WorldWideScience

Sample records for 304l stainless steel

  1. Forging evaluaion of 304L stainless steel

    The objective of this project was to evaluate and characterize the effects of various forging parameters on the metallographic structure and mechanical properties of 304L stainless steel forgings. Upset and die forgings were produced by hammer and Dynapak forging with forging temperatures ranging from 760 to 11450C, upset reductions ranging from 20 to 60%, and annealing times ranging from 0 to 25 minutes at 8430C. The carbide precipitation behavior observed was found to be a function of forging temperature and annealing time. Higher forging temperatures were beneficial in avoiding continuous carbide precipitation and annealing at 8430C promoted increased carbide precipitation. The yield strength of the unannealed forgings decreased with increasing forging temperature and, with the exception of the 11450C upset forgings, was significantly lowered by annealing

  2. Weld solidification cracking in 304 to 304L stainless steel

    Hochanadel, Patrick W [Los Alamos National Laboratory; Lienert, Thomas J [Los Alamos National Laboratory; Martinez, Jesse N [Los Alamos National Laboratory; Martinez, Raymond J [Los Alamos National Laboratory; Johnson, Matthew Q [Los Alamos National Laboratory

    2010-01-01

    A series of annulus welds were made between 304 and 304L stainless steel coaxial tubes using both pulsed laser beam welding (LBW) and pulsed gas tungsten arc welding (GTAW). In this application, a change in process from pulsed LBW to pulsed gas tungsten arc welding was proposed to limit the possibility of weld solidification cracking since weldability diagrams developed for GTAW display a greater range of compositions that are not crack susceptible relative to those developed for pulsed LBW. Contrary to the predictions of the GTAW weldability diagram, cracking was found. This result was rationalized in terms of the more rapid solidification rate of the pulsed gas tungsten arc welds. In addition, for the pulsed LBW conditions, the material compositions were predicted to be, by themselves, 'weldable' according to the pulsed LBW weldability diagram. However, the composition range along the tie line connecting the two compositions passed through the crack susceptible range. Microstructurally, the primary solidification mode (PSM) of the material processed with higher power LBW was determined to be austenite (A), while solidification mode of the materials processed with lower power LBW apparently exhibited a dual PSM of both austenite (A) and ferrite-austenite (FA) within the same weld. The materials processed by pulsed GT A W showed mostly primary austenite solidification, with some regions of either primary austenite-second phase ferrite (AF) solidification or primary ferrite-second phase austenite (FA) solidification. This work demonstrates that variations in crack susceptibility may be realized when welding different heats of 'weldable' materials together, and that slight variations in processing can also contribute to crack susceptibility.

  3. HYDROGEN-ASSISTED FRACTURE IN FORGED TYPE 304L AUSTENITIC STAINLESS STEEL

    Switzner, Nathan; Neidt, Ted; Hollenbeck, John; Knutson, J.; Everhart, Wes; Hanlin, R. [University of Missouri-Kansas City; Bergen, R. [Precision Metal Products; Balch, D. K. [Sandia Natl Laboratory

    2012-09-06

    Austenitic stainless steels generally have good resistance to hydrogen-assisted fracture; however, structural designs for high-pressure gaseous hydrogen are constrained by the low strength of this class of material. Forging is used to increase the low strength of austenitic stainless steels, thus improving the efficiency of structural designs. Hydrogen-assisted racture, however, depends on microstructural details associated with manufacturing. In this study, hydrogen-assisted fracture of forged type 304L austenitic stainless steel is investigated. Microstructural variation in multi-step forged 304L was achieved by forging at different rates and temperatures, and by process annealing. High internal hydrogen content in forged type 304L austenitic stainless steel is achieved by thermal precharging in gaseous hydrogen and results in as much as 50% reduction of tensile ductility.

  4. Dynamic compressive response of wrought and additive manufactured 304L stainless steels

    Nishida Erik

    2015-01-01

    Full Text Available Additive manufacturing (AM technology has been developed to fabricate metal components that include complex prototype fabrication, small lot production, precision repair or feature addition, and tooling. However, the mechanical response of the AM materials is a concern to meet requirements for specific applications. Differences between AM materials as compared to wrought materials might be expected, due to possible differences in porosity (voids, grain size, and residual stress levels. When the AM materials are designed for impact applications, the dynamic mechanical properties in both compression and tension need to be fully characterized and understood for reliable designs. In this study, a 304L stainless steel was manufactured with AM technology. For comparison purposes, both the AM and wrought 304L stainless steels were dynamically characterized in compression Kolsky bar techniques. They dynamic compressive stress-strain curves were obtained and the strain rate effects were determined for both the AM and wrought 304L stainless steels. A comprehensive comparison of dynamic compressive response between the AM and wrought 304L stainless steels was performed. SAND2015-0993 C.

  5. Martensitic transformation in 304L and 316L types stainless steels cathodically hydrogen charged

    This paper reports a TEM study on the role of phase transitions at the crack tip in 304L and 316L types stainless steels cathodically hydrogen charged in the absence of any eternally applied forces. The possible role of α prime and epsilon martensite phases in the fracture mechanism is discussed

  6. Dynamic Strength of 304L stainless steel under impact

    Werdiger, Meir; Bakshi, Lior; Glam, Benny; Pistinner, Shlomi

    2011-06-01

    We use the Asay self consistent technique to analyze the effects of pressure hardening and strain hardening on SS304L. Previously unloading experiment has been used to infer the strength of this material at high pressure, and recently the Johnson-Cook (JC) model has been calibrated at low strain rate. Release and reshock experiments with impact velocity range of 300-1700 m/s were preformed. We used VISAR to extract the particle velocity of the SS304L- LiF window interface. The velocity profile compared to hydrodynamic simulation using JC model. Our unloading experiments have clearly demonstrate that the material yield but does not fail. Thus infer substantial effect of pressure hardening.

  7. Optimization of process parameters in explosive cladding of titanium/stainless steel 304L plates

    Explosive cladding is a solid state welding process best suited for joining incompatible metals. The selection of process parameters viz., explosive mass ratio, stand off distance and initial angle of inclination dictate the nature of the cladding. Optimization of process parameters in explosive cladding of titanium-stainless steel 304L plates, based on two level three factorial design, is attempted to establish the influencing parameters. Analysis of variance was employed to find the linear, regression and interaction values. Mathematical models to estimate the responses-amplitude and wavelength were developed. The microstructure of the Ti-SS304L explosive clad interface reveals characteristic undulations concurrent with design expectations. (orig.)

  8. TESTING OF 304L STAINLESS STEEL IN NITRIC ACID ENVIRONMENTS WITH FLUORIDES AND CHLORIDES

    Mickalonis, J.

    2010-10-04

    Impure radioactive material processed in nitric acid solutions resulted in the presence of chlorides in a dissolver fabricated from 304L stainless steel. An experimental program was conducted to study the effects of chloride in nitric acid/fluoride solutions on the corrosion of 304L stainless steel. The test variables included temperature (80, 95, and 110 C) and the concentrations of nitric acid (6, 12, and 14 M), fluoride (0.01, 0.1, and 0.2 M) and chloride (100, 350, 1000, and 2000 ppm). The impact of welding was also investigated. Results showed that the chloride concentration alone was not a dominant variable affecting the corrosion, but rather the interaction of chloride with fluoride significantly affected corrosion.

  9. Passivity and passivity breakdown of 304L stainless steel in hot and concentrated nitric acid

    The objective of this study is to characterize the oxidation behavior of 304L stainless steel (SS) in representative conditions of spent nuclear fuel reprocessing, i.e. in hot and concentrated nitric acid. In these conditions the SS electrochemical potential is in the passive domain and its corrosion rate is low. However when the media becomes more aggressive, the potential may be shifted towards the trans-passive domain characterized with a high corrosion rate. Passivity and passivity breakdown in the trans-passive domain are of a major interest for the industry. So as to characterize these phenomenons, this work was undertaken with the following representative conditions: a 304L SS from an industrial sheet was studied, the media was hot and concentrated HNO3, long term tests were performed. First, the surface of an immersed 304L SS was characterized with several complementary techniques from the micro to the nanometer scale. Then oxidation kinetics was studied in the passive and in the trans-passive domain. The oxidation behavior was studied thanks to weight loss determination and surface analysis. Finally, oxidation evolution as a function of the potential was studied from the passive to the trans-passive domain. In particular, this allowed us to obtain the anodic curve of 304L SS in hot and concentrated and to define precisely the 304L SS limits of in such conditions. (author)

  10. Development of Nanocrystalline 304L Stainless Steel by Large Strain Cold Working

    Marina Odnobokova; Andrey Belyakov; Rustam Kaibyshev

    2015-01-01

    The microstructural changes leading to nanocrystalline structure development and the respective tensile properties were studied in a 304L stainless steel subjected to large strain cold rolling at ambient temperature. The cold rolling was accompanied by the development of deformation twinning and martensitic transformation. The latter readily occurred at deformation microshear bands, leading the martensite fraction to approach 0.75 at a total strain of 3. The deformation twinning followed by m...

  11. Comparison of Stress Corrosion Cracking Susceptibility of Laser Machined and Milled 304 L Stainless Steel

    Gupta, R. K.; Kumar, Aniruddha; Nagpure, D. C.; Rai, S. K.; Singh, M. K.; Khooha, Ajay; Singh, A. K.; Singh, Amrendra; Tiwari, M. K.; Ganesh, P.; Kaul, R.; Singh, B.

    2016-07-01

    Machining of austenitic stainless steel components is known to introduce significant enhancement in their susceptibility to stress corrosion cracking. The paper compares stress corrosion cracking susceptibility of laser machined 304 L stainless steel specimens with conventionally milled counterpart in chloride environment. With respect to conventionally milled specimens, laser machined specimens displayed more than 12 times longer crack initiation time in accelerated stress corrosion cracking test in boiling magnesium chloride as per ASTM G36. Reduced stress corrosion cracking susceptibility of laser machined surface is attributed to its predominantly ferritic duplex microstructure in which anodic ferrite phase was under compressive stress with respect to cathodic austenite.

  12. Corrosion of type 304L stainless steel in boiling dilute neptunium nitrate solution

    Corrosion of type 304L stainless steel in nitric acid solution containing neptunium was studied under immersion and heat-transfer condition. Corrosion rates of stainless steel were obtained by the weight loss measurement and the quantitative analysis of metallic ions dissolved in solution. The surface morphology was observed by scanning electron microscopy. The corrosion acceleration mechanism was investigated by polarization measurement and spectrophotometry. The corrosion rate in boiling 9M nitric acid was accelerated by addition of neptunium. The corrosion of stainless steel was promoted under heat-transfer condition compared to immersion condition. In polarization measurements, the cathodic current was increased by addition of neptunium. Spectrophotometric measurements showed the oxidization of neptunium in boiling nitric acid. It was suggested that the accelerated corrosion in nitric acid solution containing neptunium was caused by re-oxidation of neptunium. (author)

  13. Constant extension rate tensile tests on 304L stainless steel in simulated hazardous low-level waste

    New waste tanks which handle hazardous low-level waste were proposed to be constructed in H-area. The candidate material for the tanks is AISI Type 304L (304L) stainless steel. Constant extension rate tensile (CERT) tests were conducted to assess the susceptibility of 304L to stress-corrosion cracking (SCC) in these waste solutions. The tests demonstrated that 304L was not susceptible to SCC in simulated wastes. Based on these tests and previous pitting corrosion studies 304L is a suitable material of construction for the new tanks. Comparison tests in the same simulants were performed on A537 carbon steel (A537), a material that is similar to material of construction for the current tanks. Stress-corrosion cracking was indicated in two of the simulants. If carbon steel tanks are utilized to handle the hazardous low-level wastes, inhibitors such as nitrite or hydroxide will be necessary to prevent corrosion

  14. Corrosion and microstructural aspects of dissimilar joints of titanium and type 304L stainless steel

    Mudali, U. Kamachi. E-mail: kamachi@igcar.ernet.in; Ananda Rao, B.M.; Shanmugam, K.; Natarajan, R.; Raj, Baldev

    2003-09-01

    To link titanium and zirconium metal based (Ti, Zr-2, Ti-5%Ta, Ti-5%Ta-1.8Nb) dissolver vessels containing highly radioactive and concentrated corrosive nitric acid solution to other nuclear fuel reprocessing plant components made of AISI type 304L stainless steel (SS), high integrity and corrosion resistant dissimilar joints between them are necessary. Fusion welding processes produce secondary precipitates which dissolve in nitric acid, and hence solid-state processes are proposed. In this work, various dissimilar joining processes available for producing titanium-304L SS joints with adequate strength, ductility and corrosion resistance for this critical application are highlighted. Developmental efforts made at IGCAR, Kalpakkam are outlined. The possible methods and the microstructural-metallurgical properties of the joints along with corrosion results obtained with three phase (liquid, vapour, condensate) corrosion testing are discussed. Based on the results, dissimilar joint produced by the explosive joining process was adopted for plant application.

  15. Corrosion and microstructural aspects of dissimilar joints of titanium and type 304L stainless steel

    To link titanium and zirconium metal based (Ti, Zr-2, Ti-5%Ta, Ti-5%Ta-1.8Nb) dissolver vessels containing highly radioactive and concentrated corrosive nitric acid solution to other nuclear fuel reprocessing plant components made of AISI type 304L stainless steel (SS), high integrity and corrosion resistant dissimilar joints between them are necessary. Fusion welding processes produce secondary precipitates which dissolve in nitric acid, and hence solid-state processes are proposed. In this work, various dissimilar joining processes available for producing titanium-304L SS joints with adequate strength, ductility and corrosion resistance for this critical application are highlighted. Developmental efforts made at IGCAR, Kalpakkam are outlined. The possible methods and the microstructural-metallurgical properties of the joints along with corrosion results obtained with three phase (liquid, vapour, condensate) corrosion testing are discussed. Based on the results, dissimilar joint produced by the explosive joining process was adopted for plant application

  16. Microstructure and corrosion behavior of multipass gas tungsten arc welded 304L stainless steel

    Highlights: • Multipass gas tungsten arc welding of 304L stainless steel was successfully done. • All welds were austenitic with the presence of a small amount of δ-ferrite. • The morphology of δ-ferrite showed the lathy and skeletal δ-ferrite in the welds. • Hardness and corrosion resistance were improved by multipass welding. • The best joint properties were obtained after three passes welding. - Abstract: The purpose of this study was to discuss the effect of single pass and multipass (double and triple pass) gas tungsten arc welding (GTAW) on microstructure, hardness and corrosion behavior of 304L stainless steel. In this investigation, 308 stainless steel filler metal was used. Microstructures and hardness of the weldments were investigated using optical microscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction analysis (XRD) and Vickers microhardness (HV0.5). A ferritescope was also used in the non-destructive evaluation to observe the ferrite content on the weldments. Corrosion behavior of weldments in 1 M H2SO4 solution at 25 ± 1 °C was investigated using potentiodynamic polarization and immersion tests. Results indicated that the microstructure of fusion zones exhibited dendritic structure contained lathy and skeletal δ-ferrite. The contents of δ-ferrite in the weld zone increased by increasing the number of passes. Therefore, as the number of passes increased, the hardness and corrosion resistance increased

  17. Corrosion testing of type 304L stainless steel in tuff groundwater environments

    The stress-corrosion cracking (SCC) resistance of Type 304L stainless steel (SS) to elevated temperatures in tuff rock and tuff groundwater environments was determined under irradiated and nonirradiated conditions using U-bend specimens and slow-strain-rate tests. The steel was tested both in the solution-annealed condition and after sensitization heat treatments. The material was found to be susceptible to SCC in both the solution-annealed and solution-annealed-and-sensitized conditions when exposed to an irradiated crushed tuff rock environment containing air and water vapor at 900C. A similar exposure at 500C did not result in failure after a 25-month test duration. Specimens of sensitized 304 SS conditioned with a variety of sensitization heat treatments resisted failure during a test of 1-year duration in which a nonirradiated environment of tuff rock and groundwater held at 2000C was allowed to boil to dryness on a cyclical basis. All specimens of sensitized 304 SS exposed to this environment failed. Slow-strain-rate studies were performed on 304L, 304, and 316L SS specimens. The 304L SS was tested in J-13 well water at 1500C, and the 316L SS at 950C. Neither material showed evidence of SCC in these tests. Sensitized 304 SS did exhibit SCC in J-13 well water in tests conducted at 1500C. 12 refs., 27 figs., 13 tabs

  18. Fatigue of welded joint in a stainless steel AISI 304 L

    The flexion fatigue behavior for the base metal and welded joint of an AISI 304 L stainless steel type, used in the Angra-1 reactor, was determined. An automatic welding process was used with improved procedures in order to assure better welding metallurgy. Fatigue tests samples reinforcements were done to allow the evaluation of metallurgical variables, specially the role played by delta ferrite. The resulting welded joint showed better fatigue life than the base metal. Delta ferrite was found to play an important role on the initiation and propagation processes of the fatigue cracks. (Author)

  19. Comparative Shock Response of Additively Manufactured Versus Conventionally Wrought 304L Stainless Steel*

    Wise, J. L.; Adams, D. P.; Nishida, E. E.; Song, B.; Maguire, M. C.; Carroll, J.; Reedlunn, B.; Bishop, J. E.

    2015-06-01

    Gas-gun experiments have probed the compression and release behavior of impact-loaded 304L stainless steel specimens machined from additively manufactured (AM) blocks as well as baseline ingot-derived bar stock. The AM technology allows direct fabrication of metal parts. For the present study, a velocity interferometer (VISAR) measured the time-resolved motion of samples subjected to one-dimensional (i.e., uniaxial strain) shock compression to peak stresses ranging from 0.2 to 7.5 GPa. The acquired wave-profile data have been analyzed to determine the comparative Hugoniot Elastic Limit (HEL), Hugoniot equation of state, spall strength, and high-pressure yield strength of the AM and conventional materials. Observed differences in shock loading and unloading characteristics for the two 304L source variants have been correlated to complementary Kolsky bar results for compressive and tensile testing at lower strain rates. The effects of composition, porosity, microstructure (e.g., grain size and morphology), residual stress, and sample axis orientation relative to the additive manufacturing deposition trajectory have been assessed to explain differences between the AM and baseline 304L dynamic mechanical properties. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  20. Effect of rare earth oxide additions on oxidation behavior of AISI 304L stainless steel

    Marina Fuser Pillis

    2006-12-01

    Full Text Available AISI 304L stainless steel powder compacts containing 2 vol% high purity rare earth oxides were prepared by mixing the different powders in a vibratory mill followed by pressing. The compacts thus obtained were sintered in a vacuum furnace and isothermal oxidation measurements were carried out in a muffle furnace, in air, up to 200 hours at 900 °C. The oxidized surfaces were examined in a scanning electron microscope and micro regions of the reaction products were studied using energy dispersive analysis. The addition of rare earth oxides decreased the oxidation rate of the stainless steel. Further evidence of predominant oxygen ion diffusion controlling the overall oxidation process in rare earth containing chromium oxide forming alloys has been observed.

  1. Repetitive Thermomechanical Processing towards Ultra Fine Grain Structure in 301, 304 and 304L Stainless Steels

    A. Momeni; S.M. Abbasi

    2011-01-01

    Thermomechanical processing as a combination of cold rolling and annealing was performed on austenitic stainless steels 301,304 and 304L. Two cold rolling steps each one up to a reduction of 75% were combined with an intermediate annealing at 800℃ for 20 min. The final annealing was performed at.the same temperature and time. Cold rolling contributed to martensite formation at the expense of metastable austenite in the studied materials. Austenite in 301 was found to be less stable than that in 304 and 304L. Hence, higher strength characteristics in the as-quenched 301 stainless steels were attributed to the higher volume fraction of martensite. Both α'-martensite and ε-martensite were found to form as induced by deformation. However, the intensity of ε-martensite increased as the stability of austenite decreased. Annealing after cold rolling led to the reversion of austenite with an ultra fine grained structure in the order of 0.5-1 μm from the strain induced martensite. The final grain size was found to be an inverse function of the amount of strain induced martensite. The thermomechanical processing considerably improved the strength characteristics while the simultaneous decrease of elongation was rather low.

  2. Modeling Periodic Adiabatic Shear Bands Evolution in a 304L Stainless Steel Thick-Walled Cylinder

    Liu, Mingtao; Hu, Haibo; Fan, Cheng; Tang, Tiegang

    2015-06-01

    The self-organization of multiple shear bands in a 304L stainless steel thick-walled cylinder (TWC) was numerically studied. The microstructures of material lead to the non-uniform distribution of local yield stress, which plays a key role in the formation of spontaneous shear localization. We introduced a probability factor satisfied Gauss distribution into the macroscopic constitutive relationship to describe the non-uniformity of local yield stress. Using the probability factor, the initiation and propagation of multiple shear bands in TWC were numerically replicated in our 2D FEM simulation. Experimental results in the literature indicate that the machined surface at the internal boundary of a 304L stainless steel cylinder provides a work-hardened layer (about 20 μm) which has significantly different microstructures from base material. The work-hardened layer leads to the phenomenon that most shear bands are in clockwise or counterclockwise direction. In our simulation, periodic oriented perturbations were applied to describe the grain orientation in the work-hardened layer, and the spiral pattern of shear bands was successfully replicated.

  3. Effect of H2O2 on the corrosion behavior of 304L stainless steel

    In connection with the safe storage of high level nuclear waste, effect of H2O2 on the corrosion behavior of 304L stainless steel was examined. Open circuit potentials and polarization curves were measured with and without H2O2. The experimental results show that H2O2 increased corrosion potential and decreased pitting potential. The passive range, therefore, decreased as H2O2 concentration increased, indicating that pitting resistance was decreased by the existence of H2O2 in the electrolyte. These effects of H2O2 on corrosion of 304L stainless steel are considered to be similar to those of γ-irradiation. To compare the effects of H2O2 with those of O2, cathodic and anodic polarization curves were made in three types of electrolyte such as aerated, deaerated, and stirred electrolyte. The experimental results show that the effects of H2O2 on the corrosion behavior were very similar to those of O2 such as increase of corrosion potential, decrease of pitting resistance, and increase of repassivation potential. Further, H2O2 played much greater role in controlling cathodic reaction rate in neutral water environment. In acid and alkaline media, potential shifts by H2O2 were restricted by the large current density of proton reduction and by the le Chatelier's principle respectively

  4. Chemical interaction between granular B4C and 304L-type stainless steel materials used in BWRs in Japan

    Chemical reactions between stainless steel and boron carbide were investigated using the materials applied for control rods in BWRs in Japan, specifically 304L-type stainless steel and granular boron carbide. The reaction region consisted of 2–4 layers, in which the significant composition variation of each element was detected, especially for B and C. Assuming that the reaction layer growth obeys the parabolic law, the effective rate constant between 304L-type stainless steel and granular boron carbide was evaluated to be approximately one order of magnitude smaller than the previously reported values for boron carbide pellets or powers. This difference might originate from the loose contact between the stainless steel and the granular boron carbide in the present study. Regarding liquefaction progress, the stainless steel components were selectively dissolved in the melt; consequently, the unreacted boron carbide tended to remain. (author)

  5. Comparison of SCC Behavior of 304L Stainless Steels With and Without Boron Addition in Acidic Chloride Environment

    Sivai Bharasi, N.; Pujar, M. G.; Nirmal, S.; Mallika, C.; Kamachi Mudali, U.; Angelo, P. C.

    2016-07-01

    The stress corrosion cracking (SCC) behavior of 304L B4 grade borated stainless steel (SS) as well as 304L SS was investigated by constant load and slow strain rate testing (SSRT) techniques. The microstructure, pitting, and SCC behavior of borated SS in the as-received, sensitized, and solution-annealed conditions were analyzed. Potentiodynamic anodic polarization and double loop electrochemical potentiokinetic reactivation (DLEPR) experiments were carried out to find out pitting corrosion resistance and degree of sensitization (DOS). The number of boride particles (composed of Cr, Fe, and B) were highest for the specimen solution annealed at 1423 K/2 h. Solution-annealing treatment at 1423 K/4 h was found to be beneficial in improving the corrosion resistance of borated 304L SS. Although the borated 304L SS exhibited a higher DOS, it showed improved pitting corrosion resistance compared to 304L SS. Constant load experiments revealed the time to failure to be the highest for the specimen solution annealed at 1423 K/4 h. SCC susceptibility index (Iscc) values obtained from SSRT tests were lower for solution-annealed borated 304L SS compared to the as-received and sensitized conditions. The improved SCC resistance of borated 304L SS was attributed not only to the solution-annealing treatment but also the higher stacking fault energy (SFE) value compared to 304L SS.

  6. Nitrogen interstitial diffusion induced decomposition in AISI 304L austenitic stainless steel

    The nature of the near-surface γN phase produced by low-temperature (∼400 °C) plasma-assisted nitriding of an austenitic stainless steel 304L is studied. A combination of global probes (X-ray diffraction, nuclear reaction analysis, glow discharge optical emission spectroscopy) and local probes (field ion microscopy, conversion electron Mössbauer, X-ray absorption near edge structure and extended X-ray absorption fine structure spectroscopies) is employed to reveal the morphology, phase structure, atomic ordering and chemical state of the obtained γN phase. The results consistently reveal the heterogeneous nature of the nitrided layer consisting of nanometric CrN precipitates embedded in a Fe4N-like matrix. The size of the precipitates is found to be larger at the surface than at the nitrided layer–steel interface. The precipitates have irregular, sphere-like shapes. Moreover, X-ray spectroscopic investigation revealed three different intermetallic distances and different chemical environments for Fe, Cr and Ni, accompanied by a large static disorder. These findings suggest that the presence of the interstitial N destabilizes the homogeneous element distribution in 304L even at such low temperatures. This leads to the segregation into Cr-rich zones that are coherent with the Fe4N matrix. Possible atomistic decomposition mechanisms are discussed. Based on the heterogeneous nature of the γN phase revealed in 304L, an alternative view of its remarkable combination of properties such as large hardness, induced ferromagnetism and preserved corrosion resistance is considered.

  7. Production of nano/submicron grained AISI 304L stainless steel through the martensite reversion process

    Research highlights: → At least 50% reduction is necessary to complete the transformation of austenite to martensite at 0 deg. C. → The parameters of Olsen-Cohen model were found as n = 4.5, α = 3.257 and β = 3.573. → The appropriate grain refining zone for annealing treatment was determined. → A diagram showing different zones for each level of grain sizes via annealing conditions is presented. → The hardness improves 2.5 times higher after the thermo-mechanical process. → Final structure exhibits not only high strength (above 1 GPa) but also good elongation (∼40%). - Abstract: Production of nano/submicron grained AISI 304L austenitic stainless steel through formation of strain-induced martensite and its reversion to austenite are studied in this paper. The effects of annealing parameters on the microstructural development and mechanical properties are also investigated. Heavily cold rolling at 0 deg. C is employed to induce the formation of martensite in the metastable austenitic material, followed by reversion treatment at the temperature range of 700-900 deg. C for 0.5-300 min. Microstructural evolutions are analyzed using Feritscope, X-ray diffraction, and scanning electron microscopy, whereas the mechanical properties are determined by hardness and tensile tests. The smallest grain size (about 135 nm) is obtained in the specimen annealed at 700 deg. C for 20 min. The resultant nano/submicron grained steel not only exhibits a high strength level (about 1010 MPa) but also a desirable elongation of about 40%. Moreover, an annealing map is developed which indicates the appropriate range of annealing parameters for grain refinement of AISI 304L stainless steel through the martensite reversion process.

  8. Production of nano/submicron grained AISI 304L stainless steel through the martensite reversion process

    Forouzan, Farnoosh, E-mail: forouzan.iut@gmail.com [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Najafizadeh, Abbas; Kermanpur, Ahmad; Hedayati, Ali; Surkialiabad, Roohallah [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2010-10-25

    Research highlights: {yields} At least 50% reduction is necessary to complete the transformation of austenite to martensite at 0 deg. C. {yields} The parameters of Olsen-Cohen model were found as n = 4.5, {alpha} = 3.257 and {beta} = 3.573. {yields} The appropriate grain refining zone for annealing treatment was determined. {yields} A diagram showing different zones for each level of grain sizes via annealing conditions is presented. {yields} The hardness improves 2.5 times higher after the thermo-mechanical process. {yields} Final structure exhibits not only high strength (above 1 GPa) but also good elongation ({approx}40%). - Abstract: Production of nano/submicron grained AISI 304L austenitic stainless steel through formation of strain-induced martensite and its reversion to austenite are studied in this paper. The effects of annealing parameters on the microstructural development and mechanical properties are also investigated. Heavily cold rolling at 0 deg. C is employed to induce the formation of martensite in the metastable austenitic material, followed by reversion treatment at the temperature range of 700-900 deg. C for 0.5-300 min. Microstructural evolutions are analyzed using Feritscope, X-ray diffraction, and scanning electron microscopy, whereas the mechanical properties are determined by hardness and tensile tests. The smallest grain size (about 135 nm) is obtained in the specimen annealed at 700 deg. C for 20 min. The resultant nano/submicron grained steel not only exhibits a high strength level (about 1010 MPa) but also a desirable elongation of about 40%. Moreover, an annealing map is developed which indicates the appropriate range of annealing parameters for grain refinement of AISI 304L stainless steel through the martensite reversion process.

  9. Microstructural features of hot pressure bonding between stainless steel type AISI-304 L and ziracloy-2

    The diffusion zone formed after reaching quasi-equilibrium in hot pressure bonding between stainless steel type AISI-304 L and Zircaloy-2 under particular thermal and compressive conditions (1000-11000C and 2-3 atm) contains two distinct layers, each separately localized in the modified stainless steel and Zircaloy matrices. SEM, TEM, X-ray diffraction and microanalysis were used to identify the phase structure and composition of the two diffusion layers. The nature and distribution of phases found in the diffusion layers can be explained in connection with the diffusion mechanisms operating after the initial stages of bond formation and interface disappearance: (a) The strog zirconium diffusion promotes ferrite and ZrCr2 formation in a narrow zone located near the stainless steel matrix. (b) Iron and nickel diffusion over large distances in the Zircaloy matrix leads to the occurrence of a larger zone having a two-phase structure. The light grey phase consists of untransformed α-Zr and a small precentage of high-temperature β-Zr phase. The darker grey phase contains essentially a very high amount of intermetallic bct compounds Zr-Fe-Ni, Zr2Fe and Zr2Ni dispersed in the small residue of Zircaloy matrix. (orig.)

  10. Investigation of shot-peened austenitic stainless steel 304L by means of magnetic Barkhausen noise

    Research highlights: The results and the conclusions drawn in this paper are important for the scientific community and especially for scientist who are looking for method to characterize phase transformations in metallic materials. We show that Barkhausen noise measurements can be successfully used to monitor strain-induced martensite in austenitic stainless steels. - Abstract: Different shot peening conditions were applied to an austenitic stainless steel AISI 304L in order to transform austenite to martensite α' at different depths. Magnetic Barkhausen noise measurements performed on this steel reveal a correlation between the strength of the signal and the depth of the treatment. The combined effect of the volume fraction of martensite and the residual stress in martensite determined using X-ray diffraction analysis were found to be responsible for the evolution of the Barkhausen noise response. Using tensile plastic deformation, the residual stress in martensite was changed, giving rise to a strong increase of the Barkhausen noise activity. This variation was correlated to a modification of the sign and amplitude of the residual stress in the martensite phase. Directional measurements of the Barkhausen noise revealed the anisotropy of the residual stresses induced by the tensile plastic deformation. It is concluded that the Barkhausen noise activity recording could lead to the determination of the residual stresses in martensite induced by shot peening processes.

  11. Investigation of shot-peened austenitic stainless steel 304L by means of magnetic Barkhausen noise

    Kleber, X., E-mail: xavier.kleber@insa-lyon.fr [Universite de Lyon, INSA-Lyon, MATEIS CNRS UMR5510, 7 Avenue Jean Capelle, F-69621 Villeurbanne (France); Barroso, S. Pirfo [Universite de Lyon, INSA-Lyon, MATEIS CNRS UMR5510, 7 Avenue Jean Capelle, F-69621 Villeurbanne (France)

    2010-08-20

    Research highlights: The results and the conclusions drawn in this paper are important for the scientific community and especially for scientist who are looking for method to characterize phase transformations in metallic materials. We show that Barkhausen noise measurements can be successfully used to monitor strain-induced martensite in austenitic stainless steels. - Abstract: Different shot peening conditions were applied to an austenitic stainless steel AISI 304L in order to transform austenite to martensite {alpha}' at different depths. Magnetic Barkhausen noise measurements performed on this steel reveal a correlation between the strength of the signal and the depth of the treatment. The combined effect of the volume fraction of martensite and the residual stress in martensite determined using X-ray diffraction analysis were found to be responsible for the evolution of the Barkhausen noise response. Using tensile plastic deformation, the residual stress in martensite was changed, giving rise to a strong increase of the Barkhausen noise activity. This variation was correlated to a modification of the sign and amplitude of the residual stress in the martensite phase. Directional measurements of the Barkhausen noise revealed the anisotropy of the residual stresses induced by the tensile plastic deformation. It is concluded that the Barkhausen noise activity recording could lead to the determination of the residual stresses in martensite induced by shot peening processes.

  12. Electronic structures and nitride formation on ion-implanted AISI 304L austenitic stainless steel

    Chang, G.S.; Son, J.H.; Kim, S.H.; Chae, K.H.; Whang, C.N. (Yonsei Univ., Seoul (Korea, Republic of). Dept. of Physics); Menthe, E.; Rie, K.-T.; Lee, Y.P.

    1999-02-01

    A N[sub 2][sup +] implantation technique was employed to improve the surface hardness of stainless steel, and the electronic structures and nitride formation of the ion-implanted layer were investigated and compared with those produced using other techniques, including plasma nitriding. AISI 304L austenite stainless steel was irradiated by 80 keV N[sub 2][sup +] with a dosage ranging from 1.0 x 10[sup 16] to 1.0 x 10[sup 18] ions cm[sup -2] at room temperature. The formation of various nitrides was confirmed by X-ray diffraction. The quantitative hardness of the samples was measured by using a Knoop microhardness tester. X-ray photoelectron spectroscopy was also carried out to elucidate the chemical states and electronic structures of the ion-implanted layers. The measurements were repeated after post-annealing at 400 C for 1 h in a high vacuum. Changes in phase, chemical state and electronic structures were observed according to the ion dose and heat treatment. (orig.) 12 refs.

  13. In situ study by atomic force microscopy of localised corrosion on a 304L stainless steel

    At this time, the understanding of the initiation of localized corrosion on stainless steels (SS) is still limited. In this context, the present work aimed at observing in situ by Atomic Force Microscopy (AFM) the initiation of corrosion pits and stress corrosion cracking (SCC) cracks. In order to complete the project, a new technique associating an AFM, an electrochemical cell and a traction platform as been developed. It allows in situ imaging of the surface evolutions of a 304L SS at the nano-scale. under controlled potential and/or under stress conditions. We show that corrosion pits initiate preferentially in relation with nano-metric defects of the surface. For the first time, a real-time kinetic study of the first steps of nano-metric pits growth has been performed. This study corroborates the 'point-defect' model (vertical pit growth speed of 0.18 angstrom.s-1, current densities inside pits evaluated to 73 μjA.cm-2. Combined with the EBSD technique (Electron Backscattered Diffraction), the AFM allows a total indexing of the activated slip systems during deformation and give information about the number of emerged dislocations (few units). The effect of strain hardening at the nano-scale on pitting susceptibility has been investigated: 70% of the pits set up at strain hardened areas. To explain this phenomenon, we propose a simple model based on the modification of the local work function of the surface due to local stress gradients. Concerning SCC, the first in situ observations seem to validate Magnin's mechanism: crack initiation appears at strain concentration spots. Observed after anodization of our 304L surface, organized arrays of nano-cavities (period of 50-100 nm) have been analyzed. In collaboration with an INSERM team, we showed that such nano-structured surfaces increase the adhesion and differentiation of bone cells. (author)

  14. Microstructure and Mechanical Properties of Plasma Arc Brazed AISI 304L Stainless Steel and Galvanized Steel Plates

    Jin, Yajuan; Li, Ruifeng; Yu, Zhishui; Wang, Yu

    2016-04-01

    Plasma arc brazing is used to join the AISI 304L stainless steel and galvanized steel plate butt joints with the CuSi3Mn1 filler wire. The effect of parameters on weld surface appearance, interfacial microstructure, and composition distribution in the joint was studied. The microhardness and mechanical tests were conducted to determine the mechanical properties of the welded specimens. The results indicated that good appearance, bead shape, and sufficient metallurgical bonding could be obtained when the brazing process was performed with a wire feeding speed of 0.8 m/min, plasma gas flow rate of 3.0 l/min, welding current of 100 A, and welding speed of 27 cm/min. During plasma arc brazing process, the top corner of the stainless steel and galvanized steel plate were heated and melted, and the melted quantity of stainless steel was much more than that of the galvanized steel due to the thermal conductivity coefficient difference between the dissimilar materials. The microhardness test results shows that the microhardness value gradually increased from the side of the galvanized steel to the stainless steel in the joint, and it is good for improving the mechanical properties of joint. The tensile strength was a little higher than that of the brazing filler, and the fracture position of weld joint was at the base metal of galvanized steel plate.

  15. Thermomechanical history measurements on Type 304L stainless steel pipe girth welds

    Thermal and strain histories were recorded for three 40-cm-diameter (16 inch), Type 304L stainless steel (SS), schedule 40 (1.27 cm thickness) pipe girth welds. Two weld groove preparations were standard V grooves while the third was a narrow groove configuration. The welding parameters for the three pipe welds simulated expected field practice as closely as possible. The narrow gap weld was completed in four continuous passes while the other two welds required six and nine (discontinuous) passes, due to the use of different weld wire diameters. Thermomechanical history measurements were taken on the inner counterbore surface, encompassing the weld centerline and heat-affected zone (HAZ), as well as 10 cm of inner counterbore surface on either side of the weld centerline; a total of 47 data acquisition instruments were used for each weld. These instruments monitored: (1) weld shrinkages parallel to the pipe axis; (2) surface temperatures; (3) surface strains parallel to weld centerline; and (4) radial deformations. Results show that the weld and HAZ experienced cyclic deformation in the radial direction during welding, indicating that the final residual stress distribution in multi-pass pipe weldments is not axisymmetric. Measured radial and axial deformations were smaller for the narrow gap groove than for the standard V grooves, suggesting that the narrow gap groove weldment may have lower residual stress levels than the standard V groove weldments. This study provides the experimental database and a guideline for further computational modeling work

  16. Effect of thermal cycles on heavily cold deformed AISI 304L austenitic stainless steel

    The solution treated commercial grade AISI 304L austenitic stainless steel plate was heavily cold rolled to 90% of thickness reduction. Cold rolled specimens were annealed at various temperatures by thermal cycles and isothermal annealing. Strain-induced phase transformations and microstructure studies were carried out both in the cold rolled and annealed conditions. The X-ray diffraction and magnetic measurements were used for phase transformation studies. The transmission electron microscope characterisation revealed that the cyclic thermal process resulted in ultrafine grain austenite formation whereas, the isothermal annealing developed coarser grain size microstructure. The different microstructural evolutions by the above two processes largely influenced the development of the recrystallisation texture. The thermal cycling produced a distinct γ-fibre texture while the isothermal annealing resulted in a cube texture component along with the γ-fibre. The γ-fibre texture evolution was attributed to the over critical subgrains or nuclei and {1 0 0} cube texture to the coarser grains of micrometer size.

  17. Crack propagation in stainless steel AISI 304L in Hydrogen Chemistry conditions (HWC)

    Velocities of crack growth in samples type CT pre cracking of stainless steel AISI 304l solder and sensitized thermally its were obtained by the Rising Displacement method or of growing displacement. It was used a recirculation circuit that simulates the operation conditions of a BWR type reactor (temperature of 280 C and a pressure of 8 MPa) with the chemistry modified by the addition of hydrogen with and without the addition of impurities of a powerful oxidizer like the Cu+ ion. In each essay stayed a displacement velocity was constant of 1x10-9 m/s, making a continuous pursuit of the advance of the crack by the electric potential drop technique. Contrary to the idea of mitigation of the crack propagation velocity by effect of the addition of the hydrogen in the system, the values of the growth velocities obtained by this methodology went similar to the opposing ones under normal operation conditions. To the finish of the rehearsal one carries out the fractographic analysis of the propagation surfaces, which showed cracks growth in trans and intergranular way, evidencing the complexity of the regulator mechanisms of the IGSCC like in mitigation conditions as the alternative Hydrogen Chemistry. (Author)

  18. Cracking of 304L stainless steel observed within CANDU nuclear power plants under cyclic moist environments

    The stress corrosion cracking (SCC) of stainless steel Type 304L has been observed recently in a CANDU nuclear station. The cracking occurred on the inside surface of a piping structure and was transgranular in nature. It was mainly present in sections adjacent to welds, at pipe bends, and straight pipe sections. Such cracking mechanisms are governed by specific intrinsic parameters associated with stress, environment, and material factors. In this case, environmental factors not typical, and, presumably, the stresses at the affected locations are low. This paper discusses the results of the failure analysis conducted on affected component materials. The assessment of the observed mechanism includes the investigation of the affected piping (e.g., undamaged test welds, bends, and around the crack locations) using Orientation Imaging Microscopy (OIM) to evaluate the relative degree of residual plastic strain present in the crack locations and in the general pipe microstructure. Advance surface analysis (ToF-SIMS) was used to examine metal surface oxides buried beneath deposits and at strained regions of the pipe in order to elucidate the chemical species likely involved in the cracking/degradation process. (author)

  19. Mechanical properties of Austenitic Stainless Steel 304L and 316L at elevated temperatures

    Raghuram Karthik Desu

    2016-01-01

    Full Text Available Austenitic Stainless Steel grade 304L and 316L are very important alloys used in various high temperature applications, which make it important to study their mechanical properties at elevated temperatures. In this work, the mechanical properties such as ultimate tensile strength (UTS, yield strength (YS, % elongation, strain hardening exponent (n and strength coefficient (K are evaluated based on the experimental data obtained from the uniaxial isothermal tensile tests performed at an interval of 50 °C from 50 °C to 650 °C and at three different strain rates (0.0001, 0.001 and 0.01 s−1. Artificial Neural Networks (ANN are trained to predict these mechanical properties. The trained ANN model gives an excellent correlation coefficient and the error values are also significantly low, which represents a good accuracy of the model. The accuracy of the developed ANN model also conforms to the results of mean paired t-test, F-test and Levene's test.

  20. Propagation of crevices in stainless steel AISI304L in conditions of hydrogen chemistry (HWC)

    Crevice growth velocities in samples of AISI 304L stainless steel thermally welded and sensitized were obtained by the Rising displacement method or of growing displacement. It was used a recirculation circuit in where the operation conditions of a BWR type reactor were simulated (temperature of 288 C and a pressure of 8 MPa) with the chemistry modified by the addition of hydrogen with and without the addition of impurities of a powerful oxidizer like the Cu++ ion. CT pre cracked specimens were used and each rehearsal stayed to one constant displacement velocity of 1 x 10-9 m/s (3.6 μm/hr), making a continuous pursuit of the advance of the crack by the electric potential drop technique. To the end of the rehearsal it was carried out the fractographic analysis of the propagation surfaces. The values of the growth velocities obtained by this methodology went similar to the opposing ones under normal conditions of operation; while the fractographic analysis show the cracks propagation in trans and intergranular ways, evidencing the complexity of the regulator mechanisms of the one IGSCC even under controlled ambient conditions or with mitigation methodologies like the alternative hydrogen chemistry. (Author)

  1. Low cycle fatigue: high cycle fatigue damage accumulation in a 304L austenitic stainless steel

    The aim of this study was to evaluate the consequences of a Low Cycle Fatigue pre-damage on the subsequent fatigue limit of a 304L stainless steel. The effects of hardening and severe roughness (grinding) have also been investigated. In a first set of tests, the evolution of the surface damage induced by the different LCF pre-cycling was characterized. This has permitted to identify mechanisms and kinetics of damage in the plastic domain for different surface conditions. Then, pre-damaged samples were tested in the High Cycle Fatigue domain in order to establish the fatigue limits associated with each level of pre-damage. Results evidence that, in the case of polished samples, an important number of cycles is required to initiate surface cracks ant then to affect the fatigue limit of the material but, in the case of ground samples, a few number of cycles is sufficient to initiate cracks and to critically decrease the fatigue limit. The fatigue limit of pre-damaged samples can be estimated using the stress intensity factor threshold. Moreover, this detrimental effect of severe surface conditions is enhanced when fatigue tests are performed under a positive mean stress (author)

  2. Development of Nanocrystalline 304L Stainless Steel by Large Strain Cold Working

    Marina Odnobokova

    2015-04-01

    Full Text Available The microstructural changes leading to nanocrystalline structure development and the respective tensile properties were studied in a 304L stainless steel subjected to large strain cold rolling at ambient temperature. The cold rolling was accompanied by the development of deformation twinning and martensitic transformation. The latter readily occurred at deformation microshear bands, leading the martensite fraction to approach 0.75 at a total strain of 3. The deformation twinning followed by microshear banding and martensitic transformation promoted the development of nanocrystalline structure consisting of a uniform mixture of austenite and martensite grains with their transverse sizes of 120–150 nm. The developed nanocrystallites were characterized by high dislocation density in their interiors of about 3 × 1015 m−2 and 2 × 1015 m−2 in austenite and martensite, respectively. The development of nanocrystalline structures with high internal stresses led to significant strengthening. The yield strength increased from 220 MPa in the original hot forged state to 1600 MPa after cold rolling to a strain of 3.

  3. Effect of pre-hardening on the lifetime of type 304L austenitic stainless steels

    This study deals with the effect of the loading history on the cyclic behavior and the fatigue life of two kinds (THYSSEN and CLI) of 304L stainless steel at room temperature. The experiments have been performed using two specimens' categories. The first one (virgin) has been submitted to only classical fatigue tests while in the second category, prior to the fatigue test, the specimen is subjected to a pre-hardening process under either monotonic or cyclic strain control. Cyclic softening followed by cyclic hardening are observed for the virgin specimens while only cyclic softening is exhibited by the pre-hardened specimens. The obtained results show that fatigue life is strongly influenced by the pre-hardening: it seems beneficial under stress control but detrimental under strain control, even in the presence of a compressive mean stress. The results are discussed regarding the cyclic evolution of the elastic modulus as well as the isotropic and kinematic parts of the strain hardening, and strain energy density per cycle, in different configurations: with or without prehardening,stress or strain control. (author)

  4. Investigation of high temperature corrosion behavior on 304L austenite stainless steel in corrosive environments

    In this work, 304L stainless steel samples were exposed at 700 °C for 10hrs in different corrosive environments; dry oxygen, molten salt, and molten salt + dry oxygen. The corrosion behavior of samples was analyzed using weight change measurement technique, optical microscope (OM) and Scanning Electron Microscope (SEM) equipped with Energy Dispersive X-ray (EDX). The existence phases of corroded sample were determined using X-ray Diffraction (XRD). The lowest corrosion rate was recorded in dry oxygen while the highest was in molten salt + dry oxygen environments with the value of 0.0062 mg/cm2 and −13.5225 mg/cm2 respectively. The surface morphology of sample in presence of salt mixture showed scale spallation. Oxide scales of Fe3O4, Fe2O3 were the main phases developed and detected by XRD technique. Cr2O3 was not developed in every sample as protective layers but chromate-rich oxide was developed. The cross-section analysis found the oxide scales were in porous, thick and non-adherent that would not an effective barrier to prevent from further degradation of alloy. EDX analysis also showed the Cr-element was low compared to Fe-element at the oxide scale region

  5. Superior radiation-resistant nanoengineered austenitic 304L stainless steel for applications in extreme radiation environments

    Sun, C.; Zheng, S.; Wei, C. C.; Wu, Y.; Shao, L.; Yang, Y.; Hartwig, K. T.; Maloy, S. A.; Zinkle, S. J.; Allen, T. R.; Wang, H.; Zhang, X.

    2015-01-01

    Nuclear energy provides more than 10% of electrical power internationally, and the increasing engagement of nuclear energy is essential to meet the rapid worldwide increase in energy demand. A paramount challenge in the development of advanced nuclear reactors is the discovery of advanced structural materials that can endure extreme environments, such as severe neutron irradiation damage at high temperatures. It has been known for decades that high dose radiation can introduce significant void swelling accompanied by precipitation in austenitic stainless steel (SS). Here we report, however, that through nanoengineering, ultra-fine grained (UFG) 304L SS with an average grain size of ~100 nm, can withstand Fe ion irradiation at 500°C to 80 displacements-per-atom (dpa) with moderate grain coarsening. Compared to coarse grained (CG) counterparts, swelling resistance of UFG SS is improved by nearly an order of magnitude and swelling rate is reduced by a factor of 5. M23C6 precipitates, abundant in irradiated CG SS, are largely absent in UFG SS. This study provides a nanoengineering approach to design and discover radiation tolerant metallic materials for applications in extreme radiation environments.

  6. Corrosion and slow-strain-rate testing of Type 304L stainless steel in tuff groundwater environments

    Type 304L stainless steel (SS) is the nuclear waste package reference material by the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. The stress-corrosion cracking (SCC) resistance of this material to elevated-temperature tuff groundwater environments was determined under irradiated and unirradiated conditions. The material was found to be susceptible to SCC (in both the solution-annealed and solution-annealed-and-sensitized conditions) when exposed to an irradiated (3 x 105 rad/h) air/water vapor/crushed tuff rock environment at 900C. A similar exposure at 500C did not result in failure after a 25-month test duration. Specimens of sensitized Type 304 SS failed in both the 900C and 500C environments. U-bend specimens of Type 304L SS conditioned with a variety of sensitization heat treatments resisted failure during a test of 1-year duration in which an environment of tuff rock and groundwater held at 2000C was allowed to boil to dryness on a cyclical (weekly) basis. All specimens of sensitized Type 304 SS exposed to this environment failed. Slow-strain-rate studies were performed on 304L, 304, and 316L SS specimens. The Type 304L steel was tested in J-13 well water at 1500C; the Type 316L steel at 950C. Neither material showed evidence of SCC in these tests. Sensitized Type 304 SS, on the other hand, did exhibit SCC in J-13 well water in tests conducted at 1500C

  7. Martensitic Transformation in Ultrafine-Grained Stainless Steel AISI 304L Under Monotonic and Cyclic Loading

    Heinz Werner Höppel

    2012-02-01

    Full Text Available The monotonic and cyclic deformation behavior of ultrafine-grained metastable austenitic steel AISI 304L, produced by severe plastic deformation, was investigated. Under monotonic loading, the martensitic phase transformation in the ultrafine-grained state is strongly favored. Under cyclic loading, the martensitic transformation behavior is similar to the coarse-grained condition, but the cyclic stress response is three times larger for the ultrafine-grained condition.

  8. XPS Analysis of AISI 304L Stainless Steel Surface after Electropolishing

    Rokosz K.

    2015-03-01

    Full Text Available In the paper, the passive surface layers of AISI 304L after standard (EP50 and very-high-current density electropolishing (EP1000 in a mixture of orthophosphoric and sulfuric acids in a 1:4 ratio, are presented. The main finding of the presented studies is enrichment of the steel surface film in chromium: total chromium to total iron ratio was equal to 6.6 after EP50 and to 2.8 after EP1000; on the other hand, chromium compounds to iron compounds ratio was equal to 10.1 after EP50, and 3.9 after EP1000.

  9. The effect of electrode vertex angle on automatic tungsten-inert-gas welds for stainless steel 304L plates

    The effect of electrode vertex angle on penetration depth and weld bead width, in automatic tungsten-inert-gas (TIG) dcsp bead-on-plate welding with different currents, has been studied for stainless steel 304L plates 1.5 mm and 8 mm thick. It has been found that for thin plates, wider and deeper welds are obtained when using sharper electrodes while, for thick plates, narrower and deeper welds are produced when blunt electrodes (vertex angle 180 deg) are used. An explanation of the results, based on a literature survey, is included

  10. Corrosion of high Ni-Cr alloys and Type 304L stainless steel in HNO3-HF

    Nineteen alloys were evaluated as possible materials of construction for steam heating coils, the dissolver vessel, and the off-gas system of proposed facilities to process thorium and uranium fuels. Commercially available alloys were found that are satisfactory for all applications. With thorium fuel, which requires HNO3-HF for dissolution, the best alloy for service at 1300C when complexing agents for fluoride are used is Inconel 690; with no complexing agents at 1300C, Inconel 671 is best. At 950C, six other alloys tested would be adequate: Haynes 25, Ferralium, Inconel 625, Type 304L stainless steel, Incoloy 825, and Haynes 20 (in order of decreasing preference); based on composition, six untested alloys would also be adequate. The ions most effective in reducing fluoride corrosion were the complexing agents Zr4+ and Th4+; Al3+ was less effective. With uranium fuel, modestly priced Type 304L stainless steel is adequate. Corrosion will be most severe in HNO3-HF used occasionally for flushing and in solutions of HNO3 and corrosion products (ferric and dichromate ions). HF corrosion can be minimized by complexing the fluoride ion and by passivation of the steel with strong nitric acid. Corrosion caused by corrosion products can be minimized by operating at lower temperatures

  11. The role of martensitic transformation on bimodal grain structure in ultrafine grained AISI 304L stainless steel

    Sabooni, S., E-mail: s.sabooni@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, 84156-83111 Isfahan (Iran, Islamic Republic of); Karimzadeh, F.; Enayati, M.H. [Department of Materials Engineering, Isfahan University of Technology, 84156-83111 Isfahan (Iran, Islamic Republic of); Ngan, A.H.W. [Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (China)

    2015-06-11

    In the present study, metastable AISI 304L austenitic stainless steel samples were subjected to different cold rolling reductions from 70% to 93%, followed by annealing at 700 °C for 300 min to form ultrafine grained (UFG) austenite with different grain structures. Transmission electron microscopy (TEM) and nanoindentation were used to characterize the martensitic transformation, in order to relate it to the bimodal distribution of the austenite grain size after subsequent annealing. The results showed that the martensite morphology changed from lath type in the 60% rolled sample to a mixture of lath and dislocation-cell types in the higher rolling reductions. Calculation of the Gibbs free energy change during the reversion treatment showed that the reversion mechanism is shear controlled at the annealing temperature and so the morphology of the reverted austenite is completely dependent on the morphology of the deformation induced martensite. It was found that the austenite had a bimodal grain size distribution in the 80% rolled and annealed state and this is related to the existence of different types of martensite. Increasing the rolling reduction to 93% followed by annealing caused changing of the grain structure to a monomodal like structure, which was mostly covered with small grains of around 300 nm. The existence of bimodal austenite grain size in the 80% rolled and annealed 304L stainless steel led to the improvement of ductility while maintaining a high tensile strength in comparison with the 93% rolled and annealed sample.

  12. Effect of sensitization on the mechanical properties of type 304 L stainless steel

    The sensitization is a corrosion cause that it has studied broadly in the austenitic steels; however its relations don't knowed very well, into the sensitization and the steel's mechanical properties. Wherefore, the objectives of this work was to study the mechanical properties, in tension of austenitic steel with different levels of sensitization. The material utilized was a 304 L steel of standard composition AISI. The samples were sensitized at 450, 650 and 850 Centigrade degree, by short expositions, following by a temper in water. After this treatment, the tension test tubes were carried to rupture at low deformation velocity. The sensitization was evaluated by the method of Akashi EPR cyclic polarization. The sensitization distribution was analyzed by optical metallography in color and the fracture surface were studied by sweeping electronic microscopy. The distribution and length of the carbides were the factor that control the mechanic behavior of materials. At 450 Centigrade, the border of the grain its founded free of carbides, also for the longest times of exposition, but the particles are presented as fine precipitates in the grain interior, with this is increased the mechanical properties by the internal interactions of hardness or oldness types. At 650 Centigrade the frontiers show a dense distribution of fine carbides. These precipitates are interacting with the borders grain, increasing lightly the mechanical properties of steel. At 850 Centigrade, were formed discontinued carbides that not affect the mechanical behavior, but whether the fracture; the resistance is reduced and the ductility is increased although to impose the thermic effect of treatment. (Author)

  13. Deposition and characterization of noble metal onto surfaces of 304l stainless steel

    Noble metal chemical addition (NMCA) plus hydrogen water chemistry is an industry-wide accepted approach for potential intergranular stress corrosion cracking mitigation of BWR internals components. NMCA is a method of applying noble metal onto BWR internals surfaces using reactor water as the transport medium that causes the deposition of noble metal from the liquid onto surfaces. In this work different platinum concentration solutions were deposited onto pre-oxidized surfaces of 304l steel at 180 C during 48 hr in an autoclave. In order to simulate the zinc water conditions, deposits of Zn and Pt-Zn were also carried out. The solutions used to obtain the deposits were: sodium hexahydroxyplatinate (IV), zinc nitrate hydrate and zinc oxide. The deposits obtained were characterized by scanning electron microscopy and X-ray diffraction. Finally, the electrochemical corrosion potential of pre-oxidized samples with Pt deposit were obtained and compared with the electrochemical corrosion potential of only pre-oxidized samples. (Author)

  14. Nanosecond laser surface modification of AISI 304L stainless steel: Influence the beam overlap on pitting corrosion resistance

    Pacquentin, Wilfried, E-mail: wilfried.pacquentin@cea.fr [CEA, DEN/DANS/DPC/SEARS/LISL, F-91191 Gif-sur-Yvette (France); Caron, Nadège [CEA, DEN/DANS/DPC/SEARS/LISL, F-91191 Gif-sur-Yvette (France); Oltra, Roland [Laboratoire Interdisciplinaire Carnot de Bourgogne, Université de Bourgogne, UMR CNRS 5209, 21078 Dijon Cedex (France)

    2014-01-01

    Surface modifications of AISI 304L stainless steel by laser surface melting (LSM) were investigated using a nanosecond pulsed laser-fibre doped by ytterbium at different overlaps. The objective was to study the change in the corrosion properties induced by the treatment of the outer-surface of the stainless steel without modification of the bulk material. Different analytical techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), and glow discharge optical emission spectrometry (GDOES) were used to characterize the laser-melted surface. The corrosion resistance was evaluated in a chloride solution at room temperature by electrochemical tests. The results showed that the crystallographic structure, the chemical composition, the properties of the induced oxide layer and consequently the pitting corrosion resistance strongly depend on the overlap rate. The most efficient laser parameters led to an increase of the pitting potential by more than 300 mV, corresponding to a quite important improvement of the corrosion resistance. This latter was correlated to chromium enrichment (47 wt.%) at the surface of the stainless steel and the induced absence of martensite and ferrite phases. However, these structural and chemical modifications were not sufficient to explain the change in corrosion behaviour: defects and adhesion of the surface oxide layer must have been taken into consideration.

  15. Corrosion study of stainless steel SS304L in molten molybdates

    Usami, T.; Uruga, K.; Tsukada, T.; Miura, Y.; Komamine, S.; Ochi, E.

    2016-04-01

    Depending on operating conditions of the vitrification process of high-level liquid waste, molten salt mainly composed of sodium and molybdenum can be generated, and poured into stainless steel canisters. In this work, the possible reaction between the molten molybdate and stainless steel was investigated using multi-component molybdate and simple Na2MoO4 - MoO3 molybdate. In the experiments using multi-component molybdates, no significant reaction is observed between the mixed molybdates and the stainless steel specimens at 700 °C in 4 h. The reaction rate of the stainless steel with the multi-component molybdate increases in proportion to exp(-1/T). The depth of the most reacted area is about 300 μm even at 1000 °C, and was much smaller than the 6 mm thickness of the canister. In the simple Na2MoO4 - MoO3 molybdate, the reaction rate was proportional to the MoO3 concentration. The essence of the reaction is oxidation of metals by Mo6+ - > Mo4+. Part of the reaction product mainly composed of Fe is dissolved into the molybdate, while the other part mainly composed of Cr sloughs and forms a banded layer.

  16. Examination of irradiated 304L stainless steel to 6061-T6 aluminum inertia welded transition joints after irradiation in a spallation neutron

    The Savannah River Technology Center (SRTC) designed and fabricated tritium target/blanket assemblies which were irradiated for six months at the Los Alamos Neutron Science Center (LANSCE). Cooling water was supplied to the assemblies through 1 inch diameter 304L Stainless Steel (SS) tubing. To attach the 304L SS tubing to the modules a 304L SS to 6061-T6 Aluminum (Al) inertia welded transition joint was used. These SS/Al inertia weld transition joints simulate expected transition joints in the Accelerator Production of Tritium (APT) Target/Blanket where as many as a thousand SS/Al weld transition joints will be used. Materials compatibility between the 304L SS and the 6061-T6 Al in the spallation neutron environment is a major concern as well as the corrosion associated with the cooling water flowing through the piping. The irradiated inertia weld examination will be discussed

  17. Corrosion fatigue behavior of cold-worked 304L stainless steel in a simulated BWR coolant environment

    Fatigue crack growth tests were performed to evaluate the effect of cold work on the fatigue behavior of 304L stainless steel in the ambient air at room temperature and 300degC and in a simulated BWR coolant environment, respectively. The fatigue crack growth rates (FCGRs) for the as-received (AR) and cold-rolled specimens as room temperature were in the same range and the FCGRs obtained at 300degC in air were higher than at room temperature. In addition, the FCGRs for the AR specimens were higher at 300degC in air compared with those for the cold-rolled. The specimens tested in the water environment at 300degC showed higher corrosion fatigue crack growth rates (CFCGRs) relative to those measured in air at room temperature and 300degC. Local quasi-cleavages could account for the observation that the FCGRs in air at 300degC were faster than at room temperature. The dominant fracture features of quasi-cleavages, along with corrosion products, were observed with all the 304L specimens tested in the simulated BWR water environment, which could be related to the higher crack growth rates in the corrosive environment. (author)

  18. Effects of Low Temperature on Hydrogen-Assisted Crack Growth in Forged 304L Austenitic Stainless Steel

    Jackson, Heather; San Marchi, Chris; Balch, Dorian; Somerday, Brian; Michael, Joseph

    2016-08-01

    The objective of this study was to evaluate effects of low temperature on hydrogen-assisted crack propagation in forged 304L austenitic stainless steel. Fracture initiation toughness and crack-growth resistance curves were measured using fracture mechanics specimens that were thermally precharged with 140 wppm hydrogen and tested at 293 K or 223 K (20 °C or -50 °C). Fracture initiation toughness for hydrogen-precharged forgings decreased by at least 50 to 80 pct relative to non-charged forgings. With hydrogen, low-temperature fracture initiation toughness decreased by 35 to 50 pct relative to room-temperature toughness. Crack growth without hydrogen at both temperatures was microstructure-independent and indistinguishable from blunting, while with hydrogen microcracks formed by growth and coalescence of microvoids. Initiation of microvoids in the presence of hydrogen occurred where localized deformation bands intersected grain boundaries and other deformation bands. Low temperature additionally promoted fracture initiation at annealing twin boundaries in the presence of hydrogen, which competed with deformation band intersections and grain boundaries as sites of microvoid formation and fracture initiation. A common ingredient for fracture initiation was stress concentration that arose from the intersection of deformation bands with these microstructural obstacles. The localized deformation responsible for producing stress concentrations at obstacles was intensified by low temperature and hydrogen. Crack orientation and forging strength were found to have a minor effect on fracture initiation toughness of hydrogen-supersaturated 304L forgings.

  19. Effect of welding process, type of electrode and electrode core diameter on the tensile property of 304L austenitic stainless steel

    Akinlabi OYETUNJI

    2014-11-01

    Full Text Available The effect of welding process, type of electrode and electrode core diameter on the tensile property of AISI 304L Austenitic Stainless Steel (ASS was studied. The tensile strength property of ASS welded samples was evaluated. Prepared samples of the ASS were welded under these three various variables. Tensile test was then carried out on the welded samples. It was found that the reduction in ultimate tensile strength (UTS of the butt joint samples increases with increase in core diameter of the electrode. Also, the best electrode for welding 304L ASS is 308L stainless steel-core electrode of 3.2 mm core diameter. It is recommended that the findings of this work can be applied in the chemical, food and oil industries where 304L ASS are predominantly used.

  20. Influence of the temperature and the time of sensitization heat treatment on the rupture energy of notched specimen of 304 L austenitic stainless steel

    This study allowed us to show that the measurement of rupture energy on notched specimen, at low temperature (-180+-50C) is a sensitive method for evaluating the importance of carbide precipitation at grain boundaries when austenitic stainless steel 304 L is sensitized. This process had been studied between 500 and 9000C, and during 3 to 100 hrs

  1. Standard test method for electrochemical reactivation (EPR) for detecting sensitization of AISI type 304 and 304L stainless steels

    American Society for Testing and Materials. Philadelphia

    1994-01-01

    1.1 This test method covers a laboratory procedure for conducting an electrochemical reactivation (EPR) test on AISI Type 304 and 304L (UNS No. S30400 and S30403, respectively) stainless steels. This test method can provide a nondestructive means of quantifying the degree of sensitization in these steels (1, 2, 3). This test method has found wide acceptance in studies of the effects of sensitization on intergranular corrosion and intergranular stress corrosion cracking behavior (see Terminology G15). The EPR technique has been successfully used to evaluate other stainless steels and nickel base alloys (4), but the test conditions and evaluation criteria used were modified in each case from those cited in this test method. 1.2 The values stated in SI units are to be regarded as the standard. The inch-pound units given in parentheses are for information only. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this...

  2. Reactor Materials Program: Mechanical properties of irradiated Types 304 and 304L stainless steel weldment components

    The vessels (reactor tanks) of the Savannah River Site nuclear production reactors constructed in the 1950's are comprised of Type 304 stainless steel with Type 308 stainless steel weld filler. Irradiation exposure to the reactor tank sidewalls through reactor operation has caused a change in the mechanical properties of these materials. A database of as-irradiated mechanical properties for site-specific materials and irradiation conditions has been produced for reactor tank structural analyses and to quantify the effects of radiation-induced materials degradation for evaluating reactor service life. The data has been collected from the SRL Reactor Materials Program (RMP) irradiations and testing of archival stainless steel weldment components and from previous SRL programs to measure properties of irradiated reactor Thermal Shield weldments and reactor tank (R-tank) sidewall material. Irradiation programs of the RMP are designed to quantify mechanical properties at tank operating temperatures following irradiation to present and future tank wall maximum exposure conditions. The exposure conditions are characterized in terms of fast neutron fluence (En > 0.1 MeV) and displacements per atom (dpa)3. Tensile properties, Charpy-V notch toughness, and elastic-plastic fracture toughness were measured for base, weld, and weld heat-affected zone (HAZ) weldment components from archival piping specimens following a Screening Irradiation in the University of Buffalo Reactor (UBR) and following a Full-Term Irradiation in the High Flux Isotope Reactor (HFIR)

  3. Reactor Materials Program: Mechanical properties of irradiated Types 304 and 304L stainless steel weldment components

    Sindelar, R.L.; Caskey, G.R. Jr.

    1991-12-01

    The vessels (reactor tanks) of the Savannah River Site nuclear production reactors constructed in the 1950`s are comprised of Type 304 stainless steel with Type 308 stainless steel weld filler. Irradiation exposure to the reactor tank sidewalls through reactor operation has caused a change in the mechanical properties of these materials. A database of as-irradiated mechanical properties for site-specific materials and irradiation conditions has been produced for reactor tank structural analyses and to quantify the effects of radiation-induced materials degradation for evaluating reactor service life. The data has been collected from the SRL Reactor Materials Program (RMP) irradiations and testing of archival stainless steel weldment components and from previous SRL programs to measure properties of irradiated reactor Thermal Shield weldments and reactor tank (R-tank) sidewall material. Irradiation programs of the RMP are designed to quantify mechanical properties at tank operating temperatures following irradiation to present and future tank wall maximum exposure conditions. The exposure conditions are characterized in terms of fast neutron fluence (E{sub n} > 0.1 MeV) and displacements per atom (dpa){sup 3}. Tensile properties, Charpy-V notch toughness, and elastic-plastic fracture toughness were measured for base, weld, and weld heat-affected zone (HAZ) weldment components from archival piping specimens following a Screening Irradiation in the University of Buffalo Reactor (UBR) and following a Full-Term Irradiation in the High Flux Isotope Reactor (HFIR).

  4. Reactor Materials Program: Mechanical properties of irradiated Types 304 and 304L stainless steel weldment components

    Sindelar, R.L.; Caskey, G.R. Jr.

    1991-12-01

    The vessels (reactor tanks) of the Savannah River Site nuclear production reactors constructed in the 1950's are comprised of Type 304 stainless steel with Type 308 stainless steel weld filler. Irradiation exposure to the reactor tank sidewalls through reactor operation has caused a change in the mechanical properties of these materials. A database of as-irradiated mechanical properties for site-specific materials and irradiation conditions has been produced for reactor tank structural analyses and to quantify the effects of radiation-induced materials degradation for evaluating reactor service life. The data has been collected from the SRL Reactor Materials Program (RMP) irradiations and testing of archival stainless steel weldment components and from previous SRL programs to measure properties of irradiated reactor Thermal Shield weldments and reactor tank (R-tank) sidewall material. Irradiation programs of the RMP are designed to quantify mechanical properties at tank operating temperatures following irradiation to present and future tank wall maximum exposure conditions. The exposure conditions are characterized in terms of fast neutron fluence (E{sub n} > 0.1 MeV) and displacements per atom (dpa){sup 3}. Tensile properties, Charpy-V notch toughness, and elastic-plastic fracture toughness were measured for base, weld, and weld heat-affected zone (HAZ) weldment components from archival piping specimens following a Screening Irradiation in the University of Buffalo Reactor (UBR) and following a Full-Term Irradiation in the High Flux Isotope Reactor (HFIR).

  5. Microelectrochemical investigation of the effect of cathodic polarisation on the corrosion resistance of 304L stainless steel in a 1 M NaCl solution

    Arjmand Gholenji, Farzin; Adriaens, Annemie

    2012-01-01

    304L stainless steel was cathodically polarised in a 1 M sodium chloride solution using a microcapillary electrochemical droplet cell. During the cathodic polarisation the produced hydrogen atoms penetrate into the sample and accumulate at sites of the steel surface. We observed that the pitting potential (E-pit), the anodic current density (I-corr) and the corrosion potential (E-corr) of the polarised steel are strongly influenced by the applied cathodic potential and therefore by the amount...

  6. Study on prevention of chloride induced stress corrosion cracking for type 304L, 316L stainless steel canister

    For the practical application of multi-purpose canisters (MPCs), there are technical issues for containment function to prevent the initiation of chloride induced stress corrosion cracking (SCC). Therefore, the SCC test were conducted to clarify the critical salt density to initiate SCC and the effect which the reduction treatment of weld residual stress influents to prevent SCC. (1) The minimum threshold of salt for SCC initiation could be 4 g/cm2 as Cl under the condition of the temperatures of 50degC and the relative humidity of 35% with the 316 type L-grade austenite stainless steel used over 5000 hr. However, the threshold could be reduced to 2 g/m2 as Cl under the actual equipment surface condition corresponding to the conventional stainless steel MPC. (2) An accelerated corrosion test was performed using mock-up MPC made of Type 304L, in which the salt concentration on the surface of weld lines was kept to 4 g/cm2 as Cl. As the result of the test, SCC on the surface-treated weld line by ZSP didn't occur because of the compressed stress induced appropriately, therefore the validity of surface treatment techniques was confirmed. (author)

  7. Corrosion behaviour of single (Ti) and duplex (Ti-TiO2) coating on 304L stainless steel in nitric acid medium

    Highlights: → Ti coated 304L SS showed moderate to marginal corrosion resistance in 1 M and 8 M HNO3. → Duplex Ti-TiO2 coated 304L SS showed minimization of structural heterogeneities. → Passive film property improves by minimizing structural heterogeneities. → Protection efficiency for 304L SS increases with duplex Ti-TiO2 coating in HNO3. - Abstract: Sputter deposited single titanium (Ti) layer, and duplex Ti-TiO2 coating on austenitic type 304L stainless steel (SS) was prepared, and the corrosion performance was evaluated in nitric acid medium using surface morphological and electrochemical techniques. Morphological analysis using atomic force microscope of the duplex Ti-TiO2 coated surface showed minimization of structural heterogeneities as compared to single Ti layer coating. The electrochemical corrosion results revealed that, titanium coated 304L SS showed moderate to marginal improvement in corrosion resistance in 1 M, and 8 M nitric acid, respectively. Duplex Ti-TiO2 coated 304L SS specimens showed improved corrosion resistance as compared to Ti coating from dilute (1 M) to concentrated medium (8 M). The percentage of protection efficiency for base material increases significantly for duplex Ti-TiO2 coating as compared to single Ti layer coating. The oxidizing ability of nitric acid on both the coatings as well as factors responsible for improvement in protection efficiency are discussed and highlighted in this paper.

  8. Chloride induced localized corrosion in simulated concrete pore solution: effect of a phosphate-based inhibitor on the behavior of 304L stainless steel compared to carbon steel

    In this paper, the acoustic emission technique coupled with electrochemical measurements was used to determine, in simulated concrete pore solution (Ca(OH)2), the critical value [Cl-] / [OH-], which prevents the pitting corrosion initiation of AISI 304L austenitic stainless steel, and to compare this critical value with that of the carbon steel in the same medium with and without inhibitor Na3PO4. The results show that for the austenitic stainless steel, the critical threshold of pitting corrosion initiation is around 5, while for carbon steel without inhibitor in Ca(OH)2 solution, it has a low value of about 0.6. However, the presence of the inhibitor Na3PO4 in this solution leads to the formation of a protective phosphate layer on the steel surface, increasing the critical ratio [Cl-] / [OH-] from 0.6 to 15. Under these conditions, the corrosion behavior of carbon steel is improved and, thanks to the blocking of pitting sites by the Na3PO4 inhibitor, it becomes much more resistant to localized corrosion than AISI 304L austenitic steel. (authors)

  9. In situ AFM study of pitting corrosion and corrosion under strain on a 304L stainless steel

    Our study is centred on surface localised corrosion under strain of a standard stainless steel (304L). The interest we take in these corrosion phenomena is led by the general misunderstanding of its primary initiation steps. The goal of this study is to determine precisely the relationships between local geometrical defects (grain boundaries, dislocation lines, etc) or chemical defects (inclusions) with the preferential sites of corrosion on the strained material. By combining three techniques at the same time: Atomic Force Microscopy, an electrochemical cell and a traction plate, we can observe in situ the effect of localised stress and deformation on the sample surface exposed to a corrosive solution. We managed to build an original set-up compatible with all the requirements of these three different techniques. Furthermore, we prepared the surface of our sample as flat as possible to decrease at maximum the topographical noise in order to observe the smallest defect on the surface. By using a colloidal suspension of SiO2, we obtained surfaces with a typical corrugation (RMS) of about 1 A for areas of at least 1 μm2. Our experimental study has been organised in two primary investigations: - In situ study of the morphology evolution of the surface under a corrosive chloride solution (borate buffer with NaCl salt). The influence of time, NaCl concentration, and potential was investigated; - In situ exploration of a 304L strained surface. It revealed the first stages of the surface plastic evolutions like activation of sliding dislocations, materialized by parallel steps of about 2 nm high in the same grain. The secondary sliding plane systems were also noticeable for higher deformation rates. Recent results concerning in situ AFM observation of corroded surfaces under strain in a chloride media will be presented. (authors)

  10. On the dynamic strength of 304l stainless steel under impact

    Werdiger, Meir; Glam, Benny; Bakshi, Lior; Moshe, Ella; Horovitz, Yossef; Pistinner, Shlomi Levi

    2012-03-01

    Uniaxial strain plane impact (300-1700 m/s), loading and reloading experiments carried out on SS304L are reported. The aim of these experiments was to measure the material strength properties under shock compression. Most of the experiments reported here show a viscous type elastic precursor. The experimental results are compared to numerical simulations performed using a 1D code. The input physics to the simulations are the Steinberg equation of state and Johnson-Cook strength model. This model has been previously calibrated under uniaxial stress conditions in the rangee ɛ =1-5×103 s-1. Our experiments extended the data into the regione ɛ =105 -106 s-1. In spite of this extrapolation, there is a general agreement between simulations and experiments. However, differences in some details still exist.

  11. Four nondestructive electrochemical tests for detecting sensitization in type 304 and 304L stainless steels

    Three different electrochemical reactivation tests are compared with etch structures produced in the electrolytic oxalic acid etch test. These nondestructive tests are needed to evaluate welded stainless steel pipes and other plant equipment for susceptibility to intergranular attack. Sensitization associated with precipitates of chromium carbides at grain boundaries can make these materials subject to intergranular attack in acids and, in particular, to intergranular stress corrosion cracking in high-temperature (2890C) water on boiling water nuclear reactor power plants. In the first of the two older reactivation tests, sensitization is detected by the electrical charge generated during reactivation. In the second, it is measured by the ratio of maximum currents generated by a prior anodic loop and the reactivation loop. A third, simpler reactivation method based on a measurement of the maximum current generated during reactivation is proposed. If the objective of the field tests, which are to be carried out with portable equipment, is to distinguish between nonsensitized and sensitized material, this can be accomplished most simply, most rapidly, and at lowest cost by an evaluation of oxalic acid etch structures

  12. Effect of low temperature on hydrogen-assisted crack propagation in 304L/308L austenitic stainless steel fusion welds

    Highlights: •Measured crack growth resistance of welds at 223 K with 140 wppm H (gas charged). •H reduced fracture initiation toughness by >59% and altered fracture mode. •223 K altered fracture mode but had no effect on JIC of precharged welds. •At 293 K, microcracks initiate at δ-ferrite, and ferrite governed crack path. •At 223 K, microvoids form at γ deformation band intersections near phase boundaries. -- Abstract: Effects of low temperature on hydrogen-assisted cracking in 304L/308L austenitic stainless steel welds were investigated using elastic–plastic fracture mechanics methods. Thermally precharged hydrogen (140 wppm) decreased fracture toughness and altered fracture mechanisms at 293 and 223 K relative to hydrogen-free welds. At 293 K, hydrogen increased planar deformation in austenite, and microcracking of δ-ferrite governed crack paths. At 223 K, low temperature enabled hydrogen to exacerbate localized deformation, and microvoid formation, at austenite deformation band intersections near phase boundaries, dominated damage initiation; microcracking of ferrite did not contribute to crack growth

  13. Evaluation of stress corrosion cracking of irradiated 304L stainless steel in PWR environment using heavy ion irradiation

    Gupta, J.; Hure, J.; Tanguy, B.; Laffont, L.; Lafont, M.-C.; Andrieu, E.

    2016-08-01

    IASCC has been a major concern regarding the structural and functional integrity of core internals of PWR's, especially baffle-to-former bolts. Despite numerous studies over the past few decades, additional evaluation of the parameters influencing IASCC is still needed for an accurate understanding and modeling of this phenomenon. In this study, Fe irradiation at 450 °C was used to study the cracking susceptibility of 304 L austenitic stainless steel. After 10 MeV Fe irradiation to 5 dpa, irradiation-induced damage in the microstructure was characterized and quantified along with nano-hardness measurements. After 4% plastic strain in a PWR environment, quantitative information on the degree of strain localization, as determined by slip-line spacing, was obtained using SEM. Fe-irradiated material strained to 4% in a PWR environment exhibited crack initiation sites that were similar to those that occur in neutron- and proton-irradiated materials, which suggests that Fe irradiation may be a representative means for studying IASCC susceptibility. Fe-irradiated material subjected to 4% plastic strain in an inert argon environment did not exhibit any cracking, which suggests that localized deformation is not in itself sufficient for initiating cracking for the irradiation conditions used in this study.

  14. High temperature microstructural evolution of 304L stainless steel as function of pre-strain and strain rate

    304L stainless steel specimens are pre-strained to 0.15 or 0.5 and are then deformed at strain rates ranging from 2000 s-1 to 6000 s-1 at temperatures of 300 deg. C, 500 deg. C and 800 deg. C using a compressive split-Hopkinson pressure bar. The results show that for both values of the pre-strain, the flow stress increases with increasing strain rate, but reduces with increasing temperature. At deformation temperatures of 300 deg. C or 500 deg. C, the flow stress in the 0.5 pre-strained specimen is higher than that in the specimen pre-strained to 0.15. However, at a temperature of 800 deg. C, the two specimens exhibit a similar level of flow stress. Transmission electron microscopy (TEM) observations reveal that the strengthening effect observed in the specimens deformed at 300 deg. C or 500 deg. C is the combined result of dislocations, mechanical twins and martensite transformation. However, at a deformation temperature of 800 deg. C, the strengthening effect is the result primarily of dislocation multiplication. The volume fraction of martensite transformation decreases with increasing strain rate and temperature. In addition, both the dislocation density and the twin density increase with increasing strain rate, but decrease with increasing temperature. Finally, the quantitative analysis results indicate that the flow stress varies with the square root of the dislocation density, the twin density and the volume fraction of martensite, respectively.

  15. Numerical Simulation and Artificial Neural Network Modeling for Predicting Welding-Induced Distortion in Butt-Welded 304L Stainless Steel Plates

    Narayanareddy, V. V.; Chandrasekhar, N.; Vasudevan, M.; Muthukumaran, S.; Vasantharaja, P.

    2016-02-01

    In the present study, artificial neural network modeling has been employed for predicting welding-induced angular distortions in autogenous butt-welded 304L stainless steel plates. The input data for the neural network have been obtained from a series of three-dimensional finite element simulations of TIG welding for a wide range of plate dimensions. Thermo-elasto-plastic analysis was carried out for 304L stainless steel plates during autogenous TIG welding employing double ellipsoidal heat source. The simulated thermal cycles were validated by measuring thermal cycles using thermocouples at predetermined positions, and the simulated distortion values were validated by measuring distortion using vertical height gauge for three cases. There was a good agreement between the model predictions and the measured values. Then, a multilayer feed-forward back propagation neural network has been developed using the numerically simulated data. Artificial neural network model developed in the present study predicted the angular distortion accurately.

  16. Plasma nitriding of AISI 304L and AISI 316L stainless steels: effect of time in the formation of S phase and the chromium nitrides

    Plasma nitriding can improve hardness and wear resistance of austenitic stainless steels without losses in corrosion resistance. This fact relies on a nitrided layer constituted only by S phase, without chromium nitrides precipitation. In this work, the effect of nitriding time on phases formed on nitrided layer was investigated in two austenitic stainless steels: AISI 304L e AISI 316L. The samples were nitrided at 420 deg C, using a mixture of 60 % N2 and 40% H2, during 5, 7 and 9 hours. It was noted that chromium nitrides were formed on samples of AISI 304L, nitrided for 7 e 9 hours, while all nitrided samples of AISI 316L showed only formation of S phase. The nitrided layers were characterized using optical microscope and x-ray diffraction. (author)

  17. Effect of strain-path on stress corrosion cracking of AISI 304L stainless steel in PWR primary environment at 360 deg. C

    Austenitic stainless steels (ASS) are widespread in primary and auxiliary circuits of PWR. Moreover, some components suffer stress corrosion cracking (SCC) under neutron irradiation. This degradation could be the result of the increase of hardness or the modification of chemical composition at the grain boundary by irradiation. In order to avoid complex and costly corrosion facilities, the effects of irradiation on the material are commonly simulated by applying a cold work on non-irradiated material prior to stress corrosion cracking tests. Slow strain rate tests were conducted on an austenitic stainless steel (SS) AISI 304L in PWR environment (360 deg. C). Particular attention was directed towards pre-straining effects on crack growth rate (CGR) and crack growth path (CGP). Results have demonstrated that the susceptibility of 304L to SCC in high-temperature hydrogenated water was enhanced by pre-straining. It seemed that IGSCC was enhanced by complex strain paths. (authors)

  18. Effect of welding process, type of electrode and electrode core diameter on the tensile property of 304L austenitic stainless steel

    Akinlabi OYETUNJI; Nwafagu NWIGBOJI

    2014-01-01

    The effect of welding process, type of electrode and electrode core diameter on the tensile property of AISI 304L Austenitic Stainless Steel (ASS) was studied. The tensile strength property of ASS welded samples was evaluated. Prepared samples of the ASS were welded under these three various variables. Tensile test was then carried out on the welded samples. It was found that the reduction in ultimate tensile strength (UTS) of the butt joint samples increases with increase in core diameter of...

  19. Establishing precursor events for stress corrosion cracking initiation in type 304L stainless steel

    The present study attempts to establish slip band emergence, due to localized deformation, as a precursor event for SCC initiation in type 304L SS. The unidirectional tensile loading was used for straining flat tensile specimen, less than 10% strain, in air, 0.5 M NaCl + 0.5 M H2SO4 and boiling water reactor (BWR) simulated environment (288 C. degrees, 10 MPa). The surface features were characterized using optical microscopy, scanning electron microscopy (including electron backscattered diffraction-EBSD) and atomic force microscopy. The study shows that with increase in strain level, during unidirectional slow strain rate test (SSRT), average slip band height increases in air and the attack on slip lines occurs in acidified chloride environment. In BWR simulated environment, preferential oxidation on slip lines and initiation of a few cracks on some of the slip lines are observed. Based on the observation, the study suggests slip bands, formed due to localized deformation, to act as a precursor for SCC initiation. (authors)

  20. Investigation of micro-structure and micro-hardness properties of 304L stainless steel treated in a hot cathode arc discharge plasma

    We have established a hot cathode arc discharge plasma system, where different stainless steel samples can be treated by monitoring the plasma parameters and nitriding parameters independently. In the present work, a mixture of 70% N2 and 30% H2 gases was fed into the plasma chamber and the treatment time and substrate temperature were optimized for treating 304L Stainless Steel samples. Various physical techniques such as x-ray diffraction, energy dispersive x-ray spectroscopy and micro-vickers hardness tester were employed to determine the structural, surface composition and surface hardness of the treated samples

  1. Investigation of micro-structure and micro-hardness properties of 304L stainless steel treated in a hot cathode arc discharge plasma

    Malik, Hitendra K., E-mail: hkmalik@physics.iitd.ac.in [Department of Physics, Indian Institute of Technology Delhi, New Delhi – 110016 (India); Singh, Omveer [Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi – 110016 (India); Dahiya, Raj P. [Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi – 110016 (India); Deenbandhu Chhotu Ram University of Science and Technology, Murthal–131039 (India)

    2015-08-28

    We have established a hot cathode arc discharge plasma system, where different stainless steel samples can be treated by monitoring the plasma parameters and nitriding parameters independently. In the present work, a mixture of 70% N{sub 2} and 30% H{sub 2} gases was fed into the plasma chamber and the treatment time and substrate temperature were optimized for treating 304L Stainless Steel samples. Various physical techniques such as x-ray diffraction, energy dispersive x-ray spectroscopy and micro-vickers hardness tester were employed to determine the structural, surface composition and surface hardness of the treated samples.

  2. Optimisation of CO2 laser welding of thin sheets made of stainless steel 304 L. Fabrication of prototype detection modules for a large size electromagnetic calorimeter

    For the new calorimeter detector, to be used in UA1 experiment at CERN proton-antiproton collider, about 35'000 stainless steel boxes with a volume of the order of 500 x 400 x 3 mm3, containing immerged electrodes in Tetramethylpentane (TMP) are required. The first hundred prototype boxes were built at CERN using CO2 laser welding technique. The results of a systematic experimental investigation and optimization of the welding parameters for 0.1 mm thick 304 L stainless steel sheets are presented

  3. Environmental effect on cracking of an 304L austenitic stainless steels in PWR primary environment under cyclic loading

    The present study was undertaken in order to get further insights on cracking mechanisms in a 304L stainless steel. More precisely, a first objective of this study was to evaluate the effect of various cold working conditions on the cyclic stress-strain behavior and the fatigue life in air and in PWR primary environment. In air a prior hardening was found to reduce the fatigue life in the LCF regime but not in primary environment. In both environments, the fatigue limit of the hardened materials was increased after cold working.The second objective addresses the effect of the air and the PWR primary environments on the cracking mechanisms (initiation and propagation) in the annealed material in the LCF regime. More precisely, the kinetics of crack initiation and micro crack propagation were evaluated with a multi scale microscopic approach in air and in primary environment. In PWR primary environment, during the first cycles, preferential oxidation occurs along emerging dissociated dislocation and each cycle generates a new C-rich/Fe-rich oxide layer. Then, during cycling, the microstructure evolves from stacking fault into micro twinning and preferential oxidation occurs by continuous shearing and dissolution of the passive film. Beyond a certain crack depth (≤3 μm), the crack starts to propagate with a direction close to a 90 degrees angle from the surface. The crack continues its propagation by successive generation of shear bands and fatigue striations at each cycle up to failure. The role of corrosion hydrogen on these processes is finally discussed. (author)

  4. The role of atomic hydrogen and hydrogen-induced martensites in hydrogen embrittlement of type 304L stainless steel

    潘川; 褚武扬; 李正邦; 梁东图; 宿彦京; 乔利杰

    2002-01-01

    The role of atomic hydrogen and hydrogen-induced martensites in hydrogen embrittlement in slow strain rate tensile tests and hydrogen-induced delayed cracking (HIC) in sustained load tests for type 304 L stainless steel was quantitatively studied.The results indicated that hydrogen-induced martensites formed when hydrogen concentration C0 exceeded 30 ppm,and increased with an increase in C0,i.e.M(vol%)=62-82.5exp(-C0/102).The relative plasticity loss caused by the martensites increased linearly with increasing amount of the martensites,i.e.Iδ(M),%=0.45M(vol %)=27.9-37.1 exp(-C0/102).The plasticity loss caused by atomic hydrogen Iδ(H) increased with an increase in C0 and reached a saturation value Iδ(H)max=40% when C0>100 ppm.Iδ(H) decreased with an increase in strain rate ,i.e.Iδ(H),%=-21.9-9.9,and was zero when ≥c=0.032/s.HIC under sustained load was due to atomic hydrogen,and the threshold stress intensity for HIC decreased linearly with lnC0,i.e.KIH(Mpam1/2)=91.7-10.1 lnC0(ppm).The fracture surface of HIC was dimple if KI was high or/and C0 was low,otherwise it was quasi-cleavage.The boundary line between ductile and brittle fracture surface was KI-54+25exp(-C0/153)=0.``

  5. A 3D finite element analysis of temperature and stress fields in girth welded 304L stainless steel pipe

    A 3D finite element analysis model was developed to simulate a multipass, narrow gap pipe girth welding process. The pipe simulated was a Type 304L stainless steel pipe with a diameter of 406 mm, a thickness of 12.7 mm, and a narrow groove configuration. This pipe was finished in four continuous welding passes with one start-stop position. Temperatures, deformations and strains were recorded in real time during pipe welding. The thermal results from this model were tuned to match the calculated temperature histories with the comparable experimental thermal cycles. The calculated temperature histories were found to be axisymmetrically distributed around the pipe except in locations close to the welding start-stop position. This is in good agreement with what was observed from the experimental data. The calculated stress results show that the tensile residual stress zone on the pipe inner surface is about 30 mm from the weld centerline on each side and the tensile residual stress zone in the pipe wall thickness is about 5 mm from the pipe inner surface for up to 19 mm from the weld centerline (WCL). The calculated residual stresses are, in general, axisymmetrically distributed around the pipe except in locations near the welding start-stop position. This is not in agreement with what was noted from the experimental results. The comparison between the calculated stress results with the limited neutron diffraction residual stress measurements on the pipe inner surface demonstrates reasonable agreement between them. This 3D model is the first attempt at simulation of a full multipass girth pipe welding process. Much improvement could be realized, but more experimental residual stress measurements on pipe weldments are needed to verify this model

  6. Comparative study in the induced corrosion by sulfate reducing microorganisms, in a stainless steel 304L sensitized and a carbon steel API X65

    In spite of the operational experience related with the presence of the phenomenon of microbiological corrosion (MIC) in industrial components, it was not but until the decade of the 80 s when the nuclear industry recognized its influence in some systems of Nuclear Generating Power plants. At the moment, diverse studies that have tried to explain the generation mechanism of this phenomenon exist; however, they are even important queries that to solve, especially those related with the particularities of the affected metallic substrates. Presently work, the electrochemical behavior of samples of stainless steel AISI 304L sensitized is evaluated and the carbon steel APIX65, before the action of sulfate reducing microorganisms low the same experimental conditions; found that for the APIX65 the presence of this type of bacteria promoted the formation of a stable biofilm that allowed the maintenance of the microorganisms that damaged the material in isolated places where stings were generated; while in the AISI 304L, it was not detected damage associated to the inoculated media. The techniques of Resistance to the Polarization and Tafel Extrapolation, allowed the calculation of the speed of uniform corrosion, parameter that doesn't seem to be influenced by the presence of the microorganisms; while that noise electrochemical it distinguished in real time, the effect of the sulfate reducing in the steel APIX65. (Author)

  7. Effect of prior deformation on the 76-K fracture toughness of AISI 304L and AWS 308L stainless steels

    AISI 304L and its weld metal, AWS 308L, may undergo a partial transformation to martensite during cryogenic service owing to thermal and mechanical stresses. In this study, the effect of service-induced deformation on the toughness of these materials were determined. Low temperature compressive loading in the laboratory produced larger deformations. Crack initiation toughness, K/sub Ic/(J), and tearing resistance, dJ/da, at 76 K were evaluated as a function of martensite content, a measure of the deformation in these steels. The results showed that the toughness properties of the 304L decrease gradually as the martensite content increases from the 5 to 8% level found in the service condition to the 45% level obtained by compressive loading. The decrease was less than that expected on the basis of the increased flow stress. The toughness properties of the 308L weld metal decreased more sharply with increased martensite content than those of the 304L. The sharp decrease is associated with a degradation of the properties of the delta ferrite rather than that of the austenite

  8. Correlation between Corrosion Potential and Pitting Potential for AISI 304L Austenitic Stainless Steel in 3.5% NaCl Aqueous Solution

    Neusa Alonso-Falleiros; Stephan Wolynec

    2002-01-01

    We investigated the effect of surface finish of two AISI 304L (UNS S30403) stainless steels on the corrosion potential (Ecorr) in 3.5% NaCl aqueous solution and its value was compared with the pitting potential (Ep) value and the type of anodic potentiodynamic curve obtained for determination of Ep in this solution. Five different surface finishes were examined. Ecorr and its standard deviation are strongly affected by the type of surface finish. Moreover, there are evidences of a linear corr...

  9. Oligo-cyclic damage and behaviour of a 304 L austenitic stainless steel according to environment (vacuum, air, PWR primary water) at 300 C

    Nowadays, for nuclear power plants licensing or operating life extensions, various safety authorities require the consideration of the primary water environment effect on the fatigue life of Pressurized Water Reactor (PWR) components. Thus, this work focused on the study of low cycle fatigue damage kinetics and mechanisms, of a type 304L austenitic stainless steel. Several parameters effects such as temperature, strain rate or strain amplitude were investigated in air as in PWR water. Thanks to targeted in-vacuum tests, the intrinsic influence of these parameters and environments on the fatigue behaviour of the material was studied. It appears that compared with vacuum, air is already an active environment which is responsible for a strong decrease in fatigue lifetime of this steel, especially at 300 C and low strain amplitude. The PWR water coolant environment is more active than air and leads to increased damage kinetics, without any modifications of the initiation sites or propagation modes. Moreover, the decreased fatigue life in PWR water is essentially attributed to an enhancement of both initiation and micropropagation of 'short cracks'. Finally, the deleterious influence of low strain rates on the 304L austenitic stainless steel fatigue lifetime was observed in PWR water environment, in air and also in vacuum without any environmental effects. This intrinsic strain rate effect is attributed to the occurrence of the Dynamic Strain Aging phenomenon which is responsible for a change in deformation modes and for an enhancement of cracks initiation. (author)

  10. Dependence of the cyclic stress–strain curve on loading history and its interaction with fatigue of 304L stainless steel

    Highlights: ► Contrary to low deformation, cyclic curve is not unique at high strain amplitude. ► However, as the loading was continued cyclic hardening tends to stabilize. ► Cyclic hardening is mainly kinematic type, isotropic component remains quasi-linear. ► Increasing in pre-hardening strain amplitude has almost no effect on fatigue damage. ► Fatigue life decreasing is associated with formation of walls, cells and defect bands. - Abstract: This study investigates the effects of loading history on the cyclic stress–strain curve and fatigue behavior of 304L stainless steel at room temperature. Tension–compression tests were performed on the same specimen under controlled strain, using several loading sequences of increasing or decreasing amplitude. The results show that the cyclic curve is not unique, as it depends on the loading sequence. The same predeformed specimens were subjected to fatigue tests. The results showed that fatigue life is significantly reduced by the previous loading history. A previously developed method for determining the effect of prehardening was evaluated. Microstructural analyses were also performed; the microstructures after preloading and their evolution during the fatigue cycles were characterized by transmission electron microscopy (TEM). The results of these analyses improve our understanding of the macroscopic properties of 304L stainless steel and can help us identify the causes of failure and lifetime reduction.

  11. The mechanical properties of 316L/304L stainless steels, Alloy 718 and Mod 9Cr-1Mo after irradiation in a spallation environment

    Maloy, S. A.; James, M. R.; Willcutt, G.; Sommer, W. F.; Sokolov, M.; Snead, L. L.; Hamilton, M. L.; Garner, F.

    2001-07-01

    The Accelerator Production of Tritium (APT) project proposes to use a 1.0 GeV, 100 mA proton beam to produce neutrons via spallation reactions in a tungsten target. The neutrons are multiplied and moderated in a lead/aluminum/water blanket and then captured in 3He to form tritium. The materials in the target and blanket region are exposed to protons and neutrons with energies into the GeV range. The effect of irradiation on the tensile and fracture toughness properties of candidate APT materials, 316L and 304L stainless steel (annealed), modified (Mod) 9Cr-1Mo steel, and Alloy 718 (precipitation hardened), was measured on tensile and fracture toughness specimens irradiated at the Los Alamos Neutron Science Center accelerator, which operates at an energy of 800 MeV and a current of 1 mA. The irradiation temperatures ranged from 50°C to 164°C, prototypic of those expected in the APT target/blanket. The maximum achieved proton fluence was 4.5×10 21 p/ cm2 for the materials in the center of the beam. This maximum exposure translates to a dpa of 12 and the generation of 10 000 appm H and 1000 appm He for the Type 304L stainless steel tensile specimens. Specimens were tested at the irradiation temperature of 50-164°C. Less than 1 dpa of exposure reduced the uniform elongation of the Alloy 718 (precipitation hardened) and Mod 9Cr-1Mo to less than 2%. This same dose reduced the fracture toughness by 50%. Approximately 4 dpa of exposure was required to reduce the uniform elongation of the austenitic stainless steels (304L and 316L) to less than 2%. The yield stress of the austenitic steels increased to more than twice its non-irradiated value after less than 1 dpa. The fracture toughness reduced significantly by 4 dpa to ˜100 MPa m 1/2. These results are discussed and compared with results of similar materials irradiated in fission reactor environments.

  12. Influence of low-temperature nitriding on the strain-induced martensite and laser-quenched austenite in a magnetic encoder made from 304L stainless steel

    Leskovšek, Vojteh; Godec, Matjaž; Kogej, Peter

    2016-08-01

    We have investigated the possibility of producing a magnetic encoder by an innovative process. Instead of turning grooves in the encoder bar for precise positioning, we incorporated the information in 304L stainless steel by transforming the austenite to martensite after bar extrusion in liquid nitrogen and marking it with a laser, which caused a local transformation of martensite back into austenite. 304L has an excellent corrosion resistance, but a low hardness and poor wear resistance, which limits its range of applications. However, nitriding is a very promising way to enhance the mechanical and magnetic properties. After low-temperature nitriding at 400 °C it is clear that both ε- and α‧-martensite are present in the deformed microstructure, indicating the simultaneous stress-induced and strain-induced transformations of the austenite. The effects of a laser surface treatment and the consequent appearance of a non-magnetic phase due to the α‧ → γ transformation were investigated. The EDS maps show a high concentration of nitrogen in the alternating hard surface layers of γN and α‧N (expanded austenite and martensite), but no significantly higher concentration of chromium or iron was detected. The high surface hardness of this nitride layer will lead to steels and encoders with better wear and corrosion resistance.

  13. Crack propagation in stainless steel AISI 304L in Hydrogen Chemistry conditions (HWC); Propagacion de Grietas en Acero Inoxidable AISI 304L en Condiciones de Quimica de Hidrogeno (HWC)

    Diaz S, A.; Fuentes C, P.; Merino C, F. [ININ, Carretera Mexico -Toluca s/n, La Marquesa, Ocoyoacac, Mexico (Mexico); Castano M, V. [Instituto de Fisica Aplicada, UNAM, Km 15.5 Carretera Queretaro-San Luis Potosi, Juriquilla, Queretaro (Mexico)]. e-mail: ads@nuclear.inin.mx

    2006-07-01

    Velocities of crack growth in samples type CT pre cracking of stainless steel AISI 304l solder and sensitized thermally its were obtained by the Rising Displacement method or of growing displacement. It was used a recirculation circuit that simulates the operation conditions of a BWR type reactor (temperature of 280 C and a pressure of 8 MPa) with the chemistry modified by the addition of hydrogen with and without the addition of impurities of a powerful oxidizer like the Cu{sup +} ion. In each essay stayed a displacement velocity was constant of 1x10{sup -9} m/s, making a continuous pursuit of the advance of the crack by the electric potential drop technique. Contrary to the idea of mitigation of the crack propagation velocity by effect of the addition of the hydrogen in the system, the values of the growth velocities obtained by this methodology went similar to the opposing ones under normal operation conditions. To the finish of the rehearsal one carries out the fractographic analysis of the propagation surfaces, which showed cracks growth in trans and intergranular way, evidencing the complexity of the regulator mechanisms of the IGSCC like in mitigation conditions as the alternative Hydrogen Chemistry. (Author)

  14. Propagation of crevices in stainless steel AISI304L in conditions of hydrogen chemistry (HWC); Propagacion de grietas en acero inoxidable AISI304L en condiciones de quimica de hidrogeno (HWC)

    Diaz S, A.; Fuentes C, P.; Merino C, F. [ININ, 52750 Ocoyoacac, Estado de Mexico (Mexico); Castano M, V. [IFA-UNAM, Juriquilla, Queretaro (Mexico)]. e-mail: ads@nuclear.inin.mx

    2006-07-01

    Crevice growth velocities in samples of AISI 304L stainless steel thermally welded and sensitized were obtained by the Rising displacement method or of growing displacement. It was used a recirculation circuit in where the operation conditions of a BWR type reactor were simulated (temperature of 288 C and a pressure of 8 MPa) with the chemistry modified by the addition of hydrogen with and without the addition of impurities of a powerful oxidizer like the Cu{sup ++} ion. CT pre cracked specimens were used and each rehearsal stayed to one constant displacement velocity of 1 x 10{sup -9} m/s (3.6 {mu}m/hr), making a continuous pursuit of the advance of the crack by the electric potential drop technique. To the end of the rehearsal it was carried out the fractographic analysis of the propagation surfaces. The values of the growth velocities obtained by this methodology went similar to the opposing ones under normal conditions of operation; while the fractographic analysis show the cracks propagation in trans and intergranular ways, evidencing the complexity of the regulator mechanisms of the one IGSCC even under controlled ambient conditions or with mitigation methodologies like the alternative hydrogen chemistry. (Author)

  15. Low cycle fatigue: high cycle fatigue damage accumulation in a 304L austenitic stainless steel; Endommagement et cumul de dommage en fatigue dans le domaine de l'endurance limitee d'un acier inoxydable austenitique 304L

    Lehericy, Y

    2007-05-15

    The aim of this study was to evaluate the consequences of a Low Cycle Fatigue pre-damage on the subsequent fatigue limit of a 304L stainless steel. The effects of hardening and severe roughness (grinding) have also been investigated. In a first set of tests, the evolution of the surface damage induced by the different LCF pre-cycling was characterized. This has permitted to identify mechanisms and kinetics of damage in the plastic domain for different surface conditions. Then, pre-damaged samples were tested in the High Cycle Fatigue domain in order to establish the fatigue limits associated with each level of pre-damage. Results evidence that, in the case of polished samples, an important number of cycles is required to initiate surface cracks ant then to affect the fatigue limit of the material but, in the case of ground samples, a few number of cycles is sufficient to initiate cracks and to critically decrease the fatigue limit. The fatigue limit of pre-damaged samples can be estimated using the stress intensity factor threshold. Moreover, this detrimental effect of severe surface conditions is enhanced when fatigue tests are performed under a positive mean stress (author)

  16. Characterization of welding of AISI 304l stainless steel similar to the core encircling of a BWR reactor; Caracterizacion de soldaduras de acero inoxidable AISI 304L similares a las de la envolvente del nucleo de un reactor BWR

    Gachuz M, M.E.; Palacios P, F.; Robles P, E.F. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    Plates of austenitic stainless steel AISI 304l of 0.0381 m thickness were welded by means of the SMAW process according to that recommended in the Section 9 of the ASME Code, so that it was reproduced the welding process used to assemble the encircling of the core of a BWR/5 reactor similar to that of the Laguna Verde Nucleo electric plant, there being generated the necessary documentation for the qualification of the one welding procedure and of the welder. They were characterized so much the one base metal, as the welding cord by means of metallographic techniques, scanning electron microscopy, X-ray diffraction, mechanical essays and fracture mechanics. From the obtained results it highlights the presence of an area affected by the heat of up to 1.5 mm of wide and a value of fracture tenacity (J{sub IC}) to ambient temperature for the base metal of 528 KJ/m{sup 2}, which is diminished by the presence of the welding and by the increment in the temperature of the one essay. Also it was carried out an fractographic analysis of the fracture zone generated by the tenacity essays, what evidence a ductile fracture. The experimental values of resistance and tenacity are important for the study of the structural integrity of the encircling one of the core. (Author)

  17. Correlation between Corrosion Potential and Pitting Potential for AISI 304L Austenitic Stainless Steel in 3.5% NaCl Aqueous Solution

    Alonso-Falleiros Neusa

    2002-01-01

    Full Text Available We investigated the effect of surface finish of two AISI 304L (UNS S30403 stainless steels on the corrosion potential (Ecorr in 3.5% NaCl aqueous solution and its value was compared with the pitting potential (Ep value and the type of anodic potentiodynamic curve obtained for determination of Ep in this solution. Five different surface finishes were examined. Ecorr and its standard deviation are strongly affected by the type of surface finish. Moreover, there are evidences of a linear correlation between Ecorr and Ep, as well as between the percentage of anodic curves with a well-defined pitting potential and the uncertainty in the determination of Ecorr.

  18. Thermal fatigue of a 304L austenitic stainless steel: simulation of the initiation and of the propagation of the short cracks in isothermal and aniso-thermal fatigue

    The elbow pipes of thermal plants cooling systems are submitted to thermal variations of short range and of variable frequency. These variations bound to temperature changes of the fluids present a risk of cracks and leakages. In order to solve this problem, EDF has started the 'CRECO RNE 808' plan: 'thermal fatigue of 304L austenitic stainless steels' to study experimentally on a volume part, the initiation and the beginning of the propagation of cracks in thermal fatigue on austenitic stainless steels. The aim of this study is more particularly to compare the behaviour and the damage of the material in mechanic-thermal fatigue (cycling in temperature and cycling in deformation) and in isothermal fatigue (the utmost conditions have been determined by EDF for the metal: Tmax = 165 degrees C and Tmin = 90 degrees C; the frequency of the thermal variations can reach a Hertz). A lot of experimental results are given. A model of lifetime is introduced and validated. (O.M.)

  19. Effects of concentration of sodium chloride solution on the pitting corrosion behavior of AISI 304L austenitic stainless steel

    Asaduzzaman M.D.

    2011-01-01

    Full Text Available The pitting corrosion behavior of the austenitic stainless steel in aqueous chloride solution was investigated using electrochemical technique. Corrosion potential (Ecorr measurement, potentiodynamic experiments, potential-hold experiments in the passive range, and microscopic examination were used for the evaluation of corrosion characteristics. The experimental parameters were chloride ion concentration, immersion time and anodic-hold potential. Ecorr measurements along with microscopic examinations suggest that in or above 3.5 % NaCl at pH 2 pitting took place on the surface in absence of applied potential after 6 hour immersion. The potentiodynamic experiment reveals that Ecorr and pitting potential (Epit decreased and current density in the passive region increased with the increase of chloride ion concentrations. A linear relationship between Epit and chloride ion concentrations was found in this investigation. The analysis of the results suggests that six chloride ions are involved for the dissolution of iron ion in the pitting corrosion process of austenitic stainless steel.

  20. Experimental investigation of Tie6Ale4V titanium alloy and 304L stainless steel friction welded with copper interlayer

    R. KUMAR; M. BALASUBRAMANIAN

    2015-01-01

    The basic principle of friction welding is intermetallic bonding at the stage of super plasticity attained with self-generating heat due to friction and finishing at upset pressure. Now the dissimilar metal joints are especially popular in defense, aerospace, automobile, bio-medical, refinery and nuclear engineerings. In friction welding, some special alloys with dual phase are not joined successfully due to poor bonding strength. The alloy surfaces after bonding also have metallurgical changes in the line of interfacing. The reported research work in this area is scanty. Although the sound weld zone of direct bonding between Tie6Ale4V and SS304L was obtained though many trials, the joint was not successful. In this paper, the friction welding characteristics between Tie6Ale4V and SS304L into which pure oxygen free copper (OFC) was introduced as interlayer were investigated. BoxeBehnken design was used to minimize the number of experiments to be performed. The weld joint was analyzed for its mechanical strength. The highest tensile strength between Tie6Ale4V and SS304L between which pure copper was used as insert metal was acquired. Micro-structural analysis and elemental analysis were carried out by EDS, and the formation of intermetallic compound at the interface was identified by XRD analysis.

  1. Analyses of oxide films grown on AISI 304L stainless steel and Incoloy 800HT exposed to supercritical water environment

    Fulger, Manuela; Mihalache, Maria; Ohai, Dumitru; Fulger, Stefan; Valeca, Serban Constantin

    2011-08-01

    Supercritical water (SCW) is being considered as a cooling medium for the next generation nuclear reactors because it provides high thermal efficiency and plant simplification. However, materials corrosion has been identified as a critical problem due to the oxidative nature of supercritical water. Thus, for safety using of these nuclear reactor systems a systematic study of candidate materials corrosion is needed. As in other high temperature environments, corrosion in SCW occurs by the growth of an oxide layer on the materials surface. The current work aims to evaluate oxidation behavior of AISI 304L SS and Incoloy 800HT in water at supercritical temperatures in the range 723-873 K under a pressure of 25 MPa for up to 1680 h. After exposure to deaerated supercritical water, the samples were investigated using gravimetry, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS). Oxide films grown on these materials have a layered structure with an outer layer consisting of a mixture of iron oxide/iron-nickel spinel oxides and an inner layer consisting of chromium oxide in the case of Incoloy 800HT and nickel-chromium spinel oxide in the case of AISI 304L SS. The mass gains for Incoloy 800HT at all temperatures were small, while comparatively with AISI 304L SS which exhibited higher oxidation rates. In the same time the results obtained by EIS indicate the best corrosion resistance of oxides grown on Incoloy 800HT surface.

  2. Analyses of oxide films grown on AISI 304L stainless steel and Incoloy 800HT exposed to supercritical water environment

    Fulger, Manuela, E-mail: manuela.fulger@nuclear.ro [Institute for Nuclear Research Pitesti, POB 78, Campului Street, No. 1, 115400 Mioveni (Romania); Mihalache, Maria; Ohai, Dumitru [Institute for Nuclear Research Pitesti, POB 78, Campului Street, No. 1, 115400 Mioveni (Romania); Fulger, Stefan [University Politechnica Bucharest, Splaiul Independentei Street, No. 313, Bucharest 060042 (Romania); Valeca, Serban Constantin [University of Pitesti, Targul din Vale Street, No. 1, 110040 Pitesti (Romania)

    2011-08-15

    Supercritical water (SCW) is being considered as a cooling medium for the next generation nuclear reactors because it provides high thermal efficiency and plant simplification. However, materials corrosion has been identified as a critical problem due to the oxidative nature of supercritical water. Thus, for safety using of these nuclear reactor systems a systematic study of candidate materials corrosion is needed. As in other high temperature environments, corrosion in SCW occurs by the growth of an oxide layer on the materials surface. The current work aims to evaluate oxidation behavior of AISI 304L SS and Incoloy 800HT in water at supercritical temperatures in the range 723-873 K under a pressure of 25 MPa for up to 1680 h. After exposure to deaerated supercritical water, the samples were investigated using gravimetry, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS). Oxide films grown on these materials have a layered structure with an outer layer consisting of a mixture of iron oxide/iron-nickel spinel oxides and an inner layer consisting of chromium oxide in the case of Incoloy 800HT and nickel-chromium spinel oxide in the case of AISI 304L SS. The mass gains for Incoloy 800HT at all temperatures were small, while comparatively with AISI 304L SS which exhibited higher oxidation rates. In the same time the results obtained by EIS indicate the best corrosion resistance of oxides grown on Incoloy 800HT surface.

  3. Influence of surface finish on the high cycle fatigue behavior of a 304L austenitic stainless steel

    This work has dealt with the influence of surface finish on the high cycle fatigue behavior of a 304L. The role played by roughness, surface hardening and residual stresses has been particularly described. First part of this study has consisted of the production of several surface finishes. These latter were obtained by turning, grinding, mechanical polishing and sandblasting. The obtained surfaces were then characterised in terms of roughness, hardening, microstructure and residual stresses. Fatigue tests were finally conducted under various stress ratios or mean stresses at two temperatures (25 C and 300 C). Results clearly evidenced an effect of the surface integrity on the fatigue resistance of the 304L. This influence is nevertheless more pronounced at ambient temperature and for a positive mean stress. For all explored testing conditions, the lowest endurance limit was obtained for ground specimens whereas polished samples exhibited the best fatigue strength. Results also cleared out a detrimental influence of a positive mean stress in the case of specimens having surface defaults of a great acuity. The study of the relative effect of each of the surface parameter, under a positive stress ratio and at the ambient temperature, showed that roughness profile and surface hardening are the two more influential factors. The role of the residual stresses remains negligible due to their rapid relaxation during the application of the first cycles of fatigue. The estimation of the initiation and propagation periods showed that mechanisms differed as a function of the applied stress ratio. Crack propagation is governed by the parameter DK at a positive stress ratio and by Dep/2 in the case of tension-compression tests. (author)

  4. The initiation and propagation of chloride-induced transgranular stress-corrosion cracking (TGSCC) of 304L austenitic stainless steel under atmospheric conditions

    Highlights: • Cracking consistent with corrosion enhanced plasticity model of Magnin. • Cracking stress threshold is 10 MPa, substantially lower than current guidance. • Humidity threshold for cracking is 30%. • Measured length of cracks very dependent on polishing practice. • Cracking could occur at 290–300 K, based on measured activation energy. - Abstract: Bending tests were used to investigate the stress-corrosion cracking of 304L stainless steel in a corrosive atmosphere containing magnesium chloride. Initially smooth specimens showed multiple closely spaced cracks after exposures of up to 500 h. These showed threshold stresses of 10 MPa and a threshold humidity of 30%. Cracking rates increased with stress but were a maximum at plastic strains of 2%. Examination of cracks using focussed ion beam milling and electron diffraction indicated a multi-stage mechanism of propagation via preferential oxidation of slip planes. The apparent activation energy was 34 kJ mol−1 in the temperature range 333–363 K

  5. Effect of surface machining and cold working on the ambient temperature chloride stress corrosion cracking susceptibility of AISI 304L stainless steel

    Effect of plastic deformation induced by cold rolling or surface machining on the susceptibility to chloride-induced stress corrosion cracking at ambient temperature of 304L austenitic stainless steel was investigated in this study. The test material was subjected to three treatments: (a) solution annealed, (b) cold rolled and (c) surface machined to induce different levels of strain/stresses in the material. Subsequently constant strained samples were produced as per ASTM G30 for each condition and these were exposed to 1 M HCl at ambient temperature until cracking occurred. Subsequently the cracked samples were characterized using stereo microscopy, optical microscopy and atomic force microscopy to understand the effect of microstructural changes produced by straining on the susceptibility to stress corrosion cracking at ambient temperature. Strained surface produced by machining accelerated the process of crack initiation resulting in densely distributed shallow surface cracks in a very short period of time as compared to solution annealed and cold worked sample. Crack propagation in cold worked sample was along the slip lines and cracking occurred much earlier than in the solution annealed sample.

  6. Heat transfer and fluid flow during keyhole mode laser welding of tantalum, Ti-6Al-4V, 304L stainless steel and vanadium

    Because of the complexity of several simultaneous physical processes, most heat transfer models of keyhole mode laser welding require some simplifications to make the calculations tractable. The simplifications often limit the applicability of each model to the specific materials systems for which the model is developed. In this work, a rigorous, yet computationally efficient, keyhole model is developed and tested on tantalum, Ti-6Al-4V, 304L stainless steel and vanadium. Unlike previous models, this one combines an existing model to calculate keyhole shape and size with numerical fluid flow and heat transfer calculations in the weld pool. The calculations of the keyhole profile involved a point-by-point heat balance at the keyhole walls considering multiple reflections of the laser beam in the vapour cavity. The equations of conservation of mass, momentum and energy are then solved in three dimensions assuming that the temperatures at the keyhole wall reach the boiling point of the different metals or alloys. A turbulence model based on Prandtl's mixing length hypothesis was used to estimate the effective viscosity and thermal conductivity in the liquid region. The calculated weld cross-sections agreed well with the experimental results for each metal and alloy system examined here. In each case, the weld pool geometry was affected by the thermal diffusivity, absorption coefficient, and the melting and boiling points, among the various physical properties of the alloy. The model was also used to better understand solidification phenomena and calculate the solidification parameters at the trailing edge of the weld pool. These calculations indicate that the solidification structure became less dendritic and coarser with decreasing weld velocities over the range of speeds investigated in this study. Overall, the keyhole weld model provides satisfactory simulations of the weld geometries and solidification sub-structures for diverse engineering metals and alloys

  7. Comparative study in the induced corrosion by sulfate reducing microorganisms, in a stainless steel 304L sensitized and a carbon steel API X65; Estudio comparativo de la corrosion inducida por microorganismos sulfatorreductores, en un acero inoxidable 304L sensibilizado y un acero al carbono API X65

    Diaz S, A.; Gonzalez F, E.; Arganis J, C.; Luna C, P.; Carapia M, L. [ININ, Carretera Mexico-Toluca Km. 36.5, 52045 Estado de Mexico (Mexico)]. e-mail: ads@nuclear.inin.mx

    2004-07-01

    In spite of the operational experience related with the presence of the phenomenon of microbiological corrosion (MIC) in industrial components, it was not but until the decade of the 80 s when the nuclear industry recognized its influence in some systems of Nuclear Generating Power plants. At the moment, diverse studies that have tried to explain the generation mechanism of this phenomenon exist; however, they are even important queries that to solve, especially those related with the particularities of the affected metallic substrates. Presently work, the electrochemical behavior of samples of stainless steel AISI 304L sensitized is evaluated and the carbon steel APIX65, before the action of sulfate reducing microorganisms low the same experimental conditions; found that for the APIX65 the presence of this type of bacteria promoted the formation of a stable biofilm that allowed the maintenance of the microorganisms that damaged the material in isolated places where stings were generated; while in the AISI 304L, it was not detected damage associated to the inoculated media. The techniques of Resistance to the Polarization and Tafel Extrapolation, allowed the calculation of the speed of uniform corrosion, parameter that doesn't seem to be influenced by the presence of the microorganisms; while that noise electrochemical it distinguished in real time, the effect of the sulfate reducing in the steel APIX65. (Author)

  8. THE EFFECT OF SMALL AMOUNTS OF ELEMENTS ON SHAPES OF POTENTIODYNAMIC AND POTENTIOSTATIC CURVES OF AISI 304L AND AISI 316L STAINLESS STEELS IN CHLORIDE MEDIA

    D. Pulino-Sagradi

    1997-06-01

    Full Text Available Abstract - Samples of high purity grade and commercial purity grade type AISI 304L and AISI 316L steels were studied by the potentiodynamic and potentiostatic techniques in a naturally aerated 3.5% NaCl aqueous solution at a controlled temperature of (23±2°C. The anodic polarization curves of the potentiodynamic technique showed that not always is it possible to determine pitting potential: most of the curves of commercial purity grade steels displayed a smooth curvature in the region where the current density should increase sharply. The density current versus time potentiostatic curves also showed different shapes according to the purity grade steels: for the commercial purity grade steels, the current density showed large oscillations with time (related to unstable pits, whereas for the high purity grade steels, a regular behavior of current density as a function of time was found (related to stable pits

  9. Initiation and growth of thermal fatigue crack networks in an AISI 304 L type austenitic stainless steel (X2 CrNi18-09)

    We studied the behaviour of a 304 L type austenitic stainless steel submitted to thermal fatigue. Using the SPLASH equipment of CEA/SRMA we tested parallelepipedal specimens on two sides: the specimens are continuously heated by Joule effect, while two opposites faces are cyclically. cooled by a mixed spray of distilled water and compressed air. This device allows the reproduction and the study of crack networks similar to those observed in nuclear power plants, on the inner side of circuits fatigued by mixed pressurized water flows at different temperatures. The crack initiation and the network constitution at the surface were observed under different thermal conditions (Tmax = 320 deg C, ΔT between 125 and 200 deg C). The experiment produced a stress gradient in the specimen, and due to this gradient, the in-depth growth of the cracks finally stopped. The obtained crack networks were studied quantitatively by image analysis, and different parameters were studied: at the surface during the cycling, and post mortem by step-by-step layer removal by grinding. The maximal depth obtained experimentally, 2.5 mm, is relatively coherent with the finite element modelling of the SPLASH test, in which compressive stresses appear at a depth of 2 mm. Some of the crack networks obtained by thermal fatigue were also tested in isothermal fatigue crack growth under 4-point bending, at imposed load. The mechanisms of the crack selection, and the appearance of the dominating crack are described. Compared to the propagation of a single crack, the crack networks delay the propagation, depending on the severity of the crack competition for domination. The dominating crack can be at the network periphery, in that case it is not as shielded by its neighbours as a crack located in the center of the network. It can also be a straight crack surrounded by more sinuous neighbours. Indeed, on sinuous cracks, the loading is not the same all along the crack path, leading to some morphological

  10. Correlation of radiation-induced changes in microstructure/microchemistry, density and thermo-electric power of type 304L and 316 stainless steels irradiated in the Phénix reactor

    Annealed specimens of type 304L and 316 stainless steel and cold-worked 316 specimens were irradiated in the Phénix reactor in the temperature range 381–394 °C and to different damage doses up to 39 dpa. The microstructure and microchemistry of both 304L and 316 have been examined using the combination of the different techniques of TEM to establish the void swelling and precipitation behavior under neutron irradiation. TEM observations are compared with results of measurements of immersion density and thermo-electric power obtained on the same irradiated stainless steels. The similarities and differences in their behavior on different scales are used to understand the factors in terms of the chemical composition and metallurgical state of steels, affecting the precipitation under irradiation and the swelling behavior. Irradiation induces the formation of some precipitate phases (e.g., M6C and M23C6-type carbides, and γ’- and G-phases), Frank loops and cavities. According to the metallurgical state and chemical composition of the steel, the amount of each type of radiation-induced defects is not the same, affecting their density and thermo-electric power

  11. AES depth profiles in Mo-coated 304L stainless steel achieved by RF-magnetron sputtering and influence of Mo on the corrosion in 3.5% NaCl solution

    Saidi, D. [Département de métallurgie, Division de Technologie du Combustible, Centre de Recherche Nucléaire de Draria CRND, BP. 43 Draria, Alger (Algeria); Zaid, B., E-mail: zaidbachir@yahoo.com [Département de métallurgie, Division de Technologie du Combustible, Centre de Recherche Nucléaire de Draria CRND, BP. 43 Draria, Alger (Algeria); Souami, N. [Centre de Recherche Nucléaire d’Alger CRNA, 2 Bd. Frantz Fanon, Alger (Algeria); Saoula, N. [Division des Milieux Ionisés et Lasers, Centre de Développement des Technologies Avancées CDTA, Cité du 20 août 1956, Baba Hassan, BP n 17, Alger (Algeria); Siad, M. [Centre de Recherche Nucléaire d’Alger CRNA, 2 Bd. Frantz Fanon, Alger (Algeria); Si Ahmed, A. [Im2np, UMR 7334 CNRS, Aix-Marseille Université, 13397 Marseille Cedex 20 (France); Biberian, J.P. [CINaM, UMR 7525 CNRS, Aix Marseille Université, 13288 Marseille Cedex 9 (France)

    2015-10-05

    Highlights: • Mo coating of 304L stainless steel is achieved via RF-magnetron sputtering. • The AES depth profiles before and after annealing in air (at 973 K) are analyzed. • The corrosions in NaCl solution of bare and Mo-coated samples are compared. • Mo-coated steels exhibit better corrosion behaviors. • The positive action of Mo oxide via its semi-conducting properties is deduced. - Abstract: Molybdenum-coated 304L stainless steel samples, fabricated by RF-magnetron sputtering, are characterized by Auger Electron Spectroscopy (AES) before and after annealing in air at 973 K. The electrochemical parameters of bare and coated materials, in NaCl 3.5% water solution at 298 K, are derived from the potentiodynamic polarization curves. The corrosion current of Mo-coated samples (before and after annealing) is significantly lower than that of its bare counterpart. The information gained from the AES depth profiles leads us to infer that the positive action of molybdenum on the corrosion behavior may be attributed to the changes induced by the semi-conducting properties of Mo oxide in the passive film.

  12. Materials Reliability Program Environmental Fatigue Testing of Type 304L Stainless Steel U-Bends in Simulated PWR Primary Water (MRP-100), Phase A (Optimization of Test Procedures and Baseline Testing)

    OAK-B135 Laboratory data generated over the past two decades indicate the possibility of a significant reduction in component fatigue life when reactor water environmental effects are experimentally simulated. However, these laboratory data have not been confirmed by nuclear power plant component operating experience. In a recent comprehensive review of laboratory, component and structural test data performed through the EPRI Materials Reliability Program, flow rate was identified as a critical variable that was generally not considered in laboratory studies but is applicable in plant operating environments. Available corrosion fatigue data for carbon/low-alloy steel piping components suggest that high flow is beneficial regarding the effects of reactor water environments. Similar information is lacking for stainless steel piping materials. MRP-49 recommended that additional laboratory testing be performed to improve the applicability of laboratory test results under simulated reactor water environmental conditions for stainless steel materials. This report documents progress made in an extensive testing program underway to evaluate the effects of flow rate on fatigue of 304L stainless steel in simulated PWR primary water

  13. Microstructural origins of radiation-induced changes in mechanical properties of 316 L and 304 L austenitic stainless steels irradiated with mixed spectra of high-energy protons and spallation neutrons

    Sencer, B. H.; Bond, G. M.; Hamilton, M. L.; Garner, F. A.; Maloy, S. A.; Sommer, W. F.

    2001-07-01

    A number of candidate alloys were exposed to a particle flux and spectrum at Los Alamos Neutron Science Center (LANSCE) that closely match the mixed high-energy proton/neutron spectra expected in accelerator production of tritium (APT) window and blanket applications. Austenitic stainless steels 316 L and 304 L are two of these candidate alloys possessing attractive strength and corrosion resistance for APT applications. This paper describes the dose dependence of the irradiation-induced microstructural evolution of SS 316 L and 304 L in the temperature range 30-60°C and consequent changes in mechanical properties. It was observed that the microstructural evolution during irradiation was essentially identical in the two alloys, a behavior mirrored in their changes in mechanical properties. With one expection, it was possible to correlate all changes in mechanical properties with visible microstructural features. A late-term second abrupt decrease in uniform elongation was not associated with visible microstructure, but is postulated to be a consequence of large levels of retained hydrogen measured in the specimens. In spite of large amounts of both helium and hydrogen retained, approaching 1 at.% at the highest exposures, no visible cavities were formed, indicating that the gas atoms were either in solution or in subresolvable clusters.

  14. Microstructural features of a type 304L stainless steel deformed at 1473 K in the strain rate interval 10[sup [minus]3] s[sup [minus]1] to 10[sup 2] s[sup [minus]1

    Sundararaman, D.; Divakar, R.; Raghunathan, V.S. (Indira Gandhi Centre for Atomic Research, Kalpakkam (India))

    1993-05-01

    Deformation processing of materials in continuously being refined by dynamic materials modeling procedures to establish a safe window for the manufacture of engineering components. Microstructure development during the processing and its correlation with the mechanical properties is inevitable for better understanding of the materials. On this basis, microstructural examination of the dynamically processed type 304L austenitic stainless steels has been carried out. The samples that have been deformed at 1,473 K under various strain rates, ranging from 10[sup [minus]2]s[sup [minus]1] to 10[sup 2]s[sup [minus]1], were observed by transmission electron microscopy, to corroborate the energy efficiency of the process. The details of the energy efficiency contours and their implications are reported elsewhere. In this report the authors present some of the unusual microstructural features that, in general, are not desirable for the safe processing of materials.

  15. Thermal fatigue of a 304L austenitic stainless steel: simulation of the initiation and of the propagation of the short cracks in isothermal and aniso-thermal fatigue; Fatigue thermique d'un acier inoxydable austenitique 304L: simulation de l'amorcage et de la croissance des fissures courtes en fatigue isotherme et anisotherme

    Haddar, N

    2003-04-01

    The elbow pipes of thermal plants cooling systems are submitted to thermal variations of short range and of variable frequency. These variations bound to temperature changes of the fluids present a risk of cracks and leakages. In order to solve this problem, EDF has started the 'CRECO RNE 808' plan: 'thermal fatigue of 304L austenitic stainless steels' to study experimentally on a volume part, the initiation and the beginning of the propagation of cracks in thermal fatigue on austenitic stainless steels. The aim of this study is more particularly to compare the behaviour and the damage of the material in mechanic-thermal fatigue (cycling in temperature and cycling in deformation) and in isothermal fatigue (the utmost conditions have been determined by EDF for the metal: Tmax = 165 degrees C and Tmin = 90 degrees C; the frequency of the thermal variations can reach a Hertz). A lot of experimental results are given. A model of lifetime is introduced and validated. (O.M.)

  16. Superficial and electrochemical study of stainless steel 304l with an inhibitory protective coating (TiO{sub 2} and ZrO{sub 2}); Estudio superficial y electroquimico de acero inoxidable 304L con una capa protectora inhibidora (TiO{sub 2} y ZrO{sub 2})

    Davila N, M. L.; Contreras R, A.; Arganis J, C. R., E-mail: aida.contreras@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    The degradation mechanisms in the boiling water reactors (BWR) have been an alert focus for owners, especially the cracking by stress corrosion cracking (SCC), therefore different techniques have been studied to inhibit this problem inside which is the water injection of hydrogen feeding (HWC, Hydrogen Water Chemistry), together with the noble metals injection (NMCA, Nobel Metal Chemical Addition) and the ceramic materials injection that form an inhibitory protective coating (Ipc). In this work the Ipc was simulated, for which were carried out hydro-thermals deposits starting from suspensions of 1000 ppm of zirconium oxide in its crystalline phase baddeleyite and titanium oxides in its anatase and rutile phases, on test tubes of stainless steel 304l previously rusty under simulated conditions of pressure and temperature of a BWR (288 C and 8 MPa). The superficial characterization was realized by scanning electron microscopy, energy-dispersive of X-ray and X-ray diffraction. The capacity to mitigate the corrosion was studied with the electrochemical technique of Tafel polarization (288 C and 8 MPa). The steel presents the formation of two oxide coatings formed by magnetite and hematite. The baddeleyite presents a deposit more thick and homogeneous it also presents the most negative electrochemical potential of corrosion, what indicates that it has the bigger capacity to mitigate the SCC. (Author)

  17. Study of diffusion welding between the zirconium alloy Zy{sub 4} and the stainless steel 304L. Morphology of the interface and nature of the phases formed; Etude du soudage diffusion entre l'alliage de zirconium Zy{sub 4} et l'acier inoxydable 304L. Morphologie de l'interface et nature des phases formees

    Taouinet, M. [Centre de Recherche Nucleaire de Draria (CRNA), Alger (Algeria); Lebaili, S. [Universite des Sciences et de la Technologie Houari Boumediene, Lab. de Science et Genie des Materiaux, Faculte de Genie Mecanique et Genie des Procedes, Alger (Algeria); Souami, N. [Centre de Recherche Nucleaire d' Alger (CRNA), Alger (Algeria)

    2009-07-01

    We approach a study on the solid state diffusion bonding between zircaloy (Zy{sub 4}) and stainless steel (304L) for an application in the sector of the nuclear power. The diffusion couples prepared underwent treatments at the temperatures ranging between 850 and 1020 C in a controlled atmosphere and under dynamic pressures. We give a particular attention to the morphology of the interface, formed, and to the determination of the nature of the compounds formed. The observations and chemical analysis are realized by ESEM-EDX and XRD. The quantitative distribution as well as the detailed localization of the basic chemical elements are defined by chemical profiles, and series of images X. The junction of diffusion consists of three zones distinct, formed from a solid solution FeCr({alpha}), rich in Cr in the form of a homogeneous edge, localized in steel side. The two other zones of the center of the Zy{sub 4} side are two phase of type Zr{sub {alpha}}, (FeCr){sub {alpha}}-Zr(Fe, Cr){sub 2} and Zr{sub {alpha}}-Zr{sub 2}(Fe{sub 1-x}Ni{sub x}), 0.15{<=}x{<=}0.25. The detailed results obtained, are a regrouping, between those obtained from the observations and chemical analysis and radio crystallographic. The values of the measured micro-hardnesses give very heterogeneous filiations to the level of the interface. (authors)

  18. Assessment and comparison of oxides grown on 304l ods steel and 304l ss in water environment in supercritical conditions

    In order to fulfil superior cladding for new reactor generation G IV, the austenitic304L stainless steel was improved by oxide dispersion strengthening (ODS), using two nano-oxides: titanium and yttrium oxides. The behaviour of the new material resulted, 304 ODS, in water at supercritical temperature of about 550OC and 25 MPa pressure, was considered. The oxidation kinetics by weigh gain measurements for both materials have been estimated and compared. The weight gain of ODS samples is higher than basic austenitic steel up to 1320 hours. The oxides developed on the ODS samples in SCPW are layered and more uniform than in 304L SS. The protectively character of oxide films was estimated by different techniques. The morphology of oxide surface, the layering and chemical formula of oxides films were investigated by scanning electron microscopy (SEM), Energy Dispersion X-Ray Spectrometry (EDS), electrochemical impedance spectrometry (EIS) and by Small Angle X-ray Diffraction (SAXD). 1. (authors)

  19. THE EMPHASIS OF PHASE TRANSFORMATIONS AND ALLOYING CONSTITUENTS ON HOT CRACKING SUSCEPTIBILITY OF TYPE 304L AND 316L STAINLESS STEEL WELDS

    RATI SALUJA; K. M. MOEED

    2012-01-01

    Hot cracking is a significant problem due to transformation of retained ferrite into sigma phase, which results preferential corrosion of ferrite. The Hot Cracking Susceptibility is high for fully austenitic compositions but specimens with 5 to 30% ferrite were quite resistant to cracking. Hot cracking in 304L and 316L is amplified by low-melting eutectics containing impurities such as S, P, Si, N. It could be diminished by small increase in C, N, Cr, Ni, Si or by substantial increase in Mn c...

  20. Hydrogen-assisted crack propagation in 304L/308L and 21Cr–6Ni–9Mn/308L austenitic stainless steel fusion welds

    Highlights: ► Measured crack growth resistance of welds with 140 wppm H from gas charging. ► H reduced fracture initiation toughness by over 67% and altered fracture mode. ► With H, microcracks initiate at weld ferrite. Without H, fracture is uniformly ductile. ► With H, localized deformation in austenite creates stress concentrations at ferrite. ► In austenite/ferrite microstructures, JIC decreases with increasing vol.% ferrite. - Abstract: Elastic–plastic fracture mechanics methods were used to characterize hydrogen-assisted crack propagation in two austenitic stainless steel gas tungsten arc (GTA) welds. Thermally precharged hydrogen (140 wppm) degraded fracture initiation toughness and crack growth toughness and altered fracture mechanisms. Fracture initiation toughness in hydrogen-precharged welds represented a reduction of >67% from the estimated toughness of non-charged welds. In hydrogen-precharged welds, microcracks initiated at ferrite, and dendritic microstructure promoted crack propagation along ferrite. Deformation twinning in austenite interacts with ferrite, facilitating microcrack formation. While hydrogen altered fracture mechanisms similarly for both welds, the amount of ferrite governed the severity of hydrogen-assisted crack propagation.

  1. Multi-scale analysis of behavior and fatigue life of 304L stainless under cyclic loading with pre-hardening

    This study investigates the effects of loading history on the cyclic stress-strain curve and fatigue behavior of 304L stainless steel at room temperature. Tension-compression tests were performed on the same specimen under controlled strain, using several loading sequences of increasing or decreasing amplitude. The results showed that fatigue life is significantly reduced by the previous loading history. A previously developed method for determining the effect of prehardening was evaluated. Microstructural analyses were also performed; the microstructures after pre-loading and their evolution during the fatigue cycles were characterized by TEM. The results of these analyses improve our understanding of the macroscopic properties of 304L stainless steel and can help us identify the causes of failure and lifetime reduction. (author)

  2. Initiation and growth of thermal fatigue crack networks in an AISI 304 L type austenitic stainless steel (X2 CrNi18-09); Amorcage et propagation de reseaux de fissures de fatigue thermique dans un acier inoxydable austenitique de type X2 CrNi18-09 (AISI 304 L)

    Maillot, V

    2004-07-01

    We studied the behaviour of a 304 L type austenitic stainless steel submitted to thermal fatigue. Using the SPLASH equipment of CEA/SRMA we tested parallelepipedal specimens on two sides: the specimens are continuously heated by Joule effect, while two opposites faces are cyclically. cooled by a mixed spray of distilled water and compressed air. This device allows the reproduction and the study of crack networks similar to those observed in nuclear power plants, on the inner side of circuits fatigued by mixed pressurized water flows at different temperatures. The crack initiation and the network constitution at the surface were observed under different thermal conditions (Tmax = 320 deg C, {delta}T between 125 and 200 deg C). The experiment produced a stress gradient in the specimen, and due to this gradient, the in-depth growth of the cracks finally stopped. The obtained crack networks were studied quantitatively by image analysis, and different parameters were studied: at the surface during the cycling, and post mortem by step-by-step layer removal by grinding. The maximal depth obtained experimentally, 2.5 mm, is relatively coherent with the finite element modelling of the SPLASH test, in which compressive stresses appear at a depth of 2 mm. Some of the crack networks obtained by thermal fatigue were also tested in isothermal fatigue crack growth under 4-point bending, at imposed load. The mechanisms of the crack selection, and the appearance of the dominating crack are described. Compared to the propagation of a single crack, the crack networks delay the propagation, depending on the severity of the crack competition for domination. The dominating crack can be at the network periphery, in that case it is not as shielded by its neighbours as a crack located in the center of the network. It can also be a straight crack surrounded by more sinuous neighbours. Indeed, on sinuous cracks, the loading is not the same all along the crack path, leading to some

  3. Selection of suitable stainless steels for nuclear reprocessing plants: application of chemical and electrochemical testing methods to austenitic CrNi steel AISI type 304L in various chemical compositions

    DIN Standard Huey testing has been performed in boiling 14.4n nitric acid during 5-15 periods (240-720 h) for selection of appropriate nitric acid resistant materials for nuclear fuel reprocessing applications. The paper describes the testing process during which the intermediate and final results of metal loss by dissolution are directly transferred from the balance to the computer, stored and activated - besides material properties data - for documentation purposes. Further routine evaluation of these experiments includes metallography in cross-section and surface microscopy to look after uniform and local metal dissolution phenomena and their relationship to the bulk structure. A large variety of materials have been tested this way through the last years. It was shown how sensitively the chosen testing conditions are able to differ between materials of the same nominal composition AISI 304L/Material No. 1.4306 in different contents of residual elements. Especially, for the purest electroslag-molten steel (ESU) results of parameter studies concerning the influence of sensitization, cold deformation, grain size and sheet thickness (in respect to end grain attack) are given. Within an attempt to define faster methods of corrosion testing, e.g. to differ within a group of materials of similar composition, but different corrosion behaviour, electrochemical tests in heated nitric acid were performed under potentiostatic conditions. The necessary electrochemical equipment and the results of its application by potentiostatic tests on AISI 304L in above mentioned three chemical compositions at 1250 mV, 14n HNO3 are presented. The evaluation by light and electron microscopy of the corroded surfaces, supported by measurements of current density, weight change, metallography and surface roughness, proved that within one hour a remarkable differentiation of the corrosion behaviour took place which can serve as a basis of materials preselection and to diminish the extent of

  4. Fatigue behaviour of 304L steel welded structures: influence of residual stresses and surface mechanical finishing

    This study focuses on the influence of residual stresses and surface mechanical finishing on lifetime of stainless steel 304L welded structures. Residual stresses are determined on specific specimens of three types: base-metal, as-welded and ground-welded specimens. Each type is submitted to fatigue tests in order to assess the influence of these parameters on the lifetime, and to determine their evolution. The experiments show that an important surface stress concentration is located in the weld root of as-welded structures, which has a negative effect on the fatigue life. The grinding operation generates high-level surface residual stresses but the lifetime is higher thanks to the reduction of the notch effect. The fatigue test results are compared to the nuclear industry best-fit S-N curves. This enables the determination of correction factors related to fatigue test results of polished specimens, and to assess the lifetime of structures. (author)

  5. High temperature oxidation behavior of AISI 304L stainless steel—Effect of surface working operations

    Highlights: ► Surface working resulted in thinner oxide on the surface. ► Oxides on machined/ground surfaces richer in Cr, higher in specific resistivity. ► Additional ionic transport process at the metal-oxide for ground sample established. ► Presence of fragmented grains and martensite influenced oxide nature/morphology. - Abstract: The oxidation behavior of grade 304L stainless steel (SS) subjected to different surface finishing (machining and grinding) operations was followed in situ by contact electric resistance (CER) and electrochemical impedance spectroscopy (EIS) measurements using controlled distance electrochemistry (CDE) technique in high purity water (conductivity −1) at 300 °C and 10 MPa in an autoclave connected to a recirculation loop system. The results highlight the distinct differences in the oxidation behavior of surface worked material as compared to solution annealed material in terms of specific resistivity and low frequency Warburg impedance. The resultant oxide layer was characterized for (a) elemental analyses by glow discharge optical emission spectroscopy (GDOES) and (b) morphology by scanning electron microscopy (SEM). Oxide layers with higher specific resistivity and chromium content were formed in case of machined and ground conditions. Presence of an additional ionic transport process has also been identified for the ground condition at the metal/oxide interface. These differences in electrochemical properties and distinct morphological features of the oxide layer as a result of surface working were attributed to the prevalence of heavily fragmented grain structure and presence of martensite.

  6. Result of International Round Robin Test on Young's Modulus Measurement of 304L and 316L Steels at Cryogenic Temperatures

    Ogata et al. reported in 1996 results of international Round Robin tests on mechanical property measurement of several metals at cryogenic temperatures. Following the report, the standard deviation of Young's modulus of 316L steel is much larger than those of yield and tensile strengths, that is, 4.6 % of the mean value for Young's modulus, while 1.4 % and 1.6 % of the mean values for yield and for tensile strengths, respectively. Therefore, an international Round Robin test on Young's modulus of two austenitic stainless steels at cryogenic temperatures under the participation often institutes from four nations has been initiated within these two years. As a result, the ratios of standard deviation to the mean values are 4.2 % for 304L and 3.6 % for 316L. Such a drop in the standard deviation is attributable to the decrease in the number of institute owing to the application of single extensometer or direct strain gage technique

  7. Study on interim storage of spent nuclear fuel by concrete cask for practical use. Feasibility study on prevention of chloride induced stress corrosion cracking for type304L stainless steel canister

    For the practical use of the concrete cask storage method, remaining issues are preventive design (monitoring, inspection and countermeasures) and its demonstration of the Stress Corrosion Cracking (SCC) on the canister surface. Scenarios to maintain its confinement function of the canister made of the conventional SUS 304L materials during storage period were established by keeping the salt density on the canister surface not be exceed its critical salt density to initiate SCC or by controlling the crack propagation if the salt density exceeded the critical value. Furthermore the feasibility of the scenarios were demonstrated by tests defining the critical salt density for the SCC initiation and by tests of crack propagation based on metrological data of representative coastal sites in Japan. On top of that, methods of reduction of welding residual stress to prevent SCC were demonstrated by SCC tests using small scale test model made of SUS 304L simulating wall thickness of the real canister and welding methods. (author)

  8. Resistance Spot Weldability of Dissimilar Materials: BH180-AISI304L Steels and BH180-IFT123 Steels

    Fatih Hayat

    2011-01-01

    In this study, resistance spot weldability of 180 grade bake hardening steel (BH180), 7123 grade interstitial free steel (IF7123) and 304 grade austenitic stainless steel (AISI304L) with each other was investigated. In the joining process, electrode pressure and weld current were kept constant and six different weld time were chosen. Microstructure, microhardness, tensile-shear properties and fracture types of resistance spot welded joints were examined. In order to characterize the metallurgical structure of the welded joint, the microstructural profile was developed, and the relationship between mechanical properties and microstructure was determined. The change of weld time, nugget diameter, the HAZ (heat affected zone) width and the electrode immersion depth were also investigated. Welded joints were examined by SEM (scanning electron microscopy) images of fracture surface. As a result of the experiment, it was determined that with increasing weld time, tensile shear load bearing capacity (TLBC) increased with weld time up to 25 cycle and two types of tearing occurred. It was also determined that while the failure occurred from IF side at the BHIS0+IF7123 joint, it occurred from the BH180 side at the BHIS0+AISI304L joint.

  9. Influence of Size on the Microstructure and Mechanical Properties of an AISI 304L Stainless Steel—A Comparison between Bulk and Fibers

    Francisco J. Baldenebro-Lopez

    2015-01-01

    Full Text Available In this work, the mechanical properties and microstructural features of an AISI 304L stainless steel in two presentations, bulk and fibers, were systematically studied in order to establish the relationship among microstructure, mechanical properties, manufacturing process and effect on sample size. The microstructure was analyzed by XRD, SEM and TEM techniques. The strength, Young’s modulus and elongation of the samples were determined by tensile tests, while the hardness was measured by Vickers microhardness and nanoindentation tests. The materials have been observed to possess different mechanical and microstructural properties, which are compared and discussed.

  10. Flow lines and microscopic elemental inhomogeneities in austenitic stainless steels

    Mosley, Jr, W C

    1982-01-01

    Flow lines in mechanically formed austenitic stainless steels are known to influence fracture behavior. Enhancement of flow lines by chemical etching is evidence of elemental inhomogeneity. This paper presents the results of electron microprobe analyses to determine the nature of flow lines in three austenitic stainless steels: 21Cr-6Ni-9Mn, 304L, and 19Ni-18Cr.

  11. Comparison of Strength and Serration at Cryogenic Temperatures among 304L, 316L and 310S Steels

    Shibata, K.; Ogata, T.; Nyilas, A.; Yuri, T.; Fujii, H.; Ohmiya, S.; Onishi, T.; Weiss, K. P.

    2008-03-01

    Tensile tests of 310S steel were performed at temperatures below 300 K and the yield strength and deformation behavior were compared with those of 304L and 316L steels. Computer simulations were also carried out to graph stress-elongation curves in order to discuss the effects of martensitic transformations induced during deformation on their strengths and deformation behavior at low temperatures. Tensile tests showed that yield strength of 310S steel is highest and that of 304L is lowest. The differences in yield strengths between 316L and 310S steels and between 304L and 316L steels are larger than those expected from the differences in solid solution strengthening. This can be explained by the effect of the strain through γ to ɛ martensitic transformation induced by elastic stress in 304L and 316L steels. The strength level and the shape of stress-elongation curves at cryogenic temperatures excluding serration can be qualitatively revealed by simulation when higher strength of ɛ phase comparing to α' phase and the window effect of α' were considered simultaneously. In liquid hydrogen, the three steels exhibit large serrations on the stress-elongation curves after the deformation near to the ultimate stress, while the curves are smooth before the onset of the serration. Such serrations in liquid hydrogen could not be revealed by simulation.

  12. A study of the microstructural distribution of cathodic hydrogen in austenitic stainless steels by hydrogen microprint

    The cathodic hydrogen distribution in austenitic stainless steel (304L; 316L) microstructure is shwon, at electron microscope scale, using the hydrogen microprint technique. Cathodic hydrogen induced cracking is analysed

  13. Stainless Steel Permeability

    Buchenauer, Dean A. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Karnesky, Richard A. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States)

    2015-09-01

    An understanding of the behavior of hydrogen isotopes in materials is critical to predicting tritium transport in structural metals (at high pressure), estimating tritium losses during production (fission environment), and predicting in-vessel inventory for future fusion devices (plasma driven permeation). Current models often assume equilibrium diffusivity and solubility for a class of materials (e.g. stainless steels or aluminum alloys), neglecting trapping effects or, at best, considering a single population of trapping sites. Permeation and trapping studies of the particular castings and forgings enable greater confidence and reduced margins in the models. For FY15, we have continued our investigation of the role of ferrite in permeation for steels of interest to GTS, through measurements of the duplex steel 2507. We also initiated an investigation of the permeability in work hardened materials, to follow up on earlier observations of unusual permeability in a particular region of 304L forgings. Samples were prepared and characterized for ferrite content and coated with palladium to prevent oxidation. Issues with the poor reproducibility of measurements at low permeability were overcome, although the techniques in use are tedious. Funding through TPBAR and GTS were secured for a research grade quadrupole mass spectrometer (QMS) and replacement turbo pumps, which should improve the fidelity and throughput of measurements in FY16.

  14. Notch Effect on Tensile Deformation Behavior of 304L and 316L Steels in Liquid Helium and Hydrogen

    Tensile tests of type 304L and 316L steels were carried out using round bar specimens with a notch in liquid helium, hydrogen, liquid nitrogen and at ambient temperature. The obtained tensile strengths were compared with the tensile strengths of smooth specimens. For smooth specimens, tensile strength increased with a decrease in temperature and the strengths in liquid helium and hydrogen show similar values in both steels. For notched specimen of 304L steel, tensile strength (including fracture strength) increased noticeably from ambient to liquid nitrogen temperature but showed a large decrease in liquid helium and hydrogen. In liquid hydrogen and helium, the tensile strength is a little lower in liquid hydrogen than in liquid helium and both strengths are lower than tensile strengths of smooth specimens. For notched specimen of 316L steel, an increase in tensile strength from ambient to liquid nitrogen temperature was not so large and a decrease from liquid nitrogen to liquid hydrogen was small. The tensile strengths in liquid helium and hydrogen were nearly same and higher than those of smooth specimens. Different behavior of serration was observed between liquid helium and hydrogen, and between 304L and 316L steels. The reasons for these differences were discussed using computer simulation

  15. Notch Effect on Tensile Deformation Behavior of 304L and 316L Steels in Liquid Helium and Hydrogen

    Shibata, K.; Fujii, H.

    2004-06-01

    Tensile tests of type 304L and 316L steels were carried out using round bar specimens with a notch in liquid helium, hydrogen, liquid nitrogen and at ambient temperature. The obtained tensile strengths were compared with the tensile strengths of smooth specimens. For smooth specimens, tensile strength increased with a decrease in temperature and the strengths in liquid helium and hydrogen show similar values in both steels. For notched specimen of 304L steel, tensile strength (including fracture strength) increased noticeably from ambient to liquid nitrogen temperature but showed a large decrease in liquid helium and hydrogen. In liquid hydrogen and helium, the tensile strength is a little lower in liquid hydrogen than in liquid helium and both strengths are lower than tensile strengths of smooth specimens. For notched specimen of 316L steel, an increase in tensile strength from ambient to liquid nitrogen temperature was not so large and a decrease from liquid nitrogen to liquid hydrogen was small. The tensile strengths in liquid helium and hydrogen were nearly same and higher than those of smooth specimens. Different behavior of serration was observed between liquid helium and hydrogen, and between 304L and 316L steels. The reasons for these differences were discussed using computer simulation.

  16. Mechanisms-based viscoplasticity: Theoretical approach and experimental validation for steel 304L

    Zubelewicz, Aleksander; Oliferuk, Wiera

    2016-03-01

    We propose a mechanisms-based viscoplasticity approach for metals and alloys. First, we derive a stochastic model for thermally-activated motion of dislocations and, then, introduce power-law flow rules. The overall plastic deformation includes local plastic slip events taken with an appropriate weight assigned to each angle of the plane misorientation from the direction of maximum shear stress. As deformation progresses, the material experiences successive reorganizations of the slip systems. The microstructural evolution causes that a portion of energy expended on plastic deformation is dissipated and the rest is stored in the defect structures. We show that the reorganizations are stable in a homogeneously deformed material. The concept is tested for steel 304L, where we reproduce experimentally obtained stress-strain responses, we construct the Frost-Ashby deformation map and predict the rate of the energy storage. The storage is assessed in terms of synchronized measurements of temperature and displacement distributions on the specimen surface during tensile loading.

  17. Mechanisms-based viscoplasticity: Theoretical approach and experimental validation for steel 304L.

    Zubelewicz, Aleksander; Oliferuk, Wiera

    2016-01-01

    We propose a mechanisms-based viscoplasticity approach for metals and alloys. First, we derive a stochastic model for thermally-activated motion of dislocations and, then, introduce power-law flow rules. The overall plastic deformation includes local plastic slip events taken with an appropriate weight assigned to each angle of the plane misorientation from the direction of maximum shear stress. As deformation progresses, the material experiences successive reorganizations of the slip systems. The microstructural evolution causes that a portion of energy expended on plastic deformation is dissipated and the rest is stored in the defect structures. We show that the reorganizations are stable in a homogeneously deformed material. The concept is tested for steel 304L, where we reproduce experimentally obtained stress-strain responses, we construct the Frost-Ashby deformation map and predict the rate of the energy storage. The storage is assessed in terms of synchronized measurements of temperature and displacement distributions on the specimen surface during tensile loading. PMID:27026209

  18. Thermal fatigue of austenitic and duplex stainless steels

    Virkkunen, Iikka

    2001-01-01

    Thermal fatigue behavior of AISI 304L, AISI 316, AISI 321, and AISI 347 austenitic stainless steels as well as 3RE60 and ACX-100 duplex stainless steels was studied. Test samples were subjected to cyclic thermal transients in the temperature range 20 - 600°C. The resulting thermal strains were analyzed with measurements and numerical calculations. The evolution of thermal fatigue damage was monitored with periodic residual stress measurements and replica-assisted microscopy. The elastic strai...

  19. Corrosion behavior of mild steel and SS 304L in presence of dissolved nickel under aerated and deaerated conditions

    Mohd Mobin

    2011-12-01

    Full Text Available In dual purpose water/power co-generation plants, the presence of high concentration of Cu and Ni in the re-circulating brine/condensate as a result of condenser tubes corrosion has been attributed as one of the several causes of corrosion damage of flash chamber materials and water touched parts of the boilers. The present investigation deals with the effect of dissolved nickel in the concentration range of 10 ppb to 100 ppm on the corrosion behavior of mild steel and SS 304L in two aqueous medium namely, distilled water and artificial seawater. The effect of pH, dissolved oxygen and flow condition of aqueous medium on the corrosion behavior was also monitored. The experimental techniques include immersion test and electrochemical tests which include free corrosion potential measurements and potentiodynamic polarization measurements. The corrosion rate of mild steel and SS 304L under different experimental conditions was determined by weight loss method and spectrophotometric determination of iron ion entered into the test solution during the period of immersion. The pH of the test solution was also monitored during the entire period of immersion. The left over nickel ions present in the test solution after completion of immersion was also estimated using Atomic Absorption Spectrophotometer. The surface morphology of the corroded steel surface was also examined using scanning electron microscopy (SEM. The results of the studies show that SS 304L largely remains unaffected in both distilled water and artificial seawater under different experimental conditions. However, the effect of nickel on the corrosion behavior of mild steel is quite pronounced and follows interesting trends.

  20. Corrosion behavior of mild steel and SS 304L in presence of dissolved nickel under aerated and deaerated conditions

    Mohd Mobin; Hina Shabnam

    2011-01-01

    In dual purpose water/power co-generation plants, the presence of high concentration of Cu and Ni in the re-circulating brine/condensate as a result of condenser tubes corrosion has been attributed as one of the several causes of corrosion damage of flash chamber materials and water touched parts of the boilers. The present investigation deals with the effect of dissolved nickel in the concentration range of 10 ppb to 100 ppm on the corrosion behavior of mild steel and SS 304L in two aqueous ...

  1. Stainless steel recycle FY94 progress report

    The Materials Technology Section (MTS) of the Savannah River Technology Center (SRTC) was asked to demonstrate the practicality of recycling previously contaminated stainless steel components such as reactor heat exchanger heads, process water piping and slug buckets into 208 liters (55 gallon) drums and 2.8 cubic meter (100 ft3) storage boxes. Radioactively contaminated stainless steel scrap will be sent to several industrial partners where it will be melted, decontaminated/cast into ingots, and rolled into plate and sheet and fabricated into the drums and boxes. As part of this recycle initiative, MTS was requested to demonstrate that radioactively contaminated Type 304L stainless steel could be remelted and cast to meet the applicable ASTM specification for fabrication of drums and boxes. In addition, MTS was requested to develop the technical basis of melt decontamination and establish practicality of using this approach for value added products. The findings presented in this investigation lead to the following conclusions: recycle of 18 wt% Cr-8 wt% Ni alloy can be achieved by melting Type 304 stainless steel in a air vacuum induction furnace; limited melt decontamination of the contaminated stainless steel was achieved, surface contamination was removed by standard decontamination techniques; carbon uptake in the as-cast ingots resulted from the graphite susceptor used in this experiment and is unavoidable with this furnace configuration. A new furnace optimized for melting stainless steel has been installed and is currently being tested for use in this program

  2. Weldability of Stainless Steels

    It gives an outline of metallographic properties of welding zone of stainless steels, generation and mechanisms of welding crack and decreasing of corrosion resistance of welding zone. It consists of seven chapters such as introduction, some kinds of stainless steels and properties, metallographic properties of welding zone, weld crack, toughness of welding zone, corrosion resistance and summary. The solidification modes of stainless steels, each solidification mode on the cross section of Fe-Cr-Ni alloy phase diagram, each solidification mode of weld stainless steels metal by electron beam welding, segregation state of alloy elements at each solidification mode, Schaeffler diagram, Delong diagram, effects of (P + S) mass content in % and Cr/Ni equivalent on solidification cracking of weld stainless steels metal, solidification crack susceptibility of weld high purity stainless steels metal, effects of trace impurity elements on solidification crack susceptibility of weld high purity stainless steels metal, ductile fracture susceptibility of weld austenitic stainless steels metal, effects of H2 and ferrite content on generation of crack of weld 25Cr-5N duplex stainless steels, effects of O and N content on toughness of weld SUS 447J1 metals, effect of ferrite content on aging toughness of weld austenitic stainless steel metal, corrosion morphology of welding zone of stainless steels, generation mechanism of knife line attack phenomenon, and corrosion potential of some kinds of metals in seawater at room temperature are illustrated. (S.Y.)

  3. Effect of Cold-Rolling on Precipitation Phenomena in Sensitized Type 316L and 340L Austenitic Stainless Steels

    H.Tsubakino; A.Yamamoto; T. Yamada; L.Liu; M.Terasawa; S.Nakahigashi; H.Harada

    2004-01-01

    Precipitation phenomena in Type 316L and 304L stainless steels were studied mainly by transmission electron microscopic (TEM) observations after cold-rolling ranging from 0% (as solution annealed) to 80% reduction in thickness,and then by sensitization treatment. Precipitates were identified by electron diffraction analysis and EDS analysis.Precipitates observed in sensitized 316L stainless steel were sigma and chi phases, whereas carbide and sigma were observed in sensitized 304L stainless steel. Recrystallized grains were formed in 30% cold-rolled and sensitized 304L.However, the tendency toward recrystallization in sensitized 316L was much lower than in 304L. Precipitation of sigma and chi phases was accelerated by cold-rolling and they were observed at grain boundaries in lower cold-rolling; they were also seen, in grain interiors in higher cold-rolling. Higher deformation induced partially recrystallization combined with precipitation, resulting in the formation of heterogeneous microstructures.

  4. Phenomena of the coupling between steel 304L and platinum group metal particles in the environment of the dissolution of burned nuclear fuels

    This work describes the phenomena of the electrochemical coupling between stainless steel (304L) and platinum group metal particles in the environment of the recycling of burned nuclear fuels. The main goals of this work are to prove the acceleration of the corrosion by these deposits, the comprehension of the mechanisms and the development of a corrosion model. First the corrosion phenomena are evidenced for steel in contact with noble particles (RuO2,xH2O and Ru(0)). Their accelerating effect on the corrosion process is quantified in 8 mol.L-1 HNO3. Second a local approach on the reduction process is performed using Scanning Electrochemical Microscopy (SECM). The reduction reaction is investigated for microelectrodes and for different substrates (Ru, Pt, bare steel and steel with deposit). This approach clearly showed the catalytic effect of the noble particles on the reduction process of nitrate. Most probably the limiting step of the reduction process, the chemical formation of NO2, is catalyzed by these particles. Third a reduction scheme is developed for different materials which can describe the experimental results. Simulation results were in agreement with the experimental results. This demonstrates the validity of the assumptions for the model. Finally a model was developed for the bare steel as well as the covered steel, taking into account the dissolution step. It is shown that the most important parameter, that governs the whole corrosion process is the concentration of N(III) species. It can be concluded that, due to the presence of the deposits, the concentration of these species is higher in the vicinity of the steel substrate. (author)

  5. Ion-nitriding of austenitic stainless steels

    Although ion-nitriding is an extensively industrialized process enabling steel surfaces to be hardened by nitrogen diffusion, with a resulting increase in wear, seizure and fatigue resistance, its direct application to stainless steels, while enhancing their mechanical properties, also causes a marked degradation in their oxidation resistance. However, by adaption of the nitriding process, it is possible to maintain the improved wear resistant properties while retaining the oxidation resistance of the stainless steel. The controlled diffusion permits the growth of a nitrogen supersaturated austenite layer on parts made of stainless steel (AISI 304L and 316L) without chromium nitride precipitation. The diffusion layer remains stable during post heat treatments up to 650 F for 5,000 hrs and maintains a hardness of 900 HV. A very low and stable friction coefficient is achieved which provides good wear resistance against stainless steels under diverse conditions. Electrochemical and chemical tests in various media confirm the preservation of the stainless steel characteristics. An example of the application of this process is the treatment of Reactor Control Rod Cluster Assemblies (RCCAs) for Pressurized Water Nuclear Reactors

  6. Warm compacting behavior of stainless steel powders

    肖志瑜; 柯美元; 陈维平; 召明; 李元元

    2004-01-01

    The warm compacting behaviors of four different kinds of stainless steel powders, 304L, 316L, 410L and 430L, were studied. The results show that warm compaction can be applied to stainless steel powders. The green densities and strengths of compacts obtained through warm compaction are generally higher than those obtained through cold compaction. The compacting behaviors in warm compaction and cold compaction are similar.Under the compacting pressure of 700 MPa, the warm compacted densities are 0. 10 - 0.22 g/cm3 higher than the cold compacted ones, and the green strengths are 11.5 %-50 % higher. The optimal warm compacting temperature is 100 - 110 ℃. In the die wall lubricated warm compaction, the optimum internal lubricant content is 0.2%.

  7. Welding irradiated stainless steel

    Conventional welding processes produced severe underbead cracking in irradiated stainless steel containing 1 to 33 appm helium from n,a reactions. A shallow penetration overlay technique was successfully demonstrated for welding irradiated stainless steel. The technique was applied to irradiated 304 stainless steel that contained 10 appm helium. Surface cracking, present in conventional welds made on the same steel at the same and lower helium concentrations, was eliminated. Underbead cracking was minimal compared to conventional welding methods. However, cracking in the irradiated material was greater than in tritium charged and aged material at the same helium concentrations. The overlay technique provides a potential method for repair or modification of irradiated reactor materials

  8. The Influence of Surface Processing on Outgassing Measurements of High-Mn Stainless Steel

    Fukaya, Masuhiro; Teraoka, Shin-Ichi; Sato, Yoshihiro; Uota, Masahiko; Saito, Yoshio

    An outgassing rate was measured for a stainless steel material of YUS130S, having a high-mangany content (Fe-18Cr-7Ni-11Mn-0.3N), and compared with that for a stainless steel of SUS304L. A surface processing of both electropolished and electrochemical buffing followed by an in-air oxidation was examined in order to investigate the outgas reduction effect in the case of with and without baking. Further, a depth profile of the surface composition was analyzed by glow-discharge emission spectroscopy (GDS). Based on the results, the outgassing rate of YUS130S was 35% lower than that of SUS304L, when electropolished and electrochemical buffing. The oxidation process in air at 723 K in the case of electrochemical buffing showed effect on the outgassing reduction in both YUS130S and SUS304L. The GDS observation shows that, by electropolishing, Cr-Mn-rich and Cr-rich passive films were formed on the YUS130S and SUS304L surface, respectively. By electrochemical buffing, passive films changed to more Fe-rich films. The further process of in-air-oxidation causes a change in oxide films to Fe-Mn-rich and Fe-rich characteristics for YUS130S and SUS304L respectively. The stainless steel with Mn-rich and Cr-poor passive films shows low outgassing rate.

  9. Self-organisation of nanoscaled pores in anodic oxide overlayer on stainless steels

    Martin, F. [CEA de Saclay, DEN, DPC, SCCME, Laboratoire d' Etude de la Corrosion Aqueuse, F-91191 Gif-sur-Yvette (France); Del Frari, D. [CEA de Saclay, DSM, IRAMIS, SPSCI, F-91191 Gif-sur-Yvette (France); Cousty, J. [CEA de Saclay, DSM, IRAMIS, SPSCI, F-91191 Gif-sur-Yvette (France)], E-mail: jacques.cousty@cea.fr; Bataillon, C. [CEA de Saclay, DEN, DPC, SCCME, Laboratoire d' Etude de la Corrosion Aqueuse, F-91191 Gif-sur-Yvette (France)

    2009-04-15

    The nanoscaled morphology of the overlayer covering stainless steels after electropolishing in perchloric acid-based electrolyte was explored mainly by AFM and SEM. Two kinds of stainless steels were tested. For the austenitic one (AISI 304L), a quasi-periodic arrangement of pores in this overlayer has been observed. Depending on the experimental conditions, the distance between neighbouring pores ranged from 20 nm up to 230 nm. This inter-pore distance varied either with the applied voltage or with the current density for a constant voltage. From XPS spectra performed on the nanostructured surfaces, analysis of the energy shifts of Cr and Fe 2p levels showed that the anodic overlayer was enriched in Cr atoms compared to the 304L steel bulk composition. For the austeno-ferritic duplex stainless steel, the electropolished surface exhibited nanoscaled pores, which had grown and self-organised on both phases but with different characteristic dimensions.

  10. Steam oxidation of boron carbide–stainless steel liquid mixtures

    In the framework of nuclear reactor core meltdown accidents studies, the oxidation kinetics of boron carbide–stainless steel liquid mixtures exposed to argon/steam atmospheres was investigated at temperatures up to 1527 °C. A B–Cr–Si–O liquid protective layer forms on the surface of the mixtures in contact with steam. This protective layer gradually transforms into a Cr2O3-rich slag. Important quantities of liquid can be projected from the melt during oxidation. These projections are favoured by high B4C contents in the melt, high steam partial pressures and low temperatures. In addition to stainless steel–boron carbide melts, simpler compositions (pure 304L stainless steel, iron–boron, iron–boron carbide and stainless steel–boron) were studied, in order to identify the basic oxidation mechanisms.

  11. Articles comprising ferritic stainless steels

    Rakowski, James M.

    2016-06-28

    An article of manufacture comprises a ferritic stainless steel that includes a near-surface region depleted of silicon relative to a remainder of the ferritic stainless steel. The article has a reduced tendency to form an electrically resistive silica layer including silicon derived from the steel when the article is subjected to high temperature oxidizing conditions. The ferritic stainless steel is selected from the group comprising AISI Type 430 stainless steel, AISI Type 439 stainless steel, AISI Type 441 stainless steel, AISI Type 444 stainless steel, and E-BRITE.RTM. alloy, also known as UNS 44627 stainless steel. In certain embodiments, the article of manufacture is a fuel cell interconnect for a solid oxide fuel cell.

  12. Contribution to analysis of fatigue crack propagation at room temperature in low carbon austenitic steels type 18-10(304L) and Mo 17-12(316L). Relation between macroscopic and microscopic phenomena

    Low cycle fatigue phenomenon on the structural components of reactors is one of the most important problem. In this paper were carried out some fatigue tests on stainless steels type Z2CN18-10 (AISI 304L) and Z2CND17-12 (AISI 316L) at room temperature in air and in a corrosive medium (NaCl solution at different pH values). Length of cracks and crack propagation under stresses were determined. Z2CND17-12 has a better behavior than Z2CN18-10 because of a better structural stability both in air and in a corrosive environment. Structure was examined by transmission electron microscopy and microhardness was measured in the perturbed zones

  13. Welding technology trend of austenitic stainless steels for cryogenic services

    At present, the large use of stainless steel in cryogenic field is the storage and transport system for liquefied gas represented by LNG and the nuclear fusion reactors utilizing superconductivity. Most of the stainless steel used for the LNG system is austenitic stainless steel SUS 304. The main use of stainless steel for fusion reactors is the support structures for superconductive magnets, and the thick plates over 150 mm are used. In the experiment, SUS 304L and 316L were used, but the development of a new high strength stainless steel is actively advanced. The target specification of the cryogenic structural material for the fusion experimental reactor (FER) was proposed in 1982. The proof stress is not lower than 1200 MPa, and the fracture toughness value is not lower than 200 MPa √m at 4 K. Six kinds of nitrogen-strengthened austenitic stainless steels and high manganese austenitic steels are developed. As the problems of the welded parts, the toughness and strength at extremely low temperature, the susceptibility to high temperature cracking, the material quality design of the welded metals and so on are examined. The welding methods are GTAW and GMAW. (K.I.)

  14. Stress corrosion cracking of L-grade stainless steel in high temperature water

    L-grade stainless steels such as 316NG, SUS316L and SUS304L are used for the BWR reactor internals and re-circulation pipes. The L-grade stainless steels are known as typical SCC resistant materials because they are hardly thermally sensitized in usual welding process due to its lower carbon contents. However SCC of the L-grade material components were recently reported. This paper summarizes the recent knowledge and reports about the SCC behavior of L-grade stainless steels and its mitigation and improvement methods in BWR primary water condition. (author)

  15. Evaluation of the austenitic alloys 304L, 316L, and alloy 825 under Tuff repository conditions

    Austenitic alloys 304L and 316L and stainless steel 825 were investigated as candidate materials for containers for waste disposal in the relatively benign conditions of the Yucca Mountain site. In this vault there will be very little water, and what there is will contain small amounts of chlorides, nitrates, sulphates and carbonates. The radiation fields will be 104 rad/h initially, but will decay to low levels by the end of the containment period. The initial temperature will be around 250 C, and it will remain above the boiling point of water for the containment period (approximately 300 years). There will be no lithostatic or hydrostatic pressure. Type 304L stainless steel is a base case material used in comparisons with other candidates. Type 316L stainless steel possesses enhanced resistance to sensitization and localized corrosion; alloy 825 is stabilized to have a much better resistance to sensitization and localized corrosion and performs better in chloride environments

  16. HYDROGEN ABSORPTION INDUCED SLOW CRACK GROWTH IN AUSTENITIC STAINLESS STEELS FOR PETROCHEMICAL PRESSURE VESSEL INDUSTRIES

    Ronnie Higuchi Rusli

    2010-01-01

    Type 304L and type 309 austenitic stainless steels were tested either by exposed to gaseous hydrogen or undergoing polarized cathodic charging. Slow crack growth by straining was observed in type 304L, and the formation of α‘ martensite was indicated to be precursor for such cracking. Gross plastic deformation was observed at the tip of the notch, and a single crack grew slowly from this region in a direction approximately perpendicular to the tensile axis. Martensite formation is not a neces...

  17. YAG laser welding of neutron irradiated stainless steels

    Type 304L stainless steel plates of 8 mm thickness irradiated in a boiling water reactor (BWR) to 1.2 x 025 n/m2 (E > 1.0 MeV) containing 9 appm helium from transmutation have been successfully welded using a high power Nd-YAG laser under conditions of both continuous wave (CW) and pulse modes. Unirradiated type 316L stainless steel plate was lap welded to the irradiated type 304L stainless steel plate under heat inputs ranging from 240 to 540 J/cm. Bead on plate welding was carried out under the same welding conditions as lap welding. Tensile tests of lap welded joints were conducted at room temperature. All joints fractured not in the irradiated materials but in the unirradiated materials and showed good mechanical properties. Based on these results it does not appear that helium affects the mechanical properties of joints. Small grain boundary cracks were observed in HAZ of the weld made by the CW YAG laser with heat inputs of 480 and 540 J/cm and crack length decreased with decreasing heat input. (orig.)

  18. Characterisation of passive films on 300 series stainless steels

    The formation and breakdown of the passive films on stainless steels are mainly controlled by ionic and electronic transport processes. Both these processes are in part controlled by the electronic properties of the oxide film. Consequently, it is vital to gain a detailed perception of the electronic properties of the passive films together with structural and compositional information for a comprehensive understanding of mechanisms behind passivity and localised corrosion. As a step towards this goal the passive films formed on two main austenitic stainless steels AISI 316L and AISI 304L in borate solution were characterised by in situ Raman spectroscopy and photocurrent spectroscopy coupled with electrochemical measurements. This revealed the formation of an Fe-Cr spinel as the dominant constituent in the passive films with more Cr enrichment in the oxide film on 316L than that of 304L. Bandgap readings and semiconductivities of the two stainless steels suggested that three different applied potential regions existed; 800 mV(SCE) to 300 mV(SCE), 200 mV(SCE) to -300 mV(SCE) and below -500 mV(SCE)

  19. The effects of tritium and decay helium on the fracture toughness properties of stainless steels

    J-integral fracture mechanics techniques and scanning electron microscopy observations were used to investigate the effects of tritium and its decay product, helium-3, on Types 304L, 316L, 21-6-9, A286, and JBK-75 (Modified A286) stainless steels. Tritium-exposed samples of each steel had lower fracture toughness values and less resistance to stable crack growth than control samples. Type 316L stainless steel was more resistant to the embrittling effects of tritium and decay helium than the other steels

  20. Non destructive testing by acoustic signature of damage level in 304L steel samples submitted to rolling, tensile test and thermal annealing treatments

    The aim of this work is to demonstrate the ability of acoustic signature technique to detect in a non-destructive way mechanical property variations due to damage of the internal material structure for 304L steel samples, provided by EDF company. For this purpose, the velocity and the attenuation of Rayleigh acoustic waves have been measured for rolled, drawn and thermally treated samples. Complementary information provided by echography have also been used to calculate the corresponding variations of the dynamic Young's modulus E

  1. Quantitative characterization of porosity in laser welds of stainless steel

    Standing-edge joints made by a continuous-wave Nd:YAG laser are examined in 304L stainless steel to advance understanding of the linkage between processing and microstructure in high-rate solidification events. Microcomputed tomography combined with traditional metallography has provided qualitative and quantitative characterization of welds in this material system of broad use and applicability. Pore presence and variability have been examined three-dimensionally for average values, spatial distributions and morphology, and related to processing parameters such as weld speed, delivered power and focal lens.

  2. Metal release reduction from stainless steel for LWR

    Reduction of metal release from structural materials is one of key subjects on reliability in nuclear power plants. This study describes the pre-filming technology to reduce Cr and Co release from TP304L feeder water tube. Reducing content of elements that have long half time from the structural materials is very important for reduction of radioactivity. Stainless steels contain slight amount of Co as contamination. Lower Co in TP304L is obtained during a steel making process using a raw material from a blast furnace to reduce scraps which contains Co contamination. So extra low Co (< 0.02%) is applied to the chemical controlled TP304L for the feeder water tubes. Furthermore, pre-filming was also studied. It was known that metal release increased during early term in operation and reduced with growing oxide film. In high temperature water, Cr2O3 is stable oxide. So Cr2O3 pre-filming for inner surface of the feeder water tube was investigated for the reduction of metal release. TP304L consists of mainly Fe, Cr and Ni. Cr has the lowest oxygen potential than those of them. Cr can be oxidized selectivity by controlling a dew point of atmosphere during a heat treatment. Pre-filming on inner surface of the feeder water tube was performed by the final heat treatment under the controlled dew points in flowing H2 gas. The amount of metal release was measured in water at 488 K by a refreshed type autoclave. The rate of Cr rerelease from the pre-filming tube was two third that from the bare tube without pre-filming. It was considered that pre-filming was effective for the reduction of the metal release from the tube. (author)

  3. Corrosion of stainless steels in lead-bismuth eutectic up to 600 deg. C

    An experimental program has been carried out to understand the differences in the corrosion behaviour between different stainless steels: the austenitic steels 304L and 316L, the martensitic steels F82Hmod, T91 and EM10, and the low alloy steel P22. The influence of oxygen level in Pb-Bi, temperature and exposure time is studied. At 600 deg. C, the martensitic steels and the P22 steel exhibit thick oxide scales that grow with time, following a linear law for the wet environment and a parabolic law for the dry one. The austenitic stainless steels show a better corrosion behaviour, especially AISI 304L. Under reducing conditions, the steels exhibit dissolution, more severe for the austenitic stainless steels. At 450 deg. C, all the materials show an acceptable behaviour provided a sufficient oxygen level in the Pb-Bi. At reducing conditions, the martensitic steels and the P22 steel have a good corrosion resistance, while the austenitic steels exhibit already dissolution at the longer exposures

  4. Corrosion of stainless steels in lead-bismuth eutectic up to 600 deg. C

    Soler, L. [Dpto. Fision Nuclear, CIEMAT, Edificio 30, Avda. Complutense 22, Madrid 28040 (Spain)]. E-mail: laura.soler@ciemat.es; Martin, F.J. [Dpto. Fision Nuclear, CIEMAT, Edificio 30, Avda. Complutense 22, Madrid 28040 (Spain); Hernandez, F. [Dpto. Fision Nuclear, CIEMAT, Edificio 30, Avda. Complutense 22, Madrid 28040 (Spain); Gomez-Briceno, D. [Dpto. Fision Nuclear, CIEMAT, Edificio 30, Avda. Complutense 22, Madrid 28040 (Spain)

    2004-11-01

    An experimental program has been carried out to understand the differences in the corrosion behaviour between different stainless steels: the austenitic steels 304L and 316L, the martensitic steels F82Hmod, T91 and EM10, and the low alloy steel P22. The influence of oxygen level in Pb-Bi, temperature and exposure time is studied. At 600 deg. C, the martensitic steels and the P22 steel exhibit thick oxide scales that grow with time, following a linear law for the wet environment and a parabolic law for the dry one. The austenitic stainless steels show a better corrosion behaviour, especially AISI 304L. Under reducing conditions, the steels exhibit dissolution, more severe for the austenitic stainless steels. At 450 deg. C, all the materials show an acceptable behaviour provided a sufficient oxygen level in the Pb-Bi. At reducing conditions, the martensitic steels and the P22 steel have a good corrosion resistance, while the austenitic steels exhibit already dissolution at the longer exposures.

  5. Optimization of tensile strength of friction welded AISI 1040 and AISI 304L steels according to statistics analysis (ANOVA)

    Kirik, Ihsan [Batman Univ. (Turkey); Ozdemir, Niyazi; Firat, Emrah Hanifi; Caligulu, Ugur [Firat Univ., Elazig (Turkey)

    2013-06-01

    Materials difficult to weld by fusion welding processes can be successfully welded by friction welding. The strength of the friction welded joints is extremely affected by process parameters (rotation speed, friction time, friction pressure, forging time, and forging pressure). In this study, statistical values of tensile strength were investigated in terms of rotation speed, friction time, and friction pressure on the strength behaviours of friction welded AISI 1040 and AISI 304L alloys. Then, the tensile test results were analyzed by analysis of variance (ANOVA) with a confidence level of 95 % to find out whether a statistically significant difference occurs. As a result of this study, the maximum tensile strength is very close, which that of AISI 1040 parent metal of 637 MPa to could be obtained for the joints fabricated under the welding conditions of rotation speed of 1700 rpm, friction pressure of 50 MPa, forging pressure of 100 MPa, friction time of 4 s, and forging time of 2 s. Rotation speed, friction time, and friction pressure on the friction welding of AISI 1040 and AISI 304L alloys were statistically significant regarding tensile strength test values. (orig.)

  6. Attenuation of shock waves in copper and stainless steel

    Harvey, W.B.

    1986-06-01

    By using shock pins, data were gathered on the trajectories of shock waves in stainless steel (SS-304L) and oxygen-free-high-conductivity copper (OFHC-Cu). Shock pressures were generated in these materials by impacting the appropriate target with thin (approx.1.5 mm) flying plates. The flying plates in these experiments were accelerated to high velocities (approx.4 km/s) by high explosives. Six experiments were conducted, three using SS-304L as the target material and three experiments using OFHC-Cu as the target material. Peak shock pressures generated in the steel experiments were approximately 109, 130, and 147 GPa and in the copper experiments, the peak shock pressures were approximately 111, 132, and 143 GPa. In each experiment, an attenuation of the shock wave by a following release wave was clearly observed. An extensive effort using two characteristic codes (described in this work) to theoretically calculate the attenuation of the shock waves was made. The efficacy of several different constitutive equations to successfully model the experiments was studied by comparing the calculated shock trajectories to the experimental data. Based on such comparisons, the conclusion can be drawn that OFHC-Cu enters a melt phase at about 130 GPa on the principal Hugoniot. There was no sign of phase changes in the stainless-steel experiments. In order to match the observed attenuation of the shock waves in the SS-304L experiments, it was necessary to include strength effects in the calculations. It was found that the values for the parameters in the strength equations were dependent on the equation of state used in the modeling of the experiments. 66 refs., 194 figs., 77 tabs.

  7. Attenuation of shock waves in copper and stainless steel

    By using shock pins, data were gathered on the trajectories of shock waves in stainless steel (SS-304L) and oxygen-free-high-conductivity copper (OFHC-Cu). Shock pressures were generated in these materials by impacting the appropriate target with thin (approx.1.5 mm) flying plates. The flying plates in these experiments were accelerated to high velocities (approx.4 km/s) by high explosives. Six experiments were conducted, three using SS-304L as the target material and three experiments using OFHC-Cu as the target material. Peak shock pressures generated in the steel experiments were approximately 109, 130, and 147 GPa and in the copper experiments, the peak shock pressures were approximately 111, 132, and 143 GPa. In each experiment, an attenuation of the shock wave by a following release wave was clearly observed. An extensive effort using two characteristic codes (described in this work) to theoretically calculate the attenuation of the shock waves was made. The efficacy of several different constitutive equations to successfully model the experiments was studied by comparing the calculated shock trajectories to the experimental data. Based on such comparisons, the conclusion can be drawn that OFHC-Cu enters a melt phase at about 130 GPa on the principal Hugoniot. There was no sign of phase changes in the stainless-steel experiments. In order to match the observed attenuation of the shock waves in the SS-304L experiments, it was necessary to include strength effects in the calculations. It was found that the values for the parameters in the strength equations were dependent on the equation of state used in the modeling of the experiments. 66 refs., 194 figs., 77 tabs

  8. Atom probe, AFM, and STM studies on vacuum-fired stainless steels.

    Stupnik, A; Frank, P; Leisch, M

    2009-04-01

    The surface morphology of grades 304L and 316LN stainless steels, after low-temperature bake-out process and vacuum annealing, has been studied by atomic force microscopy (AFM) and scanning tunnelling microscopy (STM). The local elemental composition on the surface before and after thermal treatment has been investigated by atom probe (AP) depth profiling measurements. After vacuum annealing, AFM and STM show significant changes in the surface structure and topology. Recrystallization and surface reconstruction is less pronounced on the 316LN stainless steel. AP depth profiling analyses result in noticeable nickel enrichment on the surface of grade 304L samples. Since hydrogen recombination is almost controlled by surface structure and composition, a strong influence on the outgassing behaviour by the particular surface microstructure can be deduced. PMID:19167824

  9. Stainless steels low temperature nitriding

    Nitrogen ions implantation of 316L stainless steel leads to monophasic diffusion layers, which are constituted of a solid solution (γN) fcc, metastable, nitrogen sur-saturated, and without order. This article shows that for 316L stainless steels,these layers improve the tribological properties without degradation of the corrosion resistance. (A.B.). 13 refs. 6 figs

  10. Effect of cold work and type of load in the SCC behaviour of austenitic stainless steels in PWR conditions

    Austenitic stainless steels are susceptible to SCC in high temperature water, even in reducing environment such as the PWR primary water. Both laboratory results and field evidences confirm that stainless steels are susceptible to SCC when these materials are in a cold work condition. CGR experiments have been performed in order to assess the factors influencing SCC propagation in stainless steels. Compact tension specimens were fabricated of 316 L, 304 L and 347 SS to evaluate the influence of degree of cold work and its way of application, water chemistry, temperature and loading conditions. (authors)

  11. Corrosion behavior of powder metallurgical stainless steels in urban and marine environments

    Bautista, A.; F. Velasco; S. Guzmán; Fuente, Daniel de la; Cayuela, F.; Morcillo, Manuel

    2006-01-01

    This work studies the development of corrosive attack on sintered components manufactured from AISI 316L and AISI 304L powders. The stainless steels were sintered in vacuum and in nitrogen-base atmosphere at 1,120 and 1,250ºC, and their corrosion resistance was then analyzed by electrochemical techniques and by atmospheric corrosion testing (two years) at urban and marine test sites. Images are shown of the morphology of the attack on the surface of the stainless steels and the development...

  12. Corrosion behavior of powder metallurgical stainless steels in urban and marine environments

    Bautista, A.; F. Velasco; S. Guzmán; de la Fuente, D.; Cayuela, F.; Morcillo, M.

    2006-01-01

    This work studies the development of corrosive attack on sintered components manufactured from AISI 316L and AISI 304L powders. The stainless steels were sintered in vacuum and in nitrogen-base atmosphere at 1,120 and 1,250 ºC, and their corrosion resistance was then analyzed by electrochemical techniques and by atmospheric corrosion testing (two years) at urban and marine test sites. Images are shown of the morphology of the attack on the surface of the stainless steels and the development o...

  13. Stress corrosion cracking susceptibilities of various stainless steels in high temperature water

    The intergranular stress corrosion cracking (IGSCC) behaviors of several austenitic stainless steels in high temperature water were evaluated using three types of SCC tests, i.e., single U-bend test in chloride containing water, uniaxial constant load and constant extension rate tests (CERT) in pure water. The steels used were SUS 304, 304L, 316, 316L, 321 and 347 and several heats of them to examine heat to heat variations. The three test methods gave the same relative ranking of the steels. The CERT is the most sensitive method to detect the relative IGSCC susceptibilities. The CERT result for relative ranking from poor to good is: SUS 304 - 0.07% C, 304 - 0.06% C, 304L - 0.028% C, 316 - 0.07% C. The IGSCC susceptibilities of SUS 304L - 0.020% C, 316L - 0.023% C, 321 and 347 were not detected. These test results suggest that the use of the low carbon, molybdenum bearing, or stabilized austenitic stainless steel is beneficial for eliminating the IGSCC problem in boiling water reactor environment. (author)

  14. Influence of Water Pollution on MIC of Stainless Steel 304L

    2002-01-01

    The influence of water pollution and welding defects on MIC (microbiologically influenced corrosion) was studied. The open circuit potential (OCP) was measured during MIC test. It was found that OCP shifted to a higher level when the system was inoculated with bacteria while the OCP of those samples in water without bacteria was kept at a low level. The OCP decreased dramatically when MIC started in polluted water. Combination of weld defect-heat tint, polluted water and adding bacteria causes MIC happen at high rate. Some elements inside the tubercle were analyzed with EDXA. The pits and biofilm were observed with SEM. Microbiological analysis revealed the difference of bacteria between corroded and uncorroded samples.

  15. Multi-cracking in uniaxial and biaxial fatigue of 304L stainless steel

    When a mechanical part is subjected to a repeated mechanical stress, it may be damaged after a number of cycles by several cracks initiation and propagation of a main crack. This is the phenomenon of fatigue damage. The thesis deals specifically with possible damage to some components of nuclear plants due to thermal fatigue. Unlike conventional mechanical fatigue damage where a main crack breaks the part, the thermal fatigue damage usually results in the appearance of a surface crack network. Two aspects are discussed in the thesis. The first is the experimental study of fatigue multiple cracking stage also called multi-cracking. Two mechanical test campaigns with multi-cracking detection by digital image correlation were conducted. These campaigns involve uniaxial and equi-biaxial mechanical loads in tension/compression without mean stress. This work allows to monitor and to observe the evolution of different networks of cracks through mechanical solicitations. The second is the numerical simulation of the phenomenon of fatigue damage. Several types of model are used (stochastic, probabilistic, cohesive finite elements). The experimental results have led to identify a multiple crack initiation law in fatigue which is faced with the numerical results. This comparison shows the relevance of the use of an analytical probabilistic model to find statistical results on the density of cracks that can be initiated with thermal and mechanical fatigue loadings. (author)

  16. Influence of surface states on the plasma-jet oxidation of 304 L stainless steel

    Many parameters related to the plasma spraying process and to the substrate surface properties control the quality of plasma sprayed coating; Current studies have pointed out the fact that a preliminary oxidation, in case of metallic surfaces, enhances really the adhesion of the deposits. This oxidation is achieved by the plume of the plasma jet during a time tp at the estimated surface temperature conditions and also for given initial surface preparations. In order to understand the influence of these different surface states to their plasma oxidation behaviour. Oxide layers, metallic bulk and oxide-metal interfaces have been investigated using different spectroscopic techniques, like XRD, CEMS and near ultraviolet-visible-near infrared spectroscopy. (authors)

  17. Stainless steel display evaluation

    Hopper, Darrel G.; Meyer, Frederick M.; Longo, Sam J.; Trissell, Terry L.

    2007-04-01

    Active matrix organic light emitting diode (AMOLED) technology is one candidate to become a low power alternative in some applications to the currently dominant, active matrix liquid crystal display (AMLCD), technology. Furthermore, fabrication of the AMOLED on stainless steel (SS) foil rather than the traditional glass substrate, while presenting a set of severe technical challenges, opens up the potential for displays that are both lighter and less breakable. Also, transition to an SS foil substrate may enable rollable displays - large when used but small for stowage within gear already worn or carried or installed. Research has been initiated on AMOLED/SS technology and the first 320 x 240 color pixel 4-in. demonstration device has been evaluated in the AFRL Display Test and Evaluation Laboratory. Results of this evaluation are reported along with a research roadmap.

  18. Chromium-Makes stainless steel stainless

    Kropschot, S.J.; Doebrich, Jeff

    2010-01-01

    Chromium, a steely-gray, lustrous, hard metal that takes a high polish and has a high melting point, is a silvery white, hard, and bright metal plating on steel and other material. Commonly known as chrome, it is one of the most important and indispensable industrial metals because of its hardness and resistance to corrosion. But it is used for more than the production of stainless steel and nonferrous alloys; it is also used to create pigments and chemicals used to process leather.

  19. Threshold stress intensities and crack growth rates in tritium-exposed HERF stainless steels

    This paper reports on a falling-load compliance technique used to measure threshold stress intensities and crack growth rates in tritium-exposed-and- aged, high-energy-rate-forged (HERF) stainless steels. Triplicate 304L and 316 fracture toughness samples were exposed to high pressure tritium gas at 413 K, aged at 273 K for helium build-in from tritium decay, and then tested at room temperature. The samples contained about 740 appm tritium and 440 appm helium. The results showed that 304L had a lower threshold stress intensity (67.9 MPa-m1/2) than 316 (95.5 MPa-m1/2) and that the Stage II crack growth rates were, on average, more than an order of magnitude faster in 304L than in 316. During Stage II crack growth, each of the 304L samples showed periodic, order-of-magnitude changes in the crack velocities. These latter effects are apparently a result of the diffusion controlled process of concentrating tritium at the crack tip and/or the process of microcracks linking up to the main crack front. In both materials, the cracking was for the most part along grain- and-twin boundaries but glide-plane decohesion was also observed

  20. Overlay welding irradiated stainless steel

    An overlay technique developed for welding irradiated stainless steel may be important for repair or modification of fusion reactor materials. Helium, present due to n,α reactions, is known to cause cracking using conventional welding methods. Stainless steel impregnated with 3 to 220 appm helium by decay of tritium was used to develop a welding process that could be used for repair. The result was a gas metal arc weld overlay technique with low-heat input and low-penetration into the helium-containing material. Extensive metallurgical and mechanical testing of this technique demonstrated substantial reduction of helium embrittlement damage. The overlay technique was applied to irradiated 304 stainless steel containing 10 appm helium. Surface cracking, present in conventional welds made on the same steel at lower helium concentrations, was eliminated. Underbead cracking, although greater than for tritium charged and aged material, was minimal compared to conventional welding methods

  1. Strip casting of stainless steels

    Raabe, D.

    1997-01-01

    FLAT PRODUCTS OF STAINLESS STEELS ARE CONVENTIONALLY MANUFACTURED BY CONTINUOUS CASTING, HOT ROLLING, HOT BAND ANNEALING, PICKLING, COLD ROLLING AND RECRYSTALLISATION. IN THE LAST YEARS STRIP CASTING HAS INCREASINGLY ATTRACTED ATTENTION. IT OFFERS THREE IMPROVEMENTS IN COMPARISON TO THE CONVENTIONAL METHOD.1.) IT ALLOWS TO CAST STEEL SHEETS WITH THE SAME THICKNESS AND WIDTH AS THOSE PRODUCED BY HOT ROLLING. THIS MEANS THAT THE HOT ROLLING PROCESSIS BYPASSED. 2.) THE STRIP CAST STEEL REVEALS A...

  2. Hydrogen Embrittlement Evaluation in Tensile Properties of Stainless Steels at Cryogenic Temperatures

    Ogata, T.

    2008-03-01

    The advanced design of fuel-cell vehicles requires high-pressure low-temperature hydrogen systems, which in turn requires a high-pressure low-temperature mechanical properties database to address hydrogen embrittlement issues. A very simple and safe mechanical properties testing procedure to evaluate low temperature hydrogen embrittlement has been developed and is reported here. Tensile properties of stainless steel, SUS 304, 304L and 316L, obtained by this simple method are in good agreement with previous data obtained in a high pressure chamber. The effect of hydrogen changed also with the amount of strain-induced martensitic transformation in those steels at low temperatures.

  3. Multitechnique characterisation of 304L surface states oxidised at high temperature in steam and air atmospheres

    Mamede, Anne-Sophie; Nuns, Nicolas; Cristol, Anne-Lise; Cantrel, Laurent; Souvi, Sidi; Cristol, Sylvain; Paul, Jean-François

    2016-04-01

    In case of a severe accident occurring in a nuclear reactor, surfaces of the reactor coolant system (RCS), made of stainless steel (304L) rich in Cr (>10%) and Ni (8-12%), are oxidised. Fission products (FPs) are released from melt fuel and flow through the RCS. A part of them is deposited onto surfaces either by vapour condensation or by aerosol deposition mechanisms. To be able to understand the nature of interactions between these FPs and the RCS surfaces, a preliminary step is to characterize the RSC surface states in steam and air atmosphere at high temperatures. Pieces of 304L stainless steel have been treated in a flow reactor at two different temperatures (750 °C and 950 °C) for two different exposition times (24 h and 72 h). After surfaces analysing by a unique combination of surface analysis techniques (XPS, ToF-SIMS and LEIS), for 304L, the results show a deep oxide scale with multi layers and the outer layer is composed of chromium and manganese oxides. Oxide profiles differ in air or steam atmosphere. Fe2O3 oxide is observed but in minor proportion and in all cases no nickel is detected near the surface. Results obtained are discussed and compared with the literature data.

  4. Cryogenic material properties of stainless steel tube-to-flange welds

    Siewert, T. A.; McCowan, C. N.; Vigliotti, D. P.

    The mechanical properties of stainless steel tube-to-flange welds for a cryogenic piping application were measured. A planar specimen was developed to duplicate the constraint, loading and heat-sink properties of the circular joint, while reducing preparation time and cost. Specimens were evaluated containing welds between the tube material (21 Cr-6Ni-9Mn) and the three stainless steels being considered for the flange materials: type 304L, type 316L and 21 Cr-6Ni-9Mn. The mechanical property tests consisted of three phases: simple tensile testing to failure, tensile testing of notched specimens (where the notch simulated fabrication flaws) and fatigue testing of notched specimens for the 4 × 10 4 cycle design life of the structure. The type 316L stainless steel flange produced welds with the best combination of strength and ductility at 295 and 4 K in all three phases of testing.

  5. Welding of stainless steel clad fuel rods for nuclear reactors

    This work describes the obtainment of austenitic stainless steel clad fuel rods for nuclear reactors. Two aspects have been emphasized: (a) obtainment and qualification of AISI 304 and 304 L stainless steel tubes; b) the circumferential welding of pipe ends to end plugs of the same alloy followed by qualification of the welds. Tubes with special and characteristic dimensions were obtained by set mandrel drawing. Both, seamed and seamless tubes of 304 and 304 L were obtained.The dimensional accuracy, surface roughness, mechanical properties and microstructural characteristics of the tubes were found to be adequate. The differences in the properties of the tubes with and without seams were found to be insignificant. The TIG process of welding was used. The influence of various welding parameters were studied: shielding gas (argon and helium), welding current, tube rotation speed, arc length, electrode position and gas flow. An inert gas welding chamber was developed and constructed with the aim of reducing surface oxidation and the heat affected zone. The welds were evaluated with the aid of destructive tests (burst-test, microhardness profile determination and metallographic analysis) and non destructive tests (visual inspection, dimensional examination, radiography and helium leak detection). As a function of the results obtained, two different welding cycles have been suggested; one for argon and another for helium. The changes in the microstructure caused by welding have been studied in greater detail. The utilization of work hardened tubes, permitted the identification by optical microscopy and microhardness measurements, of the different zones: weld zone; heat affected zone (region of grain growth, region of total and partial recrystallization) and finally, the zone not affected by heat. Some correlations between the welding parameters and metallurgical phenomena such as: solidification, recovery, recrystallization, grain growth and precipitation that occurred

  6. Plating on stainless steel alloys

    Quantitative adhesion data are presented for a variety of electroplated stainless steel type alloys. Results show that excellent adhesion can be obtained by using a Wood's nickel strike or a sulfamate nickel strike prior to final plating. Specimens plated after Wood's nickel striking failed in the deposit rather than at the interface between the substrate and the coating. Flyer plate quantitative tests showed that use of anodic treatment in sulfuric acid prior to Wood's nickel striking even further improved adhesion. In contrast activation of stainless steels by immersion or cathodic treatment in hydrochloric acid resulted in very reduced bond strengths with failure always occurring at the interface between the coating and substrate

  7. Low-cycle fatigue properties of stainless steels and aluminum alloys at liquid helium temperature

    Axial-strain controlled fatigue tests of stainless steels (SUS 304 L, SUS 316 L and WM-X) and aluminum alloys (A 5083-O and A 5356) were conducted at 4 K with the strain rate of 0.4 %/s and the strain ratio of -1. The fatigue tests at 77 and 300 K were also conducted for comparison. The TIG weld metal of stainless steel (WM-X) showed cyclic strain-hardening at 4 and 77 K, and cyclic strain-softening at 300 K, although other materials showed cyclic strain-hardening at 4, 77 and 300 K. It seemed that the strain-induced martensitic transformation influenced the cyclic stress responce of stainless steel. In the fatigue life range of 1000 cycles or more, the fatigue resistance, that means the strain capability at given cycles of fatigue life, of SUS 304 L, SUS 316 L, WM-X and A 5083-O at 4 K were nearly equal to or a bit higher than that at 77 K. At 4 K, the fatigue resistance of SUS 316 L was higher than that of SUS 304 L, but lied in the middle of a scatter band by a factor of 2 among base metals of stainless steels in literatures. The fatigue resistance of A 5083-O was the lowest in a scatter band by a factor of 1.4 among base metals of aluminum alloys in literatures. At 4 K, the fatigue resistance of WM-X was almost equivalent to that of SUS 304 L and was lower than that of SUS 316 L by 20 %, being away below that of base metals of stainless steels at 300 K. However, the fatigue resistance of the MIG weld metal of aluminum alloy (A 5356) was lower than that of A 5083-O by 45 %, being closer to that of base metals of aluminum alloy at 300 K. One must be careful to use the weld metal A 5356 at 4 K. (author)

  8. Low temperature thermal aging of austenitic stainless steel welds: Kinetics and effects on mechanical properties

    Highlights: ► Embrittlement of 304L and 316L welds after aging up to 20,000 h. ► Spinodal decomposition and G-phase precipitation in ferrite at 400 °C. Only spinodal decomposition at 335 and 365 °C. ► Charpy impact, microhardness and tensile tests for evaluation of aging embrittlement and its kinetics determined. - Abstract: Austenitic stainless steel welds in components used in light water reactors are susceptible to thermal aging embrittlement at reactor operating temperature of around 300 °C after a long service life. In this study, low temperature aging embrittlement of types 304L and 316L stainless steel welds with 10% ferrite was investigated on the basis of changes in mechanical properties and microstructure after aging up to 20,000 h at 335, 365 and 400 °C. Spinodal decomposition and G-phase precipitation in the ferrite was observed after aging which lead to embrittlement in the material. In contrast to the small effect on tensile properties, the impact toughness was significantly degraded after aging. Charpy impact test of the aged samples showed decrease in upper-shelf and lower-shelf energy and increase in ductile brittle transition temperature. Large increase in the microhardness of ferrite phase was observed with no change in austenite hardness. The embrittlement in 316L weld was higher compared to 304L weld for similar aging condition. The kinetics of aging embrittlement was established based on Arrhenius relationship. A constant activation energy was determined for 304L weld in the temperature range 335–400 °C, however, 316L weld showed different activation energy values in each temperature range.

  9. Low temperature thermal aging of austenitic stainless steel welds: Kinetics and effects on mechanical properties

    Chandra, K., E-mail: kchandra@barc.gov.in [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kain, Vivekanand [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Bhutani, Vikas [Punjab Engineering College, Chandigarh 160 012 (India); Raja, V.S. [Indian Institute of Technology, Mumbai 400 076 (India); Tewari, R.; Dey, G.K. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Chakravartty, J.K. [Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2012-02-01

    Highlights: Black-Right-Pointing-Pointer Embrittlement of 304L and 316L welds after aging up to 20,000 h. Black-Right-Pointing-Pointer Spinodal decomposition and G-phase precipitation in ferrite at 400 Degree-Sign C. Only spinodal decomposition at 335 and 365 Degree-Sign C. Black-Right-Pointing-Pointer Charpy impact, microhardness and tensile tests for evaluation of aging embrittlement and its kinetics determined. - Abstract: Austenitic stainless steel welds in components used in light water reactors are susceptible to thermal aging embrittlement at reactor operating temperature of around 300 Degree-Sign C after a long service life. In this study, low temperature aging embrittlement of types 304L and 316L stainless steel welds with 10% ferrite was investigated on the basis of changes in mechanical properties and microstructure after aging up to 20,000 h at 335, 365 and 400 Degree-Sign C. Spinodal decomposition and G-phase precipitation in the ferrite was observed after aging which lead to embrittlement in the material. In contrast to the small effect on tensile properties, the impact toughness was significantly degraded after aging. Charpy impact test of the aged samples showed decrease in upper-shelf and lower-shelf energy and increase in ductile brittle transition temperature. Large increase in the microhardness of ferrite phase was observed with no change in austenite hardness. The embrittlement in 316L weld was higher compared to 304L weld for similar aging condition. The kinetics of aging embrittlement was established based on Arrhenius relationship. A constant activation energy was determined for 304L weld in the temperature range 335-400 Degree-Sign C, however, 316L weld showed different activation energy values in each temperature range.

  10. Effect of neptunium ions on corrosion of stainless steel in nitric acid solution

    We have studied corrosion of a stainless steel in nitric acid solution containing neptunium. Using type 304L stainless steel, corrosion tests in boiling neptunium nitrate solution were conducted under immersion and heat-transfer condition. By the weight loss measurement of stainless steel and the quantitative analysis of metallic ions dissolved in solution, the corrosion rates of stainless steel were obtained. The surface morphology was observed by scanning electron microscopy. The corrosion acceleration mechanism was investigated by polarization measurement and spectrophotometry. The corrosion rate of stainless steel was accelerated by addition of neptunium in nitric acid solution. Preferential intergranular corrosion was observed. The corrosion of stainless steel was promoted under heat-transfer condition compared to immersion condition. In polarization measurements, the cathodic over-voltage was decreased; the cathodic current was increased by addition of neptunium. Spectrophotometric measurements showed the oxidization of neptunium in boiling nitric acid. The corrosion mechanism in nitric acid solution containing neptunium suggested the re-oxidation of neptunium. (author)

  11. The deformation response of L-grade stainless steels relative to IGSCC in 288 C water

    Laboratory testing of L-grade stainless steels in representative boiling water nuclear reactor (BWR) core environments has shown that the intergranular (IG) cracking behavior is sensitive to the composition, corrosion potential and cold work. The objective of this study is to explore the deformation response of L-grade stainless steels to better understand its role on the IGSCC behavior. The deformation response was studied as a function of composition to evaluate the phase stability, susceptibility to sensitization and creep relaxation behaviors. The effect of deformation on 304, 304L, 316L and 316NG materials were evaluated metallographically and as a function of thermal treatment using the double loop electrochemical potentiokinetic reactivation (DL-EPR) technique. Metallographic results show that 304L is most likely to form deformation induced martensite, consistent with calculations. The DL-EPR response of 304L and 316L/NG materials increases significantly upon thermal treatment of cold worked material. These results are being used to determine the combinations of cold work and thermal treatment that promote IGSCC in 288 C high purity water at ∼ +200mVSHE of 304L weld material obtained from an unirradiated nuclear station core shroud. The creep relaxation response of 304, 304L, 316L and 316NG materials were evaluated as a function of the stress intensity in 288 C air using compact tension specimens. The preliminary results suggest that the lower alloyed 304L exhibits more creep strain in the same period of time than higher alloyed 316L/NG and Alloy 600 materials. These results have implications in terms of the slip-oxidation model for crack advance where higher creep rates are expected to promote a higher crack tip strain rate and faster crack growth rates. Future work will study the crack growth rates of 304W316L/316NG in various states of cold work and thermal treatment to evaluate the roles of phase stability, sensitization and creep relaxation on the

  12. AEM ANALYSIS OF STAINLESS STEEL

    Ogilvie, R.

    1984-01-01

    Quantitative AEM of thin films of stainless steel is presented. The X-ray data is corrected for absorption, secondary fluorescence and detector efficiency. A new form of the fluorescence correction has been derived. A modified form of the Cliff-Lorimer equations is also presented.

  13. Effect of Geobacter sulfurreducens on the microbial corrosion of mild steel, ferritic and austenitic stainless steels

    Mehanna, Maha; Basséguy, Régine; Délia, Marie-Line; Bergel, Alain

    2009-01-01

    The influence of Geobacter sulfurreducens was tested on the anaerobic corrosion of four different steels: mild steel 1145, ferritic steel 403 and austenitic steels 304L and 316L. Within a few hours, the presence of cells induced a free potential (Eoc) ennoblement around +0.3 V on 1145 mild steel, 403 ferritic steel and 304L austenitic steels and slightly less on 316L. The kinetics of Eoc ennoblement depended on the amount of bacteria in the inoculum, but the final potential value depended ess...

  14. Corrosion behavior of 2205 duplex stainless steel.

    Platt, J A; Guzman, A; Zuccari, A; Thornburg, D W; Rhodes, B F; Oshida, Y; Moore, B K

    1997-07-01

    The corrosion of 2205 duplex stainless steel was compared with that of AISI type 316L stainless steel. The 2205 stainless steel is a potential orthodontic bracket material with low nickel content (4 to 6 wt%), whereas the 316L stainless steel (nickel content: 10 to 14 wt%) is a currently used bracket material. Both stainless steels were subjected to electrochemical and immersion (crevice) corrosion tests in 37 degrees C, 0.9 wt% sodium chloride solution. Electrochemical testing indicates that 2205 has a longer passivation range than 316L. The corrosion rate of 2205 was 0.416 MPY (milli-inch per year), whereas 316L exhibited 0.647 MPY. When 2205 was coupled to 316L with equal surface area ratio, the corrosion rate of 2205 reduced to 0.260 MPY, indicating that 316L stainless steel behaved like a sacrificial anode. When 316L is coupled with NiTi, TMA, or stainless steel arch wire and was subjected to the immersion corrosion test, it was found that 316L suffered from crevice corrosion. On the other hand, 2205 stainless steel did not show any localized crevice corrosion, although the surface of 2205 was covered with corrosion products, formed when coupled to NiTi and stainless steel wires. This study indicates that considering corrosion resistance, 2205 duplex stainless steel is an improved alternative to 316L for orthodontic bracket fabrication when used in conjunction with titanium, its alloys, or stainless steel arch wires. PMID:9228844

  15. Stainless steel denitriding with slag

    Calculation and experimental methods were used to investigate the process of titanium nitride formation when alloying chromium nickel stainless steels with titanium. At common concentrations of titanium and nitrogen, titanium nitrides were observed to be precipitated from the melt into slag in amounts of 0.1% and more. The laboratory study of the slag influence of the process of steel refining from titanium nitrides showed that the slag containing calcium, aluminium and magnesium oxides is favourable to the denitriding of steel. In addition, the possibility of direct transition of dissolved nitrogen from the metal into the slag is revealed. 7 refs., 1 fig., 2 tabs

  16. Characteristics of vacuum sintered stainless steels

    Z. Brytan; L.A. Dobrzański; M. Actis Grande; Rosso, M.

    2009-01-01

    Purpose: In the present study duplex stainless steels were sintered in vacuum. using rapid cooling form the mixture of prealloyed and alloying element powders The purpose of this paper was to describe the obtained microstructures after sintering as well as the main mechanical properties of sintered stainless steels.Design/methodology/approach: In presented work duplex stainless steels were obtained through powder metallurgy starting from austenitic 316L or ferritic 410L prealloyed stainless s...

  17. An experience with in-service fabrication and inspection of austenitic stainless steel piping in high temperature sodium system

    Highlights: • Procedure for changing 304L SS pipe to 316L SS in sodium loop has been established. • Hot leg made of 304L SS was isolated from existing cold leg made of 316LN SS. • Innovative welding was used in joining the new 316L SS pipe with existing 316LN SS. • The old components of 304L SS piping have been integrated with the new piping. - Abstract: A creep testing facility along with dynamic sodium loop was installed at Indira Gandhi Centre for Atomic Research, Kalpakkam, India to assess the creep behavior of fast reactor structural materials in flowing sodium. Type 304L austenitic stainless steel was used in the low cross section piping of hot-leg whereas 316LN austenitic stainless steel in the high cross section cold-leg of the sodium loop. The intended service life of the sodium loop was 10 years. The loop has performed successfully in the stipulated time period. To enhance its life time, it has been decided to replace the 304L piping with 316L piping in the hot-leg. There were more than 300 welding joints involved in the integration of cold-leg with the new 316L hot-leg. Continuous argon gas flow was maintained in the loop during welding to avoid contamination of sodium residue with air. Several innovative welding procedures have been adopted for joining the new hot-leg with the existing cold-leg in the presence of sodium residue adopting TIG welding technique. The joints were inspected for 100% X-ray radiography and qualified by performing tensile tests. The components used in the discarded hot-leg were retrieved, cleaned and integrated in the renovated loop. A method of cleaning component of sodium residue has been established. This paper highlights the in-service fabrication and inspection of the renovation

  18. Effect of heating rate on sintered series 300 stainless steel

    Ornmanee Coovattanachai

    2010-05-01

    Full Text Available Stainless steel powders (303L, 304L, 310L and 316L were formed into tensile test bars using the “press and sinter”process. Most processing parameters, except heating rate, were kept constant. During the heating of the experimental specimensfrom 700°C to the sintering temperature of 1300°C, heating rates were varied, e.g., 2.5, 5.0, and 10.0°C/min. Experimentalresults showed that a material heated with a low heating rate tended to have higher sintered density and tensile strength.However, the low heating rate caused grain growth in the sintered material. These results are in contradiction with the improved densification of some ceramics by ultra rapid heating. The reasons for contradiction are as follows. First, the heatingrates employed in this work are not very different. The second is attributed to small thermal gradients generated in thethin metal powder compacts. Because of these reasons, densification of the sintered stainless steels series 300 is controlled by an isothermal condition. The low heating rate allows longer time for atomic diffusion, which is an important sintering factor. This means more atoms move to points of contact between powder particles to form necking and to cause neckinggrowth. This results in better sintering. However, the low heating rate means that the materials are exposed to heat for longertime and thus their grains have a tendency to grow.

  19. Porosity decrease in laser welds of stainless steel using plasma control

    High-energy laser welding incorporating plasma control has been studied and reported by numerous investigators. These investigators demonstrated significant increases in laser weld penetration by use of plasma control. This report shows, in addition to variations in weld penetration, drastic decrease in porosity and variation in weld bead shapes resulting from laser welds incorporating plasma control. In particular, deep laser welds (greater than 6 mm) have been produced in 304L stainless steel that show no root porosity and only very few, if any, detectable micropores

  20. Porosity in millimeter-scale welds of stainless steel : three-dimensional characterization.

    Aagesen, Larry K. (University of Michigan, Ann Arbor, MI); Madison, Jonathan D.

    2012-05-01

    A variety of edge joints utilizing a continuous wave Nd:YAG laser have been produced and examined in a 304-L stainless steel to advance fundamental understanding of the linkage between processing and resultant microstructure in high-rate solidification events. Acquisition of three-dimensional reconstructions via micro-computed tomography combined with traditional metallography has allowed for qualitative and quantitative characterization of weld joints in a material system of wide use and broad applicability. The presence, variability and distribution of porosity, has been examined for average values, spatial distributions and morphology and then related back to fundamental processing parameters such as weld speed, weld power and laser focal length.

  1. Effects of alloy and solution chemistry on the fracture of passive films on austenitic stainless steel

    The Taguchi analysis method was used to simultaneously study the effects of alloy chemistry, pH, and halide ion concentrations on the fracture of electrochemically grown passive films using a nanoindentation technique. Three austenitic stainless steels, 304L, 316L, and 904L were potentiostatically polarized in hydrochloric acid solutions. The fracture load was dominated primarily by alloy chemistry. Passive films mechanically weaken as the atomic iron concentration increases in the film. Prolonged anodic ageing time increases the fracture load of passive films

  2. Effects of alloy and solution chemistry on the fracture of passive films on austenitic stainless steel

    Alamr, A. [School of Mechanical and Materials Engineering, Washington State University, P.O. Box 642920, Pullman, WA 99164-2920 (United States)]. E-mail: alamrz@wsu.edu; Bahr, D.F. [School of Mechanical and Materials Engineering, Washington State University, P.O. Box 642920, Pullman, WA 99164-2920 (United States)]. E-mail: bahr@mail.wsu.edu; Jacroux, Michael [Department of Statistics, Washington State University, Pullman, WA 99164-3144 (United States) ]. E-mail: jacroux@wsu.edu

    2006-04-15

    The Taguchi analysis method was used to simultaneously study the effects of alloy chemistry, pH, and halide ion concentrations on the fracture of electrochemically grown passive films using a nanoindentation technique. Three austenitic stainless steels, 304L, 316L, and 904L were potentiostatically polarized in hydrochloric acid solutions. The fracture load was dominated primarily by alloy chemistry. Passive films mechanically weaken as the atomic iron concentration increases in the film. Prolonged anodic ageing time increases the fracture load of passive films.

  3. Microbial corrosion of stainless steel.

    Ibars, J R; Moreno, D A; Ranninger, C

    1992-11-01

    Stainless steel, developed because of their greater resistance to corrosion in different aggressive environments, have proved to be affected, however, by various processes and types of corrosion. Some of these types of corrosion, mainly pitting, is activated and developed in the presence of microorganisms, which acting in an isolated or symbiotic way, according to their adaptation to the environment, create a favorable situation for the corrosion of these steel. The microorganisms that are involved, mainly bacteria of both the aerobic and anaerobic type, modify the environment where the stainless steel is found, creating crevices, differential aeration zones or a more aggressive environment with the presence of metabolites. In these circumstances, a local break of the passive and passivating layer is produced, which is proper to these types of steel and impedes the repassivation that is more favorable to corrosion. In the study and research of these types of microbiologically influenced corrosion are found electrochemical techniques, since corrosion is fundamentally an electrochemical process, and microbiological techniques for the identification, culture, and evaluation of the microorganisms involved in the process, as well as in the laboratory or field study of microorganism-metal pairs. Microstructural characterization studies of stainless steel have also been considered important, since it is known that the microstructure of steel can substantially modify their behavior when faced with corrosion. As for surface analysis studies, it is known that corrosion is a process that is generated on and progresses from the surface. The ways of dealing with microbiologically influenced corrosion must necessarily include biocides, which are not always usable or successful, the design of industrial equipment or components that do not favor the adherence of microorganisms, using microstructures in steel less sensitive to corrosion, or protecting the materials. PMID:1492953

  4. The comparison of frictional resistance in titanium, self-ligating stainless steel, and stainless steel brackets using stainless steel and TMA archwires: An in vitro study

    Syed Altaf Khalid; Vadivel Kumar; Prithviraj Jayaram

    2012-01-01

    Aim: The aim of the study was to compare the frictional resistance of titanium, self-ligating stainless steel, and conventional stainless steel brackets, using stainless steel and titanium molybdenum alloy (TMA) archwires. Materials and Methods: We compared the frictional resistance in 0.018 slot and 0.022 slot of the three brackets - titanium, self-ligating stainless steel, and conventional stainless steel - using stainless steel archwires and TMA archwires. An in vitro study of simulated ca...

  5. Effect of Specimen Diameter on Tensile Properties of Austenitic Stainless Steels in Liquid Hydrogen and Gaseous Helium at 20K

    Fujii, H.; Ohmiya, S.; Shibata, K.; Ogata, T.

    2006-03-01

    Tensile tests using round bar type specimens of 3, 5 and 7 mm in diameter were conducted at 20K in liquid hydrogen and also in gaseous helium at the same temperature for three major austenitic stainless steels, JIS SUS304L, 316L and 316LN, extensively used for cryogenic applications including liquid hydrogen transportation and storage vessels. Stress-strain curves were considerably different between circumstances and also specimen diameter, resulting in differences of strength and ductility. In liquid hydrogen, serrated deformation appeared after considerable work hardening and more active in specimens with larger diameter. Meanwhile serrated deformation was observed from the early stage of plastic deformation in gaseous helium at 20 K and serration was more frequent in specimens with smaller diameter. The serrated deformation behaviors were numerically simulated for 304L steel with taking thermal properties such as thermal conductivity, specific heat, heat transfer from specimens to cryogenic media into account, and some agreement with the experiments was obtained.

  6. Effect of Hydrogen Charging on the Tensile and Constant Load Properties of an Austenitic Stainless Steel Weldment

    2001-01-01

    The effect of cathodic hydrogen charging on the tensile and constant load properties was determined for an austenitic stainless steel weldment comprising a 304L steel in the solution treated condition as a base metal and a 308L filler steel as a weld metal. Part of the 304L solution treated steel was separately given additional sensitization treatment to simulate the microstructure that would develop in the heat affected zone. Tests were performed at room temperature on notched round bar specimens. Hydrogen charging resulted in a pronounced embrittlement of the tested materials. This was manifested mainly as a considerable loss in the dluctility of tensile specimens and a decrease in the time to failure and threshold stress of constant load specimens. The 308L weld metal exhibited the highest, and the 304L solution treated steel the lowest, resistance to hydrogen embrittlement. Hydrogen embrittlement was associated with the formation of strain induced martensite as well as a transition from brittle to ductile fracture morphology onwards the centre of the specimens.

  7. The resistance of austenitic stainless steels to pitting corrosion in simulated BFS/OPC pore waters containing thiosulphate ions

    Current plans for the disposal of intermediate-level nuclear waste involve the use of austenitic stainless steel drums. The immediate environment seen by both the inner and outer surfaces of these drums will be alkaline, as a consequence of the encasement of both the drum and its contents in concrete. Normally there would be no risk of localized corrosion of the steel in this situation, but a possible complication is introduced by the use of blast-furnace slag (BFS) to decrease the permeability of the concrete. Metal sulphides in the BFS react with air and water to yield thiosulphate ions, which are known to be corrosive towards stainless steels in environments of near-neutral pH. This research was carried out to study the effects of thiosulphate at alkaline pH, simulating the concrete environment. Types 304L and 316L stainless steel have been tested for pitting corrosion resistance in simulated BFS/Ordinary Portland Cement pore waters of pH 10-13, at 20oC and 50oC. The results show that the 316L steel is essentially immune to pitting. The 304L steel shows some pitting at the higher temperature, especially at the higher chloride concentrations, but only at pH values of less than 12, which would require serious deterioration of the cement matrix. (author)

  8. Nano-composite stainless steel

    Dehoff, Ryan R.; Blue, Craig A.; Peter, William H.; Chen, Wei; Aprigliano, Louis F.

    2015-07-14

    A composite stainless steel composition is composed essentially of, in terms of wt. % ranges: 25 to 28 Cr; 11 to 13 Ni; 7 to 8 W; 3.5 to 4 Mo; 3 to 3.5 B; 2 to 2.5 Mn; 1 to 1.5 Si; 0.3 to 1.7 C; up to 2 O; balance Fe. The composition has an austenitic matrix phase and a particulate, crystalline dispersed phase.

  9. GFRP stainless steel hybrid cryostat

    As an instrument to measure superconducting properties (Jc,Tc,Hc) by the magnetization method, a cryostat containing the magnet that generated an external magnetic field has been developed. To ensure thermal insulation ability and structural durability, this cryostat consists of a GFRP inner vessel and a stainless steel outer vessel. Various tests were carried out to verify the sufficient performance of this cryostat. Results are presented

  10. Nickel: makes stainless steel strong

    Boland, Maeve A.

    2012-01-01

    Nickel is a silvery-white metal that is used mainly to make stainless steel and other alloys stronger and better able to withstand extreme temperatures and corrosive environments. Nickel was first identified as a unique element in 1751 by Baron Axel Fredrik Cronstedt, a Swedish mineralogist and chemist. He originally called the element kupfernickel because it was found in rock that looked like copper (kupfer) ore and because miners thought that "bad spirits" (nickel) in the rock were making it difficult for them to extract copper from it. Approximately 80 percent of the primary (not recycled) nickel consumed in the United States in 2011 was used in alloys, such as stainless steel and superalloys. Because nickel increases an alloy's resistance to corrosion and its ability to withstand extreme temperatures, equipment and parts made of nickel-bearing alloys are often used in harsh environments, such as those in chemical plants, petroleum refineries, jet engines, power generation facilities, and offshore installations. Medical equipment, cookware, and cutlery are often made of stainless steel because it is easy to clean and sterilize. All U.S. circulating coins except the penny are made of alloys that contain nickel. Nickel alloys are increasingly being used in making rechargeable batteries for portable computers, power tools, and hybrid and electric vehicles. Nickel is also plated onto such items as bathroom fixtures to reduce corrosion and provide an attractive finish.

  11. 24 h-corrosion tests combined with electrochemical potential measurements of CrNi-steel DIN W.Nr. 1.4306 (AISI Type 304 L) in 7 molar nitric acid containing oxidizing metal ions at 90deg C

    Corrosion experiments - combined with measurements of the free corrosion potential of the steels under test and the redox potential of the corrosive nitric acid media - have been performed. Three different versions of the austenitic CrNi steel DIN W.Nr. 1.4306 (AISI Type 304 L) in the solution annealed condition were tested at 90deg C during 24 h in nitric acid and nitric acid solutions containing single or combined additions of Fe(III)-, Cr(VI)- and Ce(IV)-ions. The relationship between the rate of metal loss and the free corrosion potential of the corroding steels was confirmed to be an exponential one. Furthermore, it was shown that these short-term tests could reveal within a narrow band of free corrosion potentials (1150-1250 mV) an extent of surface corrosion which is specific for small compositional or microstructural differences of these steels. (orig.)

  12. Irradiation embrittlement of ferritic stainless steels

    The characteristics of the irradiation embrittlement of some ferritic stainless steels were examined by tensile tests. Steels selected in this investigation were classified into three groups: chi phase, precipitation hardened Fe-13Cr steels; tempered martensitic Fe-12Cr steels; and low alloy steels. The latter steels were chosen in order to compare the irradiation embrittlement characteristics with those of stainless steels. The stainless steels were superior to the low alloy steels with regard to the irradiation embrittlement (the changes in both ductile-brittle transition temperature (DBTT) and unstable plastic flow transition temperature (UPFTT)), irrespective of whether these stainless steels had chi phase precipitated structures or tempered martensitic structures. The suppression of the DBTT increase owing to irradiation results from low yield stress increase Δσsub(y) and high |[dσsub(y)(u)/dT]|, where u denotes unirradiated, in the stainless steels. The suppression of the UPFTT results from the high work hardening rate or the high work exponent and the low Lueders strain in the stainless steels. These characteristics of irradiation embrittlement in the ferritic stainless steels are thought to be caused by the defect structure, which is modified by Cr atoms. (author)

  13. Hot workability of duplex stainless steels

    Martin, Guilhem

    2011-01-01

    The Duplex Stainless Steels (DSS) are defined as a family of stainless steels consisting of a two-phase microstructure involving δ-ferrite and γ-austenite. Exceptional combinations of strength and toughness together with good corrosion resistance under critical working conditions designate DSS a suitable alternative to conventional austenitic stainless steels. Unfortunately, the relatively poor hot workability of these alloys makes the industrial processing of flat products particularly criti...

  14. The role of microchemical and microstructural effects in the IASCC of high purity austenitic stainless steels

    The role of chromium depletion and radiation hardening on the irradiation assisted stress corrosion cracking in CERT tests in high purity 288 degrees C water following proton irradiation at either 400 degrees C or 200 degrees C has been examined using ultra high purity 304L stainless steel and austenitic Fe/xCr/24Ni (x=15, 20, 24) alloys. No intergranular cracking was found in any of the irradiated 254 wt% nickel alloys after CERT tests in 2 ppm O2 water at 288 degrees C, with 0.5, 1.0 or 3.2 μS/cm conductivity, while the UHP 304L alloy cracked extensively. Since the 24 wt% Ni alloys experienced severe grain boundary Cr depletion (from 6.3 at% to 13 at% below bulk), these results suggest that Ni improves the resistance of the irradiated alloys to cracking. Conversely, these results also show little correlation with grain boundary Cr depletion. Cracking of the UHP 304L alloy still occurred, although to a lesser extent, when the sample was irradiated at 200 degrees C where radiation induced segregation was expected to be significantly suppressed. This indicated that radiation hardening may play a role in IASCC in high temperature water

  15. Study of the Intercrystalline Corrosion in Pipes of Stainless Steel in a Combined Cycle

    Raúl Andrés Montejo Serrano

    2014-09-01

    Full Text Available The present work is carried out with the purpose of giving answer to the possible presence ofintercrystalline corrosion and its future consequences in the built tubes of stainless steel 304L anddedicated to the conduction from the water to the boilers of a combined cycle of electricity production.The plant is these in this moments in installation of process investor and assembly and this study wasrequested since during the trial of installation of the pipes of stainless steel that will drive the watertried to the steam generators, they were detected on the part of the operatives some imperfections inthe material, what generated the doubt about the possibility of presence of intercrystalline corrosion orof another type in the pipes. After the realized rehearsals according to international norms and alsousing rehearsals metallography you concludes that the material employee is not sensitive to this typeof corrosion.

  16. Effects of postweld treatments on corrosion of stainless steel weldments in microbial fresh-water systems

    Li, P.; Buchanan, R.A.; Lundin, C.D. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering; Tuthill, A.H. [Tuthill Associates, Inc., Blacksburg, VA (United States); Avery, R.E. [Avery Consulting Associates, Inc., Londonderry, NH (United States); Angell, P. [Center for Environmental Biotechnology, Knoxville, TN (United States); Sachs, D.E. [Arizona Public Service Co., Phoenix, AZ (United States)

    1995-10-01

    Corrosion studies of 304L and 316L stainless steel weldments were conducted in natural and simulated fresh-water systems containing microorganisms. Experimental conditions were chosen to simulate microbiologically influenced corrosion (MIC) conditions in practical applications. Results showed that corrosion, with the formation of nodules, occurred at imposed crevice locations within weldment heat-tint areas. Upon removal of the heat tint, either chemically, electrochemically, or mechanically, corrosion nodules were not formed even under crevice conditions. Follow-up experiments indicated that the stainless steel weldments were less corrosion resistant in the bacterial environments. The results were correlated to the presence of the heat tint, the crevice geometry, the chloride concentration, and the bacterial activities.

  17. Stress corrosion cracking susceptibility of various austenitic stainless steel pipe welds in high temperature oxygenated water

    Stress corrosion cracking (SCC) susceptibility of various austenitic stainless steel pipe welds has been studied by means of constant load tensile tests and pipe tests in 2880C water containing 26 ppm dissolved oxygen. The results obtained are summarized as follows: (1) SCC susceptibility of SUS 304 pipe welds is comparatively low under the condition of as-welded. It becomes, however, high remarkably by grinder operation and/or low temperature sensitization heat treatment. The distribution of time of failure on SUS 304 pipe welds can be expressed as a log-normal or Weibull distribution. (2) SUS 304L, 304NG, 316NG, and 347 stainless steel pipe welds have a good SCC resistance and sensitization resistance. Furthermore, the life estimation on alternate pipe welds was conducted statistically. (author)

  18. Hydrogen Environment Embrittlement on Austenitic Stainless Steels from Room Temperature to Low Temperatures

    Ogata, Toshio

    2015-12-01

    Hydrogen environment embrittlement (HEE) on austenitic stainless steels SUS304, 304L, and 316L in the high pressure hydrogen gas was evaluated from ambient temperature to 20 K using a very simple mechanical properties testing procedure. In the method, the high- pressure hydrogen environment is produced just inside the hole in the specimen and the specimen is cooled in a cooled-alcohol dewar and a cryostat with a GM refrigerator. The effect of HEE was observed in tensile properties, especially at lower temperatures, and fatigue properties at higher stress level but almost no effect around the stress level of yield strength where almost no strain-induced martensite was produced. So, no effect of HEE on austenitic stainless steels unless the amount of the ferrite phase is small.

  19. Stainless steel for reinforcing bar concrete

    Where corrosion resisting reinforcing bar is required, stainless steel has been employed for many applications. The longest recorded use so far is over 75 years for a restoration project in the United Kingdom. Other areas are highway bridge decks, retaining walls, tunnels, pier and overpass structures all of which use stainless steel to prevent corrosion and extend structure life. Carbon steel rebar leads to premature failure via concrete spalling that results in excessive repair, high cost, traffic delay and commerce disruption. Selection of stainless steel is based on its corrosion resistance, strength and long life. Installed cost using stainless steel reinforcing barranges from one to fifteen percent depending on structure complexity. Life Cycle Cost calculations reveal when stainless steel reinforcing bar is factored into the design, with a life expectancy up to 125 years, the alloy is cost effective. Data will be exhibited relative to mechanical and physical properties of stainless steel compared to carbon steel rebar. Some stainless rebar applications around the World will be discussed in addition to laboratory and field test results with U-bent stainless steel specimens embedded in concrete. Comments will also be made relative to the environment, lengthened journeys, delivery delay, fuel burned as vehicles sit at idle, drilling, blasting, crushing and transport of aggregate, cement and the attendant power units to manufacture these items for reconstruction. (author)

  20. The microstructural, mechanical, and fracture properties of austenitic stainless steel alloyed with gallium

    Kolman, D. G.; Bingert, J. F.; Field, R. D.

    2004-11-01

    The mechanical and fracture properties of austenitic stainless steels (SSs) alloyed with gallium require assessment in order to determine the likelihood of premature storage-container failure following Ga uptake. AISI 304 L SS was cast with 1, 3, 6, 9, and 12 wt pct Ga. Increased Ga concentration promoted duplex microstructure formation with the ferritic phase having a nearly identical composition to the austenitic phase. Room-temperature tests indicated that small additions of Ga (less than 3 wt pct) were beneficial to the mechanical behavior of 304 L SS but that 12 wt pct Ga resulted in a 95 pct loss in ductility. Small additions of Ga are beneficial to the cracking resistance of stainless steel. Elastic-plastic fracture mechanics analysis indicated that 3 wt pct Ga alloys showed the greatest resistance to crack initiation and propagation as measured by fatigue crack growth rate, fracture toughness, and tearing modulus. The 12 wt pct Ga alloys were least resistant to crack initiation and propagation and these alloys primarily failed by transgranular cleavage. It is hypothesized that Ga metal embrittlement is partially responsible for increased embrittlement.

  1. Corrosion behavior of powder metallurgical stainless steels in urban and marine environments

    Bautista, A.

    2006-06-01

    Full Text Available This work studies the development of corrosive attack on sintered components manufactured from AISI 316L and AISI 304L powders. The stainless steels were sintered in vacuum and in nitrogen-base atmosphere at 1,120 and 1,250 ºC, and their corrosion resistance was then analyzed by electrochemical techniques and by atmospheric corrosion testing (two years at urban and marine test sites. Images are shown of the morphology of the attack on the surface of the stainless steels and the development of this attack in the interior of the material.

    Este trabajo estudia el desarrollo del proceso corrosivo en componentes sinterizados fabricados a partir de polvos de AISI 316L y AISI 304L. Los aceros inoxidables fueron sinterizados en vacío y en atmósfera base nitrógeno a 1.120 y 1.250 ºC y, su resistencia a corrosión se ha analizado mediante técnicas electroquímicas y mediante ensayos de corrosión atmosférica (dos años en ambientes urbano y marino. Se muestran imágenes de la morfología del ataque en la superficie de los aceros inoxidables y del desarrollo de este ataque en el interior del material.

  2. Electrochemical and corrosion behavior of passive film on stainless steels after gamma-ray irradiation

    The nature and structure of passive film on AISI 304L and AISI 446 stainless steels, after bare metal anodic oxidation and after the subsequent galvanostatic reduction or gamma-ray irradiation of the oxide film formed, were investigated by XPS and Electrochemical Impedance Spectroscopy (EIS). Atomic Absorption Spectroscopic (AAS) analysis of irradiated solution was also undertaken. Results obtained from XPS measurement indicated that gamma-ray irradiation can have significant effects on the stability of passive film due to the release of iron and corresponding enrichment in chromium oxides. The EIS technique was used to elucidate the physical structure of passive film after irradiation and galvanostatic reduction. The passive film formed on AISI 304L and AISI 446 stainless steels have a compact structure. The galvanostatic treatment leads to a film composed of two layers, the external one showing a spongy-like structure, while the gamma-ray irradiation treatment leads to a thinner compact film exhibiting higher capacitive behavior compared to that of unirradiated samples

  3. A temperature dependent slip factor based thermal model for friction stir welding of stainless steel

    M Selvaraj

    2013-12-01

    This paper proposes a new slip factor based three-dimensional thermal model to predict the temperature distribution during friction stir welding of 304L stainless steel plates. The proposed model employs temperature and radius dependent heat source to study the thermal cycle, temperature distribution, power required, the effect of process parameters on heat generation per mm length of the weld and peak temperature during the friction stir welding process. Simulations of friction stir welding process were carried out on 304L stainless steel workpieces for various rotational and welding speeds. The predicted thermal cycle, power required and temperature distributions were found to be in good agreement with the experimental results. The heat generation per mm length of weld and peak temperature were found to be directly proportional to rotational speed and inversely proportional to welding speed. The rate of increase in heat generation per mm length of the weld and peak temperature are found to be higher at lower rotational speeds and lower at higher rotational speed. The heat generation during friction stir welding was found to be 80.8 % at shoulder, 16.1 % at pin side and 3.1 % at the bottom of the pin.

  4. Weld bonding of stainless steel

    Santos, I. O.; Zhang, Wenqi; Goncalves, V.M.;

    2004-01-01

    This paper presents a comprehensive theoretical and experimental investigation of the weld bonding process with the purpose of evaluating its relative performance in case of joining stainless steel parts, against alternative solutions based on structural adhesives or conventional spot-welding. The...... overall assessment of the weld bonding process is made using several commercial adhesives with varying working times under different surface conditions. The quality of the resulting joints is evaluated by means of macroetching observations, tension-shear tests and peel tests. The theoretical investigation...

  5. Spectrographic analysis of stainless steels

    Two spectrogaphyic solution techniques, 'Porous Cup' and 'Vacuum Cup', were investigated in order to determine the minor constituents (Cr, Ni, Mo, Mn, Cu and V) of stainless steels. Iron and cobalt were experimented as internal standards. The precision varied from 4 to 11% for both spectrographic techniques, in which cobalt was used as international standard. Certified standards from National Bureau of Standards and Instituto de Pesquisas Tecnologicas were analysed to verify the accuracy of both techniques. The best accuracy was obtained with the Vacuum Cup techniques. (Author)

  6. Stress corrosion cracking of austenitic stainless steel core internal weld

    Microstructural analyses by several advanced metallographic techniques were conducted on austenitic stainless steel mockup and core shroud welds that cracked in boiling water reactors. Contrary to previous beliefs, heat-affected zones of the cracked Type 304L as well as 304 SS core shroud welds and mockup shielded-metal-arc welds were free of grain-boundary carbides, which shows that core shroud failure cannot be explained by classical intergranular stress corrosion cracking. Neither martensite nor delta-ferrite films were present on grain boundaries. However, as a result of exposure to weld fumes, the heat-affected zones of the core shroud welds were significantly contaminated by oxygen and fluorine which migrate to grain boundaries. Significant oxygen contamination seems to promote fluorine contamination and suppress thermal sensitization. Results of slow-strain-rate tensile tests indicate also that fluorine exacerbate the susceptibility of irradiated steels to intergranular stress corrosion cracking. These observations, combined with previous reports on the strong influence of weld flux, indicate that oxygen and fluorine contamination and fluorine-catalyzed stress corrosion play a major role in cracking of core shroud welds

  7. Effects of Cold Rolling and Strain-Induced Martensite Formation in a SAF 2205 Duplex Stainless Steel

    Breda, Marco; Brunelli, Katya; Grazzi, Francesco; Scherillo, Antonella; Calliari, Irene

    2015-02-01

    Duplex stainless steels (DSSs) are biphasic steels having a ferritic-austenitic microstructure that allows them to combine good mechanical and corrosion-resistance properties. However, these steels are sensitive to microstructural modifications, such as ferrite decomposition at high temperatures and the possibility of strain-induced martensite (SIM) formation from cold-worked austenite, which can significantly alter their interesting features. In the present work, the effects of cold rolling on the developed microstructural features in a cold-rolled SAF 2205 DSS and the onset of martensitic transformation are discussed. The material was deformed at room temperature from 3 to 85 pct thickness reduction, and several characterization techniques (scanning and transmission electron microscopy, X-ray diffraction, hardness measurements, and time-of-flight-neutron diffraction) were employed in order to fully describe the microstructural behavior of the steel. Despite the low stacking fault energy of DSS austenite, which contributed to SIM formation, the steel was found to be more stable than other stainless steel grades, such as AISI 304L. Rolling textures were similar to those pertaining to single-phase materials, but the presence of the biphasic (Duplex) microstructure imposed deformation constraints that affected the developed microstructural features, owing to phases interactions. Moreover, even if an intensification of the strain field in austenite was revealed, retarded SIM transformation kinetics and lower martensite amounts with respect to AISI 304L were observed.

  8. Research on the mechanism of stainless steel decontamination

    The most important oxide appearing on structural materials in NPPs operating CANDU type reactors is the magnetite (Fe3O4), a mixed ferro-ferric oxide (FeO·Fe2O3) in which radionuclides are built up by adsorption. On the surface of austenitic stainless steels immersed in lithiated water, at high temperature, a duplex oxide occurs, formed of an inner layer of the type (Fe,Cr)2O3 and an outer, spinel one, rich in Fe, of the type NiFe2O4. To decontaminate such components solving of the oxide layer is necessary , avoiding as much as possible an attack against the basic material. Due to the high Cr concentration in this superficial oxides the chemical processes imply: a pre-treatment stage during which oxidation of Cr3+ into Cr6+ takes place and implicitly the solubilization of Cr2O3, followed by removal of solution and washing out with demineralized water; a second stage in which the remnant oxide is removed from the component by a usual procedure, specific to carbon steel decontamination (such as CAN-DECON procedure). Among the oxiding agents the most frequently used is potassium permanganate while in the second stage a mixture of oxalic and citric acids as well as Na-EDTA and corrosion inhibitors are added. The mechanism of solving the oxide film from samples of 304L stainless steels was studied by means of XPS technique while the structure of the oxide film was evidenced by ESCA. The results obtained are in good agreement with the theoretical studies

  9. Statistical and regression analysis of Material Removal Rate for wire cut Electro Discharge Machining of SS 304L using design of experiments

    Vishal Parashar; Rehman, A.; J.L.Bhagoria,; Y.M.Puri

    2010-01-01

    In this paper, statistical and regression analysis of Material removal rate (MRR) using design of experiments is proposed for WEDM operations. Experimentation was planned as per Taguchi’s L’32 (21 X 44) mixed orthogonal array. Each experiment has been performed under different cutting conditions of gap voltage, pulse ON time, pulseOFF time, wire feed and dielectric flushing pressure. Stainless Steel grade 304L was selected as a work material to conduct the xperiments. From experimental resul...

  10. Interaction between stainless steel and plutonium metal

    Dunwoody, John T [Los Alamos National Laboratory; Mason, Richard E [Los Alamos National Laboratory; Freibert, Franz J [Los Alamos National Laboratory; Willson, Stephen P [Los Alamos National Laboratory; Veirs, Douglas K [Los Alamos National Laboratory; Worl, Laura A [Los Alamos National Laboratory; Archuleta, Alonso [Los Alamos National Laboratory; Conger, Donald J [Los Alamos National Laboratory

    2010-01-01

    Long-term storage of excess plutonium is of great concern in the U.S. as well as abroad. The current accepted configuration involves intimate contact between the stored material and an iron-bearing container such as stainless steel. While many safety scenario studies have been conducted and used in the acceptance of stainless steel containers, little information is available on the physical interaction at elevated temperatures between certain forms of stored material and the container itself. The bulk of the safety studies has focused on the ability of a package to keep the primary stainless steel containment below the plutonium-iron eutectic temperature of approximately 410 C. However, the interactions of plutonium metal with stainless steel have been of continuing interest. This paper reports on a scoping study investigating the interaction between stainless steel and plutonium metal in a pseudo diffusion couple at temperatures above the eutectic melt-point.

  11. The comparison of frictional resistance in titanium, self-ligating stainless steel, and stainless steel brackets using stainless steel and TMA archwires: An in vitro study

    Syed Altaf Khalid

    2012-01-01

    Full Text Available Aim: The aim of the study was to compare the frictional resistance of titanium, self-ligating stainless steel, and conventional stainless steel brackets, using stainless steel and titanium molybdenum alloy (TMA archwires. Materials and Methods: We compared the frictional resistance in 0.018 slot and 0.022 slot of the three brackets - titanium, self-ligating stainless steel, and conventional stainless steel - using stainless steel archwires and TMA archwires. An in vitro study of simulated canine retraction was undertaken to evaluate the difference in frictional resistance between titanium, self-ligating stainless steel, and stainless steel brackets, using stainless steel and TMA archwires. Results and Conclusion: We compared the frictional resistance of titanium, self-ligating stainless steel, and conventional stainless steel brackets, using stainless steel and TMA archwires, with the help of Instron Universal Testing Machine. One-way analysis of variance (ANOVA, Student′s "t" test, and post hoc multiple range test at level of <0.05 showed statistically significant difference in the mean values of all groups. Results demonstrated that the titanium, self-ligating stainless steel, and stainless steel brackets of 0.018-inch and 0.022-inch slot had no significant variations in frictional résistance. The self-ligating bracket with TMA archwires showed relatively less frictional resistance compared with the other groups. The titanium bracket with TMA archwires showed relatively less frictional resistance compared with the stainless steel brackets.

  12. Behaviour of stainless steels immersed in natural waters: electrochemistry and bacterial adhesion

    The free corrosion potential of a stainless steel immersed in natural seawater rises quickly until it reaches values ranging between +100 and +350 mV/SCE, which increases the risk of initiation of pitting corrosion. According to literature this phenomenon also occurs in fresh waters. The aim of this study is to confirm or to invalidate this trend; the electrochemical behaviour of samples of stainless steels immersed in river water and the influence of the bio-film formed on the surface of the samples are studied. The free corrosion potentials of three different stainless steels (S30403 or AISI 304L, S31603 or AISI 316L, S31254 or 254SMO) have been measured continuously during their immersion in the Seine river. SEM observations of the samples surface show the presence of a bio-film on the three kinds of stainless steel. The free corrosion potentials increase and end up between +100 and +300 mV/SCE. This increase is not immediate, the latency time being around 20 days. This could be related to an effect of the low temperature of the water during the immersion (8-10 C) and/or to an effect of the Total Organic Carbon (TOC), which would limit the growth rate of the bio-film, hence its influence on the evolution of the free corrosion potential. (authors)

  13. Tensile and Fracture Properties of Circumferentially Notched Tensile Specimens of Stainless Steel Weldments

    The tensile and fracture properties of different types of austenitic stainless steel weldments were determined using round notched tensile specimens. These included 304L, 316L and 6%Mo super austenitic stainless steels and their weld metals. The triaxial state of stress, the plastic constraint and the plane strain conditions developed ahead of the notch root make notched specimens eligible for the evaluation of fracture toughness. This was achieved through the testing procedure: J-evaluation on tensile test (JETT) using circumferentially notched round bar specimens. The JETT index was taken as a measure of the relevant elastic-plastic fracture toughness of the tested materials. In the case of austenitic stainless steels being too ductile at room temperature the resulted JETT were of relatively higher values than the fracture toughness values determined from the standard fracture mechanics test methods. This could be related to the difference in the stress state ahead of the sharp crack of the standard fracture mechanics specimen and that of the blunt notch of the tensile specimen. The results showed that the 6% Mo weld metal ranked highest while the 316L weld metal ranked lowest regarding JETT fracture toughness values. The deformation mechanisms pertinent to austenitic stainless steels (generation of stacking faults and formation of strain induced martensite) were employed for the interpretation of the experimental results.

  14. Fire resistance of stainless steel structural elements

    Gomboši, Jana

    2015-01-01

    Graduation thesis represents behavior of structural elements made from stainless steel in case of fire. The general rules according to the European standard SIST EN 1993-1-2 to determine design resistance of the steel structural element for fire conditions are presented. The main focus was to determinate behavior of stainless steel column exposed to the standard fire. Buckling resistance of the column was calculated with a simplified method from the standard SIST EN 1993-1-2. Mech...

  15. Behaviour comparison of various flux cored wires in FCAW on austenitic stainless steel

    This study deals with the GMAW process evaluation for the orbital butt welding of strong thickness pipings, in order to increase the productivity of these operations (higher deposition rate than in GTAW, process currently used). The main goal of this project is to evaluate the operational feasibility of mechanized orbital welding under gas protection in narrow gap with stainless flux cored wire 308L on stainless steel 304L. The study was composed of two parts with firstly a bibliographical research which has allowed to underline this operation practice, as good with rutile flux cored wire in smooth mode as with metal cored wire in pulsed mode. In the second part, flat and in position welding tests, by unit cords and filling of narrow grooves, made possible to define preliminary welding parameters. (author)

  16. Duplex stainless steels for osteosynthesis devices.

    Cigada, A; Rondelli, G; Vicentini, B; Giacomazzi, M; Roos, A

    1989-09-01

    The austenitic stainless steels used today for the manufacture of osteosynthesis devices are sensitive to crevice corrosion. In this study the corrosion properties of some duplex stainless steels were evaluated and compared to traditional austenitic stainless steels. According to our results the following ranking was established: 23Cr-4Ni less than AISI 316L less than ASTM F138 less than 22Cr-5Ni-3Mo less than 27Cr-31Ni-3.5Mo less than 25Cr-7Ni-4Mo-N. In particular the results showed that the high-performance 25Cr-7Ni-4Mo-N duplex stainless steel, with high molybdenum and nitrogen contents, can be considered not susceptible to crevice corrosion in the human body. The duplex stainless steels have also better mechanical properties at the same degree of cold working compared with austenitic stainless steels. Hence the 25Cr-7Ni-4Mo-N duplex stainless steel can be considered a convenient substitute of ASTM F138 for orthopedic and osteosynthesis devices. PMID:2777835

  17. Preparation of precursor for stainless steel foam

    ZHOU Xiang-yang; LI Shan-ni; LI Jie; LIU Ye-xiang

    2008-01-01

    The effects of polyurethane sponge pretreatment and slurry compositions on the slurry loading in precursor were discussed, and the,performances of stainless steel foams prepared from precursors with different slurry loadings and different particle sizes of the stainless steel powder were also investigated. The experimental results show that the pretreatment of sponge with alkaline solution is effective to reduce the jam of cells in precursor and ensure the slurry to uniformly distribute in sponge, and it is also an effective method for increasing the slurry loading in precursor; the mass fraction of additive A and solid content in slurry greatly affect the slurry loading in precursor, when they are kept in 9%-13% and 52%-75%, respectively, the stainless steel foam may hold excellent 3D open-cell network structure and uniform muscles; the particle size of the stainless steel powder and the slurry loading in precursor have great effects on the bending strength, apparent density and open porosity of stainless steel foam; when the stainless steel powder with particle size of 44 tan and slurry loading of 0.5 g/cm3 in precursor are used, a stainless steel foam can be obtained, which has open porosity of 81.2%, bending strength of about 51.76 MPa and apparent density of about 1.0 g/cm3.

  18. Impact Tensile Testing of Stainless Steels at Various Temperatures

    D. K. Morton

    2008-03-01

    Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates during accidental drop events. Mechanical characteristics of these base materials and their welds under dynamic loads in the strain rate range of concern (1 to 300 per second) are not well documented. However, research is being performed at the Idaho National Laboratory to quantify these characteristics. The work presented herein discusses tensile impact testing of dual-marked 304/304L and 316/316L stainless steel material specimens. Both base material and welded material specimens were tested at -20 oF, room temperature, 300 oF, and 600 oF conditions. Utilizing a drop weight impact test machine and 1/4-inch and 1/2-inch thick dog bone-shaped test specimens, a strain rate range of approximately 4 to 40 per second (depending on initial temperature conditions) was achieved. Factors were determined that reflect the amount of increased strain energy the material can absorb due to strain rate effects. Using the factors, elevated true stress-strain curves for these materials at various strain rates and temperatures were generated. By incorporating the strain rate elevated true stress-strain material curves into an inelastic finite element computer program as the defined material input, significant improvement in the accuracy of the computer analyses was attained. However, additional impact testing is necessary to achieve higher strain rates (up to 300 per second) before complete definition of strain rate effects can be made for accidental drop events and other similar energy-limited impulsive loads. This research approach, using impact testing and a total energy analysis methodology to quantify strain rate effects, can be applied to many other materials used in government and industry.

  19. Tritiated Water Interaction with Stainless Steel

    Glen R. Longhurst

    2007-05-01

    Experiments conducted to study tritium permeation of stainless steel at ambient and elevated temperatures revealed that HT converts relatively quickly to HTO. Further, the HTO partial pressure contributes essentially equally with elemental tritium gas in driving permeation through the stainless steel. Such permeation appears to be due to dissociation of the water molecule on the hot stainless steel surface. There is an equilibrium concentration of HTO vapor above adsorbed gas on the walls of the experimental apparatus evident from freezing transients. The uptake process of tritium from the carrier gas involves both surface adsorption and isotopic exchange with surface bound water.

  20. Recycle of radiologically contaminated austenitic stainless steels

    The United States Department of Energy owns large quantities of radiologically contaminated austenitic stainless steel which could by recycled for reuse if appropriate release standards were in place. Unfortunately, current policy places the formulation of a release standard for USA industry years, if not decades, away. The Westinghouse Savannah River Company, Idaho National Engineering Laboratory and various university and industrial partners are participating in initiative to recycle previously contaminated austenitic stainless steels into containers for the storage and disposal of radioactive wastes. This paper describes laboratory scale experiments which demonstrated the decontamination and remelt of stainless steel which had been contaminated with radionuclides

  1. Experimental study of behavior of austenitic stainless steel thin-walled-elbows - functional capability

    Results of a series of 15 tests on 90 large radius elbows are presented. These elbows were made from Z2 CN 18 10 steel (corresponding to ASME TP 304 L) and had an outside diameter-to-wall thickness ratio of 89.5. They were subjected to in-plane (opening and closing) and out-of-plane bending moments. Changes in elbow angular deflection and ovalization of the mid section were recorded as a function of applied moment. Measurements were made well into the plastic region. Influence of pressure, temperature and cyclic loading were also studied. The tests therefore supplied extensive data on the behavior of an austenititc stainless steel thin-walled elbow when subjected to large displacements, including its ability to carry the required flow under high loadings. Analysis per the RCC-M (1983) was also performed to quantify flow area reductions at stress limits allowed by these rules. (orig.)

  2. Some properties of chromized stainless steels

    Materials used for constructions in food processing industry should meet mechanical specifications and sanitary requirements. The most often used steels AISI304 and 316L have similar mechanical characteristics but the corrosion resistance of 316L stainless steel is considerably better. On the other hand the price of 316L steel is twice higher. The advantageous solution with minimal investment cost is chemical modification of stainless steel surface layer. Main directions of chemical modifications of surface layers were characterized in this paper. In this paper there were also presented effects of chromizing of steel type AISI316L in order to increasing erosion - corrosion resistance. There were analysed structures; mechanical characteristics and durability of chromized stainless steel. (author)

  3. Hydrogen compatibility handbook for stainless steels

    Caskey, G.R. Jr.

    1983-06-01

    This handbook compiles data on the effects of hydrogen on the mechanical properties of stainless steels and discusses this data within the context of current understanding of hydrogen compatibility of metals. All of the tabulated data derives from continuing studies of hydrogen effects on materials that have been conducted at the Savannah River Laboratory over the past fifteen years. Supplementary data from other sources are included in the discussion. Austenitic, ferritic, martensitic, and precipitation hardenable stainless steels have been studied. Damage caused by helium generated from decay of tritium is a distinctive effect that occurs in addition to the hydrogen isotopes protium and deuterium. The handbook defines the scope of our current knowledge of hydrogen effects in stainless steels and serves as a guide to selection of stainless steels for service in hydrogen.

  4. Horizontal electron beam welding for stainless steels

    Stainless steel samples have been realized by local vacuum apparatus for electron beam welding applications to reactor core shell realizations. The best welding parameters have been determined by a systematic study. The welds have been characterized by mechanical tests

  5. Stainless Steel to Titanium Bimetallic Transitions

    Kaluzny, J. A. [Fermilab; Grimm, C. [Fermilab; Passarelli, D. [Fermilab

    2015-01-01

    In order to use stainless steel piping in an LCLS-II (Linac Coherent Light Source Upgrade) cryomodule, stainless steel to titanium bimetallic transitions are needed to connect the stainless steel piping to the titanium cavity helium vessel. Explosion bonded stainless steel to titanium transition pieces and bimetallic transition material samples have been tested. A sample transition tube was subjected to tests and x-ray examinations between tests. Samples of the bonded joint material were impact and tensile tested at room temperature as well as liquid helium temperature. The joint has been used successfully in horizontal tests of LCLS-II cavity helium vessels and is planned to be used in LCLS-II cryomodules. Results of material sample and transition tube tests will be presented.

  6. Effect of Geobacter sulfurreducens on the microbial corrosion of mild steel, ferritic and austenitic stainless steels

    Mehanna, Maha [Laboratoire de Genie Chimique, CNRS - Universite de Toulouse, 5 rue Paulin Talabot, BP1301, 31029 Toulouse (France)], E-mail: mum34@psu.edu; Basseguy, Regine; Delia, Marie-Line; Bergel, Alain [Laboratoire de Genie Chimique, CNRS - Universite de Toulouse, 5 rue Paulin Talabot, BP1301, 31029 Toulouse (France)

    2009-11-15

    The influence of Geobacter sulfurreducens was tested on the anaerobic corrosion of four different steels: mild steel 1145, ferritic steel 403 and austenitic steels 304L and 316L. Within a few hours, the presence of cells induced a free potential (E{sub oc}) ennoblement around +0.3 V on 1145 mild steel, 403 ferritic steel and 304L austenitic steels and slightly less on 316L. The kinetics of E{sub oc} ennoblement depended on the amount of bacteria in the inoculum, but the final potential value depended essentially on the nature of the material. This effect was due to the capacity of G. sulfurreducens to create a direct cathodic reaction on steel surfaces, extracting the electrons directly from material. The presence of bacterial cells modified the corrosion features of mild steel and ferritic steel, so that corrosion attacks were gathered in determined zones of the surface. Local corrosion was significantly enhanced on ferritic steel. Potential ennoblement was not sufficient to induce corrosion on austenitic steels. In contrast G. sulfurreducens delayed the occurrence of pitting on 304L steel because of its capability to oxidize acetate at high potential values. The electrochemical behaviour of 304L steel was not affected by the concentration of soluble electron donor (acetate, 1-10 mM) or the amount of planktonic cells; it was directly linked to the biofilm coverage. After polarization pitting curves had been recorded, microscopic observations showed that pits propagated only in the surface zones where cell settlement was the densest. The study evidenced that Geobacter sulfurreducens can control the electrochemical behaviour of steels in complex ways that can lead to severe corrosion. As Geobacteraceae are ubiquitous species in sediments and soils they should now be considered as possible crucial actors in the microbial corrosion of buried equipment.

  7. Effect of Geobacter sulfurreducens on the microbial corrosion of mild steel, ferritic and austenitic stainless steels

    The influence of Geobacter sulfurreducens was tested on the anaerobic corrosion of four different steels: mild steel 1145, ferritic steel 403 and austenitic steels 304L and 316L. Within a few hours, the presence of cells induced a free potential (Eoc) ennoblement around +0.3 V on 1145 mild steel, 403 ferritic steel and 304L austenitic steels and slightly less on 316L. The kinetics of Eoc ennoblement depended on the amount of bacteria in the inoculum, but the final potential value depended essentially on the nature of the material. This effect was due to the capacity of G. sulfurreducens to create a direct cathodic reaction on steel surfaces, extracting the electrons directly from material. The presence of bacterial cells modified the corrosion features of mild steel and ferritic steel, so that corrosion attacks were gathered in determined zones of the surface. Local corrosion was significantly enhanced on ferritic steel. Potential ennoblement was not sufficient to induce corrosion on austenitic steels. In contrast G. sulfurreducens delayed the occurrence of pitting on 304L steel because of its capability to oxidize acetate at high potential values. The electrochemical behaviour of 304L steel was not affected by the concentration of soluble electron donor (acetate, 1-10 mM) or the amount of planktonic cells; it was directly linked to the biofilm coverage. After polarization pitting curves had been recorded, microscopic observations showed that pits propagated only in the surface zones where cell settlement was the densest. The study evidenced that Geobacter sulfurreducens can control the electrochemical behaviour of steels in complex ways that can lead to severe corrosion. As Geobacteraceae are ubiquitous species in sediments and soils they should now be considered as possible crucial actors in the microbial corrosion of buried equipment.

  8. Fracture toughness properties of duplex stainless steels

    Sieurin, Henrik

    2006-01-01

    Good toughness properties in base and weld material enable the use of duplex stainless steels (DSS) in critical applications. DSS offer high strength compared to common austenitic stainless steels. The high strength can be utilized to reduce the wall thickness and accordingly accomplish reduction of cost, welding time and transportation weight, contributing to ecological and energy savings. Although DSS have been used successfully in many applications the last decades, the full utilisation in...

  9. Phase transformations in welded supermartensitic stainless steels

    Carrouge, Dominique

    2002-01-01

    Supermartensitic stainless steels have recently been introduced in the oil and gas industries to substitute more expensive duplex stainless steels for onshore and offshore tubing applications. Although easily joined by arc welding processes, the service life of the supermartensitic welded joint in corrosive environments relies to a large extent on the behaviour of the heat-affected zone (HAZ). The microstructure of the HAZ in these new materials has, until now, received little ...

  10. Behaviour of stainless steel in natural seawater

    Compere, Chantal; Le Bozec, Nathalie

    1997-01-01

    In this paper, investigations performed in natural and artificial seawater on stainless steels will be presented. They concerned studies on: biofilm formation, passive layers composition, electrochemical behaviour, localised corrosion and the evolution of these different parameters as a function of ageing time. According to literature surveys, the different aspects will be discussed. Some conclusions will be drawn concerning the actual knowledge on the behaviour of stainless steels in seawater.

  11. A Duplex Stainless Steel for Chloride Environments

    Sridhar, N.; Kolts, J.; Flasche, L. H.

    1985-03-01

    This paper examines the effects of microstructural changes on the corrosion, stress corrosion cracking and corrosion fatigue resistance of a duplex stainless steel to chloride environments. The microstructural changes can be precipitation of phases such as sigma and carbides, or changes in the distribution of austenite and ferrite. The former can be important in hot forming operations while the latter is important in welding. The methods of minimizing these deleterious effects can sometimes be different from those used for austenitic stainless steel.

  12. Characteristics of cold rolled stainless steel sheets

    The cold rolling of sheets of austenitic stainless steel was investigated for different temperatures and percentages of reduction. It was also established under which conditions are the mechanical strenght and the ductility improved. It was found that this improvement is related to the characteristics of martensitic transformation taking place during rolling and through the tensile tests performed in stainless steels with different degree of martensitic transformation. The results are explained on the basis of martensite participation in the stained structure. (Author)

  13. Tritium in austenitic stainless steel vessels

    Austenitic stainless steels are normally recommended for components of hydrogen-handling equipment in applications where high in-service reliability is required. The literature leading to this recommendation is reviewed, and it is shown that AISI Type 316L stainless is particularly suitable for use in tritium-handling and storage systems. When made of this steel, the storage vessels will be extremely resistant to any degradation from tritium in both routine and accident conditions. (author)

  14. Characteristics of vacuum sintered stainless steels

    Z. Brytan

    2009-04-01

    Full Text Available Purpose: In the present study duplex stainless steels were sintered in vacuum. using rapid cooling form the mixture of prealloyed and alloying element powders The purpose of this paper was to describe the obtained microstructures after sintering as well as the main mechanical properties of sintered stainless steels.Design/methodology/approach: In presented work duplex stainless steels were obtained through powder metallurgy starting from austenitic 316L or ferritic 410L prealloyed stainless steels powders by controlled addition of alloying elements powder. Prepared mixes were sintered in a vacuum furnace in 1250°C for 1h. After sintering rapid cooling (6°C/s using nitrogen under pressure was applied. Sintered compositions were subjected to structural examinations by scanning and optical microscopy and EDS analysis as well as X-ray analysis. Mechanical properties were studied through tensile tests and Charpy impact test.Findings: It was demonstrated that austenitic-ferritic microstructures with regular arrangement of both phases and absence of precipitates can be obtained with properly designed powder mix composition as well as sintering cycle with rapid cooling rate. Obtained sintered duplex stainless steels shows good mechanical properties which depends on phases ratio in the microstructure and elements partitioning (Cr/Ni between phases.Research limitations/implications: Basing on alloys characteristics applied cooling rate and powder mix composition seems to be a good compromise to obtain balanced sintered duplex stainless steel microstructures.Practical implications: Mechanical properties of obtained sintered duplex stainless steels structures are rather promising, especially with the aim of extending their field of possible applications.Originality/value: The utilization of vacuum sintering process with rapid cooling after sintering combined with use of elemental powders added to a stainless steel base powder shows its advantages in terms

  15. Studies of stainless steel exposed to sandblasting

    Horodek Paweł; Eseev Marat K.; Kobets Andrey G.

    2015-01-01

    The influence of sandblasting on surface and subsurface of stainless steel is investigated using variable energy positron beam (VEP), positron annihilation spectroscopy (PAS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Samples of stainless steel were blasted using 110 μm particles of Al2O3 under different pressure and time duration. In the case of sandblasting for 90 s, the reduction of positron diffusion length depending on the applied pressure was observed. Sandb...

  16. Incremental elongation or ratchetting - Experimental tests and practical method of analysis (on stainless steel 304L and 306L)

    Ratchetting, or incremental elongation can be considered as a creep enhancement when cyclic deformations are added to a primary constant load. Under examination, it appears that theoretical models proposed till now do not fit correctly the actual behavior of materials. From experimental tests results performed in Saclay, a simplified method for prevention of ratcheting is proposed. A validation was made by using experimental data from various sources

  17. Corrosion Performance of Rosemary-Extract-Doped TEOS:TMSM Sol-Gel Coatings on 304L Stainless Steel

    M. Nasr-Esfahani; M. Pourriahi; A. Ashrafi; A. Motalebi

    2014-01-01

    Чистые и легированные экстрактом розмарина гибридные наноразмерные пленки были изготовлены с применением золя, синтезированного гидролизом и тетраэтоксисилана в молярном соотношении 1:1, с добавлением экстракта розмарина. Пленки осаждалисьна подложку из нержавеющей стали марки 304Lметодом центрифугирования и выдерживались при комнатной температуре в течение 24 часов, с последующим определением характеристик коррозии. Структура, состав и прочность сцепления (адгезии) гибридных пленок, полученн...

  18. Effect of applied potential on changes in solution chemistry inside crevices on type 304L stainless steel and Alloy 825

    The changes in the pH, chloride concentration, and potential inside a rectangular crevice of metal against polymethyl methacrylate (PMMA) are monitored using microelectrodes as a function of time and externally applied potential. It is found that the environment inside the crevice is altered within the experimental time frame only when the external potential is maintained above a certain value. When the external potential exceeds a certain value, there is an incubation period followed by a rapid increase in the current density which is succeeded by a decrease in pH and the potential inside the crevice. The current density also decreases rapidly upon reversal of the external potential, while a significant reversal of pH occurs over a much longer period of time. The kinetics of these changes in the environment is a function of crevice tightness. A decrease in crevice gap results in a greater decrease in pH. The changes in chloride concentration are much more modest, perhaps due to the formation of chloride complexes which can not be detected by the Ag/AgCl microelectrode. Presence of chromium depletion on the surface of alloy 825 in the crevice results in a more rapid decrease in pH even when the surface is rougher. These observations are explained in terms of crevice corrosion nucleation in small zones of narrow gap between the peaks of surface asperities which then propagate laterally to adjoining zones of wider gaps between the peaks and valleys of the asperities

  19. Thermal fatigue cracking of austenitic stainless steels

    This report deals with the thermal fatigue cracking of austenitic stainless steels as AISI 316 LN and 304 L. Such damage has been clearly observed for some components used in Fast Breeder reactors (FBR) and Pressure Water Reactor (PWR). In order to investigate thermal fatigue, quasi-structural specimen have been used. In this frame, facilities enforcing temperature variations similar to those found under the operation conditions have been progressively developed. As for components, loading results from impeded dilatation. In the SPLASH facility, the purpose was to establish accurate crack initiation conditions in order to check the relevance of the usual component design methodology. The tested specimen is continuously heated by the passage of an electrical DC current, and submitted to cyclic thermal down shock (up to 1000 deg C/s) by means of periodical spraying of water on two opposite specimen faces. The number of cycles to crack initiation Ni is deduced from periodic examinations of the quenched surfaces, by means of optical microscopy. It is considered that initiation occurs when at least one 50μm to 150□m long crack is observed. Additional SPLASH tests were performed for N >> Ni, with a view to investigate the evolution of a surface multiple cracking network with the number of cycles N. The CYTHIA test was mainly developed for the purpose of assessing crack growth dynamics of one isolated crack in thermal fatigue conditions. Specimens consist of thick walled tubes with a 1 mm circular groove is spark-machined at the specimen centre. During the test, the external wall of the tube is periodically heated by using a HF induction coil (1 MHz), while its internal wall is permanently cooled by flowing water. Total crack growth is derived from post-mortem examinations, whereby the thermal fatigue final rupture surface is oxidized at the end of the test. The specimen is broken afterwards under mechanical fatigue at room temperature. All the tests confirm that usual

  20. Experimental investigation of the residual stresses of 304L tubular welded joints; Caracterisation des contraintes residuelles sur assemblages soudes tubulaires en acier 304L

    Monin, L.; Panier, S.; Hariri, S.; Zakrzewski, D. [Ecole des Mines de Douai, 941, rue Charles Bourseul, BP 10838, 59508 DOUAI Cedex (France); Faidi, C. [EDF-SEPTEN, 12-14, avenue Dutrievoz, 69628 VILLEURBANNE (France)

    2007-07-01

    In the nuclear energy industry, the use of components made of austenitic stainless steel is widely spread, because of its specific thermal properties. The assembly of these pressure vessels and piping by welding processes often requires surface mechanical operations. These operations aim at hardening surfaces and lowering roughness. Nevertheless the main effect of these operations is the occurrence of residual stresses which can have positive or negative effects on the fatigue life. In this study, we focus on the evaluation and relaxation of residual stresses level on AISI 304L austenitic stainless steel tubular welded structures. Some of these rings are base metal rings (which stand as reference), the rest presents a longitudinal and symmetrical Y-weld joint, with or without grinding. Surface residual stresses, and their relaxation, were determined by using the X-ray diffraction method. (authors) [French] L'utilisation de composants en acier inoxydable austenitique, aux proprietes thermiques bien specifiques, est tres courante dans le domaine de la production d'energie nucleaire. Les procedes d'assemblage par soudage de ces equipements sous pression requierent des traitements de parachevement mecanique afin d'ameliorer l'etat de surface et modifier l'etat mecanique en introduisant des contraintes residuelles, qui peuvent avoir une influence sur la duree de vie de la structure. Cette etude porte sur la caracterisation et la relaxation des contraintes residuelles, determinees sur des eprouvettes annulaires specifiques en acier inoxydable austenitique de type 304L, a l'etat brut ou avec des soudures, arasees ou non. La methode de determination utilisee est la diffraction des rayons X. La relaxation de ces contraintes au cours d'essais de fatigue est egalement etudiee. (auteurs)

  1. Compatibility of different stainless steels in molten Pb-Bi eutectic at high temperatures

    Advanced nuclear reactors and the accelerator driven subcritical (ADS) system require the structural materials to be in contact with the molten metals/lead-bismuth eutectic at 400 degC and higher temperatures. One of the primary concerns in using the molten lead-bismuth eutectic (LBE) as a coolant in the primary circuit of these systems is the degradation of structural materials in contact with LBE. An experimental setup has been fabricated to expose the materials in the molten LBE at high temperatures in stagnant condition under inert atmosphere. Samples from five different stainless steels (types 304L, 316L, 403, duplex SS SAF 2205 and super austenitic SS 2RK65) were exposed in this setup at 450 degC for 200h and at 500 degC for 600 and 2100 h under argon atmosphere. A different setup was prepared in which type 316L SS tube in the as-welded condition was exposed in molten LBE at 500 degC for 1200 h in rotating condition. All the samples showed formation of oxide on their surfaces. The thickness and compositional profiles of these oxides analyzed by EPMA confirmed formation of a double layer oxide on type 316L SS. The oxide thickness was highest on SS 403, while it was lowest on 304L and 316L SS. SEM results showed dissolution of materials at the surface in Sandvik 2RK65 and preferential dissolution of austenite phase in duplex SS. None of the stainless steels, except the duplex and the super austenitic stainless steels, showed any localized or selective corrosion. The composition of LBE before and after the exposure tests was analyzed by XRF technique. The result showed presence of Fe, Cr and Ni in the used LBE but these elements were not present in the virgin Pb-Ei alloy. This showed that the corrosion of stainless steels in LBE at temperatures upto 500 degC is due to oxidation and dissolution of alloying elements through the oxide on stainless steels. (author)

  2. Tritium in austenitic stainless steel vessels

    The vessel used for the long-term storage of tritium (titanium tritide) will be of welded 316L stainless steel construction. The 316L stainless is chosen partially because of its excellent resistance, in the wrought condition, to any degradation of mechanical properties from contact with hydrogen isotopes. The work reported here was undertaken to check that the welds in the vessel would have a satisfactory response to the hydrogen isotopes. A satisfactory response has been demonstrated, leading to a general conclusion that the titanium tritide/316L stainless steel vessel combination provides an extremely reliable storage facility for the tritium

  3. High Mn austenitic stainless steel

    Yamamoto, Yukinori [Oak Ridge, TN; Santella, Michael L [Knoxville, TN; Brady, Michael P [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN; Liu, Chain-tsuan [Knoxville, TN

    2010-07-13

    An austenitic stainless steel alloy includes, in weight percent: >4 to 15 Mn; 8 to 15 Ni; 14 to 16 Cr; 2.4 to 3 Al; 0.4 to 1 total of at least one of Nb and Ta; 0.05 to 0.2 C; 0.01 to 0.02 B; no more than 0.3 of combined Ti+V; up to 3 Mo; up to 3 Co; up to 1W; up to 3 Cu; up to 1 Si; up to 0.05 P; up to 1 total of at least one of Y, La, Ce, Hf, and Zr; less than 0.05 N; and base Fe, wherein the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale including alumina, nanometer scale sized particles distributed throughout the microstructure, the particles including at least one of NbC and TaC, and a stable essentially single phase FCC austenitic matrix microstructure that is essentially delta-ferrite-free and essentially BCC-phase-free.

  4. Ultrasonic stress evaluation through thickness of a stainless steel pressure vessel

    This paper investigates ultrasonic method in stress measurement through thickness of a pressure vessel. Longitudinal critically refracted (LCR) waves are employed to measure the welding residual stresses in a vessel constructed from austenitic stainless steel 304L. The acoustoelastic constant is measured through a hydro test to keep the pressure vessel intact. Hoop and axial residual stresses are evaluated by using different frequency range of ultrasonic transducers. The welding processes of vessel shell and caps are simulated by a 3D finite element (FE) model which is validated by hole-drilling method. The residual stresses calculated by FE simulation are then compared with those obtained from the ultrasonic measurement while a good agreement is observed. It is demonstrated that the residual stresses through thickness of the stainless steel pressure vessel can be evaluated by combining FE and LCR method (known as FELCR method). - Highlights: • The main goal is ultrasonic evaluation of through thickness stresses. • Welding processes of a stainless steel pressure vessel are modelled by FE. • The hole-drilling method is used to validate the FE results. • Residual stresses are measured by four different series of ultrasonic transducers. • The comparison between ultrasonic and FE results show an acceptable agreement

  5. Radiation-induced sensitisation of stainless steels

    The book contains the proceedings of a symposium on radiation-induced sensitization of stainless steels, which took place at Berkeley, United Kingdom, 1986. The purpose of the symposium was to examine the mechanism leading to inter-granular corrosion of 20%Cr/25% Ni/Nb stainless steel cladding of AGR fuel following irradiation. Nine papers are presented, of which three are theoretical, two papers are based upon corrosion studies of 20%Cr/25%Ni/Nb steel, and the remaining are concerned with compositional redistribution and its measurement. (U.K.)

  6. Ageing of cast stainless steel components

    The nuclear industry uses cast stainless steels in areas where it is paramount to ensure reactor safety. Investigations into the resistance of cast stainless steels to intergranular stress corrosion cracking (SCC) in simulated light water reactor conditions have shown contrary to expectation, some nuclear grade steels are indeed susceptible to SCC. The paper sets out of determine whether the information available in the various life extension databanks is sufficient for the application of the various empirical and theoretical models to the relevant safety analyses or if not, to identify areas where data is deficient. (Author)

  7. The electrochemical impedance spectroscopy of stainless steel exposed to high temperature water containing hydrogen peroxide

    In order to reveal the effects of water chemistry on stress corrosion cracking of stainless steels (SSs) exposed to reactor coolant, the electrochemical behaviors at the surfaces of SSs exposed to high temperature water should be studied. In this work, to clarify the electrochemical behaviors at the surfaces of SSs in high temperature water containing hydrogen peroxide (H2O2), the in-situ electrochemical impedance spectroscopy (EIS) of SSs exposed to high temperature water was carried out. The materials of test specimens were type 316L SS and type 304L SS. The range of the applied frequency in EIS was 100kHz - 1m or 10mHz. The obtained results are summarized as follows; 1) The charge transfer resistance at the boundary between the oxide film and the base metal (Rct) in oxygen (O2) condition was larger than Rct in H2O2 condition. This indicates that the corrosion rate of type 316L SS in high temperature water containing H2O2 is larger than that in O2 contained water. 2) The Rct of type 316L SS was larger than that of type 304L SS in high temperature water containing H2O2. This indicates that the corrosion resistance of type 316L SS is higher than that of type 304L SS. 3) It was estimated that the charge transfer was enhanced by the arrival of H2O2 to the surfaces of SSs after the start of H2O2 injection, and then the charge transfer was suppressed by the oxide film which was stabilized by H2O2. 4) It was estimated that the path of the charge transfer through the oxide film was different between O2 condition and H2O2 condition. The defects in the oxide film might be formed and become the path of the charge transfer trough the oxide film in H2O2 condition. (author)

  8. Corrosion behavior of sensitized duplex stainless steel.

    Torres, F J; Panyayong, W; Rogers, W; Velasquez-Plata, D; Oshida, Y; Moore, B K

    1998-01-01

    The present work investigates the corrosion behavior of 2205 duplex stainless steel in 0.9% NaCl solution after various heat-treatments, and compares it to that of 316L austenitic stainless steel. Both stainless steels were heat-treated at 500, 650, and 800 degrees C in air for 1 h, followed by furnace cooling. Each heat-treated sample was examined for their microstructures and Vickers micro-hardness, and subjected to the X-ray diffraction for the phase identification. Using potentiostatic polarization method, each heat-treated sample was corrosion-tested in 37 degrees C 0.9% NaCl solution to estimate its corrosion rate. It was found that simulated sensitization showed an adverse influence on both steels, indicating that corrosion rates increased by increasing the sensitization temperatures. PMID:9713683

  9. Ultrasonic testing of austenitic stainless steel welds

    Ultrasonic testing of austenitic stainless steel welds has been considered difficult because of the high noise level and remarkable attenuation of ultrasonic waves. To improve flaw detectability in this kind of steel, various inspection techniques have been studied. A series of tests indicated: (1) The longitudinal angle beam transducers newly developed during this study can detect 4.8 mm dia. side drilled holes in dissimilar metal welds (refraction angle: 550 from SUS side, 450 from CS side) and in cast stainless steel welds (refraction angle: 450, inspection frequency: 1 MHz). (2) Cracks more than 5% t in depth in the heat affected zones of fine-grain stainless steel pipe welds can be detected by the 450 shear wave angle beam method (inspection frequency: 2 MHz). (3) The pattern recognition method using frequency analysis technology was presumed useful for discriminating crack signals from spurious echoes. (author)

  10. Aging degradation of cast stainless steel

    A program is being conducted to investigate the significance of in-service embrittlement of cast-duplex stainless steels under light-water reactor operating conditions. Data from room-temperature Charpy-impact tests for several heats of cast stainless steel aged up to 10,000 h at 350, 400, and 4500C are presented and compared with results from other studies. Microstructures of cast-duplex stainless steels subjected to long-term aging either in the laboratory or in reactor service have been characterized. The results indicate that at least two processes contribute to the low-temperature embrittleent of duplex stainless steels, viz., weakening of the ferrite/austenite phase boundary by carbide precipitation and embrittlement of ferrite matrix by the formation of additional phases such as G-phase, Type X, or the α' phase. Carbide precipitation has a significant effect on the onset of embrittlement of CF-8 and -8M grades of stainless steels aged at 400 or 4500C. The existing correlations do not accurately represent the embrittlement behavior over the temperature range 300 to 4500C. 18 refs., 13 figs

  11. Aging degradation of cast stainless steel

    Chopra, O.K.; Chung, H.M.

    1985-10-01

    A program is being conducted to investigate the significance of in-service embrittlement of cast-duplex stainless steels under light-water reactor operating conditions. Data from room-temperature Charpy-impact tests for several heats of cast stainless steel aged up to 10,000 h at 350, 400, and 450/sup 0/C are presented and compared with results from other studies. Microstructures of cast-duplex stainless steels subjected to long-term aging either in the laboratory or in reactor service have been characterized. The results indicate that at least two processes contribute to the low-temperature embrittleent of duplex stainless steels, viz., weakening of the ferrite/austenite phase boundary by carbide precipitation and embrittlement of ferrite matrix by the formation of additional phases such as G-phase, Type X, or the ..cap alpha..' phase. Carbide precipitation has a significant effect on the onset of embrittlement of CF-8 and -8M grades of stainless steels aged at 400 or 450/sup 0/C. The existing correlations do not accurately represent the embrittlement behavior over the temperature range 300 to 450/sup 0/C. 18 refs., 13 figs.

  12. Lean-alloyed austenitic stainless steel with high resistance against hydrogen environment embrittlement

    Highlights: · Hydrogen environment embrittlement of austenitic steel. · Novel alloying concept for austenitic stainless steel with improved HEE resistance. · Influence of austenite stability and strain-induced α-martensite on HEE. · Cost efficiency by reduced amounts of nickel and molybdenum. · Influence of silicon on HEE. - Abstract: To address the upcoming austenitic stainless steel market for automotive applications involving hydrogen technology, a novel lean - alloyed material was developed and characterized. It comprises lower contents of nickel and molybdenum compared to existing steels for high - pressure hydrogen uses, for instance 1.4435 (AISI 316L). Alloying with manganese and carbon ensures a sufficient stability of the austenite at 8 wt.% of nickel while silicon is added to improve resistance against embrittlement by dissolved hydrogen. Investigations were performed by tensile testing in air and 400 bar hydrogen at 25 deg. C, respectively. In comparison to a standard 1.4307 (AISI 304L) material, a significant improvement of ductility was found. The materials concept is presented in general and discussed with regard to austenite stability and microstructure.

  13. Effect of cryorolling on the microstructure and tensile properties of bulk nano-austenitic stainless steel

    We report the synthesis of nanostructured austenitic AISI 304L stainless steel (SS) through cryorolling (CR) and reversion annealing in the temperature range of 700–800 °C. Severe CR at sub-zero temperature promotes twinning in γ-austenite, which transform into α'-martensite with lath thickness of 50–100 nm. Whereas, 50–300 nm size γ-grains recrystallize in nano-twinned α' through reversion annealing as confirmed by transmission electron microscopy (TEM) and electron back scattered diffraction (EBSD) imaging. The evolution of highly processable bulk nano-austenitic SS with bimodal grain size distribution on achieving high strength (~1295 MPa), large tensile ductility (~0.47), and true necking strain of 0.59, have been discussed

  14. Experimental study of behavior and functional capability of ferritic steel elbows and austenitic stainless steel thin-walled elbows

    The results are presented of two series of tests performed on 900 large-radius elbows. A first series of 10 tests was conducted on TU 42 C (equivalent to ASME SA 106 grade B) ferritic steel elbows with an outside diameter-to-wall thickness ratio of 6.7. A second series of 15 tests was conducted on Z2 CN 18-10 (equivalent to ASME TP 304 L) austenitic stainless steel elbows with an outside diameter-to-wall thickness ratio of 90. These elbows were subjected to in-plane (opening and closing) and out-of-plane bending moments. Changes in elbow angular deflection and ovalization of the mid-section were recorded as a function of applied moment. Measurements were made well into the plastic region. Influence of pressure, temperature and cyclic loading was also studied. The tests supplied extensive data on the behaviour of thin-walled austenitic stainless steel elbows when subjected to large displacements, including ability of the elbow to carry the flow under high loadings. Analysis in accordance with the requirements of the RCC-M1 was also performed to quantify flow area reduction at stress limits allowed by these rules, in addition to the displacement amplitude margin allowed by the level D service limit criteria with respect to the experimental limit moment. A criteria is proposed which aims to limit secondary stresses under faulted conditions. (author)

  15. Effects of δ-ferrite and welding structure on high-cycle fatigue properties of austenitic stainless steels weld metals

    We studied the effects of δ-ferrite and welding structure on high-cycle fatigue properties for austenitic stainless steel weld metals at cryogenic temperatures. SUS304L and SUS316L weld metals contained 0% δ-ferrite (0% material) and 10% δ-ferrite (10% material) were prepared. High-cycle fatigue tests were carried out at 293, 77 and 4 K. The S-N curves of those weld metals shifted towards higher stress levels, i.e., the longer life side, with decreasing test temperature. The ratios of 106-cycles fatigue strength (FS) to tensile strength (TS) of 0% material decreased from 0.8 to 0.45 and those of 10% material decreased between 0.35 to 0.65 with decreasing test temperature. Fatigue crack initiation sites of SUS304L 10% material were almost at blowholes, and those of SUS316L 10% material were at weld pass interface boundaries. On the other hand, those of 0% materials were considered to be due to the interface of the solidification structure. Although δ-ferrite reduces toughness at cryogenic temperatures in austenitic stainless steel weld metals, the effects of δ-ferrite on high-cycle fatigue properties are not significant

  16. HTPro: Low-temperature Surface Hardening of Stainless Steel

    Christiansen, Thomas Lundin; Somers, Marcel A. J.

    Low-temperature surface hardening of stainless steel provides the required performance properties without affecting corrosion resistance.......Low-temperature surface hardening of stainless steel provides the required performance properties without affecting corrosion resistance....

  17. Low temperature gaseous surface hardening of stainless steel

    Christiansen, Thomas; Somers, Marcel A. J.

    2010-01-01

    The present contribution gives an overview of some of the technological aspects of low temperature thermochemical treatment of stainless steel. Examples of low temperature gaseous nitriding, carburising and nitrocarburising of stainless steel are presented and discussed. In particular, the...

  18. Low temperature gaseous surface hardening of stainless steel

    Christiansen, Thomas; Somers, Marcel A. J.

    2011-01-01

    The present contribtion gives an overview of some of the technological aspects of low temperature thermochemical treatment of stainless steel. Examples of low temperature gaseous nitriding, carburising and nitrocarburising of stainless steel are presented and discussed. In particular, the...

  19. Thermal fatigue of austenitic stainless steel: influence of surface conditions through a multi-scale approach

    Some cases of cracking of 304L austenitic stainless steel components due to thermal fatigue were encountered in particular on the Residual Heat Removal Circuits (RHR) of the Pressurized Water Reactor (PWR). EDF has initiated a R and D program to understand assess the risks of damage on nuclear plant mixing zones. The INTHERPOL test developed at EDF is designed in order to perform pure thermal fatigue test on tubular specimen under mono-frequency thermal load. These tests are carried out under various loadings, surface finish qualities and welding in order to give an account of these parameters on crack initiation. The main topic of this study is the research of a fatigue criterion using a micro:macro modelling approach. The first part of work deals with material characterization (stainless steel 304L) emphasising the specificities of the surface roughness link with a strong hardening gradient. The first results of the characterization on the surface show a strong work-hardening gradient on a 250 microns layer. This gradient does not evolved after thermal cycling. Micro hardness measurements and TEM observations were intensively used to characterize this gradient. The second part is the macroscopic modelling of INTHERPOL tests in order to determine the components of the stress and strain tensors due to thermal cycling. The third part of work is thus to evaluate the effect of surface roughness and hardening gradient using a calculation on a finer scale. This simulation is based on the variation of dislocation density. A goal for the future is the determination of the fatigue criterion mainly based on polycrystalline modelling. Stocked energy or critical plane being available that allows making a sound choice for the criteria. (author)

  20. Action of an aerobic hydrogenotroph bacteria isolated from ultrapure water systems on AISI 304 stainless steel

    Several microbial studies have been recently performed in nuclear power stations. These studies concerned essentially the formation of bio-films on submerged metal coupons. Heterotrophic micro-organisms have been found in bulk water of nuclear fuel storage basins but the in situ nutrient sources for bacterial development in such highly oligo-trophic water was unknown. In nuclear environments, radiations lead to the production of molecular hydrogen, hydrogen peroxide and some radicals (OH, O2-) by radiolysis of water or embedding matrices. Bacterial oxidation of molecular H2 commonly occurs in nature, as molecular hydrogen represents a high-energy reductant. We investigated the microbiology of a ultra-pure water basin containing irradiating waste. The initial aim of this study was to determine if autotrophic bacterial growth was possible in this basin. A major bacteria was isolated (Ralstonia sp. GGLH002) which was able to grow autotrophically with hydrogen as the electron donor and oxygen as the electron acceptor, and heterotrophically with organic nutrients. Its hydrogenase activity has been characterized. We focused then our study on the effects of this strain on 304L AISI stainless steel depending on the nutrient source used for bacterial development, e.g hydrogen or organics. In conclusion, the mechanism of passivation enhanced by Ralstonia sp. GGLH002 on AISI 304L SS still remains unknown. Several techniques could give substantial information, including XPS and polarization curves. It seems for the moment that the major bacteria inhabiting an oxic environment containing hydrogen due to radiolysis is not aggressive to stainless steel in conditions near from its environment. Further investigations are needed to test this hypothesis, including a study of the molecular diversity of the bacteria using culture-independent techniques, as cultivatable bacterial populations represent in general only a fraction of the total bacteria. (authors)

  1. Phosphate coating on stainless steel 304 sensitized

    The stainless steel 304 can be sensitized when welding processes are applied, that causes the precipitation of chromium carbide in the grain limits, being promoted in this way the formation of galvanic cells and consequently the corrosion process. Using a phosphate coating is possible to retard the physiochemical damages that can to happen in the corrosion process. The stainless steel 304 substrate sensitized it is phosphate to base of Zn-Mn, in a immersion cell very hot. During the process was considered optimization values, for the characterization equipment of X-rays diffraction and scanning electron microscopy was used. The XRD technique confirmed the presence of the phases of manganese phosphate, zinc phosphate, as well as the phase of the stainless steel 304. When increasing the temperature from 60 to 90 C in the immersion process a homogeneous coating is obtained. (Author)

  2. Explosive Surface Hardening of Austenitic Stainless Steel

    Kovacs-Coskun, T.

    2016-04-01

    In this study, the effects of explosion hardening on the microstructure and the hardness of austenitic stainless steel have been studied. The optimum explosion hardening technology of austenitic stainless steel was researched. In case of the explosive hardening used new idea mean indirect hardening setup. Austenitic stainless steels have high plasticity and can be easily cold formed. However, during cold processing the hardening phenomena always occurs. Upon the explosion impact, the deformation mechanism indicates a plastic deformation and this deformation induces a phase transformation (martensite). The explosion hardening enhances the mechanical properties of the material, includes the wear resistance and hardness. In case of indirect hardening as function of the setup parameters specifically the flayer plate position the hardening increased differently. It was find a relationship between the explosion hardening setup and the hardening level.

  3. Ultrasonic Spectroscopy of Stainless Steel Sandwich Panels

    Cosgriff, Laura M.; Lerch, Bradley A.; Hebsur, Mohan G.; Baaklini, George Y.; Ghosn, Louis J.

    2003-01-01

    Enhanced, lightweight material systems, such as 17-4PH stainless steel sandwich panels are being developed for use as fan blades and fan containment material systems for next generation engines. In order to improve the production for these systems, nondestructive evaluation (NDE) techniques, such as ultrasonic spectroscopy, are being utilized to evaluate the brazing quality between the 17-4PH stainless steel face plates and the 17-4PH stainless steel foam core. Based on NDE data, shear tests are performed on sections representing various levels of brazing quality from an initial batch of these sandwich structures. Metallographic characterization of brazing is done to corroborate NDE findings and the observed shear failure mechanisms.

  4. Thermal aging of cast duplex stainless steels

    Cast duplex stainless steels of CR8M and CF8 are used in major components because of their superior characteristics, such as corrosion resistance, weldability and so on. But, these stainless steels are known to have tendency of thermal aging embrittlement after long term service. Therefore, mechanical properties have been investigated using Charpy impact specimens and fracture toughness specimens aged at 300∼400 C up to 40,000 hours. As the results, effects of thermal aging on mechanical properties of these stainless steels were identified and a good relationship between Charpy impact energy and fracture toughness was obtained. In addition, prediction method for Charpy absorbed energy and fracture toughness was established

  5. Stainless Steel Leaches Nickel and Chromium into Foods During Cooking

    Kamerud, Kristin L.; Hobbie, Kevin A.; Anderson, Kim A.

    2013-01-01

    Toxicological studies show that oral doses of nickel and chromium can cause cutaneous adverse reactions such as dermatitis. Additional dietary sources, such as leaching from stainless steel cookware during food preparation, are not well characterized. This study examined stainless steel grades, cooking time, repetitive cooking cycles, and multiple types of tomato sauces for their effects on nickel and chromium leaching. Trials included three types of stainless steels and a stainless steel sau...

  6. Initial oxidation of duplex stainless steel 2205

    Donik, E.; Kocijan, A.; Jenko, M. [Institute of metals and technology, Ljubljana (Slovenia)

    2009-07-01

    Due to superior mechanical and corrosion properties of duplex stainless steels which result in weight reduction of the constructions, thus contributing to the decreases in total costs and also due to the large and versatile usage of the alloy, duplex stainless steel is gradually displacing stainless steels of the AISI 300 series. Pickling of duplex stainless steel has proven to be much more difficult than that of standard austenitic grade (AISI 300 series). There is no complete agreement in the literature on scale (high temperature oxidation) dissolution mechanism in neutral pickling solutions. During annealing, duplex stainless steel is heated in annealing furnace up to 1050 C and is kept at this temperature for some time to soften the metal in order to release the work hardening induced by hot and cold rolling. The elimination of surface defects by forming the oxide scale is required to improve the corrosion resistance. Three different techniques were used to produce thin oxide layers on polished and sputter cleaned duplex stainless steel samples. They were exposed to 10{sup -5} mb pure oxygen inside the vacuum chamber, exposed to ambient conditions for 24 hours and plasma oxidized. Oxide layers thus produced were analysed using XPS depth profiling for determination of the oxide layer's composition with depth. It was found that all techniques produce oxide layer with different traces of metallic components and with chromium oxide maximum concentration shifted towards the oxide layer - bulk metal interface. Depletion of Cr in bulk immediately below the interface was also observed. Simplified ARXPS procedure was used to corroborate thickness estimates for thinnest oxide layers. (authors)

  7. Initial oxidation of duplex stainless steel 2205

    Due to superior mechanical and corrosion properties of duplex stainless steels which result in weight reduction of the constructions, thus contributing to the decreases in total costs and also due to the large and versatile usage of the alloy, duplex stainless steel is gradually displacing stainless steels of the AISI 300 series. Pickling of duplex stainless steel has proven to be much more difficult than that of standard austenitic grade (AISI 300 series). There is no complete agreement in the literature on scale (high temperature oxidation) dissolution mechanism in neutral pickling solutions. During annealing, duplex stainless steel is heated in annealing furnace up to 1050 C and is kept at this temperature for some time to soften the metal in order to release the work hardening induced by hot and cold rolling. The elimination of surface defects by forming the oxide scale is required to improve the corrosion resistance. Three different techniques were used to produce thin oxide layers on polished and sputter cleaned duplex stainless steel samples. They were exposed to 10-5 mb pure oxygen inside the vacuum chamber, exposed to ambient conditions for 24 hours and plasma oxidized. Oxide layers thus produced were analysed using XPS depth profiling for determination of the oxide layer's composition with depth. It was found that all techniques produce oxide layer with different traces of metallic components and with chromium oxide maximum concentration shifted towards the oxide layer - bulk metal interface. Depletion of Cr in bulk immediately below the interface was also observed. Simplified ARXPS procedure was used to corroborate thickness estimates for thinnest oxide layers. (authors)

  8. Embrittlement of austenitic stainless steel welds

    To prevent hot-cracking, austenitic stainless steel welds generally contain a small percent of delta ferrite. Although ferrite has been found to effectively prevent hot-cracking, it can lead to embrittlement of welds when exposed to elevated temperatures. The aging behavior of type-308 stainless steel weld has been examined over a range of temperatures 475--850 C for times up to 10,000 hrs. Upon aging, and depending on the temperature range, the unstable ferrite may undergo a variety of solid state transformations. These phase changes creep-rupture and Charpy impact properties

  9. Measuring secondary phases in duplex stainless steels

    Calliari, I.; Brunelli, K.; Dabalà, M.; Ramous, E.

    2009-01-01

    The use of duplex stainless steels is limited by their susceptibility to the formation of dangerous intermetallic phases resulting in detrimental effects on impact toughness and corrosion resistance. This precipitation and the quantitative determinations of the phases have received considerable attention and different precipitation sequences (σ phase, χ phase, and carbides) have been suggested. This study investigates the phase transformation during continuous cooling and isothermal treatments in commercial duplex stainless steel grades and the effects on alloy properties, and compares the most common techniques of analysis.

  10. Stainless Steel Microstructure and Mechanical Properties Evaluation

    Switzner, Nathan T

    2010-06-01

    A nitrogen strengthened 21-6-9 stainless steel plate was spinformed into hemispherical test shapes. A battery of laboratory tests was used to characterize the hemispheres. The laboratory tests show that near the pole (axis) of a spinformed hemisphere the yield strength is the lowest because this area endures the least “cold-work” strengthening, i.e., the least deformation. The characterization indicated that stress-relief annealing spinformed stainless steel hemispheres does not degrade mechanical properties. Stress-relief annealing reduces residual stresses while maintaining relatively high mechanical properties. Full annealing completely eliminates residual stresses, but reduces yield strength by about 30%.

  11. 21 CFR 872.3350 - Gold or stainless steel cusp.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gold or stainless steel cusp. 872.3350 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3350 Gold or stainless steel cusp. (a) Identification. A gold or stainless steel cusp is a prefabricated device made of austenitic alloys or...

  12. 21 CFR 878.4495 - Stainless steel suture.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Stainless steel suture. 878.4495 Section 878.4495...) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4495 Stainless steel suture. (a) Identification. A stainless steel suture is a needled or unneedled nonabsorbable surgical suture composed of...

  13. Low-Temperature Nitriding of Deformed Austenitic Stainless Steels with Various Nitrogen Contents Obtained by Prior High-Temperature Solution Nitriding

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas Lundin;

    2016-01-01

    In the past decades, high nitrogen steels (HNS) have been regarded as substitutes for conventional austenitic stainless steels because of their superior mechanical and corrosion properties. However, the main limitation to their wider application is their expensive production process. As an...... alternative, high-temperature solution nitriding has been applied to produce HNS from three commercially available stainless steel grades (AISI 304L, AISI 316, and EN 1.4369). The nitrogen content in each steel alloy is varied and its influence on the mechanical properties and the stability of the austenite...... investigated. Both hardness and yield stress increase and the alloys remain ductile. In addition, strain-induced transformation of austenite to martensite is suppressed, which is beneficial for subsequent low-temperature nitriding of the surface of deformed alloys. The combination of high- and low...

  14. Weld solidification cracking in 304 to 204L stainless steel

    Hochanadel, Patrick W [Los Alamos National Laboratory; Lienert, Thomas J [Los Alamos National Laboratory; Martinez, Jesse N [Los Alamos National Laboratory; Johnson, Matthew Q [Los Alamos National Laboratory

    2010-09-15

    A series of annulus welds were made between 304 and 304L stainless steel coaxial tubes using both pulsed laser beam welding (LBW) and pulsed gas tungsten arc welding (GTAW). In this application, a change in process from pulsed LBW to pulsed gas tungsten arc welding was proposed to limit the possibility of weld solidification cracking since weldability diagrams developed for GTAW display a greater range of compositions that are not crack susceptible relative to those developed for pulsed LBW. Contrary to the predictions of the GTAW weldability diagram, cracking was found.This result was rationalized in terms of the more rapid solidification rate of the pulsed gas tungsten arc welds. In addition, for the pulsed LBW conditions, the material compositions were predicted to be, by themselves, 'weldable' according to the pulsed LBW weldability diagram. However, the composition range along the tie line connecting the two compositions passed through the crack susceptible range. Microstructurally, the primary solidification mode (PSM) of the material processed with higher power LBW was determined to be austenite (A), while solidification mode of the materials processed with lower power LBW apparently exhibited a dual PSM of both austenite (A) and ferrite-austenite (FA) within the same weld. The materials processed by pulsed GTAW showed mostly primary austenite solidification, with some regions of either primary austenite-second phase ferrite (AF) solidification or primary ferrite-second phase austenite (FA) solidification. This work demonstrates that variations in crack susceptibility may be realized when welding different heats of 'weldable' materials together, and that slight variations in processing can also contribute to crack susceptibility.

  15. Stainless chromium-nickel steels. Chapter I

    The chemical composition is tabulated of 90 chromium-nickel stainless steels and alloys given in volume %. The values are also given of the corrosion resistance of the steels and alloys. The tables show data on the surface condition or the methods of material working, types and chemical composition of the medium where corrosion resistance tests were carried out, temperature, pressure, time of tests, corrosion rates, corrosion types, and literature references. A total of 35 references is given. (J.B.)

  16. Nickel-free austenitic stainless steels for medical applications

    Ke Yang and Yibin Ren

    2010-01-01

    Full Text Available The adverse effects of nickel ions being released into the human body have prompted the development of high-nitrogen nickel-free austenitic stainless steels for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also much improves steel properties. Here we review the harmful effects associated with nickel in medical stainless steels, the advantages of nitrogen in stainless steels, and emphatically, the development of high-nitrogen nickel-free stainless steels for medical applications. By combining the benefits of stable austenitic structure, high strength and good plasticity, better corrosion and wear resistances, and superior biocompatibility compared to the currently used 316L stainless steel, the newly developed high-nitrogen nickel-free stainless steel is a reliable substitute for the conventional medical stainless steels.

  17. Experiments on cold-formed ferritic stainless steel slender sections

    Bock Montero, Marina; Arrayago Luquin, Itsaso; Real Saladrigas, Esther

    2015-01-01

    The usage of stainless steel in construction has been increasing owing to its corrosion resistance, aesthetic appearance and favourable mechanical properties. The most common stainless steel grades used for structural applications are austenitic steels. The main drawback of these grades relies on their nickel content (around 8–10%), resulting in a relatively high initial material cost. Other stainless steel grades with lower nickel content such as the ferritic steels offer the benefits of ...

  18. Amorphous stainless steel coatings prepared by reactive magnetron-sputtering from austenitic stainless steel targets

    Cusenza, Salvatore; Schaaf, Peter

    2009-01-01

    Stainless steel films were reactively magnetron sputtered in argon/methane gas flow onto oxidized silicon wafers using austenitic stainless-steel targets. The deposited films of about 200 nm thickness were characterized by conversion electron Mössbauer spectroscopy, magnetooptical Kerr-effect, X-ray diffraction, scanning electron microscopy, Rutherford backscattering spectrometry, atomic force microscopy, corrosion resistance tests, and Raman spectroscopy. These complementary methods were us...

  19. Hydrogen gas embrittlement of selected stainless steels

    Hydrogen gas embrittlement of selected stainless steels: metastable 18-8, (α+γ) IN 744 and γ' or N-hardened austenites, has been investigated means of the triaxial disk pressure test at various pressure increase rates, at RT or sometimes -500C and +1000C. Test are supplemented with SEM and magnetic phase determination

  20. Austenitic stainless steels for cryogenic service

    Dalder, E.N.C.; Juhas, M.C.

    1985-09-19

    Presently available information on austenitic Fe-Cr-Ni stainless steel plate, welds, and castings for service below 77 K are reviewed with the intent (1) of developing systematic relationships between mechanical properties, composition, microstructure, and processing, and (2) of assessing the adequacy of these data bases in the design, fabrication, and operation of engineering systems at 4 K.

  1. Corrosion of plasma nitrided austenitic stainless steels

    The corrosion behaviour of plasma nitrided austenitic stainless steel grades AISI 304, 316 and 321 was studied at various temperatures. Certain plasma nitriding cycles included a post-oxidation treatment. The corrosion rates were measured using linear polarisation technique. Results showed that corrosion rate increased with the plasma nitriding temperature. Minimum deterioration occurred at 653K. (author). 2 tabs., 4 figs., 10 refs

  2. Microbially Influenced Corrosion of Stainless Steels

    Lee, Yong Deuk; Ryu, Seung Ki; Kim Young Ho [POSCO Techanical Researh Laboratories, Pohang (Korea, Republic of)

    1996-06-25

    Microbially Influenced Corrosion(MIC) is often a significant factor in controlling the long-term performance of most structural materials in industrial applications. This papers cover MIC mechanism and evaluation of stainless steels in soil and sea water environments. Papers also cover detection, monitoring and mitigation of MIC, biocides and treatments. (author). 28 refs., 2 tabs., 5 figs.

  3. CASE-HARDENING OF STAINLESS STEEL

    2004-01-01

    The invention relates to case-hardening of a stainless steel article by means of gas including carbon and/or nitrogen, whereby carbon and/or nitrogen atoms diffuse through the surface into the article. The method includes activating the surface of the article, applying a top layer on the activated...

  4. Corrosion Properties of Laser Welded Stainless Steel

    Weldingh, Jakob; Olsen, Flemmming Ove

    1997-01-01

    In this paper the corrosion properties of laser welded AISI 316L stainless steel are examined. A number of different welds has been performed to test the influence of the weld parameters of the resulting corrosion properties. It has been chosen to use the potential independent critical pitting...

  5. Irradiation creep of stainless steel in bending

    The development is described of a test to measure irradiation enhanced creep in bending of 20% cold-worked Type-316 stainless steel. The test will be irradiated in the experimental fast reactor EBR-II. The rationale used in design selection is described. The selected beam designs, the supportive tests in other stress states and the measurement techniques are described in detail. (Auth.)

  6. Irradiation creep of stainless steel in bending

    The development is described of a test to measure irradiation enhanced creep in bending of 20% cold-worked Type-316 stainless steel. The test will be irradiated in the experimental fast reactor EBR-II. The rationale used in design selection is described. The selected beam designs, the supportive tests in other stress states and the measurement techniques are described in detail

  7. Austenitic stainless steels for cryogenic service

    Presently available information on austenitic Fe-Cr-Ni stainless steel plate, welds, and castings for service below 77 K are reviewed with the intent (1) of developing systematic relationships between mechanical properties, composition, microstructure, and processing, and (2) of assessing the adequacy of these data bases in the design, fabrication, and operation of engineering systems at 4 K

  8. The energy benefit of stainless steel recycling

    The energy used to produce austenitic stainless steel was quantified throughout its entire life cycle for three scenarios: (1) current global operations, (2) 100% recycling, and (3) use of only virgin materials. Data are representative of global average operations in the early 2000s. The primary energy requirements to produce 1 metric ton of austenitic stainless steel (with assumed metals concentrations of 18% Cr, 8% Ni, and 74% Fe) is (1) 53 GJ, (2) 26 GJ, and (3) 79 GJ for each scenario, with CO2 releases totaling (1) 3.6 metric tons CO2, (2) 1.6 metric tons CO2, and (3) 5.3 metric tons CO2. Thus, the production of 17 million metric tons of austenitic stainless steel in 2004 used approximately 9.0x1017 J of primary energy and released 61 million metric tons of CO2. Current recycling operations reduce energy use by 33% (4.4x1017 J) and CO2 emissions by 32% (29 million tons). If austenitic stainless steel were to be produced solely from scrap, which is currently not possible on a global level due to limited availability, energy use would be 67% less than virgin-based production and CO2 emissions would be cut by 70%. The calculation of the total energy is most sensitive to the amount and type of scrap fed into the electric arc furnace, the unit energy of the electric arc furnace, the unit energy of ferrochromium production, and the form of primary nickel

  9. Stainless steel forgings for nuclear chemical plants

    This Specification covers detailed requirements for the supply of austenitic stainless steel forgings used in radioactive and corrosive areas within the Nuclear Industry. With the exception of 316S51 the materials specified are all suitable for contact with nitric acid, 316S51 being included as suitable for use in contact with sodium and other alkali metals at elevated temperatures. (author)

  10. Advances in the research of nitrogen containing stainless steels

    2004-01-01

    The current status of nitrogen containing stainless steels at home and aboard has been introduced. The function and existing forms of nitrogen in the stainless steels, influence of nitrogen on mechanical properties and anti-corrosion properties as well as the application of nitrogen containing cast stainless steels were discussed in this paper. It is clear that nitrogen will be a potential and important alloying element in stainless steels. And Argon Oxygen Decarbonization (AOD) refining can provide an advanced manufacture process for nitrogen containing stainless steels with ultra-low- carbon and high cleanliness.

  11. Sintering and characterization of YAG dispersed ferritic stainless steels

    The present study investigates the effect of yttrium aluminium garnet (YAG) addition on the densification, mechanical, tribological and corrosion behaviour of ferritic (434L) stainless steels. The composites were sintered at both solid-state (1200 deg. C) and supersolidus (1400 deg. C) sintering conditions. Supersolidus sintering results in superior densification, hardness and corrosion resistance of both straight 434L stainless steel as well as YAG reinforced 434L stainless steels. The addition of YAG to 434L stainless steels at supersolidus sintered conditions improves the strength and wear resistance of 434L stainless steels without significantly degrading the corrosion performance

  12. Stainless steels: general considerations and rates of crack growth

    This report describes the different types of stainless steels, and presents the laws governing the rates of crack growth for several stainless steels extensively used for the manufacture of structures in nuclear power plants. The laws are not discussed in detail in the report. After a brief review of the development of stainless steels, the main categories of stainless steels, their mechanical characteristics and corrosion resistance, are presented. Finally, the rates of crack growth are presented for various stainless steels, mainly austenitic. The study overall aim is an investigation of the cracking in the 900 MWe primary pump thermal barriers and shafts

  13. Advances in the research of nitrogen containing stainless steels

    Zhongqiu ZHANG

    2004-08-01

    Full Text Available The current status of nitrogen containing stainless steels at home and abroad has been introduced. The function and existing forms of nitrogen in stainless steels, influence of nitrogen on mechanical properties and anti-corrosion properties as well as the application of the nitrogen containing stainless steels were discussed in this paper. It is clear that nitrogen will be a potential and important alloying element in stainless steels. And Argon Oxygen Decarbonization (AOD refining can provide an advanced manufacture process for nitrogen containing stainless steels with ultra-low carbon and high cleaniness.

  14. Correlation of the surface composition of degassed 347 stainless steel with thermally desorbed H2 and CO

    Variations in the surface composition of stainless steel after a 24 h, 250 deg. C bakeout over the temperature range of room temperature to 800 deg. C have been correlated with desorption of H2 and CO. The surface composition of the 347 stainless steel was monitored by Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) and desorption kinetics were determined from temperature desorption spectroscopy (TDS). Non-linear TDS was used to resolve the surface hydrogen from the bulk hydrogen. H2 and CO were observed to desorb from degassed 347 stainless steel by second-order kinetics, i.e., the gases were generated from atoms at the surface. The oxygen exchange from the surface CrxOy, FexOy to the residing carbon in the surface complex appears to control the CO generation. The onset of H2 desorption occurred slightly ahead of the CO, reached a maximum almost simultaneously (∼420 deg. C) and then declined in concert with the AES detected surface C and O. Non-linear TDS applied to large, cylindrical samples of 347 stainless steel showed H2 and CO surface desorption completely resolved from H2 bulk desorption. The steady state hydrogen desorption rate following the bakeout is bulk diffusion limited and was found to be 5.6x10-12 Torr l/(s cm2). Some discussion of the surface complex stress on the aforementioned oxide decomposition with temperature is also presented. Similar experiments on 304L stainless steel gave the same results as were observed on 347 stainless steel

  15. Aging degradation of cast stainless steel

    A program is being conducted to investigate the significance of in-service embrittlement of cast duplex stainless steels under light-water reactor operating conditions. Microstructures of cast materials subjected to long-term aging either in reactor service or in the laboratory have been characterized by TEM, SANS, and APFIM techniques. Two precipitate phases, i.e., the Cr-rich α' and Ni- and Si-rich G phase, have been identified in the ferrite matrix of the aged steels. The results indicate that the low-temperature embrittlement is primarily caused by α' precipitates which form by spinodal decomposition. The relative contribution of G phase to loss of toughness is now known. Microstructural data also indicate that weakening of ferrite/austenite phase boundary by carbide precipitates has a significant effect on the onset and extent of embrittlement of the high-carbon CF-8 and CF-8M grades of stainless steels, particularly after aging at 400 or 4500C. Data from Charpy-impact, tensile, and J-R curve tests for several heats of cast stainless steel aged up to 10,000 h at 350, 400, and 4500C are presented and correlated with the microstructural results. Thermal aging of the steels results in an increase in tensile strength and a decrease in impact energy, J/sub IC/, and tearing modulus. The fracture toughness results show good agreement with the Charpy-impact data. The effects of compositional and metallurgical variables on loss of toughness are discussed

  16. Austenitic stainless steels with cryogenic resistance

    The most used austenitic stainless steels are alloyed with chromium and nickel and have a reduced carbon content, usually lower than 0.1 % what ensures corresponding properties for processing by plastic deformation at welding, corrosion resistance in aggressive environment and toughness at low temperatures. Steels of this kind alloyed with manganese are also used to reduce the nickel content. By alloying with manganese which is a gammageneous element one ensures the stability of austenites. Being cheaper these steels may be used extensively for components and equipment used in cryogenics field. The best results were obtained with steels of second group, AMnNi, in which the designed chemical composition was achieved, i.e. the partial replacement of nickel by manganese ensured the toughness at cryogenic temperatures. If these steels are supplementary alloyed, their strength properties may increase to the detriment of plasticity and toughness, although the cryogenic character is preserved

  17. Nickel-free austenitic stainless steels for medical applications

    Ke Yang and Yibin Ren

    2010-01-01

    The adverse effects of nickel ions being released into the human body have prompted the development of high-nitrogen nickel-free austenitic stainless steels for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also much improves steel properties. Here we review the harmful effects associated with nickel in medical stainless steels, the advantages of nitrogen in stainless steels, and emphatically, the development of high-nitrogen nickel-free stainl...

  18. Effect of sulfur on the SCC and corrosion fatigue performance of stainless steel

    Stress corrosion cracking and corrosion fatigue experiments were conducted on model heats of 304/304L stainless steel with systematically controlled sulfur content to isolate the influence of sulfur on crack growth behavior. The results of the SCC experiments conducted in 338 C. degrees deaerated water on 20% cold worked model heats with 0.006 and 0.012 wt% sulfur showed an order of magnitude or more reduction in the crack growth rate relative to a model heat with <0.001 wt% sulfur. Corrosion fatigue crack growth rates revealed a reduction in the crack growth rates of the elevated sulfur heats relative to model predicted steady state crack growth rates with increasing rise time for nominal loading conditions of a stress ratio of 0.7 and a stress intensity factor range of 6.6 MPa√m. At the longest rise time of 5.330 sec, the corrosion fatigue crack growth rate of the 0.006 wt% sulfur model heat was only 13% of model predictions and the crack growth of the 0.012 wt% sulfur heat completely stalled. Experiments conducted in anion faulted aerated water on stainless steel heats with moderate to high sulfur and variable carbon and boron contents showed that any detrimental effect of sulfur in this environment was secondary to the effect of sensitization in promoting SCC growth. (authors)

  19. Corrosion experiments on stainless steels used in dry storage canisters of spent nuclear fuel

    Ryskamp, J.M.; Adams, J.P.; Faw, E.M.; Anderson, P.A.

    1996-09-01

    Nonradioactive (cold) experiments have been set up in the Idaho Chemical Processing Plant (ICPP)-1634, and radioactive (hot) experiments have been set up in the Irradiated Fuel Storage Facility (IFSF) at ICPP. The objective of these experiments is to provide information on the interactions (corrosion) between the spent nuclear fuel currently stored at the ICPP and the dry storage canisters and containment materials in which this spent fuel will be stored for the next several decades. This information will be used to help select canister materials that will retain structural integrity over this period within economic, criticality, and other constraints. The two purposes for Dual Purpose Canisters (DPCs) are for interim storage of spent nuclear fuel and for shipment to a final geological repository. Information on how corrosion products, sediments, and degraded spent nuclear fuel may corrode DPCs will be required before the DPCs will be allowed to be shipped out of the State of Idaho. The information will also be required by the Nuclear Regulatory Commission (NRC) to support the licensing of DPCs. Stainless steels 304L and 316L are the most likely materials for dry interim storage canisters. Welded stainless steel coupons are used to represent the canisters in both hot and cold experiments.

  20. Corrosion experiments on stainless steels used in dry storage canisters of spent nuclear fuel

    Nonradioactive (cold) experiments have been set up in the Idaho Chemical Processing Plant (ICPP)-1634, and radioactive (hot) experiments have been set up in the Irradiated Fuel Storage Facility (IFSF) at ICPP. The objective of these experiments is to provide information on the interactions (corrosion) between the spent nuclear fuel currently stored at the ICPP and the dry storage canisters and containment materials in which this spent fuel will be stored for the next several decades. This information will be used to help select canister materials that will retain structural integrity over this period within economic, criticality, and other constraints. The two purposes for Dual Purpose Canisters (DPCs) are for interim storage of spent nuclear fuel and for shipment to a final geological repository. Information on how corrosion products, sediments, and degraded spent nuclear fuel may corrode DPCs will be required before the DPCs will be allowed to be shipped out of the State of Idaho. The information will also be required by the Nuclear Regulatory Commission (NRC) to support the licensing of DPCs. Stainless steels 304L and 316L are the most likely materials for dry interim storage canisters. Welded stainless steel coupons are used to represent the canisters in both hot and cold experiments

  1. Study of the experimental parameters associated to the determination of residual macro stresses in stainless steel tubes, through x-ray diffraction method

    The basic principles related to the determination of residual macro stresses by X-rays diffractometry are present, whereas different techniques associated with the respective experimental errors are discussed. The residual stresses in two 304 L stainless steel tubes were measured using three models of diffractometers, Rigaku SG-8, Jeol JDX-11PA and Rigaku Strainflex. The measured values of stresses as well as the reproducibilities are examined. The suitability of peak location method, by fitting three data points to the parabolic function, is discussed through values of position and intensity obtained by two of the above diffractometers. (author)

  2. Study of the experimental parameters associated to the determination of residual macro stresses in stainless steel tubes through x-rays diffraction method

    The basic principles related to the determination of residual macro stresses by X-rays diffractometry are present, whereas different techniques associated with the respective experimental errors are discussed. The residual stresses in two 304 L stainless steel tubes were measured using three models of diffractometers, Rigaku SG-8, Jeol JDX-11PA and Rigaku Strainflex. The measured values of stresses as well as the reproducibilities are examined. The suitability of peak location method, by fitting three data points to the parabolic function, is discussed through values of position and intensity obtained by two of the above diffractometers. (author)

  3. Tensile-property characterization of thermally aged cast stainless steels

    Michaud, W.F.; Toben, P.T.; Soppet, W.K.; Chopra, O.K. [Argonne National Lab., IL (United States)

    1994-02-01

    The effect of thermal aging on tensile properties of cast stainless steels during service in light water reactors has been evaluated. Tensile data for several experimental and commercial heats of cast stainless steels are presented. Thermal aging increases the tensile strength of these steels. The high-C Mo-bearing CF-8M steels are more susceptible to thermal aging than the Mo-free CF-3 or CF-8 steels. A procedure and correlations are presented for predicting the change in tensile flow and yield stresses and engineering stress-vs.-strain curve of cast stainless steel as a function of time and temperature of service. The tensile properties of aged cast stainless steel are estimated from known material information, i.e., chemical composition and the initial tensile strength of the steel. The correlations described in this report may be used for assessing thermal embrittlement of cast stainless steel components.

  4. Tensile-property characterization of thermally aged cast stainless steels

    The effect of thermal aging on tensile properties of cast stainless steels during service in light water reactors has been evaluated. Tensile data for several experimental and commercial heats of cast stainless steels are presented. Thermal aging increases the tensile strength of these steels. The high-C Mo-bearing CF-8M steels are more susceptible to thermal aging than the Mo-free CF-3 or CF-8 steels. A procedure and correlations are presented for predicting the change in tensile flow and yield stresses and engineering stress-vs.-strain curve of cast stainless steel as a function of time and temperature of service. The tensile properties of aged cast stainless steel are estimated from known material information, i.e., chemical composition and the initial tensile strength of the steel. The correlations described in this report may be used for assessing thermal embrittlement of cast stainless steel components

  5. The compatibility of stainless steels with particles and powders of uranium carbide and low-sulphur UCS fuels

    Slightly hyperstoichiometric (U,Pu)C is a potential nuclear fuel for fast breeder reactors. The excess carbon above the stoichiometric amount results in a higher carbon activity in the fuel, and carbon is transferred to the stainless steel cladding, resulting in embrittlement of the cladding. It is with this problem of carbon transfer from the fuel to the cladding that this thesis is concerned. For practical reasons, UC and not (U,Pu)C was used as the fuel. The theory of decarburisation of carbide fuel and the carburisation of stainless steel, the facilities constructed for the project at the Atomic Energy Board, and the experimental techniques used, including preparation of the fuels, are discussed. The effect of a number of variables of uranium carbide fuel on its compatibility behaviour with stainless steels was investigated, as well as the effect om microstructure and type of stainless steel (304, 304 L and 316) on the rate of carburisation. These studies can be briefly summarised under the following headings: powder-particle size; surface oxidation of uranium carbide; preparation temperature of uranium carbide; low sulfur UCS fuels; uranium sulfide and the microstructure and type of steel. The author concludes that: the effect of surface oxidation and particle size must be taken into account when evaluating out-of-pile tests; the possible effects of surface oxidation must be taken into account when considering vibro-compacted carbide fuels; there is no advantage in replacing a fraction of the carbon atoms by sulphur atoms in slightly hyperstoichiometric carbide fuels, and the type and thermo-mechanical treatment of the stainless steel used as cladding material in a fuel pin is not important as far as the rate of carburisation by the fuel is concerned

  6. Phase Transformation in Cast Superaustenitic Stainless Steels

    Nathaniel Steven Lee Phillips

    2006-12-12

    Superaustenitic stainless steels constitute a group of Fe-based alloys that are compositionally balanced to have a purely austenitic matrix and exhibit favorable pitting and crevice corrosion resistant properties and mechanical strength. However, intermetallic precipitates such as sigma and Laves can form during casting or exposure to high-temperature processing, which degrade the corrosion and mechanical properties of the material. The goal of this study was to accurately characterize the solid-solid phase transformations seen in cast superaustenitic stainless steels. Heat treatments were performed to understand the time and temperature ranges for intermetallic phase formations in alloys CN3MN and CK3MCuN. Microstructures were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy and wavelength dispersive spectroscopy (EDS, WDS). The equilibrium microstructures, composed primarily of sigma and Laves within purely austenitic matrices, showed slow transformation kinetics. Factors that determine the extent of transformation, including diffusion, nucleation, and growth, are discussed.

  7. Plasma spot welding of ferritic stainless steels

    Plasma spot wedding of ferritic stainless steels studied. The study was focused on welding parameters, plasma and shieldings and the optimum welding equipment. Plasma-spot welded overlap joints on a 0.8 mm thick ferritic stainless steel sheet were subjected to a visual examination and mechanical testing in terms of tension-shear strength. Several macro specimens were prepared Plasma spot welding is suitable to use the same gas as shielding gas and as plasma gas , i. e. a 98% Ar/2% H2 gas mixture. Tension-shear strength of plasma-spot welded joint was compared to that of resistance sport welded joints. It was found that the resistance welded joints withstand a somewhat stronger load than the plasma welded joints due to a large weld sport diameter of the former. Strength of both types of welded joints is approximately the same. (Author) 32 refs

  8. Tritium Depth Profiles in 316 Stainless Steel

    Torikai, Yuji; Murata, Daiju; Penzhorn, Ralf-Dieter; Akaishi, Kenya; Watanabe, Kuniaki; Matsuyama, Masao

    To investigate the behavior of hydrogen uptake and release by 316 stainless steel (SS316), as-received and finely polished stainless steel specimens were exposed at 573 K to tritium gas diluted with hydrogen. Then tritium concentration in the exposed specimens was measured as a function of depth using a chemical etching method. All the tritium concentration profiles showed a sharp drop in the range of 10 μm from the top surface up to the bulk. The amount of tritium absorbed into the polished specimens was three times larger than that into the as-received specimen. However, the polishing effects disappeared by exposing to the air for a long time.

  9. Cast alumina forming austenitic stainless steels

    Muralidharan, Govindarajan; Yamamoto, Yukinori; Brady, Michael P

    2013-04-30

    An austenitic stainless steel alloy consisting essentially of, in terms of weight percent ranges 0.15-0.5C; 8-37Ni; 10-25Cr; 2.5-5Al; greater than 0.6, up to 2.5 total of at least one element selected from the group consisting of Nb and Ta; up to 3Mo; up to 3Co; up to 1W; up to 3Cu; up to 15Mn; up to 2Si; up to 0.15B; up to 0.05P; up to 1 total of at least one element selected from the group consisting of Y, La, Ce, Hf, and Zr; alumina, and a stable essentially single phase FCC austenitic matrix microstructure, the austenitic matrix being essentially delta-ferrite free and essentially BCC-phase-free. A method of making austenitic stainless steel alloys is also disclosed.

  10. Studies of stainless steel exposed to sandblasting

    Horodek Paweł

    2015-12-01

    Full Text Available The influence of sandblasting on surface and subsurface of stainless steel is investigated using variable energy positron beam (VEP, positron annihilation spectroscopy (PAS, scanning electron microscopy (SEM, and atomic force microscopy (AFM. Samples of stainless steel were blasted using 110 μm particles of Al2O3 under different pressure and time duration. In the case of sandblasting for 90 s, the reduction of positron diffusion length depending on the applied pressure was observed. Sandblasting during 30 s leads only to the reduction of positron diffusion length to about 60 nm for all samples. Positron lifetimes close to 170 ps measured using positrons emitted directly from the source point to the presence of vacancies on the dislocation lines. SEM and AFM images show that surface roughness depends rather on pressure of sandblasting than time of exposition.

  11. Diamond deposition on siliconized stainless steel

    Silicon diffusion layers in AISI 304 and AISI 316 type stainless steels were investigated as an alternative to surface barrier coatings for diamond film growth. Uniform 2 μm thick silicon rich interlayers were obtained by coating the surface of the steels with silicon and performing diffusion treatments at 800 deg. C. Adherent diamond films with low sp2 carbon content were deposited on the diffused silicon layers by a modified hot filament assisted chemical vapor deposition (HFCVD) method. Characterization of as-siliconized layers and diamond coatings was performed by energy dispersive X-ray analysis, scanning electron microscopy, X-ray diffraction and Raman spectroscopy.

  12. Thermal ageing of duplex stainless steels

    The evolution of the mechanical properties of Mobearing anf Mo-free cast duplex stainless steels, induced by long term ageing in the range 300-400 deg C, has been studied in relation with the evolution of their microstructure. The unmixing of the ferritic Fe-Cr-Ni, solid solution by three-dimensional (sponge-like) spinodal decomposition and the precipitation of intermetallic G-phase particles are the main characteristics of this microstructural evolution

  13. Pitting corrosion resistant austenite stainless steel

    van Rooyen, D.; Bandy, R.

    A pitting corrosion resistant austenite stainless steel comprises 17 to 28 wt. % chromium, 15 to 26 wt. % nickel, 5 to 8 wt. % molybdenum, and 0.3 to 0.5 wt. % nitrogen, the balance being iron, unavoidable impurities, minor additions made in the normal course of melting and casting alloys of this type, and may optionally include up to 10 wt. % of manganese, up to 5 wt. % of silicon, and up to 0.08 wt. % of carbon.

  14. Fatigue fracture modes of a stainless steel

    The influence of strain hardening and martensite phase transformation on the fatigue fracture regions (pulsative tension) of a Stainless Steel type AISI 316 was investigated. This lead to the conclusion that the greater austenite strain hardening level only favours the occurrence of a brittle fracture. Also, in as much as the static induced martensite is concerned, a direct influence on the failure process was not observed, whereas, apparently, the one transformed under cyclic loading has no contribution to the rupture mechanisms. (author)

  15. Cyclic deformation of duplex stainless steels

    Mateo García, Antonio Manuel; Gironés, Ana

    2011-01-01

    Duplex stainless steels configure a family of metallic alloys that combined elevated mechanical properties with improved corrosion resistance when compared to standard austenitic grades. This excellent combination of properties leads to their use under many different applications, particularly in the fields of chemical, petrochemical, pulp and paper industries. Moreover, these applications usually involve cyclic loading, and consequently the study of fatigue properties has a great significanc...

  16. Ultrasonic examination of cast stainless steel

    We present the recent results of a program between CEA and EDF concerning ultrasonic examination of cast stainless steel. We compare the results obtained with different transducers, in particular large aperture composite transducers. We present different signal processing techniques (Spit Spectrum Processing) and image processing, developed to increase signal to noise ratio. Detection capabilities for artificial defects in different structures (equiaxed, columnar structures) are discussed. (authors). 2 refs., 15 figs

  17. Complex Protection of Vertical Stainless Steel Tanks

    Fakhrislamov Radik Zakievich

    2014-01-01

    The authors consider the problem of fail-safe oil and oil products storage in stainless steel tanks and present the patented tank inner side protection technology. The latter provides process, ecological and fire safety and reducing soil evaporation of oil products, which is a specific problem. The above-mentioned technology includes corrosion protection and heat insulation protection providing increase of cover durability and RVS service life in general. The offered technological protection ...

  18. SRS stainless steel beneficial reuse program

    Boettinger, W.L.

    1997-02-01

    The US Department of Energy`s (DOE) Savannah River Site (SRS) has thousands of tons of stainless steel radioactive scrap metal (RSNI). Much of the metal is volumetrically contaminated. There is no {open_quotes}de minimis{close_quotes} free release level for volumetric material, and therefore no way to recycle the metal into the normal commercial market. If declared waste, the metal would qualify as low level radioactive waste (LLW) and ultimately be dispositioned through shallow land buried at a cost of millions of dollars. The metal however could be recycled in a {open_quotes}controlled release{close_quote} manner, in the form of containers to hold other types of radioactive waste. This form of recycle is generally referred to as {open_quotes}Beneficial Reuse{close_quotes}. Beneficial reuse reduces the amount of disposal space needed and reduces the need for virgin containers which would themselves become contaminated. Stainless steel is particularly suited for long term storage because of its resistance to corrosion. To assess the practicality of stainless steel RSM recycle the SRS Benficial Reuse Program began a demonstration in 1994, funded by the DOE Office of Science and Technology. This paper discusses the experiences gained in this program.

  19. SCC of stainless steel under evaporative conditions

    Andersen, H.; Arnvig, P.E.; Wasielewska, W.; Wegrelius, L.; Wolfe, C. [Avesta Sheffield AB, Avesta (Sweden)

    1998-12-31

    Three different test methods have been used to assess the susceptibility of different stainless steel grades to SCC under evaporative and immersed conditions. The methods employed were the drop evaporation test, the wick test and a high temperature, high pressure test simulating a feedwater heater tubing application in power plants. The alloys investigated were commercially produced austenitic and duplex stainless steels varying in chemical composition, plus one copper-nickel alloy. The resistance of austenitic stainless steels towards SCC increased by increasing the content of Ni, Mo and Cr, thus the super austenitic 654SMO{reg_sign} (uns32654) did not show any cracking in any of the three tests. The super austenitic 254SMO{reg_sign} (UNS31254) revealed only slight SCC in the simulated feed water heater tubing application while the equivalent N08367 revealed severe pitting and cracking. The drop evaporation test exhibited the most severe test conditions characterized by thermally induced fatigue effects, sensibility to onset of corrosion and severe acidic conditions generated under deposits on the test specimen. Some factors in stress corrosion cracking tests such as thermal fatigue, diffusion, heat transfer and stress condition, are discussed with regard to their influence on the test results.

  20. Aging degradation of cast stainless steel

    A program is being conducted to investigate the significance of in-service embrittlement of cast duplex stainless steels under light-water reactor operating conditions. Microstructures of cast materials subjected to long-term aging either in reactor service or in the laboratory have been characterized by TEM, SANS, and APFIM techniques. Two precipitate phases, i.e., the Cr-rich α' phase and the Ni- and Si-rich G phase, have been identified in the ferrite matrix of the aged steels. The results indicate that the low-temperature embrittlement is primarily caused by α' precipitates which form by spinodal decomposition. The relative contribution of the G phase to loss of toughness is now known. Microstructural data also indicate that weakening of the ferrite/austenite phase boundary by carbide precipitates has a significant effect on the onset and extent of embrittlement of the high-carbon CF-8 and CF-8M grades of stainless steels, particularly after aging at 400 or 4500C. Data from Charpy-impact, tensile, and J-R curve tests for several heats of cast stainless steel aged up to 10,000 h at 350, 400, and 4500C are presented and correlated with the microstructural results. Thermal aging of the steels results in an increase in tensile strength and a decrease in impact energy, J/sub IC/, and tearing modulus. The fracture toughness results show good agreement with the Charpy-impact data. The effects of compositional and metallurgical variables on loss of toughness are discussed

  1. Friction Stir Welding of austenitic stainless steels

    C. Meran

    2010-11-01

    Full Text Available Purpose: Friction Stir Welding (FSW was applied austenitic stainless steels that is difficult to weld using FSW technique. Proper weld can be obtained by using appropriate welding parameter. In this paper, the effect of different tool rotational speeds, traverse speeds, compressive tool forces, and tool angles was investigated.Design/methodology/approach: The dimension of 3 mm x 75 mm x 150 mm two stainless steel plates were used and butt welded by FSW method using 7.5 kW vertical head milling machine. All welded test specimens were prepared perpendicular to the weld line in order to determine the mechanical properties and tested with 12 MPa/sec stress rate under stress control using a servo-hydraulic Instron 8801. Microstructure of the welding zone and macrograph of the heat affected zone was investigated by SEM.Findings: The average grain size in the SZ was between 3 and 7 μm, which is smaller than that in the BM. The average grain size in the HAZ was about 20 μm, which is half of that in the BM.Fine-grained microstructures are present the welded area. The dark bands observed in the weld zone were also detected the microstructure of the transition zone. Dark and narrow bands do not consist of pores or cavities. It was determined that these bands do not process an ultra fine-grained microstructure. They are Cr2O3 oxide layers which over the surface of stainless steels may have been ruptured during friction stir welding and may form bands inside the welding bead due to stirring.Research limitations/implications: The proper cooling system helps to prevent the stirrer tool from the deformation.Practical implications: The strength of the welded zone of AISI 304 stainless steel can be easily found by implementing welding design parameters and high quality joints can be obtained.Originality/value: This study was performed in the frame of the TUBITAK project no 106M504, „Friction Stir Weldability of Stainless Steels and Investigation of the

  2. VISUALIZATION OF ULTRASONIC-BEAM DISTORTION IN ANISOTROPIC STAINLESS STEEL

    Claytor, T.; Kupperman, D.; Reimann, K.

    1985-01-01

    The inspection of cast stainless steel and stainless steel piping with a weld overlay is an important nondestructive testing problem in the nuclear industry. The ultrasonic inspection of these components is complicated by their coarse-grain and textured microstructure, which distorts the ultrasonic beam. The distortion of pulsed ultrasonic beams produced by conventional piezoelectric transducers mounted on stainless steel samples was measured by scanning the back surface of the samples with a...

  3. Buckling response of ferritic stainless steel columns at elevated temperatures

    Afshan, S; Gardner, L; Baddoo, NR

    2013-01-01

    This paper presents a numerical study on the buckling behaviour of ferritic stainless steel columns in fire. Finite element models were developed and validated against existing test results to predict the elevated temperature non-linear response of ferritic stainless steel columns. A total of nine austenitic and three ferritic stainless steel column tests were replicated using the finite element analysis package ABAQUS. Parametric studies were performed to investigate the effects of variation...

  4. Corrosion fatigue of a superduplex stainless steel weldment

    Comer, Anthony John

    2004-01-01

    Superduplex stainless steels have superior mechanical and corrosion properties compared to austenitic stainless steels such as the grade 300 series. This is a result of a microstructure consisting of roughly equal percentages of austenite (y) and ferrite (a) and negligible inclusion content. As a result, super duplex stainless steels are increasingly being used in the offshore oil and gas industries. It is also envisaged that they will find application in the emergent renewable energy sec...

  5. Sinter-hardening process applicable to stainless steels

    M. Rosso; Z. Brytan; L.A. Dobrzański

    2007-01-01

    Purpose: of this paper was to describe sintered duplex stainless steels manufactured in sinter-hardening process and its usability in field of stainless steels.Design/methodology/approach: In presented study duplex stainless steels were obtained through powder metallurgy starting from austenitic, ferritic base powders by controlled addition of alloying elements, such as Cr, Ni, Mo and Cu. In the studies apart from the preparation of mixes, Schaeffler’s diagram was taken into consideration. Pr...

  6. Development of oxide dispersion strengthened 2205 duplex stainless steel composite

    Oladayo OLANIRAN; Peter Apata OLUBAMBI; Benjamin Omotayo ADEWUYI; Joseph Ajibade OMOTOYINBO; Ayodeji Ebenezar AFOLABI; Davies FOLORUNSO; Adekunle ADEGBOLA; Emanuel IGBAFEN

    2015-01-01

    Composites of duplex stainless steel were produced by oxide dispersion strengthening with comparatively improved mechanical properties by hot press sintering of partially stabilized Zirconia (PSZ, 3% yttria, mole fraction) dispersion in 2205 duplex stainless steels. Ceramic oxide was added as reinforcement, while chromium (Cr) and Nickel (Ni) were incorporated to maintain the austenitic/ferritic phase balance of the duplex stainless steel. The powders and sintered were characterized in detail...

  7. Thermodynamic calculation of phase equilibria in stainless steels

    Klančnik G.; Petrovič Steiner D.; Medved J.

    2012-01-01

    In this paper two examples of thermodynamic investigation of stainless steels using both, experimental and modeling approach are described. The ferritic-austenitic duplex stainless steel and austenitic stainless steel were investigated using thermal analysis. The complex melting behavior was evident for both alloy systems. Experimentally obtained data were compared with the results of the thermodynamic calculations using the CALPHAD method. The equilibrium thermal events were also descr...

  8. Characterization of thermal aging of duplex stainless steel by SQUID

    Thermal aging is a growing concern for long-term-aged duplex stainless steel piping in nuclear power plants. Superconducting QUantum Interference Device (SQUID) was used for the detection of thermal aging of SUS329 rolled duplex stainless steel and SCS16 cast duplex stainless steel. It was found that the SQUID output signal pattern in the presence of AC magnetic field applied to the specimen was sensitive to the changes in electromagnetic properties due to thermal aging

  9. Reliability analysis of structural stainless steel design provisions

    Afshan, S; Francis, P.; Baddoo, NR; Gardner, L.

    2015-01-01

    Since the establishment of the Eurocode design provisions for structural stainless steel, a considerable amount of both statistical material data and experimental results on structural elements has been generated. In light of this, the current partial resistance factors recommended in EN 1993-1-4 for the design of stainless steel elements are re-evaluated. First, following an analysis of material data from key stainless steel producers, representative values of the over-strength and the coeff...

  10. Electrochemical aspects of stainless steel behaviour in biocorrosive environment

    Electrochemical measurements have been used to evaluate and follow, to understand and control microbial induced corrosion of stainless steels. Results include seawater loop tests and laboratory-based microbiological experiments. With natural flowing seawater, impedance spectroscopy measurements have been used to evaluate and follow biofilms on stainless steel tube-electrodes. With batch cultures of single bacterial strain (Sulphate Reducing Bacteria), open-circuit potential measurements and polarization curves performed on 316 L and 430 Ti stainless steels, have shown that the corrosion behaviour of these stainless steels is mainly dependent on the sulphide content of the culture media

  11. Complex Protection of Vertical Stainless Steel Tanks

    Fakhrislamov Radik Zakievich

    2014-03-01

    Full Text Available The authors consider the problem of fail-safe oil and oil products storage in stainless steel tanks and present the patented tank inner side protection technology. The latter provides process, ecological and fire safety and reducing soil evaporation of oil products, which is a specific problem. The above-mentioned technology includes corrosion protection and heat insulation protection providing increase of cover durability and RVS service life in general. The offered technological protection scheme is a collaboration of the author, Steel Paint GmbH firm and JSC “Koksokhimmontazhproyekt”. PU foam unicomponent materials of Steel Paint GmbH firm provide the protection of tank inner side and cover.

  12. Local fracture toughness of stainless steel welds at 4 K by J-evaluation on tensile test

    Local fracture toughness of top, middle, bottom, and heat-affected zones of weld joints of SUS304L and SUS316L have been evaluated by a new testing procedure of J-evaluation on tensile test (JETT) with circumferentially notched round bar specimen. Delta (δ)-ferrite contents of those welds were changed between 0% and 10%. The tests were carried out at 293, 77, and 4 K. In the case of austenitic stainless steels, being too ductile at room temperature, this test method is effective at low temperatures. Fracture toughness at 4 K obtained by JETT was a little bit higher than that obtained by conventional CT specimens and was lower in weld metals than in base metals and decreased as the content of delta ferrite increased in both 304L and 316L. Scatter in the values of fracture toughness among the locations in weld metals were less than 50% and were considered to be caused by effects of δ-ferrite grains

  13. Bacterial inhibition of silver-containing stainless steels

    Chiang, W.C. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Mechanical Engineering; Chang, S.M.; Lin, J.D.; Tseng, I.S.; Wu, J.K. [National Taiwan Ocean Univ., Taiwan (China). Inst. of Materials Engineering

    2010-07-01

    In this study, silver (Ag) was added to AlSl 316 austenitic 2205 duplex and 430 ferritic stainless steels as a means of inhibiting bacterial contamination. Three Ag-containing stainless steels were prepared using vacuum melting techniques. The influence of the Ag addition on corrosion resistance, bacterial inhibition, and mechanical properties was investigated. A study of the Ag-containing stainless steel microstructures demonstrated that Ag precipitates as small particles on the steel matrix surface. The precipitates act as anodes in the local action cell in the presence of bacteria. Ag dissolution mechanisms from the Ag precipitates on the Ag-containing stainless steels in the presence of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were also discussed. Results of the study suggested that Ag-containing stainless steels may be used in areas where hygiene is a significant concern.

  14. Elevated temperature material properties of stainless steel reinforcing

    Gardner, L.; Bu, Y; Francis, P; Baddoo, NR; Cashell, K; McCann, F

    2016-01-01

    Corrosion of carbon steel reinforcing bar can lead to deterioration of concrete structures, especially in regions where road salt is heavily used or in areas close to sea water. Although stainless steel reinforcing bar costs more than carbon steel, its selective use for high risk elements is cost-effective when the whole life costs of the structure are taken into account. Considerations for specifying stainless steel reinforcing bars and a review of applications are presented herein. Atten...

  15. Ion nitriding in 316=L stainless steel

    Ion nitriding is a glow discharge process that is used to induce surface modification in metals. It has been applied to 316-L austenitic stainless steel looking for similar benefits already obtained in other steels. An austenitic stainless steel was selected because is not hardenable by heat treatment and is not easy to nitride by gas nitriding. The samples were plastically deformed to 10, 20, 40, 50 AND 70% of their original thickness in order to obtain bulk hardening and to observe nitrogen penetration dependence on it. The results were: an increase of one to two rockwell hardness number (except in 70% deformed sample because of its thickness); an increase of even several hundreds per cent in microhardness knoop number in nitrided surface. The later surely modifies waste resistance which would be worth to quantify in further studies. Microhardness measured in an internal transversal face to nitrided surface had a gradual diminish in its value with depth. Auger microanalysis showed a higher relative concentration rate CN/CFe near the surface giving evidence of nitrogen presence till 250 microns deep. The color metallography etchant used, produced faster corrosion in nitrited regions. Therefore, corrosion studies have to be done before using ion nitrited 316-L under these chemicals. (Author)

  16. Electron beam welding of austenitic stainless steel

    Austenitic stainless steel is used for liquid metal-cooled fast breeder reactors with operating temperature of about 550 deg C, because its elevated temperature properties are excellent and the results of use are abundant. The welded joints in LMFBRs require high degree of safety, and the application of electron beam welding is studied to make welding joints of high quality. When the inelastic deformation in a certain limit is allowed as prescribed in the ASME Code, Case 1592, the elevated temperature properties of the welded joints of structures are particularly important. The materials tested were 10 mm thick plates of SUS 304, SUS 316 and SUS 321 steels, and 150 kV - 40 mA electron beam welder was employed. The method of welding was one side, one pass Uranami welding, and first, the appropriate welding conditions were decided. Elevated temperature tensile test was carried out on the parent materials and welded joints by electron beam welding and coated arc welding. Creep rupture test and elevated temperature fatigue test were also carried out. In EB-welded austenitic stainless steel, delta ferrite is scattered finely in austenite, and its quantity is very small and less than 1.5%. The tensile strength and 0.2% proof stress of EB-welded joints are almost same as those of parent materials. The creep rupture and fatigue properties of the joints are also close to those of parent materials. (Kako, I.)

  17. Nanostructured nickel-free austenitic stainless steel/hydroxyapatite composites.

    Tulinski, Maciej; Jurczyk, Mieczyslaw

    2012-11-01

    In this work Ni-free austenitic stainless steels with nanostructure and their nanocomposites with hydroxyapatite are presented and characterized by means of X-ray diffraction and optical profiling. The samples were synthesized by mechanical alloying, heat treatment and nitriding of elemental microcrystalline powders with addition of hydroxyapatite (HA). In our work we wanted to introduce into stainless steel hydroxyapatite ceramics that have been intensively studied for bone repair and replacement applications. Such applications were chosen because of their high biocompatibility and ability to bond to bone. Since nickel-free austenitic stainless steels seem to have better mechanical properties, corrosion resistance and biocompatibility compared to 316L stainless steels, it is possible that composite made of this steel and HA could improve properties, as well. Mechanical alloying and nitriding are very effective technologies to improve the corrosion resistance of stainless steel. Similar process in case of nanocomposites of stainless steel with hydroxyapatite helps achieve even better mechanical properties and corrosion resistance. Hence nanocrystalline nickel-free stainless steels and nickel-free stainless steel/hydroxyapatite nanocomposites could be promising bionanomaterials for use as a hard tissue replacement implants, e.g., orthopedic implants. In such application, the surface roughness and more specifically the surface topography influences the proliferation of cells (e.g., osteoblasts). PMID:23421285

  18. The effects of 800 MeV proton irradiation on the corrosion of tungsten, tantalum, stainless steel, and gold

    Lillard, R.S.; Butt, D.P.; Kanner, G.; Daemen, L.

    1997-12-01

    Real time electrochemical data were acquired for tungsten, tantalum, stainless steel 304L, and gold targets during proton irradiation at the LANSCE Weapons Neutron Research Facility. The goal of this research was to establish a better understanding of the corrosion properties of materials as a function of proton irradiation and gain insight into the mechanism of the observed phenomena. The following electrochemical observations were made during proton irradiation of W, Ta, SS304, and Au: (1) the open circuit potential of all materials increased with increasing proton fluence; (2) the corrosion rate (at the OCP) of W and SS304 increased with increasing proton fluence; (3) the passive dissolution rate for SS304 and Ta decreased with increasing proton fluence; (4) the anodic dissolution rate for W increased with increasing proton fluence; (5) the pitting potential for SS304 increased with proton fluence, which is an indication that the material is less susceptible to pitting attack during irradiation.

  19. The effects of 800 MeV proton irradiation on the corrosion of tungsten, tantalum, stainless steel, and gold

    Real time electrochemical data were acquired for tungsten, tantalum, stainless steel 304L, and gold targets during proton irradiation at the LANSCE Weapons Neutron Research Facility. The goal of this research was to establish a better understanding of the corrosion properties of materials as a function of proton irradiation and gain insight into the mechanism of the observed phenomena. The following electrochemical observations were made during proton irradiation of W, Ta, SS304, and Au: (1) the open circuit potential of all materials increased with increasing proton fluence; (2) the corrosion rate (at the OCP) of W and SS304 increased with increasing proton fluence; (3) the passive dissolution rate for SS304 and Ta decreased with increasing proton fluence; (4) the anodic dissolution rate for W increased with increasing proton fluence; (5) the pitting potential for SS304 increased with proton fluence, which is an indication that the material is less susceptible to pitting attack during irradiation

  20. Stainless steel protection by in-situ oxide layer formation in stagnant lead-bismuth eutectic

    . Short duration tests (100 hours) and long duration tests (up to 3000 hours) have been performed to study the first steps in the oxide formation and the stability for longer times. The materials tested were the martensitic steels EM10, T91 and F82Hmod, the low alloy steel P22 and the austenitic steels 316L and 304L. (authors)

  1. Stainless steel protection by in-situ oxide layer formation in stagnant lead-bismuth eutectic

    Soler, L. [CIEMAT, Edificio 30, Dpto. Fision Nuclear, Avda. Complutense 22, 28040 Madrid, (Spain); Martin, F.J.; Hernandez, F.; Gomez-Briceno, D. [CIEMAT, Nuclear Fission Department, Structural Materials Project, Avda. Complutense 22, Building 30, 28040 Madrid (Spain)

    2004-07-01

    from 535 deg. C to 600 deg. C. Short duration tests (100 hours) and long duration tests (up to 3000 hours) have been performed to study the first steps in the oxide formation and the stability for longer times. The materials tested were the martensitic steels EM10, T91 and F82Hmod, the low alloy steel P22 and the austenitic steels 316L and 304L. (authors)

  2. The specific heat loss combined with the thermoelastic effect for an experimental analysis of the mean stress influence on axial fatigue of stainless steel plain specimens

    G. Meneghetti

    2014-10-01

    Full Text Available The energy dissipated to the surroundings as heat in a unit volume of material per cycle, Q, was recently proposed by the authors as fatigue damage index and it was successfully applied to correlate fatigue data obtained by carrying out fully reversed stress- and strain-controlled fatigue tests on AISI 304L stainless steel plain and notched specimens. The use of the Q parameter to analyse the experimental results led to the definition of a scatter band having constant slope from the low- to the high-cycle fatigue regime. In this paper the energy approach is extended to analyse the influence of mean stress on the axial fatigue behaviour of unnotched cold drawn AISI 304L stainless steel bars. In view of this, stress controlled fatigue tests on plain specimens at different load ratios R (R=-1; R=0.1; R=0.5 were carried out. A new energy parameter is defined to account for the mean stress effect, which combines the specific heat loss Q and the relative temperature variation due to the thermoelastic effect corresponding to the achievement of the maximum stress level of the stress cycle. The new two-parameter approach was able to rationalise the mean stress effect observed experimentally. It is worth noting that the results found in the present contribution are meant to be specific for the material and testing condition investigated here.

  3. An electrochemical noise study of tribo-corrosion processes of AISI 304L in Cl- and SO42- media

    The spectral analysis method of the electrochemical noise has been performed during pin-on-disc friction tests, in which an aluminium oxide pin having a spheric extremity rubbing on a AISI 304L stainless steel disc, in aqueous Cl- and SO42- medium, and submitted or not to an imposed electrochemical polarization. The power spectral densities (PSD) of the free potential and those of the imposed polarization current as well as the normal and tangential forces fluctuations have been analyzed and compared. At frequencies superior to 0.1 Hz, the electrochemical signal PSD seems to mainly depend of the kinetics of the electrochemical phenomena (dissolution, passivation). The PSD signals reveal that the electrochemical phenomena (passivation, re-passivation) inducing the noise are not sensibly affected by an increase of the normal force, but are activated by an increase of the pin rotation velocity. (O.M.)

  4. Fatigue properties of duplex stainless steel

    Turrel, Benjamin; Luna Garcia, Jordi; Andraschko, Stephan

    2009-01-01

    PFC presentat a Oslo University College The aim of the project is to study fatigue properties of duplex stainless steel used for a bridge. The samples had to be tested and the results have to be compared with the theory, studied before. Six specimens have been broken by tensile fatigue testing machine in order to get more knowledge about the lifetime and the behavior under dynamic stress and not only for welded parts. Out of this new knowledge a new fatigue curve for this ma...

  5. Contribution to the study of physico-chemical properties of surfaces modified by laser treatment. Application to the enhancement of localized corrosion resistance of stainless steels

    Metallic materials are more and more used in severe conditions with particularly strong request for improving their behavior in aggressive environment and especially over long periods. The objective of this PhD work is to estimate the potentiality of a laser surface melting treatment on the improvement of the stainless steel 304L corrosion resistance, surface treatments by laser can be revisited on the basis of a recent change in the laser technology. In the frame of this work, a nano-pulsed laser fiber was chosen: it allows the treated surface to be melted for few microns in depth, followed by an ultra-fast solidification occurring with cooling rates up to 1011 K/s. The combination of these processes leads to the elimination of the surface defects, the formation (trapping) of metastable phases, the segregation of chemical elements and the growth of a new oxide layer which properties are governed by the laser parameters. To correlate these latter to the electrochemical reactivity of the surface, the influence of two laser parameters on the physico-chemical properties of the surface was studied: the laser power and the overlap of the laser impacts. To support this approach, the pitting corrosion resistance of the samples was determined by standard electrochemical tests. For specific laser parameters, the pitting potential of a 304L stainless steel was increased by more than 500 mV corresponding to an important enhancement in localized corrosion resistance in chloride environment. The interdependence of the different phenomena resulting from the laser treatment lead to a quite complex prioritization of their role on the sensibility of the 304L. However, it was demonstrated that the nature of the thermal oxide formed during the laser surface melting and the induced defects are first-order parameters for the initiation of pits. (author)

  6. Angle-dependent lubricated tribological properties of stainless steel by femtosecond laser surface texturing

    Wang, Zhuo; Li, Yang-Bo; Bai, Feng; Wang, Cheng-Wei; Zhao, Quan-Zhong

    2016-07-01

    Lubricated tribological properties of stainless steel were investigated by femtosecond laser surface texturing. Regular-arranged micro-grooved textures with different spacing and micro-groove inclination angles (between micro-groove path and sliding direction) were produced on AISI 304L steel surfaces by an 800 nm femtosecond laser. The spacing of micro-groove was varied from 25 to 300 μm, and the inclination angles of micro-groove were measured as 90° and 45°. The tribological properties of the smooth and textured surfaces with micro-grooves were investigated by reciprocating ball-on-flat tests against Al2O3 ceramic balls under starved oil lubricated conditions. Results showed that the spacing of micro-grooves significantly affected the tribological property. With the increase of micro-groove spacing, the average friction coefficients and wear rates of textured surfaces initially decreased then increased. The tribological performance also depended on the inclination angles of micro-grooves. Among the investigated patterns, the micro-grooves perpendicular to the sliding direction exhibited the lowest average friction coefficient and wear rate to a certain extent. Femtosecond laser-induced surface texturing may remarkably improve friction and wear properties if the micro-grooves were properly distributed.

  7. Improvement of the mechanical properties of austenitic stainless steel after plasma nitriding

    Menthe, E.; Bulak, A.; Zimmermann, A.; Rie, K.-T. [Technische Univ. Braunschweig (Germany). Inst. fuer Oberflaechentechnik und Plasmatechnische Werkstoffentwicklung; Olfe, J. [Fraunhofer Institut fuer Schicht- und Oberflaechentechnik, Braunschweig (Germany)

    2000-11-01

    In this paper, we report on a series of experiments designed to study the influence of plasma nitriding on the mechanical properties of austenitic stainless steel. Plasma nitriding experiments were conducted on AISI 304L steel in a temperature range of 375-475 C using pulsed-DC plasma with different N{sub 2}-H{sub 2} gas mixtures and treatment times. Firstly the formation and the microstructure of the modified layer will be highlighted followed by the results of hardness measurement, adhesion testing, wear resistance and fatigue life tests. The modified surface was analyzed directly after plasma nitriding as well as using a depth profiling method. The microhardness after plasma nitriding is increased up to 19 GPa, that is a factor of five higher compared to the untreated material (3.3 GPa). The adhesion is examined by Rockwell indentation and scratch test. No delamination of the treated layer could be observed. The wear rate after plasma nitriding is significantly reduced compared to the untreated material. Plasma nitriding produces compressive stress inside the modified layer, which can be easily derived from the bending of thin metal foil, which was treated only on one side. The treatment influences the fatigue life, which can be raised by a factor of 10 at a low stress level (230 MPa). (orig.)

  8. Application of strain scanning method to stress measurement of austenitic stainless steel

    A strain scanning method was applied to the stress measurement of austenitic stainless steel (SUS304L). The sizes of its gauge volume were a width of 2 mm and a height of 0.2 mm, and the grain size of the specimen was 37 micrometers. Enough accuracy of the measured stress was not obtained due to the coarse grain of the specimen. To improve the coarse grain problem, three methods of oscillation were examined such as in-plane rotation, out-of-plane tilt and translation. The translation method can increase the number of the grains by changing the amplitude. For the translation method, the accurate measurement is possible if it is 10000 numbers or more of grains. However, the numbers of the grains by the other oscillations were not enough. For the translation method, a strict parallel between the specimen surface and the translation plane was necessary. It succeeded in adjusting the strict parallel. The residual stress distribution of the shot-peened austenitic steel was measured by our method. (author)

  9. The effect of heat treatments and coatings on the outgassing rate of stainless steel chambers

    Mamun, M A; Stutzman, M L; Adderley, P A; Poelker, M

    2014-01-01

    The outgassing rates of four nominally identical 304L stainless steel vacuum chambers were measured to determine the effect of chamber coatings and heat treatments. One chamber was coated with titanium nitride (TiN) and one with amorphous silicon (a-Si) immediately following fabrication. One chamber remained uncoated throughout, and the last chamber was first tested without any coating, and then coated with a-Si following a series of heat treatments. The outgassing rate of each chamber was measured at room temperatures between 15 and 30 {\\deg}C following bakes at temperatures between 90 and 400 {\\deg}C. Measurements for bare steel showed a significant reduction in the outgassing rate by more than a factor of 20 after a 400 {\\deg}C heat treatment (4x10-12 TorrLs-1cm-2 prior to heat treatment, reduced to 1.7x10-13 following heat treatment). The chambers that were coated with a-Si showed minimal change in outgassing rates with heat treatment, though an outgassing rate reduced by heat treatments prior to a-Si coa...

  10. 75 FR 81309 - Stainless Steel Plate from Belgium, Italy, Korea, South Africa, and Taiwan

    2010-12-27

    ... COMMISSION [Investigation Nos. 701-TA-376 and 379 and 731-TA-788, 790-793 (Second Review)] Stainless Steel... stainless steel plate from Belgium and South Africa and the antidumping duty orders on stainless steel plate... steel plate from Belgium and South Africa and/or the antidumping duty orders on stainless steel...

  11. Characterization of silane layers on modified stainless steel surfaces and related stainless steel-plastic hybrids

    The aim of this work was to characterize silane layers on the modified stainless steel surfaces and relate it to the adhesion in the injection-molded thermoplastic urethane-stainless steel hybrids. The silane layers were characterized with scanning electron microscope and transmission electron microscope, allowing the direct quantization of silane layer thickness and its variation. The surface topographies were characterized with atomic force microscope and chemical analyses were performed with X-ray photoelectron spectroscopy. The mechanical strength of the respective stainless steel-thermoplastic urethane hybrids was determined by peel test. Polishing and oxidation treatment of the steel surface improved the silane layer uniformity compared to the industrially pickled surface and increased the adhesion strength of the hybrids, resulting mainly cohesive failure in TPU. XPS analysis indicated that the improved silane bonding to the modified steel surface was due to clean Fe2O3-type surface oxide and stronger interaction with TPU was due to more amino species on the silane layer surface compared to the cleaned, industrially pickled surface. Silane layer thickness affected failure type of the hybrids, with a thick silane layer the hybrids failed mainly in the silane layer and with a thinner layer cohesively in plastic.

  12. Deformation induced martensitic transformation in stainless steels

    Deformation induced martensitic transformation was investigated in metastable austenitic stainless steel. This steel can present a microstructure of austenite (γ), α' martensite and non magnetic ε martensite. Uni-axial tensile test was used for loading at different temperatures below room temperature (from -120 to 20 deg. C). During the deformation the transformation takes place at certain places in an anisotropic way and texture also develops. Quantitative phase analysis was done by X-ray diffraction (XRD) and magnetic methods while the texture was described by X-ray diffraction using a special inverse pole figure. The quantitative phase analysis has shown that the formation of α' and ε martensite from austenite is the function of deformation rate, and deformation temperature. The transformation of the textured austenite takes place in an anisotropic way and a well defined crystallographic relationship between the parent and α' martensite phase has been measured

  13. Operational experience with stainless steel condenser tubes

    Longitudinal seam welded tubes of stainless austenitic 18/8 CrNi and 18/8/2 CrNiMo steels have proved their worth when used in steam condensers with fresh water recooling. However, in water containing a high level of salt, in particular brackish water and seawater, experience to date has not been satisfactory in the case of these materials. High-alloy austenitic, ferritic and austenitic-ferritic steels developed during the last 10 years, on the other hand, have high pitting potentials and, both in the laboratory and in practice, have proved their suitability as heat-exchanger materials for steam condensers. These materials are easily worked to form welded tubes with a longitudinal seam and are therefore a relatively inexpensive design which ensures both plant safety and availability

  14. Advanced surface analysis on stainless steel

    The aim of this investigation is to minimise the build-up of radionuclides (especially of Co-60) in the oxide layers of austenitic steels by variation of pH and dosing of metal ions. Stainless steel samples were exposed to water in 11 autoclaves in flow through mode (11/h) for 5 days at 288 oC with metal ions and radioactive tracers having been added to the water. In addition to the activity measurements the semiconducting properties of the oxides and oxide layer thickness were determined by photo-electrochemistry and secondary ion mass spectroscopy. Correlation of activity uptake with layer thickness, type of semiconductor and band gap energy is shown. The presence of different metal ions in the oxidation process implies changes of the semiconducting properties of the oxide and different susceptibility of activity uptake into the oxide layers. (author)

  15. Corrosion behaviour of hyper duplex stainless steel in various metallurgical conditions for sea water cooled condensers

    The sea water cooled condensers have to resist severe corrosion as marine environment is the most corrosive natural environment. Copper alloys are being phased out due to difficulties in water chemistry control and Titanium base alloys are extremely expensive. Austenitic stainless steels (SS) remain prone to localized corrosion in marine environments hence not suitable. These heat exchangers operate at temperatures not exceeding 50 deg C and at very low pressures. The tubes of these heat exchangers are joined to the carbon steel tube sheets by roll expansion or by roll expansion followed by seam welding. These conditions are expected to affect the localized corrosion resistance of the tube in roll joined region due to cold working and in the tube-tube sheet welded joint due to thermal effects of welding. In this study, the localized corrosion behaviour of a Hyper Duplex Stainless Steel (HDSS) has been evaluated, and compared with other materials e.g. types 304L SS, 316L SS, Duplex SS 2205, Titanium grade - 2, and Al Brass. The evaluation is done in three metallurgical conditions (a) as received, (b) cold rolled and (c) welded condition in synthetic sea water at room temperature and at 50 deg C to assess the resistance to crevice, pitting and stress corrosion cracking using standard ASTM exposure and electrochemical techniques. The results provide comparative assessment of these alloys and show their susceptibility in the three metallurgical conditions as encountered in condensers. Hyper-duplex SS has been shown to be highly resistant in sea water for the condenser tubing application. (author)

  16. The Effect of Heat Treatments and Coatings on the Outgassing Rate of Stainless Steel Chambers

    Mamum, Md Abdullah A. [Old Dominion Univ., Norfolk, VA (United States); Elmustafa, Abdelmageed A, [Old Dominion Univ., Norfolk, VA (United States); Stutzman, Marcy L. [JLAB, Newport News, VA (United States); Adderley, Philip A. [JLAB, Newport News, VA (United States); Poelker, Matthew [JLAB, Newport News, VA (United States)

    2014-03-01

    The outgassing rates of four nominally identical 304L stainless steel vacuum chambers were measured to determine the effect of chamber coatings and heat treatments. One chamber was coated with titanium nitride (TiN) and one with amorphous silicon (a-Si) immediately following fabrication. One chamber remained uncoated throughout, and the last chamber was first tested without any coating, and then coated with a-Si following a series of heat treatments. The outgassing rate of each chamber was measured at room temperatures between 15 and 30 deg C following bakes at temperatures between 90 and 400 deg C. Measurements for bare steel showed a significant reduction in the outgassing rate by more than a factor of 20 after a 400 deg C heat treatment (3.5 x 10{sup 12} TorrL s{sup -1}cm{sup -2} prior to heat treatment, reduced to 1.7 x 10{ sup -13} TorrL s{sup -1}cm{sup -2} following heat treatment). The chambers that were coated with a-Si showed minimal change in outgassing rates with heat treatment, though an outgassing rate reduced by heat treatments prior to a-Si coating was successfully preserved throughout a series of bakes. The TiN coated chamber exhibited remarkably low outgassing rates, up to four orders of magnitude lower than the uncoated stainless steel. An evaluation of coating composition suggests the presence of elemental titanium which could provide pumping and lead to an artificially low outgassing rate. The outgassing results are discussed in terms of diffusion-limited versus recombination-limited processes.

  17. Development of a lean duplex stainless steel

    Liljas, M.; Johansson, P.; Liu Hui-Ping; Olsson, C.O.A. [Avesta Research Centre, Avesta (Sweden). Outokumpu Stainless

    2008-06-15

    The classic series of duplex stainless steels shows very high corrosion resistance and can be used for very demanding applications. A new lean duplex steel, LDX 2101 {sup registered} (EN 1.4162, UNS S32101), has been developed with corrosion resistance on a par with standard austenitic grades. Application areas include: structural components, chemical industry, tanks and containers. The steel was designed to have equal amounts of ferrite and austenite in annealed condition and with an austenite that is stable against strain-induced martensite. Thanks to its high nitrogen content, the steel has a fast austenite reformation when subjected to thermal cycling, e.g. welding. Unlike conventional duplex grades, the formation of intermetallic phase is very sluggish, although precipitation of nitrides and carbides has a certain impact on material properties after exposure in the temperature range 600 to 800 C. The precipitation behaviour after different isothermal treatments is described and its influence on different product properties is shown. A good agreement was found between impact toughness and corrosion resistance for a wide range of thermal treatments. (orig.)

  18. Citric Acid Passivation of Stainless Steel

    Yasensky, David; Reali, John; Larson, Chris; Carl, Chad

    2009-01-01

    Passivation is a process for cleaning and providing corrosion protection for stainless steel. Currently, on Kennedy Space Center (KSC), only parts passivated with nitric acid are acceptable for use. KSC disposes of approximately 125gal of concentrated nitric acid per year, and receives many parts from vendors who must also dispose of used nitric acid. Unfortunately, nitric acid presents health and environmental hazards. As a result, several recent industry studies have examined citric acid as an alternative. Implementing a citric acid-based passivation procedure would improve the health and environmental safety aspects of passivation process. However although there is a lack of published studies that conclusively prove citric acid is a technically sound passivation agent. In 2007, NASA's KSC Materials Advisory Working Group requested the evaluation of citric acid in place of nitric acid for passivation of parts at KSC. United Space Alliance Materials & Processes engineers have developed a three-phase test plan to evaluate citric acid as an alternative to nitric acid on three stainless steels commonly used at KSC: UNS S30400, S41000, and S17400. Phases 1 and 2 will produce an optimized citric acid treatment based on results from atmospheric exposure at NASA's Beach Corrosion Facility. Phase 3 will compare the optimized solution(s) with nitric acid treatments. If the results indicate that citric acid passivates as well or better than nitric acid, NASA intends to approve this method for parts used at the Kennedy Space Center.

  19. Carburization of stainless steel furnace tubes

    Stainless steel containing molybdenum are usually recommended to resist naphtenic acid corrosion in vacuum heaters. In 1993 the original 5Cr-1/2Mo roof tubes of the furnace in a vacuum unit were replaced by stainless steel 316 Ti to minimize tube replacement and increase heater reliability. Unexpectedly, some of the new tubes failed after only three years of service and just one year after undergoing the last inspection. The damage occurred in the form of deep holes and perforations, starting from the outside tube surface on the fireside. Coke build-up occurred due to severe operating conditions, overheating the tubes on the fireside, above 675 Centigrade. Metallographic and Scanning Electron Microscopy (Sem) examination revealed internal and external carburization of the material due to the presence of coke and combustion ashes, respectively. The increase in the skin metal temperature facilitated the diffusion of carbon from these carbon-rich deposits into the low carbon content material (0.023%). Depletion of chromium at the grain boundaries due to the massive formation of chromium carbides, resulted in a severe intergranular corrosion attack by molten salts rich in vanadium and sulfur produced by asphalt burning. Normal operating practice demands the use of steam for the heater tubes to control coke build-up. This practice had been first reduced and then eliminated, during the past two years prior to the failure, because of economic incentives. This paper describes the root cause analysis conducted to account for these premature tube failures. (Author)

  20. Fracture toughness of irradiated stainless steel alloys

    The postirradiation fracture toughness responses of Types 316 and 304 stainless steel (SS) wrought products, cast CF8 SS and Type 308 SS weld deposit were characterized at 4270C using J/sub R/-curve techniques. Fast-neutron irradiation of these alloys caused an order of magnitude reduction in J/sub c/ and two orders of magnitude reduction in tearing modulus at neutron exposures above 10 dpa, where radiation-induced losses in toughness appeared to saturate. Saturation J/sub c/ values for the wrought materials ranged from 28 to 31 kJ/m2; the weld exhibited a saturation level of 11 kJ/m2. Maximum allowable flaw sizes for highly irradiated stainless steel components stressed to 90% of the unirradiated yield strength are on the order of 3 cm for the wrought material and 1 cm for the weld. Electron fractographic examination revealed that irradiation displacement damage brought about a transition from ductile microvoid coalescence to channel fracture, associated with local separation along planar deformation bands. The lower saturation toughness value for the weld relative to that for the wrought products was attributed to local failure of ferrite particles ahead of the advancing crack which prematurely initiated channel fracture

  1. Antibacterial polyelectrolyte micelles for coating stainless steel.

    Falentin-Daudré, Céline; Faure, Emilie; Svaldo-Lanero, Tiziana; Farina, Fabrice; Jérôme, Christine; Van De Weerdt, Cécile; Martial, Joseph; Duwez, Anne-Sophie; Detrembleur, Christophe

    2012-05-01

    In this study, we report on the original synthesis and characterization of novel antimicrobial coatings for stainless steel by alternating the deposition of aqueous solutions of positively charged polyelectrolyte micelles doped with silver-based nanoparticles with a polyanion. The micelles are formed by electrostatic interaction between two oppositely charged polymers: a polycation bearing 3,4-dihydroxyphenylalanine units (DOPA, a major component of natural adhesives) and a polyanion (poly(styrene sulfonate), PSS) without using any block copolymer. DOPA units are exploited for their well-known ability to anchor to stainless steel and to form and stabilize biocidal silver nanoparticles (Ag(0)). The chlorine counteranion of the polycation forms and stabilizes biocidal silver chloride nanoparticles (AgCl). We demonstrate that two layers of micelles (alternated by PSS) doped with silver particles are enough to impart to the surface strong antibacterial activity against gram-negative E. coli. Moreover, micelles that are reservoirs of biocidal Ag(+) can be easily reactivated after depletion. This novel water-based approach is convenient, simple, and attractive for industrial applications. PMID:22506542

  2. The role of second phases on the hydrogen embrittlement of austenitic stainless-steels

    Type 304L and type 316L were cathodically charged with hydrogen in the absence of any external forces. The result demonstrates the appearance of hydrogen induced epsilon-(hcp)-phase in 316L. The possibility that embrittlement of ''unstable'' steel may be autocatalytic is discussed

  3. Assessment of thermal embrittlement of cast stainless steels

    A procedure and correlations are presented for assessing thermal embrittlement and predicting Charpy-impact energy and fracture toughness J-R curve of cast stainless steel components under Light Water Reactor operating conditions from known material information. The ''saturation'' impact strength and fracture toughness of a specific cast stainless steel, i.e., the minimum value that would be achieved for the material after long-term service, is estimated from the chemical composition of the steel. Fracture properties as a function of time and temperature of reactor service are estimated from the kinetics of embrittlement, which are also determined from chemical composition. A common ''predicted lower-bound'' J-R curve for cast stainless steels of unknown chemical composition is also defined for a given grade of steel, ferrite content, and temperature. Examples of estimating fracture toughness of cast stainless steel components during reactor service are presented

  4. Initiation of stress corrosion cracking in pre-stained austenitic stainless steels exposed to primary water

    Austenitic stainless steels are widely used in primary circuits of Pressurized Water Reactors (PWR) plants. However, a limited number of cases of Intergranular Stress Corrosion Cracking (IGSCC) has been detected in cold-worked (CW) areas of non-sensitized austenitic stainless steel components in French PWRs. A previous program launched in the early 2000's identified the required conditions for SCC of cold-worked stainless steels. It was found that a high strain hardening coupled with a cyclic loading favoured SCC. The present study aims at better understanding the role of pre-straining on crack initiation and at developing an engineering model for IGSCC initiation of 304L and 316L stainless steels in primary water. Such model will be based on SCC initiation tests on notched (not pre-cracked) specimens under 'trapezoidal' cyclic loading. The effects of pre-straining (tensile versus cold rolling), cold-work level and strain path on the SCC mechanisms are investigated. Experimental results demonstrate the dominating effect of strain path on SCC susceptibility for all pre-straining levels. Initiation can be understood as crack density and crack depth. A global criterion has been proposed to integrate both aspects of initiation. Maps of SCC initiation susceptibility have been proposed. A critical crack depth between 10 and 20 μm has been demonstrated to define transition between slow propagation and fast propagation for rolled materials. For tensile pre-straining, the critical crack depth is in the range 20 - 50 μm. Experimental evidences support the notion of a KISCC threshold, whose value depends on materials, pre-straining ant load applied. The initiation time has been found to depend on the applied loading as a function of (σmaxmax/YV)11,5. The effect of both strain path and surface hardening is indirectly taken into account via the yield stress. In this study, material differences rely on strain path effect on mechanical properties. As a result, a stress high

  5. The continuous strength method for structural stainless steel design

    Afshan, S; Gardner, L.

    2013-01-01

    Current stainless steel design standards are based on elastic, perfectly plastic material behaviour providing consistency with carbon steel design expressions, but often leading to overly conservative results, particularly in the case of stocky elements. More economic design rules in accordance with the actual material response of stainless steel, which shows a rounded stress–strain curve with significant strain hardening, are required. Hence, the continuous strength method (CSM) was develope...

  6. EXPERIMENTAL RESEARCH OF THE DUPLEX STAINLESS STEEL WELDS IN SHIPBUILDING

    Juraga, Ivan; Stojanović, Ivan; Ljubenkov, Boris

    2014-01-01

    Duplex stainless steel is used in shipbuilding increasingly because of its good mechanical properties and marked corrosion resistance. This steel has a two phase structure (austenite-ferrite) which is sensitive on heat input during welding because of the possible ferritisation appearance, that is, increase in ferrite content in the area of heat effected zone (HAZ) which can lead to loss of mechanical and corrosion properties. Work with duplex stainless steel requires special attention in ever...

  7. 75 FR 81308 - Stainless Steel Sheet And Strip From Germany, Italy, Japan, Korea, Mexico, And Taiwan

    2010-12-27

    ... COMMISSION Stainless Steel Sheet And Strip From Germany, Italy, Japan, Korea, Mexico, And Taiwan AGENCY... countervailing duty order on stainless steel sheet and strip from Korea and antidumping duty orders on stainless... on stainless steel sheet and strip from Korea and/or the antidumping duty orders on stainless...

  8. On phase equilibria in duplex stainless steels

    Wessman, S. [Swerea KIMAB AB, Stockholm (Sweden); Pettersson, R. [Outokumpu Stainless AB, Avesta Research Centre, Avesta (Sweden); Hertzman, S. [Outokumpu Stainless Research Foundation, Stockholm (Sweden)

    2010-05-15

    The equilibrium conditions of four duplex stainless steels; Fe-23Cr-4.5Ni-0.1N, Fe-22Cr-5.5Ni-3Mo-0.17N, Fe-25Cr-7Ni-4Mo-0.27N and Fe-25Cr-7Ni-4Mo-1W-1.5Cu-0.27N were studied in the temperature region from 700 to 1000 C. Phase compositions were determined with SEM EDS and the phase fractions using image analysis on backscattered SEM images. The results showed that below 1000 C the steels develop an inverse duplex structure with austenite and sigma phase, of which the former is the matrix phase. With decreasing temperature, the microstructure will be more and more complex and finely dispersed. The ferrite is, for the higher alloyed steels, only stable above 1000 C and at lower temperatures disappears in favour of intermetallic phases. The major intermetallic phase is sigma phase with small amounts of chi phase, the latter primarily in high Mo and W grades. Nitrides, not a focus in this investigation, were present as rounded particles and acicular precipitates at lower temperatures. The results were compared to theoretical predictions using the TCFE5 and TCFE6 databases. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  9. Hydrogen Effects on Austenitic Stainless Steels and High-Strength Carbon Steels

    Todoshchenko, Olga

    2015-01-01

    The resistance to hydrogen embrittlement is an important factor in the development of new steel grades for a variety of applications. The thesis describes investigations on hydrogen effects on two classes of steels - austenitic stainless steels and advanced high-strength carbon steels. Hydrogen solubility and diffusion in metastable austenitic stainless steels are studied with thermal desorption spectroscopy (TDS). This method, together with the mathematical modeling of the processes of hy...

  10. Development of commercial nitrogen-rich stainless steels

    This paper reviews the development of nitrogen alloyed stainless steels. Nitrogen alloying of austenitic stainless steels started at an early stage and was to a large extent caused by nickel shortage. However, direct technical advantages such as increased strength of the nitrogen alloyed steels made them attractive alternatives to the current steels. It was not until the advent of the AOD (argon oxygen decarburisation) process in the late 1960s that nitrogen alloying could be controlled to such accuracy that it became successful commercially on a broader scale. The paper describes production aspects and how nitrogen addition influences microstructure and the resulting properties of austenitic and duplex stainless steels. For austenitic steels there are several reasons for nitrogen alloying. Apart from increasing strength nitrogen also improves structural stability, work hardening and corrosion resistance. For duplex steels nitrogen also has a decisive effect in controlling the microstructure during thermal cycles such as welding. (orig.)

  11. Nickel-free Stainless Steel for Medical Applications

    Yibin REN; Ke YANG; Bingchun ZHANG; Yaqing WANG; Yong LIANG

    2004-01-01

    BIOSS4 steel is essentially a nickel-free austenitic stainless steel developed by the Institute of Metal Research, Chinese Academy of Sciences, in response to nickel allergy problems associated with nickel-containing stainless steels that are widely used in medical applications. The high nitrogen content of this steel effectively maintains the austenitic stability and also contributes to the high levels of corrosion resistance and strength. BIOSS4 steel possesses a good combination of high strength and toughness, better corrosion resistance, and better blood compatibility, in comparison with the medical 316L stainless steel. Potential applications of BIOSS4 steel can include medical implantation material and orthodontic or orthopedic devices, as well as jewelries and other decorations.

  12. Microbial-Influenced Corrosion of Corten Steel Compared with Carbon Steel and Stainless Steel in Oily Wastewater by Pseudomonas aeruginosa

    Mansouri, Hamidreza; Alavi, Seyed Abolhasan; Fotovat, Meysam

    2015-07-01

    The microbial corrosion behavior of three important steels (carbon steel, stainless steel, and Corten steel) was investigated in semi petroleum medium. This work was done in modified nutrient broth (2 g nutrient broth in 1 L oily wastewater) in the presence of Pseudomonas aeruginosa and mixed culture (as a biotic media) and an abiotic medium for 2 weeks. The behavior of corrosion was analyzed by spectrophotometric and electrochemical methods and at the end was confirmed by scanning electron microscopy. The results show that the degree of corrosion of Corten steel in mixed culture, unlike carbon steel and stainless steel, is less than P. aeruginosa inoculated medium because some bacteria affect Corten steel less than other steels. According to the experiments, carbon steel had less resistance than Corten steel and stainless steel. Furthermore, biofilm inhibits separated particles of those steels to spread to the medium; in other words, particles get trapped between biofilm and steel.

  13. In vivo behavior of a high performance duplex stainless steel.

    Cigada, A; De Santis, G; Gatti, A M; Roos, A; Zaffe, D

    1993-01-01

    An in vivo investigation of a new high molybdenum and nitrogen duplex stainless steel (25Cr--7Ni--4Mo--0.3N) has been performed. Cylindrical pins and specially developed devices, to test in static conditions the in vivo localized corrosion resistance, made of this new duplex steel and of a common austenitic stainless steel were implanted in rabbit's femurs for 6 and 12 months. After sacrifice, SEM observations and EDS microanalyses to detect metallic ion release were carried out on the femur sections surrounding the pins. Morphologic observations with stereoscope and SEM were performed on the metallic surfaces of the special devices in order to detect the presence of localized corrosion. Both ion release and localized corrosion were observed for the specimens made of austenitic stainless steel, but not for those made of 25Cr--7Ni--4Mo--0.3N duplex stainless steel. PMID:10148344

  14. Estimation of revealing methods of microstructure in duplex stainless steels

    Revealing of microstructure in duplex stainless steels by conventional chemical or electrochemical etching methods is relatively difficult as opposed to carbon steels. There are a many etching methods for duplex stainless steels, however electrolytic etching is really the best way to go. Electrochemical etching assures very good distinction of ferrite, austenite and secondary phases also etching of grain boundaries and twins, simultaneously warranting repeatability of process' circumstances. However, literature data do not deliver enough explicit parameters and conditions of electrolytic etching process, what in consequence can lead to indirect phenomenon during the process, such as pitting or etching twins. In frames of this work we have tested different methods of electrolytic etching of duplex stainless steel 1.4462-X2CrNiMoN 22.5.3 according to EURONORM (UNS S3108). This article has in view discussing of controversial matter of argument relating to revealing microstructure in duplex stainless steels on the ground of conducted investigations. (author)

  15. Compressibility of 304 Stainless Steel Powder Metallurgy Materials Reinforced with 304 Short Stainless Steel Fibers

    Bibo Yao

    2016-03-01

    Full Text Available Powder metallurgy (P/M technique is usually used for manufacturing porous metal materials. However, some P/M materials are limitedly used in engineering for their performance deficiency. A novel 304 stainless steel P/M material was produced by a solid-state sintering of 304 stainless steel powders and 304 short stainless steel fibers, which were alternately laid in layers according to mass ratio. In this paper, the compressive properties of the P/M materials were characterized by a series of uniaxial compression tests. The effects of fiber content, compaction pressure and high temperature nitriding on compressive properties were investigated. The results indicated that, without nitriding, the samples changed from cuboid to cydariform without damage in the process of compression. The compressive stress was enhanced with increasing fiber content ranging from 0 to 8 wt.%. For compaction pressure from 55 to 75 MPa, greater compaction pressure improved compressive stress. Moreover, high temperature nitriding was able to significantly improve the yield stress, but collapse failure eventually occurred.

  16. Stainless Steel Round Robin Test: Centrifugally cast stainless steel screening phase

    This report presents the results of the Centrifugally Cast Stainless Steel Round Robin Test (CCSSRRT). The CCSSRRT is the first phase of an effort to investigate and improve the capability and reliability of NDE inspections of light water reactor piping systems. This phase was a screening test to identify the most promising procedures presently available for CCSS. The next phase will be an in-depth program to evaluate the capability and reliability of inservice inspections (ISI) for piping. In the CCSSRRT, 15 centrifugally cast stainless steel pipe sections containing welds and laboratory-grown thermal fatigue cracks in both columnar and equiaxed base material were used. These pipe specimens were inspected by a total of 18 teams from Europe and the United States using a variety of NDE techniques, mostly ultrasonic (UT). The inspections were carried out at the team's facilities and included inspections from both sides of the weld and inspections restricted to one side of the weld. The results of the CCSSRRT make it apparent that a more detailed study on the capability and reliability of procedures to inspect stainless steel materials is needed to better understand the specific material and flaw properties and how they affect the outcome of an inspection

  17. Hydrogen permeability of nitrided stainless steel

    The surface of a 316 stainless steel (316SS) specimen was nitrided by an electrochemical treatment in molten fluoride salt. Its hydrogen permeability was evaluated and compared with that of bare 316SS at temperature from 450degC to 650degC. When it was exposed to hydrogen pressure of 1.0 kPa from 450degC to 650degC, its permeability was 7.2×10-11 to 6.4×10-12 mol/sec.m.Pa1/2. The permeation flux was increased with temperature and the permeability is deviated from Sieverts' law around 450degC. It followed Sieverts' law and was similar to that of bare 316SS at elevated temperatures. This result suggested the surface nitriding increases solubility at low temperatures around 450degC. (author)

  18. Simulation of a stainless steel multipass weldment

    Several problems in nuclear power plants are due to shrinkage and distortion of welded structures and the associated residual stresses. In this context, a stainless steel multipass weldment realized in a H type constrained specimen has been calculated by means of finite element method. The temperatures obtained from a 3 D modified Rosenthal equation are compared with the experimental ones, and are then used for the 2 D simulation in which a linear Kinematic hardening is assumed in relation to a Von Mises plasticity criteria. Materials data are well known up to very high temperatures (12000 C) and are introduced in the model. Experimental and calculated displacements after the first pass are compared and a discussion points out what improvements should be made for a better agreement. (author). 3 refs., 8 figs, 1 tab

  19. Magnetic characterisation of duplex stainless steel

    Mészáros, I.

    2006-02-01

    Heat treatment-induced microstructural processes were studied by different non-destructive magnetic and mechanical material testing methods in the present work. A commercial SAF 2507 type superduplex stainless steel was investigated. This alloy contains about 40% metastable ferrite which can decompose to a sigma phase and secondary austenite due to heat treatment. All the mechanical, corrosion resistance and magnetic properties are strongly influenced by this microstructural changes. This study had two aims: to understand better the kinetics of the ferrite decomposition process and to study the application possibilities of the applied magnetic measurements. This paper presents an application possibility of the nonlinear harmonics analysis measurement and demonstrates the possibility to find a quantitative correlation between measured harmonics and mechanical properties obtained from destructive tests.

  20. Electrochemical decontamination of Pu contaminated stainless steel

    Electrochemical decontamination has been demonstrated to be very effective in removing plutonium nitrate contamination (0.5 μg cm-2) on stainless steels. The amount of metal dissolved to achieve a DF of 102 to 103 was 2 to 7 μm depending on the electrolyte used. In unstirred electrolytes 1M HNO3, 1M HNO3/0.1M NaF, 5M HNO3 perform best. Under stirred electrolyte conditions, there is a general marginal fall in effectiveness except for 5M HNO3 where there is a slight improvement. The optimum performance is a compromise between maximizing the electrolyte throwing power and minimizing substrate surface roughening during decontamination. (author)

  1. MOCVD deposition of YSZ on stainless steels

    Chevalier, S.; Kilo, M.; Borchardt, G.; Larpin, J. P.

    2003-01-01

    Yttria stabilized zirconia was deposited on stainless steel using the metal-organic chemical vapor deposition (MOCVD) technique, from β-diketonate precursors. The variation of the evaporation temperatures of yttrium and zirconium precursor allowed to control the level of Y within the film. Over the temperature range 125-150 °C, the Y content increased from 2.5 to 17.6 at.%. X-ray diffraction (XRD) analyses evidenced tetragonal phase of zirconia when the Y content was below 8 at.%, and cubic phase for higher concentration. Sputtered neutral mass spectrometry (SNMS) profiles confirmed that the control and stability of Y precursor temperature were of major importance to guarantee the homogeneity of the deposited films.

  2. A stainless steel bracket for orthodontic application.

    Oh, Keun-Taek; Choo, Sung-Uk; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2005-06-01

    Aesthetics has become an essential element when choosing orthodontic fixed appliances. Most metallic brackets used in orthodontic therapy are made from stainless steel (SS) with the appropriate physical properties and good corrosion resistance, and are available as types 304, 316 and 17-4 PH SS. However, localized corrosion of these materials can frequently occur in the oral environment. This study was undertaken to evaluate the accuracy of sizing, microstructure, hardness, corrosion resistance, frictional resistance and cytotoxicity of commercially available Mini-diamond (S17400), Archist (S30403) and experimentally manufactured SR-50A (S32050) brackets. The size accuracy of Mini-diamond was the highest at all locations except for the external horizontal width of the tie wing (P SS brackets. PMID:15947222

  3. Dissolution of stainless steel in artificial saliva.

    Lakatos-Varsányi, M; Wegrelius, L; Olefjord, I

    1997-01-01

    Dissolution of stainless steel type 304 in artificial saliva was studied by electrochemical methods, electron spectroscopy for chemical analysis, and atom absorption spectroscopy. The samples were polarized in the -400 mV (saturated calomel electrode) to -50 mV (saturated calomel electrode) range. The total thickness of the passive film was found to be 25 +/- 3 A, independent of the potential. The passive film consists of a duplex structure: an inner layer of (Cr0.5Fe0.5)2O3 and an outer layer of a mixture of Cr(OH)3 and (CrxFey)PO4.2H2O. The analysis indicated that 11 micrograms/cm2 of the alloying elements were dissolved during exposure for 1 year. PMID:9197105

  4. Fast response stainless steel sodium thermocouple

    Thermo electro motive force and transient response characteristics of well-type stainless steel sodium thermocouples have been studied. The experiments were performed with a specially constructed test rig allowing the placement of several couples at various depths of immersion in liquid sodium and at different spacings. The time response was studied by inducing temperature transients in a hot sodium injection and gas injection, and photographing the oscilloscope trace of the output. The possibility of using these thermocouples in transit time flowmeters in sodium circuit was ascertained by observing the response from two thermocouples in flowing sodium, and evaluating the cross-correlation between the response. The application of such thermocouples for fast reactors and sodium circuits is also discussed. (author)

  5. Nitrogen bearing austenitic stainless steels for surgical implants

    Tschiptschin, A.P.; Aidar, C.H.; Alonso-Falleiros, N. [Sao Paulo Univ. (Brazil). Escola Politecnica; Neto, F.B. [Instituto de Pesquisas Tecnologicas, Sao Paulo (Brazil)

    1999-07-01

    Nitrogen addition promotes substantial improvements on general and localized corrosion performance of stainless steels. In recent times high nitrogen (up to 0.6 wt%) and Mn bearing super austenitic stainless steel has been studied for medical applications due to its low Ni content, the so called body friendly alloys. 18%Cr, 0.4%N and 15%Mn stainless steels were cast either from electrolytic or commercial master alloys in induction furnace, forged, solubilized at 1423K for 3 hours and water quenched. Delta ferrite and carbide precipitate free structures were observed. (orig.)

  6. EXAFS investigation of low temperature nitrided stainless steel

    Oddershede, Jette; Christiansen, Thomas; Ståhl, Kenny;

    2008-01-01

    Low temperature nitrided stainless steel AISI 316 flakes were investigated with EXAFS and X-ray diffraction analysis. The stainless steel flakes were transformed into a mixture of nitrogen expanded austenite and nitride phases. Two treatments were carried out yielding different overall nitrogen...... contents: (1) nitriding in pure NH3 and (2)nitriding in pure NH3 followed by reduction in H2. The majority of the Cr atoms in the stainless steel after treatment 1 and 2 was associated with a nitrogen–chromium bond distance comparable to that of the chemical compound CrN. The possibility of the occurrence...

  7. Kinetics of chemical interactions between zirconium alloys and stainless steels

    The chemical interaction kinetics of reactor core component zirconium alloys and stainless steels at high temperatures was examined. Interaction of as-received and preoxidized Zr1%Nb with X18H10T stainless steel used in WWER type nuclear reactors, and also that of Zircaloy-4 and AISI-316 stainless steel, for comparison, were investigated. The reaction rate measurements were supplemented with post-test metallographical examinations. Results are presented and evaluated, and compared with literature data. (author). 14 refs., 31 figs., 8 tabs

  8. New Stainless Steel Alloys for Low Temperature Surface Hardening?

    Christiansen, Thomas Lundin; Dahl, Kristian Vinter; Somers, Marcel A. J.

    2015-01-01

    The present contribution showcases the possibility for developing new surface hardenable stainless steels containing strong nitride/carbide forming elements (SNCFE). Nitriding of the commercial alloys, austenitic A286, and ferritic AISI 409 illustrates the beneficial effect of having SNCFE present...... in the stainless steel alloys. The presented computational approach for alloy design enables “screening” of hundreds of thousands hypothetical alloy systems by use of Thermo-Calc. Promising compositions for new stainless steel alloys can be selected based on imposed criteria, i.e. facilitating easy...

  9. Shear design recommendations for stainless steel plate girders

    Saliba, Najib; Real, E.; Gardner, Leroy

    2014-01-01

    The behaviour and design of stainless steel plate girders loaded in shear is investigated in this paper. A review of existing methods for the design of stainless steel plate girders, including codified provisions, is first presented. A database of thirty-four experiments carried out on austenitic, duplex and lean duplex stainless steel plate girders is then reported, and used to assess the current shear resistance design equations from Eurocode 3: Part 1.4 and Eurocode 3: Part 1.5 and the rec...

  10. Thermodynamic calculation of phase equilibria in stainless steels

    Klančnik G.

    2012-01-01

    Full Text Available In this paper two examples of thermodynamic investigation of stainless steels using both, experimental and modeling approach are described. The ferritic-austenitic duplex stainless steel and austenitic stainless steel were investigated using thermal analysis. The complex melting behavior was evident for both alloy systems. Experimentally obtained data were compared with the results of the thermodynamic calculations using the CALPHAD method. The equilibrium thermal events were also described by the calculated heat capacity. In spite of the complexity of both selected real alloy systems a relative good agreement was obtained between the thermodynamic calculations and experimental results.

  11. Thermal fatigue crack growth in stainless steel

    A judgment of residual service life of engineering parts exposed to thermal fatigue makes it possible to deal with economic and safety issues in power plants. The aim of this study is to analyze a fatigue crack initiation and propagation in A321 stainless steel bodies subjected to repeated thermal shocks. For this purpose, various methods of crack propagation monitoring were used. The first stage of experiments included mechanical cyclic loading of specimens with the central notch at fixed temperatures ranging from 20 °C to 410 °C. The crack growth rate was only minimally influenced by temperature in this case. Thermal loading of the same specimens with ΔT varying from 150 °C to 340 °C showed very rapid crack initiation in the notches and its asymmetric growth. Metallographic and fractographic analyses of failed specimens were carried out after 1000, 3000 and 6000 thermal cycles. The comparison of the fracture surface micromorphology confirmed the similarity in the mechanism of the thermal and mechanical fatigue crack growth. Stress analysis using the finite element method consisting of transient thermal and mechanical solutions was performed in order to simulate the experiments. Thermal fatigue crack growth assessment was carried out on the basis of the experiments and the computed thermally induced stress intensity factors. This model successfully confirms the discussed analogy of thermal and mechanical stress induced damage. Highlights: ► A fatigue crack initiation and propagation in A321 stainless steel was analyzed. ► Mechanical and thermal experiments were performed, simulated also by FEM. ► Similarity in the mechanism of thermal and mechanical fatigue crack growth found. ► Application of the Paris model for the thermal cycling confirmed.

  12. Effect of tritium and decay helium on the fracture toughness properties of stainless steel weldments

    J-Integral fracture toughness tests were conducted on tritium-exposed-and- aged Types 304L and 21-6-9 stainless steel weldments in order to measure the combined effects of tritium and its decay product, helium-3 on the fracture toughness properties. Initially, weldments have fracture toughness values about three times higher than base-metal values. Delta-ferrite phase in the weld microstructure improved toughness provided no tritium was present in the microstructure. After a tritium-exposure-and-aging treatment that resulted in ∼1400 atomic parts per million (appm) dissolved tritium, both weldments and base metals had their fracture toughness values reduced to about the same level. The tritium effect was greater in weldments (67 % reduction vs. 37% reduction) largely because the ductile discontinuous delta-ferrite phase was embrittled by tritium and decay helium. For both base metals and weldments, fracture toughness values decreased with increasing decay helium content in the range tested (50-800 appm). (authors)

  13. Further investigation of the structure and properties of austenitic stainless steel after plasma nitriding

    Menthe, E.; Rie, K.-T. [Technische Univ. Braunschweig (Germany). Inst. fuer Oberflaechentechnik und Plasmatechnische Werkstoffentwicklung

    1999-09-01

    A series of plasma nitriding experiments has been conducted on AISI 304L austenitic stainless steel at temperatures ranging from 375 to 475 C using pulsed-DC plasma with different pulse duty cycles, N{sub 2}-H{sub 2} gas mixtures and treatment times. It is shown that a wide range of treatment parameters exist that allow the formation of the S-phase. The formation and growth of this surface layer depend strongly on the treatment parameters, such as nitrogen partial pressure and duty cycle. Within the parameter range investigated, the layer growth appears to be diffusion controlled with an activation energy about 107 kJ/mol. The formation of CrN precipitates during plasma nitriding is not accompanied by the formation of bcc iron, which might be expected due to the loss of free chromium. However, the S-phase transforms into CrN and bcc iron following a heat treatment at 450 C or higher for 25 h. The wear rate after plasma nitriding is greatly reduced compared with the untreated material. (orig.)

  14. Irradiation assisted stress corrosion cracking of controlled purity 305L stainless steels

    The effect of chromium, phosphorus, silicon and sulfur on the stress corrosion cracking of 304L stainless steel in CERT tests in high purity water or argon at 288 C following irradiation with 3.4 MeV protons at 400 C to 1 dpa, has been investigated using ultrahigh purity alloys (UHP) with controlled impurity additions. Grain boundary segregation of phosphorus or silicon due to proton irradiation was quantified using both Auger electron spectroscopy and scanning transmission electron microscopy, and the alloys with impurity element additions were observed to have greater grain boundary chromium depletion and nickel enrichment than the UHP alloy. The UHP alloy suffered severe cracking in CERT tests in water. Less cracking was found after CERT tests of irradiated UHP+P or UHP+Si alloys, despite greater chromium depletion. This suggests a mitigating effect of phosphorus and silicon at grain boundaries. No cracking was found in argon tests, eliminating a purely mechanical embrittlement mechanism, but not eliminating a contribution from radiation hardening. Implanted hydrogen was not a factor in the intergranular cracking found. (orig.)

  15. High stored-energy breakdown tests on electrodes made of stainless steel, copper, titanium and molybdenum

    IRFM have conducted resilience tests on electrodes made of Cu, stainless steel 304L, Ti and Mo against breakdowns up to 170 kV and 300 J. The tests of the 10×10 cm2 electrodes have been performed at an electrode distance d=11 mm under vacuum (P∼5×10−6 mbar). No great difference in voltage holding between the materials could be identified; all materials could reach a voltage holding between 140 and 170 kV over the 11 mm gap, i.e. results scatter within a ±10% band. After exposure to ∼10000 seconds of high-voltage (HV) on-time, having accumulated ∼1000 breakdowns, the electrodes were inspected. The anodes were covered with large and small craters. The rugosity of the anodes had increased substantially, that of the cathodes to a lesser extent. The molybdenum electrodes are least affected, but this does not show in their voltage holding capability. It is hypothesized that penetrating high-energy electrons from the breakdown project heat below the surface of the anode and cause a micro-explosion of material when melting point is exceeded. Polished electrodes have also been tested. The polishing results in a substantially reduced breakdown rate in the beginning, but after having suffered a relatively small number (∼100) of breakdowns, the polished electrodes behaved the same as the unpolished ones

  16. Reliability of welded austenitic stainless steel containing base metal delta ferrite

    Shalaby, Hamdy M. [Kuwait Institute for Scientific Research (Kuwait)

    2004-07-01

    The paper presents the results of a failure case study carried out on welded 304L stainless steel (SS) pipeline of waste gas header (WGH). The environment inside the WGH was mainly wet steam with hydrocarbons, H{sub 2}S, oxygen, CO{sub 2}, organic acids, and organic chlorides. The outside pipe wall temperature was 91-97 deg C. The failure of the pipe was at the heat-affected zone (HAZ). The study was made on four welded pipeline samples, three of which were in service. The pipe samples were welded using three different techniques that included autogenous gas tungsten arc, shielded metal arc, and flux core arc. The investigation revealed that cracking at HAZ was due to base metal delta ferrite decay accompanied with sigma phase formation due to high heat input during welding. However, the morphology and orientation of the cracks suggested that stress-rupture and stress corrosion cracking had occurred. The presence of base metal delta ferrite made all used welding procedures un-successful. The study concluded that utilization of delta ferrite free austenitic SS should eliminate the problem. (author)

  17. High stored-energy breakdown tests on electrodes made of stainless steel, copper, titanium and molybdenum

    Esch, H. P. L. de, E-mail: hubert.de-esch@cea.fr; Simonin, A.; Grand, C. [CEA-Cadarache, IRFM, F-13108 St. Paul-lez-Durance (France)

    2015-04-08

    IRFM have conducted resilience tests on electrodes made of Cu, stainless steel 304L, Ti and Mo against breakdowns up to 170 kV and 300 J. The tests of the 10×10 cm{sup 2} electrodes have been performed at an electrode distance d=11 mm under vacuum (P∼5×10{sup −6} mbar). No great difference in voltage holding between the materials could be identified; all materials could reach a voltage holding between 140 and 170 kV over the 11 mm gap, i.e. results scatter within a ±10% band. After exposure to ∼10000 seconds of high-voltage (HV) on-time, having accumulated ∼1000 breakdowns, the electrodes were inspected. The anodes were covered with large and small craters. The rugosity of the anodes had increased substantially, that of the cathodes to a lesser extent. The molybdenum electrodes are least affected, but this does not show in their voltage holding capability. It is hypothesized that penetrating high-energy electrons from the breakdown project heat below the surface of the anode and cause a micro-explosion of material when melting point is exceeded. Polished electrodes have also been tested. The polishing results in a substantially reduced breakdown rate in the beginning, but after having suffered a relatively small number (∼100) of breakdowns, the polished electrodes behaved the same as the unpolished ones.

  18. Effects of stop-start features on residual stresses in a multipass austenitic stainless steel weld

    Turski, M., E-mail: Mark.Turski@magnesium-elektron.com [School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom); Francis, J.A. [School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom)] [Materials Engineering, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Hurrell, P.R. [Rolls-Royce Plc., Raynesway, Derby DE21 7XX (United Kingdom); Bate, S.K. [Serco Technical Services, Birchwood Park, Warrington, Cheshire WA3 6GA (United Kingdom); Hiller, S. [Materials Engineering, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Withers, P.J. [School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom)

    2012-01-15

    In this article we describe experiments that characterise and quantify the localised perturbations in residual stress associated with both ramped and abrupt stop-start features in a multipass weld. Residual stress distributions in AISI Grade 304L/308L stainless steel groove-welded specimens, containing weld interruptions that were introduced in a controlled manner, have been characterised using both neutron diffraction and the incremental deep hole drilling method. The extent to which the localised stresses associated with the interruptions were annealed by overlayed passes was also assessed. The results suggest that, regardless of the type of interruption, there can be significant localised increases in residual stress if the stop-start feature is left exposed. If further weld passes are deposited, then the localised increases in stress are likely to persist if the interruption was abrupt, whereas for a ramped interruption they may be dissipated. - Highlights: Black-Right-Pointing-Pointer In this study the residual stress-field surrounding weld interruptions was measured. Black-Right-Pointing-Pointer Localised stresses were found to increase at weld interruptions. Black-Right-Pointing-Pointer Both ramped and abrupt weld interruptions were investigated. Black-Right-Pointing-Pointer After subsequent weld passes, localised stresses persisted for abrupt interruptions. Black-Right-Pointing-Pointer After subsequent weld passes, localised stresses dissipated for ramped interruptions.

  19. High stored-energy breakdown tests on electrodes made of stainless steel, copper, titanium and molybdenum

    de Esch, H. P. L.; Simonin, A.; Grand, C.

    2015-04-01

    IRFM have conducted resilience tests on electrodes made of Cu, stainless steel 304L, Ti and Mo against breakdowns up to 170 kV and 300 J. The tests of the 10×10 cm2 electrodes have been performed at an electrode distance d=11 mm under vacuum (P˜5×10-6 mbar). No great difference in voltage holding between the materials could be identified; all materials could reach a voltage holding between 140 and 170 kV over the 11 mm gap, i.e. results scatter within a ±10% band. After exposure to ˜10000 seconds of high-voltage (HV) on-time, having accumulated ˜1000 breakdowns, the electrodes were inspected. The anodes were covered with large and small craters. The rugosity of the anodes had increased substantially, that of the cathodes to a lesser extent. The molybdenum electrodes are least affected, but this does not show in their voltage holding capability. It is hypothesized that penetrating high-energy electrons from the breakdown project heat below the surface of the anode and cause a micro-explosion of material when melting point is exceeded. Polished electrodes have also been tested. The polishing results in a substantially reduced breakdown rate in the beginning, but after having suffered a relatively small number (˜100) of breakdowns, the polished electrodes behaved the same as the unpolished ones.

  20. Fatigue crack growth in metastable austenitic stainless steels

    Mei, Z.; Chang, G.; Morris, J.W. Jr.

    1988-06-01

    The research reported here is an investigation of the influence of the mechanically induced martensitic transformation on the fatigue crack growth rate in 304-type steels. The alloys 304L and 304LN were used to test the influence of composition, the testing temperatures 298 K and 77 K were used to study the influence of test temperature, and various load ratios (R) were used to determine the influence of the load ratio. It was found that decreasing the mechanical stability of the austenite by changing composition or lowering temperature decreases the fatigue crack growth rate. The R-ratio effect is more subtle. The fatigue crack growth rate increases with increasing R-ratio, even though this change increases the martensite transformation. Transformation-induced crack closure can explain the results in the threshold regime, but cannot explain the R-ratio effect at higher cyclic stress intensities. 26 refs., 6 figs.

  1. Electrochemical and passivation behavior investigation of ferritic stainless steel in simulated concrete pore media

    Hong Luo; Huaizhi Su; Chaofang Dong; Kui Xiao; Xiaogang Li

    2015-01-01

    The applications of stainless steel are one of the most reliable solutions in concrete structures to reduce chloride-induced corrosion problems and increase the structures service life, however, due to high prices of nickel, especially in many civil engineering projects, the austenitic stainless steel is replaced by the ferritic stainless steels. Compared with austenite stainless steel, the ferritic stainless steel is known to be extremely resistant of stress corrosion cracking and other prop...

  2. Stainless steel anodes for alkaline water electrolysis and methods of making

    Soloveichik, Grigorii Lev

    2014-01-21

    The corrosion resistance of stainless steel anodes for use in alkaline water electrolysis was increased by immersion of the stainless steel anode into a caustic solution prior to electrolysis. Also disclosed herein are electrolyzers employing the so-treated stainless steel anodes. The pre-treatment process provides a stainless steel anode that has a higher corrosion resistance than an untreated stainless steel anode of the same composition.

  3. Behaviour and design of cold-formed lean duplex stainless steel members

    Huang, Yun'er; 黃韵兒

    2013-01-01

    Cold-formed stainless steel sections have been increasingly used in architectural and structural applications. Yet the high price of stainless steel limits the application to construction projects. The lean duplex stainless steel (EN 1.4162) offers an opportunity for stainless steels to be used more widely due to its competitive in price, good mechanical properties and corrosion resistance. The lean duplex stainless steel is a relatively new material, and research on this material is limited....

  4. Effects of Cr2N Precipitation on the Antibacterial Properties of AISI 430 Stainless Steel

    Je-Kang Du; Chih-Yeh Chao; Yu-Ting Jhong; Chung-Hao Wu; Ju-Hui Wu

    2016-01-01

    Based on their mechanical properties and good corrosion resistance, some commercial Ni-Cr stainless steels have been widely applied as biomaterials, including the austenitic 304 stainless steel, the austenitic 316 stainless steel, the duplex 2205 stainless steel, and the ferritic 430 stainless steel. In order to reduce the occurrence of infections resulting from biomaterial implants, instruments, and medical devices, Cu2+ and Ag2+ ions have been added onto biomaterials for increasing the anti...

  5. Evaluation of stainless steels for their resistance to intergranular corrosion

    Austenitic stainless steels are being considered as structural materials for first wall/blanket systems in the international thermonuclear reactor (ITER). The uniform corrosion of stainless steels in water is well known and is not a critical issue limiting its application for the ITER design. The sensitivity of austenitic steels to intergranular corrosion (IGC) can be estimated rather accurately by means of calculation methods, considering structure and chemical composition of steel. There is a maximum permissible carbon content level, at which sensitization of stainless steel is eliminated: K=Creff-αCeff, where α-thermodynamic coefficient, Creff-effective chromium content (regarding molybdenum influence) and Ceff-effective carbon content (taking into account nickel and stabilizing elements). Corrosion tests for 16Cr11Ni3MoTi, 316L and 316LN steel specimens, irradiated up to 2 x 1022 n/cm2 fluence have proved the effectiveness of this calculation technique for determination of austenitic steels tendency to IGC. This method is directly applicable in austenitic stainless steel production and enables one to exclude complicated experiments on determination of stainless steel susceptibility to IGC. (orig.)

  6. Bacterial adhesion on ion-implanted stainless steel surfaces

    Stainless steel disks were implanted with N+, O+ and SiF3+, respectively at the Surrey Ion Beam Centre. The surface properties of the implanted surfaces were analyzed, including surface chemical composition, surface topography, surface roughness and surface free energy. Bacterial adhesion of Pseudomonas aeruginosa, Staphylococcus epidermidis and Staphylococcus aureus, which frequently cause medical device-associated infections was evaluated under static condition and laminar flow condition. The effect of contact time, growth media and surface properties of the ion-implanted steels on bacterial adhesion was investigated. The experimental results showed that SiF3+-implanted stainless steel performed much better than N+-implanted steel, O+-implanted steel and untreated stainless steel control on reducing bacterial attachment under identical experimental conditions

  7. Bacterial adhesion on ion-implanted stainless steel surfaces

    Zhao, Q.; Liu, Y.; Wang, C.; Wang, S.; Peng, N.; Jeynes, C.

    2007-08-01

    Stainless steel disks were implanted with N +, O + and SiF 3+, respectively at the Surrey Ion Beam Centre. The surface properties of the implanted surfaces were analyzed, including surface chemical composition, surface topography, surface roughness and surface free energy. Bacterial adhesion of Pseudomonas aeruginosa, Staphylococcus epidermidis and Staphylococcus aureus, which frequently cause medical device-associated infections was evaluated under static condition and laminar flow condition. The effect of contact time, growth media and surface properties of the ion-implanted steels on bacterial adhesion was investigated. The experimental results showed that SiF 3+-implanted stainless steel performed much better than N +-implanted steel, O +-implanted steel and untreated stainless steel control on reducing bacterial attachment under identical experimental conditions.

  8. Strain induced grain boundary migration effects on grain growth of an austenitic stainless steel during static and metadynamic recrystallization

    Static and metadynamic recrystallization of an AISI 304L austenitic stainless steel was investigated at 1100 °C and 10− 2 s− 1 strain rate. The kinetics of recrystallization was determined through double hit compression tests. Two strain levels were selected for the first compression hit: εf = 0.15 for static recrystallization (SRX) and 0.25 for metadynamic recrystallization (MDRX). Both the as-deformed and the recrystallized microstructures were investigated through optical microscopy and electron back-scattered diffraction (EBSD) technique. During deformation, strain induced grain boundary migration appeared to be significant, producing a square-like grain boundary structure aligned along the directions of the maximum shear stresses in compression. EBSD analysis revealed to be as a fundamental technique that the dislocation density was distributed heterogeneously in the deformed grains. Grain growth driven by surface energy reduction was also investigated, finding that it was too slow to explain the experimental data. Based on microstructural results, it was concluded that saturation of the nucleation sites occurred in the first stages of recrystallization, while grain growth driven by strain induced grain boundary migration (SIGBM) dominated the subsequent stages. - Highlights: • Recrystallization behavior of a stainless steel was investigated at 1100 °C. • EBSD revealed that the dislocation density distribution was heterogeneous during deformation. • Saturation of nucleation sites occurred in the first stages of recrystallization. • Strain induced grain boundary migration (SIGBM) effects were significant. • Grain growth driven by SIGBM dominated the subsequent stages

  9. Examination of stainless steel-clad Connecticut Yankee fuel assembly S004 after storage in borated water

    A Connecticut Yankee fuel assembly (S004) was tested nondestructively and destructively. It was concluded that no obvious degradation of the 304L stainless steel-clad spent fuel from assembly S004 occurred during 5 y of storage in borated water. Furthermore, no obvious degradation due to the pool environment occurred on 304 stainless steel-clad rods in assemblies H07 and G11, which were stored for shorter periods but contained operationally induced cladding defects. The seam welds in the cladding on fuel rods from assembly S004, H07, and G11 were similar in that they showed a wrought microstructure with grains noticeably smaller than those in the cladding base metal. The end cap welds showed a dendritically cored structure, typical of rapidly quenched austenitic weld metal. Some intergranular melting may have occurred in the heat-affected zone (HAZ) in the cladding adjacent to the end cap welds in rods from assemblies S004 and H07. However, the weld areas did not show evidence of corrosion-induced degradation

  10. Electrochemical degradation of 1,2- dichloroethane (DCA) in a synthetic groundwater medium using stainless-steel electrodes.

    Bejankiwar, Rajesh; Lalman, Jerald A; Seth, Rajesh; Biswas, Nihar

    2005-11-01

    The electrochemical degradation of 1,2-dichloroethane (DCA) was examined in a synthetic groundwater medium. An undivided electrolytic reactor constructed with 304 L-type stainless-steel plate electrodes was employed in all experiments. The removal of total organic carbon (TOC) content during the electrolysis of DCA was experimentally examined. Stainless-steel plate electrodes were effective in degrading DCA under experimental conditions including varying initial concentrations, chloride concentrations, electrolyte conductivities and applied current densities. A half-life method demonstrated TOC removal followed zero-order kinetics under the experimental conditions examined. Chlorides concentration and applied current affected the TOC removal rates. An increase in current density increased the rate of TOC removal but caused a reduction in mineralization current efficiency. Increase in electrolyte conductivity had no effect on TOC removal rates but it decreased the energy consumption by reducing the cell voltage. Reaction temperature was shown to affect the TOC removal and was modeled by the Arrhenius equation. PMID:16289674

  11. Employing the Waves to Measure Longitudinal Residual Stresses in Different Depths of a Stainless Steel Welded Plate

    Yashar Javadi

    2013-01-01

    Full Text Available Ultrasonic stress measurement is based on the acoustoelasticity law which presents the relationship between the stress and acoustic wave velocity in engineering materials. The technique uses longitudinal critically refracted ( waves that travel parallel to the material surface. The wave is a bulk longitudinal wave that propagates within an effective depth underneath the surface while the penetration depth of a wave depends on its frequency. It is possible to measure the residual stress in different depths by employing different frequencies of the waves. This paper evaluates welding residual stresses in different depths of a plate made of austenitic stainless steel (304L. The penetration depths are accurately measured for the waves produced by 1 MHz, 2 MHz, 4 MHz, and 5 MHz transducers. Residual stresses through the thickness of the plate are then evaluated by employing four different series of transducers. It has been concluded that the method is nondestructive, easy and fast, portable, readily available, and low cost and bulk measuring technique which can be accurately employed in through-thickness stress measurement of austenitic stainless steels.

  12. Phase Transformations in Cast Duplex Stainless Steels

    Yoon-Jun Kim

    2004-12-19

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as {sigma} and {chi} can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe-22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase ({sigma} + {chi}) formation were analyzed using the Johnson-Mehl-Avrami (MA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations. The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities; a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, {sigma} was stabilized with increasing Cr addition and {chi} by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in

  13. Phase transformations in cast duplex stainless steels

    Kim, Yoon-Jun

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as sigma (sigma) and chi (chi) can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe-22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase (sigma + chi) formation were analyzed using the Johnson-Mehl-Avrami (JMA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations. The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities, a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, a was stabilized with increasing Cr addition and chi by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in

  14. Surface modified stainless steels for PEM fuel cell bipolar plates

    Brady, Michael P [Oak Ridge, TN; Wang, Heli [Littleton, CO; Turner, John A [Littleton, CO

    2007-07-24

    A nitridation treated stainless steel article (such as a bipolar plate for a proton exchange membrane fuel cell) having lower interfacial contact electrical resistance and better corrosion resistance than an untreated stainless steel article is disclosed. The treated stainless steel article has a surface layer including nitrogen-modified chromium-base oxide and precipitates of chromium nitride formed during nitridation wherein oxygen is present in the surface layer at a greater concentration than nitrogen. The surface layer may further include precipitates of titanium nitride and/or aluminum oxide. The surface layer in the treated article is chemically heterogeneous surface rather than a uniform or semi-uniform surface layer exclusively rich in chromium, titanium or aluminum. The precipitates of titanium nitride and/or aluminum oxide are formed by the nitriding treatment wherein titanium and/or aluminum in the stainless steel are segregated to the surface layer in forms that exhibit a low contact resistance and good corrosion resistance.

  15. Development of oxide dispersion strengthened 2205 duplex stainless steel composite

    Oladayo OLANIRAN

    2015-05-01

    Full Text Available Composites of duplex stainless steel were produced by oxide dispersion strengthening with comparatively improved mechanical properties by hot press sintering of partially stabilized Zirconia (PSZ, 3% yttria, mole fraction dispersion in 2205 duplex stainless steels. Ceramic oxide was added as reinforcement, while chromium (Cr and Nickel (Ni were incorporated to maintain the austenitic/ferritic phase balance of the duplex stainless steel. The powders and sintered were characterized in detail using scanning electron microscopy (SEM and X-ray diffraction (XRD. The microstructural evolution and phase formation during oxide dispersion strengthening of duplex stainless steel composites were investigated. The influence of composition variation of the reinforcements on the microstructural and corrosion behaviour in simulated mine water of the composites were investigated. In this manuscript, it was established that composition has great influence on the structure/properties relationship of the composites developed.

  16. Evaluation of tensile properties of cast stainless steel using ball

    In this study the ball indentation tests were performed on the four unaged cast stainless steel and 316 stainless steel, which have different microstructure and strength, to examine the applicability of ball indentation test to the evaluation of thermal aging of cast stainless steel. Also, the reliability of test results were analyzed by evaluating the scattering of data tested from each material and by comparing tensile properties obtained from ball indentation test and tensile test. The results showed that the maximum standard deviation to mean value are less than 6%, and the average standard deviation to mean value are about 1.5∼2.5%, when 2 point data that show out of trend were discarded from the data set tested a single specimen. Also, the scattering increased slightly with decreasing δ-ferrite content. Additionally, the ball indentation test predicted the tensile properties of cast stainless steel within an error of ±10% for all materials

  17. Overlaying of type 316 austenitic stainless steel with type 430 ferritic stainless steel

    Overlaying of type 316 austenitic stainless steel vessel with type 430 ferritic stainless is proposed for liquid magnesium service. The interface in this type of bimetallic configuration has been shown to be a cause for concern as it contains a hard and brittle martensite micro constituent which becomes susceptible to cracking under certain conditions. This study was carried out to standardize the welding conditions and characterise the interface in order to obtain sound overlay. Some tests were also conducted to simulate the elevated temperature service. The investigation has shown that the interface hardness approaches 400 VPN when no preheating is employed. However, in the preheated samples, appreciable reduction in the peak hardness was observed. This has been attributed to a decrease in the cooling rate of the clad metal with an increase in the preheating temperature which results in softening of the martensite. The minimum recommended preheat is 473 K. The samples exposed to thermal cycle tests to a peak temperature of 1223 K to simulate the service condition did not show any cracking at the interface after 20 cycles of testing. Therefore, this study has demonstrated the stability of the interface between type 316 and 430 stainless steels at the intended temperature of service. (author)

  18. Stainless steels and special grades for specific applications

    The development of special steels grades with a composition between stainless steels and nickel alloys for localised corrosion resistance applications (steam condenser, combustion products de-pollution...) are shortly presented by family (austenitic and super-austenitic stainless steels of the URANUS family with or without nitrogen additions, austeno-ferritic steels), with electrochemistry corrosion tests evaluation : in standard medium (30 g/l NaCl + 6% FeCl3) or in real medium. (A.B.). 6 refs., 12 figs., 2 tabs

  19. Corrosion resistance properties of sintered duplex stainless steel

    L.A. Dobrzański; Z. Brytan; M. Actis Grande; M. Rosso

    2006-01-01

    Purpose: of this paper was to examine the corrosion resistance of duplex stainless steels using electrochemical methods in 1M NaCl solution. The influence of powder mixes preparation and cooling cycle after sintering on corrosion properties was evaluated.Design/methodology/approach: In presented study duplex stainless steels were obtained through powder metallurgy starting from austenitic, martensitic base powders by controlled addition of alloying elements, such as Cr, Ni, Mo and Cu. In the ...

  20. CO-DOPED POLYPYRROLE COATINGS FOR STAINLESS STEEL PROTECTION

    W. PRISSANAROON; Brack, N.; Pigram, P. J.; J. LIESEGANG

    2006-01-01

    Polypyrrole (PPy) films have been successfully electrodeposited on stainless steel substrates in aqueous solution. In this work, three systems of electrolytes were studied: oxalic acid, dodecylbenzenesulfonic acid (DBSA) and a mixture of oxalic acid and DBSA. A combination of XPS and TOF–SIMS revealed the formation of an iron oxalate layer at the interface between the oxalic acid-doped PPy (PPy(Ox)) and stainless steel and a thin layer of DBSA was observed at the interface between DBSA-doped ...

  1. Fatigue curve and stress strain response for stainless steel

    Applicability of ASME, KTA and RCC-M fatigue design curves for stainless steels is an issue of current debate. Laboratory data have shown environmental effects in coolant waters, but applicability of the proposed new design criteria to current plant components has been questioned. In a Regulatory Guide for new designs, the US NRC endorsed also a new air curve for stainless steels. Aim of the current study is to test applicability of the existing and proposed design criteria

  2. Properties of duplex stainless steels made by powder metallurgy

    M. Rosso; M. Actis Grande; Z. Brytan; L.A. Dobrzański

    2007-01-01

    Purpose: of this paper was to examine the mechanical properties of duplex stainless steels.Design/methodology/approach: In presented study duplex stainless steels were obtained through powder metallurgy starting from austenitic, martensitic base powders by controlled addition of alloying elements, such as Cr, Ni, Mo and Cu. In the studies behind the preparation of mixes, Schaeffler’s diagram was taken into consideration. Prepared mixes have been sintered in a vacuu...

  3. Probing the duplex stainless steel phases via magnetic force microscopy

    Gheno, S. M.; Santos, F. S.; Kuri, S. E.

    2008-03-01

    Duplex stainless steels are austenitic-ferritic alloys used in many applications, thanks to their excellent mechanical properties and high corrosion resistance. In this work, chemical analyses, x-ray diffraction, and magnetic force microscopy (MFM) were employed to characterize the solution annealed and aged duplex stainless steel. The samples exhibited no changes in lattice parameters and the MFM technique proved successful in clearly imaging the magnetic domain structure of the ferrite phase.

  4. Corrosion of Stainless Steels of Cryogenic Hydrocarbon Flare Tips Burners

    H. U. Nwosu; A. U. Iwuoha

    2011-01-01

    Analysis of the corrosion resistance of AISI Type 304 Stainless Steel (SS) used in flare tips (burners) of natural gas (NG) extraction facilities is considered to determine the resistance of this grade of austenitic stainless steel to the aggressive corrosive actions of the environment. It was observed that the grade of SS yielded quite early to corrosion attacks which gave effects to scaling, flaking, pitting, material thinning and flare distortions in the burners contrary to expectations. T...

  5. Hydrogen Embrittlement Susceptibility of Super Duplex Stainless Steels

    Alsarraf, Jalal

    2010-01-01

    This thesis describes the metallurgical and environmental factors that influence hydrogen embrittlement of super duplex stainless steels and presents a model to predict the rate at which embrittlement occurs. Super duplex stainless steel has an austenite and ferrite microstructure with an average fraction of each phase of approximately 50%. An investigation was carried out on the metallurgical and environmental factors that influence hydrogen embrittlement of super duplex st...

  6. Restorasi Gigi Insisivus Sulung Menggunakan Resin Veneer Mahkota Stainless Steel

    Hilda Shandika P.

    2008-01-01

    Untuk memperbaiki kerusakan gigi yang luas diperlukan restorasi yang tahan lama, retentif, dan estetik. Mahkota stainless steel digunakan untuk merestorasi insisivus sulung yang mengalami karies berat, kelainan bentuk atau akibat trauma. Mahkota ini merupakan restorasi yang kuat, tidak mudah fraktur, dan jarang rusak sampai beberapa tahun selama masih berada di tempatnya. Namun mahkota stainless steel memiliki kekurangan dari segi estetik karena warna peraknya yang mengganggu perhatian pada w...

  7. Stainless steel reinforcement for durability in concrete structures

    Stainless steels and concrete are materials which the nuclear industry, more than any other, has given special attention to over the years. It is the intention of this paper to inform congress about developments outside the nuclear industry, in the use of stainless steel as reinforcement (rebar) in concrete structures. It is left to individual engineers within the industry to assess the implications of this information to applications with which they will be familiar. (author)

  8. Literature study - Sigma phase in 316L and 304L

    A literature survey of the existence, formation and kinetics of the sigma phase has been made. It was early realised that the precipitation of the sigma phase and that of 23-carbide were intimately coupled, why both are treated. The mechanical properties of both 304L and 316L are highly affected by the presence of sigma phase. The dominating features are: Yield strength is reduced, due to reduced solution hardening, Deformation hardening increases, Ultimate tensile stress increases, due to the presence of a hard phase, Impact strength is generally decreased. This is however dependant on the microstructure and processing. There are conditions where the impact strength can increase due to crack deflection, Ductility is significantly reduced. An additional conclusion is that the Huey test is too a blunt and conservative instrument to identify sensitization, caused by sigma phase. In a material that contains ferrite in some form, before aging, 23-carbide will precipitate in all welded 304L and 316L steels according to the literature. It is also clear that the first carbide to form is very fine and is precipitated before the sigma phase. This has the consequence that welded and annealed weldments will show some sensitization from 23-carbide. It is also clear that the amount of 23-carbide reduces as the amount of sigma phase increases. The time to the start of the dissolution, which could decrease the level of sensitization, depends on temperature. This could for instance explain why there are examples of sensitized 30L steel that showed excellent corrosion resistance. Direct corrosion of the sigma phase is highly pH-dependant. The sμμma phase has little resistance against oxidizing acids. It is thus important to understand the coupling between the sensitization caused by the 23-carbide and the change in ductility caused by the 23-carbide with sigma phase present. This is in turn primarily depending on the carbon content and the ferrite content after welding

  9. Improved cast stainless steels for shield module applications

    Full text of publication follows: Casting of austenitic stainless steels offers the possibility of directly producing large and/or relatively complex structures, such as the first wall shield modules or the divertor cassette for the International Tokamak Experimental Reactor (ITER). Casting offers major cost savings when compared to fabrication via welding together quarter modules machined from large forgings. However, because of the large grain size, low dislocation density and extensive segregation of alloying elements, the strength properties of such cast components are frequently inferior to those of conventionally forged and annealed components. To improve and validate cast stainless steel as a substitute for wrought stainless steel for shield module applications, a series of test cast steels based on the commercially available CF3M specification have been designed and fabricated. These modifications utilize combinations of Mn and N,which are expected to synergistically result in significant increases in strength. In addition, two other alloys will enhance solid solution strengthening with Cu and W additions to increase strength. It will be necessary to demonstrate that these compositional modifications do not adversely affect performance in the ITER water corrosion and radiation environments Computational thermodynamics and solidification modeling predict that these improved cast steel compositions to be fully austenitic throughout the solidification process. Post-cast heat treatments are a second-route for improving strength and properties of cast materials. Homogenizing treatments to remove second particles have also been explored as means of improving strength in cast stainless steel. In this paper, the physical metallurgy, mechanical properties, and irradiation tolerance of the improved cast stainless steel compositions and heat treatments will be compared to standard cast stainless steel. Fracture toughness, weldability, and non-destructive analysis of

  10. Copper contamination in thin stainless steel sheet

    The standard welding technique used at Oak Ridge Y-12 Plant for joining thin stainless sheet is the gas tungsten arc (GTA) welding process. One of the reoccurring problems with the sheet welds is surface cracking in the heat-affected zone (HAZ). Metallography shows that the cracks are only about 0.05 mm (0.002 in.) deep which is significant in a 0.25 mm (0.01 in.) thick sheet. Thus, welding requirements do not permit any surfacing cracking as detected by a fluorescent dye penetrant test conducted on every part after welding. Surface cracks have been found in both of the two most common weld designs in the thin sheet fabricated at the Oak Ridge Y-12 Plant. These butt joints are welded between two 0.25 mm thick stainless steel sheets and a tube with eyelet welded to a 25 mm (0.98 in.) thick sheet. The weld between the two sheets is made on a semiautomatic seam welding unit, whereas the tube-to-eyelet-to-sheet welds are done manually. The quality of both welds is very dependent on the welding procedure and the way the parts are placed in the weld fixturing. Metallographic examination has indicated that some welded parts with surface cracking in the weld region had copper particles on the surface, and the question of copper contamination has been raised. With the aid of a scanning electron microscope and an electron microprobe, the existence of copper in an around the surface cracks has been verified. The copper is on the surface of the parts prior to welding in the form of small dust particles

  11. The electrochemistry of 13% chromium stainless steel in oilfield brines

    Sidorin, Dmitry; Pletcher, Derek [Department of Chemistry, The University of Southampton, Southampton SO17 1BJ (United Kingdom); Hedges, Bill [BP Trinidad Ltd., P.O. Box 714, Port of Spain (Trinidad and Tobago)

    2005-07-25

    The electrochemistry of a 13% Cr stainless steel (API5CT L80-13Cr) in 3% NaCl containing acetate and either acetic acid or carbon dioxide at 333 K is explored using RDE voltammetry. The reduction of proton, carbonic acid and acetic acid occur simultaneously, immediately negative to the corrosion potential. Acetic acid gives a well formed reduction wave and the current densities increase with the equilibrium concentration of acetic acid in the medium; in the plateau region, the reduction is mass transport controlled. Despite this reduction process, the corrosion resistance and passivation current density are independent of the acetic acid concentration. It is confirmed that the 13% Cr stainless steel is much more resistant to corrosion that X65 carbon steel and, unlike the carbon steel, its rate of corrosion does not vary with acetic acid concentration. The properties of the passivating film appear to dominate the behaviour of the 13% Cr stainless steel. (author)

  12. The electrochemistry of 13% chromium stainless steel in oilfield brines

    The electrochemistry of a 13% Cr stainless steel (API5CT L80-13Cr) in 3% NaCl containing acetate and either acetic acid or carbon dioxide at 333 K is explored using RDE voltammetry. The reduction of proton, carbonic acid and acetic acid occur simultaneously, immediately negative to the corrosion potential. Acetic acid gives a well formed reduction wave and the current densities increase with the equilibrium concentration of acetic acid in the medium; in the plateau region, the reduction is mass transport controlled. Despite this reduction process, the corrosion resistance and passivation current density are independent of the acetic acid concentration. It is confirmed that the 13% Cr stainless steel is much more resistant to corrosion that X65 carbon steel and, unlike the carbon steel, its rate of corrosion does not vary with acetic acid concentration. The properties of the passivating film appear to dominate the behaviour of the 13% Cr stainless steel

  13. EFFECT OF INTERMETALLIC PHASES ON CORROSION BEHAVIOR AND MECHANICAL PROPERTIES OF DUPLEX STAINLESS STEEL AND SUPER-DUPLEX STAINLESS STEEL

    Prabhu Paulraj; Rajnish Garg

    2015-01-01

    Duplex Stainless Steels (DSS) and Super Duplex Stainless Steel (SDSS) have excellent integration of mechanical and corrosion properties. However, the formation of intermetallic phases is a major problem in their usage. The mechanical and corrosion properties are deteriorated due to the presence of intermetallic phases. These phases are induced during welding, prolonged exposure to high temperatures, and improper heat treatments. The main emphasis of this review article is on intermetallic pha...

  14. High temperature decontamination of stainless steel surfaces

    Dilute Chemical Decontamination process that is carried out at low temperatures (<90 °C) is effective in obtaining good decontamination factors (DFs) on carbon steel (CS) system surfaces of PHWRs as the formulation is efficient in dissolving magnetite present on CS surfaces. However, this low temperature dilute chemical decontamination process is not effective in achieving appreciable DFs on stainless steel (SS) surfaces of nuclear power reactors as it is not efficient in dissolving Cr and Ni substituted oxides present on these surfaces. Hence, a high temperature process was evaluated for the effective decontamination of SS surfaces. Among the various formulations evaluated, formulation consisting of 5 mM NTA and 10 mM N2H4 at 160 °C was found to be appropriate for high temperature decontamination application. Dissolution of various oxides like, magnetite (Fe3O4), mixed ferrites (NiFe2O4, ZnFe2O4, MgFe2O4 etc), Cr oxide (Cr2O3), bonaccordite (Ni2FeBO5) etc. was carried out in NTA at 160 °C. Significant increase in dissolution rate was observed for these oxides at 160 °C. On increasing the temperature from 80 to 180 °C, the dissolution rate of Fe3O4 increased about 6 fold. The optimised formulation (5 mM NTA with 10 mM N2H4) was employed for removing the oxide formed on SS-304, SS-316, SS-403 and SS-410 under simulated reactor water chemistry conditions. Oxide deposits from all the above surfaces could be completely removed by this high temperature process. This paper gives the summary of the results from the laboratory experiments and a simulated high temperature decontamination process. (author)

  15. Determination of creep compliance and creep-swelling coupling coefficients for neutron-irradiated titanium-modified stainless steel at ∼400 degree C

    Irradiation creep data from FFTF-MOTA at ∼400 degrees C were analyzed for nine 20% cold-worked titanium-modified type 316 stainless steels, each of which exhibits a different duration for the transient regime of swelling. One of these steels was the fusion prime candidate alloy designated PCA. The others were various developmental breeder reactor heats. The analysis was based on the assumption that the B0 + DS creep model applies to these steels at this temperature. This assumption was found to be valid. A creep-swelling coupling coefficient of D ∼ 0.6 x 10-2 MPa-1 was found for all steels that had developed a significant level of swelling. This result is in excellent agreement with the results of earlier studies conducted in EBR-II using annealed AISI 304L and also 10% and 20% cold-worked AISI 316 stainless steels. There appears to be some enhancement of swelling by stress, contradicting an important assumption in the analysis and leading to an apparent but misleading nonlinearity of creep with respect to stress

  16. Fracture toughness of stainless steel welds

    The effects of temperature, composition and weld-process variations on the fracture toughness behavior for Types 308 and 16-8-2 stainless steel (SS) welds were examined using the multiple-specimen J/sub R/-curve procedure. Fracture characteristics were found to be dependent on temperature and weld process but not on filler material. Gas-tungsten-arc (GTA) welds exhibited the highest fracture toughness, a shielded metal-arc (SMA) weld exhibited an intermediate toughness and submerged-arc (SA) welds yielded the lowest toughness. Minimum-expected fracture properties were defined from lower-bound J/sub c/ and tearing modulus values generated here and in previous studies. Fractographic examination revealed that microvoid coalescence was the operative fracture mechanism for all welds. Second phase particles of manganese silicide were found to be detrimental to the ductile fracture behavior because they separated from the matrix during the initial stages of plastic straining. In SA welds, the high density of inclusions resulting from silicon pickup from the flux promoted premature dimple rupture. The weld produced by the SMA process contained substantially less manganese silicide, while GTA welds contained no silicide inclusions. Delta ferrite particles present in all welds were substantially more resistant to local failure than the silicide phase. In welds containing little or no manganese silicide, delta ferrite particles initiated microvoid coalescence but only after extensive plastic straining

  17. Martensite transformation in antimony implanted stainless steel

    The authors have used Rutherford backscattering analysis (RBS) and transmission electron microscopy (TEM) and diffraction to investigate austenitic stainless steel crystals implanted at room temperature with 80 keV Sb+ ions to a fluence of 5 x 1020 ions/m2, thus providing implantation with a heavy group V element. RBS channeling spectra from implanted crystals show a damage peak which approaches the height of the random level and therefore indicates a very high degree of disorder in the implanted layers. The distribution of the disorder extends to a depth 3-5 times the depth of the primary radiation damage. The Sb peaks under channeling as well as random conditions are indistinguishable, confirming that substitutionality during implantation is negligible. To establish the nature of the disorder which cannot be assessed from the RBS analysis alone, and in particular to assess whether an amorphous alloy is formed in the implanted layer as indicated from the RBS spectra, samples implanted under similar conditions were investigated in the TEM. Significant extra spots in the patterns can be ascribed to the presence of a radiation induced b.c.c. phase of martensitic origin. The result that a significant amount of martensite can be induced by antimony implantation seems to indicate that the main driving force for the transition is due to damage induced stress concentrations. (Auth.)

  18. He blisters on welded austenitic stainless steel

    Surface blisters of single-crystal and polycrystalline metals induced by He-ion irradiation have been investigated by many researchers and several blister-formation mechanisms have been proposed. But there is no report on what blister densities and blister sizes are to be expected on a welded 316 austenitic stainless steel in use as a fusion reactor material. An experiment was carried out, and details are given. The exfoliation of blisters was almost not observed until the total dose of 2 x 1022 ions m-2 was reached. A figure shows the blister densities for every increment in blister diameter of 0.5 μm on the base and weld metals. A second figure shows the corresponding blister densities on the base and weld metals annealed at 653 K for 4.5 ksec after He-ion irradiation. The total blister densities of the base metals decrease to 4.3 to 5.5 x 1010 blisters m-2 and the average blister sizes increase to 2.8 to 3.2 μm. This phenomenon indicates that the implanted He ions diffuse in the weld and base metals. The blister sizes on the weld metals are smaller than those on the base metals and the densities on the weld metals are greater than those on the base metals. (author)

  19. 78 FR 34644 - Stainless Steel Plate in Coils From Belgium: Preliminary Results of Antidumping Duty...

    2013-06-10

    ... International Trade Administration Stainless Steel Plate in Coils From Belgium: Preliminary Results of... administrative review of the antidumping duty order on stainless steel plate in coils (steel plate) from Belgium...: Scope of the Order The product covered by this order is certain stainless steel plate in...

  20. 78 FR 79662 - Stainless Steel Plate in Coils From Belgium: Final Results of Antidumping Duty Administrative...

    2013-12-31

    ... Value: Stainless Steel Plate in Coils from Belgium, 64 FR 15476 (March 31, 1999), as amended by... International Trade Administration Stainless Steel Plate in Coils From Belgium: Final Results of Antidumping... administrative review on stainless steel plate in coils (steel plate) from Belgium.\\1\\ This review covers...

  1. Corrosion behavior of duplex stainless steel in sulphuric acid

    Duplex stainless steels are alloyed and processed to develop microstructure of roughly equal amounts of ferrite and austenite. Duplex stainless steel constitute a new class of materials because they have balanced amounts of ferrite and austenite. Since they have high content of chromium and molybdenum present, thus they have good corrosion resistance. Their corrosion resistance is double to that of annealed austenitic stainless steels with regard to pitting, crevice corrosion, sulphide stress corrosion, and chloride stress corrosion environments. The corrosion behavior of duplex stainless steel in various concentrations of sulphuric acid was studied. The reactions were carried out by placing the steel specimen in a beaker containing a known concentration of sulphuric acid at room temperature for a definite period. Pits were initiated in duplex stainless steel specimen and the propagation of pits depends upon the concentration of the acid solution in which the sample is in contact. The weight loss for definite period of time were measured and corrosion rates were calculated in millimetres per year. The corrosion rates increases with an increase in acid concentration at room temperature. A comparison of the results obtained from various concentrations of sulphuric acid with the same concentrations of nitric acid is also discussed. (author)

  2. Radiation effects in stainless steels and tungsten using as ADS spallation neutron source system

    Radiation effects have been studied in the home-made modified 316L stainless steel and standard stainless steel and tungsten irradiated by 80 MeV 12C or 85 MeV 19F ions. The experimental results show that the radiation resistant property of stainless steels is much better than that of tungsten and the homemade modified 316L stainless steel has the best radiation resistant property among them. The stainless steels are a good choice for beam window material of the ADS spallation neutron source system, and the homemade modified 316L stainless steel is the best choice

  3. Stainless steel tube-based cell cryopreservation containers.

    Shih, Wei-Hung; Yu, Zong-Yan; Wu, Wei-Te

    2013-12-01

    This study focused on increasing the freezing rate in cell vitrification cryopreservation by using a cryopreservation container possessing rigid mechanical properties and high heat-transfer efficiency. Applying a fast freezing rate in vitrification cryopreservation causes a rapid temperature change in the cryopreservation container and has a substantial impact on mechanical properties; therefore, a highly rigid cryopreservation container that possesses a fast freezing rate must be developed. To produce a highly rigid cryopreservation container possessing superior heat transfer efficiency, this study applies an electrochemical machining (ECM) method to an ANSI 316L stainless steel tube to treat the surface material by polishing and roughening, thereby increasing the freezing rate and reducing the probability of ice crystal formation. The results indicated that the ECM method provided high-quality surface treatment of the stainless steel tube. This method can reduce internal surface roughness in the stainless steel tube, thereby reducing the probability of ice crystal formation, and increase external surface roughness, consequently raising convection heat-transfer efficiency. In addition, by thinning the stainless steel tube, this method reduces heat capacity and thermal resistance, thereby increasing the freezing rate. The freezing rate (3399 ± 197 °C/min) of a stainless steel tube after interior and exterior polishing and exterior etching by applying ECM compared with the freezing rate (1818 ± 54 °C/min) of an original stainless steel tube was increased by 87%, which also exceeds the freezing rate (2015 ± 49 °C/min) of an original quartz tube that has a 20% lower heat capacity. However, the results indicated that increasing heat-transferring surface areas and reducing heat capacities cannot effectively increase the freezing rate of a stainless steel tube if only one method is applied; instead, both techniques must be implemented concurrently to improve the

  4. Modern high strength QT, TM and duplex-stainless steels

    Pressure vessels are commonly manufactured with normalised steel grades with a yield strength up to 355 MPa or with austenitic stainless steels when corrosion as to be considered. From three decades, modern steels with higher mechanical properties - up to yield strength of 960 Mpa - are available and largely used for other applications where weight saving is of major importance as per off-shore, bridges, cranes, shipbuilding, line pipes.. The paper presents these modern steel's families - TMCP (Thermo Mechanically Controlled Process), QT (Quenched and Tempered) and Duplex (austeno-ferritic) stainless - in comparison with the normalised and austenitic steel grades. The following aspects are presented: the main mechanical properties (tensile and Charpy) as per the requirements of the standards for pressure equipment; some examples of use of these modern steels in the industry are given; the limitations of the forming conditions are considered; the weldability aspects and welds properties are developed; the interest of the PWHT (Post Weld Heat Treatment) is discussed. (orig.)

  5. Mechanical Properties of Thermally Aged Austenitic Stainless Steel Welds and Cast Austenitic Stainless Steel

    Conventional test methods for tensile and J-R properties of such weld require large size specimens. Meanwhile, small punch (SP) test has advantages of using small size samples at specific location. In this study, the mechanical property changes caused by the thermal aging were evaluated for the stainless steel welds and CASSs using tensile, J-R, and SP test. Based on the results, correlations were developed to estimate the fracture toughness using the load-displacement curve of SP tests. Finally, the fracture surfaces of compact tension (CT) and SP test specimens are compared and discussed in view of the effect of thermal aging on microstructure. Stainless steel welds of ER316L and ER347 as well as CASS (CF8M) were thermally aged at 400 .deg. C for 5,000 h. So far, tensile properties and fracture toughness of un-aged materials were carried out at room temperature and 320 .deg. C as a reference data. In order to evaluate the effect of thermal aging on mechanical properties, aged specimens are being tested and the changes in these properties will be discussed. In addition, correlations will be developed to estimate the fracture toughness in between J-R curve and SP curve

  6. 77 FR 28568 - Grant of Authority for Subzone Status; North American Stainless, (Stainless Steel), Ghent, KY

    2012-05-15

    ... public comment has been given in the Federal Register (76 FR 66684-66685, 10-27-2011) and the application... Steel), Ghent, KY Pursuant to its authority under the Foreign-Trade Zones Act of June 18, 1934, as... authority to establish a special-purpose subzone at the stainless steel mill of North American...

  7. Magnetic properties of stainless steels at room and cryogenic temperatures

    The magnetic properties of ten types of ferritic and martensitic stainless steels have been measured at room temperature and at 77 K. The steel samples studied were in the annealed state as received from the manufacturer. Our room temperature measurements indicate significantly harder magnetic properties than those quoted in the ASM International Handbook, which studied fully annealed stainless steel samples. Despite having harder magnetic properties than fully annealed steels some of the as-received steels still display soft magnetic properties adequate for magnetic applications. The carbon content of the steels was found to affect the permeability and coercive force, with lower-carbon steels displaying significantly higher permeability and lower coercive force. The decrease in coercive force with reduced carbon content is attributed to fewer carbide inclusions which inhibit domain wall motion. Cooling to 77 K resulted in harder magnetic properties. Averaged over the ten steels tested the maximum permeability decreased by 8%, the coercive force increased by 14%, and the residual and saturation flux densities increased by 4% and 3%, respectively. The change in coercive force when cooled is comparable to the theoretical prediction for iron, based on a model of domain wall motion inhibited by inclusions. The modest changes of the magnetic properties indicate that the stainless steels can still be used in magnetic applications at very low temperatures.

  8. Precipitated phases and corrosion behavior in the dissimilar alloy 690-SUS 304L joints formed by EBW and GTAW

    This study investigates the correlation between the microstructure and the corrosion resistance properties of the fusion zone of Alloy 690-SUS 304L stainless steel dissimilar weldments formed by electron beam welding (EBW). The effects of the EBW process are evaluated by comparing the microstructure and corrosion resistance properties of the EBW weldment with those of Alloy 690-SUS 304L weldment formed by gas tungsten arc welding (GTAW). The experimental results reveal that the interdendritic region of the fusion zone of the EBW weldment contains fine TiN precipitates and Cr-Ni rich phases. The TiN precipitates are originated from the Alloy 690 base metal, while the Cr-Ni rich phases, a new formation of precipitates, is precipitated in the region around TiN during solidification. Microscopic analysis of the samples following a modified Huey test indicates that the matrix around TiN precipitate and the Cr-Ni rich phase precipitate provide the preferred sites for corrosion pit initiation. Due to the rapid cooling in the EBW process, relatively fewer and smaller TiN precipitates and Cr-Ni rich phases are formed in the weldment. Consequently, only limited corrosive pitting is observed which indicates better interdendritic corrosion resistance properties in comparison to joints with GTAW process. Furthermore, rapid solidification in the fusion zone results not only the suppression of chromium carbide precipitation but also the chromium depletion at the grain boundaries. As a result, the intergranular corrosion resistance and interdendritic corrosion resistance of the EBW weldment are significantly higher than that of the GTAW weldment. (author)

  9. Aging of cast duplex stainless steels in LWR systems

    A program is being conducted to investigate the significance of in-service embrittlement of cast duplex stainless steels under light-water reactor operating conditions. The existing data are evaluated to determine the expected embrittlement of cast components during the operating lifetime of reactors and to define the objectives and scope of the investigation. This presentation describes the status of the program. Data for the metallurgical characterization of the various cast stainless steels used in the investigation are presented. Charpy impact tests on short-term aged material indicate that CF-3 stainless steels are less susceptible to embrittlement than CF-8 or CF-8M stainless steels. Microstructural characterization of cast stainless steels that were obtained from Georg Fischer Co. and aged for up to 70,000 h at 300, 350, and 4000C reveals the formation of four different types of precipitates that are not α'. Embrittlement of the ferrite phase is primarily due to pinning of the dislocations by two of these precipitates, designated as Type M and Type X. The ferrite phase is embrittled after approx. 8 y at 3000C and shows cleavage fracture. Examination of the fracture surfaces of the impact-test specimens indicates that the toughness of the long-term aged material is determined by the austenite phase. 8 figures, 3 tables

  10. Experimental study on the emissivity of stainless steel

    The emissivity of material is a very important parameter for thermal radiative heat transfer. The emissivities of stainless steel 316L and 304 were measured as a fuction of surface temperature and heating time of test section by indirect method using the infrared thermometer. The error range of experiment is within 3∼10% and most of errors were occurred in measuring the surface temperature by thermocouple. The range of temperature for the experiment was 50∼540.deg. C and the emissivities of stainless steel 316L and 304 were increased along with the increase of surface temperature, and the increase rates for two materials were approximately the same and the value was about 1.31x10-4(1/.deg. C). The emissivity of stainless steel 316L with surface roughness 4.1μm was between 0.44 and 0.51, and the emissivity of stainless steel 304 with surface roughness 2.0μm was between 0.32 and 0.38 in this temperature range. The emissivity of stainless steel 304 was gradually increased by a value of 0.03 at 395.deg. C for 266 hours

  11. Microbial electrocatalysis with Geobacter sulfurreducens biofilm on stainless steel cathodes

    Stainless steel and graphite electrodes were individually addressed and polarized at -0.60 V vs. Ag/AgCl in reactors filled with a growth medium that contained 25 mM fumarate as the electron acceptor and no electron donor, in order to force the microbial cells to use the electrode as electron source. When the reactor was inoculated with Geobacter sulfurreducens, the current increased and stabilized at average values around 0.75 A m-2 for graphite and 20.5 A m-2 for stainless steel. Cyclic voltammetry performed at the end of the experiment indicated that the reduction started at around -0.30 V vs. Ag/AgCl on stainless steel. Removing the biofilm formed on the electrode surface made the current totally disappear, confirming that the G.sulfurreducens biofilm was fully responsible for the electrocatalysis of fumarate reduction. Similar current densities were recorded when the electrodes were polarized after being kept in open circuit for several days. The reasons for the bacteria presence and survival on non-connected stainless steel coupons were discussed. Chronoamperometry experiments performed at different potential values suggested that the biofilm-driven catalysis was controlled by electrochemical kinetics. The high current density obtained, quite close to the redox potential of the fumarate/succinate couple, presents stainless steel as a remarkable material to support biocathodes

  12. Aging of cast duplex stainless steels in LWR systems

    A program is being conducted to investigate the significance of in-service embrittlement of cast duplex stainless steels operating conditions. The existing data are evaluated to determine the expected embrittlement of cast components during the operating lifetime of reactors and to define the objectives and scope of the investigation. This presentation describes the status of the program. Data for the metallurgical characterization of the various cast stainless steels used in the investigation are presented. Charpy impact tests on short-term aged material indicate that CF-3 stainless steels are less susceptible to embrittlement than CF-8 or CF-8M stainless steels. Microstructural characterization of cast stainless steels that were obtained from Georg Fischer Co. and aged for up to 70 000 h at 300, 350 and 4000C reveals the formation of four different types of precipitates that are not α'. Embrittlement of the ferrite phase is primarily due to pinning of the dislocations by two of these precipitates, designated as Type M and Type X. The ferrite phase is embrittled after proportional 8 y at 3000C and shows cleavage fracture. Examination of the fracture surfaces of the impact test specimens indicates that the toughness of the long-term aged material is determined by the austenitic phase. (orig./HP)

  13. Embrittlement and life prediction of aged duplex stainless steel

    The stainless steel, for which the durability for long term in high temperature corrosive environment is demanded, is a complex plural alloy. Cr heightens the oxidation resistance, Ni improves the ductility and impact characteristics, Si improves the fluidity of the melted alloy and heightens the resistance to stress corrosion cracking, and Mo suppresses the pitting due to chlorine ions. These alloy elements are in the state of nonequilibrium solid solution in Fe base at practical temperature, and cause aging phenomena such as segregation, concentration abnormality and precipitation during the use for long term. The characteristics of stainless steel deteriorate due to this. Two-phase stainless cast steel, the example of the embrittlement of the material for an actual machine, the accelerated test of embrittlement, the activation energy for embrittlement, and as the mechanism of aging embrittlement, the spinodal decomposition of ferrite, the precipitation of G phase and the precipitation of carbides and nitrides are described. Also in the welded parts of austenitic stainless steel, delta-ferrite is formed during cooling, therefore, the condition is nearly same as two-phase stainless steel, and the embrittlement due to long term aging occurs. (K.I.)

  14. Compresibility and sinterability of HCx PM steel diluted with stainless steels

    Gordo Elena; Khattab Nermein Hamid; Ruiz-Navas Elisa María

    2003-01-01

    HCx powder metallurgy steel contains in its composition high contents of Cr and C, and significant quantities of alloy elements typical of tool steels (Mo, V, W), to provide the corrosion resistance of stainless steel with wear resistance of tool steels. HCx appears to be a suitable material for applications in aggressive environments, as valve seat inserts in automotive engines. However, this steel presents a low compressibility leading to high production costs. In this work, some results ca...

  15. Estudo comparativo entre os aços inoxidáveis dúplex e os inoxidáveis AISI 304L/316L

    Marcelo Senatore

    2007-03-01

    Full Text Available Os aços inoxidáveis dúplex ferríticos-austeníticos fazem parte de uma classe de materiais com microestrutura bifásica, composta por uma matriz ferrítica e ilhas de austenita, com frações volumétricas aproximadamente iguais dessas fases. Essa classe de materiais é caracterizada por apresentar interessante combinação de elevadas propriedades mecânicas e de resistência à corrosão e, por isso, é considerada bastante versátil. Os aços inoxidáveis dúplex são, freqüentemente, utilizados nas indústrias química e petroquímica, de papel e celulose, siderúrgicas, alimentícias e de geração de energia. O presente trabalho estabelece um comparativo entre as propriedades físicas, mecânicas e de resistência à corrosão dos aços inoxidáveis duplex e os tradicionais aços inoxidáveis austeníticos AISI 304L e 316L, largamente utilizados na indústria brasileira. Resultados de ensaios laboratoriais e dados relevantes de experiências práticas desses materiais também são apresentados.Ferritic-austenitic duplex stainless steels are part of a class of material having a two-phase microestructure, comprised of a ferritic matrix and austenitic islands, with the volumetric fractions approximately the same in these phases. This class of material is characterized by the presentation of an interesting combination of high mechanical properties and corrosion resistance and is therefore considered quite versatile. The duplex stainless steels are often used in the chemical, petrochemical, pulp & paper and food industries, as well as in steel foundaries and energy power plants. This paper shows a comparison between the physical, mechanical and corrosion resistance properties of duplex stainless steels and the traditional austenitic stainless steels 304L and 316L, largely used in the Brazilian industry. Results of laboratory tests and relevant data on practical experiments on these materials are also presented.

  16. Numerical modelling of the behaviour of a stainless steel portal frame subjected to fire

    Lopes, N.; Vila Real, P. M. M.; Piloto, P.A.G.; Mesquita, L.M.R.; Silva, L. S

    2006-01-01

    It is known that stainless steel has a better fire performance than carbon steel, which can lead to a growing utilization of this kind of steel in structures. In fact, although more expensive than the carbon steel, structures in stainless steel can be competitive because of its smaller thermal protection need. With the purpose of modelling by Finite Element Method the behaviour of a stainless steel framed structure, without any protection, submitted to fire, has been introduced...

  17. Operational experience of stainless steels in seawater-cooled systems

    A study has been made of chiefly Swedish and Finnish operational experience of stainless steel in seawater and brackish water. A report is given on 23 typical cases, behind which in actual fact a considerably larger number of individual practical cases are concealed. The answer to the primary question why a standard steel of type SS 2343 (AISI 316) sometimes, contrary to expectation, remains unattacked by local corrosion is that there is usually spontaneous cathodic protection by other less noble components of carbon steel, cast iron or some copper alloy in direct contact with the stainless steel. The study confirms in other respects the adverse effect of residual oxides after welding and the beneficial of low temperature, high continuous waterflow and periodic cleaning, and of rinsing with fresh water during out-of service periods. It also verifies the additional advantages of the new high-alloy special steels which have begun to be marketed in recent years for seawater applications. (author)

  18. Statistical and regression analysis of Material Removal Rate for wire cut Electro Discharge Machining of SS 304L using design of experiments

    Vishal Parashar

    2010-05-01

    Full Text Available In this paper, statistical and regression analysis of Material removal rate (MRR using design of experiments is proposed for WEDM operations. Experimentation was planned as per Taguchi’s L’32 (21 X 44 mixed orthogonal array. Each experiment has been performed under different cutting conditions of gap voltage, pulse ON time, pulseOFF time, wire feed and dielectric flushing pressure. Stainless Steel grade 304L was selected as a work material to conduct the xperiments. From experimental results, the MRR was determined for each machining performance criteria. Analysis of variance (ANOVA technique was used to find out the variables affecting the MRR.Assumptions of ANOVA were discussed and carefully examined using analysis of residuals. Variation of the MRR with machining parameters was mathematically modeled by using the regression analysis method. Finally, the developed model was validated with a new set of experimental data and appeared to be satisfactory.

  19. Embrittlement of cast stainless steels in LWR systems

    Mechanical property data from Charpy-impact and J-R curve tests are presented for several experimental and commercial heats, as well as reactor-aged material of CF-3, CF-8, and CF-8M grades of cast stainless steel. The effects of material variables on the embrittlement of cast stainless steels are evaluated. The chemical composition and ferrite morphology have a strong effect on the extent and kinetics of embrittlement. The data are analyzed to establish the mechanisms of embrittlement. The procedure and correlations for predicting the impact strength and fracture toughness of cast components during reactor service are described. The lower bound values of impact strength and fracture toughness for low-temperature aged cast stainless steel are defined. 13 refs., 13 figs., 3 tabs

  20. Thermal Induced Processes in Laminar System of Stainless Steel - Beryllium

    The paper reports on investigation of the laminar system 'stainless steel 12Cr18Ni10Ti - Be' at thermal treatment. There have been determined sequences of phase transformations along with relative amount of iron-containing phases in the samples subjected to thermal beryllization. It has been revealed that thermal beryllization of stainless steel thin foils results in γ→α transformation and formation of the beryllides NiBe and FeBe2. It has also been revealed that direct γ→α- and reverse α→γ-transformations are accompanied by, correspondingly, formation and decomposition of the beryllide NiBe. It is shown that distribution of the formed phases within sample bulk is defined by local concentration of beryllium. Based on obtained experimental data there is proposed a physical model of phase transformations in stainless steel at thermal beryllization.

  1. Depth distribution of martensite in xenon implanted stainless steels

    The amount of stress-induced martensite and its distribution in depth in xenon implanted austenitic stainless steel poly- and single crystals have been measured by Rutherford backscattering and channeling analysis, depth selective conversion electron Moessbauer spectroscopy, cross-sectional transmission electron microscopy and x-ray diffraction analysis. In low nickel 17/7, 304 and 316 commercial stainless steels and in 17:13 single crystals the martensitic transformation starts at the surface and develops towards greater depth with increasing xenon fluence. The implanted layer is nearly completely transformed, and the interface between martensite and austenite is rather sharp and well defined. In high nickel 310 commercial stainless steel and 15:19 and 20:19 single crystals, on the other hand, only insignificant amounts of martensite are observed. (orig.)

  2. Diffusionless bonding of aluminum to type 304 stainless steel

    High strength diffusionless bonds can be produced between 1S aluminum and oxidized 304 stainless steel by hot pressing and extrusion bonding. Both the hot pressing and extrusion bonding techniques have been developed to a point where consistently good bonds can be obtained. Although the bonding is performed at elevated temperatures (about 510oC) a protective atmosphere is not required to produce strong bonds. The aluminum-stainless steel bonded specimens can be used to join aluminum and stainless steel by conventional welding. Welding close to the bond zone does not appear to affect the integrity of the bond. The extrusion bonding technique is covered by Canadian patent 702,438 January 26, 1965 and the hot press bonding technique by Canadian patent application 904,548 June 6, 1964. (author)

  3. Highly robust stainless steel tips as microelectrospray emitters.

    Ishihama, Yasushi; Katayama, Hiroyuki; Asakawa, Naoki; Oda, Yoshiya

    2002-01-01

    Tapered stainless steel spray tips for sheathless microelectrospray ionization (microESI) have been developed. The fabrication procedure for the tapered stainless steel tips was optimized using an electropolishing technique followed by removal of the burr. Using the tip as the microESI emitter, a stable ESI spray was obtained at a flow rate of 20 nL/min. The sensitivity of the microESI system was almost two orders greater than that of the conventional ion spray system. The tip was highly stable, and was successfully used for over 1000 h. Moreover, these stainless steel tips were suitable for use with sheathless capillary electrophoresis/mass spectrometry (CE/MS) and capillary liquid chromatography/mass spectrometry (LC/MS) for routine analysis in proteomic and pharmaceutical applications. PMID:11968120

  4. Microbially influenced corrosion of stainless steels in nuclear power plants

    Sinha, U.P.; Wolfram, J.H.; Rogers, R.D.

    1990-01-01

    This paper reviews the components, causative agents, corrosion sites, and potential failure modes of stainless steel components susceptible to microbially influenced corrosion (MIC). The stainless steel components susceptible to MIC are located in the reactor coolant, emergency, and reactor auxiliary systems, and in many plants, in the feedwater train and condenser. The authors assessed the areas of most high occurrence of corrosion and found the sites most susceptible to MIC to the heat-affected zones in the weldments of sensitized stainless steel. Pitting is the predominant MIC corrosion mechanisms, caused by sulfur reducing bacteria (SRB). Also discussed is the current status of the diagnostic, preventive, and mitigation techniques, including use of improved water chemistry, alternate materials, and improved thermomechanical treatments. 37 refs., 3 figs.

  5. Internal variable approach to superplastic deformation of duplex stainless steel

    An internal variable theory has been used in this study to investigate quantitatively the major deformation mechanism of a duplex stainless steel. The flow curves obtained from load relaxation tests were found separable into two parts, viz. Grain Matrix Deformation (GMD) curve and Grain/Phase Boundary Sliding (G/PBS) curve as was predicted by the internal variable theory. The major deformation mechanism of duplex stainless steel at high temperature is found to be a Dynamic Recrystallization (DRX) at an early stage of deformation, but grain/phase boundary sliding becomes the major deformation mechanism at the late stage of deformation. Additionally, χ phase precipitated first by replacing Mo with W in duplex stainless steels appears to improve the superplastic deformation characteristics when it exists below a critical level

  6. Mechanical properties of duple stainless steels laser joints

    The welded joints of stainless steels always present problems for the microstructural modifications that occur in the heat affected zone. Particularly, duplex stainless steels present very important changes when the weld pool solidifies forming fundamentally ferritic structures with some austenite in grain boundaries. These microstructural modifications, and those which occur in the HAZ, justify the mechanical properties of the joint and mainly those of plasticity, being all of them influenced by the processing conditions. In this work the influence of the laser welding speed on the tensile behaviour od duplex stainless steel welded joints is presented. The microstructure of the obtained seams and of the heat affected zone will be evaluated by means of optic and scanning electron microscopy. Also, different microhardness profiles have been obtained to evaluate the modifications in the mechanical properties both in the seam and the zone of thermal affection. (Author) 23 refs

  7. Boronization and Carburization of Superplastic Stainless Steel and Titanium-Based Alloys

    Masafumi Matsushita

    2011-01-01

    Bronization and carburization of fine-grain superplastic stainless steel is reviewed, and new experimental results for fine grain Ti88.5Al4.5V3Fe2Mo2 are reported. In superplastic duplex stainless steel, the diffusion of carbon and boron is faster than in non-superplastic duplex stainless steel. Further, diffusion is activated by uniaxial compressive stress. Moreover, non-superplastic duplex stainless steel shows typical grain boundary diffusion; however, inner grain diffusion is confirmed in...

  8. Sinter-hardening process applicable to stainless steels

    M. Rosso

    2007-10-01

    Full Text Available Purpose: of this paper was to describe sintered duplex stainless steels manufactured in sinter-hardening process and its usability in field of stainless steels.Design/methodology/approach: In presented study duplex stainless steels were obtained through powder metallurgy starting from austenitic, ferritic base powders by controlled addition of alloying elements, such as Cr, Ni, Mo and Cu. In the studies apart from the preparation of mixes, Schaeffler’s diagram was taken into consideration. Prepared mixes have been compacted at 800 MPa and sintered in a vacuum furnace with argon backfilling at temperatures from 1200°C to 1285°C for 0.5, 1 and 2 h. After sintering different cooling cycles were applied using nitrogen under pressure from 0.6 MPa to 0.002 MPa in argon atmosphere. Produced duplex stainless steels have been studied by scanning and optical microscopy and EDS chemical analysis of microstructure components.Findings: Obtained microstructure and mechanical properties of sintered duplex stainless steel strictly depend on the density and the pore morphology present in the microstructure and especially on cooling rate directly from sintering temperature in sinter-hardening process. The lowest cooling rate - applied gas pressure, the mechanical properties and corrosion resistance decrease due to precipitation of sigma phase. Proper bi-physic microstructure was obtained using nitrogen under pressure of 0.6 and 0.2 MPa.Research limitations/implications: Applied fast cooling rate seems to be a good compromise for mechanical properties and obtained microstructures, nevertheless further tests should be carried out in order to examine its influence on corrosion properties.Originality/value: The utilization of sinter-hardening process combined with use of elemental powders added to a stainless steel base powder shows its potentialities in terms of good microstructural homogeneity and especially working with cycles possible to introduce in

  9. Biomaterial Studies on AISI 316L Stainless Steel after Magnetoelectropolishing

    Massimiliano Filippi

    2009-03-01

    Full Text Available The polarisation characteristics of the electropolishing process in a magnetic field (MEP – magnetoelectropolishing, in comparison with those obtained under standard/conventional process (EP conditions, have been obtained. The occurrence of an EP plateau has been observed in view of the optimization of MEP process. Up-to-date stainless steel surface studies always indicated some amount of free-metal atoms apart from the detected oxides and hydroxides. Such a morphology of the surface film usually affects the thermodynamic stability and corrosion resistance of surface oxide layer and is one of the most important features of stainless steels. With this new MEP process we can improve metal surface properties by making the stainless steel more resistant to halides encountered in a variety of environments. Furthermore, in this paper the stainless steel surface film study results have been presented. The results of the corrosion research carried out by the authors on the behaviour of the most commonly used material - medical grade AISI 316L stainless steel both in Ringer’s body fluid and in aqueous 3% NaCl solution have been investigated and presented earlier elsewhere, though some of these results, concerning the EIS Nyquist plots and polarization curves are also revealed herein. In this paper an attempt to explain this peculiar performance of 316L stainless steel has been undertaken. The SEM studies, Auger electron spectroscopy (AES and X-ray photoelectron spectroscopy (XPS were performed on 316L samples after three treatments: MP – abrasive polishing (800 grit size, EP – conventional electrolytic polishing, and MEP – magnetoelectropolishing. It has been found that the proposed magnetoelectropolishing (MEP process considerably modifies the morphology and the composition of the surface film, thus leading to improved corrosion resistance of the studied 316L SS.

  10. Development of a duplex cast stainless steel for nuclear purposes

    The starting material was a Finnish austenitic-ferritic stainless steel belonging to the family of widely used CF 308 M cast steels. This original HKS steel failed in the Strauss tests, which are of primary importance for materials used in nuclear power piles. Development work on lowering the ferrite and interstitial impurity contents influenced the properties of the steel so much that it no longer failed the Strauss test nor showed any brittleness when tested after irradiation treatment. Welded samples also showed no brittleness, provided the welding was carried out using correct filler materials and suitable heat input. (author)

  11. Evaluation of the thermal ageing of duplex stainless steels

    Three methods have been investigated to follow up the thermal ageing of duplex stainless steels: microhardness tests, instrumented ultramicrohardness tests and Small Angle Neutron Scattering (SANS) techniques. The values measured with these methods have been correlated with pertinent parameters of the metallurgical ageing phenomenon determined by Atom-Probe. These methods seem to be sensitive and reproducible enough to detect and follow up the ageing of duplex stainless steels. They can be applied on small samples (chips) drawn from in-service components. (authors). 10 refs., 9 figs., 3 tabs

  12. Failure of austenitic stainless steel tubes during steam generator operation

    M. Głowacka; J. Łabanowski; S. Topolska

    2012-01-01

    Purpose: of this study is to analyze the causes of premature failure of steam generator coil made of austenitic stainless steel. Special attention is paid to corrosion damage processes within the welded joints.Design/methodology/approach: Examinations were conducted several segments of the coil made of seamless cold-formed pipes Ø 23x2.3 mm, of austenitic stainless steel grade X6CrNiTi18-10 according to EN 10088-1:2007. The working time of the device was 6 months. The reason for the withdrawa...

  13. Fatigue behavior of welded austenitic stainless steel in different environments

    D. S. Yawas; S.Y. Aku; S.O. Aluko

    2014-01-01

    The fatigue behavior of welded austenitic stainless steel in 0.5 M hydrochloric acid and wet steam corrosive media has been investigated. The immersion time in the corrosive media was 30 days to simulate the effect on stainless steel structures/equipment in offshore and food processing applications and thereafter annealing heat treatment was carried out on the samples. The findings from the fatigue tests show that seawater specimens have a lower fatigue stress of 0.5 × 10−5 N/mm2 for the heat...

  14. Tool flank wear analyses on martensitic stainless steel by turning

    S. Thamizhmnaii; B. Bin Omar; S. Saparudin; Hasan, S

    2008-01-01

    Purpose: Purpose of this research was to demonstrate tool wear by hard turning of martensitic stainless steel andthis material is pronounced as difficult to machine material. The evaluation was done using CBN cutting tool onSS 440 C stainless steel with hardness between 45 to 55 HRC.Design/methodology/approach: Turning parameters like cutting speed, feed rate and depth of cut was used.The turning was carried out dry process.Findings: The flank wear was caused by abrasive action between cuttin...

  15. Development status of ultrasonic test techniques for cast stainless steel

    Ultrasonic testing has been thought to be difficult to apply to cast stainless steel which is used as the material for the main coolant pipes in pressurized water reactors (PWRs). An ultrasonic testing technique using large aperture twin crystal transducers was developed in INSS for application to inspection of the main coolant pipes. The method was evaluated in an application to detect circumferential and axial defects in the cast stainless steel pipes. It was found that (1) the defects could be detected which had a depth that was so small that their evaluation was not required; and (2) depth sizing and length sizing of detected defects were also possible. (author)

  16. Resistance microwelding of 316L stainless steel wire to block

    Friis, Kasper Storgaard; Khan, M.I.; Bay, Niels;

    2011-01-01

    The excellent corrosion resistance of low carbon vacuum melted 316 stainless steel coupled with its non-magnetic properties makes it ideal for biomedical applications. The typical joint geometry for microcomponents, such as medical implants, includes joining of fine wire to a larger block. However......, this type of joint has received little attention in the current literature. The present study was conducted to examine the microstructure and mechanical properties of low carbon vacuum melted 316 stainless steel wire welded to a larger block. Results revealed solid state bonding occurring at low...

  17. Corrosion of 316L stainless steels MAVL wastes containers

    The long lived and medium activity wastes are conditioned or could be re-conditioned in primary drums of 316L stainless steels. In the framework of wastes storage, these drums will be placed in concrete containers; each containers would contain one or more drums. This document recalls global information on the corrosion of stainless steels, analyzes specific conditions bond to the drums conditioning in concrete containers and the nature of the wastes, and details the consequences on the possible risks of external and internal corrosion of the drums. (A.L.B.)

  18. Impact toughness of tungsten films deposited on martensite stainless steel

    HUANG Ning-kang; YANG Bin; WANG De-zhi

    2005-01-01

    Tungsten films were deposited on stainless steel Charpy specimens by magnetron sputtering followed by electron beam heat treatment. Charpy impact tests and scanning electron microscopy were used to investigate the ductile-brittle transition behavior of the specimens. With decreasing test temperature the fracture mode was transformed from ductile to brittle for both kinds of specimens with and without W films. The data of the crack initiation energy, crack propagation energy, impact absorbing energy, fracture time and deflection as well as the fracture morphologies at test temperature of -70 ℃ show that W films can improve the impact toughness of stainless steel.

  19. Ozone decay on stainless steel and sugarcane bagasse surfaces

    Souza-Corrêa, Jorge A.; Oliveira, Carlos; Amorim, Jayr

    2013-07-01

    Ozone was generated using dielectric barrier discharges at atmospheric pressure to treat sugarcane bagasse for bioethanol production. It was shown that interaction of ozone molecules with the pretreatment reactor wall (stainless steel) needs to be considered during bagasse oxidation in order to evaluate the pretreatment efficiency. The decomposition coefficients for ozone on both materials were determined to be (3.3 ± 0.2) × 10-8 for stainless steel and (2.0 ± 0.3) × 10-7 for bagasse. The results have indicated that ozone decomposition has occurred more efficiently on the biomass material.

  20. Corrosion induced by cathodic hydrogen in 2205 duplex stainless steel

    Michalska, J.

    2011-05-01

    In this work new results about the influence of cathodic hydrogen on passivity and corrosion resistance of 2205 duplex stainless steel are described. The results were discussed by taking into account hydrogen charged samples and without hydrogen. The corrosion resistance to pitting was qualified with the polarization curves. The conclusion is that, hydrogen deteriorated the passive film stability and corrosion resistance to pitting of 2205 duplex stainless steel. The presence of hydrogen in passive films increases corrosion current density and decreases the potential of the film breakdown. It was also found that degree of susceptibility to hydrogen action was dependent on the hydrogen charging conditions.