WorldWideScience

Sample records for 316l stainless steel

  1. Ion nitriding in 316=L stainless steel

    Ion nitriding is a glow discharge process that is used to induce surface modification in metals. It has been applied to 316-L austenitic stainless steel looking for similar benefits already obtained in other steels. An austenitic stainless steel was selected because is not hardenable by heat treatment and is not easy to nitride by gas nitriding. The samples were plastically deformed to 10, 20, 40, 50 AND 70% of their original thickness in order to obtain bulk hardening and to observe nitrogen penetration dependence on it. The results were: an increase of one to two rockwell hardness number (except in 70% deformed sample because of its thickness); an increase of even several hundreds per cent in microhardness knoop number in nitrided surface. The later surely modifies waste resistance which would be worth to quantify in further studies. Microhardness measured in an internal transversal face to nitrided surface had a gradual diminish in its value with depth. Auger microanalysis showed a higher relative concentration rate CN/CFe near the surface giving evidence of nitrogen presence till 250 microns deep. The color metallography etchant used, produced faster corrosion in nitrited regions. Therefore, corrosion studies have to be done before using ion nitrited 316-L under these chemicals. (Author)

  2. Study of Ce-modified antibacterial 316L stainless steel

    Yuan Junping

    2012-11-01

    Full Text Available 316L stainless steel is widely used for fashion jewelry, but it can carry a large number of bacteria and bring the risk of infection since the steel has no antimicrobial performance. In this paper, the effects of Ce on the antibacterial property, corrosion resistance and processability of 316L were studied by microscopic observation, thin-film adhering quantitative bacteriostasis, and electrochemical and mechanical tests. The results show that a trace of Ce can distribute uniformly in the matrix of 316L and slightly improve its corrosion resistance in artificial sweat. With an increase in Ce content, the Ce is prone to form clustering, which degrades the corrosion resistance and the processability. The Ce-containing 316L exhibits Hormesis effect against S. aureus. A small Ce addition stimulates the growth of S. aureus. As the Ce content increases, the modified 316L exhibits an improved antibacterial efficacy. The more Ce is added, the better antibacterial capability is achieved. Overall, if the 316L is modified with Ce alone, it is difficult to obtain the optimal combination of corrosion resistance, antibacterial performance and processability. In spite of that, 0.15 wt.%-0.20 wt.% Ce around is inferred to be the best trade-off.

  3. Biomaterial Studies on AISI 316L Stainless Steel after Magnetoelectropolishing

    Massimiliano Filippi

    2009-03-01

    Full Text Available The polarisation characteristics of the electropolishing process in a magnetic field (MEP – magnetoelectropolishing, in comparison with those obtained under standard/conventional process (EP conditions, have been obtained. The occurrence of an EP plateau has been observed in view of the optimization of MEP process. Up-to-date stainless steel surface studies always indicated some amount of free-metal atoms apart from the detected oxides and hydroxides. Such a morphology of the surface film usually affects the thermodynamic stability and corrosion resistance of surface oxide layer and is one of the most important features of stainless steels. With this new MEP process we can improve metal surface properties by making the stainless steel more resistant to halides encountered in a variety of environments. Furthermore, in this paper the stainless steel surface film study results have been presented. The results of the corrosion research carried out by the authors on the behaviour of the most commonly used material - medical grade AISI 316L stainless steel both in Ringer’s body fluid and in aqueous 3% NaCl solution have been investigated and presented earlier elsewhere, though some of these results, concerning the EIS Nyquist plots and polarization curves are also revealed herein. In this paper an attempt to explain this peculiar performance of 316L stainless steel has been undertaken. The SEM studies, Auger electron spectroscopy (AES and X-ray photoelectron spectroscopy (XPS were performed on 316L samples after three treatments: MP – abrasive polishing (800 grit size, EP – conventional electrolytic polishing, and MEP – magnetoelectropolishing. It has been found that the proposed magnetoelectropolishing (MEP process considerably modifies the morphology and the composition of the surface film, thus leading to improved corrosion resistance of the studied 316L SS.

  4. Corrosion of 316L stainless steels MAVL wastes containers

    The long lived and medium activity wastes are conditioned or could be re-conditioned in primary drums of 316L stainless steels. In the framework of wastes storage, these drums will be placed in concrete containers; each containers would contain one or more drums. This document recalls global information on the corrosion of stainless steels, analyzes specific conditions bond to the drums conditioning in concrete containers and the nature of the wastes, and details the consequences on the possible risks of external and internal corrosion of the drums. (A.L.B.)

  5. Hydrogen embrittlement of 316L type stainless steel

    Hydrogen embrittlement tests on type 316L stainless steel are performed including cathodic charging during slow strain rate tests. Brittle multiple cracking is observed and relationships between crack growth rate and diffusion are analysed. The influence of hydrogen on the morphology of ductile fracture is found after fractographic examination. Two aspects of ductile failure are observed in accordance with the hydrogen content of the sample; a reduced density of microvoids for higher hydrogen contents and brittle secondary cracking in addition to ductile fracture surfaces for lower hydrogen contents. (orig.)

  6. The behavior of diffusion and permeation of tritium through 316L stainless steel

    Results on diffusivity, solubility coefficient and permeability of tritium through palladium-plated 316 L stainless steel are described. An empirical formula for the diffusivity, the solubility coefficient and the permeability of tritium through palladium-plated 316 L stainless steel at various temperatures is presented. The influence of tritium pressure on the permeability, and the isotope effect of diffusivity of hydrogen and tritium in 316 L stainless steel is discussed. (orig.)

  7. Microstructural characterization of pulsed plasma nitrided 316L stainless steel

    Highlights: → The low temperature pulsed plasma nitrided layer of 316 SS was studied. → The plastic deformation induced in the austenite due to nitriding is characterized by EBSD at different depths (i.e., nitrogen concentration). → Nanomechanical properties of the nitride layer was investigated by nanoindentation at different depths (i.e., nitrogen concentration). → High hardness, high nitrogen concentration and high dislocation density is detected in the nitride layer. → The hardness and nitrogen concentration decreased sharply beyond the nitride layer. - Abstract: Pulsed plasma nitriding (PPN) treatment is one of the new processes to improve the surface hardness and tribology behavior of austenitic stainless steels. Through low temperature treatment (<440 deg. C), it is possible to obtain unique combinations of wear and corrosion properties. Such a combination is achieved through the formation of a so-called 'extended austenite phase'. These surface layers are often also referred to as S-phase, m-phase or γ-phase. In this work, nitrided layers on austenitic stainless steels AISI 316L (SS316L) were examined by means of a nanoindentation method at different loads. Additionally, the mechanical properties of the S-phase at different depths were studied. Electron back-scatter diffraction (EBSD) examination of the layer showed a high amount of plasticity induced in the layer during its formation. XRD results confirmed the formation of the S-phase, and no deleterious CrN phase was detected.

  8. Microstructural characterization of pulsed plasma nitrided 316L stainless steel

    Asgari, M. [Norwegian University of Science and Technology, Trondheim (Norway); Barnoush, A., E-mail: a.barnoush@matsci.uni-sb.de [Saarland University, Saarbruecken (Germany); Johnsen, R. [Norwegian University of Science and Technology, Trondheim (Norway); Hoel, R. [MOTecH Plasma Company, Oslo (Norway)

    2011-11-25

    Highlights: {yields} The low temperature pulsed plasma nitrided layer of 316 SS was studied. {yields} The plastic deformation induced in the austenite due to nitriding is characterized by EBSD at different depths (i.e., nitrogen concentration). {yields} Nanomechanical properties of the nitride layer was investigated by nanoindentation at different depths (i.e., nitrogen concentration). {yields} High hardness, high nitrogen concentration and high dislocation density is detected in the nitride layer. {yields} The hardness and nitrogen concentration decreased sharply beyond the nitride layer. - Abstract: Pulsed plasma nitriding (PPN) treatment is one of the new processes to improve the surface hardness and tribology behavior of austenitic stainless steels. Through low temperature treatment (<440 deg. C), it is possible to obtain unique combinations of wear and corrosion properties. Such a combination is achieved through the formation of a so-called 'extended austenite phase'. These surface layers are often also referred to as S-phase, m-phase or {gamma}-phase. In this work, nitrided layers on austenitic stainless steels AISI 316L (SS316L) were examined by means of a nanoindentation method at different loads. Additionally, the mechanical properties of the S-phase at different depths were studied. Electron back-scatter diffraction (EBSD) examination of the layer showed a high amount of plasticity induced in the layer during its formation. XRD results confirmed the formation of the S-phase, and no deleterious CrN phase was detected.

  9. Reducing Staphylococcus aureus biofilm formation on stainless steel 316L using functionalized self-assembled monolayers

    Kruszewski, Kristen M; Nistico, Laura; Mark J Longwell; Hynes, Matthew J; Maurer, Joshua A; Hall-Stoodley, Luanne; Gawalt, Ellen S.

    2013-01-01

    Stainless steel 316L (SS316L) is a common material used in orthopedic implants. Bacterial colonization of the surface and subsequent biofilm development can lead to refractory infection of the implant. Since the greatest risk of infection occurs perioperatively, strategies that reduce bacterial adhesion during this time are important. As a strategy to limit bacterial adhesion and biofilm formation on SS316L, self-assembled monolayers (SAMs) were used to modify the SS316L surface. SAMs with lo...

  10. A Study on Stainless Steel 316L Annealed Ultrasonic Consolidation and Linear Welding Density Estimation

    Gonzalez, Raelvim

    2010-01-01

    Ultrasonic Consolidation of stainless steel structures is being investigated for potential applications. This study investigates the suitability of Stainless Steel 316L annealed (SS316L annealed) as a building material for Ultrasonic Consolidation (UC), including research on Linear Welding Density (LWD) estimation on micrographs of samples. Experiment results are presented that include the effect of UC process parameters on SS316L annealed UC, optimum levels of these parameters, and bond qual...

  11. Perfluorocarbon thin films and polymer brushes on stainless steel 316L for control of interfacial properties

    Kruszewski, Kristen M; Gawalt, Ellen S.

    2011-01-01

    Perfluorocarbon thin films and polymer brushes were formed on stainless steel 316L (SS316L) to control the surface properties of the metal oxide. Substrates modified with the films were characterized using diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), contact angle analysis, atomic force microscopy (AFM), and cyclic voltammetry (CV). Perfluorooctadecanoic acid (PFOA) was used to form thin films by self-assembly on the surface of SS316L. Polypentafluorostyrene (PFS) poly...

  12. Fractographic studies of hydrogen embrittlement of AISI 316L austenitic stainless steel

    This paper concerns a fractographic examination of hydrogen embrittlement of a stable AISI 316L type austenitic stainless steel. The objective is a better understanding of the possible role of hydrogen in stress corrosion cracking processes. (author)

  13. Microstructure of 316L austenite stainless steel after charging with deuterium and tritium

    The microstructure of 316L austenite stainless steel after charging with deuterium and tritium for 6 years at room temperature is studied. The results indicate that the morphology of fracture surface after blasting is ductile rupture with dimple, stress produced by blasting of high pressure leads to the martensite transformation. The deuterium and tritium improve the ε martensite transformation of austenite and reduce the fault energy, which reduce the hydrogen-resistant properties of 316L stainless steel

  14. Linear friction welding of AISI 316L stainless steel

    Research highlights: → Linear friction welding is a feasible process for joining AISI316L. → Most welds had tensile strengths superior to the parent material. → Welding parameters had a significant impact on weld microstructure. → Control of microstructure by controlling welding parameters is a process benefit. - Abstract: Linear friction welding is a solid state joining process established as a niche technology for the joining of aeroengine bladed disks. However, the process is not limited to this application, and therefore the feasibility of joining a common engineering austenitic steel, AISI 316L, has been explored. It was found that mechanically sound linear friction welds could be produced in 316L, with tensile properties in most welds exceeding those of the parent material. The mechanical properties of the welds were also found to be insensitive to relatively large changes in welding parameters. Texture was investigated in one weld using high energy synchrotron X-ray diffraction. Results showed a strong {1 1 1} type texture at the centre of the weld, which is a typical shear texture in face centre cubic materials. Variations in welding parameters were seen to have a significant impact on the microstructures of welds. This was particularly evident in the variation of the fraction of delta ferrite, in the thermo-mechanically affected zone of the welds, with different process parameters. Analysis of the variation in delta ferrite, with different welding parameters, has produced some interesting insights into heat generation and dissipation during the process. It is hoped that a greater understanding of the process could help to make the parameter optimisation process, when welding 316L as well as other materials, more efficient.

  15. Susceptibility of 316L stainless steel to crevice corrosion in submersible solenoid valve

    Cai, B.P.; Liu, Y.H.; Tian, X.J.; Li, H.; Ji, R.J.; Wang, F.; Zhang, Y.Z. [School of Mechanical and Electronic Engineering, China University of Petroleum, Dongying, Shandong, 257061 (China)

    2011-08-15

    The susceptibility of 316L stainless steel to crevice corrosion was investigated by using immersion test and electrochemical test. Three kinds of crevices including 316L-to-polytetrafluoroethylene (PTFE) crevice, 316L-to-fluoroelastomeric (FKM) crevice and 316L-to-316L crevice were tested in artificial seawater at 50 C. The results indicate that 316L stainless steel specimen is the most susceptible to crevice corrosion when it is coupled to 316L stainless steel crevice former, while it is the least susceptible when it is coupled to FKM crevice former. It suggests that during submersible solenoid valve design, the crevice of metal-to-metal should be moderately large so that crevice corrosion can not initiate and propagate, and FKM O-ring rather than PTFE O-ring should be selected as obturating ring. The corroded surface morphology was investigated using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Three regions including passive region, active region and variable region can be observed on crevice corrosion sites. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Corrosion protection performance of porous strontium hydroxyapatite coating on polypyrrole coated 316L stainless steel.

    Gopi, D; Ramya, S; Rajeswari, D; Kavitha, L

    2013-07-01

    Polypyrrole/strontium hydroxyapatite bilayer coatings were achieved on 316L stainless steel (316L SS) by the electropolymerisation of pyrrole from sodium salicylate solution followed by the electrodeposition of porous strontium hydroxyapatite. The formation and the morphology of the bilayer coatings were characterised by Fourier transform infrared spectroscopy (FT-IR) and high resolution scanning electron microscopy (HRSEM), respectively. The corrosion resistance of the coated 316L SS specimens was investigated in Ringer's solution by electrochemical techniques and the results were substantiated with inductively coupled plasma atomic emission spectrometry (ICP-AES). The passive film underneath the polypyrrole layer is effective in protecting 316L SS against corrosion in Ringer's solution. Moreover, we believe that the top porous strontium hydroxyapatite layer can provide potential bioactivity to the 316L SS. PMID:23475060

  17. Processing and mechanical properties of porous 316L stainless steel for biomedical applications

    Montasser M.DEWIDAR; Khalil A.KHALIL; J. K. LIM

    2007-01-01

    Highly porous 316L stainless steel parts were produced by using a powder metallurgy process, which includes the selective laser sintering(SLS) and traditional sintering. Porous 316L stainless steel suitable for medical applications was successfully fabricated in the porosity range of 40%-50% (volume fraction) by controlling the SLS parameters and sintering behaviour. The porosity of the sintered compacts was investigated as a function of the SLS parameters and the furnace cycle. Compressive stress and elastic modulus of the 316L stainless steel material were determined. The compressive strength was found to be ranging from 21 to 32 MPa and corresponding elastic modulus ranging from 26 to 43 GPa. The present parts are promising for biomedical applications since the optimal porosity of implant materials for ingrowths of new-bone tissues is in the range of 20%-59% (volume fraction) and mechanical properties are matching with human bone.

  18. Resistance microwelding of 316L stainless steel wire to block

    Friis, Kasper Storgaard; Khan, M.I.; Bay, Niels;

    2011-01-01

    The excellent corrosion resistance of low carbon vacuum melted 316 stainless steel coupled with its non-magnetic properties makes it ideal for biomedical applications. The typical joint geometry for microcomponents, such as medical implants, includes joining of fine wire to a larger block. However......, this type of joint has received little attention in the current literature. The present study was conducted to examine the microstructure and mechanical properties of low carbon vacuum melted 316 stainless steel wire welded to a larger block. Results revealed solid state bonding occurring at low...

  19. Reducing Staphylococcus aureus biofilm formation on stainless steel 316L using functionalized self-assembled monolayers

    Stainless steel 316L (SS316L) is a common material used in orthopedic implants. Bacterial colonization of the surface and subsequent biofilm development can lead to refractory infection of the implant. Since the greatest risk of infection occurs perioperatively, strategies that reduce bacterial adhesion during this time are important. As a strategy to limit bacterial adhesion and biofilm formation on SS316L, self-assembled monolayers (SAMs) were used to modify the SS316L surface. SAMs with long alkyl chains terminated with hydrophobic (− CH3) or hydrophilic (oligoethylene glycol) tail groups were used to form coatings and in an orthogonal approach, SAMs were used to immobilize gentamicin or vancomycin on SS316L for the first time to form an “active” antimicrobial coating to inhibit early biofilm development. Modified SS316L surfaces were characterized using surface infrared spectroscopy, contact angles, MALDI-TOF mass spectrometry and atomic force microscopy. The ability of SAM-modified SS316L to retard biofilm development by Staphylococcus aureus was functionally tested using confocal scanning laser microscopy with COMSTAT image analysis, scanning electron microscopy and colony forming unit analysis. Neither hydrophobic nor hydrophilic SAMs reduced biofilm development. However, gentamicin-linked and vancomycin-linked SAMs significantly reduced S. aureus biofilm formation for up to 24 and 48 h, respectively. - Highlights: ► SS316L was modified with glycol terminated SAMs in order to reduce biofilm growth. ► Antibiotics gentamicin and vancomycin were immobilized on SS316L via SAMs. ► Only the antibiotic modifications reduced biofilm development on SS316L

  20. Reducing Staphylococcus aureus biofilm formation on stainless steel 316L using functionalized self-assembled monolayers

    Kruszewski, Kristen M., E-mail: kruszewskik@duq.edu [Duquesne University, Department of Chemistry and Biochemistry, 600 Forbes Avenue, Pittsburgh, PA 15282 (United States); Nistico, Laura, E-mail: lnistico@wpahs.org [Allegheny General Hospital, Center for Genomic Sciences, Allegheny-Singer Research Institute, 320 East North Avenue, 11th floor, South Tower, Pittsburgh, PA 15212 (United States); Longwell, Mark J., E-mail: mlongwel@wpahs.org [Allegheny General Hospital, Center for Genomic Sciences, Allegheny-Singer Research Institute, 320 East North Avenue, 11th floor, South Tower, Pittsburgh, PA 15212 (United States); Hynes, Matthew J., E-mail: mjhynes@go.wustl.edu [Washington University in St. Louis, Department of Chemistry, One Brookings Drive, St. Louis, MO 63130 (United States); Maurer, Joshua A., E-mail: maurer@wustl.edu [Washington University in St. Louis, Department of Chemistry, One Brookings Drive, St. Louis, MO 63130 (United States); Hall-Stoodley, Luanne, E-mail: L.Hall-Stoodley@soton.ac.uk [Southampton Wellcome Trust Clinical Research Facility/NIHR Respiratory BRU, University of Southampton Faculty of Medicine, Southampton General Hospital, Tremona Road, Southampton, Hampshire SO16 6YD (United Kingdom); Gawalt, Ellen S., E-mail: gawalte@duq.edu [Duquesne University, Department of Chemistry and Biochemistry, McGowan Institute for Regenerative Medicine, 600 Forbes Avenue, Pittsburgh, PA 15282 (United States)

    2013-05-01

    Stainless steel 316L (SS316L) is a common material used in orthopedic implants. Bacterial colonization of the surface and subsequent biofilm development can lead to refractory infection of the implant. Since the greatest risk of infection occurs perioperatively, strategies that reduce bacterial adhesion during this time are important. As a strategy to limit bacterial adhesion and biofilm formation on SS316L, self-assembled monolayers (SAMs) were used to modify the SS316L surface. SAMs with long alkyl chains terminated with hydrophobic (− CH{sub 3}) or hydrophilic (oligoethylene glycol) tail groups were used to form coatings and in an orthogonal approach, SAMs were used to immobilize gentamicin or vancomycin on SS316L for the first time to form an “active” antimicrobial coating to inhibit early biofilm development. Modified SS316L surfaces were characterized using surface infrared spectroscopy, contact angles, MALDI-TOF mass spectrometry and atomic force microscopy. The ability of SAM-modified SS316L to retard biofilm development by Staphylococcus aureus was functionally tested using confocal scanning laser microscopy with COMSTAT image analysis, scanning electron microscopy and colony forming unit analysis. Neither hydrophobic nor hydrophilic SAMs reduced biofilm development. However, gentamicin-linked and vancomycin-linked SAMs significantly reduced S. aureus biofilm formation for up to 24 and 48 h, respectively. - Highlights: ► SS316L was modified with glycol terminated SAMs in order to reduce biofilm growth. ► Antibiotics gentamicin and vancomycin were immobilized on SS316L via SAMs. ► Only the antibiotic modifications reduced biofilm development on SS316L.

  1. Nanosized controlled surface pretreatment of biometallic alloy 316L stainless steel.

    Abdel-Fattah, Tarek M; Loftis, Derek; Mahapatro, Anil

    2011-12-01

    Stainless steel (AISI 316L) is a medical grade stainless steel alloy used extensively in medical devices and in the biomedical field. 316L stainless steel was successfully electropolished via an ecologically friendly and biocompatible ionic liquid (IL) medium based on Vitamin B4 (NB4) and resulting in nanosized surface roughness and topography. Voltammetry and chronoamperometry tests determined optimum polishing conditions for the stainless steel alloy while atomic force microscopy (AFM) and scanning electron microscopy (SEM) provided surface morphology comparisons to benchmark success of each electropolishing condition. Energy dispersive X-ray analysis (EDX) combined with SEM revealed significantly smoother surfaces for each alloy surface while indicating that the constituent metals comprising each alloy effectively electropolished at uniform rates. PMID:22416578

  2. Surface hardening of stainless steel 316L with RF-plasma nitrocarburizing device

    Surface hardening on stainless steel 316L with RF-plasma nitrocarburizing device made by BATAN have been investigated. Some samples was nitrocarburized at 400°C for 2-6 hours. The results show that the hardness of the untreated sample of SS 316L was 230,7 Kgf/mm2 . The hardness increased up to 299,4 Kgf/mm2 for nitrocarburizing at 400°C for 6 hours. Furthermore, the maximum depth of carbon and nitrogen atoms diffused in SS 316L was 73,1 micrometer. Microstructure observation shows that the sample that was nitrocarburized at 400°C for 6 hours produced a very clear image indicating N and C atoms layers in SS 316L. The un-treated sample and the sample that was nitrocarburized at 400°C (t = 6 hours) have the same matrixes, i.e. δ-ferrite and pearlite. (author)

  3. Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting

    Zhong, Yuan; Liu, Leifeng; Wikman, Stefan; Cui, Daqing; Shen, Zhijian

    2016-03-01

    A feasibility study was performed to fabricate ITER In-Vessel components by Selective Laser Melting (SLM) supported by Fusion for Energy (F4E). Almost fully dense 316L stainless steel (SS316L) components were prepared from gas-atomized powder and with optimized SLM processing parameters. Tensile tests and Charpy-V tests were carried out at 22 °C and 250 °C and the results showed that SLM SS316L fulfill the RCC-MR code. Microstructure characterization reveals the presence of hierarchical macro-, micro- and nano-structures in as-built samples that were very different from SS316L microstructures prepared by other established methods. The formation of a characteristic intragranular cellular segregation network microstructure appears to contribute to the increase of yield strength without losing ductility. Silicon oxide nano-inclusions were formed during the SLM process that generated a micro-hardness fluctuation in the building direction. The combined influence of a cellular microstructure and the nano-inclusions constraints the size of ductile dimples to nano-scale. The crack propagation is hindered by a pinning effect that improves the defect-tolerance of the SLM SS316L. This work proves that it was possible to manufacture SS316L with properties suitable for ITER First Wall panels. Further studies on irradiation properties of SLM SS316L and manufacturing of larger real-size components are needed.

  4. Corrosion fatigue of 316L stainless steel in hot LiOH solution

    The corrosion fatigue behavior of AlSl 316L (UNS S31603) stainless steel was tested in concentrated aqueous lithium hydroxide solutions at elevated temperature. Fatigue tests were conducted in a 10 g LiOH/100cc H2O solution at 95 C at controlled electrochemical potentials. Experimental conditions met requirements of the aqueous Li salt blanket option for the international and European nuclear fusion reactor programs of the International Thermonuclear Experimental Reactor (ITER) and Next European Torus (NET). Results indicated 316L stainless steel was susceptible to corrosion fatigue in a narrow potential range of approximately 100 mV (vs SCE). Tests at lower or higher potentials (e.g., -80 and 200 mV), however, did not show susceptibility to corrosion fatigue cracking. Results were compared with the stress corrosion cracking behavior of 316L in the same environment

  5. Electrochemical polishing as a 316L stainless steel surface treatment method: Towards the improvement of biocompatibility

    Highlights: • Electropolishing of 316L stainless steel increases its corrosion resistance. • New electropolishing electrolyte composition is suggested. • Larger thickness and chromium enrichment of the passive film is obtained. • Electropolishing improves the surface biocompatibility and hemocompatibility. - Abstract: A 316L stainless steel (316L-SS) surface was electrochemically polished (EP) in an electrolyte of a new chemical composition at different cell voltages, with the aim of improving its corrosion resistance and biocompatibility. X-ray photoelectron spectroscopy results revealed that the EP-formed oxide films were characterized by a significantly higher atomic Cr/Fe ratio and film thickness, in comparison to the naturally-grown passive oxide film formed on the untreated (control) 316L-SS surface. As a result of the increase in the oxide film thickness and relative Cr enrichment, the EP-treated 316L-SS surfaces offered a notable improvement in general corrosion resistance and pitting potential. In addition, the attachment of endothelial cells (ECs) and smooth muscle cells (SMCs) to the 316L-SS surfaces revealed a positive effect of electropolishing on the preferential attachment of ECs, thus indicating that the EP surfaces could be endothelialized faster than the control (unmodified) 316L-SS surface. Furthermore, the EP surfaces showed a much lower degree of thrombogenicity in experiments with the platelet-rich plasma. Therefore, the use of the electrochemical polishing technique in treating a 316L-SS surface, under the conditions presented in this paper, indicates a significant improvement in the surface’s performance as an implant material

  6. Electrochemical behavior of SUS316L stainless steel after surface modification

    梁成浩; 郭亮; 陈婉; 刘敬肖

    2003-01-01

    The surface modification for SUS316L stainless steel was carried out by electroplating Rh, ion beam assisted deposition Ta2O5 and sol-gel-derived TiO2. In Tyrodes stimulated body fluid, the surface modified samples were investigated with electrochemical techniques. The results indicate that the electrochemical stability and dissolution are improved significantly after surface modification. Moreover, as to ion beam assisted deposition Ta2O5 and sol-gel-derived TiO2 film, the metals d orbit electron holes filled up by the oxygen electrons make against the adsorption of hydrogen. Thus the cathode process, which is controlled by the hydrogen reduction, is held back. X-ray diffraction analysis of SUS316L stainless steel after surface modification reveal that each method forms the uniform and compact film on SUS316L stainless steel. These films prevent the dissolving of elements and improve passivation property of the SUS316L stainless steel.

  7. Influence of the surface finishing on electrochemical corrosion characteristics of AISI 316L stainless steel

    Dundeková, S.; Hadzima, B.; Fintová, Stanislava

    2015-01-01

    Roč. 22, č. 2 (2015), s. 77-84. ISSN 1335-0803 Institutional support: RVO:68081723 Keywords : AISI 316L stainless steel * EIS * Corrosion Subject RIV: JK - Corrosion ; Surface Treatment of Materials http://ojs.mateng.sk/index.php/Mateng/article/view/167/278

  8. Martensitic transformation in 304L and 316L types stainless steels cathodically hydrogen charged

    This paper reports a TEM study on the role of phase transitions at the crack tip in 304L and 316L types stainless steels cathodically hydrogen charged in the absence of any eternally applied forces. The possible role of α prime and epsilon martensite phases in the fracture mechanism is discussed

  9. Production of Ti-containing 316L stainless steel in a crucible induction furnace

    The production of type 316L stainless steel with titanium was studied. The stainless steel was produced in an induction furnace using 1010 steel as starting material. The carbon and impurities contents of the steel were lowered by means of the addition of iron oxide and lime respectively. Finally, the last slag was removed before adding nickel and ferroalloys. Experimental results showed the wear resistance of the crucibles with different contents of magnamix 363 and the corrosion resistance of the steel obtained caused by a solution of sulfuric acid. (author)

  10. Effect of in site strain on passivated property of the 316L stainless steels.

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Ting, Guo

    2016-04-01

    The effect of the strain of 316L stainless steel on its corrosion resistance in borate buffer solution was investigated by in site tensile test and the electrochemical impedance spectroscopy measurements. It was found that the corrosion resistance of the 316L stainless steel decreased with the increasing of in site strain. The lower corrosion resistance of the stainless steel during in site strain was mainly attributed to the higher doping concentration in passive film. Especially, with the increasing of in site strain, the concentrations of acceptor (i.e., cation vacancies) in the passive films significantly increased. More acceptor concentrations reduced the compactness of the passive film and its corrosion resistance. Moreover, two exponential relationships were found between in site strain and the charge transfer resistance of the passive film and between in site strain and total doping concentrations in passive film, respectively. PMID:26838820

  11. New route to form micro-pores on 316L stainless steel surface

    Ma Xinxin [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001 (China)], E-mail: maxin@hit.edu.cn; Wang Yujiang; Tang Guangze [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001 (China); Chen Qingfu [Jiangyin Fasten-PLT Materials Science Co., Ltd (Peier), 998 Changjiang Donglu, Jiangyin, 214434 (China)

    2008-11-15

    In order to seek an effective way for preventing restenosis after coronary stent implantation, a proposal of increasing the amount of loaded drug without changing the size of struts was given. Thereafter, a process of fabricating in-situ formed sub-micro-pores on 316L stainless steel (316L SS) was demonstrated. An aluminum thin film was deposited by magnetron sputtering on a 316L substrate. The aluminum film was then anodized in different acids (0.3 M oxalic and 10 vol.% sulfuric) by regulating direct current power supply. Through an appropriate chemical dissolution, the anodic alumina film was removed and the underlying porous 316L was obtained. The morphology of the porous 316L surface was examined by scanning electron microscope and the composition of the pores was investigated by energy dispersive X-ray analysis. The corrosion behavior of the porous 316L was evaluated by the polarization measurement. The results indicate that the shape and size of pores could be affected evidently by the acids used in anodization. The pores density is found to change with variation of the applied voltage in anodization. The corrosion current of the anodized specimens decrease and the corrosion voltage increase, compared with the untreated specimens.

  12. Microstructure and Corrosion Resistance of Laser Additively Manufactured 316L Stainless Steel

    Trelewicz, Jason R.; Halada, Gary P.; Donaldson, Olivia K.; Manogharan, Guha

    2016-03-01

    Additive manufacturing (AM) of metal alloys to produce complex part designs via powder bed fusion methods such as laser melting promises to be a transformative technology for advanced materials processing. However, effective implementation of AM processes requires a clear understanding of the processing-structure-properties-performance relationships in fabricated components. In this study, we report on the formation of micro and nanoscale structures in 316L stainless steel samples printed by laser AM and their implications for general corrosion resistance. A variety of techniques including x-ray diffraction, optical, scanning and transmission electron microscopy, x-ray fluorescence, and energy dispersive x-ray spectroscopy were employed to characterize the microstructure and chemistry of the laser additively manufactured 316L stainless steel, which are compared with wrought 316L coupons via electrochemical polarization. Apparent segregation of Mo has been found to contribute to a loss of passivity and an increased anodic current density. While porosity will also likely impact the environmental performance (e.g., facilitating crevice corrosion) of AM alloys, this work demonstrates the critical influence of microstructure and heterogeneous solute distributions on the corrosion resistance of laser additively manufactured 316L stainless steel.

  13. Improvement in the Corrosion Resistance of Austenitic Stainless Steel 316L by Ion Implantation

    Cai, Xun; Feng, Kai

    In the present work, austenitic stainless steel 316L (SS316L) samples were implanted with Ni and Ni-Cr. A nickel-rich layer about 100 nm in thickness and a Ni-Cr enriched layer about 60 nm thick are formed on the surface of SS316L. The effects of ion implantation on the corrosion performance of SS316L are investigated in a 0.5 M H2SO4 with 2 ppm HF solution at 80°C by open circuit potential (OCP), potentiodynamic and potentiostatic tests. The samples after the potentiostatic test are analyzed by XPS. The results indicate that the composition of the passive film change from a mixture of Fe oxides and Cr oxide to a Cr oxide dominated passive film after the potentiostatic test. The solutions after the potentiostatic test are analyzed by inductively coupled plasma atomic emission spectrometry (ICP-AES). The results reveal that Fe is selectively dissolved in all cases and a proper Ni and Ni-Cr implant fluence can greatly improve the corrosion resistance of SS316L in the simulated polymer electrolyte membrane fuel cells (PEMFCS) environment. They are in agreement with the electrochemical test results that the bare SS316L has the highest dissolution rate in both cathode and anode environments and the Ni and Ni-Cr implantation reduce markedly the dissolution rate. After the potentiostatic test the interfacial contact resistance (ICR) values are also measured. Ni and Ni-Cr are enriched in the passive film formed in the simulated PEMFC cathode environment after ion implantation thereby providing better conductivity than that formed in the anode one. A significant improvement of ICR is achieved for the SS316L implanted with Ni and Ni-Cr as compared to the bare SS316L, which is attributed to the reduction in passive layer thickness caused by Ni and Ni-Cr implantation. The ICR values for implanted specimens increase with increasing dose.

  14. Experimental Study on Uniaxial and Multiaxial Strain Cyclic Characteristics and Ratcheting of 316L Stainless Steel

    2001-01-01

    An experimental study was carried out on the strain cycliccharacteristics and ratcheting of 316Lstainless steel subjected to uniaxial and multiaxial cyclic loading. The strain cyclic characteristics were researched under the strain-controlled uniaxial tension-compression and multiaxial circular paths of loading. The ratcheting tests were conducted for the stress-controlled uniaxial tensioncompression and multiaxial circular, rhombic and linear paths of loading with different mean stresses, stress amplitudes and histories. The experiment results show that 316L stainless steel features the cyclic hardening, and its strain cyclic characteristics depend on the strain amplitude and its history apparently. The ratcheting of 316L stainless steel depends greatly on the values of mean stress, stress amplitude and their histories. In the meantime, the shape of load path and its history also apparently influence the ratcheting.

  15. Pitting Corrosion of 316L Stainless Steel under Low Stress below Yield Strength

    L(U) Shengjie; CHENG Xuequn; LI Xiaogang

    2012-01-01

    Pitting corrosion of 316L stainless steel (316L SS) under various stress was studied by potentiodynamic polarization,electrochemical impedance spectroscopy (EIS) and Mott-Schottky (M-S) analysis in 3.5% NaCl solution.The results of polarization curves show that,with the increase of the stress,the pitting potentials and the passive current density markedly decrease firstly (180 MPa),and then increase greatly (200 MPa).The corresponding surface morphologies of the samples after the polarization test well correspond to the results.Mott-Schottky analysis proved the least Cl- adsorbed to the surface of passive film with more positive flat potential,indicating that a moderate stress could increase the pitting corrosion resistance of 316L SS in 3.5% NaCl solution.

  16. Effect of multiple film on the tritium permeation property in 316L stainless steel

    The films of TiN + TiC + TiN and TiN + TiC + SiO2 were deposited on the surface of 316L stainless steel by physical vapor deposition technology. The characteristics of films are tested by SEM technology, it shows that the films are compact, thermal shock-resistant, oxidation-resistant and have good compatibility with bulk. the SIMS and IR analysis results show that the tritium permeation barrier is formed when TiC and SiO2 films are annealed in hydrogen above 300 degree C. The tritium permeability in 316L with film is measured at various temperature, the results show that the tritium permeability in 316L with TiN + TiC + SiO2 film is 4-6 orders of magnitude lower, and that in 316L with TiN + TiC + TiN film is 4-5 orders of magnitude lower than that in 316L with Pd film at about 200-600 degree C. These films may be used as the surface coating of the first wall, tritium blanket and heat exchanger in fusion reactor

  17. Effect of Surface Treatment on the Surface Characteristics of AISI 316L Stainless Steel

    Trigwell, Steve; Selvaduray, Guna

    2005-01-01

    The ability of 316L stainless steel to maintain biocompatibility, which is dependent upon the surface characteristics, is critical to its effectiveness as an implant material. The surfaces of mechanically polished (MP), electropolished (EP) and plasma treated 316L stainless steel coupons were characterized by X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES) for chemical composition, Atomic Force Microscopy for surface roughness, and contact angle measurements for critical surface tension. All surfaces had a Ni concentration that was significantly lower than the bulk concentration of -43%. The Cr content of the surface was increased significantly by electropolishing. The surface roughness was also improved significantly by electropolishing. Plasma treatment had the reverse effect - the surface Cr content was decreased. It was also found that the Cr and Fe in the surface exist in both the oxide and hydroxide states, with the ratios varying according to surface treatment.

  18. Oxide Formation In Metal Injection Molding Of 316L Stainless Steel

    Jang Jin Man

    2015-06-01

    Full Text Available The effects of sintering condition and powder size on the microstructure of MIMed parts were investigated using water-atomized 316L stainless steel powder. The 316L stainless steel feedstock was injected into micro mold with micro features of various shapes and dimensions. The green parts were debound and pre-sintered at 800°C in hydrogen atmosphere and then sintered at 1300°C and 1350°C in argon atmosphere of 5torr and 760torr, respectively. The oxide particles were formed and distributed homogeneously inside the sample except for the outermost region regardless of sintering condition and powder size. The width of layer without oxide particles are increased with decrease of sintering atmosphere pressure and powder size. The fine oxides act as the obstacle on grain growth and the high sintering temperature causes severe grain growth in micro features due to larger amount of heat gain than that in macro ones.

  19. The effect of hydrogen/helium implantation on the microstructure of 316L stainless steel

    Type 316L stainless steel has been used for first wall material of NET (Next European TOKAMAK). The 316L stainless steel was implanted with helium and hydrogen to investigate the irradiation behavior in the temperature range 120-420 deg C. The strength of implanted material increased at 120, 220 deg C while elongation decreased. At 420 deg C, abrupt decrease in strength and elongation occured due to helium bubbles. Slip bands were well developed during tensile test like channel deformation. Dislocations were along the (111) planes and cell structure was also generated at higher temperature. With 500 appm hydrogen implantation, microstructure did not change much but contained small amount of dislocations and stacking faults. (Author)

  20. Corrosion resistance improvement for 316L stainless steel coronary artery stents by trimethylsilane plasma nanocoatings

    Jones, John Eric; Chen, Meng; Yu, Qingsong

    2014-01-01

    To improve their corrosion resistance and thus long-term biocompatibility, 316L stainless steel coronary artery stents were coated with trimethylsilane (TMS) plasma coatings of 20–25 nm in thickness. Both direct current (DC) and radio-frequency (RF) glow discharges were utilized for TMS plasma coatings and additional NH3/O2 plasma treatment to tailor the surface properties. X-ray photoelectron spectroscopy (XPS) was used to characterize the coating surface chemistry. It was found that both DC...

  1. Weld process study for 316L stainless steel weld metal for liquid helium service

    This study was conducted to determine the effects of welding process choice on the cryogenic properties of 316L stainless steel welds. Six weldments were impact tested down to 77 K and tensile and fracture toughness tested down to 4 K. The best properties obtained were from a GTA weld, followed by GMA welds; SA welds had the poorest properties. This variation in properties was attributed to the cleanliness of the weld metal, which is dependent on the welding process and parameters selected

  2. Influence of the surface finishing on the corrosion behaviour of AISI 316L stainless steel

    Dundeková, S.; Zatkalíková, V.; Fintová, Stanislava; Hadzima, B.; Škorík, Viktor

    2015-01-01

    Roč. 22, č. 1 (2015), s. 48-53. ISSN 1335-0803 R&D Projects: GA MŠk(CZ) EE2.3.30.0063 Institutional support: RVO:68081723 Keywords : AISI 316L stainless steel * Corrosion * Immersion test * Corrosion rate Subject RIV: JK - Corrosion ; Surface Treatment of Materials http://ojs.mateng.sk/index.php/Mateng/article/view/166/251

  3. Niobium coatings on 316L stainless steel for improving corrosion resistance

    Niobium coatings were deposited onto 316L stainless steel substrates by ion-beam-assisted deposition. The coatings, deposited under 250 eV ion bombardment with [Ar+]/[Nb] ratios ranging from 0.68 to 0.8, were dense and showed no sign of pitting corrosion in a 3% NaCl solution. Also, based on the result of scratch tests, niobium coatings may act as sacrificial anodes and protect substrates. (orig.)

  4. Growth inhibition of cultured smooth muscle cells by corrosion products of 316 L stainless steel wire.

    Shih, C C; Shih, C M; Chen, Y L; Su, Y Y; Shih, J S; Kwok, C F; Lin, S J

    2001-11-01

    The potential cytotoxicity on vascular smooth muscle cells of corrosion products from 316 L stainless steel, one of most popular biomaterials of intravascular stents, has not been highlighted. In this investigation, 316 L stainless steel wires were corroded in Dulbecco's modified eagle's medium with applied constant electrochemical breakdown voltage, and the supernatant and precipitates of corrosion products were prepared as culture media. The effects of different concentrations of corrosion products on the growth of rat aortic smooth muscle cells were conducted with the [3H]-thymidine uptake test and cell cycle sorter. Both the supernatant and precipitates of corrosion products were toxic to the primary culture of smooth muscle cells. The growth inhibition was correlated well with the increased nickel ions in the corrosion products when nickel concentration was above 11.7 ppm. The corrosion products also changed cell morphology and induced cell necrosis. The cell growth inhibition occurred at the G0/G1 to S transition phase. Similar to our recent study of nitinol stent wire, the present investigation also demonstrated the cytotoxicity of corrosion products of 316 L stainless steel stent wire on smooth muscle cells, which might affect the poststenting vascular response. PMID:11484182

  5. Cytotoxicity difference of 316L stainless steel and titanium reconstruction plate

    Ni Putu Mira Sumarta

    2011-03-01

    Full Text Available Background: Pure titanium is the most biocompatible material today and used as a gold standard for metallic implants. However, stainless steel is still being used as implants because of its strength, ductility, lower price, corrosion resistant and biocompatibility. Purpose: This study was done to revealed the cytotoxicity difference between reconstruction plate made of 316L stainless steel and of commercially pure (CP titanium in baby hamster kidney-21 (BHK-21 fibroblast culture through MTT assay. Methods: Eight samples were prepared from reconstruction plates made of stainless steel type 316L grade 2 (Coen’s reconstruction plate® that had been cut into cylindrical form of 2 mm in diameter and 3 mm long. The other one were made of CP titanium (STEMA Gmbh® of 2 mm in diameter and 2,2 mm long; and had been cleaned with silica paper and ultrasonic cleaner, and sterilized in autoclave at 121° C for 20 minutes.9 Both samples were bathed into microplate well containing 50 μl of fibroblast cells with 2 x 105 density in Rosewell Park Memorial Institute-1640 (RPMI-1640 media, spinned at 30 rpm for 5 minutes. Microplate well was incubated for 24 and 48 hours in 37° C. After 24 hours, each well that will be read at 24 hour were added with 50 μl solution containing 5mg/ml MTT reagent in phosphate buffer saline (PBS solutions, then reincubated for 4 hours in CO2 10% and 37° C. Colorometric assay with MTT was used to evaluate viability of the cells population after 24 hours. Then, each well were added with 50 μl dimethyl sulfoxide (DMSO and reincubated for 5 minutes in 37° C. the wells were read using Elisa reader in 620 nm wave length. Same steps were done for the wells that will be read in 48 hours. Each data were tabulated and analyzed using independent T-test with significance of 5%. Results: This study showed that the percentage of living fibroblast after exposure to 316L stainless steel reconstruction plate was 61.58% after 24 hours and 62

  6. Fabrication of antibacterial and hydrophilic electroless Ni-B coating on 316L stainless steel

    Bülbül, Ferhat; Bülbül, Leman Elif

    2016-01-01

    Biomaterial-associated bacterial infection is one of the most common complications with medical vehicles and implants made of stainless steel. A surface coating treatment like electroless Ni-B deposition, a new candidate to be used in a broad range of engineering applications owing to many advantages such as low cost, thickness uniformity, good wear resistance, may improve the antibacterial activity and physical properties of biomedical devices made of stainless steel. In this study, the antibacterial property of the electroless Ni-B film coated on AISI 316L (UNS S31603) stainless steel is basically investigated. Inhibition halo diameter measurement after incubation at 37 °C and 24 h demonstrates the existence of antimicrobial activity of the electroless Ni-B coating deposited on 316L stainless steel over the Escherichia coli test bacteria. The results of X-ray diffraction, scanning electron microscopy, atomic force microscopy and microhardness measurement studies confirms that the coating deposited on the substrate has an uniform amorphous and a harder structure. Besides, the wettability property of the uncoated substrate and the coating was measured as the contact angle of water. The water contact angle reduced about from 97.7 to 69.25°.

  7. In vitro biocompatibility of plasma-aided surface-modified 316L stainless steel for intracoronary stents

    Bayram, Cem; Denkbas, Emir Baki [Nanotechnology and Nanomedicine Division, The Institute For Graduate Studies in Science and Engineering, Hacettepe University, 06800, Ankara (Turkey); Mizrak, Alpay Koray [Institute of Materials Science and Nanotechnology, Bilkent University, UNAM, 06800, Ankara (Turkey); Aktuerk, Selcuk [Department of Physics, Mugla University, 48000 Koetekli, Mugla (Turkey); Kursaklioglu, Hurkan; Iyisoy, Atila [Department of Cardiology, School of Medicine, Gulhane Military Medicine Academy, 06018, Ankara (Turkey); Ifran, Ahmet, E-mail: denkbas@hacettepe.edu.t [Department of Hematology, School of Medicine, Gulhane Military Medicine Academy, 06018, Ankara (Turkey)

    2010-10-01

    316L-type stainless steel is a raw material mostly used for manufacturing metallic coronary stents. The purpose of this study was to examine the chemical, wettability, cytotoxic and haemocompatibility properties of 316L stainless steel stents which were modified by plasma polymerization. Six different polymeric compounds, polyethylene glycol, 2-hydroxyethyl methacrylate, ethylenediamine, acrylic acid, hexamethyldisilane and hexamethyldisiloxane, were used in a radio frequency glow discharge plasma polymerization system. As a model antiproliferative drug, mitomycin-C was chosen for covalent coupling onto the stent surface. Modified SS 316L stents were characterized by water contact angle measurements (goniometer) and x-ray photoelectron spectroscopy. C1s binding energies showed a good correlation with the literature. Haemocompatibility tests of coated SS 316L stents showed significant latency (t-test, p < 0.05) with respect to SS 316L and control groups in each test.

  8. Parylene coatings on stainless steel 316L surface for medical applications — Mechanical and protective properties

    The mechanical and protective properties of parylene N and C coatings (2–20 μm) on stainless steel 316L implant materials were investigated. The coatings were characterized by scanning electron and confocal microscopes, microindentation and scratch tests, whereas their protective properties were evaluated in terms of quenching metal ion release from stainless steel to simulated body fluid (Hanks solution). The obtained results revealed that for parylene C coatings, the critical load for initial cracks is 3–5 times higher and the total metal ions release is reduced 3 times more efficiently compared to parylene N. It was thus concluded that parylene C exhibits superior mechanical and protective properties for application as a micrometer coating material for stainless steel implants. - Highlights: ► Parylene biocompatible coating was applied for steel implant surfaces by CVD method. ► Mechanical and protective properties of polymer layers were determined. ► Rival discrimination between parylene N and C on steel 316L was performed. ► Total metal ions release was reduced more efficiently by parylene C coating. ► Critical load for initial cracks was 3–5 times higher for parylene C coating.

  9. Damage mechanism at different transpassive potentials of solution-annealed 316 and 316l stainless steels

    Morshed Behbahani, K.; Pakshir, M.; Abbasi, Z.; Najafisayar, P.

    2015-01-01

    Electrochemical impedance spectroscopy (EIS), anodic polarization and scanning electron microscopy techniques were used to investigate the damage mechanism in the transpassive potential region of AISI 316 and AISI 316L solution-annealed stainless steels (SS) with different degrees of sensitization. Depending on the DC potential applied during EIS tests, the AC responses in the transpassive region included three different regions: the first one associated with anodic dissolution of the passive layer, the second one contributed to the dissolution at the area near grain boundaries, and the last one attributed to pitting corrosion. In addition, the fitting results to experimental data showed that as the DC bias during the EIS test increases the charge transfer resistance ( R ct) decreases. Moreover, the R ct values decreased as the sensitization temperature increases but the AISI 316L SS samples exhibited a higher resistance to intergranular corrosion than 316 SS samples.

  10. Effects of Admixed Titanium on Densification of 316L Stainless Steel Powder during Sintering

    Aslam Muhammad

    2014-07-01

    Full Text Available Effects of admixed titanium on powder water atomized (PWA and powder gas atomized (PGA 316L stainless steel (SS have been investigated in terms of densification. PGA and PWA powders, having different shapes and sizes, were cold pressed and sintered in argon atmosphere at 1300°C. The admixed titanium compacts of PGA and PWA have shown significant effect on densification through formation of intermetallic compound and reducing porosity during sintering process. PWA, having particle size 8 μm, blended with 1wt% titanium has exhibited higher sintered density and shrinkage as compared to gas atomized powder compacts. Improved densification of titanium blended PGA and PWA 316L SS at sintering temperature 1300°C is probably due to enhanced diffusion kinetics resulting from stresses induced by concentration gradient in powder compacts.

  11. Effect of Starch Binders in Alumina Coatings on Aisi 316 L Stainless Steel for Medical Application

    Ghazali, M. J.; Pauzi, A. A.; Azhari, C. H.; Ghani, J. A.; Sulong, A. B.; Mustafa, R.

    A slurry immersion technique of alumina coatings was carried out on several AISI 316 L stainless steels using two types of binding agents; commercial starch and Sarawakian starch (sago), which were also mixed with polyvinylchloride (PVA) for strengthening purposes. The sintering temperatures in this work were varied from 500 to 1000°C. Prior to sintering process, all stainless steels were metallographically ground and polished to approximately 0.6 µm of average roughness. Detailed characterisations on the sintered specimens were carried out with the aid of the secondary electron microscopy (SEM), microhardness and a profilometer. The results revealed that coated steels using sago binder showed improved adhesion and homogenous microstructures with greater hardness of 2642 HV than those found in coated steel with commercial starch after sintering process.

  12. Preparation and characterization of stainless steel 316L/HA biocomposite

    Gilbert Silva

    2012-01-01

    Full Text Available The austenitic stainless steel 316L is the most used metallic biomaterials in orthopedics applications, especially in the manufacture of articulated prostheses and as structural elements in fracture fixation, since it has high mechanical strength. However, because it is biologically inactive, it does not form chemical bond with bone tissue, it is fixed only by morphology. The development of biocomposites of stainless steel with a bioactive material, such as hydroxyapatite - HA, is presented as an alternative to improve the response in the tissue-implant interface. However significant reductions in mechanical properties of the biocomposite can occur. Different compositions of the biocomposite stainless steel 316L/HA (5, 20 and 50 wt. (% HA were prepared by mechanical alloying. After milling the powders for 10 hours, the different compositions of the biocomposite were compacted isostatically and sintered at 1200 ºC for 2 hours. The mechanical properties of the biocomposites were analyzed by compression tests. The powders and the sintered composites were analyzed by scanning electron microscopy (SEM and X-ray diffraction (XRD.

  13. Preparation and characterization of stainless steel 316L/HA biocomposite

    Gilbert Silva

    2013-04-01

    Full Text Available The austenitic stainless steel 316L is the most used metallic biomaterials in orthopedics applications, especially in the manufacture of articulated prostheses and as structural elements in fracture fixation, since it has high mechanical strength. However, because it is biologically inactive, it does not form chemical bond with bone tissue, it is fixed only by morphology. The development of biocomposites of stainless steel with a bioactive material, such as hydroxyapatite - HA, is presented as an alternative to improve the response in the tissue-implant interface. However significant reductions in mechanical properties of the biocomposite can occur. Different compositions of the biocomposite stainless steel 316L/HA (5, 20 and 50 wt. (% HA were prepared by mechanical alloying. After milling the powders for 10 hours, the different compositions of the biocomposite were compacted isostatically and sintered at 1200 ºC for 2 hours. The mechanical properties of the biocomposites were analyzed by compression tests. The powders and the sintered composites were analyzed by scanning electron microscopy (SEM and X-ray diffraction (XRD.

  14. Solute segregation on Σ3 and random grain boundaries in type 316L stainless steel

    Solute segregation and impurity segregation on random and Σ3 grain boundaries in a type 316L stainless steel were investigated by means of atom probe tomography (APT). Segregation of Mo, P, B, and C was observed on random grain boundaries, irrespective of grain boundary misorientation. Two-dimensional concentration maps along the grain boundary plane revealed that the concentrations of all segregated elements were not homogeneous and no co-segregation was observed. In contrast, no segregation was observed on Σ3 grain boundaries

  15. Lattice rotation induced by plasma nitriding in a 316L polycrystalline stainless steel

    Stinville, J.C. [Laboratoire de Mecanique et de Physique des Materiaux, ENSMA, 86961 Futuroscope-Chasseneuil (France)] [Laboratoire de Physique des Materiaux, Universite de Poitiers, 86962 Futuroscope-Chasseneuil (France); Villechaise, P., E-mail: patrick.villechaise@lmpm.ensma.fr [Laboratoire de Mecanique et de Physique des Materiaux, ENSMA, 86961 Futuroscope-Chasseneuil (France); Templier, C.; Riviere, J.P.; Drouet, M. [Laboratoire de Physique des Materiaux, Universite de Poitiers, 86962 Futuroscope-Chasseneuil (France)

    2010-05-15

    The introduction at moderate temperature of nitrogen in the 316L austenitic stainless steel by plasma nitriding modifies the crystallographic texture in the very near surface region. The evolution of texture components has been quantitatively characterized by electron backscattered diffraction. The analysis of these experiments shows that the amplitude of the lattice rotation as well as the direction of rotation are directly related to the initial orientation of each grain. The retexturing behaviour is consistent with the lattice rotation upon tensile elongation of polycrystalline materials predicted by the Taylor model.

  16. Surface Nanostructure Formations in an AISI 316L Stainless Steel Induced by Pulsed Electron Beam Treatment

    Yang Cai

    2015-01-01

    Full Text Available High current pulsed electron beam (HCPEB is an efficient technique for surface modifications of metallic materials. In the present work, the formations of surface nanostructures in an AISI 316L stainless steel induced by direct HCPEB treatment and HCPEB alloying have been investigated. After HCPEB Ti alloying, the sample surface contained a mixture of the ferrite and austenite phases with an average grain size of about 90 nm, because the addition of Ti favors the formation of ferrite. In contrast, electron backscattered diffraction (EBSD analyses revealed no structural refinement on the direct HCPEB treated sample. However, transmission electron microscope (TEM observations showed that fine cells having an average size of 150 nm without misorientations, as well as nanosized carbide particles, were formed in the surface layer after the direct HCPEB treatment. The formation of nanostructures in the 316L stainless steel is therefore attributed to the rapid solidification and the generation of different phases other than the steel substrate in the melted layer.

  17. The surface cleanliness of 316 L + N stainless steel studied by SIMS and AES

    Mathewson, A G

    1974-01-01

    Some cleaning methods for 316 L+N stainless steel including solvent cleaning, high temperature treatment in vacuo and gas discharge cleaning have been studied by SIMS and AES with a view to providing a clean vacuum chamber surface with low gas desorption under ion bombardment. After solvent cleaning the main surface contaminant was found to be C and its associated compounds. Laboratory investigations on small samples of stainless steel showed that clean surfaces could be obtained by heating in vacuo to 800 degrees C followed by exposure to air and by argon or argon/10% oxygen discharge cleaning. Due to a cross contamination within the vacuum system, the 800 degrees C treated chamber gave positive desorption coefficients under ion bombardment. The pure argon discharge cleaned chambers proved stable giving negative desorption coefficients up to 2200 eV ion energy even after several weeks storage discharge treatment and installation. (10 refs).

  18. Study of TiC+TiN Multiple Films On Type of 316L Stainless Steel

    XUE Qi; JIN Yong; HU Dong-ping; HUANG Ben-sheng; DENG Bai-quan

    2004-01-01

    In this paper, the synthesis process of TiC+TiN multiple films on super-low-carbon stainless steels is reported.The TiC layer is coated as the first layer in the multiple film, the change of growth rate of the film on the 316L Stainless steel is not same as the one on carbides substrates, while the mole ratio of CH4 to TiCl4 (mCH4/TiCl4) is changed from 1.2to 2.0. The Ti [C, N], as a kind of inter-layer between TiC and TiN layers, is helpful to improve the adhesion between the TiC and TiN layer. The cooling rate greatly influences the quality of the adhesion between the TiC+TiN film and substrates.

  19. Anisotropy changes in hardness and indentation modulus induced by plasma nitriding of 316L polycrystalline stainless steel

    The changes in anisotropic hardness and indentation modulus induced by plasma nitriding at 400 oC of a 316L polycrystalline austenitic stainless steel are analyzed. The dependence of hardness and elastic modulus modifications on the crystallographic orientation is investigated through instrumented indentation and electron backscattering diffraction. Both hardness and indentation modulus exhibit an inverted anisotropy compared to the untreated 316L, likely associated with the presence of the N atoms in interstitial sites.

  20. Phase transformation of 316L stainless steel from wire to fiber

    In this work, quantitative crystalline phase analysis of 316L stainless steel from wire to fiber using a multi-pass cold drawing process was studied using the Rietveld whole XRD profile fitting technique. The different diameters of the fibers: 179, 112, 75, 50, 34, 20, and 8 μm, were produced from an as-received wire with a diameter of 190 μm. The crystalline phases were identified using MDI Jade 5.0 software. The volume fractions of crystalline phases were estimated using a Materials Analysis Using Diffraction software. XRD analysis revealed that the crystal structure of as-received wire is essentially a γ-austenite crystalline phase. The phase transformation occurred during the 316L stainless steel from wire to fiber. Three crystalline phases such as γ-austenite, α'-martensite, and sigma phase of the fine fiber were observed. A cold drawing accelerates the sigma phase precipitates, particularly during the heat treatment of the fiber.

  1. Stability of passivated 316L stainless steel oxide films for cardiovascular stents.

    Shih, Chun-Che; Shih, Chun-Ming; Chou, Kuang-Yi; Lin, Shing-Jong; Su, Yea-Yang

    2007-03-15

    Passivated 316L stainless steel is used extensively in cardiovascular stents. The degree of chloride ion attack might increase as the oxide film on the implant degrades from exposure to physiological fluid. Stability of 316L stainless steel stent is a function of the concentration of hydrated and hydrolyated oxide concentration inside the passivated film. A high concentration of hydrated and hydrolyated oxide inside the passivated oxide film is required to maintain the integrity of the passivated oxide film, reduce the chance of chloride ion attack, and prevent any possible leaching of positively charged ions into the surrounding tissue that accelerate the inflammatory process. Leaching of metallic ions from corroded implant surface into surrounding tissue was confirmed by the X-ray mapping technique. The degree of thrombi weight percentage [W(ao): (2.1 +/- 0.9)%; W(ep): (12.5 +/- 4.9)%, p electropolishing (EP) treatment groups was statistically significant in ex-vivo extracorporeal thrombosis experiment of mongrel dog. The thickness of neointima (T(ao): 100 +/- 20 microm; T(ep): 500 +/- 150 microm, p < 0.01) and the area ratio of intimal response at 4 weeks (AR(ao): 0.62 +/- 0.22; AR(ep): 1.15 +/- 0.42, p < 0.001) on the implanted iliac stents of New Zealand rabbit could be a function of the oxide properties. PMID:17072844

  2. Dislocation evolution in 316L stainless steel subjected to uniaxial ratchetting deformation

    Dislocation patterns and their evolution in 316L stainless steel subjected to uniaxial stress-controlled cyclic loading with occurrence of ratchetting deformation were observed by transmission electron microscopy (TEM). The microscopic observations show that the dislocation patterns change from low density patterns such as dislocation lines and pile-ups to those with higher dislocation density such as dislocation tangles, veins, walls, and cells, when the macroscopic ratchetting strain progressively increases with the number of cycles. Although one or two kinds of dislocation patterns mentioned above are prevailing in most of the grains at certain stage of ratchetting deformation, other patterns can be also observed in some grains at the same time. The features of dislocation evolution presented during the uniaxial ratchetting deformation are summarized by comparing with the dislocation patterns observed during monotonic tension and symmetrical uniaxial strain-controlled cyclic loading. The uniaxial ratchetting of 316L stainless steel can be qualitatively explained by the observed dislocation patterns and their variation with the number of cycles.

  3. Hydrogen assisted failure of precracked specimens of 316L stainless steel

    The simultaneous action of cathodic hydrogen charging and slow mechanical loading on precracked samples of 316L stainless steel is examined in order to assess the flaw tolerance of this steel, which has been included in the group of possible structural materials for the first wall of the future fusion reactors. The steel is shown to retain a significant part of its flaw tolerance even in the most severe test conditions, but the loading rate is found to change the damage phenomenology of hydrogen from bifurcated crack extension to multi-cracking and enlargement of the blunted crack tip. This change is explained on the basis of a competition mechanism between hydrogen action and mechanical deformation. (orig.)

  4. Effect of Cold-Rolling on Precipitation Phenomena in Sensitized Type 316L and 340L Austenitic Stainless Steels

    H.Tsubakino; A.Yamamoto; T. Yamada; L.Liu; M.Terasawa; S.Nakahigashi; H.Harada

    2004-01-01

    Precipitation phenomena in Type 316L and 304L stainless steels were studied mainly by transmission electron microscopic (TEM) observations after cold-rolling ranging from 0% (as solution annealed) to 80% reduction in thickness,and then by sensitization treatment. Precipitates were identified by electron diffraction analysis and EDS analysis.Precipitates observed in sensitized 316L stainless steel were sigma and chi phases, whereas carbide and sigma were observed in sensitized 304L stainless steel. Recrystallized grains were formed in 30% cold-rolled and sensitized 304L.However, the tendency toward recrystallization in sensitized 316L was much lower than in 304L. Precipitation of sigma and chi phases was accelerated by cold-rolling and they were observed at grain boundaries in lower cold-rolling; they were also seen, in grain interiors in higher cold-rolling. Higher deformation induced partially recrystallization combined with precipitation, resulting in the formation of heterogeneous microstructures.

  5. Surface characterization of stainless steel AISI 316 L in contact with simulated body fluid

    Titanium and cobalt alloys, as well as some stainless steels, are often used in orthopedic surgery. In the more developed countries, stainless steel is used only for temporary implants since it does not hold up as well as other alloys to corrosion in a physiological medium. Nevertheless, stainless steel alloys are frequently used for permanent implants in developing countries. Therefore, more knowledge about its reaction to corrosion is needed as well as the characteristics of the surface layer generated in a physiological medium in order to control potential toxicity from the release of metallic ions into the organism. The surface films usually have a different composition and chemical state from the base material. The surface characterization of alloys used in orthopedic surgery should not be underestimated, since it heavily influences the behavior of the implant through the relationship of the surface film-tissue and the possible migration of metallic ions from the base metal to the surrounding tissue. This work presents a study of the surface composition and resistance to the corrosion of stainless steel AISI 316L in simulated body fluid (SBF) aired at pH 7.25 and 37oC. The resistance to the corrosion was studied with an electrochemical impedance spectroscopy (EIS) and anodic polarization curves (CW)

  6. Hydrogen uptake in 316L stainless steel: Consequences on the tensile properties

    Different charging conditions aimed at introducing significant hydrogen concentrations without microstructural damages in a 316L austenitic stainless steel were investigated. The equivalent hydrogen pressure developed at the surface of the samples during cathodic charging was estimated from hydrogen concentration measurements. A clear hydrogen absorption, controlled by diffusion, was evidenced during the immersion of 316L steel samples in 30% MgCl2 at the open circuit potential at 117 deg. C. Deuterium profiling by SIMS was performed to check the validity of the few literature data on hydrogen diffusivity in the near room temperature range in this material. On the other hand, the macroscopic effects of hydrogen on the tensile characteristics of the steel were investigated and compared at 20 deg. C and at -196 deg. C with samples cathodically pre-charged, charged during tensile straining or pre-charged at high temperature-high pressure in gas phase. Hydrogen is shown to affect both the short range and the long range forces exerted on the strain-induced mobile dislocations. The hydrogen-induced softening effect observed at 20 deg. C and the systematic decrease of the ductility support a mechanism involving the enhanced transport of hydrogen atoms by mobile dislocations. This mechanism is confirmed by the absence of softening and of ductility loss at -196 deg. C and by the strain-enhanced tritium desorption from samples cathodically pre-charged with tritium, measured by β counting during tensile deformation

  7. Wear of plasma nitrided and nitrocarburized AISI 316L austenitic stainless steel

    F.A.P. Fernandes

    2010-06-01

    Full Text Available Purpose: the purpose of the work is to compare the wear resistance, in dry and lubricated conditions, of AISI 316L austenitic stainless steel samples that were plasma nitrided or nitrocarburized at 450°C for 5 and 10 h, respectively.Design/methodology/approach: Hardness and wear resistance of austenitic stainless steel can be increased substantially, without losing corrosion resistance, by plasma nitriding or nitrocarburizing surface treatments. In this work, AISI 316L austenitic stainless steel was plasma nitrided and nitrocarburized at 450°C, for 5 and 10 h respectively.Findings: The obtained layers were characterized by optical microscopy, X-ray diffraction, microhardness and micro-wear tests in dry and lubricated conditions. Optical microscopy and X-ray diffraction analysis demonstrated that the nitrided layer is homogeneous and primarily composed of nitrogen rich expanded austenite with a thickness of about 15 µm. Nitrocarburized samples exhibited an external layer of chromium and iron compounds and a sub-layer of expanded austenite with a total thickness of 45 µm. Microhardness profiles showed that the hardness near to the surface was close to 1100 HV for nitriding and 1300 HV for nitrocarburizing. Plasma nitrided and nitrocarburized layers exhibited substantial wear reduction in dry and lubricated test conditions. The use of a lubricant oil reduces wear by a factor of approximately 200 compared to the dry test results.Research limitations/implications: The plasma nitrided layer yielded the best wear performance in both dry and lubricated conditions.Originality/value: Plasma nitriding resulted in the best wear performance when compared with nitrocarburizing in dry and lubricated sliding which is probably due to reduced layer fragility.

  8. Rapid heating tensile tests of hydrogen-charged high-energy-rate-forged 316L stainless steel

    Mosley, W.C.

    1989-05-19

    316L stainless steel is a candidate material for construction of equipment that will be exposed to tritium. Proper design of the equipment will require an understanding of how tritium and its decay product helium affect mechanical properties. This memorandum describes results of rapid heating tensile testing of hydrogen-charged specimens of high-energy-rate-forged (HERF) 316L stainless steel. These results provide a data base for comparison with uncharged and tritium-charged-and-aged specimens to distinguish the effects of hydrogen and helium. Details of the experimental equipment and procedures and results for uncharged specimens were reported previously. 3 refs., 10 figs.

  9. The Effect of Calcium Treatment on Pitting Corrosion of Type 316L Austenitic Stainless steel

    Pitting in chloride containing aqueous solution occurs mainly on manganese sulphide. Adding a slight amount of Ca as an alloying element prevents the MnS formation, since Ca is a stronger sulphide former than Mn. In this work, calcium treated Type 316L austenitic stainless steels have been investigated electrochemically to evaluate the effect of modified inclusions on pitting corrosion. Staircase polarization measurements were performed in 3.5% NaCl solution, where the occurrence of pits in materials caused current spikes. During staircase polarization test, steels with calcium treatment show low and discontinuous current spikes while those without calcium treatment show high and continuous current spikes. The results show that calcium treatment in Ca/S ratio of 1 ∼ 2 leads to an increase in the pitting potential of several hundred mV. A relationship between the calcium treatment and pit initiation sites was described

  10. Stress corrosion cracking of stainless steel AISI 316L HAZ in PWR nuclear reactor environment

    In pressurized water reactors (PWRs), low alloy carbon steels and stainless steel are widely used in the primary water circuits. In most cases, Ni alloys are used to joint these materials and form dissimilar welds. These alloys are known to accommodate the differences in composition and thermal expansion of the two materials. Stress corrosion cracking of metals and alloys is caused by synergistic effects of environment, material condition and stress. Over the last thirty years, CST has been observed in dissimilar metal welds. This study presents a comparative work between the CST in the HAZ (Heat Affected Zone) of the AISI 316L in two different temperatures (303 deg C and 325 deg C). The susceptibility to stress corrosion cracking was assessed using the slow strain rate tensile (SSRT) test. The results of the SSRT tests indicated that CST is a thermally-activated mechanism and that brittle fracture caused by the corrosion process was observed at 325 deg C). (author)

  11. Microstructure and mechanical properties of friction stir processed AISI 316L stainless steel

    Highlights: • FSP can be used to produce bulk ultrafine grained structures in AISI 316L SS. • The main mechanism for grain structure refinement of FSP 316L SS is DDRX. • However, some evidences of CDRX and SRX were also observed. • The material flow was found to be near simple shear deformation (A/A‾ and C). • FSP samples have an enhanced hardness and strength compared with the base metal. - Abstract: Friction stir processing was used to refine the grain structure in 2 mm thick AISI 316L stainless steel sheets, with a pinless tool, at a constant traverse speed of 63 mm/min and relatively low rotational speeds of 200 and 315 rpm. Depending on the processing conditions, the initial grain size of 14.8 μm in the base metal was subsequently decreased to 0.8–2.2 μm in the processed areas. The microstructural characterizations by orientation imaging and transmission electron microscopy revealed that the grain structure evolution in the stir zone is primarily dominated by discontinuous dynamic recrystallization. The material flow was found to be near simple shear deformation and the developed textures were composed of a mixture of A/A‾ and C components of ideal simple shear textures. The mechanical properties were also evaluated by the longitudinal tensile tests and microhardness measurements. The obtained results showed that, despite a 50% decrease in ductility, the highest yield and ultimate tensile strength of the friction stir processed samples are respectively about 1.6 and 1.2 times higher than those of the base metal. In good agreement with the tensile properties, the increased hardness of the stir zone was attributed to the grain structure refinement

  12. Stainless steels low temperature nitriding; Nitruration a basse temperature de l`acier inoxydable AISI 316L. Resistance a la corrosion et proprietes tribologiques

    Roux, T.; Darbeida, A.; Von Stebut, J.; Michel, H. [Ecole Nationale Superieure des Mines, 54 - Nancy (France); Lebrun, J.P. [NITRUVID, 95 - Argenteuil (France); Hertz, D. [Framatome, 69 - Lyon (France)

    1995-12-31

    Nitrogen ions implantation of 316L stainless steel leads to monophasic diffusion layers, which are constituted of a solid solution ({gamma}{sub N}) fcc, metastable, nitrogen sur-saturated, and without order. This article shows that for 316L stainless steels,these layers improve the tribological properties without degradation of the corrosion resistance. (A.B.). 13 refs. 6 figs.

  13. Modelling of microstructural creep damage in welded joints of 316L stainless steel

    Welded joints of 316L stainless steel under service conditions at elevated temperature are known to be preferential sites of creep damage, as compared to the base material. This damage results in the formation of cavities and the development of creep cracks which can lead to a premature failure of welded components. The complex two-phase microstructure of 316L welds was simulated by manually filling a mould with longitudinal deposited weld beads. The moulded material was then aged during 2000 hours at 600 deg. C. High resolution Scanning Electron Microscopy was largely used to examine the microstructure of the simulated material before and after ageing. Smooth and notched creep specimens were cut from the mould and tested at 600 deg. C under various stress levels. A comparison of the lifetime versus nominal stress curves for the base and welded materials shows a greater dependence of the welded material to creep phenomena. Observation and EBSD analysis show that damage is preferentially located along the austenite grain boundaries. The stress and strain fields in the notched specimens were calculated by finite element method. A correlation of this field to the observed damage was made in order to propose a predictive law relating the creep damage to the mechanical conditions applied locally. Further mechanical tests and simulation on CT specimens and mode II tubular specimens allowed validating the model under various multiaxial loading conditions. (author)

  14. Controlling the electrodeposition, morphology and structure of hydroxyapatite coating on 316L stainless steel

    Hydroxyapatite (HAp) coatings were prepared on 316L stainless steel (316LSS) substrates by electrochemical deposition in the solutions containing Ca(NO3)2·4H2O and NH4H2PO4 at different electrolyte concentrations. Along with the effect of precursor concentration, the influence of temperature and H2O2 content on the morphology, structure and composition of the coating was thoroughly discussed with the help of X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectra. The in vitro tests in simulated body fluids (SBF) were carried out and then the morphological and structural changes were estimated by SEM and electrochemical techniques (open circuit potential, polarization curves, Nyquist and Bode spectra measurements). Being simple and cost-effective, this method is advantageous for producing HAp implant materials with good properties/characteristics, aiming towards in vivo biomedical applications. - Highlights: ► Successful electrodeposition of HAp on 316L SS by a simple method ► The influence of some key parameters on the HAP morphology was discussed. ► Morphological and structural changes of HAP layer in SBF were thoroughly investigated

  15. Electrochemical and surface study of the oxide growth and conversion on 316L stainless steel

    Oxide formation and conversion mechanism as a function of potential on 316L stainless steel was investigated using electrochemical and surface analysis techniques. All of the results were consistent with the electrochemical thermodynamics. Four potential regions were identified for anodic oxidation. In Ox I, conversion of the defective chromium oxide layer to an iron/chromium spinel phase occurred. This was followed by conversion of the upper Fe3O4 oxide to a passivating γ-Fe2O3 layer in Ox II. At potentials > 0.0 VSCE, Ox III and IV involved the formation of γ-FeOOH and conversion of CrIII to soluble CrVI respectively contributing to film breakdown. (author)

  16. Cyclic deformation behavior of a 316L austenitic stainless steel processed by high pressure torsion

    The influence of severe plastic deformation (SPD) on the fatigue behavior of a modified 316L austenitic stainless steel is investigated. Different ultrafine-grained and nanocrystalline microstructures are obtained by changing the processing parameters and applying a post heat treatment procedure. Samples are fatigued using both, load and strain controlled experiments. High pressure torsion processing makes it possible to reach a saturation microstructure, which is cyclically stable up to a stress level three times higher than the stress level of the coarse-grained structure. Fracture surface investigations and surface damage clearly show that the failure behavior of the SPD states under cyclic loading is different to their coarse-grained counterparts. For these microstructures, localized deformation in shear bands seems to play a major role for crack initiation and propagation. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. The effect of internal hydrogen on surface slip localisation on polycrystalline AISI 316L stainless steel

    A statistical analysis of the effect of internal hydrogen on the surface slip morphology of relatively high nickel content AISI 316L type austenitic stainless steel was carried out on high resolution data obtained by atomic force microscopy. Surface plastic strain localisation was studied for different hydrogen contents, two grain sizes, and two plastic strain levels. The height and spacing of approximately 8000 slip bands, observed on 12 specimens, are shown to follow log-normal distributions. Hydrogen increased the mean slip-band height and the mean slip-band spacing for the two macroscopic plastic strain levels considered, and for the two hydrogen concentrations in coarse-grained specimens. The hydrogen effect was also observed for fine-grained specimens, but only for the highest hydrogen concentration. In addition, the emerging dislocation velocity increased by a factor 3 for high hydrogen content.

  18. Analysis of deformation induced martensite in AISI 316L stainless steel

    Jagarinec, Darko; Kirbis, Peter; Predan, Jozef; Vuherer, Tomaz; Gubeljak, Nenad [Maribor Univ. (Slovenia). Faculty of Mechanical Engineering

    2016-08-01

    Metastable austenite stainless steel AISI 316L is sensitive to cold deformation, where transformation from austenite to martensite occurred. The bending deformation as the formation process leads to tensile and compression throughout the thickness of the billet. Tensile testing of the specimen causes differences in the true stress-strain along the contraction neck prior to fracture as well. The aim of the paper is to find correlation between microhardness as brief inspection parameters and extension of martensitic transformation. The total equivalent plastic strain extend diagram obtained by numerical simulation of bending was compared with tensile true stress-strain diagram. Results show very good correlation between hardness, true strain and martesite content. Therefore, one can conclude that by hardness measurement, it is possible to measure the level of equivalent plastic strain until ultimate tensile stress as a linear correlation between hardness, true strain and martesite content.

  19. An investigation of the aseptic loosening of an AISI 316L stainless steel hip prosthesis

    The total replacement of joints by the implantation of permanently indwelling prosthetic components has been one of the major successes of modern surgery in terms of relieving pain and correcting deformity. However, the aseptic loosening of a prosthetic-joint component is the most common reason for joint-revision surgery. Furthermore, it is thought that wear particles are one of the major contributors to the development and perpetuation of aseptic loosening. The aim of the present study was to identify the factors related to the aseptic loosening of an AISI 316L stainless steel total hip prosthesis. The stem was evaluated by x-ray photoelectron spectroscopy, with polished and rough regions being analyzed in order to establish the differences in the chemical compositions of both regions. Specific areas were examined using scanning electron microscopy with energy dispersive x-ray spectroscopy and light microscopy.

  20. Modeling of the lattice rotations induced by plasma nitriding of 316L polycrystalline stainless steel

    The anisotropic lattice rotation of individual grains induced by plasma nitriding of 316L austenitic stainless steel has been analyzed with the aim of identifying correlations between the initial grain’s orientation and the rotation behavior. Due to the quite large nitriding-induced strains (up to 20%), the Taylor–Bishop–Hill model has been chosen for the simulation of the lattice rotations. The model predicts the overall rotations, both amplitude and direction, reasonably well over the entire stereographic triangle. The magnitude of the rotations is in agreement with the level of deformation induced by insertion of nitrogen atoms into an austenitic lattice. With regard to plasticity, parallels between the nitriding process and tensile elongation along the normal surface can be drawn

  1. Influence of annealing on grain boundary segregation of neutron irradiated type 316L stainless steel

    Type 316L stainless steel was neutron irradiated (8x1025 n/m2, E>1MeV) and annealed at 673 K - 973 K for 1 hour. After the annealing, intergranular fracture ratio measurement by SSRT, grain boundary analysis by FE-TEM with EDS and simulation of grain boundary Cr depletion healing were performed in order to consider an effect of segregation healing on IASCC. The intergranular fracture ratio was healed to 0% by annealing above 723 K, but the healing of grain boundary Cr depletion of 723 K annealed specimen was not recognized by EDS analysis. Considering about the EDS analysis result and analysis probe diameter, concentration profiles were calculated. As a result, it was considered that grain boundary segregation which depleted to about 8 mass% by neutron irradiation, healed to about 12 mass% by annealing at 723 K, so that IASCC susceptibility was decreased. (author)

  2. Banded structure and its distribution in friction stir processing of 316L austenitic stainless steel

    Highlights: ► Friction stir processing (FSP) as a repair method. ► Sigma phase formed in the FSP zone. ► Low heat input contributes to restrain sigma phase precipitation. - Abstract: Banded structures, which vary with welding parameters, were observed in friction stir processing of 316L austenite stainless steel. Sigma phase precipitation was detected in banded structures by transmission electron microscopy. The amount of banded structure had direct ratio relations with heat input. The higher the heat input, the larger the area of banded structures. This is attributable to slower cooling rate at high heat input, which results in longer exposure to the temperature range for precipitation. The formation of sigma phase produced Cr depletion, which resulted in largely degraded corrosion resistance. The present study suggests that low heat input (i.e. low rotation speeds, low working loads and high welding speed) contributes to restrain sigma phase precipitation.

  3. Cytocompatibility and mechanical properties of novel porous 316 L stainless steel.

    Kato, Komei; Yamamoto, Akiko; Ochiai, Shojiro; Wada, Masahiro; Daigo, Yuzo; Kita, Koichi; Omori, Kenichi

    2013-07-01

    Novel 316 L stainless steel (SS) foam with 85% porosity and an open pore diameter of 70-440 μm was developed for hard tissue application. The foam sheet with a 200-μm diameter had superior cell proliferation and penetration as identified through in vitro experiments. Calcification of human osteosarcoma cells in the SS foam was observed. Multi-layered foam preparation is a potential alternative technique that satisfies multi-functional requirements such as cell penetration and binding strength to the solid metal. In tensile tests, Young's modulus and the strength of the SS foam were 4.0 GPa and 11.2 MPa respectively, which is comparable with human cancellous bone. PMID:23623090

  4. Anticoagulant surface of 316 L stainless steel modified by surface-initiated atom transfer radical polymerization.

    Guo, Weihua; Zhu, Jian; Cheng, Zhenping; Zhang, Zhengbiao; Zhu, Xiulin

    2011-05-01

    Polished 316 L stainless steel (SS) was first treated with air plasma to enhance surface hydrophilicity and was subsequently allowed to react with 2-(4-chlorosulfonylphenyl)ethyltrimethoxysilane to introduce an atom transfer radical polymerization (ATRP) initiator. Accordingly, the surface-initiated atom transfer radical polymerization of polyethylene glycol methacrylate (PEGMA) was carried out on the surface of the modified SS. The grafting progress was monitored by water contact angle measurements, X-ray photoelectron spectroscopy and atomic force microscopy. The polymer thickness as a function different polymerization times was characterized using a step profiler. The anticoagulative properties of the PEGMA modified SS surface were investigated. The results showed enhanced anticoagulative to acid-citrate-dextrose (ACD) blood after grafting PEGMA on the SS surface. PMID:21528878

  5. Study of TiC+TiN Multiple Films On Type of 316L Stainless Steel

    XUEQi; JINYong; HUDong-ping; HUANGBen-sheng; DENGBai-quan

    2004-01-01

    In this paper, the synthesis process of TiC+TiN multiple films on super-low-carbon stainless steels is reported. The TiC layer is coated as the first layer in the multiple film, the change of growth rate of the film on the 316L Stainlesss teel is not same as the one on carbides substrates, while the mole ratio of CH4 to TiCl4 (mCH4/TiCl4) is changed from 1.2 to 2.0. The Ti [C,N], as a kind of inter-layer between TiC and TiN layers, is helpful to improve the adhesion hetween the TiC and TiN layer. The cooling rate greatly influences the quality of the adhesion between the TiC+TiN film and substrates.

  6. Effect of grain refinement and electrochemical nitridation on corrosion resistance of the 316L stainless steel for bipolar plates in PEMFCs environment

    Jinlong, Lv; Tongxiang, Liang; Hongyun, Luo

    2015-10-01

    The stain-induced nanocrystalline α'-martensite was obtained by cryogenic cold rolling at liquid-nitrogen temperature for 316L stainless steel. The electrochemical results showed nanocrystalline 316L stainless steel deteriorated its corrosion resistance in a typical proton exchange membrane fuel cell environment compared with coarse grained one. However, comparing with electrochemically nitrided coarse grained stainless steel, electrochemically nitrided nanocrystalline stainless steel improved significantly corrosion resistance in the same environment, which was supported further by Mott-Shottky analysis. X-ray photoelectron spectroscopy analysis revealed that the nanocrystalline promoted the enrichment of nitrogen and chromium and inhibited form of NH3 on the surface, which could significantly improve the corrosion resistance of the 316L stainless steel. The present study showed that the electrochemically nitrided 316L stainless steel was more suitable for the bipolar plates in proton exchange membrane fuel cell environment than the untreated one, especially for nanocrystalline stainless steel.

  7. Electrochemical deposition of black nickel solar absorber coatings on stainless steel AISI316L for thermal solar cells

    Lira-Cantú, Monica; Morales Sabio, Angel; Brustenga, Alex; Gómez-Romero, P.

    2005-01-01

    We report the electrochemical deposition of nanostructured nickel-based solar absorber coatings on stainless steel AISI type 316L. A sol–gel silica-based antireflection coating, from TEOS, was also applied to the solar surface by the dip-coating method. We report our initial results and analyze the influence of the stainless steel substrate on the final total reflectance properties of the solar absorber. The relation between surface morphology, observed by SEM and AFM, the comp...

  8. Grain boundary character distribution in a hot rolled 316 L stainless steel; Distribuicao de tipos de contornos de grao em um aco inoxidavel 316L laminado a quente

    Lopes, L.C.R. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Dept. de Metalurgia; Thomson, C.B. [Wales Univ., Swansea (United Kingdom)

    1995-12-31

    The texture and the grain boundary character distribution of a 316 L stainless steel under hot rolled condition have been studied. Electron back-scatter diffraction technique associated to the scanning electron microscopy is used to determine the crystallographic orientation of grains individually. The material presented a random texture. However, the misorientation axis distribution represented by an inverse pole figure showed a non-random distribution with a high proportion <111> misorientation axis. The disorientation angle distribution indicates a proportion of about 60% of boundaries with 60 deg C misorientation angle. A 25% proportion of CSL interfaces of {Sigma} = 3 type was found 17 refs., 9 figs., 2 tabs.

  9. Corrosion resistance improvement for 316L stainless steel coronary artery stents by trimethylsilane plasma nanocoatings.

    Eric Jones, John; Chen, Meng; Yu, Qingsong

    2014-10-01

    To improve their corrosion resistance and thus long-term biocompatibility, 316L stainless steel coronary artery stents were coated with trimethylsilane (TMS) plasma coatings of 20-25 nm in thickness. Both direct current (DC) and radio-frequency (RF) glow discharges were utilized for TMS plasma coatings and additional NH₃/O₂ plasma treatment to tailor the surface properties. X-ray photoelectron spectroscopy (XPS) was used to characterize the coating surface chemistry. It was found that both DC and RF TMS plasma coatings had Si- and C-rich composition, and the O- and N-contents on the surfaces were substantially increased after NH₃/O₂ plasma treatment. Surface contact angle measurements showed that DC TMS plasma nanocoating with NH₃/O₂ plasma treatment generated very hydrophilic surface. The corrosion resistance of TMS plasma coated stents was evaluated through potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The potentiodynamic polarization demonstrated that the TMS plasma coated stents imparted higher corrosion potential and pitting potential, as well as lower corrosion current densities as compared with uncoated controls. The surface morphology of stents before and after potentiodynamic polarization testing was analyzed with scanning electron microscopy, which indicated less corrosion on coated stents than uncoated controls. It was also noted that, from EIS data, the hydrophobic TMS plasma nanocoatings showed stable impedance modulus at 0.1 Hz after 21 day immersion in an electrolyte solution. These results suggest improved corrosion resistance of the 316L stainless steel stents by TMS plasma nanocoatings and great promise in reducing and blocking metallic ions releasing into the bloodstream. PMID:24500866

  10. Corrosion resistance improvement for 316L stainless steel coronary artery stents by trimethylsilane plasma nanocoatings

    Jones, John Eric; Chen, Meng; Yu, Qingsong

    2015-01-01

    To improve their corrosion resistance and thus long-term biocompatibility, 316L stainless steel coronary artery stents were coated with trimethylsilane (TMS) plasma coatings of 20–25 nm in thickness. Both direct current (DC) and radio-frequency (RF) glow discharges were utilized for TMS plasma coatings and additional NH3/O2 plasma treatment to tailor the surface properties. X-ray photoelectron spectroscopy (XPS) was used to characterize the coating surface chemistry. It was found that both DC and RF TMS plasma coatings had Si- and C-rich composition, and the O-and N-contents on the surfaces were substantially increased after NH3/O2 plasma treatment. Surface contact angle measurements showed that DC TMS plasma nanocoating with NH3/O2 plasma treatment generated very hydrophilic surface. The corrosion resistance of TMS plasma coated stents was evaluated through potentiodynamic polarization and electro-chemical impedance spectroscopy (EIS) techniques. The potentiodynamic polarization demonstrated that the TMS plasma coated stents imparted higher corrosion potential and pitting potential, as well as lower corrosion current densities as compared with uncoated controls. The surface morphology of stents before and after potentiodynamic polarization testing was analyzed with scanning electron microscopy, which indicated less corrosion on coated stents than uncoated controls. It was also noted that, from EIS data, the hydrophobic TMS plasma nanocoatings showed stable impedance modulus at 0.1 Hz after 21 day immersion in an electrolyte solution. These results suggest improved corrosion resistance of the 316L stainless steel stents by TMS plasma nanocoatings and great promise in reducing and blocking metallic ions releasing into the bloodstream. PMID:24500866

  11. Electron stimulated desorption of H3O+ from 316L stainless steel

    Surface ions generated by electron stimulated desorption from mass spectrometer ion source grids are frequently observed, but often misidentified. For example, in the case of mass 19, the source is often assumed to be surface fluorine, but since the metal oxide on grid surfaces has been shown to form water and hydroxides, a more compelling case can be made for the formation of hydronium. Further, fluorine is strongly electronegative, so it is rarely generated as a positive ion. A commonly used metal for ion source grids is 316L stainless steel. Thermal vacuum processing by bakeout or radiation heating from the filament typically alters the surface composition to predominantly Cr2O3. X-ray photoelectron spectral shoulders on the O 1s and Cr 2p3/2 peaks can be attributed to adsorbed water and hydroxides, the intensity of which can be substantially increased by hydrogen dosing. On the other hand, the sub-peak intensities are substantially reduced by heating and/or by electron bombardment. Electron bombardment diode measurements show an initial work function increase corresponding to predominant hydrogen desorption (H2) and a subsequent work function decrease corresponding to predominant oxygen desorption (CO). The fraction of hydroxide concentration on the surface was determined from X-ray photoelectron spectroscopy and from the deconvolution of temperature desorption spectra. Electron stimulated desorption yields from the surface show unambiguous H3O+ peaks that can be significantly increased by hydrogen dosing. Time of flight secondary ion mass spectrometry sputter yields show small signals of H3O+, as well as its constituents (H+, O+ and OH+) and a small amount of fluorine as F-, but no F+ or F+ complexes (HF+, etc.). An electron stimulated desorption cross-section of σ + ∼ 1.4 x 10-20 cm2 was determined for H3O+ from 316L stainless steel for hydrogen residing in surface chromium hydroxide

  12. Electron stimulated desorption of H 3O + from 316L stainless steel

    Cole, C. R.; Outlaw, R. A.; Champion, R. L.; Holloway, B. C.; Kelly, M. A.

    2007-02-01

    Surface ions generated by electron stimulated desorption from mass spectrometer ion source grids are frequently observed, but often misidentified. For example, in the case of mass 19, the source is often assumed to be surface fluorine, but since the metal oxide on grid surfaces has been shown to form water and hydroxides, a more compelling case can be made for the formation of hydronium. Further, fluorine is strongly electronegative, so it is rarely generated as a positive ion. A commonly used metal for ion source grids is 316L stainless steel. Thermal vacuum processing by bakeout or radiation heating from the filament typically alters the surface composition to predominantly Cr 2O 3. X-ray photoelectron spectral shoulders on the O 1s and Cr 2p 3/2 peaks can be attributed to adsorbed water and hydroxides, the intensity of which can be substantially increased by hydrogen dosing. On the other hand, the sub-peak intensities are substantially reduced by heating and/or by electron bombardment. Electron bombardment diode measurements show an initial work function increase corresponding to predominant hydrogen desorption (H 2) and a subsequent work function decrease corresponding to predominant oxygen desorption (CO). The fraction of hydroxide concentration on the surface was determined from X-ray photoelectron spectroscopy and from the deconvolution of temperature desorption spectra. Electron stimulated desorption yields from the surface show unambiguous H 3O + peaks that can be significantly increased by hydrogen dosing. Time of flight secondary ion mass spectrometry sputter yields show small signals of H 3O +, as well as its constituents (H +, O + and OH +) and a small amount of fluorine as F -, but no F + or F + complexes (HF +, etc.). An electron stimulated desorption cross-section of σ+ ˜ 1.4 × 10 -20 cm 2 was determined for H 3O + from 316L stainless steel for hydrogen residing in surface chromium hydroxide.

  13. Super austenitic stainless steels - a promising replacement for the currently used type 316L stainless steel as the construction material for flue-gas desulphurization plant

    Rajendran, N.; Rajeswari, S. [University of Madras, Madras (India). Dept. of Analytical Chemistry

    1996-12-15

    Potentiodynamic anodic cyclic polarization experiments on type 316L stainless steel and 6Mo super austenitic stainless steels were carried out in simulated flue-gas desulphurization (FGD) environment in order to assess the localized corrosion resistance. The pitting corrosion resistance was higher in the case of the super austenitic stainless steel containing 6Mo and a higher amount of nitrogen. The accelerated leaching study conducted for the alloys showed that the super austenitic stainless steels have a little tendency for leaching of metal ions such as iron, chromium and nickel at different impressed potentials. This may be due to surface segregation of nitrogen as CrN, which would, in turn, enrich a chromium and molybdenum mixed oxide film and thus impede the release of metal ions. The present study indicates that the 6Mo super austenitics can be adopted as a promising replacement for the currently used type 316L stainless steel as the construction material for FGD plants.

  14. Dislocation structure evolution and its effects on cyclic deformation response of AISI 316L stainless steel

    Research highlights: → The cyclic deformation response of AISI 316L steel is investigated at 20 deg. C. → The corresponding microstructure evolution is characterised by electron microscopy. → A 3D representation of dislocation evolution is proposed based on the observation. → The 3D representation gives a good explanation of the microstructure complexity. → The cyclic deformation response is discussed based on the microstructure evolution. - Abstract: The cyclic deformation response of an austenitic stainless steel is characterised in terms of its cyclic peak tensile stress properties by three stages of behaviour: a hardening stage followed by a softening stage, and finally a stable stress response stage. A series of tests have been performed and interrupted at selected numbers of cycles in the different stages of mechanical response. At each interruption point, specimens have been examined by transmission electron microscopy (TEM) with different beam directions by means of the tilting function in order to investigate the formation and the development of dislocation structures from the as-received condition until the end of fatigue life. A new 3D representation of dislocation structure evolution during cyclic loading is proposed on the basis of the microstructural observations. The 3D representation provides a deeper insight into the development of dislocation structures in AISI 316L during low cycle fatigue loading at room temperature. By investigating the dislocation evolution, the study shows that the hardening response is mainly associated with an increase of total dislocation density, whereas the softening stage is a result of the formation of dislocation-free regions. Further development of the dislocation structure into a cellular structure is responsible for the stable stress response stage.

  15. Changes of surface layer of nitrogen-implanted AISI316L stainless steel

    The effects of nitrogen ion implantation into AISI316L stainless steel on friction, wear, and microhardness have been investigated at an energy level of 125 keV at a fluence of 1·1017 - 1·1018 N/cm2. The composition of the surface layer was investigated by RBS, XRD (GXRD), SEM and EDX. The friction coefficient and abrasive wear rate of the stainless steel were measured in the atmospheres of air, oxygen, argon, and in vacuum. As follows from the investigations, there is an increase in resistance to frictional wear in the studied samples after implantation; however, these changes are of different characters in various atmospheres. The largest decrease in wear was observed during tests in the air, and the largest reduction in the value of the friction coefficient for all implanted samples was obtained during tests in the argon atmosphere. Tribological tests revealed larger contents of nitrogen, carbon, and oxygen in the products of surface layer wear than in the surface layer itself of the sample directly after implantation

  16. Preparation and properties of enamel barrier on 316L stainless steel for resistance of hydrogen and its isotopes penetration

    In order to solve the problems of the resistance of hydrogen and its isotopes penetration for 316L stainless steel, the enamel coating with a thickness of 90-110 μm was prepared on the stainless steel substrate with the aid of coating and enameling for twice. The microstructure and the interfacial morphology of the samples were characterized respectively by X-ray diffractometer, optical and scanning electron microscopy. Moreover, the profiles of main elements at the interface between the coating and the substrate were analyzed by EDS line-scanning. The experimental results indicated that the dense enamel coatings were chemically bonded with 316L stainless steel substrate, and possessed perfect thermal shock and ball-dropping impact properties. Finally, a conclusion was drawn from the results of hydrogen charging in a Sieverts apparatus and the Vickers microhardness test that the as-prepared dense enamel coating exhibited a good barrier effect to hydrogen nad its isotopes penetration. (authors)

  17. Effect of rare earth elements on microstructure and oxidation behaviour in TIG weldments of AISI 316L stainless steel

    The influence of rare earth addition in weld metal, on the microstructure and oxidation behaviour of AISI 316L stainless steel in dry air under isothermal condition at 973 K for 240 h is reported. Rare earth metal (REM) doped weld metal zone exhibits better oxidation resistance during isothermal holding as compared to base metal and undoped weld metal zone of 316L. Presence of both Ce and Nb in weld metal shows superior oxidation resistance than with Ce alone. TIG weld microstructures are presented by optical microscopy. The morphologies of the scales and nature of their adherence to the alloy substrates, and scale spallation have been characterized by SEM and EDAX

  18. The effect of repeated repair welding on mechanical and corrosion properties of stainless steel 316L

    Highlights: • Microstructure and properties of the HAZ were analyzed. • Delta ferrite morphology changed, and ferrite content decreased. • Adverse effect on yield and ultimate tensile strength was negligible. • The absorbed energy and hardness decreases with increasing number of weld-repair. • The sensitivity to pitting corrosion was increased. - Abstract: The purpose of this study is to evaluate changes in the mechanical, micro structural and the corrosion properties of stainless steel 316L under repeated repair welding. The welding and the repair welding were conducted by shielded metal arc welding (SMAW). The SMAW welding process was performed using E316L filler metals. Specimen of the base metal and different conditions of shielded metal arc welding repairs were studied by looking in the micro structural changes, the chemical composition of the phases, the grain size (in the heat affected zone) and the effect on the mechanical and corrosion properties. The microstructure was investigated using optical microscopy (OM) and scanning electron microscopy (SEM). The chemical composition of the phases was determined using energy dispersive spectrometry (EDS). The corrosion behavior in 1 M H2SO4 + 3.5% NaCl solution was evaluated using a potentiodynamic polarization method. Tensile tests, Charpy-V impact resistance and Brinell hardness tests were conducted. Hardness of the heat affected zone decreased as the number of repairs increased. Generally an increase in the yield strength (YS) and the ultimate tensile strength (UTS) occurred with welding. After the first repair, a gradual decrease in YS and UTS occurred but the values of YS and UTS were not less than values of the base metal. Significant reduction in Charpy-V impact resistance with the number of weld repairs were observed when the notch location was in the HAZ. The HAZ of welding repair specimen is more sensitive to pitting corrosion. The sensitivity of HAZ to pitting corrosion was increased by

  19. Investigating the correlation between some of the properties of plasma nitrided AISI 316L stainless steel

    M. Olzon-Dionysio

    2013-01-01

    Full Text Available When AISI 316L stainless steels are submitted to the nitriding process at temperatures lower than 450 °C, a high nitrogen content expanded austenite phase is formed, which shows higher hardness and higher pitting corrosion resistance compared to the untreated material. As a result, this material becomes adequate for biomedical application. The conditions of the nitriding technique, such as gas mixture, pressure, time and temperature, play an important role in some properties of the modified layer, including: thickness, hardness and N concentration along the layer. This paper explores a set of six samples of AISI 316L, nitrided at different times and temperatures, whose properties show important differences. The aim of this research is to investigate the correlation between the nitrided layer thickness (in the range of 0.77 to 11 µm with both X-ray patterns characteristics and hardness measurements, which used two distinct loads. The results of this study show that: whereas the 3.6 gf load was suitable to measure the real hardness for four of the nitrided layers showing thickness ≥ 2.9 µm, the 50 gf load measured a substrate contribution, probably even for the highest thickness, 11 µm. Moreover, analyzing different reflections of the X-ray patterns showed evidence of the clear consistency between the X-Ray depths and the nitrided layer thicknesses: if the layer thickness is lower than the penetration depth of X-rays, two phases (austenite and expanded substrate are present. If the layer thickness is higher, only the austenite is observed. Finally, concerning the citotoxicity property, all the samples, nitrided or not, were approved in the test for biocompatibility, indicating their potential use for biomedical applications.

  20. The Effect of Constant and Pulsed Current Gas Tungsten Arc Welding on Joint Properties of 2205 Duplex Stainless Steel to 316L Austenitic Stainless Steel

    Neissi, R.; Shamanian, M.; Hajihashemi, M.

    2016-05-01

    In this study, dissimilar 316L austenitic stainless steel/2205 duplex stainless steel (DSS) joints were fabricated by constant and pulsed current gas tungsten arc welding process using ER2209 DSS as a filler metal. Microstructures and joint properties were characterized using optical and electron scanning microscopy, tensile, Charpy V-notch impact and micro-hardness tests, and cyclic polarization measurements. Microstructural observations confirmed the presence of chromium nitride and delta ferrite in the heat-affected zone of DSS and 316L, respectively. In addition, there was some deviation in the austenite/ferrite ratio of the surface welding pass in comparison to the root welding pass. Besides having lower pitting potential, welded joints produced by constant current gas tungsten arc welding process, consisted of some brittle sigma phase precipitates, which resulted in some impact energy reduction. The tensile tests showed high tensile strength for the weld joints in which all the specimens were broken in 316L base metal.

  1. The Effect of Constant and Pulsed Current Gas Tungsten Arc Welding on Joint Properties of 2205 Duplex Stainless Steel to 316L Austenitic Stainless Steel

    Neissi, R.; Shamanian, M.; Hajihashemi, M.

    2016-04-01

    In this study, dissimilar 316L austenitic stainless steel/2205 duplex stainless steel (DSS) joints were fabricated by constant and pulsed current gas tungsten arc welding process using ER2209 DSS as a filler metal. Microstructures and joint properties were characterized using optical and electron scanning microscopy, tensile, Charpy V-notch impact and micro-hardness tests, and cyclic polarization measurements. Microstructural observations confirmed the presence of chromium nitride and delta ferrite in the heat-affected zone of DSS and 316L, respectively. In addition, there was some deviation in the austenite/ferrite ratio of the surface welding pass in comparison to the root welding pass. Besides having lower pitting potential, welded joints produced by constant current gas tungsten arc welding process, consisted of some brittle sigma phase precipitates, which resulted in some impact energy reduction. The tensile tests showed high tensile strength for the weld joints in which all the specimens were broken in 316L base metal.

  2. Numerical models and experimental simulation of irradiation hardening and damage effects on the fracture toughness of 316L stainless steel

    Cornacchia, Giuseppe

    2013-01-01

    In nuclear environments, irradiation hardening and damage have a detrimental effect on materials performance. Among others, fracture toughness of austenitic stainless steels decreases under neutron irradiation. Helium arising from transmutation reactions is one source of embrittlement leading to that decrement and it is here assumed as a case study, austenitic steel 316L being the material under investigation. The experimental reproduction of irradiation hardening effect on yield stress is at...

  3. The role of the microstructure and defects on crack initiation in 316L stainless steel under multiaxial high cycle fatigue

    GUERCHAIS, Raphaël; Morel, Franck; Saintier, Nicolas

    2014-01-01

    The aim of this study is to analyse the influence of both the microstructure and defects on the high cycle fatigue behaviour of the 316L austenitic stainless steel, using finite element simulations of polycrystalline aggregates. High cycle fatigue tests have been conducted on this steel under uniaxial (push-pull) and multiaxial (combined in-phase tension and torsion) loading conditions, with both smooth specimens and specimens containing artificial semi-spherical surface defects. 2D numerical...

  4. SCC crack growth rate of cold worked 316L stainless steel in PWR environment

    Du, Donghai; Chen, Kai; Yu, Lun; Lu, Hui [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhang, Lefu, E-mail: lfzhang@sjtu.edu.cn [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Shi, Xiuqiang; Xu, Xuelian [Shanghai Nuclear Engineering Research and Design Institute, Shanghai 200233 (China)

    2015-01-15

    Many component failures in nuclear power plants were found to be caused by stress corrosion cracking (SCC) of cold worked austenitic steels. Some of the pressure boundary component materials are even cold worked up to 35% plastic deformation, leaving high residual stress and inducing high growth rate of corrosion crack. Controlling water chemistry is one of the best counter measure to mitigate this problem. In this work, the effects of temperature (200 up to 325 °C) and dissolved oxygen (0 up to 2000 μg/L) on SCC crack growth rates of cold worked austenitic stainless steel type 316L have been tested by using direct current potential drop (DCPD) method. The results showed that temperature affected SCC crack growth rates more significantly in oxygenated water than in deaerated water. In argon deaerated water, the crack growth rate exhibited a peak at about 250 °C, which needs further verification. At 325 °C, the SCC crack growth rate increased rapidly with the increase of dissolved oxygen concentration within the range from 0 up to 200 μg/L, while when dissolved oxygen was above 200 μg/L, the crack growth rate followed a shallower dependence on dissolved oxygen concentration.

  5. SCC crack growth rate of cold worked 316L stainless steel in PWR environment

    Many component failures in nuclear power plants were found to be caused by stress corrosion cracking (SCC) of cold worked austenitic steels. Some of the pressure boundary component materials are even cold worked up to 35% plastic deformation, leaving high residual stress and inducing high growth rate of corrosion crack. Controlling water chemistry is one of the best counter measure to mitigate this problem. In this work, the effects of temperature (200 up to 325 °C) and dissolved oxygen (0 up to 2000 μg/L) on SCC crack growth rates of cold worked austenitic stainless steel type 316L have been tested by using direct current potential drop (DCPD) method. The results showed that temperature affected SCC crack growth rates more significantly in oxygenated water than in deaerated water. In argon deaerated water, the crack growth rate exhibited a peak at about 250 °C, which needs further verification. At 325 °C, the SCC crack growth rate increased rapidly with the increase of dissolved oxygen concentration within the range from 0 up to 200 μg/L, while when dissolved oxygen was above 200 μg/L, the crack growth rate followed a shallower dependence on dissolved oxygen concentration

  6. Study on corrosion resistance of palladium films on 316L stainless steel by electroplating and electroless plating

    Palladium films with good adhesive strength were deposited on 316L stainless steel by electroless plating and electroplating. Scanning electronic microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, weight loss tests and electrochemical methods were used to study the properties of the films. The electroless plated palladium film mainly consisted of palladium, phosphorus and nitrogen, and the electroplated palladium film was almost pure palladium. XPS analysis indicated that palladium was present in the films as metal state. The palladium plated stainless steel samples prepared by both methods showed excellent corrosion resistance in strong reductive corrosion mediums. In boiling 20% dilute sulfuric acid solution, the corrosion rates of the palladium plated 316L stainless steel samples were four orders of magnitude lower than that of the original 316L stainless steel samples. In the solution with 0.01 M NaCl, the palladium plated samples also showed better corrosion resistance. In comparison, the electroplated samples showed slightly better corrosion resistance than electroless plated samples, which may be attributed to less impurities and thereby higher corrosion potential for the former

  7. Bone-like apatite formation on HA/316L stainless steel composite surface in simulated body fluid

    FAN Xin; CHEN Jian; ZOU Jian-peng; WAN Qian; ZHOU Zhong-cheng; RUAN Jian-ming

    2009-01-01

    HA/316L stainless steel(316L SS) biocomposites were prepared by hot-pressing technique. The formation of bone-like apatite on the biocomposite surfaces in simulated body fluid(SBF) was analyzed by digital pH meter, plasma emission spectrometer, scanning electron microscope(SEM) and energy dispersive X-ray energy spectrometer(EDX). The results indicate that the pH value in SBF varies slightly during the immersion. It is a dynamic process of dissolution-precipitation for the formation of apatite on the surface. With prolonging immersion time, Ca and P ion concentrations increase gradually, and then approach equilibrium. The bone-like apatite layer forms on the composites surface, which possesses benign bioactivity and favorable biocompatibility and achieves osseointegration, and can provide firm fixation between HA60/316L SS composite implants and human body bone.

  8. Surface characterisation and electrochemical behaviour of porous titanium dioxide coated 316L stainless steel for orthopaedic applications

    Nagarajan, S.; Rajendran, N.

    2009-01-01

    Porous titanium dioxide was coated on surgical grade 316L stainless steel (SS) and its role on the corrosion protection and enhanced biocompatibility of the materials was studied. X-ray diffraction analysis (XRD), atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) were carried out to characterise the surface morphology and also to understand the structure of the as synthesised coating on the substrates. The corrosion behaviour of titanium dioxide coated samples in simulated body fluid was evaluated using polarisation and impedance spectroscopy studies. The results reveal that the titanium dioxide coated 316L SS exhibit a higher corrosion resistance than the uncoated 316L SS. The titanium dioxide coated surface is porous, uniform and also it acts as a barrier layer to metallic substrate and the porous titanium dioxide coating induces the formation of hydroxyapatite layer on the metal surface.

  9. Surface characterisation and electrochemical behaviour of porous titanium dioxide coated 316L stainless steel for orthopaedic applications

    Porous titanium dioxide was coated on surgical grade 316L stainless steel (SS) and its role on the corrosion protection and enhanced biocompatibility of the materials was studied. X-ray diffraction analysis (XRD), atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) were carried out to characterise the surface morphology and also to understand the structure of the as synthesised coating on the substrates. The corrosion behaviour of titanium dioxide coated samples in simulated body fluid was evaluated using polarisation and impedance spectroscopy studies. The results reveal that the titanium dioxide coated 316L SS exhibit a higher corrosion resistance than the uncoated 316L SS. The titanium dioxide coated surface is porous, uniform and also it acts as a barrier layer to metallic substrate and the porous titanium dioxide coating induces the formation of hydroxyapatite layer on the metal surface.

  10. Neutron irradiation creep at 100 C on 316L, AMCR, and welded 316L stainless steel alloys

    The authors performed measurements on the elongation of many different austenitic stainless steel alloys irradiating at 100 C in a low flux channel of the High Flux Reactor at Petten varying the applied stress between zero and 300 Mpa. They irradiated in total 98 samples in two irradiation rigs. Of these samples only 26 samples could be tested up to a dose of 2.1 dpa, and 13 samples up to a dose of 0.21 dpa. The steels tested are listed in Table 1. In the second irradiation rig four TIG-welded samples and one EB-welded sample were irradiated. They found that the length of the samples increased up to an irradiation dose of 0.11 dpa and then either decreased or increased slightly depending on the magnitude of the applied stress. They attributed the increase in length to the volume change due to the formation of carbides and to the accommodation of carbides to the applied stress. The decrease of the length with irradiation time is attributed to the formation of brittle α-ferrite. The amount of α-ferrite formed increases with decreasing irradiation temperature and increases with decreasing applied stress. Eight samples broke during irradiation in 8 columns or stems in two rigs before the first elongation test at 0.11 or 0.21 dpa could be performed. Irradiation of 343 samples of the same materials in the last fifteen years at temperatures between 300 and 500 C did not cause fracture

  11. Neutron irradiation creep at 100 C on 316L, AMCR, and welded 316L stainless steel alloys

    Hausen, H.; Schuele, W. [Johann Wolfgang Goethe-Univ. Frankfurt (Germany). Inst. fuer Angewandte Physik

    1999-10-01

    The authors performed measurements on the elongation of many different austenitic stainless steel alloys irradiating at 100 C in a low flux channel of the High Flux Reactor at Petten varying the applied stress between zero and 300 Mpa. They irradiated in total 98 samples in two irradiation rigs. Of these samples only 26 samples could be tested up to a dose of 2.1 dpa, and 13 samples up to a dose of 0.21 dpa. The steels tested are listed in Table 1. In the second irradiation rig four TIG-welded samples and one EB-welded sample were irradiated. They found that the length of the samples increased up to an irradiation dose of 0.11 dpa and then either decreased or increased slightly depending on the magnitude of the applied stress. They attributed the increase in length to the volume change due to the formation of carbides and to the accommodation of carbides to the applied stress. The decrease of the length with irradiation time is attributed to the formation of brittle {alpha}-ferrite. The amount of {alpha}-ferrite formed increases with decreasing irradiation temperature and increases with decreasing applied stress. Eight samples broke during irradiation in 8 columns or stems in two rigs before the first elongation test at 0.11 or 0.21 dpa could be performed. Irradiation of 343 samples of the same materials in the last fifteen years at temperatures between 300 and 500 C did not cause fracture.

  12. Processing conditions and microstructural features of porous 316L stainless steel components by DMLS

    Direct metal laser sintering (DMLS), due to its flexibility in materials and shapes, would be especially interesting to produce complex shaped porous metallic components. In the present work, processing conditions and microstructural characteristics of direct laser sintered porous 316L stainless steel components were studied. It was found that a partial melting mechanism of powders gave a high feasibility in obtaining porous sintered structures possessing porosities of ∼21-∼55%. Linear energy density (LED), which was defined by the ratio of laser power to scan speed, was used to tailor the laser sintering mechanism. A moderate LED of ∼3400-∼6000 J/m and a lower scan speed less than 0.06 m/s proved to be feasible. With the favorable sintering mechanism prevailed, lowering laser power or increasing scan speed, scan line spacing, and powder layer thickness generally led to a higher porosity. Metallurgical mechanisms of pore formation during DMLS were addressed. It showed that the presence of pores was through: (i) the formation of liquid bridges between partially melted particles during laser irradiation; and (ii) the growth of sintering necks during solidification, leaving residual pores between solidified metallic agglomerates.

  13. Laser Surface Alloying of 316L Stainless Steel with Ru and Ni Mixtures

    M. B. Lekala

    2012-01-01

    Full Text Available The surfaces of AISI 316L stainless steel were laser alloyed with ruthenium powder and a mixture of ruthenium and nickel powders using a cw Nd:YAG laser set at fixed operating parameters. The microstructure, elemental composition, and corrosion characteristics of the alloyed zone were analyzed using optical and scanning electron microscopy (SEM, energy dispersive X-ray spectroscopy (EDX, and corrosion potential measurements. The depth of alloyed zone was measured using the AxioVision program and found to be approximately 1.8 mm for all the alloyed specimens. Hardness profile measurements through the surface-substrate interface showed a significant increase from 160 HV for the substrate to a maximum of 247 HV for the alloyed layer. The sample laser alloyed with 80 wt% Ni-20 wt% presented the most noble corrosion potential (Ecorr of −0.18 V and the lowest corrosion current density (icorr.

  14. Galvanic deposition and characterization of brushite/hydroxyapatite coatings on 316L stainless steel.

    Blanda, Giuseppe; Brucato, Valerio; Pavia, Francesco Carfì; Greco, Silvia; Piazza, Salvatore; Sunseri, Carmelo; Inguanta, Rosalinda

    2016-07-01

    In this work, brushite and brushite/hydroxyapatite (BS, CaHPO4·H2O; HA, Ca10(PO4)6(OH)2) coatings were deposited on 316L stainless steel (316LSS) from a solution containing Ca(NO3)2·4H2O and NH4H2PO4 by a displacement reaction based on a galvanic contact, where zinc acts as sacrificial anode. Driving force for the cementation reaction arises from the difference in the electrochemical standard potentials of two different metallic materials (316LSS and Zn) immersed in an electrolyte, so forming a galvanic contact leading to the deposition of BS/HA on nobler metal. We found that temperature and deposition time affect coating features (morphology, structure, and composition). Deposits were characterized by means of several techniques. The morphology was investigated by scanning electron microscopy, the elemental composition was obtained by X-ray energy dispersive spectroscopy, whilst the structure was identified by Raman spectroscopy and X-ray diffraction. BS was deposited at all investigated temperatures covering the 316LSS surface. At low and moderate temperature, BS coatings were compact, uniform and with good crystalline degree. On BS layers, HA crystals were obtained at 50°C for all deposition times, while at 25°C, its presence was revealed only after long deposition time. Electrochemical studies show remarkable improvement in corrosion resistance. PMID:27127032

  15. Low-temperature plasma nitriding of sintered PIM 316L austenitic stainless steel

    Mendes, Aecio Fernando; Scheuer, Cristiano Jose; Joanidis, Ioanis Labhardt; Cardoso, Rodrigo Perito; Mafra, Marcio; Klein, Aloisio Nelmo; Brunatto, Silvio Francisco, E-mail: brunatto@ufpr.br [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Engenharia Mecanica. Grupo de Tecnologia de Fabricacao Assistida pro Plasma e Metalurgia do Po

    2014-08-15

    This work reports experimental results on sintered PIM 316L stainless steel low-temperature plasma nitriding. The effect of treatment temperature and time on process kinetics, microstructure and surface characteristics of the nitrided samples were investigated. Nitriding was carried out at temperatures of 350, 380, 410 and 440 °C , and times of 4, 8 and 16 h, using a gas mixture composed by 60% N2 + 20% H2 + 20% Ar, at a gas flow rate of 5.00 X 10{sup 6} Nm{sup 3-1}, and a pressure of 800 Pa. The treated samples were characterized by scanning electron microscopy, X-ray diffractometry and microhardness measurements. Results indicate that low-temperature plasma nitriding is a diffusion controlled process. The calculated activation energy for nitrided layer growth was 111.4 kJmol{sup -1}. Apparently precipitation-free layers were produced in this study. It was also observed that the higher the treatment temperature and time the higher is the obtained surface hardness. Hardness up to 1343 HV{sub 0.025} was verified for samples nitrided at 440 °C. Finally, the characterization of the treated surface indicates the formation of cracks, which were observed in regions adjacent to the original pores after the treatment. (author)

  16. The blistering of 316L stainless steel irradiated with energetic alpha particles at 500 degrees C

    The physical process of blistering is investigated in the 316L stainless steel in both the solid solution and 20% cold-worked states. The material was irradiated with 1.8 MeV alpha particles to various fluences at 500deg C. There is a threshold fluence for blistering in the range of (0.869-1.346)x 1018 α/cm2. The microstructure, determined by TEM observation in the cross-section of irradiated samples, shows that the bubbles are accumulated at the surface layer. There is a bubble size and density distribution along the direction of depth. The bubble size and swelling increase progressively from the edge of the specimen to the damage peak region (DPR), then decrease. After 3 μm there are no bubbles. Due to bubble formation the thermal conductivity of the surface layer becomes lower and the temperature increases due to the irradiation energy deposited. Beyond the threshold fluence, the temperature of the surface layer is high, bubble coalescence at DPR becomes more serious and the bubble pressure becomes high enough that blistering occurs. (orig.)

  17. Mechanical properties of Austenitic Stainless Steel 304L and 316L at elevated temperatures

    Raghuram Karthik Desu

    2016-01-01

    Full Text Available Austenitic Stainless Steel grade 304L and 316L are very important alloys used in various high temperature applications, which make it important to study their mechanical properties at elevated temperatures. In this work, the mechanical properties such as ultimate tensile strength (UTS, yield strength (YS, % elongation, strain hardening exponent (n and strength coefficient (K are evaluated based on the experimental data obtained from the uniaxial isothermal tensile tests performed at an interval of 50 °C from 50 °C to 650 °C and at three different strain rates (0.0001, 0.001 and 0.01 s−1. Artificial Neural Networks (ANN are trained to predict these mechanical properties. The trained ANN model gives an excellent correlation coefficient and the error values are also significantly low, which represents a good accuracy of the model. The accuracy of the developed ANN model also conforms to the results of mean paired t-test, F-test and Levene's test.

  18. Microstructure characterisation and process optimization of laser assisted rapid fabrication of 316L stainless steel

    In the present study, laser assisted fabrication of 316L stainless steel has been attempted using a high power (1.5 kW) continuous wave diode laser. The main process variables for the present study were applied power density, scan speed and powder feed rate. A detailed microstructural study of the surface and cross-section of the fabricated layer were carried out using optical and scanning electron microscopy to understand the influence of laser parameters on microstructure of the surface and interface between the successive layers. The microstructure of the top layer was equiaxed, the near substrate region was fine dendritic, however, at the interface between two successive layers, it was coarsened. The morphology and degree of fineness of the microstructure was found to vary with laser parameters. The range of grain size (maximum grain size-minimum grain size) was taken as a measure of homogeneity. It was found that with increasing the scan speed, the range of grain size was minimized. Micro-porosities were present in the microstructure that reduced with increasing scan speed and found to be minimum at a medium powder feed rate. The optimum processing conditions have been established by correlating the characteristics of the fabricated layer with process parameters

  19. Fatigue crack propagation at high temperature (5500C) in stainless steel type 316 L

    The effect of different parameters such as temperature, stress ratio R, frequency f, have been investigated for fatigue crack propagation in stainless steel type 316 L. At high frequency (20 Hz), increasing temperature from room temperature to 5500C, produced an increase in crack propagation rate. Fractographic analysis of failed specimens indicated no change in failure mode which was transgranular with fatigue striations indicating a ductile failure process. Transmission electron microscopy analysis showed a change in the plastic deformation mode which was consisted, at room temperature, of twinning and martensitic transformation, characteristic of a low SFE material, and at high temperature, of a disoriented cellular structure characteristic of a high SFE material. At high temperature, raising stress ratio from 0.1 to 0.5, increased crack propagation rate with no change in the failure mode which was transgranular. At high temperature, decreased frequency from 1200 cpm to 4 cpm increased crack propagation rate. Combined effect of temperature and low frequency led to corrosion, and intergranular failure

  20. An in vitro investigation of the anodic polarization and capacitance behavior of 316-L stainless steel.

    Sutow, E J; Pollack, S R; Korostoff, E

    1976-09-01

    Determinations were made of how the corrosion-resistant properties of the passive film on 316-L stainless steel are influenced by the material's mechanical and surface states, and the variable pH and PO2 conditions of the interstitial fluid. Cold-rolled and annealed specimens were surface-prepared, commercially and in the laboratory, respectively, as if for orthopedic implantation. Passive film behavior was studied by the anodic polarization and pulse-potentiostatic capacitance methods. The pH and PO2 of the Ringer's test solution were varied to include interstitial fluid values occurring postoperatively and onto recovery. The anodic polarization behavior of all specimens was found to be pH- and PO2-independent. Breakdown potentials of annealed specimens were 800-950 mV (SCE), in contrast to previously reported values of approximately 350 mV. This substantial increase is related to the influence of surface preparation and, in particular, to the optimization of electropolishing time which acts to produce a microscopically smooth surface, free of debris and disarrayed material. Capacitance behavior of annealed material for potentials greater than 400 mV was consistent with a model involving the entry of chloride and metal ions (mostly Fe) into the passive film. This entry is related to the onset of pitting. PMID:10307

  1. The influence of electropolishing on the corrosion resistance of 316L stainless steel.

    Sutow, E J

    1980-09-01

    A study was conducted which examined the influence of electropolishing on the corrosion resistance of a cold rolled 316L stainless steel. Test specimens were surface prepared to a final mechanical finish of wetted 600 grit SiC paper, prior to electropolishing. An o-H3PO4/Glycerol/H2O electropolishing solution was employed for times of 15, 20, and 25 min. Control specimens were surface prepared only to the final mechanical finish. Anodic polarization tests were performed in a deaerated Ringer's solution (37 degrees C) which was acidified to pH 1, with HCl. The electropolished specimens demonstrated increased corrosion resistance, when compared to the control specimens. This was evidenced for the former by more anodic corrosion and breakdown potentials, and the absence of a dissolution peak which was observed for the control specimens at the initial polarization potentials. Surface hardness measurements indicated that this increase in corrosion resistance was produced, in part, by the removal of the cold worked surface layer produced by the mechanical finish. In terms of increasing corrosion resistance, no optimum electropolishing time was found within the 15-25 min treatment period. PMID:7349665

  2. Low-temperature plasma nitriding of sintered PIM 316L austenitic stainless steel

    This work reports experimental results on sintered PIM 316L stainless steel low-temperature plasma nitriding. The effect of treatment temperature and time on process kinetics, microstructure and surface characteristics of the nitrided samples were investigated. Nitriding was carried out at temperatures of 350, 380, 410 and 440 °C , and times of 4, 8 and 16 h, using a gas mixture composed by 60% N2 + 20% H2 + 20% Ar, at a gas flow rate of 5.00 X 106 Nm3-1, and a pressure of 800 Pa. The treated samples were characterized by scanning electron microscopy, X-ray diffractometry and microhardness measurements. Results indicate that low-temperature plasma nitriding is a diffusion controlled process. The calculated activation energy for nitrided layer growth was 111.4 kJmol-1. Apparently precipitation-free layers were produced in this study. It was also observed that the higher the treatment temperature and time the higher is the obtained surface hardness. Hardness up to 1343 HV0.025 was verified for samples nitrided at 440 °C. Finally, the characterization of the treated surface indicates the formation of cracks, which were observed in regions adjacent to the original pores after the treatment. (author)

  3. Boron content in type 316 L stainless steel by neutron induced autoradiography

    Boron is effective to the improvement of various properties of alloys, but it is difficult to characterize its behavior during the alloy processing. Neutron induced autoradiography (or called as F.T.E: Fission Track Etching) technique was attempted to quantitatively analyze boron content in type 316 L austenitic stainless steel. Reference samples with nine different boron contents were prepared and analyzed by conventional analysis method as well as by autoradiography technique using 'HANARO', a 30 MW research reactor in K.A.E.R.I. (Korea Atomic Energy Research Institute). Cd ratio of the neutron flux was about 200 and thermal neutron flux was around 2x1013/cm2/sec. A Kodak CN-85TM detector with an alloy sample was irradiated with two different thermal neutron fluences of 1013 and 1014/cm2. Track densities on the autoradiographs were measured using image analyzer. Within the range of 10 to 50 ppm of boron, track densities from autoradiography showed the linear relationship with results from conventional analyses. When complementarily applied with other analysis technique like E.B.S.D. (Electron Backscattered Diffraction) or E.D.S. (Energy Dispersive Spectroscopy) neutron induced autoradiography technique was found very useful in distinguishing and identifying phases with the different distribution coefficient of boron. (author)

  4. On the fate of tritium in thermally treated stainless steel type 316L

    Several type 316L stainless steel specimens of 6 mm thickness were charged with tritium at 473 K at Joint European Torus (JET) using five sets of conditions. Isothermal tritium release rates were investigated at Hydrogen Isotope Research Centre (HRC) over extended periods of time at 473, 573, or 673 K constant temperature. The HTO/HT ratio of the liberated tritium was generally high, but decreased with decreasing release temperature. Nearly complete release of tritium required additional prolonged heating at 1073 K. Chemical etching and beta-ray-induced X-ray spectrometry measurements carried out at HRC provided complementary information on the tritium distribution in surface and bulk of thermally treated specimens. Whereas the thickness of the material and initial distribution of tritium in its bulk were found to play an important role for expedient thermal decontamination, the influence of the type of purge gas was only minor. Experimental evidence for tritium grain boundary diffusion is provided. Implications of the results for waste conditioning are discussed.

  5. On the fate of tritium in thermally treated stainless steel type 316L

    Penzhorn, R.-D.; Torikai, Y.; Watanabe, K.; Matsuyama, M.; Perevezentsev, A.

    2012-10-01

    Several type 316L stainless steel specimens of 6 mm thickness were charged with tritium at 473 K at Joint European Torus (JET) using five sets of conditions. Isothermal tritium release rates were investigated at Hydrogen Isotope Research Centre (HRC) over extended periods of time at 473, 573, or 673 K constant temperature. The HTO/HT ratio of the liberated tritium was generally high, but decreased with decreasing release temperature. Nearly complete release of tritium required additional prolonged heating at 1073 K. Chemical etching and beta-ray-induced X-ray spectrometry measurements carried out at HRC provided complementary information on the tritium distribution in surface and bulk of thermally treated specimens. Whereas the thickness of the material and initial distribution of tritium in its bulk were found to play an important role for expedient thermal decontamination, the influence of the type of purge gas was only minor. Experimental evidence for tritium grain boundary diffusion is provided. Implications of the results for waste conditioning are discussed.

  6. Local approach on mixed-mode ductile fracture of an aged stainless steel 316L

    In the frame of the structural integrity of the fast breeder reactor vessel, the local approach of fracture is applied to the ductile crack initiation under mixed-mode I+II loading for a 316L type stainless steel thermally aged for 1000 hours at 700 deg C. Experimental and numerical tests are performed on axisymmetric notched specimens, compact tension specimens and disymmetric four-point bend specimens. From elastoplastic finite element analyses, the damage variables are evaluated with various models: the Beremin model, the McClintock model, the Guennouni-Francois model and the Lemaitre model. The critical values of damage variable obtained on simple tensile specimens and axisymmetric notched specimens are used for the prediction of crack initiation under mixed-mode loading. The damage variable at crack initiation seems to be rather dependent on the fracture mode related to the stress triaxiality and the brittle fracture of banded ferrite of the aged material. The results are compared with those of the J values at crack initiation. (author). 9 ref., 2 figs

  7. Study of the Mechanical Properties of a Nanostructured Surface Layer on 316L Stainless Steel

    F. C. Lang

    2016-01-01

    Full Text Available A nanostructured surface layer (NSSL was generated on a 316L stainless steel plate through surface nanocrystallization (SNC. The grains of the surface layer were refined to nanoscale after SNC treatment. Moreover, the microstructure and mechanical properties of NSSL were analyzed with a transmission electron microscope (TEM and scanning electron microscope (SEM, through nanoindentation, and through reverse analysis of finite element method (FEM. TEM results showed that the grains in the NSSL measured 8 nm. In addition, these nanocrystalline grains took the form of random crystallographic orientation and were roughly equiaxed in shape. In situ SEM observations of the tensile process confirmed that the motions of the dislocations were determined from within the material and that the motions were blocked by the NSSL, thus improving overall yielding stress. Meanwhile, the nanohardness and the elastic modulus of the NSSL, as well as those of the matrix, were obtained with nanoindentation technology. The reverse analysis of FEM was conducted with MARC software, and the process of nanoindentation on the NSSL and the matrix was simulated. The plastic mechanical properties of NSSL can be derived from the simulation by comparing the results of the simulation and of actual nanoindentation.

  8. Stress corrosion cracking and oxidation of austenitic stainless steel 316 L and model alloy in supercritical water reactor

    In this work, an austenitic stainless steel type 316 L was tested in deaerated supercritical water at 400 deg. C and 500 deg. C and 25 MPa to determine how variations in water conditions influence its stress corrosion cracking behaviour and to make progress in the understanding of mechanisms involved in SCC processes in this environment. Moreover, the influence of plastic deformation in the resistance of the material to SCC was also studied at both temperatures. In addition to this, previous oxidation experiments at 400 deg. C and 500 deg. C and at 25 MPa were taken into account to gain some insight in this kind of processes. Furthermore, a cold worked model alloy based on the stainless steel 316 L with some variations in the chemical composition in order to simulate the composition of the grain boundary after irradiation was tested at 400 deg. C and 25 MPa in deaerated supercritical water. (authors)

  9. Effect of forming technique BixSiyOz coatings obtained by sol- gel and supported on 316L stainless steel

    Bautista Ruiz, J.; Olaya Flórez, J.; Aperador, W.

    2016-02-01

    BixSiyOz type coatings via sol-gel synthesized from bismuth nitrate pentahydrate, and tetraethyl orthosilicate as precursors; glacial acetic acid and 2-ethoxyethanol as solvents, and ethanolamine as complexing. The coatings were supported on AISI 316L stainless steel substrate through dip-coating and spin-coating techniques. The study showed that the spin-coating technique is efficient than dip-coating because it allows more dense and homogeneous films.

  10. Biocompatibility evaluation of surface-treated AISI 316L austenitic stainless steel in human cell cultures.

    Martinesi, M; Bruni, S; Stio, M; Treves, C; Bacci, T; Borgioli, F

    2007-01-01

    The effects of AISI 316L austenitic stainless steel, tested in untreated state or subjected to glow-discharge nitriding (at 10 or 20 hPa) and nitriding + post-oxidizing treatments, on human umbilical vein endothelial cells (HUVEC) and on peripheral blood mononuclear cells (PBMC) were evaluated. All the treated samples showed a better corrosion resistance in PBS and higher surface hardness in comparison with the untreated alloy. In HUVEC put in contact for 72 h with the sample types, proliferation and apoptosis decreased and increased, respectively, in the presence of the nitrided + post-oxidized samples, while only slight differences in cytokine (TNF-alpha, IL-6, and TGF-beta1) release were registered. Intercellular adhesion molecule-1 (ICAM-1) increased in HUVEC incubated with all the treated samples, while vascular cell adhesion molecule-1 (VCAM-1) and E-selectin increased in the presence of all the sample types. PBMC incubated for 48 h with the samples showed a decrease in proliferation and an increase in apoptosis in the presence of the untreated samples and the nitrided + post-oxidized ones. All the sample types induced a remarkable increase in TNF-alpha and IL-6 release in PBMC culture medium, while only the untreated sample and the nitrided at 10 hPa induced an increase in ICAM-1 expression. In HUVEC cocultured with PBMC, previously put in contact with the treated AISI 316L samples, increased levels of ICAM-1 were detected. In HUVEC coincubated with the culture medium of PBMC, previously put in contact with the samples under study, a noteworthy increase in ICAM-1, VCAM-1, and E-selectin levels was always registered, with the exception of VCAM-1, which was not affected by the untreated sample. In conclusion, even if the treated samples do not show a marked increase in biocompatibility in comparison with the untreated alloy, their higher corrosion resistance may suggest a better performance as the contact with physiological environment becomes longer. PMID

  11. Nanohardness, corrosion and protein adsorption properties of CuAlO2 films deposited on 316L stainless steel for biomedical applications

    Chang, Shih-Hang; Chen, Jian-Zhang; Hsiao, Sou-Hui; Lin, Guan-Wei

    2014-01-01

    This study preliminarily assesses the biomedical applications of CuAlO2 coatings according to nanoindentation, electrochemical, and protein adsorption tests. Nanoindentation results revealed that the surface hardness of 316L stainless steel increased markedly after coating with CuAlO2 films. Electrochemical tests of corrosion potential, breakdown potential, and corrosion current density showed that the corrosion resistance properties of 316L stainless steel are considerably improved by CuAlO2 coatings. Bicinchoninic acid (BCA) protein assay results revealed that the protein adsorption behavior of 316L stainless steel did not exhibit notable differences with or without CuAlO2 coatings. A CuAlO2 coating of 100 nm thickness improved the surface nanohardness and corrosion resistance ability of 316L stainless steel. CuAlO2 is a potential candidate for biomaterial coating applications, particularly for surface modification of fine, delicate implants.

  12. The effect of hydrogen peroxide on uranium oxide films on 316L stainless steel

    Wilbraham, Richard J.; Boxall, Colin; Goddard, David T.; Taylor, Robin J.; Woodbury, Simon E.

    2015-09-01

    For the first time the effect of hydrogen peroxide on the dissolution of electrodeposited uranium oxide films on 316L stainless steel planchets (acting as simulant uranium-contaminated metal surfaces) has been studied. Analysis of the H2O2-mediated film dissolution processes via open circuit potentiometry, alpha counting and SEM/EDX imaging has shown that in near-neutral solutions of pH 6.1 and at [H2O2] ⩽ 100 μmol dm-3 the electrodeposited uranium oxide layer is freely dissolving, the associated rate of film dissolution being significantly increased over leaching of similar films in pH 6.1 peroxide-free water. At H2O2 concentrations between 1 mmol dm-3 and 0.1 mol dm-3, formation of an insoluble studtite product layer occurs at the surface of the uranium oxide film. In analogy to corrosion processes on common metal substrates such as steel, the studtite layer effectively passivates the underlying uranium oxide layer against subsequent dissolution. Finally, at [H2O2] > 0.1 mol dm-3 the uranium oxide film, again in analogy to common corrosion processes, behaves as if in a transpassive state and begins to dissolve. This transition from passive to transpassive behaviour in the effect of peroxide concentration on UO2 films has not hitherto been observed or explored, either in terms of corrosion processes or otherwise. Through consideration of thermodynamic solubility product and complex formation constant data, we attribute the transition to the formation of soluble uranyl-peroxide complexes under mildly alkaline, high [H2O2] conditions - a conclusion that has implications for the design of both acid minimal, metal ion oxidant-free decontamination strategies with low secondary waste arisings, and single step processes for spent nuclear fuel dissolution such as the Carbonate-based Oxidative Leaching (COL) process.

  13. Hydrophilic property of 316L stainless steel after treatment by atmospheric pressure corona streamer plasma using surface-sensitive analyses

    Al-Hamarneh, Ibrahim, E-mail: hamarnehibrahim@yahoo.com [Department of Physics, Faculty of Science, Al-Balqa Applied University, Salt 19117 (Jordan); Pedrow, Patrick [School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99164 (United States); Eskhan, Asma; Abu-Lail, Nehal [Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164 (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Surface hydrophilic property of surgical-grade 316L stainless steel was enhanced by Ar-O{sub 2} corona streamer plasma treatment. Black-Right-Pointing-Pointer Hydrophilicity, surface morphology, roughness, and chemical composition before and after plasma treatment were evaluated. Black-Right-Pointing-Pointer Contact angle measurements and surface-sensitive analyses techniques, including XPS and AFM, were carried out. Black-Right-Pointing-Pointer Optimum plasma treatment conditions of the SS 316L surface were determined. - Abstract: Surgical-grade 316L stainless steel (SS 316L) had its surface hydrophilic property enhanced by processing in a corona streamer plasma reactor using O{sub 2} gas mixed with Ar at atmospheric pressure. Reactor excitation was 60 Hz ac high-voltage (0-10 kV{sub RMS}) applied to a multi-needle-to-grounded screen electrode configuration. The treated surface was characterized with a contact angle tester. Surface free energy (SFE) for the treated stainless steel increased measurably compared to the untreated surface. The Ar-O{sub 2} plasma was more effective in enhancing the SFE than Ar-only plasma. Optimum conditions for the plasma treatment system used in this study were obtained. X-ray photoelectron spectroscopy (XPS) characterization of the chemical composition of the treated surfaces confirms the existence of new oxygen-containing functional groups contributing to the change in the hydrophilic nature of the surface. These new functional groups were generated by surface reactions caused by reactive oxidation of substrate species. Atomic force microscopy (AFM) images were generated to investigate morphological and roughness changes on the plasma treated surfaces. The aging effect in air after treatment was also studied.

  14. Prediction of microcracking in laser overly welds of alloy 690 to type 316L stainless steel

    The occurrence of ductility-dip crack in the laser overlay welds of alloy 690 to type 316L stainless steel was predicted by the mechanical and metallurgical approaches. Ductility-dip temperature ranges (DTRs) of alloy 690 laser overlay welds were estimated by Varestraint test during GTA welding. The grain boundary segregation of impurity elements such as P and S was numerically analyzed based on the non-equilibrium cosegregation theory when the welding speed and the amounts of P and S in the weld metal were varied. In accordance with the repression approximation between the DTR and the calculated grain boundary concentrations of P and S, the DTRs of alloy 690 were computed in laser overlay welding. The estimated DTR in laser overlay welds was reduced with an increase in welding speed and with a decrease in the amounts of P and S in the weld metal. Ductility-dip cracking in laser overlay welds was predicted by the plastic strain-temperature curve intersected the DTR. The plastic strain in laser overlay welding was numerically analyzed using the thermo elasto-plastic finite element method. The plastic strain-temperature curve in laser overlay welds intersected the DTR at decreased welding speed and increased (P+S) content in the weld metal. The predicted results of ductility-dip cracking in laser overlay welds were approximately consistent with experiment results. It follows that ductility-dip cracking in laser overlay welds could be successfully predicted based on the estimated DTR from grain boundary segregation analysis combined with the computed plastic strain by FEM analysis. (author)

  15. Fracture under mixed-mode I+II of the austenitic stainless steel 316L

    The stability of cracks under mixed-mode l+ll in an aged stainless steel type 316L is investigated using four-points bent specimens. The formulas of the bending moment, the shearing force, the mode mixity, the limit load and the J estimations are established and compared with the numerical results from elastoplastic finite element calculations. From the experimental and numerical tests results, the application and the validation of the R6 method and various local criteria (Beremin, McClintock, Guennouni-Francois and Lemaitre models) are carried out. For the R6 method, it is noted that the FAD (Failure Assessment Diagram) is nearly independent of the loading mode and the specimen geometry. The FAD of the option 1 is conservative for all the test results, but the option 3 seems to be non-conservative, especially in the cases near to the mode I. This apparent non-conservatism is probably due to the different definition of the crack initiation of the CT specimens and the 4-point bend specimens. According to the applied local criteria, the values of the damage variables at crack initiation are sufficiently stable, particularly for the Beremin model and the Guennouni-Francois model but not in the cases nearer to the mode I. The use of these local criteria is questionable in the case of axisymmetric notched specimens because of the influence of the fracture of transformed ferrite. A fractographic investigation is also discussed for different fracture modes. (author). 85 refs., 99 figs., 14 tabs

  16. Investigation of oxide film formation on 316L stainless steel in high-temperature aqueous environments

    Highlights: → Oxide films formed in high temperature and high pressure aqueous environment (250 deg. C and 7 MPa) is much thicker than air-formed films (25 deg. C). → Oxide films formed at 250 deg. C have higher charge transfer resistance and smaller passive current density than air-formed films. → Fe exists in the form of FeO, Fe2O3 and FeOOH, Cr of Cr2O3, Cr(OH)3 and CrO3 and Ni of Ni(OH)2 in oxide films formed at 250 deg. C. - Abstract: Oxide films were grown on the surface of 316L stainless steel subjected to high temperatures and a high-pressure aqueous environment (250 deg. C and 7 MPa). The morphology, chemical compositions and corrosion properties of oxide films were investigated by scanning electron microscopy (SEM), auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques. The results indicated that oxide films formed at 250 deg. C were more corrosion resistant and thicker than were oxide films formed in air at room temperature (25 deg. C). These distinctions are correlated with the structure and chemical compositions of oxide films. It was found that both films contained a double-layer structure comprised of mixed iron-nickel oxides and chromium oxides. Iron was present as FeO, Fe2O3 and FeOOH; Cr was present as Cr2O3, Cr(OH)3 and CrO3; and Ni existed as Ni(OH)2 within the oxide films formed at 250 deg. C.

  17. Corrosion behaviour of 316L stainless steel and anti-corrosion materials in a high acidified chloride solution

    Jin, Z.H. [Shanghai University of Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai Key Laboratory of Colleges and Universities for Corrosion Control in Electric Power System and Applied Electrochemistry, 2103 Pingliang Road, Shanghai 200090 (China); Ge, H.H., E-mail: gehonghua@shiep.edu.cn [Shanghai University of Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai Key Laboratory of Colleges and Universities for Corrosion Control in Electric Power System and Applied Electrochemistry, 2103 Pingliang Road, Shanghai 200090 (China); Lin, W.W. [Shanghai University of Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai Key Laboratory of Colleges and Universities for Corrosion Control in Electric Power System and Applied Electrochemistry, 2103 Pingliang Road, Shanghai 200090 (China); Zong, Y.W.; Liu, S.J. [Power Plant of Baoshan Iron and Steel Co., Ltd, Tieli Road, Shanghai 200941 (China); Shi, J.M. [Technical University of Braunschweig (Germany)

    2014-12-15

    Highlights: • Severe general corrosion accompanied by localized pitting occurred on 316L SS surface in a high acidified chloride solution. • Surface roughness, surface potential difference and the electrochemical non-homogeneity of 316L SS in the test solution were investigated. • TA2, type 2507 SS and type 254SMo SS exhibit good corrosion resistance in the test solution. - Abstract: The corrosion behaviour of a type 316L (UNS S31603) stainless steel (SS) expansion joint in a simulated leaching solution of sediment on blast furnace gas pipeline in a power plant is investigated by using dynamic potential polarization curves, electrochemical impedance spectroscopy (EIS), optical microscope, atomic force microscope (AFM) and Scan Kelvin Probe (SKP). Severe general corrosion accompanied by pitting corrosion occurs on the type 316L SS surface in this solution. As the immersion period increases, the charge transfer resistance R{sub ct} decreases, the dissolution rate accelerates, the surface roughness increases and the surface potential difference enhances significantly. Then eight corrosion-resistant materials are tested, the corrosion rates of type 254SMo SS, type 2507 SS and TA2 are relatively minor in the solution. The corrosion resistance properties of TA2 is most excellent, indicating it would be the superior material choice for blast furnace gas pipeline.

  18. Corrosion behaviour of 316L stainless steel and anti-corrosion materials in a high acidified chloride solution

    Highlights: • Severe general corrosion accompanied by localized pitting occurred on 316L SS surface in a high acidified chloride solution. • Surface roughness, surface potential difference and the electrochemical non-homogeneity of 316L SS in the test solution were investigated. • TA2, type 2507 SS and type 254SMo SS exhibit good corrosion resistance in the test solution. - Abstract: The corrosion behaviour of a type 316L (UNS S31603) stainless steel (SS) expansion joint in a simulated leaching solution of sediment on blast furnace gas pipeline in a power plant is investigated by using dynamic potential polarization curves, electrochemical impedance spectroscopy (EIS), optical microscope, atomic force microscope (AFM) and Scan Kelvin Probe (SKP). Severe general corrosion accompanied by pitting corrosion occurs on the type 316L SS surface in this solution. As the immersion period increases, the charge transfer resistance Rct decreases, the dissolution rate accelerates, the surface roughness increases and the surface potential difference enhances significantly. Then eight corrosion-resistant materials are tested, the corrosion rates of type 254SMo SS, type 2507 SS and TA2 are relatively minor in the solution. The corrosion resistance properties of TA2 is most excellent, indicating it would be the superior material choice for blast furnace gas pipeline

  19. Resistance spot welding joints of AISI 316L austenitic stainless steel sheets: Phase transformations, mechanical properties and microstructure characterizations

    Highlights: • Resistance spot welding of AISI 316L stainless steel sheets. • Microstructure prediction by the use of Schaeffler and Pseudo-binary diagrams. • Non-equilibrium phases including skeletal, acicular and lathy delta ferrite formed. • Mechanical characterization of weld nuggets including peak load and failure energy. • Different failure modes were found at various welding currents. - Abstract: In this paper, we aim to optimize welding parameters namely welding current and time in resistance spot welding (RSW) of the austenitic stainless steel sheets grade AISI 316L. Afterward, effect of optimum welding parameters on the resistance spot welding properties and microstructure of AISI 316L austenitic stainless steel sheets has been investigated. Effect of welding current at constant welding time was considered on the weld properties such as weld nugget size, tensile–shear load bearing capacity of welded materials, failure modes, failure energy, ductility, and microstructure of weld nuggets as well. Phase transformations that took place during weld thermal cycle were analyzed in more details including metallographic studies of welding of the austenitic stainless steels. Metallographic images, mechanical properties, electron microscopy photographs and micro-hardness measurements showed that the region between interfacial to pullout mode transition and expulsion limit is defined as the optimum welding condition. Backscattered electron scanning microscopic images (BE-SEM) showed various types of delta ferrite in weld nuggets. Three delta ferrite morphologies consist of skeletal, acicular and lathy delta ferrite morphologies formed in resistance spot welded regions as a result of non-equilibrium phases which can be attributed to the fast cooling rate in RSW process and consequently, prediction and explanation of the obtained morphologies based on Schaeffler, WRC-1992 and Pseudo-binary phase diagrams would be a difficult task

  20. The effect of hydrogen peroxide on uranium oxide films on 316L stainless steel

    Highlights: • The first report of the presence of both UO2 and polymeric UO22+ in the same electrodeposited U oxide sample. • The action of H2O2 on electrodeposited U oxides is described using corrosion based concepts. • Electrodeposited U oxide freely dissolves at hydrogen peroxide concentrations <100 μmol dm−3. • At [H2O2] > 0.1 mmol dm−3 dissolution is inhibited by formation of a studtite passivation layer. • At [H2O2] ⩾ 1 mol dm−3 studtite formation competes with uranyl–peroxide complex formation. - Abstract: For the first time the effect of hydrogen peroxide on the dissolution of electrodeposited uranium oxide films on 316L stainless steel planchets (acting as simulant uranium-contaminated metal surfaces) has been studied. Analysis of the H2O2-mediated film dissolution processes via open circuit potentiometry, alpha counting and SEM/EDX imaging has shown that in near-neutral solutions of pH 6.1 and at [H2O2] ⩽ 100 μmol dm−3 the electrodeposited uranium oxide layer is freely dissolving, the associated rate of film dissolution being significantly increased over leaching of similar films in pH 6.1 peroxide-free water. At H2O2 concentrations between 1 mmol dm−3 and 0.1 mol dm−3, formation of an insoluble studtite product layer occurs at the surface of the uranium oxide film. In analogy to corrosion processes on common metal substrates such as steel, the studtite layer effectively passivates the underlying uranium oxide layer against subsequent dissolution. Finally, at [H2O2] > 0.1 mol dm−3 the uranium oxide film, again in analogy to common corrosion processes, behaves as if in a transpassive state and begins to dissolve. This transition from passive to transpassive behaviour in the effect of peroxide concentration on UO2 films has not hitherto been observed or explored, either in terms of corrosion processes or otherwise. Through consideration of thermodynamic solubility product and complex formation constant data, we attribute the

  1. Effects of grain size and specimen size on small punch test of type 316L austenitic stainless steel

    Miniature specimen test technique has been extensively studied for quantifying the properties of bulk materials. In this paper small punch test (SPT) is used to clarify the effects of specimen thickness (t), grain size (d) and ratio of thickness to grain size (t/d) on mechanical properties of 316L austenitic stainless steel (SS). Five sheet of 316L SS with the same texture but different thicknesses and grain sizes were prepared using rolling and heating treatment technique. Effective SPT yield strength was measured, and then used to correlate with conventional tensile test by empirical equation. The results show that the SPT is sensitive not only to differences in the thickness, but also to changes in the grain size and value of t/d. The present work provides information that enhance the understanding of reliability of SPT in analysis of the mechanical properties of small specimens and bulk materials. (author)

  2. Microstructural, Micro-hardness and Sensitization Evaluation in HAZ of Type 316L Stainless Steel Joint with Narrow Gap Welds

    Islam, Faisal Shafiqul; Jang, Changheui [KAIST, Daejeon (Korea, Republic of); Kang, Shi Chull [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    From Micro-hardness measurement HAZ zone was found approximately 1-1.5 mm in NGW and DL-EPR test confirmed that 316L NGW HAZ was not susceptible to sensitization as DOS <1% according to sensitization criteria based on reference. In nuclear power plants 316L stainless steels are commonly used material for their metallurgical stability, high corrosion resistance, and good creep and ductility properties at elevated temperatures. Welding zone considered as the weakest and failure initiation source of the components. For safety and economy of nuclear power plants accurate and dependable structural integrity assessment of main components like pressure vessels and piping are need as it joined by different welding process. In similar and dissimilar metal weld it has been observed that weld microstructure cause the variation of mechanical properties through the thickness direction. In the Heat Affected Zone (HAZ) relative to the fusion line face a unique thermal experience during welding.

  3. Analysis of a premature failure of welded AISI316L stainless steel pipes originated by microbial induced corrosion

    Otero, E.; Bastidas, J.M.; Lopez, V. [Centro Nacional de Investigaciones Metalurgicas, Madrid (Spain)

    1997-07-01

    This paper analyses the causes of the premature failure of welded AISI 316L stainless steel (ss) pipes which formed part of a sea water cooling circuit. The service time of the pipes was 8 months. The laboratory tests carried out consisted of metallography tests, {delta}-ferrite determination, intergranular corrosion susceptibility, cyclic anodic polarization curves, scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and X-ray photo-electron spectroscopy (XPS). The study presents typical forms of microbial induced corrosion (MIC) in AISI 308L and 316L ss in contact with natural sea water. The research is completed with the performance of bacteriological tests which demonstrate that the bacteria which cause the localized corrosion are of the sulphate-reducing genus ``desulfovibrio`` and the sulphide-oxidizing genus ``thiocapsa``. (orig.) 17 refs.

  4. Corrosion behaviour of 316L stainless steel and anti-corrosion materials in a high acidified chloride solution

    Jin, Z. H.; Ge, H. H.; Lin, W. W.; Zong, Y. W.; Liu, S. J.; Shi, J. M.

    2014-12-01

    The corrosion behaviour of a type 316L (UNS S31603) stainless steel (SS) expansion joint in a simulated leaching solution of sediment on blast furnace gas pipeline in a power plant is investigated by using dynamic potential polarization curves, electrochemical impedance spectroscopy (EIS), optical microscope, atomic force microscope (AFM) and Scan Kelvin Probe (SKP). Severe general corrosion accompanied by pitting corrosion occurs on the type 316L SS surface in this solution. As the immersion period increases, the charge transfer resistance Rct decreases, the dissolution rate accelerates, the surface roughness increases and the surface potential difference enhances significantly. Then eight corrosion-resistant materials are tested, the corrosion rates of type 254SMo SS, type 2507 SS and TA2 are relatively minor in the solution. The corrosion resistance properties of TA2 is most excellent, indicating it would be the superior material choice for blast furnace gas pipeline.

  5. Surface analysis of localized corrosion of austenitic 316L and duplex 2205 stainless steels in simulated body solutions

    Conradi, Marjetka, E-mail: marjetka.conradi@imt.si [Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana (Slovenia); Schoen, Peter M. [Materials Science and Technology of Polymers and MESA Institute for Nanotechnology, University of Twente, Enschede 7500 AE (Netherlands); Kocijan, Aleksandra; Jenko, M. [Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana (Slovenia); Vancso, G. Julius [Materials Science and Technology of Polymers and MESA Institute for Nanotechnology, University of Twente, Enschede 7500 AE (Netherlands)

    2011-10-17

    Highlights: {yields} In situ steel surface morphology observations in simulated body solutions. {yields} Pitting, square-like and elliptic-like corrosion products. {yields} Corrosion products' shapes related to the growth of Cr and Fe oxides. {yields} Direct relation of the size of the deposition products to surface roughness. - Abstract: We report on cyclic voltammetry and in situ electrochemical atomic force microscopy (EC-AFM) studies of localized corrosion of duplex 2205 stainless steel (DSS 2205) and austenitic stainless steel of the type AISI 316L in two model solutions, including artificial saliva (AS) and a simulated physiological solution known as - Hank's solution (PS). The AFM topography analysis illustrated the higher corrosion resistance of DSS 2205 steel for the chosen range of electrochemical potentials that were applied to the steel surface in both solutions. In contrast, pitting corrosion was observed at the surface of AISI 316L steel, with the pits becoming more evident, larger and deeper, when the sample was electrochemically treated in the PS. On both surfaces the growth of corrosion products formed during the oxidation process was observed. As a result, depending on the sample's metallurgical structure, different types of oxides covered the surface close to the breakdown potential. We distinguished between the square-like type of oxides on the surface of the DSS 2205, and the AISI 316L with its ellipse-like oxide deposits. The X-ray photoelectron spectroscopy (XPS) revealed the chemical composition of the deposition products, which consisted of two main elements, Fe and Cr. However, the oxides of the alloying elements Ni and Mo were negligible compared to the bulk.

  6. Surface analysis of localized corrosion of austenitic 316L and duplex 2205 stainless steels in simulated body solutions

    Highlights: → In situ steel surface morphology observations in simulated body solutions. → Pitting, square-like and elliptic-like corrosion products. → Corrosion products' shapes related to the growth of Cr and Fe oxides. → Direct relation of the size of the deposition products to surface roughness. - Abstract: We report on cyclic voltammetry and in situ electrochemical atomic force microscopy (EC-AFM) studies of localized corrosion of duplex 2205 stainless steel (DSS 2205) and austenitic stainless steel of the type AISI 316L in two model solutions, including artificial saliva (AS) and a simulated physiological solution known as - Hank's solution (PS). The AFM topography analysis illustrated the higher corrosion resistance of DSS 2205 steel for the chosen range of electrochemical potentials that were applied to the steel surface in both solutions. In contrast, pitting corrosion was observed at the surface of AISI 316L steel, with the pits becoming more evident, larger and deeper, when the sample was electrochemically treated in the PS. On both surfaces the growth of corrosion products formed during the oxidation process was observed. As a result, depending on the sample's metallurgical structure, different types of oxides covered the surface close to the breakdown potential. We distinguished between the square-like type of oxides on the surface of the DSS 2205, and the AISI 316L with its ellipse-like oxide deposits. The X-ray photoelectron spectroscopy (XPS) revealed the chemical composition of the deposition products, which consisted of two main elements, Fe and Cr. However, the oxides of the alloying elements Ni and Mo were negligible compared to the bulk.

  7. Tearing-fatigue interactions in 316L(N) austenitic stainless steel

    Sherry, A.H. [University of Manchester, Sackville Street, Manchester M60 1QD (United States)]. E-mail: andrew.sherry@manchester.ac.uk; Wardle, G. [Warhelle Consulting Ltd, 79 Garton Drive, Lowton, Cheshire WA3 2TR (United States); Jacques, S. [Serco Assurance, Birchwood Park, Risley, Warrington WA3 6AT (United States); Hayes, J.P. [Serco Assurance, Birchwood Park, Risley, Warrington WA3 6AT (United States)

    2005-11-01

    This paper presents the results from a programme of tearing, fatigue and tearing-fatigue tests performed on specimens from a 316L(N) stainless steel plate. All tests were carried out at ambient temperature. The experimental results have been compared with assessments performed using current guidance within the R6 defect assessment method. The work has shown that there is some evidence that fatigue cycling modifies the JR-curve behaviour of this material. In most cases, the data lie approximately 20-30% above the base-line JR-curve. However, whilst there may be a modest influence of fatigue crack growth on the ductile tearing characteristics, it is difficult to separate this from experimental scatter. In tearing-fatigue tests performed at a stress ratio, R=0.2, ductile tearing reduces the fatigue crack growth rates by up to 50%. This is likely to result from the presence of a residual compressive zone at the crack-tip, and increased crack closure due to the irregular and non-matching fracture surfaces generated by the ductile crack growth mechanisms. For R=0.1 tearing-fatigue tests, fatigue crack growth rates are apparently enhanced by a factor up to of 10, particularly during the latter stages of the tests when {delta}K>60 MPam. This is likely to result from: (i) loading being in the elastic-plastic regime where the J-integral (rather than K) characterises the crack-tip fields (ii) increments of ductile tearing which may occur during each fatigue cycle, and (iii) crack blunting which reduces crack closure effects. For the R=0.2 tearing-fatigue tests, the linear summation approach described in R6 provides a consistently conservative prediction of ductile, fatigue and total crack growth during the tests. However, for the R=0.1 tearing-fatigue tests, the Paris law under-predicts fatigue crack growth rates. This may be corrected by using the Kaiser equation, which acknowledges loading in the elastic-plastic regime and incorporates incremental growth due to tearing as

  8. Tearing-fatigue interactions in 316L(N) austenitic stainless steel

    This paper presents the results from a programme of tearing, fatigue and tearing-fatigue tests performed on specimens from a 316L(N) stainless steel plate. All tests were carried out at ambient temperature. The experimental results have been compared with assessments performed using current guidance within the R6 defect assessment method. The work has shown that there is some evidence that fatigue cycling modifies the JR-curve behaviour of this material. In most cases, the data lie approximately 20-30% above the base-line JR-curve. However, whilst there may be a modest influence of fatigue crack growth on the ductile tearing characteristics, it is difficult to separate this from experimental scatter. In tearing-fatigue tests performed at a stress ratio, R=0.2, ductile tearing reduces the fatigue crack growth rates by up to 50%. This is likely to result from the presence of a residual compressive zone at the crack-tip, and increased crack closure due to the irregular and non-matching fracture surfaces generated by the ductile crack growth mechanisms. For R=0.1 tearing-fatigue tests, fatigue crack growth rates are apparently enhanced by a factor up to of 10, particularly during the latter stages of the tests when ΔK>60 MPam. This is likely to result from: (i) loading being in the elastic-plastic regime where the J-integral (rather than K) characterises the crack-tip fields (ii) increments of ductile tearing which may occur during each fatigue cycle, and (iii) crack blunting which reduces crack closure effects. For the R=0.2 tearing-fatigue tests, the linear summation approach described in R6 provides a consistently conservative prediction of ductile, fatigue and total crack growth during the tests. However, for the R=0.1 tearing-fatigue tests, the Paris law under-predicts fatigue crack growth rates. This may be corrected by using the Kaiser equation, which acknowledges loading in the elastic-plastic regime and incorporates incremental growth due to tearing as well

  9. Comparative electrochemical study of 08H18N10T, AISI 304 and AISI 316L stainless steels

    The aim of this work was to determine the main characteristics of the passivation and surface oxidation of 08H18N10T, AISI304 and AISI316L stainless steels, which serve as structural materials of VVER and PWR nuclear reactors. With the help of electrochemical experiments these materials were ranked according to their resistance against uniform corrosion. The measurements were done as a function of temperature in the range between room temperature and 80 deg. C. A sample of 08H18N10T steel was irradiated in the Budapest research reactor. With cyclic voltammetry we found that AISI 304 exhibits a very large passivation peak as a classical example for passivation. The peak is much smaller for AISI 316L and it is very small for 08H18N10T. This implies that the native oxide layer on AISI 316L and 08H18N10T is more protective than on AISI 304. The 08H18N10T steel has the best protective passive oxide layer which forms already in air and it is very difficult to remove it even at negative potentials. By comparing impedance spectra of the various stainless steels results lead to the same conclusions we obtained from cyclic voltammetry. Our experimental results of the irradiated steel are in accord with the fact that neutron irradiation increases the number of defect sites within the oxide layer. We found that irradiation has no considerable effect on the active-to-passive transition process. The small variations in the alloy composition do not alter the transition process significantly, as well

  10. Comparative electrochemical study of 08H18N10T, AISI 304 and AISI 316L stainless steels

    Kerner, Zsolt; Horvath, Akos [KFKI Atomic Energy Research Institute, H-1525 Budapest 114, P.O. Box 49 (Hungary); Nagy, Gabor [KFKI Atomic Energy Research Institute, H-1525 Budapest 114, P.O. Box 49 (Hungary)], E-mail: nagyg@sunserv.kfki.hu

    2007-10-10

    The aim of this work was to determine the main characteristics of the passivation and surface oxidation of 08H18N10T, AISI304 and AISI316L stainless steels, which serve as structural materials of VVER and PWR nuclear reactors. With the help of electrochemical experiments these materials were ranked according to their resistance against uniform corrosion. The measurements were done as a function of temperature in the range between room temperature and 80 deg. C. A sample of 08H18N10T steel was irradiated in the Budapest research reactor. With cyclic voltammetry we found that AISI 304 exhibits a very large passivation peak as a classical example for passivation. The peak is much smaller for AISI 316L and it is very small for 08H18N10T. This implies that the native oxide layer on AISI 316L and 08H18N10T is more protective than on AISI 304. The 08H18N10T steel has the best protective passive oxide layer which forms already in air and it is very difficult to remove it even at negative potentials. By comparing impedance spectra of the various stainless steels results lead to the same conclusions we obtained from cyclic voltammetry. Our experimental results of the irradiated steel are in accord with the fact that neutron irradiation increases the number of defect sites within the oxide layer. We found that irradiation has no considerable effect on the active-to-passive transition process. The small variations in the alloy composition do not alter the transition process significantly, as well.

  11. Cavitation erosion resistance of AISI 316L stainless steel laser surface-modified with NiTi

    Chiu, K.Y. [Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Cheng, F.T. [Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)]. E-mail: apaftche@polyu.edu.hk; Man, H.C. [Department of Industrial and Systems Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)

    2005-02-15

    The present study is part of a project on the surface modification of AISI 316 stainless steel using various forms of NiTi for enhancing cavitation erosion resistance. In this study, NiTi powder was preplaced on the AISI 316L substrate and melted with a high-power CW Nd:YAG laser. With appropriate laser processing parameters, an alloyed layer of a few hundred micrometers thick was formed and fusion bonded to the substrate without the formation of a brittle interface. EDS analysis showed that the layer contained Fe as the major constituent element while the XRD patterns of the surface showed an austenitic structure, similar to that of 316 stainless steel. The cavitation erosion resistance of the modified layer (316-NiTi-Laser) could reach about 29 times that of AISI 316L stainless steel. The improvement could be attributed to a much higher surface hardness and elasticity as revealed by instrumented nanoindentation tests. Among various types of samples, the cavitation erosion resistance was ranked in descending order as: NiTi plate > 316-NiTi-Laser > 316-NiTi-TIG > AISI 316L, where 316-NiTi-TIG stands for samples surfaced with the tungsten inert gas (TIG) process using NiTi wire. Though the laser-surfaced samples and the TIG-surfaced samples had similar indentation properties, the former exhibited a higher erosion resistance mainly because of a more homogeneous alloyed layer with much less defects. In both the laser-surfaced and TIG-surfaced samples, the superelastic behavior typical of austenitic NiTi was only partially retained and the superior cavitation erosion resistance was thus still not fully attained.

  12. Cavitation erosion resistance of AISI 316L stainless steel laser surface-modified with NiTi

    The present study is part of a project on the surface modification of AISI 316 stainless steel using various forms of NiTi for enhancing cavitation erosion resistance. In this study, NiTi powder was preplaced on the AISI 316L substrate and melted with a high-power CW Nd:YAG laser. With appropriate laser processing parameters, an alloyed layer of a few hundred micrometers thick was formed and fusion bonded to the substrate without the formation of a brittle interface. EDS analysis showed that the layer contained Fe as the major constituent element while the XRD patterns of the surface showed an austenitic structure, similar to that of 316 stainless steel. The cavitation erosion resistance of the modified layer (316-NiTi-Laser) could reach about 29 times that of AISI 316L stainless steel. The improvement could be attributed to a much higher surface hardness and elasticity as revealed by instrumented nanoindentation tests. Among various types of samples, the cavitation erosion resistance was ranked in descending order as: NiTi plate > 316-NiTi-Laser > 316-NiTi-TIG > AISI 316L, where 316-NiTi-TIG stands for samples surfaced with the tungsten inert gas (TIG) process using NiTi wire. Though the laser-surfaced samples and the TIG-surfaced samples had similar indentation properties, the former exhibited a higher erosion resistance mainly because of a more homogeneous alloyed layer with much less defects. In both the laser-surfaced and TIG-surfaced samples, the superelastic behavior typical of austenitic NiTi was only partially retained and the superior cavitation erosion resistance was thus still not fully attained

  13. Mechanical and physical behavior of newly developed functionally graded materials and composites of stainless steel 316L with calcium silicate and hydroxyapatite.

    Ataollahi Oshkour, Azim; Pramanik, Sumit; Mehrali, Mehdi; Yau, Yat Huang; Tarlochan, Faris; Abu Osman, Noor Azuan

    2015-09-01

    This study aimed to investigate the structural, physical and mechanical behavior of composites and functionally graded materials (FGMs) made of stainless steel (SS-316L)/hydroxyapatite (HA) and SS-316L/calcium silicate (CS) employing powder metallurgical solid state sintering. The structural analysis using X-ray diffraction showed that the sintering at high temperature led to the reaction between compounds of the SS-316L and HA, while SS-316L and CS remained intact during the sintering process in composites of SS-316L/CS. A dimensional expansion was found in the composites made of 40 and 50 wt% HA. The minimum shrinkage was emerged in 50 wt% CS composite, while the maximum shrinkage was revealed in samples with pure SS-316L, HA and CS. Compressive mechanical properties of SS-316L/HA decreased sharply with increasing of HA content up to 20 wt% and gradually with CS content up to 50 wt% for SS-316L/CS composites. The mechanical properties of the FGM of SS-316L/HA dropped with increase in temperature, while it was improved for the FGM of SS-316L/CS with temperature enhancement. It has been found that the FGMs emerged a better compressive mechanical properties compared to both the composite systems. Therefore, the SS-316L/CS composites and their FGMs have superior compressive mechanical properties to the SS-316L/HA composites and their FGMs and also the newly developed FGMs of SS-316L/CS with improved mechanical and enhanced gradation in physical and structural properties can potentially be utilized in the components with load-bearing application. PMID:26072197

  14. Characteristics of sulfide corrosion products on 316L stainless steel surfaces in the presence of sulfate-reducing bacteria

    It has been found that microbial communities play a significant role in the corrosion process of steels exposed in aquatic and soil environments. Biomineralization influenced by microorganisms is believed to be responsible for the formation of corrosion products via complicated pathways of electron transfer between microbial cells and the metal. In this study, sulfide corrosion products were investigated for 316L stainless steel exposed to media with sulfate-reducing bacteria media for 7 weeks. The species of inorganic and organic sulfides in the passive film on the stainless steel were observed by epifluorescence microscope, environmental scanning electron microscope combined with energy dispersive spectroscopy and X-ray photoelectron spectroscopy. The transformation from metal oxides to metal sulfides influenced by sulfate-reducing bacteria is emphasized in this paper

  15. The Effect of pH and Temperature on Corrosion Rate Stainless Steel 316L Used as Biomaterial

    Zainab R. Muslim

    2015-10-01

    Full Text Available The weight loss of stainless steel 316L on corrosion rate was studied using two different temperatures (25 and 37oC and different pH (1,3, 6.3 and 7.4. It was shown that the weight loss was decreased with the increasing in pH ,this effect on the corrosion rate which decrease with increasing in pH . Temperature effect on weight loss, an increasing in weight loss was observed with the increasing in temperature.

  16. STATISTICAL MODELING OF ELECTROCHEMICAL REACTIVATION CONDITIONS FOR DETECTING SENSITIZATION TO IGC OF AUSTENITIC STAINLESS STEEL TYPE 316L

    Kriaa, A.; Hamdi, N.; K. Jbali; H. Sidhom

    2007-01-01

    The aim of this study was to determine optimum conditions of the DL EPR test in order to evaluate the highest values of the degree of sensitization (DOS) of a forged austenitic stainless steel type 316L, evaluated by the ratio Ir/Ia or Qr/Qa in %. The criteria of sensitization to the IGC corresponds to Ir/Ia >1% and Qr/Qa >1%. A model using a full factorial design has been established and the selected factors were the sweep rate (dE/dt), sulphuric acid concentration (H2SO4), ammonium th...

  17. Application of dynamical ion mixing techniques to the improvement of the fatigue resistance of a 316L stainless steel

    In the last years new techniques involving ion implantation combined with a simultaneous deposition method in a sputtering evaporator have been developed at the University of Poitiers. These techniques have been employed to elaborate NiTi amorphous coatings in order to improve the fatigue resistance of a 316 L austenitic stainless steel at room temperature and 573 K. It has been shown that a significant improvement of the fatigue life is obtained by this way at 293 K and at 573 K due to a considerable modification of surface damage leading to an important delay for crack initiation. (orig.)

  18. Corrosion of stainless steel 316L in simulated formation water environment with CO2-H2S-Cl-

    A synergistic effect of high concentration of chloride and H2S on oxide formation and metal dissolution has been studied on 316L stainless steel by electrochemical measurements, inductive coupled plasma (ICP) and X-ray photoelectron spectroscopy (XPS). Chloride concentration had a significant effect on semiconductor properties of the oxide film, while the gases had little effect. A relatively high concentration of sulphur was found inside the oxide formed in a high chloride concentration electrolyte with high H2S compared to the oxide formed in low concentrations, which indicates that sulphur entered the oxide film through local weakening of the oxide by the chloride.

  19. Improving the oxidation resistance of 316L stainless steel in simulated pressurized water reactor primary water by electropolishing treatment

    Han, Guangdong; Lu, Zhanpeng; Ru, Xiangkun; Chen, Junjie; Xiao, Qian; Tian, Yongwu

    2015-12-01

    The oxidation behavior of 316L stainless steel specimens after emery paper grounding, mechanical polishing, and electropolishing were investigated in simulated pressurized water reactor primary water at 310 °C for 120 and 500 h. Electropolishing afforded improved oxidation resistance especially during the early immersion stages. Duplex oxide films comprising a coarse Fe-rich outer layer and a fine Cr-rich inner layer formed on all specimens after 500 h of immersion. Only a compact layer was observed on the electropolished specimen after 120 h of immersion. The enrichment of chromium in the electropolished layer contributed to the passivity and protectiveness of the specimen.

  20. Probing the deterioration of 316L stainless steel welds due to ageing and creep by indentation creep tests

    Authors have probed into the creep behaviour of AISI 316L stainless steel welds through the indentation creep test methodology and assessed the deterioration effects of these welds under different ageing conditions subjecting them to different test conditions. Comparison is made between the parent metal and the weld metal for integrity at different levels of ageing and test loads. It is concluded that although the aged weld's deteriorated status is not revealed at low temperature and low load test conditions, it is explicitly revealed when tested at higher temperature and higher loads. Microstructural evidences have been given by the authors and they have suggested mechanisms of creep at different test conditions.

  1. Creep deformation and fracture behavior of types 316 and 316L(N) stainless steels and their weld metals

    Sasikala, G.; Mannan, S. L.; Mathew, M. D.; Rao, K. Bhanu

    2000-04-01

    The creep properties of a nuclear-grade type 316(L) stainless steel (SS) alloyed with nitrogen (316L(N) SS) and its weld metal were studied at 873 and 923 K in the range of applied stresses from 100 to 335 MPa. The results were compared with those obtained on a nuclear-grade type 316 SS, which is lean in nitrogen. The creep rupture lives of the weld metals were found to be lower than those of the respective base metals by a factor of 5 to 10. Both the base and weld metals of 316L(N) SS exhibited better resistance to creep deformation compared to their 316 SS counterparts at identical test conditions. A power-law relationship between the minimum creep rate and applied stress was found to be obeyed for both the base and weld metals. Both the weld metals generally exhibited lower rupture elongation than the respective base metals; however, at 873 K, the 316 SS base and weld metals had similar rupture elongation at identical applied stresses. Comparison of the rupture lives of the two steels to the ASME curves for the expected minimum stress to rupture for 316 SS base and weld metals showed that, for 316L(N) SS, the specifications for maximum allowable stresses based on data for 316 SS could prove overconservative. The influence of nitrogen on the creep deformation and fracture behavior, especially in terms of its modifying the precipitation kinetics, is discussed in light of the microstructural observations. In welds containing δ ferrite, the kinetics of its transformation and the nature of the transformation products control the deformation and fracture behavior. The influence of nitrogen on the δ ferrite transformation behavior and coarsening kinetics is also discussed, on the basis of extensive characterization by metallographic techniques.

  2. Repassivation behavior of 316L stainless steel in borate buffer solution: Kinetics analysis of anodic dissolution and film formation

    Xu, Haisong; Sun, Dongbai; Yu, Hongying

    2015-12-01

    The repassivation behavior of metals or alloys after oxide film damage determines the development of local corrosion and corrosion resistance. In this work, the repassivation kinetics of 316L stainless steel (316L SS) are investigated in borate buffer solution (pH 9.1) by using the abrading electrode technique. The current densities flowing from bare 316L SS surface are measured by potentiostatic method and analyzed to characterize repassivation kinetics. The initial stages of current decay (t Avrami kinetics. Then the two independent components are analyzed individually. The film formation rate and the thickness of film are compared in different applied potential. It is shown that anodic dissolution dominates the repassivation for a short time during the early times, and a higher applied potential will promote the anodic dissolution of metal. The film growth rate increases slightly with increasing in potential. Correspondingly, increase in applied potential from 0 VSCE to 0.8 VSCE results in thicker monolayer, which covers the whole bare surface at the time of θ = 1. The electric field strengths through the thin passive film could reach 3.97 × 106 V cm-1.

  3. The high temperature three point bend testing of proton irradiated 316L stainless steel and Mod 9Cr 1Mo

    Maloy, Stuart A.; Zubelewicz, A.; Romero, T.; James, M. R.; Sommer, W. F.; Dai, Y.

    2005-08-01

    The predicted operating conditions for a lead-bismuth eutectic target to be used in an accelerator driven system for the Advanced Fuel Cycle Initiative span a temperature range of 300-600 °C while being irradiated by a high energy (˜600 MeV) proton beam. Such spallation conditions lead to high displacement rates coupled with high accumulation rates of helium and hydrogen up to 150 appm/dpa. Some candidate materials for these applications include Mod9Cr-1Mo and 316L stainless steel. To investigate the effect of irradiation on these materials, the mechanical properties are being measured through three point bend testing on Mod 9Cr-1Mo and 316L at 25, 250, 350 and 500 °C after irradiation in a high energy proton beam (500-800 MeV) to a dose of 9.8 dpa at temperatures from 200 to 320 °C. By comparing measurements made in bending to tensile measurements measured on identically irradiated materials, a measurement of 0.2% offset yield stress was obtained from 0.05% offset yield stress measured in three point bend testing. Yield stress increased by more than a factor of two after irradiation to 9.8 dpa. Observation of the outer fiber surface of 316L showed very localized deformation when tested after irradiation at 70 °C and deformation on multiple slip systems when tested after irradiation at 250-320 °C.

  4. Comparative study of mechanical properties of 316L stainless steel between traditional production methods and selective laser melting

    Lackey, Alton Dale

    Additive manufacturing, also known as 3D printing, is a technology which has recently seen expanding use, as well as expansion of the materials and methods able to be used. This thesis looks at the comparison of mechanical properties of 316L stainless steel manufactured by both traditional methods and selective laser melting found by tensile testing. The traditional method used here involved cold rolled 316L steel being machined to the desired part geometry. Selective laser melting used additive manufacturing to produce the parts from powdered 316L stainless steel, doing so in two different build orientations, flat and on edge with regards to the build plate. Solid test specimens, as well as specimens containing a circular stress concentration in the center of the parts, were manufactured and tensile tested. The tensile tests of the specimens were used to find the mechanical properties of the material; including yield strength, ultimate tensile strength (UTS), and Young's modulus of elasticity; where statistical analyses were performed to determine if the different manufacturing processes caused significant differences in the mechanical properties of the material. These analysis consisting of f-tests, to test for variance, and t-test, testing for significant difference of means. Through this study it was found that there were statistically significant differences existing between the mechanical properties of selective laser melting, and its orientations, and cold roll forming of production of parts. Even with a statistical difference, it was found that the results were reasonably close between flat oriented SLM parts and purchased parts. So it can be concluded that, with regards to strength, SLM methods produce parts similar to traditional production methods.

  5. Evaluation of weld defects in stainless steel 316L pipe using guided wave

    Stainless steel is a popular structural materials for liquid-hydrogen storage containers and piping components for transporting high-temperature fluids because of its superior material properties such as high strength and high corrosion resistance at elevated temperatures. In general, tungsten inert gas (TIG) arc welding is used for bonding stainless steel. However, it is often reported that the thermal fatigue cracks or initial defects in stainless steel after welding decreases the reliability of the material. The objective of this paper is to clarify the characteristics of ultrasonic guided wave propagation in relation to a change in the initial crack length in the welding zone of stainless steel. For this purpose, three specimens with different artificial defects of 5 mm, 10 mm, and 20 mm in stainless steel welds were prepared. By considering the thickness of s stainless steel pipe, special attention was given to both the L(0,1) mode and L(0,2) mode in this study. It was clearly found that the L(0,2) mode was more sensitive to defects than the L(0,1) mode. Based on the results of the L(0,1) and L(0,2) mode analyses, the magnitude ratio of the two modes was more effective than studying each mode when evaluating defects near the welded zone of stainless steel because of its linear relationship with the length of the artificial defect.

  6. Evaluation of weld defects in stainless steel 316L pipe using guided wave

    Lee, Joon Hyun [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of); Lee, Jin Kyung [Dept. of Mechanical Engineering, Dongeui University, Busan (Korea, Republic of)

    2015-02-15

    Stainless steel is a popular structural materials for liquid-hydrogen storage containers and piping components for transporting high-temperature fluids because of its superior material properties such as high strength and high corrosion resistance at elevated temperatures. In general, tungsten inert gas (TIG) arc welding is used for bonding stainless steel. However, it is often reported that the thermal fatigue cracks or initial defects in stainless steel after welding decreases the reliability of the material. The objective of this paper is to clarify the characteristics of ultrasonic guided wave propagation in relation to a change in the initial crack length in the welding zone of stainless steel. For this purpose, three specimens with different artificial defects of 5 mm, 10 mm, and 20 mm in stainless steel welds were prepared. By considering the thickness of s stainless steel pipe, special attention was given to both the L(0,1) mode and L(0,2) mode in this study. It was clearly found that the L(0,2) mode was more sensitive to defects than the L(0,1) mode. Based on the results of the L(0,1) and L(0,2) mode analyses, the magnitude ratio of the two modes was more effective than studying each mode when evaluating defects near the welded zone of stainless steel because of its linear relationship with the length of the artificial defect.

  7. The effect of hydrogen peroxide on uranium oxide films on 316L stainless steel

    Wilbraham, Richard J., E-mail: r.wilbraham@lancaster.ac.uk [The Lloyd’s Register Foundation Centre for Nuclear Engineering, Engineering Department, Lancaster University, Bailrigg, Lancashire LA1 4YR (United Kingdom); Boxall, Colin, E-mail: c.boxall@lancaster.ac.uk [The Lloyd’s Register Foundation Centre for Nuclear Engineering, Engineering Department, Lancaster University, Bailrigg, Lancashire LA1 4YR (United Kingdom); Goddard, David T., E-mail: dave.t.goddard@nnl.co.uk [National Nuclear Laboratory, Preston Laboratory, Springfields, Preston, Lancashire PR4 0XJ (United Kingdom); Taylor, Robin J., E-mail: robin.j.taylor@nnl.co.uk [National Nuclear Laboratory, Central Laboratory, Seascale, Cumbria CA20 1PG (United Kingdom); Woodbury, Simon E., E-mail: simon.woodbury@nnl.co.uk [National Nuclear Laboratory, Central Laboratory, Seascale, Cumbria CA20 1PG (United Kingdom)

    2015-09-15

    Highlights: • The first report of the presence of both UO{sub 2} and polymeric UO{sub 2}{sup 2+} in the same electrodeposited U oxide sample. • The action of H{sub 2}O{sub 2} on electrodeposited U oxides is described using corrosion based concepts. • Electrodeposited U oxide freely dissolves at hydrogen peroxide concentrations <100 μmol dm{sup −3}. • At [H{sub 2}O{sub 2}] > 0.1 mmol dm{sup −3} dissolution is inhibited by formation of a studtite passivation layer. • At [H{sub 2}O{sub 2}] ⩾ 1 mol dm{sup −3} studtite formation competes with uranyl–peroxide complex formation. - Abstract: For the first time the effect of hydrogen peroxide on the dissolution of electrodeposited uranium oxide films on 316L stainless steel planchets (acting as simulant uranium-contaminated metal surfaces) has been studied. Analysis of the H{sub 2}O{sub 2}-mediated film dissolution processes via open circuit potentiometry, alpha counting and SEM/EDX imaging has shown that in near-neutral solutions of pH 6.1 and at [H{sub 2}O{sub 2}] ⩽ 100 μmol dm{sup −3} the electrodeposited uranium oxide layer is freely dissolving, the associated rate of film dissolution being significantly increased over leaching of similar films in pH 6.1 peroxide-free water. At H{sub 2}O{sub 2} concentrations between 1 mmol dm{sup −3} and 0.1 mol dm{sup −3}, formation of an insoluble studtite product layer occurs at the surface of the uranium oxide film. In analogy to corrosion processes on common metal substrates such as steel, the studtite layer effectively passivates the underlying uranium oxide layer against subsequent dissolution. Finally, at [H{sub 2}O{sub 2}] > 0.1 mol dm{sup −3} the uranium oxide film, again in analogy to common corrosion processes, behaves as if in a transpassive state and begins to dissolve. This transition from passive to transpassive behaviour in the effect of peroxide concentration on UO{sub 2} films has not hitherto been observed or explored, either in terms

  8. Low temperature plasma carburizing of AISI 316L austenitic stainless steel and AISI F51 duplex stainless steel Cementação sob plasma à baixa temperatura do aço inoxidável austenítico AISI 316L e do aço inoxidável duplex AISI F51

    Carlos Eduardo Pinedo; André Paulo Tschiptschin

    2013-01-01

    In this work an austenitic AISI 316L and a duplex AISI F51 (EN 1.4462) stainless steel were DC-Plasma carburized at 480ºC, using CH4 as carbon carrier gas. For the austenitic AISI 316L stainless steel, low temperature plasma carburizing induced a strong carbon supersaturation in the austenitic lattice and the formation of carbon expanded austenite (γC) without any precipitation of carbides. The hardness of the carburized AISI 316L steel reached a maximum of 1000 HV due to ∼13 at% c...

  9. A New Vacuum Brazing Route for Niobium-316L Stainless Steel Transition Joints for Superconducting RF Cavities

    Kumar, Abhay; Ganesh, P.; Kaul, R.; Bhatnagar, V. K.; Yedle, K.; Ram Sankar, P.; Sindal, B. K.; Kumar, K. V. A. N. P. S.; Singh, M. K.; Rai, S. K.; Bose, A.; Veerbhadraiah, T.; Ramteke, S.; Sridhar, R.; Mundra, G.; Joshi, S. C.; Kukreja, L. M.

    2015-02-01

    The paper describes a new approach for vacuum brazing of niobium-316L stainless steel transition joints for application in superconducting radiofrequency cavities. The study exploited good wettability of titanium-activated silver-base brazing alloy (CuSil-ABA®), along with nickel as a diffusion barrier, to suppress brittle Fe-Nb intermetallic formation, which is well reported during the established vacuum brazing practice using pure copper filler. The brazed specimens displayed no brittle intermetallic layers on any of its interfaces, but instead carried well-distributed intermetallic particles in the ductile matrix. The transition joints displayed room temperature tensile and shear strengths of 122-143 MPa and 80-113 MPa, respectively. The joints not only exhibited required hermeticity (helium leak rate ultra-high vacuum but also withstood twelve hour degassing heat treatment at 873 K (suppresses Q-disease in niobium cavities), without any noticeable degradation in the microstructure and the hermeticity. The joints retained their leak tightness even after undergoing ten thermal cycles between the room temperature and the liquid nitrogen temperature, thereby establishing their ability to withstand service-induced low cycle fatigue conditions. The study proposes a new lower temperature brazing route to form niobium-316L stainless steel transition joints, with improved microstructural characteristics and acceptable hermeticity and mechanical properties.

  10. Hardness and elastic modulus gradients in plasma-nitrided 316L polycrystalline stainless steel investigated by nanoindentation tomography

    Graphical abstract: - Abstract: Correlations between the grain orientations and elastic properties of plasma-nitrided polycrystalline 316L austenitic stainless steel are investigated. The grain orientations (h k l) in a delimited area were obtained from electron backscatter diffraction and related to hardness (Hhkl) and elastic modulus (Ehkl) maps obtained from large nanoindentation matrices. The influence of nitrogen concentration on the local mechanical properties has been studied by repeating these indentation matrices in the same area after successive partial removals of the nitrided layer. This nanoindentation tomography allowed the orientation, the shape and the surroundings of individual grains to be taken into account. The results show that plasma nitriding leads to a complete reversal of the elastic behaviour anisotropy: while the non-nitrided 316L austenitic stainless steel shows the typical elastic anisotropy of face-centred-cubic-type metals with a maximum of Ehkl for the 〈111〉 oriented grains, the maximum of Ehkl is observed for the 〈001〉 oriented grains in the nitrided layer. A similar anisotropy reversal is observed for the hardness Hhkl. These observations are discussed on the basis of the microstructural changes induced by the nitrogen incorporation.

  11. Effect of the hydrogen absorption on the positioning of the plastic deformation of a stainless steel-316L

    The aim of this work is to quantify the absorbed hydrogen effects on the plastic deformation (at the grain scale) of stainless steel-316L polycrystals. Tensile tests in air have been carried out on specimens previously cathodically loaded in hydrogen (135 wt.ppm) and unloaded polycrystals. After the tensile tests, a number statistically representative of gliding bands emergent in surface has been observed. In parallel to this experimental study, the plastic gliding level in each grain has been obtained by a finite element method from the polycrystalline microstructure modeled with the EBSD cartography. The Zebulon code developed by the Ecole des Mines de Paris allows to account for the plastic behaviour of the studied polycrystals using the crystalline plasticity model. The coupled analysis of the numerical and experimental results allows to know the gliding plan having produced the gliding steps observed in each grain by AFM. This allows then to quantify the number of emergent dislocations to create the average gliding band. It is then possible to compare the modifications of the positioning of the plastic deformation of the stainless steel-316L induced by hydrogen absorption. (O.M.)

  12. Preliminary studies of the welding zone of AISI 316L austenitic stainless steel capsules, for Cs137 sealed sources

    Currently, the treatment for cervix, endometrium and vaginal cancer, uses radioactive seeds, shaped like spheres, seeds or threads, with the brachytherapy technique. The brachytherapy sources are encased in surgical grade stainless steel cylinders. This geometry aims to contain the radioactive material, by providing safe barriers, thereby reducing other undesirable radiations from the radioisotopes during their disintegration and by providing rigidity to the source. The properties of the stainless steels are greatly influenced by their chemical composition, which also determines the microstructural characteristics of these alloys. AISI 316L steel is one of the raw materials used most frequently for surgical use, due to its stability and inert character when in contact with the human organism. Small stainless steel cylindrical capsules (about 10 mm long, 2mm diameter) were prepared for this work, with caps welded at both ends using the TIG process, producing an airtight closure. The welds are described by cut, surface, grain-revealing chemical attack, and chemical analysis using dispersive energy spectroscopy and metallographic analysis. Vickers hardness measurements are also presented in the zones affected by the welding. The dendritic-granular interface of the welded stainless matrix under the TIG process, shows resistance to corrosion from human plasma at 36.5oC

  13. Fundamental distribution of stress corrosion crack depth on Type 316L stainless steels induced by creviced bent beam test

    The creviced bent beam (CBB) test has been applied for many materials such as nickel base alloys and low carbon austenitic stainless steels. For sensitized austenitic stainless steels, fundamental distribution of crack depth induced by CBB tests was evaluated to establish SCC initiation model and lifetime prediction method. On the other hand, there are a few studies about distribution of crack depth on low carbon austenitic stainless steels. In this study, statistical analysis of crack depth was conducted in Type 316L stainless steels after CBB tests. The results are summarized as follows, (1) Distribution of grain boundary depth designated as distance from surface to triple point of grain boundary fit lognormal probability distribution and exponential probability distribution. (2) Distribution of crack depth approaches lognormal or exponential probability distribution with passage of test duration. Distribution of plastic strain on the specimen surface is not affect to type of crack depth distribution. (3) Inflection or bent point appears on the probability plot at depth of the median of grain boundary depth distribution. (4) Less than median of grain boundary depth, distribution of crack depth is identical to grain boundary depth distribution. More than median + standard deviation of grain boundary depth, crack depth distribution is described by the exponential distribution. (author)

  14. Effects of strain rate and notch geometry on hydrogen embrittlement of AISI type 316L austenitic stainless steel

    This paper presents the first results of the work which the author has been performing for the European Fusion Technology Programme. The contribution deals with the effects of strain rate and notch geometry on hydrogen embrittlement of 316L austenitic stainless steel, which will be used for the first wall of the next European fusion reactor. Slow strain rate fracture tests on round notched specimens of 316L steel were carried out under cathodic polarization during the mechanical loading. A wide range of strain rates was covered in the tests, in order to obtain very different degrees of damage produced by the hydrogen. Two notch geometries with very different radii were used, to analyze the influence of the stress state in the vicinity of the notch tip on hydrogen embrittlement. Samples were machined in two directions (the rolling direction and the perpendicular one), thus permitting a study of anisotropy effects. Results are compared with those for a high-strength pearlitic steel tested with the same technique under the same electrochemical potential. (orig.)

  15. STUDIES ON WETTABILITY OF STAINLESS STEEL 316L POWDER IN LASER MELTING PROCESS

    KURIAN ANTONY

    2014-10-01

    Full Text Available Laser sintering is one of the techniques used in additive manufacturing processes. The main objective of the work is to study the effects of process parameters on wetting phenomenon and interfacial energy during laser melting of stainless steel powder. This paper reports wetting of laser melted powder particles and its use for the determination of surface energy of stainless steel powder under laser beam exposure. Process parameters such as laser power, scan speed and beam diameter are considered for study. This study also identifies the process parameters for better wettability which produces smooth surfaces.

  16. Vacuum brazing of OFE Copper-316L stainless steel transition joints without electroplating stainless steel part for application in particle accelerators

    Brazed transition Joints between OFE copper and type 316L austenitic stainless steel (SS) find extensive applications in particle accelerators all over the world. In contrast to excellent wettability of OFE copper, austenitic SS is well known for its poor wettability for BVAg-8 (72Ag/28Cu; melting point: 1052 K) braze filler metal (BFM). High surface wettability is believed to be necessary to drag molten BFM into the capillary gap between mating metallic surfaces. Therefore, the widely accepted practice for vacuum brazing of such transition joints involves electroplating of SS parts with nickel or copper to enhance its wettability. A recently concluded in-house study, involving Nb to Ni-plated 316L SS brazing, has demonstrated that satisfactory ingress of BFM into a capillary joint between two dissimilar metals is possible if the poor wettability of one of the mating surfaces is compensated by good wettability of its counterpart. In the light of these observations, the present study was undertaken to explicitly evaluate the requirement of electroplating the SS part for establishment of sound OFE copper-316L SS brazed joints suitable for service in ultra-high vacuum (UHV) of particle accelerators

  17. Effects of the inner mould material on the aluminium–316L stainless steel explosive clad pipe

    Highlights: ► Different mould materials were adopted to evaluate the effect of the constraint on the clad quality. ► The interface characteristics of clad pipe were analyzed for the different clad pipe. ► The clad pipes possess excellent bonding quality. - Abstract: The clad pipe played an important part in the pipeline system of the nuclear power industry. To prepare the clad pipe with even macrosize and excellent bonding quality, in this work, different mould materials were adopted to evaluate the effect of the constraint on the clad quality of the bimetal pipe prepared by explosive cladding. The experiment results indicated that, the dimension uniformity and bonding interface of clad pipe were poor by using low melting point alloy as mould material; the local bulge or the cracking of the clad pipe existed when the SiC powder was utilized. When the steel mould was adopted, the outer diameter of the clad pipe was uniform from head to tail. In addition, the metallurgical bonding was formed. Furthermore, the results of shear test, bending test and flattening test showed that the bonding quality was excellent. Therefore, the Al–316L SS clad pipe could endure the second plastic forming

  18. Influence of the tritium in type 316L stainless steel on corrosion

    It is shown that the tritium in stainless steel induces stress corrosion by the effects of embrittlement due to both the tritium itself and the helium formed by its decay. These also cause local breakdown of the oxide layer, though this breakdown is also brought about by the β- ray energy, which can be estimated to be between 4 X 103 and 105 MeV/cm2 of the steel surface per second. 19 refs., 6 figs., 1 tab

  19. Radiation defects formed in ion-irradiated 316L stainless steel model alloys with different Si additions

    The 304/316 series of austenite stainless steels are used in light water reactors as structural materials. As a result of the high temperatures and neutron irradiation in reactor, dislocation defects will form in stainless steel, causing an increase in the hardness and a decrease in the ductility of the material. In this work, high purity 316L stainless steel model alloys with three different Si contents were ion irradiated at 290°C or 400°C to investigate the black dot and Frank loop formation mechanism influenced by Si addition. Black dot defect formation mainly occurs at 290°C. It is Frank loop in nature with its formation not affected by Si addition. Frank loop is the main defect at 400°C, and both loop density and the average size are substantially suppressed by Si addition. This may be caused by silicon’s role in enhancing effective vacancy diffusivity and thus promoting recombination. The trend of irradiation hardening measured verses temperature matches the microstructure observed. (author)

  20. Enzymatic mechanism in low chloride media: influence of glucose oxidase on the electrochemical behaviour of AISI 316L stainless steel

    The open circuit potential (OCP) of stainless steels immersed in natural waters generally increases with time. This phenomenon is strongly linked to the formation of a bio-film on the surface. Several studies have proved that the bio-film modifies the reaction of reduction of dissolved oxygen and that it acts mainly on the cathodic processes. One of the hypotheses explaining the action of the bio-film involves certain bacteria which use dissolved oxygen and extracellular enzymes to produce reactive oxygen species. Among this kind of metabolites is hydrogen peroxide H2O2. This compound interacts with the passive layer of stainless steels and affects their electrochemical behaviour, even when the chloride concentration is low. The aim of this work is to study the influence of an enzymatic reaction (of the oxidoreductase type) on anodic and cathodic processes on AISI 316L stainless steel. Experiments are carried out in two artificial electrolytes simulating natural fresh waters, with two different chloride concentrations. The role of enzymatically-produced hydrogen peroxide is shown by OCP measurements and volt-amperometric methods. (authors)

  1. Characterization of passive film formed on AISI 316L stainless steel after magnetoelectropolishing in a broad range of polarization parameters

    Rokosz, Krzysztof; Hryniewicz, Tadeusz [Politechnika Koszalinska, Division of Surface Electrochemistry, Raclawicka 15-17, PL 75-620 Koszalin (Poland); Raaen, Steiner [NTNU Trondheim, Institute of Physics, Trondheim (Norway)

    2012-09-15

    The aim of the paper is to present the changes in the surface film composition on AISI 316L stainless steel (SS) after electropolishing (EP) and magnetoelectropolishing (MEP) in a broad range of the process conditions. The X-ray photoelectron spectroscopy surface analyses were performed to reveal the effect of MEP. The EP process has been performed under natural convection (in a stagnant electrolyte), much above the polarization plateau. A series of experiments were carried out on AISI 316L SS samples in accordance with the five-level composite rotary statistical plan with the variables being the magnetic field intensity B (mT), and the anodic current density i (A dm{sup -2}). XP high resolution spectra have been obtained on AISI 316L SS surface concerning Fe 2p, Cr 2p, O 1s, S 2p, P 2p, and C 1s, respectively. The Cr:Fe ratio regarding both metallic M and compound X was also studied and calculated. At the end, the summary results of Cr/Fe = f(B, i) in relation to the corrosion potential, have been compared. The conclusions, concerning the selection of MEP process conditions, regarding the optimum Cr/Fe ratio and corrosion behavior, have been formulated. It was found the Cr:Fe ratio well correlates with the pitting corrosion potential. MEP process can modify not only the rate of dissolution to a determined extent, but also control the corrosion behavior and Cr:Fe ratio results. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Transformation of austenite to duplex austenite-ferrite assembly in annealed stainless steel 316L consolidated by laser melting

    Saeidi, K.; Gao, X. [Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm (Sweden); Lofaj, F. [Institute of Materials Research of the Slovak Academy of Sciences, Watsonova 47, Košice (Slovakia); Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, 916 24 Trnava (Slovakia); Kvetková, L. [Institute of Materials Research of the Slovak Academy of Sciences, Watsonova 47, Košice (Slovakia); Shen, Z.J. [Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm (Sweden)

    2015-06-05

    Highlights: • Mechanical properties, phase and microstructure stability of laser melted steel was studied. • Duplex austenite-ferrite assembly with improved mechanical properties was formed. • Dissolution of Mo in the steel matrix resulted in ferrite stabilization and stress relief. • Enhanced mechanical properties were achieved compared to conventionally casted and annealed steel. - Abstract: Laser melting (LM), with a focused Nd:YAG laser beam, was used to form solid bodies from 316L austenite stainless steel powder and the laser melted samples were heat treated at various temperatures. The phase changes in heat treated samples were characterized using X-ray diffraction (XRD). Samples heat treated at 800 °C and 900 °C remained single austenite while in samples heat treated at 1100 °C and 1400 °C a dual austenite-ferrite phase assembly was formed. The ferrite formation was further verified by electron back scattering diffraction (EBSD) and selective area diffraction (SAD). Microstructural changes were studied by scanning and transmission electron microscopy (SEM, TEM). In samples heat treated up to 900 °C, coalescence of the cellular-sub grains was noticed, whereas in sample heat treated at and above 1100 °C the formation of ferrite phase was observed. The correlation between the microstructure/phase assembly and the measured strength/microhardness were investigated, which indicated that the tensile strength of the laser melted material was significantly higher than that of the conventional 316L steel even after heat treatment whereas caution has to be taken when laser melted material will be exposed to an application temperature above 900 °C.

  3. Transformation of austenite to duplex austenite-ferrite assembly in annealed stainless steel 316L consolidated by laser melting

    Highlights: • Mechanical properties, phase and microstructure stability of laser melted steel was studied. • Duplex austenite-ferrite assembly with improved mechanical properties was formed. • Dissolution of Mo in the steel matrix resulted in ferrite stabilization and stress relief. • Enhanced mechanical properties were achieved compared to conventionally casted and annealed steel. - Abstract: Laser melting (LM), with a focused Nd:YAG laser beam, was used to form solid bodies from 316L austenite stainless steel powder and the laser melted samples were heat treated at various temperatures. The phase changes in heat treated samples were characterized using X-ray diffraction (XRD). Samples heat treated at 800 °C and 900 °C remained single austenite while in samples heat treated at 1100 °C and 1400 °C a dual austenite-ferrite phase assembly was formed. The ferrite formation was further verified by electron back scattering diffraction (EBSD) and selective area diffraction (SAD). Microstructural changes were studied by scanning and transmission electron microscopy (SEM, TEM). In samples heat treated up to 900 °C, coalescence of the cellular-sub grains was noticed, whereas in sample heat treated at and above 1100 °C the formation of ferrite phase was observed. The correlation between the microstructure/phase assembly and the measured strength/microhardness were investigated, which indicated that the tensile strength of the laser melted material was significantly higher than that of the conventional 316L steel even after heat treatment whereas caution has to be taken when laser melted material will be exposed to an application temperature above 900 °C

  4. Effect of Zr, Nb and Ti addition on injection molded 316L stainless steel for bio-applications: Mechanical, electrochemical and biocompatibility properties.

    Gulsoy, H Ozkan; Pazarlioglu, Serdar; Gulsoy, Nagihan; Gundede, Busra; Mutlu, Ozal

    2015-11-01

    The research investigated the effect of Zr, Nb and Ti additions on mechanical, electrochemical properties and biocompatibility of injection molded 316L stainless steel. Addition of elemental powder is promoted to get high performance of sintered 316L stainless steels. The amount of additive powder plays a role in determining the sintered microstructure and all properties. In this study, 316L stainless steel powders used with the elemental Zr, Nb and Ti powders. A feedstock containing 62.5 wt% powders loading was molded at different injection molded temperature. The binders were completely removed from molded components by solvent and thermal debinding at different temperatures. The debinded samples were sintered at 1350°C for 60 min. Mechanical, electrochemical property and biocompatibility of the sintered samples were performed mechanical, electrochemical, SBF immersion tests and cell culture experiments. Results of study showed that sintered 316L and 316L with additives samples exhibited high corrosion properties and biocompatibility in a physiological environment. PMID:26275484

  5. Effect of SUS316L stainless steel surface conditions on the wetting of molten multi-component oxides ceramic

    Highlights: • Multi-component oxides had a good wetting on stainless substrates with pretreatments. • Various substrates surface roughness caused the difference of final contact angles. • The wetting rate was slow on polished substrate due to the slow surface oxidation. - Abstract: A study on the effect of SUS316L stainless steel surface conditions on the wetting behavior of molten multi-component oxides ceramic was performed and aimed to contribute to the further understanding of the application of oxides ceramic in penetration treatment of stainless steel coatings and the deposition of stainless steel cermet coatings. The results show that at 1273 K, different surface pre-treatments (polishing and heating) had an important effect on the wetting behavior. The molten multi-component oxides showed good wettability on both stainless steel substrates, however, the wetting process on the polished substrate was significantly slower than that on the heated substrates. The mechanism of the interfacial reactions was discussed based on the microscopic and thermodynamic analysis, the substrates reacted with oxygen generated from the decomposition of the molten multi-component oxides and oxygen contained in the argon atmosphere, and the oxide film caused the molten multi-component oxides ceramic to spread on the substrates surfaces. For the polished substrate, more time was required for the surface oxidation to reach the surface composition of Heated-S, which resulted in relatively slow spreading and wetting rates. Moreover, the variance of the surface roughness drove the final contact angles to slightly different values following the sequence Polished-S > Heated-S

  6. Effect of SUS316L stainless steel surface conditions on the wetting of molten multi-component oxides ceramic

    Wang, Jin, E-mail: wangjinustb@gmail.com [Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, 808-0196 (Japan); Matsuda, Nozomu [Bar and Wire Product Unit, Nippon steel and Sumitomo Metal Corporation, Fukuoka, 802-8686 (Japan); Shinozaki, Nobuya [Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, 808-0196 (Japan); Miyoshi, Noriko [The Center for Instrumental Analysis, Kyushu Institute of Technology, Fukuoka, 804-8550 (Japan); Shiraishi, Takanobu [Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588 (Japan)

    2015-02-01

    Highlights: • Multi-component oxides had a good wetting on stainless substrates with pretreatments. • Various substrates surface roughness caused the difference of final contact angles. • The wetting rate was slow on polished substrate due to the slow surface oxidation. - Abstract: A study on the effect of SUS316L stainless steel surface conditions on the wetting behavior of molten multi-component oxides ceramic was performed and aimed to contribute to the further understanding of the application of oxides ceramic in penetration treatment of stainless steel coatings and the deposition of stainless steel cermet coatings. The results show that at 1273 K, different surface pre-treatments (polishing and heating) had an important effect on the wetting behavior. The molten multi-component oxides showed good wettability on both stainless steel substrates, however, the wetting process on the polished substrate was significantly slower than that on the heated substrates. The mechanism of the interfacial reactions was discussed based on the microscopic and thermodynamic analysis, the substrates reacted with oxygen generated from the decomposition of the molten multi-component oxides and oxygen contained in the argon atmosphere, and the oxide film caused the molten multi-component oxides ceramic to spread on the substrates surfaces. For the polished substrate, more time was required for the surface oxidation to reach the surface composition of Heated-S, which resulted in relatively slow spreading and wetting rates. Moreover, the variance of the surface roughness drove the final contact angles to slightly different values following the sequence Polished-S > Heated-S.

  7. Effect of tool geometry on tool wear characterization and weld formation in friction stir welding of 316L stainless steel

    316L stainless steel plate was friction stir welded using PCBN tools. The effect of tool shoulder profile and tool probe profile on tool wear characterization and weld formation was investigated. Two different shoulder profiles (screw with different pitches) with four different tool probe profiles (two different probe end shapes and two different probe lengths) have been used to fabricate FSW zone. Experimental results show that the tools with narrow pitch screw shoulder profile produce deeper FSW zone compared to the tools with wide pitch. The tools with spiral probe profile produce deeper FSW zone compared to the tools with chamber probe profile. The tools with wide pitch screw shoulder profile is apt to produce lower working loads. The wear resistant of tools with chamber probe profile is significantly higher than that of tools with spiral probe profile. The relation between tool geometries and tool wear and weld formation is discussed. (author)

  8. Full 3D spatially resolved mapping of residual strain in a 316L austenitic stainless steel weld specimen

    A three-pass slot weld specimen in austenitic stainless steel 316L, manufactured for the purpose of benchmarking Finite Element weld residual stress simulation codes, is currently undergoing extensive characterization within a research network. A comprehensive data set from non-destructive full three-dimensional spatially resolved macro-strain mapping in this specimen is presented here. Focussed high-energy synchrotron radiation together with the spiral slit technique was used to obtain depth-resolved information about the variation of lattice parameters. A novel full-pattern analysis approach, based on the evaluation of distinct diffraction spots from individual grains, was developed. The results show high tensile transverse stresses within the bead deposited first. The maximum longitudinal stresses were found beneath the slot. Furthermore significant weld start- and stop-effects were observed. The validity of the results is discussed with respect to the possible impact of intergranular strains due to plastic deformation.

  9. Evaluation of the electromagnetic characteristics of type 316L stainless steel welds from the viewpoint of eddy current inspections

    This study evaluated the electromagnetic characteristics of austenitic stainless steel welds from the viewpoint of eddy current testing. Seven welded plate specimens, which were welded using JIS Z3221:2010 YS316L welding metals, were prepared. Two welding metals and several welding conditions were adopted to discuss the generality. The results of eddy current examination of the specimens using three different types of eddy current probes, that is, an absolute pancake probe, a differential plus-point probe, and a uniform eddy current probe, confirmed that the welds cause a large noise especially when the absolute pancake probe was used. The analysis of the signals through finite element simulations revealed that the magnetic property of the welds is not negligible from the viewpoint of eddy current testing. Complementary experiments were conducted using a vibrating sample magnetometer to validate the results. (author)

  10. Microstructural aspects of creep-rupture life of type 316L(N) stainless steel in liquid sodium environment

    The influence of flowing sodium on creep-rupture properties of AISI Type 316L(N) stainless steel base material has been investigated at 550 and 660 C. In sodium test results were compared with reference creep-rupture data generated in air. The creep-rupture lives were longer in air than in sodium environment at 550 C, however, at 600 C, creep-rupture lives were longer in the latter than in the former environment. Microstructural studies showed the presence of sensitization and χ phase on longer duration test specimens at both temperatures. Surface cracks in sodium tested specimens were sharp and relatively more in numbers than in air where cracks were blunted. Cracks seem to follow the intergranular mode. Cavities were formed in long duration tests and propagated ahead of the χ phase. (orig.)

  11. Microstructural aspects of creep-rupture life of Type 316L(N) stainless steel in liquid sodium environment

    Mishra, M. P.; Borgstedt, H. U.; Frees, G.; Seith, B.; Mannan, S. L.; Rodriguez, P.

    1993-04-01

    The influence of flowing sodium on creep-rupture properties of AISI Type 316L(N) stainless steel base material has been investigated at 550 and 600°C. In sodium test results were compared with reference creep-rupture data generated in air. The creep-rupture lives were longer in air than in sodium environment at 550°C, however, at 600°C, creep-rupture lives were longer in the latter than in the former environment. Microstructural studies showed the presence of sensitization and χ phase on longer duration test specimens at both temperatures. Surface cracks in sodium tested specimens were sharp and relatively more in numbers than in air where cracks were blunted. Cracks seem to follow the intergranular mode. Cavities were formed in long duration tests and propagated ahead of the χ phase.

  12. Effects of Thermocapillary Forces during Welding of 316L-Type Wrought, Cast and Powder Metallurgy Austenitic Stainless Steels

    Sgobba, Stefano

    2003-01-01

    The Large Hadron Collider (LHC) is now under construction at the European Organization for Nuclear Research (CERN). This 27 km long accelerator requires 1248 superconducting dipole magnets operating at 1.9 K. The cold mass of the dipole magnets is closed by a shrinking cylinder with two longitudinal welds and two end covers at both extremities of the cylinder. The end covers, for which fabrication by welding, casting or Powder Metallurgy (PM) was considered, are dished-heads equipped with a number of protruding nozzles for the passage of the different cryogenic lines. Structural materials and welds must retain high strength and toughness at cryogenic temperature. AISI 316L-type austenitic stainless steel grades have been selected because of their mechanical properties, ductility, weldability and stability of the austenitic phase against low-temperature spontaneous martensitic transformation. 316LN is chosen for the fabrication of the end covers, while the interconnection components to be welded on the protrud...

  13. Microstructural characteristics and creep rupture behavior of electron beam and laser welded AISI 316L stainless steel

    AISI 316L stainless steel was welded by the electron beam (EB) and laser techniques. Microstructural characteristics, hardness profile, creep rupture properties and creep damage of the welds were investigated. Fully austenitic microstructure was obtained in the two welds. The solidification structure of the welds consisted of the cellular and equiaxed dendrites. The creep rupture lives of the two welds were almost the same, and they were reduced by a factor of about two compared to the base metal. Moreover, the rupture elongation of the welds was lower than that of the base metal. Creep damage was observed in the ''parting'' region of the welds and in the heat-affected zone (HAZ), respectively. Final creep fracture occurred in the ''parting'' region of the welds. (orig.)

  14. Analysis of notch strengthening of 316L stainless steel with and without irradiation-induced hardening using EBSD and FEM

    Wu, Xianglin; Pan, Xiao; Stubbins, James F.

    2007-04-01

    Notch strengthening analysis of 316L stainless steel was carried out using electron backscatter diffraction (EBSD) and the finite element modeling (FEM) techniques. The influence of exposure to irradiation was examined by employing irradiated tensile properties in the FEM analyses. The major issue of interest is the possibility that low ductility, often found following irradiation exposure, will translate into low notch toughness. It was found that notch depth plays an important role in notch strengthening and mechanical properties degradation. Differences in notch depth and shape result in various sizes of deformation and twinning zones. Experimental results and FEM modeling results correlate well over the range of notch conditions examined here. It is found that notch ductility and plastic deformation can be highly localized for irradiated materials, exacerbating the flow localization problem. Thus irradiation exposure can also lead to flow localization problems with components with notches or stress concentrators, but notch constraints can limit the extent of localized flow.

  15. Methodology for optimizing the electropolishing of stainless steel AISI 316L combining criteria of surface finish and dimensional precision

    Núñez, P. J.; García-Plaza, E.; Martín, A. R.; Trujillo, R.; De la Cruz, C.

    2009-11-01

    This work examines a methodology for optimizing electrochemical polishing conditions bearing in mind the criteria that enhance minimum surface roughness and dimensional precision (minimum loss of thickness). The study consisted in electrochemically polishing stainless steel AISI 316L (ISO 4954 X2CrNiMo17133E) under a combination of different temperatures (T) baths and current densities (J), and application times (t). The surface finish (ΔRa) and dimensional variations (Δh) of the electrochemically polished workpieces were assessed, and the experimental data of the variables was correlated as can be seen by the response surfaces. This methodology enables optimum working areas to be specified using the sole criteria of surface finish, or by using a combination of both criteria (minimum roughness and maximum precision). The methodology has proven to be an optimum method for selecting electrochemical polishing conditions using the combined criteria of surface finish and dimensional precision in accordance with design requirements.

  16. Helium dilution effect on hydrogen permeation in 316L stainless steel and nickel-base heat-resistant alloys

    Effects of inert-gas dilution on hydrogen permeation have been investigated in 316L stainless steel, Inconel 600, Inconel 750, Nimonic 80A and Hastelloy X at 1173 K and 1073 K, by employing a gas-flow system. We used gas mixtures of hydrogen and helium, whose hydrogen concentration ranged from 10-5 to 10-1. For the steady-state permeation, the dilution of hydrogen caused no anomalous effects and the permeation rate conformed to Sieverts' law. However, for the transient state, the hydrogen permeation was retarded by the dilution with helium. The retardation effect is discussed in terms of an adsorption model and explained by a decrease in sticking probability at the alloy surface with the dissociative adsorption of hydrogen. (orig.)

  17. The Effect of Surface Finish on Low-Temperature Acetylene-Based Carburization of 316L Austenitic Stainless Steel

    Ge, Yindong; Ernst, Frank; Kahn, Harold; Heuer, Arthur H.

    2014-12-01

    We observed a strong influence of surface finish on the efficacy of low-temperature acetylene-based carburization of AISI 316L austenitic stainless steel. Steel coupons were prepared with different surface finishes prior to carburization, from P400 SiC grit paper to 1- µm-diameter-diamond-paste. The samples with the finer surface finish developed a thicker "case" (a carbon-rich hardened surface layer) and a larger surface carbon concentration. Transmission electron microscopy revealed that the differences arose mainly from the nature of the deformation-induced disturbed layer on the steel surface. A thick (>400 nm) disturbed layer consisting of nano-crystalline grains (≈10 nm diameter) inhibits acetylene-based carburization. The experimental observations can be explained by assuming that during machining or coarse polishing, the surface oxide layer is broken up and becomes incorporated into the deformation-induced disturbed layer. The incorporated oxide-rich films retard or completely prevent the ingress of carbon into the stainless steel.

  18. Re-weldability tests of irradiated 316L(N) stainless steel using laser welding technique

    SS316L(N)-IG is the candidate material for the in-vessel and ex-vessel components of fusion reactors such as ITER (International Thermonuclear Experimental Reactor). This paper describes a study on re-weldability of un-irradiated and/or irradiated SS316L(N)-IG and the effect of helium generation on the mechanical properties of the weld joint. The laser welding process is used for re-welding of the water cooling branch pipeline repairs. It is clarified that re-welding of SS316L(N)-IG irradiated up to about 0.2 dpa (3.3 appm He) can be carried out without a serious deterioration of tensile properties due to helium accumulation. Therefore, repair of the ITER blanket cooling pipes can be performed by the laser welding process

  19. Effect of dissolved oxygen content on stress corrosion cracking of a cold worked 316L stainless steel in simulated pressurized water reactor primary water environment

    Zhang, Litao; Wang, Jianqiu, E-mail: wangjianqiu@imr.ac.cn

    2014-03-15

    Stress corrosion crack growth tests of a cold worked nuclear grade 316L stainless steel were conducted in simulated pressurized water reactor (PWR) primary water environment containing various dissolved oxygen (DO) contents but no dissolved hydrogen. The crack growth rate (CGR) increased with increasing DO content in the simulated PWR primary water. The fracture surface exhibited typical intergranular stress corrosion cracking (IGSCC) characteristics.

  20. Effect of dissolved oxygen content on stress corrosion cracking of a cold worked 316L stainless steel in simulated pressurized water reactor primary water environment

    Zhang, Litao; Wang, Jianqiu

    2014-03-01

    Stress corrosion crack growth tests of a cold worked nuclear grade 316L stainless steel were conducted in simulated pressurized water reactor (PWR) primary water environment containing various dissolved oxygen (DO) contents but no dissolved hydrogen. The crack growth rate (CGR) increased with increasing DO content in the simulated PWR primary water. The fracture surface exhibited typical intergranular stress corrosion cracking (IGSCC) characteristics.

  1. Effect of dissolved oxygen content on stress corrosion cracking of a cold worked 316L stainless steel in simulated pressurized water reactor primary water environment

    Stress corrosion crack growth tests of a cold worked nuclear grade 316L stainless steel were conducted in simulated pressurized water reactor (PWR) primary water environment containing various dissolved oxygen (DO) contents but no dissolved hydrogen. The crack growth rate (CGR) increased with increasing DO content in the simulated PWR primary water. The fracture surface exhibited typical intergranular stress corrosion cracking (IGSCC) characteristics

  2. Effect of the hydrogen peroxide formed in tritiated water on the behavior of 316L stainless steel

    The tritiated water used (at a concentration of 20 mg cm-3) contains radiolytic hydrogen peroxide and dissolved oxygen. In the plants for the reprocessing of this water, the pH necessarily has various values, and consequently we used two different pH, 4 and 11, in our studies. The free corrosion potential of the stainless steel, as well as the redox potential of the tritiated water taken immediately from stock are in the transpassive region. This results from the concentrations of the dissolved radiolytic species. If these are decomposed in the voltametric scans, these potentials shift to the prepassive region. This will show the importance of the concentration of radiolytic H2O2 on the corrosion of 316L stainless steel. Scanning electron microscope examinations show, that at the free corrosion potential of the steel located in transpassive region, small cracks are formed over all of the oxidized surface. Pits and cavities are also found, the latter tend to be located on the grain boundaries. ((orig.))

  3. Effects of dissolved oxygen and hydrogen peroxide on the corrosion potential of 316L stainless steel in hot lithium hydroxide solution

    In the present work, the effects of dissolved oxygen and hydrogen peroxide on corrosion potential have been studied on type 316L stainless steel in a hot lithium hydroxide solution. The results indicate that the corrosion potential will remain at around -850 mV vs SCE if the dissolved oxygen in the solution is controlled at a level of less than 10 ppb. However, 316L stainless steel will become completely passivated when about 650 ppb of oxygen exists in the solution. As a result, the corrosion potential of 316L steel will rise to around -400 mV vs SCE, and eventually, with longer immersion times, to even higher values, e.g. -300 mV vs SCE. However, the presence of less than 500 ppb H2O2 has no significant effect on the corrosion potential. A potential jump (from -850 to -500 mV vs SCE) is observed only when a large amount of H2O2, for instance 1 ppm, is present in the solution. Related to radiolysis of water and with potential-dependent stress corrosion cracking, the effects of dissolved oxygen and hydrogen peroxide on the corrosion potential of 316L stainless steel in the hot lithium hydroxide solution have been discussed. ((orig.))

  4. Behaviour in aqueous H2S of austenitic stainless steels AISI 316L and AISI 304

    Embrittlement by hydrogen in aqueous H2S medium of austenitic stainless steels was studied. Embrittlement in the hyper-quenched and sensitized state was characterized by slow traction tests. The susceptibility to hydrogen increases with the decrease of the charging speed and the increase of the sensitization time. The value of the piling defect energy, the presence of martensite ε and the transportation of hydrogen through dislocations seem to be very determining parameters for embrittlement by hydrogen in H2S medium. (authors). 19 refs., 9 figs., 2 tabs

  5. Effect of thermal treatment on the corrosion resistance of Type 316L stainless steel exposed in supercritical water

    Jiao, Y.; Zheng, W.; Guzonas, D. A.; Cook, W. G.; Kish, J. R.

    2015-09-01

    There are still unknown aspects about the growth mechanism of oxide scales formed on candidate stainless steel fuel cladding materials during exposure in supercritical water (SCW) under the conditions relevant to the Canadian supercritical water-cooled reactor (SCWR). The tendency for intermetallic precipitates to form within the grains and on grain boundaries during prolonged exposure at high temperatures represents an unknown factor to corrosion resistance, since they tend to bind alloyed Cr. The objective of this study was to better understand the extent to which intermetallic precipitates affects the mode and extent of corrosion in SCW. Type 316L stainless steel, used as a model Fe-Cr-Ni-Mo alloy, was exposed to 25 MPa SCW at 550 °C for 500 h in a static autoclave for this purpose. Mechanically-abraded samples were tested in the mill-annealed (MA) and a thermally-treated (TT) condition. The thermal treatment was conducted at 815 °C for 1000 h to precipitate the carbide (M23C6), chi (χ), laves (η) and sigma (σ) phases. It was found that although relatively large intermetallic precipitates formed at the scale/alloy interface locally affected the oxide scale formation, their discontinuous formation did not affect the short-term overall apparent corrosion resistance.

  6. Effect of thermal treatment on the corrosion resistance of Type 316L stainless steel exposed in supercritical water

    There are still unknown aspects about the growth mechanism of oxide scales formed on candidate stainless steel fuel cladding materials during exposure in supercritical water (SCW) under the conditions relevant to the Canadian supercritical water-cooled reactor (SCWR). The tendency for intermetallic precipitates to form within the grains and on grain boundaries during prolonged exposure at high temperatures represents an unknown factor to corrosion resistance, since they tend to bind alloyed Cr. The objective of this study was to better understand the extent to which intermetallic precipitates affects the mode and extent of corrosion in SCW. Type 316L stainless steel, used as a model Fe–Cr–Ni–Mo alloy, was exposed to 25 MPa SCW at 550 °C for 500 h in a static autoclave for this purpose. Mechanically-abraded samples were tested in the mill-annealed (MA) and a thermally-treated (TT) condition. The thermal treatment was conducted at 815 °C for 1000 h to precipitate the carbide (M23C6), chi (χ), laves (η) and sigma (σ) phases. It was found that although relatively large intermetallic precipitates formed at the scale/alloy interface locally affected the oxide scale formation, their discontinuous formation did not affect the short-term overall apparent corrosion resistance

  7. Effect of thermal treatment on the corrosion resistance of Type 316L stainless steel exposed in supercritical water

    Jiao, Y. [Department of Materials Science & Engineering, McMaster University, Hamilton, ON (Canada); Zheng, W. [CanmetMATERIALS, Natural Resources Canada, Hamilton, ON (Canada); Guzonas, D.A. [Canadian Nuclear Laboratories Chalk River Laboratories, ON (Canada); Cook, W.G. [Department of Chemical Engineering, University of New Brunswick, Fredericton, NB (Canada); Kish, J.R., E-mail: kishjr@mcmaster.ca [Department of Materials Science & Engineering, McMaster University, Hamilton, ON (Canada)

    2015-09-15

    There are still unknown aspects about the growth mechanism of oxide scales formed on candidate stainless steel fuel cladding materials during exposure in supercritical water (SCW) under the conditions relevant to the Canadian supercritical water-cooled reactor (SCWR). The tendency for intermetallic precipitates to form within the grains and on grain boundaries during prolonged exposure at high temperatures represents an unknown factor to corrosion resistance, since they tend to bind alloyed Cr. The objective of this study was to better understand the extent to which intermetallic precipitates affects the mode and extent of corrosion in SCW. Type 316L stainless steel, used as a model Fe–Cr–Ni–Mo alloy, was exposed to 25 MPa SCW at 550 °C for 500 h in a static autoclave for this purpose. Mechanically-abraded samples were tested in the mill-annealed (MA) and a thermally-treated (TT) condition. The thermal treatment was conducted at 815 °C for 1000 h to precipitate the carbide (M{sub 23}C{sub 6}), chi (χ), laves (η) and sigma (σ) phases. It was found that although relatively large intermetallic precipitates formed at the scale/alloy interface locally affected the oxide scale formation, their discontinuous formation did not affect the short-term overall apparent corrosion resistance.

  8. Evaluation of Mid-IR Laser radiation effect on 316l stainless steel corrosion resistance in physiological saline

    The effects of a short pulsed (∼ 400 ns ) multi line hydrogen fluoride laser radiation operating on average at 2.8 μm has been studied on 316l stainless steel in terms of optical and physical parameters. At low fluences ≤ 8 Jcm-2 (phase l) no morphological changes occurred at the surface and melting began at ∼ 8.8 Jcm-2 (phase l l) which continued up to about 30 Jcm-2 . In this range the melting zone was effectively produced by high temperature surface centres growth which subsequently joined these centres together. Thermal ablation via surface vaporization began at ∼ 33 Jcm-2 (phase lll). The results of scanning electron microscopy evaluation and corrosion resistance experiment which was carried out using Eg and G device with cyclic potentiodynamic polarization method in a physiological (Hank's) solution indicated that pitting corrosion sensitivity was decreased i.e.. enhancement of corrosion resistance. Also, the x-ray diffraction results showed a double increase of γ (lll) at microstructure, thus in effect a super austenite stainless steel was obtained at an optimized melting fluence

  9. Biocompatibility studies of low temperature nitrided and collagen-I coated AISI 316L austenitic stainless steel.

    Martinesi, M; Stio, M; Treves, C; Borgioli, F

    2013-06-01

    The biocompatibility of austenitic stainless steels can be improved by means of surface engineering techniques. In the present research it was investigated if low temperature nitrided AISI 316L austenitic stainless steel may be a suitable substrate for bioactive protein coating consisting of collagen-I. The biocompatibility of surface modified alloy was studied using as experimental model endothelial cells (human umbilical vein endothelial cells) in culture. Low temperature nitriding produces modified surface layers consisting mainly of S phase, the supersaturated interstitial solid solution of nitrogen in the austenite lattice, which allows to enhance surface microhardness and corrosion resistance in PBS solution. The nitriding treatment seems to promote the coating with collagen-I, without chemical coupling agents, in respect of the untreated alloy. For biocompatibility studies, proliferation, lactate dehydrogenase levels and secretion of two metalloproteinases (MMP-2 and MMP-9) were determined. Experimental results suggest that the collagen protection may be favourable for endothelial cell proliferation and for the control of MMP-2 release. PMID:23471501

  10. Sensitization behaviour of modified 316N and 316L stainless steel weld metals after complex annealing and stress relieving cycles

    Parvathavarthini, N. [Indira Gandhi Centre for Atomic Research, Corrosion Science and Technology Division, Materials Characterisation Group, Kalpakkam, Tamil Nadu 603 102 (India); Dayal, R.K. [Indira Gandhi Centre for Atomic Research, Corrosion Science and Technology Division, Materials Characterisation Group, Kalpakkam, Tamil Nadu 603 102 (India)]. E-mail: rkd@igcar.gov.in; Khatak, H.S. [Indira Gandhi Centre for Atomic Research, Corrosion Science and Technology Division, Materials Characterisation Group, Kalpakkam, Tamil Nadu 603 102 (India); Shankar, V. [Materials Technology Division, Materials Development Group, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603 102 Tamil Nadu (India); Shanmugam, V. [Materials Technology Division, Materials Development Group, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603 102 Tamil Nadu (India)

    2006-09-01

    Sensitization behaviour of austenitic stainless steel weld metals prepared using indigenously developed modified 316N (C = 0.05%; N = 0.12%) and 316L (C = 0.02%; N = 0.07%) electrodes was studied. Detailed optical and scanning electron microscopic examination was carried out to understand the microstructural changes occurring in the weld metal during isothermal exposure at various temperatures ranging from 500 deg. C to 850 deg. C (773-1123 K). Based on these studies the mechanism of sensitization in the austenite-ferrite weld metal has been explained. Time-temperature-sensitization (TTS) diagrams were established using ASTM A262 Practice E test. From the TTS diagrams, critical cooling rate (CCR) above which there is no risk of sensitization was calculated for both materials. The heating/cooling rates to be followed for avoiding sensitization during heat treatment cycles consisting of solution-annealing and stress-relieving in fabrication of welded components of AISI 316LN stainless steel (SS) were estimated taking into account the soaking time and the number of times the component undergoes thermal excursions in the sensitization regime. The results were validated by performing controlled heating and cooling heat treatment trials on welded specimens.

  11. Sensitization behaviour of modified 316N and 316L stainless steel weld metals after complex annealing and stress relieving cycles

    Sensitization behaviour of austenitic stainless steel weld metals prepared using indigenously developed modified 316N (C = 0.05%; N = 0.12%) and 316L (C = 0.02%; N = 0.07%) electrodes was studied. Detailed optical and scanning electron microscopic examination was carried out to understand the microstructural changes occurring in the weld metal during isothermal exposure at various temperatures ranging from 500 deg. C to 850 deg. C (773-1123 K). Based on these studies the mechanism of sensitization in the austenite-ferrite weld metal has been explained. Time-temperature-sensitization (TTS) diagrams were established using ASTM A262 Practice E test. From the TTS diagrams, critical cooling rate (CCR) above which there is no risk of sensitization was calculated for both materials. The heating/cooling rates to be followed for avoiding sensitization during heat treatment cycles consisting of solution-annealing and stress-relieving in fabrication of welded components of AISI 316LN stainless steel (SS) were estimated taking into account the soaking time and the number of times the component undergoes thermal excursions in the sensitization regime. The results were validated by performing controlled heating and cooling heat treatment trials on welded specimens

  12. Characterization of hydroxyapatite coating by pulse laser deposition technique on stainless steel 316 L by varying laser energy

    Highlights: ► Hydroxyapatite coating was successfully deposited on stainless steel substrate by pulse laser deposition at different energy levels (i.e. 300 mJ and 500 mJ, respectively). ► Variation in laser energy affects the surface characteristic of hydroxyapatite coating (particle size, surface roughness, uniformity, Ca/P ratio). ► Laser energy between 300 mJ and 500 mJ is the optimal choice for obtaining ideal Ca/P ratio. - Abstract: Hydroxyapatite is an attractive biomaterial mainly used in bone and tooth implants because it closely resembles human tooth and bone mineral and has proven to be biologically compatible with these tissues. In spite of this advantage of hydroxyapatite it has also certain limitation like inferior mechanical properties which do not make it suitable for long term load bearing applications; hence a lot of research is going on in the development of hydroxyapatite coating over various metallic implants. These metallic implants have good biocompatibility and mechanical properties. The aim of the present work is to deposit hydroxyapatite coating over stainless steel grade 316 L by pulse laser deposition technique by varying laser energy. To know the effect of this variation, the coatings were than characterized in detail by X-ray diffraction, finite emission-scanning electron microscope, atomic force microscope and energy dispersive X-ray spectroscopy.

  13. Investigation into the joining of MoSi{sub 2} to 316L stainless steel

    Vaidya, R.U.; Bartlett, A.H.; Conzone, S.D.; Butt, D.P.

    1996-10-01

    Partial transient liquid phase joining and low temperature brazing were applied in joining MoSi{sub 2} to 316L ss. Exploratory studies were carried out on various interlayer materials. Mechanical, physical, and chemical compatibilities between various interlayers, brazing material, and substrate materials were investigated. Effect of thermal expansion mismatch between various components of the joint on the overall joint integrity was also studied. Preliminary findings are outlined.

  14. MC3T3-E1 cell response to stainless steel 316L with different surface treatments

    In the present study, stainless steel 316L samples with polishing, aluminum oxide blasting, and hydroxyapatite (HA) coating were prepared and characterized through a scanning electron microscope (SEM), optical interferometer (surface roughness, Sq), contact angle, surface composition and phase composition analyses. Osteoblast-like MC3T3-E1 cell adhesion on the samples was investigated by cell morphology using a SEM (4 h, 1 d, 3 d, 7 d), and cell proliferation was assessed by MTT method at 1 d, 3 d, and 7 d. In addition, adsorption of bovine serum albumin on the samples was evaluated at 1 h. The polished sample was smooth (Sq: 1.8 nm), and the blasted and HA coated samples were much rougher (Sq: 3.2 μm and 7.8 μm). Within 1 d of incubation, the HA coated samples showed the best cell morphology (e.g., flattened shape and complete spread), but there was no significant difference after 3 d and 7 d of incubation for all the samples. The absorbance value for the HA coated samples was the highest after 1 d and 3 d of incubation, indicating better cell viability. However, it reduced to the lowest value at 7 d. Protein adsorption on the HA coated samples was the highest at 1 h. The results indicate that rough stainless steel surface improves cell adhesion and morphology, and HA coating contributes to superior cell adhesion, but inhibits cell proliferation. - Highlights: • Rough stainless steel surface improves cell adhesion and proliferation. • HA coating results in superior cell morphology and cell attachment. • HA coating inhibits osteoblast cell proliferation after 7 d of incubation

  15. MC3T3-E1 cell response to stainless steel 316L with different surface treatments

    Zhang, Hongyu [State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Han, Jianmin, E-mail: siyanghan@163.com [Dental Materials Laboratory, National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081 (China); Sun, Yulong [State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Huang, Yongling [Jinghang Biomedicine Engineering Division, Beijing Institute of Aeronautical Material, Beijing 100095 (China); Zhou, Ming [State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China)

    2015-11-01

    In the present study, stainless steel 316L samples with polishing, aluminum oxide blasting, and hydroxyapatite (HA) coating were prepared and characterized through a scanning electron microscope (SEM), optical interferometer (surface roughness, Sq), contact angle, surface composition and phase composition analyses. Osteoblast-like MC3T3-E1 cell adhesion on the samples was investigated by cell morphology using a SEM (4 h, 1 d, 3 d, 7 d), and cell proliferation was assessed by MTT method at 1 d, 3 d, and 7 d. In addition, adsorption of bovine serum albumin on the samples was evaluated at 1 h. The polished sample was smooth (Sq: 1.8 nm), and the blasted and HA coated samples were much rougher (Sq: 3.2 μm and 7.8 μm). Within 1 d of incubation, the HA coated samples showed the best cell morphology (e.g., flattened shape and complete spread), but there was no significant difference after 3 d and 7 d of incubation for all the samples. The absorbance value for the HA coated samples was the highest after 1 d and 3 d of incubation, indicating better cell viability. However, it reduced to the lowest value at 7 d. Protein adsorption on the HA coated samples was the highest at 1 h. The results indicate that rough stainless steel surface improves cell adhesion and morphology, and HA coating contributes to superior cell adhesion, but inhibits cell proliferation. - Highlights: • Rough stainless steel surface improves cell adhesion and proliferation. • HA coating results in superior cell morphology and cell attachment. • HA coating inhibits osteoblast cell proliferation after 7 d of incubation.

  16. Thermo-mechanical and isothermal fatigue behavior of austenitic stainless steel AISI 316L

    Škorík, Viktor; Šulák, Ivo; Obrtlík, Karel; Polák, Jaroslav

    Ostrava: TANGER Ltd, 2015. ISBN 978-80-87294-58-1. [METAL 2015 - International Conference on Metallurgy and Materials /24./. Brno (CZ), 03.06.2015-05.06.2015] R&D Projects: GA MŠk(CZ) EE2.3.30.0063; GA ČR(CZ) GA15-20991S; GA ČR(CZ) GA13-23652S Institutional support: RVO:68081723 Keywords : Thermo-mechanical fatigue (TMF) * In-phase cycling (IP) * Isothermal fatigue (IF) * AISI 316L * Fatigue life Subject RIV: JL - Materials Fatigue, Friction Mechanics

  17. Improvement in cavitation erosion resistance of AISI 316L stainless steel by friction stir processing

    Commercial AISI 316L plates with the initial grain size of 14.8 μm were friction stir processed (FSP) with different processing parameters, resulting in two fine-grained microstructures with the grain sizes of 4.6 and 1.7 μm. The cavitation erosion behavior, before and after FSP, was evaluated in terms of incubation time, cumulative mass loss and mean depth of erosion. A separate cavitation erosion test was performed on the transverse cross section of a FSP sample to reveal the effect of grain structure. It was observed that FSP samples, depending on their grain size, are at least 3–6 times more resistant than the base material against cavitation erosion. The improvement in cavitation erosion resistance is attributed to smaller grain structure, lower fraction of twin boundaries, and favorable crystallographic orientation of grains in FSP samples. The finer the grain size, the more cavitation erosion resistance was achieved. Moreover, the microstructures of eroded surfaces were studied using a scanning electron microscope equipped with EBSD, and an atomic force microscope. The mechanisms controlling the cavitation erosion damage in friction stir processed AISI 316L are also discussed.

  18. Improvement in cavitation erosion resistance of AISI 316L stainless steel by friction stir processing

    Hajian, M.; Abdollah-zadeh, A.; Rezaei-Nejad, S. S.; Assadi, H.; Hadavi, S. M. M.; Chung, K.; Shokouhimehr, M.

    2014-07-01

    Commercial AISI 316L plates with the initial grain size of 14.8 μm were friction stir processed (FSP) with different processing parameters, resulting in two fine-grained microstructures with the grain sizes of 4.6 and 1.7 μm. The cavitation erosion behavior, before and after FSP, was evaluated in terms of incubation time, cumulative mass loss and mean depth of erosion. A separate cavitation erosion test was performed on the transverse cross section of a FSP sample to reveal the effect of grain structure. It was observed that FSP samples, depending on their grain size, are at least 3-6 times more resistant than the base material against cavitation erosion. The improvement in cavitation erosion resistance is attributed to smaller grain structure, lower fraction of twin boundaries, and favorable crystallographic orientation of grains in FSP samples. The finer the grain size, the more cavitation erosion resistance was achieved. Moreover, the microstructures of eroded surfaces were studied using a scanning electron microscope equipped with EBSD, and an atomic force microscope. The mechanisms controlling the cavitation erosion damage in friction stir processed AISI 316L are also discussed.

  19. Improvement in cavitation erosion resistance of AISI 316L stainless steel by friction stir processing

    Hajian, M. [Department of Materials Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Abdollah-zadeh, A., E-mail: zadeh@modares.ac.ir [Department of Materials Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Rezaei-Nejad, S.S.; Assadi, H. [Department of Materials Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Hadavi, S.M.M. [Department of Materials Science and Engineering, MA University of Technology, Tehran (Iran, Islamic Republic of); Chung, K. [Department of Materials Science and Engineering, Research Institute of Advanced Materials, Engineering Research Institute, Seoul National University, Seoul (Korea, Republic of); Shokouhimehr, M. [Department of Chemical Engineering, College of Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2014-07-01

    Commercial AISI 316L plates with the initial grain size of 14.8 μm were friction stir processed (FSP) with different processing parameters, resulting in two fine-grained microstructures with the grain sizes of 4.6 and 1.7 μm. The cavitation erosion behavior, before and after FSP, was evaluated in terms of incubation time, cumulative mass loss and mean depth of erosion. A separate cavitation erosion test was performed on the transverse cross section of a FSP sample to reveal the effect of grain structure. It was observed that FSP samples, depending on their grain size, are at least 3–6 times more resistant than the base material against cavitation erosion. The improvement in cavitation erosion resistance is attributed to smaller grain structure, lower fraction of twin boundaries, and favorable crystallographic orientation of grains in FSP samples. The finer the grain size, the more cavitation erosion resistance was achieved. Moreover, the microstructures of eroded surfaces were studied using a scanning electron microscope equipped with EBSD, and an atomic force microscope. The mechanisms controlling the cavitation erosion damage in friction stir processed AISI 316L are also discussed.

  20. HIP of stainless steel 316L considered at the mesoscopic scale: Numerical modelling and experimental characterization

    A two and three-dimensional finite element simulation of HIP (Hot Isostatic Pressing) at mesoscopic scale is proposed, in view of an in-depth understanding of the different physical mechanisms involved in powder densification. The model is formulated in a Eulerian framework, using level set formulation and adaptive meshing and re-meshing strategy to identify particle interactions inside a representative elementary volume (REV). A statistical generator is in charge of the definition of the initial configuration under the constraint of accounting for the real particle size distribution. Mechanical boundary conditions are applied to the REV, resulting in the deformation of particles and densification of the REV. As a first approach, the power-law creep of particles is considered as the unique densification mechanism. Starting from data issued from macroscopic simulations of the HIPping of a part made of 316L powder, mesoscopic simulations in different locations of the part have been carried out (macro-to-meso approach). The results of these simulations are presented and discussed in the light of experimental studies (optical microscopy and SEM, EBSD, EPMA) of the structure and microstructure of the compact, which were obtained from interrupted compactions. Mechanical tests on fully densified 316L were also conducted. (author)

  1. Comparative MRI compatibility of 316 L stainless steel alloy and nickel-titanium alloy stents.

    Holton, Andrea; Walsh, Edward; Anayiotos, Andreas; Pohost, Gerald; Venugopalan, Ramakrishna

    2002-01-01

    The initial success of coronary stenting is leading to a proliferation in peripheral stenting. A significant portion of the stents used in a clinical setting are made of 316 low carbon stainless steel (SS). Other alloys that have been used for stent manufacture include tantalum, MP35N, and nickel-titanium (NiTi). The ferromagnetic properties of SS cause the production of artifacts in magnetic resonance imaging (MRI). The NiTi alloys, in addition to being known for their shape memory or superelastic properties, have been shown to exhibit reduced interference in MRI. Thus, the objective of this study was to determine the comparative MRI compatibility of SS and NiTi stents. Both gradient echo and spin-echo images were obtained at 1.5 and 4.1 T field strengths. The imaging of stents of identical geometry but differing compositions permitted the quantification of artifacts produced due to device composition by normalizing the radio frequency shielding effects. These images were analyzed for magnitude and spatial extent of signal loss within the lumen and outside the stent. B1 mapping was used to quantify the attenuation throughout the image. The SS stent caused significant signal loss and did not allow for visibility of the lumen. However, the NiTi stent caused only minor artifacting and even allowed for visualization of the signal from within the lumen. In addition, adjustments to the flip angle of standard imaging protocols were shown to improve the quality of signal from within the lumen. PMID:12549230

  2. Shielding gas effects on flux cored arc welding of AISI 316L (N) austenitic stainless steel joints

    Highlights: ► The effects of shielding gasses are analyzed. ► The impact strength increases with increasing of percentage of CO2 in shielding gas mixtures. ► The ferrite percentage decreases with increasing of percentage of CO2 in shielding gas mixtures. ► Microhardness values increases with increasing of ferrite percentage in the weld metal. -- Abstract: This paper deals with the flux cored arc welding (FCAW) of AISI 316L (N) austenitic stainless steel with 1.2 mm diameter of flux cored 316LT filler wire. The welding was carried out with different shielding gas mixtures like 100% Ar, 95% Ar + 05% CO2, 90% Ar + 10% CO2, 80% Ar + 20% CO2, 75% Ar + 23% CO2 + 2% O2 and 70% Ar + 25% CO2 + 5% O2 and 100% CO2. The main aim of the work is to study the effect of various shielding gas mixtures on mechanical properties and metallurgical characters. The microstructures and ferrite content of the welds were analyzed. The mechanical characteristics such as impact test, microhardness and ductility of welds were carried out. The fracture surface impact samples were analyzed through scanning electron microscope (SEM). The fracture surface revealed a ductile rupture at room temperature and ductile rupture with a few cleavages at lower temperatures occurred. The toughness and ferrite percentages of the welds were decreased for increase of the CO2 in shielding gas mixtures.

  3. Modelling hydrogen embrittlement in 316L austenitic stainless steel for the first wall of the Next European Torus

    This paper presents the final results of the work which the authors have been performing for the European Fusion Technology Programme (the NET Team). The contribution deals with the modelling of hydrogen embrittlement in AISI type 316L solution-annealed austenitic stainless steel, to be used for the first wall of NET (Next European Torus). Numerical modelling of hydrogen diffusion in the samples was performed on the basis of a set of non-conventional diffusion equations, in which hydrogen diffuses not only to the points of minimum concentration, but also towards those places of maximum hydrostatic stress. The diffusion computer program was coupled with an elastic-plastic finite element program to allow the calculation of both the stress state and the distribution of hydrogen concentration at the sample points step by step. Hydrogen penetration rates due to diffusion were extremely low in the unaltered material, even under mechanical loading. However, a clear loss of load bearing capacity of the notched specimens in hydrogen environment was observed even for extremely short tests. A possible explanation is that hydrogen embrittlement might not be associated with bulk diffusion through the specimen (there was not enough time for this) but rather with a localized degrading action, due to hydrogen, on the area surrounding the notch. In particular, hydrogen enhanced multi-cracking is a possibility which must be taken into account. (orig.)

  4. Effect of strain-induced martensite on the formation of nanocrystalline 316L stainless steel after cold rolling and annealing

    Eskandari, M.; Najafizadeh, A. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Kermanpur, A., E-mail: ahmad_k@cc.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2009-08-30

    This work aimed to study the effects of cold rolling temperature and pre-strain on the volume fraction of strain-induced martensite in order to obtain nanocrystalline structures of 316L stainless steel. Hot rolling and cold rolling followed by annealing treatments were conducted under different conditions. The microstructures and the volume fraction of phases were characterized by scanning electron microscopy and feritscope tests, respectively. The hardness and tensile properties of the specimens were also measured. The results showed that decreasing the rolling temperature while increasing pre-strain leads to increased the volume fraction of martensite accompanied by decreased saturating strain and, further, that this behavior affects the degree of grain refinement. The smallest grain size of about 30-40 nm was obtained via 30% pre-strain at 523 K and subsequent conventional cold rolling at 258 K with a strain and a strain rate of 95% and 0.5 s{sup -1}, respectively, followed by annealing at 1023 K for 300 s. Uniaxial tensile tests at room temperature showed that this specimen exhibits very high tensile strength of about 1385 MPa.

  5. TEM study of the nucleation of bubbles induced by He implantation in 316L industrial austenitic stainless steel

    Jublot-Leclerc, S.; Lescoat, M.-L.; Fortuna, F.; Legras, L.; Li, X.; Gentils, A.

    2015-11-01

    10 keV He ions were implanted in-situ in a TEM into thin foils of 316L industrial austenitic stainless steel at temperatures ranging from 200 to 550 °C. As a result, overpressurized nanometric bubbles are created with density and size depending strongly on both the temperature and fluence of implantation. An investigation on their nucleation and growth is reported through a rigorous statistical analysis whose procedure, including the consideration of free surface effects, is detailed. In the parameter range considered, the results show that an increase of fluence promotes both the nucleation and growth of the bubbles whilst an increase of temperature enhances the growth of the bubbles at the expense of their nucleation. The confrontation of resulting activation energies with existing models for bubble nucleation enables the identification of the underlying mechanisms. In spite of slight differences resulting from different conditions of implantation among which the He concentration, He production rate and He/dpa ratio, it appears that the dominating mechanisms are the same as those obtained in metals in previous studies, which, in addition to corroborating literature results, shows the suitability of in-situ TEM experiments to simulate the production of helium in nuclear materials.

  6. Electrochemical and In Vitro Behavior of Nanostructure Sol-Gel Coated 316L Stainless Steel Incorporated with Rosemary Extract

    Motalebi, Abolfazl; Nasr-Esfahani, Mojtaba

    2013-06-01

    The corrosion resistance of AISI 316L stainless steel for biomedical applications, was significantly enhanced by means of hybrid organic-inorganic sol-gel thin films deposited by spin-coating. Thin films of less than 100 nm with different hybrid characters were obtained by incorporating rosemary extract as green corrosion inhibitor. The morphology, composition, and adhesion of hybrid sol-gel coatings have been examined by SEM, EDX, and pull-off test, respectively. Addition of high additive concentrations (0.1%) did not disorganize the sol-gel network. Direct pull-off test recorded a mean coating-substrate bonding strength larger than 21.2 MPa for the hybrid sol-gel coating. The effect of rosemary extract, with various added concentrations from 0.012 to 0.1%, on the anticorrosion properties of sol-gel films have been characterized by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests in simulated body fluid (SBF) solution and has been compared to the bare metal. Rosemary extract additions (0.05%) have significantly increased the corrosion protection of the sol-gel thin film to higher than 90%. The in vitro bioactivity of prepared films indicates that hydroxyapatite nuclei can form and grow on the surface of the doped sol-gel thin films. The present study shows that due to their excellent anticorrosion properties, bioactivity and bonding strength to substrate, doped sol-gel thin films are practical hybrid films in biomedical applications.

  7. Effect of strain-induced martensite on the formation of nanocrystalline 316L stainless steel after cold rolling and annealing

    This work aimed to study the effects of cold rolling temperature and pre-strain on the volume fraction of strain-induced martensite in order to obtain nanocrystalline structures of 316L stainless steel. Hot rolling and cold rolling followed by annealing treatments were conducted under different conditions. The microstructures and the volume fraction of phases were characterized by scanning electron microscopy and feritscope tests, respectively. The hardness and tensile properties of the specimens were also measured. The results showed that decreasing the rolling temperature while increasing pre-strain leads to increased the volume fraction of martensite accompanied by decreased saturating strain and, further, that this behavior affects the degree of grain refinement. The smallest grain size of about 30-40 nm was obtained via 30% pre-strain at 523 K and subsequent conventional cold rolling at 258 K with a strain and a strain rate of 95% and 0.5 s-1, respectively, followed by annealing at 1023 K for 300 s. Uniaxial tensile tests at room temperature showed that this specimen exhibits very high tensile strength of about 1385 MPa.

  8. In situ monitoring the pulse CO2 laser interaction with 316-L stainless steel using acoustical signals and plasma analysis

    In most laser material processing, material removal by different mechanisms is involved. Here, application of acoustic signals with thermoelastic (below threshold) and breakdown origin (above threshold) together with plasma plume analysis as a simple monitoring system of interaction process is suggested. In this research the interaction of pulse CO2 laser with 200 ns duration and maximum energy of 1.3 J operating at 1 Hz with austenitic stainless steel (316-L) is reported. The results showed that the non-linear point of the curve can serve as a useful indicator of melting fluence threshold (in this case ∼830 J cm-2) with corresponding temperature calculated using plasma plume analysis. Higher acoustic amplitudes and larger plasma plume volume indicates more intense interaction. Also, analysis showed that a phase explosion process with material removal (ejecta) in the form of non-adiabatic (i.e., dt >> α-1) is at play after laser pulse is ended. Also, SEM photographs show different surface quality medication at different laser intensities, which indicates the importance of recoil momentum pressure and possibly electrons and ions densities in heat transfer. Finally, electrochemical test indicate an improved corrosion resistance for laser treated samples compared to untreated ones.

  9. Dynamic strain aging in stress controlled creep-fatigue tests of 316L stainless steel under different loading conditions

    Stress controlled fatigue-creep tests were carried out for 316L stainless steel under different loading conditions, i.e. different loading levels at the fixed temperature (loading condition 1, LC1) and different temperatures at the fixed loading level (loading condition 2, LC2). Cyclic deformation behaviors were investigated with respect to the evolutions of strain amplitude and mean strain. Abrupt mean strain jumps were found during cyclic deformation, which was in response to the dynamic strain aging effect. Moreover, as to LC1, when the minimum stress is negative at 550 deg. C, abrupt mean strain jumps occur at the early stage of cyclic deformation and there are many jumps during the whole process. While the minimum stress is positive, mean strain only jumps once at the end of deformation. Similar results were also found in LC2, when the loading level is fixed at -100 to 385 MPa, at higher temperatures (560, 575 deg. C), abrupt mean strain jumps occur at the early stage of cyclic deformation and there are many jumps during the whole process. While at lower temperature (540 deg. C), mean strain only jumps once at the end of deformation.

  10. Hydrogen effects on the passive film formation and pitting susceptibility of nitrogen containing type 316L stainless steels

    The effects of hydrogen on the passivity and pitting susceptibility of type 316L stainless steels have been investigated with alloys containing different nitrogen contents (0.015, 0.198 and 0.556 wt.% N). The study revealed that electrochemically pre-charged hydrogen significantly reduced the pitting resistance of alloys conatining 0.015 and 0.198 wt.% nitrogen contents. In alloy with highest nitrogen content (0.556 wt.% N), an increase in the passive film current density with hydrogen was observed without affecting breakdown potential. Auger electron spectroscopy (AES) analysis of the passive film indicated the presence of nitrogen in the passive film. On other hand, for hydrogen charged samples, nitrogen was found to be significantly less in the passive film. In Electrochemical impedance spectroscopy (EIS) measurement, the decrease in semi-circle radius of Nyquist plot, and the polarization resistance, R P associated with the resistance of the passive film was observed with hydrogen, indicating that hydrogen decreased the stability of the passive film. The present investigation indicated that precharged hydrogen deteriorated the passive film stability and pitting corrosion resistance in these alloys, and the increase in nitrogen content of the alloy offsets the deleterious effect of precharged hydrogen

  11. Stress corrosion cracking and corrosion fatigue on 316L stainless steel in boric acid concentrated media at 320 C

    Stress Corrosion Cracking (SCC) and Corrosion-Fatigue (CF) tests were performed in autoclave at 320 C in concentrated boric acid chlorinated media in presence of oxygen or hydrogen on type 316L austenitic stainless steel. Crack Growth Rates (CGR) are higher in non deaerated solutions for both SCC and CF than in hydrogenated solutions. CGR are relatively similar in CF and in SCC, excepted for high load ratio in CF where CGR are higher than in SCC. Detailed analysis of the fracture surface shows some distinct features between SCC and CF. Intergranular and transgranular mode of fracture are observed on SCC and CF. Fracture modes depend on the chemistry of solution in SCC and on frequency in CF. Traces of slip bands and crack front marking associated with oxide scale present on fracture surfaces exist in SCC and CF. Fatigue striations appear for low load ratio and high frequency. Secondary intergranular and transgranular cracking is observed only on SCC fracture surfaces and ligament morphology can be different in SCC relative to FC

  12. Hydrogen diffusion and solution at high temperatures in 316L stainless steel and nickel-base heat-resistant alloys

    Hydrogen-permeation behaviors of 316L stainless steel, Inconel 600, Inconel 750, Nimonic 80A and Hastelloy X at 873 K-1173 K have been investigated under a pressure range of 0.1 MPa-0.7 MPa by using a gas-flow system. Measurements have been carried out by use of a helium-carrier-gas method. It has been proved that this method is good for examining transient-permeation behaviors as well as steady-state permeation if the instrumental time-lag is taken into account. Diffusivity and solubility of hydrogen for the alloys are derived from the transient and steady-state permeation. The γ'-precipitation strengthened alloys - Inconel 750 and Nimonic 80A - show a larger activation energy of diffusion and a smaller solution heat than the other nickel-base alloys. This result is ascribed to the trapping effect due to titanium in the former alloys, i.e. solute titanium atoms and/or γ'-precipitations. (orig.)

  13. Hydrogen absorption associated with the corrosion mechanism of 316L stainless steels in primary medium of Pressurized Water Reactor (PWR)

    Highlights: • Samples of stainless steel were oxidized in isotopically labelled primary water. • Hydrogen and oxygen diffusion in the oxide layer were studied. • A mechanism for the inner oxide growth in primary water is proposed. • The proposed mechanism links the hydrogen absorption and oxidation processes. - Abstract: Samples of 316L were exposed at 325 °C to PWR primary water labelled with deuterium and oxygen 18. The SIMS and GD-OES analysis has revealed the presence of deuterium in the internal oxide layer and in the underlying alloy. Two-stage corrosion experiments have shown that the oxygen and hydrogen transport in the oxide layer is not coupled and that the short-circuit diffusion coefficient of 18O in the oxide scale: Dsc = (9 ± 1)·10−17 cm2 s−1. These results are used to propose a mechanism describing the anionic growth of the protective oxide layer and the concomitant adsorption of hydrogen in the alloy

  14. Effects of Hydrogen Gas Environment on Fatigue Strength at 107 cycles in Plain Specimen of Type 316L Stainless Steel

    Kawamoto, Kyohei; Ochi, Kazuhiko; Oda, Yasuji; Noguchi, Hiroshi

    In order to clarify the hydrogen effect on the fatigue strength at 107 cycles in a plain specimen of type 316L austenitic stainless steel, rotating bending fatigue tests in laboratory air and plane bending fatigue tests in 1.0 MPa dry hydrogen gas and in air at 313 K were carried out. The main results obtained are as follows. The observed fatigue behavior showed that the fatigue strength at 107 cycles in both environments is determined by the non-propagation of a fatigue crack of the order of the grain size. Also, the strength at 107 cycles in hydrogen gas is slightly higher than that in air. In the region of high-cycle fatigue, the fatigue life in hydrogen gas is longer than that in air, which is mainly caused by the longer crack initiation life in hydrogen gas. The crack propagation life in hydrogen gas is shorter than that in air but has only a small ratio to the fatigue life in this region.

  15. Residual stress and microstructure evolution by manufacturing processes for welded pipe joint in austenitic stainless steel type 316L

    Stress corrosion cracking (SCC) has been observed near the heat affected zone (HAZ) of welded pipe joint made of austenitic stainless steel type 316L, even though sensitization is not observed. Therefore, It can be considered that the effect of residual stress on SCC is more important. In the joining process of pipes, butt-welding is conducted after machining. Residual stress is generated by both processes. In case of welding after machining, it can be considered that residual stress due to machining is changed by welding thermal cycle. In this study, residual stress and microstructure evolution due to manufacturing processes is investigated. Change of residual stress distribution caused by processing history is examined by X-ray diffraction method. Residual stress distribution has a local maximum stress in the middle temperature range of the HAZ caused by processing history. Hardness measurement result also has a local maximum hardness in the same range of the HAZ. By using FE-SEM/EBSD, it is clarified that microstructure shows recovery in the high temperature range of HAZ. Therefore, residual stress distribution is determined by microstructure evolution and superposition effect of processing history. In summary, not only any part of manufacturing processes such as welding or machining but also treating all processes as processing history of pipes are important to evaluate SCC. (author)

  16. In situ monitoring the pulse CO 2 laser interaction with 316-L stainless steel using acoustical signals and plasma analysis

    Khosroshahi, M. E.; pour, F. Anoosheh; Hadavi, M.; Mahmoodi, M.

    2010-10-01

    In most laser material processing, material removal by different mechanisms is involved. Here, application of acoustic signals with thermoelastic (below threshold) and breakdown origin (above threshold) together with plasma plume analysis as a simple monitoring system of interaction process is suggested. In this research the interaction of pulse CO 2 laser with 200 ns duration and maximum energy of 1.3 J operating at 1 Hz with austenitic stainless steel (316-L) is reported. The results showed that the non-linear point of the curve can serve as a useful indicator of melting fluence threshold (in this case ≈830 J cm -2) with corresponding temperature calculated using plasma plume analysis. Higher acoustic amplitudes and larger plasma plume volume indicates more intense interaction. Also, analysis showed that a phase explosion process with material removal (ejecta) in the form of non-adiabatic (i.e., dt ≫ α-1) is at play after laser pulse is ended. Also, SEM photographs show different surface quality medication at different laser intensities, which indicates the importance of recoil momentum pressure and possibly electrons and ions densities in heat transfer. Finally, electrochemical test indicate an improved corrosion resistance for laser treated samples compared to untreated ones.

  17. Study on cerium-doped nano-TiO2 coatings for corrosion protection of 316 L stainless steel

    Li, Suning; Wang, Qian; Chen, Tao; Zhou, Zhihua; Wang, Ying; Fu, Jiajun

    2012-04-01

    Many methods have been reported on improving the photogenerated cathodic protection of nano-TiO2 coatings for metals. In this work, nano-TiO2 coatings doped with cerium nitrate have been developed by sol-gel method for corrosion protection of 316 L stainless steel. Surface morphology, structure, and properties of the prepared coatings were investigated by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. The corrosion protection performance of the prepared coatings was evaluated in 3 wt% NaCl solution by using electrochemical techniques in the presence and absence of simulated sunlight illumination. The results indicated that the 1.2% Ce-TiO2 coating with three layers exhibited an excellent photogenerated cathodic protection under illumination attributed to the higher separation efficiency of electron-hole pairs and higher photoelectric conversion efficiency. The results also showed that after doping with an appropriate concentration of cerium nitrate, the anti-corrosion performance of the TiO2 coating was improved even without irradiation due to the self-healing property of cerium ions.

  18. The Influence of Post Weld Heat Treatment in Alloy 82/182 Dissimilar Metal Weld between Low Alloy Steel and 316L Stainless Steel

    Dissimilar metal welds (DMWs) using an Alloy 82/182 are widely used to join low alloy steel components and stainless steel pipes in pressurized water reactors (PWRs). It has been reported that tensile residual stress would be generated within DMWs during the welding processes. It is thought as main reason for primary water stress corrosion cracking (PWSCC) resulting in deterioration of long-term integrity. The application of post weld heat treatment (PWHT) has been considered to reduce the tensile residual stress after welding process. Meanwhile, the PWHT could affect the changes in microstructure, mechanical properties, and corrosion resistance. Therefore, in this study, the effects of PWHT on the microstructure, mechanical properties and corrosion behaviors of base metals of low alloy steel and stainless steel and welding materials of Alloy 82/182 are evaluated. The influence of PWHT in DMW has been investigated. SA 508 and 316L SS exhibited tempered bainite and austenitic grains with a few residual stringer type ferrite. Grain boundary carbides are not precipitated owing to low carbon and insufficient exposure time in 316L SS. The change of mechanicals properties in base metals is not observed. In case of Alloy 182, after PWHT, grain boundaries are covered with film-like continuous Cr-rich carbides

  19. Plasma nitriding of AISI 304L and AISI 316L stainless steels: effect of time in the formation of S phase and the chromium nitrides

    Plasma nitriding can improve hardness and wear resistance of austenitic stainless steels without losses in corrosion resistance. This fact relies on a nitrided layer constituted only by S phase, without chromium nitrides precipitation. In this work, the effect of nitriding time on phases formed on nitrided layer was investigated in two austenitic stainless steels: AISI 304L e AISI 316L. The samples were nitrided at 420 deg C, using a mixture of 60 % N2 and 40% H2, during 5, 7 and 9 hours. It was noted that chromium nitrides were formed on samples of AISI 304L, nitrided for 7 e 9 hours, while all nitrided samples of AISI 316L showed only formation of S phase. The nitrided layers were characterized using optical microscope and x-ray diffraction. (author)

  20. The structural and bio-corrosion barrier performance of Mg-substituted fluorapatite coating on 316L stainless steel human body implant

    Sharifnabi, A., E-mail: sharifnabi@yahoo.com [Biomaterials Group, Department of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, 16844 (Iran, Islamic Republic of); Fathi, M.H. [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan, 8415683111 (Iran, Islamic Republic of); Dental Materials Research Center, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Eftekhari Yekta, B.; Hossainalipour, M. [Biomaterials Group, Department of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, 16844 (Iran, Islamic Republic of)

    2014-01-01

    In this study, Mg-substituted fluorapatite coatings were deposited on medical grade AISI 316L stainless steel via sol–gel dip coating method. Phase composition, crystallite size and degree of crystallinity of the obtained coatings were evaluated by X-ray diffraction (XRD) analysis. Fourier transform infrared (FTIR) spectroscopy was also used to evaluate functional groups of the obtained coatings. The surface morphology and cross-section of the final coatings were studied using scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy was used to determine elemental chemical composition of the obtained coatings. In order to determine and compare the corrosion behavior of uncoated and Mg-substituted fluorapatite coated 316L stainless steel, electrochemical potentiodynamic polarization tests were performed in physiological solutions at 37 ± 1 °C. Moreover, the released metallic ions from uncoated and coated substrates were measured by inductively coupled plasma-optical emission spectrometry (ICP-OES) within 2 months of immersing in Ringer's solution at 36.5 ± 1 °C as an indication of biocompatibility. The results showed that fluoride and magnesium were successfully incorporated into apatite lattice structure and the prepared coatings were nanostructured with crystallinity of about 70%. Obtained coatings were totally crack-free and uniform and led to decrease in corrosion current densities of 316L stainless steel in physiological solutions. In addition, coated sample released much less ions such as Fe, Cr and Ni in physiological media. Therefore, it was concluded that Mg-substituted fluorapatite coatings could improve the corrosion resistance and biocompatibility of 316L stainless steel human body implants.

  1. Effects of X-rays Radiation on AISI 304 Stainless Steel Weldings with AISI 316L Filler Material: A Study of Resistance and Pitting Corrosion Behavior

    Francisco Javier Cárcel-Carrasco; Manuel Pascual-Guillamón; Miguel Angel Pérez-Puig

    2016-01-01

    This article investigates the effect of low-level ionizing radiation, namely X-rays, on the micro structural characteristics, resistance, and corrosion resistance of TIG-welded joints of AISI 304 austenitic stainless steel made using AISI 316L filler rods. The welds were made in two different environments: natural atmospheric conditions and a closed chamber filled with inert argon gas. The influence of different doses of radiation on the resistance and corrosion characteristics of the welds i...

  2. The structural and bio-corrosion barrier performance of Mg-substituted fluorapatite coating on 316L stainless steel human body implant

    In this study, Mg-substituted fluorapatite coatings were deposited on medical grade AISI 316L stainless steel via sol–gel dip coating method. Phase composition, crystallite size and degree of crystallinity of the obtained coatings were evaluated by X-ray diffraction (XRD) analysis. Fourier transform infrared (FTIR) spectroscopy was also used to evaluate functional groups of the obtained coatings. The surface morphology and cross-section of the final coatings were studied using scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy was used to determine elemental chemical composition of the obtained coatings. In order to determine and compare the corrosion behavior of uncoated and Mg-substituted fluorapatite coated 316L stainless steel, electrochemical potentiodynamic polarization tests were performed in physiological solutions at 37 ± 1 °C. Moreover, the released metallic ions from uncoated and coated substrates were measured by inductively coupled plasma-optical emission spectrometry (ICP-OES) within 2 months of immersing in Ringer's solution at 36.5 ± 1 °C as an indication of biocompatibility. The results showed that fluoride and magnesium were successfully incorporated into apatite lattice structure and the prepared coatings were nanostructured with crystallinity of about 70%. Obtained coatings were totally crack-free and uniform and led to decrease in corrosion current densities of 316L stainless steel in physiological solutions. In addition, coated sample released much less ions such as Fe, Cr and Ni in physiological media. Therefore, it was concluded that Mg-substituted fluorapatite coatings could improve the corrosion resistance and biocompatibility of 316L stainless steel human body implants.

  3. Effect of temperature, chloride ions and sulfide ions on the electrochemical properties of 316L stainless steel in simulated cooling water

    2008-01-01

    The influence of temperature, chloride ions and sulfide ions on the anticorrosion behavior of 316L stainless steel in simulated cooling water was studied by electrochemical impedance spectroscopy and anodic polarization curves. The results show that the film resistance increases with the solution temperature but decreases after 8 days' immersion, which indicates that the film formed at higher temperature has inferior anticorrosion behavior; Chloride ions and sulfide ions have remarkable effects on the elect...

  4. Hydrogen effects on pitting corrosion and semiconducting properties of nitrogen-containing type 316L stainless steel

    The effects of hydrogen pre-charging on pitting corrosion resistance and semiconducting nature of passive film formed on two different nitrogen-containing type 316L stainless steel (0.076 and 0.086 wt% N) have been studied. Auger electron spectroscopy (AES) analysis of the alloys after passivation indicated weak nitrogen peak, but the presence of nitrogen and NH3/NH4+ was confirmed by the X-ray photoelectron spectroscopy (XPS) analysis. The results of pitting corrosion in 0.5 M NaCl (pH ∼ 5.7) solution revealed that hydrogen increased the passive current density and significantly reduced the pitting resistance. In 0.3 M H3BO3 + 0.075 M Na2B4O7.10H2O (pH ∼ 8.45) solution, increase in passive current density without affecting the breakdown or transpassive potential was observed for both the alloys. Electrochemical impedance spectroscopy (EIS) measurement after hydrogen pre-charging showed decrease in semi-circle radius of Nyquist plot, and the polarization resistance, RP associated with the resistance of the passive film. The decrease was significant with increasing hydrogen-charging current density (-50 to -100 mA/cm2). The results of the capacitance measurement and Mott-Schottky plots revealed that passive films exhibit n-type and p-type semiconductivity films for both the uncharged and hydrogen charged specimens of the investigated alloys. Doping densities obtained from Mott-Schottky plots increased with hydrogen pre-charging. The overall results indicated that hydrogen pre-charging deteriorated the passive film stability and lowered pitting corrosion resistance. The effects of hydrogen pre-charging on pitting corrosion, passive film and semiconducting properties are discussed in light of the above results.

  5. Corrosion resistance improvement in Gas Tungsten Arc Welded 316L stainless steel joints through controlled preheat treatment

    Highlights: → Though the preheat treatment reduced the cooling rate, no sensitization occurred. → The delta ferrite content of welds reduced due to cooling retardment in welds. → Reduction in δ/γ boundaries was accompanied by decrement of passivation current. → Preheat treatment improved pitting resistance characteristics. → Increment of preheat temperature increased breakdown and repassivation potential. -- Abstract: In the present study, an attempt has been made to improve the corrosion characteristics of 316L stainless steel weldments through preheating at 450 oC and 650 oC. The infrared and Tungsten-Rhenium thermocouples were utilized to probe the cooling trend of heat affected zone (HAZ) and weld pool, respectively. X-ray diffraction (XRD) patterns, optical microscopy, electron microscopy, Energy Dispersion Spectroscopy (EDS) and ferritscope were also used to investigate the effect of preheating on microstructural characteristics within the weld and HAZ. Moreover, cyclic potentiodynamic test was carried out to evaluate the corrosion features of welds such as corrosion current, passivation current (IPP), breakdown potential (EB) and repassivation potential (Ere). Results revealed that preheating reduces the cooling rate of weld pool, accompanied by reduction of delta ferrite content of weldments. Moreover, it was observed that increment of preheat temperature improves corrosion behavior of weldments, including a lower passivation current and a more pitting resistance. These outcomes were mainly ascribed to decrease of austenite/delta ferrite interfaces as vulnerable sites to corrosion attacks, through preheat treatment. Observations showed no evidence of sensitization in preheated samples, which guaranteed the feasibility of suggested heat treatment.

  6. Analysis of bi-layer oxide on austenitic stainless steel, 316L, exposed to Lead–Bismuth Eutectic (LBE) by X-ray Photoelectron Spectroscopy (XPS)

    Koury, D., E-mail: dan@physics.unlv.edu [Dept. of Physics and Astronomy, MS 4002, University of Nevada, Las Vegas, 4505 S. Maryland Pkwy, Las Vegas, NV 89154 (United States); Johnson, A.L. [Harry Reid Center, MS 4009, University of Nevada, Las Vegas, 4505 S. Maryland Pkwy, Las Vegas, NV 89154 (United States); Ho, T. [Dept. of Chemistry, MS 4002, University of Nevada, Las Vegas, 4505 S. Maryland Pkwy, Las Vegas, NV 89154 (United States); Farley, J.W. [Dept. of Physics and Astronomy, MS 4002, University of Nevada, Las Vegas, 4505 S. Maryland Pkwy, Las Vegas, NV 89154 (United States)

    2013-09-15

    Corrosion of the austenitic stainless steel alloy 316L by Lead–Bismuth Eutectic (LBE) was studied using X-ray Photoelectron Spectroscopy (XPS) with Sputter-Depth Profiling (SDP), and compared to data taken by Scanning Electron Microscopy (SEM) and Energy Dispersive X-rays (EDXs). Exposed and unexposed samples were compared. Annealed 316L samples, exposed to LBE for durations of 1000, 2000 and 3000 h, developed bi-layer oxides up to 30 μm thick. Analysis of the charge-states of the 2p{sub 3/2} peaks of iron, chromium, and nickel in the oxide layers reveal an inner layer consisting of iron and chromium oxides (likely spinel-structured) and an outer layer consisting of iron oxides (Fe{sub 3}O{sub 4}). Cold-rolled 316L samples, exposed for the same durations, form a chromium-rich, thin (⩽1 μm) oxide with some oxidized iron in the outermost ∼200 nm of the oxide layer. This is the first experiment to investigate what components of the 316L are oxidized by LBE exposure. It is shown here that nickel is metallic in the inner layer.

  7. Effect of Surface Condition and Heat Treatment on Corrosion of Type 316L Stainless Steel in a Mercury Thermal Convection Loop; FINAL

    Two thermal convection loops (TCLs) fabricated from 316L stainless steel and containing mercury and a variety of 316L coupons representing variable surface conditions and heat treatments have been operated continuously for 2000 h. Surface conditions included surface ground, polished, gold-coated, chemically etched, bombarded with Fe to simulate radiation damage, and oxidized. Heat treatments included solution treated, welded, and sensitized. In addition, a nitrogen doped 316L material, termed 316LN, was also examined in the solution treated condition. Duplicate TCLs were operated in this experiment-both were operated with a 305 C peak temperature, a 65 C temperature gradient, and mercury velocity of 1.2 m/min-but only one included a 36 h soak in Hg at 310 C just prior to operation to encourage wetting. Results indicate that the soak in Hg at 310 C had no lasting effect on wetting or compatibility with Hg. Further, based on examination of post-test wetting and coupon weight loss, only the gold-coated surfaces revealed significant interaction with Hg. In areas wetted significantly by Hg, the extreme surface of the stainless steel (ca 10(micro)m) was depleted in Ni and Cr compared to the bulk composition

  8. In vitro response of human peripheral blood mononuclear cells to AISI 316L austenitic stainless steel subjected to nitriding and collagen coating treatments.

    Stio, Maria; Martinesi, Maria; Treves, Cristina; Borgioli, Francesca

    2015-02-01

    Surface modification treatments can be used to improve the biocompatibility of austenitic stainless steels. In the present research two different modifications of AISI 316L stainless steel were considered, low temperature nitriding and collagen-I coating, applied as single treatment or in conjunction. Low temperature nitriding produced modified surface layers consisting mainly of S phase, which enhanced corrosion resistance in PBS solution. Biocompatibility was assessed using human peripheral blood mononuclear cells (PBMC) in culture. Proliferation, lactate dehydrogenase (LDH) levels, release of cytokines (TNF-α, IL-1β, IL-12, IL-10), secretion of metalloproteinase (MMP)-9 and its inhibitor TIMP-1, and the gelatinolytic activity of MMP-9 were determined. While the 48-h incubation of PBMC with all the sample types did not negatively influence cell proliferation, LDH and MMP-9 levels, suggesting therefore a good biocompatibility, the release of the pro-inflammatory cytokines was always remarkable when compared to that of control cells. However, in the presence of the nitrided and collagen coated samples, the release of the pro-inflammatory cytokine IL-1β decreased, while that of the anti-inflammatory cytokine IL-10 increased, in comparison with the untreated AISI 316L samples. Our results suggest that some biological parameters were ameliorated by these surface treatments of AISI 316L. PMID:25655502

  9. Multilayered Zr-C/a-C film on stainless steel 316L as bipolar plates for proton exchange membrane fuel cells

    Bi, Feifei; Peng, Linfa; Yi, Peiyun; Lai, Xinmin

    2016-05-01

    A multilayered zirconium-carbon/amorphous carbon (Zr-C/a-C) coating is synthesized by magnetron sputtering in order to improve the corrosion resistance and interfacial conductivity of stainless steel 316L (SS316L) as bipolar plates for proton exchange membrane fuel cells (PEMFCs). Zr-C/a-C film contains an outmost pure amorphous carbon layer and a sub zirconium containing carbon layer. Interfacial contact resistance (ICR) between carbon paper and coated SS316L decreases to 3.63 mΩ cm2 at 1.4 MPa. Potentiodynamic polarization results reveal that the corrosion potential of Zr-C/a-C coated sample is more positive than pure a-C coated sample and the current density is only 0.49 μA cm-2 at the cathode applied potential 0.6 V. Electrochemical impendence spectroscopy also indicates that multilayered Zr-C/a-C film coated SS316L has much higher charge transfer resistance than the bare sample. After potentiostatic polarization, ICR values are 3.92 mΩ cm2 and 3.82 mΩ cm2 in the simulated PEMFCs cathode and anode environment, respectively. Moreover, XPS analysis of the coated samples before and after potential holding tests shows little difference, which disclose the chemical stability of multilayered Zr-C/a-C film. Therefore, the multilayered Zr-C/a-C coating exhibits excellent performance in various aspects and is preferred for the application of stainless steel bipolar plates.

  10. The hardiness of numerical simulation of TIG welding. Application to stainless steel 316L structures; La robustesse de la simulation numerique du soudage TIG. Application sur des structures en acier 316L

    El-Ahmar, Walid; Jullien, Jean-Francois [INSA-Lyon, LaMCoS, CNRS UMR 551, 20 Avenue Albert Einstein, 69621 Villeurbanne, (France); Gilles, Philippe [AREVA NP, 92084 Paris La Defense, (France); Taheri, Said [EDF, 92141 Clamart, (France); Boitout, Frederic [ESI-GROUP, 69458 Lyon, (France)

    2006-07-01

    The welding numerical simulation is considered as one of the mechanics problems the most un-linear on account of the great number of the parameters required. The analysis of the hardiness of the welding numerical simulation is a current questioning whose expectation is to specify welding numerical simulation procedures allowing to guarantee the reliability of the numerical result. In this work has been quantified the aspect 'uncertainties-sensitivity' imputable to different parameters which occur in the simulation of stainless steel 316L structures welded by the TIG process: that is to say the mechanical and thermophysical parameters, the types of modeling, the adopted behaviour laws, the modeling of the heat contribution.. (O.M.)

  11. Deposition of gold-titanium and gold-nickel coatings on electropolished 316L stainless steel bipolar plates for proton exchange membrane fuel cells

    Yun, Young-Hoon [Department of Hydrogen and Fuel Cell Tech., Dongshin University, Daeho-dong 253, Jeonnam, Naju 520-714 (Korea)

    2010-02-15

    The effects of electropolishing and coating deposition on electrical resistance and chemical stability were studied for the stainless steel bipolar plates in proton exchange membrane fuel cell (PEMFC). A series of 316L stainless steel plates, selected as the substrate for a proton exchange membrane fuel cell (PEMFC) bipolar plate, were electropolished with a solution of H{sub 2}SO{sub 4} and H{sub 3}PO{sub 4} at temperatures ranging from 70 to 110 C. The surface regions of the two electropolished stainless steel plates were coated with gold and either a titanium or nickel layer using electron beam evaporation. The electropolished stainless steel plates coated in 2-{mu}m thick gold with a 0.1-{mu}m titanium or nickel interlayer showed remarkably smooth and uniform surface morphologies in AFM and FE-SEM images compared to the surfaces of the plates that were coated after mechanical polishing only. The electrical resistance and water contact angle of the deposited stainless steel bipolar plates are strongly dependent on the surface modification treatments (i.e., mechanical polishing versus electropolishing). ICP-MS and XPS results indicate that after electropolishing, the coating layers show excellent chemical stability after exposure to an H{sub 2}SO{sub 4} solution of pH 3. Finally, it was concluded that before coating deposition, the surface modification using electropolishing was very suitable for enhancing the electrical property and chemical stability of the stainless steel bipolar plate. (author)

  12. Study of hydroxyapatite behaviour during sintering of 316L steel

    A. Szewczyk-Nykiel; M. Nykiel

    2010-01-01

    316L stainless steel – hydroxyapatite composite biomaterials with different hydroxyapatite weight fraction in the composite wereinvestigated. Hydroxyapatite (HAp – Ca10(PO4)6(OH)2) is well known biomaterial. HAp reveals excellent chemical and biological affinitywith bony tissues. On the other hand hydroxyapatite shows low mechanical properties. The combination of very good biocompatibility of hydroxyapatite and high mechanical properties of stainless steel seems to be a good solution. In pres...

  13. Micro mechanical study of the stress corrosion cracking of the 316L austenitic stainless steel in chloride medium

    Because of the synergetic actions of a corrosive medium and mechanical loading which occur in stress corrosion cracking, modelling this kind of damage on actual industrial structures can be very challenging. However, when studying one single couple material/medium, it is possible to only consider the mechanical aspect of damaging. Establishing this sort of purely mechanical simulation implies to have extensive information on the behavior of the propagating cracks. Several types of tests are commonly used to gather experimental data on crack propagation, among which are tests conducted on fracture mechanics sample (CT, WOL, etc.) and slow strain rate tests (SSRT) on smooth tensile specimens. The first category of tests is mainly used to obtain the propagation rate of long cracks and the so-called KISCC, the mode I stress intensity factor below which no propagation can be detected for constant displacement tests. The SSRT are preferred to study initiation, mechanisms and short cracks propagation (below KISCC). However, as the analyses of the cracking of these tensile tests are essentially statistical, it is somewhat difficult to separate the behavior of a single short crack from mechanisms resulting from cracks interaction. For instance, for alloy 600 in primary water, the transition of crack growth rate from a slow to a fast regime for cracks attaining the KISCC can be interpreted as a mechanism existing for the single crack or as a result of a natural selection within the cracks population. In order to obtain experimental data on the propagation of one single short crack, we have developed SSRT on micro-notched tensile specimens. This new kind sample allows the initiation and the propagation of one single crack at notch's tip. The experiments were conducted for an austenitic stainless steel (316L) in a model chloride medium (30% MgCl2 at 117 deg C). The use of interrupted tests permits us to obtain crack propagation rate in function of the global loading. Modelling

  14. Corrosion behavior of 316 L stainless steel simulated by studying the influence of the species produced in the radiolysis in tritiated aqueous solutions

    The corrosion of 316 L stainless steel in tritiated aqueous solutions was simulated by studying the influence of species produced or present in the radiolysis in these solutions. The species studied were nitrates, fluorides, nitrites, hydrogen peroxide and components of the steel, as well as the pH. The method used was voltammetry. The corroded or passivated surfaces were examined by scanning electron microscopy and the corrosion rates were determined by measuring the electrochemical impedance. The depletion of the component elements of the stainless steel at the surface was observed by X-ray fluorescence. From our results we propose methods to limit the corrosion in an industrial tritiated water installation by controlling the pH, the oxidation-reduction potential of the water and the voltage of the installation

  15. Study of carbonitriding thermochemical treatment by plasma screen in active with pressures main austenitic stainless steels AISI 409 and AISI 316L

    The technique called Active Screen Plasma Nitriding (ASPN) is being used as an alternative once it offers several advantages with respect to conventional DC plasma. In this method, the plasma does not form directly in the sample's surface but on a screen, in such a way that undesired effects such as the edge effect is minimized. Stainless steels present not very satisfactory wearing characteristics. However, plasma carbonitriding has been used as to improve its resistance to wearing due to the formation of a fine surface layer with good properties. In this work, samples of stainless steel AISI 316L and AISI 409 were treated at pressures of 2.5 and 5 mbar. After the treatments they were characterized by microhardness, microscopy and Xray diffraction. Microscopy and hardness analysis showed satisfactory layers and toughness in those steels. (author)

  16. Laser surface texturing of 316L stainless steel in air and water: A method for increasing hydrophilicity via direct creation of microstructures

    Razi, Sepehr; Madanipour, Khosro; Mollabashi, Mahmoud

    2016-06-01

    Laser processing of materials in water contact is sometimes employed for improving the machining, cutting or welding quality. Here, we demonstrate surface patterning of stainless steel grade 316L by nano-second laser processing in air and water. Suitable adjustments of laser parameters offer a variety of surface patterns on the treated targets. Furthermore alterations of different surface features such as surface chemistry and wettability are investigated in various processing circumstances. More than surface morphology, remarkable differences are observed in the surface oxygen content and wettability of the samples treated in air and water at the same laser processing conditions. Mechanisms of the changes are discussed extensively.

  17. Corrosion and microstructural analysis data for AISI 316L and AISI 347H stainless steels after exposure to a supercritical water environment

    Ruiz, A.; Timke, T.; van de Sande, A.; Heftrich, T.; Novotny, R.; Austin, T.

    2016-01-01

    This article presents corrosion data and microstructural analysis data of austenitic stainless steels AISI 316L and AISI 347H exposed to supercritical water (25 MPa, 550 °C) with 2000 ppb of dissolved oxygen. The corrosion tests lasted a total of 1200 h but were interrupted at 600 h to allow measurements to be made. The microstructural data have been collected in the grain interior and at grain boundaries of the bulk of the materials and at the superficial oxide layer developed during the corrosion exposure. PMID:27158647

  18. Corrosion and microstructural analysis data for AISI 316L and AISI 347H stainless steels after exposure to a supercritical water environment.

    Ruiz, A; Timke, T; van de Sande, A; Heftrich, T; Novotny, R; Austin, T

    2016-06-01

    This article presents corrosion data and microstructural analysis data of austenitic stainless steels AISI 316L and AISI 347H exposed to supercritical water (25 MPa, 550 °C) with 2000 ppb of dissolved oxygen. The corrosion tests lasted a total of 1200 h but were interrupted at 600 h to allow measurements to be made. The microstructural data have been collected in the grain interior and at grain boundaries of the bulk of the materials and at the superficial oxide layer developed during the corrosion exposure. PMID:27158647

  19. Development and Characterization of 316 L Stainless Steel Coated by Melt-derived and Sol-gel derived 45S5 Bioglass for orthopedic applications

    Seyed Morteza Naghib

    2012-03-01

    Full Text Available The 316L austenitic stainless steel (SS was coated by 45S5 bioactive glass produced by melting and sol-gel techniques to increase the bioactivity and to provide a high mechanical strength for orthopedic and dental applications. The morphologies of coated specimens were investigated by scanning electron microscopy (SEM. Then, the coated specimens were immersed in simulated body fluid (SBF at 37°C for 14 days, and their microstructures after withdrawal were also investigated by SEM. All the specimens were analyzed by FTIR and XRD in order to survey the formation of hydroxyapatite layer.

  20. Caracterização microestrutural de soldas dissimilares dos aços ASTM A-508 e AISI 316L Characterization of dissimilar metal weld between low alloy steel ASTM A-508 and 316L stainless steel

    Luciana Iglésias Lourenço Lima

    2010-06-01

    Full Text Available As soldas dissimilares (dissimilar metal welds - DMWs são utilizadas em diversos segmentos da indústria. No caso específico de usinas nucleares, tais soldas são necessárias para conectar tubulações de aço inoxidável com componentes fabricados em aços baixa liga. Os materiais de adição mais utilizados neste tipo de solda são as ligas de níquel 82 e 182. Este trabalho consistiu na soldagem de uma junta dissimilar de aço baixa liga ASTM A-508 G3 e aço inoxidável austenítico AISI 316L utilizando as ligas de níquel 82 e 182 como metais de adição. A soldagem foi realizada manualmente empregando os processos de soldagem ao arco SMAW (Shielded Metal Arc Welding e GTAW (Gas Tungsten Arc Welding. Os corpos de prova foram caracterizados microestruturalmente utilizando-se microscópio óptico e microscópio eletrônico de varredura com microanálise por dispersão de energia de raios X (EDS e ensaios de microdureza Vickers. Observou-se uma microestrutura constituída de dendritas de austenita com a presença de precipitados com formas e dimensões definidas pelo aporte térmico e pela direção de soldagem. Não houve variação significativa da dureza ao longo da junta soldada, demonstrando a adequação dos parâmetros de soldagem utilizados.The dissimilar metal welds (DMWs are used in several areas of the industries. In the nuclear power plant, this weld using nickel alloy welding wires is used to connect stainless steel pipes to low alloy steel components on the reactor pressured vessels. The filler materials commonly used in this type of weld are nickel alloys 82 and 182.. In this study, dissimilar metal welds composed of low alloy steel ASTM A-508 G3, nickel alloys 82 e 182 as weld metals, and austenitic stainless steel AISI 316L were prepared by manual shielded metal arc welding (SMAW and gas tungsten arc welding techniques (GTAW. Samples were microstructural characterized by optical microscopy and scanning electron microscopy

  1. Effect of a Nickel-Iron Mixture of Weld Metal on Hydrogen Permeability at Various Temperatures in 316L Stainless Steel

    Yamazaki, Takahisa; Ikeshoji, Toshi-Taka; Suzumura, Akio; Kobayashi, Daigo; Kamono, Shumpei

    It is important to prevent from hydrogen embrittlement cracking in the heat-affected zone of welded steels. The hydrogen permeation rate for bulk nickel at high temperatures is higher than that of stainless steel, although the reverse is true at low temperatures. Low carbon stainless 316L steel, which contained 12-15% nickel, was selected as the parent material for welding. We have investigated the affect of nickel near the heat-affected zone by measuring the hydrogen permeation at various temperatures. We performed hydrogen permeation tests into the bead on plate specimens using nickel filler. A stationary hydrogen gas flux through the stainless steel specimen was measured by using an orifice and a quadrupole mass spectrometer (QMS). The partial pressure difference for hydrogen that was applied to the specimen was able to be kept constant by maintaining a constant gas flow rate through the orifice in a low- pressure room. An orifice with a 3 mm diameter maintained stationary steady-state hydrogen gas flux from the specimen at 620K, while a 1.2 mm diameter orifice maintained the steady pressure at 520 K. The hydrogen permeability, K was calculated based on the measured steady-state hydrogen gas fluxes at various temperatures. These results plotted as log K versus 1/T (reciprocal temperature) could not be interpolated linearly. The permeability values of the specimen at 570 K and 520 K were less than interpolated ones between the value at 620 K and the value at 520K of the 316 L stainless steel substrate as received.

  2. Corrosion and electrical properties of CrN- and TiN-coated 316L stainless steel used as bipolar plates for polymer electrolyte membrane fuel cells

    Cathode arc ion plating was applied to deposit CrN and TiN coating layers on stainless steel 316L (SS316L) to produce metallic bipolar plates for polymer electrolyte membrane fuel cells (PEMFCs). The interfacial contact resistance between samples and carbon paper was measured and found to be 10 and 23 mΩ ∗ cm2 for TiN and CrN coating layer respectively under 150 N cm−2 compaction forces. The corrosion properties were investigated in the operating environments of PEMFC. While TiN coating layer was dissolved in the operating environments of PEMFC, the corrosion current density of 0.1 μA cm−2 was obtained for CrN coating layer at anodic condition and its protective efficiency was revealed as 99%. This analysis indicates that the improvement may be attributed to the extremely dense coating and the synergistic function of the CrN layered structure. - Highlights: ► CrN and TiN are deposited on the surface of SS316L by cathode arc ion plating. ► Coating layers of CrN and TiN lead to high electrical conductivity. ► CrN coating layer provides higher corrosion resistance than TiN coating layer

  3. High-Temperature Oxidation Resistance of a Nanoceria Spray-Coated 316L Stainless Steel Under Short-Term Air Exposure

    Lopez, Hugo F.; Mendoza, Humberto; Church, Ben

    2013-10-01

    Nanoceria coatings using a spray method were implemented on a 316L stainless steel (SS). Coated and uncoated coupons were exposed to dry air at 1073 K to 1273 K (800 °C to 1000 °C) for short time periods (up to 24 hours) and in situ measurements of oxidation were carried out using a highly sensitive thermogravimetric balance. From the experimental outcome, activation energies were determined in both, coated and uncoated 316 SS coupons. The estimated exhibited activation energies for oxidation in the coated and uncoated conditions were 174 and 356 kJ/mol, respectively. In addition, the developed scales were significantly different. In the coated steel, the dominant oxide was an oxide spinel (Fe, Mn)3O4 and the presence of Fe2O3 was sharply reduced, particularly at 1273 K (1000 °C). In contrast, no spinel was found in the uncoated 316L SS, and Fe2O3 was always present in the scale at all the investigated oxidation temperatures. The coated steels developed a highly adherent fine-grained scale structure. Apparently, the nanoceria particles enhanced nucleation of the newly formed scale while restricting coarsening. Coarse grain structures were found in the uncoated steels with scale growth occurring at grain ledges. Moreover, the oxidation rates for the coated 316L SS were at least an order of magnitude lower than those exhibited by the steel in the uncoated condition. The reduction in oxidation rates is attributed to a shift in the oxidation mechanism from outward cation diffusion to inward oxygen diffusion.

  4. Characterization of deposits build-up on austenitic stainless steel AISI 316L exposed in high purity water system

    For the characterization of deposit layers on AISI 316L surfaces in high purity water systems, operating up to 80 deg C Moessbauer spectroscopy (ME), scanning electron microscopy (SEM), X-ray fluorescence (XRF) and X-ray photoelectron spectroscopy (XPS) are used. Austenitic steel particles were identified on the surfaces of systems not properly cleaned before start-up. Long exposition of austenitic surfaces to high purity water promotes the build-up, composed by trivalent iron and chromium oxidehydroxides and oxide. The oxidehydroxide phase is located mainly at the solid-water interface, whereas oxide phase is in direct contact with metal. Spheroid-like morphology of particles in these layers and the lack of metal attack suggest that coagulation and crystallization processes are the way for oxide production from existing dissolved species. (author)

  5. A study of TaxC1-x coatings deposited on biomedical 316L stainless steel by radio-frequency magnetron sputtering

    In this paper, TaxC1-x coatings were deposited on 316L stainless steel (316L SS) by radio-frequency (RF) magnetron sputtering at various substrate temperatures (Ts) in order to improve its corrosion resistance and hemocompatibility. XRD results indicated that Ts could significantly change the microstructure of TaxC1-x coatings. When Ts was xC1-x coatings were in amorphous condition, whereas when Ts was ≥150 deg. C, TaC phase was formed, exhibiting in the form of particulates with the crystallite sizes of about 15-25 nm (Ts = 300 deg. C). Atomic force microscope (AFM) results showed that with the increase of Ts, the root-mean-square (RMS) values of the TaxC1-x coatings decreased. The nano-indentation experiments indicated that the TaxC1-x coating deposited at 300 deg. C had a higher hardness and modulus. The scratch test results demonstrated that TaxC1-x coatings deposited above 150 deg. C exhibited good adhesion performance. Tribology tests results demonstrated that TaxC1-x coatings exhibited excellent wear resistance. The results of potentiodynamic polarization showed that the corrosion resistance of the 316L SS was improved significantly because of the deposited TaxC1-x coatings. The platelet adhesion test results indicated that the TaxC1-x coatings deposited at Ts of 150 deg. C and 300 deg. C possessed better hemocompatibility than the coating deposited at Ts of 25 deg. C. Additionally, the hemocompatibility of the TaxC1-x coating on the 316L SS was found to be influenced by its surface roughness, hydrophilicity and the surface energy.

  6. Effect of Heat Treatment on Low Temperature Toughness of Reduced Pressure Electron Beam Weld Metal of Type 316L Stainless Steel

    Nakagawa, H.; Fujii, H.; Tamura, M.

    2006-03-01

    Austenitic stainless steels are considered to be the candidate materials for liquid hydrogen vessels and the related equipments, and those welding parts that require high toughness at cryogenic temperature. The authors have found that the weld metal of Type 316L stainless steel processed by reduced pressure electron beam (RPEB) welding has high toughness at cryogenic temperature, which is considered to be due to the single-pass welding process without reheating effect accompanied by multi-pass welding process. In this work, the effect of heat treatment on low temperature toughness of the RPEB weld metal of Type 316L was investigated by Charpy impact test at 77K. The absorbed energy decreased with higher temperature and longer holding time of heat treatment. The remarkable drop in the absorbed energy was found with heat treatment at 1073K for 2 hours, which is as low as that of conventional multi-pass weld metal such as tungsten inert gas welding. The observations of fracture surface and microstructure revealed that the decrease in the absorbed energy with heat treatment resulted from the precipitation of intermetallic compounds near delta-ferrite phase.

  7. Corrosion of nickel-chromium deposit on AISI 316L stainless steel in radioactive water with and without fluoride at pH 4

    The electrochemical behavior of samples was studied using potentiodynamic techniques at low scan rates, cyclic voltammetry at high scan rates and electrochemical impedance spectroscopy. The surfaces were examined and analyzed by scanning electron microscopy and X-ray microanalysis, respectively. The results from these different methods are discussed. They show that the deposit is more easily corroded than the AISI 316L stainless steel in presence or absence of fluoride. With fluoride and at the prepassive potentials, the Warburg straight line indicates that there is ionic diffusion in the nickel-chromium deposit oxide. The equivalent circuits for the nickel-chromium are proposed and indicate that the deposit can take part in localized corrosion. The use of high scan rates shows the transient kinetics of the oxide formation in presence of fluoride. With fluoride, the pitting currents are higher for nickel-chromium deposits. The SEM photographs and polarization curves show that the Ni-Cr deposit is locally corroded by fluoride, leading to the possibility of crevice formation under this and in 316L stainless steel. (orig.)

  8. The passive oxide films growth on 316L stainless steel in borate buffer solution measured by real-time spectroscopic ellipsometry

    Highlights: • The optical properties of passive oxide films on 316L stainless steel were studied. • The thickness of the oxide films (1.5–2.6 nm) increased linearly with the potentials. • The growth of passive film followed high electric field ion conduction model. • Selective solubility of oxide induced compositional change of passive film. - Abstract: Passive film growth on 316L stainless steel was investigated in borate buffer electrolyte (pH = 9.1) by real-time spectroscopic ellipsometry (SE) and the composition was estimated by X-ray photoelectron spectroscopy (XPS). Anodic passivation of 316L SS was carried out in the potential range from 0 VSCE to 0.9 VSCE, after potentiostatic polarization for 1800s, the current density decayed from 10−2 A cm−2 to 10−6 A cm−2. The passive film thickness was simulated from Frenel and Drude reflection equations, the average complex refractive index was assumed to be N = 2.3 − j0.445. The estimated thickness increased linearly with potential from 1.5 nm at 0 V to 2.6 nm at 0.8 V. The growth of passive film followed high electric field ion conduction model. The passive film mainly contained the oxide/hydroxide of iron and chromium. The selective solubility of oxide in passive film explained the change of iron and chromium content at different potentials. Few nickel and molybdenum also contributed to the passive film with a constant content

  9. The passive oxide films growth on 316L stainless steel in borate buffer solution measured by real-time spectroscopic ellipsometry

    Xu, Haisong; Wang, Lu; Sun, Dongbai [National Center for Materials Service Safety (NCMS), University of Science and Technology Beijing, Beijing 100083 (China); Yu, Hongying, E-mail: hyyu@ustb.edu.cn [Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083 (China)

    2015-10-01

    Highlights: • The optical properties of passive oxide films on 316L stainless steel were studied. • The thickness of the oxide films (1.5–2.6 nm) increased linearly with the potentials. • The growth of passive film followed high electric field ion conduction model. • Selective solubility of oxide induced compositional change of passive film. - Abstract: Passive film growth on 316L stainless steel was investigated in borate buffer electrolyte (pH = 9.1) by real-time spectroscopic ellipsometry (SE) and the composition was estimated by X-ray photoelectron spectroscopy (XPS). Anodic passivation of 316L SS was carried out in the potential range from 0 V{sub SCE} to 0.9 V{sub SCE}, after potentiostatic polarization for 1800s, the current density decayed from 10{sup −2} A cm{sup −2} to 10{sup −6} A cm{sup −2}. The passive film thickness was simulated from Frenel and Drude reflection equations, the average complex refractive index was assumed to be N = 2.3 − j0.445. The estimated thickness increased linearly with potential from 1.5 nm at 0 V to 2.6 nm at 0.8 V. The growth of passive film followed high electric field ion conduction model. The passive film mainly contained the oxide/hydroxide of iron and chromium. The selective solubility of oxide in passive film explained the change of iron and chromium content at different potentials. Few nickel and molybdenum also contributed to the passive film with a constant content.

  10. Surface properties of nitrided layer on AISI 316L austenitic stainless steel produced by high temperature plasma nitriding in short time

    Li, Yang, E-mail: metalytu@163.com [Department of Materials Science and Engineering, Yantai University, Qingquan Road 32, Yantai 264005 (China); Wang, Zhuo [Department of Materials Science and Engineering, Yantai University, Qingquan Road 32, Yantai 264005 (China); Wang, Liang [Department of Materials Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026 (China)

    2014-04-01

    Graphical abstract: - Highlights: • The 8 μm nitrided layer was produced on the surface of AISI 316L stainless steel by plasma nitrided at high temperatures (540 °C) within 1 h. • The nitrided layer consisted of nitrogen expanded austenite and possibly a small amount of free-CrN and iron nitrides. • It could critically reduce processing time compared with low temperature nitriding. • High temperature plasma nitriding could improve pitting corrosion resistance of the substrate in 3.5% NaCl solution. - Abstract: It has generally been believed that the formation of the S phase or expanded austenite γ{sub N} with enough thickness depends on the temperature (lower than 480 °C) and duration of the process. In this work, we attempt to produce nitrogen expanded austenite layer at high temperature in short time. Nitriding of AISI 316L austenitic stainless steel was carried out at high temperatures (>520 °C) for times ranging from 5 to 120 min. The microstructures, chemical composition, the thickness and the morphology of the nitrided layer, as well as its surface hardness, were investigated using X-ray diffraction, X-ray photoelectron spectroscopy, optical microscopy, scanning electron microscopy, and microhardness tester. The corrosion properties of the untreated and nitrided samples were evaluated using anodic polarization tests in 3.5% NaCl solution. The results confirmed that nitrided layer was shown to consist of γ{sub N} and a small amount of free-CrN and iron nitrides. High temperature plasma nitriding not only increased the surface hardness but also improved the corrosion resistance of the austenitic stainless steel, and it can critically reduce processing time compared with low temperature nitriding.

  11. Low temperature plasma carburizing of AISI 316L austenitic stainless steel and AISI F51 duplex stainless steel Cementação sob plasma à baixa temperatura do aço inoxidável austenítico AISI 316L e do aço inoxidável duplex AISI F51

    Carlos Eduardo Pinedo

    2013-06-01

    Full Text Available In this work an austenitic AISI 316L and a duplex AISI F51 (EN 1.4462 stainless steel were DC-Plasma carburized at 480ºC, using CH4 as carbon carrier gas. For the austenitic AISI 316L stainless steel, low temperature plasma carburizing induced a strong carbon supersaturation in the austenitic lattice and the formation of carbon expanded austenite (γC without any precipitation of carbides. The hardness of the carburized AISI 316L steel reached a maximum of 1000 HV due to ∼13 at% carbon supersaturation and expansion of the FCC lattice. For the duplex stainless steel AISI F51, the austenitic grains transformed to carbon expanded austenite (γC, the ferritic grains transformed to carbon expanded ferrite (αC and M23C6 type carbides precipitated in the nitrided case. Hardness of the carburized case of the F51 duplex steel reached 1600 HV due to the combined effects of austenite and ferrite lattice expansion with a fine and dispersed precipitation of M23C6 carbides.O aço inoxidável austenítico AISI 316L e o aço inoxidável duplex AISI F51 (EN 1.4462 foram cementados sob plasma-DC na temperatura de 480ºC, utilizando-se CH4 como gás de arraste. A cementação sob plasma à baixa temperatura conduziu a uma elevada supersaturação do reticulado cristalino em carbono com a formação de austenita expandida(γC, sem a precipitação de carbonetos. A dureza do aço 316L, após a cementação, atingiu um valor máximo de 1000 HV, devido à supersaturação de ∼ 13 at% de carbono e à expansão do reticulado cristalino CFC. Para o aço inoxidável duplex AISI F51, os grãos de austenita se transformaram em austenita expandida pelo carbono e os grãos de ferrita se transformaram para ferrita expandida com a precipitação de carbonetos do tipo M23C6, na camada cementada. A dureza da camada cementada, no aço F51, atingiu 1600HV, devido ao efeito combinado da expansão dos reticulados cristalinos da austenita e da ferrita com a precipitação fina e

  12. Effect of Oxygen Content Upon the Microstructural and Mechanical Properties of Type 316L Austenitic Stainless Steel Manufactured by Hot Isostatic Pressing

    Cooper, Adam J.; Cooper, Norman I.; Dhers, Jean; Sherry, Andrew H.

    2016-09-01

    Although hot isostatic pressing (HIP) has been shown to demonstrate significant advances over more conventional manufacture routes, it is important to appreciate and quantify the detrimental effects of oxygen involvement during the HIP manufacture process on the microstructural and material properties of the resulting component. This paper quantifies the effects of oxygen content on the microstructure and Charpy impact properties of HIP'd austenitic stainless steel, through combination of detailed metallographic examination and mechanical testing on HIP'd Type 316L steel containing different concentrations (100 to 190 ppm) of oxygen. Micron-scale pores were visible in the microstructure of the HIP'd materials postmetallographic preparation, which result from the removal of nonmetallic oxide inclusions during metallographic preparation. The area fraction of the resulting pores is shown to correlate with the oxygen concentration which influences the Charpy impact toughness over the temperature range of 77 K to 573 K (-196 °C to 300 °C), and demonstrates the influence of oxygen involved during the HIP manufacture process on Charpy toughness. The same test procedures and microstructural analyses were performed on commercially available forged 316L. This showed comparatively fewer inclusions and exhibited higher Charpy impact toughness over the tested temperature range.

  13. Possible mechanism for formation of a ferromagnetic phase in stainless steel Fe/Cr/Ni/Mo, 17/11/8/2 (Type 316L) irradiated in reactor

    Results of experiments are summarized indicating that the occurrence of ferromagnetism in 316L steels is at least in part explained by the conversion of austenite to ferrite, induced by hydrogen resulting from nuclear reactions in the Rapsodie reactor

  14. In-vitro bioactivity, biocorrosion and antibacterial activity of silicon integrated hydroxyapatite/chitosan composite coating on 316 L stainless steel implants.

    Sutha, S; Kavitha, K; Karunakaran, G; Rajendran, V

    2013-10-01

    A simple and effective ultrasonication method was applied for the preparation of 0, 0.4, 0.8, 1.0 and 1.6 wt% silicon substituted hydroxyapatite (HAp) (SH). The Ca/P ratio of the synthesised SH nanoparticles were in the range of 1.58-1.70. Morphological changes were noticed in HAp with respect to the amount of Si from 0 to 1.6 wt%. The morphology of the particles changed from spherical shape to rod-like morphology with respect to the amount of Si which was confirmed using transmission electron microscopy. X-ray diffraction studies confirm the formation of phase pure SH nanoparticles without any secondary phase. Chitosan (CTS) blended SH nanocomposites coating on surgical grade 316 L stainless steel (316 L SS) implant was made by spin coating technique. The surface of the coated implant was characterised using scanning electron microscopy which confirms the uniform coating without cracks and pores. The increased corrosion resistance of the 1.6 wt% of SH/CTS-coated SS implant in the simulated body fluid (SBF) indicates the long-term biostability of SH composite-coated ceramics in vitro than the 0 wt% SH/CTS. The testing of SH/CTS nanocomposites with gram-positive and gram-negative bacterial strains confirms that the antibacterial ability improves with the higher substitution of Si. In addition, formation of bone-like apatite layer on the SH/CTS-coated implant in SBF was studied through SEM analysis and it confirms the ability to increase the HAp formation on the surface of 1.0 wt% SH/CTS-coated 316 L SS implant. PMID:23910313

  15. Effects of pH value on characteristics of oxide films on 316L stainless steel in Zn-injected borated and lithiated high temperature water

    Highlights: •Fe oxides increase and Cr oxides decrease in oxide films as pH increases. •Corrosion rate of 316L SS decreases with joint Zn injection and elevated pH value. •Solubilities of oxides at 573.15 K are calculated using thermodynamic approach. •A modified duplex-layer model is proposed to describe the evolvement of oxide films. •An optimized water chemistry with low Zn and elevated pH is recommended. -- Abstract: The effects of pH values from 6.9 to 7.4 on oxide films for 316L stainless steel in borated and lithiated high temperature water at 573.15 K without and with Zn injection were examined by in situ potentiodynamic polarization curves, electrochemical impedance spectra and ex situ X-ray photoelectron spectroscopy (XPS) analysis. The composition of oxide films appears slightly pH dependent: rich in chromites and ferrites at pH = 6.9 and pH = 7.4, respectively. The corrosion rate decreases significantly in the high pH value solution with Zn injection due to the formation of compact oxide films. The solubilities and structural model of oxides are proposed and discussed

  16. Electrochemical behavior of nanocrystalline Ta/TaN multilayer on 316L stainless steel: Novel bipolar plates for proton exchange membrane fuel-cells

    Alishahi, M.; Mahboubi, F.; Mousavi Khoie, S. M.; Aparicio, M.; Hübner, R.; Soldera, F.; Gago, R.

    2016-08-01

    Insufficient corrosion resistance and surface conductivity are two main issues that plague large-scale application of stainless steel (SS) bipolar plates in proton exchange membrane fuel cells (PEMFCs). This study explores the use of nanocrystalline Ta/TaN multilayer coatings to improve the electrical and electrochemical performance of polished 316L SS bipolar plates. The multilayer coatings have been deposited by (reactive) magnetron sputtering and characterized by X-ray diffraction, field-emission scanning electron microscopy and transmission electron microscopy. The electrochemical behavior of bare and coated substrates has been evaluated in simulated PEMFC working environments by potentiodynamic and potentiostatic polarization tests at ambient temperature and 80 °C. The results show that the Ta/TaN multilayer coating increases the polarization resistance of 316L SS by about 30 and 104 times at ambient and elevated temperatures, respectively. The interfacial contact resistance (ICR) shows a low value of 12 mΩ × cm2 before the potentiostatic test. This ICR is significantly lower than for the bare substrate and remains mostly unchanged after potentiostatic polarization for 14 h. In addition, the high contact angle (92°) with water for coated substrates indicates a hydrophobic character, which can improve the water management within the cell in PEMFC stacks.

  17. Corrosion Behaviour Of Sintered AISI 316L Stainless Steel Modified With Boron-Rich Master Alloy In 0.5M NaCl Water Solution

    Szewczyk-Nykiel A.

    2015-09-01

    Full Text Available Present study describes results of research conducted on sinters manufactured from a powdered AISI 316L austenitic stainless steel modified with an addition of boron-rich master alloy. The main aim was to study impact of the master alloy addition on a corrosion resistance of sinters in 0.5M water solution of NaCl. In order to achieve it, a potentiodynamic method was used. Corrosion tests results were also supplemented with a microstructures of near-surface areas. Scanning electron microscope pictures of a corroded surfaces previously exposed to the corrosive environment were taken and compared. It was successful to increase the corrosion resistance of AISI 316L sinters modified with master alloy. It was also successful in particular samples to obtain a densified superficial layer not only on the sinters sintered in the hydrogen but also on sinters sintered in the vacuum. No linear correlation between presence of the densified superficial layer and the enhanced corrosion resistance was noticed.

  18. Study of hydroxyapatite behaviour during sintering of 316L steel

    A. Szewczyk-Nykiel

    2010-07-01

    Full Text Available 316L stainless steel – hydroxyapatite composite biomaterials with different hydroxyapatite weight fraction in the composite wereinvestigated. Hydroxyapatite (HAp – Ca10(PO46(OH2 is well known biomaterial. HAp reveals excellent chemical and biological affinitywith bony tissues. On the other hand hydroxyapatite shows low mechanical properties. The combination of very good biocompatibility of hydroxyapatite and high mechanical properties of stainless steel seems to be a good solution. In presented research natural originhydroxyapatite and 316L austenitic stainless steel were used. In this work, metal-ceramics composites were fabricated by the powdermetallurgy technology (involving pressing and sintering process. Sintering was carried out at 1250oC in hydrogen atmosphere. Thedensity, porosity and hardness were investigated. Metallographic microscope and SEM were carried out in order to investigate themicrostructure. The horizontal NETZSCH DIL 402E dilatometer was used to evaluate the dimensional changes and phenomena occurringduring sintering. The research displayed that physical properties of sintered 316L-HAp composites decrease with increase ofhydroxyapatite content. Microstructure of investigated composites consists of austenitic and probably inclusions of hydroxyapatite andheterogeneous eutectic occurring on the grain boundaries. It was shown that amount of hydroxyapatite in the powder mixtures influencethe dimensional changes occurring during sintering.

  19. Corrosion behavior of TiN, TiAlN, TiAlSiN-coated 316L stainless steel in simulated proton exchange membrane fuel cell environment

    Nam, Nguyen Dang; Vaka, Mahesh; Tran Hung, Nguyen

    2014-12-01

    To gain high hardness, good thermal stability and corrosion resistance, multicomponent TiAlSiN coating has been developed using different deposition methods. In this study, the influence of Al and Si on the electrochemical properties of TiN-coated 316L stainless steel as bipolar plate (BP) materials has been investigated in simulated proton exchange membrane fuel cell environment. The deposited TiN, TiAlN and TiAlSiN possess high hardness of 23.9, 31.7, 35.0 GPa, respectively. The coating performance of the TiN coating is enhanced by Al and Si addition due to lower corrosion current density and higher Rcoating and Rct values. This result could be attributed to the formation of crystalline-refined TiN(200), which improves the surface roughness, surface resistance, corrosion performance, and decreased passive current density.

  20. The behaviour of diffusion and permeation of tritium through 316L stainless steel with coating of TiC and TiN + TiC

    The diffusion and permeation behaviour of tritium through the films of TiC and TiN + TiC coated on surface of 316L stainless steel by chemical vapour deposition has been described. The permeability of tritium through these two kinds of films is low and is five to six orders of magnitude lower than that in bulk at 200-500deg C. The films have good compatibility with the bulk, high resistance to thermal shock and irradiation. They can be used as clad materials of the tritium breeder in the breeder irradiation container in a fusion reactor tritium technology study and as candidate materials of the first wall in a fusion reactor study. (orig.)

  1. Comparative study: sensitization development in hot-isostatic-pressed cast and wrought structures type 316L(N)-IG stainless steel under isothermal heat treatment

    This work focuses on the relative sensitization resistance of type 316L(N)-IG stainless steel (SS). Cast and wrought structures SS after solid hot-isostatic pressing (solid-HIP) operation are investigated under isothermal heat treatment. Wrought SS/SS solid-HIP joint sensitization is taken also into consideration. These experiments employed the quantitative double-loop electrochemical potentiokinetic reactivation (DL-EPR) and oxalic acid etch screening tests. A copper-copper sulfate-16% sulfuric acid test applied for strongly sensitized cast SS to reinforce the results were received by the methods mentioned above. Results from all employed methods correlate well. Sensitization was detected neither in cast nor in wrought SS in as-HIPed condition excluding wrought SS/SS solid-HIP joints. Significant difference between sensitization development rates was determined in cast and wrought SS structures when annealing at 675 deg. C for a duration up to 50 h

  2. Electrochemical polishing of 316L stainless steel stent%316L不锈钢血管支架材料的电化学抛光工艺

    季士委; 黄楠; 万国江; 王凯

    2011-01-01

    用直流电化学抛光技术,研究了316L不锈钢血管支架材料电化学抛光液中各成分的作用及操作条件对抛光质量的影响.通过优化,用实验得到的工艺能很快获得光亮平整的抛光表面.%Using direct current-electropolishing technique, the present study investigated the function of components and effects of operating conditions on polishing quality direct current-electropolishing of 316L stainless steel stent materials. Smooth surface was obtained quickly using this technique.

  3. The influence of temperature on low cycle fatigue behavior of prior cold worked 316L stainless steel (II) : life prediction and failure mechanism

    Tensile and low cycle fatigue tests on prior cold worked 316L stainless steel were carried out at various temperatures from room temperature to 650 deg. C. Fatigue resistance was decreased with increasing temperature and decreasing strain rate. Cyclic plastic deformation, creep, oxidation and interactions with each other are thought to be responsible for the reduction in fatigue resistance. Currently favored life prediction models were examined and it was found that it is important to select a proper life prediction parameter since stress-strain relation strongly depends on temperature. A phenomenological life prediction model was proposed to account for the influence of temperature on fatigue life and assessed by comparing with experimental result. LCF failure mechanism was investigated by observing fracture surfaces of LCF failed specimens with SEM

  4. Correlation between distribution of nitrogen atoms implanted at high energy and high dose and nanohardness measurements into 316L stainless steel

    Ion implantation causes changes in surface composition or morphology of solids which yield to a modification of physical and particularly mechanical properties, such as hardness, Young's modulus and elastic recovery. The purpose of this study is to focus on the effects occurring during the annealing process of stainless steel 316L samples implanted with high energy (1 MeV) nitrogen ions at high dose (1018 N cm-2). From nuclear reaction analysis (NRA) measurements, the unusual shape of N distribution is discussed in terms of diffusion and precipitation mechanisms and correlated with the physical and chemical modifications observed with glancing incidence X-ray diffraction (GIXRD). Finally, from nanoindentation measurements, the real hardness profile is extracted using the Bueckle's model eliminating the substrate effect. For each specimen, we show that the hardness is the sum of two terms, the first being related to nitrogen concentration and the second to various strengthening mechanisms depending on temperature

  5. Correlation between distribution of nitrogen atoms implanted at high energy and high dose and nanohardness measurements into 316L stainless steel

    Pelletier, H.; Mille, P.; Muller, D.; Stoquert, J. P.; Cornet, A.; Grob, J. J.

    2001-05-01

    Ion implantation causes changes in surface composition or morphology of solids which yield to a modification of physical and particularly mechanical properties, such as hardness, Young's modulus and elastic recovery. The purpose of this study is to focus on the effects occurring during the annealing process of stainless steel 316L samples implanted with high energy (1 MeV) nitrogen ions at high dose (10 18 N cm -2). From nuclear reaction analysis (NRA) measurements, the unusual shape of N distribution is discussed in terms of diffusion and precipitation mechanisms and correlated with the physical and chemical modifications observed with glancing incidence X-ray diffraction (GIXRD). Finally, from nanoindentation measurements, the real hardness profile is extracted using the Bückle's model eliminating the substrate effect. For each specimen, we show that the hardness is the sum of two terms, the first being related to nitrogen concentration and the second to various strengthening mechanisms depending on temperature.

  6. Hydrogen permeability, diffusivity, and solubility of SUS 316L stainless steel in the temperature range 400 to 800 .deg. C for fusion reactor applications

    Tritium permeation is one of the critical issues for the economy and safety of fusion power plants. As an initial step in tritium permeation research for fusion reactor applications, experiments were initiated by using hydrogen as a tritium substitute. An experimental system for hydrogen permeation and related behaviors in solid materials was designed and constructed. A continuous flow method was adopted with a capacity for high temperatures up to ∼1,000 .deg. C under ultra-high vacuums of ∼10-7 Pa. The hydrogen permeation behavior in SUS 316L stainless steel was investigated in the temperature range from 400 .deg. C to 800 .deg. C. As a result, the permeability, diffusivity and solubility of hydrogen were determined. The results were compared with the previously existing reference data. Changes in the sample's surface morphology after the hydrogen permeation experiment are also addressed.

  7. Influence of the Amount of Master Alloy on the Properties of Austenitic Stainless Steel AISI 316L Powder Sintered in Hydrogen

    Mateusz Skaloń

    2012-01-01

    Full Text Available AISI 316L austenitic stainless steel powder was modified with four different amounts of boron (0.1; 0.2; 0.3; 0.4 of wt. % in the form of MasterAlloy micro-powder, and was sintered in a pure dry hydrogen atmosphere in order to obtain high density sintered samples characterized by a thickened non-porous surface layer. We investigated the influence of the amount of boron on: density, hardness, grain microhardness, porosity, microstructure and surface quality. The study revealed that it is possible by a conventional compacting and sintering process to obtain near full-density sintered samples with a non-porous superficial layer without boride precipitations.

  8. Electropolishing of Re-melted SLM Stainless Steel 316L Parts Using Deep Eutectic Solvents: 3 × 3 Full Factorial Design

    Alrbaey, K.; Wimpenny, D. I.; Al-Barzinjy, A. A.; Moroz, A.

    2016-07-01

    This three-level three-factor full factorial study describes the effects of electropolishing using deep eutectic solvents on the surface roughness of re-melted 316L stainless steel samples produced by the selective laser melting (SLM) powder bed fusion additive manufacturing method. An improvement in the surface finish of re-melted stainless steel 316L parts was achieved by optimizing the processing parameters for a relatively environmentally friendly (`green') electropolishing process using a Choline Chloride ionic electrolyte. The results show that further improvement of the response value-average surface roughness ( Ra) can be obtained by electropolishing after re-melting to yield a 75% improvement compared to the as-built Ra. The best Ra value was less than 0.5 μm, obtained with a potential of 4 V, maintained for 30 min at 40 °C. Electropolishing has been shown to be effective at removing the residual oxide film formed during the re-melting process. The material dissolution during the process is not homogenous and is directed preferentially toward the iron and nickel, leaving the surface rich in chromium with potentially enhanced properties. The re-melted and polished surface of the samples gave an approximately 20% improvement in fatigue life at low stresses (approximately 570 MPa). The results of the study demonstrate that a combination of re-melting and electropolishing provides a flexible method for surface texture improvement which is capable of delivering a significant improvement in surface finish while holding the dimensional accuracy of parts within an acceptable range.

  9. Electropolishing of Re-melted SLM Stainless Steel 316L Parts Using Deep Eutectic Solvents: 3 × 3 Full Factorial Design

    Alrbaey, K.; Wimpenny, D. I.; Al-Barzinjy, A. A.; Moroz, A.

    2016-05-01

    This three-level three-factor full factorial study describes the effects of electropolishing using deep eutectic solvents on the surface roughness of re-melted 316L stainless steel samples produced by the selective laser melting (SLM) powder bed fusion additive manufacturing method. An improvement in the surface finish of re-melted stainless steel 316L parts was achieved by optimizing the processing parameters for a relatively environmentally friendly (`green') electropolishing process using a Choline Chloride ionic electrolyte. The results show that further improvement of the response value-average surface roughness (Ra) can be obtained by electropolishing after re-melting to yield a 75% improvement compared to the as-built Ra. The best Ra value was less than 0.5 μm, obtained with a potential of 4 V, maintained for 30 min at 40 °C. Electropolishing has been shown to be effective at removing the residual oxide film formed during the re-melting process. The material dissolution during the process is not homogenous and is directed preferentially toward the iron and nickel, leaving the surface rich in chromium with potentially enhanced properties. The re-melted and polished surface of the samples gave an approximately 20% improvement in fatigue life at low stresses (approximately 570 MPa). The results of the study demonstrate that a combination of re-melting and electropolishing provides a flexible method for surface texture improvement which is capable of delivering a significant improvement in surface finish while holding the dimensional accuracy of parts within an acceptable range.

  10. Microstructure and local texture evolution by plasma nitriding in a 316L austenitic stainless steel and consequences on its fatigue durability

    The present study concerns the surface and mechanical properties induced by specific low temperature (∼400 C) plasma nitriding of an AISI 316L austenitic stainless steel largely used for structural component in nuclear and chemical industries. It focuses especially on its influence on the fatigue durability. The great advantages of this plasma nitriding process are to produce thick nitrided layers with a high concentration of nitrogen atoms in solid solution into the material and to preserve the stainless character of the substrate. As a consequence a new phase named expanded austenite or γN phase is formed and the lattice expansion associated with the high supersaturation of interstitial nitrogen atoms results in residual compressive stresses at the surface that exceed 2 GPa. The surface is then strongly modified as a result of complex effects including some crystallographic plane rotation, plasticity and damage in some grains depending on their orientation. The considerable increase of hardness and wear resistance produced by plasma nitriding of austenitic stainless steels is now well documented but there are practically no data on the influence on fatigue properties. Series of fatigue tests in air at room temperature carried out in the low cycle fatigue range show a significant improvement of the fatigue life. The results are discussed especially taking into account the compressive residual stresses induced by the nitrided layer. (authors)

  11. Localized corrosion of 316L stainless steel in tritiated water containing aggressive radiolytic and decomposition products at different temperatures

    Tritium is one of the more important radionuclides used in nuclear industry as plutonium and uranium. The tritium in tritiated water always causes difficulties in nuclear installations, including equipment corrosion. Moreover, with tritiated water there are, in addition, the radiolytic and decomposition products such as hydrogen peroxide formed during decay, chloride ions produced by degradation of organic seals and oils used for tightness and pumping, and acid pH produced by excitation of nitrogen in air by the β- particle. Highly concentrated tritiated water releases energy and its temperature is about 80 deg. C, moreover heating is necessary in the tritium processes. These conditions highly facilitate the corrosion of stainless steels by pitting and crevice attack. Corrosion tests were performed by electrochemical analysis methods and by visual inspection of the surface of stainless steel

  12. Localized corrosion of 316L stainless steel in tritiated water containing aggressive radiolytic and decomposition products at different temperatures

    Bellanger, G.

    2008-02-01

    Tritium is one of the more important radionuclides used in nuclear industry as plutonium and uranium. The tritium in tritiated water always causes difficulties in nuclear installations, including equipment corrosion. Moreover, with tritiated water there are, in addition, the radiolytic and decomposition products such as hydrogen peroxide formed during decay, chloride ions produced by degradation of organic seals and oils used for tightness and pumping, and acid pH produced by excitation of nitrogen in air by the β - particle. Highly concentrated tritiated water releases energy and its temperature is about 80 °C, moreover heating is necessary in the tritium processes. These conditions highly facilitate the corrosion of stainless steels by pitting and crevice attack. Corrosion tests were performed by electrochemical analysis methods and by visual inspection of the surface of stainless steel.

  13. Narrow Gap Laser Welding of 316L Stainless Steel for Potential Application in the Manufacture of Thick Section Nuclear Components

    Elmesalamy, Ahmed

    2013-01-01

    Thick-section austenitic stainless steels have widespread industrial applications, especially in nuclear power plants. The joining methods used in the nuclear industry are primarily based on arc welding processes. However, it has recently been shown that the Narrow Gap Laser Welding (NGLW) technique can be used to join materials with thicknesses that are well beyond the capabilities of single pass autogenous laser welding. The heat input for NGLW is much lower than that of arc welding, as are...

  14. The mechanical properties of 316L/304L stainless steels, Alloy 718 and Mod 9Cr-1Mo after irradiation in a spallation environment

    Maloy, S. A.; James, M. R.; Willcutt, G.; Sommer, W. F.; Sokolov, M.; Snead, L. L.; Hamilton, M. L.; Garner, F.

    2001-07-01

    The Accelerator Production of Tritium (APT) project proposes to use a 1.0 GeV, 100 mA proton beam to produce neutrons via spallation reactions in a tungsten target. The neutrons are multiplied and moderated in a lead/aluminum/water blanket and then captured in 3He to form tritium. The materials in the target and blanket region are exposed to protons and neutrons with energies into the GeV range. The effect of irradiation on the tensile and fracture toughness properties of candidate APT materials, 316L and 304L stainless steel (annealed), modified (Mod) 9Cr-1Mo steel, and Alloy 718 (precipitation hardened), was measured on tensile and fracture toughness specimens irradiated at the Los Alamos Neutron Science Center accelerator, which operates at an energy of 800 MeV and a current of 1 mA. The irradiation temperatures ranged from 50°C to 164°C, prototypic of those expected in the APT target/blanket. The maximum achieved proton fluence was 4.5×10 21 p/ cm2 for the materials in the center of the beam. This maximum exposure translates to a dpa of 12 and the generation of 10 000 appm H and 1000 appm He for the Type 304L stainless steel tensile specimens. Specimens were tested at the irradiation temperature of 50-164°C. Less than 1 dpa of exposure reduced the uniform elongation of the Alloy 718 (precipitation hardened) and Mod 9Cr-1Mo to less than 2%. This same dose reduced the fracture toughness by 50%. Approximately 4 dpa of exposure was required to reduce the uniform elongation of the austenitic stainless steels (304L and 316L) to less than 2%. The yield stress of the austenitic steels increased to more than twice its non-irradiated value after less than 1 dpa. The fracture toughness reduced significantly by 4 dpa to ˜100 MPa m 1/2. These results are discussed and compared with results of similar materials irradiated in fission reactor environments.

  15. Interfacial characterization of SLM parts in multi-material processing: Metallurgical diffusion between 316L stainless steel and C18400 copper alloy

    Multi-material processing in selective laser melting using a novel approach, by the separation of two different materials within a single dispensing coating system was investigated. 316L stainless steel and UNS C18400 Cu alloy multi-material samples were produced using selective laser melting and their interfacial characteristics were analyzed using focused ion beam, scanning electron microscopy, energy dispersive spectroscopy and electron back scattered diffraction techniques. A substantial amount of Fe and Cu element diffusion was observed at the bond interface suggesting good metallurgical bonding. Quantitative evidence of good bonding at the interface was also obtained from the tensile tests where the fracture was initiated at the copper region. Nevertheless, the tensile strength of steel/Cu SLM parts was evaluated to be 310 ± 18 MPa and the variation in microhardness values was found to be gradual along the bonding interface from the steel region (256 ± 7 HV0.1) to the copper region (72 ± 3 HV0.1). - Highlights: • Multi-material processing was successfully implemented and demonstrated in SLM. • Bi-metallic laminates of steel/Cu were successfully produced with the SLM process. • A substantial amount of Fe and Cu diffusion was observed at the bond interface. • Good metallurgical bonding was obtained at the interface of the steel/Cu laminates. • Highly refined microstructure was obtained due to rapid solidification in SLM

  16. Interfacial characterization of SLM parts in multi-material processing: Metallurgical diffusion between 316L stainless steel and C18400 copper alloy

    Liu, Z.H., E-mail: AZHLIU@ntu.edu.sg; Zhang, D.Q., E-mail: ZHANGDQ@ntu.edu.sg; Sing, S.L., E-mail: SING0011@e.ntu.edu.sg; Chua, C.K., E-mail: MCKCHUA@ntu.edu.sg; Loh, L.E., E-mail: LELOH1@e.ntu.edu.sg

    2014-08-15

    Multi-material processing in selective laser melting using a novel approach, by the separation of two different materials within a single dispensing coating system was investigated. 316L stainless steel and UNS C18400 Cu alloy multi-material samples were produced using selective laser melting and their interfacial characteristics were analyzed using focused ion beam, scanning electron microscopy, energy dispersive spectroscopy and electron back scattered diffraction techniques. A substantial amount of Fe and Cu element diffusion was observed at the bond interface suggesting good metallurgical bonding. Quantitative evidence of good bonding at the interface was also obtained from the tensile tests where the fracture was initiated at the copper region. Nevertheless, the tensile strength of steel/Cu SLM parts was evaluated to be 310 ± 18 MPa and the variation in microhardness values was found to be gradual along the bonding interface from the steel region (256 ± 7 HV{sub 0.1}) to the copper region (72 ± 3 HV{sub 0.1}). - Highlights: • Multi-material processing was successfully implemented and demonstrated in SLM. • Bi-metallic laminates of steel/Cu were successfully produced with the SLM process. • A substantial amount of Fe and Cu diffusion was observed at the bond interface. • Good metallurgical bonding was obtained at the interface of the steel/Cu laminates. • Highly refined microstructure was obtained due to rapid solidification in SLM.

  17. Effect of nitrogen alloying on the semiconducting properties of passive films and metastable pitting susceptibility of 316L and 316LN stainless steels

    The beneficial effect of nitrogen alloying on the corrosion resistance of stainless steels has been attributed to the increase of the local pH within the active sites and the enhanced repassivation of the metastable pits. In order to better understand the effect of nitrogen alloying, in situ capacitance measurements and potentiostatic polarization were conducted for 316L and 316LN stainless steels with different nitrogen contents in deaerated 0.1 M Na2SO4 and 0.1 M NaCl aqueous solutions. The Mott-Schottky plots obtained from the in situ capacitance measurements offered information on the donor concentration and the thickness of the space charge region within the passive film. The metastable pitting susceptibility was investigated by performing potentiostatic polarization tests. The results showed that nitrogen alloying decreased the donor densities and the number of metastable pits, while the absorption of chloride ions on the passive film had the opposite effect. Auger electron spectroscopy (AES) analysis demonstrated that nitrogen alloying enriched the chromium within the passive film. The relationship between the semiconducting properties of the passive film and the metastable pitting susceptibility was elucidated.

  18. Electrophoretic Deposition of Chitosan/h-BN and Chitosan/h-BN/TiO2 Composite Coatings on Stainless Steel (316L Substrates

    Namir S. Raddaha

    2014-03-01

    Full Text Available This article presents the results of an experimental investigation designed to deposit chitosan/hexagonal boron nitride (h-BN and chitosan/h-BN/titania (TiO2 composites on SS316L substrates using electrophoretic deposition (EPD for potential antibacterial applications. The influence of EPD parameters (voltage and deposition time and relative concentrations of chitosan, h-BN and TiO2 in suspension on deposition yield was studied. The composition and structure of deposited coatings were investigated by FTIR, XRD and SEM. It was observed that h-BN and TiO2 particles were dispersed in the chitosan matrix through simultaneous deposition. The adhesion between the electrophoretic coatings and the stainless steel substrates was tested by using tape test technique, and the results showed that the adhesion strength corresponded to 3B and 4B classes. Corrosion resistance was evaluated by electrochemical polarization curves, indicating enhanced corrosion resistance of the chitosan/h-BN/TiO2 and chitosan/h-BN coatings compared to the bare stainless steel substrate. In order to investigate the in-vitro inorganic bioactivity, coatings were immersed in simulated body fluid (SBF for 28 days. FTIR and XRD results showed no formation of hydroxyapatite on the surface of chitosan/h-BN/TiO2 and chitosan/h-BN coatings, which are therefore non bioactive but potentially useful as antibacterial coatings.

  19. Influence of Zn on the oxide layer on AISI 316L(NG) stainless steel in simulated pressurised water reactor coolant

    The oxidation of AISI 316L(NG) stainless steel in simulated pressurised water reactor (PWR) coolant with or without addition of 1 ppm Zn at 280 deg. C for up to 96 h has been characterised in situ by electrochemical impedance spectroscopy (EIS), both at the corrosion potential and under anodic polarisation up to 0.5 V vs. the reversible hydrogen electrode (RHE). Additional tests were performed in simulated PWR coolant with the addition of 0.01 M Na2B4O7 to exclude the effect of pH excursions probably due to Zn hydrolysis reactions. The thickness and in-depth composition of the oxide films formed at open circuit and at 0.5 V vs. RHE in the investigated electrolytes have been estimated from X-ray photoelectron spectroscopy (XPS) depth profiles. The kinetic and transport parameters characterising the oxide layer growth have been estimated using a calculational procedure based on the mixed conduction model for oxide films. Successful simulations of both the EIS and XPS data have been obtained. The parameter estimates are discussed in terms of the effect of Zn on the oxide layers on stainless steel in PWR conditions

  20. Characterization of the mechanism of bi-layer oxide growth on austenitic stainless steels 316L and D9 in oxygen-controlled Lead-Bismuth Eutectic (LBE)

    Koury, Daniel

    Lead Bismuth Eutectic (LBE) has been proposed for use in programs for accelerator-based and reactor-based transmutation of nuclear waste. LBE is a leading candidate material as a spallation target (in accelerator-based transmutation) and an option for the sub-critical blanket coolant. The corrosion by LBE of annealed and cold-rolled 316L stainless steels, and the modified austenitic stainless steel alloy D9, has been studied using Scanning Electron Microscopy (SEM), Electron Probe Micro Analysis (EPMA), and X-ray Photoelectron Spectroscopy (XPS). Exposed and unexposed samples have been compared and the differences studied. Small amounts of surface contamination are present on the samples and have been removed by ion-beam sputtering. The unexposed samples reveal typical stainless steel characteristics: a chromium oxide passivation surface layer and metallic iron and nickel. The exposed samples show protective iron oxide and chromium oxide growths on the surface. Oxygen takes many forms on the exposed samples, including oxides of iron and chromium, carbonates, and organic acids from subsequent handling after exposure to LBE. Different types of surface preparation have lead to considerably different modes of corrosion. The cold-rold samples were resistant to thick oxide growth, having only a thin (primary diffusant, as there are fewer fast-diffusion pathways and therefore an amount of chromium insufficient to maintain a chromium based oxide. Even the thick oxide, however, can prolong the life of a steel in LBE, provided proper oxygen control. The mechanisms responsible for the differences in the oxidation behaviors are discussed.

  1. Study on prevention of chloride induced stress corrosion cracking for type 304L, 316L stainless steel canister

    For the practical application of multi-purpose canisters (MPCs), there are technical issues for containment function to prevent the initiation of chloride induced stress corrosion cracking (SCC). Therefore, the SCC test were conducted to clarify the critical salt density to initiate SCC and the effect which the reduction treatment of weld residual stress influents to prevent SCC. (1) The minimum threshold of salt for SCC initiation could be 4 g/cm2 as Cl under the condition of the temperatures of 50degC and the relative humidity of 35% with the 316 type L-grade austenite stainless steel used over 5000 hr. However, the threshold could be reduced to 2 g/m2 as Cl under the actual equipment surface condition corresponding to the conventional stainless steel MPC. (2) An accelerated corrosion test was performed using mock-up MPC made of Type 304L, in which the salt concentration on the surface of weld lines was kept to 4 g/cm2 as Cl. As the result of the test, SCC on the surface-treated weld line by ZSP didn't occur because of the compressed stress induced appropriately, therefore the validity of surface treatment techniques was confirmed. (author)

  2. Residual stress measurement of a 316l stainless steel bead-on-plate specimen utilising the contour method

    This paper describes the mapping of transverse residual stresses within a single bead-on-plate round robin test specimen. The purpose of these measurements was to quantify the magnitude and shape of the residual stress field arising from a single weld bead laid down on an austenitic stainless steel plate. Measurements were made through the thickness of the specimen using the contour method. The contour method is a new destructive, stress relaxation method allowing the full field residual stress to be measured. Results from these measurements show transverse tensile residual stresses over 150 MPa below the plate surface along the length of the weld bead with peak stresses of up to 210 MPa close to the weld stop position. Finally, as these measurements are insensitive to local microstructure variations within the specimen (i.e. texture or variations in lattice parameter), they are useful in helping to validate diffraction based residual stress measurements made within this round robin measurement program

  3. Magnetic and mechanical properties of Cu (75 wt%) - 316L grade stainless steels synthesized by ball milling and annealing

    Mondal, Bholanath; Chabri, Sumit; Sardar, Gargi; Bhowmik, Nandagopal; Sinha, Arijit; Chattopadhyay, Partha Protim

    2015-05-01

    Elemental powders of Cu (75 wt%) and 316-stainless steel (25 wt%) has been subjected to ball milling upto 70 h followed by isothermal annealing at the temperature range of 350-750 °C for 1 h to investigate the microstructural evolution along with magnetic and mechanical properties. After 40 h of milling, the bcc Fe is almost dissolved in the solid solution of Cu but no significant change has been observed in the XRD pattern after 70 h of milling, Annealing of the alloy has resulted in precipitation of nanocrystalline bcc-Fe in Cu which triggers the soft ferromagnetic properties. The extensive mechanical characterization has been done at the microstructural scale by nanoindentation technique which demonstrates a hardening behavior of the compacted and annealed alloys due to possible precipitation of nanocrystalline bcc-Fe in Cu.

  4. Work hardening, sensitization, and potential effects on the susceptibility to crack initiation of 316L stainless steel in BWR environment

    After CBB testing, the structure and composition of surface oxide films on austenitic stainless steels in high-temperature water were examined by changing the metallurgical conditions in alloys and the concentration of dissolved oxygen and dissolved hydrogen in high-temperature water. SEM, X-ray diffraction, and Auger electron spectroscopy revealed that the water chemistry played a major role in the formation of the oxide film and in the crack initiation. The oxide film is composed of an outer layer formed with hematite and magnetite and an inner layer corresponding to the transition oxide/substrate, which is Cr-rich and Ni-rich. Dissolved hydrogen conditions reduced the thickness of the oxide and increased its nickel content. Dissolved oxygen conditions promoted the formation of numerous and bigger cracks compared with dissolved hydrogen conditions. Environmental conditions are preponderant compared with metallurgical conditions. (author)

  5. Effects of environment and hold times on high temperature low cycle fatigue behaviour of 316L stainless steel

    Previous investigations of high temperature low cycle fatigue (LCF) of austenitic stainless steels have shown that a decrease in the number of cycles to fracture (Nsub(f)) is produced by an increase in test temperature, and that the incorporation of a tensile hold time (tsub(h)) into a continuous elevated temperature fatigue cycle may substantially reduce Nsub(f). In this study some critical experiments including a comparison of fatigue lives determined in air and in vacuum were conducted in order to answer this question. Moreover, since it is generally recognized that creep damage occurring when hold times are introduced into continuous fatigue may be coincident with a transition to intergranular failure, intergranular damage was measured using quantitative metallography. This part of the investigation is an attempt to use microstructural assessment of damage as a basis for modelling LCF behaviour by its incorporation into a predictive life assessment procedure in a manner already suggested for pure creep. (author)

  6. Cosintering of Powder Injection Molding Parts Made from Ultrafine WC-Co and 316L Stainless Steel Powders for Fabrication of Novel Composite Structures

    Simchi, A.; Petzoldt, F.

    2010-01-01

    Sintering response and phase formation during sintering of WC-Co/316L stainless steel composites produced by assembling of powder injection molding (PIM) parts were studied. It is shown that during cosintering a significant mismatch strain (>4 pct) is developed in the temperature range of 1080 °C to 1350 °C. This mismatch strain induces biaxial stresses at the interface, leading to interface delamination. Experimental results revealed that sintering at a heating rate of 20 K/min could be used to decrease the mismatch strain to <2 pct. Meanwhile, WC is decomposed at the contact area and the diffusion of C and Co into the iron lattice results in the formation of a liquid and MC and M6C carbides at 1220 °C. Spreading of the liquid accelerates the reaction, affecting the dimensional stability of the PIM parts. To prevent the reaction, surface oxidation of the cemented carbide followed by hydrogen reduction during sintering was examined. Although the amount of mismatch strain increased, formation of a metallic interface consisting of a W-Co alloy (45 to 50 at. pct Co) and a Co-rich iron alloy (18 at. pct Co) prevented the decomposition of WC and melt formation. It is also shown that the deposition of a thin Ni layer after thermal debinding decreases the mismatch stresses through melt formation, although interlayer diffusion causes pore-band formation close to the steel part.

  7. Comparative study of the native oxide on 316L stainless steel by XPS and ToF-SIMS

    The very thin native oxide film on stainless steel, of the order of 2 nm, is known to be readily modified by immersion in aqueous media. In this paper, X-ray photoelectron spectroscopy (XPS) and time of flight secondary ions mass spectrometry are employed to investigate the nature of the air-formed film and modification after water emersion. The film is described in terms of oxide, hydroxide, and water content. The preferential dissolution of iron is shown to occur on immersion. It is shown that a water absorbed layer and a hydroxide layer are present above the oxide-like passive film. The concentrations of water and hydroxide appear to be higher in the case of exposure to water. A secure method for the peak fitting of Fe2p and Cr2p XPS spectra of such films on their metallic substrates is described. The importance of XPS survey spectra is underlined and the feasibility of C60+ SIMS depth profiling of a thin oxide layer is shown

  8. Magnetic and mechanical properties of Cu (75 wt%) – 316L grade stainless steels synthesized by ball milling and annealing

    Elemental powders of Cu (75 wt%) and 316-stainless steel (25 wt%) has been subjected to ball milling upto 70 h followed by isothermal annealing at the temperature range of 350–750 °C for 1 h to investigate the microstructural evolution along with magnetic and mechanical properties. After 40 h of milling, the bcc Fe is almost dissolved in the solid solution of Cu but no significant change has been observed in the XRD pattern after 70 h of milling, Annealing of the alloy has resulted in precipitation of nanocrystalline bcc-Fe in Cu which triggers the soft ferromagnetic properties. The extensive mechanical characterization has been done at the microstructural scale by nanoindentation technique which demonstrates a hardening behavior of the compacted and annealed alloys due to possible precipitation of nanocrystalline bcc-Fe in Cu. - Highlights: • Nanocrystalline phases with partial amorphorization obtained after 70 h of milling. • Precipitation and grain coarsening of Fe and Cu after annealing as observed by XRD. • Annealing of the ball milled sample upto 550 oC has evolved ferromagnetic behavior. • Nanoindentation predicts a hardening behavior of annealed ball milled samples

  9. Magnetic and mechanical properties of Cu (75 wt%) – 316L grade stainless steels synthesized by ball milling and annealing

    Mondal, Bholanath, E-mail: bholanath_mondal@yahoo.co.in [Department of Central Scientific Services, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Chabri, Sumit [Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103 (India); Sardar, Gargi [Department of Zoology, Baruipur College, South 24 Parganas, 743610 (India); Bhowmik, Nandagopal [Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103 (India); Sinha, Arijit, E-mail: arijitsinha2@yahoo.co.in [School of Materials Science and Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103 (India); Chattopadhyay, Partha Protim [Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103 (India)

    2015-05-01

    Elemental powders of Cu (75 wt%) and 316-stainless steel (25 wt%) has been subjected to ball milling upto 70 h followed by isothermal annealing at the temperature range of 350–750 °C for 1 h to investigate the microstructural evolution along with magnetic and mechanical properties. After 40 h of milling, the bcc Fe is almost dissolved in the solid solution of Cu but no significant change has been observed in the XRD pattern after 70 h of milling, Annealing of the alloy has resulted in precipitation of nanocrystalline bcc-Fe in Cu which triggers the soft ferromagnetic properties. The extensive mechanical characterization has been done at the microstructural scale by nanoindentation technique which demonstrates a hardening behavior of the compacted and annealed alloys due to possible precipitation of nanocrystalline bcc-Fe in Cu. - Highlights: • Nanocrystalline phases with partial amorphorization obtained after 70 h of milling. • Precipitation and grain coarsening of Fe and Cu after annealing as observed by XRD. • Annealing of the ball milled sample upto 550 {sup o}C has evolved ferromagnetic behavior. • Nanoindentation predicts a hardening behavior of annealed ball milled samples.

  10. Thermodynamic and electrochemistry analysis of the zinc electrodeposition in NH4Cl–NH3 electrolytes on Ti, Glassy Carbon and 316L Stainless Steel

    Thermodynamic diagrams, X-ray diffraction and electrochemical analysis are conducted to evaluate the solution chemistry of the Zn(II)–NH4Cl–NH3–H2O system as well as the feasibility of zinc electrorecovery at different pH values. Titanium, Glassy Carbon and 316L Stainless Steel substrates are used as cathode materials. At any region of pH, multiple Zn(II) complexes coexist in solution, but only one predominates. While chloro- (ZnCl42−), ternary (ZnNH3Cl3− and Zn(NH3)3Cl+) and amino-complexes (Zn(NH3)42+) dominate the region of low, neutral and alkaline pH, respectively, the solubility of the system is limited by the formation of two solids, Zn(NH3)1.6Cl0.4(s) and ZnO(s) at neutral and alkaline conditions, respectively. The thermodynamic and electrochemical evaluations reveal that the potential required to deposit Zn(s) becomes more negative as the pH value is increased, whereby the reduction of amino-complexes demand a larger amount of energy compared to the chloro-complexes. This effect is accounted for different ligand substitution mechanisms operating for the chloro- and amino-complexes of Zn(II). The onset of the zinc deposition relies on the cathode material and is accompanied by the HER regardless of the substrate utilized. The surface of Stainless Steel electrode exhibits the smallest overpotential, followed by the Glassy Carbon, and Ti cathodes where the TiO2(s) (native film) plays a determining role during the deposition. Higher current efficiencies are obtained on every substrate as the pH value is increased. Experimental conditions around neutral pHs (5.5 < pH < 8) are potentially suitable to perform the zinc electrodeposition for this system.

  11. Kinetic study of hydrogen-material interactions in nickel base alloy 600 and stainless steel 316L through coupled experimental and numerical analysis

    In France all of the nuclear power plant facilities in service today are pressurized water reactors (PWR). Some parts of the PWR in contact with the primary circuit medium, such as the steam generator tubes (fabricated in nickel base alloy A600) and some reactor core internal components (fabricated in stainless steel 316L), can fall victim to environmental degradation phenomena such as stress corrosion cracking (SCC). In the late 1950's, H. Coriou observed experimentally and predicted this type of cracking in alloys traditionally renowned for their SCC resistance (A600). Just some 20 to 30 years later his predictions became a reality. Since then, numerous studies have focused on the description and comprehension of the SCC phenomenon in primary water under reactor operating conditions. In view of reactor lifetime extension, it has become both critical and strategic to be capable of simulating SCC phenomenon in order to optimize construction materials, operating conditions, etc. and to understand the critical parameters in order to limit the damage done by SCC. This study focuses on the role hydrogen plays in SCC phenomenon and in particular H-material interactions. Hydrogen, from primary medium in the form of dissolved H gas or H from the water, can be absorbed by the alloy during the oxidation process taking place under reactor operating conditions. Once absorbed, hydrogen may be transported across the material, diffusing in the interstitial sites of the crystallographic structure and interacting with local defects, such as dislocations, precipitates, vacancies, etc. The presence of these [local defect] sites can slow the hydrogen transport and may provoke local H accumulation in the alloy. This accumulation could modify the local mechanical properties of the material and favor premature rupture. It is therefore essential to identify the nature of these H-material interactions, specifically the rate of H diffusion and hydrogen trapping kinetics at these

  12. The effects of cold rolling orientation and water chemistry on stress corrosion cracking behavior of 316L stainless steel in simulated PWR water environments

    Chen, Junjie; Lu, Zhanpeng; Xiao, Qian; Ru, Xiangkun; Han, Guangdong; Chen, Zhen; Zhou, Bangxin; Shoji, Tetsuo

    2016-04-01

    Stress corrosion cracking behaviors of one-directionally cold rolled 316L stainless steel specimens in T-L and L-T orientations were investigated in hydrogenated and deaerated PWR primary water environments at 310 °C. Transgranular cracking was observed during the in situ pre-cracking procedure and the crack growth rate was almost not affected by the specimen orientation. Locally intergranular stress corrosion cracks were found on the fracture surfaces of specimens in the hydrogenated PWR water. Extensive intergranular stress corrosion cracks were found on the fracture surfaces of specimens in deaerated PWR water. More extensive cracks were found in specimen T-L orientation with a higher crack growth rate than that in the specimen L-T orientation with a lower crack growth rate. Crack branching phenomenon found in specimen L-T orientation in deaerated PWR water was synergistically affected by the applied stress direction as well as the preferential oxidation path along the elongated grain boundaries, and the latter was dominant.

  13. Initiation and growth of a single pit on 316L stainless steel: Influence of SO42- and ClO4- anions

    In this paper, an ion micro dispenser (IMD) was used to initiate a single pit by generating chloride anions above a 316L stainless steel electrode in either H2SO4 or HClO4 electrolyte. The current variations with respect to time provided an unambiguous characterization of the single pit evolution. Different pit shapes were observed depending on both the nature of the electrolyte and potential applied to the electrode. Substituting SO42- for ClO4- gave smaller (in diameter) but deeper pits at the early stage of pitting. However, when using a different setup that allows the sustaining of the pit propagation with a continuous supply of Cl-, the deeper pits were observed in HClO4 rather than H2SO4. The formation of an iron sulphate salt film at the bottom of the pit by precipitation of dissolution products in H2SO4 slowed down the corrosion rate. At high potentials, the repassivation mechanism outweighed the metal dissolution in the ClO4- containing solution. (authors)

  14. Influences of deposition strategies and oblique angle on properties of AISI316L stainless steel oblique thin-walled part by direct laser fabrication

    Wang, Xinlin; Deng, Dewei; Qi, Meng; Zhang, Hongchao

    2016-06-01

    Direct laser fabrication (DLF) developed from laser cladding and rapid prototyping technique has been widely used to fabricate thin-walled parts exhibiting more functions without expending weight and size. Oblique thin-walled parts accompanied with inhomogeneous mechanical properties are common in application. In the present study, a series of AISI316L stainless steel oblique thin-walled parts are successfully produced by DLF, in addition, deposition strategies, microstructure, and mechanical property of the oblique thin-walled parts are investigated. The results show that parallel deposition way is more valuable to fabricate oblique thin-walled part than oblique deposition way, because of the more remarkable properties. The hardness of high side initially increases until the distance to the substrate reaches about 25 mm, and then decreases with the increase of the deposition height. Oblique angle has a positive effect on the tensile property but a negative effect on microstructure, hardness and elongation due to the more tempering time. The maximum average ultimate tensile strength (UTS) and elongation are presented 744.3 MPa and 13.5% when the angle between tensile loading direction and horizontal direction is 45° and 90°, respectively.

  15. A three dimensional discrete dislocation dynamics modelling of the early cycles of fatigue in an austenitic stainless steel 316L: dislocation microstructure and damage analysis

    A numerical code modelling the collective behaviour of dislocations at a mesoscopic scale (Discrete Dislocation Dynamics code) is used to analyse the cyclic plasticity that occurs in surface grains of an AISI 316L stainless steel, in order to understand the plastic mechanism involved in crack initiation in fatigue. Firstly, the analyses of both the formation and the evolution of the dislocation microstructures show the crucial role of cross-slip played in the strain localization in the form of slip bands. As the cycling proceeds, the slip bands exhibit well-organized dislocation arrangements that substitute to dislocation tangles, involving specific interaction mechanisms between primary and deviate systems. Secondly, both the surface displacements generated by plastic slip and the distortion energy induced by the dislocation microstructure have been analysed. We find that an irreversible surface relief in the form of extrusion/intrusion can be induced by cyclic slip of dislocations. The number of cycles for the crack initiation follows a Manson-Coffin type law. The analyses of the concentration of the distortion energy and its repartition in the slip bands show that beneficial energetic zones may be present at the very beginning of the cycling, and that mode-II crack propagation in the surface grains results from a succession of micro-crack initiations along primary slip plane, which is facilitated by various effects (stress concentration due to surface relief, environment effects...). Finally, a dislocation-based model for cyclic plasticity is proposed from Discrete Dislocation Dynamics results. (author)

  16. Comparison between Palm Oil Derivative and Commercial Thermo-Plastic Binder System on the Properties of the Stainless Steel 316L Sintered Parts

    Ibrahim, R.; Azmirruddin, M.; Wei, G. C.; Fong, L. K.; Abdullah, N. I.; Omar, K.; Muhamad, M.; Muhamad, S.

    2010-03-01

    Binder system is one of the most important criteria for the powder injection molding (PIM) process. Failure in the selection of the binder system will affect on the final properties of the sintered parts. The objectives of this studied is to develop a novel binder system based on the local natural resources and environmental friendly binder system from palm oil derivative which is easily available and cheap in our country of Malaysia. The novel binder that has been developed will be replaced the commercial thermo-plastic binder system or as an alternative binder system. The results show that the physical and mechanical properties of the final sintered parts fulfill the Metal Powder Industries Federation (MPIF) standard 35 for PIM parts. The biocompatibility test using cell osteosarcoma (MG63) and vero fibroblastic also shows that the cell was successfully growth on the sintered stainless steel 316L parts indicate that the novel binder was not toxic. Therefore, the novel binder system based on palm oil derivative that has been developed as a binder system fulfills the important criteria for the binder system in PIM process.

  17. Effects of Ag and Cu ions on the microbial corrosion of 316L stainless steel in the presence of Desulfovibrio sp.

    Unsal, Tuba; Ilhan-Sungur, Esra; Arkan, Simge; Cansever, Nurhan

    2016-08-01

    The utilization of Ag and Cu ions to prevent both microbial corrosion and biofilm formation has recently increased. The emphasis of this study lies on the effects of Ag and Cu ions on the microbial corrosion of 316L stainless steel (SS) induced by Desulfovibrio sp. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization were used to analyze the corrosion behavior. The biofilm formation, corrosion products and Ag and Cu ions on the surfaces were investigated using scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS) and elemental mapping. Through circuit modeling, EIS results were used to interpret the physicoelectric interactions between the electrode, biofilm and culture interfaces. EIS results indicated that the metabolic activity of Desulfovibrio sp. accelerated the corrosion rate of SS in both conditions with and without ions. However, due to the retardation in the growth of Desulfovibrio sp. in the presence of Ag and Cu ions, significant decrease in corrosion rate was observed in the culture with the ions. In addition, SEM and EIS analyses revealed that the presence of the ions leads to the formation on the SS of a biofilm with different structure and morphology. Elemental analysis with EDS detected mainly sulfide- and phosphorous-based corrosion products on the surfaces. PMID:27105168

  18. Effect of Ringer's Solution on Wear and Friction of Stainless Steel 316L after Plasma Electrolytic Nitrocarburising at Low Voltages

    N. Afsar Kazerooni; M.E. Bahrololoom; M.H. Shariat; F.Mahzoon; T. Jozaghi

    2011-01-01

    A plasma electrolytic nitrocarburising (PEN/C) process was performed on stainless steel 316L to improve the surface properties for using as medical implants. A bath was optimised to reduce the required voltage to 150 volts. Aqueous urea-based solutions with 10% NH4Cl were prepared with slightly different amounts of Na2CO3 to optimise the electrolyte composition. The surface and the cross-section morphologies were studied by scanning electron microscopy. The microstructure and the chemical composition of samples were investigated by X-ray diffraction (XRD) and energy dispersive X-ray (EDX) techniques. The microstructure of the outer layer of the coatings was found to be a complex oxide containing Cr and Fe. The wear properties of the samples were examined by using a pin on disk wear test with Ringer's solution and were compared with their wear properties in the ambient atmosphere. The Ringe(s solution acted as a lubricant, reducing friction coefficient. Hardness and roughness were also studied. The bath with the composition of 10% NH4CI and 3% Na2CO3 exhibited the best tribological properties. The results showed that the tribological properties of treated samples were improved and the wear mechanism was abrasion of the pin.

  19. Correlation between distribution of nitrogen atoms implanted at high energy and high dose and nanohardness measurements into 316L stainless steel

    Pelletier, H. E-mail: pelletier@ensais2.u-strasbg.fr; Mille, P.; Muller, D.; Stoquert, J.P.; Cornet, A.; Grob, J.J

    2001-05-01

    Ion implantation causes changes in surface composition or morphology of solids which yield to a modification of physical and particularly mechanical properties, such as hardness, Young's modulus and elastic recovery. The purpose of this study is to focus on the effects occurring during the annealing process of stainless steel 316L samples implanted with high energy (1 MeV) nitrogen ions at high dose (10{sup 18} N cm{sup -2}). From nuclear reaction analysis (NRA) measurements, the unusual shape of N distribution is discussed in terms of diffusion and precipitation mechanisms and correlated with the physical and chemical modifications observed with glancing incidence X-ray diffraction (GIXRD). Finally, from nanoindentation measurements, the real hardness profile is extracted using the Bueckle's model eliminating the substrate effect. For each specimen, we show that the hardness is the sum of two terms, the first being related to nitrogen concentration and the second to various strengthening mechanisms depending on temperature.

  20. In situ measurement of corrosion of type 316L stainless steel in 553 K pure water via the electrical resistance of a thin wire

    A system for the in situ monitoring of corrosion depth via electrical resistance measurements was applied to study the corrosion rate of type 316L stainless steel at 553 K in pure water. Corrosion depth was measured using a 50 μm diameter wire probe mounted axially in the tube. Measurements were in good agreement with literature data for both the hydrogen water chemistry (HWC) condition and the normal water chemistry (NWC) condition. Oxide film analyses by scanning electron microscopy and laser Raman spectroscopy on the wire probe and the tube showed no effects from shape of the test specimens or the application of electric current. Corrosion kinetics was evaluated by fitting equations to the measurements. Data for the HWC condition could be fitted by a two-step logarithmic-parabolic law. A single-step logarithmic law fitted data for the NWC condition. Changes in corrosion rate by the water chemistry changes were readily detected with the technique. Corrosion depth change could be observed for the water chemistry change from the NWC condition to the HWC condition with electrochemical corrosion potential (ECP) of -0.56 V vs. standard hydrogen electrode, which is lower than the ECP that the phase of iron oxide changes from α-Fe2O3 to Fe3O4. (author)

  1. In situ monitoring the pulse CO{sub 2} laser interaction with 316-L stainless steel using acoustical signals and plasma analysis

    Khosroshahi, M.E., E-mail: khosro@aut.ac.ir [Amirkabir University of Technology, Faculty of Biomedical Eng., Biomaterial Group, Laser and Nanobiophotonics Lab., Tehran (Iran, Islamic Republic of); Anoosheh pour, F. [Amirkabir University of Technology, Faculty of Biomedical Eng., Biomaterial Group, Laser and Nanobiophotonics Lab., Tehran (Iran, Islamic Republic of); Hadavi, M. [Amirkabir University of Technology, Faculty of Mining and Metallurgical Eng., Tehran (Iran, Islamic Republic of); Mahmoodi, M. [Amirkabir University of Technology, Faculty of Biomedical Eng., Biomaterial Group, Laser and Nanobiophotonics Lab., Tehran (Iran, Islamic Republic of)

    2010-10-01

    In most laser material processing, material removal by different mechanisms is involved. Here, application of acoustic signals with thermoelastic (below threshold) and breakdown origin (above threshold) together with plasma plume analysis as a simple monitoring system of interaction process is suggested. In this research the interaction of pulse CO{sub 2} laser with 200 ns duration and maximum energy of 1.3 J operating at 1 Hz with austenitic stainless steel (316-L) is reported. The results showed that the non-linear point of the curve can serve as a useful indicator of melting fluence threshold (in this case {approx}830 J cm{sup -2}) with corresponding temperature calculated using plasma plume analysis. Higher acoustic amplitudes and larger plasma plume volume indicates more intense interaction. Also, analysis showed that a phase explosion process with material removal (ejecta) in the form of non-adiabatic (i.e., d{sub t} >> {alpha}{sup -1}) is at play after laser pulse is ended. Also, SEM photographs show different surface quality medication at different laser intensities, which indicates the importance of recoil momentum pressure and possibly electrons and ions densities in heat transfer. Finally, electrochemical test indicate an improved corrosion resistance for laser treated samples compared to untreated ones.

  2. Generation of hydroxyl radicals by sonochemistry: Effects on the electrochemical behaviour of a 316L stainless steel

    Research highlights: → Presence of water sonolysis products (OH·, H2O2 and H2) in diffusion layer affect electrochemical behaviour of SS. → OCP jump is more abrupt with thinner diffusion layer. → Current densities increase under ultrasonic irradiation. → Cavitation activity grows with gas solubility and leads to an increase of sonolysis products. → Growth of concentration of sonolysis products yields to an increase of current densities values. - Abstract: In this study, water radiolysis occurring in nuclear power plants was simulated by sonochemistry. Generated hydroxyl radicals can recombine in others species such as H2O2 and H2. It is shown that solution conductivity is an important parameter on the evolution of open circuit potential due to the thickness variation of the diffusion layer which may contain sonolysed species (OH·, H2, H2O2) in different concentrations. Dissolved gases have also an impact on the 316L electrochemical behaviour. Increase of gas solubility leads to cavitation activity enhancement and further hydroxyl radical production. The latter leads to increased current density values under irradiation.

  3. Monitoring the near-surface pH to probe the role of nitrogen in corrosion behaviour of low-temperature plasma nitrided 316L stainless steel

    Highlights: • Nitrided steel is pitting resistant but in acidic solution anodic current is high. • Sb electrode showed a rise of pH at nitrided surface during anodic dissolution. • In cathodic sweeps nitrided steel showed reactivation indicating poor passivity. • Improvement of passivity after injection of NH4OH is ascribed to oxides and NO2−. • Pitting resistance is ascribed to oxides and NO2− following the formation of NH4+. -- Abstract: Low temperature plasma nitriding of stainless steels improves tribological properties and pitting resistance, but it can activate anodic dissolution in acidic solutions. This work aimed at determining how anodic behaviour can be affected by nitrogen present in the steel. The electrochemical behaviour of AISI 316L steel after nitriding at 415 °C (with up to 17 at.% N) was examined in solutions of 0.1 M Na2SO4 + 0.4 M NaCl acidified down to pH 2.4. An antimony microelectrode was used to measure pH close to the sample surface. It was found that the nitrided layer was resistant to pitting corrosion at all pH's, but at pH below about 3.5 anodic currents were higher than those on untreated steel. For nitrided steel the near-surface pH was increasing when anodic current was rising in the active region, evidently due to binding of protons into NH4+. Nitrided steel underwent reactivation during reverse cathodic sweeps which is characteristic of low content of chromium oxide in surface film. Injection of NH4OH into the solution improved the passivation. Thermodynamic data indicated that the accompanying pH rise enabled the formation of Fe3O4, Fe2O3, Cr2O3, FeCr2O4, NiFe2O4, MoO42− and NO2−. It is suggested that the pitting resistance of nitrided steel results from an easy repassivation of incipient pits due to the formation of the above species

  4. Dissimilar laser welding of AISI 316L stainless steel to Ti6–Al4–6V alloy via pure vanadium interlayer

    Tomashchuk, I., E-mail: iryna.tomashchuk@u-bourgogne.fr; Grevey, D.; Sallamand, P.

    2015-01-12

    Successful continuous laser joining of AISI 316L stainless steel with Ti6Al4V titanium alloy through pure vanadium interlayer has been performed. Three welding configurations were tested: one-pass welding involving all three materials and two pass and double spot welding involving creation of two melted zones separated by remaining solid vanadium. For the most relevant welds, the investigation of microstructure, phase content and mechanical properties has been carried out. In case of formation of a single melted zone, the insertion of steel elements into V-based solid solution embrittles the weld. In case of creation of two separated melted zones, the mechanical resistance of the junction is determined by annealing of remaining vanadium interlayer, which can be witnessed by observing the increase of grain size and decrease of UTS. The two pass configuration allows attain highest mechanical resistance: 367 MPa or 92% of UTS of annealed vanadium. Double spot configuration produces excessive heat supply to vanadium interlayer, which results in important decrease of tensile strength down to 72% of UTS of annealed vanadium. It was found that undesirable σ phase which forms between Fe and V is not created during the laser welding process because of high cooling rates. However, the zones whose composition corresponds to σ homogeneity range are crack-susceptible, so the best choice is to reduce the V content in steel/vanadium melted zone below σ phase formation limit. In the same time, the proportion between V and Ti in Ti6Al4V/vanadium melted zones does not influence mechanical properties as these elements form ideal solid solution.

  5. Dissimilar laser welding of AISI 316L stainless steel to Ti6–Al4–6V alloy via pure vanadium interlayer

    Successful continuous laser joining of AISI 316L stainless steel with Ti6Al4V titanium alloy through pure vanadium interlayer has been performed. Three welding configurations were tested: one-pass welding involving all three materials and two pass and double spot welding involving creation of two melted zones separated by remaining solid vanadium. For the most relevant welds, the investigation of microstructure, phase content and mechanical properties has been carried out. In case of formation of a single melted zone, the insertion of steel elements into V-based solid solution embrittles the weld. In case of creation of two separated melted zones, the mechanical resistance of the junction is determined by annealing of remaining vanadium interlayer, which can be witnessed by observing the increase of grain size and decrease of UTS. The two pass configuration allows attain highest mechanical resistance: 367 MPa or 92% of UTS of annealed vanadium. Double spot configuration produces excessive heat supply to vanadium interlayer, which results in important decrease of tensile strength down to 72% of UTS of annealed vanadium. It was found that undesirable σ phase which forms between Fe and V is not created during the laser welding process because of high cooling rates. However, the zones whose composition corresponds to σ homogeneity range are crack-susceptible, so the best choice is to reduce the V content in steel/vanadium melted zone below σ phase formation limit. In the same time, the proportion between V and Ti in Ti6Al4V/vanadium melted zones does not influence mechanical properties as these elements form ideal solid solution

  6. 316L奥氏体不锈钢高温拉伸时的动态应变时效%Dynamic Strain Aging in 316L Austenitic Stainless Steel During Tensile Test at High Temperature

    韩鹏程; 田荣; 沈寅忠; 李志刚

    2012-01-01

    Dynamic strain aging (DSA) in 316L austenitic stainless steel was examined through tensile test at 300-700 °C under strain rate of 2 x l0-4 S-1 . The results show that the dynamic strain aging in 316L austenitic stainless steel does not accompany with a plateau of yield stress. 316L austenitic stainless steel has both normal and inverse PLC effects at 450-700 'C. The effective activation energy for serrated flow occurrence was calculated to be about 254kJ/mol. The dynamic strain aging caused by the interaction between substitutional solutes, Cr and moving dislocation is considered as the mechanism of serrated flow at the high temperatures in 316L stainless steel.%在300~700℃,以应变速率为2×10-4 s-1对316L不锈钢进行拉伸试验,探索其中的动态应变时效现象及其规律.结果表明,316L奥氏体不锈钢在动态应变时效温度区间并没有出现屈服应力平台,在450~700℃既有正常的Portevien-Le Chatelier effect (PLC)效应,也有反PLC效应;锯齿形成的有效激活能为254k J/mol;扩散着Cr等置换型溶质原子与运动位错之间的交互作用使材料出现动态应变时效,导致锯齿流动行为.

  7. Functional properties of a spark plasma sintered ultrafine-grained 316L steel

    Highlights: • A ultrafine-grained 316L stainless steel was densified by SPS. • Forming process does not induce any internal strain gradients in sintered samples. • An enhancement of hardness up to twice the value of as cast 316L is obtained. • Fully dense samples display an enhanced passive corrosion state in chloride media. - Abstract: A micrometric austenitic stainless steel 316L powder was densified by spark plasma sintering. The process parameters were varied over wide ranges and the impact of such variations on sintered materials was studied through the characterization of their microstructures, densities, hardness and corrosion resistance. For comparison with the properties of traditionally cast 316L, all these investigations were also systematically carried out on as cast samples. The sintered stainless steel produced this way was highly densified, with grains of a micrometric size and the forming process did not induce any residual strain gradients as shown by transmission electronic microscopy analysis. The investigation of the corresponding mechanical properties reveals an enhancement of hardness up to twice the value measured on one sample of as cast 316L. This result is in good agreement with the Hall–Petch formalism. Additionally, in the matter of corrosion behavior, fully dense samples display an enhanced passive state in chloride media compared to as cast material. Spark plasma sintering appears to be an interesting alternative elaboration way of ultrafine 316L stainless steel giving materials with high stress resistance, without strain gradients through the volume, and promising functional properties concerning corrosion behavior

  8. Effects of Mo content on microstructure and corrosion resistance of arc ion plated Ti-Mo-N films on 316L stainless steel as bipolar plates for polymer exchange membrane fuel cells

    Zhang, Min; Kim, Kwang Ho; Shao, Zhigang; Wang, Feifei; Zhao, Shuang; Suo, Ni

    2014-05-01

    Bipolar plates are one of the most important components in PEMFC stack and have multiple functions, such as separators and current collectors, distributing reactions uniformly, and etc. Stainless steel is ideal candidate for bipolar plates owing to good thermal and electrical conductivity, good mechanical properties etc. However, stainless steel plate still cannot resist the corrosion of working condition. In this work, ternary Ti-Mo-N film was fabricated on 316L stainless steel (SS316L) as a surface modification layer to enhance the corrosion resistance. Effects of Mo content on the microstructure and corrosion resistance of Ti-Mo-N films are systematically investigated by altering sputtering current of the Mo target. XRD results reveal that the preferred orientation changes from [111] to [220] direction as Mo content in the film increases. The synthesized Ti-Mo-N films form a substitutional solid solution of (Ti, Mo)N where larger Mo atoms replace Ti in TiN crystal lattice. The TiN-coated SS316L sample shows the best corrosion resistance. While Mo content in the Ti-Mo-N films increases, the corrosion resistance gradually degrades. Compared with the uncoated samples, all the Ti-Mo-N film coated samples show enhanced corrosion resistance in simulated PEMFC working condition.

  9. The effect of CO2 laser beam welded AISI 316L austenitic stainless steel on the viability of fibroblast cells, in vitro.

    Köse, Ceyhun; Kaçar, Ramazan; Zorba, Aslı Pınar; Bağırova, Melahat; Allahverdiyev, Adil M

    2016-03-01

    It has been determined by the literature research that there is no clinical study on the in vivo and in vitro interaction of the cells with the laser beam welded joints of AISI 316L biomaterial. It is used as a prosthesis and implant material and that has adequate mechanical properties and corrosion resistance characteristics. Therefore, the interaction of the CO2 laser beam welded samples and samples of the base metal of AISI 316L austenitic stainless steel with L929 fibroblast cells as an element of connective tissue under in vitro conditions has been studied. To study the effect of the base metal and the laser welded test specimens on the viability of the fibroblast cells that act as an element of connective tissues in the body, they were kept in DMEMF-12 medium for 7, 14, 28 days and 18 months. The viability study was experimentally studied using the MTT method for 7, 14, 28 days. In addition, the direct interaction of the fibroblast cells seeded on 6 different plates with the samples was examined with an inverted microscope. The MTT cell viability experiment was repeated on the cells that were in contact with the samples. The statistical relationship was analyzed using a Tukey test for the variance with the GraphPad statistics software. The data regarding metallic ion release were identified with the ICP-MS method after the laser welded and main material samples were kept in cell culture medium for 18 months. The cell viability of the laser welded sample has been detected to be higher than that of the base metal and the control based on 7th day data. However, the laser welded sample's viability of the fibroblast cells has diminished by time during the test period of 14 and 28 days and base metal shows better viability when compared to the laser welded samples. On the other hand, the base metal and the laser welded sample show better cell viability effect when compared to the control group. According to the ICP-MS results of the main material and laser welded

  10. A Comparative Evaluation of the Effect of Low Cycle Fatigue and Creep-Fatigue Interaction on Surface Morphology and Tensile Properties of 316L(N) Stainless Steel

    Mariappan, K.; Shankar, Vani; Sandhya, R.; Bhaduri, A. K.; Laha, Kinkar

    2016-04-01

    In the present work, the deformation and damage evolution in 316L(N) stainless steel during low cycle fatigue (LCF) and creep-fatigue interaction (CFI) loadings have been compared by evaluating the residual tensile properties. Towards this, LCF and CFI experiments were carried out at constant strain amplitude of ±0.6 pct, strain rate of 3 × 10-3 s-1 and temperature of 873 K (600 °C). During CFI tests, 30 minutes hold period was introduced at peak tensile strain. Experiments were interrupted up to various levels of fatigue life viz. 5, 10, 30, 50, and 60 pct of the total fatigue life ( N f) under both LCF and CFI conditions. The specimens subjected to interrupted fatigue loadings were subsequently monotonically strained at the same strain rate and temperature up to fracture. Optical and scanning electron microscopy and profilometry were conducted on the untested and tested samples to elucidate the damage evolution during the fatigue cycling under both LCF and CFI conditions. The yield strength (YS) increased sharply with the progress of fatigue damage and attained saturation within 10 pct of N f under LCF condition. On the contrary, under CFI loading condition, the YS continuously increased up to 50 pct of N f, with a sharp increase of YS up to 5 pct of N f followed by a more gradual increase up to 50 pct of N f. The difference in the evolution of remnant tensile properties was correlated with the synergistic effects of the underlying deformation and damage processes such as cyclic hardening/softening, oxidation, and creep. The evolution of tensile properties with prior fatigue damage has been correlated with the change in surface roughness and other surface features estimated by surface replica technique and fractography.

  11. Production and characterization of multilayer coatings of Ti/TiN on AISI 316L stainless steel by the PVD technique of cathodic arc ion plating

    Multilayer coatings were produced from bi-layers (compound layers) of Ti/TiN in a PVD reactor of cathodic arc ion plating. The process was carried out at an Argon gas pressure of 5x10-3 Torr for the interlayer of Ti and a nitrogen + argon pressure of 2x10-2 Torr for the deposit of TiN and a Bias voltage of -500V for the Ti layer and -100V for the TiN layer. The arc current held constant at 80 amp. The samples were kept at high temperatures ≥ 300oC, mounted on a rotating system that held the test piece 15-25 cm from the Ti electrode. Certified composition AISI 316L and AISI 410 stainless steel were used for the substrate. Coatings with one or two compound layers with similar thicknesses were made. The coatings were characterized mechanically by adherence, thickness and microhardness by Vickers indentation with 25g loads. The texture was studied by X-ray diffraction and present phases and residual tensions were determined. The results of the X-ray diffraction show the presence of the mostly TiN phase, with fcc structure in the mono-layer and the bi-layer. Residual tensions are compressive and elevated due to the expansion of the TiN network during the deposition process. Measurements of the bi-layers at different angles showed a relaxing of the tensions close to the surface, which could be due to the effect of the second interlayer of Ti. Preferential orientations associated with the growth process of the layers and the developed microstructure were detected in the TiN (CW)

  12. Study of carbonitriding thermochemical treatment by plasma screen in active with pressures main austenitic stainless steels AISI 409 and AISI 316L; Estudo do tratamento termoquimico de carbonitretacao por plasma em tela ativa com pressoes variaveis nos acos inoxidaveis austenitico AISI 316L e ferririco AISI 409

    Melo, M.S.; Oliveira, A.M.; Leal, V.S.; Sousa, R.R.M. de; Alves Junior, C. [Centro Federal de Educacao Tecnologica do Maranhao (CEFET/MA), Sao Luis, MA (Brazil); Centro Federal de Educacao Tecnologica do Piaui (CEFET/PI), Teresina, PI (Brazil); Universidade Federal do Rio Grande do Norte (DF/UFRN), Natal, RN (Brazil). Dept. de Fisica. Labplasma

    2010-07-01

    The technique called Active Screen Plasma Nitriding (ASPN) is being used as an alternative once it offers several advantages with respect to conventional DC plasma. In this method, the plasma does not form directly in the sample's surface but on a screen, in such a way that undesired effects such as the edge effect is minimized. Stainless steels present not very satisfactory wearing characteristics. However, plasma carbonitriding has been used as to improve its resistance to wearing due to the formation of a fine surface layer with good properties. In this work, samples of stainless steel AISI 316L and AISI 409 were treated at pressures of 2.5 and 5 mbar. After the treatments they were characterized by microhardness, microscopy and Xray diffraction. Microscopy and hardness analysis showed satisfactory layers and toughness in those steels. (author)

  13. THE EFFECT OF SMALL AMOUNTS OF ELEMENTS ON SHAPES OF POTENTIODYNAMIC AND POTENTIOSTATIC CURVES OF AISI 304L AND AISI 316L STAINLESS STEELS IN CHLORIDE MEDIA

    D. Pulino-Sagradi

    1997-06-01

    Full Text Available Abstract - Samples of high purity grade and commercial purity grade type AISI 304L and AISI 316L steels were studied by the potentiodynamic and potentiostatic techniques in a naturally aerated 3.5% NaCl aqueous solution at a controlled temperature of (23±2°C. The anodic polarization curves of the potentiodynamic technique showed that not always is it possible to determine pitting potential: most of the curves of commercial purity grade steels displayed a smooth curvature in the region where the current density should increase sharply. The density current versus time potentiostatic curves also showed different shapes according to the purity grade steels: for the commercial purity grade steels, the current density showed large oscillations with time (related to unstable pits, whereas for the high purity grade steels, a regular behavior of current density as a function of time was found (related to stable pits

  14. Improved corrosion resistance and interfacial contact resistance of 316L stainless-steel for proton exchange membrane fuel cell bipolar plates by chromizing surface treatment

    Lee, S. B.; Cho, K. H.; Lee, W. G.; Jang, H.

    The electrochemical performance and electrical contact resistance of chromized 316 stainless-steel (SS) are investigated under simulated operating condition in a proton-exchange membrane fuel cell (PEMFC). The corrosion resistance of the chromized stainless steel is assessed by potentiodynamic and potentiostatic tests and the interfacial contact resistance (ICR) is examined by measuring the electrical contact resistance as a function of the compaction force. The results show that the chromizing surface treatment improves the corrosion resistance of the stainless steel due to the high-chromium concentration in the diffuse coating layer. On the other hand, the excess Chromium content on the surface increases the contact resistance of the steel plate to a level that is excessively high for commercial applications. This study examines the root cause of the high-contact resistance after chromizing and reports the optimum process to improve the corrosion resistance without sacrificing the ICR by obtaining a chrome carbide on the outer layer.

  15. Hydrogen transport and solubility in 316L and 1.4914 steels for fusion reactor applications

    Equations are given which describe the permeation rate, diffusivity and solubility of hydrogen over the range 250-6000C at pressures up to 105 Pa for the 316L stainless and modified 1.4914 martensitic candidate steels proposed for the construction of the Next European Torus (NET). For heat-treated 316L steel, the permeation rates measured agreed well with previous work and did not vary significantly from specimen to specimen or from batch to batch. Measurements of the permeation rate of hydrogen and deuterium through the modified 1.4914 steel, believed to be the first made, show that the martensitic steel is significantly more permeable than the austenitic steel, by an order of magnitude at 2500C and a factor of five at 6000C. This difference could make it necessary to use permeation barriers on critical components made from the martensitic steel in order to reduce the tritium permeation rate to acceptable levels. (orig.)

  16. Stainless steels low temperature nitriding

    Nitrogen ions implantation of 316L stainless steel leads to monophasic diffusion layers, which are constituted of a solid solution (γN) fcc, metastable, nitrogen sur-saturated, and without order. This article shows that for 316L stainless steels,these layers improve the tribological properties without degradation of the corrosion resistance. (A.B.). 13 refs. 6 figs

  17. 316L不锈钢在硫酸盐还原菌与铁氧化菌溶液中的腐蚀及电化学行为%Corrosion and Electrochemical Behavior of 316L Stainless Steel in Sulfate-reducing and Iron-oxidizing Bacteria Solutions

    胥聪敏; 张耀亨; 程光旭; 朱文胜

    2006-01-01

    Corrosion and electrochemical behavior of 316L stainless steel was investigated in the presence of aerobic iron-oxidizing bacteria (IOB) and anaerobic sulfate-reducing bacteria (SRB) isolated from cooling water systems in an oil refinery using electrochemical measurement, scanning electron microscopy (SEM) and energy dispersive atom X-ray analysis(EDAX). The results show the corrosion potential and pitting potential of 316L stainless steel decrease distinctly in the presence of bacteria, in comparison with those observed in sterile medium under the same exposure time. SEM morphologies have shown that 316L stainless steel reveals no signs of pitting attack in the sterile medium. However, micrometer-scale corrosion pits were observed on 316L stainless steel surface in the presence of bacteria. The presence of SRB leads to higher corrosion rates than IOB. The interactions between the stainless steel surface, abiotic corrosion products, and bacterial cells and their metabolic products increased the corrosion damage degree of the passive film and accelerated pitting propagation.

  18. 外加极化电位对316L不锈钢微动磨蚀行为的影响%The Effect of Applied Potential on the Fretting Corrosion-we ar Behavior of 316L Stainless Steel

    阎建中; 吴荫顺; 李久青; 张琳

    2001-01-01

    采用球-平面接触微动磨损试验机考 察了轧制固溶316L不锈钢在不同极化状态下的微动磨蚀行为.结果表明:在阳极极化状态下 ,随着极化电位的升高,腐蚀疲劳微断裂作用增强,促进了微动损伤过程的发展;在阴极保 护状态下,摩擦系数随微动过程的变化规律及微动损伤形貌与阳极极化态下的存在显著差异 ,在阴极极化态下,微动摩擦副之间的粘着导致较高的微动摩擦应力状态,但与阳极极化态 相比并未产生严重损伤.%The influence of applied potential on the frettin g corrosion-wear behavior of 316L stainless steel in saline solution has been i nvestigated with a test rig of ball-on-plane contact configuration. It has bee n found that under anodic polarization conditions, the friction coefficients and especially the steady-state fretting wear process is dependent on the anodic p olarization parameters. The higher the applied potential, the more severe the fr etting damage will be. This is because 316L stainless steel is of high chemical activity under anodic polarization, which promotes the fretting damage of the st eel. Contrary to the above, the fretting damage of 316L stainless steel is effec tively prevented by cathodic protection. This is because the adhesion between th e contact surfaces of the fretting pair can be abated by cathodic protection, th ough a relatively higher friction coefficient is recorded in this case.

  19. Corrosion behaviour of AISI 316L steel in artificial body fluids

    W. Kajzer

    2008-12-01

    Full Text Available Purpose: The paper presents the comparison of corrosion resistance of AISI 316L stainless steel in various corrosive media such as artificial urine, Tyrode’s physiological solution and artificial plasma.Design/methodology/approach: The tests were carried out on samples of the following surfaces: grinded – average roughness Ra = 0.31 μm and electropolished and chemically passivated average roughness Ra = 0.10 μm. The corrosion tests were realized by recording of anodic polarization curves with the use of the potentiodynamic method. The VoltaLab® PGP 201 system for electrochemical tests was applied. The tests were carried out in electrolyte simulating urine (pH = 6-6.4, Tyrode’s physiological solution (pH = 6.8-7.4 and plasma (pH = 7.2-7.6 at the temperature of 37±1°C.Findings: Surface condition of AISI 316L stainless steel determines its corrosion resistance. The highest values of breakdown potentials were recorded for all electropolished and chemically passivated samples in all simulated body fluids. The highest values of anodic current density were recorded for samples tested in artificial urine, the lowest values were recorded for samples tested in Tyrode’s physiological solution.Research limitations/implications: The obtained results are the basis for the optimization of physicochemical properties of the AISI 316L stainless steel.Practical implications: On the basis of the obtained results it can be stated that stainless steel meets the basic biocompatibility criteria and can be applied in reconstruction surgery, operative cardiology and urology.Originality/value: The paper presents the influence of various corrosive media simulating human body fluids on corrosion resistance of AISI 316L stainless steel.

  20. Influence of nitrogen alloying and of previous aging on the low-cycle fatigue crack initiation and propagation at room temperature in austenitic stainless steels type 316L

    The crack growth rates during room temperature low-cycle fatigue of two austenitic stainless steels are evaluated through striation space measurements on the fracture surfaces of axisymmetric smooth specimens. The effect of nitrogen interstitials and of previous aging on the initiation and crack propagation phase durations is discussed

  1. Source(s) of acoustic activity during pitting development on AISI 316L austenitic stainless steel; Source(s) de bruit acoustique dans le developpement de piqures sur acier inoxydable austenitique 316l

    Fregonese, M.; Idrissi, H.; Mazille, H. [Institut National des Sciences Appliquees, INSA, 69 - Villeurbanne (France); Renaud, L.; Cetre, Y. [Rhoditech, Materiaux-Corrosion, 69 - Decines-Charpieu (France)

    2001-07-01

    The acoustic emission (AE) technique, based on the rapid release of energy within a material generating a transient elastic wave propagation, is widely used as a non-destructive technique (NDT) for testing vessels on-site. Many microscopic deformation or fracture processes have also been studied with this technique in laboratory experiments, but most of them concerned stress corrosion cracking investigations. Some published papers also deal with abrasion or erosion corrosion studies, and only a few attempts have been made to study purely electrochemical corrosion types such as uniform corrosion or pitting corrosion. In the latter case, the studies mainly concern aluminium and austenitic stainless steels in the presence of chloride ions. In both cases, AE activity (number of events) has been correlated to the corrosion rate, which was estimated in terms of weight-loss, applied current density or hydrogen evolution rate. A direct quantitative correlation was even established between the number of AE events and the number of pits or the pitted area. Most of the time, the generation of acoustic signals has been attributed to the evolution of hydrogen bubbles. Yet, as no direct correlation was made between the formation and the release of bubbles and the generation of AE bursts, some other physico-chemical mechanisms were proposed, such as stress changes on metal surface, or the rupture of an oxide or salt cap covering the pits. Moreover, a thorough investigation has been performed by Arora in various well-controlled experimental conditions on aluminium alloys. As mentioned by the author, if AE has to be used for detecting and identifying an active corrosion process such as pitting, it is absolutely necessary to proceed to careful acoustic parameters analyses of recorded AE signals. In that sense, the authors recently reported that two kinds of AE signals were recorded during pitting corrosion investigations, which could be discriminated by their rise time and counts

  2. 银离子注入对316L不锈钢导电和耐腐蚀性能的影响%Effect of Silver Ion Implantation on Conductivity and Corrosion Resistance of 316L Stainless Steel

    陈友兴; 蔡殉; 冯凯; 沈耀

    2011-01-01

    Silver ions were implanted into the surface of the 316L austenitic stainless steel by a silver ion source machine. The conductivity and corrosion resistance of the steel surface were investigated. The results show that the surface contact resistance of stainles steel reduced by 81. 25% compared with that of the steel before implantation with the dose of 0. 5× 107 cm-2. A new passive film was formed on surface of the ion implanted steel in the bipolar plate simulated solutions, which retarded corrosion effectively. With the silver ion implantation dose of 2 × 107 cm-2, the stable corrosion current density reduced by 98. 56% and 98. 32% in the bipolar plate simulated cathode and anode environment, respectively.%采用银离子源对316L 奥氏体不锈钢表面进行银离子注入改性,并对其导电和耐腐蚀性能进行了研究.结果表明:注入剂量为0.5×10cm时不锈钢表面接触电阻值比注入前降低了81.25%;在双极板模拟环境中,银注入不锈钢后在表面形成了一层有效阻碍腐蚀的新钝化层,银注入剂量为2×10cm时,不锈钢在模拟双极板阴、阳极环境下的稳定腐蚀电流密度比注入前分别降低了98.56%和98.32%.

  3. Corrosion behavior of 2205 duplex stainless steel.

    Platt, J A; Guzman, A; Zuccari, A; Thornburg, D W; Rhodes, B F; Oshida, Y; Moore, B K

    1997-07-01

    The corrosion of 2205 duplex stainless steel was compared with that of AISI type 316L stainless steel. The 2205 stainless steel is a potential orthodontic bracket material with low nickel content (4 to 6 wt%), whereas the 316L stainless steel (nickel content: 10 to 14 wt%) is a currently used bracket material. Both stainless steels were subjected to electrochemical and immersion (crevice) corrosion tests in 37 degrees C, 0.9 wt% sodium chloride solution. Electrochemical testing indicates that 2205 has a longer passivation range than 316L. The corrosion rate of 2205 was 0.416 MPY (milli-inch per year), whereas 316L exhibited 0.647 MPY. When 2205 was coupled to 316L with equal surface area ratio, the corrosion rate of 2205 reduced to 0.260 MPY, indicating that 316L stainless steel behaved like a sacrificial anode. When 316L is coupled with NiTi, TMA, or stainless steel arch wire and was subjected to the immersion corrosion test, it was found that 316L suffered from crevice corrosion. On the other hand, 2205 stainless steel did not show any localized crevice corrosion, although the surface of 2205 was covered with corrosion products, formed when coupled to NiTi and stainless steel wires. This study indicates that considering corrosion resistance, 2205 duplex stainless steel is an improved alternative to 316L for orthodontic bracket fabrication when used in conjunction with titanium, its alloys, or stainless steel arch wires. PMID:9228844

  4. EFFECTS OF Al ELEMENT ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF HOT-ROLLED 316L STAINLESS STEEL%Al元素对热轧316L不锈钢显微组织和力学性能的影响

    喇培清; 孟倩; 姚亮; 周毛熊; 魏玉鹏

    2013-01-01

    利用光学显微镜(OM)、电子探针(EPMA)及X射线衍射(XRD),研究了不同Al含量316L不锈钢热轧态显微组织,测试了其力学性能和抗腐蚀性能.结果表明:Al含量小于2%时,基体为γ相,Al含量为4%时,基体转变为α+γ双相组织,Al元素分别以固溶和Al4C3沉淀相的形式存在.合金的抗拉强度、屈服强度随着Al含量的增加,先降低后升高,塑性略有下降.利用SEM分析合金的断口形貌表明,其断裂形式均为延性断裂.含2%Al的316L不锈钢具有最低的均匀腐蚀速率和晶间腐蚀速率,基体中Al2,3钝化膜的形成及Al4C3析出减少了贫Cr区的出现是导致材料耐蚀性提高的主要因素.%316L stainless steel is applied to high-temperature environment because of an attractive combination of mechanical properties and corrosion resistance in various aggressive environment.However,the corrosion resistance of 316L was reduced in a particular environment such as water vapor,aggressive sulfur gas which was attributed to the Cr2O3 protective scales formed in 316L.The Cr2O3 scales are compromised by water vapor due to the formation of volatile Cr oxy-hydroxide species.The Al2O3 is more thermodynamically stable in these enviroment than Cr2O3.In this work,the effects of Al element on the microstructure,mechanical properties and corrosion resistance of hot-rolled 316L were investigated.Microstructure evolution was observed by OM,EPMA and XRD.Mechanical properties were measured by tensile tests.The resistances to intergranular and uniform corrosion of hot rolled 316L with different Al content were investigated by means of soaking method at 65%HNO3 and 5%H2SO4,respectively.The results show that microstructure has changed from single γ to α+γ double phase.With the increase of Al content in 316L,the yield strength and ultimate tensile strength increased but the ductility decreased.The fracture morphology of tensile was observed by SEM.Which indicated that the fracture

  5. Modelling of microstructural creep damage in welded joints of 316L stainless steel; Modelisation de l'endommagement a haute temperature dans le metal d'apport des joints soudes d'acier inoxydable austenitique

    Bouche, G

    2000-07-01

    Welded joints of 316L stainless steel under service conditions at elevated temperature are known to be preferential sites of creep damage, as compared to the base material. This damage results in the formation of cavities and the development of creep cracks which can lead to a premature failure of welded components. The complex two-phase microstructure of 316L welds was simulated by manually filling a mould with longitudinal deposited weld beads. The moulded material was then aged during 2000 hours at 600 deg. C. High resolution Scanning Electron Microscopy was largely used to examine the microstructure of the simulated material before and after ageing. Smooth and notched creep specimens were cut from the mould and tested at 600 deg. C under various stress levels. A comparison of the lifetime versus nominal stress curves for the base and welded materials shows a greater dependence of the welded material to creep phenomena. Observation and EBSD analysis show that damage is preferentially located along the austenite grain boundaries. The stress and strain fields in the notched specimens were calculated by finite element method. A correlation of this field to the observed damage was made in order to propose a predictive law relating the creep damage to the mechanical conditions applied locally. Further mechanical tests and simulation on CT specimens and mode II tubular specimens allowed validating the model under various multiaxial loading conditions. (author)

  6. Microstructural origins of radiation-induced changes in mechanical properties of 316 L and 304 L austenitic stainless steels irradiated with mixed spectra of high-energy protons and spallation neutrons

    Sencer, B. H.; Bond, G. M.; Hamilton, M. L.; Garner, F. A.; Maloy, S. A.; Sommer, W. F.

    2001-07-01

    A number of candidate alloys were exposed to a particle flux and spectrum at Los Alamos Neutron Science Center (LANSCE) that closely match the mixed high-energy proton/neutron spectra expected in accelerator production of tritium (APT) window and blanket applications. Austenitic stainless steels 316 L and 304 L are two of these candidate alloys possessing attractive strength and corrosion resistance for APT applications. This paper describes the dose dependence of the irradiation-induced microstructural evolution of SS 316 L and 304 L in the temperature range 30-60°C and consequent changes in mechanical properties. It was observed that the microstructural evolution during irradiation was essentially identical in the two alloys, a behavior mirrored in their changes in mechanical properties. With one expection, it was possible to correlate all changes in mechanical properties with visible microstructural features. A late-term second abrupt decrease in uniform elongation was not associated with visible microstructure, but is postulated to be a consequence of large levels of retained hydrogen measured in the specimens. In spite of large amounts of both helium and hydrogen retained, approaching 1 at.% at the highest exposures, no visible cavities were formed, indicating that the gas atoms were either in solution or in subresolvable clusters.

  7. Effect of silicon ion implantation upon the structure and corrosion resistance of the surface layer of stainless steel 316L, Vitalium and titanium alloy Ti6Al14V

    Samples of 316L stainless steel, Vitalium and Ti6A14V titanium alloy have been implanted with doses of 1.5, 3, and 4.5 x 1017 Si+/cm2. Transmission electron microscopy shows that during ion implantation amorphous layers are formed. When samples of titanium alloy were implanted with a dose of 0.5 x 1017 Si+/cm2, the implanted layer consisted of a dispersion of fine silicide crystallites instead of being amorphous. The corrosion resistance was analyzed by electrochemical techniques in 0.9% NaCl at the temperature of 37 C. The increase of corrosion resistance has been observed as a result of structural modifications of the surface layer. (author). 7 refs, 4 tabs

  8. A Study on the Laser Spatter and the Oxidation Reactions During Selective Laser Melting of 316L Stainless Steel, Al-Si10-Mg, and Ti-6Al-4V

    Simonelli, Marco; Tuck, Chris; Aboulkhair, Nesma T.; Maskery, Ian; Ashcroft, Ian; Wildman, Ricky D.; Hague, Richard

    2015-09-01

    The creation of an object by selective laser melting (SLM) occurs by melting contiguous areas of a powder bed according to a corresponding digital model. It is therefore clear that the success of this metal Additive Manufacturing (AM) technology relies on the comprehension of the events that take place during the melting and solidification of the powder bed. This study was designed to understand the generation of the laser spatter that is commonly observed during SLM and the potential effects that the spatter has on the processing of 316L stainless steel, Al-Si10-Mg, and Ti-6Al-4V. With the exception of Ti-6Al-4V, the characterization of the laser spatter revealed the presence of surface oxides enriched in the most volatile alloying elements of the materials. The study will discuss the implication of this finding on the material quality of the built parts.

  9. Constitutive modelling and identification of parameters of the plastic strain-induced martensitic transformation in 316L stainless steel at cryogenic temperatures

    Garion, C; Sgobba, Stefano

    2006-01-01

    The present paper is focused on constitutive modelling and identification of parameters of the relevant model of plastic strain- induced martensitic transformation in austenitic stainless steels at low temperatures. The model used to describe the FCCrightward arrow BCC phase transformation in austenitic stainless steels is based on the assumption of linearization of the most intensive part of the transformation curve. The kinetics of phase transformation is described by three parameters: transformation threshold (p/sub xi/), slope (A) and saturation level (xi/sub L/). It is assumed that the phase transformation is driven by the accumulated plastic strain p. In addition, the intensity of plastic deformation is strongly coupled to the phase transformation via the description of mixed kinematic /isotropic linear plastic hardening based on the Mori-Tanaka homogenization. The theory of small strains is applied. Small strain fields, corresponding to phase transformation, are decomposed into the volumic and the shea...

  10. A comparison of residual stresses in multi pass narrow gap laser welds and gas-tungsten arc welds in AISI 316L stainless steel

    Elmesalamy, Ahmed; Francis, John Anthony; LI, Lin

    2014-01-01

    Thick-section austenitic stainless steels have widespread industrial applications, especially in nuclear power plants. The joining methods used in the nuclear industry are primarily based on arc welding processes. However, it has recently been shown that narrow gap laser welding (NGLW) can weld ma- terials with thicknesses that are well beyond the capabilities of single pass autogenous laser welding. The heat input for NGLW is much lower than for arc welding, as are the expected levels of res...

  11. Stability of austenitic 316L steel against martensite formation during cyclic straining

    Man, Jiří; Obrtlík, Karel; Petrenec, Martin; Beran, Přemysl; Smaga, M.; Weidner, A.; Dluhoš, J.; Kruml, Tomáš; Biermann, H.; Eifler, D.; Polák, Jaroslav

    2011-01-01

    Roč. 10, - (2011), s. 1279-1284. ISSN 1877-7058. [ICM11 -International Conference on The Mechanical Behavior of Materials /11./. Lake Como, 05.06.2011-09.06.2011] R&D Projects: GA ČR GAP108/10/2371 Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z20410507 Keywords : low cycle fatigue * 316L austenitic stainless steel * deformation-induced martensite Subject RIV: JL - Materials Fatigue, Friction Mechanics

  12. Estudio in vitro de la citotoxicidad y genotoxicidad de los productos liberados del acero inoxidable 316L con recubrimientos cerámicos bioactivos Cytotoxic and genotoxic study of in Vitro released products of stainless Steel 316l with bioactive ceramic Coatings

    María Elena Márquez Fernández

    2007-03-01

    Full Text Available El acero inoxidable AISI 316L es el biomaterial mas utilizado para la fabricación de implantes temporales, pero presenta limitaciones para implantes permanentes debido a la liberación de iones metálicos hacia los tejidos circundantes, produciendo especies reactivas de oxígeno (ERO y daño en ADN, factores que aumentan el riesgo de aparición de tumores locales y fallas mecánicas del implante. Una estrategia utilizada para disminuir la liberación de iones es la modificación superficial de los implantes metálicos por medio de recubrimientos inorgánicos, cerámicos o vítreos, aplicados por el método sol-gel, el cual presenta una serie de ventajas comparativas con otras técnicas de deposición, como buena adherencia, aplicación sencilla, mínimos problemas de secado, bajas temperaturas de densificación y posibilidad de agregar partículas y/o grupos orgánicos que mejoran la adherencia celular al implante aumentando su biocompatibilidad. En el presente trabajo se evaluaron los efectos citotóxico por medio de la técnica MTT, y genotóxico por electroforesis en gel de células individuales (Ensayo Cometa, sobre células de la línea celular CHO, de los productos liberados en medio MEM por el acero inoxidable 316L sin recubrir, recubierto con una monocapa de vidrio de sílice (MC, o con doble capa que contiene partículas bioactivas de hidroxiapatita (HA, vidrio (V o vitrocerámico (VC, después de un periodo de 30 días. Los resultados muestran que a los 30 días de envejecimiento en medio MEM no se encuentra ningún efecto citotóxico, pero se encontró efecto genotóxico en las probetas de A y MC que no representa un peligro inminente a sistemas celulares. The stainless steel AISI 316L is the must used biomaterial for the making of temporal prosthesis, but it presents severe limitations for permanent implants due to the generation and migration of metallic ions to the surrounding peripheral tissues, which produces oxygen reactive

  13. Rheological Properties of Mixtures of 316L Stainless Stell Powders With Polyproplylen Based Binders

    KARATAŞ, Çetin

    1998-01-01

    The flowabilities of feedstocks for powder injection molding (PIM), of 316L stainless steel powders (mean diameters 5.84, 30.42, 40.35, 67.42 mm) with thermoplastic binders (60% paraffin, 35% polypropylene, 5% stearic acid) were investigated. For this purpose, a capillary rheometer was designed and constructed. The rheometer was heated in 30 minutes to 300 °C with an accuracy of \\pm 1 °C. Its load range was 63-55.000 grams. The best flow measurements were made at 175 °C for all feed...

  14. THE EMPHASIS OF PHASE TRANSFORMATIONS AND ALLOYING CONSTITUENTS ON HOT CRACKING SUSCEPTIBILITY OF TYPE 304L AND 316L STAINLESS STEEL WELDS

    RATI SALUJA; K. M. MOEED

    2012-01-01

    Hot cracking is a significant problem due to transformation of retained ferrite into sigma phase, which results preferential corrosion of ferrite. The Hot Cracking Susceptibility is high for fully austenitic compositions but specimens with 5 to 30% ferrite were quite resistant to cracking. Hot cracking in 304L and 316L is amplified by low-melting eutectics containing impurities such as S, P, Si, N. It could be diminished by small increase in C, N, Cr, Ni, Si or by substantial increase in Mn c...

  15. A three dimensional discrete dislocation dynamics modelling of the early cycles of fatigue in an austenitic stainless steel 316L: dislocation microstructure and damage analysis; Modelisation physique des stades precurseurs de l'endommagement en fatigue dans l'acier inoxydable austenitique 316L

    Depres, Ch

    2005-07-01

    A numerical code modelling the collective behaviour of dislocations at a mesoscopic scale (Discrete Dislocation Dynamics code) is used to analyse the cyclic plasticity that occurs in surface grains of an AISI 316L stainless steel, in order to understand the plastic mechanism involved in crack initiation in fatigue. Firstly, the analyses of both the formation and the evolution of the dislocation microstructures show the crucial role of cross-slip played in the strain localization in the form of slip bands. As the cycling proceeds, the slip bands exhibit well-organized dislocation arrangements that substitute to dislocation tangles, involving specific interaction mechanisms between primary and deviate systems. Secondly, both the surface displacements generated by plastic slip and the distortion energy induced by the dislocation microstructure have been analysed. We find that an irreversible surface relief in the form of extrusion/intrusion can be induced by cyclic slip of dislocations. The number of cycles for the crack initiation follows a Manson-Coffin type law. The analyses of the concentration of the distortion energy and its repartition in the slip bands show that beneficial energetic zones may be present at the very beginning of the cycling, and that mode-II crack propagation in the surface grains results from a succession of micro-crack initiations along primary slip plane, which is facilitated by various effects (stress concentration due to surface relief, environment effects...). Finally, a dislocation-based model for cyclic plasticity is proposed from Discrete Dislocation Dynamics results. (author)

  16. 粉末注射成形制备Si_3N_4颗粒增强316L不锈钢%Si_3N_4 particle-reinforced 316L stainless steel prepared by powder injection molding

    田常娟; 何新波; 梅敏; 曲选辉

    2011-01-01

    Si3N4 particle-reinforced 316L stainless steel composites were prepared by powder injection molding(PIM) using water-soluble binders.It is shown that a water-soluble binder mainly consisting of polyoxymethylene(PEG),polyvinyl butyral(PVB) and stearic acid(SA) exhibits a better water-soluble degreasing performance.After degreasing injection parts in water for 6 h,the total binder removal rate is 55% and the PEG removal rate is 78.6%.The sintered composites have a uniform microstructure and excellent properties with a relative density of 95.2%,a hardness of HRB 79.8 and a tensile strength of 620 MPa.And the hardness and tensile strength are 5% and 20.4% higher than the Si3N4 particle-reinforced 316L stainless steel produced by PIM with a paraffin wax-based binder,respectively.%以多组元水溶性黏结剂为黏结剂,采用粉末注射成形工艺成功制备出了Si3N4颗粒增强316L不锈钢复合材料.研究表明:以聚乙二醇(PEG)、聚乙烯醇缩丁醛(PVB)和硬脂酸(SA)为主要成分的水溶性黏结剂表现出较好的水溶脱脂性能,注射坯在蒸馏水中脱脂6 h后,黏结剂总脱除率约为55%,其中PEG的脱除率约为78.6%;复合材料经烧结后组织均匀致密,性能良好,其致密度、硬度和拉伸强度分别为97.5%、HRB 81.7和620 MPa,其硬度和拉伸强度分别比采用石蜡基黏结剂制备的PIM--Si3N4增强316L不锈钢复合材料提高5%和20.4%.

  17. A comparison of residual stresses in multi pass narrow gap laser welds and gas-tungsten arc welds in AISI 316L stainless steel

    Thick-section austenitic stainless steels have widespread industrial applications, especially in nuclear power plants. The joining methods used in the nuclear industry are primarily based on arc welding processes. However, it has recently been shown that narrow gap laser welding (NGLW) can weld materials with thicknesses that are well beyond the capabilities of single pass autogenous laser welding. The heat input for NGLW is much lower than for arc welding, as are the expected levels of residual stress and distortion. This paper reports on a preliminary investigation of the through-thickness 2D residual stresses distributions, distortions, and plastic strain characteristics, for the NGLW process using material thicknesses up to 20 mm. The results are compared with those obtained with gas-tungsten arc (GTA) welding. While further work is required on thicker test pieces, preliminary results suggest that the longitudinal tensile residual stresses in NGLW joints are 30–40% lower than those for GTA welds. -- Highlights: • The magnitude of the residual stresses is 30–40% lower in the Narrow Gap Laser Welds NGLW in comparison to those for GTA welding. • NGLW technique resulted in a very narrow tensile stress region. • The welding strategy has a significant influence on the induced residual stress for the NGLW technique. • The distortion angle of GTA welds is approximately 3 times higher than for NGLW. • The accumulation of plastic strain due to thermo-mechanical cycling in GTA welding is higher than for NGLW

  18. On the origin of the tensile flow stress in the stainless steel AISI 316L at 300 K: Back stress and effective stress

    Feaugas, X.

    1999-10-08

    The tensile behavior of a polycrystal austenitic stainless steel at 0.2T{sub m} is discussed in terms of back and effective stresses with the help of qualitative and quantitative TEM observations. Particular attention is given to the transition between stages I and II which occurs at a plastic strain equal to 1.5%. The effective stress evolution can be interpreted as a competition process between the increase of mobile dislocation density and dislocation interactions and an annihilation process. The main purpose of this work is to provide a basis for separating the two different contributions of the back stress, namely the intragranular back stress X{sub intra} arising from the heterogeneous dislocation distribution inside the grains and the intergranular back stress component X{sub inter} resulting from plastic strain incompatibilities between grains. Moreover, it is shown that the latter contribution is dominant at small strains (stage I), whereas the former one is more important subsequently (stages II and III), when cross-slip and multiple slip occur.

  19. On factors influencing fatigue process in steel 316L used in hydrogen energy technologies

    Full text: Investigations of fatigue in steels exposed to hydrogen media is extremely important problem, hi this work, an austenitic stainless steel ASTM 316L resistant to hydrogen destructive influence is examined. The experiments presented have used hydrogen charged and uncharged specimens and were carried out under rotating bending and tension-compression fatigue in three different laboratories: at The University of Chemical Technology and Metallurgy, Sofia, Bulgaria; at Sandia National Laboratory, California and The University of Tufts, Medford, Massachusetts, USA; The Institute Hydrogenous at Kyushu University, Japan. The results are presented in Wohler curves complemented by 'Short fatigue crack length - Number of cycles' curves and 'Frequency - Lifetimes' plots, and compared respectively. key words: fatigue, hydrogen fatigue, stainless steel, Wohler curve, short fatigue crack

  20. Creep-fatigue propagation of semi-elliptical crack at 650 deg. C in 316L(N) stainless steel plates with or without welded joints; Propagation de fissures semi-elliptiques en fatigue-fluage a 650 deg. C dans des plaques d'acier 316L(N) avec ou sans joints soudes

    Curtit, F

    2000-07-01

    This study realised in LISN Laboratory of CEA Saclay, deals with the creep fatigue propagation of semi elliptical crack at the temperature of 650 deg C in 316L(N) stainless steel plates with or without welded joints. A vast majority of the studies on creep fatigue propagation models are based on specimen (CT) especially designed for crack propagation study. The PLAQFLU program performed in LISN laboratory deals with the application and adaptation of these models to complex crack shape, which are more representative of the cracks observed in industrial components. In this scope, we use propagation tests realised at the temperature of 650 deg C with wide plates containing semi elliptical defects. For some of them, the initial defect is machined in the middle of a welded joint, which constitute a privileged site for the crack initiation. The approach used in this study is based on global parameters of fracture mechanics. At first, tests on CT specimen are used in order to determine the propagation laws correlating the crack growth rate to the global parameters K or C{sup *}. These laws are then supposed to be intrinsic to our materials and are used to analysed the semi elliptical crack propagation. The analysis of the comportment of the crack during the hold time demonstrates the possibility to establish a correlation between the crack propagation both in the deepest and the surface point and the local value of C{sup *}. These correlations are coherent in the different points of the crack front for the different applied hold times, and they present a reasonably good agreement with the creep propagation law identified on CT specimen. The simulation of test performed on based metal specimen with a model of summation of both creep and pure fatigue crack growth gives acceptable results when the calculus of the simplified expression of C{sup *}{sub s} considers a continuous evolution of creep deformations rate during the all test. (author)

  1. Effects of hydrogen diffusion on the mechanical properties of austenite 316L steel at ambient temperature

    This study examined how the strain rate affects the room-temperature tensile behavior of hydrogen-charged 316L stainless steels. A high-temperature homogenization treatment was applied to the specimens after hydrogen charging and copper electroplating to remove the hydrogen concentration gradient. A softening phenomenon was observed in the hardening behavior of the H-charged and homogenized specimen at a strain rate of 2x10-3/s. The observation was further confirmed by an inspection of the fracture surface of the tensile test specimen. (author)

  2. 316L不锈钢钨极氩弧焊焊接接头耐点蚀试验%Pitting Resistance Corrosion Test of 316L Stainless Steel TIG Welding Joints

    舒欣欣; 徐连勇; 韩永典; 马丽; 张剑利

    2011-01-01

    According to the welding characteristics of 316L stainless steel, a TIG welding technology of non-filling argon in the back has been developed. The microstructure, pitting corrosion tests and electrochemical tests were conducted on the 316L welding joints. The results revealed that the microstructure of HAZ was coarse austenite near base metal side and ferrite distributed in the austenite matrix near the weld metal side, and the microstructure in root weld was ferrite distributed in the austenite matrix. After 72 h pitting corrosion test, the base metal in the upper surface was serious corroded. While for the case of root weld, the corrosion resistance was commensurate to that of the adjacent base metal. The electrochemical tests results were in conformity with the pitting corrosion test ones. Hence, the TIG welding technology of non-filling argon in the back was successful.%根据316L不锈钢的特点,开发了一种钨极氩孤焊背部免充气保护焊接工艺.对焊接接头进行了显微组织分析、点蚀试验和各区的电极电位分析.结果表明:316L焊接接头HAZ的显微组织靠母材一侧为粗大的奥氏体晶粒,靠焊缝一侧为奥氏体基体上分布着铁素体;根部焊缝的显微组织为奥氏体基体上分布着铁素体.经过72 h的点蚀试验后,上表面的焊接接头中母材腐蚀比较严重.对根部焊缝而言,钨极氩弧焊背部免充气保护焊接工艺得到的根部焊缝的耐腐蚀性与相邻的根部母材相当.电极电位试验结果与点蚀试验结果相一致,钨极氩弧焊背部免充气保护焊接工艺是成功的.

  3. Neutron diffraction measurement and finite element analysis of stress distribution in welded 316L stainless pipe

    Stress distribution in welded AISI 316 L stainless steel pipes (diameter 4'' and 10'') was measured using residual stress instrument installed at 30MWt HANARO reactor of KAERI. The measurements were made along the axial direction transverse to the weld direction from the weld center to the pipe edge. Measurement tracks were repeated at the depth of 1.5mm from the surfaces of the pipes and at the mid-thickness of the pipes wall. As a whole the stress distribution in diameter 4'' and diameter 10'' pipes showed the similar tendency. The stress analysis of the welded pipe was carried out using the finite element method. Reasonable agreement in stress distribution with experimental data was observed. (orig.)

  4. Effect of the aging treatment in the fractures mechanics of welded joints of steel 316L

    The austenitic stainless steel 316L is widely used in nuclear industry because of its excellent mechanical properties and corrosion resistance. These properties must be evaluated in order to prevent failure and extend the life of equipment. The microstructure in the weld fusion zone consists on an austenite matrix with 5-12% of delta ferrite met stable at room temperature. However the pressurized water reactors operate at temperatures in the range 290-325 deg C, thus welds may be susceptible to thermal aging embrittlement after long service life. According to the literature, this occurs due to the spinodal decomposition. Therefore, the purpose of this study was to evaluate the mechanical properties of 316L stainless steel welds by hardness and tensile tests before and after heat treatment. In this regard, two steel plates were welded and part of the material was heat treated at 335 deg C for 1000 hours. The tests after heat treatment showed an increase of only 4% in ultimate tensile strength and an increase of 28% in hardness. No changes were observed in the material microstructure, however according to literature changes can be identified by transmission electron microscopy. The curves of impact energy vs. temperature showed little change but, it was not able to observe a ductile-brittle transition and images of microstructure from scanning electronic microscopy (SEM) did not show fragile behavior. (author)

  5. Distribution of soluble and precipitated iron and chromium products generated by anodic dissolution of 316L stainless steel and alloy C-22: final report

    Estill, J; Farmer, J; Gordon, S; King, K; Logotetta, L; Silberman, D

    1999-08-11

    At near neutral pH and at applied potentials above the threshold potential for localized breakdown of the passive film, virtually all of the dissolved chromium appeared to be in the hexavalent oxidation state (Cr(VI)). In acidic environments, such as crevice solutions formed during the crevice corrosion of 316L and C-22 samples in 4 M NaCl, virtually all of the dissolved chromium appeared to be in the trivalent oxidation state (Cr(III)). These general observations appear to be consistent with the Pourbaix diagram for chromium (Pourbaix 1974), pp. 307-321. At high pH and high anodic polarization (pH {approximately} 8 and 800 mV vs. SHE), the predominate species is believed to be the soluble chromate anion (CrO{sub 4}{sup 2{minus}}). At the same pH, but lower polarization (pH {approximately} 8 and 0 mV vs. SHE), the predominate species are believed to be precipitates such as trivalent Cr(OH){sub 3} {center_dot} n(H{sub 2}O) and hexavalent Cr{sub 2}O{sub 3}. In acidified environments such as those found in crevices (pH < 3), soluble Cr{sup 3+} is expected to form over a wide range of potential extending from 400 mV vs. SHE to approximately 1200 mV vs. SHE. Again, this is consistent with the observations from the creviced samples. In earlier studies by the principal investigator, it has been found that low-level chromium contamination in ground water is usually in the hexavalent oxidation state (Farmer et al. 1996). In general, dissolved iron measured during the crevice experiments appears to be Fe(II) in acidic media and Fe(III) in near-neutral and alkaline solutions (table 3). In the case of cyclic polarization measurements, the dissolved iron measured at the end of some cyclic polarization measurements with C-22 appeared to be in the Fe(III) state. This is probably due to the high electrochemical potential at which these species were generated during the potential scan. Note that the reversal potential was approximately 1200 mV vs. Ag/AgCl during these scans. These

  6. Improvement of the SCC resistance of FCC alloys: influence of pre-fatigue on the SCC resistance of the austenitic stainless steel-316L in a MgCl2 boiling solution at 117 deg C

    The aim of this study is to analyse the effect of pre-fatigue of FCC materials on their mechanical and electrochemical response to better understand and delay the SCC damage. The material/environment couple tested is the 316L polycrystalline austenitic stainless steel in boiling MgCl2 at 30% mass. Samples are pre-strained in low cycle fatigue under plastic strain control, with a p/2 value of 0.4%, for various number of cycles (25%, 75% and at the number of cycles to reach saturation during pre-fatigue). It was found that only pre-fatigue at saturation improves the SCC resistance of the material, both on SSRT and constant load tests. A delayed crack initiation up to 10% of strain. which increases strain to failure by half. mostly accounts for this beneficial effect, during SSRT tests. Furthermore, other pre-straining only resulted in loss of strain to fracture and no delay in crack initiation. We related the crack initiation delay to the surface strain state due to pre-fatigue. It provides fine parallel slip bands. homogeneously located at the surface of the samples. This surface state induces an increasing anodic surface-cathodic surface ratio which lowers the kinetics of localised corrosion. thus that of crack initiation. We also show some experiments implying that pre-fatigue at saturation decreases the SCC crack growth velocity which can be understood through the CEP (Corrosion Enhanced Plasticity) Model. We also show that this beneficial effect is probably available on other fcc material/environment couples, such as OFHC Cu/ 1 M NaNO2 at pH 9. (author)

  7. Effect of Yttrium Ion Implantation on the Corrosion Resistance of Stainless Steel AISI 316 L Type in Sulfuric Acid (H2SO4, pH = 1.06) Media

    The effect of yttrium ion implantation on the corrosion resistance of stainless steel AISI 316 L type in sulfuric acid (H2SO4, pH = 1.06) is presented in this paper. Implantation of yttrium ion was carried out by varying the ion dose implanted into target at ion energy of 100 keV. Corrosion resistance properties experiments was carried out electrochemically in sulfuric acid media (H2SO4, pH = 1.06). Yttrium ion implanted into target was analyzed using EDAXS (Energy Dispersive Analysis X-Rays Spectroscopy). It has been found that before implantation, the corrosion current density of the samples was Icorr = 0.2 μA/cm2 (52 x 10-4 mpy). After the samples were implanted at ion dose 1.7 x 1017 ion /cm2, 2.1 x 1017 ion /cm2, 2.6 x 1017 ion /cm2, 3.0 x 1017 ion /cm2 and 3.5 x 1017 ion /cm2, the corrosion current density were 0.033 μA/cm2 (8.581 mpy), 0.033 μA/cm2 (8.581 mpy), 0.01 μA/cm2 (2.6 mpy), 0.033 μA/cm2 (8.581 mpy), and 0.066 μA/cm2 (17.162 mpy) respectively. From elemental analysis using EDAXS, it has been found that before implantation by yttrium ion, the contents of yttrium was 0 %, and after implantation at those ion doses, the contents of yttrium were 0.15 %, 0.17 %, 0.20 %, 0.32 % and 0.43 % weight. From these data, it could be concluded that the best corrosion resistance in sulfuric acid (pH = 1.06) was achieved at 0.20 % weight of yttrium. (author)

  8. Characterization of 316L steel welded joints irradiated between 15 to 41 dpa

    Solution annealed austenitic stainless steel Type 316L has been selected for use in the Next European Torus First Wall. Specimens taken from the European Reference Type 316L steel and welds, including electron beam, manual metal arc and weld deposits, have been irradiated at temperatures between 4120C to 5450C to neutron doses ranging from 15 through 41 dpa. Post irradiation experiments conducted have included density and dimensional measurements, tensile, fracture mechanics, fatigue crack growth rate, low cycle fatigue, and creep-fatigue tests. Irradiated specimens undergo dimensional changes with a maximum swelling (about 5%) occurring in specimens irradiated to 41 dpa at about 4500C. Yield stress and ultimate tensile strength have been found to sharply increase, reaching levels as high as 250% in the temperature range of 400-4500C. A significant decrease has been observed in the tensile elongation with the uniform elongation of some welded specimens attaining values as low as 1%. Fracture toughness of welded materials have also been found to sharply decrease particularly in weld deposits. Fatigue crack growth rate and continuous fatigue resistance of weldments have been found to be particularly affected by irradiation. It is concluded that for NET conditions, where the irradiation doses are significantly lower than the doses used in the present study (<15 dpa) and consequently the mechanical property changes will be less severe, swelling data in the range of 5 to 15 dpa are mostly needed

  9. Result of International Round Robin Test on Young's Modulus Measurement of 304L and 316L Steels at Cryogenic Temperatures

    Ogata et al. reported in 1996 results of international Round Robin tests on mechanical property measurement of several metals at cryogenic temperatures. Following the report, the standard deviation of Young's modulus of 316L steel is much larger than those of yield and tensile strengths, that is, 4.6 % of the mean value for Young's modulus, while 1.4 % and 1.6 % of the mean values for yield and for tensile strengths, respectively. Therefore, an international Round Robin test on Young's modulus of two austenitic stainless steels at cryogenic temperatures under the participation often institutes from four nations has been initiated within these two years. As a result, the ratios of standard deviation to the mean values are 4.2 % for 304L and 3.6 % for 316L. Such a drop in the standard deviation is attributable to the decrease in the number of institute owing to the application of single extensometer or direct strain gage technique

  10. Effect of ITER blanket manufacturing process on the properties of the 316L(N)-IG steel

    Austenitic stainless steel 316L(N)-IG is proposed as one of the base structural materials for the international thermonuclear experimental reactors (ITER) in-vessel components. Various fabrication techniques (hot isostatic pressing (HIP), powder metallurgy, fusion welding and casting etc.) were assessed for the high heat flux components. HIP is the most perspective option because it allows to manufacture components with complicated shape and to provide joining of heat sink and plasma facing materials, simultaneously, during the same HIP cycle. The paper deals with the results of investigations of the repeated thermal cycle effect on the 316L(N)-IG steel properties. It is shown that most significant changes of strength were observed after first heat treatment (HIP) cycle. Results of microstructure investigation and stress corrosion cracking (SCC) are also presented in the paper

  11. Tritium in austenitic stainless steel vessels

    The vessel used for the long-term storage of tritium (titanium tritide) will be of welded 316L stainless steel construction. The 316L stainless is chosen partially because of its excellent resistance, in the wrought condition, to any degradation of mechanical properties from contact with hydrogen isotopes. The work reported here was undertaken to check that the welds in the vessel would have a satisfactory response to the hydrogen isotopes. A satisfactory response has been demonstrated, leading to a general conclusion that the titanium tritide/316L stainless steel vessel combination provides an extremely reliable storage facility for the tritium

  12. Some properties of chromized stainless steels

    Materials used for constructions in food processing industry should meet mechanical specifications and sanitary requirements. The most often used steels AISI304 and 316L have similar mechanical characteristics but the corrosion resistance of 316L stainless steel is considerably better. On the other hand the price of 316L steel is twice higher. The advantageous solution with minimal investment cost is chemical modification of stainless steel surface layer. Main directions of chemical modifications of surface layers were characterized in this paper. In this paper there were also presented effects of chromizing of steel type AISI316L in order to increasing erosion - corrosion resistance. There were analysed structures; mechanical characteristics and durability of chromized stainless steel. (author)

  13. Processing and properties of sinters prepared from 316L steel nanopowders

    J. Paduch; R. Molenda; D. Kolesnikow; H. Krztoń

    2007-01-01

    Purpose: The results of the research work on processing the sinters obtained from nanocrystalline powders of 316L steel are presented.Design/methodology/approach: The 316L steel powder has been mechanically alloyed from a set of elementary powders with use of Fritsch Vario-Planetary Mill Pulverisette 4. The time of 12 hours of milling has been needed for producing the powder. The X-ray diffraction has been used for controlling of the mechanical alloying process. The Rietveld method has been u...

  14. Short-term low-temperature glow discharge nitriding of 316L austenitic steel

    T. Frączek

    2011-07-01

    Full Text Available The AISI 316L austenitic steel after glow discharge nitriding at temperature of T = 673 K and duration of τ=14,4 ks, for two different variants of specimen arrangement in the glow-discharge chamber was investigated. In order to assess the effectiveness of nitriding process, the surface layers profile analysis examination, surface hardness and hardness profile examination, the analysis of surface layer structures and corrosion resistance tests were performed. It has been found that application of a booster screen effects in a nitrogen diffusion depth increment into the 316L austenitic steel surface, what results in the surface layer thickness escalation.

  15. An integrated approach to the modelling of hydrogen assisted failure in 316L steel

    An integrated approach to the modelling of hydrogen assisted failure in 316L steel is presented. The approach includes experimental, fractographic, numerical and theoretical analysis of the phenomenon. The physical adequacy of the mechanical models of hydrogen embrittlement (notch extension model and notch cracking model) is discussed by comparing the virtual damage depth (theoretical) predicted by the models with the embrittled zone (microphysical) measured in the fractographic analysis by scanning electron microscopy. In addition, a numerical modelling of hydrogen diffusion is performed, concluding that bulk diffusion is not important in hydrogen embrittlement of 316L steel, so that hydrogen transport accelerated by the microdamage itself should be taken into account. (orig.)

  16. Characteristics of vacuum sintered stainless steels

    Z. Brytan; L.A. Dobrzański; M. Actis Grande; Rosso, M.

    2009-01-01

    Purpose: In the present study duplex stainless steels were sintered in vacuum. using rapid cooling form the mixture of prealloyed and alloying element powders The purpose of this paper was to describe the obtained microstructures after sintering as well as the main mechanical properties of sintered stainless steels.Design/methodology/approach: In presented work duplex stainless steels were obtained through powder metallurgy starting from austenitic 316L or ferritic 410L prealloyed stainless s...

  17. Electrochemical impedance spectrometry using 316L steel, hastelloy, maraging, Inconel 600, Elgiloy, carbon steel, TiN and NiCr. Simulation in tritiated water. 2 volumes

    Polarization and electrochemical impedance spectrometry curves are presented and discussed. These curves make it possible to ascertain the corrosion domains and to compare the slow and fast kinetics (voltammetry) of different stainless steel alloys. These corrosion kinetics, the actual or simulated tritiated water redox potentials, and the corrosion potentials provide a classification of the steels studied here: 316L, Hastelloy, Maraging, Inconel 600, Elgiloy, carbon steel and TiN and NiCr deposits. From the results it can be concluded that Hastelloy and Elgiloy have the best corrosion resistance. (author). 49 refs., 695 figs., tabs

  18. Radiation effects in stainless steels and tungsten using as ADS spallation neutron source system

    Radiation effects have been studied in the home-made modified 316L stainless steel and standard stainless steel and tungsten irradiated by 80 MeV 12C or 85 MeV 19F ions. The experimental results show that the radiation resistant property of stainless steels is much better than that of tungsten and the homemade modified 316L stainless steel has the best radiation resistant property among them. The stainless steels are a good choice for beam window material of the ADS spallation neutron source system, and the homemade modified 316L stainless steel is the best choice

  19. Interlaboratory study of the AISI 316L steel tribo-corrosion

    Seven European laboratories have participated in an interlaboratory study of AISI 316L stainless steel tribo-corrosion. Different tests arrangements have been used (rotating pin-on-disc and disc-on-pin, rotating tube-on-flat, alternating pin-on-flat) depending on the test laboratory. The experimental conditions for the various tests have ranged from: 0.1 to 30 N for normal loads, 1 to 33 Hz for frequency and 5 to 150 mm/sec for linear speed, 0.79 to 25.50 cm2 for electrode surfaces, -244 to -71 mV for corrosion potentials, and -33 to 46 mV for passivation potentials. Data for electrochemical potentials during frictional wear, coefficients of friction, wear rates and wear channel size are tabulated in this article. A dispersion of data is observed between the laboratories for friction coefficients; but this dispersion of data is comparable and even inferior to that obtained in VAMAS interlaboratory tests. Electrochemical tests results also have a convergence that is typical of a previous interlaboratory test program conducted by EFC. A large deviation in coefficients of wear is observed and is also typical of previous VAMAS testing

  20. Influence of enzymatic reactions on the electrochemical behavior of EN X2CrNiMo17-11-2 (AISI 316L) stainless steel in bio-corrosion: role of interfacial processes on the modification of the passive layer

    The outstanding corrosion behavior of stainless steels (SS) results from the presence of thin oxide layer (some nanometers). In non sterile aqueous media, stainless steels may exhibit a non stable behavior resulting from interactions between microbial species and passive film. In fact, microorganisms can be deeply involved in the corrosion processes usually reported as Microbial Influenced Corrosion (MIC). They can induce the initiation or the acceleration of this phenomenon and they do so when organized in bio-films. From the electrochemical point of view, stainless steels showed an increase of the free corrosion potential (Ecorr) attributed to the bio-film settlement. The Eco' ennoblement was broadly reported in seawater and seems to be confirmed in fresh water according to recent findings. A considerable progress in the comprehension of MIC processes was related to the role of extracellular species, essentially enzymes. Many enzymatic reactions occurring in bio-films consist on using oxygen as electron acceptor to generate hydrogen peroxide and related species. The aim of this work is to understand the mechanisms involved in the electrochemical behavior of stainless steel according to an enzymatic approach in medium simulating fresh water. To this end, glucose oxidase was chosen to globalize aerobic activities of bio-films. Electrochemical measurements in situ and surface analysis allow the comprehension of the role and the nature of interfacial processes. Surface characterization was performed with the help of a new quantitative utilization of XPS analysis and AFM. Results show a significant evolution in term of morphology (surface organization), (ii) chemical composition (passive layer, adsorbed organic species) and (iii) chemical reaction (oxidation, dissolution, effect of enzyme). Finally, a new enzymatic system is proposed to mimic specific physicochemical conditions at the SS / bio-film interface, in particular enzymatic generation of oxidant species in

  1. Estudio in vitro de la citotoxicidad y genotoxicidad de los productos liberados del acero inoxidable 316L con recubrimientos cerámicos bioactivos Cytotoxic and genotoxic study of in Vitro released products of stainless Steel 316l with bioactive ceramic Coatings

    María Elena Márquez Fernández; Pablo Jesús Abad Mejía; Claudia Patricia García García; Andrés Pareja López

    2007-01-01

    El acero inoxidable AISI 316L es el biomaterial mas utilizado para la fabricación de implantes temporales, pero presenta limitaciones para implantes permanentes debido a la liberación de iones metálicos hacia los tejidos circundantes, produciendo especies reactivas de oxígeno (ERO) y daño en ADN, factores que aumentan el riesgo de aparición de tumores locales y fallas mecánicas del implante. Una estrategia utilizada para disminuir la liberación de iones es la modificación superficial de los i...

  2. Surface Relief Evolution in 316L Steel Fatigued at Depressed and Elevated Temperatures

    Man, Jiří; Petrenec, Martin; Klapetek, P.; Obrtlík, Karel; Polák, Jaroslav

    Ottawa : NRCan - CANMET, 2009, s. 1-10. ISBN N. [International Conference on Fracture /12./. Ottawa (CA), 12.07.2009-17.07.2009] R&D Projects: GA AV ČR 1QS200410502; GA ČR GA106/06/1096; GA ČR GA101/07/1500 Institutional research plan: CEZ:AV0Z20410507 Keywords : 316L steel * persistent slip marking (PSM) * atomic force microscopy (AFM) Subject RIV: JL - Materials Fatigue, Friction Mechanics

  3. Short-term low-temperature glow discharge nitriding of 316L austenitic steel

    T. Frączek; Olejnik, M.; Jasiñski, J.; Skuza, Z.

    2011-01-01

    The AISI 316L austenitic steel after glow discharge nitriding at temperature of T = 673 K and duration of τ=14,4 ks, for two different variants of specimen arrangement in the glow-discharge chamber was investigated. In order to assess the effectiveness of nitriding process, the surface layers profile analysis examination, surface hardness and hardness profile examination, the analysis of surface layer structures and corrosion resistance tests were performed. It has been found that application...

  4. Estrutura e propriedades do aço inoxidável austenítico AISI 316L Grau ASTM F138 nitretado sob plasma à baixa temperatura Structure and properties of an austenitic stainless steel AISI 316L grade ASTM F138 after low temperature plasma nitriding

    André Paulo Tschiptschin

    2010-03-01

    Full Text Available Os aços inoxidáveis austeníticos possuem restrições para a nitretação nas temperaturas convencionais, próximas de 550ºC, devido à precipitação intensa de nitretos de cromo na zona de difusão. Essa precipitação eleva a dureza, mas deteriora as propriedades de corrosão. O uso do processo de nitretação sob plasma permite introduzir nitrogênio em temperaturas inferiores a 450ºC, levando à formação de uma fina camada de austenita expandida pelo nitrogênio (gN. Essa fase possui uma estrutura cristalina mais bem representada pelo reticulado triclínico, com elevada concentração de nitrogênio em solução sólida supersaturada, a qual promove um estado de tensões residuais de compressão capaz de elevar a dureza do substrato de 4 GPa para valores próximos de 14 GPa. O Módulo de Elasticidade mantém-se próximo de 200 GPa após a nitretação.Austenitic stainless steels cannot be conventionally nitrided at temperatures near 550°C due to the intense precipitation of chromium nitrides in the diffusion zone. The precipitation of chromium nitrides increases the hardness but severely impairs corrosion resistance. Plasma nitriding allows introducing nitrogen in the steel at temperatures below 450°C, forming pre-dominantly expanded austenite (gN, with a crystalline structure best represented by a special triclinic lattice, with a very high nitrogen atomic concentration promoting high compressive residual stresses at the surface, increasing substrate hardness from 4 GPa up to 14 GPa on the nitrided case.

  5. Study on stress corrosion of the zone affected by the AISI 316L steel heat under PWR reactor environment at 325 deg Celsius

    This paper evaluates the stress corrosion susceptibility of the HAZ (heat affected zone) of the AISI 316L stainless steel of a dissimilar welding done between the ASTM A-508 steel and the AISI 316L steel, using a nickel alloy, under a chemical environment similar to the PWR (Pressurized Water Reactor) nuclear reactor primary circuit. The nickel 82 and 182 alloys were used in the GTAW (Gas Tungsten Arc Welding) and SMAW (Shielded Metal Arc Welding) processes respectively. The test at slow deformation - SSRT (Slow Strain Rate Test) was applied, using a deformation rate of 3x10-7 s-1, at a temperature of 325 degree Celsius and pressure of 12.5 MPa. The susceptibility under tress corrosion evaluation was performed comparing the resistance limit, the total deformation and the fracture time obtained at the inert medium (nitrogen) and at the PWR medium. Also, the fracture surfaces were observed under a scanning electron microscope, verifying the fragile fracture regions

  6. Characterization of aluminide coatings formed on 1.4914 and 316L steels by hot-dipping in molten aluminium

    Protective coatings are commonly used to extend the life of alloys in oxidation, corrosion or erosion environments encountered in various industrial fields. For example, in the fusion nuclear technology area, coatings applied to the surface of structural materials have to be developed because of the use of the liquid alloy Pb-17Li as a tritium breeder material and a coolant in future reactors. In this specific case, it is necessary to protect the steel containment from liquid metal corrosion and to prevent the loss of tritium from the coolant by diffusion/permeation through steel or elevated temperatures. Greater success has been reported for intermetallic coatings as aluminides which form protective aluminium oxide scales on steel surface. Therefore, the purpose of this work is to study aluminide coatings produced on steel substrate by hot-dipping in molten aluminium. In the present paper, 1.4914 martensitic steel and 316L austenitic stainless steel (materials suggested as structural steels for the future blanket of fusion reactors) have been studied. Some tests have also been carried out with pure metals as iron, nickel and chromium. The chemical composition, structure and growth properties of intermetallic layers formed during the interaction of materials with liquid aluminium are presented and compared

  7. Experimental evaluation of micromechanical damage produced by hydrogen in 316L steel for the first wall of fusion reactors

    This paper analyzes the process of progressive damage produced by mechanical origins (plasticity) and environmental causes (hydrogen embrittlement) in 316L austenitic stainless steel for the first wall of fusion reactors. Results of the analysis show that the micromechanical damage created by hydrogen is concentrated in an external circumferential ring with the same center as the cross sectional area of the notched samples. The microscopical appearance of this embrittled zone or damaged area is very rough and irregular at the microscale, with evidence of microcracking or secondary cracking, in contrast with the smooth surface (at the microscale) created by microvoid coalescence (dimpled fracture) in the inner core which is not embrittled by hydrogen and thus fails by mechanical reasons. The depth of the hydrogen damaged zone is quantified by fractographic methods and related to the test variables. (orig.)

  8. 植酸在316L不锈钢表面的自组装及缓蚀性能研究%Research on Self-assembly Behavior and Corrosion Inhibition Performance of Phytic Acid on 316L Stainless Steel Surface

    王海人; 周洋; 屈钧娥; 王海鹏; 曹志勇

    2013-01-01

    以浸泡法在化学氧化处理前后的316L不锈钢表面制备了植酸自组装膜,通过动电位扫描、SEM观察及FT-IR测试,研究了组装液pH与组装时间对植酸自组装膜吸附行为及耐蚀性能的影响.结果表明:植酸被成功地组装到316L不锈钢表面,并使其耐腐蚀性能大大提高.相比而言,化学氧化处理有利于形成更致密、更耐腐蚀的自组装膜.不经化学氧化处理时,植酸组装的最佳pH为6.90,最佳时间为12 h;而经化学氧化处理时,植酸组装的最佳pH也为6.90,但最佳时间缩短为4h.%The phytic acid self-assembled film (SAM) was prepared on 316L stainless steel surface before and after chemical oxidation by immersion method.The effect of SAM solution pH and SAM time on the adsorption behavior and corrosion inhibition performance of the phytic acid SAM was investigated by potential dynamic scan,SEM (scanning electron microscope) observation and FT-IR (Fourier transformed infrared spectroscopy) testing.The experimental results show that phytic acid has been successfully assembled to the surface of 316L stainless steel,which greatly improves the corrosion resistance of the metal.The chemical oxidation pretreatment is beneficial for the formation of a denser SAM with more notable corrosion resistant performance.For the samples without chemical oxidation treatment,the optimum pH for the assembly of phytic acid is 6.90 and the best assembly time is 12 h.And for those with chemical oxidation,the optimum pH is still 6.90 while the best assembly time reduces to 4 h.

  9. Effect of Post-Weld Heat Treatment on Mechanical and Electrochemical Properties of Gas Metal Arc-Welded 316L (X2CrNiMo 17-13-2) Stainless Steel

    Muhammad, F.; Ahmad, A.; Farooq, A.; Haider, W.

    2016-08-01

    In the present research work, corrosion behavior of post-weld heat-treated (PWHT) AISI 316L (X2CrNiMo 17-13-2) specimens joined by gas metal arc welding is compared with as-welded samples by using potentiodynamic polarization technique. Welded samples were PWHT at 1323 K for 480 s and quenched. Mechanical properties, corrosion behavior and microstructures of as-welded and PWHT specimens were investigated. Microstructural studies have shown grain size refinement after PWHT. Ultimate tensile strength and yield strength were found maximum for PWHT samples. Bend test have shown that PWHT imparted ductility in welded sample. Fractographic analysis has evidenced ductile behavior for samples. Potentiodynamic polarization test was carried out in a solution composed of 1 M H2SO4 and 1 N NaCl. Corrosion rate of weld region was 127.6 mpy, but after PWHT, it was decreased to 13.12 mpy.

  10. On the wear of TiBx/TiSiyCz coatings deposited on 316L steel

    Bilayer TiBx/TiSiyCz coatings were formed on AISI 316L steel substrates by dual beam ion beam assisted deposition from TiBx and TiSiyCz targets. Coated and uncoated substrates were subjected to nanoindentation, scratch and friction-wear tests. Scratch and ball-on-disc tests were conducted in non-lubricated sliding, using a diamond pin and 100Cr6 steel ball, respectively. Scanning electron microscopy and atomic force microscopy were used to examine the surfaces of coated samples, before and after tests. To investigate wear mechanisms in the coating-substrate systems, thin foils were prepared from worn areas for transmission electron microscopy observations. TiBx/TiSiyCz coatings proved to be well adherent to steel substrates. The main wear mechanism was of abrasive type. Intensive plastic deformation of steel substrate under critical loads was revealed.

  11. AFM study of surface relief evolution in 316L steel fatigued at low and high temperatures

    Man, Jiří; Valtr, B.; Weidner, A.; Petrenec, Martin; Obrtlík, Karel; Polák, Jaroslav

    2010-01-01

    Roč. 2, č. 1 (2010), s. 1625-1633. ISSN 1877-7058. [Fatigue 2010. Praha, 06.06.2010-11.06.2010] R&D Projects: GA ČR GAP108/10/2371; GA AV ČR 1QS200410502; GA ČR GA106/06/1096 Institutional research plan: CEZ:AV0Z20410507 Keywords : Fatigue crack initiation * 316L steel * Persistent slip band (PSB) * Extrusion * Intrusion * Atomic force microscopy (AFM) Subject RIV: JL - Materials Fatigue, Friction Mechanics

  12. Effects of nitrogen and hydrogen in argon shielding gas on bead profile, delta-ferrite and nitrogen contents of the pulsed GTAW welds of AISI 316L stainless steel

    The general effects of 1, 2, 3 and 4 vol.-% nitrogen and 1, 5 and 10 vol.-% hydrogen in argon shielding gas on weld bead profile (depth/width ratio: D/W) and the δ-ferrite content of AISI 316L pulsed GTAW welds were investigated. The limits for imperfections for the quality levels of welds were based on ISO 5817 B. The plates with a thickness of 6 mm were welded at the flat position and the bead on plate. Increasing hydrogen content in argon shielding gas increases the D/W ratio. Excessive hydrogen addition to argon shielding gas will result in incompletely filled groove and excessive penetration of weld. Increasing welding speed decreases the weld-metal volume and the D/W ratios. Nitrogen addition to argon shielding gas has no effect on the D/W ratio. The addition of a mixture of nitrogen and hydrogen to argon shielding gas on the D/W ratio does not show any interaction between them. An effect on the D/W ratio can be exclusively observed as a function of hydrogen content. Increasing hydrogen content in argon shielding gas increases the δ-ferrite content of weld metal. Increasing either nitrogen content in shielding gas or welding speed decreases the δ-ferrite content of weld metal. The nitrogen addition increases the weld metal nitrogen content, however, the hydrogen addition leads to a decrease of weld metal nitrogen content.

  13. Effects of nitrogen and hydrogen in argon shielding gas on bead profile, delta-ferrite and nitrogen contents of the pulsed GTAW welds of AISI 316L stainless steel

    Viyanit, Ekkarut [National Metal and Materials Technology Center (MTEC), Pathaumthani (Thailand). Failure Analysis and Surface Technology Lab; Hartung, Fritz; Lothongkum, Gobboon [Chulalongkom University, Bangkok (Thailand). Dept. of Metallurgical Engineering,; Phakpeetinan, Panyasak; Chianpairot, Amnuysak

    2016-08-01

    The general effects of 1, 2, 3 and 4 vol.-% nitrogen and 1, 5 and 10 vol.-% hydrogen in argon shielding gas on weld bead profile (depth/width ratio: D/W) and the δ-ferrite content of AISI 316L pulsed GTAW welds were investigated. The limits for imperfections for the quality levels of welds were based on ISO 5817 B. The plates with a thickness of 6 mm were welded at the flat position and the bead on plate. Increasing hydrogen content in argon shielding gas increases the D/W ratio. Excessive hydrogen addition to argon shielding gas will result in incompletely filled groove and excessive penetration of weld. Increasing welding speed decreases the weld-metal volume and the D/W ratios. Nitrogen addition to argon shielding gas has no effect on the D/W ratio. The addition of a mixture of nitrogen and hydrogen to argon shielding gas on the D/W ratio does not show any interaction between them. An effect on the D/W ratio can be exclusively observed as a function of hydrogen content. Increasing hydrogen content in argon shielding gas increases the δ-ferrite content of weld metal. Increasing either nitrogen content in shielding gas or welding speed decreases the δ-ferrite content of weld metal. The nitrogen addition increases the weld metal nitrogen content, however, the hydrogen addition leads to a decrease of weld metal nitrogen content.

  14. Processing and properties of sinters prepared from 316L steel nanopowders

    J. Paduch

    2007-04-01

    Full Text Available Purpose: The results of the research work on processing the sinters obtained from nanocrystalline powders of 316L steel are presented.Design/methodology/approach: The 316L steel powder has been mechanically alloyed from a set of elementary powders with use of Fritsch Vario-Planetary Mill Pulverisette 4. The time of 12 hours of milling has been needed for producing the powder. The X-ray diffraction has been used for controlling of the mechanical alloying process. The Rietveld method has been used to calculate the contents of the components of the powder. Cold and hot isostatic pressing have been applied to make the compacts. The pressure of 500 MPa and 900 MPa of cold pressing, and 150 MPa of hot pressing have been used. The green compacts have been pressed isostaticly using liquid aluminum in the temperature of 950°C (1223 K. The X-ray diffraction have been used to identify the phase components of the sinters. The structure of the sinters have been observed using scanning electron microscope. The hardness values have been obtained by Vicker’s test.Findings: The mechanically alloyed powder has consisted of about 94 wt.% of austenite, 5 wt.% of ferrite and not more than 1 wt.% of not alloyed molybdenum. Two kinds of sinters have been produced, one kind made of pure 316L powder, second one obtained with aluminum infiltration within the volume of the sinters. The observed porosity of the sinters has depended on the applied pressing conditions strongly, mainly on the value of cold isostatic pressure. The hardness of the first kind of sinters have achieved a value of 380 HV (98N, the hardness of the second kind - more than 400 HV (98N.Practical implications: The Al infiltrated sinter has been proposed as a material for a part of Diesel engine. As an example, a part of a fuel injection has been produced.Originality/value: The nanocrystalline 316L powder has been obtained using mechanical alloying process. The original method of hot isostatic

  15. L360QS/316L不锈钢复合钢管焊接工艺和性能研究%Welding Process and Performance Study on L360QS/316L Stainless Steel Clad Pipe

    付现桥; 徐敬; 卜明哲; 刘志田; 项祖义; 郭旭

    2014-01-01

    This paper described new welding process on the L360QS/316L clad pipe with size of Ø355.6mm ×(10+3) mm. Firstly, it adopted TIG welding to conduct overlaying on the pipe end, and then, using TIG welding process for butt welding with argon gas protection. The tensile strength, charpy impact test, hardness, intergranular corrosion test and SCC were carried out to study the properties of the circumferential weld. The results indicated that the welded joint performance of the circumferential weld is good; it is with resistance to intergranular corrosion and stress corrosion. The overlay welding layer plays a good role in isolation function to ensure the weld quality.%介绍了准355.6 mm×(10+3) mm规格L360QS+316L不锈钢复合钢管的新型焊接工艺,即首先采用TIG焊在复合钢管管端进行堆焊预处理,然后再采用氩气保护TIG焊进行对焊操作。为评价环焊缝的性能,焊后对其焊接接头进行了拉伸试验、冲击试验、硬度测试、晶间腐蚀及应力腐蚀试验。试验结果表明,采用该工艺焊接的L360QS+316L不锈钢复合钢管环焊缝焊接接头性能良好,且具备耐晶间腐蚀和应力腐蚀性能;堆焊层起到了很好的隔离作用,保证了焊缝的质量。

  16. Tritium in austenitic stainless steel vessels

    Austenitic stainless steels are normally recommended for components of hydrogen-handling equipment in applications where high in-service reliability is required. The literature leading to this recommendation is reviewed, and it is shown that AISI Type 316L stainless is particularly suitable for use in tritium-handling and storage systems. When made of this steel, the storage vessels will be extremely resistant to any degradation from tritium in both routine and accident conditions. (author)

  17. Adhesion of composite carbon/hydroxyapatite coatings on AISI 316L medical steel

    J. Gawroński

    2009-07-01

    Full Text Available In this paper are contains the results of studies concerning the problems associated with increased of hydroxyapatite (HAp adhesion, manufactured by using Pulse Laser Deposition (PLD method, to the austenitic steel (AISI 316L through the coating of carbon interlayer on it. Carbon coating was deposited by Radio Frequency Plasma Assisted Chemical Vapour Deposition (RF PACVD method.Test results unequivocally showed that the intermediate carbon layer in a determined manner increase the adhesion of hydroxyapatite to the metallic substrate. Obtained results give rise to deal with issues of manufacturing composite bilayer – carbon film/HAp – on ready implants, casted from austenitic cast steel by lost-wax process method as well as in gypsum forms.

  18. Al2O3颗粒对丁腈橡胶/316L不锈钢配副摩擦磨损行为的影响%Influence of Al2O3 particles on the friction and wear behaviors of nitrile rubber against 316L stainless steel

    Ming-xue SHEN; Jin-peng ZHENG; Xiang-kai MENG; Xiao LI; Xu-dong PENG

    2015-01-01

    The friction and wear properties of nitrile rubber (NBR) against 316L stainless steel pairs were investigated by using a sphere-on-disc test device. The influence of Al2O3 particle sizes and the normal load on the tribological behaviors of the pairs were primarily evaluated. The damage behaviors of worn surfaces were analyzed using a scanning electric microscopy (SEM) and a surface profilometer. The results show that the friction coefficient decreased because of particles coming into contact pairs, while particles also play an important role in increasing the wear loss of stainless steel with many furrows on the steel ball surface due to the ploughing effect of hard particles. Large-sized particles could accelerate the wear of rubber, and the micro-cutting scratches of the stainless steel induced by the Al2O3 particles embedded in the rubber matrix. However, as the particle’s size decreased, the wear loss of the rubber was gradually mitigated. It is obvious that the normal load affected the wear of the rubber to a larger extent than the stainless steel. Moreover, with large particles, the wear loss of rubber increased sharply with increasing the normal load. In addition, the NBR/stainless steel tribo-pairs presented different wear mechanisms, under different conditions, such as having no particles or varied particle sizes.%目的:研究弹性体/金属配副在硬质颗粒环境下的摩擦磨损行为,分析有无颗粒及颗粒尺寸大小对摩擦学特性的影响,为橡塑密封设计提供参考。创新点:基于橡胶O型圈常见失效机制,模拟橡胶密封圈在颗粒介入时的摩擦磨损行为,探讨硬质颗粒及其颗粒尺寸对橡胶/金属摩擦配副的影响。方法:1.采用球/平面接触方式,开展丁腈橡胶/金属(316L)配副在Al2O3颗粒环境下的摩擦磨损行为,通过考察摩擦系数时变曲线、摩擦副磨损形貌及其损伤机制等特性,揭示 Al2O3颗粒对丁腈橡胶/316L不锈钢配

  19. Comparison of Strength and Serration at Cryogenic Temperatures among 304L, 316L and 310S Steels

    Shibata, K.; Ogata, T.; Nyilas, A.; Yuri, T.; Fujii, H.; Ohmiya, S.; Onishi, T.; Weiss, K. P.

    2008-03-01

    Tensile tests of 310S steel were performed at temperatures below 300 K and the yield strength and deformation behavior were compared with those of 304L and 316L steels. Computer simulations were also carried out to graph stress-elongation curves in order to discuss the effects of martensitic transformations induced during deformation on their strengths and deformation behavior at low temperatures. Tensile tests showed that yield strength of 310S steel is highest and that of 304L is lowest. The differences in yield strengths between 316L and 310S steels and between 304L and 316L steels are larger than those expected from the differences in solid solution strengthening. This can be explained by the effect of the strain through γ to ɛ martensitic transformation induced by elastic stress in 304L and 316L steels. The strength level and the shape of stress-elongation curves at cryogenic temperatures excluding serration can be qualitatively revealed by simulation when higher strength of ɛ phase comparing to α' phase and the window effect of α' were considered simultaneously. In liquid hydrogen, the three steels exhibit large serrations on the stress-elongation curves after the deformation near to the ultimate stress, while the curves are smooth before the onset of the serration. Such serrations in liquid hydrogen could not be revealed by simulation.

  20. Corrosion Properties of Laser Welded Stainless Steel

    Weldingh, Jakob; Olsen, Flemmming Ove

    1997-01-01

    In this paper the corrosion properties of laser welded AISI 316L stainless steel are examined. A number of different welds has been performed to test the influence of the weld parameters of the resulting corrosion properties. It has been chosen to use the potential independent critical pitting...

  1. Elaboración del plan HACCP para gestión de inocuidad en la línea de proceso de salchichas de una planta de productos cárnicos cárnicos1 Cytotoxic and genotoxic study of in vitro released productos of stainless steel 316L with bioactive ceramic coatings

    Diana Cortés

    2003-01-01

    Full Text Available

    La enfermedad transmitida por alimentos (ETA es el síndrome
    originado por la ingestión de alimentos y/o agua con contaminación
    química, física o biológica que puede afectar la salud. La frecuencia de ETA es aproximadamente de mil millones de casos/año en el mundo y está entre las primeras causas de muerte en niños.


    Un alimento inocuo no debe presentar riesgos químicos, físicos
    o biológicos para el consumidor y no genera efectos adversos sobre
    su calidad de vida ni su salud. El Sistema de Análisis de Riesgos y
    Control en Puntos Críticos (HACCP con fundamentos científicos y
    carácter sistemático identifica peligros y medidas para controlarlos,
    para garantizar la inocuidad de los alimentos. El objetivo de este
    trabajo fue aplicar los principios HACCP y elaborar el plan HACCP para
    la línea de proceso de salchichas.

    The stainless steel AISI 316L is the must used biomaterial for the making of temporal prosthesis, but it presents severe limitations for permanent implants due to the generation and migration of metallic ions to the surrounding peripheral tissues, which produces oxygen reactive species (ERO and damages of the ADN, increasing the possibility of local tumors and mechanical failure of the implant. A strategy used to minimize the generation of ions is the superficial modification of the implants by means of inorganic coatings, ceramic or vitreous, applied by the sol-gel process; this method has a series of comparative advantages, compared to other deposition methods, as good adherence, easy application, minimum drying problems, low densification temperatures and the possibility of adding particles and/or organic groups that improve the adhesion of the cell to the implant, increasing the biocompatibility. In the present work, the citotoxic effects were valuated by means of the MTT technique, and the genotoxic ones by electrophoresis of individual cell gels (Cometa

  2. Creep fatigue interaction. Hold time effects on low cycle fatigue resistance of 316 L steel at 6000C

    This is a study of hold time effects on the low cycle fatigue properties of 316 L austenitic stainless steel at 6000C in air. Results obtained for different plastic strain levels indicate that a tension hold time at peak strain lead to a reduction in fatigue life. The importance of this effect depend on the length of hold period, and also on the strain amplitude. No saturation had been observed. Metallographic and microstructural analysis of failed specimens indicates mechanisms by which failure is produced. For continuous cycling the fracture occurs by the initiation and the propagation of a transgranular crack. Creep damage in the bulk of material is formed during periods of tensile stress relaxation; it causes a change in the failure mode which became intergranular. It is the interaction between this creep-damage and fatigue cracks which is partly responsable for the reduction in the fatigue life. Several approaches are used for evaluating creep-fatigue interaction damage and estimating the fatigue life. Among those proposed approaches, the linear damage rule and the strain range partitioning method are discussed

  3. Notch Effect on Tensile Deformation Behavior of 304L and 316L Steels in Liquid Helium and Hydrogen

    Tensile tests of type 304L and 316L steels were carried out using round bar specimens with a notch in liquid helium, hydrogen, liquid nitrogen and at ambient temperature. The obtained tensile strengths were compared with the tensile strengths of smooth specimens. For smooth specimens, tensile strength increased with a decrease in temperature and the strengths in liquid helium and hydrogen show similar values in both steels. For notched specimen of 304L steel, tensile strength (including fracture strength) increased noticeably from ambient to liquid nitrogen temperature but showed a large decrease in liquid helium and hydrogen. In liquid hydrogen and helium, the tensile strength is a little lower in liquid hydrogen than in liquid helium and both strengths are lower than tensile strengths of smooth specimens. For notched specimen of 316L steel, an increase in tensile strength from ambient to liquid nitrogen temperature was not so large and a decrease from liquid nitrogen to liquid hydrogen was small. The tensile strengths in liquid helium and hydrogen were nearly same and higher than those of smooth specimens. Different behavior of serration was observed between liquid helium and hydrogen, and between 304L and 316L steels. The reasons for these differences were discussed using computer simulation

  4. Notch Effect on Tensile Deformation Behavior of 304L and 316L Steels in Liquid Helium and Hydrogen

    Shibata, K.; Fujii, H.

    2004-06-01

    Tensile tests of type 304L and 316L steels were carried out using round bar specimens with a notch in liquid helium, hydrogen, liquid nitrogen and at ambient temperature. The obtained tensile strengths were compared with the tensile strengths of smooth specimens. For smooth specimens, tensile strength increased with a decrease in temperature and the strengths in liquid helium and hydrogen show similar values in both steels. For notched specimen of 304L steel, tensile strength (including fracture strength) increased noticeably from ambient to liquid nitrogen temperature but showed a large decrease in liquid helium and hydrogen. In liquid hydrogen and helium, the tensile strength is a little lower in liquid hydrogen than in liquid helium and both strengths are lower than tensile strengths of smooth specimens. For notched specimen of 316L steel, an increase in tensile strength from ambient to liquid nitrogen temperature was not so large and a decrease from liquid nitrogen to liquid hydrogen was small. The tensile strengths in liquid helium and hydrogen were nearly same and higher than those of smooth specimens. Different behavior of serration was observed between liquid helium and hydrogen, and between 304L and 316L steels. The reasons for these differences were discussed using computer simulation.

  5. Surface analysis, by SNMS, of 316L steel exposed to simulated BWR conditions

    Samples of 316L steel have been exposed to Boiling Light Water Reactor chemistry for between forty and seven thousand hours. These samples, with three different surface finishes, 'as-delivered', mechanically polished and electro-polished, have been analysed by Sputtered Neutral Mass Spectrometry and profiles of the constituent alloying elements have been obtained. Differences in the oxide that has built-up are compared and discussed in terms of current ideas of corrosion mechanisms. The structure of the oxide changes with exposure time for the experimental conditions. The effect of surface finish and water velocity have a clear marked effect on the oxide structure and growth rate, respectively: samples in a low water velocity stream form the protective oxide, chromia, and some mixed spinels; electro-polished samples have no chromium layer but show possible secondary passivation through the build-up of nickel; and samples in high velocity water form a simple structured oxide that does not reach a saturation thickness after 291 days but steadily increases. (author) 9 figs., 3 tabs., 7 refs

  6. Multiaxial isothermal and thermal cycling tests of AISI 316 L(N) austenitic steel tubes

    Multiaxial isothermal and thermal cycling tests of tubes made of AISI 316 L(N) austenitic steel are described. The thermal cycling load is generated by periodic induction heating of the outer tube wall and simultaneous continuous cooling by means of water of the inner tube wall. Temperature gradients in excess of 100 K/mm are produced which give rise to fatigue-induced cracks mainly in the inner tube wall. In the tube specimens subjected to isothermal loads, the equibiaxial stress condition typical of thermal cycling tests is to be simulated. This stress load is produced in tubes by superimposing a longitudinal load (tension/compression) upon a circumferential load (internal/external pressures). A new test rig has been built especially for this purpose. The design and mode of operation of the rig as well as the measurement systems, especially for the measurement of circumferential strain, are described. The reference base for the multiaxial tests are uniaxial alternating strain tests of small round solid specimens. The tests are conducted in the LCF range and consequently are strain controlled. The test results obtained to date are presented. In all tests, special attention is paid to the generation and propagation of fatigue-induced cracks. In this connection, the measurement of crack lengths is described. (author)

  7. Improvement of the SCC resistance of FCC alloys: influence of pre-fatigue on the SCC resistance of the austenitic stainless steel-316L in a MgCl{sub 2} boiling solution at 117 deg C; Recherche d'une amelioration du comportement en CSC d'alliages de structure CFC: influence d'une pre-deformation en fatigue oligocyclique sur le comportement en CSC de l'acier inoxydable austenitique 316L dans une solution bouillante de MgCl{sub 2} a 117 deg C

    Curiere, I. de

    2000-12-01

    The aim of this study is to analyse the effect of pre-fatigue of FCC materials on their mechanical and electrochemical response to better understand and delay the SCC damage. The material/environment couple tested is the 316L polycrystalline austenitic stainless steel in boiling MgCl{sub 2} at 30% mass. Samples are pre-strained in low cycle fatigue under plastic strain control, with a p/2 value of 0.4%, for various number of cycles (25%, 75% and at the number of cycles to reach saturation during pre-fatigue). It was found that only pre-fatigue at saturation improves the SCC resistance of the material, both on SSRT and constant load tests. A delayed crack initiation up to 10% of strain. which increases strain to failure by half. mostly accounts for this beneficial effect, during SSRT tests. Furthermore, other pre-straining only resulted in loss of strain to fracture and no delay in crack initiation. We related the crack initiation delay to the surface strain state due to pre-fatigue. It provides fine parallel slip bands. homogeneously located at the surface of the samples. This surface state induces an increasing anodic surface-cathodic surface ratio which lowers the kinetics of localised corrosion. thus that of crack initiation. We also show some experiments implying that pre-fatigue at saturation decreases the SCC crack growth velocity which can be understood through the CEP (Corrosion Enhanced Plasticity) Model. We also show that this beneficial effect is probably available on other fcc material/environment couples, such as OFHC Cu/ 1 M NaNO{sub 2} at pH 9. (author)

  8. A study of the microstructural distribution of cathodic hydrogen in austenitic stainless steels by hydrogen microprint

    The cathodic hydrogen distribution in austenitic stainless steel (304L; 316L) microstructure is shwon, at electron microscope scale, using the hydrogen microprint technique. Cathodic hydrogen induced cracking is analysed

  9. Effect of the applied potential of the near surface microstructure of a 316L steel submitted to tribocorrosion in sulfuric acid

    The tribocorrosion behaviour of a 316L austenitic stainless steel sliding against alumina was investigated under electrochemical control in sulfuric acid using a tribometer with a ball on flat configuration. Tests were conducted by applying either a passive potential (metal covered by an oxide film) or a cathodic potential (no passive film, negligible corrosion) to the steel. Friction, wear and anodic current were monitored. The near surface microstructure of wear tracks was analysed by transmission electron microscopy (TEM). Significantly higher wear was observed at the passive potential compared with the cathodic potential. Chemical reactions could not account for this difference in deterioration. TEM analysis revealed that the plastic behaviour of the metal, and thus its response to wear, depends on the prevailing electrochemical conditions, the passive potential showing larger deformation than the cathodic. This effect was attributed to the presence of the passive film that induces residual stresses and interferes with dislocation activity

  10. Microstructure and properties of laser surface alloyed PM austenitic stainless steel

    Z. Brytan; M. Bonek; L.A. Dobrzański

    2010-01-01

    Purpose: The purpose of this paper is to analyse the effect of laser surface alloying with chromium on the microstructural changes and properties of vacuum sintered austenitic stainless steel type AISI 316L (EN 1.4404).Design/methodology/approach: Surface modification of AISI 316L sintered austenitic stainless steel was carried out by laser surface alloying with chromium powder using high power diode laser (HPDL). The influence of laser alloying conditions, both laser beam power (between 0.7 ...

  11. Machinability effects of stainless steels with a HIPed NiTi coating in high-efficiency machining operations

    Paro, Jukka

    2006-01-01

    The machinability effects of new high-strength stainless steels are researched due to specific properties arising from their structure. In grinding operations, HIPed (Hot Isostatically Pressed) austenitic 316L, duplex 2205 and super duplex 2507, and as-cast 304 stainless steel, in turning HIPed 316L, duplex stainless steel 2205 and X5 CrMnN 18 18 stainless steel, and in drilling HIPed PM (Powder Metallurgic) Duplok 27 and duplex stainless steel ASTM8190 1A and X2CrNi 1911 with HIPed NiTi coat...

  12. Electrochemical aspects of stainless steel behaviour in biocorrosive environment

    Electrochemical measurements have been used to evaluate and follow, to understand and control microbial induced corrosion of stainless steels. Results include seawater loop tests and laboratory-based microbiological experiments. With natural flowing seawater, impedance spectroscopy measurements have been used to evaluate and follow biofilms on stainless steel tube-electrodes. With batch cultures of single bacterial strain (Sulphate Reducing Bacteria), open-circuit potential measurements and polarization curves performed on 316 L and 430 Ti stainless steels, have shown that the corrosion behaviour of these stainless steels is mainly dependent on the sulphide content of the culture media

  13. Nickel-free austenitic stainless steels for medical applications

    Ke Yang and Yibin Ren

    2010-01-01

    Full Text Available The adverse effects of nickel ions being released into the human body have prompted the development of high-nitrogen nickel-free austenitic stainless steels for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also much improves steel properties. Here we review the harmful effects associated with nickel in medical stainless steels, the advantages of nitrogen in stainless steels, and emphatically, the development of high-nitrogen nickel-free stainless steels for medical applications. By combining the benefits of stable austenitic structure, high strength and good plasticity, better corrosion and wear resistances, and superior biocompatibility compared to the currently used 316L stainless steel, the newly developed high-nitrogen nickel-free stainless steel is a reliable substitute for the conventional medical stainless steels.

  14. Slip activity of persistent slip bands in early stages of fatigue life of austenitic 316L steel

    Man, Jiří; Weidner, A.; Klapetek, P.; Polák, Jaroslav

    Zurich : Trans Tech Publications, 2014 - (Šandera, P.), s. 785-788 ISBN 978-3-03785-934-6. ISSN 1013-9826. - (Key Engineering Materials. 592-593). [MSMF 7 - International Conference on Materials Structure & Micromechanics of Fracture /7./. Brno (CZ), 01.07.2013-03.07.2013] R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068; GA ČR(CZ) GAP108/10/2371; GA ČR(CZ) GA13-23652S Institutional support: RVO:68081723 Keywords : 316L steel * persistent slip band * slip activity * slip irreversibility * half-cycle deformation Subject RIV: JL - Materials Fatigue, Friction Mechanics

  15. Improving the Adhesion Resistance of the Boride Coatings to AISI 316L Steel Substrate by Diffusion Annealing

    Campos-Silva, I.; Bernabé-Molina, S.; Bravo-Bárcenas, D.; Martínez-Trinidad, J.; Rodríguez-Castro, G.; Meneses-Amador, A.

    2016-07-01

    In this study, new results about the practical adhesion resistance of boride coating/substrate system formed at the surface of AISI 316 L steel and improved by means of a diffusion annealing process are presented. First, the boriding of AISI 316 L steel was performed by the powder-pack method at 1173 K with different exposure times (4-8 h). The diffusion annealing process was conducted on the borided steels at 1273 K with 2 h of exposure using a diluent atmosphere of boron powder mixture. The mechanical behavior of the boride coating/substrate system developed by both treatments was established using Vickers and Berkovich tests along the depth of the boride coatings, respectively. Finally, for the entire set of experimental conditions, the scratch tests were performed with a continuously increasing normal force, in which the practical adhesion resistance of the boride coating/substrate system was represented by the critical load. The failure mechanisms developed over the surface of the scratch tracks were analyzed; the FeB-Fe2B/substrate system exhibited an adhesive mode, while the Fe2B/substrate system obtained by the diffusion annealing process showed predominantly a cohesive failure mode.

  16. Effect of pulsating water jet peening on stainless steel

    Hlaváček, Petr

    2015-01-01

    Effects of action of pulsating water jet on polished surface of the stainless steel AISI 316L are presented. Surface slip bands appeared after this treatment. In the most severe conditions, microcracks were formed. Hardness measurement showed that the affected layer was thinner than 60 μm. Application of the pulsating water jet has beneficial effect on the fatigue life of the material.

  17. Influence of binder system and temperature on rheological properties of water atomized 316L powder injection moulding feedstocks

    Uğur GÖKMEN; Türker, Mehmet; ÇİNİCİ, Hanifi

    2016-01-01

    In order to obtain a proper powder injection molding the rheological behavior of feedstocks should be known. To determine the binder effect on the rheological behavior of 316L stainless steel powders feedstock two different feedstock were prepared. In the current experiments water atomized 316L stainless steel powders (-20 µm) were used. Two types of binders, one of which is mainly paraffin wax can be dissolved in heptane and the other Polietilenglikol (PEG) based and can be dissolved in wate...

  18. Corrosion behavior of sensitized duplex stainless steel.

    Torres, F J; Panyayong, W; Rogers, W; Velasquez-Plata, D; Oshida, Y; Moore, B K

    1998-01-01

    The present work investigates the corrosion behavior of 2205 duplex stainless steel in 0.9% NaCl solution after various heat-treatments, and compares it to that of 316L austenitic stainless steel. Both stainless steels were heat-treated at 500, 650, and 800 degrees C in air for 1 h, followed by furnace cooling. Each heat-treated sample was examined for their microstructures and Vickers micro-hardness, and subjected to the X-ray diffraction for the phase identification. Using potentiostatic polarization method, each heat-treated sample was corrosion-tested in 37 degrees C 0.9% NaCl solution to estimate its corrosion rate. It was found that simulated sensitization showed an adverse influence on both steels, indicating that corrosion rates increased by increasing the sensitization temperatures. PMID:9713683

  19. Duplex stainless steels for osteosynthesis devices.

    Cigada, A; Rondelli, G; Vicentini, B; Giacomazzi, M; Roos, A

    1989-09-01

    The austenitic stainless steels used today for the manufacture of osteosynthesis devices are sensitive to crevice corrosion. In this study the corrosion properties of some duplex stainless steels were evaluated and compared to traditional austenitic stainless steels. According to our results the following ranking was established: 23Cr-4Ni less than AISI 316L less than ASTM F138 less than 22Cr-5Ni-3Mo less than 27Cr-31Ni-3.5Mo less than 25Cr-7Ni-4Mo-N. In particular the results showed that the high-performance 25Cr-7Ni-4Mo-N duplex stainless steel, with high molybdenum and nitrogen contents, can be considered not susceptible to crevice corrosion in the human body. The duplex stainless steels have also better mechanical properties at the same degree of cold working compared with austenitic stainless steels. Hence the 25Cr-7Ni-4Mo-N duplex stainless steel can be considered a convenient substitute of ASTM F138 for orthopedic and osteosynthesis devices. PMID:2777835

  20. Experimental study on the emissivity of stainless steel

    The emissivity of material is a very important parameter for thermal radiative heat transfer. The emissivities of stainless steel 316L and 304 were measured as a fuction of surface temperature and heating time of test section by indirect method using the infrared thermometer. The error range of experiment is within 3∼10% and most of errors were occurred in measuring the surface temperature by thermocouple. The range of temperature for the experiment was 50∼540.deg. C and the emissivities of stainless steel 316L and 304 were increased along with the increase of surface temperature, and the increase rates for two materials were approximately the same and the value was about 1.31x10-4(1/.deg. C). The emissivity of stainless steel 316L with surface roughness 4.1μm was between 0.44 and 0.51, and the emissivity of stainless steel 304 with surface roughness 2.0μm was between 0.32 and 0.38 in this temperature range. The emissivity of stainless steel 304 was gradually increased by a value of 0.03 at 395.deg. C for 266 hours

  1. The effects of tritium and decay helium on the fracture toughness properties of stainless steels

    J-integral fracture mechanics techniques and scanning electron microscopy observations were used to investigate the effects of tritium and its decay product, helium-3, on Types 304L, 316L, 21-6-9, A286, and JBK-75 (Modified A286) stainless steels. Tritium-exposed samples of each steel had lower fracture toughness values and less resistance to stable crack growth than control samples. Type 316L stainless steel was more resistant to the embrittling effects of tritium and decay helium than the other steels

  2. SU-E-T-548: Modeling of Breast IORT Using the Xoft 50 KV Brachytherapy Source and 316L Steel Rigid Shield

    Purpose: Xoft provides a set of 316L Stainless Steel Rigid Shields to be used with their 50 kV X-ray source for Breast IORT treatments. Modeling the different shield sizes in MCNP provides information to help make clinical decisions for selecting the appropriate shield size. Methods: The Xoft Axxent 50 kV Electronic Brachytherapy System has several applications in radiation therapy, one of which is treating cancer of the breast intraoperatively by placing the miniaturized X-ray tube inside an applicator balloon that is expanded to fill the lumpectomy bed immediately following tumor removal. The ribs, lung, and muscular chest wall are all regions at risk to receive undesired dose during the treatment. A Xoft 316L Stainless Steel Rigid Shield can be placed between the intracostal muscles of the chest wall and the remaining breast tissue near the balloon to attenuate the beam and protect these organs. These shields are provided in 5 different sizes, and the effects on dose to the surrounding tissues vary with shield size. MCNP was used to model this environment and tally dose rate to certain regions of interest. Results: The average rib dose rate calculated using 0cm (i.e., no shield), 3cm, and 5cm diameter shields were 26.89, 15.43, and 8.91 Gy/hr respectively. The maximum dose rates within the rib reached 94.74 Gy/hr, 53.56 Gy/hr, and 31.44 Gy/hr for the 0cm, 3cm, and 5cm cases respectively. The shadowing effect caused by the steel shields was seen in the 3-D meshes and line profiles. Conclusion: This model predicts a higher dose rate to the underlying rib region with the 3cm shield compared to the 5cm shield; it may be useful to select the largest possible diameter when choosing a shield size for a particular IORT patient. The ability to attenuate the beam to reduce rib dose was also confirmed. Research sponsored by Xoft Inc, a subsidiary of iCAD

  3. SU-E-T-548: Modeling of Breast IORT Using the Xoft 50 KV Brachytherapy Source and 316L Steel Rigid Shield

    Burnside, W [Mountain View, CA (United States)

    2015-06-15

    Purpose: Xoft provides a set of 316L Stainless Steel Rigid Shields to be used with their 50 kV X-ray source for Breast IORT treatments. Modeling the different shield sizes in MCNP provides information to help make clinical decisions for selecting the appropriate shield size. Methods: The Xoft Axxent 50 kV Electronic Brachytherapy System has several applications in radiation therapy, one of which is treating cancer of the breast intraoperatively by placing the miniaturized X-ray tube inside an applicator balloon that is expanded to fill the lumpectomy bed immediately following tumor removal. The ribs, lung, and muscular chest wall are all regions at risk to receive undesired dose during the treatment. A Xoft 316L Stainless Steel Rigid Shield can be placed between the intracostal muscles of the chest wall and the remaining breast tissue near the balloon to attenuate the beam and protect these organs. These shields are provided in 5 different sizes, and the effects on dose to the surrounding tissues vary with shield size. MCNP was used to model this environment and tally dose rate to certain regions of interest. Results: The average rib dose rate calculated using 0cm (i.e., no shield), 3cm, and 5cm diameter shields were 26.89, 15.43, and 8.91 Gy/hr respectively. The maximum dose rates within the rib reached 94.74 Gy/hr, 53.56 Gy/hr, and 31.44 Gy/hr for the 0cm, 3cm, and 5cm cases respectively. The shadowing effect caused by the steel shields was seen in the 3-D meshes and line profiles. Conclusion: This model predicts a higher dose rate to the underlying rib region with the 3cm shield compared to the 5cm shield; it may be useful to select the largest possible diameter when choosing a shield size for a particular IORT patient. The ability to attenuate the beam to reduce rib dose was also confirmed. Research sponsored by Xoft Inc, a subsidiary of iCAD.

  4. Austenitic and duplex stainless steels in simulated physiological solution characterized by electrochemical and X-ray photoelectron spectroscopy studies.

    Kocijan, Aleksandra; Conradi, Marjetka; Schön, Peter M

    2012-04-01

    A study of oxide layers grown on 2205 duplex stainless steel (DSS) and AISI 316L austenitic stainless steel in simulated physiological solution is presented here in order to establish the possibility of replacement of AISI 316 L with 2205 DSS in biomedical applications. The results of the potentiodynamic measurements show that the extent of the passive range significantly increased for DSS 2205 compared to AISI 316L stainless steel. Cyclic voltammetry was used to investigate electrochemical processes taking place on the steel surfaces. Oxide layers formed by electrochemical oxidation at different oxidation potentials were studied by X-ray photoelectron spectroscopy, and their compositions were analyzed as a function of depth. The main constituents on both the investigated materials were Cr- and Fe-oxides. Atomic force microscopy topography studies revealed the higher corrosion resistance of the DSS 2205 compared to the AISI 316L under the chosen experimental conditions. PMID:22331841

  5. Effect of composition on the electrochemical behavior of austenitic stainless steel in Ringer's solution

    Potentiodynamic cyclic polarization tests on Type 316L stainless steel, a common orthopedic implant alloy, in Ringer's solution show considerable hysteresis and a protection potential more active than the open circuit corrosion potential. This implies that chances of repassivation of actively growing pits in this alloy are limited. Tests in Ringer's solution containing hydrochloric acid show that the open circuit potential of Type 316L steel in this solution may exceed in the noble direction the critical pitting potential in the same solution. This signifies that spontaneous breakdown of passivity may occur in a bulk environment which grossly simulates the electrochemical environment within a crevice. Alloying elements such as Mo, Ni, Cr, all improve the corrosion resistance of Type 316L stainless steel in that the critical pitting potential shifts in the noble direction in the alloys having any of the three alloying elements in a higher proportion than in Type 316L steel. Polarization tests in Ringer's solution on a 20% Cr, 25% Ni, 4.5% Mo, 1.5% Cu austenitic stainless steel, having Mo, Cr, and Ni--all in higher proportions than in Type 316L steel, does not show any critical pitting potential or hysteresis at potentials below that for dissociation of water. However, test in 4% NaCl solution at 60 C, a more aggressive chloride environment than Ringer'ssolution, reveals considerable hysteresis and a very active protection potential, indicating that this behavior is a common feature of austenitic stainless steel in sufficiently aggressive, chloride media

  6. NARROW GAP LASER WELDING OF THICK SECTION STAINLESS STEEL

    2012-01-01

    Laser welding of metals typically has a weld penetration of 1-2 mm/kW laser power. Therefore laser welding of thick section materials would require very high power lasers. In this paper we report an investigation into multi-pass laser welding of 316L stainless steel sheets of 5-10 mm thickness, based on narrow gap (1.5 mm) approach using a 1 kW single mode fibre laser. A filler wire of 316L with a 0.8 mm diameter was used in the welding process. The integrity of the weld, microstructure and h...

  7. Liquid Phase Sintering of Highly Alloyed Stainless Steel

    Mathiesen, Troels

    1996-01-01

    calculations, made by use of the computer programme Thermo-Calc, were also correlated with the observed microstructure. Corrosion measurements by electrochemical techniques show no signs of intergranular corrosion in contrast to the case of AISI 316L based steel. Furthermore most of the material showed......Liquid phase sintering of stainless steel is usually applied to improve corrosion resistance by obtaining a material without an open pore system. The dense structure normally also give a higher strength when compared to conventional sintered steel. Liquid phase sintrering based on addition of...... boride to AISI 316L type steels have previously been studied, but were found to be sensitive to intergranular corrosion due to formation of intermetallic phases rich in chromium and molybdenum. In order to improve this system further, new investigations have focused on the use of higher alloyed stainless...

  8. Synthesis and electrochemical characterization of porous niobium oxide coated 316L SS for orthopedic applications

    Niobium oxide was prepared using sol-gel process and coated on 316L stainless steel (SS) substrate via dip-coating technique. The surface characterization results after a thermal treatment revealed that the coated surface was porous, uniform and well crystalline on the substrate. The corrosion resistance and bioactivity of the porous niobium oxide coated 316L SS in simulated body fluid (SBF) solution was evaluated. The in vitro test revealed a layer of carbonate-containing apatite formation over the coated porous surface. The results indicated that the porous niobium oxide coated 316L SS exhibited a high corrosion resistance and an enhanced biocompatibility in SBF solution.

  9. High density sintered stainless steels with improved properties

    M. Actis Grande; M. Rosso

    2007-01-01

    Purpose: of this paper is the study of the properties of sintered AISI 316L (1.4404 according to EN 10088. Sintered stainless steels occupy a prominent position in the high alloyed steels, however their properties are limited by the presence of porosity. The improvement of quality and performances of products coupled with a reduction of manufacturing costs calls for high compacting pressures, as well as high sintering temperatures. However, the possibility to fill the open porosity of sintere...

  10. Weldability of Stainless Steels

    It gives an outline of metallographic properties of welding zone of stainless steels, generation and mechanisms of welding crack and decreasing of corrosion resistance of welding zone. It consists of seven chapters such as introduction, some kinds of stainless steels and properties, metallographic properties of welding zone, weld crack, toughness of welding zone, corrosion resistance and summary. The solidification modes of stainless steels, each solidification mode on the cross section of Fe-Cr-Ni alloy phase diagram, each solidification mode of weld stainless steels metal by electron beam welding, segregation state of alloy elements at each solidification mode, Schaeffler diagram, Delong diagram, effects of (P + S) mass content in % and Cr/Ni equivalent on solidification cracking of weld stainless steels metal, solidification crack susceptibility of weld high purity stainless steels metal, effects of trace impurity elements on solidification crack susceptibility of weld high purity stainless steels metal, ductile fracture susceptibility of weld austenitic stainless steels metal, effects of H2 and ferrite content on generation of crack of weld 25Cr-5N duplex stainless steels, effects of O and N content on toughness of weld SUS 447J1 metals, effect of ferrite content on aging toughness of weld austenitic stainless steel metal, corrosion morphology of welding zone of stainless steels, generation mechanism of knife line attack phenomenon, and corrosion potential of some kinds of metals in seawater at room temperature are illustrated. (S.Y.)

  11. Stress Corrosion Cracking of an Austenitic Stainless Steel in Nitrite-Containing Chloride Solutions

    R. K. Singh Raman

    2014-12-01

    Full Text Available This article describes the susceptibility of 316L stainless steel to stress corrosion cracking (SCC in a nitrite-containing chloride solution. Slow strain rate testing (SSRT in 30 wt. % MgCl2 solution established SCC susceptibility, as evidenced by post-SSRT fractography. Addition of nitrite to the chloride solution, which is reported to have inhibitive influence on corrosion of stainless steels, was found to increase SCC susceptibility. The susceptibility was also found to increase with nitrite concentration. This behaviour is explained on the basis of the passivation and pitting characteristics of 316L steel in chloride solution.

  12. Corrosion resistance of the welded AISI 316L after various surface treatments

    Tatiana Liptáková

    2014-01-01

    Full Text Available The main aim of this work is to monitor the surface treatment impact on the corrosion resistance of the welded stainless steel AISI 316L to local corrosion forms. The excellent corrosion resistance of austenitic stainless steel is caused by the existence of stable, thin and well adhering passive layer which quality is strongly influenced by welding. Therefore surface treatment of stainless steel is very important with regard to its local corrosion susceptibility Surfaces of welded stainless steel were treated by various mechanical methods (grinding, garnet blasting. Surface properties were studied by SEM, corrosion resistance was evaluated after exposition tests in chlorides environment using weight and metalographic analysis. The experimental outcomes confirmed that the mechanical finishing has a significant effect on the corrosion behavior of welded stainless steel AISI 316L.

  13. Ion-nitriding of austenitic stainless steels

    Although ion-nitriding is an extensively industrialized process enabling steel surfaces to be hardened by nitrogen diffusion, with a resulting increase in wear, seizure and fatigue resistance, its direct application to stainless steels, while enhancing their mechanical properties, also causes a marked degradation in their oxidation resistance. However, by adaption of the nitriding process, it is possible to maintain the improved wear resistant properties while retaining the oxidation resistance of the stainless steel. The controlled diffusion permits the growth of a nitrogen supersaturated austenite layer on parts made of stainless steel (AISI 304L and 316L) without chromium nitride precipitation. The diffusion layer remains stable during post heat treatments up to 650 F for 5,000 hrs and maintains a hardness of 900 HV. A very low and stable friction coefficient is achieved which provides good wear resistance against stainless steels under diverse conditions. Electrochemical and chemical tests in various media confirm the preservation of the stainless steel characteristics. An example of the application of this process is the treatment of Reactor Control Rod Cluster Assemblies (RCCAs) for Pressurized Water Nuclear Reactors

  14. Microstructural Variations Across a Dissimilar 316L Austenitic: 9Cr Reduced Activation Ferritic Martensitic Steel Weld Joint

    Thomas Paul, V.; Karthikeyan, T.; Dasgupta, Arup; Sudha, C.; Hajra, R. N.; Albert, S. K.; Saroja, S.; Jayakumar, T.

    2016-03-01

    This paper discuss the microstructural variations across a dissimilar weld joint between SS316 and 9Cr-RAFM steel and its modifications on post weld heat treatments (PWHT). Detailed characterization showed a mixed microstructure of austenite and martensite in the weld which is in agreement with the phases predicted using Schaeffler diagram based on composition measurements. The presence of very low volume fraction of δ-ferrite in SS316L has been identified employing state of the art electron back-scattered diffraction technique. PWHT of the ferritic steel did not reduce the hardness in the weld metal. Thermal exposure at 973 K (700 °C) showed a progressive reduction in hardness of weld joint with duration of treatment except in austenitic base metal. However, diffusion annealing at 1073 K (800 °C) for 100 hours resulted in an unexpected increase in hardness of weld metal, which is a manifestation of the dilution effects and enrichment of Ni on the transformation characteristics of the weld zone. Migration of carbon from ferritic steel aided the precipitation of fine carbides in the austenitic base metal on annealing at 973 K (700 °C); but enhanced diffusion at 1073 K (880 °C) resulted in coarsening of carbides and thereby reduction of hardness.

  15. Characteristics of vacuum sintered stainless steels

    Z. Brytan

    2009-04-01

    Full Text Available Purpose: In the present study duplex stainless steels were sintered in vacuum. using rapid cooling form the mixture of prealloyed and alloying element powders The purpose of this paper was to describe the obtained microstructures after sintering as well as the main mechanical properties of sintered stainless steels.Design/methodology/approach: In presented work duplex stainless steels were obtained through powder metallurgy starting from austenitic 316L or ferritic 410L prealloyed stainless steels powders by controlled addition of alloying elements powder. Prepared mixes were sintered in a vacuum furnace in 1250°C for 1h. After sintering rapid cooling (6°C/s using nitrogen under pressure was applied. Sintered compositions were subjected to structural examinations by scanning and optical microscopy and EDS analysis as well as X-ray analysis. Mechanical properties were studied through tensile tests and Charpy impact test.Findings: It was demonstrated that austenitic-ferritic microstructures with regular arrangement of both phases and absence of precipitates can be obtained with properly designed powder mix composition as well as sintering cycle with rapid cooling rate. Obtained sintered duplex stainless steels shows good mechanical properties which depends on phases ratio in the microstructure and elements partitioning (Cr/Ni between phases.Research limitations/implications: Basing on alloys characteristics applied cooling rate and powder mix composition seems to be a good compromise to obtain balanced sintered duplex stainless steel microstructures.Practical implications: Mechanical properties of obtained sintered duplex stainless steels structures are rather promising, especially with the aim of extending their field of possible applications.Originality/value: The utilization of vacuum sintering process with rapid cooling after sintering combined with use of elemental powders added to a stainless steel base powder shows its advantages in terms

  16. Biological behaviour of human umbilical artery smooth muscle cell grown on nickel-free and nickel-containing stainless steel for stent implantation

    Liming Li; Liwen An; Xiaohang Zhou; Shuang Pan; Xin Meng; Yibin Ren; Ke Yang; Yifu Guan

    2016-01-01

    To evaluate the clinical potential of high nitrogen nickel-free austenitic stainless steel (HNNF SS), we have compared the cellular and molecular responses of human umbilical artery smooth muscle cells (HUASMCs) to HNNF SS and 316L SS (nickel-containing austenitic 316L stainless steel). CCK-8 analysis and flow cytometric analysis were used to assess the cellular responses (proliferation, apoptosis, and cell cycle), and quantitative real-time PCR (qRT-PCR) was used to analyze the gene expressi...

  17. The Formation of Multipoles during the High-Temperature Creep of Austenitic Stainless Steels

    Howell, J.; Nielsson, O.; Horsewell, Andy;

    1981-01-01

    It is shown that multipole dislocation configurations can arise during power-law creep of certain austenitic stainless steels. These multipoles have been analysed in some detail for two particular steels (Alloy 800 and a modified AISI 316L) and it is suggested that they arise either during...

  18. Warm compacting behavior of stainless steel powders

    肖志瑜; 柯美元; 陈维平; 召明; 李元元

    2004-01-01

    The warm compacting behaviors of four different kinds of stainless steel powders, 304L, 316L, 410L and 430L, were studied. The results show that warm compaction can be applied to stainless steel powders. The green densities and strengths of compacts obtained through warm compaction are generally higher than those obtained through cold compaction. The compacting behaviors in warm compaction and cold compaction are similar.Under the compacting pressure of 700 MPa, the warm compacted densities are 0. 10 - 0.22 g/cm3 higher than the cold compacted ones, and the green strengths are 11.5 %-50 % higher. The optimal warm compacting temperature is 100 - 110 ℃. In the die wall lubricated warm compaction, the optimum internal lubricant content is 0.2%.

  19. Influence of Surface Treatment on the Corrosion Resistance of Stainless Steel in Simulated Human Body Environment

    Esmaeil Jafari; Mohammad Jafar Hadianfard

    2009-01-01

    In the present research, the influence of chromium enrichment by surface treatment on corrosion resistance of type 316L stainless steel in body environment was investigated. For this study, weight loss test during 18 months, cyclic and liner polarization tests before and after surface treatment and metallography by electron and light microscopy were used to evaluate the effectiveness of the proposed method. In addition, X-ray photoelectron spectroscopy (XPS) method was used to determine the chromium concentration in the surface layer after surface treatment. Results show that the surface treatment has improved corrosion resistance of the type 316L stainless steel in body environment.

  20. Nickel-free Stainless Steel for Medical Applications

    Yibin REN; Ke YANG; Bingchun ZHANG; Yaqing WANG; Yong LIANG

    2004-01-01

    BIOSS4 steel is essentially a nickel-free austenitic stainless steel developed by the Institute of Metal Research, Chinese Academy of Sciences, in response to nickel allergy problems associated with nickel-containing stainless steels that are widely used in medical applications. The high nitrogen content of this steel effectively maintains the austenitic stability and also contributes to the high levels of corrosion resistance and strength. BIOSS4 steel possesses a good combination of high strength and toughness, better corrosion resistance, and better blood compatibility, in comparison with the medical 316L stainless steel. Potential applications of BIOSS4 steel can include medical implantation material and orthodontic or orthopedic devices, as well as jewelries and other decorations.

  1. Wear and Corrosion Study of Sputtered Zirconium thin films on SS316L for Windmill Application

    Arunkumar N

    2015-05-01

    Full Text Available The Aim of this study is to observe the Wear and Corrosion behavior of Zirconium coated 316L stainless steel. After polishing, SS316L was coated with Zirconium employing DC sputtering process (a technique of physical vapor deposition.Structure characterization techniques including Scanning Electron Microscope (SEM and X-Ray Diffraction (XRD were utilized to investigate the microstructure and crystallinity of the coating. Salt spray test was performed by spraying Sodium chloride in order to determine corrosion resistance behavior of the coated sample. Pin on disc wear test was performed by hardened and tempered EN31 steel pin in order to determine and compare the Wear resistance behavior of Coated and uncoated samples. The Objective is to recommend the zirconium coated Stainless steel SS316L can be a choice for Off-shore wind mills where the shafts undergo Wear and corrosion problems.

  2. First results of laser welding of neutron irradiated stainless steel

    First results of experimental investigations on the laser reweldability of neutron irradiated material are reported. These experiments include the manufacture of 'heterogeneous' joints, which means joining of irradiated stainless steel of type AISI 316L-SPH to 'fresh' unirradiated material. The newly developed laser welding facility in the ECN Hot Cell Laboratory and experimental procedures are described. Visual inspections of welded joints are reported as well as results of electron microscopy and preliminary metallographic examinations. (orig.)

  3. Experimental and Theoretical Investigations of Hot Isostatically Pressed-Produced Stainless Steel/High Alloy Tool Steel Compound Materials

    Lindwall, Greta; Flyg, Jesper; Frisk, Karin; Sandberg, Odd

    2011-05-01

    Consolidation of tool steel powders and simultaneous joining to a stainless 316L steel are performed by hot isostatic pressing (HIP). Two tool steel grades are considered: a high vanadium alloyed carbon tool steel, and a high vanadium and chromium alloyed nitrogen tool steel. The boundary layer arising during diffusion bonding is in focus and, in particular, the diffusion of carbon and nitrogen over the joint. Measurements of the elemental concentration profiles and corrosion tests by the double loop-electrochemical potentiokinetic reactivation (DL-EPR) method are performed. Comparative calculations with the DICTRA software are performed and are found to be in agreement with the experimental results. It is found that the carbon tool steel grade has a more critical influence on the corrosion resistance of the stainless 316L steel in comparison to the nitrogen tool steel grade.

  4. Extrusions and intrusions in fatigued metals. Part 2. AFM and EBSD study of the early growth of extrusions and intrusions in 316L steel fatigued at room temperature

    Man, Jiří; Klapetek, P.; Man, O.; Weidner, A.; Obrtlík, Karel; Polák, Jaroslav

    2009-01-01

    Roč. 89, č. 16 (2009), s. 1337-1372. ISSN 1478-6435 R&D Projects: GA ČR GA106/06/1096; GA ČR GA101/07/1500; GA AV ČR 1QS200410502 Institutional research plan: CEZ:AV0Z20410507 Keywords : 316L steel * fatigue * AFM Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.273, year: 2009

  5. Welding irradiated stainless steel

    Conventional welding processes produced severe underbead cracking in irradiated stainless steel containing 1 to 33 appm helium from n,a reactions. A shallow penetration overlay technique was successfully demonstrated for welding irradiated stainless steel. The technique was applied to irradiated 304 stainless steel that contained 10 appm helium. Surface cracking, present in conventional welds made on the same steel at the same and lower helium concentrations, was eliminated. Underbead cracking was minimal compared to conventional welding methods. However, cracking in the irradiated material was greater than in tritium charged and aged material at the same helium concentrations. The overlay technique provides a potential method for repair or modification of irradiated reactor materials

  6. Nanostructured nickel-free austenitic stainless steel/hydroxyapatite composites.

    Tulinski, Maciej; Jurczyk, Mieczyslaw

    2012-11-01

    In this work Ni-free austenitic stainless steels with nanostructure and their nanocomposites with hydroxyapatite are presented and characterized by means of X-ray diffraction and optical profiling. The samples were synthesized by mechanical alloying, heat treatment and nitriding of elemental microcrystalline powders with addition of hydroxyapatite (HA). In our work we wanted to introduce into stainless steel hydroxyapatite ceramics that have been intensively studied for bone repair and replacement applications. Such applications were chosen because of their high biocompatibility and ability to bond to bone. Since nickel-free austenitic stainless steels seem to have better mechanical properties, corrosion resistance and biocompatibility compared to 316L stainless steels, it is possible that composite made of this steel and HA could improve properties, as well. Mechanical alloying and nitriding are very effective technologies to improve the corrosion resistance of stainless steel. Similar process in case of nanocomposites of stainless steel with hydroxyapatite helps achieve even better mechanical properties and corrosion resistance. Hence nanocrystalline nickel-free stainless steels and nickel-free stainless steel/hydroxyapatite nanocomposites could be promising bionanomaterials for use as a hard tissue replacement implants, e.g., orthopedic implants. In such application, the surface roughness and more specifically the surface topography influences the proliferation of cells (e.g., osteoblasts). PMID:23421285

  7. Double Step Sintering Behavior Of 316L Nanoparticle Dispersed Micro-Sphere Powder

    Jeon Byoungjun; Sohn Seong Ho; Lee Wonsik; Han Chulwoong; Kim Young Do; Choi Hanshin

    2015-01-01

    316L stainless steel is a well-established engineering material and lots of components are fabricated by either ingot metallurgy or powder metallurgy. From the viewpoints of material properties and process versatility, powder metallurgy has been widely applied in industries. Generally, stainless steel powders are prepared by atomization processes and powder characteristics, compaction ability, and sinterability are quite different according to the powder preparation process. In the present st...

  8. Properties of super stainless steels for orthodontic applications.

    Oh, Keun-Taek; Kim, Young-Sik; Park, Yong-Soo; Kim, Kyoung-Nam

    2004-05-15

    Orthodontic stainless-steel appliances are considered to be corrosion resistant, but localized corrosion can occur in the oral cavity. This study was undertaken to evaluate the properties of super stainless steels in orthodontic applications. Accordingly, the metallurgical properties, mechanical properties, corrosion resistance, amount of the released nickel, cytotoxicity, and characteristics of the passive film were investigated. Corrosion resistances of the specimens were high and in the following order: super austenitic stainless steel (SR-50A) > super ferritic stainless steel (SFSS) = super duplex stainless steel (SR-6DX) > 316L SS > super martensitic stainless steel (SR-3Mo) in artificial saliva, 37 degrees C. At 500 mV (SCE), current densities of SR-50A, SFSS, SR-6DX, 316L SS, and SR-3Mo were 5.96 microA/cm(2), 20.3 microA/cm(2), 31.9 microA/cm(2), 805 microA/cm(2), and 5.36 mA/cm(2), respectively. Open circuit potentials of SR-50A, 316L SS, SR-6DX, SR-3Mo, and SFSS were - 0.2, - 0.22, - 0.24, - 0.43, and - 0.46 V (SCE), respectively. SR-50A, SFSS, and SR-6DX released below 3 ng/ml nickel for 8 weeks, and increased a little with immersion time, and 316L SS released about 3.5 ng/ml nickel, but SR-3Mo released a large amount of nickel, which increased with immersion time. The study demonstrated that SR-50A, SR-6DX, and SFSS have high corrosion resistance and mild or no cytotoxicity, due to the passive film enhanced by synergistic effect of Mo + N or by high addition effect of Cr + W. All super stainless steels showed very low cytotoxicity regardless of their nickel contents, although SR-3Mo was found to be relatively cytotoxic. From these studies, these steels are considered suitable for orthodontic applications. PMID:15116408

  9. Development of corrosion-resistant improved Al-doped austenitic stainless steel

    Kondo, Keietsu; Miwa, Yukio; Okubo, Nariaki; Kaji, Yoshiyuki; Tsukada, Takashi

    2011-10-01

    Aluminum-doped type 316L SS (316L/Al) has been developed for the purpose of suppressing the degradation of corrosion resistance induced by irradiation in austenitic stainless steels (SSs). The electrochemical corrosion properties of this material were estimated after Ni-ion irradiation at a temperature range from 330 °C to 550 °C. When irradiated at 550 °C up to 12 dpa, 316L/Al showed high corrosion resistance in the vicinity of grain boundaries (GBs) and in grains, while severe GB etching and local corrosion in grains were observed in irradiated 316L and 316 SS. It is supposed that aluminum enrichment was enhanced by high-temperature irradiation at GBs and in grains, to compensate for lost corrosion resistance induced by chromium depletion.

  10. Enhanced corrosion resistance of strontium hydroxyapatite coating on electron beam treated surgical grade stainless steel

    Gopi, D., E-mail: dhanaraj_gopi@yahoo.com [Department of Chemistry, Periyar University, Salem 636 011, Tamilnadu (India); Centre for Nanoscience and Nanotechnology, Periyar University, Salem 636 011, Tamilnadu (India); Rajeswari, D. [Department of Chemistry, Periyar University, Salem 636 011, Tamilnadu (India); Department of Physics, Periyar University, Salem 636 011, Tamilnadu (India); Ramya, S. [Department of Chemistry, Periyar University, Salem 636 011, Tamilnadu (India); Sekar, M. [Department of Chemistry, Periyar University, Salem 636 011, Tamilnadu (India); Department of Physics, Periyar University, Salem 636 011, Tamilnadu (India); R, Pramod; Dwivedi, Jishnu [Industrial and Medical Accelerator Section, Raja Ramanna Centre for Advanced Technology, Indore 452 013, Madhya Pradesh (India); Kavitha, L., E-mail: louiskavitha@yahoo.co.in [Centre for Nanoscience and Nanotechnology, Periyar University, Salem 636 011, Tamilnadu (India); Department of Physics, Periyar University, Salem 636 011, Tamilnadu (India); Ramaseshan, R. [Thin film and Coatings Section, Surface and Nanoscience Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamilnadu (India)

    2013-12-01

    The surface of 316L stainless steel (316L SS) is irradiated by high energy low current DC electron beam (HELCDEB) with energy of 500 keV and beam current of 1.5 mA followed by the electrodeposition of strontium hydroxyapatite (Sr-HAp) to enhance its corrosion resistance in physiological fluid. The coatings were characterised by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and High resolution scanning electron microscopy (HRSEM). The Sr-HAp coating on HELCDEB treated 316L SS exhibits micro-flower structure. Electrochemical results show that the Sr-HAp coating on HELCDEB treated 316L SS possesses maximum corrosion resistance in Ringer's solution.

  11. Stress corrosion cracking susceptibility of dissimilar stainless steels welded joints

    J. Łabanowski

    2007-01-01

    Purpose: The aim of the current study is to reveal the influence of welding conditions on structure and stresscorrosion cracking resistance of dissimilar stainless steels butt welded joints.Design/methodology/approach: Butt joints between duplex 2205 and austenitic 316L steels were performedwith the use of submerged arc welding (SAW) method. The plates 15 mm in thickness were welded with heatinput in the range of 1.15 – 3.2 kJ/mm using duplex steel filler metal. Microstructure examinations an...

  12. Performance evaluation of vegetable-based oils in drilling austenitic stainless steel

    Belluco, Walter; De Chiffre, Leonardo

    2004-01-01

    The efficiency of six cutting oils was evaluated in drilling AISI 316L austenitic stainless steel using conventional HSS-Co tools by measurements of tool life, tool wear, cutting forces and chip formation. Seven tools were tested with each fluid to catastrophic failure. Cutting forces and chip...

  13. Contribution to analysis of fatigue crack propagation at room temperature in low carbon austenitic steels type 18-10(304L) and Mo 17-12(316L). Relation between macroscopic and microscopic phenomena

    Low cycle fatigue phenomenon on the structural components of reactors is one of the most important problem. In this paper were carried out some fatigue tests on stainless steels type Z2CN18-10 (AISI 304L) and Z2CND17-12 (AISI 316L) at room temperature in air and in a corrosive medium (NaCl solution at different pH values). Length of cracks and crack propagation under stresses were determined. Z2CND17-12 has a better behavior than Z2CN18-10 because of a better structural stability both in air and in a corrosive environment. Structure was examined by transmission electron microscopy and microhardness was measured in the perturbed zones

  14. Evaluation of the soft tissue biocompatibility of MgCa0.8 and surgical steel 316L in vivo: a comparative study in rabbits

    Lucas Arne

    2010-10-01

    Full Text Available Abstract Background Recent studies have shown the potential suitability of magnesium alloys as biodegradable implants. The aim of the present study was to compare the soft tissue biocompatibility of MgCa0.8 and commonly used surgical steel in vivo. Methods A biodegradable magnesium calcium alloy (MgCa0.8 and surgical steel (S316L, as a control, were investigated. Screws of identical geometrical conformation were implanted into the tibiae of 40 rabbits for a postoperative follow up of two, four, six and eight weeks. The tibialis cranialis muscle was in direct vicinity of the screw head and thus embedded in paraffin and histologically and immunohistochemically assessed. Haematoxylin and eosin staining was performed to identify macrophages, giant cells and heterophil granulocytes as well as the extent of tissue fibrosis and necrosis. Mouse anti-CD79α and rat anti-CD3 monoclonal primary antibodies were used for B- and T-lymphocyte detection. Evaluation of all sections was performed by applying a semi-quantitative score. Results Clinically, both implant materials were tolerated well. Histology revealed that a layer of fibrous tissue had formed between implant and overlying muscle in MgCa0.8 and S316L, which was demarcated by a layer of synoviocyte-like cells at its interface to the implant. In MgCa0.8 implants cavities were detected within the fibrous tissue, which were surrounded by the same kind of cell type. The thickness of the fibrous layer and the amount of tissue necrosis and cellular infiltrations gradually decreased in S316L. In contrast, a decrease could only be noted in the first weeks of implantation in MgCa0.8, whereas parameters were increasing again at the end of the observation period. B-lymphocytes were found more often in MgCa0.8 indicating humoral immunity and the presence of soluble antigens. Conversely, S316L displayed a higher quantity of T-lymphocytes. Conclusions Moderate inflammation was detected in both implant materials

  15. Localized corrosion behavior of stainless steel in the diluted artificial sea-water contacted with zeolite under gamma-ray irradiation

    Regarding the long-term storage of spent Cs adsorption vessels containing zeolites in the Fukushima Daiichi nuclear power station, corrosion of the material of the spent Cs adsorption vessels is one of the important issues. We performed electrochemical tests of stainless steel (SUS316L) in the zeolites containing artificial seawater under gamma-ray irradiation. The spontaneous potential (ESP) and critical pitting potential (VC) of SUS316L were measured to understand the corrosion resistance of the stainless steel in this study. The rest potential of the stainless steel increased with time after gamma-ray irradiation. ESP, defined as the steady rest potential, increased with increasing dose rate; this increase in ESP was suppressed by the contact of SUS316L with the zeolites. The concentration of H2O2 in bulk water increased with increasing dose rate. This concentration increase was suppressed by the contact of SUS316L with the zeolites due to decomposition of H2O2. There was good relationship between ESP and the concentration of H2O2. The VC of SUS316L contacted with the zeolites decreased with increasing Cl- ion concentration and is slightly smaller than the VC in bulk water. The contact of SUS316L with the zeolites suppressed the increase in ESP under irradiation. The contact with the zeolites can reduce the probability of the localized corrosion of SUS316L. (author)

  16. The use of aluminising on 316L austenitic and 1.4914 martensitic steels for the reduction of tritium leakage from the net blanket

    The hydrogen permeation rates through aluminised samples of the two candidate steels for the Next European Torus (NET), namely 316L austenitic and 1.4914 martensitic, have been measured in the temperature range 250 to 6000C at a pressure of 105 Pa. The permeation rates through 1.6 mm thick 316L steel samples were reduced by up to three orders of magnitude whilst those for 1 mm thick 1.4914 steel were reduced by up to four orders of magnitude by an aluminising treatment. The coatings formed by the aluminising process were unaffected by thermal cycling over the temperature range 250-6000C, for in excess of 1000 cycles and have also been shown to exhibit 'self-healing' following abrasion of the surface. Aluminised surfaces are likely to be compatible with breeder blanket materials such as liquid lithium - indeed, aluminising has been proposed as a method for limiting the corrosion of steels in such environments. Since this process is currently available commercially on an industrial scale, it is felt that aluminising is potentially capable of providing all the required properties for a successful tritium permeation barrier for NET components. (orig.)

  17. Evaluation of the austenitic alloys 304L, 316L, and alloy 825 under Tuff repository conditions

    Austenitic alloys 304L and 316L and stainless steel 825 were investigated as candidate materials for containers for waste disposal in the relatively benign conditions of the Yucca Mountain site. In this vault there will be very little water, and what there is will contain small amounts of chlorides, nitrates, sulphates and carbonates. The radiation fields will be 104 rad/h initially, but will decay to low levels by the end of the containment period. The initial temperature will be around 250 C, and it will remain above the boiling point of water for the containment period (approximately 300 years). There will be no lithostatic or hydrostatic pressure. Type 304L stainless steel is a base case material used in comparisons with other candidates. Type 316L stainless steel possesses enhanced resistance to sensitization and localized corrosion; alloy 825 is stabilized to have a much better resistance to sensitization and localized corrosion and performs better in chloride environments

  18. Mechanical properties and corrosion resistance of dissimilar stainless steel welds

    J. Łabanowski

    2007-01-01

    Purpose: The purpose of this paper is to determine the influence of welding on microstructure, mechanical properties, and stress corrosion cracking resistance of dissimilar stainless steels butt welded joints.Design/methodology/approach: Duplex 2205 and austenitic 316L steels were used. Butt joints of plates 15 mm in thickness were performed with the use of submerged arc welding (SAW) method. The heat input was in the range of 1.15 – 3.2 kJ/mm. Various plates’ edge preparation...

  19. Articles comprising ferritic stainless steels

    Rakowski, James M.

    2016-06-28

    An article of manufacture comprises a ferritic stainless steel that includes a near-surface region depleted of silicon relative to a remainder of the ferritic stainless steel. The article has a reduced tendency to form an electrically resistive silica layer including silicon derived from the steel when the article is subjected to high temperature oxidizing conditions. The ferritic stainless steel is selected from the group comprising AISI Type 430 stainless steel, AISI Type 439 stainless steel, AISI Type 441 stainless steel, AISI Type 444 stainless steel, and E-BRITE.RTM. alloy, also known as UNS 44627 stainless steel. In certain embodiments, the article of manufacture is a fuel cell interconnect for a solid oxide fuel cell.

  20. Evaluation of stainless steels for their resistance to intergranular corrosion

    Austenitic stainless steels are being considered as structural materials for first wall/blanket systems in the international thermonuclear reactor (ITER). The uniform corrosion of stainless steels in water is well known and is not a critical issue limiting its application for the ITER design. The sensitivity of austenitic steels to intergranular corrosion (IGC) can be estimated rather accurately by means of calculation methods, considering structure and chemical composition of steel. There is a maximum permissible carbon content level, at which sensitization of stainless steel is eliminated: K=Creff-αCeff, where α-thermodynamic coefficient, Creff-effective chromium content (regarding molybdenum influence) and Ceff-effective carbon content (taking into account nickel and stabilizing elements). Corrosion tests for 16Cr11Ni3MoTi, 316L and 316LN steel specimens, irradiated up to 2 x 1022 n/cm2 fluence have proved the effectiveness of this calculation technique for determination of austenitic steels tendency to IGC. This method is directly applicable in austenitic stainless steel production and enables one to exclude complicated experiments on determination of stainless steel susceptibility to IGC. (orig.)

  1. An evaluation of microbial growth and corrosion of 316L SS in glycol/seawater mixtures

    Lee, Jason S.; Ray, Richard I.; Lowe, Kristine L.; Jones-Meehan, Joanne; Little, Brenda J.

    2003-01-01

    Glycol/seawater mixtures containing > 50% glycol inhibit corrosion of 316L stainless steel and do not support bacterial growth. The results indicate bacteria are able to use low concentrations of glycol (10%) as a growth medium, but bacterial growth decreased with increasing glycol concentration. Pitting potential, determined by anodic polarization, was used to evaluate susceptibility of 316L SS to corrosion in seawater-contaminated glycol. Mixture containing a minimum concentration of 50% propylene glycol-based coolant inhibited pitting corrosion. A slightly higher minimum concentration (55%) was needed for corrosion protection in ethylene glycol mixtures.

  2. Welding technology trend of austenitic stainless steels for cryogenic services

    At present, the large use of stainless steel in cryogenic field is the storage and transport system for liquefied gas represented by LNG and the nuclear fusion reactors utilizing superconductivity. Most of the stainless steel used for the LNG system is austenitic stainless steel SUS 304. The main use of stainless steel for fusion reactors is the support structures for superconductive magnets, and the thick plates over 150 mm are used. In the experiment, SUS 304L and 316L were used, but the development of a new high strength stainless steel is actively advanced. The target specification of the cryogenic structural material for the fusion experimental reactor (FER) was proposed in 1982. The proof stress is not lower than 1200 MPa, and the fracture toughness value is not lower than 200 MPa √m at 4 K. Six kinds of nitrogen-strengthened austenitic stainless steels and high manganese austenitic steels are developed. As the problems of the welded parts, the toughness and strength at extremely low temperature, the susceptibility to high temperature cracking, the material quality design of the welded metals and so on are examined. The welding methods are GTAW and GMAW. (K.I.)

  3. Deformation behavior of open-cell stainless steel foams

    This study presents the deformation and cell collapse behavior of open-cell stainless steel foams. 316L stainless-steel open-cell foams with two porosities (30 and 45 pores per inch, ppi) were produced with the pressureless powder metallurgical method, and tested in quasi-static compression. As a result of the manufacturing technique, 316L stainless steel open-cell foams have a high amount of microporosity. The deformation behavior was investigated on a macroscopic scale by digital image correlation (DIC) evaluation of light micrographs and on the microscopic scale by in situ loading of cells in the scanning electron microscope. The deformation behavior of the metal foams was highly affected by microstructural features, such as closed pores and their distribution throughout the foam specimen. Moreover, the closed pores made a contribution to the plateau stress of the foams through cell face stretching. Strut buckling and bending are the dominant mechanisms in cell collapse. Although there are edge defects on the struts, the struts have an enormous plastic deformation capability. The cell size of the steel foams had no significant effect on the mechanical properties. Due to the inhomogeneities in the microstructure, the measured plateau stresses of the foams showed about 20% scatter at the same relative density

  4. Cryogenic material properties of stainless steel tube-to-flange welds

    Siewert, T. A.; McCowan, C. N.; Vigliotti, D. P.

    The mechanical properties of stainless steel tube-to-flange welds for a cryogenic piping application were measured. A planar specimen was developed to duplicate the constraint, loading and heat-sink properties of the circular joint, while reducing preparation time and cost. Specimens were evaluated containing welds between the tube material (21 Cr-6Ni-9Mn) and the three stainless steels being considered for the flange materials: type 304L, type 316L and 21 Cr-6Ni-9Mn. The mechanical property tests consisted of three phases: simple tensile testing to failure, tensile testing of notched specimens (where the notch simulated fabrication flaws) and fatigue testing of notched specimens for the 4 × 10 4 cycle design life of the structure. The type 316L stainless steel flange produced welds with the best combination of strength and ductility at 295 and 4 K in all three phases of testing.

  5. Stress corrosion cracking of L-grade stainless steel in high temperature water

    L-grade stainless steels such as 316NG, SUS316L and SUS304L are used for the BWR reactor internals and re-circulation pipes. The L-grade stainless steels are known as typical SCC resistant materials because they are hardly thermally sensitized in usual welding process due to its lower carbon contents. However SCC of the L-grade material components were recently reported. This paper summarizes the recent knowledge and reports about the SCC behavior of L-grade stainless steels and its mitigation and improvement methods in BWR primary water condition. (author)

  6. Nanocomposite coatings on biomedical grade stainless steel for improved corrosion resistance and biocompatibility.

    Nagarajan, Srinivasan; Mohana, Marimuthu; Sudhagar, Pitchaimuthu; Raman, Vedarajan; Nishimura, Toshiyasu; Kim, Sanghyo; Kang, Yong Soo; Rajendran, Nallaiyan

    2012-10-24

    The 316 L stainless steel is one of the most commonly available commercial implant materials with a few limitations in its ease of biocompatibility and long-standing performance. Hence, porous TiO(2)/ZrO(2) nanocomposite coated over 316 L stainless steels was studied for their enhanced performance in terms of its biocompatibility and corrosion resistance, following a sol-gel process via dip-coating technique. The surface composition and porosity texture was studied to be uniform on the substrate. Biocompatibility studies on the TiO(2)/ZrO(2) nanocomposite coatings were investigated by placing the coated substrate in a simulated body fluid (SBF). The immersion procedure resulted in the complete coverage of the TiO(2)/ZrO(2) nanocomposite (coated on the surface of 316 L stainless steel) with the growth of a one-dimensional (1D) rod-like carbonate-containing apatite. The TiO(2)/ZrO(2) nanocomposite coated specimens showed a higher corrosion resistance in the SBF solution with an enhanced biocompatibility, surpassing the performance of the pure oxide coatings. The cell viability of TiO(2)/ZrO(2) nanocomposite coated implant surface was examined under human dermal fibroblasts culture, and it was observed that the composite coating enhances the proliferation through effective cellular attachment compared to pristine 316 L SS surface. PMID:22967070

  7. Surface modification of investment cast-316L implants: microstructure effects.

    El-Hadad, Shimaa; Khalifa, Waleed; Nofal, Adel

    2015-03-01

    Artificial femur stem of 316L stainless steel was fabricated by investment casting using vacuum induction melting. Different surface treatments: mechanical polishing, thermal oxidation and immersion in alkaline solution were applied. Thicker hydroxyapatite (HAP) layer was formed in the furnace-oxidized samples as compared to the mechanically polished ones. The alkaline treatment enhanced the precipitation of HAP on the samples. It was also observed that the HAP precipitation responded differently to the different phases of the microstructure. The austenite phase was observed to have more homogeneous and smoother layer of HAP. In addition, the growth of HAP was sometimes favored on the austenite phase rather than on ferrite phase. PMID:25579929

  8. Mathematical Modelling of Nitride Layer Growth of Low Temperature Gas and Plasma Nitriding of AISI 316L

    Triwiyanto A.; Zainuddin A.; Abidin K.A.Z; Billah M.A; Hussain P.

    2014-01-01

    This paper present mathematical model which developed to predict the nitrided layer thickness (case depth) of gas nitrided and plasma nitrided austenitic stainless steel according to Fick’s first law for pure iron by adapting and manipulating the Hosseini’s model to fit the diffusion mechanism where nitrided structure formed by nitrided AISI 316L austenitic stainless steel. The mathematical model later tested against various actual gas nitriding and plasma nitriding experimental results with ...

  9. Characterisation of passive films on 300 series stainless steels

    The formation and breakdown of the passive films on stainless steels are mainly controlled by ionic and electronic transport processes. Both these processes are in part controlled by the electronic properties of the oxide film. Consequently, it is vital to gain a detailed perception of the electronic properties of the passive films together with structural and compositional information for a comprehensive understanding of mechanisms behind passivity and localised corrosion. As a step towards this goal the passive films formed on two main austenitic stainless steels AISI 316L and AISI 304L in borate solution were characterised by in situ Raman spectroscopy and photocurrent spectroscopy coupled with electrochemical measurements. This revealed the formation of an Fe-Cr spinel as the dominant constituent in the passive films with more Cr enrichment in the oxide film on 316L than that of 304L. Bandgap readings and semiconductivities of the two stainless steels suggested that three different applied potential regions existed; 800 mV(SCE) to 300 mV(SCE), 200 mV(SCE) to -300 mV(SCE) and below -500 mV(SCE)

  10. In vivo evaluation of a high-strength, high-ductility stainless steel for use in surgical implants.

    Syrett, B C; Davis, E E

    1979-07-01

    A high-strength, high-ductility, austenitic stainless steel has been evaluated for use in surgical implants by performing in vivo tests in rats, rabbits, dogs, and rhesus monkeys. This stainless steel, a TRIP (Transformation Induced Plasticity) steel containing about 4% Mo, was compared with two alloys in current clinical use: Type 316L stainless steel and cast Vitallium. Compared with the other two alloys, cast Vitallium generally had higher resistance to corrosion and superior biocompatibility in all animals. The tests in rats and dogs indicated that the corrosion resistances of the TRIP steel and the Type 316L stainless steel were similar and that the tissue reactions caused by these alloys were also similar. However, in rhesus monkeys, the TRIP steel was shown to be susceptible to stress-corrosion cracking and much more susceptible to crevice corrosion than Type 316L stainless steel. Limited tests in rabbits supported the observation that the TRIP steel is susceptible to stress-corrosion cracking. These inconsistencies in the in vivo tests underline the need for a reevaluation of the popular test techniques and of the animals commonly chosen for assessing the suitability of candidate implant materials. The "worst case" results from the rhesus monkey tests were entirely consistent with previous results obtained from in vitro studies. However, further work must be performed before the behavior of metals in humans, rhesus monkeys, or any other animal, can be predicted with confidence from an in vitro test program. PMID:110810

  11. Weldability of dissimilar joint between F82H and SUS316L under fiber laser welding

    Serizawa, Hisashi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Mori, Daiki; Shirai, Yuma; Ogiwara, Hiroyuki; Mori, Hiroaki [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2013-10-15

    Highlights: • The microstructure of F82H/SUS316L dissimilar joint can be divided into four regions. • In the case without beam position shift, hardness of WM cannot be reduced by PWHT. • The fiber laser welding would be applicable for constructing the dissimilar joint. -- Abstract: As one of the high beam quality heat sources, 4 kW fiber laser was applied for joining between reduced activation ferritic/martensitic steel, F82H and SUS316L austenitic stainless steel, and the microstructural analyses and Vickers hardness measurements were carried out before and after post-weld heat treatment (PWHT). The microstructure of joint can be divided into four regions which are base metal of F82H, heat affected zone (HAZ) in F82H, weld metal (WM) and base metal of SUS316L. Also, it is revealed that the high-power fiber laser can be employed for constructing butt joint between F82H and SUS316L by applying PWHT and shifting the laser beam position to SUS316L, where the distance between the contact face and beam should be set as a range from radius to diameter of laser beam.

  12. Resistance of superhydrophobic and oleophobic surfaces to varied temperature applications on 316L SS

    Shams, Hamza; Basit, Kanza; Saleem, Sajid; Siddiqui, Bilal A.

    316L SS also called Marine Stainless Steel is an important material for structural and marine applications. When superhydrophobic and oleophobic coatings are applied on 316L SS it shows significant resistance to wear and corrosion. This paper aims to validate the coatings manufacturer's information on optimal temperature range and test the viability of coating against multiple oil based cleaning agents. 316L SS was coated with multiple superhydrophic and oleohobic coatings and observed under SEM for validity of adhesion and thickness and then scanned under FFM to validate the tribological information. The samples were then dipped into multiple cleaning agents maintained at the range of operating temperatures specified by the manufacturer. Coating was observed for deterioration over a fixed time intervals through SEM and FFM. A comparison was drawn to validate the most critical cleaning agent and the most critical temperature at which the coating fails to leave the base substrate exposed to the environment.

  13. Characteristics of residual stresses of water jet peened stainless steel

    The material of the specimen was austenitic stainless steel, SUS316L. The residual stresses in the specimen was introduced by a water jet peening (WJP). The change in the residual stress with thermal aging at 773K was measured by an X-ray stress measurement. The WJP residual stresses were an equi-biaxial stress state, and the compressive residual stress did not decrease against the thermal aging. To investigate dependence of the residual stress on a lattice plane, the WJP residual stresses were measured using hard synchrotron X-rays. (author)

  14. Emission of deuterium from SS 316L after plasma bombardment

    The understanding of the recycling (particle re-emission) behaviour of hydrogen isotopes from the first wall structures to the plasma of a fusion reactor is a crucial issue in plasma-wall interaction research, because the plasma performance will strongly depend on the time-scale and magnitude of this phenomenon. Deuterium recycling measurements from AISI 316L austenitic stainless steel surfaces have been performed in an experimental facility capable of reproducing particle flux densities and ion energies similar to those of ITER. The recycling flux has been evaluated. It is strongly dependent upon the impinging particle flux while target temperature and particle energy do not play a significant role. From these measurements a recombination coefficient for the system deuterium-AISI 316L has been calculated. The values are quite low, hence indicating that the AISI 316L sample target used was covered by an oxide layer that inhibits recombination. Moreover, the chemical composition of the recycling flux is pure molecular deuterium. ((orig.))

  15. Surface integrity and part accuracy in reaming and tapping stainless steel with new vegetable based cutting oils

    Belluco, Walter; De Chiffre, Leonardo

    2002-01-01

    This paper presents an investigation on the effect of new formulations of vegetable oils on surface integrity and part accuracy in reaming and tapping operations with AISI 316L stainless steel. Surface integrity was assessed with measurements of roughness, microhardness, and using metallographic ...

  16. Contribution to study and development of PM stainless steels with improved properties

    M. Rosso

    2007-09-01

    Full Text Available Purpose: of this paper is to present the studies performed at Politecnico di Torino aimed to the development of innovative composition of PM duplex stainless steels characterized with very high and unique mechanical and corrosion resistance properties. Previously a base research to attain improvement of quality and performances of sintered AISI 316L has been developed. Moreover the possibility to enhance mechanical and corrosion resistance properties through contact infiltration or through the use of reactive sintering techniques has also been demonstrated and discussed.Design/methodology/approach: The duplex compositions have been obtained using austenitic AISI 316L and AISI 410L as starting base powders. While AISI 316L stainless steel samples have been manufactured using different combinations of compacting pressure and sintering parameters, or a modified composition able to allow reactive sintering process, as well as the contact infiltration with bronze.Findings: The studies have been forwarded towards the static and dynamic mechanical properties, as well as the corrosion behavior. Lowering the porosity level and increasing the sintering degree, by use of higher compacting pressure or sintering temperature, is of great effectiveness, especially from the point of view of mechanical properties. Moreover, the innovative duplex composition are very promising.Practical implications: according to achieved results, duplex stainless steels can be obtained starting from austenitic of martensitic stainless steel powders by simple addition of single elements, through a process in vacuum. Concerning traditional austenitic grades, the obtained results demonstrate the benefits of contact infiltration and of reactive sintering techniques to sinter stainless steels components having higher density and better mechanical and corrosion resistance properties than the traditional compositions, compacted at high pressure and sintered at elevated temperature

  17. A facile electrodeposition of hydroxyapatite onto borate passivated surgical grade stainless steel

    Highlights: → Successful deposition of hydroxyapatite on 316L SS by a facile electrolytic Method. → Improvement of bio-resistivity of the alloy by increasing the time of borate Passivation. → Evolution of stable, bio-resistive hydroxyapatite coatings on borate passivated 316L SS. - Abstract: This paper reports a successful electrodeposition method for coating hydroxyapatite (HAP) onto surgical grade stainless steel (SS). Pure HAP coatings could be achieved at -1400 mV vs SCE and the coating resistivity was assessed by potentiodynamic polarization and impedance techniques which showed that HAP coatings deposited onto the borate passivated-SS specimens possess maximum bioresistivity in Ringer's solution. The coatings were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Atomic force microscopy (AFM). The results have showed that the borate passivation followed by HAP coating performed on 316L SS could enhance the longevity of the alloy in Ringer's solution.

  18. High density sintered stainless steels with improved properties

    M. Actis Grande

    2007-04-01

    Full Text Available Purpose: of this paper is the study of the properties of sintered AISI 316L (1.4404 according to EN 10088. Sintered stainless steels occupy a prominent position in the high alloyed steels, however their properties are limited by the presence of porosity. The improvement of quality and performances of products coupled with a reduction of manufacturing costs calls for high compacting pressures, as well as high sintering temperatures. However, the possibility to fill the open porosity of sintered parts by infiltration process with a metal alloy or by the use of reactive sintering techniques can favour the production of stainless steel parts with enhanced mechanical properties and good corrosion resistance. Design/methodology/approach: Sintered AISI 316L (1.4404 according to EN 10088 stainless steel samples have been manufactured using different combinations of compacting pressure and sintering parameters (time, temperature, atmosphere, or a modified composition able to allow reactive sintering process, as well as the contact infiltration with bronze.Findings: The studies have been forwarded towards the statical and dynamic mechanical properties, as well as the corrosion behavior. Lowering the porosity level and increasing the sintering degree, by use of higher compacting pressure or sintering temperature, is of great effectiveness, especially from the point of view of mechanical properties and fatigue endurance.Practical implications: the obtained results demonstrate the benefits of contact infiltration and of reactive sintering techniques to sinter stainless steels components having higher density and better mechanical and corrosion resistance properties than the traditional compositions, compacted at high pressure and sintered at elevated temperature.Originality/value: very promising results have been also obtained with a modified composition able to allow reactive sintering process.

  19. Effect of laser beam position on mechanical properties of F82H/SUS316L butt-joint welded by fiber laser

    Highlights: • The micro hardness of weld metal in F82H/SUS316L joint partially decreases after PWHT by shifting beam position to SUS316L. • Charpy impact energy of F82H/SUS316L joint obviously increases after PWHT due to the release of residual stress. • The tensile strength of weld metal in F82H/SUS316L joint is higher than that of SUS316L. • The fiber laser welding seems to be one of the most candidate methods to join between F82H and SUS316L pipes practically. - Abstract: A dissimilar butt-joint between reduced activation ferritic/martensitic steel F82H and SUS316L austenitic stainless steel was made by 4 kW fiber laser and the influence of laser beam position on its mechanical properties before and after post-weld heat treatment (PWHT) was examined at room temperature. From the nano-indentation measurements and the microstructural observations, it is found that the micro hardness of weld metal partially decreases after PWHT by shifting beam position to SUS316L because its phase seems to move from only the martensitic phase to the mixture of austenitic and martensitic phases. In addition, Charpy impact test suggests that the impact energy slightly increases by shifting beam position before PWHT and obviously increases after PWHT due to the release of residual stress. Moreover, the tensile test indicates that the tensile strength of weld metal is higher than that of SUS316L and the fracture occurs at the base metal of SUS316L regardless of laser beam position

  20. Effect of laser beam position on mechanical properties of F82H/SUS316L butt-joint welded by fiber laser

    Serizawa, Hisashi, E-mail: serizawa@jwri.osaka-u.ac.jp [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Mori, Daiki; Ogiwara, Hiroyuki; Mori, Hiroaki [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2014-10-15

    Highlights: • The micro hardness of weld metal in F82H/SUS316L joint partially decreases after PWHT by shifting beam position to SUS316L. • Charpy impact energy of F82H/SUS316L joint obviously increases after PWHT due to the release of residual stress. • The tensile strength of weld metal in F82H/SUS316L joint is higher than that of SUS316L. • The fiber laser welding seems to be one of the most candidate methods to join between F82H and SUS316L pipes practically. - Abstract: A dissimilar butt-joint between reduced activation ferritic/martensitic steel F82H and SUS316L austenitic stainless steel was made by 4 kW fiber laser and the influence of laser beam position on its mechanical properties before and after post-weld heat treatment (PWHT) was examined at room temperature. From the nano-indentation measurements and the microstructural observations, it is found that the micro hardness of weld metal partially decreases after PWHT by shifting beam position to SUS316L because its phase seems to move from only the martensitic phase to the mixture of austenitic and martensitic phases. In addition, Charpy impact test suggests that the impact energy slightly increases by shifting beam position before PWHT and obviously increases after PWHT due to the release of residual stress. Moreover, the tensile test indicates that the tensile strength of weld metal is higher than that of SUS316L and the fracture occurs at the base metal of SUS316L regardless of laser beam position.

  1. Effects of heat treatments on microstructure changes in the interface of Cu/SS316L joint materials

    Precipitation and dispersion strengthened copper alloys joined with 316L austenitic stainless steel are expected to be heat sink materials in the first wall and divertor of International Thermonuclear Experimental Reactor (ITER) owing to the good thermal conductivity of Cu alloys. In the present study, the effects of heat treatment on microstructural stability in the interface of CuNiBe/SS316L and CuAl25/SS316L have been investigated. In the as-received CuNiBe/SS316L joints, voids were observed at the interface, and in the stainless steel side near the interface. But in the CuAl25/SS316L joints, voids were observed only in the Cu side near the interface. These voids would have a significant effect on the mechanical properties of joints. The results of annealing experiments showed that the microstructures in the interface of both types of joints were thermally stable during annealing at 573 and 673 K for 100 h

  2. On the wear of TiB{sub x}/TiSi{sub y}C{sub z} coatings deposited on 316L steel

    Twardowska, Agnieszka [Pedagogical Univ. of Cracow (Poland). Inst. of Technology; Morgiel, Jerzy [Polish Academy of Sciences, Inst. of Metallurgy and Materials Science, Krakow (Poland); Rajchel, Boguslaw [Polish Academy of Sciences, The Henryk Niewodniczanski Institute of Nuclear Physics, Krakow (Poland)

    2015-07-15

    Bilayer TiB{sub x}/TiSi{sub y}C{sub z} coatings were formed on AISI 316L steel substrates by dual beam ion beam assisted deposition from TiB{sub x} and TiSi{sub y}C{sub z} targets. Coated and uncoated substrates were subjected to nanoindentation, scratch and friction-wear tests. Scratch and ball-on-disc tests were conducted in non-lubricated sliding, using a diamond pin and 100Cr6 steel ball, respectively. Scanning electron microscopy and atomic force microscopy were used to examine the surfaces of coated samples, before and after tests. To investigate wear mechanisms in the coating-substrate systems, thin foils were prepared from worn areas for transmission electron microscopy observations. TiB{sub x}/TiSi{sub y}C{sub z} coatings proved to be well adherent to steel substrates. The main wear mechanism was of abrasive type. Intensive plastic deformation of steel substrate under critical loads was revealed.

  3. The influence of thiosulphate ions on the localized corrosion of stainless steel

    The thiosulphate ion (S2O32-) can be formed either by microbial activity or by air-oxidation of metal sulphides, e.g. in blast-furnace slag. Since blast-furnace slag may be added to concrete for nuclear waste containment, information on the corrosion effects of thiosulphate on stainless steels such as are likely to be used for waste canisters in contact with such concrete has been reviewed and areas requiring further study identified. In neutral solutions, thiosulphate is extremely corrosive towards stainless steels. Pitting corrosion has been reported for Type 304 steel in solutions containing less than 10-5 molar thiosulphate ions, provided that an appropriate amount of sulphate is present. Chloride ions are not necessary for pitting of this alloy. Two mitigating circumstances lead to the conclusion that Type 316L steel will probably not suffer from thiosulphate corrosion under disposal conditions. First, the concrete environment has a high pH (≥ 12.5), and this has been shown to inhibit pitting. Second, no pitting of Type 316L steel has so far been detected in solutions where sulphate (rather than chloride) is the predominant anion. Experimental confirmation of the good resistance of Type 316L steel has been achieved using a scratching test. (author)

  4. Improved CuCrZr / 316L Transition for Plasma Facing Components

    Plasma Facing Components used in all advanced nuclear fusion experiments and in particular for ITER consist of heat sinks made of the precipitation hardened CuCrZr alloy. This material has been selected due to the requirements regarding thermal and mechanical properties with and without the presence of neutrons. The divertor parts which are highly heat loaded are actively cooled and are assembled onto weld stainless steel pressure vessels of grade 316L. Therefore these plasma facing parts need a transition in the cooling pipes from CuCrZr to 316L which withstands the internal pressure, the fatigue loads and remains leak tight during operation. As direct fusion welding of CuCrZr with 316L is regarded as critical due to metallurgical issues, the current design uses a transition of Ni - sleeve which is welded onto the CuCrZr and 316L, respectively. However, there is still some concern for the mechanically constraint region of the inlet coolant that this intermediate adapter is the weakest point and could fail due to strongly localised plasticity. The aim of this project is to investigate alternative solutions for the transition of CuCrZr / 316L, to down-select the most promising candidate and finally qualify a new improved tubular transition system. Basic EB welding experiments have been carried out on CuCrZr / 316L tubular samples using different adapter and filler materials. The adapter materials, e.g. Inconel 625 and Monel K500, were chosen due to their high temperature strength and good weldability with respect to Cu - alloys and austenitic steels. In case of the investigated filler metals Ni and Ti the intention was to control the dilution and to produce a fine grained weld zone with no formation of detrimental phases. As a further option the use of an explosively welded CuCrZr/316L adapter was evaluated. The application of such an adapter would simplify the issue to the welding of CuCrZr / CuCrZr and 316L / 316L respectively. In the characterisation programme

  5. Stainless steel tube-based cell cryopreservation containers.

    Shih, Wei-Hung; Yu, Zong-Yan; Wu, Wei-Te

    2013-12-01

    This study focused on increasing the freezing rate in cell vitrification cryopreservation by using a cryopreservation container possessing rigid mechanical properties and high heat-transfer efficiency. Applying a fast freezing rate in vitrification cryopreservation causes a rapid temperature change in the cryopreservation container and has a substantial impact on mechanical properties; therefore, a highly rigid cryopreservation container that possesses a fast freezing rate must be developed. To produce a highly rigid cryopreservation container possessing superior heat transfer efficiency, this study applies an electrochemical machining (ECM) method to an ANSI 316L stainless steel tube to treat the surface material by polishing and roughening, thereby increasing the freezing rate and reducing the probability of ice crystal formation. The results indicated that the ECM method provided high-quality surface treatment of the stainless steel tube. This method can reduce internal surface roughness in the stainless steel tube, thereby reducing the probability of ice crystal formation, and increase external surface roughness, consequently raising convection heat-transfer efficiency. In addition, by thinning the stainless steel tube, this method reduces heat capacity and thermal resistance, thereby increasing the freezing rate. The freezing rate (3399 ± 197 °C/min) of a stainless steel tube after interior and exterior polishing and exterior etching by applying ECM compared with the freezing rate (1818 ± 54 °C/min) of an original stainless steel tube was increased by 87%, which also exceeds the freezing rate (2015 ± 49 °C/min) of an original quartz tube that has a 20% lower heat capacity. However, the results indicated that increasing heat-transferring surface areas and reducing heat capacities cannot effectively increase the freezing rate of a stainless steel tube if only one method is applied; instead, both techniques must be implemented concurrently to improve the

  6. Atomic force microscopy of surface relief in individual grains of fatigued 316L austenitic stainless steel

    Man, Jiří; Obrtlík, Karel; Blochwitz, C.; Polák, Jaroslav

    2002-01-01

    Roč. 50, č. 15 (2002), s. 3767-3780. ISSN 1359-6454 R&D Projects: GA ČR GA106/00/D055; GA ČR GA106/01/0376 Institutional research plan: CEZ:AV0Z2041904 Keywords : fatigue * persistent slip band * atomic force microscopy Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 3.104, year: 2002

  7. AFM study of the kinetics of surface relief evolution in fatigued 316L austenitic stainless steel

    Man, Jiří; Obrtlík, Karel; Polák, Jaroslav

    Rimini : Associazione Italiana di Metallurgia, 2001, s. No. 937. [European Conference on Advanced Materials and Processes "EUROMAT 2001" /7./. Rimini (IT), 10.06.2001-14.06.2001] R&D Projects: GA ČR GA106/00/D055; GA ČR GA106/01/0376 Institutional research plan: CEZ:AV0Z2041904 Keywords : fatigue * AFM * surface relief Subject RIV: JL - Materials Fatigue, Friction Mechanics

  8. Study of surface relief evolution in fatigued 316L austenitic stainless steel by AFM

    Man, Jiří; Obrtlík, Karel; Polák, Jaroslav

    2003-01-01

    Roč. 351, 1-2 (2003), s. 123-132. ISSN 0921-5093 R&D Projects: GA AV ČR IBS2041001; GA AV ČR IAA2041201; GA ČR GA106/00/D055; GA ČR GA106/01/0376 Institutional research plan: CEZ:AV0Z2041904 Keywords : fatigue * atomic force microscopy * persistent slip band Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.365, year: 2003

  9. Process mapping of laser surface modification of AISI 316L stainless steel for biomedical applications

    Chikarakara, Evans; Naher, Sumsun; Brabazon, Dermot

    2010-01-01

    Due to limited lifetime for biomedical implants, material engineers have strived to improve the surface properties of existing biomaterials. Widely used methods of surface modification include film deposition such as physical vapour deposition (PVD), chemical vapour deposition (CVD) and diamond like carbon coating (DLC). Internal stresses make it difficult to bond such coatings to the substrates thus weakening the structure and limiting the life of implants. Laser glazing can achieve an amorp...

  10. Constitutive Modelling and Identification of Parameters of 316L Stainless Steel at Cryogenic Temperatures

    Ryś Maciej

    2014-09-01

    Full Text Available In this work, a macroscopic material model for simulation two distinct dissipative phenomena taking place in FCC metals and alloys at low temperatures: plasticity and phase transformation, is presented. Plastic yielding is the main phenomenon occurring when the yield stress is reached, resulting in nonlinear response of the material during loading. The phase transformation process leads to creation of two-phase continuum, where the parent phase coexists with the inclusions of secondary phase. An identification of the model parameters, based on uniaxial tension test at very low temperature, is also proposed.

  11. Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting

    The densification during selective laser melting (SLM) process is an important factor determining the final application of SLM-part. In the present work, the densifications under different processing conditions were investigated and the densification mechanisms were elucidated. It was found that the higher laser power, lower scan speed, narrower hatch spacing and thinner layer thickness could enable a much smoother melting surface and consequently a higher densification. The gas atomized powder possessed better densification than water atomized powder, due to the lower oxygen content and higher packing density of gas atomized powder. A large number of regular-shaped pores can be generated at a wider hatch spacing, even if the scanning track is continuous and wetted very well. The densification mechanisms were addressed and the methods for building dense metal parts were also proposed as follows: inhibiting the balling phenomenon, increasing the overlap ratio of scanning tracks and reducing the micro-cracks.

  12. Use of sputter-deposited 316L stainless steel ultrathin films for microbial influenced corrosion studies

    Suci, P.A.; Geesey, G.G. [Montana State Univ., Bozeman, MT (United States); Pedraza, A.J.; Godbole, M.J. [Univ. of Tennessee, Knoxville, TN (United States)

    1993-12-31

    Ultra thin films (12nm) were sputter deposited onto cylindrical germanium internal reflection elements pre-coated with a thin (2 nm) layer of Cr{sub 2}O{sub 3}. Two crystals were inserted into Circle cell flow-through chambers and mounted on the optical bench of an Fourier Transform Infrared (FT-IR) spectrometer. One chamber was maintained as a sterile control while the other was sequentially inoculated with four bacterial species: Psudomonas aeruginosa, Bacillus subtillis, Hafnia alvei, and Desulfovibrio gigas, in that order. The water absorption band (1640cm{sup -4}) was monitored and used to follow that deterioration of the ultra thin films. In this respect, the sterile control and inoculated films exhibited only slight differences during the 1000h course of the experiment. Assay of the visible biofilm that has accumulated on the surface of the inoculated crystal after 1000h revealed that the film incorporated viable cells from all four strains.

  13. An extended 316L stainless steel model suitable for industrial rolling

    Abbod, MF; Mahfouf, M; Linkens, DA; Sellars, CM

    2007-01-01

    During hot rolling processes, the material under deformation undergoes different deformation conditions, i.e. temperature changes and strain rates. One particular variable is the change in strain rate which can vary from low to very high values in industrial rolling. Usually empirical models are used for predicting the material characteristics but they are only valid within constrained limits. In this work an extended model has been developed to predict the stress/strain characteristics of 31...

  14. Anisotropic radiation-induced segregation in 316L austenitic stainless steel with grain boundary character

    Radiation-induced segregation (RIS) and subsequent depletion of chromium along grain boundaries has been shown to be an important factor in irradiation-assisted stress corrosion cracking in austenitic face-centered cubic (fcc)-based alloys used for nuclear energy systems. A full understanding of RIS requires examination of the effect of the grain boundary character on the segregation process. Understanding how specific grain boundary structures respond under irradiation would assist in developing or designing alloys that are more efficient at removing point defects, or reducing the overall rate of deleterious Cr segregation. This study shows that solute segregation is dependent not only on grain boundary misorientation, but also on the grain boundary plane, as highlighted by markedly different segregation behavior for the Σ3 incoherent and coherent grain boundaries. The link between RIS and atomistic modeling is also explored through molecular dynamic simulations of the interaction of vacancies at different grain boundary structures through defect energetics in a simple model system. A key insight from the coupled experimental RIS measurements and corresponding defect–grain boundary modeling is that grain boundary–vacancy formation energy may have a critical threshold value related to the major alloying elements’ solute segregation

  15. Short crack growth and fatigue life in plasma nitrided 316L stainless steel

    Obrtlík, Karel; Polák, Jaroslav

    Vol. 2. Amsterdam: Elsevier, 2000 - (Miannay, D.; Costa, P.; François, D.; Pineau, A.), s. 1119-1124 ISBN 0-08-042815-0. [Euromat 2000. Tours (FR), 07.11.2000-09.11.2000] R&D Projects: GA ČR GA106/97/1034; GA AV ČR IBS2041001 Subject RIV: JL - Materials Fatigue, Friction Mechanics

  16. Effects of hydrogen charging on surface slip band morphology of a type 316L stainless steel

    Menard, M.; Olive, J.M.; Aubert, I. [Laboratoire Mecanique Physique - CNRS/Universite Bordeaux I - 351, cours de la Liberation, 33405 Talence cedex (France); Brass, A.M. [Laboratoire de Physico-Chimie de l' Etat Solide - CNRS/Universite Paris-Sud, Bat.414, 91405 Orsay cedex (France)

    2004-07-01

    Stress corrosion cracking (SCC) is observed for many metals and alloys whose the behavior is ductile in inert environment. Mechanisms occurring during SCC involve strong interactions between the applied stress and the chemical environment. One of the implied processes in the crack propagation is the influence of the anodic dissolution and the hydrogen absorption on dislocation dynamic near the metal surface. At the microscopic scale, the absorption of hydrogen has been reported to increase the velocity of dislocations in different crystal structures and to promote the slip localization and slip planarity. In this study a description of the effects of the hydrogen concentration, grain size and macroscopic deformation level is given and particularly the experimental results of quantitative slip morphology analyses obtained by atomic force microscopy are presented. The slip morphology of hydrogenated and non-hydrogenated specimens of two grain sizes (140 and 300 {mu}m) are compared after being deformed in tension to 2% and 10% of strain in ambient air (macroscopic strain rates of 10{sup -3} s{sup -1} and 10{sup -6} s{sup -1}). Two cathodic hydrogen charging leading to hydrogen concentrations of 31 wt.ppm and 135 wt.ppm induce a slip localization at 10{sup -3} s{sup -1} at 2% of strain in coarse grained samples. This strain localization is characterized by increases in the mean slip-band spacing value and in the mean slip-band height value of respectively 17% and 40% with 31 wt.ppm and of 100% and 85% with 135 wt.ppm. At 10% of strain and for the two hydrogen concentrations, the hydrogen induces low effects on the slip-band spacings while the slip-band heights increase by 55%. The fine grained specimens show a significant change in the slip morphology at 135 wt.ppm characterized by an increase in the average slip-band height of 60% at 2% of strain and of 56% at 10% of strain in comparison with uncharged samples and present a slip localization at 10% of strain. (authors)

  17. Surface nanostructuring of Ni, Ti, and 316L stainless steel using ultrafast laser interactions

    Gill, Matt; Perrie, Walter; Fox, Peter; O'Neill, William

    2005-04-01

    The generation of surface periodic structures (SPS) on laser machined surfaces is known to occur when exciting the surface near the ablation threshold using short pulse laser exposure. These effects were first observed in the late 1960s and have remained a laboratory curiosity. Although well studied at nanosecond timescales there have been limited number of studies at ultrafast timescales. We have investigated the conditions necessary to generate short and long-range periodic structures using ultrafast laser pulses at λ =775nm and 387 nm which may find application in the field of surface engineering. This work examines the formation of SPS on a range of materials including Ni, Ti and SS316 and their dependence on fluence and polarisation.

  18. The passivity of Type 316L stainless steel in borate buffer solution

    Nicic, Igor; Macdonald, Digby D.

    2008-09-01

    The passivity of Type 316 SS in borate buffer solution (pH 8.35), in the steady-state, has been explored using a variety of electrochemical techniques, including potentiostatic polarization, Mott Schottky analysis, and electrochemical impedance spectroscopy. The study shows that the passive film is an n-type semiconductor with a donor density that is essentially independent of voltage across the passive state. The passive current density is also found to be voltage-independent, but the thickness of the barrier layer depends linearly on the applied voltage. These observations are consistent with the predictions of the Point Defect Model, noting that the point defects within the barrier layer of the passive film are metal interstitials or oxygen vacancies, or both. No evidence for p-type behavior was obtained, indicating that cation vacancies do not have a significant population density in the film compared with the two donors (cation interstitials and oxygen vacancies).

  19. Robustness of numerical TIG welding simulation of 3D structures in stainless steel 316L

    The numerical welding simulation is considered to be one of those mechanical problems that have the great level of nonlinearity and which requires a good knowledge in various scientific fields. The 'Robustness Analysis' is a suitable tool to control the quality and guarantee the reliability of numerical welding results. The robustness of a numerical simulation of welding is related to the sensitivity of the modelling assumptions on the input parameters. A simulation is known as robust if the result that it produces is not very sensitive to uncertainties of the input data. The term 'Robust' was coined in statistics by G.E.P. Box in 1953. Various definitions of greater or lesser mathematical rigor are possible for the term, but in general, referring to a statistical estimator, it means 'insensitive to small deviation from the idealized assumptions for which the estimator is optimized. In order to evaluate the robustness of numerical welding simulation, sensitivity analyses on thermomechanical models and parameters have been conducted. At the first step, we research a reference solution which gives the best agreement with the thermal and mechanical experimental results. The second step consists in determining through numerical simulations which parameters have the largest influence on residual stresses induced by the welding process. The residual stresses were predicted using finite element method performed with Code-Aster of EDF and SYSWELD of ESI-GROUP. An analysis of robustness can prove to be heavy and expensive making it an unjustifiable route. However, only with development such tool of analysis can predictive methods become a useful tool for industry. (author)

  20. Mg-Doped Hydroxyapatite/Chitosan Composite Coated 316L Stainless Steel Implants for Biomedical Applications.

    Sutha, S; Dhineshbabu, N R; Prabhu, M; Rajendran, V

    2015-06-01

    In this investigation, ultrasonication process was used for the synthesis of magnesium doped nano-hydroxyapatite (MH) (0, 1, 2, and 3 mol% of Mg concentration) particles with controlled size and surface morphology. The size of the prepared MH particles was in the range of 20-100 nm with narrow distribution. Increase in the concentration of Mg reduced the particle size distribution from 60 to 40 nm. On incorporation of Mg in HAp lattice, an increase of 20-66 nm in specific surface area was observed in microporous HAp particles. XRF and XRD patterns reveal that the particles possess stoichiometric composition with reduced crystallinity with respect to the Mg concentration. Surface morphology of MH/chitosan (CTS) coated implant was found to be uniform without any defects. The corrosion rate of the implant decreased with increase in Mg concentration. The in vitro formation of bonelike apatite layer on the surface of the MH/CTS coated implant was observed from simulated body fluid studies. The antimicrobial activity of the MH/CTS composites against gram-positive and gram-negative bacterial strains indicated that increasing Mg concentration enhanced antimicrobial properties. Nanoindentation analysis of apatite coated implant surface reveals that the mechanical property depends on the concentration of magnesium in HAp. From the cytotoxicity analysis against NIH 3T3 fibroblast, it was observed that the Mg incorporated HAp/CTS composite was less toxic than the MHO/CTS composite. From this result, it was concluded that the MH/CTS nanocomposites coated implant is the excellent material for implants. PMID:26369027