WorldWideScience

Sample records for 34-mhz annular array

  1. Limited Diffraction Maps for Pulsed Wave Annular Arrays

    Fox, Paul D.

    2002-01-01

    A procedure is provided for decomposing the linear field of flat pulsed wave annular arrays into an equivalent set of known limited diffraction Bessel beams. Each Bessel beam propagates with known characteristics, enabling good insight into the propagation of annular fields to be obtained...

  2. Guided Wave Annular Array Sensor Design for Improved Tomographic Imaging

    Koduru, Jaya Prakash; Rose, Joseph L.

    2009-03-01

    Guided wave tomography for structural health monitoring is fast emerging as a reliable tool for the detection and monitoring of hotspots in a structure, for any defects arising from corrosion, crack growth etc. To date guided wave tomography has been successfully tested on aircraft wings, pipes, pipe elbows, and weld joints. Structures practically deployed are subjected to harsh environments like exposure to rain, changes in temperature and humidity. A reliable tomography system should take into account these environmental factors to avoid false alarms. The lack of mode control with piezoceramic disk sensors makes it very sensitive to traces of water leading to false alarms. In this study we explore the design of annular array sensors to provide mode control for improved structural tomography, in particular, addressing the false alarm potential of water loading. Clearly defined actuation lines in the phase velocity dispersion curve space are calculated. A dominant in-plane displacement point is found to provide a solution to the water loading problem. The improvement in the tomographic images with the annular array sensors in the presence of water traces is clearly illustrated with a series of experiments. An annular array design philosophy for other problems in NDE/SHM is also discussed.

  3. Fast Photoacoustic Imaging of Blood Vessels Based on an Annular Transducer Array

    We present a photoacoustic imaging system for rapid high-resolution photoacoustic imaging of blood vessels based on an annular transducer array. The annular transducer array consists of 256 elements arranged along a 300° arc with a 50-mm radius of curvature, using piezocomposite technology for high sensitivity and high signal-to-noise ratio. An eight-channel data acquisition system is applied to capture the photoacoustic signals using multiplexing and a limited-view filtered back projection algorithm is used to reconstruct the photoacoustic images. The experiments with phantom and blood vessels of a chicken are performed and clear photoacoustic images are obtained. The results demonstrate that the photoacoustic imaging system using the annular transducer array holds the potential application in monitoring neovascularization in tumor angiogenesis

  4. Time delay controlled annular array transducers for omnidirectional guided wave mode control in plate like structures

    Guided waves in plate like structures offer several modes with unique characteristics that can be taken advantage for nondestructive inspection applications. Conditions relating to the structure under inspection like the surrounding media, liquid loading, coatings etc require the use of special modes for successful inspection. Therefore, transducers that can excite mode controlled guided waves are essential for defect detection and discrimination in structures. Array transducers with annular elements can generate omnidirectional guided waves in plate like structures. However, the wave modes excited are limited to a particular wavelength governed by the element spacing. This limitation on the annular array transducers can be overcome by controlling the phase at each element relative to one another. In this work, annular array transducer construction techniques are theoretically examined and the optimum phase delays between the annular elements to excite a desired guided wave mode are calculated. A five element comb type annular array transducer is fabricated utilizing 1–3 type piezocomposite material. The mode control capability of the transducer is experimentally verified by selectively exciting the A0 and S0 guided wave modes in an aluminum plate like structure. (paper)

  5. Phased annular array transducers for omnidirectional guided wave mode control in isotropic plate like structures

    Ultrasonic guided waves are fast emerging as a reliable tool for continuous structural health monitoring. Their multi-modal nature along with their long range propagation characteristics offer several possibilities for interrogating structures. Transducers commonly used to generate guided waves in structures excite multiple modes at any frequency; their complex scattering and reflection from defects and boundaries often complicates the extraction of useful information. Often it is desirable to control the guided wave modes propagating in a structure to take advantage of their unique properties for different applications. Earlier attempts at guided wave mode control involved developing fixed wavelength linear and annular array transducers. Their only disadvantage is that the transducer is limited to a particular wavelength and a change in wavelength necessitates a change in the transducer. In this paper, we propose the development of an annular array transducer that can generate mode controlled omnidirectional guided waves by independently controlling the amplitude and phase of the array elements. A simplified actuator model that approximates the transducer loading on the structure to a constant pressure load under the array elements is assumed and an optimization problem is set up to compute the excitation voltage and phase of the elements. A five element annular array transducer is designed utilizing 1–3 type piezocomposite materials. The theoretical computations are experimentally verified on an aluminum plate like structure by exciting A0 and S0 guided wave modes. (paper)

  6. Self-assembled large-area annular cavity arrays with tunable cylindrical surface plasmons for sensing.

    Ni, Haibin; Wang, Ming; Shen, Tianyi; Zhou, Jing

    2015-02-24

    Surface plasmons that propagate along cylindrical metal/dielectric interfaces in annular apertures in metal films, called cylindrical surface plasmons (CSPs), exhibit attractive optical characteristics. However, it is challenging to fabricate these nanocoaxial structures. Here, we demonstrate a practical low-cost route to manufacture highly ordered, large-area annular cavity arrays (ACAs) that can support CSPs with great tunability. By employing a sol-gel coassembly method, reactive ion etching and metal sputtering techniques, regular, highly ordered ACAs in square-centimeter-scale with a gap width tunable in the range of several to hundreds of nanometers have been produced with good reproducibility. Ag ACAs with a gap width of 12 nm and a gap height of 635 nm are demonstrated. By finite-difference time-domain simulation, we confirm that the pronounced dips in the reflectance spectra of ACAs are attributable to CSP resonances excited in the annular gaps. By adjusting etching time and Ag film thickness, the CSP dips can be tuned to sweep the entire optical range of 360 to 1800 nm without changing sphere size, which makes them a promising candidate for forming integrated plasmonic sensing arrays. The high tunability of the CSP resonant frequencies together with strong electric field enhancement in the cavities make the ACAs promising candidates for surface plasmon sensors and SERS substrates, as, for example, they have been used in liquid refractive index (RI) sensing, demonstrating a sensitivity of 1505 nm/RIU and a figure of merit of 9. One of the CSP dips of ACAs with a certain geometry size is angle- (0-70 degrees) and polarization-independent and can be used as a narrow-band absorber. Furthermore, the nano annular cavity arrays can be used to construct solar cells, nanolasers and nanoparticle plasmonic tweezers. PMID:25639937

  7. Fourier-Bessel Field Calculation and Tuning of a CW Annular Array

    Fox, Paul D.; Cheng, Jiqi; Lu, Jian-yu

    2002-01-01

    A 1-D Fourier-Bessel series method for computing and tuning the linear lossless field of flat continuous wave (CW) annular arrays is given and discussed with both numerical simulation and experimental verification. The technique provides a new method for modelling and manipulating the propagated...... field by linking the quantized surface pressure profile to a set of limited diffraction Bessel beams propagating into the medium. In the limit, these become a known set of nondiffracting Bessel beams satisfying the lossless linear wave equation, which allow us to derive a linear matrix formulation for...

  8. Slanted annular aperture arrays as enhanced-transmission metamaterials: Excitation of the plasmonic transverse electromagnetic guided mode

    Ndao, Abdoulaye; Salut, Roland; Baida, Fadi I., E-mail: fbaida@univ-fcomte.fr [Département d' Optique P.M. Duffieux, Institut FEMTO-ST, UMR 6174 CNRS, Université de Franche–Comté, 25030 Besançon Cedex (France); Belkhir, Abderrahmane [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, Tizi-Ouzou (Algeria)

    2013-11-18

    We present here the fabrication and the optical characterization of slanted annular aperture arrays engraved into silver film. An experimental enhanced transmission based on the excitation of the cutoff-less plasmonic guided mode of the nano-waveguides (the transmission electron microscopy mode) is demonstrated and agrees well with the theoretical predicted results. By the way, even if it is less efficient (70% → 20%), an enhanced transmission can occur at larger wavelength value (720 nm–930 nm) compared to conventional annular aperture arrays structure by correctly setting the metal thickness.

  9. An L-Band, Circularly Polarised, Dual-Feed, Cavity-Backed Annular Slot Antenna For Phased-Array Applications

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2006-01-01

    The results of a parametric study for the development of an L-band, circularly polarised, dual-feed, cavity-backed annular slot antenna is presented. The study included detailed numerical simulations and measurements on a prototype with different ground planes, to assess the antenna’s applicability...... as an element in a small phased array antenna....

  10. A top-crossover-to-bottom addressed segmented annular array using piezoelectric micromachined ultrasonic transducers

    Jung, Joontaek; Lee, Wonjun; Kang, Woojin; Hong, Hyeryung; Yuen Song, Hi; Oh, Inn-yeal; Park, Chul Soon; Choi, Hongsoo

    2015-11-01

    We design and fabricate segmented annular arrays (SAAs) using piezoelectric micromachined ultrasonic transducers (pMUTs) to demonstrate the feasibility of acoustic focusing of ultrasound. The fabricated SAAs have 25 concentric top-electrode signal lines and eight bottom-electrodes for grounding to enable electronic steering of selectively grouped ultrasonic transducers from 2393 pMUT elements. Each element in the array is connected by top-crossover-to-bottom metal bridges, which reduce the parasitic capacitance. Circular-shaped pMUT elements, 120 μm in diameter, are fabricated using 1 μm-thick sol-gel lead zirconate titanate on a silicon wafer. To utilize the high-density pMUT array, a deep reactive ion etching process is used for anisotropic silicon etching to realize the transducer membranes. The resonant frequency and effective coupling coefficient of the elements, measured with an impedance analyzer, yields 1.517 MHz and 1.29%, respectively, in air. The SAAs using pMUTs are packaged on a printed circuit board and coated with parylene C for acoustic intensity measurements in water. The ultrasound generated by each segmented array is focused on a selected point in space. When a 5 Vpp, 1.5 MHz square wave is applied, the maximum spatial peak temporal average intensity ({{I}\\text{spta}} ) is found to be 79 mW cm-2 5 mm from the SAAs’ surface without beamforming. The beam widths (-3 dB) of ultrasonic radiation patterns in the elevation and azimuth directions are recorded as 3 and 3.4 mm, respectively. The results successfully show the feasibility of focusing ultrasound on a small area with SAAs using pMUTs.

  11. Annular and Cylindrical Phased Array Geometries for Transrectal High-Intensity Focused Ultrasound (HIFU) using PZT and Piezocomposite Materials

    Seip, Ralf; Chen, Wohsing; Carlson, Roy; Frizzell, Leon; Warren, Gary; Smith, Nadine; Saleh, Khaldon; Gerber, Gene; Shung, Kirk; Guo, Hongkai; Sanghvi, Narendra T.

    2005-03-01

    This paper presents engineering progress and the latest in-vitro and in-vivo results obtained with a 4.0 MHz, 20 element, PZT annular transrectal HIFU array and several 4.0 MHz, 211 element, PZT and piezocomposite cylindrical transrectal HIFU arrays for the treatment of prostate cancer. The geometries of both arrays were designed and analyzed to steer the HIFU beams to the desired sites in the prostate volume using multi-channel electronic drivers, with the intent to increase treatment efficiency and reliability for the next generation of HIFU systems. The annular array is able to focus in depth from 25 mm to 50 mm, generate total acoustic powers in excess of 60W, and has been integrated into a modified Sonablate®500 HIFU system capable of controlling such an applicator through custom treatment planning and execution software. Both PZT- and piezocomposite cylindrical arrays were constructed and their characteristics were compared for the transrectal applications. These arrays have been installed into appropriate transducer housings, and have undergone characterization tests to determine their total acoustic power output, focusing range (in depth and laterally), focus quality, efficiency, and comparison tests to determine the material and technology of choice (PZT or piezocomposite) for intra-cavity HIFU applications. Array descriptions, characterization results, in-vitro and in-vivo results, and an overview of their intended use through the application software is shown.

  12. Theoretical thermal dosimetry produced by an annular phased array system in CT-based patient models

    Theoretical calculations for the specific absorption rate (SAR) and the resulting temperature distributions produced by an annular phased array (APA) type system are made. The finite element numerical method is used in the formulation of both the electromagnetic (EM) and the thermal boundary value problems. A number of detailed patient models based on CT-scan data from the pelvic, visceral, and thoracic regions are generated to stimulate a variety of tumor locations and surrounding normal tissues. The SAR values from the EM solution are input into the bioheat transfer equation, and steady-rate temperature distributions are calculated for a wide variety of blood flow rates. Based on theoretical modeling, the APA shows no preferential heating of superficial over deep-seated tumors. However, in most cases satisfactory thermal profiles (therapeutic volume near 60%) are obtained in all three regions of the human trunk only for tumors with little or no blood flow. Unsatisfactory temperature patterns (therapeutic volume <50%) are found for tumors with moderate to high perfusion rates. These theoretical calculations should aid the clinician in the evaluation of the effectiveness of APA type devices in heating tumors located in the trunk region

  13. Tunable plasmonic resonances based on elliptical annular aperture arrays on conducting substrates for advanced biosensing.

    Liang, Yuzhang; Peng, Wei; Li, Lixia; Qian, Siyu; Wang, Qiao

    2015-08-15

    Introducing a conducting metal layer and the structural asymmetry to elliptical annular aperture arrays, multiple plasmonic coupled-resonant modes are generated under normal incidence in the visible light range. The electromagnetic fields can be strongly enhanced at resonant modes in this device, which increases the interaction volume of the detected analyte and optical fields; therefore, multiple plamonic coupled modes exhibit higher refractive index sensitivity than as large as 610 nm/RIU. The distinct Fano-like resonance around a wavelength of 681 nm originates from the interference between bonding dipolar and the quadrupolar modes. Due to the excitation of sharp spectral features as narrow as 7 nm, high figure of merits of 94 at the Fano-like dip is obtained in a wide refractive index range of 1.33-1.40. Furthermore, to generate strong Fano-like resonance, the geometric shape of ellipse is selected, which is a good geometric shape candidate compared to the circle shape. This device is promising for biosensing applications with high sensitivity and low limit of detection. PMID:26274691

  14. On the control and prediction of the heating patterns of the annular phased array hyperthermia system

    In previous publications the authors examined the electromagnetic (EM) power deposition and heating of the Annular Phased Array (APA) system developed by BSD Medical Corporation, using numerical EM and thermodynamics modeling. In this paper the results of recent efforts to vary and control the heating patterns produced by this system are described. in particular, data from several numerical simulations and experimental measurements are presented which illustrate the effect on the heating patterns achieved by varying the phase difference between the different ports of the APA system. Other heating patterns, produced by inactivating some of the APA ports, are also discussed. The remainder of the paper focuses on the feasibility of predicting the EM power depositions patterns of the APA solely through monitoring the E-field in the water bolus around the patient's body. In particular, it is shown that this E-field distribution depends primarily upon the outer geometry of the human body and is largely insensitive to the detailed distribution of inner tissues. Specific suggestions regarding the types, number, and location of E-field probes that can be used for such measurements are also given

  15. High-frequency annular array with coaxial illumination for dual-modality ultrasonic and photoacoustic imaging

    Filoux, Erwan; Sampathkumar, Ashwin; Chitnis, Parag V.; Aristizábal, Orlando; Ketterling, Jeffrey A.

    2013-05-01

    This paper presents a combined ultrasound and photoacoustic (PA) imaging (PAI) system used to obtain high-quality, co-registered images of mouse-embryo anatomy and vasculature. High-frequency ultrasound (HFU, >20 MHz) is utilized to obtain high-resolution anatomical images of small animals while PAI provides high-contrast images of the vascular network. The imaging system is based on a 40 MHz, 5-element, 6 mm aperture annular-array transducer with a 800 μm diameter hole through its central element. The transducer was integrated in a cage-plate assembly allowing for a collimated laser beam to pass through the hole so that the optical and acoustic beams were collinear. The assembly was mounted on a two-axis, motorized stage to enable the simultaneous acquisition of co-registered HFU and PA volumetric data. Data were collected from all five elements in receive and a synthetic-focusing algorithm was applied in post-processing to beamform the data and increase the spatial resolution and depth-of-field (DOF) of the HFU and PA images. Phantom measurements showed that the system could achieve high-resolution images (down to 90 μm for HFU and 150 μm for PAI) and a large DOF of >8 mm. Volume renderings of a mouse embryo showed that the scanner allowed for visualizing morphologically precise anatomy of the entire embryo along with corresponding co-registered vasculature. Major head vessels, such as the superior sagittal sinus or rostral vein, were clearly identified as well as limb bud vasculature.

  16. Fabrication and characterization of annular-array, high-frequency, ultrasonic transducers based on PZT thick film

    Wang, D; Filoux, E; Levassort, F; Lethiecq, M.; Rocks, SA; Dorey, RA

    2014-01-01

    In this work, low temperature deposition of ceramics, in combination with micromachining techniques have been used to fabricate a kerfed, annular-array, high-frequency, micro ultrasonic transducer (with seven elements). This transducer was based on PZT thick film and operated in thickness mode. The 27 μm thick PZT film was fabricated using a low temperature (720 °C) composite sol-gel ceramic (sol + ceramic powder) deposition technique. Chemical wet etching was used to pattern the PZT thick fi...

  17. Theory and experiment of Fourier-Bessel field calculation and tuning of a pulsed wave annular array

    Fox, Paul D.; Jiqi, Cheng; Jian-yu, Lu

    2003-01-01

    A one-dimensional (1D) Fourier-Bessel series method for computing and tuning (beamforming) the linear lossless field of flat pulsed wave annular arrays is developed and supported with both numerical simulation and experimental verification. The technique represents a new method for modeling and...... tuning the propagated field by linking the quantized surface pressure profile to a known set of limited diffraction Bessel beams propagating into the medium. This enables derivation of an analytic expression for the field at any point in space and time in terms of the transducer surface pressure profile...

  18. Mode controlled guided wave tomography using annular array transducers for SHM of water loaded plate like structures

    Ultrasonic guided wave tomography utilizes an array of permanently mounted transducers to detect and image defects like corrosion, cracks and delamination in structures. It is critical for successful tomography imaging to avoid the influences from external environmental conditions like water loading and changes in temperature. Water loading is particularly challenging as it affects the guided wave propagation in the structure. However, by taking advantage of the physical properties of guided waves it is possible to reduce its effect on the tomography images. Modal points on the dispersion curves can be found that have low out-of-plane displacement in their wave structure and hence no leakage into the liquid on the structure. In this paper, the omnidirectional excitation of desired guided wave modes with annular array transducers is discussed. Guided wave tomography of a steel plate like structure with a corrosion defect is studied under water loading conditions. The influence of water loading is overcome by exciting symmetric guided wave modes (S1) in the structure. Utilizing guided wave mode control it is shown that the defects in the structure can be easily discriminated from any artifacts in the images due to the liquid layer. (paper)

  19. Techniques for heating eccentrically located tumors with the BSD annular phased array system (APAS): Clinical experience

    The authors are currently investigating the potential for treatment optimization with the BSD APAS in tumors which are eccentrically located within the lower abdomen and pelvis. Attempts have been made to manipulate electric field (E-field) distribution during treatments through frequency changes and partial array activation (driving less than all four quadrants). Field shifts are qualitatively documented using the manufacturer's supplied diode array probes located at the patient/bolus interface in anterior, posterior and bilateral positions. Preliminary findings indicate that the internal E-field distributions can be manipulated to result in better treatment tolerance and better temperature distributions in selected target volumes. Phantom and clinical data are presented demonstrating the utility of these approaches

  20. A rapid two-photon fabrication of tube array using an annular Fresnel lens.

    Zhang, Chenchu; Hu, Yanlei; Li, Jiawen; Li, Guoqiang; Chu, Jiaru; Huang, Wenhao

    2014-02-24

    A rapid method of fabricating microscopic tubular structures via two-photon polymerization is presented. Novel Fresnel lens is designed and applied to modulate the light field into a uniform ring pattern with controllable diameters. Comparing with the conventional holographic processing method, Fresnel lens shows higher uniformity and better flexibility, while easier to generate. This versatile method provides a powerful solution to produce tube structure array within several seconds. PMID:24663719

  1. Annular pancreas

    ... page: //medlineplus.gov/ency/article/001142.htm Annular pancreas To use the sharing features on this page, please enable JavaScript. An annular pancreas is a ring of pancreatic tissue that encircles ...

  2. 1- to 10-keV x-ray backlighting of annular wire arrays on the Sandia Z-machine using bent-crystal imaging techniques

    Annular wire array implosions on the Sandia Z-machine can produce >200 TW and 1-2 MJ of soft x rays in the 0.1-10 keV range. The x-ray flux and debris in this environment present significant challenges for radiographic diagnostics. X-ray backlighting diagnostics at 1865 and 6181 eV using spherically-bent crystals have been fielded on the Z-machine, each with a ∼0.6 eVspectral bandpass, 10 (micro)m spatial resolution, and a 4 mm by 20mm field of view. The Z-Beamlet laser, a 2-TW, 2-kJ Nd:glass laser(λ = 527 nm), is used to produce 0.1-1 J x-ray sources for radiography. The design, calibration, and performance of these diagnostics is presented.

  3. 1-to 10-keV x-ray backlighting of annular wire arrays on the Sandia Z-machine using bent-crystal imaging techniques.

    Rambo, Patrick K.; Wenger, David Franklin; Bennett, Guy R.; Sinars, Daniel Brian; Smith, Ian Craig; Porter, John Larry, Jr.; Cuneo, Michael Edward; Rovang, Dean Curtis; Anderson, Jessica E.

    2003-07-01

    Annular wire array implosions on the Sandia Z-machine can produce >200 TW and 1-2 MJ of soft x rays in the 0.1-10 keV range. The x-ray flux and debris in this environment present significant challenges for radiographic diagnostics. X-ray backlighting diagnostics at 1865 and 6181 eV using spherically-bent crystals have been fielded on the Z-machine, each with a {approx}0.6 eVspectral bandpass, 10 {micro}m spatial resolution, and a 4 mm by 20mm field of view. The Z-Beamlet laser, a 2-TW, 2-kJ Nd:glass laser({lambda} = 527 nm), is used to produce 0.1-1 J x-ray sources for radiography. The design, calibration, and performance of these diagnostics is presented.

  4. Regional hyperthermia in the treatment of clinically advanced, deep seated malignancy: results of a pilot study employing an annular array applicator

    From October 1980 through December 1982, 46 patients were entered into a pilot study at the University of Utah Medical Center to assess the feasibility and safety of heating deep-seated, advanced, pelvic and abdominal malignancies with an annular array of electromagnetic wave (EMW) applicators. The patients, most of whom were heavily pretreated, were treated on a protocol in which most of the patients received combined hyperthermia and low dose X ray therapy. Discomforting local symptoms were the predominant treatment related acute side effects in 28 patients with pelvic disease, while systemic hyperthermia and associated symptoms were the predominant side effects in 18 patients with abdominal disease. Minor subacute toxicity was minimal and no serious treatment related, chronic toxicity was observed. The treatments of 22 patients with sufficiently detailed thermometry were analyzed at arbitrary index temperatures of 410C and 430C. Objective response rates in 22 evaluable patients were 67% and 9% for pelvic and abdominal sites respectively

  5. Advantage of annular focus generation by sector-vortex array in cavitation-enhanced high-intensity focused ultrasound treatment

    Jimbo, Hayato; Takagi, Ryo; Taguchi, Kei; Yoshizawa, Shin; Umemura, Shin-ichiro

    2016-07-01

    High-intensity focused ultrasound (HIFU) is a noninvasive method for cancer treatment. One of the disadvantages of this method is that it has a long total treatment time because of the smallness of the treatment volume by a single exposure. To solve this problem, we have proposed a method of cavitation-enhanced heating, which utilized the heat generated by oscillating the cavitation bubbles, in combination with the method of lateral enlargement of a HIFU focal zone to minimize the surface volume ratio. In a previous study, focal spot scanning at multiple points was employed for the enlargement. This method involves nonlinear propagation and absorption due to the high spatial-peak temporal-peak (SPTP) intensity in addition to the cavitation-enhanced heating. However, it is difficult to predict the size and position of the coagulation volume because they are significantly affected by the nonlinear parameters of the tissue. In this study, a sector vortex method was employed to directly synthesize an annular focal pattern. Since this method can keep the SPTP intensity at a manageably low level, nonlinear propagation and absorption can be minimized. Experimental results demonstrate that the coagulation was generated only in the region where both the cavitation cloud and the heating ultrasound were matched. The proposed method will make the cavitation-enhanced HIFU treatment more accurate and predictable.

  6. Design of Water Jet for Annular Ultrasonic Phased Array Probe%超声相控阵环阵探头水套设计

    岳翔; 徐娜; 沙正骁

    2015-01-01

    Ultrasonic annular array water spray testing system was applied to detect electron beam welded defects of major aviation titanium alloy weld assembly.Based on the system,water jet was designed for ultrasonic annular array probe.According to probe sound field curve calculated by CIVA-software,lumen diameter and lumen shape were discussed in order to obtain designing parameter of water jet.Afterwards four types of water jet were designed for the experiment.In view of the experiment it was concluded that the water jet lumen curve should contain probe sound field curve,lumen diameter had greater effect on detection than the lumen shape and adopting vertical wall cylinder water jet could achieve the best effect of detection.In the end,field test verified that using vertical wall cylinder water jet could achieve high sensitivity and meet the needs of the field test.%为了实现大型航空钛合金电子束焊接件的无损检测,采用超声相控阵环阵喷水检测系统。基于此系统,需要为选用的超声相控阵环阵探头设计水套。首先依据 CIVA 仿真软件计算超声相控阵探头声场曲线,通过讨论水套内腔直径及内腔形式,获得水套设计参数。然后设计四种水套并对钛合金试块进行试验。结果表明:水套内腔曲线应当完全包络声场曲线;水套内腔直径比内腔结构对检测效果影响大;采取直筒形水套能获得最佳检测效果。最后通过现场检测,发现采取直筒形水套灵敏度高,能满足现场检测要求。

  7. Granuloma annulare.

    Gupta, Diptesh; Hess, Brian; Bachegowda, Lohith

    2010-01-01

    We present a case of a 77-year-old, diabetic male with a 20-year history of a migratory erythematous, asymptomatic, generalized, nonscaly, and nonitchy rash that started over the dorsum of his left hand. On examination, there were multiple annular erythematous plaques, distributed symmetrically and diffusely over his torso and arms, with central clearing and no scales. A punch biopsy of the skin helped us to arrive at the diagnosis of a generalized granuloma annulare (GA). GA is a benign, self-limiting skin condition of unknown etiology that is often asymptomatic. The cause of this condition is unknown, but it has been associated with diabetes mellitus, infections such as HIV, and malignancies such as lymphoma. These lesions typically start as a ring of flesh-colored papules that slowly progress with central clearing. Lack of symptoms, scaling, or associated vesicles helps to differentiate GA from other skin conditions such as tinea corporis, pityriasis rosea, psoriasis, or erythema annulare centrifugum. Treatment is often not needed as the majority of these lesions are self-resolving within 2 years. Treatment may be pursued for cosmetic reasons. Available options include high-dose steroid creams, PUVA, cryotherapy, or drugs such as niacinamide, infliximab, Dapsone, and topical calcineurin inhibitors. PMID:20209383

  8. Annular Flow Distribution test

    This report documents the Babcock and Wilcox (B ampersand W) Annular Flow Distribution testing for the Savannah River Laboratory (SRL). The objective of the Annular Flow Distribution Test Program is to characterize the flow distribution between annular coolant channels for the Mark-22 fuel assembly with the bottom fitting insert (BFI) in place. Flow rate measurements for each annular channel were obtained by establishing ''hydraulic similarity'' between an instrumented fuel assembly with the BFI removed and a ''reference'' fuel assembly with the BFI installed. Empirical correlations of annular flow rates were generated for a range of boundary conditions

  9. Annular pancreas (image)

    Annular pancreas is an abnormal ring or collar of pancreatic tissue that encircles the duodenum (the part of the ... intestine that connects to stomach). This portion of pancreas can constrict the duodenum and block or impair ...

  10. Generalized granuloma annulare

    Khatri M

    1995-01-01

    Full Text Available A 35-years-old female patient had generalized pruritic papular lesions, distributed like dermatitis herpetiformis for last 4 years. Histopathologic changes were typical of granuloma annulare with negative results of direct immunofluorescence. The patient did not have association of diabetes mellitus or any other systemic disease. She failed to respond to dapsone therapy and 13-cis-retinoic acid.

  11. Oscillating annular liquid membranes

    The response of annular liquid membranes (e.g. used as protection systems in laser fusion reactors) to sinusoidal mass flow rate fluctuations at the nozzle exit is analyzed as a function of the amplitude and frequency of the axial velocity fluctuations at the nozzle exit and thermodynamic compression of the gas enclosed by the membrane. The pressure of the gases enclosed by the annular membrane and the axial distance at which the annular membrane merges on the symmetry axis are periodic functions of time which have the same period as that of the mass flow rate fluctuations at the nozzle exit. They are also nearly sinusoidal functions of time for small amplitudes of the mass flow rate fluctuations at the nozzle exit, and exhibit delay and lag times with respect to the sinusoidal axial velocity fluctuations at the nozzle exit. The delay and the lag times are functions of the amplitude and frequency of the mass flow rate fluctuations at the nozzle exit and the polytropic exponent. The amplitudes of both the pressure of the gases enclosed by the annular liquid membrane and the convergence length increase and decrease, resp., as the amplitude and frequency of the mass flow rate fluctuations at the nozzle exit, resp., are increased. They also increase as the polytropic exponent is increased. (orig.)

  12. Annular Planar Monopole Antennas

    Chen, Z. N.; Ammann, Max; Chia, W.Y. W.; See, T.S. P.

    2002-01-01

    A type of annular planar monopole antenna is presented. The impedance and radiation characteristics of the monopole with different holes and feed gaps are experimentally examined. The measured results demonstrate that the proposed antenna is capable of providing significantly broad impedance bandwidth with acceptable radiation performance.

  13. Diffractive analysis of annular resonators.

    Morin, M; Bélanger, P A

    1992-04-20

    The modal properties of annular resonators are investigated by using an approximate version of the Kirchhoff-Fresnel integral. It is shown that the radial diffraction of a thin annular beam with a large inside radius is similar to that of a cylindrical field distribution. This permits the formal demonstration of the equivalence that exists between large Fresnel number annular resonators and infinite strip resonators. The model explains the properties of annular resonators that have been observed either experimentally or numerically by others, such as the lack of azimuthal discrimination. PMID:20720842

  14. Axisymmetric annular curtain stability

    A temporal stability analysis was carried out to investigate the stability of an axially moving viscous annular liquid jet subject to axisymmetric disturbances in surrounding co-flowing viscous gas media. We investigated in this study the effects of inertia, surface tension, the gas-to-liquid density ratio, the inner-to-outer radius ratio and the gas-to-liquid viscosity ratio on the stability of the jet. With an increase in inertia, the growth rate of the unstable disturbances is found to increase. The dominant (or most unstable) wavenumber decreases with increasing Reynolds number for larger values of the gas-to-liquid viscosity ratio. However, an opposite tendency for the most unstable wavenumber is predicted for small viscosity ratio in the same inertia range. The surrounding gas density, in the presence of viscosity, always reduces the growth rate, hence stabilizing the flow. There exists a critical value of the density ratio above which the flow becomes stable for very small viscosity ratio, whereas for large viscosity ratio, no stable flow appears in the same range of the density ratio. The curvature has a significant destabilizing effect on the thin annular jet, whereas for a relatively thick jet, the maximum growth rate decreases as the inner radius increases, irrespective of the surrounding gas viscosity. The degree of instability increases with Weber number for a relatively large viscosity ratio. In contrast, for small viscosity ratio, the growth rate exhibits a dramatic dependence on the surface tension. There is a small Weber number range, which depends on the viscosity ratio, where the flow is stable. The viscosity ratio always stabilizes the flow. However, the dominant wavenumber increases with increasing viscosity ratio. The range of unstable wavenumbers is affected only by the curvature effect. (paper)

  15. Measurement of Quasi-periodic Oscillating Flow Motion in Simulated Dual-cooled Annular Fuel Bundle

    In order to increase a significant amount of reactor power in OPR1000, KAERI (Korea Atomic Energy Research Institute) has been developing a dual-cooled annular fuel. The dual-cooled annular fuel is simultaneously cooled by the water flow through the inner and the outer channels. KAERI proposed the 12x12 dual-cooled annular fuel array which was designed to be structurally compatible with the 16x16 cylindrical solid fuel array by maintaining the same array size and the guide tubes in the same locations, as shown in Fig. 1. In such a case, due to larger outer diameter of dual-cooled annular fuel than conventional solid fuel, a P/D (Pitch-to-Diameter ratio) of dual cooled annular fuel assembly becomes smaller than that of cylindrical solid fuel. A change in P/D of fuel bundle can cause a difference in the flow mixing phenomena between the dual-cooled annular and conventional cylindrical solid fuel assemblies. In this study, the rod bundle flow motion appearing in a small P/D case is investigated preliminarily using PIV (Particle Image Velocimetry) for dual-cooled annular fuel application

  16. Annular Hybrid Rocket Motor Project

    National Aeronautics and Space Administration — Engineers at SpaceDev have conducted a preliminary design and analysis of a proprietary annular design concept for a hybrid motor. A U.S. Patent application has...

  17. Manufacture of annular cermet articles

    Forsberg, Charles W.; Sikka, Vinod K.

    2004-11-02

    A method to produce annular-shaped, metal-clad cermet components directly produces the form and avoids multiple fabrication steps such as rolling and welding. The method includes the steps of: providing an annular hollow form with inner and outer side walls; filling the form with a particulate mixture of ceramic and metal; closing, evacuating, and hermetically sealing the form; heating the form to an appropriate temperature; and applying force to consolidate the particulate mixture into solid cermet.

  18. Comparison of an electrically-small planar antenna array with a conventional monopole array

    Rogers, PR; Hilton, GS; Craddock, IJ; Fletcher, PN

    2002-01-01

    A new type of linear array is proposed which utilises annular slot antennas operating in the 'DC' mode. These conformal elements are electrically-small and have wire-monopole-like radiation patterns. A thorough analysis of this array's performance is provided, with a comparison against the performance of an equivalent wire monopole array given at each stage. It is shown that, overall, the characteristics of the conformal, electrically-small, annular-slot array are very similar to that of the ...

  19. Adiabatic Steam-Water Annular Flow in an Annular Geometry

    Andersen, P. S.; Würtz, J.

    1981-01-01

    Experimental results for fully developed steam-water annular flow in annular geometries are presented. Rod and tube film flow rates and axial pressure gradients were measured for mass fluxes between 500 and 2000 kg/m2s, steam qualities between 20 and 60 per cent and pressures ranging from 3 to 9...... MPa. It was found that the measured tube film flow rate per unit tube perimeter is always many times greater than the corresponding rod film flow rate. Possible explanations for this asymmetry are discussed....

  20. Phase flow rate measurements of annular flows

    Al-Yarubi, Qahtan

    2010-01-01

    In the international oil and gas industry multiphase annular flow in pipelines and wells is extremely important, but not well understood. This thesis reports the development of an efficient and cheap method for measuring the phase flow rates in two phase annular and annular mist flow, in which the liquid phase is electrically conducting, using ultrasonic and conductance techniques. The method measures changes in the conductance of the liquid film formed during annular flow and uses these to c...

  1. Hydraulic lift-off issues for application of high performance annular fuels in pressurized water reactors

    Highlights: • Pin and assembly lift-off forces are compared between solid and annular fuel. • Annular fuel experiences much stronger uplift forces. • Much stronger hold-down forces are required by annular fuel assembly. • Engineering modifications for hold-down mechanisms are required by annular fuel. - Abstract: In the PWR core, the fuel assembly is firmly seated on the lower core plate during operation. However, if the hydraulic force exerted on the fuel assembly by coolant flow is too large and the fuel assembly is lifted-off from the lower core plate, the excessive vibration will cause fuel failure. Therefore, the hydraulic lift-off issue needs to be addressed when the advanced fuel assembly is developed. It has been shown that the advanced annular fuel design with internal cooling allows power uprating up to 50% while the peak temperature of the fuel can be reduced and the MDNBR can be maintained. However, if the coolant condition in the core is kept unchanged, increasing the core power by 50% requires the core flow rate also increase proportionally, which will give rise to the hydraulic lift-off, an important issue to be addressed. In this paper, taking the 17 × 17 solid fuel design as the reference, the hydraulic lift-off issue is investigated for proposed 12 × 12 and 13 × 13 annular fuel designs. Both the steady-state and start-up operating conditions are evaluated. It is found that the hydraulic lift-off indeed is an issue for annular fuel design which requires careful analysis. By comparison, the lift-off forces and hold-down forces required for the externally and internally cooled annular fuels (13 × 13 and 12 × 12 arrays) are several times larger than that of the referenced solid fuel (17 × 17 array). Therefore, the hold-down mechanism for annular fuel needs to be carefully designed

  2. Subcutaneous granuloma annulare: radiologic appearance

    Objective. Granuloma annulare is an uncommon benign inflammatory dermatosis characterized by the formation of dermal papules with a tendency to form rings. There are several clinically distinct forms. The subcutaneous form is the most frequently encountered by radiologists, with the lesion presenting as a superficial mass. There are only a few scattered reports of the imaging appearance of this entity in the literature. We report the radiologic appearance of five cases of subcutaneous granuloma annulare. Design and patients. The radiologic images of five patients (three male, two female) with subcutaneous granuloma annulare were retrospectively studied. Mean patient age was 6.4 years (range, 2-13 years). The lesions occurred in the lower leg (two), foot, forearm, and hand. MR images were available for all lesions, gadolinium-enhanced imaging in three cases, radiographs in four, and bone scintigraphy in one. Results. Radiographs showed unmineralized nodular masses localized to the subcutaneous adipose tissue. The size range, in greatest dimension on imaging studies, was 1-4 cm. MR images show a mass with relatively decreased signal intensity on all pulse sequences, with variable but generally relatively well defined margins. There was extensive diffuse enhancement following gadolinium administration. Conclusion. The radiologic appearance of subcutaneous granuloma annulare is characteristic, typically demonstrating a nodular soft-tissue mass involving the subcutaneous adipose tissue. MR images show a mass with relatively decreased signal intensity on all pulse sequences and variable but generally well defined margins. There is extensive diffuse enhancement following gadolinium administration. Radiographs show a soft-tissue mass or soft-tissue swelling without evidence of bone involvement or mineralization. This radiologic appearance in a young individual is highly suggestive of subcutaneous granuloma annulare. (orig.)

  3. Annular-Efficient Triangulations of 3-manifolds

    Jaco, William

    2011-01-01

    A triangulation of a compact 3-manifold is annular-efficient if it is 0-efficient and the only normal, incompressible annuli are thin edge-linking. If a compact 3-manifold has an annular-efficient triangulation, then it is irreducible, boundary-irreducible, and an-annular. Conversely, it is shown that for a compact, irreducible, boundary-irreducible, and an-annular 3-manifold, any triangulation can be modified to an annular-efficient triangulation. It follows that for a manifold satisfying this hypothesis, there are only a finite number of boundary slopes for incompressible and boundary-incompressible surfaces of a bounded Euler characteristic.

  4. Thermal hydraulic performance assessment of dual-cooled annular nuclear fuel for OPR-1000

    Shin, Chang-Hwan, E-mail: shinch@kaeri.re.kr [LWR Fuel Development Division, Korea Atomic Energy Research Institute, 989-111 Daedeok-Daero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of); Chun, Tae-Hyun, E-mail: thchun@kaeri.re.kr [LWR Fuel Development Division, Korea Atomic Energy Research Institute, 989-111 Daedeok-Daero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of); Oh, Dong-Seok, E-mail: dsoh1@kaeri.re.kr [LWR Fuel Development Division, Korea Atomic Energy Research Institute, 989-111 Daedeok-Daero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of); In, Wang-Kee, E-mail: wkin@kaeri.re.kr [LWR Fuel Development Division, Korea Atomic Energy Research Institute, 989-111 Daedeok-Daero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer A thermal hydraulic performance of a 12 Multiplication-Sign 12 annular fuel array is evaluated. Black-Right-Pointing-Pointer The subchannel analysis code for the dual-cooled annular fuel, MATRA-AF is validated. Black-Right-Pointing-Pointer We evaluate the sensitivity for geometry tolerances and operating parameter. Black-Right-Pointing-Pointer We decide the essential design parameters to uprate the power generation by dual-cooled annular fuel. Black-Right-Pointing-Pointer A thermal margin amount accommodating a 20% power-uprate seems viable. - Abstract: An internally and externally cooled annular fuel was proposed for an advance PWR, which can endure substantial power uprating. KAERI is pursuing the development for a reloading of power uprated annular fuel for the operating PWR reactors of OPR-1000. In this paper, the characteristics and verification of the MATRA-AF are described. The thermal hydraulic performance of a 12 Multiplication-Sign 12 annular fuel is calculated for the major design parameters and its performance is compared against the reference 16 Multiplication-Sign 16 cylindrical fuel assembly. In particular, the enhancements of the thermal hydraulic performance of dual-cooled annular fuel are estimated for the 100% normal power reactor core. The purpose of this study is to estimate a normal power for OPR-1000 with dual-cooled annular fuel, and ultimately to assess the feasibility of 120% core power. The parametric study was carried out for the fuel rod dimension, gap conductance, thermal diffusion coefficients, and pressure loss of the spacer grids. As a result of the analysis on the nominal power, annular fuel showed a sufficient margin available on DNB and fuel pellet temperature relative to cylindrical fuel. The margin amount seems accommodating a 20% power-uprate seems viable.

  5. CFD Simulation of Annular Centrifugal Extractors

    Vedantam, S.; Wardle, K. E.; Tamhane, T. V.; Ranade, V. V.; Joshi, J. B.

    2012-01-01

    Annular centrifugal extractors (ACE), also called annular centrifugal contactors offer several advantages over the other conventional process equipment such as low hold-up, high process throughput, low residence time, low solvent inventory and high turn down ratio. The equipment provides a very high value of mass transfer coefficient and interfacial area in the annular zone because of the high level of power consumption per unit volume and separation inside the rotor due to the high g of cent...

  6. Granuloma annulare in herpes zoster scars.

    Ohata, C; Shirabe, H; Takagi, K; Kawatsu, T

    2000-03-01

    A 54-year-old Japanese female developed granuloma annulare twice in herpes zoster scars. Soon after the second event, she developed ulcerative colitis, which was well controlled by sulfonamides and corticosteroid suppository. She had no history of diabetes mellitus. There was no recurrence of granuloma annulare by June of 1999. Granuloma annulare might have contributed to the complications of ulcerative colitis, although this had not been noticed before. PMID:10774142

  7. Systematic comparison of the use of annular and Zernike circle polynomials for annular wavefronts

    Mahajan, V.N.; Aftab, M.

    2010-01-01

    The theory of wavefront analysis of a noncircular wavefront is given and applied for a systematic comparison of the use of annular and Zernike circle polynomials for the analysis of an annular wavefront. It is shown that, unlike the annular coefficients, the circle coefficients generally change as t

  8. Annular burnout data from rod-bundle experiments

    Burnout data for annular flow in a rod bundle are presented for both transient and steady-state conditions. Tests were performed at the Oak Ridge National Laboratory in the Thermal Hydraulic Test Facility (THTF), a pressurized-water loop containing an electrically heated 64-rod bundle. The bundle configuration is typical of later generation pressurized-water reactors with 17 x 17 fuel arrays. Both axial and radial power profiles are flat. All experiments were carried out in upflow with subcooled inlet conditions, insuring accurate flow measurement. Conditions within the bundle were typical of those which could be encountered during a nuclear reactor loss-of-coolant accident

  9. Annular burnout data from rod bundle experiments

    Burnout data for annular flow in a rod bundle are presented for both transient and steady-state conditions. Tests were performed at the Oak Ridge National Laboratory in the Thermal Hydraulic Test Facility (THTF), a pressurized-water loop containing an electrically heated 64-rod bundle. The bundle configuration is typical of later generation pressurized-water reactors with 17 x 17 fuel arrays. Both axial and radial power profiles are flat. All experiments were carried out in upflow with subcooled inlet conditions, insuring accurate flow measurement. Conditions within the bundle were typical of those which could be encountered during a nuclear reactor loss-of-coolant accident. Level average fluid conditions within the test section were calculated using steady-state mass and energy conservation considerations for the steady-state tests and a transient, homogeneous, equilibrium computer code for the transient tests. Unlike tube dryout, burnout within a rod bundle does not necessarily occur at one distinct axial level. The location of individual rod dryout was determined by scanning rods axially and locating the position where rod superheat increased from approx. =0 to 30 K or greater. Thermocouple instrumentation within the bundle allows the location of dryout to be determined to within approximately +.5 cm for many of the tests

  10. Confocal Annular Josephson Tunnel Junctions

    Monaco, Roberto

    2016-04-01

    The physics of Josephson tunnel junctions drastically depends on their geometrical configurations and here we show that also tiny geometrical details play a determinant role. More specifically, we develop the theory of short and long annular Josephson tunnel junctions delimited by two confocal ellipses. The behavior of a circular annular Josephson tunnel junction is then seen to be simply a special case of the above result. For junctions having a normalized perimeter less than one, the threshold curves in the presence of an in-plane magnetic field of arbitrary orientations are derived and computed even in the case with trapped Josephson vortices. For longer junctions, a numerical analysis is carried out after the derivation of the appropriate motion equation for the Josephson phase. We found that the system is modeled by a modified and perturbed sine-Gordon equation with a space-dependent effective Josephson penetration length inversely proportional to the local junction width. Both the fluxon statics and dynamics are deeply affected by the non-uniform annulus width. Static zero-field multiple-fluxon solutions exist even in the presence of a large bias current. The tangential velocity of a traveling fluxon is not determined by the balance between the driving and drag forces due to the dissipative losses. Furthermore, the fluxon motion is characterized by a strong radial inward acceleration which causes electromagnetic radiation concentrated at the ellipse equatorial points.

  11. Confocal Annular Josephson Tunnel Junctions

    Monaco, Roberto

    2016-09-01

    The physics of Josephson tunnel junctions drastically depends on their geometrical configurations and here we show that also tiny geometrical details play a determinant role. More specifically, we develop the theory of short and long annular Josephson tunnel junctions delimited by two confocal ellipses. The behavior of a circular annular Josephson tunnel junction is then seen to be simply a special case of the above result. For junctions having a normalized perimeter less than one, the threshold curves in the presence of an in-plane magnetic field of arbitrary orientations are derived and computed even in the case with trapped Josephson vortices. For longer junctions, a numerical analysis is carried out after the derivation of the appropriate motion equation for the Josephson phase. We found that the system is modeled by a modified and perturbed sine-Gordon equation with a space-dependent effective Josephson penetration length inversely proportional to the local junction width. Both the fluxon statics and dynamics are deeply affected by the non-uniform annulus width. Static zero-field multiple-fluxon solutions exist even in the presence of a large bias current. The tangential velocity of a traveling fluxon is not determined by the balance between the driving and drag forces due to the dissipative losses. Furthermore, the fluxon motion is characterized by a strong radial inward acceleration which causes electromagnetic radiation concentrated at the ellipse equatorial points.

  12. Soliton bunching in annular Josephson junctions

    Vernik, I.V; Lazarides, Nickos; Sørensen, Mads Peter;

    1996-01-01

    By studying soliton (fluxon) motion in long annular Josephson junctions it is possible to avoid the influence of the boundaries and soliton-soliton collisions present in linear junctions. A new experimental design consisting of a niobium coil placed on top of an annular junction has been used to...

  13. Bistability and hysteresis of annular impinging jets

    Tisovsky, Tomas

    2016-06-01

    In present study, the bistability and hysteresis of annular impinging jets is investigated. Annular impinging jets are simulated using open source CFD code - OpenFOAM. Both flow field patterns of interest are obtained and hysteresis is found by means of dynamic mesh simulation. Effect of nozzle exit velocity on resulting hysteresis loop is also illustrated.

  14. Etizolam-induced superficial erythema annulare centrifugum.

    Kuroda, K; Yabunami, H; Hisanaga, Y

    2002-01-01

    Erythema annulare centrifugum (EAC) is characterized by slowly enlarging annular erythematous lesions. Although the origin is not clear in most cases, EAC has been associated with infections, medications, and in rare cases, underlying malignancy. We describe a patient who developed annular erythematous lesions after etizolam administration. The eruptions were typical of the superficial form of EAC, both clinically and histopathologically. The lesions disappeared shortly after discontinuation of the medication. Patch testing with etizolam gave positive results. To our knowledge this is the first reported case of etizolam-induced superficial EAC. PMID:11952667

  15. Divergent Field Annular Ion Engine Project

    National Aeronautics and Space Administration — The proposed work investigates an approach that would allow an annular ion engine geometry to achieve ion beam currents approaching the Child-Langmuir limit. In...

  16. A Parametric Study on the Thermal Hydraulic Design for an Annular Fuel Assembly

    Shin, C. H.; Seo, K. W.; Chun, T. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    Recently, MIT proposed an internally and externally cooled annular fuel for an advanced PWR which can endure a substantial power uprating. To apply this annular fuel in the conventional reactors such as OPR-1000, it is desirable to investigate its a structural compatibility for its reloading to operating PWR reactors of OPR-1000 as well as other compatibilities like the fuel to moderator ratio, amount of fissile material and coolant flow area. Conventional fuel assembly has a 16x16 solid rod array with four big guide tubes and one instrumentation tube. A 12x12 annular fuel assembly design which can meet the above compatibilities was proposed, which is structurally compatible with the existing internals of OPR-1000. Actually the advantage of an annular fuel comes from the fuel performance and thermal hydraulics. In the thermal hydraulic analysis, the mixing effect between the neighboring channels has to be carried out in a subchannel analysis. A subchannel analysis code, MATRA has been developed by KAERI. However, MATRA dose not have the capability to model both an internally and externally cooled annular fuel. A subchannel code, MATRA-AF which can be coupled to MATRA and can calculate the coolant flow distribution and heat transfer fraction in the internal and external subchannels has been developed. In this paper, the characteristics and the verification of the MATRA-AF are described. The effects of the thermal hydraulic parameters are estimated through a single fuel assembly.

  17. A Parametric Study on the Thermal Hydraulic Design for an Annular Fuel Assembly

    Recently, MIT proposed an internally and externally cooled annular fuel for an advanced PWR which can endure a substantial power uprating. To apply this annular fuel in the conventional reactors such as OPR-1000, it is desirable to investigate its a structural compatibility for its reloading to operating PWR reactors of OPR-1000 as well as other compatibilities like the fuel to moderator ratio, amount of fissile material and coolant flow area. Conventional fuel assembly has a 16x16 solid rod array with four big guide tubes and one instrumentation tube. A 12x12 annular fuel assembly design which can meet the above compatibilities was proposed, which is structurally compatible with the existing internals of OPR-1000. Actually the advantage of an annular fuel comes from the fuel performance and thermal hydraulics. In the thermal hydraulic analysis, the mixing effect between the neighboring channels has to be carried out in a subchannel analysis. A subchannel analysis code, MATRA has been developed by KAERI. However, MATRA dose not have the capability to model both an internally and externally cooled annular fuel. A subchannel code, MATRA-AF which can be coupled to MATRA and can calculate the coolant flow distribution and heat transfer fraction in the internal and external subchannels has been developed. In this paper, the characteristics and the verification of the MATRA-AF are described. The effects of the thermal hydraulic parameters are estimated through a single fuel assembly

  18. CFD Simulation of Annular Centrifugal Extractors

    S. Vedantam

    2012-01-01

    Full Text Available Annular centrifugal extractors (ACE, also called annular centrifugal contactors offer several advantages over the other conventional process equipment such as low hold-up, high process throughput, low residence time, low solvent inventory and high turn down ratio. The equipment provides a very high value of mass transfer coefficient and interfacial area in the annular zone because of the high level of power consumption per unit volume and separation inside the rotor due to the high g of centrifugal field. For the development of rational and reliable design procedures, it is important to understand the flow patterns in the mixer and settler zones. Computational Fluid Dynamics (CFD has played a major role in the constant evolution and improvements of this device. During the past thirty years, a large number of investigators have undertaken CFD simulations. All these publications have been carefully and critically analyzed and a coherent picture of the present status has been presented in this review paper. Initially, review of the single phase studies in the annular region has been presented, followed by the separator region. In continuation, the two-phase CFD simulations involving liquid-liquid and gas-liquid flow in the annular as well as separator regions have been reviewed. Suggestions have been made for the future work for bridging the existing knowledge gaps. In particular, emphasis has been given to the application of CFD simulations for the design of this equipment.

  19. Safety and Economics of High Power Density PWR with Novel Annular Fuel

    The internally and externally cooled annular fuel is a new type of fuel for PWRs that enables an increase in core power density by 50% within the same or better safety margins as the traditional solid fuel. Each assembly of traditional side dimensions has 160 annular fuel rods arranged in a 13x13 array. Even at the much higher power density, the fuel exhibits substantially lower temperatures and a MDNBR margin comparable to that of the traditional solid fuel at nominal (100%) power. Safety analyses indicate that the new annular fuel can accommodate 50% power up-rate in a PWR and still maintain adequate safety margins for a variety of transients and accidents including Loss of Flow Accident, Main Steam Line Break, Large Break Loss of Coolant Accident and Rod Ejection Accident. An economic study of 50% up-rate of an existing 1200 MW(e) PWR using the annular fuel shows that: (1) an Internal Rate of Return (IRR) on the order of 20% or more can be expected from such projects, even when accounting for uncertainties in the fuel price, electricity price inflation and cost of equipment; (2) Gradual replacement of the solid core by annular batches prior to up-rating can improve the IRR by 2.3% to 3.5% as it allows to full use of the energy in two already paid for batches of solid fuel rather than discarding them. Mixing of annular and solid fuel assemblies in one core appears feasible due to similar pressure drop characteristics of both assemblies. (authors)

  20. Annular bilayer magnetoelectric composites: theoretical analysis.

    Guo, Mingsen; Dong, Shuxiang

    2010-01-01

    The laminated bilayer magnetoelectric (ME) composites consist of magnetostrictive and piezoelectric layers are known to have giant ME coefficient due to the high coupling efficiency in bending mode. In our previous report, the bar-shaped bilayer composite has been investigated by using a magnetoelectric-coupling equivalent circuit. Here, we propose an annular bilayer ME composite, which consists of magnetostrictive and piezoelectric rings. This composite has a much lower resonance frequency of bending mode compared with its radial mode. In addition, the annular bilayer ME composite is expected to respond to vortex magnetic field as well as unidirectional magnetic field. In this paper, we investigate the annular bilayer ME composite by using impedance-matrix method and predict the ME coefficients as a function of geometric parameters of the composites. PMID:20178914

  1. Stitching algorithm for annular subaperture interferometry

    Xi Hou; Fan Wu; Li Yang; Shibin Wu; Qiang Chen

    2006-01-01

    @@ Annular subaperture interferometry (ASI) has been developed for low cost and flexible test of rotationally symmetric aspheric surfaces, in which accurately combining the subaperture measurement data corrupted by misalignments and noise into a complete surface figure is the key problem. By introducing the Zernike annular polynomials which are orthogonal over annulus, a method that eliminates the coupling problem in the earlier algorithm based on Zernike circle polynomials is proposed. Vector-matrix notation is used to simplify the description and calculations. The performance of this reduction method is evaluated by numerical simulation. The results prove this method with high precision and good anti-noise capability.

  2. Optimal Thrust Vectoring for an Annular Aerospike Nozzle Project

    National Aeronautics and Space Administration — Recent success of an annular aerospike flight test by NASA Dryden has prompted keen interest in providing thrust vector capability to the annular aerospike nozzle...

  3. Hybrid Beamforming and Steering With Reconfigurable Arrays

    Hooi, Fong Ming; Thomenius, Kai E.; Fisher, Rayette; Carson, Paul L.

    2010-01-01

    Reconfigurable arrays offer an advantage over traditional ultrasound arrays because of their flexibility in channel selection. To improve ultrasound beamforming and coverage through beam steering, we propose a hybrid beamforming technique to elongate the depth of focus of transmit beams and a method of element selection that improves steering capabilities that take advantage of array reconfigurability using annular rings. A local minimization technique to optimize the hybrid aperture is discu...

  4. Experimental critical parameters of enriched uranium solution in annular tank geometries

    Rothe, R.E.

    1996-04-01

    A total of 61 critical configurations are reported for experiments involving various combinations of annular tanks into which enriched uranium solution was pumped. These experiments were performed at two widely separated times in the 1980s under two programs at the Rocky Flats Plant`s Critical Mass Laboratory. The uranyl nitrate solution contained about 370 g of uranium per liter, but this concentration varied a little over the duration of the studies. The uranium was enriched to about 93% [sup 235]U. All tanks were typical of sizes commonly found in nuclear production plants. They were about 2 m tall and ranged in diameter from 0.6 m to 1.5 m. Annular thicknesses and conditions of neutron reflection, moderation, and absorption were such that criticality would be achieved with these dimensions. Only 13 of the entire set of 74 experiments proved to be subcritical when tanks were completely filled with solution. Single tanks of several radial thicknesses were studied as well as small line arrays (1 x 2 and 1 x 3) of annular tanks. Many systems were reflected on four sides and the bottom by concrete, but none were reflected from above. Many experiments also contained materials within and outside the annular regions that contained strong neutron absorbers. One program had such a thick external moderator/absorber combination that no reflector was used at all.

  5. Experimental critical parameters of enriched uranium solution in annular tank geometries

    A total of 61 critical configurations are reported for experiments involving various combinations of annular tanks into which enriched uranium solution was pumped. These experiments were performed at two widely separated times in the 1980s under two programs at the Rocky Flats Plant's Critical Mass Laboratory. The uranyl nitrate solution contained about 370 g of uranium per liter, but this concentration varied a little over the duration of the studies. The uranium was enriched to about 93% [sup 235]U. All tanks were typical of sizes commonly found in nuclear production plants. They were about 2 m tall and ranged in diameter from 0.6 m to 1.5 m. Annular thicknesses and conditions of neutron reflection, moderation, and absorption were such that criticality would be achieved with these dimensions. Only 13 of the entire set of 74 experiments proved to be subcritical when tanks were completely filled with solution. Single tanks of several radial thicknesses were studied as well as small line arrays (1 x 2 and 1 x 3) of annular tanks. Many systems were reflected on four sides and the bottom by concrete, but none were reflected from above. Many experiments also contained materials within and outside the annular regions that contained strong neutron absorbers. One program had such a thick external moderator/absorber combination that no reflector was used at all

  6. A New Annular Shear Piezoelectric Accelerometer

    Liu, Bin; Kriegbaum, B.

    2000-01-01

    This paper describes the construction and performance of a recently introduced Annular Shear piezoelectric accelerometer, Type 4511. The design has insulated and double-shielded case. The accelerometer housing is made of stainless steel, AISI 316L. Piezoceramic PZ23 is used. The seismic mass...

  7. Azimuthally forced flames in an annular combustor

    Worth, Nicholas; Dawson, James; Mastorakos, Epaminondas

    2015-11-01

    Thermoacoustic instabilities are more likely to occur in lean burn combustion systems, making their adoption both difficult and costly. At present, our knowledge of such phenomena is insufficient to produce an inherently stable combustor by design, and therefore an improved understanding of these instabilities has become the focus of a significant research effort. Recent experimental and numerical studies have demonstrated that the symmetry of annular chambers permit a range of self-excited azimuthal modes to be generated in annular geometry, which can make the study of isolated modes difficult. While acoustic forcing is common in single flame experiments, no equivalent for forced azimuthal modes in an annular chamber have been demonstrated. The present investigation focuses on the novel application of acoustic forcing to a laboratory scale annular combustor, in order to generate azimuthal standing wave modes at a prescribed frequency and amplitude. The results focus on the ability of the method to isolate the mode of oscillation using experimental pressure and high speed OH* measurements. The successful excitation of azimuthal modes demonstrated represents an important step towards improving our fundamental understanding of this phenomena in practically relevant geometry.

  8. Management of Periocular Granuloma Annulare Using Topical Dapsone

    Patel, Mayha; Shitabata, Paul; Horowitz, David

    2015-01-01

    Granuloma annulare is a disease characterized by granulomatous inflammation of the dermis. Localized granuloma annulare may resolve spontaneously, while generalized granuloma annulare may persist for decades. The authors present the case of a 41-year-old Hispanic man with a two-week history of periocular granuloma annulare. Due to previously reported success in the use of systemic dapsone for the treatment of granuloma annulare, and the periocular proximity of the patient’s lesion, topical dapsone was used for treatment. Various additional therapies for the management of granuloma annulare have been reported, such as topical and systemic steroids, isotretinoin, pentoxifylline, cyclosporine, Interferon gamma, potassium iodide, nicotinamide, niacinamide, salicylic acid, fumaric acid ester, etanercept, infliximab, and hydroxychloroquine. Additional clinical trials are necessary to further evaluate the effectiveness of topical dapsone in the management of granuloma annulare. PMID:26203321

  9. The development of ASPECT, an annular single crystal brain camera for high efficiency spect

    ASPECT is a new totally-digital annular SPECT camera system designed specifically for 3-dimensional brain imaging. Its detector consists of a ''single-crystal'' NaI(TI) ring (31 cm i.d. by 8 mm thick by 13 cm wide) coupled through an annular light pipe to a 21 by 3 array of 51 mm square photomultipliers. A unique multifield collimator system, consisting of set of six parallel hole collimators oriented in an annular array, is designed to view the patient's head from six angles simultaneously. This ring is rotated with high precision, concentric to the detector, through 2π radians to sample gamma ray emissions for 3-D reconstruction over a 23 cm by 9 cm field of view. Preliminary results indicate that central regions of the brain will be detected with an efficiency of about six times that of a conventional rotating parallel-hole camera SPECT system and an effective inherent transverse resolution of within 3.5 mm. The system is designed to achieve a reconstructed resolution FWHM within 7.5 mm at the center of the image field. It also features unique means for digital position analysis, calibration and user quality control. With ASPECT's precision rotating collimator, artifacts normally associated with detector motion, nonuniform sensitivity, and spatial nonlinearities are expected to be insignificant

  10. Non newtonian annular alloy solidification in mould

    Moraga, Nelson O.; Garrido, Carlos P. [Universidad de La Serena, Departamento de Ingenieria Mecanica, La Serena (Chile); Castillo, Ernesto F. [Universidad de Santiago de Chile, Departamento de Ingenieria Mecanica, Santiago (Chile)

    2012-08-15

    The annular solidification of an aluminium-silicon alloy in a graphite mould with a geometry consisting of horizontal concentric cylinders is studied numerically. The analysis incorporates the behavior of non-Newtonian, pseudoplastic (n=0.2), Newtonian (n=1), and dilatant (n=1.5) fluids. The fluid mechanics and heat transfer coupled with a transient model of convection diffusion are solved using the finite volume method and the SIMPLE algorithm. Solidification is described in terms of a liquid fraction of a phase change that varies linearly with temperature. The final results make it possible to infer that the fluid dynamics and heat transfer of solidification in an annular geometry are affected by the non-Newtonian nature of the fluid, speeding up the process when the fluid is pseudoplastic. (orig.)

  11. Performance of annular high frequency thermoacoustic engines

    Rodriguez, Ivan A.

    This thesis presents studies of the behavior of miniature annular thermoacoustic prime movers and the imaging of the complex sound fields using PIV inside the small acoustic wave guides when driven by a temperature gradient. Thermoacoustic engines operating in the standing wave mode are limited in their acoustic efficiency by a high degree of irreversibility that is inherent in how they work. Better performance can be achieved by using traveling waves in the thermoacoustic devices. This has led to the development of an annular high frequency thermoacoustic prime mover consisting of a regenerator, which is a random stack in-between a hot and cold heat exchanger, inside an annular waveguide. Miniature devices were developed and studied with operating frequencies in the range of 2-4 kHz. This corresponds to an average ring circumference of 11 cm for the 3 kHz device, the resonator bore being 6 mm. A similar device of 11 mm bore, length of 18 cm was also investigated; its resonant frequency was 2 kHz. Sound intensities as high as 166.8 dB were generated with limited heat input. Sound power was extracted from the annular structure by an impedance-matching side arm. The nature of the acoustic wave generated by heat was investigated using a high speed PIV instrument. Although the acoustic device appears symmetric, its performance is characterized by a broken symmetry and by perturbations that exist in its structure. Effects of these are observed in the PIV imaging; images show axial and radial components. Moreover, PIV studies show effects of streaming and instabilities which affect the devices' acoustic efficiency. The acoustic efficiency is high, being of 40% of Carnot. This type of device shows much promise as a high efficiency energy converter; it can be reduced in size for microcircuit applications.

  12. Annular Alopecia Areata: Report of Two Cases

    Bansal, Manish; Manchanda, Kajal; Pandey, SS

    2013-01-01

    Alopecia areata (AA) is an auto-immune disorder characterized by the appearance of non-scarring bald patches affecting the hair bearing areas of the body. Scalp is the most common site of involvement. AA can affect any age group. The usual pattern of the hair loss is oval or round. We hereby, report two cases of annular and circinate pattern of AA due to its unusual morphology.

  13. Annular pancreas associated with duodenal carcinoma

    Enrico; Bronnimann; Silke; Potthast; Tatjana; Vlajnic; Daniel; Oertli; Oleg; Heizmann

    2010-01-01

    Annular pancreas (AP) is a rare congenital anomaly. Coexisting malignancy has been reported only in a few cases. We report what is, to the best of our knowledge, the first case in the English literature of duodenal adenocarcinoma in a patient with AP. In a 55-year old woman with duodenal outlet stenosis magnetic resonance cholangiopancreatography showed an aberrant pancreatic duct encircling the duodenum. Duodenojejunostomy was performed. Eight weeks later she presented with painless jaundice. Duodenopancre...

  14. Vibration analysis of annular-like plates

    Cheng, L.; Li, Y. Y.; Yam, L. H.

    2003-05-01

    The existence of eccentricity of the central hole for an annular plate results in a significant change in the natural frequencies and mode shapes of the structure. In this paper, the vibration analysis of annular-like plates is presented based on numerical and experimental approaches. Using the finite element analysis code Nastran, the effects of the eccentricity, hole size and boundary condition on vibration modes are investigated systematically through both global and local analyses. The results show that analyses for perfect symmetric conditions can still roughly predict the mode shapes of "recessive" modes of the plate with a slightly eccentric hole. They will, however, lead to erroneous results for "dominant" modes. In addition, the residual displacement mode shape is verified as an effective parameter for identifying damage occurring in plate-like structures. Experimental modal analysis on a clamped-free annular-like plate is performed, and the results obtained reveal good agreement with those obtained by numerical analysis. This study provides guidance on modal analysis, vibration measurement and damage detection of plate-like structures.

  15. Effect of Annular Slit Geometry on Characteristics of Spiral Jet

    Shigeru Matsuo; Kwon-Hee Lee; Shinsuke Oda; Toshiaki Setoguchi; Heuy-Dong Kim

    2003-01-01

    A spiral flow using an annular slit connected to a conical cylinder does not need special device to generate a tangential velocity component of the flow and differs from swirling flows. Pressurized fluid is supplied to an annular chamber and injected into the convergent nozzle through the annular slit. The annular jet develops into the spiral flow. In the present study, a spiral jet discharged out of nozzle exit was obtained by using a convergent nozzle and an annular slit set in nozzle inlet, and the effect of annular slit geometry on characteristics of the spiral jet was investigated by using a Laser Doppler Velocimeter (LDV) experimentally. Furthermore, velocity distributions of the spiral jet were compared with those of a normal jet.

  16. Ultrasonogrphic diagnosis of snapping annular ligament in the elbow

    Chai, Jee Won; Kim Su Jin; Lim, Hyun Kyong; Bae, Kee Jeong [SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2015-01-15

    Elbow snapping by annular ligament is rare and may be difficult to diagnose, when this Epub ahead of print condition is not familiar. We report a case of elbow snapping by annular ligament diagnosed by ultrasonography, which was confirmed by arthroscopic observation. The ultrasonographic findings were thickening of the annular ligament and snapping in and out of the radiocapitellar joint during elbow flexion and extension on dynamic ultrasonography.

  17. Granuloma annulare localized to the shaft of the penis

    Trap, R; Wiebe, B

    1993-01-01

    A case of granuloma annulare localized to the shaft of the penis is reported. The differential diagnoses are discussed. Penile granuloma annulare is a rare disorder and it is concluded that biopsies of penile lesions are recommended to verify the correct diagnosis.......A case of granuloma annulare localized to the shaft of the penis is reported. The differential diagnoses are discussed. Penile granuloma annulare is a rare disorder and it is concluded that biopsies of penile lesions are recommended to verify the correct diagnosis....

  18. Thread-annular flow in vertical pipes

    Frei, Ch.; Lüscher, P.; Wintermantel, E.

    2000-05-01

    Thread injection is a promising method for different minimally invasive medical applications. This paper documents an experimental study dealing with an axially moving thread in annular pipe flow. Mass flow and axial force on the thread are measured for a 0.46 mm diameter thread in pipes with diameters between 0.55 and 1.35 mm. The experiments with thread velocities of up to 1.5 ms[minus sign]1 confirm the findings of theoretical studies that for clinical requirements the radius ratio between thread and pipe is crucial for the adjustments of mass ow and force on the thread.

  19. Deep variant of Erythema Annulare Centrifugum

    Ahu Yorulmaz; Ferda Artuz; Devrim Tuba Unal

    2014-01-01

    A 29-year-old woman came to our outpatient clinic with a several-month history of itchy red lesions over her trunk. There was no family history and past history of any other diseases or medication. Dermatological examination revealed annular and oval-shaped plaques up to several cm’s in size, one of which was polycyclic in configuration, on back of the patient (Fig. 1). It was also noticed that lesions had erythematous indurated bordes with paler central areas (Fig. 1).

  20. Deep variant of Erythema Annulare Centrifugum

    Ahu Yorulmaz

    2014-10-01

    Full Text Available A 29-year-old woman came to our outpatient clinic with a several-month history of itchy red lesions over her trunk. There was no family history and past history of any other diseases or medication. Dermatological examination revealed annular and oval-shaped plaques up to several cm’s in size, one of which was polycyclic in configuration, on back of the patient (Fig. 1. It was also noticed that lesions had erythematous indurated bordes with paler central areas (Fig. 1.

  1. Visualization of the annular synthetic jet

    Broučková, Zuzana; Trávníček, Zdeněk; Šafařík, Pavel

    Praha: Ústav termomechaniky AV ČR, v. v. i, 2012 - (Šimurda, D.; Kozel, K.), s. 13-16 ISBN 978-80-87012-40-6. [Topical Problems of Fluid Mechanics 2012. Praha (CZ), 15.02.2012-17.02.2012] R&D Projects: GA AV ČR(CZ) IAA200760801; GA ČR(CZ) GCP101/11/J019 Institutional research plan: CEZ:AV0Z20760514 Keywords : synthetic jet * annular jet * visualization Subject RIV: BK - Fluid Dynamics

  2. Wave turbulence in annular wave tank

    Onorato, Miguel; Stramignoni, Ettore

    2014-05-01

    We perform experiments in an annular wind wave tank at the Dipartimento di Fisica, Universita' di Torino. The external diameter of the tank is 5 meters while the internal one is 1 meter. The tank is equipped by two air fans which can lead to a wind of maximum 5 m/s. The present set up is capable of studying the generation of waves and the development of wind wave spectra for large duration. We have performed different tests including different wind speeds. For large wind speed we observe the formation of spectra consistent with Kolmogorv-Zakharov predictions.

  3. Interfacial friction in cocurrent upward annular flow

    Hossfeld, L. M.; Bharathan, D.; Wallis, G. B.; Richter, H. J.

    1982-03-01

    Cocurrent upward annular flow is investigated, with an emphasis on correlating and predicting pressure drop. Attention is given to the characteristics of the liquid flow in the film, and the interaction of the core with the film. Alternate approaches are discussed for correlating suitably defined interfacial friction factors. Both approaches are dependent on knowledge of the entrainment in order to make predictions. Dimensional analysis is used to define characteristic parameters of the flow and an effort is made to determine, to the extent possible, the influences of these parameters on the interfacial friction factor.

  4. Air-water countercurrent annular flow

    Bharathan, D.

    1979-09-01

    Countercurrent annular flow of air and water in circular tubes of diameters ranging from 6.4 to 152 mm is investigated. Experimental measurements include liquid fraction, pressure gradients and countercurrent gas and liquid fluxes. Influences of tube end geometries on the countercurrent fluxes are isolated. Analogies between countercurrent flow, open channel flow, and compressible flow are established. Interfacial momentum transfer between the phases are characterized by empirical friction factors. The dependence of interfacial friction factors on tube diameter is shown to yield a basis for extending the present results to larger tubes.

  5. Annular diffraction of very unstable light nuclei

    Because they are brittle, unstable light nuclei can produce an annular diffraction pattern observed on their decay products with large cross sections. With such a simple model, the 9Li angular distribution observed in the 11Li fragmentation have been reproduced together with the reaction cross-section and the fragmentation yield provided recoil effects from neutron emission are included. It results that for this projectile and for light targets, diffraction is the main source of transverse momentum for 9Li whereas for neutrons it originates from its emission energy in the 11Li center of mass

  6. Air-water countercurrent annular flow

    Countercurrent annular flow of air and water in circular tubes of diameters ranging from 6.4 to 152 mm is investigated. Experimental measurements include liquid fraction, pressure gradients and countercurrent gas and liquid fluxes. Influences of tube end geometries on the countercurrent fluxes are isolated. Analogies between countercurrent flow, open channel flow, and compressible flow are established. Interfacial momentum transfer between the phases are characterized by empirical friction factors. The dependence of interfacial friction factors on tube diameter is shown to yield a basis for extending the present results to larger tubes

  7. Annular superconducting tunnel junction detectors: Experimental results under X-ray illumination

    We present an experiment detecting X-rays by an annular Nb-based Superconducting Tunnel Junction (STJ). In one magnetic field configuration, we stably trapped a single magnetic fluxon in the STJ barrier during the transition to the superconducting state. This is an innovative configuration which avoids the use of an externally applied field during detector operation. This offers potential benefits for STJs used in imaging arrays. In this configuration, and also in the conventional one with an externally applied parallel magnetic field, we observed current pulses produced by single 6 keV X-rays. The pulses were identical for both configurations

  8. Detonation diffraction from an annular channel

    Meredith, James; Ng, Hoi Dick; Lee, John H. S.

    2010-12-01

    In this study, gaseous detonation diffraction from an annular channel was investigated with a streak camera and the critical pressure for transmission of the detonation wave was obtained. The annular channel was used to approximate an infinite slot resulting in cylindrically expanding detonation waves. Two mixtures, stoichiometric acetylene-oxygen and stoichiometric acetylene-oxygen with 70% Ar dilution, were tested in a 4.3 and 14.3 mm channel width ( W). The undiluted and diluted mixtures were found to have values of the critical channel width over the cell size around 3 and 12 respectively. Comparing these results to values of the critical diameter ( d c ), in which a spherical detonation occurs, a value of critical d c / W c near 2 is observed for the highly diluted mixture. This value corresponds to the geometrical factor of the curvature term between a spherical and cylindrical diverging wave. Hence, the result is in support of Lee's proposed mechanism [Lee in Dynamics of Exothermicity, pp. 321, Gordon and Breach, Amsterdam, 1996] for failure due to diffraction based on curvature in stable mixtures such as those highly argon diluted with very regular detonation cellular patterns.

  9. Sensors Array Technique for Monitoring Aluminum Alloy Spot Welding

    王蕤; 罗震; 单平; 步贤政; 袁书现; 敖三三

    2010-01-01

    In this paper,the sensors array technique is applied to the quality detection of aluminum alloy spot welding.The sensors array has three forms,i.e.,linear magnetic sensors array,annular magnetic sensors array and cross magnetic sensors array.An algorithm based on principal component analysis is proposed to extract the signal eigenvalues.The three types of magnetic sensors array are used in the experiment of monitoring the signal.After the eigenvalues are extracted,they are used to build a relationship with ...

  10. Annular beam shaping and optical trepanning

    Zeng, Danyong

    Percussion drilling and trepanning are two laser drilling methods. Percussion drilling is accomplished by focusing the laser beam to approximately the required diameter of the hole, exposing the material to one or a series of laser pulses at the same spot to melt and vaporize the material. Drilling by trepanning involves cutting a hole by rotating a laser beam with an optical element or an x-y galvo-scanner. Optical trepanning is a new laser drilling method using an annular beam. The annular beams allow numerous irradiance profiles to supply laser energy to the workpiece and thus provide more flexibility in affecting the hole quality than a traditional circular laser beam. Heating depth is important for drilling application. Since there are no good ways to measure the temperature inside substrate during the drilling process, an analytical model for optical trepanning has been developed by considering an axisymmetric, transient heat conduction equation, and the evolutions of the melting temperature isotherm, which is referred to as the melt boundary in this study, are calculated to investigate the influences of the laser pulse shapes and intensity profiles on the hole geometry. This mathematical model provides a means of understanding the thermal effect of laser irradiation with different annular beam shapes. To take account of conduction in the solid, vaporization and convection due to the melt flow caused by an assist gas, an analytical two-dimensional model is developed for optical trepanning. The influences of pulse duration, laser pulse length, pulse repetition rate, intensity profiles and beam radius are investigated to examine their effects on the recast layer thickness, hole depth and taper. The ray tracing technique of geometrical optics is employed to design the necessary optics to transform a Gaussian laser beam into an annular beam of different intensity profiles. Such profiles include half Gaussian with maximum intensities at the inner and outer

  11. 75 FR 23582 - Annular Casing Pressure Management for Offshore Wells

    2010-05-04

    ... Recommended Practice (RP) 90. As explained in API RP 90, Section 3, Annular Casing Pressure Management Program... Institute's Recommended Practice for managing annular casing pressure. New regulations are needed because... Continental Shelf lessees to follow best industry practices for wells with sustained casing pressure....

  12. Obtention of an empirical equation for annular channels

    Using a trial circuit, the experimental heat transfer coefficient is determined, in forced convection at one phase only within an annular channel in which water flows ascendantly and for this reason an empirical equation is determined. This work tries to contribute to the understanding of the forced convection phenomena in non tubular geometries like the annular channels. (Author)

  13. Effect of annular secondary conductor in a linear electromagnetic stirrer

    R Madhavan; V Ramanarayanan

    2008-10-01

    This paper presents the variation of average axial force density in the annular secondary conductor of a linear electromagnetic stirrer. Different geometries of secondaries are considered for numerical and experimental validation namely, 1. hollow annular ring, 2. annular ring with a solid cylinder and 3. solid cylinder. Experimental and numerical simulations are performed for a 2-pole in house built 15 kW linear electromagnetic stirrer (EMS). It is observed for a supply current of 200 A at 30 Hz the force densities in the hollow annular ring is 67% higher than the equivalent solid cylinder. The same values are 33% for annular ring with a solid cylinder. Force density variation with supply frequency and current are also reported. Numerical simulations using finite element model are validated with experimental results.

  14. Dual-Band Annular-Ring Microstrip Patch Antenna for Satellite Applications

    Tvs Divakar

    2014-08-01

    Full Text Available A dual-band circularly polarized antenna fed by four apertures that covers the bands of GPS, Galileo, is introduced. The ARSAs designed using FR4 substrates in the L and S bands have 3-dB axial-ratio bandwidths (ARBWs of as large as 37% and 52%, respectively, whereas the one using an RT5880 substrate in the L band, 61%. In these 3-dB axial-ratio bands, impedance matching with VSWR<=1.8 is also achieved. Three wideband planar baluns are used to achieve good axial ratio and VSWR. The results of the annular-ring microstrip antenna show good performance of a dual-band operation, which meets the requirement of Global Navigation Satellite System (GNSS applications.

  15. Facility modernization Annular Core Research Reactor

    The Annular Core Research Reactor (ACRR) has undergone numerous modifications since its conception in response to program needs. The original reactor fuel, which was special U-ZrH TRIGA fuel designed primarily for pulsing, has been replaced with a higher pulsing capacity BeO fuel. Other advanced operating modes which use this increased capability, in addition to the pulse and steady state, have been incorporated to tailor power histories and fluences to the experiments. Various experimental facilities have been developed that range from a radiography facility to a 50 cm diameter External Fuel Ring Cavity (FREC) using 180 of the original ZrH fuel elements. Currently a digital reactor console is being produced with GA, which will give enhanced monitoring capabilities of the reactor parameters while leaving the safety-related shutdown functions with analog technology. (author)

  16. Hydrodynamics of annular-dispersed flow

    The interfacial drag, droplet entrainment, and droplet size distributions are important for detailed mechanistic modeling of annular dispersed two-phase flow. In view of this, recently developed correlations for these parameters are presented and discussed in this paper. The drag correlations for multiple fluid particle systems have been developed from a similarity hypothesis based on the mixture viscosity model. The results show that the drag coefficient depends on the particle Reynolds number and droplet concentration. The onset on droplet entrainment significantly alters the mechanisms of mass, momentum, and energy transfer between the film and gas core flow as well as the transfer between the two-phase mixture and the wall. By assuming the roll wave entrainment mechanism, the correlations for the amount of entrained droplet as well as for the droplet size distribution have been obtained from a simple model in collaboration with a large number of data

  17. Recurrent Annular Peripheral Choroidal Detachment after Trabeculectomy

    Shaohui Liu

    2013-10-01

    Full Text Available We report a challenging case of recurrent flat anterior chamber without hypotony after trabeculectomy in a 54-year-old Black male with a remote history of steroid-treated polymyositis, cataract surgery, and uncontrolled open angle glaucoma. The patient presented with a flat chamber on postoperative day 11, but had a normal fundus exam and intraocular pressure (IOP. Flat chamber persisted despite treatment with cycloplegics, steroids, and a Healon injection into the anterior chamber. A transverse B-scan of the peripheral fundus revealed a shallow annular peripheral choroidal detachment. The suprachoroidal fluid was drained. The patient presented 3 days later with a recurrent flat chamber and an annular peripheral choroidal effusion. The fluid was removed and reinforcement of the scleral flap was performed with the resolution of the flat anterior chamber. A large corneal epithelial defect developed after the second drainage. The oral prednisone was tapered quickly and the topical steroid was decreased. One week later, his vision decreased to count fingers with severe corneal stromal edema and Descemet's membrane folds that improved to 20/50 within 24 h of resumption of the oral steroid and frequent topical steroid. The patient's visual acuity improved to 20/20 following a slow withdrawal of the oral and topical steroid. Eight months after surgery, the IOP was 15 mm Hg without glaucoma medication. The detection of a shallow anterior choroidal detachment by transverse B-scan is critical to making the correct diagnosis. Severe cornea edema can occur if the steroid is withdrawn too quickly. Thus, steroids should be tapered cautiously in steroid-dependent patients.

  18. Annular MHD Physics for Turbojet Energy Bypass

    Schneider, Steven J.

    2011-01-01

    The use of annular Hall type MHD generator/accelerator ducts for turbojet energy bypass is evaluated assuming weakly ionized flows obtained from pulsed nanosecond discharges. The equations for a 1-D, axisymmetric MHD generator/accelerator are derived and numerically integrated to determine the generator/accelerator performance characteristics. The concept offers a shockless means of interacting with high speed inlet flows and potentially offers variable inlet geometry performance without the complexity of moving parts simply by varying the generator loading parameter. The cycle analysis conducted iteratively with a spike inlet and turbojet flying at M = 7 at 30 km altitude is estimated to have a positive thrust per unit mass flow of 185 N-s/kg. The turbojet allowable combustor temperature is set at an aggressive 2200 deg K. The annular MHD Hall generator/accelerator is L = 3 m in length with a B(sub r) = 5 Tesla magnetic field and a conductivity of sigma = 5 mho/m for the generator and sigma= 1.0 mho/m for the accelerator. The calculated isentropic efficiency for the generator is eta(sub sg) = 84 percent at an enthalpy extraction ratio, eta(sub Ng) = 0.63. The calculated isentropic efficiency for the accelerator is eta(sub sa) = 81 percent at an enthalpy addition ratio, eta(sub Na) = 0.62. An assessment of the ionization fraction necessary to achieve a conductivity of sigma = 1.0 mho/m is n(sub e)/n = 1.90 X 10(exp -6), and for sigma = 5.0 mho/m is n(sub e)/n = 9.52 X 10(exp -6).

  19. Stability of cantilevered coaxial shells with internal and annular flow

    This paper is a theoretical study of the stability of cantilevered coaxial cylindrical shells conveying incompressible fluid in the annular space in- between and within the inner shell. The viscous effects of the mean flow are taken into account, but the perturbations of the equilibrium state on the basis of which stability is assessed is carried out by means of potential flow theory, thus neglecting unsteady viscous effects which are known to become important for narrow annular flows. Shell displacements are described by Flugge's equations of motion. Solution of the coupled fluid-structure equations is carried out by means of the Fourier Transform Method. The main finding of this research is that stability is lost by flutter for internal flow, according to both the inviscid and viscous variants of the theory; for annular flow, however, whereas inviscid theory predicts loss of stability by flutter, viscous theory (with dissipative effects included) predicts that the shell loses stability by divergence and then, at appreciably higher flow, by flutter. Reduction of the annular gap generally destabilizes the system; while increased steady viscous effects slightly stabilize the system for internal flow, they strongly destabilize it for annular flow. Increasing the length of the shell destabilizes the system for both internal and annular flows. The presence of internal flow in addition to annular flow tends to stabilize the system vis-a-vis the case of annular flow, but only at low flow velocities, having the opposite effect at higher flows; the same effects arise when the main flow is internal and an annular flow added to the system

  20. Detonation Initiation by Annular Jets and Shock Waves

    Shepherd, Joseph E.

    2005-01-01

    The objective of this research is to experimentally determine the feasibility of initiating detonation in fuel-air mixtures using only the energy in hot, compressed air. The existing 6-inch shock tube at Caltech was used to create hot, high-pressure air behind a reflected shock wave. The hot air created an imploding annular shock wave when it jetted through an annular orifice into a 76-mm-diameter, 1-m-long tube attached to the end of the shock tube. A special test section with an annular ...

  1. Micromachining techniques in developing high-frequency piezoelectric composite ultrasonic array transducers.

    Liu, Changgeng; Djuth, Frank T; Zhou, Qifa; Shung, K Kirk

    2013-12-01

    Several micromachining techniques for the fabrication of high-frequency piezoelectric composite ultrasonic array transducers are described in this paper. A variety of different techniques are used in patterning the active piezoelectric material, attaching backing material to the transducer, and assembling an electronic interconnection board for transmission and reception from the array. To establish the feasibility of the process flow, a hybrid test ultrasound array transducer consisting of a 2-D array having an 8 × 8 element pattern and a 5-element annular array was designed, fabricated, and assessed. The arrays are designed for a center frequency of ~60 MHz. The 2-D array elements are 105 × 105 μm in size with 5-μm kerfs between elements. The annular array surrounds the square 2-D array and provides the option of transmitting from the annular array and receiving with the 2-D array. Each annular array element has an area of 0.71 mm(2) with a 16-μm kerf between elements. The active piezoelectric material is (1 - x) Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT)/epoxy 1-3 composite with a PMN-PT pillar lateral dimension of 8 μm and an average gap width of ~4 μm, which was produced by deep reactive ion etching (DRIE) dry etching techniques. A novel electric interconnection strategy for high-density, small-size array elements was proposed. After assembly, the array transducer was tested and characterized. The capacitance, pulse-echo responses, and crosstalk were measured for each array element. The desired center frequency of ~60 MHz was achieved and the -6-dB bandwidth of the received signal was ~50%. At the center frequency, the crosstalk between adjacent 2-D array elements was about -33 dB. The techniques described herein can be used to build larger arrays containing smaller elements. PMID:24297027

  2. Assessment of Inner Channel Blockage on the Annular Fuel Rod

    Shin, C. H.; In, W. K.; Oh, D. S.; Chun, T. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    A dual-cooled annular fuel for a pressurized water reactor (PWR) has been introduced for a significant amount of reactor power uprate. The Korea Atomic Energy Research Institute (KAERI) has been performing a research to develop a dual-cooled annular fuel for the power uprate of 20% in an optimized PWR in Korea, OPR1000. An inner channel blockage is principal one of technical issues of the annular fuel rod. The inner channel in an annular fuel is isolated from the neighbor channels unlike the outer channels. The inner channel will be faced with a DNB accident by the partial blockage. In this paper, the largest fractional channel blockage was assessed by subchannel analysis code MATRA-AF and an end plug design to complement inlet blockage of inner channel was estimated by CFD code, CFD-ACE

  3. Annular linear induction pump with an externally supported duct

    An annular linear induction pump of increased efficiency is described, capable of being readily disassembled for repair or replacement of parts, and having one pass flow of the liquid metal through the pump. (U.K.)

  4. Principle of radial transport in low temperature annular plasmas

    Zhang, Yunchao, E-mail: yunchao.zhang@anu.edu.au; Charles, Christine; Boswell, Rod [Space Plasma, Power and Propulsion Laboratory, Research School of Physics and Engineering, The Australian National University, Bldg 60, Mills Road, Australian Capital Territory 2601 (Australia)

    2015-07-15

    Radial transport in low temperature annular plasmas is investigated theoretically in this paper. The electrons are assumed to be in quasi-equilibrium due to their high temperature and light inertial mass. The ions are not in equilibrium and their transport is analyzed in three different situations: a low electric field (LEF) model, an intermediate electric field (IEF) model, and a high electric field (HEF) model. The universal IEF model smoothly connects the LEF and HEF models at their respective electric field strength limits and gives more accurate results of the ion mobility coefficient and effective ion temperature over the entire electric field strength range. Annular modelling is applied to an argon plasma and numerical results of the density peak position, the annular boundary loss coefficient and the electron temperature are given as functions of the annular geometry ratio and Paschen number.

  5. Annular elastolytic giant cell granuloma in association with Hashimoto's thyroiditis

    Rishi Hassan; P Arunprasath; Padmavathy, L.; K Srivenkateswaran

    2016-01-01

    Annular elastolytic giant cell granuloma (AEGCG) is a rare granulomatous skin disease characterized clinically by annular plaques with elevated borders and atrophic centers found mainly on sun-exposed skin and histologically by diffuse granulomatous infiltrates composed of multinucleated giant cells, histiocytes and lymphocytes in the dermis along with phagocytosis of elastic fibers by multinucleated giant cells. We report a case of AEGCG in a 50-year-old woman and is highlighted for the clas...

  6. Annular bright and dark field imaging of soft materials

    Here polyethylene, as an example of an important soft material, was studied by STEM annular bright and dark field. The contrast as function of the probe size/shape and the detector collection angle are discussed. The results are compared to conventional bright field transmission electron microscopy, electron energy filtered imaging and energy dispersive spectroscopy mapping. Annular bright and dark field gave a higher contrast than conventional transmission and analytical mapping techniques

  7. Interfacial friction in low flowrate vertical annular flow

    During boil-off and reflood transients in nuclear reactors, the core liquid inventory and inlet flowrate are largely determined by the interfacial friction in the reactor core. For these transients, annular flow occurs at relatively modest liquid flowrates and at the low heat fluxes typical of decay heat conditions. The resulting low vapor Reynolds numbers, are out of the data range used to develop the generally accepted interfacial friction relations for annular flow. In addition, most existing annular flow data comes from air/liquid adiabatic experiments with fully developed flows. By contrast, in a reactor core, the flow is continuously developing along the heated length as the vapor flowrate increases and the flow regimes evolve from bubbly to annular flow. Indeed, the entire annular flow regime may exist only over tens of L/D's. Despite these limitations, many of the advanced reactor safety analysis codes employ the Wallis model for interfacial friction in annular flow. Our analyses of the conditions existing at the end-of-reflood in the PERICLES tests have indicated that the Wallis model seriously underestimates the interfacial shear for low vapor velocity cocurrent upflow. To extend the annular flow data base to diabatic low flowrate conditions, the DADINE tests were re-analyzed. In these tests, both pressure drop and local cross-section averaged void fractions were measured. Thus, both the wall and interfacial shear can be deduced. Based on the results of this analysis, a new correlation is proposed for interfacial friction in annular flow. (authors). 5 figs., 12 refs

  8. New mitral annular force transducer optimized to distinguish annular segments and multi-plane forces.

    Skov, Søren Nielsen; Røpcke, Diana Mathilde; Ilkjær, Christine; Rasmussen, Jonas; Tjørnild, Marcell Juan; Jimenez, Jorge H; Yoganathan, Ajit P; Nygaard, Hans; Nielsen, Sten Lyager; Jensen, Morten Olgaard

    2016-03-21

    Limited knowledge exists about the forces acting on mitral valve annuloplasty repair devices. The aim of this study was to develop a new mitral annular force transducer to measure the forces acting on clinically used mitral valve annuloplasty devices. The design of an X-shaped transducer in the present study was optimized for simultaneous in- and out-of-plane force measurements. Each arm was mounted with strain gauges on four circumferential elements to measure out-of-plane forces, and the central parts of the X-arms were mounted with two strain gauges to measure in-plane forces. A dedicated calibration setup was developed to calibrate isolated forces with tension and compression for in- and out-of-plane measurements. With this setup, it was possible with linear equations to isolate and distinguish measured forces between the two planes and minimize transducer arm crosstalk. An in-vitro test was performed to verify the crosstalk elimination method and the assumptions behind it. The force transducer was implanted and evaluated in an 80kg porcine in-vivo model. Following crosstalk elimination, in-plane systolic force accumulation was found to be in average 4.0±0.1N and the out-of-plane annular segments experienced an average force of 1.4±0.4N. Directions of the systolic out-of-plane forces indicated movements towards a saddle shaped annulus, and the transducer was able to measure independent directional forces in individual annular segments. Further measurements with the new transducer coupled with clinical annuloplasty rings will provide a detailed insight into the biomechanical dynamics of these devices. PMID:26903412

  9. Fabrication and Resintering of Annular UO2 Pellet

    Nuclear fuel is one of the most important components in a PWR affecting its safety and economy. The traditional PWR fuel pellet has a shape of cylindrical tablets of about 800 μm in diameter with a chamfer and dishes. A significant reduction in its failure rate has resulted from the improvements in fuel and cladding quality. Enhanced fuel assembly design allowed appreciable power density increases. However, it is difficult to achieve a significant increase of a power density under the current fuel pin design. Recently, Massachusetts Institute of Technology (MIT) has proposed an annular UO2 fuel with an internal cooling of each fuel rod. Annular fuel pellets with a voided central region have been used in VVER reactors without an internal cooling. Annular fuels with both internal and external cooling have been proposed for high temperature gas cooled reactors. However, commercial PWR reactors have not used such annular internally and externally cooled fuel rods, yet. There must be a lot of considerations in the various fields to introduce an annular internally and externally cooled fuel to commercial PWR reactors. The dimension tolerance and the thermal stability of a pellet are very important from the viewpoint of fabrication technology, because they have an influence on the size of the gap between the pellet and the inner/outer claddings. In this study, annular UO2 pellets with various densities were fabricated and then a resintering test was conducted. The changes of dimension and density of the sintered pellets were characterized

  10. Sonographic evaluation of digital annular pulley tears

    Objective. To evaluate the sonographic (US) appearance of digital annular pulley (DAP) tears in high-level rock climbers. Design and patients. We performed a retrospective analysis of the US examinations of 16 high-level rock climbers with clinical signs of DAP lesions. MRI and surgical evaluation were performed in five and three patients respectively. The normal US and MRI appearances of DAP were evaluated in 40 and three normal fingers respectively. Results. Nine of 16 patients presented a DAP tear. In eight subjects (seven with complete tears involving the fourth finger and one the fifth finger), US diagnosis was based on the indirect sign of volar bowstringing of the flexor tendons. Injured pulleys were not appreciated by US. Tears concerned the A2 and A3 in six patients and the A3 and A4 in two patients. A2 pulley thickening and hypoechogenicity compatible with a partial tear was demonstrated in one patient. MRI and surgical data correlated well with the US findings. Four patients had tenosynovitis of the flexor tendons but no evidence of pulley disruption. US examinations of three patients were normal. In the healthy subjects US demonstrated DAP in 16 of 40 digits. Conclusion. US can diagnose DAP tears and correlates with the MRI and surgical data. Because of its low cost and non-invasiveness we suggest US as the first imaging modality in the evaluation of injuries of the digital pulley. (orig.)

  11. The numerical calculation of heat transfer performance for annular flow of liquid nitrogen in a vertical annular channel

    Sun, Shufeng; Wu, Yuyuan; Zhao, Rongyi

    2001-04-01

    According to a separated phase flow model for vertical annular two-phase flow in an annular channel, the liquid film thickness, distributions of velocities and temperatures in the liquid layer are predicted in the range of heat fluxes: 6000-12000 W/m 2, mass flux: 500-1100 kg/m2 s. The pressure drop along the flow channel and heat transfer coefficient are also calculated. The liquid film thickness is in the order of micrometers and heat transfer coefficient is 2800-7800 W/m2 K of liquid nitrogen boiling in narrow annular channels. The measured heat transfer coefficient is 29% higher than the calculated values. With the mass flux increasing and the gap of the annular channel decreasing, pressure drop and heat transfer coefficient increase.

  12. Integrated field emission array for ion desorption

    Resnick, Paul J; Hertz, Kristin L.; Holland, Christopher; Chichester, David

    2016-08-23

    An integrated field emission array for ion desorption includes an electrically conductive substrate; a dielectric layer lying over the electrically conductive substrate comprising a plurality of laterally separated cavities extending through the dielectric layer; a like plurality of conically-shaped emitter tips on posts, each emitter tip/post disposed concentrically within a laterally separated cavity and electrically contacting the substrate; and a gate electrode structure lying over the dielectric layer, including a like plurality of circular gate apertures, each gate aperture disposed concentrically above an emitter tip/post to provide a like plurality of annular gate electrodes and wherein the lower edge of each annular gate electrode proximate the like emitter tip/post is rounded. Also disclosed herein are methods for fabricating an integrated field emission array.

  13. Integrated field emission array for ion desorption

    Resnick, Paul J; Hertz, Kristin L; Holland, Christopher; Chichester, David; Schwoebel, Paul

    2013-09-17

    An integrated field emission array for ion desorption includes an electrically conductive substrate; a dielectric layer lying over the electrically conductive substrate comprising a plurality of laterally separated cavities extending through the dielectric layer; a like plurality of conically-shaped emitter tips on posts, each emitter tip/post disposed concentrically within a laterally separated cavity and electrically contacting the substrate; and a gate electrode structure lying over the dielectric layer, including a like plurality of circular gate apertures, each gate aperture disposed concentrically above an emitter tip/post to provide a like plurality of annular gate electrodes and wherein the lower edge of each annular gate electrode proximate the like emitter tip/post is rounded. Also disclosed herein are methods for fabricating an integrated field emission array.

  14. X-ray diffraction from bone employing annular and semi-annular beams

    There is a compelling need for accurate, low cost diagnostics to identify osteo-tissues that are associated with a high risk of fracture within an individual. To satisfy this requirement the quantification of bone characteristics such as ‘bone quality’ need to exceed that provided currently by densitometry. Bone mineral chemistry and microstructure can be determined from coherent x-ray scatter signatures of bone specimens. Therefore, if these signatures can be measured, in vivo, to an appropriate accuracy it should be possible by extending terms within a fracture risk model to improve fracture risk prediction.In this preliminary study we present an examination of a new x-ray diffraction technique that employs hollow annular and semi-annular beams to measure aspects of ‘bone quality’. We present diffractograms obtained with our approach from ex vivo bone specimens at Mo Kα and W Kα energies. Primary data is parameterized to provide estimates of bone characteristics and to indicate the precision with which these can be determined. (paper)

  15. Sea Carousel—A benthic, annular flume

    Amos, Carl L.; Grant, J.; Daborn, G. R.; Black, K.

    1992-06-01

    A benthic annular flume (Sea Carousel) has been developed and tested to measure in situ the erodibility of cohesive sediments. The flume is equipped with three optical backscatter sensors, a lid rotation switch, and an electromagnetic (EM) flow meter capable of detecting azimuthal and vertical components of flow. Data are logged at rates up to 10·66 Hz. Erodibility is inferred from the rate of change in suspended sediment concentration detected in the annulus. The energy-density/wave number spectrum of azimuthal flow showed peaks in the energy spectrum at paddle rotation wave numbers (k) of 14 and 7 m -1 (macroturbulent time scales) but were not significant. Friction velocity ( U*), measured (1) at 1 Hz using a flush-mounted hot-film sensor, and (2) derived from measured velocity profiles in the inner part of the logarithmic layer gave comparable results for Ū* 0·32 m s -1. Radial velocity gradients were proportional to ( Ū y - 0·32 m s -1). Maximum radial differences in U* were 10% for Ū y = 0·5 ms -1. Suspended sediment mass concentration ( S) in the annulus resulted in a significant decrease (10·5%) in Ū* derived by method (1) over the range 0calibration with changes in S. Subaerial deployments of Sea Carousel caused severe substrate disturbance, water losses, and aeration of the annulus. Submarine deployments produced stable results, though dispersion of turbid flume water took place. Results clearly demonstrated the existence of 'Type I' and 'Type II' erosion documented from laboratory studies.

  16. Far-field Diffraction Properties of Annular Walsh Filters

    Pubali Mukherjee

    2013-01-01

    Full Text Available Annular Walsh filters are derived from the rotationally symmetric annular Walsh functions which form a complete set of orthogonal functions that take on values either +1 or −1 over the domain specified by the inner and outer radii of the annulus. The value of any annular Walsh function is taken as zero from the centre of the circular aperture to the inner radius of the annulus. The three values 0, +1, and −1 in an annular Walsh function can be realized in a corresponding annular Walsh filter by using transmission values of zero amplitude (i.e., an obscuration, unity amplitude and zero phase, and unity amplitude and phase, respectively. Not only the order of the Walsh filter but also the size of the inner radius of the annulus provides an additional degree of freedom in tailoring of point spread function by using these filters for pupil plane filtering in imaging systems. In this report, we present the far-field amplitude characteristics of some of these filters to underscore their potential for effective use in several demanding applications like high-resolution microscopy, optical data storage, microlithography, optical encryption, and optical micromanipulation.

  17. Rotordynamic Analysis of Textured Annular Seals With Multiphase (Bubbly Flow

    Gérard PINEAU

    2011-09-01

    Full Text Available For some applications it must be considered that the flow in the annular seal contains a mixture of liquid and gas. The multiphase character of the flow is described by the volume fraction of gas (usually air contained in the liquid under the form of bubbles.The fluid is then a homogenous mixture of air and liquid all thru the annular seal. Its local gas volume fraction depends on the pressure field and is calculated by using a simplified form of the Rayleigh-Plesset equation.The influence of such of a multiphase (bubbly flow on the dynamic characteristics of a straight annular seal is minimal because the volume of the fluid is reduced.The situation is quite different for textured annular (damper seals provided with equally spaced deep cavities intended to increase the damping capabilities and to reduce the leakage flow rate.As a by-product, the volume of the fluid in the seal increases drastically and the compressibility effects stemming from the bubbly nature of the flow are largely increased even for a low gas volume fraction. The present work depicts the influence of the gas volume fraction on the dynamic characteristics of a textured annular seal. It is shown that variations of the gas volume fraction between 1% and 0.1% can lead to frequency dependent stiffness, damping and added mass coefficients.

  18. Vibration Analysis of Annular Sector Plates under Different Boundary Conditions

    Dongyan Shi

    2014-01-01

    Full Text Available An analytical framework is developed for the vibration analysis of annular sector plates with general elastic restraints along each edge of plates. Regardless of boundary conditions, the displacement solution is invariably expressed as a new form of trigonometric expansion with accelerated convergence. The expansion coefficients are treated as the generalized coordinates and determined using the Rayleigh-Ritz technique. This work allows a capability of modeling annular sector plates under a variety of boundary conditions and changing the boundary conditions as easily as modifying the material properties or dimensions of the plates. Of equal importance, the proposed approach is universally applicable to annular sector plates of any inclusion angles up to 2π. The reliability and accuracy of the current method are adequately validated through numerical examples.

  19. Hydrodynamic stability of inverted annular flow in an adiabatic simulation

    In experiments, inverted annular flow was simulated adiabatically with turbulent water jets, issuing downward from long aspect nozzles, enclosed in gas annuli. Velocities, diameters, and gas species were varied, and core jet length, shape, break-up mode, and dispersed-core droplet sizes were recorded at approximately 750 data points. Inverted annular flow was observed to develop into inverted slug flow at low relative velocities, and into dispersed droplet flow at high relative velocities. For both of the above transitions from inverted annular flow, a correlation for core jet length was developed by extending work done on free liquid jets to include this new, coaxial, jet disintegration phenomenon. The result, showing length dependence upon diameter, jet Reynolds number, jet Weber number, void fraction, and gas Weber number, correlates the data well, especially at moderate-to-large relative velocities

  20. Fluidic Analysis in an Annular Centrifugal Contactor for Fuel Reprocessing

    An annular centrifugal contactor (ACC) is a promising device for fuel reprocessing process, because it offers several advantages—a smaller size, a smaller holdup volume, and a higher separation performance—over conventional contactors such as a mixer-settler and a pulse column. Fluid dynamics and dispersion in an ACC, which has a combined mixer/centrifuge structure, are closely related to its separation performance and capacity, and this information is useful in improving equipment design. In this paper, experimental and computational fluid dynamics (CFD) studies were conducted to analyze fluidic and dispersion behavior in ACCs. Multiphase mixing (water/TBP-dodecane/air) in the annular zone was observed by Particle Imaging Velocimetry, and the change in the fluidic and dispersion behavior was ascertained under several operational conditions. The results of the CFD studies, which considered multiphase turbulent flow in the annular and rotor interior zones, were in a good agreement with the experimental data. (author)

  1. Air entrainment into annular water flows in a vertical pipe

    An experimental investigation was carried out on air entrainment into water flowing downward in a vertical pipe. Local flow rates of water and air in a fluid layer of annular flow, formed on the pipe wall, were measured precisely by using a small tube probe. Measurements were also made of local flow rates of water and air in bubbly flow downstream of annular water flow. Distributions of local flow rates in the radial direction of the pipe for annular flow regime indicate that the fluid layer consists of a water layer adjacent to the pipe wall and a water-air (two-phase fluid) layer located inside of the water layer. The water-air layer is formed as a result of air entrainment. The departure of air bubbles from a water pool to air phase was found for bubbly flow regime. (author)

  2. Cryogenic radiation detector with high-density conductor array

    A detector for infrared radiation, having a multicell photosensor disposed at the top of a cold finger in an evacuated container, comprises a stack of annular ceramic layers coaxially surrounding the cold finger and serving as supports for several arrays of radially extending metallic strips screen-printed on respective layers in angularly offset relationship. The metallic strips are conductively connected to respective cells of the sensor to serve as output leads thereof. The conductive connections include axially extending metal pins spacedly surrounding the cold finger while being linked with the sensor cells by short, thin wires spanning an intervening annular gap

  3. Annular elastolytic giant cell granuloma in association with Hashimoto's thyroiditis

    Rishi Hassan

    2016-01-01

    Full Text Available Annular elastolytic giant cell granuloma (AEGCG is a rare granulomatous skin disease characterized clinically by annular plaques with elevated borders and atrophic centers found mainly on sun-exposed skin and histologically by diffuse granulomatous infiltrates composed of multinucleated giant cells, histiocytes and lymphocytes in the dermis along with phagocytosis of elastic fibers by multinucleated giant cells. We report a case of AEGCG in a 50-year-old woman and is highlighted for the classical clinical and histological findings of the disease and its rare co-existence with Hashimoto's thyroiditis.

  4. Annular elastolytic giant cell granuloma in association with Hashimoto's thyroiditis.

    Hassan, Rishi; Arunprasath, P; Padmavathy, L; Srivenkateswaran, K

    2016-01-01

    Annular elastolytic giant cell granuloma (AEGCG) is a rare granulomatous skin disease characterized clinically by annular plaques with elevated borders and atrophic centers found mainly on sun-exposed skin and histologically by diffuse granulomatous infiltrates composed of multinucleated giant cells, histiocytes and lymphocytes in the dermis along with phagocytosis of elastic fibers by multinucleated giant cells. We report a case of AEGCG in a 50-year-old woman and is highlighted for the classical clinical and histological findings of the disease and its rare co-existence with Hashimoto's thyroiditis. PMID:27057492

  5. Portal annular pancreas: the pancreatic duct ring sign on MRCP.

    Lath, Chinar O; Agrawal, Dilpesh S; Timins, Michael E; Wein, Melissa M

    2015-12-01

    Portal annular pancreas is a rare pancreatic variant in which the uncinate process of the pancreas extends and fuses to the dorsal surface of the body of the pancreas by surrounding the portal vein. It is asymptomatic, but it can be mistaken for a pancreatic head mass on imaging and could also have serious consequences during pancreatic surgery, if unrecognized. We report this case of a 53-year-old female patient who was diagnosed to have portal annular pancreas on the basis of an unusual course (ring appearance) of the main pancreatic duct on magnetic resonance cholangiopancreatography, not described earlier in the radiology literature. PMID:26649117

  6. Portal annular pancreas: the pancreatic duct ring sign on MRCP

    Chinar O. Lath, MD

    2015-12-01

    Full Text Available Portal annular pancreas is a rare pancreatic variant in which the uncinate process of the pancreas extends and fuses to the dorsal surface of the body of the pancreas by surrounding the portal vein. It is asymptomatic, but it can be mistaken for a pancreatic head mass on imaging and could also have serious consequences during pancreatic surgery, if unrecognized. We report this case of a 53-year-old female patient who was diagnosed to have portal annular pancreas on the basis of an unusual course (ring appearance of the main pancreatic duct on magnetic resonance cholangiopancreatography, not described earlier in the radiology literature.

  7. Flow Visualisation of Annular Liquid Sheet Instability & Atomisation

    Duke, Daniel; Soria, Julio

    2012-01-01

    Fluid dynamics videos of unstable thin annular liquid sheets are presented in this short paper. These videos are to be presented in the Gallery of Fluid Motion for the American Physical Society 65th Annual Meeting of the Division of Fluid Dynamics in San Diego, CA, 18-20 November 2012. An annular sheet of thickness h=1mm and mean radius R=18.9mm is subjected to aerodynamic axial shear from co-flowing air at various shear rates on both the inner and outer surface at a liquid sheet Reynolds Number of Re=500.

  8. Fluid-Structure Interaction Analysis on Turbulent Annular Seals of Centrifugal Pumps during Transient Process

    Dazhuan Wu; Leqin Wang; Qinglei Jiang; Lulu Zhai

    2011-01-01

    The current paper studies the influence of annular seal flow on the transient response of centrifugal pump rotors during the start-up period. A single rotor system and three states of annular seal flow were modeled. These models were solved using numerical integration and finite difference methods. A fluid-structure interaction method was developed. In each time step one of the three annular seal models was chosen to simulate the annular seal flow according to the state of rotor systems. The ...

  9. Thermal Hydraulic Analysis Of Thorium-Based Annular Fuel Assemblies

    Han, Kyu Hyun [Korea Institute of Nuclear Safety, 19, Guseong-dong, Yuseong-gu, Daejeon, 305-338 (Korea, Republic of)

    2008-07-01

    Thermal hydraulic characteristics of thorium-based fuel assemblies loaded with annular seed pins have been analyzed using AMAP combined with MATRA, and compared with those of the existing thorium-based assemblies. MATRA and AMAP showed good agreements for the pressure drops at the internal sub-channels. The pressure drop generally increased in the cases of the assemblies loaded with annular seed pins due to the larger wetted perimeter, but an exception existed. In the inner sub-channels of the seed pins, mass fluxes were high due to the grid form losses in the outer sub-channels. About 43% of the heat generated from the seed pin flowed into the inner sub-channel and the rest into the outer sub-channel, which implies the inner to outer wall heat flux ratio was approximately 1.2. The maximum temperatures of the annular seed pins were slightly above 500 deg. C. The MDNBRs of the assemblies loaded with annular seed pins were higher than those of the existing assemblies. Due to the fact that inter-channel mixing cannot occur in the inner sub-channels, temperatures and enthalpies were higher in the inner sub-channels. (author)

  10. Thermal Hydraulic Analysis Of Thorium-Based Annular Fuel Assemblies

    Thermal hydraulic characteristics of thorium-based fuel assemblies loaded with annular seed pins have been analyzed using AMAP combined with MATRA, and compared with those of the existing thorium-based assemblies. MATRA and AMAP showed good agreements for the pressure drops at the internal sub-channels. The pressure drop generally increased in the cases of the assemblies loaded with annular seed pins due to the larger wetted perimeter, but an exception existed. In the inner sub-channels of the seed pins, mass fluxes were high due to the grid form losses in the outer sub-channels. About 43% of the heat generated from the seed pin flowed into the inner sub-channel and the rest into the outer sub-channel, which implies the inner to outer wall heat flux ratio was approximately 1.2. The maximum temperatures of the annular seed pins were slightly above 500 deg. C. The MDNBRs of the assemblies loaded with annular seed pins were higher than those of the existing assemblies. Due to the fact that inter-channel mixing cannot occur in the inner sub-channels, temperatures and enthalpies were higher in the inner sub-channels. (author)

  11. Annular linear induction pump with an externally supported duct

    Several embodiments of an annular linear induction pump for pumping liquid metals are disclosed having the features of generally one pass flow of the liquid metal through the pump and an increased efficiency resulting from the use of thin duct walls to enclose the stator. The stator components of this pump are removable for repair and replacement. 15 claims

  12. Localized granuloma annulare and autoimmune thyroid disease. Are they associated?

    Moran, J; Lamb, J.

    1995-01-01

    This case report identifies a temporal relationship between the diagnosis of localized granuloma annulare and the subsequent development of primary hypothyroidism in a previously healthy 10-year-old girl. We suspect these disorders are associated, but any association between them requires further study.

  13. Fluxon dynamics in long annular Josephson tunnel junctions

    Martucciello, N.; Mygind, Jesper; Koshelets, V.P.; Shchukin, A.V.; Filippenko, L.; Monaco, R

    1998-01-01

    Single-fluxon dynamics has been experimentally investigated in high-quality Nb/Al-AlOx/Nb annular Josephson tunnel junctions having a radius much larger than the Josephson penetration depth. Strong evidence of self-field effects is observed. An external magnetic field in the barrier plane acts on...

  14. Improvement of image processing algorithms for annular flow

    Annular flow occurs in a wide range of industrial heat-transfer equipment, including the top of a BWR core, in the steam generator of a PWR, and in postulated accident scenarios including critical heat flux (CHF) by dryout. The modeling of annular flow often requires information regarding the average thickness of liquid film at the periphery of the flow channel as a measurement of film roughness (film roughness concept). More recently, two-region modeling efforts require wave intermittency as a measurement of disturbance wave (as opposed to base film thickness) contribution to gas-to-liquid momentum transfer and pressure loss. The present work focuses on the characterization of film behaviors in annular flow using quantitative visualization. The data reduction codes for planar laser-induced flourescence (PLIF) imaging and back-lit quartz tube imaging have been further developed to improve measurement accuracy. Film thickness distribution (base film and wave), disturbance wave length, and wave intermittency estimates have been updated and applied to a recent two-region annular flow model. Outputs of average film thickness, pressure gradient, and average wave velocity have been modeled with mean absolute errors of 8.70%, 17.42%, and 19.14%, respectively. (author)

  15. Development of thermal hydraulic analysis code for nuclear reactors with annular fuels and assessment of the KAIST DNB-type theoretical critical heat flux model

    The development of thermal hydraulic analysis code for Gas-Cooled Reactors (GCRs) and for annular fuel and its application to various types of nuclear reactors, and the assessment of the Korea Advanced Institute of Science and Technology (KAIST) Departure from Nucleate Boiling (DNB)-type theoretical Critical Heat Flux (CHF) model for rod bundles with non-uniform axial power shapes were investigated. Thermal hydraulic characteristics of thorium-based fuel assemblies with annular seed pins were analyzed using Thermal-Hydraulic analysis code for Annular Fuel (THAF) combined with Multichannel Analyzer for steady states and Transients in Rod Arrays (MATRA), and compared with those of existing thorium-based assemblies. This study investigates the possibilities of using annular fuel pins in a pressurized water reactor with emphasis on coolant flow distribution and heat transfer fraction in internal and external sub-channels. MATRA and THAF showed good agreements for the pressure drops at the internal sub-channels. Mass fluxes were high in inner sub-channels of the seed pins due to the grid form losses in the outer sub-channels. About 43% of heat generated from the seed pin flowed into the inner sub-channel. The remaining heat flowed into the outer sub-channel. The inner to outer wall heat flux ratio was approximately 1.2. Maximum temperatures of annular seed pins were slightly above 500 .deg. C. Minimum DNB Ratios (MDNBRs) of the assemblies loaded with annular seed pins were higher than those of the existing assemblies. Temperatures and enthalpies were higher in the inner sub-channels due to the fact that inter-channel mixing cannot occur in the inner sub-channels. A thermal-hydraulic analysis code for annular fuel-based Liquid Metal Reactors (LMRs) has been developed. About 41% of the heat generated from the fuel pin flowed into the inner sub-channel and the rest into the outer sub-channel. The inner to outer wall heat flux ratio was equal to approximately 1.44. A new 37

  16. General model for lipid-mediated two-dimensional array formation of membrane proteins: Application to bacteriorhodopsin

    Sabra, Mads Christian; Uitdehaag, J.C.M.; Watts, A

    1998-01-01

    Based on experimental evidence for 2D array formation of bacteriorhodopsin, we propose a general model for lipid-mediated 2D array formation of membrane proteins in lipid bilayers. The model includes two different lipid Species; "annular" lipids and "neutral" lipids, and one protein species. The ...

  17. Wire-number effects on high-power annular z-pinches and some characteristics at high wire number

    SANFORD,THOMAS W. L.

    2000-05-23

    Characteristics of annular wire-array z-pinches as a function of wire number and at high wire number are reviewed. The data, taken primarily using aluminum wires on Saturn are comprehensive. The experiments have provided important insights into the features of wire-array dynamics critical for high x-ray power generation, and have initiated a renaissance in z-pinches when high numbers of wires are used. In this regime, for example, radiation environments characteristic of those encountered during the early pulses required for indirect-drive ICF ignition on the NIF have been produced in hohlraums driven by x-rays from a z-pinch, and are commented on here.

  18. Wire-number effects on high-power annular z-pinches and some characteristics at high wire number

    Characteristics of annular wire-array z-pinches as a function of wire number and at high wire number are reviewed. The data, taken primarily using aluminum wires on Saturn are comprehensive. The experiments have provided important insights into the features of wire-array dynamics critical for high x-ray power generation, and have initiated a renaissance in z-pinches when high numbers of wires are used. In this regime, for example, radiation environments characteristic of those encountered during the early pulses required for indirect-drive ICF ignition on the NIF have been produced in hohlraums driven by x-rays from a z-pinch, and are commented on here

  19. Study of film boiling dispersed two phase in narrow annular gap

    Experimental investigation on film boiling dispersed two phase friction pressure drop in narrow annular gap with deionized water was performed in three types of narrow annular gap. The friction pressure drop differences were compared between narrow annular gap and circular channel was compared in the paper. The influence of narrow annular gap on friction pressure drop was examined in this paper. Results showed that the modified Sadatomi's correlation can be used to calculate film boiling dispersed two-phase friction pressure drop in narrow annular gap for engineering application

  20. ANNULAR PANCREAS CAUSING DUODENAL OBSTRUCTION: A CASE REPORT

    Swish Kumar

    2016-01-01

    Full Text Available Annular pancreas is a rare congenital anomaly characterized by the band of pancreatic tissue of variable width partially or completely encircling the duodenum. This abnormality, although at times clinically silent or may be the cause of a broad spectrum of diseases. Complications range from neonatal intestinal obstruction to more complex pathologies in the adult such as pancreatitis, duodenal stenosis or duodenal or gastric ulceration. This condition is important to recognise, because radiologists are usually the first person to diagnose such condition. We report the case of a young patient of 10 years old female hospitalized for epigastric pain and repeated episodes of vomiting, in whom radiological investigations showed an annular pancreas. No other congenital anomaly of the intra-abdominal organs was noted. Both the rarity of this congenital abnormality and its probability of successful correction by surgical means have prompted us to make the following presentation.

  1. Analysis of a Low-Angle Annular Expander Nozzle

    Kyll Schomberg

    2015-01-01

    Full Text Available An experimental and numerical analysis of a low-angle annular expander nozzle is presented to observe the variance in shock structure within the flow field. A RANS-based axisymmetric numerical model was used to evaluate flow characteristics and the model validated using experimental pressure readings and schlieren images. Results were compared with an equivalent converging-diverging nozzle to determine the capability of the wake region in varying the effective area of a low-angle design. Comparison of schlieren images confirmed that shock closure occurred in the expander nozzle, prohibiting the wake region from affecting the area ratio. The findings show that a low angle of deflection is inherently unable to influence the effective area of an annular supersonic nozzle design.

  2. Energy and Exergy Analysis of an Annular Thermoelectric Heat Pump

    Kaushik, S. C.; Manikandan, S.; Hans, Ranjana

    2016-07-01

    In this paper, the concept of an annular thermoelectric heat pump (ATEHP) has been introduced. An exoreversible thermodynamic model of the ATEHP considering the Thomson effect in conjunction with Peltier, Joule and Fourier heat conduction has been investigated using exergy analysis. New expressions for dimensionless heating power, optimum current at the maximum energy, exergy efficiency conditions and dimensionless irreversibilities in the ATEHP are derived. The results show that the heating power, energy and exergy efficiency of the ATEHP are lower than the flat-plate thermoelectric heat pump. The effects of annular shape parameter ( S r = r 2 /r 1), dimensionless temperature ratio ( θ = T h /T c) and the electrical contact resistances on the heating power, energy/exergy efficiency of an ATEHP have been studied. This study will help in the designing of actual ATEHP systems.

  3. High Thrust-to-Power Annular Engine Technology

    Patterson, Michael J.; Thomas, Robert E.; Crofton, Mark W.; Young, Jason A.; Foster, John E.

    2015-01-01

    Gridded ion engines have the highest efficiency and total impulse of any mature electric propulsion technology, and have been successfully implemented for primary propulsion in both geocentric and heliocentric environments with excellent ground/in-space correlation of performance. However, they have not been optimized to maximize thrust-to-power, an important parameter for Earth orbit transfer applications. This publication discusses technology development work intended to maximize this parameter. These activities include investigating the capabilities of a non-conventional design approach, the annular engine, which has the potential of exceeding the thrust-to-power of other EP technologies. This publication discusses the status of this work, including the fabrication and initial tests of a large-area annular engine. This work is being conducted in collaboration among NASA Glenn Research Center, The Aerospace Corporation, and the University of Michigan.

  4. Axisymmetric buckling of laminated thick annular spherical cap

    Dumir, P. C.; Dube, G. P.; Mallick, A.

    2005-03-01

    Axisymmetric buckling analysis is presented for moderately thick laminated shallow annular spherical cap under transverse load. Buckling under central ring load and uniformly distributed transverse load, applied statically or as a step function load is considered. The central circular opening is either free or plugged by a rigid central mass or reinforced by a rigid ring. Annular spherical caps have been analysed for clamped and simple supports with movable and immovable inplane edge conditions. The governing equations of the Marguerre-type, first order shear deformation shallow shell theory (FSDT), formulated in terms of transverse deflection w, the rotation ψ of the normal to the midsurface and the stress function Φ, are solved by the orthogonal point collocation method. Typical numerical results for static and dynamic buckling loads for FSDT are compared with the classical lamination theory and the dependence of the effect of the shear deformation on the thickness parameter for various boundary conditions is investigated.

  5. Energy and Exergy Analysis of an Annular Thermoelectric Heat Pump

    Kaushik, S. C.; Manikandan, S.; Hans, Ranjana

    2016-04-01

    In this paper, the concept of an annular thermoelectric heat pump (ATEHP) has been introduced. An exoreversible thermodynamic model of the ATEHP considering the Thomson effect in conjunction with Peltier, Joule and Fourier heat conduction has been investigated using exergy analysis. New expressions for dimensionless heating power, optimum current at the maximum energy, exergy efficiency conditions and dimensionless irreversibilities in the ATEHP are derived. The results show that the heating power, energy and exergy efficiency of the ATEHP are lower than the flat-plate thermoelectric heat pump. The effects of annular shape parameter (S r = r 2 /r 1), dimensionless temperature ratio (θ = T h /T c) and the electrical contact resistances on the heating power, energy/exergy efficiency of an ATEHP have been studied. This study will help in the designing of actual ATEHP systems.

  6. Development of annular targets for 99Mo production

    During 1999, significant progress was made in the development of a low-enriched uranium (LEU) target for production of 99Mo. Successful conversion requires an inexpensive, reliable target. To keep the target geometry the same when changing from high-enriched uranium (HEU) to LEU targets, a denser form of uranium is required in order to increase the amount of uranium per target by a factor of approximately five. Targets containing LEU in the form of a metal foil are being developed for producing 99Mo from the fissioning of 235U. A new annular target was developed this year, and seven targets were irradiated in the Indonesian RSG-GAS reactor. Results of development of this annular target and its performance during irradiation are described. (author)

  7. Production of annular flat-topped vortex beams

    Jiannong Chen; Yongjiang Yu; Feifei Wang

    2011-01-01

    @@ A model of an annular flat-topped vortex beam based on multi-Gaussian superimposition is proposed. We experimentally produce this beam with a computer-generated hologram (CGH) displayed on a spatial light modulator (SLM). The power of the beam is concentrated on a single-ring structure and has an extremely strong radial intensity gradient. This beam facilitates various applications ranging from Sisyphus atom cooling to micro-particle trapping.%A model of an annular fiat-topped vortex beam based on multi-Gaussian superimposition is proposed. We experimentally produce this beam with a computer-generated hologram (CGH) displayed on a spatial light modulator (SLM). The power of the beam is concentrated on a single-ring structure and has an extremely strong radial intensity gradient. This beam facilitates various applications ranging from Sisyphus atom cooling to micro-particle trapping.

  8. Electroosmotic flow and Joule heating in preparative continuous annular electrochromatography.

    Laskowski, René; Bart, Hans-Jörg

    2015-09-01

    An openFOAM "computational fluid dynamic" simulation model was developed for the description of local interaction of hydrodynamics and Joule heating in annular electrochromatography. A local decline of electrical conductivity of the background eluent is caused by an electrokinetic migration of ions resulting in higher Joule heat generation. The model equations consider the Navier-Stokes equation for incompressible fluids, the energy equation for stationary temperature fields, and the mass transfer equation for the electrokinetic flow. The simulations were embedded in commercial ANSYS Fluent software and in open-source environment openFOAM. The annular gap (1 mm width) contained an inorganic C8 reverse-phase monolith as stationary phase prepared by an in situ sol-gel process. The process temperature generated by Joule heating was determined by thermal camera system. The local hydrodynamics in the prototype was detected by a gravimetric contact-free measurement method and experimental and simulated values matched quite well. PMID:25997390

  9. Excitational metamorphosis of surface flowfield under an impinging annular jet

    Tesař, Václav; Trávníček, Zdeněk

    2008-01-01

    Roč. 144, č. 2 (2008), s. 312-316. ISSN 1385-8947 R&D Projects: GA ČR GA101/07/1499; GA AV ČR IAA200760705 Institutional research plan: CEZ:AV0Z20760514 Keywords : jets * impinging jets * flow topology * annular jets * stagnation points Subject RIV: BK - Fluid Dynamics Impact factor: 2.813, year: 2008 http://www.sciencedirect.com/

  10. Heat transfer to liquid sodium flowing through annular channel, (4)

    An experimental study was carried out to clarify the heat transfer characteristics of liquid sodium flowing turbulently through an annular channel. For a concentric condition, average psi(=average epsilonH/epsilonM) was found to agree with that proposed by Aoki or Ramm for circular tube. For eccentric conditions, circumferential temperature variations around the inner wall were measured and Nusselt numbers were evaluated. Numerical calculations were also made for temperature fields and compared with the measurements. (author)

  11. Unusual Presentation of Acute Annular Urticaria: A Case Report

    Gilles Guerrier; Jean-Marc Daronat; Roger Deltour

    2011-01-01

    Acute urticarial lesions may display central clearing with ecchymotic or haemorrhagic hue, often misdiagnosed as erythema multiforme, serum-sickness-like reactions, or urticarial vasculitis. We report a case of acute annular urticaria with unusual presentation occurring in a 20-month-old child to emphasize the distinctive morphologic manifestations in a single disease. Clinicians who care for children should be able to differentiate acute urticaria from its clinical mimics. A directed history...

  12. Fluxon dynamics in long annular Josephson tunnel junctions

    Martucciello, N.; Mygind, Jesper; Koshelets, V. P.; Shchukin, A. V.; Filippenko, L.; Monaco, R.

    1998-01-01

    Single-fluxon dynamics has been experimentally investigated in high-quality Nb/Al-AlOx/Nb annular Josephson tunnel junctions having a radius much larger than the Josephson penetration depth. Strong evidence of self-field effects is observed. An external magnetic field in the barrier plane acts on the fluxon as a periodic potential and lowers its average speed. Further, the results of perturbative calculations do not fit the experimental current-voltage profile and, provided the temperature is...

  13. Ignition sequence of an annular multi-injector combustor

    Philip, Maxime; Boileau, Matthieu; Vicquelin, Ronan; Schmitt, Thomas; Durox, Daniel; Bourgoin, Jean-François; Candel, Sébastien

    2013-01-01

    Ignition is a critical process in combustion systems. In aeronautical combustors, altitude relight capacities are required in case of accidental extinction of the chamber. A simultaneous study of light-round ignition in an annular multi-injector combustor has been performed on the experimental and numerical sides. This effort allows a unique comparison to assess the reliability of Large-Eddy Simulation (LES) in such a configuration. Results are presented in fluid dynamics videos.

  14. Large Eddy Simulation of thermoacoustic instabilities in annular combustion chambers

    Wolf, Pierre

    2011-01-01

    Increasingly stringent regulations and the need to tackle rising fuel prices have placed great emphasis on the design of aeronautical gas turbines. This drive towards innovation has resulted sometimes in new concepts being prone to combustion instabilities. Combustion instabilities arise from the coupling of acoustics and combustion. In the particular field of annular combustion chambers, these instabilities often take the form of azimuthal modes. To predict these modes, one must consider the...

  15. Thermohydraulic analysis of smooth and finned annular ducts

    The present work is concerned with the turbulent heat transfer and pressure drop in smooth and finned annular ducts overage heat transfer coefficients have been obtained by means of the heat exchanger theory. In addition, friction factors have also been determined. The experiments were performed by utilizing four double-pipe heat exchangers. The flowing fluids, in the heat exchangers, were air and water. The average heat transfer coefficients, for air flowing in the annular section, were determined by measuring the overall heat transfer coefficients of the heat exchangers. In order to attain fully developed conditions, the heat exchangers had a starting length of 30 hydraulic diameters. The thermal boundary conditions consisted of uniform temperature on the inner surface, the outer surface being insulated. The heat transfer coefficients and friction factors are presented in dimensionaless forms, as functions of the Reynolds number of the flow. The results for the smooth and finned annular ducts were compared. The purpose of such comparison was to study the influence of the fins on the pressure drop and heat transfer rate. In the case of the finned nular ducts, it is shown that the fin efficiency has some fluence on the heat transfer rates. The, a two-dimensional at transfer analysis was performed in order to obtain the n efficiency and the annular region efficiency. It is also shown that the overall thermal performance of finned surfaces epends mainly on the Nusselt number and on the region eficiency. These parameters are presented as functions of the Reynolds number of the flow and the geometry of the problem. (author)

  16. Hydraulic forces caused by annular pressure seals in centrifugal pumps

    Iino, T.; Kaneko, H.

    1980-01-01

    The hydraulic forces caused by annular pressure seals were investigated. The measured inlet and exit loss coefficients of the flow through the seals were much smaller than the conventional values. The results indicate that the damping coefficient and the inertia coefficient of the fluid film in the seal are not affected much by the rotational speed or the eccentricity of the rotor, though the stiffness coefficient seemed to be influenced by the eccentricity.

  17. Entrainment in vertical annular two-phase flow

    Prediction of amount of entrained droplets or entrainment fraction in annular two-phase flow is essential for the estimation of dryout condition and analysis of post dryout heat transfer in light water nuclear reactors and steam boilers. In this study, air-water and organic fluid (Freon-113) annular flow entrainment experiments have been carried out in 9.4 and 10.2 mm diameter test sections, respectively. Both the experiments covered three distinct pressure conditions and wide range of liquid and gas flow conditions. The organic fluid experiments simulated high pressure steam-water annular flow conditions. In each of the experiments, measurements of entrainment fraction, droplet entrainment rate and droplet deposition rate have been performed by using a liquid film extraction method. A simple, explicit and non-dimensional correlation developed by Sawant et al. (2008a) for the prediction of entrainment fraction is further improved in this study in order to account for the existence of critical gas and liquid flow rates below which no entrainment is possible. Additionally, a new correlation is proposed for the estimation of minimum liquid film flow rate at the maximum entrainment fraction condition. The improved correlation successfully predicted the newly collected air-water and Freon-113 entrainment fraction data. Furthermore, the correlations satisfactorily compared with the air-water, helium-water and air-genklene experimental data measured by Willetts (1987). (author)

  18. Treatment of generalized granuloma annulare - a systematic review.

    Lukács, J; Schliemann, S; Elsner, P

    2015-08-01

    Granuloma annulare (GA) is a benign inflammatory skin disease. Localized GA is likely to resolve spontaneously, while generalized GA (GGA) is rare and may persist for decades. GGA usually is resistant to a variety of therapeutic modalities and takes a chronic course. The objective of this study was to summarize all reported treatments of generalized granuloma annulare. This is a systematic review based on MEDLINE, Embase and Cochrane Central Register search of articles in English and German and a manual search, between 1980 and 2013, to summarize the treatment of generalized granuloma annulare. Most medical literature on treatment of GGA is limited to individual case reports and small series of patients treated without a control group. Randomized controlled clinical studies are missing. Multiple treatment modalities for GGA were reported including topical and systemic steroids, PUVA, isotretinoin, dapsone, pentoxifylline, hydroxychloroquine, cyclosporine, IFN-γ, potassium iodide, nicotinamide, niacinamide, salicylic acid, dipyridamole, PDT, fumaric acid ester, etanercept, infliximab, adalimumab. While there are numerous case reports of successful treatments in the literature including surgical, medical and phototherapy options, well-designed, randomized, controlled clinical trials are required for an evidence-based treatment of GGA. PMID:25651003

  19. Experimental study on particles mixing in an annular spouted bed

    Hao, Huang; Guoxin, Hu [School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China); Fengchao, Wang [Science and Technology Development Office, Shanghai Jiao Tong University, Shanghai 200030 (China)

    2008-02-15

    A novel annular spouted bed was developed and studied experimentally. The experiments were performed to examine the effects of feeding mode, air velocity and static bed height as well as particle size on particle mixing for different conditions in this device. The results show that feeding by a rotating cone greatly improves particle mixing by homogeneously projecting the particles into the annular bed. For feeding by a rotating cone, the time required to get uniform mixing laterally is shorten almost 10 times less than that for feeding at a fixed point. With increasing air velocity, the axial mixing speed increases more significantly than the lateral mixing speed. The static bed height has important effects on the uniformity of the final admixtures. With increasing static bed height, the degree of mixing of the final mixture (FDM) axially first decreases, then increases, but laterally, the FDM is monotone decreasing. The particles of small size are helpful to raise the mixing speed. In addition, the dead zone in the annular spouted bed was analyzed. (author)

  20. Experimental study on particles mixing in an annular spouted bed

    Huang Hao [School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China); Hu Guoxin [School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China)], E-mail: hugx@sjtu.edu.cn; Wang Fengchao [Science and Technology Development Office, Shanghai Jiao Tong University, Shanghai 200030 (China)

    2008-02-15

    A novel annular spouted bed was developed and studied experimentally. The experiments were performed to examine the effects of feeding mode, air velocity and static bed height as well as particle size on particle mixing for different conditions in this device. The results show that feeding by a rotating cone greatly improves particle mixing by homogeneously projecting the particles into the annular bed. For feeding by a rotating cone, the time required to get uniform mixing laterally is shorten almost 10 times less than that for feeding at a fixed point. With increasing air velocity, the axial mixing speed increases more significantly than the lateral mixing speed. The static bed height has important effects on the uniformity of the final admixtures. With increasing static bed height, the degree of mixing of the final mixture (FDM) axially first decreases, then increases, but laterally, the FDM is monotone decreasing. The particles of small size are helpful to raise the mixing speed. In addition, the dead zone in the annular spouted bed was analyzed.

  1. Droplet sizes, dynamics and deposition in vertical annular flow

    The role of droplets in vertical upwards annular flow is investigated, focusing on the droplet size distributions, dynamics, and deposition phenomena. An experimental program was performed based on a new laser optical technique developed in these laboratories and implemented here for annular flow. This permitted the simultaneous measurement of droplet size, axial and radial velocity. The dependence of droplet size distributions on flow conditions is analyzed. The Upper-Log Normal function proves to be a good model for the size distribution. The mechanism controlling the maximum stable drop size was found to result from the interaction of the pressure fluctuations of the turbulent flow of the gas core with the droplet. The average axial droplet velocity showed a weak dependence on gas rates. This can be explained once the droplet size distribution and droplet size-velocity relationship are analyzed simultaneously. The surprising result from the droplet conditional analysis is that larger droplet travel faster than smaller ones. This dependence cannot be explained if the drag curves used do not take into account the high levels of turbulence present in the gas core in annular flow. If these are considered, then interesting new situations of multiplicity and stability of droplet terminal velocities are encountered. Also, the observed size-velocity relationship can be explained. A droplet deposition is formulated based on the particle inertia control. This permitted the calculation of rates of drop deposition directly from the droplet size and velocities data

  2. The influence of annular seal clearance to the critical speed of the multistage pump

    In the multistage pump of high head, pressure difference in two ends of annular seal clearance and rotor eccentric would produce the sealing fluid force, the effect of which can be expressed by a damping and stiffness coefficient. It has a great influence on the critical speed of the rotor system. In order to research the influence of the annular seal to the rotor system, this paper used CFD method to conduct the numerical simulation for the flow field of annular seal clearance. The radial and tangential forces were obtained to calculate the annular dynamic coefficients. Also dynamic coefficient were obtained by Matlab. The rotor system was modeled using ANSYS finite software and the critical speed with and without annular seal clearance were calculated. The result shows: annular seal's fluid field is under the comprehensive effect of pressure difference and rotor entrainment. Due to the huge pressure difference in front annular seal, fluid flows under pressure difference; the low pressure difference results in the more obvious effect on the clearance field in back annular seal. The first order critical speed increases greatly with the annular seal clearance; while the average growth rate of the second order critical speed is only 3.2%; the third and fourth critical speed decreases little. Based on the above result, the annular seal has great influence to the first order speed, while has little influence on the rest

  3. Pancreaticoduodenectomy for pancreas carcinoma occurring in the annular pancreas: report of a case

    Kawaida, Hiromichi; KONO, Hiroshi; Watanabe, Mitsuaki; Maki, Akira; Amemiya, Hidetake; Matsuda, Masanori; Fujii, Hideki; Fukasawa, Mitsuharu; Takahashi, Ei; Sano, Katsuhiro; Inoue, Tomohiro

    2015-01-01

    The annular pancreas is a rare congenital anomaly in which a ring of the pancreas parenchyma surrounds the second part of the duodenum. Malignant tumors are extremely rare in patients with an annular pancreas. A 64-year-old man presented with appetite loss and vomiting. Abdominal contrast-enhanced computed tomography (CT) indicated pancreas parenchyma surrounding the second part of the duodenum, and a hypovascular area occupying lesion in the annular pancreas. Subtotal stomach-preserving panc...

  4. Repeated mitral valve replacement in a patient with extensive annular calcification

    Kitamura Tadashi; Fukuda Sachito; Sawada Takahiro; Miura Sumio; Kigawa Ikutaro; Miyairi Takeshi

    2011-01-01

    Abstract Background Mitral valve replacement in the presence of severe annular calcification is a technical challenge. Case report A 47-year-old lady who had undergone mitral and aortic valve replacement for rheumatic disease 27 years before presented with dyspnea. At reoperation, extensive mitral annular calcification was hindering the disc motion of the Starr-Edwards mitral prosthesis. The old prosthesis was removed and a St Jude Medical mechanical valve was implanted after thorough annular...

  5. Energy deposition patterns within limb models heated with a mini annular phased array (MAPA) applicator

    A series of experiments has been carried out in order to characterize a MAPA applicator prior to possible clinical implementation. The energy deposition patterns were determined in several human limb models of different complexities. The maximum energy deposition observed in a homogeneous cylindrical phantom was found to be at the middle of the applicator. For more realistically shaped, homogeneous limb models, the point of maximum energy deposition was shifted towards a smaller cross-sectional region; this was also the case for isolated human legs. Furthermore, significant heating was observed in the bone of the isolated legs. Such phenomena illustrate the limitation of using classical 2-D numerical models for predicting the energy deposition patterns in heterogeneous bodies

  6. An Annular Gap Acceleration Model for γ-ray Emission of Pulsars

    2007-01-01

    If the binding energy of the pulsar's surface is not so high (the case of a neutron star), both negative and positive charges will flow out freely from the surface of the star. An annular free flow model for γ-ray emission of pulsars is suggested. It is emphasized that:(1) Two kinds of acceleration regions (annular and core) need to be taken into account. The annular acceleration region is defined by the magnetic field lines that cross the null charge surface within the light cylinder. (2) If the potential drop in the annular region of a pulsar is high enough (normally the case for young pulsars), charges in both the annular and the core regions could be accelerated and produce primary gamma-rays. Secondary pairs are generated in both regions and stream outwards to power the broadband radiations. (3) The potential drop grows more rapidly in the annular region than in the core region. The annular acceleration process is a key process for producing the observed wide emission beams. (4)The advantages of both the polar cap and outer gap models are retained in this model. The geometric properties of the γ-ray emission from the annular flow are analogous to that presented in a previous work by Qiao et al., which match the observations well. (5) Since charges with different signs leave the pulsar through the annular and the core regions respectively, the current closure problem can be partially solved.

  7. Development of probabilistic design method for annular fuel. Development of BORNFREE-CEPTAR code

    The increase of linear power and burn-up during the reactor operation is considered as one of measures for the utility of fast reactor in future, and then the application of annular fuels is under consideration. In order to make a design for thus annular fuels, annular fuel design code 'CEPTAR' has been developed in Japan Atomic Energy Agency (JAEA). In addition, probabilistic fuel design code 'BORNFREE' has been also developed for the reasonable fuel design with safety and the quantitative evaluation of design margin. In this study, aiming at the development of probabilistic design method, we developed BORNFREE-CEPTAR code to develop the reasonable design method for annular fuels. As the results of probability evaluation of fuel melting at the transient at the initial power increase, by using the probabilistic annular fuel design code 'BORNFREE-CEPTAR', the melting probability for annular fuels was estimated to be approximately two figures lower than that for solid fuels, and the remarkable decrease of melting probability, which was caused by the fuel restructuring effect, was seen in the estimation results for solid fuels, on the other hand, the results for annular fuels indicated that this effect was comparably small. In addition, the permissive linear power for annular fuels tended to enhance from that for solid fuels with the increase of initial central-hole diameter under the similar fuel melting probability condition. This indicated the possibility of higher linear power operation for high-density annular fuels than low-density solid fuels. (author)

  8. Electron beam diagnostic system using computed tomography and an annular sensor

    Elmer, John W.; Teruya, Alan T.

    2015-08-11

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  9. Electron beam diagnostic system using computed tomography and an annular sensor

    Elmer, John W.; Teruya, Alan T.

    2014-07-29

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  10. Modeling of annular film dryout with Cobra-TF

    The COBRA-TF computer code uses a two-fluid, three-field and three-dimensional formulation to model a two-phase flow field in a specific geometry. The liquid phase is divided in a continuous liquid field and a separate dispersed field, which is used to describe the entrained liquid drops. For each space dimension, the code solves three momentum equations, three mass conservation equations and two energy conservation equations. Entrainment and depositions models are implemented into the code to model the mass transfer between the two liquid fields. In annular flow condition critical heat flux is caused by annular film dryout. Film dryout is a complex function of the film flow rate, the applied heat flux, and the entrainment from the liquid film to the continuous vapor region, and the deposition of entrained droplets back to the liquid film. Because of the three-field approach, COBRA-TF hydrodynamic equations are able to predict dry-out by solving directly the film dry-out as a hydrodynamic process rather than using an empirical dry-out correlation. The dry-out is driven by the hydraulic calculation and the prediction is the result of the combined effect of the entrainment, the deposition models and interfacial heat transfer. The paper discusses the annular film entrainment and deposition models used in the code as well as the logic, which is used to determine the dry-out phenomena as the film thickness decreases. The obtained results with COBRA-TF are compared with the test data from the Bennett Tube Dry-out Experiments. In general, the COBRA-TF prediction of the dry-out location is in good agreement with Bennett test data. In particular, results show that the predicted dry-out length tends to be longer than the measured value and in the post dry-out region the wall temperature, which is dependent on vapor superheat, tends to be underestimated by the code. (authors)

  11. Characteristic analysis of a double stator annular linear electromagnetic pump

    A annular linear induction electromagnetic pump (ALIP) is generally used to transport liquid sodium coolants for liquid metal reactors. In the present study, the theoretical induction of a developing equation has been carried out for a double stator version of the ALIP which is noticebly employed for the sodium circulation of a large flowrate. The computerzed P-Q relation, which is represented by the pump geometrical and electrical variables, has been applied to a double stator version of the ALMR EM pump. An induced equation was verified by the compared analysis with the known data on the P-Q characteristic according to the input currents

  12. A high efficiency annular dark field detector for STEM.

    Kirkland, E J; Thomas, M G

    1996-01-01

    A new high efficiency annular dark field (ADF) detector for an HB501 STEM (Scanning Transmission Electron Microscope) has been constructed and tested. This detector uses a single crystal YAP scintillator and a solid quartz light pipe extending from the scintillator (inside the vacuum) to the photomultiplier tube (outside the vacuum). A factor of approximately 100 improvement in signal relative to the original detector has been obtained. This has substantially improved the signal to noise ratio in the recorded high resolution ADF-STEM images. PMID:22666919

  13. Unusual Presentation of Acute Annular Urticaria: A Case Report

    Gilles Guerrier

    2011-01-01

    Full Text Available Acute urticarial lesions may display central clearing with ecchymotic or haemorrhagic hue, often misdiagnosed as erythema multiforme, serum-sickness-like reactions, or urticarial vasculitis. We report a case of acute annular urticaria with unusual presentation occurring in a 20-month-old child to emphasize the distinctive morphologic manifestations in a single disease. Clinicians who care for children should be able to differentiate acute urticaria from its clinical mimics. A directed history and physical examination can reliably orientate necessary diagnostic testing and allow for appropriate treatment.

  14. Analytic vortex dynamics in an annular Bose-Einstein condensate

    Toikka, L. A.; Suominen, K.-A.

    2016-05-01

    We consider analytically the dynamics of an arbitrary number and configuration of vortices in an annular Bose-Einstein condensate obtaining expressions for the free energy and vortex precession rates to logarithmic accuracy. We also obtain lower bounds for the lifetime of a single vortex in the annulus. Our results enable a closed-form analytic treatment of vortex-vortex interactions in the annulus that is exact in the incompressible limit. The incompressible hydrodynamics that is developed here paves the way for more general analytical treatments of vortex dynamics in non-simply-connected geometries.

  15. New fluxon resonant mechanism in annular Josephson tunnel structures

    A novel dynamical state has been observed in the dynamics of a perturbed sine-Gordon system. This resonant state has been experimentally observed as a singularity in the dc current-voltage characteristic of an annular Josephson tunnel junction, excited in the presence of a magnetic field. In this respect it can be assimilated to self-resonances known as Fiske steps. Differently from these, however, we demonstrate, on the basis of numerical simulations, that its detailed dynamics involves rotating fluxon pairs, a mechanism associated, so far, to self-resonances known as zero-field steps. This occurs because the size of nonlinear excitations is comparable with that of the system

  16. Critical heat flux prediction for the annular core research reactor

    This paper reports on best estimate predictions of Critical Heat Flux Ratio (CHFR) obtained to support the upgrade of the Annular Core Research Reactor (ACRR) at Sandia National Laboratories for 2 to 4 MWt. The CHF productions are based on the University of New Mexico's (UNM)-CHF correlations in conjunction with the Global Conditions Hypothesis (GCH). Results indicate that for the range of inlet water temperature of 293 to 333 K, CHFR predictions range from 3.9 to 2.1, which is more than sufficient to support the proposed ACRR upgrade

  17. Exhaust emissions of a double annular combustor: Parametric study

    Schultz, D. F.

    1974-01-01

    A full scale double-annular ram-induction combustor designed for Mach 3.0 cruise operation was tested. Emissions of oxides of nitrogen, carbon monoxide, unburned hydrocarbons, and smoke were measured over a range of combustor operating variables including reference velocity, inlet air temperature and pressure, and exit average temperature. ASTM Jet-A fuel was used for these tests. An equation is provided relating oxides of nitrogen emissions as a function of the combustor, operating variables. A small effect of radial fuel staging on reducing exhaust emissions (which were originally quite low) is demonstrated.

  18. Interfacial friction in cocurrent upward annular flow. Final report

    Cocurrent upward annular flow is investigated, with an emphasis on correlating and predicting pressure drop. Attention is given to the characteristics of the liquid flow in the film, and the interaction of the core with the film. Alternate approaches are discussed for correlating suitably defined interfacial friction factors. Both approaches are dependent on knowledge of the entrainment in order to make predictions. Dimensional analysis is used to define characteristic parameters of the flow and an effort is made to determine, to the extent possible, the influences of these parameters on the interfacial friction factor

  19. Array tomography: imaging stained arrays.

    Micheva, Kristina D; O'Rourke, Nancy; Busse, Brad; Smith, Stephen J

    2010-11-01

    Array tomography is a volumetric microscopy method based on physical serial sectioning. Ultrathin sections of a plastic-embedded tissue are cut using an ultramicrotome, bonded in an ordered array to a glass coverslip, stained as desired, and imaged. The resulting two-dimensional image tiles can then be reconstructed computationally into three-dimensional volume images for visualization and quantitative analysis. The minimal thickness of individual sections permits high-quality rapid staining and imaging, whereas the array format allows reliable and convenient section handling, staining, and automated imaging. Also, the physical stability of the arrays permits images to be acquired and registered from repeated cycles of staining, imaging, and stain elution, as well as from imaging using multiple modalities (e.g., fluorescence and electron microscopy). Array tomography makes it possible to visualize and quantify previously inaccessible features of tissue structure and molecular architecture. However, careful preparation of the tissue is essential for successful array tomography; these steps can be time-consuming and require some practice to perfect. In this protocol, tissue arrays are imaged using conventional wide-field fluorescence microscopy. Images can be captured manually or, with the appropriate software and hardware, the process can be automated. PMID:21041399

  20. Array tomography: production of arrays.

    Micheva, Kristina D; O'Rourke, Nancy; Busse, Brad; Smith, Stephen J

    2010-11-01

    Array tomography is a volumetric microscopy method based on physical serial sectioning. Ultrathin sections of a plastic-embedded tissue are cut using an ultramicrotome, bonded in an ordered array to a glass coverslip, stained as desired, and imaged. The resulting two-dimensional image tiles can then be reconstructed computationally into three-dimensional volume images for visualization and quantitative analysis. The minimal thickness of individual sections permits high-quality rapid staining and imaging, whereas the array format allows reliable and convenient section handling, staining, and automated imaging. Also, the physical stability of the arrays permits images to be acquired and registered from repeated cycles of staining, imaging, and stain elution, as well as from imaging using multiple modalities (e.g., fluorescence and electron microscopy). Array tomography makes it possible to visualize and quantify previously inaccessible features of tissue structure and molecular architecture. However, careful preparation of the tissue is essential for successful array tomography; these steps can be time consuming and require some practice to perfect. This protocol describes the sectioning of embedded tissues and the mounting of the serial arrays. The procedures require some familiarity with the techniques used for ultramicrotome sectioning for electron microscopy. PMID:21041397

  1. Electrorheological damper with annular ducts for seismic protection applications

    Makris, Nicos; Burton, Scott A.; Taylor, Douglas P.

    1996-10-01

    This paper presents the design, analysis, testing and modeling of an electrorheological (ER) fluid damper developed for vibration and seismic protection of civil structures. The damper consists of a main cylinder and a piston rod that pushes an ER fluid through a stationary annular duct. The behavior of the damper can be approximated with Hagen - Poiseuille flow theory. The basic equations that describe the fluid flow across an annular duct are derived. Experimental results on the damper response with and without the presence of electric field are presented. As the rate of deformation increases, viscous stresses prevail over field-induced yield stresses and a smaller fraction of the total damper force can be controlled. Simple physically motivated phenomenological models are considered to approximate the damper response with and without the presence of electric field. Subsequently, the performance of a multilayer neural network constructed and trained by an efficient algorithm known as the Dependence Identification Algorithm is examined to predict the response of the electrorheological damper. A combination of a simple phenomenological model and a neural network is then proposed as a practical tool to approximate the nonlinear and velocity-dependent damper response.

  2. Development of Dual Cooled Annular Fuel Temperature Analysis Program

    Yang, Yong Sik; Shin, C. H.; Bang, J. G.; Kim, D. H.; Kim, S. K.; Lim, I. S.; Koo Yang Hyun [KAERI, Daejeon (Korea, Republic of)

    2010-09-15

    To calculate the temperature distribution of dual cooled annular fuel, the DUOS program has been developed. Various thermal hydraulic models to determine the inner channel and outer channel flow distribution were established based on equal pressure drop condition at the top of fuel rod. The effect of gap width change was considered by employing thermal deformation model of pellet and claddings. Heat conduction model in the pellet was solved by finite difference method to consider burnup and power difference according to pellet radius. Pellet temperature model was validated by comparison with calculated temperature profile, which was determined by analytical solution of heat conduction equation under controlled input condition. Accuracy of thermal hydraulic models of DUOS were validated by core sub-channel analysis code MATRA-AF. Coolant bulk temperature of inner/outer channel and pressure drop prediction results of DUOS program show good agreement with that of MATRA-AF. Further models should be added in DUOS program to describe dual cooled annular fuel in-pile behavior, but basic thermal analysis structure has been established successfully

  3. Development of Dual Cooled Annular Fuel Temperature Analysis Program

    To calculate the temperature distribution of dual cooled annular fuel, the DUOS program has been developed. Various thermal hydraulic models to determine the inner channel and outer channel flow distribution were established based on equal pressure drop condition at the top of fuel rod. The effect of gap width change was considered by employing thermal deformation model of pellet and claddings. Heat conduction model in the pellet was solved by finite difference method to consider burnup and power difference according to pellet radius. Pellet temperature model was validated by comparison with calculated temperature profile, which was determined by analytical solution of heat conduction equation under controlled input condition. Accuracy of thermal hydraulic models of DUOS were validated by core sub-channel analysis code MATRA-AF. Coolant bulk temperature of inner/outer channel and pressure drop prediction results of DUOS program show good agreement with that of MATRA-AF. Further models should be added in DUOS program to describe dual cooled annular fuel in-pile behavior, but basic thermal analysis structure has been established successfully

  4. Design Attributes and Scale Up Testing of Annular Centrifugal Contactors

    David H. Meikrantz; Jack D. Law

    2005-04-01

    Annular centrifugal contactors are being used for rapid yet efficient liquid- liquid processing in numerous industrial and government applications. Commercialization of this technology began eleven years ago and now units with throughputs ranging from 0.25 to 700 liters per minute are readily available. Separation, washing, and extraction processes all benefit from the use of this relatively new commercial tool. Processing advantages of this technology include: low in-process volume per stage, rapid mixing and separation in a single unit, connection-in-series for multi-stage use, and a wide operating range of input flow rates and phase ratios without adjustment. Recent design enhancements have been added to simplify maintenance, improve inspection ability, and provide increased reliability. Cartridge-style bearing and mechanical rotary seal assemblies that can include liquid-leak sensors are employed to enhance remote operations, minimize maintenance downtime, prevent equipment damage, and extend service life. Clean-in-place capability eliminates the need for disassembly, facilitates the use of contactors for feed clarification, and can be automated for continuous operation. In nuclear fuel cycle studies, aqueous based separations are being developed that efficiently partition uranium, actinides, and fission products via liquid-liquid solvent extraction. Thus, annular centrifugal contactors are destined to play a significant role in the design of such new processes. Laboratory scale studies using mini-contactors have demonstrated feasibility for many such separation processes but validation at an engineering scale is needed to support actual process design.

  5. Investigation of azimuthal staging concepts in annular gas turbines

    Noiray, Nicolas; Bothien, Mirko; Schuermans, Bruno

    2011-10-01

    In this work, the influence of azimuthal staging concepts on the thermoacoustic behavior of annular combustion chambers is assessed theoretically and numerically. Staging is a well-known and effective method to abate thermoacoustic pulsations in combustion chambers. However, in the case of, for example, fuel staging the associated inhomogeneity of equivalence ratio may result in increased levels of NOx emissions. In order to minimize this unwanted effect a staging concept is required in which the transfer functions of the burners are changed while affecting the equivalence ratio as little as possible. In order to achieve this goal, a theoretical framework for predicting the influence of staging concepts on pulsations has been developed. Both linear and nonlinear analytical approaches are presented and it is shown that the dynamics of azimuthal modes can be described by coupled Van der Pol oscillators. A criterion based on the thermoacoustic coupling strength and on the asymmetry degree provides the modal behavior in the annular combustor, i.e. standing or traveling waves. The model predictions have been verified by numerical simulations of a heavy-duty gas turbine using an in-house thermoacoustic network-modeling tool. The interaction between the heat release of the flame and the acoustic field was modeled using measured transfer functions and source terms. These numerical simulations confirmed the original theoretical considerations.

  6. The Growth of Instabilities in Annular Liquid Sheets

    Duke, Daniel J.; Honnery, Damon R; Soria, Julio

    2015-11-01

    An annular liquid sheet surrounded by parallel co-flowing gas is an effective atomiser. However, the initial instabilities which determine the primary break-up of the liquid sheet are not well understood. Lack of agreement on the influence of the boundary conditions and the non-dimension scaling of the initial instability persists between theoretical stability analyses and experiments. To address this matter, we have undertaken an experimental parametric study of an aerodynamically-driven, non-swirling annular water sheet. The effects of sheet thickness, inner and outer gas-liquid momentum ratio were investigated over an order of magnitude variation in Reynolds and Weber number. From high-speed image correlation measurements in the near-nozzle region, we propose new empirical correlations for the frequency of the instability as a function of the total gas-liquid momentum ratio, with good non-dimensional collapse. From analysis of the instability velocity probability densities, we find two persistent and distinct superimposed instabilities with different growth rates. The first is a short-lived, rapidly saturating sawtooth-like instability. The second is a slower-growing stochastic instability which persists through the break-up of the sheet. The presence of multiple instabilities whose growth rates do not strongly correlate with the shear velocities may explain some of the discrepancies between experiments and stability analyses.

  7. Study on annular mist flow in pipe, 1

    An annular mist flow using air and water at room temperature has been studied experimentally in a vertical pipe with a nozzle along the axis of the pipe for supplying liquid. Observations were made of flow patterns of liquid on the inner surface of the pipe, and measurements were made of pressure losses in pipe, profiles of radial distribution of liquid droplets and total flow rates of the liquid droplets. Changes of these four factors along the pipe were measured in the non-equilibrium region. It was found that the non-equilibrium length should be decided by a position where any changes in the four factors mentioned above could not be recognized in the axial direction. For relatively high velocities of air, i.e., for apparent gaseous Reynolds number R sub(ego) >= 9.4 x 104, it was ascertained that the annular mist flow reached equilibrium at a distance of 170 - 190 diameters from the nozzle outlet when apparent liquid Reynolds number R sub(elo) = 62.1 - 183.6. (author)

  8. A Compact Annular Ring Microstrip Antenna for WSN Applications

    Daihua Wang

    2012-06-01

    Full Text Available A compact annular ring microstrip antenna was proposed for a wireless sensor network (WSN application in the 2.4 GHz band. In this paper the major considerations of the conformal antenna design were the compact size and the impact on antenna’s performance of a steel installation base. By using a chip resistor of large resistance (120 Ω the antenna size was reduced to 38% of that a conventional annular ring patch antenna. With the addition of the steel installation base the resonant frequency of the antenna increases about 4.2% and the bandwidth reduces from 17.5% to 11.7% by adjusting the load resistance simultaneously. Several key parameters were discussed and optimized, and the antenna was fabricated and its performance measured. The antenna is well matched at 2.4 GHz with 34.2 dB return loss and –2.5 dBi peak gain. Meanwhile, it exhibits excellent radiation patterns with very low cross-polarization levels.

  9. Core-annular flow through a horizontal pipe: Hydrodynamic counterbalancing of buoyancy force on core

    Ooms, G.; Vuik, C.; Poesio, P.

    2007-01-01

    A theoretical investigation has been made of core-annular flow: the flow of a high-viscosity liquid core surrounded by a low-viscosity liquid annular layer through a horizontal pipe. Special attention is paid to the question of how the buoyancy force on the core, caused by a density difference betwe

  10. A magnetorheological valve with both annular and radial fluid flow resistance gaps

    In order to increase the efficiency of magnetorheological (MR) valves, Ai et al (2006) proposed an MR valve simultaneously possessing annular and radial fluid flow resistance channels with the assumption that the magnetic flux densities at the annular and radial fluid flow gaps are identical. In this paper, an MR valve simultaneously possessing annular and radial fluid flow resistance channels is designed, fabricated, modeled and tested. A model for the developed MR valve is produced and its performances are theoretically predicted based on the average magnetic flux densities in the annular and radial fluid flow gaps through finite element analysis. The theoretical results for the developed MR valve are compared with the experimental results. In addition, the performances of the developed MR valve are theoretically and experimentally compared with those of the MR valve with only annular fluid flow gaps. It has been shown that the theoretical results match well with the experimental results. Mainly attributed to the radial fluid flow gaps, the pressure drops across the MR valve with both annular and radial fluid flow gaps are larger than those across the MR valve with only annular fluid flow gaps for varying valve parameters. The radial fluid flow gaps in the MR valve can reach a higher efficiency and larger controllable range than those by annular fluid flow gaps to some extent

  11. Analytical solution of neutron transport equation in an annular reactor with a rotating pulsed source

    In this study, an analytical solution of the neutron transport equation in an annular reactor is presented with a short and rotating neutron source of the type S(x) δ (x- Vt), where V is the speed of annular pulsed reactor. The study is an extension of a previous study by Williams [12] carried out with a pulsed source of the type S(x) δ (t). In the new concept of annular pulsed reactor designed to produce continuous high flux, the core consists of a subcritical annular geometry pulsed by a rotating modulator, producing local super prompt critical condition, thereby giving origin to a rotating neutron pulse. An analytical solution is obtained by opening up of the annular geometry and applying one energy group transport theory in one dimension using applied mathematical techniques of Laplace transform and Complex Variables. The general solution for the flux consists of a fundamental mode, a finite number of harmonics and a transient integral. A condition which limits the number of harmonics depending upon the circumference of the annular geometry has been obtained. Inverse Laplace transform technique is used to analyse instability condition in annular reactor core. A regenerator parameter in conjunction with perimeter of the ring and nuclear properties is used to obtain stable and unstable harmonics and to verify if these exist. It is found that the solution does not present instability in the conditions stated in the new concept of annular pulsed reactor. (author)

  12. Multiple lesions of granuloma annulare on the hand in a patient with scabies

    Al Aboud K

    2011-08-01

    Full Text Available Khalid Al Aboud1, Daifullah Al Aboud21Department of Dermatology, King Faisal Hospital, Makkah; 2Department of Dermatology, Taif University, Taif, Kingdom of Saudi ArabiaAbstract: Granuloma annulare induced by scabies infection has been described previously in three patients. In this report, we share our observation of a fourth case.Keywords: granuloma annulare, scabies, skin

  13. DC intrinsic Josephson effect in 1{mu}m-lateral-size annular Bi-2212 stacks

    Kim, S.J.; Yamashita, T. [Tohoku Univ., Sendai (Japan). Research Inst. of Electrical Comunication; Latyshev, Y.I.; Pavlenko, V.N. [Tohoku Univ., Sendai (Japan); Inst of Radio-Engineerig and Electronics Russian Academic of Sciences, Moscow (Russian Federation)

    1999-11-10

    Small annular junctions were the subjects of particular interest last decade because of possibility of flux trapping (see, e.g. [1]). Related magnetic field can contain radial component affecting Josephson critical current. Here we report on the first studies of intrinsic dc Josephson effect [2] in small annular type Bi-2212 mesas and its sensitivity to the trapped flux. (translated by NEDO)

  14. In-Reactor Densification of Dual Cooled Annular Fuel Pellet during Irradiation Test at HANARO

    Rhee, Young Woo; Kim, Dong Joo; Kwon, Hyoung Mun; Kim, Keon Sik; Kim, Jong Hun; Oh, Jang Soo; Yang, Jae Ho; Koo, Yang Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    These advantages result in a considerably low pellet centerline temperature. Because of this considerably low pellet temperature, in-reactor behavior of an annular pellet, such as densification and swelling may be significantly different from that of the conventional PWR solid pellet. Since the pellet temperature of an annular fuel rod is lower than that of a PWR solid fuel rod by several hundred degrees, the in-reactor densification and swelling of a dual cooled annular fuel pellet might be considered as athermal phenomena due to a low pellet temperature. In order to investigate the in-reactor behavior of the annular UO{sub 2} pellet, HANARO irradiation test was planned and conducted for annular pellets with 5 different types. Post irradiation test is being carried out in the KAERI's PIE facility. In this study, we are going to report the preliminary results of PIE test on the inreactor densification behavior of a dual cooled annular fuel pellet. Irradiation test of dual cooled annular UO{sub 2} pellet was conducted at the OR-4 hole in HANARO by using a non-instrumented test rig. The preliminary results of PIE test on the in-reactor densification behavior showed that the irradiated pellets densified much more than expected values based on MATPRO relations of inreactor densification at low temperature in the annular pellet with low initial sintered density. It might be attributed to the higher fission rate during HANARO irradiation.

  15. Annular core liquid-salt cooled reactor with multiple fuel and blanket zones

    Peterson, Per F.

    2013-05-14

    A liquid fluoride salt cooled, high temperature reactor having a reactor vessel with a pebble-bed reactor core. The reactor core comprises a pebble injection inlet located at a bottom end of the reactor core and a pebble defueling outlet located at a top end of the reactor core, an inner reflector, outer reflector, and an annular pebble-bed region disposed in between the inner reflector and outer reflector. The annular pebble-bed region comprises an annular channel configured for receiving pebble fuel at the pebble injection inlet, the pebble fuel comprising a combination of seed and blanket pebbles having a density lower than the coolant such that the pebbles have positive buoyancy and migrate upward in said annular pebble-bed region toward the defueling outlet. The annular pebble-bed region comprises alternating radial layers of seed pebbles and blanket pebbles.

  16. Entrance and exit region friction factor models for annular seal analysis. Ph.D. Thesis

    Elrod, David Alan

    1988-01-01

    The Mach number definition and boundary conditions in Nelson's nominally-centered, annular gas seal analysis are revised. A method is described for determining the wall shear stress characteristics of an annular gas seal experimentally. Two friction factor models are developed for annular seal analysis; one model is based on flat-plate flow theory; the other uses empirical entrance and exit region friction factors. The friction factor predictions of the models are compared to experimental results. Each friction model is used in an annular gas seal analysis. The seal characteristics predicted by the two seal analyses are compared to experimental results and to the predictions of Nelson's analysis. The comparisons are for smooth-rotor seals with smooth and honeycomb stators. The comparisons show that the analysis which uses empirical entrance and exit region shear stress models predicts the static and stability characteristics of annular gas seals better than the other analyses. The analyses predict direct stiffness poorly.

  17. Study of the synchronous operation of an Annular Field Reversed Configuration plasma device

    Kirtley, David E.

    Field Reversed Configuration (FRC) plasmas are high-density, magnetized, pulsed plasmas with unique translational and efficient formation properties that lend themselves to many uses. This dissertation furthers the understanding and empirical investigations into a slow-formation FRC, the low-voltage Annular Field Reversed Configuration plasma (AFRC) by successfully operating with heavy gases, at low-voltages, and in a synchronous discharge configuration. The AFRC plasma is an evolution of the cylindrical shock compression driven FRC that aims to increase compression times well into diffusive timescales, thereby increasing overall plasma content, lifetime, and greatly simplifying pulsed switching and transmission hardware. AFRC plasmas have uses ranging from primary pulsed magnetic fusion, refueling for Tokamak plasmas, and advanced space propulsion. In this thesis it is shown that AFRCs operating in a synchronous discharge configuration generate efficient, high-density magnetized toroidal plasmas with clear transitional regimes and optimal discharge parameters. A 10-kJ pulsed power facility and discharge network was constructed to explore AFRC plasmas. An extensive array of pulsed diagnostics were developed to explore the operational characteristics of a 40-cm outer diameter annular theta pinch and its pre-ionization, compression, field reversal, and translation configurations. Twelve high-speed, 3-axis B-dot probes were used to show plasma magnetization and compression for various discharge geometries. A fast DICAM and wide-angle photometer examined overall plasma content, compression regimes, downstream translation, and plasma instabilities for argon and xenon discharges ranging from 3--20 mTorr, 500--1000 V, and 185--450 mus discharge periods. Downstream B-dot probes and collimated, amplified photometers examined downstream plasma translation and magnetization. An axially-scanning internal triple probe was utilized to measure temporal plasma temperature, density

  18. Liquid transfer and entrainment correlation for droplet-annular flow

    A correlation for the amount of entrained liquid in annular flow has been developed from a simple model and experimental data. There are basically two different regions of entrainment, namely, the entrance and quasi-equilibrium regions. The correlation for the equilibrium region is expressed in terms of the dimensionless gas flux, diameter, cand total liquid Reynolds number. The entrance effect is taken into account by an exponential relaxation function. It has been shown that this new model can satisfactorily correlate wide ranges of experimental data for water. Furthermore, the necessary distance for the development of entrainment is identified. These correlations, therefore, can supply accurate information on entrainment which has not been available previously

  19. Annular elastolytic giant cell granuloma of conjunctiva: A case report

    Karabi Konar

    2014-01-01

    Full Text Available Annular elastolytic giant cell granuloma is a condition characterized histologically by damaged elastic fibers associated with preponderance of giant cells along with absence of necrobiosis, lipid, mucin, and pallisading granuloma. It usually occurs on sun-damaged skin and hence the previous name actinic granuloma. A similar process occurs on the conjunctiva. Over the past three decades only four cases of conjunctival actinic granuloma have been documented. All the previous patients were females with lesions in nasal or temporal bulbar conjunctiva varying 2-3 mm in size. We report a male patient aged 70 years presenting with a 14 mm × 7 mm fleshy mass on right lower bulbar conjunctiva. Clinical differential diagnoses were lymphoma, squamous cell carcinoma in situ and amyloidosis. Surgical excision followed by histopathology confirmed it to be a case of actinic granuloma. This is the first case of isolated conjunctival actinic granuloma of such a large size reported from India.

  20. An in-house developed annular bright field detection system

    Annular bright field (ABF) detectors have been developed in the last few years allowing the direct imaging of low-Z atoms from oxygen down to hydrogen. These types of detectors are now available as standard attachments for the latest generation of top-end electron microscopes. However these systems cannot always be installed in previous generation microscopes. In this paper we report the preliminary results of an in-house implementation of a ABF detection system on a CEOS aberration corrected JEOL 2200FS STEM. This has been obtained by exploiting the standard BF detector coupled with a high vacuum compatible, X-ray tight and retractable shadowing mechanism. This results in the acquisition of near zero-angle scattered electrons with inner collection semi-angle from 2.0 mrad to 23 mrad and outer semi-angle in the range from 3.0 mrad to 35 mrad. The characteristics and performances of this ABF detection system are discussed

  1. Mathematical model for multicomponent separations on the continuous annular chromatograph

    A model for multicomponent separations on ion exchange columns has been adapted for use in studying the performance of the continuous annular chromatograph. The model accurately predicts solute peak positions in the column effluent and qualitatively predicts trends in solute effluent resolution as a function of increasing bandwidth of the solute feed pulse. The major virtues of the model are its simplicity in terms of the calculations involved and the fact that it incorporates the nonlinear solute-resin binding isotherms common in many ion exchange separations. Because dispersion effects are not accounted for in the model, discrepancies exist between the shapes of the effluent peaks predicted by the model and those determined experimentally

  2. Mathematical model for multicomponent separations on the continuous annular chromatograph

    Bratzler, R.L.; Begovich, J.M.

    1980-12-01

    A model for multicomponent separations on ion exchange columns has been adapted for use in studying the performance of the continuous annular chromatograph. The model accurately predicts solute peak positions in the column effluent and qualitatively predicts trends in solute effluent resolution as a function of increasing bandwidth of the solute feed pulse. The major virtues of the model are its simplicity in terms of the calculations involved and the fact that it incorporates the nonlinear solute-resin binding isotherms common in many ion exchange separations. Because dispersion effects are not accounted for in the model, discrepancies exist between the shapes of the effluent peaks predicted by the model and those determined experimentally.

  3. Aerodynamic performance of an annular classical airfoil cascade

    Bergsten, D. E.; Stauter, R. C.; Fleeter, S.

    1983-01-01

    Results are presented for a series of experiments that were performed in a large-scale subsonic annular cascade facility that was specifically designed to provide three-dimensional aerodynamic data for the verification of numerical-calculation codes. In particular, the detailed three-dimensional aerodynamic performance of a classical flat-plate airfoil cascade is determined for angles of incidence of 0, 5, and 10 deg. The resulting data are analyzed and are correlated with predictions obtained from NASA's MERIDL and TSONIC numerical programs. It is found that: (1) at 0 and 5 deg, the airfoil surface data show a good correlation with the predictions; (2) at 10 deg, the data are in fair agreement with the numerical predictions; and (3) the two-dimensional Gaussian similarity relationship is appropriate for the wake velocity profiles in the mid-span region of the airfoil.

  4. A Novel Design of Magnetorheological Damper with Annular Radial Channel

    Shisha Zhu

    2016-01-01

    Full Text Available With the development of automotive vibration technology, the semiactive suspension system with adjustable damping force and high reliability is taken seriously. The magnetorheological damper (MRD that applies intelligent material (magnetorheological fluid is the key element of this system. It can achieve a continuous and adjustable damping and then reaches the purpose of comfort. In order to improve the damping effect of MRD, this paper presents a MRD, which has magnetorheological (MR effect along annular radial channel. The paper completely designs the structure and magnetic circuit of MRD. Based on the theory of electromagnetism and MR fluid dynamics, the paper analyzes and tests the external characteristics of the MRD by the MATLAB/Simulink and the vibration experiment. The results compared with ordinary MRD reveal that the damping force obviously increases and has wide adjustable range, thus verifying the reasonableness of the damper design.

  5. Investigation of a low NOx full-scale annular combustor

    1982-01-01

    An atmospheric test program was conducted to evaluate a low NOx annular combustor concept suitable for a supersonic, high-altitude aircraft application. The lean premixed combustor, known as the vortex air blast (VAB) concept, was tested as a 22.0-cm diameter model in the early development phases to arrive at basic design and performance criteria. Final demonstration testing was carried out on a full scale combustor of 0.66-m diameter. Variable geometry dilution ports were incorporated to allow operation of the combustor across the range of conditions between idle (T(in) = 422 K, T(out) = 917 K) and cruise (T(in) = 833 K, T(out) - 1778 K). Test results show that the design could meet the program NOx goal of 1.0 g NO2/kg fuel at a one-atmospheric simulated cruise condition.

  6. Development of annular targets for 99MO production-1999

    The new annular target performed well during irradiation. The target is inexpensive and provides good heat transfer during irradiation. Based on these and previous tests, we conclude that targets with zirconium tubes and either nickel-plated or zinc-plated foils work well. We proved that we could use aluminum target tubes, which are much cheaper and easier to work with than the zirconium tubes. In aluminum target tubes nickel-plated fission-recoil barriers work well and prevent bonding of the foil to the new target tubes during irradiation. Also, zinc-plated and aluminum-foil barriers appear promising in anodized aluminum tubes. Additional tests are anticipated to address such issues as fission-recoil barrier thickness and uranium foil composition. Overall, however, the target was successful and will provide an inexpensive, efficient way to irradiate LEU metal foil for the production of 99Mo

  7. Damping of cylindrical structures subject to annular flow

    In previous reports theoretical methods have been described for estimating the aerodynamic forces acting on cylinders vibrating laterally when surrounded by an annulus carrying high velocity gas. For a certain restricted set of geometries it is possible to predict whether a particular structure is stable or unstable and to determine the level of aerodynamic damping positive or negative due to the presence of the gas. This report describes experimental work which validates the computer program in which the theoretical methods are embodied; in particular the damping, inertial and decentralising forces acting on a cylinder in an annulus are measured and compared with theory over a range of frequencies from 0 to 25 Hz, and of Reynolds numbers from zero to 104. In addition a summary of simple relationships is provided which can be used to provide credible initial estimates of both the positive and negative damping of cylinders in a range of annular geometries. (author)

  8. Application study on fast extracting plutonium with annular centrifugal extractor

    An extraction system with annular centrifugal extractors has been designed to separate plutonium. It worked well when centrifugal speed was ranged from 2000 to 8000 r/min and organic-aqueous flow ratio (o/a) ranged from 1/3 to 1, without obvious entraining phenomenon Pu (IV) in 6 mol/L HNO3 solution was fast extracted and separated, using 0.1 mol/L TOPO/Cyclohexane as extraction solvent and 0.01 mol/L oxalic acid as back extraction solvent. The extraction ratio of two stages was larger than 90%, and the back ratio per stage was more than 96%. The extraction system shows fast operating speed and high extraction ratio, therefore it is suitable for fast extracting Pu. (authors)

  9. Two-phase flow instabilities in a vertical annular channel

    Babelli, I.; Nair, S.; Ishii, M. [Purdue Univ., West Lafayette, IN (United States)

    1995-09-01

    An experimental test facility was built to study two-phase flow instabilities in vertical annular channel with emphasis on downward flow under low pressure and low flow conditions. The specific geometry of the test section is similar to the fuel-target sub-channel of the Savannah River Site (SRS) Mark 22 fuel assembly. Critical Heat Flux (CHF) was observed following flow excursion and flow reversal in the test section. Density wave instability was not recorded in this series of experimental runs. The results of this experimental study show that flow excursion is the dominant instability mode under low flow, low pressure, and down flow conditions. The onset of instability data are plotted on the subcooling-Zuber (phase change) numbers stability plane.

  10. Dynamic Response of Three-Layered Annular Plate with Imperfections

    Pawlus Dorota

    2015-02-01

    Full Text Available This paper presents the imperfection sensitivity of annular plate with three-layered structure. The plate composed of thin elastic facings and a thicker elastic core is loaded in facing plane. The classical issue of a three-layered plate was solved for dynamic deflection problem using the approximation methods: orthogonalization and finite difference. The solution includes the axisymmetric and asymmetric plate modes of the dynamic stability loss. The evaluation of the rate of plate sensitivity to imperfection of plate preliminary geometry has been enriched by the analysis of plate models built of finite elements. The ABAQUS program has been used. The numerous calculation results in the form of deflection characteristics, buckling modes, values of critical parameters create the view of response of dynamic plate structure with different rate of imperfection and linear in time loading growth, too.

  11. Annular modes and apparent eddy feedbacks in the Southern Hemisphere

    Byrne, Nicholas J.; Shepherd, Theodore G.; Woollings, Tim; Plumb, R. Alan

    2016-04-01

    Lagged correlation analysis is often used to infer intraseasonal dynamical effects but is known to be affected by nonstationarity. We highlight a pronounced quasi 2 year peak in the anomalous zonal wind and eddy momentum flux convergence power spectra in the Southern Hemisphere, which is prima facie evidence for nonstationarity. We then investigate the consequences of this nonstationarity for the Southern Annular Mode and for eddy momentum flux convergence. We argue that positive lagged correlations previously attributed to the existence of an eddy feedback are more plausibly attributed to nonstationary interannual variability external to any potential feedback process in the midlatitude troposphere. The findings have implications for the diagnosis of feedbacks in both models and reanalysis data as well as for understanding the mechanisms underlying variations in the zonal wind.

  12. Intermittent Flow of Granular Matter in an Annular Geometry

    Brzinski, Ted; Daniels, Karen E.

    Granular solids can be subjected to a finite stress below which the response is elastic. Above this yield stress, however, the material fails catastrophically, undergoing a rapid plastic deformation. In the case of a monotonically increasing stress the material exhibits a characteristic stick-slip response. We investigate the statistics of this intermittent failure in an annular shear geometry, driven with a linear-ramp torque in order to generate the stick-slip behavior. The apparatus is designed to allow visual access to particle trajectories and inter-particle forces (through the use of photoelastic materials). Additionally, twelve piezoelectric sensors at the outer wall measure acoustic emissions due to the plastic deformation of the material. We vary volume fraction, and use both fixed and deformable boundaries. We measure how the distribution of slip size and duration are related to the bulk properties of the packing, and compare to systems with similar governing statistics.

  13. Periocular granuloma annulare: a case report and review of literature.

    Chiang, Katherine; Bhalla, Rohan; Mesinkovska, Natasha A; Piliang, Melissa P; Tamburro, Joan E

    2014-01-01

    Granuloma annulare (GA) is a granulomatous dermatosis that rarely presents on the face and is extremely uncommon in the periocular region. We report our experience with the presentation and management of GA lesions on the eyelids of a 17-year-old girl. We performed a review of published literature and identified 13 cases of pediatric periocular GA. One additional case was identified upon review of all pediatric GA cases at the Cleveland Clinic Foundation. Review of these cases suggests that periocular GA is a benign condition that spontaneously regresses within a few months. GA nodules have a predilection for the upper eyelids. A greater incidence is noted in African American children. Awareness of the self-resolving nature of this condition can prevent unnecessary surgical excisions in affected children. PMID:23551387

  14. Magnetically guided free surface annular NaK flow experiment

    In order to gain basic information on the magnetically guided liquid metal Li waterfall type blanket concept for ICF reactors and liquid metal Li free surface flow for FMIT type accelerator target, an experimental study was conducted by using LINAK (NaK: 50 l, Ar: 0-0.3 MPa) device. A 45 mm O.D. and 25 mm I.D. annular free jet of NaK, which flowed downwards coaxially through a superconducting magnet (2.7 Tmax, B=0.38 T at the nozzle exit), was formed in vacuum chamber and at the nozzle exit where magnetic flux density B was divergent. The experiment covered ranges of U=0.5-2.5 m/s and B=0-0.38 T at the nozzle exit. Photographic and VTR observations were made on the behavior of outer surface of annular flow. The results are summarized as follows. (1) When B=0 T, the downward flow was rather convergent due to the surface tension. (2) By applying B, the flow became divergent like a cone shell and more stable. The divergent half angle increased with intensifying B. (3) The experimental results on the flow divergence agreed fairly well with the numerical analysis which took into account the MHD force, the surface tension and the gravitational force. (4) No growth of outer surface disturbance occurred within an attained maximum divergent half angle of 8deg or less. The results are considered to be encouraging for applying to ICF blanket and FMIT type target. (author)

  15. Z-pinch of an annular gas jet

    The implosion and thermalization of an annular argon plasma is investigated. The plasma is produced by the z-pinch of an annular jet of argon gas, using a marx bank-transmission line system which delivers a peak current of 415 kA in 200 ns. The annulus implodes from its initial diameter of 2.5 cm and reaches a peak velocity of approx.2.8 x 107 cm/sec. Measurements of the plasma's radius, thickness, electron density, and average ionization state as a function of time are performed. When the imploding plasma reaches the axis, an 8 ns pulse of soft (0.1-1 keV) x rays is emitted. X rays with energies between 1 and 6 keV are also observed, and are emitted in a single pulse 2 to 5 ns wide. The thermalized plasma is inhomogeneous along the axial direction; vacuum ultraviolet spectroscopy indicates that some regions are approx.270 eV, with Ar XIV in abundance, while x-ray spectroscopy indicates that other regions of the plasma have only highly ionized argon (XVI-XVIII). Although a thermal interpretation of the x-ray spectra would indicate an electron temperature of approx.1 keV, there is evidence that an energetic beam of electrons develops in the thermalized plasma. When this beam is included in the analysis of the x-ray spectra, it is found that the temperature in the hot spots could be as low as 400 eV. The electron density in the thermalized plasma is estimated to be greater than or equal to 1020 cm-3

  16. Annular fuel pin heat transfer and lumped model correction

    Fuel pin heat transfer studies are important in nuclear reactor accident analysis. Based on the requirement of accuracy and the speed of the computation, a simple lumped heat transfer method or detailed numerical methods are chosen to solve the heat transfer equations. In a nuclear reactor design calculations, accuracy of the solution is very important than the speed. In a nuclear reactor simulator, the speed is important. Lumped model assumes fuel pellet is solid without central hole and the heat transfer coefficient is constant across the fuel pin. In the present study a new modified lumped heat transfer model is developed to consider the annular fuel pin's central hole, and the heat transfer coefficient is made as a function of average fuel pin temperature. Transient analyses are carried out with the above said modifications for a typical LMFBR annular fuel pin. The results of lumped heat transfer model are almost matching with the accurate numerical schemes like Crank-Nicolson method. Comparisons of results with Crank-Nicolson methods are good for small step reactivity addition, ramp reactivity insertion and large step reactivity addition, ramp reactivity insertion with and without reactivity feedbacks. Comparisons of results are good for LOFA also, with and without reactivity feedbacks. With the consideration of reactivity feedbacks, fuel temperature calculated through the present modified lumped model is matching well with Crank-Nicolson methods, and the nominal power also matching well. The modified lumped heat transfer model can be used in nuclear reactor simulation studies and in conservative accident analyses where fastness of the solution is a matter of concern. (author)

  17. Laser-induced retinal damage thresholds for annular retinal beam profiles

    Kennedy, Paul K.; Zuclich, Joseph A.; Lund, David J.; Edsall, Peter R.; Till, Stephen; Stuck, Bruce E.; Hollins, Richard C.

    2004-07-01

    The dependence of retinal damage thresholds on laser spot size, for annular retinal beam profiles, was measured in vivo for 3 μs, 590 nm pulses from a flashlamp-pumped dye laser. Minimum Visible Lesion (MVL)ED50 thresholds in rhesus were measured for annular retinal beam profiles covering 5, 10, and 20 mrad of visual field; which correspond to outer beam diameters of roughly 70, 160, and 300 μm, respectively, on the primate retina. Annular beam profiles at the retinal plane were achieved using a telescopic imaging system, with the focal properties of the eye represented as an equivalent thin lens, and all annular beam profiles had a 37% central obscuration. As a check on experimental data, theoretical MVL-ED50 thresholds for annular beam exposures were calculated using the Thompson-Gerstman granular model of laser-induced thermal damage to the retina. Threshold calculations were performed for the three experimental beam diameters and for an intermediate case with an outer beam diameter of 230 μm. Results indicate that the threshold vs. spot size trends, for annular beams, are similar to the trends for top hat beams determined in a previous study; i.e., the threshold dose varies with the retinal image area for larger image sizes. The model correctly predicts the threshold vs. spot size trends seen in the biological data, for both annular and top hat retinal beam profiles.

  18. Numerical Simulation of the Laval Annular Mechanical Foam Breaker for Foam Drilling

    Pin Lu Cao

    2013-12-01

    Full Text Available The Computational Fluid Dynamics (CFD code, Fluent, is employed to simulate the flow phenomena inside the annular foam breaker in order to improve its performance. The numerical simulation results show that the value and the distribution of the negative pressure are very important for the annular foam breaker. The design of the Laval nozzle not only can increase the fluid velocity, but also can reduce the pressure value from -30.2 to -50.3 kPa compared with the common annular nozzle foam breaker. In order to improve the range of the internal negative pressure, the two-stage Laval annular foam breaker is designed in this study. The analysis results show the distance between the two annular slit have greatly influence on its performance. There is a small overlap area between the two negative pressure zones generated by the two annular slits. The smaller the value distance is, the larger the overlap zone is. When the value of the distance decreases to 50 mm, the minimum negative pressure can be reduced to approximately -65.5 kPa. Meanwhile, the range of the internal negative pressure is larger than the single Laval annular foam breaker, which is benefit to break foam.

  19. On the Motion of an Annular Film in Microgravity Gas-Liquid Flow

    McQuillen, John B.

    2002-01-01

    Three flow regimes have been identified for gas-liquid flow in a microgravity environment: Bubble, Slug, and Annular. For the slug and annular flow regimes, the behavior observed in vertical upflow in normal gravity is similar to microgravity flow with a thin, symmetrical annular film wetting the tube wall. However, the motion and behavior of this film is significantly different between the normal and low gravity cases. Specifically, the liquid film will slow and come to a stop during low frequency wave motion or slugging. In normal gravity vertical upflow, the film has been observed to slow, stop, and actually reverse direction until it meets the next slug or wave.

  20. Burnout in the boiling of water and freon-113 on tubes with annular fins

    This paper presents the results of numerical calculations of burnout heat flux associated with the boiling of Freon-113 and water on an annular fin of constant thickness which have been approximated by simple analytical relations. These are used to calculate the critical burnout parameters of tubes with an annular fin assembly. The calculated data may be used for the analysis of tubes with an annular fin assembly over a wide range of variation of the thermophysical properties of the material and geometrical parameters of the fin assembly

  1. Reliable strain measurement in transistor arrays by robust scanning transmission electron microscopy

    Suhyun Kim

    2013-09-01

    Full Text Available Accurate measurement of the strain field in the channels of transistor arrays is critical for strain engineering in modern electronic devices. We applied atomic-resolution high-angle annular dark-field scanning transmission electron microscopy to quantitative measurement of the strain field in transistor arrays. The quantitative strain profile over 20 transistors was obtained with high reliability and a precision of 0.1%. The strain field was found to form homogeneously in the channels of the transistor arrays. Furthermore, strain relaxation due to the thin foil effect was quantitatively investigated for thicknesses of 35 to 275 nm.

  2. Method of improving image sharpness for annular-illumination scanning electron microscopes

    Enyama, Momoyo; Hamada, Koichi; Fukuda, Muneyuki; Kazumi, Hideyuki

    2016-06-01

    Annular illumination is effective in enhancing the depth of focus for scanning electron microscopes (SEMs). However, owing to high side lobes of the point-spread function (PSF), annular illumination results in poor image sharpness. The conventional deconvolution method, which converts the PSF to a delta function, can improve image sharpness, but results in artifacts due to noise amplification. In this paper, we propose an image processing method that can reduce the deterioration of image sharpness. With this method, the PSF under annular illumination is converted to that under standard illumination. Through simulations, we verified that the image sharpness of SEM images under annular illumination with the proposed method can be improved without noise amplification.

  3. Ultra-Wide-Band Microstrip Concentric Annular Ring Antenna for Wireless Communications

    Salima Azzaz-Rahmani

    2012-01-01

    Full Text Available In this paper, a new design technique for bandwidth enhancement of concentric microstrip annular ring slot antennas is presented. Using this technique, an Ultra-Wide-Band antenna is designed with simulated bandwidth of 111.29%.

  4. The analysis of the annular fuel performance in steady state condition by using AFPAC code

    The fuel performance code AFPAC v1.0 is used to analyze annular fuel's behavior under steady state conditions, including neutronics, thermal hydraulic, rod deformation, fission gas release and rod internal pressure. The calculation results show that: 1) Annular fuel has a good steady irradiation performance at 150% power level as current LWRs' with burnup up to 50 GWd/t, and all parameters, such as temperature, rod internal pressure and rod deformation, are meet the rod design criteria for current fuel of PWRs: 2) Compared to the solid fuel under the same irradiation condition. annular fuel has lower temperature, smaller deformation, lower fission gas release and lower pressure at EOL. From the point of view of steady irradiation performance, the safety of reactors can significantly improved by u sing the annular fuel. (authors)

  5. Effect of January 15, 2010 annular solar eclipse on meteorological parameters over Goa, India

    Muraleedharan, P.M.; Nisha, P.G.; Mohankumar, K.

    Atmospheric perturbations due to the annular solar eclipse were monitored to understand its influence on the meteorological parameters from surface to the lower stratosphere. A strong inversion at 13 km and an abnormal warming in the upper...

  6. Biofilm Community Dynamics in Bench-Scale Annular Reactors Simulating Arrestment of Chloraminated Drinking Water Nitrification

    Annular reactors (ARs) were used to study biofilm community succession and provide an ecological insight during nitrification arrestment through simultaneously increasing monochloramine (NH2Cl) and chlorine to nitrogen mass ratios, resulting in four operational periods (I to IV)....

  7. An iterative method for the solution of nonlinear systems using the Faber polynomials for annular sectors

    Myers, N.J. [Univ. of Durham (United Kingdom)

    1994-12-31

    The author gives a hybrid method for the iterative solution of linear systems of equations Ax = b, where the matrix (A) is nonsingular, sparse and nonsymmetric. As in a method developed by Starke and Varga the method begins with a number of steps of the Arnoldi method to produce some information on the location of the spectrum of A. This method then switches to an iterative method based on the Faber polynomials for an annular sector placed around these eigenvalue estimates. The Faber polynomials for an annular sector are used because, firstly an annular sector can easily be placed around any eigenvalue estimates bounded away from zero, and secondly the Faber polynomials are known analytically for an annular sector. Finally the author gives three numerical examples, two of which allow comparison with Starke and Varga`s results. The third is an example of a matrix for which many iterative methods would fall, but this method converges.

  8. Boiling two-phase flow and heat transfer in concentric annular tube

    The boiling flow resistance and heat transfer characteristics is experimentally investigated under the outer tube wall heating condition in a concentric annular tube with 2.1 mm gap size. The results show that the flow resistance in the annular tube is greater than that in circular tube, as well as the boiling heat transfer becomes enhanced. The heat transfer coefficient has close relationship with the pressure, thermal equilibrium quality, mass flux, heat flux, gap size of the annular tube, and heat models as well. The physical explanation about the enhancement boiling heat transfer in the annular tube is proposed with both micro-film evaporation mechanics and bubble disturbance mechanics. The correlations to calculate the flow friction coefficient and heat transfer coefficient are proposed based on the experimental data. (authors)

  9. Non-approximate method for designing annular field of two-mirror concentric system

    Yuanshen Huang; Dongyue Zhu; Baicheng Li; Dawei Zhang; Zhengji Ni; Songlin Zhuang

    2012-01-01

    Annular field aberrations of a three-reflection concentric system, which are composed of two spherical mirrors, are analyzed. An annular field with a high level of aberration correction exists near the position where the principal ray is perpendicular to the object-image plane. Aberrations are determined by the object height and aperture angle. In this letter, the general expression of the system aberration is derived using the geometric method, and the non-approximate design method is proposed to calculate the radii of the annular fields that have minimum aberrations under different aperture angles. The closer to 0.5 (the ratio of the radius of convex mirror to the radius of concave mirror) is, the smaller the system aberration is. The examples analyzed by LABVIEW indicate that the annular field designed by the proposed method has the smallest aberration in a given system.%Annular field aberrations of a three-reflection concentric system,which are composed of two spherical mirrors,are analyzed.An annular field with a high level of aberration correction exists near the position where the principal ray is perpendicular to the object-image plane.Aberrations are determined by the object height and aperture angle.In this letter,the general expression of the system aberration is derived using the geometric method,and the non-approximate design method is proposed to calculate the radii of the annular fields that have minimum aberrations under different aperture angles.The closer to 0.5 (the ratio of the radius of convex mirror to the radius of concave mirror) is,the smaller the system aberration is.The examples analyzed by LABVIEW indicate that the annular field designed by the proposed method has the smallest aberration in a given system.

  10. An X-band high-impedance relativistic klystron amplifier with an annular explosive cathode

    The feasibility of employing an annular beam instead of a solid one in the X-band high-impedance relativistic klystron amplifier (RKA) is investigated in theory and simulation. Small-signal theory analysis indicates that the optimum bunching distance, fundamental current modulation depth, beam-coupling coefficient, and beam-loaded quality factor of annular beams are all larger than the corresponding parameters of solid beams at the same beam voltage and current. An annular beam RKA and a solid beam RKA with almost the same geometric parameters are compared in particle-in-cell simulation. Output microwave power of 100 MW, gain of 50 dB, and power conversion efficiency of 42% are obtained in an annular beam RKA. The annular beam needs a 15% lower uniform guiding magnetic field than the solid beam. Our investigations demonstrate that we are able to use a simple annular explosive cathode immersed in a lower uniform magnetic field instead of a solid thermionic cathode in a complicated partially shielding magnetic field for designing high-impedance RKA, which avoids high temperature requirement, complicated electron-optical system, large area convergence, high current density, and emission uniformity for the solid beam. An equivalent method for the annular beam and the solid beam on bunching features is proposed and agrees with the simulation. The annular beam has the primary advantages over the solid beam that it can employ the immersing uniform magnetic field avoiding the complicated shielding magnetic field system and needs a lower optimum guiding field due to the smaller space charge effect

  11. Recent achievements on annular Josephson structures and their application as radiation detectors

    One of the stimulating area of superconductors investigations lies in the achieved and potential applications as radiation detectors. Results concerning annular Josephson junctions in this context are discussed. Fundamental aspects, mainly related to the fluxon dynamics in such structures, are discussed in detail. The results confirm the importance of the precious sharing of technological requests with fundamental physical implications. Peculiar results are reported dealing with new resonances occurring on these Josephson junctions of annular configuration

  12. Fabrication of Annular Pellet for HANARO Irradiation Test of Dual Cooled Fuel

    One of the most important components in a Pressurized Water Reactor affecting its safety and economy is a nuclear fuel. The traditional PWR fuel pellet has a shape of cylindrical tablets of about 8 mm in diameter with a chamfer and dishes. A significant reduction in its failure rate has resulted from the improvements in the fuel and cladding quality. Enhanced fuel assembly design allowed appreciable power density increases. However, it is difficult to achieve a significant increase of a power density under the current fuel pin design. An internally and externally cooled annular fuel has been considered seriously as a promising solution for an extended power uprate of a PWR fuel assembly. A dual cooled annular fuel shows a lot of advantages from the point of a fuel safety and its economy due to its unique configurational merit such as an increased heat transfer area and a thin pellet thickness. There must be a lot of considerations in the various fields to introduce an annular internally and externally cooled fuel to commercial PWR reactors. The dimensional changes of the annular fuel pellets during the early irradiation stage are very important, because they have an influence on the size of the gap between the pellet and the inner/outer claddings. In order to gain an insight to how the annular pellets deform, a HANARO irradiation test is planned for annular pellets with 5 different types. The detailed specification of the annular pellet was shown in Table 1. It is noted that Type C has the same pore structure as a commercial PWR pellet. The purpose of this paper is to report on the manufacturing process of an annular fuel pellet for a HANARO irradiation test

  13. Large Eddy Simulation of ignition in an annular multi-injector combustor

    Vicquelin, Ronan; Philip, Maxime; Boileau, Matthieu; Schmitt, Thomas; Bourgoin, Jean-François; Durox, Daniel; Candel, Sébastien

    2013-11-01

    The present work deals with validating the LES methodology for transient ignition simulations, and in particular elucidating the mechanisms that control the light round sequence in a laboratory annular combustor, representative of many practical industrial systems. The simulation benefits from the unique experimental database built at EM2C on a fully transparent annular chamber equipped with 16 premixed swirled injectors. The F-TACLES combustion model is used for its ability to properly represent the flame propagation.

  14. A simple analytical model to study and control azimuthal instabilities in annular combustion chambers

    Parmentier, Jean-François; Salas, Pablo; Wolf, Pierre; Staffelbach, Gabriel; Nicoud, Franck; Poinsot, Thierry

    2012-01-01

    This study describes a simple analytical method to compute the azimuthal modes appearing in annular combustion chambers and help analyzing experimental, acoustic and large eddy simulation (LES) data obtained in these combustion chambers. It is based on a one-dimensional zero Mach number formulation where N burners are connected to a single annular chamber. A manipulation of the corresponding acoustic equations in this configuration leads to a simple dispersion relation which can be solved by ...

  15. The numerical solution of flow field of short-annular combustion chamber

    Xu, H.; Ning, H.

    1986-05-01

    The recirculating flow field of a short-annular combustion chamber has been studied. The body-fitting coordinate system and the 'simple' method combined with a constant viscosity model have been employed to solve the Navier-Stokes equations in a regime containing a complicated curved boundary. The result could provide the theoretical reference for the design and improvement of short-annular combustion chambers.

  16. The influence of the equivalent hydraulic diameter on the pressure drop prediction of annular test section

    Al-Kayiem, A. H. H.; Ibrahim, M. A.

    2015-12-01

    The flow behaviour and the pressure drop throughout an annular flow test section was investigated in order to evaluate and justify the reliability of experimental flow loop for wax deposition studies. The specific objective of the present paper is to assess and highlight the influence of the equivalent diameter method on the analysis of the hydrodynamic behaviour of the flow and the pressure drop throughout the annular test section. The test section has annular shape of 3 m length with three flow passages, namely; outer thermal control jacket, oil annular flow and inner pipe flow of a coolant. The oil annular flow has internal and external diameters of 0.0422 m and 0.0801 m, respectively. Oil was re-circulated in the annular passage while a cold water-glycol mixture was re-circulated in the inner pipe counter currently to the oil flow. The experiments were carried out at oil Reynolds number range of 2000 to 17000, covering laminar, transition and turbulent flow regimes. Four different methods of equivalent diameter of the annulus have been considered in this hydraulic analysis. The correction factor model for frictional pressure drop was also considered in the investigations. All methods addressed the high deviation of the prediction from the experimental data, which justified the need of a suitable pressure prediction correlation for the annular test section. The conventional hydraulic diameter method is a convenient substitute for characterizing physical dimension of a non-circular duct, and it leads to fairly good correlation between turbulent fluid flow and heat transfer characteristic of annular ducts.

  17. An X-band high-impedance relativistic klystron amplifier with an annular explosive cathode

    Zhu, Danni; Zhang, Jun; Zhong, Huihuang; Qi, Zumin

    2015-11-01

    The feasibility of employing an annular beam instead of a solid one in the X-band high-impedance relativistic klystron amplifier (RKA) is investigated in theory and simulation. Small-signal theory analysis indicates that the optimum bunching distance, fundamental current modulation depth, beam-coupling coefficient, and beam-loaded quality factor of annular beams are all larger than the corresponding parameters of solid beams at the same beam voltage and current. An annular beam RKA and a solid beam RKA with almost the same geometric parameters are compared in particle-in-cell simulation. Output microwave power of 100 MW, gain of 50 dB, and power conversion efficiency of 42% are obtained in an annular beam RKA. The annular beam needs a 15% lower uniform guiding magnetic field than the solid beam. Our investigations demonstrate that we are able to use a simple annular explosive cathode immersed in a lower uniform magnetic field instead of a solid thermionic cathode in a complicated partially shielding magnetic field for designing high-impedance RKA, which avoids high temperature requirement, complicated electron-optical system, large area convergence, high current density, and emission uniformity for the solid beam. An equivalent method for the annular beam and the solid beam on bunching features is proposed and agrees with the simulation. The annular beam has the primary advantages over the solid beam that it can employ the immersing uniform magnetic field avoiding the complicated shielding magnetic field system and needs a lower optimum guiding field due to the smaller space charge effect.

  18. A research on the mechanisms of transition from annular flow in two-phase pipeline flow

    Various kinds mechanisms of transitions from two-phase annular flow in tubes were studied and modelled, and the affection factors on the transitions were also discussed. Some mathematical equations and transition criteria for every mechanisms presented were derived, and an unified general criterion for the annular flow transitions in whole range of pipe inclinations was recommended. The boundaries predicted show good agreement with the air-water two-phase experimental data

  19. Asymmetric Vibration of Polar Orthotropic Annular Circular Plates of Quadratically Varying Thickness with Same Boundary Conditions

    Bhardwaj, N; Gupta, A. P.; Choong, K.K.

    2008-01-01

    In the present paper, asymmetric vibration of polar orthotropic annular circular plates of quadratically varying thickness resting on Winkler elastic foundation is studied by using boundary characteristic orthonormal polynomials in Rayleigh-Ritz method. Convergence of the results is tested and comparison is made with results already available in the existing literature. Numerical results for the first ten frequencies for various values of parameters describing width of annular plate, thicknes...

  20. Modified Surgical Intervention for Extensive Mitral Valve Endocarditis and Posterior Mitral Annular Calcification

    Kim, Gwan Sic; Beom, Min Sun; Kim, Sung Ryong; Kim, Na Rae; Jang, Ji Wook; Jang, Mi Hee; Ryu, Sang Wan

    2016-01-01

    The concomitant presence of posterior mitral annular calcification and infectious mitral valve lesions poses a technical challenge with considerable perioperative risk when using previously proposed techniques for mitral valve surgery. Herein, we report a case of the use of a modified surgical technique to successfully treat a patient with mitral infective endocarditis complicated by a subendocardial abscess and extensive posterior mitral annular calcification. PMID:26889447

  1. Design and characterization of the annular cathode high current pulsed electron beam source for circular components

    Jiang, Wei; Wang, Langping; Wang, Xiaofeng

    2016-08-01

    In order to irradiate circular components with high current pulsed electron beam (HCPEB), an annular cathode based on carbon fiber bunches was designed and fabricated. Using an acceleration voltage of 25 kV, the maximum pulsed irradiation current and energy of this annular cathode can reach 7.9 kA and 300 J, respectively. The irradiation current density distribution of the annular cathode HCPEB source measured along the circumferential direction shows that the annular cathode has good emission uniformity. In addition, four 9310 steel substrates fixed uniformly along the circumferential direction of a metal ring substrate were irradiated by this annular cathode HCPEB source. The surface and cross-section morphologies of the irradiated samples were characterized by scanning electron microscopy (SEM). SEM images of the surface reveal that crater and surface undulation have been formed, which hints that the irradiation energy of the HCPEB process is large enough for surface modification of 9310 steel. Meanwhile, SEM cross-section images exhibit that remelted layers with a thickness of about 5.4 μm have been obtained in all samples, which proves that a good practical irradiation uniformity can be achieved by this annular cathode HCPEB source.

  2. Monthly rifampicin, ofloxacin, and minocycline therapy for generalized and localized granuloma annulare

    Shilpa Garg

    2015-01-01

    Full Text Available Background: The localized form of granuloma annulare is usually self-limiting, resolving within 2 years. Generalized granuloma annulare, on the other hand, runs a protracted course, with spontaneous resolution being rare. It is also characterized by a later age of onset, an increased incidence of diabetes mellitus, poor response to therapy, and an increased prevalence of HLA Bw35. Objective: To assess the efficacy of monthly pulsed rifampicin, ofloxacin, and minocycline (ROM therapy in the management of granuloma annulare. Methods : Six biopsy proven patients of granuloma annulare were included in the study, five of the generalized variety, and one localized. Three of these patients were resistant to standard modalities of treatment. All six patients were treated with pulses of once monthly ROM till complete resolution of all lesions. Results were analyzed in terms of complete resolution of lesions and side effects. Presence of comorbid conditions was noted. Result: All six patients were successfully treated with 4-8 pulses of monthly ROM. None of the patients reported any adverse effects. Limitations: Small sample size and the lack of a control group are limitations. Conclusion: Treatment with pulses of once monthly ROM caused complete resolution of lesions in both localized and generalized granuloma annulare, even in cases recalcitrant to conventional therapy. There were no side effects in any of the patients. Larger trials are needed to substantiate the efficacy of monthly ROM in granuloma annulare.

  3. Suppression of space-charge effects in transport through an RFQ using an annular beam

    High intensity proton linacs (HIPLs) have severe space-charge issues that can lead to emittance blow-up and the production of beam halos, both of which lead to limitations in the operable beam current. Hollow or annular beams are known to have a small spacecharge force (for a given current). Here we present preliminary studies on the production of such annular beams in the Low Energy Beam Transport (LEBT) line, and the subsequent transport of such a beam through a Radio- Frequency Quadrupole (RFQ). We show, using three-dimensional particle-in-cell simulations, that such an annular beam experiences a smaller emittance blow-up as well as reduced beam halo. Starting with an nns normalized emittance of 0.2 πmn-mrad, after transport through the RFQ the emittance blows up to 0.39 πmm-mrad for a Gaussian beam, but only to 0.26 πmm-mrad for an annular beam. Similarly, the halo parameter for the annular beam is only 0.4 as compared to 1.4 for the Gaussian beam. Thus, annular beams suffer lesser deterioration due to space-charge forces in transport through the RFQ, and may therefore be a better choice for HIPLs. (author)

  4. Fluid-Structure Interaction Analysis on Turbulent Annular Seals of Centrifugal Pumps during Transient Process

    Qinglei Jiang

    2011-01-01

    Full Text Available The current paper studies the influence of annular seal flow on the transient response of centrifugal pump rotors during the start-up period. A single rotor system and three states of annular seal flow were modeled. These models were solved using numerical integration and finite difference methods. A fluid-structure interaction method was developed. In each time step one of the three annular seal models was chosen to simulate the annular seal flow according to the state of rotor systems. The objective was to obtain a transient response of rotor systems under the influence of fluid-induced forces generated by annular seal flow. This method overcomes some shortcomings of the traditional FSI method by improving the data transfer process between two domains. Calculated results were in good agreement with the experimental results. The annular seal was shown to have a supportive effect on rotor systems. Furthermore, decreasing the seal clearance would enhance this supportive effect. In the transient process, vibration amplitude and critical speed largely changed when the acceleration of the rotor system increased.

  5. Absolute photonic band gap in 2D honeycomb annular photonic crystals

    Highlights: • A two-dimensional honeycomb annular photonic crystal (PC) is proposed. • The absolute photonic band gap (PBG) is studied. • Annular PCs show larger PBGs than usual air-hole PCs for high refractive index. • Annular PCs with anisotropic rods show large PBGs for low refractive index. • There exist optimal parameters to open largest band gaps. - Abstract: Using the plane wave expansion method, we investigate the effects of structural parameters on absolute photonic band gap (PBG) in two-dimensional honeycomb annular photonic crystals (PCs). The results reveal that the annular PCs possess absolute PBGs that are larger than those of the conventional air-hole PCs only when the refractive index of the material from which the PC is made is equal to 4.5 or larger. If the refractive index is smaller than 4.5, utilization of anisotropic inner rods in honeycomb annular PCs can lead to the formation of larger PBGs. The optimal structural parameters that yield the largest absolute PBGs are obtained

  6. An optical system design that converts a Gaussian to a flattop annular beam

    Li, Chaochen; Wu, Tengfei; Wang, Yu

    2015-10-01

    Flattop annular beam has been predicted with good character over an increasing application, but the generating of flattop annular beam is rarely mentioned by academic article. In our paper, an optical refractive system, which is designed to achieve flattop annular beam, are proposed. The cone prism is commonly used to get an annular beam, however, the beam intensity distribution is non-uniform. In our design, an additional aspheric lens is placed in front of the cone prism along the optical axis. The lens parameters are theoretically analyzed and well optimized to homogenize the optical field. Furthermore, to lower the requirement of machining accuracy, a pair of aspheric lenses is also designed, which can be used independently to generate flattop annular beam. It combines the function of cone prism and aspheric lens, so as to replace them both. The performance of the implementations has been demonstrated in detail. Simulation result shows that the proposed design is effective and feasible. It is hope that our work would be helpful in related fields. Flattop annular beam, Aspheric lens, Cone prism

  7. Characterization of Novel Calorimeters in the Annular Core Research Reactor *

    Hehr Brian D.

    2016-01-01

    Full Text Available A series of pulsed irradiation experiments have been performed in the central cavity of Sandia National Laboratories' Annular Core Research Reactor (ACRR to characterize the responses of a set of elemental calorimeter materials including Si, Zr, Sn, Ta, W, and Bi. Of particular interest was the perturbing effect of the calorimeter itself on the ambient radiation field – a potential concern in dosimetry applications. By placing the calorimeter package into a neutron-thermalizing lead/polyethylene (LP bucket and irradiating both with and without a cadmium wrapper, it was demonstrated that prompt capture gammas generated inside the calorimeters can be a significant contributor to the measured dose in the active disc region. An MCNP model of the experimental setup was shown to replicate measured dose responses to within 10%. The internal (n,γ contribution was found to constitute as much as 50% of the response inside the LP bucket and up to 20% inside the nominal (unmodified cavity environment, with Ta and W exhibiting the largest enhancement due to their sizable (n,γ cross sections. Capture reactions in non-disc components of the calorimeter were estimated to be responsible for up to a few percent of the measured response.

  8. Computation of Flow through an Annular Diffuser and Volute Exhaust

    M. Arun

    2006-04-01

    Full Text Available Turbulent flow in a diffuser with swirl occurs in many commonly used fluid mechanicaldevices,eg, diffusers located downstream of a gas turbine, and in certain types of combustionchambers. Diffusers are widely used for converting kinetic energy to pressure, and a reliableprediction method of such flows with the required flow conditions would lead to the design offluid machinery with improved efficiency. As a first step, turbulent swirling flow through a 12oincluded angle conical diffuser for a swirl parameter, m = 0.18 was numerically investigated usingvarious turbulence models like standard k- , RNG-based k- , shear-stress transport (SST kandReynolds stress model (RSM. Though the comparison between the experimental and thepredicted mean velocity profile by RSM is superior to that by RNG kandSST models, the lattertwo models give closer comparison with the experimental pressure distribution. Subsequently,computation of flow inside a complex duct involving axisymmetric annular diffuser, transitionfrom rectangular to circular cross section, and exit pipe have been carried out using RNG kandSST k models.The comparison of computed and experimental results indicates that theSST k modelgives predictions with reasonable accuracy.

  9. Characterization of Novel Calorimeters in the Annular Core Research Reactor

    Hehr, Brian D.; Parma, Edward J.; Peters, Curtis D.; Naranjo, Gerald E.; Luker, S. Michael

    2016-02-01

    A series of pulsed irradiation experiments have been performed in the central cavity of Sandia National Laboratories' Annular Core Research Reactor (ACRR) to characterize the responses of a set of elemental calorimeter materials including Si, Zr, Sn, Ta, W, and Bi. Of particular interest was the perturbing effect of the calorimeter itself on the ambient radiation field - a potential concern in dosimetry applications. By placing the calorimeter package into a neutron-thermalizing lead/polyethylene (LP) bucket and irradiating both with and without a cadmium wrapper, it was demonstrated that prompt capture gammas generated inside the calorimeters can be a significant contributor to the measured dose in the active disc region. An MCNP model of the experimental setup was shown to replicate measured dose responses to within 10%. The internal (n,γ) contribution was found to constitute as much as 50% of the response inside the LP bucket and up to 20% inside the nominal (unmodified) cavity environment, with Ta and W exhibiting the largest enhancement due to their sizable (n,γ) cross sections. Capture reactions in non-disc components of the calorimeter were estimated to be responsible for up to a few percent of the measured response. This work was supported by the United States Department of Energy under Contract DE-AC04-94AL85000. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy.

  10. DCH dispersal and entrainment experiment in a scaled annular cavity

    The objective of this experiment was to measure the amount of corium dispersal and the droplet size distribution during high pressure melt ejection from a CE reactor. The melt and the steam flowed to the containment through a narrow annular cavity. The experiment was carried out on a 1/20th scaled model of the cavity and the containment. The scaling was based on dimensionless numbers obtained from a two-phase flow model of the dispersal and entrainment mechanisms in the cavity. Furthermore, the model shows that the flow in the cavity was choked, so high levels of dispersal and entrainment were possible. The experiment consisted of air-water, air-helium, air-woods metal and helium-woods metal tests; the main result being that the level of dispersal was very high in all cases. The woods metal data supported a separated flow model in the cavity, implying that the gas choked velocity was very high and the droplets very small. In contrast, the measured drop sizes for the water tests were much larger than the separated flow model predictions. This discrepancy could not be resolved because the entrainment mechanism is not properly understood at the present time. (orig.)

  11. Current Density Measurements of an Annular-Geometry Ion Engine

    Shastry, Rohit; Patterson, Michael J.; Herman, Daniel A.; Foster, John E.

    2012-01-01

    The concept of the annular-geometry ion engine, or AGI-Engine, has been shown to have many potential benefits when scaling electric propulsion technologies to higher power. However, the necessary asymmetric location of the discharge cathode away from thruster centerline could potentially lead to non-uniformities in the discharge not present in conventional geometry ion thrusters. In an effort to characterize the degree of this potential non-uniformity, a number of current density measurements were taken on a breadboard AGI-Engine. Fourteen button probes were used to measure the ion current density of the discharge along a perforated electrode that replaced the ion optics during conditions of simulated beam extraction. Three Faraday probes spaced apart in the vertical direction were also used in a separate test to interrogate the plume of the AGI-Engine during true beam extraction. It was determined that both the discharge and the plume of the AGI-Engine are highly uniform, with variations under most conditions limited to +/-10% of the average current density in the discharge and +/-5% of the average current density in the plume. Beam flatness parameter measured 30 mm from the ion optics ranged from 0.85 - 0.95, and overall uniformity was shown to generally increase with increasing discharge and beam currents. These measurements indicate that the plasma is highly uniform despite the asymmetric location of the discharge cathode.

  12. Criticality Benchmark Analysis of the HTTR Annular Startup Core Configurations

    John D. Bess

    2009-11-01

    One of the high priority benchmarking activities for corroborating the Next Generation Nuclear Plant (NGNP) Project and Very High Temperature Reactor (VHTR) Program is evaluation of Japan's existing High Temperature Engineering Test Reactor (HTTR). The HTTR is a 30 MWt engineering test reactor utilizing graphite moderation, helium coolant, and prismatic TRISO fuel. A large amount of critical reactor physics data is available for validation efforts of High Temperature Gas-cooled Reactors (HTGRs). Previous international reactor physics benchmarking activities provided a collation of mixed results that inaccurately predicted actual experimental performance.1 Reevaluations were performed by the Japanese to reduce the discrepancy between actual and computationally-determined critical configurations.2-3 Current efforts at the Idaho National Laboratory (INL) involve development of reactor physics benchmark models in conjunction with the International Reactor Physics Experiment Evaluation Project (IRPhEP) for use with verification and validation methods in the VHTR Program. Annular cores demonstrate inherent safety characteristics that are of interest in developing future HTGRs.

  13. Experimental investigation of the low NOx vortex airblast annular combustor

    Johnson, S. M.; Biaglow, J. A.; Smith, J. M.

    1984-01-01

    A low oxides of nitrogen vortex airblast annular combustor was evaluated which has attained the goal of 1 gm NO2/kg fuel or less during operation. The experimental combustor test conditions were a nominal inlet-air temperature of 703 K, inlet total pressures between 0.52 to 0.83 MPa, and a constant inlet Mach number of 0.26. Exit temperature pattern factors for all test points were between 0.16 and 0.20 and exit swirl flow angles were 47 degrees at isothermal conditions and 23 degrees during combustion. Oxides of nitrogen did not exceed 1.05 gm NO2/kg fuel at the highest inlet pressure and exhaust temperature tested. Previous correlations have related NOx proportionally to the combustor inlet pressure raised to some exponent. In this experiment, a band of exponents between 0.5 and 1.0 resulted for fuel-air ratios from 0.023 to 0.027 and inlet pressures from 0.52 to 0.83 MPa. Previously announced in STAR as N84-22567

  14. Criticality Benchmark Analysis of the HTTR Annular Startup Core Configurations

    One of the high priority benchmarking activities for corroborating the Next Generation Nuclear Plant (NGNP) Project and Very High Temperature Reactor (VHTR) Program is evaluation of Japan's existing High Temperature Engineering Test Reactor (HTTR). The HTTR is a 30 MWt engineering test reactor utilizing graphite moderation, helium coolant, and prismatic TRISO fuel. A large amount of critical reactor physics data is available for validation efforts of High Temperature Gas-cooled Reactors (HTGRs). Previous international reactor physics benchmarking activities provided a collation of mixed results that inaccurately predicted actual experimental performance.1 Reevaluations were performed by the Japanese to reduce the discrepancy between actual and computationally-determined critical configurations.2-3 Current efforts at the Idaho National Laboratory (INL) involve development of reactor physics benchmark models in conjunction with the International Reactor Physics Experiment Evaluation Project (IRPhEP) for use with verification and validation methods in the VHTR Program. Annular cores demonstrate inherent safety characteristics that are of interest in developing future HTGRs.

  15. MCNP/MCNPX model of the annular core research reactor.

    DePriest, Kendall Russell; Cooper, Philip J.; Parma, Edward J., Jr. (.,; .)

    2006-10-01

    Many experimenters at the Annular Core Research Reactor (ACRR) have a need to predict the neutron/gamma environment prior to testing. In some cases, the neutron/gamma environment is needed to understand the test results after the completion of an experiment. In an effort to satisfy the needs of experimenters, a model of the ACRR was developed for use with the Monte Carlo N-Particle transport codes MCNP [Br03] and MCNPX [Wa02]. The model contains adjustable safety, transient, and control rods, several of the available spectrum-modifying cavity inserts, and placeholders for experiment packages. The ACRR model was constructed such that experiment package models can be easily placed in the reactor after being developed as stand-alone units. An addition to the 'standard' model allows the FREC-II cavity to be included in the calculations. This report presents the MCNP/MCNPX model of the ACRR. Comparisons are made between the model and the reactor for various configurations. Reactivity worth curves for the various reactor configurations are presented. Examples of reactivity worth calculations for a few experiment packages are presented along with the measured reactivity worth from the reactor test of the experiment packages. Finally, calculated neutron/gamma spectra are presented.

  16. Development of an annular arc accelerator shock tube driver

    Leibowitz, L. P.

    1973-01-01

    An annular arc accelerator (ANAA) shock tube driver has been developed that deposits the energy of an arc discharge into a flowing gas, which then expands and cools without any delay for the opening of a diaphragm. A simplified one-dimensional flow analysis of the ANAA shock tube has been performed, which indicates that shock velocities greater than 40 km/sec may be obtained using a 300-kJ capacitor bank. The ANAA driver consists of a high-pressure driver, an expansion section, and an electrode section. In operation, the cold gas driver is pressurized until the diaphragm bursts, sending a pressure front down the expansion tube to the arc section. When the accelerated flow arrives at the electrode section, a 100-capacitor, 300-kJ capacitor bank is discharged either by breaking an insulating diaphragm between the electrodes or by the triggering of a series of external switches. Shock velocities of 28 km/sec have been obtained, and modifications are described that are expected to improve performance.

  17. An Unusual Presentation of Annular Pancreas: A Case Report

    Saleheh Ala

    2015-01-01

    Full Text Available Abstract Annular pancreas (AP is a rare congenital malformation resulting from failure of pancreas ventral anlage rotation with the duodenum. This leads to a ring of pancreatic tissue that envelops the duodenum. Clinical manifestations of AP most commonly develop in infancy or early childhood but can present at any age. The diagnosis of AP, usually suggested by an upper GI series or abdominal CT scan, but surgery is considered the gold standard diagnostic method. Surgical bypass of the annulus in all patients with symptomatic AP is recommended. We report a one year old girl who presented with intermittent, non projectile, non bilious vomiting that occurred 1h to 2h after feeding since neonatal period. Upper GI contrast study demonstrates, a dilated duodenal bulb associated with narrowing of post bulbar area. The patient underwent surgical correction of the obstruction. A bypass of the ectopic pancreas tissue was performed by duodenoduodenostomy. Considering the rarity of this congenital abnormality, presenting with chronic partial duodenal obstruction, and its successful correction by surgical means have prompted us to report the case.

  18. Modeling and analysis of thermoacoustic instabilities in an annular combustor

    Murthy, Sandeep; Sayadi, Taraneh; Le Chenadec, Vincent; Schmid, Peter

    2015-11-01

    A simplified model is introduced to study thermo-acoustic instabilities in axisymmetric combustion chambers. Such instabilities can be triggered when correlations between heat-release and pressure oscillations exist, leading to undesirable effects. Gas turbine designs typically consist of a periodic assembly of N identical units; as evidenced by documented studies, the coupling across sectors may give rise to unstable modes, which are the highlight of this study. In the proposed model, the governing equations are linearized in the acoustic limit, with each burner modeled as a one-dimensional system, featuring acoustic damping and a compact heat source. The coupling between the burners is accounted for by solving the two-dimensional wave equation over an annular region, perpendicular to the burners, representing the chamber's geometry. The discretization of these equations results in a set of coupled delay-differential equations, that depends on a finite set of parameters. The system's periodicity is leveraged using a recently developed root-of-unity formalism (Schmid et al., 2015). This results in a linear system, which is then subjected to modal and non-modal analysis to explore the influence of the coupled behavior of the burners on the system's stability and receptivity.

  19. Flow Pressure Loss through Straight Annular Corrugated Pipes

    Sargent, Joseph R.; Kirk, Daniel R.; Marsell, Brandon; Roth, Jacob; Schallhorn, Paul A.; Pitchford, Brian; Weber, Chris; Bulk, Timothy

    2016-01-01

    Pressure loss through annular corrugated pipes, using fully developed gaseous nitrogen representing purge pipes in spacecraft fairings, was studied to gain insight into a friction factor coefficient for these pipes. Twelve pipes were tested: four Annuflex, four Masterflex and two Titeflex with ¼”, 3/8”, ½” and ¾” inner diameters. Experimental set-up was validated using smooth-pipe and showed good agreement to the Moody diagram. Nitrogen flow rates between 0-200 standard cubic feet per hour were used, producing approximate Reynolds numbers from 300-23,000. Corrugation depth varied from 0.248 = E/D = 0.349 and relative corrugation pitch of 0.192 = P/D = 0.483. Differential pressure per unit length was measured and calculated using 8-9 equidistant pressure taps. A detailed experimental uncertainty analysis, including correlated bias error terms, is presented. Results show larger differential pressure losses than smooth-pipes with similar inner diameters resulting in larger friction factor coefficients.

  20. Mathematical behavior and computation of transmission probabilities for annular regions

    One convenient way of treating neutron transport problems is to use the transmission probability method. For cylindrical geometry consisting of many annular subregions, this method can be formulated in terms of T/sub i//sup OO/, the transmission probability from the outer-to-outer surface of the i-th annulus, and T/sub i//sup OI/, the transmission probability from the inner-to-outer surface of the i-th annulus. The quantities T/sub i//sup OO/ and T/sub i//sup OI/ are extremely complex functions of r/sub i-1//r/sub i/, the ratio of the inner-to-outer radius, and the optical path length r/sub i/Σ/sub ti/ for region i. The latter quantity can have a wide range of values in the problems of practical interest. This paper describes new, improved methods for treating these transmission probabilities on the basis of their individual mathematical properties. These improved methods have three objectives: to provide a rigorous treatment of the asymptotic behavior of these functions, which is currently lacking in the MC2-2 code; to provide a separate treatment of T/sub i//sup OO/ and T/sub i//sup OI/ according to their distinct functional dependencies; to eliminate the two-dimensional tables currently in use to obtain these functions in the MC2-2 code. 2 figures

  1. Measurement of large aspheric surfaces by annular subaperture stitching interferometry

    Xiaokun Wang; Lihui Wang; Longhai Yin; Binzhi Zhang; Di Fan; Xuejun Zhang

    2007-01-01

    A new method for testing aspheric surfaces by annular subaperture stitching interferometry is introduced.It can test large-aperture and large-relative-aperture aspheric surfaces at high resolution, low cost, and high efficiency without auxiliary null optics. The basic principle of the method is described, the synthetical optimization stitching model and effective algorithm are established based on simultaneous least-square fitting. A hyperboloid with an aperture of 350 mm is tested by this method. The obtained peak-to-valley (PV) and root-mean-square (RMS) values of the surface error after stitching are 0.433λ and 0.052λ (λis 632.8 nm), respectively. The reconstructed surface map is coincide with the entire surface map from null test, and the difference of PV and RMS errors between them are 0.031λ and 0.005λ, respectively.This stitching model provides another quantitive method for testing large aspheric surfaces besides null compensation.

  2. Pollution technology program, can-annular combustor engines

    Roberts, R.; Fiorentino, A. J.; Greene, W.

    1976-01-01

    A Pollution Reduction Technology Program to develop and demonstrate the combustor technology necessary to reduce exhaust emissions for aircraft engines using can-annular combustors is described. The program consisted of design, fabrication, experimental rig testing and assessment of results and was conducted in three program elements. The combustor configurations of each program element represented increasing potential for meeting the 1979 Environmental Protection Agency (EPA) emission standards, while also representing increasing complexity and difficulty of development and adaptation to an operational engine. Experimental test rig results indicate that significant reductions were made to the emission levels of the baseline JT8D-17 combustor by concepts in all three program elements. One of the Element I single-stage combustors reduced carbon monoxide to a level near, and total unburned hydrocarbons (THC) and smoke to levels below the 1979 EPA standards with little or no improvement in oxides of nitrogen. The Element II two-stage advanced Vorbix (vortex burning and mixing) concept met the standard for THC and achieved significant reductions in CO and NOx relative to the baseline. Although the Element III prevaporized-premixed concept reduced high power NOx below the Element II results, there was no improvement to the integrated EPA parameter relative to the Vorbix combustor.

  3. NB-UVB phototherapy for generalized granuloma annulare.

    Pavlovsky, Mor; Samuelov, Liat; Sprecher, Eli; Matz, Hagit

    2016-05-01

    Granuloma annulare (GA) is a benign, usually self-limited, granulomatous skin disease of unknown etiology. The generalized form of the disease shows a more chronic, relapsing course, rare spontaneous resolution, and poorer response to therapy. Psoralen plus UVA phototherapy has been reported to be effective for GA. However, little is known regarding the efficacy of narrowband UVB phototherapy. Our goal was to determine the efficacy of NB-UVB phototherapy in generalized GA. We carried out a retrospective study of patients with generalized GA treated with NB-UVB phototherapy over a period of 3 years. On completion of treatment, outcome was assessed as complete response (complete clearance of the lesions), partial response (>50% clearance of the lesions), and poor response (<50% clinical response). Therapy was stopped if no improvement was seen after 20 treatments. Thirteen patients were included in the study. 54% of patients treated with NB-UVB had a complete/partial response by the end of the treatment period. NB-UVB phototherapy was well-tolerated, with no serious adverse effects. NB-UVB phototherapy is effective in a substantial portion of patients with generalized GA. To determine the true efficacy of this therapeutic modality, a prospective study comparing it to PUVA is warranted. PMID:26626163

  4. Annular flow entrainment rate experiment in a small vertical pipe

    Two-fluid model predictions of film dryout in annular flow, leading to nuclear reactor fuel failure, are limited by the uncertainties in the constitutive relations for the entrainment rate of droplets from the liquid film. The main cause of these uncertainties is the lack of separate-effects experimental data in the range of the operating conditions in nuclear power reactors. An air-water experiment has been performed to measure the entrainment rate in a small pipe. The current data extend the available database in the literature to higher gas and liquid flows and also to higher pressures. The measurements were made with the film extraction technique. A mechanistic model was obtained based on Kelvin-Helmholtz' instability theory. The dimensionless model includes the Weber number of the gas and the liquid film Reynolds number. Kataoka and Ishii's correlation (Kataoka, I., Ishii, M., (1982)) is modified based on this model and the new data. The new correlation collapses the present air-water data and Cousins and Hewitt's data (Cousins, L.B. (1968)) The effects of pressure and surface tension were considered in the derivation so it may be applied for boiling water reactor operating conditions. (orig.)

  5. Quantifying the uncertainty of the annular mode time scale and the role of the stratosphere

    Kim, Junsu; Reichler, Thomas

    2015-10-01

    The proper simulation of the annular mode time scale may be regarded as an important benchmark for climate models. Previous research demonstrated that this time scale is systematically overestimated by climate models. As suggested by the fluctuation-dissipation theorem, this may imply that climate models are overly sensitive to external forcings. Previous research also made it clear that calculating the AM time scale is a slowly converging process, necessitating relatively long time series and casting doubts on the usefulness of the historical reanalysis record to constrain climate models in terms of the annular mode time scale. Here, we use long control simulations with the coupled and uncoupled version of the GFDL climate model, CM2.1 and AM2.1, respectively, to study the effects of internal atmospheric variability and forcing from the lower boundary on the stability of the annular mode time scale. In particular, we ask whether a model's annular mode time scale and dynamical sensitivity can be constrained from the 50-year-long reanalysis record. We find that internal variability attaches large uncertainty to the annular mode time scale when diagnosed from decadal records. Even under the fixed forcing conditions of our long control run at least 100 years of data are required in order to keep the uncertainty in the annular mode time scale of the Northern Hemisphere to 10 %; over the Southern Hemisphere, the required length increases to 200 years. If nature's annular mode time scale over the Northern Hemisphere is similarly variable, there is no guarantee that the historical reanalysis record is a fully representative target for model evaluation. Over the Southern Hemisphere, however, the discrepancies between model and reanalysis are sufficiently large to conclude that the model is unable to reproduce the observed time scale structure correctly. The effects of ocean coupling lead to a considerable increase in time scale and uncertainty in time scale, effects which

  6. Characterization and modeling of annular two-phase flows

    Three aspects of annular two-phase flow are studied: (a) wave motion on falling films, (b) flow transition from downflow to upflow, and (c) the upflow. For the case of wave motion on falling films, it is shown that the assumption of the Nusselt velocity profile for finite-amplitude waves is solution of the wave profile, wave velocity, and velocity components within the wave is developed. An algorithm based on collocation methods is also detailed and can be applied to extend the model to solve for higher order terms in the velocity profile. Comparisons with experimental studies show good agreement. Flow transition and the upflow experiments are conducted in a 5.08 x 10-2m inner diameter, 6.5m long Plexiglas column. The liquid rates are varied from 0 to 0.126 kg/s and the gas rates from 0 to 0.0524 kg/s. At four measuring stations along the length of the column, an electrical conductance technique which employs two electrodes mounted flush with the wall is utilized to measure film thickness and pressure transducers are used to make the pressure measurements. Flow visualization studies indicate that flooding takes place as a result of entrainment from the crests of large waves. The effect of column length and pore size of the feed device on flooding velocities is studied. No previous correlation or theory is found to be fully adequate. A speculative interaction among system parameters is proposed to form a basis for a physical model for flooding phenomena

  7. Uninstrumented assembly airflow testing in the Annular Flow Distribution facility

    Kielpinski, A.L.

    1992-02-01

    During the Emergency Cooling System phase of a postulated large-break loss of coolant accident (ECS-LOCA), air enters the primary loop and is pumped down the reactor assemblies. One of the experiments performed to support the analysis of this accident was the Annular Flow Distribution (AFD) experiment, conducted in a facility built for this purpose at Babcock and Wilcox Alliance Research Center in Alliance, Ohio. As part of this experiment, a large body of airflow data were acquired in a prototypical mockup of the Mark 22 reactor assembly. This assembly was known as the AFD (or the I-AFD here) reference assembly. The I-AFD assembly was fully prototypical, having been manufactured in SRS`s production fabrication facility. Similar Mark 22 mockup assemblies were tested in several test facilities in the SRS Heat Transfer Laboratory (HTL). Discrepancies were found. The present report documents further work done to address the discrepancy in airflow measurements between the AFD facility and HTL facilities. The primary purpose of this report is to disseminate the data from the U-AFD test, and to compare these test results to the I-AFD data and the U-AT data. A summary table of the test data and the B&W data transmittal letter are included as an attachment to this report. The full data transmittal volume from B&W (including time plots of the various instruments) is included as an appendix to this report. These data are further analyzed by comparing them to two other HTL tests, namely, SPRIHTE 1 and the Single Assembly Test Stand (SATS).

  8. Ultrasonographic assessment of the proximal digital annular ligament in the equine forelimb

    Ultrasonography was used with 6 normal cadaver forelimbs of Dutch Warmblood horses to delineate the ultrasonographic anatomy of the palmar pastern region, with emphasis on the proximal digital annular ligament. Using a 5.5 MHz sector scanner, the thin proximal digital annular ligament was not visible on offset sonograms. Only if the digital sheath in the normal limb was distended was the distal border of this ligament outlined. In all normal limbs the palmarodistal thickness of the combined skin-proximal digital annular ligament layer in the mid-pastern region was 2 mm. The flexor tendons and distal sesamoidean ligaments were easily identified as hyperechoic structures. Distension of the digital sheath in the normal limbs clearly outlined the anechoic digital sheath pouches. In 4 lame horses ultrasonography aided the diagnosis of functional proximal digital annular ligament constriction. In all 4 diseased forelimbs ultrasonography demonstrated thickening of the skin-proximal digital annular ligament layer and distension of the digital sheath. In one of these limbs the distended digital sheath was also thickened. The flexor tendons and distal sesamoidean ligaments were normal. There was no radiographic evidence of additional bone or joint lesions

  9. A modified stitching algorithm for testing rotationally symmetric aspherical surfaces with annular sub-apertures

    Hou, Xi; Wu, Fan; Yang, Li; Wu, Shi-bin; Chen, Qiang

    2006-02-01

    Annular sub-aperture stitching technique has been developed for low cost and flexible testing rotationally symmetric aspherical surfaces, of which combining accurately the sub-aperture measurement data corrupted by misalignments into a complete surface figure is the key problem. An existed stitching algorithm of annular sub-apertures can convert sub-aperture Zernike coefficients into full-aperture Zernike coefficients, in which use of Zernike circle polynomials represents sub-aperture data over both circle and annular domain. Since Zernike circle polynomials are not orthogonal over annular dominion, the fitting results may give wrong results. In this paper, the Zernike polynomials and existed stitching algorithm have been reviewed, and a modified stitching algorithm with Zernike annular polynomials is provided. The performances of a modified algorithm on the reconstruction precision are studied by comparing with the algorithm existed. The results of computer simulation show that the sub-aperture data reduction with the modified algorithm is more accurate than that obtained with the existed algorithm based on Zernike circle polynomials, and the undergoing matrix manipulation is simpler.

  10. The clinical application of “jetting suture” technique in annular repair under microendoscopic discectomy

    Qi, Lei; Li, Mu; Si, Haipeng; Wang, Liang; Jiang, Yunpeng; Zhang, Shuai; Li, Le

    2016-01-01

    Abstract To introduce a new designed suture technique in annular repair under the microendoscopic discectomy (MED) surgery and to evaluate the clinical application of the technique in annular repair under MED with at least 2-year follow-up period. A new method of annular repair was designed and named “jetting suture” technique. Thirty consecutive patients with lumbar disc herniation were enrolled in the prospective single-cohort observational study. Patients were followed up at intervals of preoperative, postoperative 1 week, 3 months, 6 months, 1 year, and last follow-up. The clinical outcomes were evaluated by using Japanese Orthopaedic Association (JOA) score, Oswestry Disability Index, and modified Mcnab criteria. The procedure was successfully performed in all cases. No case required conversion to an open procedure. The mean age of patients was 36.6 years. Average blood loss was 45.8 ± 10.2 mL. The preoperative symptoms were alleviated significantly after surgery. All the standardized measures improved significantly at the last follow-up, including JOA score (10.1 to 26.6; P disc herniation was reported. The designed “jetting suture” technique in annular repair under MED can be performed safely and effectively. It could be a viable alternative to annular repair under lumbar discectomy. PMID:27495101

  11. Repeated mitral valve replacement in a patient with extensive annular calcification

    Kitamura Tadashi

    2011-11-01

    Full Text Available Abstract Background Mitral valve replacement in the presence of severe annular calcification is a technical challenge. Case report A 47-year-old lady who had undergone mitral and aortic valve replacement for rheumatic disease 27 years before presented with dyspnea. At reoperation, extensive mitral annular calcification was hindering the disc motion of the Starr-Edwards mitral prosthesis. The old prosthesis was removed and a St Jude Medical mechanical valve was implanted after thorough annular debridement. Postoperatively the patient developed paravalvular leak and hemolytic anemia, subsequently undergoing reoperation three days later. The mitral valve was replaced with an Edwards MIRA valve, with a bulkier sewing cuff, after more aggressive annular debridement. Although initially there was no paravalvular leak, it recurred five days later. The patient also developed a small cerebral hemorrhage. As the paravalvular leak and hemolytic anemia gradually worsened, the patient underwent reoperation 14 days later. A Carpentier-Edwards bioprosthetic valve with equine pericardial patches, one to cover the debrided calcified annulus, another as a collar around the prosthesis, was used to eliminate paravalvular leak. At 7 years postoperatively the patient is doing well without any evidence of paravalvular leak or structural valve deterioration. Conclusion Mitral valve replacement using a bioprosthesis with equine pericardial patches was useful to overcome recurrent paravalvular leak due to severe mitral annular calcification.

  12. Numerical modeling of a horizontal annular flow experiment using a droplet entrainment model

    Highlights: • A new droplet entrainment model within the AIAD framework is proposed. • The approach was validated against a horizontal annular flow experiment. • Important flow phenomena could be calculated and analyzed. - Abstract: One limitation in current simulating horizontal annular flows is the lack of treatment of droplet formation mechanisms. For self-generating annular flows in horizontal pipes, the interfacial momentum exchange and the turbulence parameters have to be modelled correctly. Furthermore the understanding of the mechanism of droplet entrainment in annular flow regimes for heat and mass transfer processes is of great importance in the chemical and nuclear industry. A new entrainment model is proposed. It assumes that due to liquid turbulence the interface gets rough and wavy and forms droplets. The new approach is validated with HZDR annular flow experiments. Important phenomena like the pressure drop, the wave pumping effect, the droplet entrainment, the liquid film formation and the transient flow behavior could be calculated, analyzed and some of the phenomena compared with the measurement

  13. Enhancing VVER annular proliferation resistance fuel with minor actinides

    reactivity control of the systems into which they are incorporated. In the study, a typical pressurized water reactor (PWR) VVER-1000 annular fuel unit lattice cell model with UO2 fuel pins will be used to investigate the effectiveness of minor actinide reduction approach (MARA) for enhancing proliferation resistance and improving the fuel cycle performance in the intermediate term goal for future nuclear energy systems

  14. Exploring flocculation of suspended burned sediment using an annular flume

    Blake, W. H.; Clarke, P.; Manning, A. J.; Fitzsimons, M. F.

    2010-05-01

    The frequency and severity of wildfire events are predicted to increase in many fire-prone areas of the world with implications for erosion, sediment transport and sedimentation. While cohesive suspended sediment is known to be transported primarily as flocculated material in river channels, with important implications for catchment nutrient and contaminant fluxes, there has been little work to date to explore the effect of burning on suspended sediment flocculation processes. Since heating has profound effects on surface soil biogeochemistry, it can be hypothesised that in-channel flocculation processes may also be affected as burned eroded material is transported through the catchment system. Using an annular flume and LISST-ST (Laser in Situ Scatter and Transmissometry with Settling Tube) particle size analyser, short-term suspended sediment flocculation dynamics were examined in burned and unburned sediment collected from a wildfire-impacted catchment, Southern Peloponnese, Greece. Fine sediment (stresses (0.1, 0.3, 0.6 and 0.9 Pa). Experiments were undertaken for a range of suspended sediment concentrations (111, 222 and 333 mg l-1) of burned and unburned material. For each shear and sediment concentration scenario, the flume was operated for 30 minutes to induce a theoretical equilibrium between flocs and fluid shear stress after which 5 replicate subsamples were collected and analysed for effective particle size using the LISST-ST. Material was also analysed for absolute particle size following chemical and ultrasonic dispersion. At the two higher sediment concentrations, the effective particle size distribution of unburned material notably coarsened at shear stresses of 0.1-0.3 Pa in comparison to the absolute particle size distribution. This is reflected in a reduction of the percentage of 250 μm) e.g. from 14.4 ± 4.1 % to 5.9 ± 2.0 % at the highest sediment concentration. While similar increases in effective particle size were seen at the lower

  15. Panoramic Imaging and Holographic Interferometry Using a Panoramic Annular Lens.

    Puliparambil, Joseph Thomas

    1992-01-01

    Ideally, a device for making measurements of the inner surface of a cavity should be rugged, compact, and capable of obtaining an unobstructed, complete, and comprehensive image of the cavity space in every direction. The first attempt to patent a system for panoramic imaging was made by Mangin in 1878 and since that time several other devices have been patented. Most of these devices depend on a scanning system or on a complex set of lenses and mirrors and as such they are not very practical for use. However, in 1984 Dr. Pal Greguss invented a simple lens known as a Panoramic Annular Lens (PAL) capable of giving a full 360 degree surround image of the area around the lens. This lens can be utilized along with digital cameras and computer programs to inspect and measure the interior walls of cavities. If a cavity can be regarded as a cylindrical rather than a spherical volume, the image information can be transformed, using stretching methods, onto a flat surface creating a two-dimensional representation of a three-dimensional cylindrical surface. This phenomenon called Flat Cylindrical Perspective (FCP) forms the basis for the image produced by a PAL. To apply standard methods of analysis on an image and also for visual interpretation, image processing algorithms were developed to linearize a PAL image. These programs can be used for endoscopy which is a technique for imaging the inner part of a volume or cavity. Such techniques have applications in the fields of medicine, civil engineering and aerospace; indeed, anywhere tubes and pipes are involved. Holographic interferometry has become an important diagnostic tool in non-destructive testing, but due to lack of panoramic imaging systems this work could not be effectively used for the analysis of cavities. Now, the PAL can be used for panoramic holographic interferometry which can be used to measure submicron deformations of cavity walls caused by small perturbations in temperature, pressured and mechanical loads

  16. Turbulent structure at the midsection of an annular flow

    Ghaemi, S.; Rafati, S.; Bizhani, M.; Kuru, E.

    2015-10-01

    The turbulent flow in the midsection of an annular gap between two concentric tubes at Reynolds number of 59 200-90 800 based on hydraulic diameter (dh = 57 mm) and average velocity is experimentally investigated. Measurements are carried out using particle tracking velocimetry (PTV) and planar particle image velocimetry (PIV) with spatial resolution of 0.0068dh (size of the binning window) and 0.0129dh (size of the interrogation window), respectively. Both PTV and PIV results show that the location of maximum mean streamwise velocity (yU) does not coincide with the locations of zero shear stress (yuv), minimum streamwise velocity fluctuation (yu2), and minimum radial velocity fluctuation (yv2). The separation between yU and yuv is 0.013dh based on PTV while PIV underestimates the separation distance as 0.0063dh. Conditional averages of turbulent fluctuations based on the four quadrants across the annulus demonstrate that the inner and outer wall flows overlap in the midsection. In the midsection, the flow is subject to opposing sweep/ejection events originating from both the inner and outer walls. The opposite quadrant events of the two boundary layers cancel out at yuv while the local minimum of spatial correlation of u (maximum mixing of the two wall flows) occurs at yU. Investigation of the budget of Reynolds shear stress showed that production and advection terms act towards the coincidence of the yU and yuv while the dissipation term works against the coincidence of the two points. The location of max also overlaps with zero dissipation of . The production of turbulent kinetic energy is slightly negative in the narrow region between yU and yuv. This negative production acts towards smoothing the mean velocity profile at the joint of the two wall flows by equalizing its curvature (∂2/∂y2) on the two sides of yU. The small separation distance of the yU and yuv is associated with slight deviation from the fully developed condition.

  17. A Study on the Pressure Drop of a Subchannel Analysis Code for an Annular Fuel

    Shin, C. H.; Seo, K. W.; In, W. K.; Chun, T. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    Recently, MIT proposed an internally and externally cooled annular fuel for an advanced PWR which can endure a substantial power uprating. KAERI is pursuing the development for its reloading to operating PWR reactors of OPR-1000. Thermal hydraulic analysis is critical part of annular fuel design because it determines dimensions of the fuel within acceptable MNDBR margins. An annular fuel subchannel analysis code, MATRA-AF which can be coupled to MATRA and can calculate the coolant flow split and heat split in the internal and external subchannels has been developed. In this paper, the effects of the parameters related with a calculation of a single-phase and two-phase pressure drop have been estimated.

  18. Hybrid multiphase CFD simulation for liquid-liquid interfacial area prediction in annular centrifugal contactors

    Wardle, K.E. [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2013-07-01

    Liquid-liquid contacting equipment used in solvent extraction processes has the dual purpose of mixing and separating two immiscible fluids. Consequently, such devices inherently encompass a wide variety of multiphase flow regimes. A hybrid multiphase computational fluid dynamics (CFD) solver which combines the Eulerian multi-fluid method with VOF (volume of fluid) sharp interface capturing has been developed for application to annular centrifugal contactors. This solver has been extended to enable prediction of mean droplet size and liquid-liquid interfacial area through a single moment population balance method. Simulations of liquid-liquid mixing in a simplified geometry and a model annular centrifugal contactor are reported with droplet breakup/coalescence models being calibrated versus available experimental data. Quantitative comparison is made for two different housing vane geometries and it is found that the predicted droplet size is significantly smaller for vane geometries which result in higher annular liquid holdup.

  19. Tight focus of a radially polarized and amplitude-modulated annular multi-Gaussian beam

    The focusing of a radially polarized beam without annular apodization ora phase filter at the entrance pupil of the objective results in a wide focus and low purity of the longitudinally polarized component. However, the presence of a physical annular apodization or phase filter makes some applications more difficult or even impossible. We propose a radially polarized and amplitude-modulated annular multi-Gaussian beam mode. Numerical simulation shows that it can be focused into a sharper focal spot of 0.125λ2 without additional apodizations or filters. The beam quality describing the purity of longitudinally polarized component is up to 86%. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  20. Hybrid multiphase CFD simulation for liquid-liquid interfacial area prediction in annular centrifugal contactors

    Liquid-liquid contacting equipment used in solvent extraction processes has the dual purpose of mixing and separating two immiscible fluids. Consequently, such devices inherently encompass a wide variety of multiphase flow regimes. A hybrid multiphase computational fluid dynamics (CFD) solver which combines the Eulerian multi-fluid method with VOF (volume of fluid) sharp interface capturing has been developed for application to annular centrifugal contactors. This solver has been extended to enable prediction of mean droplet size and liquid-liquid interfacial area through a single moment population balance method. Simulations of liquid-liquid mixing in a simplified geometry and a model annular centrifugal contactor are reported with droplet breakup/coalescence models being calibrated versus available experimental data. Quantitative comparison is made for two different housing vane geometries and it is found that the predicted droplet size is significantly smaller for vane geometries which result in higher annular liquid holdup

  1. Scintillation characteristics of annular beams propagating through atmospheric turbulence along a slanted path

    Scintillation characteristics of annular beams propagating through atmospheric turbulence along a slanted path are studied by using the numerical simulation method and some new results are obtained, which are explained in physical terms. It is found that, when the zenith angle is not large enough, the saturation phenomenon of the scintillation index never appears even if the propagation distance is large enough, which is quite different from the behavior for the horizontal propagation case. However, under the same condition (i.e. the zenith angle is not large enough), the on-axis scintillation index still approaches an asymptotical value, which increases as the zenith angle increases, and depends on the obscure ratio of annular beams. Furthermore, the relation of the on-axis scintillation index between annular beams and flat-topped beams is also examined in this paper. It is shown that their relation will change as the zenith angle changes. (paper)

  2. Diametric Tolerance Control of Dual Cooled Annular Fuel Pellet without Inner Surface Grinding

    A dual cooled fuel consists of internal and external cladding tubes in which annular pellets are stacked and cooling water flows in both internal and external coolant passages. It is recently being reconsidered as a promising option for a power up-rate of a pressurized water reactor fuel assembly because an annular fuel shows a lot of advantages from the point of a fuel safety and its economy due to an increased heat transfer area and a thin pellet thickness. Many technical issues might cause a serious problem to adopt the dual cooled annular fuel to the commercial PWR reactors. One of the most important issues is a heat flux split toward an internal cladding and an external cladding due to the gap conductance asymmetry which results from a preferential expansion of a fuel pellet toward the outside during an irradiation. Gap conductance is directly related to the inner and outer gap thicknesses. Initial gap thicknesses can vary with a pellet's dimensions which are affected by a reactor operation condition. Recently, it is suggested that a fuel rod with a smaller inner gap and a larger outer gap can reduce this gap conductance asymmetry. This approach can be effective only after precise tolerance technology is achieved. Because of an inhomogeneous green density distribution along the compact height, an hour-glassing usually occurred in a sintered cylindrical PWR fuel pellet fabricated by a conventional double-acting press. Thus, a sintered pellet usually undergoes a center-less grinding process in order to secure a pellet's specifications. In the case of an annular pellet fabrication using a conventional double-acting press, the same hour-glass shape would probably occur. The outer diameter tolerance of an annular pellet can be controlled easily similar to that of a conventional cylindrical PWR pellet through a center-less grinding. However, it appears not to be simple in the case of an inner surface grinding. It would be the best way to satisfy the specifications

  3. Anti-oxidative therapy with oral dapsone improved HCV antibody positive annular elastolytic giant cell granuloma.

    Igawa, K; Maruyama, R; Katayama, I; Nishioka, K

    1997-05-01

    A 72-year-old fisherman who was positive for the HCV antibody developed an annular, erythematous, infiltrated lesions on sun-exposed areas. The lesions were diagnosed as annular elastolytic giant cell granuloma both clinically and histologically. Topical corticosteroid and cryotherapy with liquid nitrogen for several months failed to improve the lesions. We then started dapsone, a known anti-oxidant, at 50 mg/day. A month later, the margins of the erythematous lesions faded, and the infiltration gradually decreased. No recurrence has been observed for one year after the start of the therapy. Anti-oxidative therapy appears to be effective for annular elastolytic giant cell granuloma and could be an alternate therapy for refractory granulomatous disease. PMID:9198323

  4. Droplet behavior analysis in consideration of droplet entrainment from liquid film in annular dispersed flow

    A method of droplet behavior simulation in an annular dispersed flow has been developed. In this method, both droplet deposition and entrainment from liquid film are considered. The Lagrangian method and stochastic model are used to analyze droplet diffusion and deposition behavior in a turbulent flow, and droplet entrainment from liquid film is calculated by an entrainment correlation. For the verification of this method, Gill's experiment is analyzed, in which the transition from annular flow with no entrainment to equilibrium annular dispersed flow was observed. Analysis results can also show the similar transition tendency. The experimental results of radial distribution of droplet mass flux are compared with analysis results. The agreement is good for low liquid flow rate, but entrainment rate must be adjusted for high liquid flow rate, in which gas turbulence is thought to be modified by high droplet density. In future work the effect of high droplet density on turbulence should be considered. (author)

  5. Propagation of hermite-cosh-gaussian beams passing through ABCD optical system with an annular aperture

    2008-01-01

    By using the expansion of the aperture function into a finte sum of complex Gaussian functions, the corresponding analytical expressions of Hermite-cosh-Gaussian beams passing through annular apertured paraxially and symmetrically optical systems written in terms of ABCD matrix were derived, and they could reduce to the cases with squared aperture. In a similar way, the corresponding analytical expressions of cosh-Gaussian beams through annular apertured ABCD matrix were also given. The method could save more calculation time than that by using the diffraction integral formula directly.

  6. An Evaluation of the Annular Fuel and Bottle-Shaped Fuel Concepts for Sodium Fast Reactors

    Memmott, Matthew; Buongiorno, Jacopo; Hejzlar, Pavel

    2010-01-01

    Two innovative fuel concepts, the internally and externally cooled annular fuel and the bottle-shaped fuel, were investigated with the goal of increasing the power density and reduce the pressure drop in the sodium-cooled fast reactor, respectively. The concepts were explored for both high- and low-conversion core configurations, and metal and oxide fuels. The annular fuel concept is best suited for low-conversion metal-fuelled cores, where it can enable a power uprate of ~20%; the magnitude ...

  7. Experimental Study on Convective Boiling Heat Transfer in Vertical Narrow Gap Annular Tube

    Li Bin; He Anding; Wang Yueshe; Zhou Fangde

    2001-01-01

    Experiments are conducted to investigate the characteristics of single-phase forced-flow convection and boiling heat transfer of R113 flowing through annular tube with gap of 1, 1.5 and 2.5 mm, and also the visualization test are carried out to get two-phase flow regime. The data show that the Nusselt numbers for the narrow-gap are higher than those predicted by traditional large channel correlation and boiling heat transfer is enhanced. Based on the data obtained in this investigation, correlations for single-phase, forced convection and flow boiling in annular tube of different gap size has been developed.

  8. Ultrasonography of the trigger fingers: Emphasis on findings of annular pulley

    Chung, Hye Won [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2003-06-15

    To analyze the sonographic findings of clinically diagnosed trigger fingers by comparing those of normal fingers with a special emphasis on findings of the annular pulleys that has not been demonstrated previously. Forty-four fingers of 38 patients with clinically diagnosed trigger fingers and 31 asymptomatic contralateral fingers from 29 patients as the normal control group were included in this study. The mean age of the subjects with trigger fingers was 39 years (age range, 7-74 years; female:male = 32:6) while that of the normal control group, 49 years (age range, 7-74 years; female:male = 24:5). Longitudinal and axial images of the flexor digitorum tendons (FDTs) and adjacent soft tissue were obtained with a careful examination of the annular pulleys including A1 pulley. Two radiologists conducted a retrospective analysis of sonographic findings with an emphasis on the visualization and thickness of annular pulleys, thickness and echo pattern of FDTs, distension of tendon sheath , and presence of ganglion. Statistical significances for the difference of thickness of the annular pulleys and FDTs between patients and normal control group were determined with independent sample t-test. The probability value less than .05 was considered statistically significant. Twenty-six of 44 fingers (59%) showed thickened annular pulleys (A1 in 20 and A3 in 6 cases). The thickness of annular pulleys of control and patient groups was 0.27 +- 0.40 mm and 0.77 +- 85 mm, respectively. The average thickness of FDTs of the control and patient groups were 3.35+- 0.77 mm and 3.6 +- 0.9 mm, respectively. The annular pulleys were thickened in the patient group with a statistical significance (p<0.05) whereas the thickness of FDTs did not. The echo pattern of FDTs was normal in 38 fingers of 44 patients (86%) while only six remaining fingers (14%) showed decreased echo and loss of the normal fibrillary pattern within the tendon. Three fingers showed distension of tendon sheath; one

  9. Radially polarized annular beam generated through a second-harmonic-generation process.

    Sato, Shunichi; Kozawa, Yuichi

    2009-10-15

    A radially polarized beam with an annular intensity pattern was generated through a second-harmonic-generation process by focusing an azimuthally polarized Ti:sapphire pulsed laser beam to a c-cut beta-barium borate (BBO) crystal. The annular intensity pattern of the second-harmonic wave had a nearly sixfold symmetry as a result of the nonlinear susceptibility tensor of the BBO crystal. The width of the annulus was as narrow as less than 1/40th of its radius. PMID:19838261

  10. DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM

    Davood Domairry Ganji

    2011-01-01

    Full Text Available In this paper, homotopy perturbation method has been used to evaluate the temperature distribution of annular fin with temperature-dependent thermal conductivity and to determine the temperature distribution within the fin. This method is useful and practical for solving the nonlinear heat transfer equation, which is associated with variable thermal conductivity condition. The homotopy perturbation method provides an approximate analytical solution in the form of an infinite power series. The annular fin heat transfer rate with temperature-dependent thermal conductivity has been obtained as a function of thermo-geometric fin parameter and the thermal conductivity parameter describing the variation of the thermal conductivity.

  11. Evaluation Performance ofan Annular Composite Fin by UsingMATLAB Programming

    Padma Lochannayak; suvendumohanty

    2015-01-01

    The aim of this project is analysis the efficiency ratio in an annular fin by the variation of heat transfer coefficient for any surface condition by using MATLAB software to calculate the base fin efficiency and the coated fin efficiency by the variation of heat transfer coefficient, radius ratio and base fin thickness of an annular fin and compare the coating fin efficiency to base fin efficiency. If the heat transfer coefficient is 50W/m2K the increase efficiency ratio is 10.46...

  12. CFD Study of an Annular-Ducted Fan Lift System for VTOL Aircraft

    Yun Jiang; Bo Zhang; Tao Huang

    2015-01-01

    The present study aimed at assessing a novel annular-ducted fan lift system for VTOL aircraft through computational fluid dynamics (CFD) simulations. The power and lift efficiency of the lift fan system in hover mode, the lift and drag in transition mode, the drag and flight speed of the aircraft in cruise mode and the pneumatic coupling of the tip turbine and jet exhaust were studied. The results show that the annular-ducted fan lift system can have higher lift efficiency compared to the ro...

  13. Applicability of annular flow model to countercurrent flow in debris beds consisting of large particles

    Countercurrent flow limitation (CCFL) is the dominant dryout phenomenon in a debris bed that may be formed during a severe accident such as that observed at Three Mile Island unit 2. The actual CCFL situation in a debris bed is very complex, and it is difficult to treat. An annular flow model was developed to predict CCFL in a pipe. If a hypothetical flow channel were assumed, CCFL in a debris bed could be treated in the same manner as CCFL in a pipe. The purpose of this study is to investigate whether the annular flow model developed for CCFL in a pipe is applicable for CCFL in a debris bed

  14. Quasi-static transient thermal stresses in a thick annular disc

    V S Kulkarni; K C Deshmukh

    2007-10-01

    The present paper deals with the determination of transient thermal stresses in a thick annular disc. A thick annular disc is considered having zero initial temperature and subjected to arbitrary heat flux on the upper and lower surfaces where as the fixed circular edges are at zero temperature.The governing heat conduction equation have been solved by using integral transform technique. The results are obtained in series form in terms of Bessel’s functions. The results for displacement and stresses have been computed numerically and are illustrated graphically

  15. Generation of annular, high-charge electron beams at the Argonne wakefield accelerator

    Wisniewski, E. E.; Li, C.; Gai, W.; Power, J.

    2013-01-01

    We present and discuss the results from the experimental generation of high-charge annular(ring-shaped)electron beams at the Argonne Wakefield Accelerator (AWA). These beams were produced by using laser masks to project annular laser profiles of various inner and outer diameters onto the photocathode of an RF gun. The ring beam is accelerated to 15 MeV, then it is imaged by means of solenoid lenses. Transverse profiles are compared for different solenoid settings. Discussion includes a comparison with Parmela simulations, some applications of high-charge ring beams,and an outline of a planned extension of this study.

  16. Integrated strain array for cellular mechanobiology studies

    We have developed an integrated strain array for cell culture enabling high-throughput mechano-transduction studies. Biocompatible cell culture chambers were integrated with an acrylic pneumatic compartment and microprocessor-based control system. Each element of the array consists of a deformable membrane supported by a cylindrical pillar within a well. For user-prescribed waveforms, the annular region of the deformable membrane is pulled into the well around the pillar under vacuum, causing the pillar-supported region with cultured cells to be stretched biaxially. The optically clear device and pillar-based mechanism of operation enables imaging on standard laboratory microscopes. Straightforward fabrication utilizes off-the-shelf components, soft lithography techniques in polydimethylsiloxane and laser ablation of acrylic sheets. Proof of compatibility with basic biological assays and standard imaging equipment were accomplished by straining C2C12 skeletal myoblasts on the device for 6 h. At higher strains, cells and actin stress fibers realign with a circumferential preference

  17. Stress Intensity Factor using Finite Element Analysis in Rectangular Orthotropic Composite Annular Disk

    P. Ravinder Reddy

    1997-01-01

    Full Text Available The quadratic isoparametric elements which embody the inverse squareroot singularity were used to determine the stress intensity factor in an annular disk made of Boron-Epoxy composite material. The displacements and stresses were determined in a rectangular orthotropic composite annular disk using isoparametric finite elements. The singularity in the strain field was provided by means of 8-noded isoparametric elements (4-nodes at the four corners and four mid-side nodes each at l/4th distance from the edge. The results were obtained for various material properties and fibre orientation. The geometry of the annular disk was reported when subjected to a boundary radial and tangential. The r singularity was provided at the boundary of the circular hole and the rest of the annular disk was modelled with ordinary isoparametric elements. The apparent stress intensity factor (K/sub I/= was computed from the stress data near the circular hole, when it was subjected to uniform tension. A curve was drawn for apparent stress intensity factor versus the distance from the crack edge and was extrapolated to r = 0, the actual stress intensity factor was found on the y-axis.

  18. Application of Lubricant to Minimize Axial Deviation of Annular Pellet Diameter

    In the nuclear industry, the elevation of an economical efficiency for a nuclear fuel is one of the major issues. To increase the efficiency, a development of the nuclear fuel for a high burnup and extended cycle is necessary. In the development of a high performance fuel, in-reactor fuel behavior must be seriously considered. Also, a fuel fabrication and an enrichment process must be discussed. A modification and an improvement of a nuclear fuel system will be also required. The typical fuel geometry of a PWR (Pressurized Water Reactor) is composed of a cylindrical pellet with a tubular cladding. And the outer surface of the cladding is cooled with water. However, to allow for a substantial increase in the power density, an additional cooling is necessary. One of the best ways is the application of a new fuel geometry that is of an annular shape and has both an internal and external cooling. From this point of view, a double cooled fuel is being developed by KAERI (Korea Atomic Energy Research Institute), and as a part of the project, the development of a fabrication process for a UO2 annular pellet is now in progress. In developing the fabrication technology for an annular pellet, there are various methods which can be applied to the fabrication of an annular pellet. But a die pressing method was dominantly chosen, because it is profitable for a production on a large scale

  19. Thermal hydraulic analysis of thorium fuel assemblies loaded with annular seed pins

    Thermal hydraulic characteristics of thorium-based fuel assemblies loaded with annular seed pins have been analyzed using MATRAA combined with MATRA, and compared with those of the existing thorium-based assemblies. MATRA and MATRAA showed good agreements for the pressure drops at the internal subchannels. The pressure drop generally increased in the cases of the assemblies loaded with annular seed pins due to the larger wetted perimeter, but an exception existed. In the inner subchannels of the seed pins, mass fluxes were high due to the grid form losses in the outer subchannels. About 43% of the heat generated from the seed pin flowed into the inner subchannel and the rest into the outer subchannel, which implies the inner to outer wall heat flux ratio was approximately 1.2. The maximum temperatures of the annular seed pins were slightly above 500 qC. The MDNBRs of the assemblies loaded with annular seed pins were higher than those of the existing assemblies. Due to the fact that interchannel mixing cannot occur in the inner subchannels, temperatures and enthalpies were higher in the inner subchannels

  20. Stress Functions in a Thin Annular Disc Due To Partially Distributed Heat Supply

    Bagde, Sunil D.; Khobragade, N. W.

    2012-09-01

    This paper concerned with stress functions in thin annular disc due to partially distributed heat supply to determine the temperature, displacement function and stress functions with the help of finite Fourier cosine transform, Marchi-Zgrablich transform and Laplace transform techniques.

  1. LABORATORY AND NUMERICAL INVESTIGATIONS OF RESIDENCE TIME DISTRIBUTION OF FLUIDS IN LAMINAR FLOW STIRRED ANNULAR PHOTOREACTOR

    Laboratory and Numerical Investigations of Residence Time Distribution of Fluids in Laminar Flow Stirred Annular PhotoreactorE. Sahle-Demessie1, Siefu Bekele2, U. R. Pillai11U.S. EPA, National Risk Management Research LaboratorySustainable Technology Division,...

  2. Development of Technology for Improving the Dual Cooling Annular Fuel Pellet Heat Transfer

    The purpose of this project is to conduct CHF experiments using nano fluid and to check the application possibility of nano fluid to annular fuel for developing high performance dual cooling annular fuel pellet. To achieve this purpose, We set the direction of research by literature survey and conducted experiments using various experimental apparatus. The main purposes of the experiments contained in the present study are understanding about effect of nano fluid on CHF and investigation of related phenomena. CHF enhancement by nano fluid can increase the the thermal margin of dual cooling annular fuel and thus increase the application possibility of annular fuel to nuclear power plant. The present study consist of two parts. First, we study about the effect of nano fluid on thermal conductivity, wettability, CHF in pool boiling condition. Second, we study about the effect of nano fluid on CHF in flow boiling condition. Part 1 : Thermal conductivity, wettability, CHF experiments using nano fluid in pool boiling condition Part 2 : CHF experiments using nano fluid in flow boiling condition

  3. Displacement of one Newtonian fluid by another: density effects in axial annular flow

    Szabo, Peter; Hassager, Ole

    1997-01-01

    The arbitrary Lagrange-Euler (ALE) finite elementtechnique is used to simulate 3D displacement oftwo immiscible Newtonian fluids in vertical annular wells. For equally viscous fluids the effect of distinct fluid densities is investigated in the region of low to intermediate Reynolds numbers. Comp......, the efficiency of the displacement is analysed for various flow situations....

  4. The influence of Thomson effect in the energy and exergy efficiency of an annular thermoelectric generator

    Highlights: • Exergy analysis in the annular thermoelectric generator (ATEG) system is proposed. • Analytical expressions for the power output, exergy efficiency of an ATEG is derived. • The effects of Sr, RL, and θ in Pout and exergy efficiency of an ATEG is studied. • The influence of Thomson effect in Pout and exergy efficiency of an ATEG is studied. - Abstract: The exoreversible thermodynamic model of an annular thermoelectric generator (ATEG) considering Thomson effect in conjunction with Peltier, Joule and Fourier heat conduction has been investigated using exergy analysis. New expressions for optimum current at the maximum power output and maximum energy, exergy efficiency conditions, and dimensionless irreversibilities in the ATEG are derived. The modified expression for figure of merit of a thermoelectric generator considering the Thomson effect has also been obtained. The results show that the power output, energy and exergy efficiency of the ATEG is lower than the flat plate thermoelectric generator. The effects of annular shape parameter (Sr = r2/r1), load resistance (RL), dimensionless temperature ratio (θ = Th/Tc) and the thermal and electrical contact resistances in power output, energy/exergy efficiency of the ATEG have been studied. It has also been proved that because of the influence of Thomson effect, the power output and energy/exergy efficiency of the ATEG is reduced. This study will help in the designing of the actual annular thermoelectric generation systems

  5. Existence, uniqueness and multiplicity of rotating fluxon waves in annular Josephson junctions

    Katriel, Guy

    2007-01-01

    We prove that the equation modelling an annular Josephson junction has a rotating fluxon wave solution for all values of the parameters. We also obtain results on uniqueness of the rotating fluxon wave in some parameter regimes, and on multiplicity of rotating fluxon waves in other parameter regimes.

  6. Surgical treatment of annular pancreas in adults: a report of two cases

    ZHENG He-ming; CAI Xiu-jun; SHEN Lai-gen; Robert Finley

    2007-01-01

    @@ A nnular pancreas is a congenital anomaly which consists of a ring of pancreatic tissue partially or completely encircling the descending portion of theduodenum. It was first described by Tiedemann1 in 1818 and named "annular pancreas" by Ecker2,3 in 1862.

  7. Apodized annular-aperture logarithmic axicon: smoothness and uniformity of intensity distributions.

    Jaroszewicz, Z; Sochacki, J; Kolodziejczyk, A; Staronski, L R

    1993-11-15

    We show that the apodized annular-aperture logarithmic axicon preserves excellent uniformity of the on-axis intensity, energy flow, and lateral resolution. Numerical evaluation of the Fresnel diffraction integral leads to results very close to geometrical-optics predictions. Once again the geometrical law of energy conservation turns out to be a useful tool in designing axicons. PMID:19829438

  8. The analysis of the influence of the ferromagnetic rod in an annular magnetohydrodynamic (MHD pump

    Bergoug Nassima

    2012-01-01

    Full Text Available This paper deals with the 2D modelisation of an annular induction magnetohydrodynamic (MHD pump using finite volume method in cylindrical coordinates and taking into consideration the saturation of the ferromagnetic material. The influence of the ferromagnetic rod on the different characteristics, in the channel of the MHD pump was studied in the paper.

  9. The effects of annular flow on dynamics of AP1000 reactor coolant pump rotor

    The feature of AP1000 RCP rotor system is that the whole rotor system is immersed in the annular flow. The rotor in annular flow induces fluctuating fluid forces, thereby causes vibration and noise, even rotor instability. The effects of annular flow on AP1000 RCP rotor system are different from that in bearings and seals and should be considered in a new approach. Based on the turbulent bulk flow theory and perturbation analysis, the rotor-flow coupled linear dynamic model is developed to predict the dynamics of AP1000 RCP immersed rotor. During the analysis, the rotor eccentricity, stator and rotor wall friction effects are emphasized. The analytic results show the rotor eccentricity induces divergence instability and significant decrease of instability speed for system with moderate or large eccentricity; however, stator and rotor wall friction effects distinctly suppress divergence instability and increase instability speed for system with small or moderate eccentricity. Finally, we can have the conclusion that the flow-structure interaction induced by annular flow has great effects on the dynamics of AP1000 RCP immersed rotor, which should be considered in rotor dynamic analysis and design of AP1000 RCP. The method and results in the paper have theoretical significance and practical importance. (author)

  10. Fabrication of Mn-Al doped UO{sub 2} Annular Pellet with High Thermal Stability

    Kim, Dong Joo; Rhee, Young Woo; Yang, Jae Ho; Oh, Jang Soo; Kim, Jong Hun; Nam, Ik Hui; Kim, Keon Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    For a higher burnup and extended cycle, one of the innovative nuclear fuel concepts being developed has a new fuel geometry design that is of an annular sintered pellet, inner and outer cladding, and a dual cooling system which is cooled by both an internal and external coolant (dual cooled fuel). The advantages of dual cooled fuel are considerably lower surface heat flux and lower fuel temperature than those of solid fuel. While the lower heat flux gives a higher DNB (Departure from Nucleate Boiling) margin for the same power rate, the lower temperature reduces the stored energy of the fuel and cladding peak temperature. The dual cooled fuel has promising potential to increase both the reactor economy and safety. In the development of a nuclear fuel pellet, the improvement of fuel performance to reduce the FGR (Fission Gas Release) and increase the resistance to the PCI (Pellet Cladding Interaction) is a technical challenge. As in the annular fuel pellet, the in-reactor performance of dual cooled fuel can be definitely enhanced by an improvement in PCI and FGR. In the development of the dual cooled fuel concept, a 'heat split' behavior of the fuel is one of the issues that must be significantly considered. The heat split is a phenomenon with an unbalanced distribution of heat flux between inner and outer coolant-direction. In the densification of the annular pellet, inner gap of fuel will be changed narrower than outer gap of fuel. And then, the thermal resistance of inner gap will decrease lower than that of outer gap. Finally, the heat flux of inner coolant-direction will rise higher, and the temperature of inner coolant and cladding will increase. Therefore, if an annular sintered pellet with a higher thermal stability can be fabricated, the dual cooled fuel performance in the reactor can be remarkably improved. That is to say, the annular pellet with a minimized dimensional change by densification needed. In this study, an annular sintered pellet

  11. Transrectal Array Configurations Optimized For Prostate HIFU Ablation

    The objectives of this study were to evaluate and compare steering and ablation rates from several types of transrectal arrays operated at different frequencies for whole prostate ablation. Three-dimensional acoustic and thermal modeling (Rayleigh-Sommerfield and Penne's BHTE) were performed. Treatment volumes up to 70cc and anterior-posterior distances up to 6 cm were considered. The maximum transducer dimensions were constrained to 5 cm (along rectum) and 2.5 cm (elevation), and the channel count was limited to 256. Planar array configurations for truncated-annular, 1/1.5D, and 2D random arrays were evaluated at 1, 2, and 4 MHz for capability to treat the entire prostate. The acoustic intensity at the surface was fixed at 10 W/cm2. The maximum temperature was restricted to 80 deg. C. The volumetric ablation rate was computed to compare the treatment times amongst different configurations. The 1.5D Planar array at 1 MHz ablated the whole prostate in the shortest amount of time while maintaining adequate steering. The higher frequency arrays required smaller elevation apertures for a fixed channel count to maintain a single focal spot at the desired location. Consequently, these arrays resulted in slower heating rates with increased near-field heating. The 1 MHz 1.5D array would also be advantageous compared to single-element transducers since only one mechanical degree of motion is required. This study demonstrates the selection of an optimal array geometry and frequency for transrectal HIFU, resulting in faster ablation rates and reduced treatment times.

  12. Parabolic antennas, and circular slot arrays, for the generation of Non-Diffracting Beams of Microwaves

    Zamboni-Rached, Michel

    2014-01-01

    We propose in detail Antennas for generating Non-Diffracting Beams of Microwaves, for instance with frequencies of the order of 10 GHz, obtaining fair results even when having recourse to realistic apertures endowed with reasonable diameters. Our first proposal refers mainly to sets of suitable annular slits, having in mind various possible applications, including remote sensing. Our second proposal --which constitutes one of the main aims of this paper-- refers to the alternative, rather simple, use of a Parabolic Reflector, illuminated by a spherical wave source located on the paraboloid axis but slightly displaced with respect to the Focus of the Paraboloid. Such a parabolic reflector yields "extended focus" (non-diffracting) beams. [OCIS codes: 999.9999; 070.7545; 050.1120; 280.0280; 050.1755; 070.0070; 200.0200. Keywords: Non-Diffracting Waves; Microwaves; Remote sensing; Annular Arrays; Bessel beams; Extended focus; Reflecting paraboloids; Parabolic reflectors; Parabolic antennas].

  13. 单、双环腔燃烧室燃烧性能的对比%Combustion Captibility Comparison of Single Annular Combustor and Dual Annular Combustor

    李锋; 程明; 李龙贤; 彭浪青; 尚守堂

    2011-01-01

    In order to change a Single Annular Combustor(SAC) into a Dual Annular Combustor(DAC), the authors kept the diffuser,outer case and atomize of the SAC unchanged,redesigned the combustor from a single annular structure into a dual annular structure,and designed six different structure DAC. Taking the same physical models(including the turbulence, radiation, spray and emission models), simulations of three dimensional two-phase reacting turbulent flow in both the SAC and DAC were developed in the Fluent Code. The total-pressure recovery coefficient, temperature distribution and exhaust emission levels were given. Finally,by comparing the simulation results,the feasibility of displacing the SAC into DAC structure was certified.%保持单环腔主燃烧室的扩压器,外机匣最大直径尺寸以及喷口不变的前提下,将其火焰筒结构重新设计为并联式双环腔结构,设计了6种不同旋流器组合的双环腔结构燃烧室.采用相同的物理模型(包括湍流模型、辐射模型、喷雾模型及污染排放模型等),对单、双环腔主燃烧室分别进行全流程的三维计算.给出了燃烧室的总压恢复系数、燃烧效率、燃烧室出口温度分布系数、污染排放指标等燃烧室性能参数.对比分析了单、双环腔燃烧室的计算结果.结果表明,双环腔燃烧室置换单环腔燃烧室是可行的,该研究可为大飞机低污染大法动机的设计提供技术支持.

  14. Volumetric Flow Measurement Using an Implantable CMUT Array.

    Mengli Wang; Jingkuang Chen

    2011-06-01

    This paper describes volumetric-flow velocity measurement using an implantable capacitive micromachined ultrasonic transducer (CMUT) array. The array is comprised of multiple-concentric CMUT rings for ultrasound transmission and an outmost annular CMUT array for ultrasound reception. Microelectromechanical-system (MEMS) fabrication technology allows reception CMUT on this flowmeter to be implemented with a different membrane thickness and gap height than that of transmission CMUTs, optimizing the performance of these two different kinds of devices. The silicon substrate of this 2-mm-diameter CMUT ring array was bulk micromachined to approximately 80 to 100 μm thick, minimizing tissue disruption. The blood-flow velocity was detected using pulse ultrasound Doppler by comparing the demodulated echo ultrasound with the incident ultrasound. The demodulated ultrasound signal was sampled by a pulse delayed in time domain from the transmitted burst, which corresponds to detecting the signal at a specific distance. The flow tube/vessel diameter was detected through the time-flight delay difference from near and far wall reflections, which was measured from the ultrasound pulse echo. The angle between the ultrasound beam and the flow was found by using the cross-correlation from consecutive ultrasound echoes. Artificial blood flowing through three different polymer tubes was experimented with, while keeping the same volumetric flow rate. The discrepancy in flow measurement results between this CMUT meter and a calibrated laser Doppler flowmeter is less than 5%. PMID:23851472

  15. Perforating Granuloma Annulare — An Unusual Subtype of a Common Disease

    João Alves

    2014-09-01

    Full Text Available Perforating granuloma annulare (GA is a rare subset of GA with an unknown etiology and chronic course. Herein, we report the case of 72 year-old women with a 3-month history of a post-traumatic, persistent, erythematous and exudative plaque located on her left leg. Differential diagnosis included mycobacterial infection, subcutaneous mycosis, perforating dermatoses, pyoderma and squamous cell carcinoma. The histopathology was highly suggestive of a perforating GA. The patient was treated with betamethasone dipropionate cream applied once daily and a complete resolution of the lesion was observed in three weeks. Despite being a very rare subtype of a common disease, perforating granuloma annulare has clinical and histopathological characteristic features that facilitate the differential diagnosis, avoiding unnecessary procedures and inadequate and potentially more invasive treatments.

  16. The quantum spectral analysis of the two-dimensional annular billiard system

    Zhang Yan-Hui; Zhang Ji-Ouan; Xu Xue-You; Lin Sheng-Lu

    2009-01-01

    Based on the extended closed-orbit theory together with spectral analysis, this paper studies the correspondence between quantum mechanics and the classical counterpart in a two-dimeusional annular billiard. The results demonstrate that the Fourier-transformed quantum spectra are in very good accordance with the lengths of the classical ballistic trajectories, whereas spectral strength is intimately associated with the shapes of possible open orbits connecting arbitrary two points in the annular cavity. This approach facilitates an intuitive understanding of basic quantum features such as quantum interference, locations of the wavefunctions, and allows quantitative calculations in the range of high energies, where full quantum calculations may become impractical in general. This treatment provides a thread to explore the properties of microjunction transport and even quantum chaos under the much more general system.

  17. AXISYMMETRIC BENDING OF TWO-DIRECTIONAL FUNCTIONALLY GRADED CIRCULAR AND ANNULAR PLATES

    Guojun Nie; Zheng Zhong

    2007-01-01

    Assuming the material properties varying with an exponential law both in the thickness and radial directions, axisymmetric bending of two-directional functionally graded circular and annular plates is studied using the semi-analytical numerical method in this paper. The deflections and stresses of the plates are presented. Numerical results show the well accuracy and convergence of the method. Compared with the finite element method, the semi-analytical numerical method is with great advantage in the computational efficiency. Moreover, study on axisymmetric bending of two-directional functionally graded annular plate shows that such plates have better performance than those made of isotropic homogeneous materials or one-directional functionally graded materials. Two-directional functionally graded material is a potential alternative to the one-directional functionally graded material. And the integrated design of materials and structures can really be achieved in two-directional functionally graded materials.

  18. Irradiation Test Plan of the Dual Cooled UO{sub 2} Annular Pellets

    Bang, Je Geon; Kim, Dae Ho; Chun, Tae Hyun; Kim, Keon Sik; Kim, Hyung Kyu; In, Wang Ki; Yang, Yong Sik; Song, Kun Woo; Chae, Hee Taek; Seo, Chul Gyo

    2008-09-15

    In order to study the behavior of the UO{sub 2} annular pellet developed by the high performance fuel technology development project, irradiation test will be carried out in HANARO research reactor for 5 cycles up to the burnup 12 MWD/kgU. After irradiation test in HANARO, the test fuel rod will be transferred to the hot cell and examined to verify the in-pile behavior. For the irradiation test, new irradiation test rig was designed and manufactured. The out-pile verification test and safety evaluation were performed and the results showed that the test rig and test rod will maintain the integrity and satisfy all the safety requirements during irradiation test. Therefore, it is expected that UO{sub 2} annular fuel can be irradiated safely in HANARO.

  19. Annular core for modular high temperature gas-cooled reactor (MHTGR)

    The active core of the 350 MW(t) MHTGR is annular in configuration, shaped to provide a large external surface-to-volume ratio for the transport of heat radially to the reactor vessel in case of a loss of coolant flow. For a given fuel temperature limit, the annular core provides approximately 40 % greater power output over a typical cylindrical configuration. The reactor core is made up of columns of hexagonal blocks, each 793-mm high and 360-mm wide. The active core is 3.5 m in o.d., 1.65 m in i.d., and 7.93 m tall. Fuel elements contain TRISO-coated microspheres of 19.8 % enriched uranium oxycarbide and of fertile thorium oxide. The core is controlled by 30 control rods which enter the inner and outer side reflectors from above. (author)

  20. Developments in fabrication of annular MOX fuel pellet for Indian fast reactor

    Mechanical rotary presses along with adoption of core rod feature were inducted for fabrication of intricate annular Mixed Oxide (MOX) pellets for Prototype Fast Breeder Reactor (PFBR). In the existing tooling, bottom plungers contain core rod whereas top plungers contain a central hole for the entry of core rod during compaction. Frequent manual clean up of top plungers after few operations were required due to settling of powder in the annular hole of top plungers during compaction. Delay in cleaning can also result in breakage of tooling apart from increase in the dose to extremities of personnel. New design of tooling has been introduced to clean up the top plungers online during the operation of rotary press. It leads to increase in the productivity, reduces the spillage of valuable nuclear material and also reduces man-rem to operators significantly. The present paper describes the modification in tooling design and compaction sequence established for online cleaning of top plungers. (author)

  1. Annular Pancreas in Adults: A Report of Two Cases and Review of Literature

    Ajaz Ahmed Wani

    2013-05-01

    Full Text Available Context Annular pancreas is one of the rare congenital anomalies that can manifest itself in adulthood also. No specific guidelines and protocols exist about management of such cases. We hereby discuss our experience with two such cases along with a brief review of literature about the subject. Case reports The first patient was a male aged 27 years and presented with features of duodenal obstruction. He underwent duodenoduodenostomy . The second patient, a male aged 32 years, also presented with features of gastric outlet obstruction. He underwent Billroth type 2 reconstruction. Both patients had an uneventful recovery. Conclusion Annular pancreas in adults is a rare clinical scenario. Advancements in imaging modalities have brought to forefront an even larger number of such cases. In adults it is diagnosed mainly because of the complications that arise thereof. Gastroduodenal tuberculosis can be an important differential diagnosis in endemic areas. Treatment and operative protocols have to be individualized.

  2. Experimental Study on the Characteristics of Liquid Layer and Disturbance Waves in Horizontal Annular Flow

    1999-01-01

    The mechanism for transporting liquid from the bottom of the pipe to the top still to be established in the prediction of the film thickness distribution in horizontal annular two-phase flow.To resolve this issue,using five parallel-wire conductance probes,time records of local liquid film thickness at five circumferential positions were collected.The characteristics of circumferential liquid film thickness profiles and its variation with gas and liquid velocities were obtained.The basic features of probability distribution function,probability density function,auto-correlation,cross-correlation and power spectrum density function of the disturbance waves in annular flow were studied respectively.The characterstics of circumferential profiles of disturbance waves and its variation with gas and liquid velocities were presented.

  3. Annular shape silver lined proportional counter for on-line pulsed neutron yield measurement

    Dighe, P.M., E-mail: pmdighe@barc.gov.in; Das, D.

    2015-04-01

    An annular shape silver lined proportional counter is developed to measure pulsed neutron radiation. The detector has 314 mm overall length and 235 mm overall diameter. The central cavity of 150 mm diameter and 200 mm length is used for placing the neutron source. Because of annular shape the detector covers >3π solid angle of the source. The detector has all welded construction. The detector is developed in two halves for easy mounting and demounting. Each half is an independent detector. Both the halves together give single neutron pulse calibration constant of 4.5×10{sup 4} neutrons/shot count. The detector operates in proportional mode which gives enhanced working conditions in terms of dead time and operating range compared to Geiger Muller based neutron detectors.

  4. Combined evaporating meniscus-driven convection and radiation in annular microchannels for electronics cooling application

    Tso, C.P.; Mahulikar, S.P. [Nanyang Technological University, Singapore (Singapore). School of Mechanical and Production Engineering

    2000-03-01

    Surface radiation interchange in an annular enclosure is numerically modeled together with evaporating meniscus-driven convection, for investigating the application of the concept for cooling in microelectronic devices. The geometry is axially discretised into ring elements, where the wall and fluid temperatures within each element are unknowns. The governing algebraic energy equations for convection and surface radiation for each element are formulated for steady-state operating conditions for heat generating cylinders. These equations are then solved simultaneously for all the elements, together with the integral form of the momentum equation, which equates the driving force due to the meniscus curvature to the weight of the coolant and the frictional resistance, and solely dictates the coolant rise length in the microchannel. The results reveal the coupling of fluid flow and heat transfer in the annular microchannel, and the relative importance of radiation. (author)

  5. Experimental research on dryout point of flow boiling in narrow annular channels

    2006-01-01

    An experimental research on the dryout point of flow boiling in narrow annular channels under low mass flux with 1.55 mm and 1.05 mm annular gap, respectively, is conducted. Distilled water is used as working fluid and the range of pressure is limited within 2.0~4.0 MPa and that of mass flux is 26.0~69.0 kg·m-2·s-1. The relation of critical heat flux (CHF) and critical qualities with mass flux and pressure are revealed. It is found that the critical qualities decrease with the increasing mass flux and increase with the increasing inlet qualities in externally heated annuli.Under the same conditions, critical qualities in the outer tube are always larger than those in the inner tube. The appearance of dryout point in bilaterally heated narrow annuli can be judged according to the ratio of qo/qi.

  6. A Numerical and an Experimental Study for Optimization of a Small Annular Combustor

    Iki, Norihiko; Gruber, Andrea; Yoshida, Hiro

    The small annular combustor of a micro gas turbine fueled with methane is investigated experimentally and numerically in order to improve the overall efficiency of the small engine. The CFD analysis of the tiny combustor relies on a low Reynolds number turbulence model coupled to the Eddy Dissipation Concept (EDC) and provides important insight about the turbulent flow pattern, flame shape, position and optimal flame anchoring. For the experimental observation, a model combustor, representing 120 degrees of the original annular combustor, is fabricated, which enables us to visualize internal flow. The burning area in the combustion chamber moves to downstream with increase of air flow rate. At full-load, some fuel remains at the combustion chamber exit. Moreover, temperatures are measured and compared with the numerical simulations. The results shown here will form the basis for future optimization of the micro gas turbine with minimal or no increase in combustor pressure loss.

  7. Stability analysis of a liquid fuel annular combustion chamber. M.S. Thesis

    Mcdonald, G. H.

    1979-01-01

    The problems of combustion instability in an annular combustion chamber are investigated. A modified Galerkin method was used to produce a set of modal amplitude equations from the general nonlinear partial differential acoustic wave equation. From these modal amplitude equations, the two variable perturbation method was used to develop a set of approximate equations of a given order of magnitude. These equations were modeled to show the effects of velocity sensitive combustion instabilities by evaluating the effects of certain parameters in the given set of equations. By evaluating these effects, parameters which cause instabilities to occur in the combustion chamber can be ascertained. It is assumed that in the annular combustion chamber, the liquid propellants are injected uniformly across the injector face, the combustion processes are distributed throughout the combustion chamber, and that no time delay occurs in the combustion processes.

  8. A New Approach to Designing the S-Shaped Annular Duct for Industrial Centrifugal Compressor

    Ivan Yurko

    2014-01-01

    Full Text Available The authors propose an analytical method for designing the inlet annular duct for an industrial centrifugal compressor using high-order Bezier curves. Using the design of experiments (DOE theory, the three-level full factorial design was developed for determination of influence of the dimensionless geometric parameters on the output criteria. Numerical research was carried out for determination of pressure loss coefficients and velocity swirl angles using the software system ANSYS CFX. Optimal values of the slope for a wide range of geometric parameters, allowing minimizing losses in the duct, have been found. The study has used modern computational fluid dynamics techniques to develop a generalized technique for future development of efficient variable inlet guide vane systems. Recommendations for design of the s-shaped annular duct for industrial centrifugal compressor have been given.

  9. Dual annular rotating open-quotes windowedclose quotes nuclear reflector reactor control system

    A nuclear reactor control system is provided in a nuclear reactor having a core operating in the fast neutron energy spectrum where criticality control is achieved by neutron leakage. The control system includes dual annular, rotatable reflector rings. There are two reflector rings: an inner reflector ring and an outer reflector ring. The reflectors are concentrically assembled, surround the reactor core, and each reflector ring includes a plurality of openings. The openings in each ring are capable of being aligned or non-aligned with each other. Independent driving means for each of the annular reflector rings is provided so that reactor criticality can be initiated and controlled by rotation of either reflector ring such that the extent of alignment of the openings in each ring controls the reflection of neutrons from the core. 4 figures

  10. THE PERTURBATION SOLUTIONS OF THE FLOW IN A ROTATING CURVED ANNULAR PIPE

    2001-01-01

    In this paper, the flow in a rotating curved annular pipe isexamined by a perturbation method. A second order perturbation solution is presented. The characteristics of the secondary flow and the axial flow are studied in detail.The study indicates that the loops of the secondary flow are more complex than those in a curved annular pipe without rotation and its numbers depend on the ratio of the Coriolis force to centrifugal force F. As F ≈- 1 , the secondary flow has eight loops and its intensity reaches the minimum value, and the distribution of the axial flow is like that of the Poiseuille flow. The position of the maximum axial velocity is pushed to either outer bend or inner bend, which is also determined by F.

  11. Thermo economic life cycle cost optimization of an annular fin heat exchanger

    In this paper the design of annular fin heat exchanger based on economic optimization has been carried out. The optimization process targeted minimizing the life cycle cost of annular fin heat exchanger that has the same frontal area, effectiveness and heat load of available practical standard geometry exchangers. The life cycle cost includes both capital and operating costs. Beside the pumping cost, both the cost of energy destruction due to irreversibilities and 10% inflation rate are included in the operating cost. The optimization process is implemented using Evolutionary Algorithm (EA). Evolutionary Algorithm is a numerical technique which is initiated by randomly generating a set of possible solutions: The optimized design has shown a significant decrease in the life cycle cost as compared with that of standard geometry that has minimum life cycle cost. Based on the optimized design relations for Col burn and friction factors are developed. (author)

  12. Collective motion of symmetric camphor papers in an annular water channel

    Ikura, Yumihiko S.; Heisler, Eric; Awazu, Akinori; Nishimori, Hiraku; Nakata, Satoshi

    2013-07-01

    We investigate the collective motion of symmetric self-propelled objects that are driven by a difference in the surface tension. The objects move around an annular water channel spontaneously and interact through the camphor layer that develops on the water surface. We found that two collective motion modes, discrete and continuous density waves, are generated depending on the number of self-propelled objects. The two modes are characterized by examining the local and global dynamics, and the collective motion mechanism is discussed in relation to the distribution of camphor concentration in the annular water channel. We conclude that the difference between these two modes originates from that of the driving mechanism that pushes a camphor paper away from a cluster, through which mechanism density waves are generated and maintained.

  13. Annular flow of cement slurries; Escoamento anular de pastas de cimento

    Silva, Maria das Gracas Pena; Martins, Andre Leibsohn; Oliveira, Antonio Augusto J. de [PETROBRAS, Rio de Janeiro (Brazil). Centro de Pesquisas. Setor de Tecnologia de Perfuracao

    1989-12-31

    This paper considers the analysis of laminar, transitory and turbulent flow regimes of cement slurries of various compositions flowing in annular sections. It is an experimental study to evaluate the performance of dozens of equations found in the literature that reflect the rheological behavior of non-Newtonian fluids, the dimensioning of annular sections, the delimitation of the transitory zone and the estimative of friction losses in the turbulent flow regime. A large-scale physical simulator (SHS-Surface Hydraulic Simulator), was designed and constructed at the PETROBRAS Research Center in order to obtain flow parameters. A computer program capable of analysing and drawing conclusions from the behavior of non-Newtonian fluids flowing in different geometries and energetic conditions was also developed. These were considered as essential stages for the development of the project. (author) 17 refs., 9 figs., 18 tabs.

  14. Three-dimensional free vibration analysis of carbon nanotube reinforced composites annular plates

    Hakimeh Zali

    2016-05-01

    Full Text Available The main objective of this research work was to investigate three-dimensional free vibration of thick annular plates which are composed of carbon nanotube (CNT reinforced composites materials using the Chebyshev–Ritz method. In order to obtain precise results, a new form of the rule of mixtures including an exponential shape function, length efficiency parameter, orientation efficiency factor, and waviness parameter was applied for predicting the mechanical properties of CNT reinforced composites. Convergence of the Chebyshev–Ritz method was also checked. Numerical results are given and compared with the available literature and finite element method (FEM analysis. Results obtained from the other well-known theories (such as: Micro-Mechanical, Halpin, etc. are compared with the new form of the rule of mixtures results. Furthermore, the effects of CNT type, structures, diameter, shape factor, density, and volume fraction on the vibration behavior of the annular plates are graphically presented.

  15. High quantum efficiency annular backside silicon photodiodes for reflectance pulse oximetry in wearable wireless body sensors

    Duun, Sune Bro; Haahr, Rasmus Grønbek; Hansen, Ole;

    2010-01-01

    The development of annular photodiodes for use in a reflectance pulse oximetry sensor is presented. Wearable and wireless body sensor systems for long-term monitoring require sensors that minimize power consumption. We have fabricated large area 2D ring-shaped silicon photodiodes optimized for...... minimizing the optical power needed in reflectance pulse oximetry. To simplify packaging, backside photodiodes are made which are compatible with assembly using surface mounting technology without pre-packaging. Quantum efficiencies up to 95% and area-specific noise equivalent powers down to 30 fW Hz(-1....../2) cm(-1) are achieved. The photodiodes are incorporated into a wireless pulse oximetry sensor system embedded in an adhesive patch presented elsewhere as 'The Electronic Patch'. The annular photodiodes are fabricated using two masked diffusions of first boron and subsequently phosphor. The surface is...

  16. Hydrodynamic characteristics of a novel annular spouted bed with multiple air nozzles

    Gong, X.W.; Hu, G.X.; Li, Y.H. [Shanghai Jiao Tong University, Shanghai (China). School for Mechanical & Power Engineering

    2006-06-21

    A novel spouted bed, namely, an annular spouted bed with multiple air nozzles, has been proposed for drying, pyrolysis, and gasification of coal particulates. It consists of two homocentric upright cylinders with some annularly located spouting air nozzles between inner and outer cylinders. Experiments have been performed to study hydrodynamic characteristics of this device. The test materials studied are ash particle, soy bean, and black bean. Three distinct spouting stages have been examined and outlined with the hold-ups increase. In the fully developed spouting stage, three flow behaviors of particles have been observed and delimited. The effects of nozzle mode and spouting velocity on the maximum spouting height of the dense-phase region, spoutable static bed height, and spouting pressure drop in the bed have been investigated experimentally.

  17. The propagation of hypergeometric beams through an annular apertured paraxial ABCD optical system

    By means of expanding the hard aperture function into a finite sum of complex Gaussian functions and based on the generalized Huygens–Fresnel diffraction integral, a novel approximate analytical expression of hypergeometric (HyG) beams passing through a paraxial ABCD optical system with an annular aperture is derived. The results could be reduced to the case of a circular aperture or a circular black screen. Some numerical simulations are also performed and illustrated for the propagation characteristics and focusing properties of a HyG beam through a paraxial ABCD optical system with an annular aperture. The results obtained from the approximate analytical formula provide more efficiency than the usual way of using diffraction integral formula directly. (paper)

  18. The propagation of hypergeometric beams through an annular apertured paraxial ABCD optical system

    Tang, Bin; Jiang, Chun; Zhu, Haibin; Zhou, Xin; Wang, Shuai

    2014-12-01

    By means of expanding the hard aperture function into a finite sum of complex Gaussian functions and based on the generalized Huygens-Fresnel diffraction integral, a novel approximate analytical expression of hypergeometric (HyG) beams passing through a paraxial ABCD optical system with an annular aperture is derived. The results could be reduced to the case of a circular aperture or a circular black screen. Some numerical simulations are also performed and illustrated for the propagation characteristics and focusing properties of a HyG beam through a paraxial ABCD optical system with an annular aperture. The results obtained from the approximate analytical formula provide more efficiency than the usual way of using diffraction integral formula directly.

  19. Fully developed MHD natural convection flow in a vertical annular microchannel: An exact solution

    Basant K. Jha

    2015-07-01

    Full Text Available An exact solution of steady fully developed natural convection flow of viscous, incompressible, electrically conducting fluid in a vertical annular micro-channel with the effect of transverse magnetic field in the presence of velocity slip and temperature jump at the annular micro-channel surfaces is obtained. Exact solution is expressed in terms of modified Bessel function of the first and second kind. The solution obtained is graphically represented and the effects of radius ratio (η, Hartmann number (M, rarefaction parameter (βvKn, and fluid–wall interaction parameter (F on the flow are investigated. During the course of numerical computations, it is found that an increase in Hartmann number leads to a decrease in the fluid velocity, volume flow rate and skin friction. Furthermore, it is found that an increase in curvature radius ratio leads to an increase in the volume flow rate.

  20. Charged annular disks and Reissner-Nordstroem type black holes from extremal dust

    We present the first analytical superposition of a charged black hole with an annular disk of extremal dust. In order to obtain the solutions, we first solve the Einstein-Maxwell field equations for sources that represent disklike configurations of matter in confomastatic spacetimes by assuming a functional dependence among the metric function, the electric potential, and an auxiliary function, which is taken as a solution of the Laplace equation. We then employ the Lord Kelvin inversion method applied to models of finite extension in order to obtain annular disks. The structures obtained extend to infinity, but their total masses are finite and all the energy conditions are satisfied. Finally, we observe that the extremal Reissner-Nordstroem black hole can be embedded into the center of the disks by adding a boundary term in the inversion.

  1. Charged Annular Disks and Reissner-Nordstro ?m Type Black Holes from Extremal Dust

    Lora-Clavijo, F D; Pedraza, J F

    2010-01-01

    We present the first analytical superposition of a charged black hole with an annular disk of extremal dust. In order to obtain the solutions, we first solve the Einstein-Maxwell field equations for sources that represent disk-like configurations of matter in confomastatic spacetimes by assuming a functional dependence between the metric function, the electric potential and an auxiliary function, which is taken as a solution of the Laplace equation. We then employ the Lord Kelvin Inversion Method applied to models of finite extension in order to obtain annular disks. The structures obtained extend to infinity, but their total masses are finite and all the energy conditions are satisfied. Finally, we observe that the extremal Reissner-Nordstr\\"om black hole can be embedded into the center of the disks by adding a boundary term in the inversion.

  2. The effect of inlet swirl on the dynamics of long annular seals in centrifugal pumps

    Ismail, M.; Brown, R. D.; France, D.

    1994-01-01

    This paper describes additional results from a continuing research program which aims to identify the dynamics of long annular seals in centrifugal pumps. A seal test rig designed at Heriot-Watt University and commissioned at Weir Pumps Research Laboratory in Alloa permits the identification of mass, stiffness, and damping coefficients using a least-squares technique based on the singular value decomposition method. The analysis is carried out in the time domain using a multi-fiequency forcing function. The experimental method relies on the forced excitation of a flexibly supported stator by two hydraulic shakers. Running through the stator embodying two symmetrical balance drum seals is a rigid rotor supported in rolling element bearings. The only physical connection between shaft and stator is the pair of annular gaps filled with pressurized water discharged axially. The experimental coefficients obtained from the tests are compared with theoretical values.

  3. Annular Seals of High Energy Centrifugal Pumps: Presentation of Full Scale Measurement

    Florjancic, S.; Stuerchler, R.; Mccloskey, T.

    1991-01-01

    Prediction of rotordynamic behavior for high energy concentration centrifugal pumps is a challenging task which still imposes considerable difficulties. While the mechanical modeling of the rotor is solved most satisfactorily by finite element techniques, accurate boundary conditions for arbitrary operating conditions are known for journal bearings only. Little information is available on the reactive forces of annular seals, such as neck ring and interstage seals and balance pistons, and on the impeller interaction forces. The present focus is to establish reliable boundary conditions at annular seals. For this purpose, a full scale test machine was set up and smooth and serrated seal configurations measured. Dimensionless coefficients are presented and compared with a state of the art theory.

  4. Numerical simulation of the transient temperature field from an annular focused ultrasonic transducer.

    Zhang, Qiang; Li, Faqi; Feng, Ruo; Xu, Jianyi; Bai, Jin; Wang, Zhibiao; Wang, Yaojun

    2003-04-01

    Knowledge of the extent of the "heated necrosis element" from a single exposure in target tissue created by an ultrasonic beam is critical for the application of focal ultrasound (US) surgery (FUS). This study uses the O'Nell and Pennes formulas to simulate the heated necrosis element from an annular focused transducer and to examine its dependence on exposure dosage, as well as some design parameters of the transducer. Several conclusions may be drawn from our numerical results: 1. With increasing exposure, the heated necrosis element increases, but its contour becomes plumper and the influence of sound intensity I is found to be greater than that of the exposure time t. 2. To get a similar heated necrosis element, the exposure approximately satisfies a relation: It(0. 4 3)=constant. 3. Increasing the US frequency or the outer-radius of the annular transducer leads to a decrease in the heated necrosis volume. PMID:12749928

  5. The Springtime North Asia Cyclone Activity Index and the Southern Annular Mode

    YUE Xu; WANG Huijun

    2008-01-01

    The relationship between the North Asia cyclone (NAC) activity and the Southern Annular Mode (SAM) is documented in this research. The definition of the NAC index (NACI) is based on the atmospheric relative vorticity in North Asia. The analysis yields a significant positive correlation between previous winter Southern Annular Mode index (SAMI) and spring NACI in the interannual variability, with a correlation coefficient of 0.51 during 1948-2000. Analysis of the NAC-related and SAM-related atmospheric general circulation variability demonstrates such a relationship. The study further reveals that when the winter SAM becomes strong, the springtime atmospheric convection in tropical western Pacific will intensify and the local Hadley circulation will be strengthened. As a result, the abnormal subsiding motion over South China makes the temperature gradient intensified in the low level and strengthens the jet in the high level, both of which are beneficial to the development of NAC activity.

  6. Entrainment rate of droplets in the ripple-annular regime for small vertical tubes

    Two-fluid model predictions of film dryout in annular flow are limited by the uncertainties in the constitutive relations for the entrainment rate of droplets from the liquid film. The main cause of these uncertainties is the lack of separate effects experimental data in the range of the operating conditions in nuclear power reactors. Air/water and Freon-113 entrainment rate data have been obtained in 10 mm tubes using the film extraction technique. These experiments have been scaled to approach high pressure steam-water flow conditions. The effects of surface tension and density ratio, missing from most previous data sets, have been systematically tested. The entrainment rate mechanism is assumed to be a Kelvin-Helmholtz instability. Based on this analysis and two previous correlations, a new correlation is proposed that is valid for low viscosity fluids in small ducts in the ripple annular regime

  7. Modifications to Marshall's Annular Seal Test (MAST) Rig and Facility for Improved Rotordynamic Coefficient Testing of Annular Seals and Fluid Film Bearings

    Darden, J. M.; Earhart, E. M.

    2011-01-01

    The limits of rotordynamic stability continue to be pushed by the high power densities and rotational speeds of modern rocket engine turbomachinery. Destabilizing forces increase dramatically with rotor speed. Rotordynamic stability is lost when these destabilizing forces overwhelm the stabilizing forces. The vibration from the unstable rotor grows until it is limited by some nonlinearity. For example, a rolling element bearing with a stiffness characteristic that increases with deflection may limit the vibration amplitude. The loads and deflections resulting from this limit cycle vibration (LCV) can lead to bearing and seal damage which promotes ever increasing levels of subsynchronous vibration. Engineers combat LCV by introducing rotordynamic elements that generate increased stabilizing forces and reduced destabilizing forces. For example, replacing a labyrinth seal with a damping seal results in substantial increases in the damping and stiffness rotordynamic coefficients. Adding a swirl brake to the damping seal greatly reduces the destabilizing cross-coupled forces generated by the damping seal for even further increases in the stabilizing capacity. Marshall?s Annular Seal Test (MAST) rig is designed to experimentally measure the stabilizing capacity of new annular seal designs. The rig has been moved to a new facility and outfitted with a new slave bearing to allow increased test durations and to enable the testing of fluid film bearings. The purpose of this paper is to describe the new facility and the new bearing arrangement. Several novel seal and bearing designs will also be discussed.

  8. Super phase array

    Wee, W H; Pendry, J B [Condensed Matter Theory Group Department of Physics Imperial College London London SW7 2AZ (United Kingdom)], E-mail: w.wee07@imperial.ac.uk

    2010-03-15

    For a long time phase arrays have been used in a variety of wave transmission applications because of their simplicity and versatility. Conventionally there is a trade-off between the compactness of a phase array and its directivity. In this paper we demonstrate how by embedding a normal phase array within a superlens (made of negative refractive index material) we can overcome this constraint and create compact phase arrays with a virtual extent much larger than the physical size of the array. In this paper we also briefly discuss the apparent unphysical field divergences in superlenses and how to resolve this issue.

  9. Super phase array

    For a long time phase arrays have been used in a variety of wave transmission applications because of their simplicity and versatility. Conventionally there is a trade-off between the compactness of a phase array and its directivity. In this paper we demonstrate how by embedding a normal phase array within a superlens (made of negative refractive index material) we can overcome this constraint and create compact phase arrays with a virtual extent much larger than the physical size of the array. In this paper we also briefly discuss the apparent unphysical field divergences in superlenses and how to resolve this issue.

  10. An usual elastophagocytic granuloma with involvement of the back: a possible variant of an annular elastolytic giant cell granuloma

    Valdeolivas-Casillas, Nuria; Pulgar, Fernando; Dolores Velez, Maria; Polo-Rodriguez, Isabel; Quesada-Cortes, Alicia; Guirado-Koch, Cristina

    2015-01-01

    Annular elastolytic giant cell granuloma (AEGCG) is a very infrequent granulomatous dermatitis characterized by elastolysis and elastophagocytosis. It usually appears in middle-aged Caucasian women and is normally located in sun-exposed areas. We present a case of a 73-year-old woman with hypertension and type II diabetes, who was admitted to the hospital for an ischemic cerebrovascular accident. She presented with annular and serpiginous skin lesions on her back and arms that had ap...

  11. An Annular Plate Model in Arbitrary-Lagrangian-Eulerian Description for the DLR FlexibleBodies Library

    Heckmann, Andreas; Hartweg, Stefan; Kaiser, Ingo

    2011-01-01

    The bending deformation of rotating annular plates and the associated vibration behaviour is important in engineering applications which range from automotive or railway brake systems to discs that form essential components in turbomachinery. In order to extend the capabilities of the DLR FlexibleBodies library for such use cases, a new Modelica class has been implemented which is based on the analytical description of an annular Kirchhoff plate. In addition the so-called Arbitray Langra...

  12. Use of Annular Closure Device (Barricaid®) for Preventing Lumbar Disc Reherniation: One-Year Results of Three Cases

    Hahn, Bang Sang; Ji, Gyu Yeul; Moon, Bongju; Shin, Dong Ah; Ha, Yoon; Kim, Keung Nyun; Yoon, Do Heum

    2014-01-01

    Although lumbar discectomy is an effective treatment for lumbar disc herniation, complications exist, including postoperative disc height loss, facet joint degeneration, and recurrent disc herniation. To solve these problems, annular closure devices have been utilized in other countries, producing satisfactory results, but there has been no report of annular closure device use in our country. Here, we demonstrate the preliminary reports of Barricaid® insertion in 3 patients who underwent surg...

  13. Forced annular variations in the 20th century Intergovernmental Panel on Climate Change Fourth Assessment Report models

    Miller, R. L.; Schmidt, G. A.; Shindell, D. T.

    2006-09-01

    We examine the annular mode within each hemisphere (defined here as the leading empirical orthogonal function and principal component of hemispheric sea level pressure) as simulated by the Intergovernmental Panel on Climate Change Fourth Assessment Report ensembles of coupled ocean-atmosphere models. The simulated annular patterns exhibit a high spatial correlation with the observed patterns during the late 20th century, though the mode represents too large a percentage of total temporal variability within each hemisphere. In response to increasing concentrations of greenhouse gases and tropospheric sulfate aerosols, the multimodel average exhibits a positive annular trend in both hemispheres, with decreasing sea level pressure (SLP) over the pole and a compensating increase in midlatitudes. In the Northern Hemisphere, the trend agrees in sign but is of smaller amplitude than that observed during recent decades. In the Southern Hemisphere, decreasing stratospheric ozone causes an additional reduction in Antarctic surface pressure during the latter half of the 20th century. While annular trends in the multimodel average are positive, individual model trends vary widely. Not all models predict a decrease in high-latitude SLP, although no model exhibits an increase. As a test of the models' annular sensitivity, the response to volcanic aerosols in the stratosphere is calculated during the winter following five major tropical eruptions. The observed response exhibits coupling between stratospheric anomalies and annular variations at the surface, similar to the coupling between these levels simulated elsewhere by models in response to increasing GHG concentration. The multimodel average is of the correct sign but significantly smaller in magnitude than the observed annular anomaly. This suggests that the models underestimate the coupling of stratospheric changes to annular variations at the surface and may not simulate the full response to increasing GHGs.

  14. Slug-annular transition with particular reference to narrow rectangular ducts

    The transition from slug-flow to annular-flow in two-phase, gas-liquid mixtures is analyzed. A transition equation is derived which agrees well when compared with objective data determined from the disappearance of the low-void peak in the void fluctuation probability density in a rectangular duct. Application to other geometries is suggested and tabular recommendations given for determination of the drift flux coefficient, K, based on results in the literature

  15. Severe mitral annular calcification in rheumatic heart disease: A rare presentation

    Vijayvergiya, Rajesh; Vaiphei, Kim; Rana, Sandeep S

    2012-01-01

    Severe mitral annular calcification (MAC) is frequently seen in patients with advanced age and chronic kidney disease, but it is rare in rheumatic heart disease (RHD). We hereby report a case of 45-year-old female with chronic RHD, who had severe MAC and mitral regurgitation. Fluoroscopy revealed a “crown”-like severe calcification of the mitral annulus. Autopsy of the heart revealed a calcified posterior mitral annulus, fused commissures, and calcified nodules at the atrial aspect of the mit...

  16. Microwave generation enhancement of X-band CRBWO by use of coaxial dual annular cathodes

    Yan Teng; Jun Sun; Changhua Chen; Hao Shao

    2013-01-01

    This paper presents an approach that greatly enhances both the output power and the conversion efficiency of the coaxial relativistic backward wave oscillator (CRBWO) by using coaxial dual annular cathodes, which increases the diode current rather than the diode voltage. The reasons for the maladjustment of CRBWO under a high diode voltage are analyzed theoretically. It is found that by optimization of the diode structure, the shielding effect of the space charge of the outer beams on the inn...

  17. Liquid Encapsulation in Parylene Microstructures Using Integrated Annular-Plate Stiction Valves

    Gutierrez, Christian A.; Ellis Meng

    2011-01-01

    We report the design, fabrication and characterization of micromachined Parylene structures for self-sealing liquid encapsulation applications. Automatic sealing is enabled through the use of an integrated annular-plate stiction valve which greatly reduces device footprint over in-plane configurations. We achieve automatic wafer-level liquid entrapment without using adhesives or processing at elevated pressures or temperatures. The ability to track changes to the internal liquid volume throug...

  18. CFD model of diabatic annular two-phase flow using the Eulerian–Lagrangian approach

    Highlights: • A CFD model of annular two-phase flow with evaporating liquid film has been developed. • A two-dimensional liquid film model is developed assuming that the liquid film is sufficiently thin. • The liquid film model is coupled to the gas core flow, which is represented using the Eulerian–Lagrangian approach. - Abstract: A computational fluid dynamics (CFD) model of annular two-phase flow with evaporating liquid film has been developed based on the Eulerian–Lagrangian approach, with the objective to predict the dryout occurrence. Due to the fact that the liquid film is sufficiently thin in the diabatic annular flow and at the pre-dryout conditions, it is assumed that the flow in the wall normal direction can be neglected, and the spatial gradients of the dependent variables tangential to the wall are negligible compared to those in the wall normal direction. Subsequently the transport equations of mass, momentum and energy for liquid film are integrated in the wall normal direction to obtain two-dimensional equations, with all the liquid film properties depth-averaged. The liquid film model is coupled to the gas core flow, which currently is represented using the Eulerian–Lagrangian technique. The mass, momentum and energy transfers between the liquid film, gas, and entrained droplets have been taken into account. The resultant unified model for annular flow has been applied to the steam–water flow with conditions typical for a Boiling Water Reactor (BWR). The simulation results for the liquid film flow rate show favorable agreement with the experimental data, with the potential to predict the dryout occurrence based on criteria of critical film thickness or critical film flow rate

  19. Tricuspid annular plane systolic excursion and response to cardiac resynchronization therapy

    Kjaergaard, Jesper; Ghio, Stefano; St John Sutton, Martin;

    2011-01-01

    The aims of this study were to evaluate tricuspid annular plane systolic excursion (TAPSE) as a predictor of left ventricular (LV) reverse remodeling and clinical benefit of cardiac synchronization therapy (CRT) and to evaluate the effect of CRT on TAPSE in patients with mildly symptomatic systolic...... heart failure as a substudy of the REsyncronization reVErses Remodeling in Systolic left vEntricular dysfunction (REVERSE) trial....

  20. Missed Monteggia fracture in children: Is annular ligament reconstruction always required?

    Bhaskar Atul

    2009-01-01

    Full Text Available Background: Chronic (neglected radiocapitellar joint dislocation is one of the feared complications of Monteggia fractures especially when associated with subtle fracture of the ulna bone. Many treatment strategies have been described to manage chronic Monteggia fracture and the need for annular ligament reconstruction is not always clear. The purpose of this study is to highlight the management of missed Monteggia fracture with particular emphasis on utility of annular ligament reconstruction by comparing the two groups of patients. Materials and Methods: In a prospective study 12 patients with mean age of 7.4 years, who presented with neglected Monteggia fractures, were studied. All children underwent open reduction of the radiocapitellar joint. Five children (Group A were treated with angulation-distraction osteotomy of ulna and annular ligament reconstruction and six cases (Group B required only angulation-distraction osteotomy of ulna without ligament reconstruction. In one case an open reduction of the radiocapitellar joint was sufficient to reduce the radial head and this was included in Group B. The gap between injury and presentation was from 3 months to 18 months (mean 9 months. Ten patients were classified as Bado I, and one each as Bado II and III respectively. We used the Kim′s criteria to score our results. Result: The mean follow-up period was 22 months. All ulna osteotomies healed uneventfully. The mean loss of pronation was 15 degree in Group A and 10 degree in Group B. Elbow flexion improved from the preoperative range and no child complained of pain, deformity and restriction of activity. The elbow score was excellent in 10 cases, and good in two cases. Conclusion: Distraction-angulation osteotomy of the ulna suffices in most cases of missed monteggia fracture and the need for annular ligament reconstruction is based on intraoperative findings of radial head instability.

  1. Acoustic and Large Eddy Simulation studies of azimuthal modes in annular combustion chambers

    Wolf, Pierre; Staffelbach, Gabriel; Gicquel, Laurent Y.M.; Müller, Jens-Dominik; Poinsot, Thierry

    2012-01-01

    International audience The objectives of this paper are the description of azimuthal instability modes found in annular combus- tion chambers using two numerical tools: (1) Large Eddy Simulation (LES) methods and (2) acoustic solv- ers. These strong combustion instabilities are difficult to study experimentally and the present study is based on a LES of a full aeronautical combustion chamber. The LES exhibits a self-excited oscillation at the frequency of the first azimuthal eigenmode. The...

  2. Stability of forced-convection subcooled boiling in steady-state and transient annular flow

    A semi-analytical model developed by Lee and Bankoff for OFI in round tubes is extended to annular or parallel-plate flows with unequal heat fluxes, and shown to compare well with data by Dougherty, et al. and by Whittle and Forgan. The model is a better fit in the high Peclet number range than the Saha-Zuber model, and is simple to use

  3. Modification of transparent materials by tightly focused annular, radially and azimuthally polarized ultrafast laser beams

    Zhang, J.(High Energy Physics Division, Argonne National Laboratory, Argonne, IL, USA); Gecevičius, M.; Beresna, M.; Kazansky, P. G.

    2013-01-01

    Recently, strong longitudinal electric fields have raised great interest in the laser fabrication, microscopy and optical data storage [1]. Here we demonstrate high quality cylindrically polarized annular beam produced by ultrafast laser written spatially variant polarization converter. We observed that nanogratings cannot be formed by strong longitudinal electric fields, created by a ring-shaped radially polarized beam. In addition, the stronger transverse electric field of azimuthal polariz...

  4. DNS for laminarization of turbulent forced gas flows in annular tube with strong heating

    A direct numerical simulation (DNS) of annular flow with turbulent transport of a variable property has been carried out to grasp and understand a laminarization phenomena caused by a strong heating. In this study, the inlet Reynolds number based on a bulk velocity and a hydraulic diameter was set to be constant; Reb = 9700. The number of computational grids used in this study was 2304 x 128 x 194 in the z-, r- and φ-directions, respectively. (author)

  5. Three-dimensional free vibration analysis of carbon nanotube reinforced composites annular plates

    Hakimeh Zali; Fatemeh Yazdian; Meisam Omidi

    2016-01-01

    The main objective of this research work was to investigate three-dimensional free vibration of thick annular plates which are composed of carbon nanotube (CNT) reinforced composites materials using the Chebyshev–Ritz method. In order to obtain precise results, a new form of the rule of mixtures including an exponential shape function, length efficiency parameter, orientation efficiency factor, and waviness parameter was applied for predicting the mechanical properties of CNT reinforced compo...

  6. Passive control of annular jet instabilities studied by Proper Orthogonal Decomposition

    Danlos, Amélie; Rouland, Eric; PARANTHOEN, Pierre; PATTE-ROULAND, Béatrice

    2009-01-01

    Shear flows are complex turbulent flows which are widely used in the industrial domain. An annular jet is an example of these particular flows (used in burners, cooling processes, inlet valve in a combustion chamber, processing glass fibers...): an obstacle for the flow, placed in the center of a round nozzle creates two axisymmetric shear layers at the jet exit. These shear layers are significant for the organization and the evolution of the flow. This study talks about coherent structures d...

  7. Progress in analytical methods to predict and control azimuthal combustion instability modes in annular chambers

    Bauerheim, Michaël; Nicoud, Franck; Poinsot, Thierry

    2016-01-01

    Longitudinal low-frequency thermoacoustic unstable modes in combustion chambers have been intensively studied experimentally, numerically, and theoretically, leading to significant progress in both understanding and controlling these acoustic modes. However, modern annular gas turbines may also exhibit azimuthal modes, which are much less studied and feature specific mode structures and dynamic behaviors, leading to more complex situations. Moreover, dealing with 10–20 burners mounted in the ...

  8. Grid Effects on LES Thermo-Acoustic Limit-Cycle of a Full Annular Aeronautical Engine

    Wolf, Pierre; Gicquel, Laurent Y. M.; Staffelbach, Gabriel; Poinsot, Thierry

    Recent developments in large scale computer architectures allow Large Eddy Simulation (LES) to be considered for the prediction of turbulent reacting flows in geometries encountered in industry. To do so, various difficulties must be overcome and the first one is to ensure that proper meshes can be used for LES. Indeed, the quality of meshes is known to be a critical factor in LES of reacting flows. This issue becomes even more crucial when LES is used to compute large configurations such as full annular combustion chambers. Various analysis of mesh effects on LES results have been published before but all are limited to single-sector computational domains. However, real annular gas-turbine engines contain ten to twenty of such sectors and LES must also be used in such full chambers for the study of ignition or azimuthal thermo-acoustic interactions. Instabilities (mostly azimuthal modes involving the full annular geometry) remain a critical issue to aeronautical or power-generation industries and LES seems to be a promising path to properly apprehend such complex unsteady couplings. Based on these observations, mesh effects on LES in a full annular gas-turbine combustion chamber (including its casing) is studied here in the context of its azimuthal thermo-acoustic response. To do so, a fully compressible, multi-species reacting LES is used on two meshes yielding two fully unsteady turbulent reacting predictions of the same configuration. The two tetrahedra meshes contain respectively 38 and 93 millions cells. Limit-cycles as obtained by the two LES are gauged against each other for various flow quantities such as mean velocity profiles, flame position and temperature fields. The thermo-acoustic limit-cycles are observed to be relatively indepedent of the grid resolution which comforts the use of LES tools to provide insights and understanding of the mechanisms triggering the coupling between the system acoustic eigenmodes and combustion.

  9. Using LES to Study Reacting Flows and Instabilities in Annular Combustion Chambers

    Wolf, Pierre; Balakrishnan, Ramesh; Staffelbach, Gabriel; Gicquel, Laurent Y.M.; Poinsot, Thierry

    2012-01-01

    Great prominence is put on the design of aeronautical gas turbines due to increasingly stringent regulations and the need to tackle rising fuel prices. This drive towards innovation has resulted sometimes in new concepts being prone to combustion instabilities. In the particular field of annular combustion chambers, these instabilities often take the form of azimuthal modes. To predict these modes, one must compute the full combustion chamber, which remained out of reach until very recently a...

  10. Duodenal diverticulum associated with annular pancreas: a rare cause of severe cholangitis.

    Ben Ameur, H; Boujelbene, S; Affes, N; Ghorbel, A; Beyrouti, M I

    2011-06-01

    Duodenal diverticulum is a common occurrence but most are asymptomatic. However, in some cases, they can cause mechanical biliary compression. We report the case of a duodenal diverticulum in a 64-year-old woman revealed by severe cholangitis with septic shock and a liver abscess. Associated annular pancreas was found. We discuss the various investigations to diagnose these two entities as well as the therapeutic strategy in this unique combination of disease. PMID:21715238

  11. A New Approach to Designing the S-Shaped Annular Duct for Industrial Centrifugal Compressor

    Ivan Yurko; German Bondarenko

    2014-01-01

    The authors propose an analytical method for designing the inlet annular duct for an industrial centrifugal compressor using high-order Bezier curves. Using the design of experiments (DOE) theory, the three-level full factorial design was developed for determination of influence of the dimensionless geometric parameters on the output criteria. Numerical research was carried out for determination of pressure loss coefficients and velocity swirl angles using the software system ANSYS CFX. Optim...

  12. Annular bone growth in phalanges of five Neotropical Harlequin Frogs (Anura: Bufonidae: Atelopus)

    Erik Lindquist; Michael Redmer; Emily Brantner

    2012-01-01

    Skeletochronological studies were conducted on museum specimensrepresenting five species of the highly threatened Neotropical genus Atelopus (Bufonidae). We detected annular bone growth (expressed as lines of arrested growth [LAGs]) patterns in each species, and this might provide insight to understand demographic constituency infuture studies. In four of the five species under consideration, LAG counts in fore and hind limb bone occurred in a 1:1 ratio, indicating that bone growth was consis...

  13. The thermophysical properties of gases determined using an annular acoustic resonator

    Buxton, A. J.

    1997-01-01

    A novel annular acoustic resonator was constructed for measurements of the speed of sound in gases at pressures below 1 MPa. The resonator was designed to allow measurements of the speed and absorption of sound at low pressure in gases with large bulk viscosities. Measurements in propene, for which the speed of sound is known, served to characterise the geometry of the resonator and provide a test of the acoustic model for the system. A detailed description of the resonator whi...

  14. Heat transfer coefficient for flow boiling in an annular mini gap

    Hożejowska Sylwia; Musiał Tomasz; Piasecka Magdalena

    2016-01-01

    The aim of this paper was to present the concept of mathematical models of heat transfer in flow boiling in an annular mini gap between the metal pipe with enhanced exterior surface and the external glass pipe. The one- and two-dimensional mathematical models were proposed to describe stationary heat transfer in the gap. A set of experimental data governed both the form of energy equations in cylindrical coordinates and the boundary conditions. The models were formulated to minimize the numbe...

  15. Effect of the Radial Pressure Gradient on the Secondary Flow Generated in an Annular Turbine Cascade

    Hesham M. El-Batsh

    2012-01-01

    This paper introduces an investigation of the effect of radial pressure gradient on the secondary flow generated in turbine cascades. Laboratory measurements were performed using an annular sector cascade which allowed the investigation using relatively small number of blades. The flow was measured upstream and downstream of the cascade using a calibrated five-hole pressure probe. The three-dimensional Reynolds Averaged Navier Stokes equations were solved to understand flow physics. Turbulenc...

  16. Stability of forced-convection subcooled boiling in steady-state and transient annular flow

    Gehrke, V.; Bankoff, S.G. [SGB Associates, Evanston, IL (United States)

    1993-06-01

    A semi-analytical model developed by Lee and Bankoff for OFI in round tubes is extended to annular or parallel-plate flows with unequal heat fluxes, and shown to compare well with data by Dougherty, et al. and by Whittle and Forgan. The model is a better fit in the high Peclet number range than the Saha-Zuber model, and is simple to use.

  17. Direct and ozone-mediated forcing of the Southern Annular Mode by greenhouse gases

    Morgenstern, Olaf; ZENG Guang; Dean, Sam M.; Joshi, Manoj; Abraham, N. Luke; Osprey, Annette

    2014-01-01

    We assess the roles of long-lived greenhouse gases and ozone depletion in driving meridional surface pressure gradients in the southern extratropics; these gradients are a defining feature of the Southern Annular Mode. Stratospheric ozone depletion is thought to have caused a strengthening of this mode during summer, with increasing long-lived greenhouse gases playing a secondary role. Using a coupled atmosphere-ocean chemistry-climate model, we show that there is cancelation between the dire...

  18. Applicability of the limiting cases for axial annular flow of power-law fluids

    Filip, Petr; David, Jiří

    Fukuoka: WSEAS Press, 2013 - ( Fujita , H.; Tuba, M.; Sasaki, J.), s. 45-48 ISBN 978-1-61804-177-7. ISSN 1790-5117. [Recent advances in automatic control, modelling and simulation. Morioka City (JP), 23.04.2013-25.04.2013] R&D Projects: GA ČR GA103/09/2066 Institutional support: RVO:67985874 Keywords : annular flow * power-law fluids * poiseuille flow * flow rate * pressure drop Subject RIV: BK - Fluid Dynamics

  19. Influence of the Southern Annular Mode on the sea ice-ocean system

    W. Lefebvre; Goosse, H.; Timmermann, R.; Fichefet, T.

    2004-01-01

    [1] The global sea ice - ocean model ORCA2-LIM, driven by the NCEP/NCAR ( National Centers for Environmental Prediction-National Center for Atmospheric Research) reanalysis daily 2-m air temperatures and 10-m winds and by monthly climatologies for precipitation, cloud cover, and relative humidity, is used to investigate the impact of the Southern Annular Mode (SAM) on the Antarctic sea ice-ocean system. Our results suggest that the response of the circumpolar Southern Ocean consists of an ann...

  20. Assessment of TRAC-PF1/MOD1 for countercurrent - annular and stratified flows

    I performed an independent assessment of the Transient Reactor Analysis Code, TRAC-PF1/MOD1, using air-water countercurrent-flow limitation data in circular pipes for annular, annular-mist, and stratified flows. Tubes were configurated in the vertical direction with different lengths and diameters and at angles of 60 deg, 40 deg, 20 deg, and 0 deg from the horizontal, respectively. Also, comparisons were made with data from a horizontal tube with an inclined riser at the end that simulated a pressurized water reactor (PWR) hot leg. TRAC-PF1/MOD1 was modified to study the effects of using two different correlations for interfacial shear in the annular-mist flow regime: the Wallis and Bharathan correlations. TRAC-PF1/MOD1 with the Wallis correlation predicts the point of no water penetration (bypass point) in the annular-mist flow regime except for the 40 deg inclined tube. However, for the region of partial water penetration, use of the Bharathan correlation in TRAC-PF1/MOD1 gives better agreement with data. Additional form losses were required at both ends of the tube to predict the flow rate of falling water accurately for the vertical tube. In the stratified-flow regime, TRAC-PF1/MOD1 underpredicts the air velocity which gives the bypass point but gives good agreement for the region of partial penetration. For the case of a simulated PWR hot leg, the code yields similar results to those obtained for the stratified-flow regime. (author)

  1. Investigations of mass transfer in annular gas-liquid flow in a microreactor

    Sobieszuk Paweł

    2016-03-01

    Full Text Available The paper presents an investigation of mass transfer in gas-liquid annular flow in a microreactor. The microreactor had a meandered shape with a square cross-section of the channel (292×292 μm, hydraulic diameter 292 μm and 250 mm in length. The rate of CO2 absorption from the CO2/N2 mixture in NaOH (0.1 M, 0.2 M, 0.7 M, 1.0 M and 1.5 M water solutions was measured. Two velocities of gas flow and two velocities of liquid flow were used. In two cases a fully developed annular flow at the beginning of the channel was observed, whilst in two cases annular flow was formed only in about 2/3 of the microchannel length. Based on the measurements of CO2 absorption rate, the values of volumetric liquid - side mass transfer coefficients with the chemical reaction were determined. Then physical values of coefficients were found. Obtained results were discussed and their values were compared with the values predicted by literature correlations.

  2. A shaped annular beam tri-heterodyne confocal microscope with good anti-environmental interference capability

    Zhao Wei-Qian; Feng Zheng-De; Qiu Li-Rong

    2007-01-01

    A shaped annular beam tri-heterodyne confocal microscope has been proposed to improve the anti-environmental interference capability and the resolution of a confocal microscope. It simultaneously detects far-, on-, and near-focus signals with given phase differences by dividing the measured light path of the confocal microscope into three sub-paths (signals). Pair-wise real-time heterodyne subtraction of the three signals is used to improve the anti-environmental interference capability, axial resolution, and linearity; and a shaped annular beam super-resolution technique is used to improve lateral resolution. Theoretical analyses and preliminary experiments indicate that an axial resolution of about 1 nm can be achieved with a shaped annular beam tri-heterodyne confocal microscope and its lateral resolution can be better than 0.2μm for λ= 632.8 nm, the numerical aperture of the lens of the microscope is NA = 0.85, and the normalized radius ε= 0.5.

  3. Axicon-based annular laser trap for studies on sperm activity

    Shao, Bing; Vinson, Jaclyn M.; Botvinick, Elliot L.; Esener, Sadik C.; Berns, Michael W.

    2005-08-01

    As a powerful and noninvasive tool, laser trapping has been widely applied for the confinement and physiological study of biological cells and organelles. Researchers have used the single spot laser trap to hold individual sperm and quantitatively evaluated the motile force generated by a sperm. Early studies revealed the relationship between sperm motility and swimming behavior and helped the investigations in medical aspects of sperm activity. As sperm chemotaxis draws more and more interest in fertilization research, the studies on sperm-egg communication may help to explain male or female infertility and provide exciting new approaches to contraception. However, single spot laser trapping can only be used to investigate an individual target, which has limits in efficiency and throughput. To study the chemotactic response of sperm to eggs and to characterize sperm motility, an annular laser trap with a diameter of several hundred microns is designed, simulated with ray tracing tool, and implemented. An axicon transforms the wavefront such that the laser beam is incident on the microscope objective from all directions while filling the back aperture completely for high efficiency trapping. A trapping experiment with microspheres is carried out to evaluate the system performance. The power requirement for annular sperm trapping is determined experimentally and compared with theoretical calculations. With a chemo-attractant located in the center and sperm approaching from all directions, the annular laser trapping could serve as a speed bump for sperm so that motility characterization and fertility sorting can be performed efficiently.

  4. Flow visualization study of inverted annular flow of post dryout heat transfer region

    The inverted annular flow is important in the area of LWR accident analysis in terms of the maximum cladding temperature and effectiveness of the emergency core cooling. However, the inverted annular flow thermal-hydraulics is not well understood due to its special heat transfer condition of film boiling. In view of this, the inverted flow is studied in detail experimentally. A new experimental apparatus has been constructed in which film boiling heat transfer can be established in a transparent test section. Data on liquid core stability, core break-up mechanism, and dispersed-core liquid slug and droplet sizes are obtained using F 113 as a test fluid. Both high speed movies and flash photographs are used. The inlet section consists of specially designed coaxial nozzles for gas and liquid such that the ideal inverted annular flow can be generated. The roll wave formation, droplet entrainment from wave crests, agitated sections with large interfacial areas, classical sinuous jet instability, jet break-up into multiple liquid ligaments and drop formation from liquid ligaments have been observed in detail. (orig.)

  5. Free vibration analysis of smart annular FGM plates integrated with piezoelectric layers

    In this paper, a nonlinear free vibration analysis of a thin annular functionally graded (FG) plate integrated with two uniformly distributed actuator layers made of piezoelectric (PZT4) material on the top and bottom surfaces of the annular FG plate is presented based on Kirchhoff plate theory. The material properties of the functionally graded core plate are assumed to be graded in the thickness direction according to the power law distribution in terms of the volume fractions of the constituents and the distribution of the electric potential field along the thickness direction of piezoelectric layers is simulated by a sinusoidal function such that the Maxwell static electricity equation is satisfied. The differential equations of motion are solved analytically for various boundary conditions of the plate. The analytical solutions are derived and validated by comparing the obtained resonant frequencies of the piezoelectric coupled FG annular plate with those of an isotropic core plate. In a numerical study the emphasis is placed on investigating the effect of varying the gradient index of the FG plate on the free vibration characteristics of the structure. Also the good agreement between the results of this paper and those of the finite element (FE) analyses validated the presented approach

  6. Effects study on the thermal stresses in a LEU metal foil annular target

    The effects of fission gas pressure, uranium swelling and thermal contact conductance on the thermal–mechanical behavior of an annular target containing a low-enriched uranium foil (LEU) encapsulated in a nickel foil have been presented in this paper. The draw-plug assembly method is simulated to obtain the residual stresses, which are applied to the irradiation model as initial inputs, and the integrated assembly-irradiation process is simulated as an axisymmetric problem using the commercial finite element code Abaqus FEA. Parametric studies were performed on the LEU heat generation rate and the results indicate satisfactory irradiation performance of the annular target. The temperature and stress margins have been provided along with a discussion of the results. - Highlights: • Analyzed the thermal stresses in a low-enriched uranium foil based annular target. • Included fission gas, uranium swelling, and thermal contact conductance effects. • Worst case scenarios for temperature and stresses were found to be different. • Sensitivity studies on the foil heat generation rates were performed. • Temperature and stress were found to be within acceptable limits

  7. Annular multiphase flow behavior during deep water drilling and the effect of hydrate phase transition

    Wang Zhiyuan; Sun Baojiang

    2009-01-01

    It is very important to understand the annular multiphase flow behavior and the effect of hydrate phase transition during deep water drilling. The basic hydrodynamic models, including mass, momentum, and energy conservation equations, were established for annular flow with gas hydrate phase transition during gas kick. The behavior of annular multiphase flow with hydrate phase transition was investigated by analyzing the hydrate-forming region, the gas fraction in the fluid flowing in the annulus, pit gain, bottom hole pressure, and shut-in casing pressure. The simulation shows that it is possible to move the hydrate-forming region away from sea floor by increasing the circulation rate. The decrease in gas volume fraction in the annulus due to hydrate formation reduces pit gain, which can delay the detection of well kick and increase the risk of hydrate plugging in lines. Caution is needed when a well is monitored for gas kick at a relatively low gas production rate, because the possibility of hydrate presence is much greater than that at a relatively high production rate. The shut-in casing pressure cannot reflect the gas kick due to hydrate formation, which increases with time.

  8. Progress in analytical methods to predict and control azimuthal combustion instability modes in annular chambers

    Bauerheim, M.; Nicoud, F.; Poinsot, T.

    2016-02-01

    Longitudinal low-frequency thermoacoustic unstable modes in combustion chambers have been intensively studied experimentally, numerically, and theoretically, leading to significant progress in both understanding and controlling these acoustic modes. However, modern annular gas turbines may also exhibit azimuthal modes, which are much less studied and feature specific mode structures and dynamic behaviors, leading to more complex situations. Moreover, dealing with 10-20 burners mounted in the same chamber limits the use of high fidelity simulations or annular experiments to investigate these modes because of their complexity and costs. Consequently, for such circumferential acoustic modes, theoretical tools have been developed to uncover underlying phenomena controlling their stability, nature, and dynamics. This review presents recent progress in this field. First, Galerkin and network models are described with their pros and cons in both the temporal and frequency framework. Then, key features of such acoustic modes are unveiled, focusing on their specificities such as symmetry breaking, non-linear modal coupling, forcing by turbulence. Finally, recent works on uncertainty quantifications, guided by theoretical studies and applied to annular combustors, are presented. The objective is to provide a global view of theoretical research on azimuthal modes to highlight their complexities and potential.

  9. Seismic response of liquid sloshing in the annular region formed by coaxial circular cylinders

    As to the sloshing of liquid in the storage tanks having free surface in earthquakes, there have been many reports, but these are limited to those of relatively simple structures and forms. As the cxamples of complex structures, there are chemical reaction towers, stress removal tanks for BWRs, reactor vessels for FBRs and so on. In these structures, annular parts are formed inside, and as to the sloshing in such annular parts, there is only the report of Aslam et al. In this study, examination was carried out on the earthquake response of the liquid sloshing in the annular part of a double walled cylinder which appears relatively frequently among complex structures. In the analysis, attenuation was taken into account in addition to the method of Aslam et al., the walls of an axisymmetric vessel were regarded as rigid, and infinitesinal displacement and incompressible invicid fluid were assumed. The velocity potential satisfying boundary conditions was determined assuming irrotational flow, and the solution of transient response when n sine waves resonating with the sloshing of first order mode were inputted was derived. Two kinds of double walled vessels were vibrated with a large vibrating table, and the response was measured. (Kako, I.)

  10. Asymmetric Vibration of Polar Orthotropic Annular Circular Plates of Quadratically Varying Thickness with Same Boundary Conditions

    N. Bhardwaj

    2008-01-01

    Full Text Available In the present paper, asymmetric vibration of polar orthotropic annular circular plates of quadratically varying thickness resting on Winkler elastic foundation is studied by using boundary characteristic orthonormal polynomials in Rayleigh-Ritz method. Convergence of the results is tested and comparison is made with results already available in the existing literature. Numerical results for the first ten frequencies for various values of parameters describing width of annular plate, thickness profile, material orthotropy and foundation constant for all three possible combinations of clamped, simply supported and free edge conditions are shown and discussed. It is found that (a higher elastic property in circumferential direction leads to higher stiffness against lateral vibration; (b Lateral vibration characteristics of F-Fplates is more sensitive towards parametric changes in material orthotropy and foundation stiffness than C-C and S-Splates; (c Effect of quadratical thickness variation on fundamental frequency is more significant in cases of C-C and S-S plates than that of F-Fplates. Thickness profile which is convex relative to plate center-line tends to result in higher stiffness of annular plates against lateral vibration than the one which is concave and (d Fundamental mode of vibration of C-C and S-Splates is axisymmetrical while that of F-Fplates is asymmetrical.

  11. CFD Study of an Annular-Ducted Fan Lift System for VTOL Aircraft

    Yun Jiang

    2015-09-01

    Full Text Available The present study aimed at assessing a novel annular-ducted fan lift system for VTOL aircraft through computational fluid dynamics (CFD simulations. The power and lift efficiency of the lift fan system in hover mode, the lift and drag in transition mode, the drag and flight speed of the aircraft in cruise mode and the pneumatic coupling of the tip turbine and jet exhaust were studied. The results show that the annular-ducted fan lift system can have higher lift efficiency compared to the rotor of the Apache helicopter; the smooth transition from vertical takeoff to cruise flight needs some extra forward thrust to overcome a low peak of drag; the aircraft with the lift fan system enclosed during cruise flight theoretically may fly faster than helicopters and tiltrotors based on aerodynamic drag prediction, due to the elimination of rotor drag and compressibility effects on the rotor blade tips; and pneumatic coupling of the tip turbine and jet exhaust of a 300 m/s velocity can provide enough moment to spin the lift fan. The CFD results provide insight for future experimental study of the annular-ducted lift fan VTOL aircraft.

  12. Turbulence modification in vertical upward annular flow passing through a throat section

    Experimental studies on the turbulence modification in annular two-phase flow passing through a throat section were carried out. The turbulence modification in multi-phase flow due to the interactions between two-phases is one of the most interesting scientific issues and has attracted research attention. In this study, the gas-phase turbulence modification in annular flow due to the gas-liquid phase interaction is experimentally investigated. The annular flow passing through a throat section is under the transient state due to the changing cross sectional area of the channel and resultantly the superficial velocities of both phases are changed compared with a fully developed flow in a straight pipe. The measurements for the gas-phase turbulence were precisely performed by using a constant temperature hot-wire anemometer, and made clear the turbulence structure such as velocity profiles, fluctuation velocity profiles. The behavior of the interfacial waves in the liquid film flow such as the ripple or disturbance waves was also observed. The measurements for the liquid film thickness by the electrode needle method were also performed to measure the base film thickness, mean film thickness, maximum film thickness and wave height of the ripple or the disturbance waves

  13. Study of optical reflectance properties in 1D annular photonic crystal containing double negative (DNG) metamaterials

    Srivastava, Sanjeev K.; Aghajamali, Alireza

    2016-05-01

    Theoretical investigation of photonic band gaps or reflection bands in one-dimensional annular photonic crystal (APC) containing double negative (DNG) metamaterials and air has been presented. The proposed structure consists of the alternate layers of dispersive DNG material and air immersed in free space. In order to study photonic band gaps we obtain the reflectance spectrum of the annular PC by employing the transfer matrix method (TMM) in the cylindrical waves for both TE and TM polarizations. In this work we study the effect of azimuthal mode number (m) and starting radius (ρ0) on the three band gaps viz. zero averaged refractive index (zero-nbar) gap, zero permittivity (zero- ε) and zero permeability (zero- μ) gaps. It is found that for m ≥ 1 , zero- μ gap appears in TE mode and zero- ε gap appears in TM mode. The width of both zero- μ and zero- ε gap increases by increasing m values, but the enhancement of zero- μ gap is more appreciable. Also, the effect of ρ0 on the three band gaps (reflection bands) of annular PC structure at the given m-number has been studied, for both TE and TM polarizations. The result shows that in both polarizations zero- ε and zero- μ gaps decreases when ρ0 increases, whereas zero-nbar gap remains invariant.

  14. Shut-down margin study for the next generation VVER-1000 reactor including 13 x 13 hexagonal annular assemblies

    Highlights: → Shut-Down Margin (SDM) for the next generation annular fuel core of typical VVER-1000, 13 x 13 assemblies are calculated. → The MCNP-5 code is run for many cases with different core burn up at various core temperatures. → There is a substantial drop in SDM in the case of annular fuel for the same power level. → SDM for our proposed VVER-1000 annular pins is calculated for specific average fuel burn up values at the BOC, MOC, and EOC. - Abstract: Shut-Down Margin (SDM) for the next generation annular fuel core of typical VVER-1000, 13 x 13 assemblies are calculated as the main aim of the present research. We have applied the MCNP-5 code for many cases with different values of core burn up at various core temperatures, and therefore their corresponding coolant densities and boric acid concentrations. There is a substantial drop in SDM in the case of annular fuel for the same power level. Specifically, SDM for our proposed VVER-1000 annular pins is calculated when the average fuel burn up values at the BOC, MOC, and EOC are 0.531, 11.5, and 43 MW-days/kg-U, respectively.

  15. Laser Doppler velocimeter measurements and laser sheet imaging in an annular combustor model. M.S. Thesis, Final Report

    Dwenger, Richard Dale

    1995-01-01

    An experimental study was conducted in annular combustor model to provide a better understanding of the flowfield. Combustor model configurations consisting of primary jets only, annular jets only, and a combination of annular and primary jets were investigated. The purpose of this research was to provide a better understanding of combustor flows and to provide a data base for comparison with computational models. The first part of this research used a laser Doppler velocimeter to measure mean velocity and statistically calculate root-mean-square velocity in two coordinate directions. From this data, one Reynolds shear stress component and a two-dimensional turbulent kinetic energy term was determined. Major features of the flowfield included recirculating flow, primary and annular jet interaction, and high turbulence. The most pronounced result from this data was the effect the primary jets had on the flowfield. The primary jets were seen to reduce flow asymmetries, create larger recirculation zones, and higher turbulence levels. The second part of this research used a technique called marker nephelometry to provide mean concentration values in the combustor. Results showed the flow to be very turbulent and unsteady. All configurations investigated were highly sensitive to alignment of the primary and annular jets in the model and inlet conditions. Any imbalance between primary jets or misalignment of the annular jets caused severe flow asymmetries.

  16. Ordered arrays of multiferroic epitaxial nanostructures

    Ionela Vrejoiu

    2011-10-01

    Full Text Available Epitaxial heterostructures combining ferroelectric (FE and ferromagnetic (FiM oxides are a possible route to explore coupling mechanisms between the two independent order parameters, polarization and magnetization of the component phases. We report on the fabrication and properties of arrays of hybrid epitaxial nanostructures of FiM NiFe2O4 (NFO and FE PbZr0.52Ti0.48O3 or PbZr0.2Ti0.8O3, with large range order and lateral dimensions from 200 nm to 1 micron. Methods : The structures were fabricated by pulsed-laser deposition. High resolution transmission electron microscopy and high angle annular dark-field scanning transmission electron microscopy were employed to investigate the microstructure and the epitaxial growth of the structures. Room temperature ferroelectric and ferrimagnetic domains of the heterostructures were imaged by piezoresponse force microscopy (PFM and magnetic force microscopy (MFM, respectively. Results : PFM and MFM investigations proved that the hybrid epitaxial nanostructures show ferroelectric and magnetic order at room temperature. Dielectric effects occurring after repeated switching of the polarization in large planar capacitors, comprising ferrimagnetic NiFe2O4 dots embedded in ferroelectric PbZr0.52Ti0.48O3 matrix, were studied. Conclusion : These hybrid multiferroic structures with clean and well defined epitaxial interfaces hold promise for reliable investigations of magnetoelectric coupling between the ferrimagnetic / magnetostrictive and ferroelectric / piezoelectric phases.

  17. Carbon nanotube nanoelectrode arrays

    Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  18. ISS Solar Array Management

    Williams, James P.; Martin, Keith D.; Thomas, Justin R.; Caro, Samuel

    2010-01-01

    The International Space Station (ISS) Solar Array Management (SAM) software toolset provides the capabilities necessary to operate a spacecraft with complex solar array constraints. It monitors spacecraft telemetry and provides interpretations of solar array constraint data in an intuitive manner. The toolset provides extensive situational awareness to ensure mission success by analyzing power generation needs, array motion constraints, and structural loading situations. The software suite consists of several components including samCS (constraint set selector), samShadyTimers (array shadowing timers), samWin (visualization GUI), samLock (array motion constraint computation), and samJet (attitude control system configuration selector). It provides high availability and uptime for extended and continuous mission support. It is able to support two-degrees-of-freedom (DOF) array positioning and supports up to ten simultaneous constraints with intuitive 1D and 2D decision support visualizations of constraint data. Display synchronization is enabled across a networked control center and multiple methods for constraint data interpolation are supported. Use of this software toolset increases flight safety, reduces mission support effort, optimizes solar array operation for achieving mission goals, and has run for weeks at a time without issues. The SAM toolset is currently used in ISS real-time mission operations.

  19. Array for detecting microbes

    Andersen, Gary L.; DeSantis, Todd D.

    2014-07-08

    The present embodiments relate to an array system for detecting and identifying biomolecules and organisms. More specifically, the present embodiments relate to an array system comprising a microarray configured to simultaneously detect a plurality of organisms in a sample at a high confidence level.

  20. Microwave generation enhancement of X-band CRBWO by use of coaxial dual annular cathodes

    Yan Teng

    2013-07-01

    Full Text Available This paper presents an approach that greatly enhances both the output power and the conversion efficiency of the coaxial relativistic backward wave oscillator (CRBWO by using coaxial dual annular cathodes, which increases the diode current rather than the diode voltage. The reasons for the maladjustment of CRBWO under a high diode voltage are analyzed theoretically. It is found that by optimization of the diode structure, the shielding effect of the space charge of the outer beams on the inner cathode can be alleviated effectively and dual annular beams with the same kinetic energy can be explosively emitted in parallel. The coaxial reflector can enhance the conversion efficiency by improving the premodulation of the beams. The electron dump on the inner conductor ensures that the electron beams continue to provide kinetic energy to the microwave output until they vanish. Particle-in-cell (PIC simulation results show that generation can be enhanced up to an output power level of 3.63 GW and conversion efficiency of 45% at 8.97 GHz under a diode voltage of 659 kV and current of 12.27 kA. The conversion efficiency remains above 40% and the output frequency variation is less than 100 MHz over a voltage range of more than 150 kV. Also, the application of the coaxial dual annular cathodes means that the diode impedance is matched to that of the transmission line of the accelerators. This impedance matching can effectively eliminate power reflection at the diode, and thus increase the energy efficiency of the entire system.

  1. Upper tropospheric water vapour variability at high latitudes - Part 1: Influence of the annular modes

    Sioris, Christopher E.; Zou, Jason; Plummer, David A.; Boone, Chris D.; McElroy, C. Thomas; Sheese, Patrick E.; Moeini, Omid; Bernath, Peter F.

    2016-03-01

    Seasonal and monthly zonal medians of water vapour in the upper troposphere and lower stratosphere (UTLS) are calculated for both Atmospheric Chemistry Experiment (ACE) instruments for the northern and southern high-latitude regions (60-90° N and 60-90° S). Chosen for the purpose of observing high-latitude processes, the ACE orbit provides sampling of both regions in 8 of 12 months of the year, with coverage in all seasons. The ACE water vapour sensors, namely MAESTRO (Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) and the Fourier Transform Spectrometer (ACE-FTS) are currently the only satellite instruments that can probe from the lower stratosphere down to the mid-troposphere to study the vertical profile of the response of UTLS water vapour to the annular modes. The Arctic oscillation (AO), also known as the northern annular mode (NAM), explains 64 % (r = -0.80) of the monthly variability in water vapour at northern high latitudes observed by ACE-MAESTRO between 5 and 7 km using only winter months (January to March, 2004-2013). Using a seasonal time step and all seasons, 45 % of the variability is explained by the AO at 6.5 ± 0.5 km, similar to the 46 % value obtained for southern high latitudes at 7.5 ± 0.5 km explained by the Antarctic oscillation or southern annular mode (SAM). A large negative AO event in March 2013 produced the largest relative water vapour anomaly at 5.5 km (+70 %) over the ACE record. A similarly large event in the 2010 boreal winter, which was the largest negative AO event in the record (1950-2015), led to > 50 % increases in water vapour observed by MAESTRO and ACE-FTS at 7.5 km.

  2. Interpreting the nature of Northern and Southern Annular Mode variability in CMIP5 Models

    Schenzinger, V.; Osprey, S. M.

    2015-11-01

    Characteristic timescales for the Northern Annular Mode (NAM) and Southern Annular Mode (SAM) variability are diagnosed in historical simulations submitted to the Coupled Model Intercomparison Project Phase 5 (CMIP5) and are compared to the European Centre for Medium-Range Weather Forecasts ERA-Interim data. These timescales are calculated from geopotential height anomaly spectra using a recently developed method, where spectra are divided into low-frequency (Lorentzian) and high-frequency (exponential) parts to account for stochastic and chaotic behaviors, respectively. As found for reanalysis data, model spectra at high frequencies are consistent with low-order chaotic behavior, in contrast to an AR1 process at low frequencies. This places the characterization of the annular mode timescales in a more dynamical rather than purely stochastic context. The characteristic high-frequency timescales for the NAM and SAM derived from the model spectra at high frequencies are ˜5 days, independent of season, which is consistent with the timescales of ERA-Interim. In the low-frequency domain, however, models are slightly biased toward too long timescales, but within the error bars, a finding which is consistent with previous studies of CMIP3 models. For the SAM, low-frequency timescales in November, December, January, and February are overestimated in the models compared to ERA-Interim. In some models, the overestimation in the SAM austral summer timescale is partly due to interannual variability, which can inflate these timescales by up to ˜40% in the models but only accounts for about 5% in the ERA-Interim reanalysis.

  3. Lattice cell and full core physics of internally cooled annular fuel in heavy water moderated reactors

    A program is underway at Atomic Energy of Canada Limited (AECL) to develop a new fuel bundle concept to enable greater burnups for PT-HWR (pressure tube heavy water reactor) cores. One option that AECL is investigating is an internally cooled annular fuel (ICAF) element concept. ICAF contains annular cylindrical pellets with cladding on the inner and outer diameters. Coolant flows along the outside of the element and through the centre. With such a concept, the maximum fuel temperature as a function of linear element rating is significantly reduced compared to conventional, solid-rod type fuel. The preliminary ICAF bundle concept considered in this study contains 24 half-metre long internally cooled annular fuel elements and one non-fuelled centre pin. The introduction of the non-fuelled centre pin reduces the coolant void reactivity (CVR), which is the increase in reactivity that occurs on voiding the coolant in accident scenarios. Lattice cell and full core physics calculations of the preliminary ICAF fuel bundle concept have been performed for medium burnups of approximately 18 GWd/tU using WIMS-AECL and reactor fuel simulation program (RFSP). The results will be used to assist in concept configuration optimization. The effects of radial and axial core power distributions, linear element power ratings, refuelling rates and operational power ramps have been analyzed. The results suggest that burnups of greater than 18 GWd/tU can be achieved in current reactor designs. At approximately 18 GWd/tU, expected maximum linear element ratings in a PT-HWR with online-refuelling are approximately 90 kW/m. These conditions would be prohibitive for solid-rod fuel, but may be possible in ICAF fuel given the reduced maximum fuel temperature as a function of linear element rating. (authors)

  4. Auto-thermal combustion of lean gaseous fuels utilizing a recuperative annular double-layer catalytic converter

    Budzianowski, W.M. [Wroclaw Univ. of Technology, Wroclaw (Poland). Div. of Chemical and Biochemical Processes, Faculty of Chemistry; Miller, R. [Wroclaw Univ. of Technology, Wroclaw (Poland). Inst. of Power Engineering and Fluid Mechanics, Faculty of Mechanical and Power Engineering

    2008-08-15

    This study investigated the auto-thermal combustion of lean gaseous fuels in a recuperative annular double-layer catalytic converter. An analysis of the stationary and transient performance of annular converters was presented. The feasibility of lean gaseous mixture combustion in auto-thermally operated recuperative annular double-layer catalytic converters was investigated. The aim of the study was to build a process model using mass, energy, and momentum differential balances. The model was used to study the static behaviour of a recuperative annular double layer converter; an annular converter operating in transient conditions; and energy accumulation and recuperation interactions. The effects of fuel temperature, external cooling, and fuel concentration were examined. Results of the study showed that a substantial reduction of the inter- and intra-phase resistances to mass and heat transfer was obtained. It was demonstrated that the use of a low value for the substrate's thermal conductivity accelerated ignition and retarded extinction. The recuperative converter was able to transfer short-time inlet disturbances of various parameters due to the energy accumulation and temporal reversed recuperation which counteracted destructive overheating of the catalysts. The stability analyses showed stable and unstable branches of solutions for the different parameters of the recuperative converter. 21 refs., 1 tab., 23 figs.

  5. The clinical application of "jetting suture" technique in annular repair under microendoscopic discectomy: A prospective single-cohort observational study.

    Qi, Lei; Li, Mu; Si, Haipeng; Wang, Liang; Jiang, Yunpeng; Zhang, Shuai; Li, Le

    2016-08-01

    To introduce a new designed suture technique in annular repair under the microendoscopic discectomy (MED) surgery and to evaluate the clinical application of the technique in annular repair under MED with at least 2-year follow-up period.A new method of annular repair was designed and named "jetting suture" technique. Thirty consecutive patients with lumbar disc herniation were enrolled in the prospective single-cohort observational study. Patients were followed up at intervals of preoperative, postoperative 1 week, 3 months, 6 months, 1 year, and last follow-up. The clinical outcomes were evaluated by using Japanese Orthopaedic Association (JOA) score, Oswestry Disability Index, and modified Mcnab criteria.The procedure was successfully performed in all cases. No case required conversion to an open procedure. The mean age of patients was 36.6 years. Average blood loss was 45.8 ± 10.2 mL. The preoperative symptoms were alleviated significantly after surgery. All the standardized measures improved significantly at the last follow-up, including JOA score (10.1 to 26.6; P disc herniation was reported.The designed "jetting suture" technique in annular repair under MED can be performed safely and effectively. It could be a viable alternative to annular repair under lumbar discectomy. PMID:27495101

  6. Micromachined electrode array

    Okandan, Murat (Edgewood, NM); Wessendorf, Kurt O. (Albuquerque, NM)

    2007-12-11

    An electrode array is disclosed which has applications for neural stimulation and sensing. The electrode array, in certain embodiments, can include a plurality of electrodes each of which is flexibly attached to a common substrate using a plurality of springs to allow the electrodes to move independently. In other embodiments of the electrode array, the electrodes can be fixed to the substrate. The electrode array can be formed from a combination of bulk and surface micromachining, and can include electrode tips having an electroplated metal (e.g. platinum, iridium, gold or titanium) or a metal oxide (e.g. iridium oxide) for biocompatibility. The electrode array can be used to form a part of a neural prosthesis, and is particularly well adapted for use in an implantable retinal prosthesis.

  7. Diode Laser Arrays

    Botez, Dan; Scifres, Don R.

    1994-08-01

    This book provides a comprehensive overview of the fundamental principles and applications of semiconductor diode laser arrays. All of the major types of arrays are discussed in detail, including coherent, incoherent, edge- and surface-emitting, horizontal- and vertical-cavity, individually addressed, lattice- matched and strained-layer systems. The initial chapters cover such topics as lasers, amplifiers, external-cavity control, theoretical modeling, and operational dynamics. Spatially incoherent arrays are then described in detail, and the uses of vertical-cavity surface emitter and edge-emitting arrays in parallel optical-signal processing and multi-channel optical recording are discussed. Researchers and graduate students in solid state physics and electrical engineering studying the properties and applications of such arrays will find this book invaluable.

  8. Microfabricated ion trap array

    Blain, Matthew G.; Fleming, James G.

    2006-12-26

    A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.

  9. The Dual Cooled Annular Test Fuel Analysis Report for HANARO Irradiation Test

    Yang, Yong Sik; In, Wang Ki; Chun, Tae Hyun; Kim, Dae Ho; Bang, Je Geon; Song, Kun Woo; Taek, Chae Hee; Seo, Chul Gyo

    2008-09-15

    Thermal safety analysis of double cooled annular fuel was performed for irradiation test of HANARO. Test fuel surface temperature and maximum fuel temperature analysis were calculated. The fuel surface temperature reached about 105 .deg. C, but still very lower than ONB limit temperature of 125 .deg. C. The maximum fuel temperature reached up to 1014 .deg. C but there was great margin with compare to UO{sub 2} melting temperature({approx}2800 .deg. C). The test fuel safety analysis results which examined by ONB and DNBR analysis shows that there is great thermal margins when compared HANARO ONB criteria.

  10. Effect of January 15, 2010 annular solar eclipse on meteorological parameters over Goa, India

    Muraleedharan, P. M.; Nisha, P. G.; Mohankumar, K.

    2011-08-01

    Atmospheric perturbations due to the annular solar eclipse were monitored to understand its influence on the meteorological parameters from surface to the lower stratosphere. A strong inversion at 13 km and an abnormal warming in the upper troposphere were noticed on the eclipse day. A decrease in tropopause height associated with increase in temperature caused anomalous warming. Considerable attenuation of incoming solar radiation resulted in abrupt increase of air temperature during the next 24 h followed by sharp decrease in relative humidity. The time lag is attributed to the distance from the totality and the response time between tropopause and surface layer.

  11. Liquid Encapsulation in Parylene Microstructures Using Integrated Annular-Plate Stiction Valves

    Christian A. Gutierrez

    2011-09-01

    Full Text Available We report the design, fabrication and characterization of micromachined Parylene structures for self-sealing liquid encapsulation applications. Automatic sealing is enabled through the use of an integrated annular-plate stiction valve which greatly reduces device footprint over in-plane configurations. We achieve automatic wafer-level liquid entrapment without using adhesives or processing at elevated pressures or temperatures. The ability to track changes to the internal liquid volume through the use of electrochemical impedance measurements is also presented.

  12. Modeling Mist to Annular Flow Development in the Discharge of a Compressor

    Wujek, Scott S.; Hrnjak, Predrag S.

    2012-01-01

    A model has been created to describe the development of flow leaving a compressor as it transitions from mist to annular flow. Flow parameters such as the drop size, drop speed, drop concentration, film thickness, and film velocity change as a function of length. Parameters such as refrigerant flow rates, oil in circulation ratios, and fluid properties are accounted for in these models. While some flow development work is found in the open literature for air-water or steam-water flows, little...

  13. Fluid-elastic instability in a confined annular flow: an experimental and analytical approach

    Self excitation of slender structures under axial flow have been reported in a large variety of local flow configurations. This paper reports the result of a research program, both experimental and analytical, aimed at the result of the basic phenomena leading to such instabilities. A cylindrical body with a diffuser is put in a confined annular flow of water. A case of flutter is observed and analysed with a classical potential flow method and with a friction based model. Closed-form solutions are proposed and the origin of the flutter instability is discussed. (authors). 25 refs., 6 figs., 5 tabs

  14. Self-organized Hydrodynamics in an Annular Domain: Modal Analysis and Nonlinear Effects

    Degond, Pierre; Yu, Hui

    2014-01-01

    The Self-Organized Hydrodynamics model of collective behavior is studied on an annular domain. A modal analysis of the linearized model around a perfectly polarized steady-state is conducted. It shows that the model has only pure imaginary modes in countable number and is hence stable. Numerical computations of the low-order modes are provided. The fully non-linear model is numerically solved and nonlinear mode-coupling is then analyzed. Finally, the efficiency of the modal decomposition to a...

  15. Fuel distribution measurements in a model low NOx double annular combustor using laser induced fluorescence

    Lockett, R. D.; Greenhalgh, D.A.

    2010-01-01

    Planar laser induced fluorescence (PLIF) was employed in a three sector, low NOx double annular combustor in order to characterise the combusting fuel spray. Naphthalene was employed as a fluorescent agent in odourless kerosene in order to determine the behavior of the light fractions in the fuel vapour, and the light to medium fractions in the fuel spray, while 2,5 di-phenyl oxizol (ppo) was employed to determine the behavior of the heavy fractions in the fuel spray. Counter-swirl air blast ...

  16. A Preliminary Calculation of Annular Core Design for a High-flux Advanced Research Reactor

    Many of research reactors in operation over the world become old and the number of research reactors is expected to be reduced around 1/3 within a next decade. So it may be necessary to prepare in advance for the future demands of research reactors with a high performance. Therefore, based on the HANARO experiences through design to operation, a concept development of an improved research reactor is under doing. In this paper, 10 MW conceptual annular core is proposed and its basic characteristics were analyzed as a preliminary step

  17. Experimental study on large diameter drilling in hard rock annular coring

    Yinzhu WU; Guochun YANG; Wenchen WANG

    2008-01-01

    Based on analyzing method of large diameter hard rock drilling at home and abroad, the authors proposed a set of drilling of large diameter hard rock annular coring in low energy consumption, low cost and high efficiency. The prototype of drilling tools was designed and was made. The experimental result of the prototype indicates that this plan and technology are feasible and reach the anticipated object of design. A set of drilling tools has been offered for the constructs of large diameter hard rock coring.

  18. Optimization of geometry of annular seat valves suitable for Digital Displacement fluid power pumps/motors

    Rømer, Daniel; Johansen, Per; Pedersen, Henrik C.;

    2013-01-01

    Digital Displacement Fluid Power is an upcoming technology setting new standards for the achievable efficiency of fluid power pumps and motors. The core element of the Digital Displacement technology is high performance electronically controlled seat valves, which must exhibit very low flow...... work an annular seat valve suitable for use in Digital Displacement units is considered, and the ring geometry is optimized using finite element analysis including non-linear material behaviour, contact elements and fluid pressure penetrating load, closely reflecting the actual load of the seat valve...

  19. Bose–Einstein condensates in concentrically coupled annular traps with spin–orbit coupling and rotation

    We investigate Bose–Einstein condensates in concentrically coupled annular traps with spin–orbit coupling and rotation. The ground state wave functions are computed by minimizing the Gross–Pitaevskii energy functional, and the combined effects of system's parameters, especially the spin–orbit coupling and rotating, are investigated. The results show that for a finite fixed spin–orbit coupling, with increasing the angular frequency of rotation, the system is always in phase coexistence. Moreover, phase transitions between different ground state phases can be induced not only by spin–orbit coupling, but also rotation, which resembles very much the one where the s-wave interactions are varied.

  20. Silva. EDF two-phase 1D annular model of a CFB boiler furnace

    Montat, D.; Fauquet, Ph. [Electricite de France (EDF), 78 - Chatou (France). Researckh and Development Div.; Lafanechere, L.; Bursi, J.M. [Electricite de France (EDF) (France). Construction Div.

    1997-01-01

    SILVA computer code is used for the modelling of the thermal-hydraulics and of the combustion of a coal-fired CFBC solid loop. In a first step, only the furnace is considered. The model is based on a 1D annular two phases description of the hydrodynamics. The model is based on particle mass balances and pressure drop calculations. A basic combustion model is incorporated into this model. The coal combustion is divided in two phases, the combustion of volatile matter and the heterogeneous combustion. The model has been developed within LEGO software and can be included into the global model of the solid loop developed by EDF. (author) 26 refs.

  1. Stability analysis of thermo-acoustic nonlinear eigenproblems in annular combustors. Part II. Uncertainty quantification

    Magri, Luca; Nicoud, Franck; Juniper, Matthew

    2016-01-01

    Monte Carlo and Active Subspace Identification methods are combined with first- and second-order adjoint sensitivities to perform (forward) uncertainty quantification analysis of the thermo-acoustic stability of two annular combustor configurations. This method is applied to evaluate the risk factor, i.e., the probability for the system to be unstable. It is shown that the adjoint approach reduces the number of nonlinear-eigenproblem calculations by up to $\\sim\\mathcal{O}(M)$, as many as the Monte Carlo samples.

  2. TWO-PHASE ANNULAR FLOW IN A VERTICALLY MOUNTED VENTURI FLOW METER

    Panella, Bruno; Salve, Mario De; Monni, Grazia

    2014-01-01

    In the present research work, the experimental investigation of a vertical upward annular two-phase flow in a Venturi Flow Meter (VFM) is performed. The pressure drops between the inlet and throat section and between inlet and outlet (irreversible pressure drops) are measured and analyzed. The flow meter is characterized by an inlet diameter of 80 mm and a throat diameter of 40 mm (β=0.5), with equal convergent and divergent angles (θ=21°). The instrument has been tested in a test section, ha...

  3. Dimension-optimizing design method for annular-type cooling channel of thrust chamber

    Chen, Jie

    1995-05-01

    The new-generation liquid oxygen/hydrocarbon propellant liquid fuel rocket engine will use a high-pressure combustion chamber arrangement. In this case, cooling the thrust chamber becomes a key technical problem. The article presents a design scheme for the geometric-dimension optimization of annular-type regenerative cooling channels. The aim of the optimization is minimum pressure losses as coolant passes through the cooling channel. As shown in typical computations and experiments, application of this optimizing design method can reduce 50 percent of pressure losses. In other words, the optimization design is advantageous in solving the cooling problem in high-pressure thrust chambers.

  4. Ceramic coating effect on liner metal temperatures of film-cooled annular combustor

    Claus, R. W.; Wear, J. D.; Liebert, C. H.

    1979-01-01

    An experimental and analytical investigation was conducted to determine the effect of a ceramic coating on the average metal temperatures of full annular, film cooled combustion chamber liner. The investigation was conducted at pressures from 0.50 to 0.062. At all test conditions, experimental results indicate that application of a ceramic coating will result in significantly lower wall temperatures. In a simplified heat transfer analysis, agreement between experimental and calculated liner temperatures was achieved. Simulated spalling of a small portion of the ceramic coating resulted in only small increases in liner temperature because of the thermal conduction of heat from the hotter, uncoated liner metal.

  5. Complex tricuspid valve repair for infective endocarditis: leaflet augmentation, chordae and annular reconstruction.

    Tarola, Christopher L; Losenno, Katie L; Chu, Michael W A

    2015-01-01

    Surgical treatment of tricuspid valve (TV) endocarditis remains a challenge because of extensive valve destruction, high risk of reinfection, poor outcomes with valve replacement and complex patient compliance issues. Reconstruction of the TV is certainly favoured over replacement; however, diffuse, multifocal vegetations and complete debridement often leave insufficient building materials necessary for repair. We describe our surgical reconstructive technique that relies upon extensive autologous pericardial patch augmentation of the destroyed TV leaflets to establish leaflet coaptation, supplemented with expanded polytetrafluoroethylene neo-chordae and annular reconstruction. We report our outcomes in a series of patients with grossly infected TVs with more than 50% of valvular destruction. PMID:25989809

  6. Optimized Annular Triode Ion Pump for Experimental Areas in the LHC

    Knaster, J R; Chatelaine, A; Flakowski, D; Girard, C; Ivaldi, S; Laurent, Jean Michel; Monteiro, I; Rossi, A; Veness, R J M

    2003-01-01

    The LHC will be the world next generation accelerator to be operational in 2007 at CERN. The UHV requirements force the installation of ion pumps in the experimental areas of ATLAS. Due to the unacceptable particle background that standards ion pumps may generate, a reduction in the amount of material constitutive of the pump body is required. Hence, an stainless steel 0.8 mm thick body annular triode ion pump has been designed. A pumping speed of ~ 20 l/s at 10-9 mbar is provided by 15 pumping elements. Finite elements analysis and destructive tests have been performed in its design. Final vacuum tests results are shown.

  7. Natural convection and entropy generation in a vertically concentric annular space

    Natural convection in a vertically concentric annular space is of fundamental interest and practical importance. However, available open literature on entropy generation analysis for it is still sparse. In the present work we investigate systematically the effects of Rayleigh number, curvature of annulus and Prandtl number on flow pattern, temperature distribution and entropy generation for natural convection inside a vertically concentric annuli with the aid of the lattice Boltzmann method. The analyzed range is wide, varying from steady laminar convection to unsteady transitional state. Furthermore, we analyse the non-linear branch of irreversible phenomena from a thermodynamics view point. (authors)

  8. Experimental investigation on Heat Transfer Performance of Annular Flow Path Heat Pipe

    Kim, In Guk; Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2015-05-15

    Mochizuki et al. was suggested the passive cooling system to spent nuclear fuel pool. Detail analysis of various heat pipe design cases was studied to determine the heat pipes cooling performance. Wang et al. suggested the concept PRHRS of MSR using sodium heat pipes, and the transient performance of high temperature sodium heat pipe was numerically simulated in the case of MSR accident. The meltdown at the Fukushima Daiichi nuclear power plants alarmed to the dangers of station blackout (SBO) accident. After the SBO accident, passive decay heat removal systems have been investigated to prevent the severe accidents. Mochizuki et al. suggested the heat pipes cooling system using loop heat pipes for decay heat removal cooling and analysis of heat pipe thermal resistance for boiling water reactor (BWR). The decay heat removal systems for pressurized water reactor (PWR) were suggested using natural convection mechanisms and modification of PWR design. Our group suggested the concept of a hybrid heat pipe with control rod as Passive IN-core Cooling System (PINCs) for decay heat removal for advanced nuclear power plant. Hybrid heat pipe is the combination of the heat pipe and control rod. In the present research, the main objective is to investigate the effect of the inner structure to the heat transfer performance of heat pipe containing neutron absorber material, B{sub 4}C. The main objective is to investigate the effect of the inner structure in heat pipe to the heat transfer performance with annular flow path. ABS pellet was used instead of B{sub 4}C pellet as cylindrical structures. The thermal performances of each heat pipes were measured experimentally. Among them, concentric heat pipe showed the best performance compared with others. 1. Annular evaporation section heat pipe and annular flow path heat pipe showed heat transfer degradation. 2. AHP also had annular vapor space and contact cooling surface per unit volume of vapor was increased. Heat transfer

  9. Experimental measurement of neoclassical mobility in an annular malmberg-penning trap

    Espejo; Quraishi; Robertson

    2000-06-12

    An annular Malmberg-Penning trap confining a non-neutral plasma of electrons has been operated with an azimuthal magnetic field to create drifts orthogonal to the magnetic flux surfaces. An applied electric field and collisions with added helium drive transport by electric mobility. The measured confinement times have the expected neoclassical magnetic-field dependence, are approximately 0.8 of the value based upon the neoclassical mobility, and differ from the classical value by more than a factor of 3 at the highest value of azimuthal field. PMID:10990984

  10. Annular bone growth in phalanges of five Neotropical Harlequin Frogs (Anura: Bufonidae: Atelopus

    Erik Lindquist

    2012-12-01

    Full Text Available Skeletochronological studies were conducted on museum specimensrepresenting five species of the highly threatened Neotropical genus Atelopus (Bufonidae. We detected annular bone growth (expressed as lines of arrested growth [LAGs] patterns in each species, and this might provide insight to understand demographic constituency infuture studies. In four of the five species under consideration, LAG counts in fore and hind limb bone occurred in a 1:1 ratio, indicating that bone growth was consistent within each individual. The use of skeletochronology in understanding historic and existing populations of Atelopus might assist in situ and ex situ population managers in making informed strategic conservation plans.

  11. Recent advances of annular centrifugal extractor for hot test of nuclear waste partitioning process

    HeXiang-Ming; YanYu-Shun; 等

    1998-01-01

    Advances are being made in the design of the annular centrifugal extractor fornuclear fuel reprocessing extraction process studies.The extractors have been built and tested.Twelve stages of this extractor and 50 stages are used toimplement the TRPO process for the cleanup ofcommercial and defense nuclear waste liquids,respectively.Following advances are available:(1) simple way of assembly and disassembly between rotor part and housing part of extractor,ease of manipulator operation;(2)automatic sampling from housing of extractor in hot cell;(3) compact multi-stage housing system;(4) easy interstage link;(5) computer data acquisition and monitoring system of speed.

  12. Correspondence between Multifocal Electroretinography and Microperimetry in Benign Concentric Annular Macular Dystroph

    Serra Arf

    2011-10-01

    Full Text Available A 32-year-old woman with benign concentric annular macular dystrophy (BCAMD was examined with multifocal electroretinography (mfERG and microperimetry. The mfERG demonstrated reduced focal responses in the area corresponding to the scotoma shown by microperimetry. The correspondence between mfERG and microperimetry in a patient with BCAMD shows that inner retinal layers, which include photoreceptors, are affected and these changes lead to visual field defects. (Turk J Oph thal mol 2011; 41: 351-3

  13. Numerical investigation of natural convection heat transfer in a three-dimensional annular enclosure

    Yung, Chain-Nan; de Witt, Kenneth J.; Keith, Theo G., Jr.

    Natural convective flow and heat transfer in a three-dimensional annular enclose have been investigated numerically. The analysis uses dimensionless equations of continuity, momentum, and energy in Cartesian coordinates, which are cast into a generalized curvilinear system and solved by using a prediction-correction algorithm. For short horizontal cylinders, the local heat transfer rate is found to decrease sharply near the end walls due to convective velocity suppression; the overall heat transfer rate is less than that predicted by a two-dimensional model. Heat transfer rates are presented as a function of the Rayleigh number and compared with the available experimental data.

  14. Interfacial friction in cocurrent upward annular flow. Final report. [PWR; BWR

    Hossfeld, L.M.; Bharathan, D.; Wallis, G.B.; Richter, H.J.

    1982-03-01

    Cocurrent upward annular flow is investigated, with an emphasis on correlating and predicting pressure drop. Attention is given to the characteristics of the liquid flow in the film, and the interaction of the core with the film. Alternate approaches are discussed for correlating suitably defined interfacial friction factors. Both approaches are dependent on knowledge of the entrainment in order to make predictions. Dimensional analysis is used to define characteristic parameters of the flow and an effort is made to determine, to the extent possible, the influences of these parameters on the interfacial friction factor.

  15. Design and fabrication of the instrumented fuel elements for the Annular Core Research Reactor (ACRR)

    This report describes the design and fabrication techniques for the instrumented fuel elements of the Annular Core Research Reactor (ACRR). The thermocouple assemblies were designed and fabricated at Sandia Laboratories while the instrumented elements were assembled at Los Alamos Scientific Laboratory. In order to satisfy the ACRR's Technical Specifications, the thermocouples are required to measure temperature in excess of 18000C under rapid heating conditions. Because of the potentially high failure rates for thermocouples in such environments, the instrumented fuel elements are designed so that the thermocouples can be replaced easily

  16. Detection and analysis of transition from annular to intermittent flow in vertical tubes

    In vertical co-current gas-liquid flow, the transition from annular to intermittent flow occurs when gas core becomes interrupted by liquid bridges due to the instability of the interfacial capillary waves. An analytical model is formulated to explain the liquid bridging in terms of the growth of finite amplitude interfacial capillary waves. Experimental results show that the longest wave length, which is associated with the transition, is about eight times the wave length of waves moving with the velocity of the liquid film. (author). 12 refs., 8 figs

  17. Generation of Electron Bessel Beams with Nondiffractive Spreading by a Nanofabricated Annular Slit

    Saitoh, Koh; Hirakawa, Kazuma; Nambu, Hiroki; Tanaka, Nobuo; Uchida, Masaya

    2016-04-01

    The shaping of a wavefront of free electrons has been experimentally realized very recently. We report the generation of an electron Bessel beam using a nanofabricated annular slit. We directly observe that electron Bessel beams propagate while maintaining a narrow beam width over a long propagation distance. In addition, we experimentally verify the self-healing property of these electron beams, which can reconstruct their shape after passing an obstacle. The experimental results are compared with simulation results of the propagation including a hexagonal slit. The present technique of electron Bessel beam generation can be used to develop a novel electron-beam-shaping, an atomic manipulation technique, and a new electron microscopy.

  18. Laser anemometer measurements in an annular cascade of core turbine vanes and comparison with theory

    Goldman, L. J.; Seashultz, R. G.

    1982-01-01

    Laser measurements were made in an annular cascade of stator vanes operating at an exit critical velocity ratio of 0.78. Velocity and flow angles in the blade to blade plane were obtained at every 10 percent of axial chord within the passage and at 1/2 axial chord downstream of the vanes for radial positions near the hub, mean and tip. Results are presented in both plot and tabulated form and are compared with calculations from an inviscid, quasi three dimensional computer program. The experimental measurements generally agreed well with these theoretical calculations, an indication of the usefulness of this analytic approach.

  19. Effect of entrained liquid on turbulent mixing rate between subchannels in annular two-phase flows

    Turbulent mixing rates of gas and liquid phases between the subchannels have been measured for various air-water two-phase annular flows in a multiple channel consisting of the two identical circular subchannels. In order to study effect of entrained liquid in the gas core on the turbulent mixing rates, experiments were conducted for two types of liquid injection method, i.e., a small bore nozzle placed in the subchannel center and a porous wall, at a fixed gas injection method. The result showed that the effect of entrained liquid on the turbulent mixing rates of both phases is negligibly small. (author)

  20. Entrained liquid fraction prediction in adiabatic and evaporating annular two-phase flow

    Highlights: ► New method to predict the entrained liquid fraction in annular two-phase flow. ► Circular and non-circular tubes, adiabatic and evaporating conditions covered. ► Large underlying experimental database (2460 points). ► New method explicit and fully stand-alone. ► New method based on just 1 dimensionless group: the core flow Weber number. - Abstract: A new method to predict the entrained liquid fraction in annular two-phase flow is presented. The underlying experimental database contains 2460 data points collected from 38 different literature studies for 8 different gas–liquid or vapor–liquid combinations (R12, R113, water–steam, water–air, genklene–air, ethanol–air, water–helium, silicon–air), tube diameters from 5.0 mm to 95.3 mm, pressures from 0.1 to 20.0 MPa and covers both adiabatic and evaporating flow conditions, circular and non-circular channels and vertical upflow, vertical downflow and horizontal flow conditions. Annular flows are regarded here as a special form of a liquid atomization process, where a high velocity confined spray, composed by the gas phase and entrained liquid droplets, flows in the center of the channel dragging and atomizing the annular liquid film that streams along the channel wall. Correspondingly, the liquid film flow is assumed to be shear-driven and the energy required to drive the liquid atomization is assumed to be provided in the form of kinetic energy of the droplet-laden gas core flow, so that the liquid film–gas core aerodynamic interaction is ultimately assumed to control the liquid disintegration process. As such, the new prediction method is based on the core flow Weber number, representing the ratio of the disrupting aerodynamic force to the surface tension retaining force, a single and physically plausible dimensionless group. The new prediction method is explicit, fully stand-alone and reproduces the available data better than existing empirical correlations, including in

  1. Two-dimensional mathematical model and numerical study of invereted-annular film boiling heat transfer

    A two-dimensional two-fluid analytical model is formulated to deal with the inverted annular film boiling (IAFB) heat transfer. The irregular variation of vapour annulus makes solving partial differential conservation equations difficulty. A relative coordinate system is proposed, through which a curve side mesh is mapped into rectangular one. The governing equations could then be solved a standard finite difference method. The model predicts Stewart's experiments well and reasonably confirms the influence of various components on vapour film. A comparison has been made between one-dimensional analytical system and this model. The wall temperature is a bit higher if the radial component is omitted. (orig./DG)

  2. Study of the equivalent diameter concept for heat transfer by forced convection in annular channels

    This work describes a comparative analysis between experimental values of heat transfer coefficients in fully developed turbulent flow for a concentric annular channel, and those calculated with the empirical correlations obtained for tubes by Dittus-Boelter, Sieder and Tate, a modified Colburn equation, and that proposed by Gnielinski which applies the analogy between friction and heat transfer. The coefficients were calculated by means of two different equivalent diameters: 1) The hydraulic equivalent diameter; and 2) The heated equivalent diameter. It was concluded that the hydraulic equivalent diameter gives much better results than the heated equivalent diameter. (Author)

  3. Characterization of the Annular Core Research Reactor (ACRR) Neutron Radiography System Imaging Plane

    Kaiser Krista; Chantel Nowlen K.; Russell DePriest K.

    2016-01-01

    The Annular Core Research Reactor (ACRR) at Sandia National Laboratories (SNL) is an epithermal pool-type research reactor licensed up to a thermal power of 2.4 MW. The ACRR facility has a neutron radiography facility that is used for imaging a wide range of items including reactor fuel and neutron generators. The ACRR neutron radiography system has four apertures (65:1, 125:1, 250:1, and 500:1) available to experimenters. The neutron flux and spectrum as well as the gamma dose rate were char...

  4. Annular cylinders experimental programme containing plutonium solutions at different 240Pu contents

    From 1963 to 1976, 730 critical experiments dealing with annular cylinders containing plutonium nitrate solutions were conducted on Valduc critical facility, called 'Apparatus B'. They aimed at validating critical configurations encountered in the fuel cycle, especially in storage and also at validating the 240Pu cross-sections in thermal neutron spectrum. It is to be noticed that these experiments validate criticality codes either in configurations with reactor-grade plutonium coming from the reprocessing cycle or with weapon-grade plutonium coming from the decommissioning of nuclear weapons. (authors)

  5. Fully developed laminar mixed convection through a vertical annular duct filled with porous media

    Kou, H.S.; Huang, D.K. [Tatung Inst. of Tech., Taipei (Taiwan, Province of China). Dept. of Mechanical Engineering

    1997-01-01

    The fully developed laminar mixed convection through a vertical annular duct embedded in a porous medium has been solved by using the non-Darcian flow model, where thermal boundary conditions on inner and outer walls are prescribed as isothermal-isothermal, isothermal-isoflux, and isoflux-isothermal, separately. The analytical solution has been derived to obtain velocity and temperature profiles, mass flow rate, wall friction factor and heat carried out by fluid. Finally, the parametric zones for flow characteristics of velocity distribution with the upward or downward flow are demonstrated.

  6. Gas-liquid annular flow in vertical circular tubes with liquid penetrated in nucleus

    A semi-analytical model is proposed for fully developed upward gas-liquid annular flow inside vertical circular tubes, by utilizing wall-known turbulence algebraic models for single-phase flows, within both streams, combined with empirical correlations for the gas-liquid interface friction factor. Direct integration of the associated momentum equations provide the velocity distribution for each phase, as well as overall quantities of practical interest such as liquid film thickness and pressure gradient. The effects of liquid droplets entrainment in the gas is specialized empirical correlations. Extensive comparisons with experimental results are made in order to demonstrate the consistency of the proposed model. (author)

  7. Impact of 15 Jan 2010 annular solar eclipse on the equatorial and low latitude ionosphere over Indian region from Magnetometer, Ionosonde and GPS observations

    Panda, Sampad Kumar; Rajaram, Girija; Sripathi, Samireddipalle; Bhaskar, Ankush

    2015-01-01

    The annular eclipse of Jan 15, 2010 over southern India was studied with a network of multi-instrumental observations consisting magnetometer, ionosonde and GPS receivers. By selecting the day before and the normal EEJ days as the control days, it is intrinsically proved that the regular eastward electric field for the whole day at the equator was not just weakened but actually was flipped for several hours by the influence of tides related to the spectacular Sun-Moon-Earth alignment near the middle of the day. The effect of flipping the electric field was clearly seen in the equatorial ionosonde data and through the large array of GPS receivers that accomplished the TEC data. The main impact of the change in the electric field was the reduced EIA at all latitudes, with the anomaly crest that shifted towards the equator. The equatorial F-region density profile was also showing an enhanced F region peak in spite of a reduced VTEC. By comparison to the plasma density depletion associated with the temporary lack...

  8. Granuloma Annulare

    ... Other oral medications such as potassium iodide, dapsone, nicotinamide, pentoxifylline, hydroxychloroquine, or cyclosporine Trusted Links MedlinePlus: Skin Conditions References Bolognia, Jean L., ed. Dermatology , pp. ...

  9. The Hydraulic Test Report for Non-instrumented Irradiation Test Rig of DUO-Cooled Annular Pellet

    This report presents the results of pressure drop test and vibration test for non-instrumented rig of Advanced PWR DUO-Fuel Annular Pellet which were designed and fabricated by KAERI. From the pressure drop test results, it is noted that the flow velocity across the non-instrumented rig of Advanced PWR DUO-Fuel Annular Pellet corresponding to the pressure drop of 200 kPa is measured to be about 8.30 kg/sec. Vibration frequency results for the non-instrumented rig at the pump spin frequency ranges from 19.0 to 32.0 Hz, RMS(Root Mean Square) displacement for the non-instrumented rig of Advanced PWR DUO-Fuel Annular Pellet is less than 7.25 m, and the maximum displacement is less than 31.27 μm. This test was performed at the FIVPET facility

  10. The Hydraulic Test Report for Non-instrumented Irradiation Test Rig of DUO-Cooled Annular Pellet

    Kim, Dae Ho; Lee, Kang Hee; Shin, Chang Hwan; Yang, Yong Sik; Kim, Sun Ki; Bang, Je Geon; Song, Kun Woo

    2007-08-15

    This report presents the results of pressure drop test and vibration test for non-instrumented rig of Advanced PWR DUO-Fuel Annular Pellet which were designed and fabricated by KAERI. From the pressure drop test results, it is noted that the flow velocity across the non-instrumented rig of Advanced PWR DUO-Fuel Annular Pellet corresponding to the pressure drop of 200 kPa is measured to be about 8.30 kg/sec. Vibration frequency results for the non-instrumented rig at the pump spin frequency ranges from 19.0 to 32.0 Hz, RMS(Root Mean Square) displacement for the non-instrumented rig of Advanced PWR DUO-Fuel Annular Pellet is less than 7.25 m, and the maximum displacement is less than 31.27 {mu}m. This test was performed at the FIVPET facility.

  11. The Transmission of Thermal and Fast Neutrons in Air Filled Annular Ducts through Slabs of Iron and Heavy Water

    An investigation has been carried out concerning the transmission of thermal and fast neutrons in air filled annular ducts through laminated Fe-D2O shields. Measurements have been made with annular air gaps of 0.5, 1.0, 1.5 and 2.0 cm, at a duct length of half a meter. The neutron fluxes were determined with a foil activation technique. The thermal flux was theoretically and experimentally divided into three components, a streaming, a leakage and an albedo component. The fast flux was similarly divided into a streaming component and a 'leakage' component. A calculational model to predict the components was then developed and fitted, to the data obtained by experiments. The model reported here for prediction of neutron attenuation in ducted configurations may be applied to straight annular ducts of arbitrary dimensions and material configurations but is especially designed for the problems met with in short ducts

  12. Quick estimate of the heat transfer characteristics of annular fins of hyperbolic profile with the power series method

    This technical paper addresses an elementary analytic procedure for the approximate solution of the quasi-one-dimensional heat conduction equation (a generalized Bessel equation) that governs the temperature variation in annular fins of hyperbolic profile. This fin shape is of remarkable importance because its heat transfer performance is close to that of the annular fin of convex parabolic profile, the so-called optimal annular fin that is capable of delivering maximum heat transfer for a given volume of material [Zeitschrift des Vereines Deutscher Ingenieure 70 (1926) 885]. The salient feature of the analytic procedure developed here is that for realistic combinations of the two parameters: the enlarged Biot number and the normalized radii ratio, the truncated power series solutions embracing a moderate number of terms yields unprecedented results of excellent quality. The analytic results are conveniently presented in terms of the two primary quantities of interest in thermal design applications, namely the heat transfer rates and the tip temperature

  13. Introduction to adaptive arrays

    Monzingo, Bob; Haupt, Randy

    2011-01-01

    This second edition is an extensive modernization of the bestselling introduction to the subject of adaptive array sensor systems. With the number of applications of adaptive array sensor systems growing each year, this look at the principles and fundamental techniques that are critical to these systems is more important than ever before. Introduction to Adaptive Arrays, 2nd Edition is organized as a tutorial, taking the reader by the hand and leading them through the maze of jargon that often surrounds this highly technical subject. It is easy to read and easy to follow as fundamental concept

  14. 3-D vibration analysis of annular sector plates using the Chebyshev-Ritz method

    Zhou, D.; Lo, S. H.; Cheung, Y. K.

    2009-02-01

    The three-dimensional free vibration of annular sector plates with various boundary conditions is studied by means of the Chebyshev-Ritz method. The analysis is based on the three-dimensional small strain linear elasticity theory. The product of Chebyshev polynomials satisfying the necessary boundary conditions is selected as admissible functions in such a way that the governing eigenvalue equation can be conveniently derived through an optimization process by the Ritz method. The boundary functions guarantee the satisfaction of the geometric boundary conditions of the plates and the Chebyshev polynomials provide the robustness for numerical calculation. The present study provides a full vibration spectrum for the thick annular sector plates, which cannot be given by the two-dimensional (2-D) theories such as the Mindlin theory. Comprehensive numerical results with high accuracy are systematically produced, which can be used as benchmark to evaluate other numerical methods. The effect of radius ratio, thickness ratio and sector angle on natural frequencies of the plates with a sector angle from 120° to 360° is discussed in detail. The three-dimensional vibration solutions for plates with a re-entrant sector angle (larger than 180°) and shallow helicoidal shells (sector angle larger than 360°) with a small helix angle are presented for the first time.

  15. Internal combustion engine with a central crankshaft and integral tandem annular pistons

    Esparbes, Bernard

    1993-08-01

    An internal combustion engine with tandem annular pistons and a central crankshaft is disclosed, based on that found in British patent 11027 of 11 May 1914. The piston block formed by the two pistons presents, at each axial extremity, a double axial skirt fitted with an outer crown forming the head of the piston as such, and an inner crown forming an inlet pump with a holding chamber radially located at the inside of the corresponding annular cylinder, in which the piston head delimits a combustion chamber. Radial fingers, crossing axial openings of the crankcase and radial holes of the piston block, have their inner radial ends engaged within wavy sinusoidal peripheral slots arranged in a bulging central portion of the central crankshaft set into rotation by alternating axial movements of the piston block. The admission of fuel or combustion sustaining gas is ensured axially by the extremities, valves, and openings in the end plates closing the holding chambers in which the inner crowns slide, fitted with valves to act as an inlet pump. The invention is particularly applicable to aircraft engines in view of the ease in which the shaft rotation can be adapted to such a use.

  16. Electrical Resistance Imaging of Bubble Boundary in Annular Two-Phase Flows Using Unscented Kalman Filter

    For the visualization of the phase boundary in annular two-phase flows, the electrical resistance tomography (ERT) technique is introduced. In ERT, a set of predetermined electrical currents is injected trough the electrodes placed on the boundary of the flow passage and the induced electrical potentials are measured on the electrode. With the relationship between the injected currents and the induced voltages, the electrical conductivity distribution across the flow domain is estimated through the image reconstruction algorithm. In this, the conductivity distribution corresponds to the phase distribution. In the application of ERT to two-phase flows where there are only two conductivity values, the conductivity distribution estimation problem can be transformed into the boundary estimation problem. This paper considers a bubble boundary estimation with ERT in annular two-phase flows. As the image reconstruction algorithm, the unscented Kalman filter (UKF) is adopted since from the control theory it is reported that the UKF shows better performance than the extended Kalman filter (EKF) that has been commonly used. We formulated the UKF algorithm to be incorporate into the image reconstruction algorithm for the present problem. Also, phantom experiments have been conducted to evaluate the improvement by UKF

  17. Study on natural convection heat transfer in vertical annular space of a double coaxial cylinder

    Water cooling panels are adopted as a vessel cooling system of a high temperature-engineering test reactor (HTTR) to cool the reactor core indirectly by natural convection and thermal radiation. In this study, we carried out experiments on natural convection heat transfer coupled with thermal radiation in vertical annular space of a double coaxial cylinder in order to investigate heat transfer characteristics in vertical annular space between the reactor pressure vessel and the cooling panels of the HTTR. In the present experiments, Rayleigh number based on the width of the vertical space was set to be 6.8 x 105 6 for helium and 4.2 x 107 8 for nitrogen. This report described about the heat transfer coefficient of natural convection in the vertical space and the effect of thermal radiation of the transferred heat. As a result, a heat transfer coefficient of natural convection coupled with thermal radiation was obtained as functions of Rayleigh number, aspect ratio of the space, temperature and emissivities on the heated and cooled walls. In addition to the experiments, numerical analyses were performed on the combined phenomena of natural convection and thermal radiation in the space. The numerical results were in good agreement with the experimental ones regarding the temperature on the heated and cooled walls. (author)

  18. Evaluation Performance ofan Annular Composite Fin by UsingMATLAB Programming

    Padma Lochannayak

    2015-04-01

    Full Text Available The aim of this project is analysis the efficiency ratio in an annular fin by the variation of heat transfer coefficient for any surface condition by using MATLAB software to calculate the base fin efficiency and the coated fin efficiency by the variation of heat transfer coefficient, radius ratio and base fin thickness of an annular fin and compare the coating fin efficiency to base fin efficiency. If the heat transfer coefficient is 50W/m2K the increase efficiency ratio is 10.46 – 28.02% for zinc coating fin from the literature but the MATLAB result is 9.3 - 25.54% , the gain efficiency ratio at thicker base fin (d=0.001m is 11.72%, at the thinner base fin (d=0.0002m is 33.57% from the literature but the MATLAB result is 7.45% (d=0.001m and 32.14% (d=0.0002m for zinc coating fin and the gain efficiency ratio at thicker base fin (d=0.001m is 11.92%, at the thinner base fin (d=0.0002m is 33.61% from the literature but the MATLAB result is 7.51% (d=0.001m and 32.16% (d=0.0002m for zinc alloy coating fin.

  19. Effect of Spray Cone Angle on Flame Stability in an Annular Gas Turbine Combustor

    Mishra, R. K.; Kumar, S. Kishore; Chandel, Sunil

    2016-04-01

    Effect of fuel spray cone angle in an aerogas turbine combustor has been studied using computational fluid dynamics (CFD) and full-scale combustor testing. For CFD analysis, a 22.5° sector of an annular combustor is modeled and the governing equations are solved using the eddy dissipation combustion model in ANSYS CFX computational package. The analysis has been carried out at 125 kPa and 303 K inlet conditions for spray cone angles from 60° to 140°. The lean blowout limits are established by studying the behavior of combustion zone during transient engine operation from an initial steady-state condition. The computational study has been followed by testing the practical full-scale annular combustor in an aerothermal test facility. The experimental result is in a good agreement with the computational predictions. The lean blowout fuel-air ratio increases as the spray cone angle is decreased at constant operating pressure and temperature. At higher spray cone angle, the flame and high-temperature zone moves upstream close to atomizer face and a uniform flame is sustained over a wide region causing better flame stability.

  20. DNS of forced gas flows in annular flow with strong heating

    Full text of publication follows: A direct numerical simulation (DNS) with turbulent transport of annular flow has been carried out with a variable property. In this study, the inlet Reynolds number based on a bulk velocity and a hydraulic diameter was set to be constant; Re=9700. The fluid is Helium gas which is heated wall at inner wall and adiabatic wall at outer wall. The experimental data are provided as a basis of the comparison with the computational results. This condition exactly corresponds to one of some experiments (Fuji et al., 1991). Present DNS code is modified from the pipe one (Satake et al., 2000). The number of computational grids at main region used in this study was 2304 x 128 x 192 in the z-, r- and Φ-directions, respectively. Annular channel with two direction of periodic boundary condition is used as driver unit to provide fully developed turbulence to main region. The turbulent quantities such as the mean flow, temperature fluctuations, turbulent stresses and the turbulent statistics were obtained via present DNS. (authors)

  1. Distribution of Mitral Annular and Aortic Valve Calcium as Assessed by Unenhanced Multidetector Computed Tomography.

    Koshkelashvili, Nikoloz; Codolosa, Jose N; Goykhman, Igor; Romero-Corral, Abel; Pressman, Gregg S

    2015-12-15

    Aging is associated with calcium deposits in various cardiovascular structures, but patterns of calcium deposition, if any, are unknown. In search of such patterns, we performed quantitative assessment of mitral annular calcium (MAC) and aortic valve calcium (AVC) in a broad clinical sample. Templates were created from gated computed tomography (CT) scans depicting the aortic valve cusps and mitral annular segments in relation to surrounding structures. These were then applied to CT reconstructions from ungated, clinically indicated CT scans of 318 subjects, aged ≥65 years. Calcium location was assigned using the templates and quantified by the Agatston method. Mean age was 76 ± 7.3 years; 48% were men and 58% were white. Whites had higher prevalence (p = 0.03) and density of AVC than blacks (p = 0.02), and a trend toward increased MAC (p = 0.06). Prevalence of AVC was similar between men and women, but AVC scores were higher in men (p = 0.008); this difference was entirely accounted for by whites. Within the aortic valve, the left cusp was more frequently calcified than the others. MAC was most common in the posterior mitral annulus, especially its middle (P2) segment. For the anterior mitral annulus, the medial (A3) segment calcified most often. In conclusion, AVC is more common in whites than blacks, and more intense in men, but only in whites. Furthermore, calcium deposits in the mitral annulus and aortic valve favor certain locations. PMID:26517948

  2. Massively parallel LES of azimuthal thermo-acoustic instabilities in annular gas turbines

    Wolf, Pierre; Staffelbach, Gabriel; Gicquel, Laurent; Poinsot, Thierry

    2009-07-01

    Most of the energy produced worldwide comes from the combustion of fossil fuels. In the context of global climate changes and dramatically decreasing resources, there is a critical need for optimizing the process of burning, especially in the field of gas turbines. Unfortunately, new designs for efficient combustion are prone to destructive thermo-acoustic instabilities. Large Eddy Simulation (LES) is a promising tool to predict turbulent reacting flows in complex industrial configurations and explore the mechanisms triggering the coupling between acoustics and combustion. In the particular field of annular combustion chambers, these instabilities usually take the form of azimuthal modes. To predict these modes, one must compute the full combustion chamber comprising all sectors, which remained out of reach until very recently and the development of massively parallel computers. A fully compressible, multi-species reactive Navier-Stokes solver is used on up to 4096 BlueGene/P CPUs for two designs of a full annular helicopter chamber. Results show evidence of self-established azimuthal modes for the two cases but with different energy containing limit-cycles. Mesh dependency is checked with grids comprising 38 and 93 million tetrahedra. The fact that the two grid predictions yield similar flow topologies and limit-cycles enforces the ability of LES to discriminate design changes.

  3. Massively parallel LES of azimuthal thermo-acoustic instabilities in annular gas turbines

    Most of the energy produced worldwide comes from the combustion of fossil fuels. In the context of global climate changes and dramatically decreasing resources, there is a critical need for optimizing the process of burning, especially in the field of gas turbines. Unfortunately, new designs for efficient combustion are prone to destructive thermo-acoustic instabilities. Large Eddy Simulation (LES) is a promising tool to predict turbulent reacting flows in complex industrial configurations and explore the mechanisms triggering the coupling between acoustics and combustion. In the particular field of annular combustion chambers, these instabilities usually take the form of azimuthal modes. To predict these modes, one must compute the full combustion chamber comprising all sectors, which remained out of reach until very recently and the development of massively parallel computers. A fully compressible, multi-species reactive Navier-Stokes solver is used on up to 4096 BlueGene/P CPUs for two designs of a full annular helicopter chamber. Results show evidence of self-established azimuthal modes for the two cases but with different energy containing limit-cycles. Mesh dependency is checked with grids comprising 38 and 93 million tetrahedra. The fact that the two grid predictions yield similar flow topologies and limit-cycles enforces the ability of LES to discriminate design changes.

  4. Annular precision linear shaped charge flight termination system for the ODES program

    Vigil, M.G.; Marchi, D.L.

    1994-06-01

    The work for the development of an Annular Precision Linear Shaped Charge (APLSC) Flight Termination System (FTS) for the Operation and Deployment Experiment Simulator (ODES) program is discussed and presented in this report. The Precision Linear Shaped Charge (PLSC) concept was recently developed at Sandia. The APLSC component is designed to produce a copper jet to cut four inch diameter holes in each of two spherical tanks, one containing fuel and the other an oxidizer that are hyperbolic when mixed, to terminate the ODES vehicle flight if necessary. The FTS includes two detonators, six Mild Detonating Fuse (MDF) transfer lines, a detonator block, detonation transfer manifold, and the APLSC component. PLSCs have previously been designed in ring components where the jet penetrating axis is either directly away or toward the center of the ring assembly. Typically, these PLSC components are designed to cut metal cylinders from the outside inward or from the inside outward. The ODES program requires an annular linear shaped charge. The (Linear Shaped Charge Analysis) LESCA code was used to design this 65 grain/foot APLSC and data comparing the analytically predicted to experimental data are presented. Jet penetration data are presented to assess the maximum depth and reproducibility of the penetration. Data are presented for full scale tests, including all FTS components, and conducted with nominal 19 inch diameter, spherical tanks.

  5. Experimental quantification of annular dark-field images in scanning transmission electron microscopy.

    Lebeau, James M; Stemmer, Susanne

    2008-11-01

    This paper reports on a method to obtain atomic resolution Z-contrast (high-angle annular dark-field) images with intensities normalized to the incident beam. The procedure bypasses the built-in signal processing hardware of the microscope to obtain the large dynamic range necessary for consecutive measurements of the incident beam and the intensities in the Z-contrast image. The method is also used to characterize the response of the annular dark-field detector output, including conditions that avoid saturation and result in a linear relationship between the electron flux reaching the detector and its output. We also characterize the uniformity of the detector response across its entire area and determine its size and shape, which are needed as input for image simulations. We present normalized intensity images of a SrTiO(3) single crystal as a function of thickness. Averaged, normalized atom column intensities and the background intensity are extracted from these images. The results from the approach developed here can be used for direct, quantitative comparisons with image simulations without any need for scaling. PMID:18707809

  6. Analysis of electromagnetic focusing properties of multi-annular nanostructured metasurfaces

    Yang, Shuming; Wang, Tong; Liu, Tao; Jiang, Zhuangde

    2016-08-01

    To explore the electromagnetic focusing properties of multi-annular nanostructured metasurfaces, the material property, dispersion property, and error-tolerance property have been studied through a combination of the vectorial angular spectrum theory and the three-dimensional finite-difference time-domain (FDTD) method. An obvious focal shift has been observed and the thickness for the Ag, Al, and Au films is suggested to be within the range of 50-100 nm for the illumination wavelength of 640 nm. The light dispersion effect of the metasurface is remarkable and the focal length decreases with the increase of the wavelength; however, the on-axis intensity distributions retain a similar, shifted shape when the wavelength deviation is less than 10 nm. The fabrication error has a strong impact on the on-axis intensity distribution; when it occurs for the middle annulus, a more severe impact will be induced. The above findings provide theoretical guidance for applying multi-annular metasurfaces in the fields of super-resolution focusing, micro-nano fabrication, and nanoscopic imaging.

  7. High quantum efficiency annular backside silicon photodiodes for reflectance pulse oximetry in wearable wireless body sensors

    The development of annular photodiodes for use in a reflectance pulse oximetry sensor is presented. Wearable and wireless body sensor systems for long-term monitoring require sensors that minimize power consumption. We have fabricated large area 2D ring-shaped silicon photodiodes optimized for minimizing the optical power needed in reflectance pulse oximetry. To simplify packaging, backside photodiodes are made which are compatible with assembly using surface mounting technology without pre-packaging. Quantum efficiencies up to 95% and area-specific noise equivalent powers down to 30 fW Hz-1/2 cm-1 are achieved. The photodiodes are incorporated into a wireless pulse oximetry sensor system embedded in an adhesive patch presented elsewhere as 'The Electronic Patch'. The annular photodiodes are fabricated using two masked diffusions of first boron and subsequently phosphor. The surface is passivated with a layer of silicon nitride also serving as an optical filter. As the final process, after metallization, a hole in the center of the photodiode is etched using deep reactive ion etch.

  8. Internal (Annular) and Compressible External (Flat Plate) Turbulent Flow Heat Transfer Correlations.

    Dechant, Lawrence [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Smith, Justin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    Here we provide a discussion regarding the applicability of a family of traditional heat transfer correlation based models for several (unit level) heat transfer problems associated with flight heat transfer estimates and internal flow heat transfer associated with an experimental simulation design (Dobranich 2014). Variability between semi-empirical free-flight models suggests relative differences for heat transfer coefficients on the order of 10%, while the internal annular flow behavior is larger with differences on the order of 20%. We emphasize that these expressions are strictly valid only for the geometries they have been derived for e.g. the fully developed annular flow or simple external flow problems. Though, the application of flat plate skin friction estimate to cylindrical bodies is a traditional procedure to estimate skin friction and heat transfer, an over-prediction bias is often observed using these approximations for missile type bodies. As a correction for this over-estimate trend, we discuss a simple scaling reduction factor for flat plate turbulent skin friction and heat transfer solutions (correlations) applied to blunt bodies of revolution at zero angle of attack. The method estimates the ratio between axisymmetric and 2-d stagnation point heat transfer skin friction and Stanton number solution expressions for sub-turbulent Reynolds numbers %3C1x10 4 . This factor is assumed to also directly influence the flat plate results applied to the cylindrical portion of the flow and the flat plate correlations are modified by

  9. On the burnout in annular channels at non-uniform heat release distribution in length

    The effect of axial heat release non-uniformity on the conditions of the burnout in annular channels is investigated. The investigation is carried out in annular channels with different laws of heat flux density distribution by channel length. The heat release non-uniformity coefficient was varied from 4.4 to 10, the pressure from 9.8 to 17.6 MPa, mass rate from 500 to 1700 kg (m2xS), liquid temperature (chemically desalted water) at the channel inlet constituted 30-300 deg C. The experiments have been performed at the test bench with a closed circulation circuit. The data obtained testify to the fact that under non-uniform heat release the influence of main operating parameters on the value of critical power is of the same character as under uniform heat release. The character of wall temperature variation by channel length before the burnout is determined by the form of heat supply temperature profile. The temperature maximum is observed in the region lying behind the cross section with maximum heat flux. The conclusion is drawn that the dominant influence on the position of the cross section in which the burnout arises is exerted by the form of heat flux density distribution by length. Independently of this distribution form the burnout developes when the vapour content near the wall reaches a limiting value

  10. A new methodology for estimation of initial entrainment fraction in annular flow for improved dryout prediction

    Highlights: • Importance of a closure for initial entrainment fraction (IEF) is highlighted. • A new methodology has been presented to predict IEF in diabatic annular flow. • The predicted IEF is seen to predict dryout better than ad-hoc IEF values. - Abstract: The estimation of dryout power holds a lot of importance in safety of boiling water reactors (BWRs). The basic mechanism of dryout is the depletion of the liquid film adhering to the walls under the combined action of deposition, entrainment and vaporization. In literature, the rate processes of entrainment and deposition have been correlated empirically and woven into a model for dryout prediction. The greatest advantage of this model is that the formulation for tubular geometry can be extrapolated to rod-bundles, with certain modifications and modeling assumptions. An accurate model thus, has the potential to make redundant the numerous dryout correlations which exist for various rod-bundle geometries. This is the reason why this model has gained a lot of popularity. Initial entrainment fraction (IEF), i.e., the fraction of liquid entrained as droplets at the onset of annular flow is an important boundary condition required for the model. However there is very little theoretical or experimental work towards prediction of IEF. In this paper, a new methodology is presented whereby the IEF can be determined. It is seen that predictions are improved upon using the new method

  11. A novel reactor concept for boron neutron capture therapy: annular low-low power reactor (ALLPR)

    Petrovic, B.; Levine, S.H. [Department of Nuclear Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    1998-07-01

    Boron Neutron Capture Therapy (BNC), originally proposed in 50's, has been getting renewed attention over the last {approx}10 years. This is in particular due to its potential for treating deep-seated brain tumors by employing epithermal neutron beams. Large (several MW) research reactors are currently used to obtain epithermal beams for BNCT, but because of cost and licensing issues it is not likely that such high-power reactors can be placed in regular medical centers. This paper describes a novel reactor concept for BNCT devised to overcome this obstacle. The design objective was to produce a beam of epithermal neutrons of sufficient intensity for BNCT at <50 kW using low enriched uranium. It is achieved by the annular reactor design, which is called Annular Low-Low Power Reactor (ALLPR). Preliminary studies using Monte Carlo simulations are summarized in this paper. The ALLPR should be relatively economical to build, and safe and easy to operate. This novel concept may increase the viability of using BNCT in medical centers worldwide. (author)

  12. The role of linear interference in the Annular Mode response to Tropical SST forcing

    Fletcher, C. G.; Kushner, P. J.

    2010-12-01

    Sea-surface temperature (SST) anomalies in different parts of the Tropics are known to drive very different teleconnections into the extratropics on monthly-to-seasonal timescales. For example, wintertime El Nino SST warming in the tropical Pacific Ocean (TPO) is associated with an equatorward shifted subtropical jet, a weaker stratospheric polar vortex, and high pressure over the northern polar regions characteristic of the negative phase of the Northern Annular Mode (NAM). By contrast, SST warming in the Tropical Indian Ocean (TIO) has been shown to be associated with a poleward shifted subtropical jet, strengthened polar vortex, and and a positive phase NAM. This study presents a simple dynamical framework for understanding these different responses. It is shown that the sign and strength of the NAM response to tropical SST forcing is often simply related to the phasing, and hence the linear interference, between the Rossby wave response and the climatological stationary wave. The TPO (TIO) wave response reinforces (attenuates) the climatological wave and therefore weakens (strengthens) the stratospheric jet and leads to a negative (positive) NAM response. In additional simulations, it is shown that decreasing the strength of the climatological stationary wave reduces the importance of linear interference and increases the importance of nonlinearity. This work demonstrates that the simulated extratropical Annular Mode responses to climate forcings can depend sensitively on the amplitude and phase of the climatological stationary wave and the wave response.

  13. THE TESTING OF COMMERCIALLY AVAILABLE ENGINEERING AND PLANT SCALE ANNULAR CENTRIFUGAL CONTACTORS FOR THE PROCESSING OF SPENT NUCLEAR FUEL

    Jack D. Law; David Meikrantz; Troy Garn; Nick Mann; Scott Herbst

    2006-10-01

    Annular centrifugal contactors are being evaluated for process scale solvent extraction operations in support of United State Advanced Fuel Cycle Initiative goals. These contactors have the potential for high stage efficiency if properly employed and optimized for the application. Commercially available centrifugal contactors are being tested at the Idaho National Laboratory to support this program. Hydraulic performance and mass transfer efficiency have been measured for portions of an advanced nuclear fuel cycle using 5-cm diameter annular centrifugal contactors. Advanced features, including low mix sleeves and clean-in-place rotors, have also been evaluated in 5-cm and 12.5-cm contactors.

  14. Non-Newtonian fluid flow in annular pipes and entropy generation: Temperature-dependent viscosity

    M Yürüsoy; B S Yilbaş; M Pakdemirli

    2006-12-01

    Non-Newtonian fluid flow in annular pipes is considered and the entropy generation due to fluid friction and heat transfer in them is formulated. A third-grade fluid is employed to account for the non-Newtonian effect, while the Reynolds model is accommodated for temperature-dependent viscosity. Closed-form solutions for velocity, temperature, and entropy fields are presented. It is found that entropy generation number increases with reducing non-Newtonian parameter, while it is the reverse for the viscosity parameter, which is more pronounced in the region close to the annular pipe inner wall.

  15. The Design and Manufacturing Report of Non-Instrumented Rig for Dual-cooled Annular Fuel Irradiation Test in HANARO

    Kim, Dae Ho; Bang, Je Geon; Lim, Ik Sung; Kim, Sun Ki; Yang, Yong Sik; Song, Kun Woo; Seo, Chul Gyo; Park, Chan Kook

    2008-09-15

    This project is preparing to irradiation test of the developed double cooled annular fuel pellet in HANARO for pursuit advanced performance in High Performance Fuel Technology Development as a part Nuclear Mid and Long-term R and D Program. On the basis test rod is performed the nuclei property and preliminary fuel performance analysis, test rod and non-instrumented rig designed and manufactured for irradiation test in HANARO OR hole. This non- instrumented rig was confirmed the compatibility of HANARO and the integrity of rig structure, and satisfied the quality assurance requirements. This non- instrumented rig is adopt to the irradiation test for double cooled annular fuel pellet in HANARO.

  16. Analytical Solution and Symbolic Computation for the Temperature Distribution of the Annular Fin under Fully Wet-Surface Condition

    Koonprasert, Sanoe; Sangsawang, Rilrada

    2008-09-01

    This paper presents the analytical solutions and symbolic computations for the temperature distribution of the annular fin under fully-wet surface condition. During the process of dehumidification, the annular fin is separated into two regions. The mathematical models for each region are based on the conservation of energy principle. An assumption used in this paper is the humidity ratio of the saturated air on the wet surface varies linearly with the local fin temperature. The mathematical models are solved by the Cauchy-Euler Equation and modified Bessel Equation to form analytical solutions. Besides, the symbolic computations are shown by the Maple software to visualize the temperature distribution along the fin.

  17. Quantifying the eddy-jet feedback strength of the annular mode in an idealized GCM and reanalysis data

    Ma, Ding; Hassanzadeh, Pedram; Kuang, Zhiming

    2016-01-01

    A linear response function (LRF) that relates the temporal tendency of zonal mean temperature and zonal wind to their anomalies and external forcing is used to accurately quantify the strength of the eddy-jet feedback associated with the annular mode in an idealized GCM. Following a simple feedback model, the results confirm the presence of a positive eddy-jet feedback in the annular mode dynamics, with a feedback strength of 0.137 day$^{-1}$ in the idealized GCM. Statistical methods proposed...

  18. Predictions of Critical Heat Flux in Annular Pipes with TRACEv4.160 code

    This paper presents the assessment of TRACE (version v4.160) against the Critical Heat Flux (CHF) experiments in annular tubes performed at the Royal Institute of Technology (KTH) in Stockholm, Sweden. The experimental database includes data for coolant mass fluxes between 250 and 2500 kg/m2s and inlet subcooling of 10 and 40 K at a pressure of 70 bar. The work presented in this paper supplements the calculations of single round tube experiments carried out earlier and provides a broader scope of validated geometries. In addition to the Biasi and CISE-GE CHF correlations available in the code, a number of experimental points at low flow conditions are available for the annular geometry experiments, which also permitted the assessment of the Biasi/Zuber CHF correlation used in TRACE v4.160 for low flow conditions. Experiments with different axial power distribution were simulated and the effects of the axial power profile and the coolant inlet subcooling on the TRACE predictions were investigated. The results of this work show that the Biasi/Zuber correlation provides good estimation of the CHF at 70 bar, and, for the same conditions, the simulation of the annular experiments resulted in the calculation of lower CHF values compared to single-tube experiments. The analysis of the performance of the standard TRACE CHF correlations shows that the CISE-GE correlation yields critical qualities (quality at CHF) closer to the experimental values at 70 bar than the Biasi correlation for annular flow conditions. Regarding the power profile, the results of the TRACE calculations seem to be very sensitive to its shape, since, depending on the profile, different accuracies in the predictions were noted while other system conditions remained constant. The inlet coolant subcooling was also an important factor in the accuracy of TRACE CHF predictions. Thus, an increase in the inlet subcooling led to a clear improvement in the estimation of the critical quality with both Biasi and

  19. Protein Functionalized Nanodiamond Arrays

    Liu YL

    2010-01-01

    Full Text Available Abstract Various nanoscale elements are currently being explored for bio-applications, such as in bio-images, bio-detection, and bio-sensors. Among them, nanodiamonds possess remarkable features such as low bio-cytotoxicity, good optical property in fluorescent and Raman spectra, and good photostability for bio-applications. In this work, we devise techniques to position functionalized nanodiamonds on self-assembled monolayer (SAMs arrays adsorbed on silicon and ITO substrates surface using electron beam lithography techniques. The nanodiamond arrays were functionalized with lysozyme to target a certain biomolecule or protein specifically. The optical properties of the nanodiamond-protein complex arrays were characterized by a high throughput confocal microscope. The synthesized nanodiamond-lysozyme complex arrays were found to still retain their functionality in interacting with E. coli.

  20. Permutations of cubical arrays

    The structure constants of an algebra determine a cube called the cubical array associated with the algebra. The permuted indices of the cubical array associated with a finite semifield generate new division algebras. We do not not require that the algebra be finite and ask 'Is it possible to choose a basis for the algebra such any permutation of the indices of the structure constants leaves the algebra unchanged?' What are the associated algebras? Author shows that the property 'weakly quadratic' is invariant under all permutations of the indices of the corresponding cubical array and presents two algebras for which the cubical array is invariant under all permutations of the indices.

  1. Flexible retinal electrode array

    Okandan, Murat (Albuquerque, NM); Wessendorf, Kurt O. (Albuquerque, NM); Christenson, Todd R. (Albuquerque, NM)

    2006-10-24

    An electrode array which has applications for neural stimulation and sensing. The electrode array can include a large number of electrodes each of which is flexibly attached to a common substrate using a plurality of springs to allow the electrodes to move independently. The electrode array can be formed from a combination of bulk and surface micromachining, with electrode tips that can include an electroplated metal (e.g. platinum, iridium, gold or titanium) or a metal oxide (e.g. iridium oxide) for biocompatibility. The electrode array can be used to form a part of a neural prosthesis, and is particularly well adapted for use in an implantable retinal prosthesis where the electrodes can be tailored to provide a uniform gentle contact pressure with optional sensing of this contact pressure at one or more of the electrodes.

  2. Expandable LED array interconnect

    Yuan, Thomas Cheng-Hsin; Keller, Bernd

    2011-03-01

    A light emitting device that can function as an array element in an expandable array of such devices. The light emitting device comprises a substrate that has a top surface and a plurality of edges. Input and output terminals are mounted to the top surface of the substrate. Both terminals comprise a plurality of contact pads disposed proximate to the edges of the substrate, allowing for easy access to both terminals from multiple edges of the substrate. A lighting element is mounted to the top surface of the substrate. The lighting element is connected between the input and output terminals. The contact pads provide multiple access points to the terminals which allow for greater flexibility in design when the devices are used as array elements in an expandable array.

  3. Aligators for arrays

    Henzinger, Thomas A.; Hottelier, Thibaud; Kovács, Laura; Rybalchenko, Andrey

    2010-01-01

    This paper presents Aligators, a tool for the generation of universally quantified array invariants. Aligators leverages recurrence solving and algebraic techniques to carry out inductive reasoning over array content. The Aligators’ loop extraction module allows treatment of multi-path loops by exploiting their commutativity and serializability properties. Our experience in applying Aligators on a collection of loops from open source software projects indicates the applicability of recurren...

  4. RFID array sensing

    Capdevila Cascante, Santiago; Jofre Roca, Lluís; Romeu Robert, Jordi; Bolomey, J.Ch

    2010-01-01

    In this paper the use of RFID tags for the measurement of physical parameters in a distributed set of points is presented. Experimental results for two different scenarios are presented; the first uses a 2D RFID array to measure the field distribution of a radiating aperture, while the second detects the change in the close environment of an array of RFID tags to determine the water level of a container.

  5. Microphone arrays fundamentals

    Embrechts, Jean-Jacques

    2011-01-01

    Microphone arrays are essentially directional sensors. They are therefore mainly used for locating, identifying, isolating, measuring and recording individual sound sources. The main principles governing the directivity of microphone arrays are reviewed: phase differences between signals create constructive and destructive interferences, depending on the direction of the sound source. Moreover, signal processing is applied to provide “beamforming”, i.e. beam shaping and steering. Contrary to ...

  6. KNK II third core: design report for the annular fuel elements on the central position to accommodate material test inserts NZ 402 and NZ 403

    Since August 1984 irradiation experiments with temperature controlled pressure tube probes are being performed in the central position of KNK II. This is part of a long-term experimental program for the development of irradiation resistant reactor materials, which shall also be continued in the third core. The necessary irradiation channel is provided by a special annular fuel element. The present report describes the annular fuel elements for the third core. Aspects of the subassembly design are considered on the basis of the annular element design for the second core and the standard elements of the third core. Two annular elements NZ 402 and NZ 403 (as reserve) are available. It is demonstrated that the expected loadings will allow an unperturbed operation of the annular elements on the central position of the third core

  7. Solar Activity and Motions in the Solar Chromosphere and Corona at the 2012 and 2013 Total and Annular Eclipses in the U.S., Australia, and Africa

    Pasachoff, Jay M.; Babcock, B. A.; Davis, A. B.; Demianski, M.; Lucas, R.; Lu, M.; Dantowitz, R.; Rusin, V.; Saniga, M.; Seaton, D. B.; Gaintatzis, P.; Voulgaris, A.; Seiradakis, J. H.; Gary, D. E.; Shaik, S. B.

    2014-01-01

    Our studies of the solar chromosphere and corona at the 2012 and 2013 eclipses shortly after cycle maximum 24 (2011/2012) of solar activity (see: http://www.swpc.noaa.gov/SolarCycle/) involved radio observations of the 2012 annular eclipse with the Jansky Very Large Array, optical observations of the 2012 total eclipse from Australia, optical observations of the 2013 annular eclipse from Tennant Creek, Australia, and the 3 November 2013 total solar eclipse from Gabon. Our observations are coordinated with those from solar spacecraft: Solar Dynamics Observatory AIA and HMI, Hinode XRT and SOT, SOHO LASCO and EIT, PROBA2 SWAP, and STEREO SECCHI. Our 2012 totality observations include a CME whose motion was observed with a 37-minute interval. We include first results from the expedition to Gabon for the 3 November 2013 eclipse, a summary of eclipse results from along the path of totality across Africa, and a summary of the concomitant spacecraft observations. The Williams College 2012 expeditions were supported in part by NSF grant AGS-1047726 from Solar Terrestrial Research/NSF AGS, and by the Rob Spring Fund and Science Center funds at Williams. The JVLA is supported by the NSF. The Williams College 2013 total-eclipse expedition was supported in part by grant 9327-13 from the Committee for Research and Exploration of the National Geographic Society. ML was also supported in part by a Grant-In-Aid of Research from the National Academy of Sciences, administered by Sigma Xi, The Scientific Research Society (Grant ID: G20120315159311). VR and MS acknowledge support for 2012 from projects VEGA 2/0003/13 and NGS-3139-12 of the National Geographic Society. We are grateful to K. Shiota (Japan) for kindly providing us with some of his 2012 eclipse coronal images. We thank Alec Engell (Montana State U) for assistance on site, and Terry Cuttle (Queensland Amateur Astronomers) for help with site arrangements. We thank Aram Friedman (Ansible Technologies), Michael Kentrianakis

  8. Annular electron beam production on gamble II using a magnetically insulated splitter

    Annular electron beams have been tested using a post-hole convolute or magnetically insulated splitter (MIS) to feed current to both sides of a ring cathode. Beams were produced on the BLACKJACK 3 generator using a coaxial feed and from BLACKJACK 5 with a triplate feed. On BLACKJACK 3, annular cathodes with 5 cm and 10 cm mean diameters were tested. The cathodes were fed in four places by a MIS. The cathodes were 1.2 cm wide made from stainless steel or brass. Typical anode/cathode gap spacings were 0.6 cm. Experiments were performed at power levels of about 0.6 TW and energies of 30-40 kJ. Typical voltages were 0:6-1 MV with currents of about 0.8 MA. Diagnostics were diode voltage, diode current, and an X-ray pinhole camera. For the 10 cm cathode, current was measured before and after the MIS. The current on each side of the ring was measured separately. The beam voltage was determined from the diode voltage by an inductive correction. The annular beams had a linear current density of about 30 kA/cm and about 60 kA/cm for the 10 cm and 5 cm, respectively. The beam diameter at the cathode could be varied by changing the inductance on each side of the ring cathode and thereby the current balance. The impedance behavior could be modeled using the critical current formulation with a closure velocity of 3.5-4.5 cm/us. The BLACKJACK 5 geometry was a triplate feed. The ring cathode was fed by generators of 0.5 and 0.75 Ω, respectively. The MIS was used to combine the power before the cathode. The cathode had a mean diameter of 25 cm and width of 1.5-3 cm. Experiments were performed at power levels up to about6 TW and energies greater than or equal to200 kJ. Typical operating parameters were about 2 MV and 3 MA

  9. Natural convection of high-temperature, high-pressure gas in a horizontal annular layer of thermal insulator, (1)

    Numerical calculations are described of the natural convection in a horizontal annular layer of thermal insulator. The purpose is to compare the numerical results for variable physical properties with those for constant properties. The numerical procedure and typical results are presented. (author)

  10. High-Flux Femtosecond X-Ray Emission from Controlled Generation of Annular Electron Beams in a Laser Wakefield Accelerator.

    Zhao, T Z; Behm, K; Dong, C F; Davoine, X; Kalmykov, S Y; Petrov, V; Chvykov, V; Cummings, P; Hou, B; Maksimchuk, A; Nees, J A; Yanovsky, V; Thomas, A G R; Krushelnick, K

    2016-08-26

    Annular quasimonoenergetic electron beams with a mean energy in the range 200-400 MeV and charge on the order of several picocoulombs were generated in a laser wakefield accelerator and subsequently accelerated using a plasma afterburner in a two-stage gas cell. Generation of these beams is associated with injection occurring on the density down ramp between the stages. This well-localized injection produces a bunch of electrons performing coherent betatron oscillations in the wakefield, resulting in a significant increase in the x-ray yield. Annular electron distributions are detected in 40% of shots under optimal conditions. Simultaneous control of the pulse duration and frequency chirp enables optimization of both the energy and the energy spread of the annular beam and boosts the radiant energy per unit charge by almost an order of magnitude. These well-defined annular distributions of electrons are a promising source of high-brightness laser plasma-based x rays. PMID:27610860

  11. The influence of the radial pressure gradient on the blade root loss in an annular subsonic nozzle cascade

    Meng, D.; Weng, Z.; Xiang, Y.

    1985-09-01

    This paper presents a method for predicting the blade root loss in an annular nozzle cascade in which consideration is given to the influence of the radial pressure gradient (RPG) on it. The variation of blade root losses under different RPG is obtained experimentally, and finite element method is used to calculate the pressure distribution in the blade passage.

  12. High speed OH-PLIF measurement of self-excited circumferential instabilities in an annular combustion chamber

    Worth, Nicholas; Dawson, James

    2012-11-01

    Self-excited thermo-acoustic instabilities are a significant issue in the development of lean burn gas turbine combustors. Such instabilities arise through coupling of the unsteady heat release and acoustic waves, which can propagate both longitudinally and circumferentially in annular combustor geometries. Although a large number of studies have investigated longitudinal fluctuations in single axisymmetric flames, it is currently uncertain whether these results can be used to emulate circumferential oscillations in annular geometry. Therefore, the aim of the current project is to investigate the flame dynamics in an annular model gas turbine combustor during self-excited circumferential oscillations. Pressure measurements are used to characterise the circumferential oscillations, with high-speed OH chemiluminescence and OH-PLIF used to capture the flame dynamics. The flame structure and dynamics are significantly affected by both the proximity of neighbouring flames and the excitation mode; with different responses observed for small and large separation distances, and standing and spinning modes. These observations indicate that results from single flame investigations may only be representative of self-excited flames in annular geometry under in a limited set of conditions.

  13. An L-Band, Circularly Polarized, Dual-Feed, Cavity-Backed Annular Slot Antenna with Wide-Angle Coverage

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2006-01-01

    An L-band, circularly polarized, dual-feed, cavity-backed annular slot antenna has been investigated. The investigations comprise parametric studies of design parameters and measurements with different ground planes. The antenna has an impedance bandwidth of 6% around 1.59 GHz and a maximum...

  14. An L-Band, Circularly Polarized, Dual-Feed, Cavity-Backed Annular Slot Antenna with Wide-Angle Coverage

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2006-01-01

    An L-band, circularly polarized, dual-feed, cavity-backed annular slot antenna has been investigated. The investigations comprise parametric studies of design parameters and measurements with different ground planes. The antenna has an impedance bandwidth of 6% around 1.59 GHz and a maximum directivity of about 7 dBi.

  15. Predicting the Mean Liquid Film Thickness and Profile along the Annular Length of a Uniformly Heated Channel at Dryout

    V.Y. Agbodemegbe

    2011-03-01

    Full Text Available The objective of this study was to predict the mean liquid film thickness and profile at high shear stress using a mechanistic approach. Knowledge of the liquid film thickness and its variation with two-phase flow parameters is critical for the estimation of safety parameters in the annular flow regime. The mean liquid film thickness and profile were predicted by the PLIFT code designed in Fortran 95 programming language using the PLATO FTN95 compiler. The film thickness was predicted within the annular flow regime for a flow boiling quality ranging from 40 to 80 % at high interfacial shear stress. Results obtained for a laminar liquid film flow were dumped into an excel file when the ratio of the actual predicted film thickness to the critical liquid film thickness lied within the range of 0.9 to unity. The film thickness was observed to decrease towards the exit of the annular regime at high flow boiling qualities and void fractions. The observation confirmed the effect of evaporation in decreasing the film thickness as quality is increased towards the exit of the annular regime.

  16. The development of an annular-beam, high power free-electron maser for future linear colliders

    Work is underway to develop a 17 GHz free electron maser (FEM) for producing a 500 MW output pulse with a phase stability appropriate for linear collider applications. We plan to use a 500 keV, 5 kA, 6-cm-dia annular electron beam to excite a TM02 mode Raman FEM amplifier in a corrugated cylindrical waveguide. The annular beam will run close to the interaction device walls to reduce the power density in the fields, and to greatly reduce the kinetic energy loss caused by beam potential depression associated with the space charge which is a significant advantage in comparison with conventional solid beam microwave tubes at the same beam current. A key advantage of the annular beam is that the reduced plasma wave number can be tuned to achieve phase stability for an arbitrary correlation of interaction strength with beam velocity. It should be noted that this technique for improving phase stability of an FEM is not possible with a solid beam klystron. The annular beam FEM provides the opportunity to extend the output power of sources in the 17 GHz regime by well over an order of magnitude with enhanced phase stability. The design and experimental status are discussed. (author)

  17. Determination of oxygen to uranium plus plutonium atom ratio in high density annular mixed oxide fuel pellets for fast reactor

    This paper highlights the encountered difficulties and applied modifications in the analytical steps for the determination of [O/(U+Pu)] in high density annular (NatU0.335233U0.37 Pu0.295)O2 pellets, manufactured for irradiation in FBTR and discusses the results. (author)

  18. Optimizing Chemical Sensor Array Sizes

    Optimal selection of array sensors for a chemical sensing application is a nontrivial task. It is commonly believed that ''more is better'' when choosing the number of sensors required to achieve good chemical selectivity. However, cost and system complexity issues point towards the choice of small arrays. A quantitative array optimization is carried out to explore the selectivity of arrays of partially-selective chemical sensors as a function of array size. It is shown that modest numbers (dozens) of target analytes are completely distinguished with a range of arrays sizes. However, the array selectivity and the robustness against sensor sensitivity variability are significantly degraded if the array size is increased above a certain number of sensors, so that relatively small arrays provide the best performance. The results also suggest that data analyses for very large arrays of partially-selective sensors will be optimized by separately anal yzing small sensor subsets

  19. Imaging antenna arrays

    Rutledge, D. B.; Muha, M. S.

    1982-01-01

    Many millimeter and far-infrared imaging systems are limited in sensitivity and speed because they depend on a single scanned element. Because of recent advances in planar detectors such as Schottky diodes, superconducting tunnel junctions, and microbolometers, an attractive approach to this problem is a planar antenna array with integrated detectors. A planar line antenna array and optical system for imaging has been developed. The significant advances are a 'reverse-microscope' optical configuration and a modified bow-tie antenna design. In the 'reverse-microscope' configuration, a lens is attached to the bottom of the substrate containing the antennas. Imaging is done through the substrate. This configuration eliminates the troublesome effects of substrate surface waves. The substrate lens has only a single refracting surface, making possible a virtually aplanatic system, with little spherical aberration or coma. The array is characterized by an optical transfer function that is easily measured. An array with 19 dB crosstalk levels between adjacent antennas has been tested and it was found that the array captured 50 percent of the available power. This imaging system was diffraction limited.

  20. 3D strain measurement in electronic devices using through-focal annular dark-field imaging

    Kim, Suhyun; Jung, Younheum; Lee, Sungho; Jung Kim, Joong; Byun, Gwangseon; Lee, Sunyoung; Lee, Haebum

    2014-11-15

    Spherical aberration correction in high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) allows us to form an electron probe with reduced depth of field. Using through-focal HAADF imaging, we experimentally demonstrated 3D strain measurement in a strained-channel transistor. The strain field distribution in the channel region was obtained by scanning an electron beam over a plan-view specimen. Furthermore, the decrease in the strain fields toward the silicon substrate was revealed at different focal planes with a 5-nm focal step. These results demonstrate that it is possible to reconstruct the 3D strain field in electronic devices. - Highlights: • Three dimensional strain fields were measured using through-focal HAADF-STEM series. • The technique was applied to the channel of a plan-view strained-silicon device. • The strain values agreed with the results obtained using cross-section specimen.