor compression based air conditioning systems in hot and humid climates, explains how liquid desiccant cooling and dehumidification systems work, and describes a refrigerant free liquid desiccant based cooling system.

  8. Templating mesoporous zeolites

    Egeblad, Kresten; Christensen, Christina Hviid; Kustova, Marina;

    2008-01-01

    categorization of templating methods, the nature of the interface between the zeolite crystal and the mesopore exactly when the mesopore starts to form is emphasized. In solid templating, the zeolite crystal is in intimate contact with a solid material that is being removed to produce the mesoporosity. Similarly......The application of templating methods to produce zeolite materials with hierarchical bi- or trimodal pore size distributions is reviewed with emphasis on mesoporous materials. Hierarchical zeolite materials are categorized into three distinctly different types of materials: hierarchical zeolite...... crystals, nanosized zeolite crystals, and supported zeolite crystals. For the pure zeolite materials in the first two categories, the additional meso- or macroporosity can be classified as being either intracrystalline or intercrystalline, whereas for supported zeolite materials, the additional porosity...

  9. Stiffness of desiccating insect wings

    Mengesha, T E; Vallance, R R [Department of Mechanical Engineering, The George Washington University, 738 Phillips Hall, 801 22nd St NW, Washington, DC 20052 (United States); Mittal, R, E-mail: vallance@gwu.edu [Department of Mechanical Engineering, Johns Hopkins University, 126 Latrobe Hall, 3400 N Charles Street, Baltimore, MD 21218 (United States)

    2011-03-15

    The stiffness of insect wings is typically determined through experimental measurements. Such experiments are performed on wings removed from insects. However, the wings are subject to desiccation which typically leads to an increase in their stiffness. Although this effect of desiccation is well known, a comprehensive study of the rate of change in stiffness of desiccating insect wings would be a significant aid in planning experiments as well as interpreting data from such experiments. This communication presents a comprehensive experimental analysis of the change in mass and stiffness of gradually desiccating forewings of Painted Lady butterflies (Vanessa cardui). Mass and stiffness of the forewings of five butterflies were simultaneously measured every 10 min over a 24 h period. The averaged results show that wing mass declined exponentially by 21.1% over this time period with a time constant of 9.8 h, while wing stiffness increased linearly by 46.2% at a rate of 23.4 {mu}N mm{sup -1} h{sup -1}. For the forewings of a single butterfly, the experiment was performed over a period of 1 week, and the results show that wing mass declined exponentially by 52.2% with a time constant of 30.2 h until it reached a steady-state level of 2.00 mg, while wing stiffness increased exponentially by 90.7% until it reached a steady-state level of 1.70 mN mm{sup -1}. (communication)

  10. Solid Desiccant Dehumidification Techniques Inspired from Natural Electroosmosis Phenomena

    B. Li; Y. Y. Yan

    2011-01-01

    Electroosmosis has been shown to be an effective means of different applications in various fields such as Micro-Electro-Mechanical systems (MEMS) and biomimetics applications. This paper aims to prove the concept that the electroosmosis phenomena can also be cooperated into larger scale applications in the building service industry like dehumidification or damping proof. The electroosmotic flow inside a porous medium is validated experimentally to further understand the dehumidification mechanism of combined techniques. An experimental test validates that the condensation from the porous medium can be obtained by electroosmotie force generated by external electric field, especially for specific desiccant powders like zeolite and diatomaceous earth. With a range of volts from 5 V to 20 V applying between the testing plates, the maximum flow rate through the cross section in the testing plate achieved during the peak period is 1.35 μL·min-1. These promising phenomena can act as an alternative way for energy choice in dehumidification industrial field. Further researches on new regeneration methods for solid desiccant dehumidification are required to make the system simple, energy-saving and suitable for small air conditioning units.

  11. ZEOLITES: EFFECTIVE WATER PURIFIERS

    Zeolites are known for their adsorption, ion exchange and catalytic properties. Various natural zeolites are used as odor and moisture adsorbents and water softeners. Due to their acidic nature, synthetic zeolites are commonly employed as solid acid catalysts in petrochemical ind...

  12. Fundamental aspects of water methane separation in zeolites

    Leirvik, Kim Nes

    2013-01-01

    The main objective of this thesis was to use molecular dynamics to investigate the methane interactions with zeolite, specifically the Linde Type A-3A, alongside with an investigation into the use of polynomial path integration for water in zeolite. This thesis is a part of a larger collaboration between the separation group at the University of Bergen and Statoil, with the main goal of explaining the reduced lifetime of zeolites. This thesis continued from the work done by ...

  13. Desiccation stress in two intertidal beachrock biofilms

    Petrou, Katherina; Trimborn, Scarlett; Kühl, Michael; Ralph, Peter J.

    2014-01-01

    Chlorophyll a fluorescence was used to look at the effect of desiccation on the photophysiology in two beachrock microbial biofilms from the intertidal rock platform of Heron Island, Australia. The photophysiological response to desiccation differed between the beachrock microbial communities. The black biofilm from the upper shoreline, dominated by Calothrix sp., showed a response typical of desiccation-tolerant cyanobacteria, where photosynthesis closed down during air exposure with a rapid...

  14. Steady state modeling of desiccant wheels

    Bellemo, Lorenzo; Elmegaard, Brian; Kærn, Martin Ryhl;

    2014-01-01

    Desiccant wheels are rotary desiccant dehumidifiers used in air conditioning and drying applications. The modeling of simultaneous heat and mass transfer in these components is crucial for estimating their performances, as well as for simulating and optimizing their implementation in complete...

  15. Experimental investigations on desiccant wheels

    Experimental investigations on several commercially available and newly fabricated rotors are conducted in two different laboratories to evaluate performance trends. Experimental uncertainties are analysed and the parameters determining the rotor performance are investigated. It is found that the optimal rotation speed is lower for lithium chloride or compound rotors than for silica gel rotors. Higher regeneration air temperatures lead to higher dehumidification potentials at almost equal dehumidification efficiencies, but with increasing regeneration specific heat input and enthalpy changes of the process air. The influence of the regeneration air humidity was also notable and low relative humidities increase the dehumidification potential. Finally, the measurements show that rising water content in the ambient air causes the dehumidification capacity to rise, while the dehumidification efficiency is not much affected and both specific regeneration heat input and latent heat change of the process air decrease. For desiccant cooling applications in humid climates this is a positive trend. - Highlights: ► New experimental results on a range of desiccant wheels. ► High dehumidification capacities and low enthalpy changes for process air high water content. ► Higher regeneration temperature increases capacity, but lowers energy efficiency.

  16. Entropy parameters for desiccant wheel design

    In this work a thermodynamic analysis of a desiccant wheel is proposed to investigate and identify the optimum size and operating regime of this device. A steady state entropy generation expression, based on effectiveness parameters suitable for desiccant wheels operability, is obtained applying a control volume approach and assuming perfect gas behaviour of the binary air–vapour mixture. A new entropy generation number NL is defined using a minimum indicative value of the entropy generation SL,min and investigated in order to obtain useful criteria for desiccant wheels optimization. The effectiveness-NTU design method is employed by combining solution of thermal exchange efficiency for rotary heat exchanger with the characteristic potential method, under the conditions of heat and mass transfer analogy. The analysis is applied to a specific desiccant wheel and NL variation with NTU is explored under various operative conditions and wheels characteristics in terms of dimensionless velocity and flow unbalance ratio. - Highlights: • Steady state entropy generation based on effectiveness parameters for heat and mass transfer. • Definition of a new entropy generation number NL for desiccant wheel. • Least irreversible features for a defined dehumidification rate of the desiccant wheel. • NL can be used as an optimization parameter for desiccant wheels design and control

  17. Desiccation tolerance in Bryophytes: relevance to the evolution of desiccation tolerance in Land Plants

    The majority of desiccation-tolerant plants are found in the less complex clades that constitute the algae, lichens and bryophytes. However, within the larger and more complex groups of vascular land plants there are some 120-130 species that exhibit some degree of vegetative desiccation tolerance. ...

  18. Detergent zeolite filtration plant

    Stanković Mirjana S.

    2003-01-01

    Full Text Available The IGPC Engineering Department designed basic projects for detergent zeolite filtration plant, using technology developed in the IGPC laboratories. Several projects were completed: technological, machine, electrical, automation. On the basis of these projects, a production plant with a capacity of 75,000 t/y was manufactured, at "Zeolite Mira", Mira (VE, Italy, in 1997, for increasing detergent zeolite production, from 50,000 to 100,000 t/y. The main goal was to increase the detergent zeolite production capacity. The technological cycle of the filtrate was closed, and no effluents emitted, and there is no pollution. The detergent zeolite filtration process is fully continuous, by which a significant improvement in zeolite production was achieved, both in unification of quality of the product and in simplifying production. This process is fully automatized, and the product has uniform quality. The production process can be controlled manually, which is necessary during start-up, and repairs. By installing additional process equipment (centrifugal pumps, a vacuum system and belt filter technological bottlenecks were overcome by adjusting the work of centrifugal pumps and belt filter, and also by optimizing the capacities of process equipment.

  19. Rapid synthesis of beta zeolites

    Fan, Wei; Chang, Chun -Chih; Dornath, Paul; Wang, Zhuopeng

    2015-08-18

    The invention provides methods for rapidly synthesizing heteroatom containing zeolites including Sn-Beta, Si-Beta, Ti-Beta, Zr-Beta and Fe-Beta. The methods for synthesizing heteroatom zeolites include using well-crystalline zeolite crystals as seeds and using a fluoride-free, caustic medium in a seeded dry-gel conversion method. The Beta zeolite catalysts made by the methods of the invention catalyze both isomerization and dehydration reactions.

  20. Experimental comparison of two honeycombed desiccant wheels fabricated with silica gel and composite desiccant material

    Experimental comparison between two honeycombed desiccant wheels, namely, a conventional one treated with silica gel and a new one fabricated with a new kind of composite desiccant material, was made in this paper. It is found that the newly developed composite desiccant wheel performs better than the conventional one and can remove more moisture from air by approximately 50%. Also encouraging is that the new desiccant wheel can be driven by a lower regeneration temperature for acquiring the same amount of moisture removal. The reason is that the composite desiccant materials, which are constructed with LiCl and silica gel solutions in an optimal way, behave better than silica gel in moisture adsorption, according to the findings from the scanning electron microscope (SEM) pictures as well as the equilibrium adsorption test results. Some parameters, such as inlet air humidity, regeneration temperature, air mass flow rate, etc., which may affect the performance of the desiccant wheels, are also analyzed and discussed. It is further identified that the new composite desiccant wheel has potential for dehumidification applications in many fields

  1. A Review of Solar Desiccant Air Conditioner

    Dr. U. V. Kongre, D. P. Mahure, P. A. Zamre

    2014-04-01

    Full Text Available This paper represents a detailed study and description of a new solar-based air-conditioning technique. It uses solar energy to produce cold or hot air. This technology can be used to reduce the energy consumption and environmental impact of mechanical cooling system. The use of Desiccant cooling is used to perform air dehumidification operation by utilizing low grade heat source. The solar desiccant air conditioner uses solar power as the main energy source to help in the thermodynamic heat transfer process as well as heat transfer principles to convert ambient air into cooling air. With our constructed design we have seen temperature as well as humidity level drops throughout the desiccant cooling system. A significant advantage of this system is, it have no moving parts consequently they are noiseless, non-corrosive, cheap to maintain, long lasting in addition to being environmentally friendly with zero ozone depletion as well as zero global warming potentials.

  2. Anhydrobiosis: the extreme limit of desiccation tolerance

    L Rebecchi

    2007-06-01

    Full Text Available Extreme habitats give rise to strong stressors that lead organisms to die or to possess specific adaptations to those stressors. One of the most widespread adaptations is quiescence, a common term for several strategies, including anhydrobiosis, a highly stable state of suspended animation due to complete desiccation pending recovery by rehydration. Anhydrobiosis is widespread in nature in a wide taxonomic variety among bacteria, protists, metazoans and plants. Using as model organisms, mainly tardigrades, micrometazoans able to enter anhydrobiosis in any phase of their life cycle from egg to adult, this review presents the response to desiccation from molecules to cells and organisms. Particular emphasis has been done with studies devoted to elucidate phenomena such as the long-term resistance in a desiccated state, the extraordinary resistance to chemical and physical extremes, the morphological, physiological, biochemical, and molecular constraints allowing organisms to enter and to survive anhydrobiosis, and the evolutionary meaning of life without water.

  3. Desiccant-assisted cooling fundamentals and applications

    Brum, Nisio

    2014-01-01

    The increasing concern with indoor air quality has led to air-quality standards with increased ventilation rates. Although increasing the volume flow rate of outside air is advisable from the perspective of air-quality, it is detrimental to energy consumption, since the outside air has to be brought to the comfort condition before it is insufflated to the  conditioned ambient. Moreover, the humidity load carried within outside air has challenging HVAC engineers to design cooling units which are able to satisfactorily handle both sensible and latent contributions to the thermal load. This constitutes a favorable scenario for the use of solid desiccants to assist the cooling units. In fact, desiccant wheels have been increasingly applied by HVAC designers, allowing distinct processes for the air cooling and dehumidification. In fact, the ability of solid desiccants in moisture removal is effective enough to allow the use of evaporative coolers, in opposition to the traditional vapor-compression cycle, resultin...

  4. for zeolite coating

    Carlos Renato Rambo

    2006-01-01

    Full Text Available Biotemplating is the processing of microcellular ceramics by reproduction of natural morphologies, where the microstructural features of the biotemplate are maintained in the biomorphic ceramic. Different biotemplates with distinct pore anatomies were used to produce biomorphic supports for the zeolite coating: wood, cardboard, sea-sponge and sisal. The biomorphic ceramics were produced by distinguished processing routes: Al-gas infiltration-reaction, liquid-metal infiltration, dip-coating and sol-gel synthesis, in order to produce nitrides, carbides and oxides, depending on the processing conditions. The zeolite coating was performed by hydrothermal growth of MFI-type (Silicalite-1 and ZSM-5 zeolite crystals onto the internal pore walls of the biomorphic templates. The final biomorphic ceramic-zeolite composites were physically characterized, evaluated in terms of their gas adsorption capabilities and correlated to their microstructure and specific pore anatomy. The combination of the properties of the biomorphic ceramics with the adsorption properties of zeolites results in materials with distinct properties as potential candidates for adsorption and catalytic applications due to their characteristic porosity, molecular sieving capabilities and high thermo-mechanical strength.

  5. Synthesis of zeolite membranes

    JIANG Haiyang; ZHANG Baoquan; Y. S. Lin; LI Yongdan

    2004-01-01

    Zeolite membranes offer great application potentials in membrane separation and/or reaction due to their excellent separation performance and catalytic ability. Up to present, various synthesis methods of zeolite membranes have been developed, including embedded method,in-situ hydrothermal synthesis method, and secondary growth method etc. Compared with the in-situ hydrothermal synthesis method, the secondary growth method possesses a variety of advantages such as easier operation, higher controllability in crystal orientation, microstructure and film thickness, leading to much better reproducibility. This review provides a concise summary and analysis of various synthesis methods reported in the literature. In particular, the secondary growth method was discussed in detail in terms of crystal orientation, defects and crystal grain layers. Some critical issues were also highlighted, which were conducive to the improvement in the synthesis technology of zeolite membranes.

  6. Desiccation tolerance in bryophytes: a review

    Desiccation tolerance, the ability to lose virtually all free intracellular water and then recover normal function upon rehydration, is one of the most remarkable features of bryophytes. The physiology of bryophytes differs in major respects from that of vascular plants by virtue of their smaller s...

  7. Adaptive Strategies of Mosses to Desiccation

    Amos MAKINDE

    2009-06-01

    Full Text Available Adaptive features of six selected mosses � Octoblepharum albidum, Racopilum africanum, Thuidium gratum (forest species and Archidium ohioense, Bryum coronatum and Fissidens subglaucissimus (derived savanna species were investigated with the view to evaluating water retention capabilities, high desiccation resistance and adaptations that help mosses retain their viability for a long period of time. Shoots of the six moss species collected from three locations; Biological Garden, Parks and Garden and Base of Hill II all of the Obafemi Awolowo University Campus were subjected to shoot viability tests using staining method of wetting and staining with neutral red on fresh samples and those stored for 20yrs. Samples were exposed to 1.0M � 10.00M molar concentration of KNO3 in order to show plasmolysis levels. Of all the species A. ohioense and B. coronatum were the most viable, while O. albidum was the least viable. Racopilum africanum and T. gratum had lost their viability after 20 years of desiccation. Cells of 1986 desiccation recorded high molar concentrations when plasmolysed than those of 2006 desiccation.

  8. Desiccation tolerance in seeds and plants

    Dias Costa, M.C.

    2016-01-01

    The interest of research groups in desiccation tolerance (DT) has increased substantially over the last decades. The emergence of germinated orthodox seeds and resurrection plants as main research models has pushed the limits of our knowledge beyond boundaries. At the same time, new questions and ne

  9. Catalysis with hierarchical zeolites

    Holm, Martin Spangsberg; Taarning, Esben; Egeblad, Kresten;

    2011-01-01

    Hierarchical (or mesoporous) zeolites have attracted significant attention during the first decade of the 21st century, and so far this interest continues to increase. There have already been several reviews giving detailed accounts of the developments emphasizing different aspects of this resear...

  10. Environmental catalysis with zeolites

    Sobalík, Zdeněk

    Kerala: Transworld Research Network, 2008 - (Čejka, J.; Peréz-Pariente, J.; Roth, W.), s. 333-356 ISBN 978-81-7895-330-4 R&D Projects: GA ČR GA104/06/1254 Institutional research plan: CEZ:AV0Z40400503 Keywords : zeolites * catalysis Subject RIV: CF - Physical ; Theoretical Chemistry

  11. Zeolite membrane - MFI

    Drahokoupil, Jan; Hrabánek, Pavel; Zikánová, Arlette; Kočiřík, Milan

    2010-01-01

    Roč. 17, 2a (2010), k77-k78. ISSN 1211-5894 R&D Projects: GA AV ČR KAN300100801; GA ČR GA203/07/1443 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z40400503 Keywords : x-ray * zeolites Subject RIV: BM - Solid Matter Physics ; Magnetism

  12. Investigation of Desiccants and CO2 Sorbents for Advanced Exploration Systems 2015-2016

    Knox, James C.; Cmarik, Gregory E.; Watson, David

    2016-01-01

    Design of advanced carbon dioxide removal systems begins with the study of sorbents. Specifically, new CO2 sorbents and desiccants need to be studied to enable greater productivity from existing and future spaceflight systems. This presentation will discuss the studies used as input for selecting future CO2 sorbent materials. Also, the adjoining issues of understanding the effects of water co-adsorption and material selection for desiccant beds will be discussed. Current sorbents for CO2 removal are based on 5A zeolites, but a transition to sorbents derived from 13X will be necessary as CO2 levels in cabin air become leaner. Unfortunately, these 13X zeolites are more susceptible to long-term performance loss due to water co-adsorption than 5A due at achievable regeneration temperatures. A study on how impactful the presence of trace water will be to the cyclic operation of small-scale beds will be discussed. Also, methods to recover the performance of beds in a space environment after a major moisture adsorption event will be discussed. The information obtained from the water co-adsorption studies will play a major part in selecting a CO2 sorbent for advanced removal systems. Pellet structural properties play another major role in the selection process. One factor for long-term, hands-off operation of a system is pellet integrity. Maintaining integrity means preventing pellet fracture and the generation of fines due to various thermal and mechanical means which would eventually clog filters or damage downstream systems. Either of these problems require significant shutdowns and maintenance operations and must be avoided. Therefore, study of high-integrity pellets and design of new pellets will be discussed.

  13. Preparation of Natural Zeolite for Air Dehumidification in Food Drying

    Mohamad Djaeni

    2015-03-01

    Full Text Available Drying with air dehumidification with solid adsorbent improves the quality of food product as well as energy efficiency. The natural zeolite is one of adsorbent having potential to adsorb the water.  Normally, the material was activated to open the pore, remove the organic impurities, and increase Si/Al rate. Hence, it can enhance the adsorbing capacity. This research studied the activation of natural zeolite mined from Klaten, Indonesia as air dehumidification for food drying. Two different methods were used involving activation by heat and NaOH introduction.  As indicators, the porosity and water loaded were evaluated. Results showed both methods improved the adsorbing capacity significantly. With NaOH, the adsorbing capacity was higher. The simple test in onion and corn drying showed the presence of activated natural zeolite can speed up water evaporation positively. This performance was also comparable with Zeolite 3A

  14. Desiccant cooling: State-of-the-art assessment

    Pesaran, A.A.; Penney, T.R.; Czanderna, A.W.

    1992-10-01

    The objectives of this document are to present an overview of the work accomplished to date on desiccant cooling to provide assessment of the state of the art of desiccant cooling technology in the field of desiccant material dehumidifier components, desiccant systems, and models. The report also discusses the factors that affect the widespread acceptance of desiccant cooling technology. This report is organized as follows. First, a basic description and historical overview of desiccant cooling technology is provided. Then, the recent research and development (R D) program history (focusing on DOE's funded efforts) is discussed. The status of the technology elements (materials, components, systems) is discussed in detail and a preliminary study on the energy impact of desiccant technology is presented. R D needs for advancing the technology in the market are identified. The National Renewable Energy Laboratory's unique desiccant test facilities and their typical outputs are described briefly. Finally, the results of a comprehensive literature search on desiccant cooling are presented in a bibliography. The bibliography contains approximately 900 citations on desiccant cooling.

  15. Desiccant cooling: State-of-the-art assessment

    Pesaran, A.A.; Penney, T.R.; Czanderna, A.W.

    1992-10-01

    The objectives of this document are to present an overview of the work accomplished to date on desiccant cooling to provide assessment of the state of the art of desiccant cooling technology in the field of desiccant material dehumidifier components, desiccant systems, and models. The report also discusses the factors that affect the widespread acceptance of desiccant cooling technology. This report is organized as follows. First, a basic description and historical overview of desiccant cooling technology is provided. Then, the recent research and development (R&D) program history (focusing on DOE`s funded efforts) is discussed. The status of the technology elements (materials, components, systems) is discussed in detail and a preliminary study on the energy impact of desiccant technology is presented. R&D needs for advancing the technology in the market are identified. The National Renewable Energy Laboratory`s unique desiccant test facilities and their typical outputs are described briefly. Finally, the results of a comprehensive literature search on desiccant cooling are presented in a bibliography. The bibliography contains approximately 900 citations on desiccant cooling.

  16. Zeolite Catalyzed Aldol Condensation Reactions

    Adedayo I. Inegbenebor; Raphael C. Mordi; Oluwakayode M. Ogunwole

    2015-01-01

    The review is based on the description of zeolite structure, uses, synthesis, and catalytic aldol reaction in aldol condensation. An internal aldolcondensation reaction has been achieved over ZSM-5 zeolite with high silica-alumina ratio at 350oC. It therefore follows that zeolite canfunction as a catalyst in aldol type condensation reactions and that weak acid sites as well as a small number of active sites favor the aldolcondensation reaction of carbonyl compounds. However, the mixed condens...

  17. Desiccation tolerance in seeds and plants

    Dias Costa, M.C.

    2016-01-01

    The interest of research groups in desiccation tolerance (DT) has increased substantially over the last decades. The emergence of germinated orthodox seeds and resurrection plants as main research models has pushed the limits of our knowledge beyond boundaries. At the same time, new questions and new challenges were posed. The work presented in this thesis aims at shedding light on some of these questions, deepening our understanding of DT and providing relevant information to improve stress ...

  18. Experimental results on advanced rotary desiccant dehumidifiers

    Bharathan, D; Parsons, J; Maclaine-cross, I

    1986-08-01

    The Solar Energy Research Institute (SERI) has developed the Cyclic Test Facility (CTF) to develop and validate analytical methods for evaluating and predicting the performance of advanced rotary dehumidifiers. This paper describes the CTF, the dehumidifiers tested at the CTF, and the analytical methods used. The results reported provide an engineering data base and a design tool for evaluating rotary dehumidifiers for desiccant cooling applications.

  19. FUZZY MODELLING OF LIQUID DESICCANT BASED AIR DEHUMIDIFICATION SYSTEM

    Harpreet Singh,

    2011-04-01

    Full Text Available This paper describes the Mamdani fuzzy models of heat exchanger and dehumidifier (absorber of an air dehumidification process occurring in a packed bed using liquid desiccant. Temperature of water used ascooling medium at the inlet of heat exchanger, temperature of desiccant solution(from the regenerator ,inlet air humidity ratio of humid air, flow rate per unit cross-sectional area, temperature of desiccant solution(from the heat exchanger have been taken as different variables for packed bed using liquid desiccant .Mamdani Fuzzy model is developed using the above mentioned variables to predict the water condensation rate from the air to the desiccant solution in terms of known operating parameters. The model predictions were compared against a reliable set of experimental data available in the literature and respective mathematical models for their validation. Integrated fuzzy model was also developed forliquid desiccant system

  20. Study of an aqueous lithium chloride desiccant system Part II: Desiccant regeneration

    Fumo, Nelson [Universidad Nacional Experimental del Tachira, San Cristobal (Venezuela); Goswami, Yogi [University of Florida, Gainesville (United States)

    2000-07-01

    Desiccant systems have been proposed as alternative to handle the latent load in vapor compression air conditioning for energy saving. The air dehumidification occurs because of the difference in vapor pressure which let the moisture diffuse from the air to the liquid desiccant. The diffused moisture cause a dilution of the desiccant which must be regenerated to return it to the original conditions. This paper presents the results from a study of the performance of a packed tower regenerator for an aqueous lithium chloride desiccant dehumidification system. The rate of water evaporation, as well as the effectiveness of the regeneration process were assessed under the effects of variables such as air and desiccant flow rates, air temperature and humidity, and desiccant temperature and concentration. A variation of the oeberg and Goswami mathematical model was used to predict the experimental findings given satisfactory results. [Spanish] Se han propuesto sistemas desecantes para hacerse cargo de la carga latente en acondicionamiento de aire por compresion de vapor para el ahorro de energia. La deshumidificacion del aire ocurre en razon de la diferencia de presion de vapor que deja la humedad difusa del aire en el desecante liquido. La humedad difusa del aire origina una dilucion del desecante el cual debe de ser regenerado para regresarlo a sus condiciones originales. Este documento presenta los resultados de un estudio sobre el comportamiento de un regenerador de torre empacada para un sistema de deshumidificacion de solucion desecante de cloruro de litio. El regimen de evaporacion de agua, asi como tambien la efectividad del proceso de regeneracion que se evaluo bajo los efectos de variables tales como los regimenes de flujo de aire y de desecante, temperatura del aire y humedad, y temperatura y concentracion del desecante. Una variacion del modelo matematico de Oberg y Goswami se uso para predecir los resultados experimentales que dieron resultados satisfactorios.

  1. FUZZY MODELLING OF LIQUID DESICCANT BASED AIR DEHUMIDIFICATION SYSTEM

    Harpreet Singh; Jagdev Singh; Simranpreet Singh Gill

    2011-01-01

    This paper describes the Mamdani fuzzy models of heat exchanger and dehumidifier (absorber) of an air dehumidification process occurring in a packed bed using liquid desiccant. Temperature of water used ascooling medium at the inlet of heat exchanger, temperature of desiccant solution(from the regenerator) ,inlet air humidity ratio of humid air, flow rate per unit cross-sectional area, temperature of desiccant solution(from the heat exchanger) have been taken as different variables for packed...

  2. Numerical and experimental analysis of a solid desiccant wheel

    Koronaki Irene P.; Papoutsis Efstratios; Papaefthimiou Vassilis; Rogdakis Emmanouel

    2016-01-01

    The rotary desiccant dehumidifier is an important component which can be used in air conditioning systems in order to reduce the electrical energy consumption and introduce renewable energy sources. In this study a one dimensional gas side resistance model is presented for predicting the performance of the desiccant wheel. Measurements from two real sorption wheels are used in order to validate the model. One wheel uses silica gel as desiccant material and ...

  3. Granulated zeolite plant "Alusil", Zvornik

    Stanković Mirjana S.

    2003-01-01

    Full Text Available The IGPC's Engineering Department designed basic technological and machine projects for a granulated zeolite production plant, on the basis of which a pilot plant with an initial capacity of 5,000 t/y was constructed in 1984, within Birač - Zvornik production complex. The technology in these projects was developed in the laboratories of the IGPC.Several goals were realized by designing a granulated zeolite production plant. This technology is one of the newest state of the art high tech technologies. The product meets all quality demands, as well as environmental regulations, by which granulated zeolite production for various uses was developed. The granulated zeolite production process is fully automatized, and the product has uniform quality. There is no waste material in granulated zeolite production, because all products with unsatisfactory quality are returned to the process. The production process can be controlled manually, which is necessary during start - up, and repairs.

  4. An assessment of desiccant cooling and dehumidification technology

    Mei, V.C.; Chen, F.C. (Oak Ridge National Lab., TN (United States)); Lavan, Z. (Illinois Inst. of Tech., Chicago, IL (United States)); Collier, R.K. Jr. (Collier Engineering Services, Merritt Island, FL (United States)); Meckler, G. (Gershon Meckler Associates, P.C., Herndon, VA (United States))

    1992-07-01

    Desiccant systems are heat-actuated cooling and dehumidification technology. With the recent advances in this technology, desiccant systems can now achieve a primary energy coefficient of performance (COP) between 1.3 and 1.5, with potential to go to 1.7 and higher. It is becoming one of the most promising alternatives to conventional cooling systems. Two important and well-known advantages of desiccant cooling systems are that they are CFC free and they can reduce the electricity peak load. Another important but lesser-known advantage of desiccant technology is its potential for energy conservation. The energy impact study in this report indicated that a possible 13% energy saving in residential cooling and 8% in commercial cooling is possible. Great energy saving potential also exists in the industrial sector if industrial waste heat can be used for desiccant regeneration. The latest study on desiccant-integrated building heating, ventilating, and air conditioning (HVAC) systems indicated that the initial cost for the conventional cooling equipment was greatly reduced by using desiccant technology because of downsized compressors, fans, and ductworks. This cost reduction was more than enough to offset the cost of desiccant equipment. Besides, the system operation cost was also reduced. All these indicate that desiccant systems are also cost effective. This study provides an updated state-of-the-art assessment forsiccant technology in the field of desiccant materials, systems, computer models, and theoretical analyses. From this information the technology options were derived and the future research and development needs were identified. Because desiccant technology has already been applied in the commercial building sector with very encouraging results, it is expected that future market breakthroughs will probably start in this sector. A market analysis for the commercial building application is therefore included.

  5. Method for producing zeolites and zeotypes

    2015-01-01

    The invention relates to a method for producing zeolite, zeolite-like or zeotype particles comprising the steps of: 1 ) Adding one or more metal precursors to a silica or alumina source; 2) Reducing the one or more metal precursors to form metal nanoparticles on the surface of the silica or alumina...... source; 3) Passing a gaseous hydrocarbon, alkyl alcohol or alkyl ether over the silica or alumina supported metal nanoparticle to form a carbon template coated zeolite, zeolite-like or zeotype precursor composition; 4a) Adding a structure directing agent to the carbon template coated zeolite, zeolite......-like or zeotype precursor composition thereby creating a zeolite, zeolite-like or zeotype gel composition; 4b) Crystallising the zeolite, zeolite-like or zeotype gel composition by subjecting said composition to a hydrothermal treatment; 5) Removing the carbon template and structure directing agent and...

  6. Experimental Analysis on Solar Desiccant Air Conditioner

    Dr. U. V. Kongre, C. M. Singh, A. B. Biswas

    2014-05-01

    Full Text Available The experiment investigated and evaluated the feasibility of an solar desiccant air conditioner. Its effectiveness as a possible air conditioner option used in household air conditioner or as an energy efficient and environmentally friendly alternative to conventional air conditioning units used in houses are evaluated. A solar water heater was used as heat gain. The model utilizes the technology of solar air conditioner system. The purpose in the long term would be reduced the consumption of electricity used for air conditioning, reduce harmful emission and hence saving money.

  7. Zeolite ITQ-30

    Corma, Avelino; Díaz Cabañas, María José

    2005-01-01

    [EN] The invention relates to a laminar microporous crystalline zeolite material known as ITQ-30 which, as when synthesized, has a chemical composition in the anhydrous state with the following molar relations: x (M 1/n XO 2 ): y YO 2 . SiO 2 z R, wherein: x represents a value less than 0.1, which can be equal to zero; y has a value of less than 0.1, which can be equal to zero; z has a value of less than 0.1; M is selected from among H + , NH 4+ , one or more +n inorganic cations and combinat...

  8. Analysis on a hybrid desiccant air-conditioning system

    Hybrid desiccant-assisted preconditioner and split cooling coil system, which combines the merits of moisture removal by desiccant and cooling coil for sensible heat removal, is a potential alternative to conventional vapor compression cooling systems. In this paper, experiments on a hybrid desiccant air-conditioning system, which is actually an integration of a rotary solid desiccant dehumidification and a vapor compression air-conditioning unit, had been carried out. It is found that, compared with the conventional VC (vapor compression) system, the hybrid desiccant cooling system economizes 37.5% electricity powers when the process air temperature and relative humidity are maintained at 30 oC, and 55% respectively. The reason why the hybrid desiccant cooling system features better performance relative to the VC system lies in the improvement brought about in the performance of the evaporator in VC unit due to desiccant dehumidification. A thermodynamic model of the hybrid desiccant system with R-22 as the refrigerant has been developed and the impact of operating parameters on the sensible heat ratio of the evaporator and the electric power saving rate has been analyzed. It is found that a majority of evaporators can operate in the dry condition even if the regeneration temperature is lower (i.e. 80 oC)

  9. Performance and evaluation of desiccant based air conditioning system.

    Gaurav S. Wani

    2014-12-01

    Full Text Available This Project work presents study and experimental analysis of Desiccant based air conditioning system.The main purpose of this project is to increase the efficency of air conditioning system.In the convenstional air conditioning system cooling coli has two load latent load and sensible load. Cooling has to cool the air and simultaneously to dehumidify it.It increases load on cooling coil and affects performance to the system. To increase the efficiency the air conditioning system desiccant materials are used at the inlet of the air conditioning test rig. Desiccant materials attract moisture based on differences in vapor pressure. Due to their enormous affinity to absorb water and considerable ability to hold water. Due to use of desiccant material load on the cooling coil reduces since moisture is absorbed by desiccant; cooling coil has to take only sensible load. Analysis is done using different desiccant materials and based on the observation, power consumption before and after desiccant is calculated. From this conclusion is made that desiccant material improves the efficiency of air conditioning test rig

  10. Properties and applications of zeolites.

    Rhodes, Christopher J

    2010-01-01

    Zeolites are aluminosilicate solids bearing a negatively charged honeycomb framework of micropores into which molecules may be adsorbed for environmental decontamination, and to catalyse chemical reactions. They are central to green-chemistry since the necessity for organic solvents is minimised. Proton-exchanged (H) zeolites are extensively employed in the petrochemical industry for cracking crude oil fractions into fuels and chemical feedstocks for other industrial processes. Due to their ability to perform cation-exchange, in which the cations that are originally present to counterbalance the framework negative charge may be exchanged out of the zeolite by cations present in aqueous solution, zeolites are useful as industrial water-softeners, in the removal of radioactive Cs+ and Sr2+ cations from liquid nuclear waste and in the removal of toxic heavy metal cations from groundwaters and run-off waters. Surfactant-modified zeolites (SMZ) find particular application in the co-removal of both toxic anions and organic pollutants. Toxic anions such as arsenite, arsenate, chromate, cyanide and radioactive iodide can also be removed by adsorption into zeolites that have been previously loaded with co-precipitating metal cations such as Ag+ and Pb2+ which form practically insoluble complexes that are contained within the zeolite matrix. PMID:21047018

  11. Efficient energy storage in liquid desiccant cooling systems

    Hublitz, Astrid

    2008-07-18

    Liquid Desiccant Cooling Systems (LDCS) are open loop sorption systems for air conditioning that use a liquid desiccant such as a concentrated salt solution to dehumidify the outside air and cool it by evaporative cooling. Thermochemical energy storage in the concentrated liquid desiccant can bridge power mismatches between demand and supply. Low-flow LDCS provide high energy storage capacities but are not a state-of-the-art technology yet. The key challenge remains the uniform distribution of the liquid desiccant on the heat and mass transfer surfaces. The present research analyzes the factors of influence on the energy storage capacity by simulation of the heat and mass transfer processes and specifies performance goals for the distribution of the process media. Consequently, a distribution device for the liquid desiccant is developed that reliably meets the performance goals. (orig.)

  12. The physiology of extremely desiccated Brassica juncea (L seeds

    Savita Khattra

    2013-12-01

    Full Text Available Seeds of four raya cvs., viz. RL 1359, RLM 198, RLM 619 and RLM 514 were desiccated for 2, 7, 15 and 45 days wchich led to different levels of seed moisture. Data on germination capacity speed of germination, seedling dry weight, electrical conductance, dehydrogenase activity and seed storage behaviour for up to two years after desiccation were recorded. Based on this data, cvs. RL 1359 and RLM 514 were found to be tolerant to desiccation 10 as low as 0.73 and 1.16 per cent seed moisture levels, respectively. Seeds of RLM 198 tolerated desiccation up to 2.28 per cent seed moisture. However, RLM 619 seeds showed desiccation injuries in seedling dry weight, electrical conductance and speed of germination at moisture levels below 5.67 per cent.

  13. Mesostructured zeolites: bridging the gap between zeolites and MCM-41.

    Prasomsri, Teerawit; Jiao, Wenqian; Weng, Steve Z; Garcia Martinez, Javier

    2015-05-28

    Surfactant-templating is one of the most versatile and useful techniques to implement mesoporous systems into solid materials. Various strategies based on various interactions between surfactants and solid precursors have been explored to produce new structures. Zeolites are invaluable as size- and shape-selective solid acid catalysts. Nevertheless, their micropores impose limitations on the mass transport of bulky feed and/or product molecules. Many studies have attempted to address this by utilizing surfactant-assisting technology to alleviate the diffusion constraints. However, most efforts have failed due to micro/mesopore phase separation. Recently, a new technique combining the uses of cationic surfactants and mild basic solutions was introduced to synthesise mesostructured zeolites. These materials sustain the unique characteristics of zeolites (i.e., strong acidity, crystallinity, microporosity, and hydrothermal stability), including tunable mesopore sizes and degrees of mesoporosity. The mesostructured zeolites are now commercially available through Rive Technology, and show superior performance in VGO cracking. This feature article provides an overview of recent explorations in the introduction of mesoporosity into zeolites using surfactant-templating techniques. Various porous materials, preparation methods, physical and catalytic properties of mesostructured zeolites will be discussed. PMID:25866848

  14. Zeolite Catalyzed Aldol Condensation Reactions

    Adedayo I. Inegbenebor

    2015-03-01

    Full Text Available The review is based on the description of zeolite structure, uses, synthesis, and catalytic aldol reaction in aldol condensation. An internal aldolcondensation reaction has been achieved over ZSM-5 zeolite with high silica-alumina ratio at 350oC. It therefore follows that zeolite canfunction as a catalyst in aldol type condensation reactions and that weak acid sites as well as a small number of active sites favor the aldolcondensation reaction of carbonyl compounds. However, the mixed condensation product was found to be favored at temperatures above 300oCand the self-condensation of ethanal to crotonaldehyde was favored at temperatures below 300oC. It has also been suggested that both Brønstedand Lewis acids are involved in aldol reactions with Lewis acid sites the most probable catalytic sites. The zeolite group of minerals has founduse in many chemical and allied industries.

  15. Desiccation stress induces developmental heterochrony in Drosophila melanogaster

    LEENA THORAT; DASHARATH P OULKAR; KAUSHIK BANERJEE; BIMALENDU B NATH

    2016-09-01

    Stressful environments are known to perturb developmental patterns in insects. In the purview of desiccation as astressor, relatively little is known about the developmental consequences linked with desiccation tolerance. In thisstudy, we have particularly focused on the exploration of the temporal profile of postembryonic development inresponse to desiccation exposure in Drosophila melanogaster and the associated trade-offs. We document a correlationbetween variations in 20-hydroxyecdysone levels and the altered timing of metamorphic events during the lifecycle. Following desiccation, we observed an extension in the larval longevity whereas the duration of the pupal andadult stages was significantly shortened. Alternately, feeding of 20-hydroxyecdysone apparently led to the restorationof the normal temporal pattern of development in the desiccated group. In spite of the desiccation-responsiveheterochronic shifts in development, the overall lifespan post recovery remained almost unaltered among thedesiccated and undesiccated groups suggesting plasticity in developmental control. This observation reminisces ‘canalization-like’ phenomenon that buffers alterations in the overall lifespan. We thus identified a desiccation responsiveperiod in the lifespan of D. melanogaster during which variations in ecdysone levels are capable to alter thetemporal course of development.

  16. Solid desiccant dehumidification systems for residential applications

    Marciniak, T. J.; Grolmes, M. A.; Epstein, M.

    1985-03-01

    It is shown that gas regenerated desiccant dehumidifiers (GRDD) can be economically superior to vapor compression units in the hot, humid climates of the southeast and south. Altough the first cost of a GRDD unit is significantly higher than a vapor compression dehumidifier, reduced operating costs and savings in the installed cost of smaller air-conditioning units can provide an economic means for effective humidity control. The economic benefits are dependent upon: (1) the number of hours of dehumidifier operation per year; and (2) electricity and natural gas cost differentials. Of secondary importance is the coefficient of performance (COP) of the units. Recommendations for additional research and development for a commercial GRDD product line are outlined.

  17. Comparison of desiccation tolerance among mosses from different habitats

    Šinžar-Sekulić Jasmina B.

    2005-01-01

    Full Text Available Three moss species from the karst region were compared to establish their respective patterns of desiccation tolerance. Different life forms of bryophytes were chosen to obtain evidence of their life strategies during drought conditions. Comparative analyses of electrolyte leakage were performed to screen for tolerance of the membrane to water stress and for signs of damage to the fine structure of the protoplasm. The experiments were carried out by exposing the plants to water stress caused by PEG 600. The results show that the most desiccation tolerant species is Thamnobryum alopecurum, less but fairly tolerant is Anomodon viticulosus, while the aquatic Rhynchostegium riparioides is intolerant of desiccation.

  18. Theory of zeolite supralattices: Se in zeolite Linde type A

    We study theoretically properties of Se clusters in zeolites, and choose zeolite Linde type A (LTA) as a prototype system. The geometries of free-space Se clusters are first determined, and we report the energetics and electronic and vibrational properties of these clusters. The work on clusters includes an investigation of the energetics of C3-C1 defect formation in Se rings and chains. The electronic properties of two Se crystalline polymorphs, trigonal Se and -monoclinic Se, are also determined. Electronic and vibrational properties of the zeolite LTA are investigated. Next we investigate the electronic and optical properties of ring-like Se clusters inside the large -cages of LTA. We find that Se clusters inside cages of silaceous LTA have very little interaction with the zeolite, and that the HOMO-LUMO gaps (HOMO standing for highest occupied molecular orbital and LUMO for lowest unoccupied molecular orbital) are nearly those of the isolated cluster. The HOMO-LUMO gaps of Se6, Se8, and Se12 are found to be similar, which makes it difficult to identify them experimentally by absorption spectroscopy. We find that the zeolite/Se8 nanocomposite is lower in energy than the two separated systems. We also investigate two types of infinite chain encapsulated in LTA. Finally, we carry out finite-temperature molecular dynamics simulations for an encapsulated Se12 cluster, which shows cluster melting and formation of nanoscale Se droplets in theα-cages of LTA. (author)

  19. Desiccation Stress and the Effect of Humidity in Mosses

    Aina Arinola FAJUKE

    2010-03-01

    Full Text Available Mosses show fair degree of structural adaptations to different environmental conditions. The effects caused by desiccation were determined in the shoots of six moss species, collected from various locations of the Obafemi Awolowo University Ile-Ife campus, Osun State, Nigeria. Using 0.1 g of fresh weights, desiccation of moss species over time at 0%, 52%, and 100% relative humidity, were determined by putting the shoots into desiccators and reweighing at intervals of 15 min, 30 min, 1 hr and on the 8th day. It was concluded that the locations of the moss species, and the fact that the cell walls of all the mosses were thick, were regarded as the adaptations which helped these mosses survived desiccation stress.

  20. Desiccant Dewpoint Cooling System Independent of External Water Sources

    Bellemo, Lorenzo; Elmegaard, Brian; Markussen, Wiebke B.;

    2015-01-01

    This paper presents a patent pending technical solution aiming to make desiccant cooling systems independent of external water sources, hence solving problems of water availability, cost and treatment that can decrease the system attractiveness. The solution consists in condensing water from the...... air that regenerates the desiccant dehumidifier, and using it for running the evaporative coolers in the system. A closed regeneration circuit is used for maximizing the amount of condensed water. This solution is applied to a system with a desiccant wheel dehumidifier and a dew point cooler, termed...... desiccant dew-point cooling system, for demonstrating its function and applicability. Simulations are carried out for varying outdoor conditions under constant supply conditions. The results show that the system is independent of external water supply for the majority of simulated conditions. In comparison...

  1. Desiccant Cooling System for Thermal Comfort: A Review

    HEMANT PARMAR; D.A. HINDOLIYA

    2011-01-01

    Desiccant cooling system (DCS) is alternate suitable option against conventional cooling system in humid climates. A typical system combines a dehumidifier that uses dry desiccant wheel, with direct or indirect evaporative systems and a sensible cooling system. DCS is the environmental protection technique for cooling purpose of the building. This system reduces the CFC level in the environment because it restricts the use of conventional refrigerant. In this paper, all the working principles...

  2. Artificial neural network analysis of liquid desiccant dehumidification system

    The dehumidification process involves simultaneous heat and mass transfer and reliable transfer coefficients are required in order to analyze the system. This has been proved to be difficult and many assumptions are made to simplify the analysis. The present research proposes the use of ANN based model in order to simulate the relationship between inlet and outlet parameters of the dehumidifier. For the analysis, randomly packed dehumidifier with lithium chloride as the liquid desiccant is chosen. A multilayer ANN is used to investigate the performance of dehumidifier. For training ANN models, data is obtained from analytical equations. Eight parameters are used as inputs to the ANN, namely: air and desiccant flow rates, air and desiccant inlet temperatures, air inlet humidity, desiccant inlet concentration, dimensionless temperature ratio, and inlet temperature of the cooling water. The outputs of the ANN are the water condensation rate and the outlet desiccant concentration as well as its temperature. ANN predictions for these parameters are validated well with experimental values available in the literature with R2 value in the range of 0.9251-0.9660. This study shows that liquid desiccant dehumidification system can be alternatively modeled using ANN with a reasonable degree of accuracy. -- Research highlights: → Artificial neural network (ANN) based model is used to simulate the performance of the liquid desiccant dehumidification process. → Three ANNs each with eight inputs and one output have been trained. → Water condensation rate, outlet desiccant concentration and its temperature are predicted. → ANNs predicted parameters are validated well with the experimental results.

  3. Characterization of Mexican zeolite minerals

    50% of the Mexican territory is formed by volcanic sequences of the Pliocene type, which appear extensively in the northwest states (Sonora, Sinaloa, Chihuahua, Durango) and west of Mexico (Jalisco and Nayarit), in central Mexico (Zacatecas, Guanajuato, San Luis Potosi, Queretaro, Hidalgo) and south of Mexico (Guerrero, Oaxaca); therefore, it is to be expected that in our country big locations of natural zeolites exist in its majority of the clinoptilolite type. The present study was focused toward the characterization of two Mexican natural zeolite rocks presumably of the clinoptilolite and filipsite types, one of them comes from the state of Chihuahua and the other of a trader company of non metallic minerals, due that these materials are not characterized, its are not known their properties completely and therefore, the uses that can be given to these materials. In this investigation work it was carried out the characterization of two Mexican zeolite rocks, one coming from the Arroyo zone, municipality of La Haciendita, in the state of Chihuahua; and the other one was bought to a trader company of non metallic minerals. The two zeolites so much in their natural form as conditioned with sodium; they were characterized by means of X-ray diffraction, scanning electron microscopy of high vacuum and elementary microanalysis (EDS), surface area analysis (BET), thermal gravimetric analysis. To differentiate the heulandite crystalline phase of the other clinoptilolite rock, its were carried out thermal treatments. The quantification of Al, Na, Ca, K, Mg, Fe was carried out in solution, by means of atomic absorption spectroscopy and the quantity of Si was determined by gravimetry. The zeolite rocks presented for the major part the crystalline heulandite and clinoptilolite phases for the most part, and it was found that the zeolite coming from the state of Chihuahua possesses a bigger content of heulandite and the denominated filipsite it is really a zeolite

  4. Hybrid liquid desiccant air-conditioning system: Experiments and simulations

    This study focuses on a hybrid liquid desiccant air-conditioning system consisting of a conventional liquid desiccant system and a vapour compression heat pump. The hybrid liquid desiccant air-conditioning system is expected to enhance the system efficiency of a conventional liquid desiccant system. In this study, the liquid desiccant is aqueous solution of lithium chloride and the refrigerant of the vapour compression heat pump is R407C. The main feature of this system is that the absorber and regenerator are integrated with the evaporator and condenser respectively. The performance evaluation test is conducted to obtain the primary data. Additionally, the improvement method for the system efficiency is discussed by the mathematical calculations. As a result, the system can dehumidify 5.9 g/kg(DA) under the conditions of summer in Tokyo, Japan. Then, the calculation results show that COPs can become higher by improving the compressor isentropic efficiency and the temperature efficiency of solution heat exchanger. - Highlights: → We focus on a hybrid liquid desiccant air-conditioning system. → The feature of the system is that the absorber is integrated with the evaporator. → We develop a mathematical model considering heat and mass transfer in the absorber. → The simulation and experiment are carried out to reveal the system performance. → COP becomes higher by improving the compressor and the solution heat exchanger.

  5. Desiccant Cooling System for Thermal Comfort: A Review

    HEMANT PARMAR,

    2011-05-01

    Full Text Available Desiccant cooling system (DCS is alternate suitable option against conventional cooling system in humid climates. A typical system combines a dehumidifier that uses dry desiccant wheel, with direct or indirect evaporative systems and a sensible cooling system. DCS is the environmental protection technique for cooling purpose of the building. This system reduces the CFC level in the environment because it restricts the use of conventional refrigerant. In this paper, all the working principles and expected research areashave been discussed. Through detailed literature survey it has been observed that a desiccant cooling system may be a suitable option for thermal comfort in the climate where the humidity is higher. Thedesiccant cooling system (DCS has proven their feasibility and cost saving in the field of air conditioning. This review provides a brief overview on the development of desiccant cooling system in different fields. Finally, concluding remarks regarding further development of desiccant cooling for thermal comfort are also provided. This technology is economically feasible and optimizes with low cost. This review is useful for making opportunities to further research in different areas of desiccant cooling system.

  6. Detergent zeolite complex "Alusil", Zvornik

    Stanković Mirjana S.

    2003-01-01

    Full Text Available The IGPC Engineering Department designed the basis technological and machine projects for a detergent zeolite complex, on the basis of which a pilot plant with an initial capacity of 5,000 t/y was constructed in 1983 within Birač-Zvornik production complex. Additional projects were done afterwards and the starting capacity increased to 200,000 t/y in 1988. This plant became the biggest producer of detergent zeolite in the world. These projects were manufactured on the basis of specific technology developed in the laboratories of the IGPC.Several goals were realized by designing a detergent zeolite production complex. This technology was an innovation, because a new approach in detergent zeolite production was developed. The product meets all quality demands, as well as environmental regulations. The detergent production process is fully automatized and the product has uniform quality. There is no waste material in detergent zeolite production, because all products with unsatisfactory quality are returned to the process. The production process can be controlled manually, which is necessary during stanrt-up, and repairs.

  7. Zeolite-dye micro lasers

    Vietze, U; Laeri, F; Ihlein, G; Schüth, F; Limburg, B; Abraham, M

    1998-01-01

    We present a new class of micro lasers based on nanoporous molecular sieve host-guest systems. Organic dye guest molecules of 1-Ethyl-4-(4-(p-Dimethylaminophenyl)-1,3-butadienyl)-pyridinium Perchlorat were inserted into the 0.73-nm-wide channel pores of a zeolite AlPO$_4$-5 host. The zeolitic micro crystal compounds where hydrothermally synthesized according to a particular host-guest chemical process. The dye molecules are found not only to be aligned along the host channel axis, but to be oriented as well. Single mode laser emission at 687 nm was obtained from a whispering gallery mode oscillating in a 8-$\\mu$m-diameter monolithic micro resonator, in which the field is confined by total internal reflection at the natural hexagonal boundaries inside the zeolitic microcrystals.

  8. Performance comparison between a solar driven rotary desiccant cooling system and conventional vapor compression system (performance study of desiccant cooling)

    Solar driven rotary desiccant cooling systems have been widely recognized as alternatives to conventional vapor compression systems for their merits of energy-saving and being eco-friendly. In the previous paper, the basic performance features of desiccant wheel have been discussed. In this paper, a solar driven two-stage rotary desiccant cooling system and a vapor compression system are simulated to provide cooling for one floor in a commercial office building in two cities with different climates: Berlin and Shanghai. The model developed in the previous paper is adopted to predict the performance of the desiccant wheel. The objectives of this paper are to evaluate and compare the thermodynamic and economic performance of the two systems and to obtain useful data for practical application. Results show that the desiccant cooling system is able to meet the cooling demand and provide comfortable supply air in both of the two regions. The required regeneration temperatures are 55 deg. C in Berlin and 85 deg. C in Shanghai. As compared to the vapor compression system, the desiccant cooling system has better supply air quality and consumes less electricity. The results of the economic analysis demonstrate that the dynamic investment payback periods are 4.7 years in Berlin and 7.2 years in Shanghai.

  9. Hydrothermal conversion of FAU zeolite into RUT zeolite in TMAOH system

    Jon, Hery; Takahashi, Shoutarou; Sasaki, Hitoshi; Oumi, Yasunori; Sano, Tsuneji

    2008-01-01

    The highly crystalline and pure RUT (RUB-10) zeolite could be obtained from the hydrothermal conversion of FAU zeolite used as a crystalline Si/Al source in tetramethylammonium hydroxide (TMAOH) media. As compared to amorphous silica/Al(OH)3 and amorphous silica/γ-Al2O3 sources, the crystallization rate for the formation of RUT zeolite was clearly faster when FAU zeolite was employed as the Si/Al source. Moreover, it was found that the hydrothermal conversion of FAU zeolite into RUT zeolite d...

  10. Active Desiccant-Based Preconditioning Market Analysis and Product Development

    Fischer, J.

    2001-01-11

    The Phase 1 report (ORNL/Sub/94-SVO44/1), completed earlier in this program, involved a comprehensive field survey and market analysis comparing various specialized outdoor air handling units. This initial investigation included conventional cooling and reheat, conventional cooling with sensible recovery, total energy recovery systems (passive desiccant technology) and various active desiccant systems. The report concluded that several markets do promise a significant sales opportunity for a Climate Changer-based active desiccant system offering. (Climate Changer is a registered trademark of Trane Company.) This initial market analysis defined the wants and needs of the end customers (design engineers and building owners), which, along with subsequent information included in this report, have been used to guide the determination of the most promising active desiccant system configurations. This Phase 2 report begins with a summary of a more thorough investigation of those specific markets identified as most promising for active desiccant systems. Table 1 estimates the annual sales potential for a cost-effective product line of active desiccant systems, such as that built from Climate Changer modules. The Product Development Strategy section describes the active desiccant system configurations chosen to best fit the needs of the marketplace while minimizing system options. Key design objectives based on market research are listed in this report for these active desiccant systems. Corresponding performance goals for the dehumidification wheel required to meet the overall system design objectives are also defined. The Performance Modeling section describes the strategy used by SEMCO to design the dehumidification wheels integrated into the prototype systems currently being tested as part of the U.S. Department of Energy's Advanced Desiccant Technology Program. Actual performance data from wheel testing was used to revise the system performance and energy analysis

  11. Zeolites: Structures and Inclusion Properties

    Čejka, Jiří

    New York : Marcel Dekker, 2004, s. 1623-1630 R&D Projects: GA AV ČR IAA4040001; GA ČR GA104/02/0571; GA ČR GA203/03/0804 Institutional research plan: CEZ:AV0Z4040901 Keywords : zeolites * mesoporous molecular sieves * inclusion compounds Subject RIV: CF - Physical ; Theoretical Chemistry

  12. Hydrodewaxing with mixed zeolite catalysts

    Chester, A.W.; McHale, W.D.; Yen, J.H.

    1986-03-11

    A process is described for catalytically dewaxing a hydrocarbon lubricating oil feedstock comprising contacting the feedstock with a dewaxing catalyst, the dewaxing catalyst comprising, in combination: (a) a zeolite catalyst having a Constraint Index not less than 1, (b) an acidic catalytic material selected from the group consisting of Mordenite, TEA Mordenite, Dealuminized Y, Ultrastable Y, Rare Earth Y, amorphous silica-alumina chlorinated alumina, ZSM-4 and ZSM-20, and (c) a hydrogenation component, and recovering a dewaxed product. A process is also described for catalytically dewaxing a hydrocarbon lubricating oil feedstock comprising contacting the feedstock with a dewaxing catalyst, the dewaxing catalyst comprising, in combinations: (a) a first zeolite catalyst selected from the group consisting of ZSM-5, ZMS-11, ZSM-12, ZSM-22, ZSM-23, ZSM-34, ZSM-35, ZSM-38, ZSM-48, TMA Offretite and Erionite, (b) a second catalyst selected from the group consisting of ZSM-12, ZSM-22, ZSM-38 and ZSM-48, the second zeolite catalyst being different from the first zeolite catalyst, and (c) a hydrogenation component, and recovering a dewaxed product.

  13. Zeolites with Continuously Tuneable Porosity

    Wheatley, P. S.; Eliášová, Pavla; Greer, H. F.; Zhou, W.; Seymour, V. R.; Dawson, D. M.; Ashbrook, S. E.; Pinar, A. B.; McCusker, L.B.; Opanasenko, Maksym; Čejka, Jiří; Morris, R. E.

    2014-01-01

    Roč. 53, č. 48 (2014), s. 13210-13214. ISSN 1433-7851 R&D Projects: GA ČR GBP106/12/G015 Institutional support: RVO:61388955 Keywords : ADOR * germanosilicates * porosity * zeolite s Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 11.261, year: 2014

  14. Fixing noble gas in zeolites

    In order to increase safety during the long-term storage of Kr-85 it has been proposed to encaosulate this gas in zeolite 5A. Due to the decay heat of Kr-85 it is expected, however, that the inorganic matrix will be at an increased temperature over several decades. Below 6000C only very small Kr-desorption rates are observed when a linear temperature gradient is applied to a loaded 5A zeolite sample. If heating is interrupted and the temperature kept konstant at a certain value (>6000C), it is observed that the desorption rate either decreased below the detection limit or stayed constant at some measurable value. The overall activation energy in the temperature range 5700C-7450C is found to be 250 kJ/mol. At temperature above 7900C the total encapsulated gas is rapidly liberated. No significant leakage was apparent from zeolite 5A samples containing between 19 and 57 cm3 STP Kr/g kept at 2000C for up to 2500 h and 4000C for up to 3500 h. From these studies it is found that type 5A zeolites are particularly suitable as a matrix for the inmobilization of Kr-85. (Author)

  15. Hydrogen Selective Exfoliated Zeolite Membranes

    Tsapatsis, Michael [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Daoutidis, Prodromos [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Elyassi, Bahman [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Lima, Fernando [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Iyer, Aparna [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Agrawal, Kumar [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Sabnis, Sanket [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science

    2015-04-06

    The objective of this project was to develop and evaluate an innovative membrane technology at process conditions that would be representative of Integrated Gasification Combined Cycle (IGCC) advanced power generation with pre-combustion capture of carbon dioxide (CO2). This research focused on hydrogen (H2)-selective zeolite membranes that could be utilized to separate conditioned syngas into H2-rich and CO2-rich components. Both experiments and process design and optimization calculations were performed to evaluate the concept of ultra-thin membranes made from zeolites nanosheets. In this work, efforts in the laboratory were made to tackle two fundamental challenges in application of zeolite membranes in harsh industrial environments, namely, membrane thickness and membrane stability. Conventional zeolite membranes have thicknesses in the micron range, limiting their performance. In this research, we developed a method for fabrication of ultimately thin zeolite membranes based on zeolite nanosheets. A range of layered zeolites (MWW, RWR, NSI structure types) suitable for hydrogen separation was successfully exfoliated to their constituent nanosheets. Further, membranes were made from one of these zeolites, MWW, to demonstrate the potential of this group of materials. Moreover, long-term steam stability of these zeolites (up to 6 months) was investigated in high concentrations of steam (35 mol% and 95 mole%), high pressure (10 barg), and high temperatures (350 °C and 600 °C) relevant to conditions of water-gas-shift and steam methane reforming reactions. It was found that certain nanosheets are stable, and that stability depends on the concentration of structural defects. Additionally, models that represent a water-gas-shift (WGS) membrane reactor equipped with the zeolite membrane were developed for systems studies. These studies had the aim of analyzing the effect of the membrane reactor integration into IGCC plants

  16. Using liquid desiccant as a regenerable filter for capturing and deactivating contaminants

    Slayzak, Steven J.; Anderson, Ren S.; Judkoff, Ronald D.; Blake, Daniel M.; Vinzant, Todd B.; Ryan, Joseph P.

    2007-12-11

    A method, and systems for implementing such method, for purifying and conditioning air of weaponized contaminants. The method includes wetting a filter packing media with a salt-based liquid desiccant, such as water with a high concentration of lithium chloride. Air is passed through the wetted filter packing media and the contaminants in are captured with the liquid desiccant while the liquid desiccant dehumidifies the air. The captured contaminants are then deactivated in the liquid desiccant, which may include heating the liquid desiccant. The liquid desiccant is regenerated by applying heat to the liquid desiccant and then removing moisture. The method includes repeating the wetting with the regenerated liquid desiccant which provides a regenerable filtering process that captures and deactivates contaminants on an ongoing basis while also conditioning the air. The method may include filtration effectiveness enhancement by electrostatic or inertial means.

  17. Resonant diffusion of normal alkanes in zeolites: Effect of the zeolite structure and alkane molecule vibrations

    Tsekov, R

    2015-01-01

    Diffusion of normal alkanes in one-dimensional zeolites is theoretically studied on the basis of the stochastic equation formalism. The calculated diffusion coefficient accounts for the vibrations of the diffusing molecule and zeolite framework, molecule-zeolite interaction, and specific structure of the zeolite. It is shown that when the interaction potential is predominantly determined by the zeolite pore structure, the diffusion coefficient varies periodically with the number of carbon atoms of the alkane molecule, a phenomenon called resonant diffusion. A criterion for observable resonance is obtained from the balance between the interaction potentials of the molecule due to the atomic and pore structures of the zeolite. It shows that the diffusion is not resonant in zeolites without pore structure, such as ZSM-12. Moreover, even in zeolites with developed pore structure no resonant dependence of the diffusion constant can be detected if the pore structure energy barriers are not at least three times high...

  18. Process for producing zeolite adsorbent and process for treating radioactive liquid waste with the zeolite adsorbent

    Zeolite is contacted with an aqueous solution containing at least one of copper, nickel, cobalt, manganese and zinc salts, preferably copper and nickel salts, particularly preferably copper salt, in such a form as sulfate, nitrate, or chloride, thereby adsorbing the metal on the zeolite in its pores by ion exchange, then the zeolite is treated with a water-soluble ferrocyanide compound, for example, potassium ferrocyanide, thereby forming metal ferrocyanide on the zeolite in its pores. Then, the zeolite is subjected to ageing treatment, thereby producing a zeolite adsorbent impregnated with metal ferrocyanide in the pores of zeolite. The adsorbent can selectively recover cesium with a high percent cesium removal from a radioactive liquid waste containing at least radioactive cesium, for example, a radioactive liquid waste containing cesium and such coexisting ions as sodium, magnesium, calcium and carbonate ions at the same time at a high concentration. The zeolite adsorbent has a stable adsorbability for a prolonged time

  19. Dry air preservation and corrosion prevention using desiccant dehumidification

    The preservation and longevity of power station plants is a significant problem, particularly in cold shut down situations for prolonged periods of time, and also in storage of parts prior to installation. Power station protection and equipment preservation using the desiccant method is not new. For many years dehumidification machinery has been employed as a barrier to moisture related degradation. The first rotary desiccant dehumidifiers were installed within the power plant industry in the mid 1960s. Many of these first installations remain in operation today. In order to understand the functioning of a desiccant unit as compared with other air handling systems, it is essential to understand the fundamentals of a psychrometric chart. This article will attempt to give the reader an understanding of the subject. (author)

  20. Numerical and experimental analysis of a solid desiccant wheel

    Koronaki Irene P.

    2016-01-01

    Full Text Available The rotary desiccant dehumidifier is an important component which can be used in air conditioning systems in order to reduce the electrical energy consumption and introduce renewable energy sources. In this study a one dimensional gas side resistance model is presented for predicting the performance of the desiccant wheel. Measurements from two real sorption wheels are used in order to validate the model. One wheel uses silica gel as desiccant material and the other lithium chloride. The simulation results are in good agreement with the experimental data. The model is used to compare the counter flow with the co-current wheel arrangements and to explain why the counter flow one is more efficient for air dehumidification.

  1. Self-desiccation Effect of High Performance Concrete

    JIANG Zheng-wu; SUN Zhen-ping; WANG Pei-ming

    2004-01-01

    Effects of water to binder ratio (mW/mB), types and addition content of mineral admixtures on the autogenous relative humidity (ARH) change of concrete resulting from self-desiccation were studied. The parameters of coefficient of mineral self-desiccation-effect k and efficient water to binder ratio re were proposed, and experimental results were fitted non-linearly and analyzed using these proposed parameters. The experimental results indicate that ARH reduction of concrete at different ages increases with the decrease of mW/mB. The ARH change laws of concrete with mW/mB lower than 0.4 can be expressed with a non-linear equation. The extent of the effect of types and addition content of mineral admixtures on ARH reduction of concrete resulting from self-desiccation can be reflected by the non-linear equation with the parameter of efficient water to binder ratio re effectively.

  2. Traits underpinning desiccation resistance explain distribution patterns of terrestrial isopods.

    Dias, André T C; Krab, Eveline J; Mariën, Janine; Zimmer, Martin; Cornelissen, Johannes H C; Ellers, Jacintha; Wardle, David A; Berg, Matty P

    2013-07-01

    Predicted changes in soil water availability regimes with climate and land-use change will impact the community of functionally important soil organisms, such as macro-detritivores. Identifying and quantifying the functional traits that underlie interspecific differences in desiccation resistance will enhance our ability to predict both macro-detritivore community responses to changing water regimes and the consequences of the associated species shifts for organic matter turnover. Using path analysis, we tested (1) how interspecific differences in desiccation resistance among 22 northwestern European terrestrial isopod species could be explained by three underlying traits measured under standard laboratory conditions, namely, body ventral surface area, water loss rate and fatal water loss; (2) whether these relationships were robust to contrasting experimental conditions and to the phylogenetic relatedness effects being excluded; (3) whether desiccation resistance and hypothesized underlying traits could explain species distribution patterns in relation to site water availability. Water loss rate and (secondarily) fatal water loss together explained 90% of the interspecific variation in desiccation resistance. Our path model indicated that body surface area affects desiccation resistance only indirectly via changes in water loss rate. Our results also show that soil moisture determines isopod species distributions by filtering them according to traits underpinning desiccation resistance. These findings reveal that it is possible to use functional traits measured under standard conditions to predict soil biota responses to water availability in the field over broad spatial scales. Taken together, our results demonstrate an increasing need to generate mechanistic models to predict the effect of global changes on functionally important organisms. PMID:23224790

  3. A new insight in desiccation tolerance and cryopreservation of mazzard cherry (Prunus avium L.) seeds

    Michalak Marcin; Plitta-Michalak Beata P.; Chmielarz Paweł

    2015-01-01

    A variable response of Prunus avium L. seeds to desiccation and storage in liquid nitrogen (LN) has been reported in the literature. The majority of these experiments were conducted on initially dried seeds. The desiccation and LN exposure tolerance of fresh P. avium seeds is unknown. In the present study, fresh seeds were used to determine seed response to desiccation and cryopreservation. Desiccation of seeds from a moisture content (MC) of 19.7-20.2% to 10.1-10.9% o...

  4. Zeolite from fly ash: synthesis and characterization

    Keka Ojha; Narayan C Pradhan; Amar Nath Samanta

    2004-12-01

    Coal fly ash was used to synthesize X-type zeolite by alkali fusion followed by hydrothermal treatment. The synthesized zeolite was characterized using various techniques such as X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, BET method for surface area measurement etc. The synthesis conditions were optimized to obtain highly crystalline zeolite with maximum BET surface area. The maximum surface area of the product was found to be 383 m2/g with high purity. The crystallinity of the prepared zeolite was found to change with fusion temperature and a maximum value was obtained at 823 K. The cost of synthesized zeolite was estimated to be almost one-fifth of that of commercial 13X zeolite available in the market.

  5. Adsorption of radioactive iodide by natural zeolites

    Two natural zeolites from Iranian deposits (clinoptilolite and natrolite) were characterized and their ability for adsorption of iodide from nuclear wastewaters was evaluated. The adsorption behavior was studied on natural and modified zeolites by γ-spectrometry using 131I as radiotracer. Adsorption isotherms and distribution coefficient (Kd) were measured. The results showed that clinoptilolite is a more promising zeolite for removal of iodide compared to natrolite. Furthermore, the adsorption was higher in silver, lead and thallium forms, whereas the lowest desorption was observed in lead modified zeolite. (author)

  6. Endogenous Small-Noncoding RNAs and Potential Functions in Desiccation Tolerance in Physcomitrella Patens.

    Xia, Jing; Wang, Xiaoqin; Perroud, Pierre-François; He, Yikun; Quatrano, Ralph; Zhang, Weixiong

    2016-01-01

    Early land plants like moss Physcomitrella patens have developed remarkable drought tolerance. Phytohormone abscisic acid (ABA) protects seeds during water stress by activating genes through transcription factors such as ABSCISIC ACID INSENSITIVE (ABI3). Small noncoding RNA (sncRNA), including microRNAs (miRNAs) and endogenous small-interfering RNAs (endo-siRNAs), are key gene regulators in eukaryotes, playing critical roles in stress tolerance in plants. Combining next-generation sequencing and computational analysis, we profiled and characterized sncRNA species from two ABI3 deletion mutants and the wild type P. patens that were subject to ABA treatment in dehydration and rehydration stages. Small RNA profiling using deep sequencing helped identify 22 novel miRNAs and 6 genomic loci producing trans-acting siRNAs (ta-siRNAs) including TAS3a to TAS3e and TAS6. Data from degradome profiling showed that ABI3 genes (ABI3a/b/c) are potentially regulated by the plant-specific miR536 and that other ABA-relevant genes are regulated by miRNAs and ta-siRNAs. We also observed broad variations of miRNAs and ta-siRNAs expression across different stages, suggesting that they could potentially influence desiccation tolerance. This study provided evidence on the potential roles of sncRNA in mediating desiccation-responsive pathways in early land plants. PMID:27443635

  7. Structural simulation of natural zeolites

    The application of X-ray diffraction (XRD) in the study of crystalline structures of the natural and modified zeolites allows the identification, lattice parameter determination and the crystallinity grade of the sample of interest. Until two decades ago, simulation methods of X-ray diffraction patterns were developed with which was possible to do reliable determinations of their crystalline structure. In this work it is presented the first stage of the crystalline structure simulation of zeolitic material from Etla, Oaxaca which has been studied for using it in the steam production industry and purification of industrial water. So that the natural material was modified for increasing its sodium contents and this material in its turn was put in contact with aqueous solutions of Na, Mg and Ca carbonates. All the simulations were done with the Lazy-Pulverix method. The considered phase was clinoptilolite. It was done the comparison with three clinoptilolite reported in the literature. (Author)

  8. Soy desiccants herbicides acting in nematode populations on community land

    Lucas Baiochi Riboldi

    2013-12-01

    Full Text Available The use of herbicides is the main method of weed control in soybeans. Desiccants are also being used routinely to anticipate the harvest and / or minimize the deterioration of seed quality. There is the possibility of direct or indirect contact with such pesticides, affect the community of nematodes in the soil. However, such effects and their magnitudes are yet to be clarified, especially in the case of selective herbicides. Thus, the objective of this study was to evaluate the use of selective herbicides in soybean on nematodes harmful to the crop. The experiment was conducted with transgenic soybean (‘M-SOY 7908RR’. The experimental design was a randomized block design with the following treatments: paraquat (400 g a.i ha-1, diquat (200 g a.i ha-1, a mixture of paraquat and diquat (300 + 150 g a.i ha-1, two doses of carfentrazone ethyl (20 g a.i ha-1 and 30 g a.i ha-1 and control (without desiccant application. The nematode community in the area was monitored in four periods. In none of those was found significant variation in the populations of nematodes harmful to soybeans, due to the application of any of desiccants. However, especially in the last sampling time, the desiccant application always resulted in increased populations of free-living nematodes and parasites those considered weak for soybean.

  9. Desiccation-crack-induced salinization in deep clay sediment

    Baram, S.; Ronen, Z.; Kurtzman, D.; Külls, C.; Dahan, O.

    2013-04-01

    A study on water infiltration and solute transport in a clayey vadose zone underlying a dairy farm waste source was conducted to assess the impact of desiccation cracks on subsurface evaporation and salinization. The study is based on five years of continuous measurements of the temporal variation in the vadose zone water content and on the chemical and isotopic composition of the sediment and pore water in it. The isotopic composition of water stable isotopes (δ18O and δ2H) in water and sediment samples, from the area where desiccation crack networks prevail, indicated subsurface evaporation down to ~ 3.5 m below land surface, and vertical and lateral preferential transport of water, following erratic preferential infiltration events. Chloride (Cl-) concentrations in the vadose zone pore water substantially increased with depth, evidence of deep subsurface evaporation and down flushing of concentrated solutions from the evaporation zones during preferential infiltration events. These observations led to development of a desiccation-crack-induced salinization (DCIS) conceptual model. DCIS suggests that thermally driven convective air flow in the desiccation cracks induces evaporation and salinization in relatively deep sections of the subsurface. This conceptual model supports previous conceptual models on vadose zone and groundwater salinization in fractured rock in arid environments and extends its validity to clayey soils in semi-arid environments.

  10. Desiccation-crack-induced salinization in deep clay sediment

    S. Baram

    2012-11-01

    Full Text Available A study on water infiltration and solute transport in a clayey vadose zone underlying a dairy farm waste source was conducted to assess the impact of desiccation cracks on subsurface evaporation and salinization. The study is based on five years of continuous measurements of the temporal variation in the vadose zone water-content and on the chemical and isotopic composition of the sediment and pore-water in it. The isotopic composition of water stable isotopes (δ18O and δ2H in water and sediment samples, from the area where desiccation crack networks prevail, indicated subsurface evaporation down to ∼3.5 m below land surface, and vertical and lateral preferential transport of water, following erratic preferential infiltration events. Chloride (Cl- concentrations in the vadose zone pore water substantially increased with depth, evidence of deep subsurface evaporation and down flushing of concentrated solutions from the evaporation zones during preferential infiltration events. These observations led to development of a Desiccation-Crack-Induced Salinization (DCIS conceptual model. DCIS suggests that thermally driven convective air flow in the desiccation cracks induces evaporation and salinization in relatively deep sections of the subsurface. This conceptual model supports previous conceptual models on vadose zone and groundwater salinization in fractured rock in arid environments and extends its validity to clayey soils in semi-arid environments.

  11. The role of macromolecular stability in desiccation tolerance.

    Wolkers, W.

    1998-01-01

    The work presented in this thesis concerns a study on the molecular interactions that play a role in the macromolecular stability of desiccation-tolerant higher plant organs. Fourier transform infrared microspectroscopy was used as the main experimental technique to assess macromolecular structures

  12. Transcriptomes of the desiccation- tolerant resurrection plant Craterostigma plantagineum

    Rodriguez, M. C.; Edsgard, Stefan Daniel; Hussain, S. S.; Alquezar, D.; Rasmussen, M.; Gilbert, T.; Nielsen, Henrik Bjørn; Bartels, D.; Mundy, J.

    2010-01-01

    Studies of the resurrection plant Craterostigma plantagineum have revealed some of the mechanisms which these desiccation-tolerant plants use to survive environments with extreme dehydration and restricted seasonal water. Most resurrection plants are polyploid with large genomes, which has hindered...

  13. Simulation of potential standalone liquid desiccant cooling cycles

    LDCS (Liquid desiccant cooling systems), capable of achieving dehumidification and cooling with low-grade heat input, can be effectively used for treating fresh air in hot and humid regions. These can also be operated using non-concentrating solar collectors. The present study is concerned with the evaluation of various potential liquid desiccant cycles for tropical climatic conditions. Six potential standalone liquid desiccant cycles are identified and analyzed to select the best configuration for achieving thermal comfort. A computer simulation model is developed in EES (Equation Solver) software platform to evaluate the performance of all the cycles at various operating conditions. Aqueous solution of LiCl (lithium chloride) is used as desiccant. Mass and energy balance equations of all the components along with their effectiveness and LiCl property correlation equations are solved simultaneously for given ambient conditions. As the desiccant circuit is a closed loop, no assumptions are made about its concentration and temperature in the algorithm. Supply air conditions, cooling capacity, COP (capacity and coefficient of performance) and CR (circulation rate) per unit cooling capacity and hot water temperature requirement are used as a measure for analyzing the performance of the different cycles. The effect of hot water temperature on the performance of the cycles is evaluated at ARI conditions. The performances of the cycles are also evaluated for cities selected from each of the climatic zone of India that represent typical tropical climates. Although all the cycles are feasible at ARI and hot and dry conditions, only two cycles can achieve the selected indoor conditions in the peak humid conditions. The results would be useful for selecting suitable liquid desiccant cycle for a given climate. - Highlights: • Six potential standalone liquid desiccant cycles identified and analyzed to select best configuration. • A computer simulation model is developed in

  14. Implications of the lack of desiccation tolerance in recalcitrant seeds.

    Berjak, Patricia; Pammenter, Norman W

    2013-01-01

    A suite of interacting processes and mechanisms enables tolerance of desiccation and storage (conservation) of orthodox seeds in the dry state. While this is a long-term option under optimized conditions, dry orthodox seeds are not immortal, with life spans having been characterized as short, intermediate and long. Factors facilitating desiccation tolerance are metabolic "switch-off" and intracellular dedifferentiation. Recalcitrant seeds lack these mechanisms, contributing significantly to their desiccation sensitivity. Consequently, recalcitrant seeds, which are shed at high water contents, can be stored only in the short-term, under conditions not allowing dehydration. The periods of such hydrated storage are constrained by germination that occurs without the need for extraneous water, and the proliferation of seed-associated fungi. Cryopreservation is viewed as the only option for long-term conservation of the germplasm of recalcitrant-seeded species. This is not easily achieved, as each of the necessary procedures imposes oxidative damage. Intact recalcitrant seeds cannot be cryopreserved, the common practice being to use excised embryos or embryonic axes as explants. Dehydration is a necessary procedure prior to exposure to cryogenic temperatures, but this is associated with metabolism-linked injury mediated by uncontrolled reactive oxygen species generation and failing anti-oxidant systems. While the extent to which this occurs can be curtailed by maximizing drying rate (flash drying) it cannot be completely obviated. Explant cooling for, and rewarming after, cryostorage must necessarily be rapid, to avoid ice crystallization. The ramifications of desiccation sensitivity are discussed, as are problems involved in cryostorage, particularly those accompanying dehydration and damage consequent upon ice crystallization. While desiccation sensitivity is a "fact" of seed recalcitrance, resolutions of the difficulties involved germplasm conservation are possible as

  15. Deep Vadose Zone Treatability Test for the Hanford Central Plateau: Interim Post-Desiccation Monitoring Results

    Truex, Michael J.; Oostrom, Martinus; Strickland, Christopher E.; Johnson, Timothy C.; Johnson, Christian D.; Clayton, Ray E.; Chronister, Glen B.

    2013-09-01

    A field test of desiccation is being conducted as an element of the deep vadose zone treatability test program. Desiccation technology relies on removal of water from a portion of the subsurface such that the resultant low moisture conditions inhibit downward movement of water and dissolved contaminants. Previously, a field test report (Truex et al. 2012a) was prepared describing the active desiccation portion of the test and initial post-desiccation monitoring data. Additional monitoring data have been collected at the field test site during the post-desiccation period and is reported herein along with interpretation with respect to desiccation performance. This is an interim report including about 2 years of post-desiccation monitoring data.

  16. Natural zeolites - origin and mechanism of action

    The chemical composition and the crystalline structure explain ion exchange, adsorption selectivity, acidity and stability of zeolites. The properties of the two most important natural zeolites, e.g. Klinoptilolite and mordenite are described in detail. This includes petrography, chemical modification and applications. (orig.)

  17. Moessbauer spectroscopy study of a natural zeolite

    With the help of Moessbauer spectroscopy, it was established that iron in natural zeolites occupies positions in the aluminosilicate structure in place of aluminium; the positions of iron are octahedricals, and the valency is 3+; it was shown too, that the zeolite is geometrically stable to acid treatment, notwithstanding the formation of vacancies during acid treatments. (author)

  18. Method of producing zeolite encapsulated nanoparticles

    2015-01-01

    The invention therefore relates to a method for producing zeolite, zeolite-like or zeotype encapsulated metal nanoparticles, the method comprises the steps of: 1) Adding one or more metal precursors to a silica or alumina source; 2) Reducing the one or more metal precursors to form metal nanopart......The invention therefore relates to a method for producing zeolite, zeolite-like or zeotype encapsulated metal nanoparticles, the method comprises the steps of: 1) Adding one or more metal precursors to a silica or alumina source; 2) Reducing the one or more metal precursors to form metal...... nanoparticles on the surface of the silica or alumina source; 3) Passing a gaseous hydrocarbon, alkyl alcohol or alkyl ether over the silica or alumina supported metal nanoparticles to form a carbon template coated zeolite, zeolite-like or zeotype precursor composition; 4a) Adding a structure directing agent...... template and structure directing agent and isolating the resulting zeolite, zeolite-like or zeotype encapsulated metal nanoparticles...

  19. Dynamics Studies on Molecular Diffusion in Zeolites

    王秋霞; 樊建芬; 肖鹤鸣

    2003-01-01

    A review about the applications of molecular dynamics(MD)simulation in zeolites is presented. MD simulation has been proved to be a useful tool due to its applications in this field for the recent two decades. The fundamental theory of MD is introduced and the hydrocarbon diffusion in zeolites is mainly focused on in this paper.

  20. Nuclear waste treatment using Iranian natural zeolites

    Full text: The zeolite researches in Iran is a relatively new subject which has started about 10 years ago. The motivation for this scientific and interesting field was provided after discovery of significant deposits of natural zeolites in different regions of Iran as well as further developments of research institutions and the national concern to environmental protection especially the wastewater clean-up in point of view of recycling of such waste water to compensate some needs to water in other utilizations. This paper intends to review and describes scientific researches which have done on using zeolites in the field of nuclear waste treatment in Iran to introduce the potential resources to the world in more details. Zeolite tuffs are widely distributed in huge deposits in different regions of Iran. So far, the clinoptilolite tuffs are the most abundant natural zeolite which exist with zeolite content of 65%- 95%. Nowadays several different types of Iranian natural zeolites are characterized in point of view of chemical composition, type of structure, chemical, thermal, and radiation resistance using different instrumental and classical methods such as; X-ray diffraction (XRD), X-ray fluoresce (XRF), thermal methods of analysis (TA), scanning electron microscopy (SEM), analytical chemistry and radioanalytical methods as well as different ion-exchange techniques (e.g.3-7). The ability of Iranian natural clinoptilolite for removal of some fission products from nuclear wastewaters have been investigated. The selectivity of all investigated zeolites toward radiocesium and radiostrontium have been promising (e.g. 8-10). The successful synthesize of P zeolite from Iranian clinoptilolite-reach tuffs under different conditions were performed. The compatibility of zeolites with glass and cement matrices, for final disposal of radwaste, as well as their selectivity toward most dangerous heat generating radionuclides (e.g. 137Cs and 90Sr) is very important in using them

  1. Nuclear waste treatment using Iranian natural zeolites (a brief review)

    The natural zeolite research in Iran is a relatively new subject, which has started about 12 years ago. This paper intends to review some performed research in the field of nuclear wastewater using zeolites in our laboratory. The results of various research work on the natural zeolites as well as on some relevant synthetic zeolites will be discussed in this article. (author)

  2. Ion exchange investigation on the Syrian zeolite

    We have studied the ion exchange process by using Syrian zeolite from the region of Tell-Assis with four solutions containing these ions: Ag+, NH4+, Pb2+, and Cu2+. It was found that the required time to reach the equilibrium is 6-8 hours, and depends on the type of ion. the exchange capacity mainly depends on the type of ions, and range between 0.5-1.57 m. mol/g. The effect of pH on ion exchange capacity was obvious and the best results were reached when the pH ranged between 5+ will exchange with univalent and bivalent ions in the zeolite, whereas the bivalent ions as Pb+2 will preferentially exchange with the bivalent ions in the zeolite. we concluded that the used zeolite gave good results compared with some known zeolite. (Author)

  3. Deep Vadose Zone Treatability Test for the Hanford Central Plateau. Interim Post-Desiccation Monitoring Results, Fiscal Year 2015

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Strickland, Christopher E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Oostrom, Martinus [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Christian D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tartakovsky, Guzel D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Timothy C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Clayton, Ray E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chronister, Glen B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    A field test of desiccation is being conducted as an element of the Deep Vadose Zone Treatability Test Program. The active desiccation portion of the test has been completed. Monitoring data have been collected at the field test site during the post-desiccation period and are reported herein. This is an interim data summary report that includes about 4 years of post-desiccation monitoring data. The DOE field test plan proscribes a total of 5 years of post-desiccation monitoring.

  4. Proton Adsorption Selectivity of Zeolites in Aqueous Media: Effect of Si/Al Ratio of Zeolites

    Moses Wazingwa Munthali

    2014-12-01

    Full Text Available In addition to their well-known uses as catalysts, zeolites are utilized to adsorb and remove various cations from aqueous system. The adsorption of the cations is ascribed to the negative charge of zeolites derived from isomorphous substitution of Si by Al. The amount of Na+ adsorption on 4A, X, Y, Na-P1 and mordenite type zeolites were determined in aqueous media, in a two-cation (Na+ and H+ system. Although each zeolite has a constant amount of negative charge, the amount of Na+ adsorption of each zeolite decreased drastically at low pH−pNa values, where pH−pNa is equal to log{(Na+/(H+}. By using the plot of the amount of Na+ adsorption versus pH−pNa, an index of the H+ selectivity, which is similar to the pKa of acids, of each zeolite was estimated, and the index tended to increase with decreasing Si/Al ratio of zeolites. These indicate that zeolites with lower Si/Al and higher negative charge density have higher H+ adsorption selectivity, and in fact, such a zeolite species (4A and X adsorbed considerable amount of H+ even at weakly alkaline pH region. The adsorption of H+ results in the decrease of cation adsorption ability, and may lead to the dissolution of zeolites in aqueous media.

  5. Clay with Desiccation Cracks is an Advection Dominated Environment

    Baram, S.; Kurtzman, D.; Sher, Y.; Ronen, Z.; Dahan, O.

    2012-04-01

    Heavy clay sediments are regarded "safe" from the hydrological point of view due to their low hydraulic conductivities. However, the formation of desiccation cracks in dispersive clays may dramatically change their bulk hydraulic properties. The impact of desiccation cracks on water percolation, dissolved salts and contaminants transport and redox related reactions (microbial ammonium oxidation and denitrification) were investigated in 6 -12 m clay layer near a diary farm waste lagoon. The study implemented unique vadose-zone monitoring systems that enable in-situ measurements of the temporal variation of the sediment's water content along with frequent sampling of the sediment's pore water along the entire vadose zone (> 30 m). Results from four years of continuous measurements showed quick rises in sediment water content following rain events and temporal wastewater overflows. The percolation pattern indicated dominance of preferential flow through a desiccation-cracks network crossing the entire clay sediment layer. High water-propagation velocities (0.4 - 23.6 m h-1) were observed, indicating that the desiccation-crack network remains open and serves as a preferential flow pathway year-round, even at high sediment water content (~0.50 m3 m-3). The rapid percolation bypassed the most bio-geo-active parts of the soil, transporting even highly sorptive contaminants (testosterone and estrogen) in to the deep sections of the vadose zone, accelerating the underlying groundwater contamination. The ammonium and nitrate concentrations in the vadose zone and the high number of nitrifying and denitrifying bacteria (~108 gene copies gdry-sediemt-1, each) found in the sediment indicated that the entire vadose zone is aerated even at high water content conditions (~0.55 m3 m-3). The dissolved salts concentration in the pore-water and the δ2H-H2O and δ18O-H2O values of the pore-water substantially increased with depth (becoming less depleted) in the clay sediment

  6. Experimental study of regenerative desiccant integrated solar dryer with and without reflective mirror

    An indirect forced convection with desiccant integrated solar dryer has been built and tested. The main parts are: a flat plate solar air collector, a drying chamber, desiccant bed and a centrifugal blower. The system is operated in two modes, sunshine hours and off sunshine hours. During sun shine hours the hot air from the flat plate collector is forced to the drying chamber for drying the product and simultaneously the desiccant bed receives solar radiation directly and through the reflected mirror. In the off sunshine hours, the dryer is operated by circulating the air inside the drying chamber through the desiccant bed by a reversible fan. The dryer is used to dry 20 kg of green peas and pineapple slices. Drying experiments were conducted with and without the integration of desiccant unit. The effect of reflective mirror on the drying potential of desiccant unit was also investigated. With the inclusion of reflective mirror, the drying potential of the desiccant material is increased by 20% and the drying time is reduced. The drying efficiency of the system varies between 43% and 55% and the pick-up efficiency varies between 20% and 60%, respectively. Approximately in all the drying experiments 60% of moisture is removed by air heated using solar energy and the remainder by the desiccant. The inclusion of reflective mirror on the desiccant bed makes faster regeneration of the desiccant material

  7. Biomass production, nutritional and mineral content of desiccation-sensitive and desiccation-tolerant species of sporobolus under multiple irrigation regimes

    The development of low-water-input forages of high quality would be useful for expanding or improving the water use efficiency of livestock production in semi-arid and arid regions. In this study, three Sporobolus species, the desiccation tolerant (DT) species, S. stapfianus Gandoger, and two desicc...

  8. Experimental analysis and regression prediction of desiccant wheel behavior in high temperature heat pump and desiccant wheel air-conditioning system

    Sheng, Ying; Zhang, Yufeng; Sun, Yuexia;

    2014-01-01

    The objectives of this study are to evaluate the performance of desiccant wheel (DW) in the running system and obtain the useful data for practical application. The combined influences of multiple variables on the performance of desiccant wheel are investigated based on evaluating the indexes of ...

  9. Self-desiccation mechanism of high-performance concrete

    杨全兵; 张树青

    2004-01-01

    Investigations on the effects of W/C ratio and silica fume on the autogenous shrinkage and internal relative humidity of high performance concrete (HPC), and analysis of the self-desiccation mechanisms of HPC showed that the autogenous shrinkage and internal relative humidity of HPC increases and decreases with the reduction of W/C respectively; and that these phenomena were amplified by the addition of silica fume. Theoretical analyses indicated that the reduction of RH in HPC was not due to shortage of water, but due to the fact that the evaporable water in HPC was not evaporated freely. The reduction of internal relative humidity or the so-called self-desiccation of HPC was chiefly caused by the increase in mole concentration of soluble ions in HPC and the reduction of pore size or the increase in the fraction of micro-pore water in the total evaporable water (Tr/Tte ratio).

  10. Self-desiccation mechanism of high-performance concrete.

    Yang, Quan-Bing; Zhang, Shu-Qing

    2004-12-01

    Investigations on the effects of W/C ratio and silica fume on the autogenous shrinkage and internal relative humidity of high performance concrete (HPC), and analysis of the self-desiccation mechanisms of HPC showed that the autogenous shrinkage and internal relative humidity of HPC increases and decreases with the reduction of W/C respectively; and that these phenomena were amplified by the addition of silica fume. Theoretical analyses indicated that the reduction of RH in HPC was not due to shortage of water, but due to the fact that the evaporable water in HPC was not evaporated freely. The reduction of internal relative humidity or the so-called self-desiccation of HPC was chiefly caused by the increase in mole concentration of soluble ions in HPC and the reduction of pore size or the increase in the fraction of micro-pore water in the total evaporable water (T(r)/T(te) ratio). PMID:15547958

  11. Self-desiccation mechanism of high-performance concrete

    杨全兵; 张树青

    2004-01-01

    Investigations on the effects of W/C ratio and silica fume on the autogenous shrinkage and internal relativehumidity of high performance concrete (HPC), and analysis of the self-desiccation mechanisms of HPC showed that the autogenous shrinkage and internal relative humidity of HPC increases and decreases with the reduction of W/C respectively; and that these phenomena were amplified by the addition of silica fume. Theoretical analyses indicated that the reduction of RH in HPC was not due to shortage of water, but due to the fact that the evaporable water in HPC was not evaporated freely.The reduction of internal relative humidity or the so-called self-desiccation of HPC was chiefly caused by the increase in mole concentration of soluble ions in HPC and the reduction of pore size or the increase in the fraction of micro-pore water in the total evaporable water (Tr/Tte ratio).

  12. Experimental Research on Liquid Desiccant Air-conditioning Unit

    Feng Yueyan

    2016-01-01

    Full Text Available An experimental device of liquid desiccant air conditioning system is established. Experimental tests about the temperature difference between diluted solution of inlet and concentrated solution of exit in the solution heat exchanger are carried on, and CaCl2 solution is used as desiccant. Results show that: the fluctuation range in the day at different times of the basic difference of the measured temperature does not exceed 1°C, and the temperature difference between diluted solution of inlet and concentrated solution of exit in solution heat exchanger appears the minimum value of 2.7°C and the maximum value of 10.2°C. Also, the percent of the additional load and the ratio of additional load to the evaporator load are analyzed.

  13. Mesoporous zeolite single crystal catalysts: Diffusion and catalysis in hierarchical zeolites

    Christensen, Christina Hviid; Johannsen, Kim; Toernqvist, Eric; Schmidt, Iver; Topsoe, Henrik; Christensen, Claus H.

    exhibit higher catalytic activity, but in some cases also improved selectivity and longer catalyst lifetime has been reported. The beneficial effects of introducing mesopores into the zeolites has in most instances been attributed to improved mass transport to and from the active sites located in the...... zeolite micropores. Here, we briefly discuss the most important ways of introducing mesopores into zeolites and, for the first time, we show experimentally that the presence of mesopores dramatically increases the rate of diffusion in zeolite catalysts. This is done by studying the elution of iso......-butane from packed beds of conventional and mesoporous zeolite catalysts. Moreover, we discuss in detail the recent observation of improved activity and selectivity in the alkylation of benzene with ethene using mesoporous zeolite single crystal catalysts. For this reaction, we show by calculation of the...

  14. Hierachical Zeolite-Zeolite Composite Prepared by a Vapor Phase Transport Method

    ZHANG Qiu, Tan Wei, ZHENG Jia-Jun, ZHAO Qiang-Qiang, WANG Guang-Shuai, YI Yu-Ming, LI Rui-Feng

    2014-09-01

    Full Text Available A zeolite-zeolite composite composed of Y and ZSM-5 was successfully prepared by a vapor phase transport (VPT method. The as-synthesized samples were characterized by X-ray diffraction (XRD, scanning electron microscope (SEM, N2 adsorption-desorption and FT-IR. The results display that the synthesis is influenced by the Y content, preparing condition of dry gel andtransfering condition for VPT method. FT-IR spectra show the characteristic peaks of MFI framework on ZSM-5 precursor after hydrothermal pre-treatment for 16 h. The result can be attributed to the crystal nucleus or microcrystal of ZSM-5 zeolite, either of which may promote growth of ZSM-5 crystals during the VPT procedure, and depresse formation of ZSM-35 crystals. The mesopores structure, created in as-synthesized zeolite-zeolite composite, can be ascribed to the extracted aluminum from Y zeolite crystals by VPT procedure.

  15. Water nanodroplets confined in zeolite pores.

    Coudert, François-Xavier; Cailliez, Fabien; Vuilleumier, Rodolphe; Fuchs, Alain H; Boutin, Anne

    2009-01-01

    We provide a comprehensive depiction of the behaviour of a nanodroplet of approximately equal to 20 water molecules confined in the pores of a series of 3D-connected isostructural zeolites with varying acidity, by means of molecular simulations. Both grand canonical Monte Carlo simulations using classical interatomic forcefields and first-principles Car-Parrinello molecular dynamics were used in order to characterise the behaviour of confined water by computing a range of properties, from thermodynamic quantities to electronic properties such as dipole moment, including structural and dynamical information. From the thermodynamic point of view, we have identified the all-silica zeolite as hydrophobic, and the cationic zeolites as hydrophilic; the condensation transition in the first case was demonstrated to be of first order. Furthermore, in-depth analysis of the dynamical and electronic properties of water showed that water in the hydrophobic zeolite behaves as a nanodroplet trying to close its hydrogen-bond network onto itself, with a few short-lived dangling OH groups, while water in hydrophilic zeolites "opens up" to form weak hydrogen bonds with the zeolite oxygen atoms. Finally, the dipole moment of confined water is studied and the contributions of water self-polarisation and the zeolite electric field are discussed. PMID:19227366

  16. Soy desiccants herbicides acting in nematode populations on community land

    Lucas Baiochi Riboldi; Marineide Mendonça Aguillera; Patrícia Andrea Monquero

    2013-01-01

    The use of herbicides is the main method of weed control in soybeans. Desiccants are also being used routinely to anticipate the harvest and / or minimize the deterioration of seed quality. There is the possibility of direct or indirect contact with such pesticides, affect the community of nematodes in the soil. However, such effects and their magnitudes are yet to be clarified, especially in the case of selective herbicides. Thus, the objective of this study was to evaluate the use of select...

  17. Development and Analysis of Desiccant Enhanced Evaporative Air Conditioner Prototype

    Kozubal, E.; Woods, J.; Judkoff, R.

    2012-04-01

    This report documents the design of a desiccant enhanced evaporative air conditioner (DEVAP AC) prototype and the testing to prove its performance. Previous numerical modeling and building energy simulations indicate a DEVAP AC can save significant energy compared to a conventional vapor compression AC (Kozubal et al. 2011). The purposes of this research were to build DEVAP prototypes, test them to validate the numerical model, and identify potential commercialization barriers.

  18. Stability of CO_2 Atmospheres on Desiccated M Dwarf Exoplanets

    Gao, Peter; Hu, Renyu; Robinson, Tyler D.; Li, Cheng; Yung, Yuk L.

    2015-01-01

    We investigate the chemical stability of CO2-dominated atmospheres of desiccated M dwarf terrestrial exoplanets using a 1-dimensional photochemical model. Around Sun-like stars, CO2 photolysis by Far-UV (FUV) radiation is balanced by recombination reactions that depend on water abundance. Planets orbiting M dwarf stars experience more FUV radiation, and could be depleted in water due to M dwarfs' prolonged, high-luminosity pre-main sequences (Luger & Barnes 2015). We show that, for water-depl...

  19. Rancang Bangun Alat Kelapa Parutan Kering (Desiccated Coconut)

    Karo Karo, Cari Malem

    2014-01-01

    At this time, coconut scraping still use for taking milk squeeze of coconut. Beside that, the coconut use as material to made breads too. Therefore the writer made a desiccated coconut. This research was done in February until May 2014 in Agricultural Engineering Laboratory, Agricultural Faculty, University of North Sumatera, Medan, by literature study, equipment manufacture, testing and observations of parameters. The parameters observed were the equipment capacity, economics analysis, break...

  20. Evaluation of desiccated and deformed diaspores from natural building materials

    Tamás Henn

    2015-03-01

    Full Text Available With the increasing sophistication of paleoethnobotanical methods, it is now possible to reconstruct new aspects of the day-to-day life of past peoples, and, ultimately, gain information about their cultivated plants, land-use practices, architecture, diet, and trade. Reliable identification of plant remains, however, remains essential to the study of paleoethnobotany, and there is still much to learn about precise identification. This paper describes and evaluates the most frequent types of deformed desiccated diaspores revealed from adobe bricks used in buildings in Southwestern Hungary that were built primarily between 1850 and 1950. A total of 24,634 diaspores were recovered from 333.05 kg adobe samples. These seeds and fruits belong to 303 taxa, and the majority were arable and ruderal weed species. A total of 98.97% of the diaspores were identified to species. In other cases, identification was possible only to genus or family (0.93% and 0.10% of diaspores, respectively. Difficulties in identification were caused mainly by morphological changes in the size, shape, color, and surface features of diaspores. Most diaspores were darker in color and significantly smaller than fresh or recently desiccated seeds and fruits. Surface features were often absent or fragmented. The most problematic seeds to identify were those of Centaurea cyanus, Consolida regalis, Scleranthus annuus and Daucus carota ssp. carota, which are discussed in detail. Our research aids archaeobotanists in the identification of desiccated and deformed diaspores.

  1. Characterization of UO22+ exchanged Y zeolite

    The present study discusses the incorporation of uranyl ion into Y-zeolite framework. The UO22+ sorption was measured by neutron activation analyses. The Y-zeolite framework distorts in response to the cations present in the structure. Hence, depending on the amount and the location of the exchanged cations, the features of the X-ray diffraction pattern may vary. From the Rietveld analysis of these patterns, the positions occupied by the UO22+ cations in the zeolite network were determined. (author)

  2. Ultrasound-assisted dealumination of zeolite Y

    M Hosseini; M A Zanjanchi; B Ghalami-Choobar; H Golmojdeh

    2015-01-01

    We demonstrate a new procedure for dealumination of zeolite Y. The method employs a 28 KHz ultrasound bath and an ethanolic acetylacetone solution. Acetylacetone was used as chelating agent and ultrasound irradiation was used as extraction intensifier. Four types of samples, as-synthesized, ammoniumexchanged, acidic and neutralized zeolite were used for dealumination. Parts of the framework aluminumatoms are removed from their sites in the structure of zeolite Y upon the use of either acetylacetone on its own or simultaneous use of acetylacetone and ultrasound waves. Higher dealumination was observed for those samples subjected to both ultrasound irradiation and acetylacetone extraction.

  3. Proton Adsorption Selectivity of Zeolites in Aqueous Media: Effect of Si/Al Ratio of Zeolites

    Moses Wazingwa Munthali; Mohammed Abdalla Elsheikh; Erni Johan; Naoto Matsue

    2014-01-01

    In addition to their well-known uses as catalysts, zeolites are utilized to adsorb and remove various cations from aqueous system. The adsorption of the cations is ascribed to the negative charge of zeolites derived from isomorphous substitution of Si by Al. The amount of Na+ adsorption on 4A, X, Y, Na-P1 and mordenite type zeolites were determined in aqueous media, in a two-cation (Na+ and H+) system. Although each zeolite has a constant amount of negative charge, the amount of Na+ adsorptio...

  4. A general method to incorporate metal nanoparticles in zeolites and zeotypes

    2015-01-01

    Disclosed herein is a method for producing a zeolite, zeolite-like or zeotype structure with selective formation of metal, metal oxide or metal sulphide nanoparticles and/or clusters inside the zeolite, zeolite-like or zeotype structure.......Disclosed herein is a method for producing a zeolite, zeolite-like or zeotype structure with selective formation of metal, metal oxide or metal sulphide nanoparticles and/or clusters inside the zeolite, zeolite-like or zeotype structure....

  5. Desiccation resistance and contamination as mechanisms of gaia.

    Brown, S; Margulis, L; Ibarra, S; Siqueiros, D

    1985-01-01

    The gaia hypothesis, formulated by J.E. Lovelock, asserts the composition of the reactive gases, the oxidation-reduction state and the temperature of the lower atmosphere of the planet Earth are actively regulated by the biota. Lovelock and Watson, using highly simplified mathematical models, have shown that the modulation of atmospheric temperature can be achieved by exponentially growing populations of differently colored organisms ("dark and light daisies"). It is more likely that the modulation of atmospheric gas composition is based on the colligative properties of exponentially growing mixed populations of microorganisms rather than on "daisies". Exponential growth of one population of microorganisms leads to gaseous and other metabolic products released to the environment, which favor the exponential growth of different populations, each with their own unique emissions. Extremely high densities of mixed populations of microorganisms ensue. These populations form structured microbial communities composed of members in varying states of activity. Growth potential of metabolically diverse populations most likely provides the basis for the responsiveness of the biota to changing environments. We have attempted to measure an aspect of the growth potential and diversity of one microbial community, that from a flat laminated microbial mat dominated by the cyanobacterium, Microcoleus. Microbial mat samples collected at yearly intervals between 1977 and 1982 were allowed to dry. Subsamples were revived under laboratory conditions by rewetting, and the resulting complex microbial populations were analyzed. Greater than 10(4) viable organisms per ml were estimated to be present in the desiccated samples. Only a portion of the diverse community could be characterized. There were at least 115 different types of desiccation resistant microorganisms present in these samples, primarily bacteria. However, more than a dozen types of rather uncommon fungi and protoctists were

  6. Salinity effects on the dynamics and patterns of desiccation cracks

    Shokri, N.; Zhou, P.

    2012-12-01

    Cracking arising from desiccation is a ubiquitous phenomenon encountered in various industrial and geo-environmental applications including drying of clayey soil, cement, ceramics, gels, and many more colloidal suspensions. Presence of cracks in muddy sediments modifies the characteristics of the medium such as pore structure, porosity, and permeability which in turn influence various flow and transport processes. Thus it remains a topic of great interest in many disciplines to describe the dynamics of desiccation cracking under various boundary conditions. To this end, we conducted a comprehensive study to investigate effects of NaCl concentrations on cracking dynamics and patterns during desiccation of Bentonite. Mixtures of Bentonite and NaCl solutions were prepared with NaCl concentration varying from 2 to 10 percent in 0.5 percent increment (totally 17 configurations). The slurry was placed in a Petri dish mounted on a digital balance to record the evaporation dynamics. The atmospheric conditions were kept constant using an environmental chamber. An automatic camera was used to record the dynamics of macro-cracks (mm scale) at the surface of desiccating clay each minute. The obtained results illustrate the significant effects of salt concentration on the initiation, propagation, morphology and general dynamics of macro-cracks. We found that higher salt concentrations results in larger macro cracks' lengths attributed to the effects of NaCl on compressing the electric double layer of particles at increasing electrolyte concentrations which reduce considerably the repulsive forces among the particles and causing instability of the slurry and flocculation of the colloidal particles. Rheological measurements by means of a stress controlled rheometer revealed that the yield stress of the slurry decreases as NaCl concentration increases which may indicate aggregation of larger units in the slurry as a result of flocculation causing larger cracks' lengths due to

  7. Method and composition for molding low density desiccant syntactic foam articles

    A method and a composition are provided for molding low density desiccant syntactic foam articles. A low density molded desiccant article may be made as a syntactic foam by blending a thermosetting resin, microspheres and molecular sieve desiccant powder, molding and curing. Such articles have densities of 0.2-0.9 g/cc, moisture capacities of 1-12% by weight, and can serve as light weight structural supports

  8. Method and composition for molding low density desiccant syntactic foam articles

    Lula, James W.; Schicker, James R.

    1984-01-01

    A method and a composition are provided for molding low density desiccant syntactic foam articles. A low density molded desiccant article may be made as a syntactic foam by blending a thermosetting resin, microspheres and molecular sieve desiccant powder, molding and curing. Such articles have densities of 0.2-0.9 g/cc, moisture capacities of 1-12% by weight, and can serve as light weight structural supports.

  9. Experimental investigations on performance of liquid desiccant-vapor compression hybrid air conditioner

    A coupled desiccant column is integrated with a conventional room air conditioner (AC) to enhance dehumidification of the room air. One desiccant column (absorber) is placed after the evaporator the other (regenerator) after the condenser of the AC unit. Such a novel liquid desiccant vapour compression hybrid air conditioning system has been fabricated and tested in a balanced ambient room type calorimeter for very low flow rates of liquid desiccant (lithium bromide solution). The moisture from the cold supply air is transferred to the hot condenser air by the desiccant flowing in the loop, thereby complimenting the dehumidification of the room air at the evaporator. The supply air is also sensibly heated during the dehumidification process by liquid desiccant in the absorber, which together enables the hybrid system to maintain low humidity in the room. Whereas the liquid desiccant is regenerated by the condenser waste heat, the entire cooling is derived only by the AC unit. The experimental results show that an increase of room temperature reduces both dehumidification of process air and regeneration of liquid desiccant, whereas an increase of room specific humidity enhances both these for the flow rate of the liquid desiccant in the range of 0.2–1.6% of the air flow rate through the absorber. - Highlights: • A liquid desiccant vapor compression hybrid system is fabricated and tested. • The liquid desiccant reduces latent load but equally increases sensible load. • Hybrid system performance is studied for varying room temperature and humidity. • Higher room temperature lowers air dehumidification and desiccant regeneration. • Increase of room specific humidity enhances dehumidification and also regeneration

  10. Experimental performance of a liquid desiccant dehumidification system under tropical climates

    Jain, Sanjeev, E-mail: sanjeevj@mech.iitd.ac.i [Department of Mechanical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016 (India); Tripathi, Sagun, E-mail: saguntripathi@gmail.co [Department of Mechanical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016 (India); Das, Rajat Subhra, E-mail: raj.mech27@gmail.co [Department of Mechanical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016 (India)

    2011-06-15

    Research highlights: {yields} Indirect contact between air and desiccant using a porous surface to avoid carryover. {yields} Humidity effectiveness and moisture removal rate reported under varying conditions. {yields} Humidity effectiveness with LiCl as desiccant in the range 0.36-0.45. {yields} Mass transfer characteristic of contactor surface restricted system performance. -- Abstract: The current energy crisis, climate change and increased air conditioning demands have generated a need for developing technologies based on renewable energy sources. Foremost amongst the cooling technologies are the sorption technologies working on low grade heat that can be supplied by solar energy. Liquid desiccant technologies seem to be a promising option as these tend to have higher thermal COPs, lower regeneration temperatures, facilitate simultaneous cooling and ease of storage of concentrated desiccant that can be used during the nonsunshine hours. But few concerns like carryover of liquid desiccant in air require further investigations. The liquid desiccant system under study incorporates a double channelled exchanger for air to liquid desiccant heat and mass transfer. It provides a large surface area for air/desiccant contact and reduces the carryover as direct contact between desiccant and air is minimized unlike spray towers, packed bed and falling film designs. Desiccant is heated in a plate heat exchanger using hot water and then regenerated in a regenerator. The set-up comprises of a dehumidifier, along with a regenerator, a cooling tower, plate heat exchangers and a control unit. Experiments were conducted on the system using calcium chloride and lithium chloride as desiccants by varying parameters like inlet air conditions, hot water temperature and desiccant concentration in order to evaluate the performance of the system under different operating conditions. The performance of the system is presented in terms of moisture removal rates, dehumidifier and

  11. COP Evaluation for a Membrane Liquid Desiccant Air Conditioning System Using Four Different Heating Equipment

    Abdel-Salam, Ahmed; Simonson, Carey

    2015-01-01

    Liquid desiccant air conditioning (LDAC) is a promising technology in terms of energy efficiency, comfort and indoor air quality. The major components of a LDAC system are the dehumidifier and regenerator. The most commonly used design of dehumidifiers/regenerators is the packed-bed, which might result in the entrainment of desiccant droplets in air streams. A promising solution for the entrainment of desiccant droplets in air streams is to use a liquid-to-air membrane energy exchanger (LAMEE...

  12. Experimental performance of a liquid desiccant dehumidification system under tropical climates

    Research highlights: → Indirect contact between air and desiccant using a porous surface to avoid carryover. → Humidity effectiveness and moisture removal rate reported under varying conditions. → Humidity effectiveness with LiCl as desiccant in the range 0.36-0.45. → Mass transfer characteristic of contactor surface restricted system performance. -- Abstract: The current energy crisis, climate change and increased air conditioning demands have generated a need for developing technologies based on renewable energy sources. Foremost amongst the cooling technologies are the sorption technologies working on low grade heat that can be supplied by solar energy. Liquid desiccant technologies seem to be a promising option as these tend to have higher thermal COPs, lower regeneration temperatures, facilitate simultaneous cooling and ease of storage of concentrated desiccant that can be used during the nonsunshine hours. But few concerns like carryover of liquid desiccant in air require further investigations. The liquid desiccant system under study incorporates a double channelled exchanger for air to liquid desiccant heat and mass transfer. It provides a large surface area for air/desiccant contact and reduces the carryover as direct contact between desiccant and air is minimized unlike spray towers, packed bed and falling film designs. Desiccant is heated in a plate heat exchanger using hot water and then regenerated in a regenerator. The set-up comprises of a dehumidifier, along with a regenerator, a cooling tower, plate heat exchangers and a control unit. Experiments were conducted on the system using calcium chloride and lithium chloride as desiccants by varying parameters like inlet air conditions, hot water temperature and desiccant concentration in order to evaluate the performance of the system under different operating conditions. The performance of the system is presented in terms of moisture removal rates, dehumidifier and regenerator effectiveness.

  13. Formulation and validation of a two-dimensional steady-state model of desiccant wheels

    Bellemo, Lorenzo; Elmegaard, Brian; Kærn, Martin R.; Markussen, Wiebke B.; Reinholdt, Lars O.

    2015-01-01

    Desiccant wheels are rotary desiccant dehumidifiers used in air-conditioning and drying applications. The modeling of simultaneous heat and mass transfer in these components is crucial for estimating their performances, as well as for simulating and optimizing their implementation in complete...... relations from the scientific literature. Convective heat and mass transfer coefficients are computed locally accounting for the entrance length effects. Mass diffusion inside the desiccant material is neglected. Comparison with experimental data from the literature shows that the model reproduces the...

  14. Natural zeolites and clays - promising media for selective radioisotope partition/immobilization

    Natural zeolites, a naturally occurring crystalline alumino silicate material have immense potential for selective radioisotope partition/immobilization. Unlike activated carbons and silica gel, these zeolites have uniform pore sizes (3A to 10A) which are uniquely determined by the unit structure of the crystal. This paper will discuss the application of a few promising natural zeolites (e.g., erionite, chabazite, clinoptilolite, phillipsite, and large portmordenite) for effective partition/immobilization of Cs-137 and Sr-90 isotopes. It will also discuss the application of a few clay materials (e.g., conasauga shale, cattaraugus shale) for the same isotope immobilization. The paper will also discuss that the adsorption of the isotopes like Cs-137 and Sr-90 on the zeolite/clay surface is generally governed by Freundlich adsorption isotherms C/sub R/ = α C/sub W//sup β/ where C/sub R/ = Concentration of the isotope on the adsorbed phase (g/g) C/sub W/ = Concentration of the isotope in the aqueous phase (g/ml) α, β = constants for a particular isotope and adsorption media and generally obtained by the linear regression fit of the log-log plot. The overall partitioning/immobilization process is a complex physico chemical phenomenon depending upon the equilibrium contact time, zeolite/clay type, sorbent ratio, reversibility/irreversibility of the reaction, concentration of the radionuclides, presence of other competing ions in the transport phase and some physical parameters (e.g., temperature, pressure, etc.). 1 figure

  15. Triple-bore hollow fiber membrane contactor for liquid desiccant based air dehumidification

    Bettahalli, N.M. Srivatsa

    2016-04-26

    Dehumidification is responsible for a large part of the energy consumption in cooling systems in high humidity environments worldwide. Improving efficiency is therefore essential. Liquid desiccants offer a promising solution for dehumidification, as desired levels of humidity removal could be easily regulated. The use of membrane contactors in combination with liquid desiccant is attractive for dehumidification because they prevent direct contact between the humid air and the desiccant, removing both the potential for desiccant carryover to the air and the potential for contamination of the liquid desiccant by dust and other airborne materials, as well as minimizing corrosion. However, the expected additional mass transport barrier of the membrane surface can lower the expected desiccation rate per unit of desiccant surface area. In this context, hollow fiber membranes present an attractive option for membrane liquid desiccant contactors because of their high surface area per unit volume. We demonstrate in this work the performance of polyvinylidene fluoride (PVDF) based triple-bore hollow fiber membranes as liquid desiccant contactors, which are permeable to water vapor but impermeable to liquid water, for dehumidification of hot and humid air.

  16. Investigation on regeneration and energy storage characteristics of a solar liquid desiccant air-conditioning system

    SHI Mingheng; DU Bin; ZHAO Yun

    2007-01-01

    Solar liquid desiccant air-conditioner is a new air-conditioning system in which liquid desiccant can be regenerated by solar energy and energy can be stored in the form of chemical energy in the liquid desiccant.In this paper regeneration and energy storage characteristics were studied theoretically and experimentally.Two criterion equations for heat and mass transfer in the regeneration process were obtained.The main factors that influence the regeneration process were analyzed.A principal solar liquid desiccant air-conditioning system under energy storage operating mode is proposed.

  17. Somatic embryogenesis and peroxidase activity of desiccation toler-ant mature somatic embryos of loblolly pine

    2001-01-01

    White, translucent, glossy mucilaginous callus was initiated from the mature zygotic embryos explants on callus induction medium with 2,4-D, BA, and kinetin in the 3-9th week of culture. This type of callus induction occurred at a lower frequency with either a-naphthaleneacetic acid (NAA) or IBA (both 8 mg/L). White, translucent, glossy mucilaginous callus was embryogenic and mainly developed from the cotyledons of the mature zygotic embryo. Somatic embryos were formed on differentiation medium. Desiccation tolerance can be induced by culturing somatic embryos of loblolly pine (Pinus taeda L.) on medium supplemented with 50 mm abscisic acid (ABA) and/or 8.5% polyethylene glycol (PEG6000). Scanning electron microscopy of desiccated somatic embryos showed that the size and external morphology of the desiccation tolerant somatic embryos recov-ered to the pre-desiccation state within 24-36 h, whereas the sensitive somatic embryos did not recover and remained shriveled, after the desiccated somatic embryos had been rehydrated. Peroxidase activity of desiccated somatic embryos increased shar-ply after 3 days of desiccation treatment, and desiccation tolerant somatic embryos had higher peroxidase activity compared to sensitive somatic embryos. Higher peroxidase activity of desiccation tolerant somatic embryos was possibly advantage of cata-lyzing the reduction of H2O2 which was produced by drought stress, and protecting somatic embryos from oxidative damage.

  18. Proteomics of desiccation tolerance during development and germination of maize embryos

    Huang, Hui; Møller, Ian Max; Song, Song-Quan

    2012-01-01

    Maize seeds were used to identify the key embryo proteins involved in desiccation tolerance during development and germination. Immature maize embryos (28N) during development and mature embryos imbibed for 72 h (72HN) are desiccation sensitive. Mature maize embryos (52N) during development...... protein, major allergen Bet v 1.01C and proteasome subunit alpha type 1, accumulated during embryo maturation, decreased during germination and increased in desiccation-tolerant embryos during desiccation. Two proteins, Rhd6-like 2 and low-molecular-weight heat shock protein precursor, showed the inverse...

  19. Factors affecting the MTW zeolite cristallization process

    Katovic, A.; Giordano, G. [Universita della Calabria, Rende (Italy)

    1995-12-01

    The synthesis mechanism of the high silica zeolite types other than MFI is rarely studied in the open literature. This work is devoted to the role of different parameters governing the zeolite MTW crystallization process. The influence of the most important factors: the nature of the silica and alumina source, the type of the organic cation, the alkalinity of the reaction mixture and the crystallization temperature, was studied. The molar composition of the initial hydrogel was varied in other to determine the crystallization field of the zeolite MTW. The observed morphology and particle size of the crystallites are related to the corresponding reaction conditions. The competitive formation of the other zeolite types (prevalently MFI and BEA) is discussed.

  20. Characteristics of some Iranian natural zeolites

    Zeolites are hydrated crystalline aluminosilicates of alkali and alkaline earth cations. Their three dimensional framework consist of (SIO4) and (AlO4) tetrahedra. Beside their low price and abundance, three main properties of zeolites i.e: adsorption, ion exchange and catalytically properties promote their versatile industrial applications. In Iran, lack of a systematic and comprehensive research on the characterization of natural zeolites causes these valuable minerals to be relatively unknown. The aim of this research is to characterize some of the Iranian natural zeolites by means of thermal analysis methods including thermogravimetry (TG), and derivative thermogravimetry (DTG). In some cases, X-ray diffractometry and chemical analysis were used as complementary methods

  1. PENENTUAN KEASAMAN ZEOLIT MENGGUNAKAN METODE GRAVIMETRI, TITRASI DAN FTIR

    Dwi Kartika; Mardiyah Kurniasih

    2007-01-01

    Determination of natural zeolite and activated natural zeolite acidity using gravimetric, titration and FTIR methods had been carried out. The result of gravimetric method show that the acidity of the natural zeolite and activated natural zeolite was 2,350 and 5,628 mol/gram, respectively. The titration method can be obtained that the acidity degree of the natural zeolite and activated natural zeolite was 12,333 and 12,067, respectively. The result showed that the activation of the natural ze...

  2. Recipe for fabricating zeolite ion source for plasma probing

    Alkali zeolite is often used as an ion source material owing to its easy extraction of alkali ions. In our laboratory, we fabricated zeolite containing a particular alkali species through a replacement reaction with sodium zeolite. In this paper, we present a simple mathematical model for describing this replacement reaction for making zeolite containing a particular alkali species. In this model, the fraction of alkali ions trapped in the zeolite lattice is expressed as a function of the number of substitution reactions in a concise recursion formula. This formula gives a simple estimation of efficiency for fabricating alkali zeolite in terms of the consumptions of time and chemicals. (author)

  3. Synthesis and peculiarities of the cesium zeolite crystal structure (cesite)

    An attempt is made to synthesize cesium zeolite by introduction of amorphous seed crystals which correspond by composition with cesium-containing zeolite into the aluminosilicate gel, since this method can produce zeolite with a crystal structure it would not adopt under the usual conditions. It is seen that during crystablization upon introduction of a seed crystal the cesium content in zeolite decreases. A more complete structural elucidation of zeolite obtained by the suggested method was carried out by x0ray and IR spectral analyses. The data of x-ray analysis showed that the structures of synthesized zeolite and binary octagonal pores are similar

  4. Catalytic Cracking of Heptane Using Prepared Zeolite

    Mohammed Nsaif; Ahmed Abdulhaq; Ali Farhan; Safa Neamat

    2012-01-01

    This investigation was conducted to study the potential of type Y-zeolite prepared locally from Iraqi Rice Husk (IRH) (which considered as a type of agricultural waste that difficult to discard it in conventional methods in Iraq) on the removal of one heavy metals pollutant which was divalent zinc (Zn+2) ions from industrial wastewater using different design parameters by adsorption process. The design parameters studied to remove (Zn+2) ions using zeolite prepared locally from (IRH) as an ad...

  5. Acetylene diffusion in Na-Y zeolite

    S Mitra; S Sumitra; A M Umarji; R Mukhopadhyay; S Yashonath; S L Chaplot

    2004-08-01

    Study of diffusivity of acetylene adsorbed in Na-Y zeolite by quasi-elastic neutron scattering (QENS) measurements at temperatures of 300, 325 and 350 K is reported. A model in which the acetylene molecules undergo random-walk diffusion characterized by a Gaussian distribution of jump lengths inside zeolite cages describes the data consistently. The diffusion constant, residence time between jumps and root mean square jump length are determined.

  6. Crystal engineering of zeolites with graphene

    Gebhardt, Paul; Pattison, Sebastian M.; Ren, Zhibin; Cooke, David J.; Elliott, James A.; Eder, Dominik

    2014-01-01

    Achieving control over the morphology of zeolite crystals at the nanoscale is crucial for enhancing their performance in diverse applications including catalysis, sensors and separation. The complexity and sensitivity of zeolite synthesis processes, however, often make such control both highly empirical and difficult to implement. We demonstrate that graphene can significantly alter the morphology of titanium silicalite (TS-1) particles, in particular being able to reduce their dimensions fro...

  7. Multidiagnostic Analysis to Track Zeolite Formation

    Castro, M.; Haouas, M.; Taulelle, Francis; Lim, I; Breynaert, Eric; Brabants, Gert; Kirschhock, Christine; Schmidt, W.

    2014-01-01

    Introduction The formation of zeolites in presence of tetraalkylammonium cations from so-called clear solutions using silicon alkoxides is a highly complex process. Our research aims to identify the key mechanisms on a molecular scale with the goal of understanding the factors that drive the formation of zeolites [1]. For this purpose we have used electrospray ionization mass spectrometry (ESI-MS), 29Si and 27Al liquid-NMR spectrometry, DOSY NMR (diffusion experi...

  8. Hierarchical zeolites: progress on synthesis and characterization of mesoporous zeolite single crystal catalysts

    Kustova, Marina; Egeblad, Kresten; Christensen, Claus H.; Kustov, Arkadii; Christensen, Christina Hviid

    measurements. Additionally, the results of diffusion of n-hexadecane in conventional and mesoporous zeolites are presented. Isomerization and cracking of n-hexadecane was chosen as model test reaction for these materials. All results support that mesoporous zeolites are superior catalysts due to improved mass...

  9. Theoretical investigation of layered zeolite frameworks: Surface properties of 2D zeolites

    Hermann, Jan; Trachta, Michal; Nachtigall, P.; Bludský, Ota

    2014-01-01

    Roč. 227, May 15 (2014), s. 2-8. ISSN 0920-5861 R&D Projects: GA ČR GBP106/12/G015 Institutional support: RVO:61388963 Keywords : layered zeolite frameworks * surface properties * 2D zeolite s Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.893, year: 2014

  10. Salt-occluded zeolite waste forms: Crystal structures and transformability

    Neutron diffraction studies of salt-occluded zeolite and zeolite/glass composite samples, simulating nuclear waste forms loaded with fission products, have revealed complex structures, with cations assuming the dual roles of charge compensation and occlusion (cluster formation). These clusters roughly fill the 6--8 angstrom diameter pores of the zeolites. Samples are prepared by equilibrating zeolite-A with complex molten Li, K, Cs, Sr, Ba, Y chloride salts, with compositions representative of anticipated waste systems. Samples prepared using zeolite 4A (which contains exclusively sodium cations) as starting material are observed to transform to sodalite, a denser aluminosilicate framework structure, while those prepared using zeolite 5A (sodium and calcium ions) more readily retain the zeolite-A structure. Because the sodalite framework pores are much smaller than those of zeolite-A, clusters are smaller and more rigorously confined, with a correspondingly lower capacity for waste containment. Details of the sodalite structures resulting from transformation of zeolite-A depend upon the precise composition of the original mixture. The enhanced resistance of salt-occluded zeolites prepared from zeolite 5A to sodalite transformation is thought to be related to differences in the complex chloride clusters present in these zeolite mixtures. Data relating processing conditions to resulting zeolite composition and structure can be used in the selection of processing parameters which lead to optimal waste forms

  11. Effect of different glasses in glass bonded zeolite

    A mineral waste form has been developed for chloride waste salt generated during the pyrochemical treatment of spent nuclear fuel. The waste form consists of salt-occluded zeolite powders bound within a glass matrix. The zeolite contains the salt and immobilizes the fission products. The zeolite powders are hot pressed to form a mechanically stable, durable glass bonded zeolite. Further development of glass bonded zeolite as a waste form requires an understanding of the interaction between the glass and the zeolite. Properties of the glass that enhance binding and durability of the glass bonded zeolite need to be identified. Three types of glass, boroaluminosilicate, soda-lime silicate, and high silica glasses, have a range of properties and are now being investigated. Each glass was hot pressed by itself and with an equal amount of zeolite. MCC-1 leach tests were run on both. Soda-lime silicate and high silica glasses did not give a durable glass bonded zeolite. Boroaluminosilicate glasses rich in alkaline earths did bind the zeolite and gave a durable glass bonded zeolite. Scanning electron micrographs suggest that the boroaluminosilicate glasses wetted the zeolite powders better than the other glasses. Development of the glass bonded zeolite as a waste form for chloride waste salt is continuing

  12. Experimental exergoeconomic assessment of a desiccant cooling system

    Highlights: ► Assessing a novel desiccant cooling system exergoeconomically for the first time. ► Investigating dead state temperatures on efficiencies and irreversibilities. ► Correlating some thermoeconomic parameters with the dead state temperature. ► Changing the exergy efficiencies of the system from 36.40% to 31.08%. ► Ranging the ratio of thermodynamic loss rate to capital cost from 1.14 to 1.19 MW/USD. - Abstract: Desiccant cooling has become a well established technology in most parts of the world, especially recently in Turkey. The increased growth of the technology was caused by the contribution of refrigerants used in conventional cooling systems to the depletion of the ozone layer. This technology provides a tool to control humidity (moisture) levels in conditioned air spaces. In this study, a desiccant cooling system was designed, constructed and tested in Cukurova University, Adana, Turkey while it has been successfully operated since 2008. Exergy, cost, energy and mass (EXCEM) analysis was applied to this system for the first time to the best of the authors‘ knowledge. The relations between thermodynamic losses and capital costs were also parametrically investigated and illustrated in figures. Based on the overall system (OS) results, some components of the whole system, namely the electric heater unit, the expansion valve, the pump, the fresh air fan and the condenser fan were obtained to be inefficient. Particularly, the electric heater unit was important as its exergy loss rate (R.ex) value was 29.36 times greater than that of the OS

  13. Operational experiences with solar air collector driven desiccant cooling systems

    Eicker, Ursula; Schneider, Dietrich; Schumacher, Juergen [Faculty of Civil Engineering, Building Physics and Economics, University of Applied Sciences Stuttgart, Schellingstrasse 24, D-70174 Stuttgart (Germany); Ge, Tianshu; Dai, Yanjun [Faculty of Civil Engineering, Building Physics and Economics, University of Applied Sciences Stuttgart, Schellingstrasse 24, D-70174 Stuttgart (Germany); Institute of Refrigeration and Cryogenics, Solar Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2010-12-15

    Component performance and seasonal operational experiences have been analysed for desiccant cooling systems powered by solar air collectors. Measurements during the commissioning phase in Spain (public library) and in Germany (production hall) showed that the dehumidification efficiency of the sorption rotors was 80% and the humidification efficiency of the contact evaporators was 85-86%. Only in a two-stage desiccant system monitored in China (laboratory building), a dehumidification efficiency of 88% was reached. The rotary heat exchangers only had 62-68% measured heat recovery efficiency, which is lower than specified. Seasonal performance monitoring carried out in the German installation showed that average seasonal COP's were close to 1.0, when related to all operation hours. COP's increase if low regeneration temperatures are used with low dehumidification rates, which is often sufficient for moderate German climatic conditions, but much less so in the humid Chinese climate. Electrical COP's for the German system including air distribution were between 1.7 and 4.6 and reach values of 7.4, when only additional pressure drops of the desiccant unit are considered. It could be shown that conventional control strategies lead to high auxiliary energy consumption, for example if fixed heating setpoint temperatures are used. Furthermore the solar air collector energy yield was very low in the German system, as regeneration was only used when all other options such as humidification at high air volume flows did not reduce the room air temperature enough. The studies showed that the measured auxiliary energy consumption could be reduced to near zero, if regeneration temperature setpoints were not fixed to constant values. The solar air collector efficiency was good at about 50% both for the flat plate collectors used in Spain and Germany and the Chinese vacuum tube solution. A cost analysis demonstrated the viability of the concept, if some funding of

  14. Influence of cracking in the desiccation process of clay soils

    Levatti, Hector Ulises; Prat Catalán, Pere; Ledesma Villalba, Alberto

    2009-01-01

    It is well known that clayey soils undergoing desiccation tend to shrink and eventually crack. Analysis of the behaviour and influence of cracks in these types of soils is very important in several engineering fields such as mine tailing dams, long-term radioactive waste storage, impervious core of earth dams, and in any situation where clay is used as a barrier to fluid flow. Loss of humidity and cracking changes the permeability of such barriers that may no longer work properly and pose pot...

  15. Polyphosphates substitution for zeolite to in detergents

    The detergents, as well as the cleaning products, contain active ingredients that are good to increase their efficiency and some of them, as the sodium Tripoli-phosphate (TPF), they have turned out to be noxious for the environment. The zeolites use in the formulation of detergents has grown substantially since they fulfill the same function of the TPF and they have been recommended ecologically as substitutes from these when not being polluting. The objective of this work is to obtain a zeolite with appropriate characteristics for its use in the formulation of detergents, reproducing those of the zeolites used industrially. The zeolite synthesis is studied 4A starting from hydro-gels of different composition, varying the operation conditions and using two raw materials: (sodium meta-silicate, commercial degree and metallic aluminum) and clay type kaolin like silica source and aluminum It is looked for to get a product of beveled cubic morphology, or spherical, with glass size between 1 and 3 microns and that it possesses good capacity of conical exchange. Since the capacity and speed of ionic exchange is influenced by the particle size, time of contact and temperature, experimentation conditions settle down to measure the exchange of ions calcium and magnesium in watery solutions that they simulate the real situation of a laundry process in the country. This way the ability of the zeolite 4A obtained to diminish the concentration of these ions in the laundry waters is evaluated and its possibilities like component in the formulation of detergents non-phosphatates. Of the synthesized zeolites, the best in agreement is chosen with chemical properties as ionic and physical exchange capacity as crystalline, particle size and color, to prepare a detergent in which the polyphosphates is substituted partial and totally for the synthesized zeolite

  16. Photoprotection in the lichen Parmelia sulcata: the origins of desiccation-induced fluorescence quenching.

    Veerman, John; Vasil'ev, Sergej; Paton, Gavin D; Ramanauskas, Justin; Bruce, Doug

    2007-11-01

    Lichens, a symbiotic relationship between a fungus (mycobiont) and a photosynthetic green algae or cyanobacteria (photobiont), belong to an elite group of survivalist organisms termed resurrection species. When lichens are desiccated, they are photosynthetically inactive, but upon rehydration they can perform photosynthesis within seconds. Desiccation is correlated with both a loss of variable chlorophyll a fluorescence and a decrease in overall fluorescence yield. The fluorescence quenching likely reflects photoprotection mechanisms that may be based on desiccation-induced changes in lichen structure that limit light exposure to the photobiont (sunshade effect) and/or active quenching of excitation energy absorbed by the photosynthetic apparatus. To separate and quantify these possible mechanisms, we have investigated the origins of fluorescence quenching in desiccated lichens with steady-state, low temperature, and time-resolved chlorophyll fluorescence spectroscopy. We found the most dramatic target of quenching to be photosystem II (PSII), which produces negligible levels of fluorescence in desiccated lichens. We show that fluorescence decay in desiccated lichens was dominated by a short lifetime, long-wavelength component energetically coupled to PSII. Remaining fluorescence was primarily from PSI and although diminished in amplitude, PSI decay kinetics were unaffected by desiccation. The long-wavelength-quenching species was responsible for most (about 80%) of the fluorescence quenching observed in desiccated lichens; the rest of the quenching was attributed to the sunshade effect induced by structural changes in the lichen thallus. PMID:17827268

  17. Photoprotection in the Lichen Parmelia sulcata: The Origins of Desiccation-Induced Fluorescence Quenching1

    Veerman, John; Vasil'ev, Sergej; Paton, Gavin D.; Ramanauskas, Justin; Bruce, Doug

    2007-01-01

    Lichens, a symbiotic relationship between a fungus (mycobiont) and a photosynthetic green algae or cyanobacteria (photobiont), belong to an elite group of survivalist organisms termed resurrection species. When lichens are desiccated, they are photosynthetically inactive, but upon rehydration they can perform photosynthesis within seconds. Desiccation is correlated with both a loss of variable chlorophyll a fluorescence and a decrease in overall fluorescence yield. The fluorescence quenching likely reflects photoprotection mechanisms that may be based on desiccation-induced changes in lichen structure that limit light exposure to the photobiont (sunshade effect) and/or active quenching of excitation energy absorbed by the photosynthetic apparatus. To separate and quantify these possible mechanisms, we have investigated the origins of fluorescence quenching in desiccated lichens with steady-state, low temperature, and time-resolved chlorophyll fluorescence spectroscopy. We found the most dramatic target of quenching to be photosystem II (PSII), which produces negligible levels of fluorescence in desiccated lichens. We show that fluorescence decay in desiccated lichens was dominated by a short lifetime, long-wavelength component energetically coupled to PSII. Remaining fluorescence was primarily from PSI and although diminished in amplitude, PSI decay kinetics were unaffected by desiccation. The long-wavelength-quenching species was responsible for most (about 80%) of the fluorescence quenching observed in desiccated lichens; the rest of the quenching was attributed to the sunshade effect induced by structural changes in the lichen thallus. PMID:17827268

  18. Molecular mechanisms of desiccation tolerance in the resurrection glacial relic Haberlea rhodopensis

    Gechev, Tsanko S.; Benina, Maria; Obata, Toshihiro; Tohge, Takayuki; Sujeeth, Neerakkal; Minkov, Ivan; Hille, Jacques; Temanni, Mohamed-Ramzi; Marriott, Andrew S.; Bergstrom, Ed; Thomas-Oates, Jane; Antonio, Carla; Mueller-Roeber, Bernd; Schippers, Jos H. M.; Fernie, Alisdair R.; Toneva, Valentina

    2013-01-01

    Haberlea rhodopensis is a resurrection plant with remarkable tolerance to desiccation. Haberlea exposed to drought stress, desiccation, and subsequent rehydration showed no signs of damage or severe oxidative stress compared to untreated control plants. Transcriptome analysis by next-generation sequ

  19. EFFICIENCY OF HOTYNETS NATURAL ZEOLITES UTILIZATION IN LIVESTOCK INDUSTRY

    Yarovan, N.; Boytsova, O.; Novikova, I.; Petrushina, M.

    2014-01-01

    The article presents data on efficiency of Hotynets natural zeolites in combination with other biological additives in dairy cattle breeding. It shows the economic effect of the complexes: "hotynets zeolites + thyme" under transport and industry stress; "hotynets zeolites + lecithin" under industrial stress and in the treatment of subclinical ketosis of heavy milking cows the main treatment. Utilization of hotynets natural zeolites and thyme as means of adaptogenic action of heavy milking cow...

  20. Separation and Recovery of Tetramethyl Ammonium Hydroxide with Zeolitic Adsorbents

    S. Nishihama; Takatori, K.; K. Yoshizuka

    2010-01-01

    Separation and recovery of tetramethyl ammonium hydroxide (TMAH) has been investigated, employing several zeolites as adsorbents. Zeolite X, prepared by using TMAH as a structure directing agent, possesses highest adsorption ability among the adsorbents investigated in the present work, which corresponds to the specific surface area and pore volume of the zeolite. The adsorption amount of TMAH with the zeolitic adsorbents increases with increase in pH value in the aqueous solution, indicating...

  1. The selective separation of Cs and Sr ion on the inorganic ion-exchanger zeolites

    Park, Hun Hwee; Min, Byeog Heon [Hoseo University, Taegu (Korea)

    1998-04-01

    This study shows the selective separation of Cs and Sr ion on the inorganic ion-exchanger zeolites such as clinoptilolite, Y-type CBV760, CBV780 and A-type 3A. The selective separation of Cs and Sr on these zeolites was examined using batch and continuous column experiments. For the selective separation of Cs and Sr from a synthetic wastewater, adsorption rate of Cs increased in the order, clinoptilolite> 3A>> CBV760> CBV780, adsorption rate of Sr increased in the other, 3A>> clinoptilolite> CBV760> CBV780. For the clinoptilolite, the adsorption rate of Cs reached about 96 {approx} 98% within 3h. The adsorption rate of Sr on 3A reached about 99% within 3h. (author). 40 refs., 27 figs., 4 tabs.

  2. Predictions of vapor pressures of aqueous desiccants for cooling applications by using artificial neural networks

    Gandhidasan, P. [Mechanical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)], E-mail: pgandhi@kfupm.edu.sa; Mohandes, Mohamed A. [Electrical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2008-02-15

    This paper presents a new approach based on artificial neural networks (ANNs) to determine the vapor pressure of three widely used inorganic desiccant solutions, namely, calcium chloride, lithium chloride, and lithium bromide. The vapor pressure of liquid desiccants depends on temperature and concentration. Empirical expressions generally provide vapor pressure with limited accuracy. Further, the expressions currently in use are tedious and valid for narrow ranges and must be adjusted constantly. In this paper neural networks were trained to predict vapor pressure of desiccant solutions with a reasonable accuracy without mathematical formulae. Trained neural network models provided wide ranges of vapor pressure for desiccant solutions without the need to cross reference several tables or charts. Results showed potential of using ANNs for the prediction of vapor pressure of desiccant solution for cooling applications.

  3. Predictions of vapor pressures of aqueous desiccants for cooling applications by using artificial neural networks

    This paper presents a new approach based on artificial neural networks (ANNs) to determine the vapor pressure of three widely used inorganic desiccant solutions, namely, calcium chloride, lithium chloride, and lithium bromide. The vapor pressure of liquid desiccants depends on temperature and concentration. Empirical expressions generally provide vapor pressure with limited accuracy. Further, the expressions currently in use are tedious and valid for narrow ranges and must be adjusted constantly. In this paper neural networks were trained to predict vapor pressure of desiccant solutions with a reasonable accuracy without mathematical formulae. Trained neural network models provided wide ranges of vapor pressure for desiccant solutions without the need to cross reference several tables or charts. Results showed potential of using ANNs for the prediction of vapor pressure of desiccant solution for cooling applications

  4. Development of a Ventilation and Air-conditioning System using Fixed Bed Desiccant Units

    Miyazaki, Takahiko; Akisawa, Atsushi; Shindoh, Shinji; Masazumi, Godo; Takeshi, Takatsuka; Hamamoto, Yoshinori; Mori, Hideo

    The study investigated fixed bed desiccant units for ventilation and air-conditioning. The system mainly dehumidifies the outdoor fresh air to be supplied to an air-conditioned room. Hence, the airconditioning load of the air-conditioner in the room can be mitigated. Several adsorbents were compared from the viewpoints of humidity ratio at the outlet of the desiccant unit, dehumidified quantity per unit volume, and dehumidified quantity per unit adsorbent mass. The performance of the desiccant unit was predicted by simulation which was validated by comparison with experiment. The results revealed the most suitable adsorbent to reduce the desiccant unit size. It was also found that the humidity ratio at the outlet of the desiccant unit could be lowered by shortening the dimensionless switching time.

  5. Zeolite and swine inoculum effect on poultry manure biomethanation

    Kougias, Panagiotis; Fotidis, Ioannis; Zaganas, I.D.;

    2013-01-01

    manure was investigated. A significant increase in methane production was observed in treatments where zeolite was added, compared to the treatment without zeolite.Methane production in the treatment with 10 g dm-3 of natural zeolite was found to be 109.75% higher compared to the treatment without...

  6. Zeolites and Zeotypes for Oil and Gas Conversion

    Vogt, Eelco T C; Whiting, Gareth T.; Dutta Chowdhury, Abhishek; Weckhuysen, Bert M.

    2015-01-01

    Zeolite-based catalyst materials are widely used in chemical industry. In this chapter, the applications of zeolites and zeotypes in the catalytic conversion of oil and gas are reviewed. After a general introduction to zeolite science and technology, we discuss refinery applications, such as fluid c

  7. Extended periods of hydration do not elicit dehardening to desiccation tolerance in regeneration trials of the moss Syntrichia caninervis

    Dehardening (deacclimation) to water stress is seldom studied in plants, and yet is an integral phase of desiccation tolerance. Most bryophytes are desiccation tolerant (DT), and yet even fully DT species lose a significant portion of their ability to withstand desiccation if dehardened. Shoots of t...

  8. Death by desiccation: Effects of hermetic storage on cowpea bruchids

    Murdock, Larry L.

    2012-04-01

    When cowpea grain is stored in airtight containers, destructive populations of the cowpea bruchid (. Callosobruchus maculatus) don\\'t develop even though the grain put into the store is already infested with sufficient . C. maculatus to destroy the entire store within a few months. The surprising effectiveness of hermetic storage for preserving grain against insect pests has long been linked with the depletion of oxygen in the hermetic container and with the parallel rise in carbon dioxide. With . C. maculatus, low oxygen (hypoxia) leads to cessation of larval feeding activity, whereas elevated levels of carbon dioxide (hypercarbia) have little or no effect on feeding. Cessation of feeding arrests the growth of the insects, which don\\'t mature and don\\'t reproduce. As a result, population growth ceases and damaging infestations don\\'t develop. . C. maculatus eggs, larvae, and pupae subjected to hypoxia eventually die after exposures of various duration. The cause of death is desiccation resulting from an inadequate supply of water. We demonstrate that blocking the supply of oxygen interdicts the main supply of water for . C. maculatus. This leads to inactivity, cessation of population growth, desiccation and eventual death. © 2012 Elsevier Ltd.

  9. Performance assessment of adding Cu-ultrafine particles into falling film desiccant

    The concept of dehumidification between air and liquid desiccant for the improvement of the efficiency of heating and cooling fluids in industrial applications was discussed. The use of solid/liquid desiccants has received much attention in recent years because liquid desiccants can take moisture from surrounding air at low temperature and then release the moisture at high temperature to provide a continuous process of dehumidification of air and regeneration of liquid desiccant. This process can be used with conventional vapor compression cycles. This paper presented a comparative numerical study between parallel and counter flow configurations that examined the effects of various parameters on heat and mass transfer for the dehumidification and cooling processes of air and regeneration rate of liquid desiccant. Ultrafine particles were added to the falling film desiccant to investigate heat and mass transfer enhancement for both parallel and counter flow channels. The Cu-volume fraction in the falling film desiccant and dispersion effect were the important parameters. A mathematical model was therefore developed to account for the addition of Cu-ultrafine particles into the film desiccant. The dehumidification and cooling rate processes were found to improve with an increase in the Cu-ultrafine particles and dispersion effect. The new hybrid AC system was shown to improve indoor air quality, reduce energy consumption, and be environmentally safe. It was concluded that although the volume fraction and dispersion factor improve the dehumidification and cooling processes of the air, the improvements are not significant due to the small thickness of the falling-film desiccant. The regeneration process did not improve for either controlling parameter because of the small thickness of the film desiccant. 14 refs., 10 figs

  10. Performance characteristics of cross-flow membrane contactors for liquid desiccant systems

    Highlights: • Different types of flat plate membrane contactors developed to eliminate carryover in liquid desiccant systems. • Two-dimensional steady-state model developed to predict performance of contactors. • The simulated results are found to be in good agreement with experimental findings. • Performance of the contactors depends significantly on the membrane characteristics. • Parametric analysis carried out to select best operating ranges of design parameters. - Abstract: Membrane based indirect contact liquid desiccant dehumidification technology subsides the serious concern of liquid desiccant droplet carryover observed in conventional direct contact liquid desiccant systems. In the membrane contactor the air and liquid desiccant streams flow in alternate channels in cross-flow arrangement, separated by micro-porous semi-permeable hydrophobic membranes. Only water vapor can pass through the membranes but liquid desiccant cannot permeate. A two-dimensional steady-state mathematical model for semipermeable membrane based indirect contactors as dehumidifiers for liquid desiccant dehumidification applications has been developed. The model can predict the air and desiccant parameters inside the dehumidifier and the outlet parameters for a given input parameters. Five different membrane contactors have been fabricated and series of experiments have been conducted to validate the mathematical model. Aqueous solution of lithium chloride has been used as desiccant. The maximum deviations between experimental and predicted values are within ±10% for outlet specific humidity and outlet enthalpy of air, ±15% deviation in dehumidification effectiveness and ±20% deviation in enthalpy effectiveness. The distributions of major parameters viz. temperature, humidity, concentration, etc., within the contactor have been presented. Parametric analysis has been carried out to study the effects of membrane characteristics, contactor design, fluid flow rates, ambient

  11. Italian zeolitized rocks of technological interest

    de'Gennaro, M.; Langella, A.

    1996-09-01

    Large areas of Italian territory are covered by thick and widespread deposits of zeolite-bearing volcaniclastic products. The main zeolites are phillipsite and chabazite spread over the whole peninsula, and clinoptilolite recorded only in Sardinia. A trachytic to phonolitic glassy precursor accounts for the formation of the former zeolites characterized by low Si/Al ratios (?3.00), while clinoptilolite is related to more acidic volcanism. The genesis of most of these zeolitized deposits is linked to pyroclastic flow emplacement mechanisms characterized by quite high temperatures and by the presence of abundant fluids. The main utilization of these materials has been and still is as dimension stones in the building industry. Currently, limited amounts are also employed in animal farming (dietary supplement, pet litter and manure deodorizer) and in agriculture as soil improvement and slow-release fertilizers. New fields of application have been proposed for these products on account of their easy availability, very low cost, their high-grade zeolites (50 70%), and good technological features such as high cation exchange capacities and adsorption properties.

  12. Radon capture with silver exchanged zeolites

    To enable laboratory work with larger amounts of 226Ra and its decay products, e.g., 222Rn and its daughters, these need to be captured in order to avoid unnecessary alpha contamination of the laboratory work space and ventilation systems. In this study, radon gas was pumped through a column filled with the silver exchanged zeolite called 'silver exchanged molecular sieves 13X' (Ag84Na2[(AlO2)86(SiO2)106].xH2O). After exposure to radon, the radioactivity of the zeolite was measured repeatedly using high resolution gamma spectrometry. It was shown that radon was captured and retained in the silver exchanged zeolite. The zeolites' ability to retain radon was decreased by formation of metallic silver, caused by ionizing radiation. However, the zeolite was regenerated by heating and its radon capture ability was restored. The daughters of radon are not in gas phase and will hence stay on the column. (orig.)

  13. Detergent zeolite complex "Ceosil", Tallinn, Estonia

    Stanković Mirjana S.

    2003-01-01

    Full Text Available The IGPC Engineering Department, together with the "Birac", Zvornik Engineering Department designed basic projects for detergent zeolite production, using waste flotation sand and hydrates. Several projects were completed: technological, machine, electrical, automation. On the basis of these projects, production plant in Tallinn, Estonia was constructed, with a capacity of 100,000 t/y from 1989. to 1993. This plant became the biggest producer of detergent zeolite in the world.Several goals were realized by designing the "Ceosil" plant. Waste flotation sand was used and detergent zeolite was produced in a market which is not properly supplied with this zeolite. The product meets all quality demands, as well as environmental regulations. The detergent production process is fully automatized and the product has uniform quality. There is no waste material in detergent zeolite production, because all products with unsatisfactory quality are returned to the process. The production process can be controlled manually, which is necessary during start - up, and repairs.

  14. Characterization of Zeolite in Zeolite-Geopolymer Hybrid Bulk Materials Derived from Kaolinitic Clays

    Hayami Takeda

    2013-05-01

    Full Text Available Zeolite-geopolymer hybrid materials have been formed when kaolin was used as a starting material. Their characteristics are of interest because they can have a wide pore size distribution with micro- and meso-pores due to the zeolite and geopolymer, respectively. In this study, Zeolite-geopolymer hybrid bulk materials were fabricated using four kinds of kaolinitic clays (a halloysite and three kinds of kaolinite. The kaolinitic clays were first calcined at 700 °C for 3 h to transform into the amorphous aluminosilicate phases. Alkali-activation treatment of the metakaolin yielded bulk materials with different amounts and types of zeolite and different compressive strength. This study investigated the effects of the initial kaolinitic clays on the amount and types of zeolite in the resultant geopolymers as well as the strength of the bulk materials. The kaolinitic clays and their metakaolin were characterized by XRD analysis, chemical composition, crystallite size, 29Si and 27Al MAS NMR analysis, and specific surface area measurements. The correlation between the amount of zeolite formed and the compressive strength of the resultant hybrid bulk materials, previously reported by other researchers was not positively observed. In the studied systems, the effects of Si/Al and crystalline size were observed. When the atomic ratio of Si/Al in the starting kaolinitic clays increased, the compressive strength of the hybrid bulk materials increased. The crystallite size of the zeolite in the hybrid bulk materials increased with decreasing compressive strength of the hybrid bulk materials.

  15. Hydrogen Purification Using Natural Zeolite Membranes

    DelValle, William

    2003-01-01

    The School of Science at Universidad del Turabo (UT) have a long-lasting investigation plan to study the hydrogen cleaning and purification technologies. We proposed a research project for the synthesis, phase analysis and porosity characterization of zeolite based ceramic perm-selective membranes for hydrogen cleaning to support NASA's commitment to achieving a broad-based research capability focusing on aerospace-related issues. The present study will focus on technology transfer by utilizing inorganic membranes for production of ultra-clean hydrogen for application in combustion. We tested three different natural zeolite membranes (different particle size at different temperatures and time of exposure). Our results show that the membranes exposured at 900 C for 1Hr has the most higher permeation capacity, indicated that our zeolite membranes has the capacity to permeate hydrogen.

  16. Cupric natural zeolites as microbic ides

    The Escherichia coli and the Candida albicans are considered contamination indicators for what these organisms reflect the water quality. The natural zeolites by their characteristics and properties, they could incorporate to a waters treatment system, as ion exchange, adsorbents and/or microbiocid agents, representing an alternative method of low cost. Inside this investigation work was found that depending on the microorganism type, it varies the quantity of cupric zeolite that is required to carry out the water disinfection, being great for the case of yeasts than the bacteria s. In addition to that marked differences are presented in the required time to reach this process. The characterization of the natural zeolite material, sodium and cupric, was realized by means of scanning electron microscopy, determining the elementary composition (Energy Dispersive Spectroscopy) of each one of them, and by X-ray diffraction. (Author)

  17. Preparation and Characterization of Natural Zeolite Modified with Iron Nanoparticles

    Alvaro Ruíz-Baltazar

    2015-01-01

    Full Text Available This study is aimed at investigating the structural and morphological characterization of natural and modified zeolite obtained from the state of Oaxaca (Mexico. Iron nanoparticles were used for the zeolite modification. The iron nanoparticles were loaded on the zeolite surface by homogeneous nucleation. Adsorption kinetic models of pseudo first and second order were surveyed. The characterization of pristine and modified zeolite was performed by Fourier transform infrared (FTIR, transmission electron microscopy (TEM, and X-ray diffraction (XRD. From the results, three main phases were identified: clinoptilolite, mordenite, and feldspar. We could also determine the adsorption capacity of the zeolites by means of adsorption kinetic models.

  18. Zeolite-coated interdigital capacitors for humidity sensing

    Urbiztondo, M.; Pellejero, I.; Rodríguez Martínez, Ángel; Pina Iritia, María Pilar; Santamaría Ramiro, Jesús Marcos

    2011-01-01

    Inter-digital capacitors (IDCs) with electrode gaps of 10 or 50 microns have been coated with zeolite films consisting of different zeolites with Si/Al ratios ranging from 1.5 (zeolite A) to infinite (silicalite). The performance of the sensor in the measurement of humidity has been related to the electrical properties of the zeolites (relative permittivity, ɛr), which in turn is a function of their Si/Al ratio. With zeolites of a high Al content the limit of detection was under 0.5 ppmV.

  19. Studies of anions sorption on natural zeolites.

    Barczyk, K; Mozgawa, W; Król, M

    2014-12-10

    This work presents results of FT-IR spectroscopic studies of anions-chromate, phosphate and arsenate - sorbed from aqueous solutions (different concentrations of anions) on zeolites. The sorption has been conducted on natural zeolites from different structural groups, i.e. chabazite, mordenite, ferrierite and clinoptilolite. The Na-forms of sorbents were exchanged with hexadecyltrimethylammonium cations (HDTMA(+)) and organo-zeolites were obtained. External cation exchange capacities (ECEC) of organo-zeolites were measured. Their values are 17mmol/100g for chabazite, 4mmol/100g for mordenite and ferrierite and 10mmol/100g for clinoptilolite. The used initial inputs of HDTMA correspond to 100% and 200% ECEC of the minerals. Organo-modificated sorbents were subsequently used for immobilization of mentioned anions. It was proven that aforementioned anions' sorption causes changes in IR spectra of the HDTMA-zeolites. These alterations are dependent on the kind of anions that were sorbed. In all cases, variations are due to bands corresponding to the characteristic Si-O(Si,Al) vibrations (occurring in alumino- and silicooxygen tetrahedra building spatial framework of zeolites). Alkylammonium surfactant vibrations have also been observed. Systematic changes in the spectra connected with the anion concentration in the initial solution have been revealed. The amounts of sorbed CrO4(2-), AsO4(3-) and PO4(3-) ions were calculated from the difference between their concentrations in solutions before (initial concentration) and after (equilibrium concentration) sorption experiments. Concentrations of anions were determined by spectrophotometric method. PMID:25002191

  20. Diagenetic Quartz Morphologies and Zeolite formation

    Kazerouni, Afsoon Moatari; Hansen, Rikke Weibel; Friis, Henrik;

    also formed in samples where no volcanic ash is demonstrated; it seems that a rapid supply of dissolved silica from dissolution of siliceous fossils was the main reason for the early co-precipitation of opal and zeolite. There are two important sources for Si: 1) Biogenic opal from diatoms or...... precipitation of Si-rich clinoptolite, or zeolite may not precipitate at all.  The dissolution of volcanic lithoclasts may also release a high rate of Al, resulting in abundant formation of Al-rich clinoptilolite.  If both sources interact, a compositional variation may occur with time.  The compositional...

  1. Relationship between structure and catalytic performance of dealuminated Y zeolites

    Dealuminated Y zeolites which have been prepared by hydrothermal and chemical treatments show differences in catalytic performance when tested fresh; however, these differences disappear after the zeolites have been steamed. The catalytic behavior of fresh and steamed zeolites is directly related to zeolite structural and chemical characteristics. Such characteristics determine the strength and density of acid sites for catalytic cracking. Dealuminated zeolites were characterized using x-ray diffraction, porosimetry, solid-state NMR and elemental analysis. Hexadecane cracking was used as a probe reaction to determine catalytic properties. Cracking activity was found to be proportional to total aluminum content in the zeolite. Product selectivity was dependent on unit cell size, presence of extra framework alumina and spatial distribution of active sites. The results from this study elucidate the role that zeolite structure plays in determining catalytic performance

  2. Ammonium removal by modified zeolite from municipal wastewater

    ZHAO Ya-ping; GAO Ting-yao; JIANG Shang-ying; CAO Da-wen

    2004-01-01

    Ammonium removal by modified zeolite, H-form and Na-form zeolite, were examined by batch-type methods. The adsorption of ammonium on modified zeolite was exothermic process. The saturation adsorption capacity of ammonium on H-form and Na-form zeolite were 21.23 and 41.15 mg/g, respectively. After ten times adsorption- desorption-readsorption cycles the standard deviations of H-form and Na-form zeolite were 6.34% and 6.59%. The zeolite adsorption process has proved cost effective and practical in reducing ammonium by H-form and Na-form zeolite in municipal wastewater from concentration 27.68 mg/L to 2.80 mg/L and 5.91 mg/L.

  3. AKTIVASI ZEOLIT ALAM SEBAGAI ADSORBEN PADA ALAT PENGERING BERSUHU RENDAH

    Laeli Kurniasari

    2012-04-01

    Full Text Available ACTIVATION OF NATURAL ZEOLITE AS AN ADSORBENT FOR LOW TEMPERATURE DRYING SYSTEM. Drying is one process which is used in many industries, especially in food product. The process usually still has low energy efficiency and can make food deterioration because of the usage of high temperature. One alternative in drying technology is the use of zeolite as a water vapor adsorbent. This kind of drying method make it possible to operate in lower temperature, hence it will be suitable for heat sensitive product. Natural zeolit can be one promising adsorbent since it is spreadly abundant in Indonesia. Natural zeolite must be activated first before used, in order to get zeolite with high adsorption capacity. Activation process in natural zeolite will change the Si/Al ratio, polarity, and affinity of zeolite toward water vapor and also increase the porosity. Activation of natural zeolite can be done with two methods, chemical activation use NaOH and physical activation use heat. In the activation using NaOH, natural zeolite is immersed with NaOH solution 0.5-2N in 2 hour with temperature range 60-900C. The process is continued with the drying of zeolite in oven with 1100C for 4 hours. While in heat treatment, zeolit is heated into 200-5000C in furnace for 2-5 hours. SEM analysis is used to compare the change in zeolite morphology before and after each treatment, while to know the adsorption capacity of zeolite, the analyses were done in many temperature and relative humidity. Result gives the best condition in NaOH activation is NaOH 1N and temperature 700C, with water vapor loading is 0.171 gr/gr adsorbent. In heat treatment, the best condition is 3000C and 3 hours with loading 0.137 gr water vapor/gr adsorbent.  Pengeringan merupakan salah satu proses yang banyak digunakan pada produk pangan. Proses ini umumnya menyebabkan kerusakan pada bahan pangan, disamping masih rendahnya efisiensi energi. Salah satu alternatif pada proses pengeringan yaitu

  4. Adsorption Cooling System Using Metal-Impregnated Zeolite-4A

    Somsuk Trisupakitti

    2016-01-01

    Full Text Available The adsorption cooling systems have been developed to replace vapor compression due to their benefits of being environmentally friendly and energy saving. We prepared zeolite-4A and experimental cooling performance test of zeolite-water adsorption system. The adsorption cooling test-rig includes adsorber, evaporator, and condenser which perform in vacuum atmosphere. The maximum and minimum water adsorption capacity of different zeolites and COP were used to assess the performance of the adsorption cooling system. We found that loading zeolite-4A with higher levels of silver and copper increased COP. The Cu6%/zeolite-4A had the highest COP at 0.56 while COP of zeolite-4A alone was 0.38. Calculating the acceleration rate of zeolite-4A when adding 6% of copper would accelerate the COP at 46%.

  5. Identification of proteins involved in desiccation tolerance in the red seaweed Pyropia orbicularis (Rhodophyta, Bangiales).

    López-Cristoffanini, Camilo; Zapata, Javier; Gaillard, Fanny; Potin, Philippe; Correa, Juan A; Contreras-Porcia, Loretto

    2015-12-01

    Extreme reduction in cellular water content leads to desiccation, which, if persistent, affects the physiology of organisms, mainly through oxidative stress. Some organisms are highly tolerant to desiccation, including resurrection plants and certain intertidal seaweeds. One such species is Pyropia orbicularis, a rhodophycean that colonizes upper intertidal zones along the Chilean coast. Despite long, daily periods of air exposure due to tides, this alga is highly tolerant to desiccation. The present study examined the proteome of P. orbicularis by 2DE and LC-MS/MS analyses to determine the proteins associated with desiccation tolerance (DT). The results showed that, under natural conditions, there were significant changes in the protein profile during low tide as compared to naturally hydrated plants at high tide. These changes were mainly in newly appeared proteins spots such as chaperones, monodehydroascorbate reductase, and manganese superoxide dismutase, among others. Previously undescribed proteins under desiccation conditions included phycobiliproteins, glyoxalase I, and phosphomannomutase. These changes evidenced that several physiological responses involved in DT are activated during low tide, including decreased photosynthetic activity, increased antioxidant capacity, and the preservation of cell physiology by regulating water content, cell wall structure, and cell volume. Similar responses have been observed in resurrection plants and bryophytes exposed to desiccation. Therefore, the coordinated activation of different desiccation tolerance pathways in P. orbicularis could explain the successful biological performance of this seaweed in the upper intertidal rocky zones. PMID:26154304

  6. Developing a Standard Method of Test for Packaged, Solid-Desiccant Based Dehumidification Systems

    A draft Method of Test (MOT) has been proposed for packaged, air-to-air, desiccant-based dehumidifier systems that incorporate a thermally-regenerated desiccant material for dehumidification. This MOT is intended to function as the ''system'' testing and rating compliment to the desiccant ''component'' (desiccant wheels and/or cassettes) MOT (ASHRAE 1998) and rating standard (ARI 1998) already adopted by industry. This draft standard applies to ''packaged systems'' that: Use desiccants for dehumidification of conditioned air for buildings; Use heated air for regeneration of the desiccant material; Include fans for moving process and regeneration air; May include other system components for filtering, pre-cooling, post-cooling, or heating conditioned air; and May include other components for humidification of conditioned air. The proposed draft applies to four different system operating modes depending on whether outdoor or indoor air is used for process air and regeneration air streams . Only the ''ventilation'' mode which uses outdoor air for both process and regeneration inlets is evaluated in this paper. Performance of the dehumidification system is presented in terms that would be most familiar and useful to designers of building HVAC systems to facilitate integration of desiccant equipment with more conventional hardware. Parametric performance results from a modified, commercial desiccant dehumidifier undergoing laboratory testing were used as data input to evaluate the draft standard. Performance results calculated from this experimental input, results from an error-checking/heat-balance verification test built into the standard, and estimated comparisons between desiccant and similarly performing conventional dehumidification equipment are calculated and presented. Some variations in test procedures are suggested to aid in analytical assessment of individual component performance

  7. Activation of mechanisms of photoprotection by desiccation and by light: poikilohydric photoautotrophs.

    Heber, Ulrich; Azarkovich, Marina; Shuvalov, Vladimir

    2007-01-01

    Mechanisms of protection against photo-oxidation in selected desiccation-tolerant lichens and mosses have been investigated by measuring loss of light absorption during desiccation and chlorophyll fluorescence as indicators of photoprotection. Apparent absorption (1-T) spectra measured in the reflectance mode revealed stronger absorption of photosynthetic pigments in hydrated than in desiccated organisms, but differences were pronounced only in a cyanolichen, less so in some chlorolichens, and even less in mosses. Since the amplitude of chlorophyll fluorescence is a product of (1-T) light absorption by chlorophyll and quantum yield of fluorescence, and since fluorescence is inversely related to thermal energy dissipation, when chemical fluorescence quenching is negligible, fluorescence measurements were used to measure changes in energy dissipation. Preincubation of the hydrated organisms and desiccation in darkness excluded the contribution of mechanisms of energy dissipation to photoprotection which are dependent on the presence of zeaxanthin or on the light-dependent formation of a quencher of fluorescence within the reaction centre of photosystem II. Fast drying in darkness or in very low light was less effective in decreasing chlorophyll fluorescence than slow drying. Heating the desiccated organisms increased fluorescence by inactivating the mechanism responsible for fluorescence quenching. Glutaraldehyde inhibited fluorescence quenching during desiccation. Prolonged exposure of a desiccated moss or a desiccated lichen to very strong light caused more photo-induced damage after fast drying than after slow drying. The photo-oxidative nature of damage was emphasized by the observation that irreversible loss of fluorescence was larger in air than in a nitrogen atmosphere. It is concluded from these observations that desiccation-induced conformational changes of a chlorophyll protein complex result in the fast radiationless dissipation of absorbed light energy

  8. Natural zeolite reactivity towards ozone: The role of compensating cations

    Highlights: ► Chemical and thermal treatment enhances catalytic activity of natural zeolite. ► Modified natural zeolite exhibits high stability after thermal treatment. ► Reducing the compensating cation content leads to an increase on ozone abatement. ► Surface active atomic oxygen was detected using the DRIFT technique. ► The highest reactivity toward ozone was performed by NH4Z3 zeolite sample. - Abstract: Among indoor pollutants, ozone is recognised to pose a threat to human health. Recently, low cost natural zeolites have been applied as alternative materials for ozone abatement. In this work, the effect of compensating cation content of natural zeolite on ozone removal is studied. A Chilean natural zeolite is used here as starting material. The amount of compensating cations in the zeolite framework was modified by ion exchange using an ammonium sulphate solution (0.1 mol L−1). Characterisation of natural and modified zeolites were performed by X-ray powder diffraction (XRD), nitrogen adsorption at 77 K, elemental analysis, X-ray fluorescence (XRF), thermogravimetric analysis coupled with mass spectroscopy (TGA-MS), and temperature-programmed desorption of ammonia (NH3-TPD). Ozone adsorption and/or decomposition on natural and modified zeolites were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Results show that the zeolite compensating cation content affects ozone interaction with zeolite active sites. Ammonium ion-exchange treatments followed by thermal out-gassing at 823 K, reduces ozone diffusion resistance inside the zeolite framework, increasing ozone abatement on zeolite surface active sites. Weak and strong Lewis acid sites of zeolite surface are identified here as the main active sites responsible of ozone removal.

  9. Natural zeolite reactivity towards ozone: The role of compensating cations

    Valdes, Hector, E-mail: hvaldes@ucsc.cl [Laboratorio de Tecnologias Limpias (F. Ingenieria), Universidad Catolica de la Santisima Concepcion, Alonso de Ribera 2850, Concepcion (Chile); Alejandro, Serguei; Zaror, Claudio A. [Departamento de Ingenieria Quimica (F. Ingenieria), Universidad de Concepcion, Concepcion (Chile)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Chemical and thermal treatment enhances catalytic activity of natural zeolite. Black-Right-Pointing-Pointer Modified natural zeolite exhibits high stability after thermal treatment. Black-Right-Pointing-Pointer Reducing the compensating cation content leads to an increase on ozone abatement. Black-Right-Pointing-Pointer Surface active atomic oxygen was detected using the DRIFT technique. Black-Right-Pointing-Pointer The highest reactivity toward ozone was performed by NH4Z3 zeolite sample. - Abstract: Among indoor pollutants, ozone is recognised to pose a threat to human health. Recently, low cost natural zeolites have been applied as alternative materials for ozone abatement. In this work, the effect of compensating cation content of natural zeolite on ozone removal is studied. A Chilean natural zeolite is used here as starting material. The amount of compensating cations in the zeolite framework was modified by ion exchange using an ammonium sulphate solution (0.1 mol L{sup -1}). Characterisation of natural and modified zeolites were performed by X-ray powder diffraction (XRD), nitrogen adsorption at 77 K, elemental analysis, X-ray fluorescence (XRF), thermogravimetric analysis coupled with mass spectroscopy (TGA-MS), and temperature-programmed desorption of ammonia (NH{sub 3}-TPD). Ozone adsorption and/or decomposition on natural and modified zeolites were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Results show that the zeolite compensating cation content affects ozone interaction with zeolite active sites. Ammonium ion-exchange treatments followed by thermal out-gassing at 823 K, reduces ozone diffusion resistance inside the zeolite framework, increasing ozone abatement on zeolite surface active sites. Weak and strong Lewis acid sites of zeolite surface are identified here as the main active sites responsible of ozone removal.

  10. Desiccation effects on germination and vigor of King palm seeds

    Martins Cibele C.

    2003-01-01

    Full Text Available The desiccation tolerance of Archontophoenix alexandrae (Wendl. & Drude seeds was determined and the most sensitive vigor test for assessing seed deterioration of this species was identified. Mature fruits were harvested in the palm collection of the Instituto Agronomico in Campinas, Brazil. Depulped fruits were transported in impermeable packages to the Faculdade de Agronomia in Botucatu, where the seeds were dried. As the seed moisture decreased, germination, seedling length, electrical conductivity and moisture were measured. The seeds of A. alexandrae are recalcitrant, with high germination percentage (over 67% when undried (47% seed moisture. Lowering seed moisture below 31.5% reduced the germination rate significantly (<52.5%. Total germination failure was observed when seed moisture reached 15.1%. The electrical conductivity was the most sensitive vigor test to identify seed deterioration.

  11. Laboratory and Modeling Evaluations in Support of Field Testing for Desiccation at the Hanford Site

    Truex, Michael J.; Oostrom, Martinus; Freedman, Vicky L.; Strickland, Christopher E.; Wietsma, Thomas W.; Tartakovsky, Guzel D.; Ward, Anderson L.

    2011-02-23

    The Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau includes testing of the desiccation technology as a potential technology to be used in conjunction with surface infiltration control to limit the flux of technetium and other contaminants in the vadose zone to the groundwater. Laboratory and modeling efforts were conducted to investigate technical uncertainties related to the desiccation process and its impact on contaminant transport. This information is intended to support planning, operation, and interpretation of a field test for desiccation in the Hanford Central Plateau.

  12. Applicability of a desiccant dew-point cooling system independent of external water sources

    Bellemo, Lorenzo; Elmegaard, Brian; Kærn, Martin;

    2015-01-01

    The applicability of a technical solution for making desiccant cooling systems independent of external water sources is investigated. Water is produced by condensing the desorbed water vapour in a closed regeneration circuit. Desorbed water recovery is applied to a desiccant dew-point cooling...... system, which includes a desiccant wheel and a dew point cooler. The system is simulated during the summer period in the Mediterranean climate of Rome and it results completely independent of external water sources. The seasonal thermal COP drops 8% in comparison to the open regeneration circuit solution...

  13. Solar space heating and cooling by selective use of the components of a desiccant cooling system

    Abbud, Ihsan Aladdin

    The economic advantages of by-passing various components of a desiccant cooling system under conditions not requiring their use are estimated by evaluating the annual costs of heating and cooling a commercial building in three representative U.S. cities. Life-cycle costs of systems employing solar heat for space heating and desiccant regeneration are compared with those using electric heat. The costs of purchasing and operating heating and desiccant cooling systems, with and without solar heat supply, are compared with those employing conventional heating and vapor compression cooling. The conditions under which commercial buildings can be cooled with desiccant systems at costs competitive with conventional systems are identified. A commercially available vapor compression air conditioner is used as a standard of comparison for energy consumption and room comfort. Heating and cooling requirements of the building are determined by use of the BLAST computer model in a simulation of long term system operation. Performance of the desiccant cooling system and life cycle savings obtained by its use are determined by simulation employing the TRNSYS computer model. TRNSYS compatible subroutines are developed to simulate operation of the desiccant equipment, the building, and the controllers that operate and monitor the system components. The results are presented in tabular and graphical form. This study shows that in the widely different climates represented in Los Angeles, New York, and Miami, by-passing various components in the desiccant cooling system when they are not needed is economically advantageous. Operation cost of the complete system decreased by 47.3% in Los Angeles, by 30.9% in New York City, and by 23.9% in Miami by not operating the desiccant wheel and other elements. The ventilation desiccant cooling system has major economic advantage over conventional systems under conditions of moderate humidity, as in Los Angeles and New York City. In Miami, however

  14. Parametric analysis of variables that affect the performance of a desiccant dehumidification system

    Vineyard, E.A.; Sand, J.R.; Durfee, D.J.

    2000-07-01

    Desiccant dehumidification systems, which are used to reduce the moisture (latent load) of the conditioned air in buildings, are typically specified on the basis of grain depression (pounds of water removed per hour) for a given volumetric flow rate of air at a specified dry-bulb or wet-bulb temperature. While grain depression gives some indication of the performance of the system, it does not adequately describe the efficiency of the moisture removal process. Several operating parameters, such as desiccant wheel speed, regeneration temperature, volumetric air flow rate, wheel thickness, sector angle, and desiccant loading, affect the ability of the desiccant dehumidification system to remove moisture. There are so many design parameters that influence the operation of a desiccant system that it is difficult to quantify the impact from the interactions on system performance. The purpose of this study is to investigate the impact of varying some of these operating parameters on the performance of a desiccant dehumidification system and to report the results using more quantitative measures, such as latent capacity and latent coefficient of performance (COP), that better describe the efficiency of the moisture removal process. The results will be used to improve the understanding of the operation of desiccant systems and to optimize their performance by changing certain operating parameters or improving components. Two desiccant loadings were tested: one at normal production level and the other with 25% more desiccant applied to the wheel. For both desiccant loadings, the latent capacity and COP increased as desiccant wheel speed increased. As expected, latent capacity improved significantly as air flow rates increased. It is noted, however, that the efficiency (latent COP) was quite sensitive to air flow rate and showed a maximum at a particular flow rate that best matched the other operating/design conditions of the system. Finally, higher regeneration temperatures

  15. The precipitation response to the desiccation of Lake Chad

    Lauwaet D.; VanWeverberg K.; vanLipzig, N. P. M., Weverberg, K. V., Ridderb, K. D., and Goyens, C.

    2012-04-01

    Located in the semi-arid African Sahel, Lake Chad has shrunk from a surface area of 25000 km2 in 1960 to about 1350 km2 due to a series of droughts and anthropogenic influences. The disappearance of such a large open-water body can be expected to have a noticeable effect on the meteorology in the surroundings of the lake. The impact could extend even further to the west as westward propagating convective systems pass Lake Chad in the rainfall season. This study examines the sensitivity of the regional hydrology and convective processes to the desiccation of the lake using a regional atmospheric model. Three Lake Chad scenarios are applied reflecting the situation in 1960, the current situation and a potential future scenario in which the lake and the surrounding wetlands have disappeared. The model simulations span the months July-September in 2006, which includes the rainfall season in the Lake Chad area. Total precipitation amounts and the components of the hydrological cycle are found to be hardly affected by the existence of the lake. A filled Lake Chad does, however, increase the precipitation at the east side of the lake. The model results indicate that the boundary layer moisture and temperature are significantly altered downwind of the lake. By investigating a mesoscale convective system (MCS) case, this is found to affect the development and progress of the system. At first, the MCS is intensified by the more unstable boundary layer air but the persistence of the system is altered as the cold pool propagation becomes less effective. The proposed mechanism is able to explain the differences in the rainfall patterns nearby Lake Chad between the scenarios. This highlights the local sensitivity to the desiccation of Lake Chad whereas the large-scale atmospheric processes are not affected.

  16. The signature of seeds in resurrection plants: a molecular and physiological comparison of desiccation tolerance in seeds and vegetative tissues.

    Illing, Nicola; Denby, Katherine J; Collett, Helen; Shen, Arthur; Farrant, Jill M

    2005-11-01

    Desiccation-tolerance in vegetative tissues of angiosperms has a polyphyletic origin and could be due to 1) appropriation of the seed-specific program of gene expression that protects orthodox seeds against desiccation, and/or 2) a sustainable version of the abiotic stress response. We tested these hypotheses by comparing molecular and physiological data from the development of orthodox seeds, the response of desiccation-sensitive plants to abiotic stress, and the response of desiccation-tolerant plants to extreme water loss. Analysis of publicly-available gene expression data of 35 LEA proteins and 68 anti-oxidant enzymes in the desiccation-sensitive Arabidopsis thaliana identified 13 LEAs and 4 anti-oxidants exclusively expressed in seeds. Two (a LEA6 and 1-cys-peroxiredoxin) are not expressed in vegetative tissues in A. thaliana, but have orthologues that are specifically activated in desiccating leaves of Xerophyta humilis. A comparison of antioxidant enzyme activity in two desiccation-sensitive species of Eragrostis with the desiccation-tolerant E. nindensis showed equivalent responses upon initial dehydration, but activity was retained at low water content in E. nindensis only. We propose that these antioxidants are housekeeping enzymes and that they are protected from damage in the desiccation-tolerant species. Sucrose is considered an important protectant against desiccation in orthodox seeds, and we show that sucrose accumulates in drying leaves of E. nindensis, but not in the desiccation-sensitive Eragrostis species. The activation of "seed-specific" desiccation protection mechanisms (sucrose accumulation and expression of LEA6 and 1-cys-peroxiredoxin genes) in the vegetative tissues of desiccation-tolerant plants points towards acquisition of desiccation tolerance from seeds. PMID:21676829

  17. Dehydrogenation of light alkanes over zeolites

    Narbeshuber, Thomas F.; Brait, Axel; Seshan, Kulathuiyer; Lercher, Johannes A.

    1997-01-01

    The conversion of light paraffins to olefins and the secondary reactions of the unsaturated compounds were investigated on H-ZSM5 and H-Y zeolites between 733 and 823 K. Steady state- and transient response-isotope tracing studies revealed that two mechanisms of dehydrogenation are operative. The ma

  18. Two-dimensional zeolites: dream or reality?

    Roth, W. J.; Čejka, Jiří

    2011-01-01

    Roč. 1, č. 1 (2011), s. 43-53. ISSN 2044-4753 R&D Projects: GA AV ČR KAN100400701; GA ČR GA104/09/0561; GA ČR GA203/08/0604 Institutional research plan: CEZ:AV0Z40400503 Keywords : catalysis * physical chemistry * zeolites Subject RIV: CF - Physical ; Theoretical Chemistry

  19. Synthesis of ‘unfeasible’ zeolites

    Mazur, Michal; Wheatley, P. S.; Navarro, M.; Roth, Wieslaw Jerzy; Položij, M.; Mayoral, A. M.; Eliášová, Pavla; Nachtigall, P.; Čejka, Jiří; Morris, R. E.

    2016-01-01

    Roč. 8 (2016), s. 58-62. ISSN 1755-4330 R&D Projects: GA ČR GBP106/12/G015 EU Projects: European Commission(XE) 604307; European Commission(XE) 312483 Institutional support: RVO:61388955 Keywords : synthesis * zeolites * physical chemistry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 25.325, year: 2014

  20. UTL zeolite and the way beyond

    Shvets, O. V.; Nachtigall, P.; Roth, Wieslaw Jerzy; Čejka, Jiří

    2013-01-01

    Roč. 182, DEC 2013 (2013), s. 229-238. ISSN 1387-1811 R&D Projects: GA ČR GBP106/12/G015 Institutional support: RVO:61388955 Keywords : zeolite UTL * synthesis * hydrolysis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.209, year: 2013

  1. Chemical interactions in multimetal/zeolite catalysts

    Sachtler, W.M.H.

    1992-02-07

    Mechanistic explanations have been found for the migration of atoms and ions through the zeolite channels leading to specific distribution of ions and the metal clusters. In this report, we summarize the state of understanding attained on a number of topics in the area of mono- and multimetal/zeolite systems, to which our recent research has made significant contributions. The following topics are discussed: (1) Formation of isolated metal atoms in sodalite cages; (2) differences of metal/zeolite systems prepared by ion reduction in channels or via isolated atoms; (3) rejuvenation of Pd/NaY and Pd/HY catalysts by oxidative redispersion of the metal; (4) formation of mono- or bimetal particles in zeolites by programmed reductive decomposition of volatile metal complexes; (5) cation-cation interaction as a cause of enhanced reducibility; (6) formation of palladium carbonyl clusters in supercages; (7) enhanced catalytic activity of metal particle-proton complexes for hydrocarbon conversion reactions; (8) stereoselectivity of catalytic reactions due to geometric constraints of particles in cages.

  2. Thermal Treatment of Salt-Loaded Zeolite

    Kim, Jeong Guk; Lee, Jae Hee; Kim, Eung Ho; Kim, Joon Hyung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    For disposal in a geological repository, the waste salts such as molten LiCl salt from an oxide fuel reduction process and molten LiCl-KCl eutectic salt from an electro refining process must meet the acceptance criteria. For a waste form containing chloride salt, two of the more important criteria are known to be leach resistance and waste form durability. US Argonne National Laboratory (ANL) developed a ceramic waste form (CWF) fabrication technology for LiCl-KCl eutectic salt from ANL Experimental Breeder Reactor-II (EBR-II). The CWF, which was made by first occluding salt in zeolite A at 730 K and then encapsulating the zeolite in a borosilicate binder glass by a hot isostatic press (HIP) method or pressureless consolidation (PC) method, has the phase composition of about 70% sodalite, 25% binder glass, and a 5% total of inclusion phases (halite, nepheline, and various oxides and silicates). US ANL showed that the chemical durability and leach resistance of the CWF were higher than those of glass waste form for high level waste from aqueous process, by a 7-day product consistency test (PCT). However, the waste form fabrication process for waste LiCl salt is somewhat different in mixing temperature from that for LiCl-KCl eutectic salt at US ANL. The former is mixed at 920 K, whereas, the later mixing is accomplished at 730 K. Such difference in mixing temperature results in the different major phase of SLZ, that is, zeolite Li-A from LiCl salt, and unchanged zeolite A from LiCl-KCl eutectic salt. This unchanged phase of zeolite A during an immobilization step is transformed to sodalite, which was known to be very high leach-resistant, in the step of encapsulating with borosilicate glass. In this work, we tried to investigate the transformation of major phase of SLZ, from zeolite Li-A to Na{sub 8}Cl{sub 2}-Sod using zeolite only sodalite, by a quantitative analysis with a software for X-ray diffractometer during the thermal treatment under 1170 K.

  3. Desiccant-Based Combined Systems: Integrated Active Desiccant Rooftop Hybrid System Development and Testing Final Report- Phase 4

    Fischer, J

    2005-05-06

    This report summarizes the results of a research and development (R&D) program to design and optimize an active desiccant-vapor compression hybrid rooftop system. The primary objective was to combine the strengths of both technologies to produce a compact, high-performing, energy-efficient system that could accommodate any percentage of outdoor air and deliver essentially any required combination of temperature and humidity, or sensible heat ratio (SHR). In doing so, such a product would address the significant challenges imposed on the performance capabilities of conventional packaged rooftop equipment by standards 62 and 90.1 of the American Society of Heating, Refrigerating and Air-Conditioning Engineers. The body of work completed as part of this program built upon previous R&D efforts supported by the U.S. Department of Energy and summarized by the Phase 3b report ''Active Desiccant Dehumidification Module Integration with Rooftop Packaged HVAC Units'' (Fischer and Sand 2002), in addition to Fischer, Hallstrom, and Sand 2000; Fischer 2000; and Fischer and Sand 2004. All initial design objectives established for this development program were successfully achieved. The performance flexibility desired was accomplished by a down-sized active desiccant wheel that processes only a portion of the supply airflow, which is pre-conditioned by a novel vapor compression cycle. Variable-speed compressors are used to deliver the capacity control required by a system handling a high percentage of outdoor air. An integrated direct digital control system allows for control capabilities not generally offered by conventional packaged rooftop systems. A 3000-cfm prototype system was constructed and tested in the SEMCO engineering test laboratory in Columbia, MO, and was found to operate in an energy-efficient fashion relative to more conventional systems. Most important, the system offered the capability to independently control the supply air temperature and

  4. Zeolite Nanoparticles for Selective Sorption of Plasma Proteins

    Rahimi, M.; Ng, E.-P.; Bakhtiari, K.; Vinciguerra, M.; Ahmad, H. Ali; Awala, H.; Mintova, S.; Daghighi, M.; Bakhshandeh Rostami, F.; de Vries, M.; Motazacker, M. M.; Peppelenbosch, M. P.; Mahmoudi, M.; Rezaee, F.

    2015-11-01

    The affinity of zeolite nanoparticles (diameter of 8-12 nm) possessing high surface area and high pore volume towards human plasma proteins has been investigated. The protein composition (corona) of zeolite nanoparticles has been shown to be more dependent on the plasma protein concentrations and the type of zeolites than zeolite nanoparticles concentration. The number of proteins present in the corona of zeolite nanoparticles at 100% plasma (in vivo state) is less than with 10% plasma exposure. This could be due to a competition between the proteins to occupy the corona of the zeolite nanoparticles. Moreover, a high selective adsorption for apolipoprotein C-III (APOC-III) and fibrinogen on the zeolite nanoparticles at high plasma concentration (100%) was observed. While the zeolite nanoparticles exposed to low plasma concentration (10%) exhibited a high selective adsorption for immunoglobulin gamma (i.e. IGHG1, IGHG2 and IGHG4) proteins. The zeolite nanoparticles can potentially be used for selectively capture of APOC-III in order to reduce the activation of lipoprotein lipase inhibition during hypertriglyceridemia treatment. The zeolite nanoparticles can be adapted to hemophilic patients (hemophilia A (F-VIII deficient) and hemophilia B (F-IX deficient)) with a risk of bleeding, and thus might be potentially used in combination with the existing therapy.

  5. Ethylenediamine effect on No2+ uptake by zeolite Y

    Co2+ ion exchange, at room temperature, form aqueous cobalt-sodium chloride solutions with NaY zeolite has been studied. The effect of contact time on the shape of the sorption curves of Co2+ using zeolite Y dehydrated at 600 deg C is similar to the one found in our previous work with a zeolite dehydrated at 150 deg C. A fast sorption uptake is observed in which 1.8 meq of Na= ions/g zeolite are replaced by cobalt ions followed by a desorption process where the uptake decreases to 1.2 meq/g zeolite. The Co2+ sorption using zeolite Y dehydrated at 600 deg C is increased when ethylenediamine solution is passed through the zeolite. The Co2+ sorption uptake, initially 2.0 meq/g, increases to 2.8 meq/g, of zeolite. This behavior is explained by the location and coordination of cobalt in zeolite Y sites. It is suggested that the highest uptake process is due to the blocking of zeolite sites by a Co complex compound. (author) 17 refs.; 4 figs

  6. Conversion of Ethanol to Hydrocarbons on Hierarchical HZSM-5 Zeolites

    Ramasamy, Karthikeyan K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Washington State Univ., Pullman, WA (United States); Zhang, He [Washington State Univ., Pullman, WA (United States); Sun, Junming [Washington State Univ., Pullman, WA (United States); Wang, Yong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Washington State Univ., Pullman, WA (United States)

    2014-02-22

    This study reports synthesis, characterization, and catalytic activity of the nano-size hierarchical HZSM-5 zeolite with high mesoporosity produced via a solvent evaporation procedure. Further, this study compares hierarchical zeolites with conventional HZSM-5 zeolite with similar Si/Al ratios for the ethanol-to-hydrocarbon conversion process. The catalytic performance of the hierarchical and conventional zeolites was evaluated using a fixed-bed reactor at 360 °C, 300 psig, and a weight hourly space velocity of 7.9 h-1. For the low Si/Al ratio zeolite (~40), the catalytic life-time for the hierarchical HZSM-5 was approximately 2 times greater than the conventional HZSM-5 despite its coking amount deposited 1.6 times higher than conventional HZSM-5. For the high Si/Al ratio zeolite (~140), the catalytic life-time for the hierarchical zeolite was approximately 5 times greater than the conventional zeolite and the amount of coking deposited was 2.1 times higher. Correlation was observed between catalyst life time, porosity, and the crystal size of the zeolite. The nano-size hierarchical HZSM-5 zeolites containing mesoporosity demonstrated improved catalyst life-time compared to the conventional catalyst due to faster removal of products, shorter diffusion path length, and the migration of the coke deposits to the external surface from the pore structure.

  7. Solidification of cesium and strontium with zeolites

    The thermal change of zeolites and the elution property of nuclides from calcined matters were experimentally studied in order to produce the solid of low leaching property. The method includes the ion exchange of nuclides in radioactive waste solution and the calcination at a high temperature. Differential thermal analysis, thermal gravity analysis and X-ray diffraction method were employed to see the occurrence of recrystallization of Na type, Cs type, Sr type of the zeolites at a high temperature. Samples were synthetic zeolites including A type, X type, Y type and mordenite (zolen, hereafter referred to as S.M.), and natural mordenite. The ion exchanging capacity for Cs and Sr was measured, using the above zeolites. The adsorption was measured by the column method, using Cs-135 and Sr-85 as tracers. The leaching test of the zeolites calcined at 8000C, 9000C, 1,0000C and 1,1000C for 3 hours was performed by the atomic light absorption method. The daily change of the leaching ratio was observed according to the method of IAEA. The experiment revealed that CsA and CsX recrystallized at 1,0000C or above, whereas mordenite did not recrystallize even at the calcining temperature of 1,1000C, and it was leachable. The calcined CsY showed much lower leaching value than the other methods such as cement solidification and glass solidification. The leaching into sea water was five times as much as that into distilled water. (Iwakiri, K.)

  8. Zeolites - a high resolution electron microscopy study

    High resolution transmission electron microscopy (HRTEM) has been used to investigate a number of zeolites (EMT, FAU, LTL, MFI and MOR) and a member of the mesoporous M41S family. The electron optical artefact, manifested as a dark spot in the projected centre of the large zeolite channels, caused by insufficient transfer of certain reflections in the objective lens has been explained. The artefact severely hinders observation of materials confined in the zeolite channels and cavities. It is shown how to circumvent the artefact problem and how to image confined materials in spite of disturbance caused by the artefact. Image processing by means of a Wiener filter has been applied for removal of the artefact. The detailed surface structure of FAU has been investigated. Comparison of experimental micrographs with images simulated using different surface models indicates that the surface can be terminated in different ways depending on synthesis methods. The dealuminated form of FAU (USY) is covered by an amorphous region. Platinum incorporated in FAU has a preponderance to aggregate in the (111) twin planes, probably due to a local difference in cage structure with more spacious cages. It is shown that platinum is intra-zeolitic as opposed to being located on the external surface of the zeolite crystal. This could be deduced from tomography of ultra-thin sections among observations. HRTEM studies of the mesoporous MCM-41 show that the pores have a hexagonal shape and also supports the mechanistic model proposed which involves a cooperative formation of a mesophase including the silicate species as well as the surfactant. 66 refs, 24 figs

  9. Parametric study of an energy efficient air conditioning system using liquid desiccant

    Kinsara, Adnan A.; Al-Rabghi, Omar M. [King Abdulaziz Univ., Mechanical Engineering Dept., Jeddah (Saudi Arabia); Elsayed, Moustafa M. [Kuwait Univ., Mechanical Engineering Dept., Safat (Kuwait)

    1998-05-01

    Liquid desiccant can be used effectively to reduce energy consumed in air conditioning (AC). Unlike conventional AC, the latent part of the cooling load is overcome using liquid desiccant. In a previous article, an energy efficient system utilizing CaCl{sub 2} as liquid desiccant was proposed. This study is an extension of that work. The effect of key variables on the performance of the proposed system is undertaken. The inlet temperature of the liquid desiccant to the dehumidifier, space sensible heat ratio, and heat exchanger effectivenesses are the variables studied. Variations of these parameters and their effects on system performance are presented. Good system performance and energy saving could be achieved if proper values of these variables are selected. (Author)

  10. Experimental and Numerical Investigations of Soil Desiccation for Vadose Zone Remediation: Report for Fiscal Year 2007

    Ward, Andy L.; Oostrom, Mart; Bacon, Diana H.

    2008-02-04

    Apart from source excavation, the options available for the remediation of vadose zone metal and radionuclide contaminants beyond the practical excavation depth (0 to 15 m) are quite limited. Of the available technologies, very few are applicable to the deep vadose zone with the top-ranked candidate being soil desiccation. An expert panel review of the work on infiltration control and supplemental technologies identified a number of knowledge gaps that would need to be overcome before soil desiccation could be deployed. The report documents some of the research conducted in the last year to fill these knowledge gaps. This work included 1) performing intermediate-scale laboratory flow cell experiments to demonstrate the desiccation process, 2) implementing a scalable version of Subsurface Transport Over Multiple Phases–Water-Air-Energy (STOMP-WAE), and 3) performing numerical experiments to identify the factors controlling the performance of a desiccation system.

  11. Responses of the Lichen Photobiont Trebouxia erici to Desiccation and Rehydration (II) Proteomics

    Lichen desiccation tolerance is associated with cellular protection mechanisms directed against the oxidative stress produced during dehydration and/or rehydration, however, these mechanisms are not well understood. In other poikilohydric organisms, changes in the synthesis of proteins have bee...

  12. Experimental analysis on performance of high temperature heat pump and desiccant wheel system

    Sheng, Ying; Zhang, Yufeng; Deng, Na;

    2013-01-01

    In order to solve the problem of high energy consumption for regeneration of desiccant wheel in the rotary desiccant system, high temperature heat pump and desiccant wheel (HTHP&DW) system and corresponding air conditioning unit is built and tested in the extensive thermal hygrometric environment....... When the mixture refrigerant BY-3 is involved in the air source heat pump, the supply air temperatures are in the range as expected except that when in the extreme hot environment (above 36°C), dehumidification capability are satisfied and the regeneration temperatures can satisfy the regeneration...... requirement of desiccant without additional heat. It is also found that outdoor air temperature, humidity ratio and regeneration air flow rate have great impact on the performance of heat pump based on the coefficient of performance (COP) evaluated. COP is not quite high, as the maximum value is 2.26 for heat...

  13. Desiccation of adhering and biofilm Listeria monocytogenes on stainless steel: Survival and transfer to salmon products

    Hansen, Lisbeth Truelstrup; Vogel, Birte Fonnesbech

    2011-01-01

    The foodborne bacterial pathogen, Listeria monocytogenes, commonly contaminates foods during processing, where the microorganisms are potentially subjected to low relative humidity (RH) conditions for extended periods of time. The objective of this study was to examine survival during desiccation...

  14. A packed bed dehumidifier/regenerator for solar air conditioning with liquid desiccants

    Factor, H. M.; Grossman, G.

    1980-01-01

    A packed column air-liquid contactor has been studied in application to air dehumidification and regeneration in solar air conditioning with liquid desiccants. A theoretical model has been developed to predict the performance of the device under various operating conditions. Computer simulations based on the model are presented which indicate the practical range of air to liquid flux ratios and associated changes in air humidity and desiccant concentration. An experimental apparatus has been constructed and experiments performed with Monoethylene Glycol (MEG) and Lithium Bromide as desiccants. MEG experiments have yielded inaccurate results and have pointed out some practical problems associated with the use of Glycols. LiBr experiments show very good agreement with the theoretical model. Preheating of the air is shown to greatly enhance desiccant regeneration. The packed column yields good results as a dehumidifier/regenerator, provided pressure drop can be reduced with the use of suitable packing.

  15. The glyoxylate shunt is essential for desiccation tolerance in C. elegans and budding yeast.

    Erkut, Cihan; Gade, Vamshidhar R; Laxman, Sunil; Kurzchalia, Teymuras V

    2016-01-01

    Many organisms, including species from all kingdoms of life, can survive desiccation by entering a state with no detectable metabolism. To survive, C. elegans dauer larvae and stationary phase S. cerevisiae require elevated amounts of the disaccharide trehalose. We found that dauer larvae and stationary phase yeast switched into a gluconeogenic mode in which metabolism was reoriented toward production of sugars from non-carbohydrate sources. This mode depended on full activity of the glyoxylate shunt (GS), which enables synthesis of trehalose from acetate. The GS was especially critical during preparation of worms for harsh desiccation (preconditioning) and during the entry of yeast into stationary phase. Loss of the GS dramatically decreased desiccation tolerance in both organisms. Our results reveal a novel physiological role for the GS and elucidate a conserved metabolic rewiring that confers desiccation tolerance on organisms as diverse as worm and yeast. PMID:27090086

  16. Inorganic fluoride uptake as a measure of relative compatibility of molecular sieve desiccants with fluorocarbon refrigerants

    Cohen, A.P.; Blackwell, C.S. [UOP, Tarrytown, NY (United States)

    1995-12-31

    The fluoride content of molecular sieve desiccants after exposure to R-32 in compatibility tests indicates the extent of the reaction of refrigerant with desiccant. The objective is to determine this fluoride content in a way that reports fluorine that has reacted with the desiccant, not fluorine that is present as adsorbed refrigerant. A conditioning procedure is described to remove adsorbed refrigerant by displacement with water vapor. The efficacy of this procedure is substantiated by {sup 19}F NMR spectroscopy. The conditioned desiccant undergoes pyrohydrolysis at a high temperature (975 C, 1787 F) to remove reacted fluorine as HF. Fluoride is determined in the resulting condensate using an ion-selective electrode. The ability of this technique to report accurate fluoride values is confirmed with standard reference materials.

  17. Low-Flow Liquid Desiccant Air Conditioning: General Guidance and Site Considerations

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.

    2014-09-01

    Dehumidification or latent cooling in buildings is an area of growing interest that has been identified as needing more research and improved technologies for higher performance. Heating, ventilating, and air-conditioning (HVAC) systems typically expend excessive energy by using overcool-and-reheat strategies to dehumidify buildings. These systems first overcool ventilation air to remove moisture and then reheat the air to meet comfort requirements. Another common strategy incorporates solid desiccant rotors that remove moisture from the air more efficiently; however, these systems increase fan energy consumption because of the high airside pressure drop of solid desiccant rotors and can add heat of absorption to the ventilation air. Alternatively, liquid desiccant air-conditioning (LDAC) technology provides an innovative dehumidification solution that: (1) eliminates the need for overcooling and reheating from traditional cooling systems; and (2) avoids the increased fan energy and air heating from solid desiccant rotor systems.

  18. Theoretical study of the effect of liquid desiccant mass flow rate on the performance of a cross flow parallel-plate liquid desiccant-air dehumidifier

    Mohammad, Abdulrahman Th.; Mat, Sohif Bin; Sulaiman, M. Y.; Sopian, K.; Al-abidi, Abduljalil A.

    2013-11-01

    A computer simulation using MATLAB is investigated to predict the distribution of air stream parameters (humidity ratio and temperature) as well as desiccant parameters (temperature and concentration) inside the parallel plate absorber. The present absorber consists of fourteen parallel plates with a surface area per unit volume ratio of 80 m2/m3. Calcium chloride as a liquid desiccant flows through the top of the plates to the bottom while the air flows through the gap between the plates making it a cross flow configuration. The model results show the effect of desiccant mass flow rate on the performance of the dehumidifier (moisture removal and dehumidifier effectiveness). Performance comparisons between present cross-flow dehumidifier and another experimental cross-flow dehumidifier in the literature are carried out. The simulation is expected to help in optimizing of a cross flow dehumidifier.

  19. Present status of Kr fixation research with zeolites and evaluation method of Kr sealing and leach behavior

    For the management of 85Kr from fuel reprocessing, the combination of the liquefaction-evaporation process for its recovery and the high-pressure cylinder method for its containment is presently practical. The disposal of 85Kr by means of the cylinder alone presents a problem in the case of sea dumping due to the possible leakage. In this connection, there is the need to suppress krypton diffusion by sealing it in zeolite to improve the safety of the means. As for the 85Kr sealing in zeolite, the utilization of sodalite by Benedict et al. of Exxon and of molecular sieve 5A by Penzhorn et al. of Karlsruhe are comparatively reviewed. On the evaluation method of the Kr sealing in zeolite and leach behavior, the aspects of equilibrium adsorption quantity and the diffusion mechanism in crystals are first discussed. The results are then compared with the experimental results using molecular sieve 3A. (J.P.N.)

  20. Desiccation cracks formation in clay-barrier for nuclear waste disposal

    Hubert, Julien; Collin, Frédéric; PLOUGONVEN, Erwan; Léonard, Angélique; Prime, Noémie

    2016-01-01

    In geotechnical engineering, the desiccation cracking of soil is commonly observed. This phenomenon is detrimental to the behavior of earth material and earth structure. Desiccation cracks can lead to the overall failure of many geotechnical structures: • They can affect the slope stability of earth dams or embankments; • They can initiate internal erosion of embankments due to water flow through the cracks; • They can compromise the efficiency of soil barriers such as landfill line...

  1. Black Sea desiccation during the Messinian Salinity Crisis: Fact or fiction?

    Grothe, A.; Sangiorgi, F.; Mulders, Y.; Vasiliev, I.; Brinkhuis, H.; Stoica, M.; Krijgsman, W.; Reichart, G.-J.

    2014-01-01

    The late Miocene Messinian Salinity Crisis (MSC) was an extraordinary geologic event inthe Mediterranean Basin marked by massive salt accumulation and presumably basin desiccationas a consequence of the reduced water exchange with the Atlantic Ocean. The discoveryof a desiccation deposit in the Black Sea, the so-called Pebbly Breccia unit, was used to claimthat the Black Sea also became desiccated during the MSC. Erosional features interpretedfrom seismic profi les of the Black Sea margin, co...

  2. Investigation on an Open Cycle Water Chiller based on Desiccant Dehumidification

    Pettersen, Sindre

    2012-01-01

    In this thesis, a novel open cycle desiccant dehumidification system is experimentally studied. The system is installed and operated at Shanghai Jiao Tong University (SJTU) as part of the Green Energy Laboratory (GEL) initiative. The system uses two-stage desiccant dehumidification as well as regenerative evaporative cooling for chilled water production. The purpose of the thesis is to evaluate the system performance during different ambient and operational conditions. The investigated system...

  3. Design and development of desiccant seed dryer with airflow inversion and recirculation

    Gill, R. S.; Singh, Sukhmeet; Singh, Parm Pal

    2012-01-01

    A desiccant seed dryer has been developed to dry seed in deep bed at safe temperatures for good shelf life and germination. The dryer consists of two chambers viz., air conditioning control unit and seed drying chamber. It operates in seed drying mode and desiccant regeneration mode. It has provision for recirculation of the drying air to minimise the moisture removal from drying air. Also, it has provision of airflow inversion through deep seed bed for uniform drying. Moisture removal from d...

  4. Electron paramagnetic resonance study of amphiphiles partitioning behavior in desiccation-tolerant moss during dehydration

    2007-01-01

    Desiccation tolerance is a crucial characteristic for desert moss surviving in arid regions. Desiccation procedure always induces amphiphiles transferring from the polar cytoplasm into lipid bodies. The behavior of amphiphiles transferring can contribute to the enhancement of desiccation tolerance and the reduction of plasma membrane integrity simultaneously. The effects of amphiphiles partitioning into the lipid phase during water loss has been studied for pollen and seeds using electron paramagnetic resonance (EPR) spectroscopy. However, desiccation-tolerant high plants occur among mosses, several angiosperms and higher plants seeds or pollens. They have different strategies for survival in dehydration and rehydration. A desiccation-tolerant moss Tortula desertorurn was used to investigate the behaviors of amphiphilic molecules during drying by spin label technology. There are small amount of amphiphilic probes partitioning into membrane during moss leaves dehydration, comparing with that in higher plants. Cytoplasm viscosity changed from 1.14 into glass state only dehydration less than 60 min. Moss leaves lost plasma membrane integrity slightly,from 0.115 to 0.237, occurred simultaneously with amphiphiles partition. The results showed the more advantages of mosses than higher plants in adapting fast dehydration. We propose that EPR spin label is feasible for studying the amphiphiles partitioning mechanisms in membrane protection and damage for desiccation-tolerant mosses.(C) 2007 Yan Wang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  5. Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.; Lowenstein, A.

    2014-09-01

    Cooling loads must be dramatically reduced when designing net-zero energy buildings or other highly efficient facilities. Advances in this area have focused primarily on reducing a building's sensible cooling loads by improving the envelope, integrating properly sized daylighting systems, adding exterior solar shading devices, and reducing internal heat gains. As sensible loads decrease, however, latent loads remain relatively constant, and thus become a greater fraction of the overall cooling requirement in highly efficient building designs, particularly in humid climates. This shift toward latent cooling is a challenge for heating, ventilation, and air-conditioning (HVAC) systems. Traditional systems typically dehumidify by first overcooling air below the dew-point temperature and then reheating it to an appropriate supply temperature, which requires an excessive amount of energy. Another dehumidification strategy incorporates solid desiccant rotors that remove water from air more efficiently; however, these systems are large and increase fan energy consumption due to the increased airside pressure drop of solid desiccant rotors. A third dehumidification strategy involves high flow liquid desiccant systems. These systems require a high maintenance separator to protect the air distribution system from corrosive desiccant droplet carryover and so are more commonly used in industrial applications and rarely in commercial buildings. Both solid desiccant systems and most high-flow liquid desiccant systems (if not internally cooled) add sensible energy which must later be removed to the air stream during dehumidification, through the release of sensible heat during the sorption process.

  6. Differential gene expression in Pyropia columbina (Bangiales, Rhodophyta under natural hydration and desiccation conditions

    Loretto Contreras-Porcia

    2013-11-01

    Full Text Available In rocky shores, desiccation is triggered by daily tide changes, and experimental evidence suggests that local distribution of algal species across the intertidal rocky zone is related to their capacity to tolerate desiccation. In this context, the permanence of Pyropia columbina in the high intertidal rocky zone is explained by its exceptional physiological tolerance to desiccation. This study explored the metabolic pathways involved in tolerance to desiccation in the Chilean P. columbina, by characterizing its transcriptome under contrasting conditions of hydration. We obtained 1,410 ESTs from two subtracted cDNA libraries in naturally hydrated and desiccated fronds. Results indicate that transcriptome from both libraries contain transcripts from diverse metabolic pathways related to tolerance. Among the transcripts differentially expressed, 15% appears involved in protein synthesis, processing and degradation, 14.4% are related to photosynthesis and chloroplast, 13.1% to respiration and mitochondrial function (NADH dehydrogenase and cytochrome c oxidase proteins, 10.6% to cell wall metabolism, and 7.5% are involved in antioxidant activity, chaperone and defense factors (catalase, thioredoxin, heat shock proteins, cytochrome P450. Both libraries highlight the presence of genes/proteins never described before in algae. This information provides the first molecular work regarding desiccation tolerance in P. columbina, and helps, to some extent, explaining the classical patterns of ecological distribution described for algae across the intertidal zone.

  7. Natural zeolites: structures, classification, origin, occurrence and importance

    Zeolite are hydrated aluminosilicates composed of SiO/sub 4/ and AlO/sub 4/ tetrahedra. The aluminosilicate frameworks contain well defined channels (pores) and cavities . The cavities contain exchangeable cation, in particular sodium, potasium, magnesium, calcium and barium. The dehydrated zeolite behaves like molecular sieve. The zeolites occur both as minerals and as material synthesized in laboratory and on industrial scale. The old classification of recognized species of zeolites was based on morphological properties. A modified classification in based on secondary building units of frameworks. There are different opinions about the origin and occurrence of zeolite minerals. The zeolites have gained much importance as molecular sieves and catalysts. They are also very important for their unique structural properties. (authors)

  8. A conductive composite of polythiophene with 13X-zeolite

    A composite of polythiophene (PTP) with 13X-zeolite was prepared via chemical oxidative polymerization of thiophene (TP) in presence of a dispersion of 13X-zeolite (powder) in CHCl3 solvent using anhydrous FeCl3 oxidant. Formation of PTP and its subsequent incorporation in the PTP-13X composite was confirmed by FTIR spectral studies and X-ray diffraction (XRD) pattern analysis. Scanning electron microscopic (SEM) analysis revealed formation of composite particles with average diameter in the range of 5-10 μm. XRD analyses indicated typical structural differences between 13X-zeolite and PTP-13X-zeolite composite. DC conductivity value of the PTP-13X-zeolite composite was in the order of 10-2 S/cm, which was indeed high compared to that of PTP, produced under identical conditions as above without the presence of 13X-zeolite

  9. Cation locations and dislocations in zeolites

    Smith, Luis James

    The focus of this dissertation is the extra-framework cation sites in a particular structural family of zeolites, chabazite. Cation sites play a particularly important role in the application of these sieves for ion exchange, gas separation, catalysis, and, when the cation is a proton, acid catalysis. Structural characterization is commonly performed through the use of powder diffraction and Rietveld analysis of powder diffraction data. Use of high-resolution nuclear magnetic resonance, in the study of the local order of the various constituent nuclei of zeolites, complements well the long-range order information produced by diffraction. Recent developments in solid state NMR techniques allow for increased study of disorder in zeolites particularly when such phenomena test the detection limits of diffraction. These two powerful characterization techniques, powder diffraction and NMR, offer many insights into the complex interaction of cations with the zeolite framework. The acids site locations in SSZ-13, a high silica chabazite, and SAPO-34, a silicoaluminophosphate with the chabazite structure, were determined. The structure of SAPO-34 upon selective hydration was also determined. The insensitivity of X-rays to hydrogen was avoided through deuteration of the acid zeolites and neutron powder diffraction methods. Protons at inequivalent positions were found to have different acid strengths in both SSZ-13 and SAPO-34. Other light elements are incorporated into zeolites in the form of extra-framework cations, among these are lithium, sodium, and calcium. Not amenable by X-ray powder diffraction methods, the positions of such light cations in fully ion-exchanged versions of synthetic chabazite were determined through neutron powder diffraction methods. The study of more complex binary cation systems were conducted. Powder diffraction and solid state NMR methods (MAS, MQMAS) were used to examine cation site preferences and dislocations in these mixed-akali chabazites

  10. Zeolitic tuffs as raw materials for lightweight aggregates

    de Gennaro, R.; P. Cappelletti; Cerri, G.; Gennaro, M; Dondi, M.; A. Langella

    2004-01-01

    The aim of this research is to assess the possible use of Italian zeolitic rocks for the production of lightweight aggregates. In particular, both the expansion at high temperature and the technological features of fired products were investigated. Fifteen zeolite-bearing volcanoclastites from Northern Sardinia and three zeolitized tuffs from Campania and Tuscany (Sorano and Campanian ignimbrites and Neapolitan Yellow Tuff) were taken into account. The firing expansion turned out to be mainly...

  11. Ionic Liquid assisted Synthesis of Zeolite-TON

    Tian, Yuyang; McPherson, Matthew Joseph; Wheatley, Paul Stewart; Morris, Russell Edward

    2014-01-01

    An ionic liquid assisted strategy for the synthesis of zeolitic material is reported. This strategy is a solid state synthetic method and the ionic liquid is employed as structure directing agent. A TON-type zeolite, which contains one-dimensional 10-member-ring, is successfully synthesized with the assistance of the ionic liquid, 1-ethyl-3-methylimidazolium bromide. This finding improves our understanding about the challenge of ionothermally synthesizing siliceous and aluminosilicate zeolites.

  12. Multi-elemental characterization of Cuban natural zeolites

    Concentration of 38 elements in samples from four important Cuban zeolite beds have been obtained by Instrumental Neutron Activation (INAA) and X-ray Fluorescence analyses (XRFA). In comparison with other analytical techniques good agreement was reached. The concentration values of minor element Ba, Sr, Zn and Mn and 25 trace element (including 9 REE) are at the first time reported in Cuban zeolite. It is important for the zeolite evaluation in different industrial uses. (author)

  13. Use of zeolites for decontamination of radioactively contamined working surfaces

    The possibility of using zeolites in decontaminates applied for cleaning up radioactively contaminated working clothes and surfaces is studied. It has been established that zeolites can be used for decontamination of working clothes, as well as, working surfaces presented by metals, ceramic tile, wood coated with paint or varnish, glass. The data on different zeolite-based decontaminate in comparison with a known detergent 'Zashchita' are given

  14. Removal of Ammonia from Air, using Three Iranian Natural Zeolites

    H. Asilian; SB Mortazavi; Kazemian, H; S Phaghiehzadeh; Sj Shahtaheri; Salem, M.

    2004-01-01

    Ammonia in air can be hazardous to human and animal life and should be removed from the environment. Recently the removal of environmental pollutants such as ammonia by means of natural and modified zeolites has attracted a lot of attention and interests. In this study the capability of three Iranian natural zeolites (Clinoptilolite) in point of view of removal of ammonia from air was investigated. Through this research, different zeolites from various regions of Iran including Semnan, Meyane...

  15. Application of natural zeolites in anaerobic digestion processes: A review

    Montalvo, Silvio; Borja Padilla, Rafael; Sánchez, Enrique; Milán, Zhenia; Cortés, Isel; Rubia, M. Ángeles de la

    2012-01-01

    This paper reviews the most relevant uses and applications of zeolites in anaerobic digestion processes. The feasibility of using natural zeolites as support media for the immobilization of microorganisms in different high-rate reactor configurations (fixed bed, fluidized bed, etc.) is also reviewed. Zeolite, with its favorable characteristics for microorganism adhesion, has also been widely used as an ion exchanger for the removal of ammonium in anaerobic digestion due to the presence of Na ...

  16. Selective adsorption of heavy and light metals by natural zeolites

    Fosso-Kankeu, Elvis; Reitz, Magdali; Waanders, Frans

    2014-01-01

    Recent studies have shown that zeolite can be applied through an ion-exchange process to remove metals from solutions. In this paper the potential of two zeolites to perform as sorbents for treatment of multi-metal system is investigated. Parameters such as initial metal concentration, contact time, zeolite type and affinity for heavy versus light metals are taken into consideration. All the samples were prepared and characterized by XRD, XRF and FTIR. Evaluating suitable model for the det...

  17. Treatments of reverse osmosis concentrate using natural zeolites

    Taherifar Hossein; Rezvantalab Sima; Bahadori Fatemeh; Khoei Omid Sadrzadeh

    2015-01-01

    The purpose of the current study is to experimentally investigate the reduction of sodium adsorption ratio (SAR) from a concentrated stream of reversed osmosis (RO) using natural zeolites. In order to reduce the salinity of solution, experiments were carried out using zeolites of varying concentration, pretreatment of adsorbents, and the addition of Ethylenediaminetetraacetic acid (EDTA). The results show that both zeolites can be used in an RO brine treatment; however, Rhyolitic tuff is more...

  18. Properties of natural zeolites in benefit of nutrition and health

    Irina Smical

    2011-01-01

    Due to their remarkable properties, natural zeolites have come to the attention of medicineresearchers to find new ways of treating various diseases and ensure an improved supply of mineralsin nutrition. The research results have shown the beneficial effects of application of various types ofnatural zeolites in healing or ameliorating especially gastrointestinal and diarrhea disease and cancerdisease, as well. Because natural zeolites have a very good ability as ion exchangers they are largel...

  19. Zeolitization of Tuffaceous Rocks in the Kesan Region, Thrace, Turkey

    Esenli, F.; Uz, B.; Suner, F.; Esenli, V.; Ece, O.I.; Kumbasar, I.

    2005-01-01

    A 33 metre thick pyroclastic-rich zone of the Mezardere formation of Oligocene age is exposed in the Kesan region of Thrace, Turkey. In this zone, vitreous tuffs of dacitic composition have altered primarily to zeolites, including mordenite, heulandite–clinoptilolite and analcime. Silicification and alteration to clay minerals are common. Zeolite minerals have developed from volcanic glass, whereas some mordenites have formed from dissolution of heulandite-group zeolites. Although authigenic ...

  20. Association of indigo with zeolites for improved colour stabilization

    Dejoie, Catherine; Martinetto, Pauline; Dooryhee, Eric; Van Eslande, Elsa; Blanc, Sylvie; Bordat, Patrice; Brown, Ross; Porcher, Florence; Anne, Michel

    2010-01-01

    The durability of an organic colour and its resistance against external chemical agents and exposure to light can be significantly enhanced by hybridizing the natural dye with a mineral. In search for stable natural pigments, the present work focuses on the association of indigo blue with several zeolitic matrices (LTA zeolite, mordenite, MFI zeolite). The manufacturing of the hybrid pigment is tested under varying oxidising conditions, using Raman and UV-visible spectrometric techniques. Ble...

  1. Extraction and immobilization of simulated pyrometallurgical chloride waste in Zeolite

    Zeolites are effective media for the removal and immobilization of fission products waste from pyrometallurgical reprocessing of nuclear fuels. In the present study, equilibration experiments between zeolite 4A and a simulated: pyrometallurgical chloride waste were carried out. Several batches of equilibration were carried out by varying the zeolite to salt (Z/S) ratio. The effects of Z/S on the extraction behaviour of the waste chloride salts were explored. (author)

  2. 3D Nanoscale Imaging and Quantitative Analysis of Zeolite Catalysts

    Zecevic, J.

    2013-01-01

    Zeolites are crystalline microporous aluminosilicates, one of the most versatile and widely used class of materials.The unique physico-chemical properties of zeolites are found to be irreplaceable in many industrial processes such as separation, adsorption and catalysis. To exploit their full potential and optimize their properties for specific applications, zeolites are often subjected to several post-synthesis modifications. The work presented in this thesis aims to provide a deeper underst...

  3. Composites obtained from magnesium clusters and zeolite 4A

    Zeolite-supported metal clusters have most commonly been prepared by ion exchange, followed by calcination and reduction. Proper activation and reduction treatment give the highest metal dispersion into zeolite mass. This work presents composites obtained from metal magnesium clusters and zeolite 4 A. It was determined the structure and properties by studies of texture, X-ray diffraction and transmission electron microscopy (TEM). These samples offer an opportunity to determine the catalytic properties of metal magnesium clusters. (authors)

  4. Zeolite for strontium separation from concentrated sodium salt solutions

    Strontium sorption from solutions with concentration of 5 mol/l sodium chloride on zeolites of different structure is investigated. Synthetic potassium zeolite of the K-G(13) chabasite type is established to be used to purify the solutions given from strontium radionuclides. Capacity of K-G(13) zeolite for strontium in the solution with concentration of 5 mol/l sodium chloride is 0.65 mmol/g

  5. Transport properties of β-irradiated zeolite cathodes

    Full text : The interesting properties of zeolites such as the ion-exchange selectivity is their ability to spontaneously generate a free electron and hole in the zeolite by β-radiation that an electron transfer from the guest to the zeolite can occur leading to the desired nuclear applications. It is important to know the relation between the discharge generation in nanopores and plasma characteristics for unirradiated and irradiated cathode in terms of GDED optimization

  6. Nano technology and Metal Encapsulation in the Zeolite Structure

    Interest in the field of nano technology, especially in the synthesis ofnano scale materials (nano structured, nanophase or nanocrystalline) has beenfast growing over the past decade. In this paper what is the nano technology,especially in the synthesis of nano particles on zeolite structure and theapplication of the particles in the field of photo catalysis will bedescribed. It will also been described the synthesis of iron oxide particleson the zeolite-Y structure and theirs distribution on the zeolite. (author)

  7. Fluoride-assisted synthesis of bimodal microporous SSZ-13 zeolite.

    Zhu, Xiaochun; Kosinov, Nikolay; Hofmann, Jan P; Mezari, Brahim; Qian, Qingyun; Rohling, Roderigh; Weckhuysen, Bert M; Ruiz-Martínez, Javier; Hensen, Emiel J M

    2016-02-21

    The presence of small amount of fluoride in alkaline hydrothermal synthesis of SSZ-13 zeolite yields bimodal microporous particles with substantially improved performance in the methanol-to-olefins (MTO) reaction. Hydrocarbon uptake measurements and fluorescence microspectroscopy of spent catalysts demonstrate enhanced diffusion through micropores at the grain boundaries of nanocrystals running through the zeolite particles. Fluoride-assisted SSZ-13 synthesis is a cheap and scalable approach to optimize the performance of MTO zeolite catalysts. PMID:26810114

  8. Peculiarities of the dielectric response of natural zeolite composites prepared by using zeolite and silicon powders

    Ozturk Koc, S.; Orbukh, V. I.; Eyvazova, G. M.; Lebedeva, N. N.; Salamov, B. G.

    2016-03-01

    We present the real and imaginary part of the dielectric permittivity of natural zeolite composites prepared by using zeolite and silicon powders. The dielectric response (DR) dependences on the frequency (3-300 GHz) of electric field and different Si concentrations (5-33%) are non-monotonic and a maximum peak is observed. This peak position is practically independent on the frequency and its maximum is observed in zeolite composites which included 9% of the Si-powder. Also the maximum peak is decreased by about an order of magnitude when frequency increases from 500 Hz to 5 kHz. Addition of the conductive Si-particles to zeolite-powder leads to two opposite effects. Firstly, the movement of electrons in the Si-particles provides increase of DR. Secondly, cations which leaving from zeolite pores can be neutralized by the particles of Si in the intercrystalline-space. Such a peculiar mechanism for recombination of Si electrons and cations from pores leads to a reduction of DR for large silicon concentrations. Due to the fact that the contribution of free carriers in the decreasing of the DR as the frequency increases, it is consistent with the suggestion that the maximum peak decreases with increasing frequency.

  9. Zeolite occurrence and genesis in the Late-Cretaceous Cayo arc of Coastal Ecuador: Evidence for zeolite formation in cooling marine pyroclastic flow deposits

    Machiels, L.; Garces, D. (D.); Snellings, R.; Vilema, W.; Morante, F.; C Paredes; ELSEN, J

    2014-01-01

    This paper describes the quantitative mineralogy, the mineral chemistry and the distribution of natural zeolites over the outcrop area of the Late Cretaceous Cayo Formation of Coastal Ecuador (>1000 km(2)) and develops a model for zeolite alteration in the Cayo volcanic arc. Different zeolite types were identified: Ca-heulandite-type zeolites (clinoptilolite and heulandite), mordenite, laumontite, analcime, stilbite, epistilbite, chabazite, thomsonite and erionite. Zeolites occur over nearly ...

  10. Zeolite Crystal Growth in Microgravity and on Earth

    2003-01-01

    The Center for Advanced Microgravity Materials Processing (CAMMP), a NASA-sponsored Research Partnership Center, is working to improve zeolite materials for storing hydrogen fuel. CAMMP is also applying zeolites to detergents, optical cables, gas and vapor detection for environmental monitoring and control, and chemical production techniques that significantly reduce by-products that are hazardous to the environment. Shown here are zeolite crystals (top) grown in a ground control experiment and grown in microgravity on the USML-2 mission (bottom). Zeolite experiments have also been conducted aboard the International Space Station.