WorldWideScience

Sample records for 304l austenitic stainless

  1. HYDROGEN-ASSISTED FRACTURE IN FORGED TYPE 304L AUSTENITIC STAINLESS STEEL

    Switzner, Nathan; Neidt, Ted; Hollenbeck, John; Knutson, J.; Everhart, Wes; Hanlin, R. [University of Missouri-Kansas City; Bergen, R. [Precision Metal Products; Balch, D. K. [Sandia Natl Laboratory

    2012-09-06

    Austenitic stainless steels generally have good resistance to hydrogen-assisted fracture; however, structural designs for high-pressure gaseous hydrogen are constrained by the low strength of this class of material. Forging is used to increase the low strength of austenitic stainless steels, thus improving the efficiency of structural designs. Hydrogen-assisted racture, however, depends on microstructural details associated with manufacturing. In this study, hydrogen-assisted fracture of forged type 304L austenitic stainless steel is investigated. Microstructural variation in multi-step forged 304L was achieved by forging at different rates and temperatures, and by process annealing. High internal hydrogen content in forged type 304L austenitic stainless steel is achieved by thermal precharging in gaseous hydrogen and results in as much as 50% reduction of tensile ductility.

  2. Investigation of shot-peened austenitic stainless steel 304L by means of magnetic Barkhausen noise

    Research highlights: The results and the conclusions drawn in this paper are important for the scientific community and especially for scientist who are looking for method to characterize phase transformations in metallic materials. We show that Barkhausen noise measurements can be successfully used to monitor strain-induced martensite in austenitic stainless steels. - Abstract: Different shot peening conditions were applied to an austenitic stainless steel AISI 304L in order to transform austenite to martensite α' at different depths. Magnetic Barkhausen noise measurements performed on this steel reveal a correlation between the strength of the signal and the depth of the treatment. The combined effect of the volume fraction of martensite and the residual stress in martensite determined using X-ray diffraction analysis were found to be responsible for the evolution of the Barkhausen noise response. Using tensile plastic deformation, the residual stress in martensite was changed, giving rise to a strong increase of the Barkhausen noise activity. This variation was correlated to a modification of the sign and amplitude of the residual stress in the martensite phase. Directional measurements of the Barkhausen noise revealed the anisotropy of the residual stresses induced by the tensile plastic deformation. It is concluded that the Barkhausen noise activity recording could lead to the determination of the residual stresses in martensite induced by shot peening processes.

  3. Investigation of shot-peened austenitic stainless steel 304L by means of magnetic Barkhausen noise

    Kleber, X., E-mail: xavier.kleber@insa-lyon.fr [Universite de Lyon, INSA-Lyon, MATEIS CNRS UMR5510, 7 Avenue Jean Capelle, F-69621 Villeurbanne (France); Barroso, S. Pirfo [Universite de Lyon, INSA-Lyon, MATEIS CNRS UMR5510, 7 Avenue Jean Capelle, F-69621 Villeurbanne (France)

    2010-08-20

    Research highlights: The results and the conclusions drawn in this paper are important for the scientific community and especially for scientist who are looking for method to characterize phase transformations in metallic materials. We show that Barkhausen noise measurements can be successfully used to monitor strain-induced martensite in austenitic stainless steels. - Abstract: Different shot peening conditions were applied to an austenitic stainless steel AISI 304L in order to transform austenite to martensite {alpha}' at different depths. Magnetic Barkhausen noise measurements performed on this steel reveal a correlation between the strength of the signal and the depth of the treatment. The combined effect of the volume fraction of martensite and the residual stress in martensite determined using X-ray diffraction analysis were found to be responsible for the evolution of the Barkhausen noise response. Using tensile plastic deformation, the residual stress in martensite was changed, giving rise to a strong increase of the Barkhausen noise activity. This variation was correlated to a modification of the sign and amplitude of the residual stress in the martensite phase. Directional measurements of the Barkhausen noise revealed the anisotropy of the residual stresses induced by the tensile plastic deformation. It is concluded that the Barkhausen noise activity recording could lead to the determination of the residual stresses in martensite induced by shot peening processes.

  4. Nitrogen interstitial diffusion induced decomposition in AISI 304L austenitic stainless steel

    The nature of the near-surface γN phase produced by low-temperature (∼400 °C) plasma-assisted nitriding of an austenitic stainless steel 304L is studied. A combination of global probes (X-ray diffraction, nuclear reaction analysis, glow discharge optical emission spectroscopy) and local probes (field ion microscopy, conversion electron Mössbauer, X-ray absorption near edge structure and extended X-ray absorption fine structure spectroscopies) is employed to reveal the morphology, phase structure, atomic ordering and chemical state of the obtained γN phase. The results consistently reveal the heterogeneous nature of the nitrided layer consisting of nanometric CrN precipitates embedded in a Fe4N-like matrix. The size of the precipitates is found to be larger at the surface than at the nitrided layer–steel interface. The precipitates have irregular, sphere-like shapes. Moreover, X-ray spectroscopic investigation revealed three different intermetallic distances and different chemical environments for Fe, Cr and Ni, accompanied by a large static disorder. These findings suggest that the presence of the interstitial N destabilizes the homogeneous element distribution in 304L even at such low temperatures. This leads to the segregation into Cr-rich zones that are coherent with the Fe4N matrix. Possible atomistic decomposition mechanisms are discussed. Based on the heterogeneous nature of the γN phase revealed in 304L, an alternative view of its remarkable combination of properties such as large hardness, induced ferromagnetism and preserved corrosion resistance is considered.

  5. Effect of thermal cycles on heavily cold deformed AISI 304L austenitic stainless steel

    The solution treated commercial grade AISI 304L austenitic stainless steel plate was heavily cold rolled to 90% of thickness reduction. Cold rolled specimens were annealed at various temperatures by thermal cycles and isothermal annealing. Strain-induced phase transformations and microstructure studies were carried out both in the cold rolled and annealed conditions. The X-ray diffraction and magnetic measurements were used for phase transformation studies. The transmission electron microscope characterisation revealed that the cyclic thermal process resulted in ultrafine grain austenite formation whereas, the isothermal annealing developed coarser grain size microstructure. The different microstructural evolutions by the above two processes largely influenced the development of the recrystallisation texture. The thermal cycling produced a distinct γ-fibre texture while the isothermal annealing resulted in a cube texture component along with the γ-fibre. The γ-fibre texture evolution was attributed to the over critical subgrains or nuclei and {1 0 0} cube texture to the coarser grains of micrometer size.

  6. Electronic structures and nitride formation on ion-implanted AISI 304L austenitic stainless steel

    Chang, G.S.; Son, J.H.; Kim, S.H.; Chae, K.H.; Whang, C.N. (Yonsei Univ., Seoul (Korea, Republic of). Dept. of Physics); Menthe, E.; Rie, K.-T.; Lee, Y.P.

    1999-02-01

    A N[sub 2][sup +] implantation technique was employed to improve the surface hardness of stainless steel, and the electronic structures and nitride formation of the ion-implanted layer were investigated and compared with those produced using other techniques, including plasma nitriding. AISI 304L austenite stainless steel was irradiated by 80 keV N[sub 2][sup +] with a dosage ranging from 1.0 x 10[sup 16] to 1.0 x 10[sup 18] ions cm[sup -2] at room temperature. The formation of various nitrides was confirmed by X-ray diffraction. The quantitative hardness of the samples was measured by using a Knoop microhardness tester. X-ray photoelectron spectroscopy was also carried out to elucidate the chemical states and electronic structures of the ion-implanted layers. The measurements were repeated after post-annealing at 400 C for 1 h in a high vacuum. Changes in phase, chemical state and electronic structures were observed according to the ion dose and heat treatment. (orig.) 12 refs.

  7. Mechanical properties of Austenitic Stainless Steel 304L and 316L at elevated temperatures

    Raghuram Karthik Desu

    2016-01-01

    Full Text Available Austenitic Stainless Steel grade 304L and 316L are very important alloys used in various high temperature applications, which make it important to study their mechanical properties at elevated temperatures. In this work, the mechanical properties such as ultimate tensile strength (UTS, yield strength (YS, % elongation, strain hardening exponent (n and strength coefficient (K are evaluated based on the experimental data obtained from the uniaxial isothermal tensile tests performed at an interval of 50 °C from 50 °C to 650 °C and at three different strain rates (0.0001, 0.001 and 0.01 s−1. Artificial Neural Networks (ANN are trained to predict these mechanical properties. The trained ANN model gives an excellent correlation coefficient and the error values are also significantly low, which represents a good accuracy of the model. The accuracy of the developed ANN model also conforms to the results of mean paired t-test, F-test and Levene's test.

  8. Superior radiation-resistant nanoengineered austenitic 304L stainless steel for applications in extreme radiation environments

    Sun, C.; Zheng, S.; Wei, C. C.; Wu, Y.; Shao, L.; Yang, Y.; Hartwig, K. T.; Maloy, S. A.; Zinkle, S. J.; Allen, T. R.; Wang, H.; Zhang, X.

    2015-01-01

    Nuclear energy provides more than 10% of electrical power internationally, and the increasing engagement of nuclear energy is essential to meet the rapid worldwide increase in energy demand. A paramount challenge in the development of advanced nuclear reactors is the discovery of advanced structural materials that can endure extreme environments, such as severe neutron irradiation damage at high temperatures. It has been known for decades that high dose radiation can introduce significant void swelling accompanied by precipitation in austenitic stainless steel (SS). Here we report, however, that through nanoengineering, ultra-fine grained (UFG) 304L SS with an average grain size of ~100 nm, can withstand Fe ion irradiation at 500°C to 80 displacements-per-atom (dpa) with moderate grain coarsening. Compared to coarse grained (CG) counterparts, swelling resistance of UFG SS is improved by nearly an order of magnitude and swelling rate is reduced by a factor of 5. M23C6 precipitates, abundant in irradiated CG SS, are largely absent in UFG SS. This study provides a nanoengineering approach to design and discover radiation tolerant metallic materials for applications in extreme radiation environments.

  9. Influence of the temperature and the time of sensitization heat treatment on the rupture energy of notched specimen of 304 L austenitic stainless steel

    This study allowed us to show that the measurement of rupture energy on notched specimen, at low temperature (-180+-50C) is a sensitive method for evaluating the importance of carbide precipitation at grain boundaries when austenitic stainless steel 304 L is sensitized. This process had been studied between 500 and 9000C, and during 3 to 100 hrs

  10. Investigation of high temperature corrosion behavior on 304L austenite stainless steel in corrosive environments

    In this work, 304L stainless steel samples were exposed at 700 °C for 10hrs in different corrosive environments; dry oxygen, molten salt, and molten salt + dry oxygen. The corrosion behavior of samples was analyzed using weight change measurement technique, optical microscope (OM) and Scanning Electron Microscope (SEM) equipped with Energy Dispersive X-ray (EDX). The existence phases of corroded sample were determined using X-ray Diffraction (XRD). The lowest corrosion rate was recorded in dry oxygen while the highest was in molten salt + dry oxygen environments with the value of 0.0062 mg/cm2 and −13.5225 mg/cm2 respectively. The surface morphology of sample in presence of salt mixture showed scale spallation. Oxide scales of Fe3O4, Fe2O3 were the main phases developed and detected by XRD technique. Cr2O3 was not developed in every sample as protective layers but chromate-rich oxide was developed. The cross-section analysis found the oxide scales were in porous, thick and non-adherent that would not an effective barrier to prevent from further degradation of alloy. EDX analysis also showed the Cr-element was low compared to Fe-element at the oxide scale region

  11. Low cycle fatigue: high cycle fatigue damage accumulation in a 304L austenitic stainless steel

    The aim of this study was to evaluate the consequences of a Low Cycle Fatigue pre-damage on the subsequent fatigue limit of a 304L stainless steel. The effects of hardening and severe roughness (grinding) have also been investigated. In a first set of tests, the evolution of the surface damage induced by the different LCF pre-cycling was characterized. This has permitted to identify mechanisms and kinetics of damage in the plastic domain for different surface conditions. Then, pre-damaged samples were tested in the High Cycle Fatigue domain in order to establish the fatigue limits associated with each level of pre-damage. Results evidence that, in the case of polished samples, an important number of cycles is required to initiate surface cracks ant then to affect the fatigue limit of the material but, in the case of ground samples, a few number of cycles is sufficient to initiate cracks and to critically decrease the fatigue limit. The fatigue limit of pre-damaged samples can be estimated using the stress intensity factor threshold. Moreover, this detrimental effect of severe surface conditions is enhanced when fatigue tests are performed under a positive mean stress (author)

  12. Effect of pre-hardening on the lifetime of type 304L austenitic stainless steels

    This study deals with the effect of the loading history on the cyclic behavior and the fatigue life of two kinds (THYSSEN and CLI) of 304L stainless steel at room temperature. The experiments have been performed using two specimens' categories. The first one (virgin) has been submitted to only classical fatigue tests while in the second category, prior to the fatigue test, the specimen is subjected to a pre-hardening process under either monotonic or cyclic strain control. Cyclic softening followed by cyclic hardening are observed for the virgin specimens while only cyclic softening is exhibited by the pre-hardened specimens. The obtained results show that fatigue life is strongly influenced by the pre-hardening: it seems beneficial under stress control but detrimental under strain control, even in the presence of a compressive mean stress. The results are discussed regarding the cyclic evolution of the elastic modulus as well as the isotropic and kinematic parts of the strain hardening, and strain energy density per cycle, in different configurations: with or without prehardening,stress or strain control. (author)

  13. Effects of Low Temperature on Hydrogen-Assisted Crack Growth in Forged 304L Austenitic Stainless Steel

    Jackson, Heather; San Marchi, Chris; Balch, Dorian; Somerday, Brian; Michael, Joseph

    2016-08-01

    The objective of this study was to evaluate effects of low temperature on hydrogen-assisted crack propagation in forged 304L austenitic stainless steel. Fracture initiation toughness and crack-growth resistance curves were measured using fracture mechanics specimens that were thermally precharged with 140 wppm hydrogen and tested at 293 K or 223 K (20 °C or -50 °C). Fracture initiation toughness for hydrogen-precharged forgings decreased by at least 50 to 80 pct relative to non-charged forgings. With hydrogen, low-temperature fracture initiation toughness decreased by 35 to 50 pct relative to room-temperature toughness. Crack growth without hydrogen at both temperatures was microstructure-independent and indistinguishable from blunting, while with hydrogen microcracks formed by growth and coalescence of microvoids. Initiation of microvoids in the presence of hydrogen occurred where localized deformation bands intersected grain boundaries and other deformation bands. Low temperature additionally promoted fracture initiation at annealing twin boundaries in the presence of hydrogen, which competed with deformation band intersections and grain boundaries as sites of microvoid formation and fracture initiation. A common ingredient for fracture initiation was stress concentration that arose from the intersection of deformation bands with these microstructural obstacles. The localized deformation responsible for producing stress concentrations at obstacles was intensified by low temperature and hydrogen. Crack orientation and forging strength were found to have a minor effect on fracture initiation toughness of hydrogen-supersaturated 304L forgings.

  14. Effect of low temperature on hydrogen-assisted crack propagation in 304L/308L austenitic stainless steel fusion welds

    Highlights: •Measured crack growth resistance of welds at 223 K with 140 wppm H (gas charged). •H reduced fracture initiation toughness by >59% and altered fracture mode. •223 K altered fracture mode but had no effect on JIC of precharged welds. •At 293 K, microcracks initiate at δ-ferrite, and ferrite governed crack path. •At 223 K, microvoids form at γ deformation band intersections near phase boundaries. -- Abstract: Effects of low temperature on hydrogen-assisted cracking in 304L/308L austenitic stainless steel welds were investigated using elastic–plastic fracture mechanics methods. Thermally precharged hydrogen (140 wppm) decreased fracture toughness and altered fracture mechanisms at 293 and 223 K relative to hydrogen-free welds. At 293 K, hydrogen increased planar deformation in austenite, and microcracking of δ-ferrite governed crack paths. At 223 K, low temperature enabled hydrogen to exacerbate localized deformation, and microvoid formation, at austenite deformation band intersections near phase boundaries, dominated damage initiation; microcracking of ferrite did not contribute to crack growth

  15. Effect of welding process, type of electrode and electrode core diameter on the tensile property of 304L austenitic stainless steel

    Akinlabi OYETUNJI

    2014-11-01

    Full Text Available The effect of welding process, type of electrode and electrode core diameter on the tensile property of AISI 304L Austenitic Stainless Steel (ASS was studied. The tensile strength property of ASS welded samples was evaluated. Prepared samples of the ASS were welded under these three various variables. Tensile test was then carried out on the welded samples. It was found that the reduction in ultimate tensile strength (UTS of the butt joint samples increases with increase in core diameter of the electrode. Also, the best electrode for welding 304L ASS is 308L stainless steel-core electrode of 3.2 mm core diameter. It is recommended that the findings of this work can be applied in the chemical, food and oil industries where 304L ASS are predominantly used.

  16. Effect of welding process, type of electrode and electrode core diameter on the tensile property of 304L austenitic stainless steel

    Akinlabi OYETUNJI; Nwafagu NWIGBOJI

    2014-01-01

    The effect of welding process, type of electrode and electrode core diameter on the tensile property of AISI 304L Austenitic Stainless Steel (ASS) was studied. The tensile strength property of ASS welded samples was evaluated. Prepared samples of the ASS were welded under these three various variables. Tensile test was then carried out on the welded samples. It was found that the reduction in ultimate tensile strength (UTS) of the butt joint samples increases with increase in core diameter of...

  17. Influence of low-temperature nitriding on the strain-induced martensite and laser-quenched austenite in a magnetic encoder made from 304L stainless steel

    Leskovšek, Vojteh; Godec, Matjaž; Kogej, Peter

    2016-08-01

    We have investigated the possibility of producing a magnetic encoder by an innovative process. Instead of turning grooves in the encoder bar for precise positioning, we incorporated the information in 304L stainless steel by transforming the austenite to martensite after bar extrusion in liquid nitrogen and marking it with a laser, which caused a local transformation of martensite back into austenite. 304L has an excellent corrosion resistance, but a low hardness and poor wear resistance, which limits its range of applications. However, nitriding is a very promising way to enhance the mechanical and magnetic properties. After low-temperature nitriding at 400 °C it is clear that both ε- and α‧-martensite are present in the deformed microstructure, indicating the simultaneous stress-induced and strain-induced transformations of the austenite. The effects of a laser surface treatment and the consequent appearance of a non-magnetic phase due to the α‧ → γ transformation were investigated. The EDS maps show a high concentration of nitrogen in the alternating hard surface layers of γN and α‧N (expanded austenite and martensite), but no significantly higher concentration of chromium or iron was detected. The high surface hardness of this nitride layer will lead to steels and encoders with better wear and corrosion resistance.

  18. Oligo-cyclic damage and behaviour of a 304 L austenitic stainless steel according to environment (vacuum, air, PWR primary water) at 300 C

    Nowadays, for nuclear power plants licensing or operating life extensions, various safety authorities require the consideration of the primary water environment effect on the fatigue life of Pressurized Water Reactor (PWR) components. Thus, this work focused on the study of low cycle fatigue damage kinetics and mechanisms, of a type 304L austenitic stainless steel. Several parameters effects such as temperature, strain rate or strain amplitude were investigated in air as in PWR water. Thanks to targeted in-vacuum tests, the intrinsic influence of these parameters and environments on the fatigue behaviour of the material was studied. It appears that compared with vacuum, air is already an active environment which is responsible for a strong decrease in fatigue lifetime of this steel, especially at 300 C and low strain amplitude. The PWR water coolant environment is more active than air and leads to increased damage kinetics, without any modifications of the initiation sites or propagation modes. Moreover, the decreased fatigue life in PWR water is essentially attributed to an enhancement of both initiation and micropropagation of 'short cracks'. Finally, the deleterious influence of low strain rates on the 304L austenitic stainless steel fatigue lifetime was observed in PWR water environment, in air and also in vacuum without any environmental effects. This intrinsic strain rate effect is attributed to the occurrence of the Dynamic Strain Aging phenomenon which is responsible for a change in deformation modes and for an enhancement of cracks initiation. (author)

  19. Thermal fatigue of a 304L austenitic stainless steel: simulation of the initiation and of the propagation of the short cracks in isothermal and aniso-thermal fatigue

    The elbow pipes of thermal plants cooling systems are submitted to thermal variations of short range and of variable frequency. These variations bound to temperature changes of the fluids present a risk of cracks and leakages. In order to solve this problem, EDF has started the 'CRECO RNE 808' plan: 'thermal fatigue of 304L austenitic stainless steels' to study experimentally on a volume part, the initiation and the beginning of the propagation of cracks in thermal fatigue on austenitic stainless steels. The aim of this study is more particularly to compare the behaviour and the damage of the material in mechanic-thermal fatigue (cycling in temperature and cycling in deformation) and in isothermal fatigue (the utmost conditions have been determined by EDF for the metal: Tmax = 165 degrees C and Tmin = 90 degrees C; the frequency of the thermal variations can reach a Hertz). A lot of experimental results are given. A model of lifetime is introduced and validated. (O.M.)

  20. Environmental effect on cracking of an 304L austenitic stainless steels in PWR primary environment under cyclic loading

    The present study was undertaken in order to get further insights on cracking mechanisms in a 304L stainless steel. More precisely, a first objective of this study was to evaluate the effect of various cold working conditions on the cyclic stress-strain behavior and the fatigue life in air and in PWR primary environment. In air a prior hardening was found to reduce the fatigue life in the LCF regime but not in primary environment. In both environments, the fatigue limit of the hardened materials was increased after cold working.The second objective addresses the effect of the air and the PWR primary environments on the cracking mechanisms (initiation and propagation) in the annealed material in the LCF regime. More precisely, the kinetics of crack initiation and micro crack propagation were evaluated with a multi scale microscopic approach in air and in primary environment. In PWR primary environment, during the first cycles, preferential oxidation occurs along emerging dissociated dislocation and each cycle generates a new C-rich/Fe-rich oxide layer. Then, during cycling, the microstructure evolves from stacking fault into micro twinning and preferential oxidation occurs by continuous shearing and dissolution of the passive film. Beyond a certain crack depth (≤3 μm), the crack starts to propagate with a direction close to a 90 degrees angle from the surface. The crack continues its propagation by successive generation of shear bands and fatigue striations at each cycle up to failure. The role of corrosion hydrogen on these processes is finally discussed. (author)

  1. Effects of concentration of sodium chloride solution on the pitting corrosion behavior of AISI 304L austenitic stainless steel

    Asaduzzaman M.D.

    2011-01-01

    Full Text Available The pitting corrosion behavior of the austenitic stainless steel in aqueous chloride solution was investigated using electrochemical technique. Corrosion potential (Ecorr measurement, potentiodynamic experiments, potential-hold experiments in the passive range, and microscopic examination were used for the evaluation of corrosion characteristics. The experimental parameters were chloride ion concentration, immersion time and anodic-hold potential. Ecorr measurements along with microscopic examinations suggest that in or above 3.5 % NaCl at pH 2 pitting took place on the surface in absence of applied potential after 6 hour immersion. The potentiodynamic experiment reveals that Ecorr and pitting potential (Epit decreased and current density in the passive region increased with the increase of chloride ion concentrations. A linear relationship between Epit and chloride ion concentrations was found in this investigation. The analysis of the results suggests that six chloride ions are involved for the dissolution of iron ion in the pitting corrosion process of austenitic stainless steel.

  2. Influence of surface finish on the high cycle fatigue behavior of a 304L austenitic stainless steel

    This work has dealt with the influence of surface finish on the high cycle fatigue behavior of a 304L. The role played by roughness, surface hardening and residual stresses has been particularly described. First part of this study has consisted of the production of several surface finishes. These latter were obtained by turning, grinding, mechanical polishing and sandblasting. The obtained surfaces were then characterised in terms of roughness, hardening, microstructure and residual stresses. Fatigue tests were finally conducted under various stress ratios or mean stresses at two temperatures (25 C and 300 C). Results clearly evidenced an effect of the surface integrity on the fatigue resistance of the 304L. This influence is nevertheless more pronounced at ambient temperature and for a positive mean stress. For all explored testing conditions, the lowest endurance limit was obtained for ground specimens whereas polished samples exhibited the best fatigue strength. Results also cleared out a detrimental influence of a positive mean stress in the case of specimens having surface defaults of a great acuity. The study of the relative effect of each of the surface parameter, under a positive stress ratio and at the ambient temperature, showed that roughness profile and surface hardening are the two more influential factors. The role of the residual stresses remains negligible due to their rapid relaxation during the application of the first cycles of fatigue. The estimation of the initiation and propagation periods showed that mechanisms differed as a function of the applied stress ratio. Crack propagation is governed by the parameter DK at a positive stress ratio and by Dep/2 in the case of tension-compression tests. (author)

  3. Forging evaluaion of 304L stainless steel

    The objective of this project was to evaluate and characterize the effects of various forging parameters on the metallographic structure and mechanical properties of 304L stainless steel forgings. Upset and die forgings were produced by hammer and Dynapak forging with forging temperatures ranging from 760 to 11450C, upset reductions ranging from 20 to 60%, and annealing times ranging from 0 to 25 minutes at 8430C. The carbide precipitation behavior observed was found to be a function of forging temperature and annealing time. Higher forging temperatures were beneficial in avoiding continuous carbide precipitation and annealing at 8430C promoted increased carbide precipitation. The yield strength of the unannealed forgings decreased with increasing forging temperature and, with the exception of the 11450C upset forgings, was significantly lowered by annealing

  4. Initiation and growth of thermal fatigue crack networks in an AISI 304 L type austenitic stainless steel (X2 CrNi18-09)

    We studied the behaviour of a 304 L type austenitic stainless steel submitted to thermal fatigue. Using the SPLASH equipment of CEA/SRMA we tested parallelepipedal specimens on two sides: the specimens are continuously heated by Joule effect, while two opposites faces are cyclically. cooled by a mixed spray of distilled water and compressed air. This device allows the reproduction and the study of crack networks similar to those observed in nuclear power plants, on the inner side of circuits fatigued by mixed pressurized water flows at different temperatures. The crack initiation and the network constitution at the surface were observed under different thermal conditions (Tmax = 320 deg C, ΔT between 125 and 200 deg C). The experiment produced a stress gradient in the specimen, and due to this gradient, the in-depth growth of the cracks finally stopped. The obtained crack networks were studied quantitatively by image analysis, and different parameters were studied: at the surface during the cycling, and post mortem by step-by-step layer removal by grinding. The maximal depth obtained experimentally, 2.5 mm, is relatively coherent with the finite element modelling of the SPLASH test, in which compressive stresses appear at a depth of 2 mm. Some of the crack networks obtained by thermal fatigue were also tested in isothermal fatigue crack growth under 4-point bending, at imposed load. The mechanisms of the crack selection, and the appearance of the dominating crack are described. Compared to the propagation of a single crack, the crack networks delay the propagation, depending on the severity of the crack competition for domination. The dominating crack can be at the network periphery, in that case it is not as shielded by its neighbours as a crack located in the center of the network. It can also be a straight crack surrounded by more sinuous neighbours. Indeed, on sinuous cracks, the loading is not the same all along the crack path, leading to some morphological

  5. Correlation between Corrosion Potential and Pitting Potential for AISI 304L Austenitic Stainless Steel in 3.5% NaCl Aqueous Solution

    Neusa Alonso-Falleiros; Stephan Wolynec

    2002-01-01

    We investigated the effect of surface finish of two AISI 304L (UNS S30403) stainless steels on the corrosion potential (Ecorr) in 3.5% NaCl aqueous solution and its value was compared with the pitting potential (Ep) value and the type of anodic potentiodynamic curve obtained for determination of Ep in this solution. Five different surface finishes were examined. Ecorr and its standard deviation are strongly affected by the type of surface finish. Moreover, there are evidences of a linear corr...

  6. Low cycle fatigue: high cycle fatigue damage accumulation in a 304L austenitic stainless steel; Endommagement et cumul de dommage en fatigue dans le domaine de l'endurance limitee d'un acier inoxydable austenitique 304L

    Lehericy, Y

    2007-05-15

    The aim of this study was to evaluate the consequences of a Low Cycle Fatigue pre-damage on the subsequent fatigue limit of a 304L stainless steel. The effects of hardening and severe roughness (grinding) have also been investigated. In a first set of tests, the evolution of the surface damage induced by the different LCF pre-cycling was characterized. This has permitted to identify mechanisms and kinetics of damage in the plastic domain for different surface conditions. Then, pre-damaged samples were tested in the High Cycle Fatigue domain in order to establish the fatigue limits associated with each level of pre-damage. Results evidence that, in the case of polished samples, an important number of cycles is required to initiate surface cracks ant then to affect the fatigue limit of the material but, in the case of ground samples, a few number of cycles is sufficient to initiate cracks and to critically decrease the fatigue limit. The fatigue limit of pre-damaged samples can be estimated using the stress intensity factor threshold. Moreover, this detrimental effect of severe surface conditions is enhanced when fatigue tests are performed under a positive mean stress (author)

  7. Correlation between Corrosion Potential and Pitting Potential for AISI 304L Austenitic Stainless Steel in 3.5% NaCl Aqueous Solution

    Alonso-Falleiros Neusa

    2002-01-01

    Full Text Available We investigated the effect of surface finish of two AISI 304L (UNS S30403 stainless steels on the corrosion potential (Ecorr in 3.5% NaCl aqueous solution and its value was compared with the pitting potential (Ep value and the type of anodic potentiodynamic curve obtained for determination of Ep in this solution. Five different surface finishes were examined. Ecorr and its standard deviation are strongly affected by the type of surface finish. Moreover, there are evidences of a linear correlation between Ecorr and Ep, as well as between the percentage of anodic curves with a well-defined pitting potential and the uncertainty in the determination of Ecorr.

  8. Weld solidification cracking in 304 to 304L stainless steel

    Hochanadel, Patrick W [Los Alamos National Laboratory; Lienert, Thomas J [Los Alamos National Laboratory; Martinez, Jesse N [Los Alamos National Laboratory; Martinez, Raymond J [Los Alamos National Laboratory; Johnson, Matthew Q [Los Alamos National Laboratory

    2010-01-01

    A series of annulus welds were made between 304 and 304L stainless steel coaxial tubes using both pulsed laser beam welding (LBW) and pulsed gas tungsten arc welding (GTAW). In this application, a change in process from pulsed LBW to pulsed gas tungsten arc welding was proposed to limit the possibility of weld solidification cracking since weldability diagrams developed for GTAW display a greater range of compositions that are not crack susceptible relative to those developed for pulsed LBW. Contrary to the predictions of the GTAW weldability diagram, cracking was found. This result was rationalized in terms of the more rapid solidification rate of the pulsed gas tungsten arc welds. In addition, for the pulsed LBW conditions, the material compositions were predicted to be, by themselves, 'weldable' according to the pulsed LBW weldability diagram. However, the composition range along the tie line connecting the two compositions passed through the crack susceptible range. Microstructurally, the primary solidification mode (PSM) of the material processed with higher power LBW was determined to be austenite (A), while solidification mode of the materials processed with lower power LBW apparently exhibited a dual PSM of both austenite (A) and ferrite-austenite (FA) within the same weld. The materials processed by pulsed GT A W showed mostly primary austenite solidification, with some regions of either primary austenite-second phase ferrite (AF) solidification or primary ferrite-second phase austenite (FA) solidification. This work demonstrates that variations in crack susceptibility may be realized when welding different heats of 'weldable' materials together, and that slight variations in processing can also contribute to crack susceptibility.

  9. Evaluation of the austenitic alloys 304L, 316L, and alloy 825 under Tuff repository conditions

    Austenitic alloys 304L and 316L and stainless steel 825 were investigated as candidate materials for containers for waste disposal in the relatively benign conditions of the Yucca Mountain site. In this vault there will be very little water, and what there is will contain small amounts of chlorides, nitrates, sulphates and carbonates. The radiation fields will be 104 rad/h initially, but will decay to low levels by the end of the containment period. The initial temperature will be around 250 C, and it will remain above the boiling point of water for the containment period (approximately 300 years). There will be no lithostatic or hydrostatic pressure. Type 304L stainless steel is a base case material used in comparisons with other candidates. Type 316L stainless steel possesses enhanced resistance to sensitization and localized corrosion; alloy 825 is stabilized to have a much better resistance to sensitization and localized corrosion and performs better in chloride environments

  10. The initiation and propagation of chloride-induced transgranular stress-corrosion cracking (TGSCC) of 304L austenitic stainless steel under atmospheric conditions

    Highlights: • Cracking consistent with corrosion enhanced plasticity model of Magnin. • Cracking stress threshold is 10 MPa, substantially lower than current guidance. • Humidity threshold for cracking is 30%. • Measured length of cracks very dependent on polishing practice. • Cracking could occur at 290–300 K, based on measured activation energy. - Abstract: Bending tests were used to investigate the stress-corrosion cracking of 304L stainless steel in a corrosive atmosphere containing magnesium chloride. Initially smooth specimens showed multiple closely spaced cracks after exposures of up to 500 h. These showed threshold stresses of 10 MPa and a threshold humidity of 30%. Cracking rates increased with stress but were a maximum at plastic strains of 2%. Examination of cracks using focussed ion beam milling and electron diffraction indicated a multi-stage mechanism of propagation via preferential oxidation of slip planes. The apparent activation energy was 34 kJ mol−1 in the temperature range 333–363 K

  11. Hydrogen-assisted crack propagation in 304L/308L and 21Cr–6Ni–9Mn/308L austenitic stainless steel fusion welds

    Highlights: ► Measured crack growth resistance of welds with 140 wppm H from gas charging. ► H reduced fracture initiation toughness by over 67% and altered fracture mode. ► With H, microcracks initiate at weld ferrite. Without H, fracture is uniformly ductile. ► With H, localized deformation in austenite creates stress concentrations at ferrite. ► In austenite/ferrite microstructures, JIC decreases with increasing vol.% ferrite. - Abstract: Elastic–plastic fracture mechanics methods were used to characterize hydrogen-assisted crack propagation in two austenitic stainless steel gas tungsten arc (GTA) welds. Thermally precharged hydrogen (140 wppm) degraded fracture initiation toughness and crack growth toughness and altered fracture mechanisms. Fracture initiation toughness in hydrogen-precharged welds represented a reduction of >67% from the estimated toughness of non-charged welds. In hydrogen-precharged welds, microcracks initiated at ferrite, and dendritic microstructure promoted crack propagation along ferrite. Deformation twinning in austenite interacts with ferrite, facilitating microcrack formation. While hydrogen altered fracture mechanisms similarly for both welds, the amount of ferrite governed the severity of hydrogen-assisted crack propagation.

  12. Microstructural origins of radiation-induced changes in mechanical properties of 316 L and 304 L austenitic stainless steels irradiated with mixed spectra of high-energy protons and spallation neutrons

    Sencer, B. H.; Bond, G. M.; Hamilton, M. L.; Garner, F. A.; Maloy, S. A.; Sommer, W. F.

    2001-07-01

    A number of candidate alloys were exposed to a particle flux and spectrum at Los Alamos Neutron Science Center (LANSCE) that closely match the mixed high-energy proton/neutron spectra expected in accelerator production of tritium (APT) window and blanket applications. Austenitic stainless steels 316 L and 304 L are two of these candidate alloys possessing attractive strength and corrosion resistance for APT applications. This paper describes the dose dependence of the irradiation-induced microstructural evolution of SS 316 L and 304 L in the temperature range 30-60°C and consequent changes in mechanical properties. It was observed that the microstructural evolution during irradiation was essentially identical in the two alloys, a behavior mirrored in their changes in mechanical properties. With one expection, it was possible to correlate all changes in mechanical properties with visible microstructural features. A late-term second abrupt decrease in uniform elongation was not associated with visible microstructure, but is postulated to be a consequence of large levels of retained hydrogen measured in the specimens. In spite of large amounts of both helium and hydrogen retained, approaching 1 at.% at the highest exposures, no visible cavities were formed, indicating that the gas atoms were either in solution or in subresolvable clusters.

  13. Thermal fatigue of a 304L austenitic stainless steel: simulation of the initiation and of the propagation of the short cracks in isothermal and aniso-thermal fatigue; Fatigue thermique d'un acier inoxydable austenitique 304L: simulation de l'amorcage et de la croissance des fissures courtes en fatigue isotherme et anisotherme

    Haddar, N

    2003-04-01

    The elbow pipes of thermal plants cooling systems are submitted to thermal variations of short range and of variable frequency. These variations bound to temperature changes of the fluids present a risk of cracks and leakages. In order to solve this problem, EDF has started the 'CRECO RNE 808' plan: 'thermal fatigue of 304L austenitic stainless steels' to study experimentally on a volume part, the initiation and the beginning of the propagation of cracks in thermal fatigue on austenitic stainless steels. The aim of this study is more particularly to compare the behaviour and the damage of the material in mechanic-thermal fatigue (cycling in temperature and cycling in deformation) and in isothermal fatigue (the utmost conditions have been determined by EDF for the metal: Tmax = 165 degrees C and Tmin = 90 degrees C; the frequency of the thermal variations can reach a Hertz). A lot of experimental results are given. A model of lifetime is introduced and validated. (O.M.)

  14. Comparison of Stress Corrosion Cracking Susceptibility of Laser Machined and Milled 304 L Stainless Steel

    Gupta, R. K.; Kumar, Aniruddha; Nagpure, D. C.; Rai, S. K.; Singh, M. K.; Khooha, Ajay; Singh, A. K.; Singh, Amrendra; Tiwari, M. K.; Ganesh, P.; Kaul, R.; Singh, B.

    2016-07-01

    Machining of austenitic stainless steel components is known to introduce significant enhancement in their susceptibility to stress corrosion cracking. The paper compares stress corrosion cracking susceptibility of laser machined 304 L stainless steel specimens with conventionally milled counterpart in chloride environment. With respect to conventionally milled specimens, laser machined specimens displayed more than 12 times longer crack initiation time in accelerated stress corrosion cracking test in boiling magnesium chloride as per ASTM G36. Reduced stress corrosion cracking susceptibility of laser machined surface is attributed to its predominantly ferritic duplex microstructure in which anodic ferrite phase was under compressive stress with respect to cathodic austenite.

  15. Repetitive Thermomechanical Processing towards Ultra Fine Grain Structure in 301, 304 and 304L Stainless Steels

    A. Momeni; S.M. Abbasi

    2011-01-01

    Thermomechanical processing as a combination of cold rolling and annealing was performed on austenitic stainless steels 301,304 and 304L. Two cold rolling steps each one up to a reduction of 75% were combined with an intermediate annealing at 800℃ for 20 min. The final annealing was performed at.the same temperature and time. Cold rolling contributed to martensite formation at the expense of metastable austenite in the studied materials. Austenite in 301 was found to be less stable than that in 304 and 304L. Hence, higher strength characteristics in the as-quenched 301 stainless steels were attributed to the higher volume fraction of martensite. Both α'-martensite and ε-martensite were found to form as induced by deformation. However, the intensity of ε-martensite increased as the stability of austenite decreased. Annealing after cold rolling led to the reversion of austenite with an ultra fine grained structure in the order of 0.5-1 μm from the strain induced martensite. The final grain size was found to be an inverse function of the amount of strain induced martensite. The thermomechanical processing considerably improved the strength characteristics while the simultaneous decrease of elongation was rather low.

  16. Initiation and growth of thermal fatigue crack networks in an AISI 304 L type austenitic stainless steel (X2 CrNi18-09); Amorcage et propagation de reseaux de fissures de fatigue thermique dans un acier inoxydable austenitique de type X2 CrNi18-09 (AISI 304 L)

    Maillot, V

    2004-07-01

    We studied the behaviour of a 304 L type austenitic stainless steel submitted to thermal fatigue. Using the SPLASH equipment of CEA/SRMA we tested parallelepipedal specimens on two sides: the specimens are continuously heated by Joule effect, while two opposites faces are cyclically. cooled by a mixed spray of distilled water and compressed air. This device allows the reproduction and the study of crack networks similar to those observed in nuclear power plants, on the inner side of circuits fatigued by mixed pressurized water flows at different temperatures. The crack initiation and the network constitution at the surface were observed under different thermal conditions (Tmax = 320 deg C, {delta}T between 125 and 200 deg C). The experiment produced a stress gradient in the specimen, and due to this gradient, the in-depth growth of the cracks finally stopped. The obtained crack networks were studied quantitatively by image analysis, and different parameters were studied: at the surface during the cycling, and post mortem by step-by-step layer removal by grinding. The maximal depth obtained experimentally, 2.5 mm, is relatively coherent with the finite element modelling of the SPLASH test, in which compressive stresses appear at a depth of 2 mm. Some of the crack networks obtained by thermal fatigue were also tested in isothermal fatigue crack growth under 4-point bending, at imposed load. The mechanisms of the crack selection, and the appearance of the dominating crack are described. Compared to the propagation of a single crack, the crack networks delay the propagation, depending on the severity of the crack competition for domination. The dominating crack can be at the network periphery, in that case it is not as shielded by its neighbours as a crack located in the center of the network. It can also be a straight crack surrounded by more sinuous neighbours. Indeed, on sinuous cracks, the loading is not the same all along the crack path, leading to some

  17. Production of nano/submicron grained AISI 304L stainless steel through the martensite reversion process

    Research highlights: → At least 50% reduction is necessary to complete the transformation of austenite to martensite at 0 deg. C. → The parameters of Olsen-Cohen model were found as n = 4.5, α = 3.257 and β = 3.573. → The appropriate grain refining zone for annealing treatment was determined. → A diagram showing different zones for each level of grain sizes via annealing conditions is presented. → The hardness improves 2.5 times higher after the thermo-mechanical process. → Final structure exhibits not only high strength (above 1 GPa) but also good elongation (∼40%). - Abstract: Production of nano/submicron grained AISI 304L austenitic stainless steel through formation of strain-induced martensite and its reversion to austenite are studied in this paper. The effects of annealing parameters on the microstructural development and mechanical properties are also investigated. Heavily cold rolling at 0 deg. C is employed to induce the formation of martensite in the metastable austenitic material, followed by reversion treatment at the temperature range of 700-900 deg. C for 0.5-300 min. Microstructural evolutions are analyzed using Feritscope, X-ray diffraction, and scanning electron microscopy, whereas the mechanical properties are determined by hardness and tensile tests. The smallest grain size (about 135 nm) is obtained in the specimen annealed at 700 deg. C for 20 min. The resultant nano/submicron grained steel not only exhibits a high strength level (about 1010 MPa) but also a desirable elongation of about 40%. Moreover, an annealing map is developed which indicates the appropriate range of annealing parameters for grain refinement of AISI 304L stainless steel through the martensite reversion process.

  18. Production of nano/submicron grained AISI 304L stainless steel through the martensite reversion process

    Forouzan, Farnoosh, E-mail: forouzan.iut@gmail.com [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Najafizadeh, Abbas; Kermanpur, Ahmad; Hedayati, Ali; Surkialiabad, Roohallah [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2010-10-25

    Research highlights: {yields} At least 50% reduction is necessary to complete the transformation of austenite to martensite at 0 deg. C. {yields} The parameters of Olsen-Cohen model were found as n = 4.5, {alpha} = 3.257 and {beta} = 3.573. {yields} The appropriate grain refining zone for annealing treatment was determined. {yields} A diagram showing different zones for each level of grain sizes via annealing conditions is presented. {yields} The hardness improves 2.5 times higher after the thermo-mechanical process. {yields} Final structure exhibits not only high strength (above 1 GPa) but also good elongation ({approx}40%). - Abstract: Production of nano/submicron grained AISI 304L austenitic stainless steel through formation of strain-induced martensite and its reversion to austenite are studied in this paper. The effects of annealing parameters on the microstructural development and mechanical properties are also investigated. Heavily cold rolling at 0 deg. C is employed to induce the formation of martensite in the metastable austenitic material, followed by reversion treatment at the temperature range of 700-900 deg. C for 0.5-300 min. Microstructural evolutions are analyzed using Feritscope, X-ray diffraction, and scanning electron microscopy, whereas the mechanical properties are determined by hardness and tensile tests. The smallest grain size (about 135 nm) is obtained in the specimen annealed at 700 deg. C for 20 min. The resultant nano/submicron grained steel not only exhibits a high strength level (about 1010 MPa) but also a desirable elongation of about 40%. Moreover, an annealing map is developed which indicates the appropriate range of annealing parameters for grain refinement of AISI 304L stainless steel through the martensite reversion process.

  19. Microstructure and corrosion behavior of multipass gas tungsten arc welded 304L stainless steel

    Highlights: • Multipass gas tungsten arc welding of 304L stainless steel was successfully done. • All welds were austenitic with the presence of a small amount of δ-ferrite. • The morphology of δ-ferrite showed the lathy and skeletal δ-ferrite in the welds. • Hardness and corrosion resistance were improved by multipass welding. • The best joint properties were obtained after three passes welding. - Abstract: The purpose of this study was to discuss the effect of single pass and multipass (double and triple pass) gas tungsten arc welding (GTAW) on microstructure, hardness and corrosion behavior of 304L stainless steel. In this investigation, 308 stainless steel filler metal was used. Microstructures and hardness of the weldments were investigated using optical microscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction analysis (XRD) and Vickers microhardness (HV0.5). A ferritescope was also used in the non-destructive evaluation to observe the ferrite content on the weldments. Corrosion behavior of weldments in 1 M H2SO4 solution at 25 ± 1 °C was investigated using potentiodynamic polarization and immersion tests. Results indicated that the microstructure of fusion zones exhibited dendritic structure contained lathy and skeletal δ-ferrite. The contents of δ-ferrite in the weld zone increased by increasing the number of passes. Therefore, as the number of passes increased, the hardness and corrosion resistance increased

  20. The role of martensitic transformation on bimodal grain structure in ultrafine grained AISI 304L stainless steel

    Sabooni, S., E-mail: s.sabooni@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, 84156-83111 Isfahan (Iran, Islamic Republic of); Karimzadeh, F.; Enayati, M.H. [Department of Materials Engineering, Isfahan University of Technology, 84156-83111 Isfahan (Iran, Islamic Republic of); Ngan, A.H.W. [Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (China)

    2015-06-11

    In the present study, metastable AISI 304L austenitic stainless steel samples were subjected to different cold rolling reductions from 70% to 93%, followed by annealing at 700 °C for 300 min to form ultrafine grained (UFG) austenite with different grain structures. Transmission electron microscopy (TEM) and nanoindentation were used to characterize the martensitic transformation, in order to relate it to the bimodal distribution of the austenite grain size after subsequent annealing. The results showed that the martensite morphology changed from lath type in the 60% rolled sample to a mixture of lath and dislocation-cell types in the higher rolling reductions. Calculation of the Gibbs free energy change during the reversion treatment showed that the reversion mechanism is shear controlled at the annealing temperature and so the morphology of the reverted austenite is completely dependent on the morphology of the deformation induced martensite. It was found that the austenite had a bimodal grain size distribution in the 80% rolled and annealed state and this is related to the existence of different types of martensite. Increasing the rolling reduction to 93% followed by annealing caused changing of the grain structure to a monomodal like structure, which was mostly covered with small grains of around 300 nm. The existence of bimodal austenite grain size in the 80% rolled and annealed 304L stainless steel led to the improvement of ductility while maintaining a high tensile strength in comparison with the 93% rolled and annealed sample.

  1. Flow lines and microscopic elemental inhomogeneities in austenitic stainless steels

    Mosley, Jr, W C

    1982-01-01

    Flow lines in mechanically formed austenitic stainless steels are known to influence fracture behavior. Enhancement of flow lines by chemical etching is evidence of elemental inhomogeneity. This paper presents the results of electron microprobe analyses to determine the nature of flow lines in three austenitic stainless steels: 21Cr-6Ni-9Mn, 304L, and 19Ni-18Cr.

  2. Charpy impact energy evolution, with sensitization treatments, in absence and presence of internal hydrogen in austenitic 304 L

    Charpy impact energy measurement is a sensitive method, specially at low temperature (-180+-50C), to evaluate the sensitization treatments on austenitic 304 L, in presence or absence of cathodic hydrogen

  3. Development of Nanocrystalline 304L Stainless Steel by Large Strain Cold Working

    Marina Odnobokova

    2015-04-01

    Full Text Available The microstructural changes leading to nanocrystalline structure development and the respective tensile properties were studied in a 304L stainless steel subjected to large strain cold rolling at ambient temperature. The cold rolling was accompanied by the development of deformation twinning and martensitic transformation. The latter readily occurred at deformation microshear bands, leading the martensite fraction to approach 0.75 at a total strain of 3. The deformation twinning followed by microshear banding and martensitic transformation promoted the development of nanocrystalline structure consisting of a uniform mixture of austenite and martensite grains with their transverse sizes of 120–150 nm. The developed nanocrystallites were characterized by high dislocation density in their interiors of about 3 × 1015 m−2 and 2 × 1015 m−2 in austenite and martensite, respectively. The development of nanocrystalline structures with high internal stresses led to significant strengthening. The yield strength increased from 220 MPa in the original hot forged state to 1600 MPa after cold rolling to a strain of 3.

  4. Dynamic Strength of 304L stainless steel under impact

    Werdiger, Meir; Bakshi, Lior; Glam, Benny; Pistinner, Shlomi

    2011-06-01

    We use the Asay self consistent technique to analyze the effects of pressure hardening and strain hardening on SS304L. Previously unloading experiment has been used to infer the strength of this material at high pressure, and recently the Johnson-Cook (JC) model has been calibrated at low strain rate. Release and reshock experiments with impact velocity range of 300-1700 m/s were preformed. We used VISAR to extract the particle velocity of the SS304L- LiF window interface. The velocity profile compared to hydrodynamic simulation using JC model. Our unloading experiments have clearly demonstrate that the material yield but does not fail. Thus infer substantial effect of pressure hardening.

  5. Corrosion behaviour of single (Ti) and duplex (Ti-TiO2) coating on 304L stainless steel in nitric acid medium

    Highlights: → Ti coated 304L SS showed moderate to marginal corrosion resistance in 1 M and 8 M HNO3. → Duplex Ti-TiO2 coated 304L SS showed minimization of structural heterogeneities. → Passive film property improves by minimizing structural heterogeneities. → Protection efficiency for 304L SS increases with duplex Ti-TiO2 coating in HNO3. - Abstract: Sputter deposited single titanium (Ti) layer, and duplex Ti-TiO2 coating on austenitic type 304L stainless steel (SS) was prepared, and the corrosion performance was evaluated in nitric acid medium using surface morphological and electrochemical techniques. Morphological analysis using atomic force microscope of the duplex Ti-TiO2 coated surface showed minimization of structural heterogeneities as compared to single Ti layer coating. The electrochemical corrosion results revealed that, titanium coated 304L SS showed moderate to marginal improvement in corrosion resistance in 1 M, and 8 M nitric acid, respectively. Duplex Ti-TiO2 coated 304L SS specimens showed improved corrosion resistance as compared to Ti coating from dilute (1 M) to concentrated medium (8 M). The percentage of protection efficiency for base material increases significantly for duplex Ti-TiO2 coating as compared to single Ti layer coating. The oxidizing ability of nitric acid on both the coatings as well as factors responsible for improvement in protection efficiency are discussed and highlighted in this paper.

  6. A study of the microstructural distribution of cathodic hydrogen in austenitic stainless steels by hydrogen microprint

    The cathodic hydrogen distribution in austenitic stainless steel (304L; 316L) microstructure is shwon, at electron microscope scale, using the hydrogen microprint technique. Cathodic hydrogen induced cracking is analysed

  7. Plasma nitriding of AISI 304L and AISI 316L stainless steels: effect of time in the formation of S phase and the chromium nitrides

    Plasma nitriding can improve hardness and wear resistance of austenitic stainless steels without losses in corrosion resistance. This fact relies on a nitrided layer constituted only by S phase, without chromium nitrides precipitation. In this work, the effect of nitriding time on phases formed on nitrided layer was investigated in two austenitic stainless steels: AISI 304L e AISI 316L. The samples were nitrided at 420 deg C, using a mixture of 60 % N2 and 40% H2, during 5, 7 and 9 hours. It was noted that chromium nitrides were formed on samples of AISI 304L, nitrided for 7 e 9 hours, while all nitrided samples of AISI 316L showed only formation of S phase. The nitrided layers were characterized using optical microscope and x-ray diffraction. (author)

  8. Effect of strain-path on stress corrosion cracking of AISI 304L stainless steel in PWR primary environment at 360 deg. C

    Austenitic stainless steels (ASS) are widespread in primary and auxiliary circuits of PWR. Moreover, some components suffer stress corrosion cracking (SCC) under neutron irradiation. This degradation could be the result of the increase of hardness or the modification of chemical composition at the grain boundary by irradiation. In order to avoid complex and costly corrosion facilities, the effects of irradiation on the material are commonly simulated by applying a cold work on non-irradiated material prior to stress corrosion cracking tests. Slow strain rate tests were conducted on an austenitic stainless steel (SS) AISI 304L in PWR environment (360 deg. C). Particular attention was directed towards pre-straining effects on crack growth rate (CGR) and crack growth path (CGP). Results have demonstrated that the susceptibility of 304L to SCC in high-temperature hydrogenated water was enhanced by pre-straining. It seemed that IGSCC was enhanced by complex strain paths. (authors)

  9. Martensitic transformation in 304L and 316L types stainless steels cathodically hydrogen charged

    This paper reports a TEM study on the role of phase transitions at the crack tip in 304L and 316L types stainless steels cathodically hydrogen charged in the absence of any eternally applied forces. The possible role of α prime and epsilon martensite phases in the fracture mechanism is discussed

  10. Dynamic compressive response of wrought and additive manufactured 304L stainless steels

    Nishida Erik

    2015-01-01

    Full Text Available Additive manufacturing (AM technology has been developed to fabricate metal components that include complex prototype fabrication, small lot production, precision repair or feature addition, and tooling. However, the mechanical response of the AM materials is a concern to meet requirements for specific applications. Differences between AM materials as compared to wrought materials might be expected, due to possible differences in porosity (voids, grain size, and residual stress levels. When the AM materials are designed for impact applications, the dynamic mechanical properties in both compression and tension need to be fully characterized and understood for reliable designs. In this study, a 304L stainless steel was manufactured with AM technology. For comparison purposes, both the AM and wrought 304L stainless steels were dynamically characterized in compression Kolsky bar techniques. They dynamic compressive stress-strain curves were obtained and the strain rate effects were determined for both the AM and wrought 304L stainless steels. A comprehensive comparison of dynamic compressive response between the AM and wrought 304L stainless steels was performed. SAND2015-0993 C.

  11. Optimization of process parameters in explosive cladding of titanium/stainless steel 304L plates

    Explosive cladding is a solid state welding process best suited for joining incompatible metals. The selection of process parameters viz., explosive mass ratio, stand off distance and initial angle of inclination dictate the nature of the cladding. Optimization of process parameters in explosive cladding of titanium-stainless steel 304L plates, based on two level three factorial design, is attempted to establish the influencing parameters. Analysis of variance was employed to find the linear, regression and interaction values. Mathematical models to estimate the responses-amplitude and wavelength were developed. The microstructure of the Ti-SS304L explosive clad interface reveals characteristic undulations concurrent with design expectations. (orig.)

  12. Passivity and passivity breakdown of 304L stainless steel in hot and concentrated nitric acid

    The objective of this study is to characterize the oxidation behavior of 304L stainless steel (SS) in representative conditions of spent nuclear fuel reprocessing, i.e. in hot and concentrated nitric acid. In these conditions the SS electrochemical potential is in the passive domain and its corrosion rate is low. However when the media becomes more aggressive, the potential may be shifted towards the trans-passive domain characterized with a high corrosion rate. Passivity and passivity breakdown in the trans-passive domain are of a major interest for the industry. So as to characterize these phenomenons, this work was undertaken with the following representative conditions: a 304L SS from an industrial sheet was studied, the media was hot and concentrated HNO3, long term tests were performed. First, the surface of an immersed 304L SS was characterized with several complementary techniques from the micro to the nanometer scale. Then oxidation kinetics was studied in the passive and in the trans-passive domain. The oxidation behavior was studied thanks to weight loss determination and surface analysis. Finally, oxidation evolution as a function of the potential was studied from the passive to the trans-passive domain. In particular, this allowed us to obtain the anodic curve of 304L SS in hot and concentrated and to define precisely the 304L SS limits of in such conditions. (author)

  13. Martensitic Transformation in Ultrafine-Grained Stainless Steel AISI 304L Under Monotonic and Cyclic Loading

    Heinz Werner Höppel

    2012-02-01

    Full Text Available The monotonic and cyclic deformation behavior of ultrafine-grained metastable austenitic steel AISI 304L, produced by severe plastic deformation, was investigated. Under monotonic loading, the martensitic phase transformation in the ultrafine-grained state is strongly favored. Under cyclic loading, the martensitic transformation behavior is similar to the coarse-grained condition, but the cyclic stress response is three times larger for the ultrafine-grained condition.

  14. Selection of suitable stainless steels for nuclear reprocessing plants: application of chemical and electrochemical testing methods to austenitic CrNi steel AISI type 304L in various chemical compositions

    DIN Standard Huey testing has been performed in boiling 14.4n nitric acid during 5-15 periods (240-720 h) for selection of appropriate nitric acid resistant materials for nuclear fuel reprocessing applications. The paper describes the testing process during which the intermediate and final results of metal loss by dissolution are directly transferred from the balance to the computer, stored and activated - besides material properties data - for documentation purposes. Further routine evaluation of these experiments includes metallography in cross-section and surface microscopy to look after uniform and local metal dissolution phenomena and their relationship to the bulk structure. A large variety of materials have been tested this way through the last years. It was shown how sensitively the chosen testing conditions are able to differ between materials of the same nominal composition AISI 304L/Material No. 1.4306 in different contents of residual elements. Especially, for the purest electroslag-molten steel (ESU) results of parameter studies concerning the influence of sensitization, cold deformation, grain size and sheet thickness (in respect to end grain attack) are given. Within an attempt to define faster methods of corrosion testing, e.g. to differ within a group of materials of similar composition, but different corrosion behaviour, electrochemical tests in heated nitric acid were performed under potentiostatic conditions. The necessary electrochemical equipment and the results of its application by potentiostatic tests on AISI 304L in above mentioned three chemical compositions at 1250 mV, 14n HNO3 are presented. The evaluation by light and electron microscopy of the corroded surfaces, supported by measurements of current density, weight change, metallography and surface roughness, proved that within one hour a remarkable differentiation of the corrosion behaviour took place which can serve as a basis of materials preselection and to diminish the extent of

  15. TESTING OF 304L STAINLESS STEEL IN NITRIC ACID ENVIRONMENTS WITH FLUORIDES AND CHLORIDES

    Mickalonis, J.

    2010-10-04

    Impure radioactive material processed in nitric acid solutions resulted in the presence of chlorides in a dissolver fabricated from 304L stainless steel. An experimental program was conducted to study the effects of chloride in nitric acid/fluoride solutions on the corrosion of 304L stainless steel. The test variables included temperature (80, 95, and 110 C) and the concentrations of nitric acid (6, 12, and 14 M), fluoride (0.01, 0.1, and 0.2 M) and chloride (100, 350, 1000, and 2000 ppm). The impact of welding was also investigated. Results showed that the chloride concentration alone was not a dominant variable affecting the corrosion, but rather the interaction of chloride with fluoride significantly affected corrosion.

  16. Development of Nanocrystalline 304L Stainless Steel by Large Strain Cold Working

    Marina Odnobokova; Andrey Belyakov; Rustam Kaibyshev

    2015-01-01

    The microstructural changes leading to nanocrystalline structure development and the respective tensile properties were studied in a 304L stainless steel subjected to large strain cold rolling at ambient temperature. The cold rolling was accompanied by the development of deformation twinning and martensitic transformation. The latter readily occurred at deformation microshear bands, leading the martensite fraction to approach 0.75 at a total strain of 3. The deformation twinning followed by m...

  17. Thermal fatigue of austenitic and duplex stainless steels

    Virkkunen, Iikka

    2001-01-01

    Thermal fatigue behavior of AISI 304L, AISI 316, AISI 321, and AISI 347 austenitic stainless steels as well as 3RE60 and ACX-100 duplex stainless steels was studied. Test samples were subjected to cyclic thermal transients in the temperature range 20 - 600°C. The resulting thermal strains were analyzed with measurements and numerical calculations. The evolution of thermal fatigue damage was monitored with periodic residual stress measurements and replica-assisted microscopy. The elastic strai...

  18. Corrosion and microstructural aspects of dissimilar joints of titanium and type 304L stainless steel

    Mudali, U. Kamachi. E-mail: kamachi@igcar.ernet.in; Ananda Rao, B.M.; Shanmugam, K.; Natarajan, R.; Raj, Baldev

    2003-09-01

    To link titanium and zirconium metal based (Ti, Zr-2, Ti-5%Ta, Ti-5%Ta-1.8Nb) dissolver vessels containing highly radioactive and concentrated corrosive nitric acid solution to other nuclear fuel reprocessing plant components made of AISI type 304L stainless steel (SS), high integrity and corrosion resistant dissimilar joints between them are necessary. Fusion welding processes produce secondary precipitates which dissolve in nitric acid, and hence solid-state processes are proposed. In this work, various dissimilar joining processes available for producing titanium-304L SS joints with adequate strength, ductility and corrosion resistance for this critical application are highlighted. Developmental efforts made at IGCAR, Kalpakkam are outlined. The possible methods and the microstructural-metallurgical properties of the joints along with corrosion results obtained with three phase (liquid, vapour, condensate) corrosion testing are discussed. Based on the results, dissimilar joint produced by the explosive joining process was adopted for plant application.

  19. Corrosion and microstructural aspects of dissimilar joints of titanium and type 304L stainless steel

    To link titanium and zirconium metal based (Ti, Zr-2, Ti-5%Ta, Ti-5%Ta-1.8Nb) dissolver vessels containing highly radioactive and concentrated corrosive nitric acid solution to other nuclear fuel reprocessing plant components made of AISI type 304L stainless steel (SS), high integrity and corrosion resistant dissimilar joints between them are necessary. Fusion welding processes produce secondary precipitates which dissolve in nitric acid, and hence solid-state processes are proposed. In this work, various dissimilar joining processes available for producing titanium-304L SS joints with adequate strength, ductility and corrosion resistance for this critical application are highlighted. Developmental efforts made at IGCAR, Kalpakkam are outlined. The possible methods and the microstructural-metallurgical properties of the joints along with corrosion results obtained with three phase (liquid, vapour, condensate) corrosion testing are discussed. Based on the results, dissimilar joint produced by the explosive joining process was adopted for plant application

  20. Constant extension rate tensile tests on 304L stainless steel in simulated hazardous low-level waste

    New waste tanks which handle hazardous low-level waste were proposed to be constructed in H-area. The candidate material for the tanks is AISI Type 304L (304L) stainless steel. Constant extension rate tensile (CERT) tests were conducted to assess the susceptibility of 304L to stress-corrosion cracking (SCC) in these waste solutions. The tests demonstrated that 304L was not susceptible to SCC in simulated wastes. Based on these tests and previous pitting corrosion studies 304L is a suitable material of construction for the new tanks. Comparison tests in the same simulants were performed on A537 carbon steel (A537), a material that is similar to material of construction for the current tanks. Stress-corrosion cracking was indicated in two of the simulants. If carbon steel tanks are utilized to handle the hazardous low-level wastes, inhibitors such as nitrite or hydroxide will be necessary to prevent corrosion

  1. Comparison of SCC Behavior of 304L Stainless Steels With and Without Boron Addition in Acidic Chloride Environment

    Sivai Bharasi, N.; Pujar, M. G.; Nirmal, S.; Mallika, C.; Kamachi Mudali, U.; Angelo, P. C.

    2016-07-01

    The stress corrosion cracking (SCC) behavior of 304L B4 grade borated stainless steel (SS) as well as 304L SS was investigated by constant load and slow strain rate testing (SSRT) techniques. The microstructure, pitting, and SCC behavior of borated SS in the as-received, sensitized, and solution-annealed conditions were analyzed. Potentiodynamic anodic polarization and double loop electrochemical potentiokinetic reactivation (DLEPR) experiments were carried out to find out pitting corrosion resistance and degree of sensitization (DOS). The number of boride particles (composed of Cr, Fe, and B) were highest for the specimen solution annealed at 1423 K/2 h. Solution-annealing treatment at 1423 K/4 h was found to be beneficial in improving the corrosion resistance of borated 304L SS. Although the borated 304L SS exhibited a higher DOS, it showed improved pitting corrosion resistance compared to 304L SS. Constant load experiments revealed the time to failure to be the highest for the specimen solution annealed at 1423 K/4 h. SCC susceptibility index (Iscc) values obtained from SSRT tests were lower for solution-annealed borated 304L SS compared to the as-received and sensitized conditions. The improved SCC resistance of borated 304L SS was attributed not only to the solution-annealing treatment but also the higher stacking fault energy (SFE) value compared to 304L SS.

  2. Corrosion testing of type 304L stainless steel in tuff groundwater environments

    The stress-corrosion cracking (SCC) resistance of Type 304L stainless steel (SS) to elevated temperatures in tuff rock and tuff groundwater environments was determined under irradiated and nonirradiated conditions using U-bend specimens and slow-strain-rate tests. The steel was tested both in the solution-annealed condition and after sensitization heat treatments. The material was found to be susceptible to SCC in both the solution-annealed and solution-annealed-and-sensitized conditions when exposed to an irradiated crushed tuff rock environment containing air and water vapor at 900C. A similar exposure at 500C did not result in failure after a 25-month test duration. Specimens of sensitized 304 SS conditioned with a variety of sensitization heat treatments resisted failure during a test of 1-year duration in which a nonirradiated environment of tuff rock and groundwater held at 2000C was allowed to boil to dryness on a cyclical basis. All specimens of sensitized 304 SS exposed to this environment failed. Slow-strain-rate studies were performed on 304L, 304, and 316L SS specimens. The 304L SS was tested in J-13 well water at 1500C, and the 316L SS at 950C. Neither material showed evidence of SCC in these tests. Sensitized 304 SS did exhibit SCC in J-13 well water in tests conducted at 1500C. 12 refs., 27 figs., 13 tabs

  3. Comparative Shock Response of Additively Manufactured Versus Conventionally Wrought 304L Stainless Steel*

    Wise, J. L.; Adams, D. P.; Nishida, E. E.; Song, B.; Maguire, M. C.; Carroll, J.; Reedlunn, B.; Bishop, J. E.

    2015-06-01

    Gas-gun experiments have probed the compression and release behavior of impact-loaded 304L stainless steel specimens machined from additively manufactured (AM) blocks as well as baseline ingot-derived bar stock. The AM technology allows direct fabrication of metal parts. For the present study, a velocity interferometer (VISAR) measured the time-resolved motion of samples subjected to one-dimensional (i.e., uniaxial strain) shock compression to peak stresses ranging from 0.2 to 7.5 GPa. The acquired wave-profile data have been analyzed to determine the comparative Hugoniot Elastic Limit (HEL), Hugoniot equation of state, spall strength, and high-pressure yield strength of the AM and conventional materials. Observed differences in shock loading and unloading characteristics for the two 304L source variants have been correlated to complementary Kolsky bar results for compressive and tensile testing at lower strain rates. The effects of composition, porosity, microstructure (e.g., grain size and morphology), residual stress, and sample axis orientation relative to the additive manufacturing deposition trajectory have been assessed to explain differences between the AM and baseline 304L dynamic mechanical properties. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  4. Fatigue of welded joint in a stainless steel AISI 304 L

    The flexion fatigue behavior for the base metal and welded joint of an AISI 304 L stainless steel type, used in the Angra-1 reactor, was determined. An automatic welding process was used with improved procedures in order to assure better welding metallurgy. Fatigue tests samples reinforcements were done to allow the evaluation of metallurgical variables, specially the role played by delta ferrite. The resulting welded joint showed better fatigue life than the base metal. Delta ferrite was found to play an important role on the initiation and propagation processes of the fatigue cracks. (Author)

  5. Corrosion of type 304L stainless steel in boiling dilute neptunium nitrate solution

    Corrosion of type 304L stainless steel in nitric acid solution containing neptunium was studied under immersion and heat-transfer condition. Corrosion rates of stainless steel were obtained by the weight loss measurement and the quantitative analysis of metallic ions dissolved in solution. The surface morphology was observed by scanning electron microscopy. The corrosion acceleration mechanism was investigated by polarization measurement and spectrophotometry. The corrosion rate in boiling 9M nitric acid was accelerated by addition of neptunium. The corrosion of stainless steel was promoted under heat-transfer condition compared to immersion condition. In polarization measurements, the cathodic current was increased by addition of neptunium. Spectrophotometric measurements showed the oxidization of neptunium in boiling nitric acid. It was suggested that the accelerated corrosion in nitric acid solution containing neptunium was caused by re-oxidation of neptunium. (author)

  6. Chloride induced localized corrosion in simulated concrete pore solution: effect of a phosphate-based inhibitor on the behavior of 304L stainless steel compared to carbon steel

    In this paper, the acoustic emission technique coupled with electrochemical measurements was used to determine, in simulated concrete pore solution (Ca(OH)2), the critical value [Cl-] / [OH-], which prevents the pitting corrosion initiation of AISI 304L austenitic stainless steel, and to compare this critical value with that of the carbon steel in the same medium with and without inhibitor Na3PO4. The results show that for the austenitic stainless steel, the critical threshold of pitting corrosion initiation is around 5, while for carbon steel without inhibitor in Ca(OH)2 solution, it has a low value of about 0.6. However, the presence of the inhibitor Na3PO4 in this solution leads to the formation of a protective phosphate layer on the steel surface, increasing the critical ratio [Cl-] / [OH-] from 0.6 to 15. Under these conditions, the corrosion behavior of carbon steel is improved and, thanks to the blocking of pitting sites by the Na3PO4 inhibitor, it becomes much more resistant to localized corrosion than AISI 304L austenitic steel. (authors)

  7. Modeling Periodic Adiabatic Shear Bands Evolution in a 304L Stainless Steel Thick-Walled Cylinder

    Liu, Mingtao; Hu, Haibo; Fan, Cheng; Tang, Tiegang

    2015-06-01

    The self-organization of multiple shear bands in a 304L stainless steel thick-walled cylinder (TWC) was numerically studied. The microstructures of material lead to the non-uniform distribution of local yield stress, which plays a key role in the formation of spontaneous shear localization. We introduced a probability factor satisfied Gauss distribution into the macroscopic constitutive relationship to describe the non-uniformity of local yield stress. Using the probability factor, the initiation and propagation of multiple shear bands in TWC were numerically replicated in our 2D FEM simulation. Experimental results in the literature indicate that the machined surface at the internal boundary of a 304L stainless steel cylinder provides a work-hardened layer (about 20 μm) which has significantly different microstructures from base material. The work-hardened layer leads to the phenomenon that most shear bands are in clockwise or counterclockwise direction. In our simulation, periodic oriented perturbations were applied to describe the grain orientation in the work-hardened layer, and the spiral pattern of shear bands was successfully replicated.

  8. Effect of H2O2 on the corrosion behavior of 304L stainless steel

    In connection with the safe storage of high level nuclear waste, effect of H2O2 on the corrosion behavior of 304L stainless steel was examined. Open circuit potentials and polarization curves were measured with and without H2O2. The experimental results show that H2O2 increased corrosion potential and decreased pitting potential. The passive range, therefore, decreased as H2O2 concentration increased, indicating that pitting resistance was decreased by the existence of H2O2 in the electrolyte. These effects of H2O2 on corrosion of 304L stainless steel are considered to be similar to those of γ-irradiation. To compare the effects of H2O2 with those of O2, cathodic and anodic polarization curves were made in three types of electrolyte such as aerated, deaerated, and stirred electrolyte. The experimental results show that the effects of H2O2 on the corrosion behavior were very similar to those of O2 such as increase of corrosion potential, decrease of pitting resistance, and increase of repassivation potential. Further, H2O2 played much greater role in controlling cathodic reaction rate in neutral water environment. In acid and alkaline media, potential shifts by H2O2 were restricted by the large current density of proton reduction and by the le Chatelier's principle respectively

  9. Study on prevention of chloride induced stress corrosion cracking for type 304L, 316L stainless steel canister

    For the practical application of multi-purpose canisters (MPCs), there are technical issues for containment function to prevent the initiation of chloride induced stress corrosion cracking (SCC). Therefore, the SCC test were conducted to clarify the critical salt density to initiate SCC and the effect which the reduction treatment of weld residual stress influents to prevent SCC. (1) The minimum threshold of salt for SCC initiation could be 4 g/cm2 as Cl under the condition of the temperatures of 50degC and the relative humidity of 35% with the 316 type L-grade austenite stainless steel used over 5000 hr. However, the threshold could be reduced to 2 g/m2 as Cl under the actual equipment surface condition corresponding to the conventional stainless steel MPC. (2) An accelerated corrosion test was performed using mock-up MPC made of Type 304L, in which the salt concentration on the surface of weld lines was kept to 4 g/cm2 as Cl. As the result of the test, SCC on the surface-treated weld line by ZSP didn't occur because of the compressed stress induced appropriately, therefore the validity of surface treatment techniques was confirmed. (author)

  10. Effect of rare earth oxide additions on oxidation behavior of AISI 304L stainless steel

    Marina Fuser Pillis

    2006-12-01

    Full Text Available AISI 304L stainless steel powder compacts containing 2 vol% high purity rare earth oxides were prepared by mixing the different powders in a vibratory mill followed by pressing. The compacts thus obtained were sintered in a vacuum furnace and isothermal oxidation measurements were carried out in a muffle furnace, in air, up to 200 hours at 900 °C. The oxidized surfaces were examined in a scanning electron microscope and micro regions of the reaction products were studied using energy dispersive analysis. The addition of rare earth oxides decreased the oxidation rate of the stainless steel. Further evidence of predominant oxygen ion diffusion controlling the overall oxidation process in rare earth containing chromium oxide forming alloys has been observed.

  11. Chemical interaction between granular B4C and 304L-type stainless steel materials used in BWRs in Japan

    Chemical reactions between stainless steel and boron carbide were investigated using the materials applied for control rods in BWRs in Japan, specifically 304L-type stainless steel and granular boron carbide. The reaction region consisted of 2–4 layers, in which the significant composition variation of each element was detected, especially for B and C. Assuming that the reaction layer growth obeys the parabolic law, the effective rate constant between 304L-type stainless steel and granular boron carbide was evaluated to be approximately one order of magnitude smaller than the previously reported values for boron carbide pellets or powers. This difference might originate from the loose contact between the stainless steel and the granular boron carbide in the present study. Regarding liquefaction progress, the stainless steel components were selectively dissolved in the melt; consequently, the unreacted boron carbide tended to remain. (author)

  12. Evaluation of stress corrosion cracking of irradiated 304L stainless steel in PWR environment using heavy ion irradiation

    Gupta, J.; Hure, J.; Tanguy, B.; Laffont, L.; Lafont, M.-C.; Andrieu, E.

    2016-08-01

    IASCC has been a major concern regarding the structural and functional integrity of core internals of PWR's, especially baffle-to-former bolts. Despite numerous studies over the past few decades, additional evaluation of the parameters influencing IASCC is still needed for an accurate understanding and modeling of this phenomenon. In this study, Fe irradiation at 450 °C was used to study the cracking susceptibility of 304 L austenitic stainless steel. After 10 MeV Fe irradiation to 5 dpa, irradiation-induced damage in the microstructure was characterized and quantified along with nano-hardness measurements. After 4% plastic strain in a PWR environment, quantitative information on the degree of strain localization, as determined by slip-line spacing, was obtained using SEM. Fe-irradiated material strained to 4% in a PWR environment exhibited crack initiation sites that were similar to those that occur in neutron- and proton-irradiated materials, which suggests that Fe irradiation may be a representative means for studying IASCC susceptibility. Fe-irradiated material subjected to 4% plastic strain in an inert argon environment did not exhibit any cracking, which suggests that localized deformation is not in itself sufficient for initiating cracking for the irradiation conditions used in this study.

  13. Microstructural features of hot pressure bonding between stainless steel type AISI-304 L and ziracloy-2

    The diffusion zone formed after reaching quasi-equilibrium in hot pressure bonding between stainless steel type AISI-304 L and Zircaloy-2 under particular thermal and compressive conditions (1000-11000C and 2-3 atm) contains two distinct layers, each separately localized in the modified stainless steel and Zircaloy matrices. SEM, TEM, X-ray diffraction and microanalysis were used to identify the phase structure and composition of the two diffusion layers. The nature and distribution of phases found in the diffusion layers can be explained in connection with the diffusion mechanisms operating after the initial stages of bond formation and interface disappearance: (a) The strog zirconium diffusion promotes ferrite and ZrCr2 formation in a narrow zone located near the stainless steel matrix. (b) Iron and nickel diffusion over large distances in the Zircaloy matrix leads to the occurrence of a larger zone having a two-phase structure. The light grey phase consists of untransformed α-Zr and a small precentage of high-temperature β-Zr phase. The darker grey phase contains essentially a very high amount of intermetallic bct compounds Zr-Fe-Ni, Zr2Fe and Zr2Ni dispersed in the small residue of Zircaloy matrix. (orig.)

  14. In situ study by atomic force microscopy of localised corrosion on a 304L stainless steel

    At this time, the understanding of the initiation of localized corrosion on stainless steels (SS) is still limited. In this context, the present work aimed at observing in situ by Atomic Force Microscopy (AFM) the initiation of corrosion pits and stress corrosion cracking (SCC) cracks. In order to complete the project, a new technique associating an AFM, an electrochemical cell and a traction platform as been developed. It allows in situ imaging of the surface evolutions of a 304L SS at the nano-scale. under controlled potential and/or under stress conditions. We show that corrosion pits initiate preferentially in relation with nano-metric defects of the surface. For the first time, a real-time kinetic study of the first steps of nano-metric pits growth has been performed. This study corroborates the 'point-defect' model (vertical pit growth speed of 0.18 angstrom.s-1, current densities inside pits evaluated to 73 μjA.cm-2. Combined with the EBSD technique (Electron Backscattered Diffraction), the AFM allows a total indexing of the activated slip systems during deformation and give information about the number of emerged dislocations (few units). The effect of strain hardening at the nano-scale on pitting susceptibility has been investigated: 70% of the pits set up at strain hardened areas. To explain this phenomenon, we propose a simple model based on the modification of the local work function of the surface due to local stress gradients. Concerning SCC, the first in situ observations seem to validate Magnin's mechanism: crack initiation appears at strain concentration spots. Observed after anodization of our 304L surface, organized arrays of nano-cavities (period of 50-100 nm) have been analyzed. In collaboration with an INSERM team, we showed that such nano-structured surfaces increase the adhesion and differentiation of bone cells. (author)

  15. Ion-nitriding of austenitic stainless steels

    Although ion-nitriding is an extensively industrialized process enabling steel surfaces to be hardened by nitrogen diffusion, with a resulting increase in wear, seizure and fatigue resistance, its direct application to stainless steels, while enhancing their mechanical properties, also causes a marked degradation in their oxidation resistance. However, by adaption of the nitriding process, it is possible to maintain the improved wear resistant properties while retaining the oxidation resistance of the stainless steel. The controlled diffusion permits the growth of a nitrogen supersaturated austenite layer on parts made of stainless steel (AISI 304L and 316L) without chromium nitride precipitation. The diffusion layer remains stable during post heat treatments up to 650 F for 5,000 hrs and maintains a hardness of 900 HV. A very low and stable friction coefficient is achieved which provides good wear resistance against stainless steels under diverse conditions. Electrochemical and chemical tests in various media confirm the preservation of the stainless steel characteristics. An example of the application of this process is the treatment of Reactor Control Rod Cluster Assemblies (RCCAs) for Pressurized Water Nuclear Reactors

  16. Effect of sensitization on the mechanical properties of type 304 L stainless steel

    The sensitization is a corrosion cause that it has studied broadly in the austenitic steels; however its relations don't knowed very well, into the sensitization and the steel's mechanical properties. Wherefore, the objectives of this work was to study the mechanical properties, in tension of austenitic steel with different levels of sensitization. The material utilized was a 304 L steel of standard composition AISI. The samples were sensitized at 450, 650 and 850 Centigrade degree, by short expositions, following by a temper in water. After this treatment, the tension test tubes were carried to rupture at low deformation velocity. The sensitization was evaluated by the method of Akashi EPR cyclic polarization. The sensitization distribution was analyzed by optical metallography in color and the fracture surface were studied by sweeping electronic microscopy. The distribution and length of the carbides were the factor that control the mechanic behavior of materials. At 450 Centigrade, the border of the grain its founded free of carbides, also for the longest times of exposition, but the particles are presented as fine precipitates in the grain interior, with this is increased the mechanical properties by the internal interactions of hardness or oldness types. At 650 Centigrade the frontiers show a dense distribution of fine carbides. These precipitates are interacting with the borders grain, increasing lightly the mechanical properties of steel. At 850 Centigrade, were formed discontinued carbides that not affect the mechanical behavior, but whether the fracture; the resistance is reduced and the ductility is increased although to impose the thermic effect of treatment. (Author)

  17. High temperature oxidation behavior of AISI 304L stainless steel—Effect of surface working operations

    Highlights: ► Surface working resulted in thinner oxide on the surface. ► Oxides on machined/ground surfaces richer in Cr, higher in specific resistivity. ► Additional ionic transport process at the metal-oxide for ground sample established. ► Presence of fragmented grains and martensite influenced oxide nature/morphology. - Abstract: The oxidation behavior of grade 304L stainless steel (SS) subjected to different surface finishing (machining and grinding) operations was followed in situ by contact electric resistance (CER) and electrochemical impedance spectroscopy (EIS) measurements using controlled distance electrochemistry (CDE) technique in high purity water (conductivity −1) at 300 °C and 10 MPa in an autoclave connected to a recirculation loop system. The results highlight the distinct differences in the oxidation behavior of surface worked material as compared to solution annealed material in terms of specific resistivity and low frequency Warburg impedance. The resultant oxide layer was characterized for (a) elemental analyses by glow discharge optical emission spectroscopy (GDOES) and (b) morphology by scanning electron microscopy (SEM). Oxide layers with higher specific resistivity and chromium content were formed in case of machined and ground conditions. Presence of an additional ionic transport process has also been identified for the ground condition at the metal/oxide interface. These differences in electrochemical properties and distinct morphological features of the oxide layer as a result of surface working were attributed to the prevalence of heavily fragmented grain structure and presence of martensite.

  18. Crack propagation in stainless steel AISI 304L in Hydrogen Chemistry conditions (HWC)

    Velocities of crack growth in samples type CT pre cracking of stainless steel AISI 304l solder and sensitized thermally its were obtained by the Rising Displacement method or of growing displacement. It was used a recirculation circuit that simulates the operation conditions of a BWR type reactor (temperature of 280 C and a pressure of 8 MPa) with the chemistry modified by the addition of hydrogen with and without the addition of impurities of a powerful oxidizer like the Cu+ ion. In each essay stayed a displacement velocity was constant of 1x10-9 m/s, making a continuous pursuit of the advance of the crack by the electric potential drop technique. Contrary to the idea of mitigation of the crack propagation velocity by effect of the addition of the hydrogen in the system, the values of the growth velocities obtained by this methodology went similar to the opposing ones under normal operation conditions. To the finish of the rehearsal one carries out the fractographic analysis of the propagation surfaces, which showed cracks growth in trans and intergranular way, evidencing the complexity of the regulator mechanisms of the IGSCC like in mitigation conditions as the alternative Hydrogen Chemistry. (Author)

  19. Cracking of 304L stainless steel observed within CANDU nuclear power plants under cyclic moist environments

    The stress corrosion cracking (SCC) of stainless steel Type 304L has been observed recently in a CANDU nuclear station. The cracking occurred on the inside surface of a piping structure and was transgranular in nature. It was mainly present in sections adjacent to welds, at pipe bends, and straight pipe sections. Such cracking mechanisms are governed by specific intrinsic parameters associated with stress, environment, and material factors. In this case, environmental factors not typical, and, presumably, the stresses at the affected locations are low. This paper discusses the results of the failure analysis conducted on affected component materials. The assessment of the observed mechanism includes the investigation of the affected piping (e.g., undamaged test welds, bends, and around the crack locations) using Orientation Imaging Microscopy (OIM) to evaluate the relative degree of residual plastic strain present in the crack locations and in the general pipe microstructure. Advance surface analysis (ToF-SIMS) was used to examine metal surface oxides buried beneath deposits and at strained regions of the pipe in order to elucidate the chemical species likely involved in the cracking/degradation process. (author)

  20. Propagation of crevices in stainless steel AISI304L in conditions of hydrogen chemistry (HWC)

    Crevice growth velocities in samples of AISI 304L stainless steel thermally welded and sensitized were obtained by the Rising displacement method or of growing displacement. It was used a recirculation circuit in where the operation conditions of a BWR type reactor were simulated (temperature of 288 C and a pressure of 8 MPa) with the chemistry modified by the addition of hydrogen with and without the addition of impurities of a powerful oxidizer like the Cu++ ion. CT pre cracked specimens were used and each rehearsal stayed to one constant displacement velocity of 1 x 10-9 m/s (3.6 μm/hr), making a continuous pursuit of the advance of the crack by the electric potential drop technique. To the end of the rehearsal it was carried out the fractographic analysis of the propagation surfaces. The values of the growth velocities obtained by this methodology went similar to the opposing ones under normal conditions of operation; while the fractographic analysis show the cracks propagation in trans and intergranular ways, evidencing the complexity of the regulator mechanisms of the one IGSCC even under controlled ambient conditions or with mitigation methodologies like the alternative hydrogen chemistry. (Author)

  1. Thermomechanical history measurements on Type 304L stainless steel pipe girth welds

    Thermal and strain histories were recorded for three 40-cm-diameter (16 inch), Type 304L stainless steel (SS), schedule 40 (1.27 cm thickness) pipe girth welds. Two weld groove preparations were standard V grooves while the third was a narrow groove configuration. The welding parameters for the three pipe welds simulated expected field practice as closely as possible. The narrow gap weld was completed in four continuous passes while the other two welds required six and nine (discontinuous) passes, due to the use of different weld wire diameters. Thermomechanical history measurements were taken on the inner counterbore surface, encompassing the weld centerline and heat-affected zone (HAZ), as well as 10 cm of inner counterbore surface on either side of the weld centerline; a total of 47 data acquisition instruments were used for each weld. These instruments monitored: (1) weld shrinkages parallel to the pipe axis; (2) surface temperatures; (3) surface strains parallel to weld centerline; and (4) radial deformations. Results show that the weld and HAZ experienced cyclic deformation in the radial direction during welding, indicating that the final residual stress distribution in multi-pass pipe weldments is not axisymmetric. Measured radial and axial deformations were smaller for the narrow gap groove than for the standard V grooves, suggesting that the narrow gap groove weldment may have lower residual stress levels than the standard V groove weldments. This study provides the experimental database and a guideline for further computational modeling work

  2. Multi-scale analysis of behavior and fatigue life of 304L stainless under cyclic loading with pre-hardening

    This study investigates the effects of loading history on the cyclic stress-strain curve and fatigue behavior of 304L stainless steel at room temperature. Tension-compression tests were performed on the same specimen under controlled strain, using several loading sequences of increasing or decreasing amplitude. The results showed that fatigue life is significantly reduced by the previous loading history. A previously developed method for determining the effect of prehardening was evaluated. Microstructural analyses were also performed; the microstructures after pre-loading and their evolution during the fatigue cycles were characterized by TEM. The results of these analyses improve our understanding of the macroscopic properties of 304L stainless steel and can help us identify the causes of failure and lifetime reduction. (author)

  3. Corrosion and slow-strain-rate testing of Type 304L stainless steel in tuff groundwater environments

    Type 304L stainless steel (SS) is the nuclear waste package reference material by the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. The stress-corrosion cracking (SCC) resistance of this material to elevated-temperature tuff groundwater environments was determined under irradiated and unirradiated conditions. The material was found to be susceptible to SCC (in both the solution-annealed and solution-annealed-and-sensitized conditions) when exposed to an irradiated (3 x 105 rad/h) air/water vapor/crushed tuff rock environment at 900C. A similar exposure at 500C did not result in failure after a 25-month test duration. Specimens of sensitized Type 304 SS failed in both the 900C and 500C environments. U-bend specimens of Type 304L SS conditioned with a variety of sensitization heat treatments resisted failure during a test of 1-year duration in which an environment of tuff rock and groundwater held at 2000C was allowed to boil to dryness on a cyclical (weekly) basis. All specimens of sensitized Type 304 SS exposed to this environment failed. Slow-strain-rate studies were performed on 304L, 304, and 316L SS specimens. The Type 304L steel was tested in J-13 well water at 1500C; the Type 316L steel at 950C. Neither material showed evidence of SCC in these tests. Sensitized Type 304 SS, on the other hand, did exhibit SCC in J-13 well water in tests conducted at 1500C

  4. The mechanical properties of 316L/304L stainless steels, Alloy 718 and Mod 9Cr-1Mo after irradiation in a spallation environment

    Maloy, S. A.; James, M. R.; Willcutt, G.; Sommer, W. F.; Sokolov, M.; Snead, L. L.; Hamilton, M. L.; Garner, F.

    2001-07-01

    The Accelerator Production of Tritium (APT) project proposes to use a 1.0 GeV, 100 mA proton beam to produce neutrons via spallation reactions in a tungsten target. The neutrons are multiplied and moderated in a lead/aluminum/water blanket and then captured in 3He to form tritium. The materials in the target and blanket region are exposed to protons and neutrons with energies into the GeV range. The effect of irradiation on the tensile and fracture toughness properties of candidate APT materials, 316L and 304L stainless steel (annealed), modified (Mod) 9Cr-1Mo steel, and Alloy 718 (precipitation hardened), was measured on tensile and fracture toughness specimens irradiated at the Los Alamos Neutron Science Center accelerator, which operates at an energy of 800 MeV and a current of 1 mA. The irradiation temperatures ranged from 50°C to 164°C, prototypic of those expected in the APT target/blanket. The maximum achieved proton fluence was 4.5×10 21 p/ cm2 for the materials in the center of the beam. This maximum exposure translates to a dpa of 12 and the generation of 10 000 appm H and 1000 appm He for the Type 304L stainless steel tensile specimens. Specimens were tested at the irradiation temperature of 50-164°C. Less than 1 dpa of exposure reduced the uniform elongation of the Alloy 718 (precipitation hardened) and Mod 9Cr-1Mo to less than 2%. This same dose reduced the fracture toughness by 50%. Approximately 4 dpa of exposure was required to reduce the uniform elongation of the austenitic stainless steels (304L and 316L) to less than 2%. The yield stress of the austenitic steels increased to more than twice its non-irradiated value after less than 1 dpa. The fracture toughness reduced significantly by 4 dpa to ˜100 MPa m 1/2. These results are discussed and compared with results of similar materials irradiated in fission reactor environments.

  5. Characterization of welding of AISI 304l stainless steel similar to the core encircling of a BWR reactor; Caracterizacion de soldaduras de acero inoxidable AISI 304L similares a las de la envolvente del nucleo de un reactor BWR

    Gachuz M, M.E.; Palacios P, F.; Robles P, E.F. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    Plates of austenitic stainless steel AISI 304l of 0.0381 m thickness were welded by means of the SMAW process according to that recommended in the Section 9 of the ASME Code, so that it was reproduced the welding process used to assemble the encircling of the core of a BWR/5 reactor similar to that of the Laguna Verde Nucleo electric plant, there being generated the necessary documentation for the qualification of the one welding procedure and of the welder. They were characterized so much the one base metal, as the welding cord by means of metallographic techniques, scanning electron microscopy, X-ray diffraction, mechanical essays and fracture mechanics. From the obtained results it highlights the presence of an area affected by the heat of up to 1.5 mm of wide and a value of fracture tenacity (J{sub IC}) to ambient temperature for the base metal of 528 KJ/m{sup 2}, which is diminished by the presence of the welding and by the increment in the temperature of the one essay. Also it was carried out an fractographic analysis of the fracture zone generated by the tenacity essays, what evidence a ductile fracture. The experimental values of resistance and tenacity are important for the study of the structural integrity of the encircling one of the core. (Author)

  6. Effect of prior deformation on the 76-K fracture toughness of AISI 304L and AWS 308L stainless steels

    AISI 304L and its weld metal, AWS 308L, may undergo a partial transformation to martensite during cryogenic service owing to thermal and mechanical stresses. In this study, the effect of service-induced deformation on the toughness of these materials were determined. Low temperature compressive loading in the laboratory produced larger deformations. Crack initiation toughness, K/sub Ic/(J), and tearing resistance, dJ/da, at 76 K were evaluated as a function of martensite content, a measure of the deformation in these steels. The results showed that the toughness properties of the 304L decrease gradually as the martensite content increases from the 5 to 8% level found in the service condition to the 45% level obtained by compressive loading. The decrease was less than that expected on the basis of the increased flow stress. The toughness properties of the 308L weld metal decreased more sharply with increased martensite content than those of the 304L. The sharp decrease is associated with a degradation of the properties of the delta ferrite rather than that of the austenite

  7. Welding technology trend of austenitic stainless steels for cryogenic services

    At present, the large use of stainless steel in cryogenic field is the storage and transport system for liquefied gas represented by LNG and the nuclear fusion reactors utilizing superconductivity. Most of the stainless steel used for the LNG system is austenitic stainless steel SUS 304. The main use of stainless steel for fusion reactors is the support structures for superconductive magnets, and the thick plates over 150 mm are used. In the experiment, SUS 304L and 316L were used, but the development of a new high strength stainless steel is actively advanced. The target specification of the cryogenic structural material for the fusion experimental reactor (FER) was proposed in 1982. The proof stress is not lower than 1200 MPa, and the fracture toughness value is not lower than 200 MPa √m at 4 K. Six kinds of nitrogen-strengthened austenitic stainless steels and high manganese austenitic steels are developed. As the problems of the welded parts, the toughness and strength at extremely low temperature, the susceptibility to high temperature cracking, the material quality design of the welded metals and so on are examined. The welding methods are GTAW and GMAW. (K.I.)

  8. The effect of electrode vertex angle on automatic tungsten-inert-gas welds for stainless steel 304L plates

    The effect of electrode vertex angle on penetration depth and weld bead width, in automatic tungsten-inert-gas (TIG) dcsp bead-on-plate welding with different currents, has been studied for stainless steel 304L plates 1.5 mm and 8 mm thick. It has been found that for thin plates, wider and deeper welds are obtained when using sharper electrodes while, for thick plates, narrower and deeper welds are produced when blunt electrodes (vertex angle 180 deg) are used. An explanation of the results, based on a literature survey, is included

  9. HYDROGEN ABSORPTION INDUCED SLOW CRACK GROWTH IN AUSTENITIC STAINLESS STEELS FOR PETROCHEMICAL PRESSURE VESSEL INDUSTRIES

    Ronnie Higuchi Rusli

    2010-01-01

    Type 304L and type 309 austenitic stainless steels were tested either by exposed to gaseous hydrogen or undergoing polarized cathodic charging. Slow crack growth by straining was observed in type 304L, and the formation of α‘ martensite was indicated to be precursor for such cracking. Gross plastic deformation was observed at the tip of the notch, and a single crack grew slowly from this region in a direction approximately perpendicular to the tensile axis. Martensite formation is not a neces...

  10. Corrosion of high Ni-Cr alloys and Type 304L stainless steel in HNO3-HF

    Nineteen alloys were evaluated as possible materials of construction for steam heating coils, the dissolver vessel, and the off-gas system of proposed facilities to process thorium and uranium fuels. Commercially available alloys were found that are satisfactory for all applications. With thorium fuel, which requires HNO3-HF for dissolution, the best alloy for service at 1300C when complexing agents for fluoride are used is Inconel 690; with no complexing agents at 1300C, Inconel 671 is best. At 950C, six other alloys tested would be adequate: Haynes 25, Ferralium, Inconel 625, Type 304L stainless steel, Incoloy 825, and Haynes 20 (in order of decreasing preference); based on composition, six untested alloys would also be adequate. The ions most effective in reducing fluoride corrosion were the complexing agents Zr4+ and Th4+; Al3+ was less effective. With uranium fuel, modestly priced Type 304L stainless steel is adequate. Corrosion will be most severe in HNO3-HF used occasionally for flushing and in solutions of HNO3 and corrosion products (ferric and dichromate ions). HF corrosion can be minimized by complexing the fluoride ion and by passivation of the steel with strong nitric acid. Corrosion caused by corrosion products can be minimized by operating at lower temperatures

  11. Examination of irradiated 304L stainless steel to 6061-T6 aluminum inertia welded transition joints after irradiation in a spallation neutron

    The Savannah River Technology Center (SRTC) designed and fabricated tritium target/blanket assemblies which were irradiated for six months at the Los Alamos Neutron Science Center (LANSCE). Cooling water was supplied to the assemblies through 1 inch diameter 304L Stainless Steel (SS) tubing. To attach the 304L SS tubing to the modules a 304L SS to 6061-T6 Aluminum (Al) inertia welded transition joint was used. These SS/Al inertia weld transition joints simulate expected transition joints in the Accelerator Production of Tritium (APT) Target/Blanket where as many as a thousand SS/Al weld transition joints will be used. Materials compatibility between the 304L SS and the 6061-T6 Al in the spallation neutron environment is a major concern as well as the corrosion associated with the cooling water flowing through the piping. The irradiated inertia weld examination will be discussed

  12. XPS Analysis of AISI 304L Stainless Steel Surface after Electropolishing

    Rokosz K.

    2015-03-01

    Full Text Available In the paper, the passive surface layers of AISI 304L after standard (EP50 and very-high-current density electropolishing (EP1000 in a mixture of orthophosphoric and sulfuric acids in a 1:4 ratio, are presented. The main finding of the presented studies is enrichment of the steel surface film in chromium: total chromium to total iron ratio was equal to 6.6 after EP50 and to 2.8 after EP1000; on the other hand, chromium compounds to iron compounds ratio was equal to 10.1 after EP50, and 3.9 after EP1000.

  13. Corrosion fatigue behavior of cold-worked 304L stainless steel in a simulated BWR coolant environment

    Fatigue crack growth tests were performed to evaluate the effect of cold work on the fatigue behavior of 304L stainless steel in the ambient air at room temperature and 300degC and in a simulated BWR coolant environment, respectively. The fatigue crack growth rates (FCGRs) for the as-received (AR) and cold-rolled specimens as room temperature were in the same range and the FCGRs obtained at 300degC in air were higher than at room temperature. In addition, the FCGRs for the AR specimens were higher at 300degC in air compared with those for the cold-rolled. The specimens tested in the water environment at 300degC showed higher corrosion fatigue crack growth rates (CFCGRs) relative to those measured in air at room temperature and 300degC. Local quasi-cleavages could account for the observation that the FCGRs in air at 300degC were faster than at room temperature. The dominant fracture features of quasi-cleavages, along with corrosion products, were observed with all the 304L specimens tested in the simulated BWR water environment, which could be related to the higher crack growth rates in the corrosive environment. (author)

  14. Microstructure and Mechanical Properties of Plasma Arc Brazed AISI 304L Stainless Steel and Galvanized Steel Plates

    Jin, Yajuan; Li, Ruifeng; Yu, Zhishui; Wang, Yu

    2016-04-01

    Plasma arc brazing is used to join the AISI 304L stainless steel and galvanized steel plate butt joints with the CuSi3Mn1 filler wire. The effect of parameters on weld surface appearance, interfacial microstructure, and composition distribution in the joint was studied. The microhardness and mechanical tests were conducted to determine the mechanical properties of the welded specimens. The results indicated that good appearance, bead shape, and sufficient metallurgical bonding could be obtained when the brazing process was performed with a wire feeding speed of 0.8 m/min, plasma gas flow rate of 3.0 l/min, welding current of 100 A, and welding speed of 27 cm/min. During plasma arc brazing process, the top corner of the stainless steel and galvanized steel plate were heated and melted, and the melted quantity of stainless steel was much more than that of the galvanized steel due to the thermal conductivity coefficient difference between the dissimilar materials. The microhardness test results shows that the microhardness value gradually increased from the side of the galvanized steel to the stainless steel in the joint, and it is good for improving the mechanical properties of joint. The tensile strength was a little higher than that of the brazing filler, and the fracture position of weld joint was at the base metal of galvanized steel plate.

  15. On the dynamic strength of 304l stainless steel under impact

    Werdiger, Meir; Glam, Benny; Bakshi, Lior; Moshe, Ella; Horovitz, Yossef; Pistinner, Shlomi Levi

    2012-03-01

    Uniaxial strain plane impact (300-1700 m/s), loading and reloading experiments carried out on SS304L are reported. The aim of these experiments was to measure the material strength properties under shock compression. Most of the experiments reported here show a viscous type elastic precursor. The experimental results are compared to numerical simulations performed using a 1D code. The input physics to the simulations are the Steinberg equation of state and Johnson-Cook strength model. This model has been previously calibrated under uniaxial stress conditions in the rangee ɛ =1-5×103 s-1. Our experiments extended the data into the regione ɛ =105 -106 s-1. In spite of this extrapolation, there is a general agreement between simulations and experiments. However, differences in some details still exist.

  16. Effect of surface machining and cold working on the ambient temperature chloride stress corrosion cracking susceptibility of AISI 304L stainless steel

    Effect of plastic deformation induced by cold rolling or surface machining on the susceptibility to chloride-induced stress corrosion cracking at ambient temperature of 304L austenitic stainless steel was investigated in this study. The test material was subjected to three treatments: (a) solution annealed, (b) cold rolled and (c) surface machined to induce different levels of strain/stresses in the material. Subsequently constant strained samples were produced as per ASTM G30 for each condition and these were exposed to 1 M HCl at ambient temperature until cracking occurred. Subsequently the cracked samples were characterized using stereo microscopy, optical microscopy and atomic force microscopy to understand the effect of microstructural changes produced by straining on the susceptibility to stress corrosion cracking at ambient temperature. Strained surface produced by machining accelerated the process of crack initiation resulting in densely distributed shallow surface cracks in a very short period of time as compared to solution annealed and cold worked sample. Crack propagation in cold worked sample was along the slip lines and cracking occurred much earlier than in the solution annealed sample.

  17. Nanosecond laser surface modification of AISI 304L stainless steel: Influence the beam overlap on pitting corrosion resistance

    Pacquentin, Wilfried, E-mail: wilfried.pacquentin@cea.fr [CEA, DEN/DANS/DPC/SEARS/LISL, F-91191 Gif-sur-Yvette (France); Caron, Nadège [CEA, DEN/DANS/DPC/SEARS/LISL, F-91191 Gif-sur-Yvette (France); Oltra, Roland [Laboratoire Interdisciplinaire Carnot de Bourgogne, Université de Bourgogne, UMR CNRS 5209, 21078 Dijon Cedex (France)

    2014-01-01

    Surface modifications of AISI 304L stainless steel by laser surface melting (LSM) were investigated using a nanosecond pulsed laser-fibre doped by ytterbium at different overlaps. The objective was to study the change in the corrosion properties induced by the treatment of the outer-surface of the stainless steel without modification of the bulk material. Different analytical techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), and glow discharge optical emission spectrometry (GDOES) were used to characterize the laser-melted surface. The corrosion resistance was evaluated in a chloride solution at room temperature by electrochemical tests. The results showed that the crystallographic structure, the chemical composition, the properties of the induced oxide layer and consequently the pitting corrosion resistance strongly depend on the overlap rate. The most efficient laser parameters led to an increase of the pitting potential by more than 300 mV, corresponding to a quite important improvement of the corrosion resistance. This latter was correlated to chromium enrichment (47 wt.%) at the surface of the stainless steel and the induced absence of martensite and ferrite phases. However, these structural and chemical modifications were not sufficient to explain the change in corrosion behaviour: defects and adhesion of the surface oxide layer must have been taken into consideration.

  18. Deposition and characterization of noble metal onto surfaces of 304l stainless steel

    Noble metal chemical addition (NMCA) plus hydrogen water chemistry is an industry-wide accepted approach for potential intergranular stress corrosion cracking mitigation of BWR internals components. NMCA is a method of applying noble metal onto BWR internals surfaces using reactor water as the transport medium that causes the deposition of noble metal from the liquid onto surfaces. In this work different platinum concentration solutions were deposited onto pre-oxidized surfaces of 304l steel at 180 C during 48 hr in an autoclave. In order to simulate the zinc water conditions, deposits of Zn and Pt-Zn were also carried out. The solutions used to obtain the deposits were: sodium hexahydroxyplatinate (IV), zinc nitrate hydrate and zinc oxide. The deposits obtained were characterized by scanning electron microscopy and X-ray diffraction. Finally, the electrochemical corrosion potential of pre-oxidized samples with Pt deposit were obtained and compared with the electrochemical corrosion potential of only pre-oxidized samples. (Author)

  19. Establishing precursor events for stress corrosion cracking initiation in type 304L stainless steel

    The present study attempts to establish slip band emergence, due to localized deformation, as a precursor event for SCC initiation in type 304L SS. The unidirectional tensile loading was used for straining flat tensile specimen, less than 10% strain, in air, 0.5 M NaCl + 0.5 M H2SO4 and boiling water reactor (BWR) simulated environment (288 C. degrees, 10 MPa). The surface features were characterized using optical microscopy, scanning electron microscopy (including electron backscattered diffraction-EBSD) and atomic force microscopy. The study shows that with increase in strain level, during unidirectional slow strain rate test (SSRT), average slip band height increases in air and the attack on slip lines occurs in acidified chloride environment. In BWR simulated environment, preferential oxidation on slip lines and initiation of a few cracks on some of the slip lines are observed. Based on the observation, the study suggests slip bands, formed due to localized deformation, to act as a precursor for SCC initiation. (authors)

  20. In situ AFM study of pitting corrosion and corrosion under strain on a 304L stainless steel

    Our study is centred on surface localised corrosion under strain of a standard stainless steel (304L). The interest we take in these corrosion phenomena is led by the general misunderstanding of its primary initiation steps. The goal of this study is to determine precisely the relationships between local geometrical defects (grain boundaries, dislocation lines, etc) or chemical defects (inclusions) with the preferential sites of corrosion on the strained material. By combining three techniques at the same time: Atomic Force Microscopy, an electrochemical cell and a traction plate, we can observe in situ the effect of localised stress and deformation on the sample surface exposed to a corrosive solution. We managed to build an original set-up compatible with all the requirements of these three different techniques. Furthermore, we prepared the surface of our sample as flat as possible to decrease at maximum the topographical noise in order to observe the smallest defect on the surface. By using a colloidal suspension of SiO2, we obtained surfaces with a typical corrugation (RMS) of about 1 A for areas of at least 1 μm2. Our experimental study has been organised in two primary investigations: - In situ study of the morphology evolution of the surface under a corrosive chloride solution (borate buffer with NaCl salt). The influence of time, NaCl concentration, and potential was investigated; - In situ exploration of a 304L strained surface. It revealed the first stages of the surface plastic evolutions like activation of sliding dislocations, materialized by parallel steps of about 2 nm high in the same grain. The secondary sliding plane systems were also noticeable for higher deformation rates. Recent results concerning in situ AFM observation of corroded surfaces under strain in a chloride media will be presented. (authors)

  1. Standard test method for electrochemical reactivation (EPR) for detecting sensitization of AISI type 304 and 304L stainless steels

    American Society for Testing and Materials. Philadelphia

    1994-01-01

    1.1 This test method covers a laboratory procedure for conducting an electrochemical reactivation (EPR) test on AISI Type 304 and 304L (UNS No. S30400 and S30403, respectively) stainless steels. This test method can provide a nondestructive means of quantifying the degree of sensitization in these steels (1, 2, 3). This test method has found wide acceptance in studies of the effects of sensitization on intergranular corrosion and intergranular stress corrosion cracking behavior (see Terminology G15). The EPR technique has been successfully used to evaluate other stainless steels and nickel base alloys (4), but the test conditions and evaluation criteria used were modified in each case from those cited in this test method. 1.2 The values stated in SI units are to be regarded as the standard. The inch-pound units given in parentheses are for information only. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this...

  2. Corrosion study of stainless steel SS304L in molten molybdates

    Usami, T.; Uruga, K.; Tsukada, T.; Miura, Y.; Komamine, S.; Ochi, E.

    2016-04-01

    Depending on operating conditions of the vitrification process of high-level liquid waste, molten salt mainly composed of sodium and molybdenum can be generated, and poured into stainless steel canisters. In this work, the possible reaction between the molten molybdate and stainless steel was investigated using multi-component molybdate and simple Na2MoO4 - MoO3 molybdate. In the experiments using multi-component molybdates, no significant reaction is observed between the mixed molybdates and the stainless steel specimens at 700 °C in 4 h. The reaction rate of the stainless steel with the multi-component molybdate increases in proportion to exp(-1/T). The depth of the most reacted area is about 300 μm even at 1000 °C, and was much smaller than the 6 mm thickness of the canister. In the simple Na2MoO4 - MoO3 molybdate, the reaction rate was proportional to the MoO3 concentration. The essence of the reaction is oxidation of metals by Mo6+ - > Mo4+. Part of the reaction product mainly composed of Fe is dissolved into the molybdate, while the other part mainly composed of Cr sloughs and forms a banded layer.

  3. Reactor Materials Program: Mechanical properties of irradiated Types 304 and 304L stainless steel weldment components

    The vessels (reactor tanks) of the Savannah River Site nuclear production reactors constructed in the 1950's are comprised of Type 304 stainless steel with Type 308 stainless steel weld filler. Irradiation exposure to the reactor tank sidewalls through reactor operation has caused a change in the mechanical properties of these materials. A database of as-irradiated mechanical properties for site-specific materials and irradiation conditions has been produced for reactor tank structural analyses and to quantify the effects of radiation-induced materials degradation for evaluating reactor service life. The data has been collected from the SRL Reactor Materials Program (RMP) irradiations and testing of archival stainless steel weldment components and from previous SRL programs to measure properties of irradiated reactor Thermal Shield weldments and reactor tank (R-tank) sidewall material. Irradiation programs of the RMP are designed to quantify mechanical properties at tank operating temperatures following irradiation to present and future tank wall maximum exposure conditions. The exposure conditions are characterized in terms of fast neutron fluence (En > 0.1 MeV) and displacements per atom (dpa)3. Tensile properties, Charpy-V notch toughness, and elastic-plastic fracture toughness were measured for base, weld, and weld heat-affected zone (HAZ) weldment components from archival piping specimens following a Screening Irradiation in the University of Buffalo Reactor (UBR) and following a Full-Term Irradiation in the High Flux Isotope Reactor (HFIR)

  4. Reactor Materials Program: Mechanical properties of irradiated Types 304 and 304L stainless steel weldment components

    Sindelar, R.L.; Caskey, G.R. Jr.

    1991-12-01

    The vessels (reactor tanks) of the Savannah River Site nuclear production reactors constructed in the 1950`s are comprised of Type 304 stainless steel with Type 308 stainless steel weld filler. Irradiation exposure to the reactor tank sidewalls through reactor operation has caused a change in the mechanical properties of these materials. A database of as-irradiated mechanical properties for site-specific materials and irradiation conditions has been produced for reactor tank structural analyses and to quantify the effects of radiation-induced materials degradation for evaluating reactor service life. The data has been collected from the SRL Reactor Materials Program (RMP) irradiations and testing of archival stainless steel weldment components and from previous SRL programs to measure properties of irradiated reactor Thermal Shield weldments and reactor tank (R-tank) sidewall material. Irradiation programs of the RMP are designed to quantify mechanical properties at tank operating temperatures following irradiation to present and future tank wall maximum exposure conditions. The exposure conditions are characterized in terms of fast neutron fluence (E{sub n} > 0.1 MeV) and displacements per atom (dpa){sup 3}. Tensile properties, Charpy-V notch toughness, and elastic-plastic fracture toughness were measured for base, weld, and weld heat-affected zone (HAZ) weldment components from archival piping specimens following a Screening Irradiation in the University of Buffalo Reactor (UBR) and following a Full-Term Irradiation in the High Flux Isotope Reactor (HFIR).

  5. Reactor Materials Program: Mechanical properties of irradiated Types 304 and 304L stainless steel weldment components

    Sindelar, R.L.; Caskey, G.R. Jr.

    1991-12-01

    The vessels (reactor tanks) of the Savannah River Site nuclear production reactors constructed in the 1950's are comprised of Type 304 stainless steel with Type 308 stainless steel weld filler. Irradiation exposure to the reactor tank sidewalls through reactor operation has caused a change in the mechanical properties of these materials. A database of as-irradiated mechanical properties for site-specific materials and irradiation conditions has been produced for reactor tank structural analyses and to quantify the effects of radiation-induced materials degradation for evaluating reactor service life. The data has been collected from the SRL Reactor Materials Program (RMP) irradiations and testing of archival stainless steel weldment components and from previous SRL programs to measure properties of irradiated reactor Thermal Shield weldments and reactor tank (R-tank) sidewall material. Irradiation programs of the RMP are designed to quantify mechanical properties at tank operating temperatures following irradiation to present and future tank wall maximum exposure conditions. The exposure conditions are characterized in terms of fast neutron fluence (E{sub n} > 0.1 MeV) and displacements per atom (dpa){sup 3}. Tensile properties, Charpy-V notch toughness, and elastic-plastic fracture toughness were measured for base, weld, and weld heat-affected zone (HAZ) weldment components from archival piping specimens following a Screening Irradiation in the University of Buffalo Reactor (UBR) and following a Full-Term Irradiation in the High Flux Isotope Reactor (HFIR).

  6. High temperature microstructural evolution of 304L stainless steel as function of pre-strain and strain rate

    304L stainless steel specimens are pre-strained to 0.15 or 0.5 and are then deformed at strain rates ranging from 2000 s-1 to 6000 s-1 at temperatures of 300 deg. C, 500 deg. C and 800 deg. C using a compressive split-Hopkinson pressure bar. The results show that for both values of the pre-strain, the flow stress increases with increasing strain rate, but reduces with increasing temperature. At deformation temperatures of 300 deg. C or 500 deg. C, the flow stress in the 0.5 pre-strained specimen is higher than that in the specimen pre-strained to 0.15. However, at a temperature of 800 deg. C, the two specimens exhibit a similar level of flow stress. Transmission electron microscopy (TEM) observations reveal that the strengthening effect observed in the specimens deformed at 300 deg. C or 500 deg. C is the combined result of dislocations, mechanical twins and martensite transformation. However, at a deformation temperature of 800 deg. C, the strengthening effect is the result primarily of dislocation multiplication. The volume fraction of martensite transformation decreases with increasing strain rate and temperature. In addition, both the dislocation density and the twin density increase with increasing strain rate, but decrease with increasing temperature. Finally, the quantitative analysis results indicate that the flow stress varies with the square root of the dislocation density, the twin density and the volume fraction of martensite, respectively.

  7. Numerical Simulation and Artificial Neural Network Modeling for Predicting Welding-Induced Distortion in Butt-Welded 304L Stainless Steel Plates

    Narayanareddy, V. V.; Chandrasekhar, N.; Vasudevan, M.; Muthukumaran, S.; Vasantharaja, P.

    2016-02-01

    In the present study, artificial neural network modeling has been employed for predicting welding-induced angular distortions in autogenous butt-welded 304L stainless steel plates. The input data for the neural network have been obtained from a series of three-dimensional finite element simulations of TIG welding for a wide range of plate dimensions. Thermo-elasto-plastic analysis was carried out for 304L stainless steel plates during autogenous TIG welding employing double ellipsoidal heat source. The simulated thermal cycles were validated by measuring thermal cycles using thermocouples at predetermined positions, and the simulated distortion values were validated by measuring distortion using vertical height gauge for three cases. There was a good agreement between the model predictions and the measured values. Then, a multilayer feed-forward back propagation neural network has been developed using the numerically simulated data. Artificial neural network model developed in the present study predicted the angular distortion accurately.

  8. High Mn austenitic stainless steel

    Yamamoto, Yukinori [Oak Ridge, TN; Santella, Michael L [Knoxville, TN; Brady, Michael P [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN; Liu, Chain-tsuan [Knoxville, TN

    2010-07-13

    An austenitic stainless steel alloy includes, in weight percent: >4 to 15 Mn; 8 to 15 Ni; 14 to 16 Cr; 2.4 to 3 Al; 0.4 to 1 total of at least one of Nb and Ta; 0.05 to 0.2 C; 0.01 to 0.02 B; no more than 0.3 of combined Ti+V; up to 3 Mo; up to 3 Co; up to 1W; up to 3 Cu; up to 1 Si; up to 0.05 P; up to 1 total of at least one of Y, La, Ce, Hf, and Zr; less than 0.05 N; and base Fe, wherein the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale including alumina, nanometer scale sized particles distributed throughout the microstructure, the particles including at least one of NbC and TaC, and a stable essentially single phase FCC austenitic matrix microstructure that is essentially delta-ferrite-free and essentially BCC-phase-free.

  9. Microelectrochemical investigation of the effect of cathodic polarisation on the corrosion resistance of 304L stainless steel in a 1 M NaCl solution

    Arjmand Gholenji, Farzin; Adriaens, Annemie

    2012-01-01

    304L stainless steel was cathodically polarised in a 1 M sodium chloride solution using a microcapillary electrochemical droplet cell. During the cathodic polarisation the produced hydrogen atoms penetrate into the sample and accumulate at sites of the steel surface. We observed that the pitting potential (E-pit), the anodic current density (I-corr) and the corrosion potential (E-corr) of the polarised steel are strongly influenced by the applied cathodic potential and therefore by the amount...

  10. Microstructural features of a type 304L stainless steel deformed at 1473 K in the strain rate interval 10[sup [minus]3] s[sup [minus]1] to 10[sup 2] s[sup [minus]1

    Sundararaman, D.; Divakar, R.; Raghunathan, V.S. (Indira Gandhi Centre for Atomic Research, Kalpakkam (India))

    1993-05-01

    Deformation processing of materials in continuously being refined by dynamic materials modeling procedures to establish a safe window for the manufacture of engineering components. Microstructure development during the processing and its correlation with the mechanical properties is inevitable for better understanding of the materials. On this basis, microstructural examination of the dynamically processed type 304L austenitic stainless steels has been carried out. The samples that have been deformed at 1,473 K under various strain rates, ranging from 10[sup [minus]2]s[sup [minus]1] to 10[sup 2]s[sup [minus]1], were observed by transmission electron microscopy, to corroborate the energy efficiency of the process. The details of the energy efficiency contours and their implications are reported elsewhere. In this report the authors present some of the unusual microstructural features that, in general, are not desirable for the safe processing of materials.

  11. Four nondestructive electrochemical tests for detecting sensitization in type 304 and 304L stainless steels

    Three different electrochemical reactivation tests are compared with etch structures produced in the electrolytic oxalic acid etch test. These nondestructive tests are needed to evaluate welded stainless steel pipes and other plant equipment for susceptibility to intergranular attack. Sensitization associated with precipitates of chromium carbides at grain boundaries can make these materials subject to intergranular attack in acids and, in particular, to intergranular stress corrosion cracking in high-temperature (2890C) water on boiling water nuclear reactor power plants. In the first of the two older reactivation tests, sensitization is detected by the electrical charge generated during reactivation. In the second, it is measured by the ratio of maximum currents generated by a prior anodic loop and the reactivation loop. A third, simpler reactivation method based on a measurement of the maximum current generated during reactivation is proposed. If the objective of the field tests, which are to be carried out with portable equipment, is to distinguish between nonsensitized and sensitized material, this can be accomplished most simply, most rapidly, and at lowest cost by an evaluation of oxalic acid etch structures

  12. Investigation of micro-structure and micro-hardness properties of 304L stainless steel treated in a hot cathode arc discharge plasma

    Malik, Hitendra K., E-mail: hkmalik@physics.iitd.ac.in [Department of Physics, Indian Institute of Technology Delhi, New Delhi – 110016 (India); Singh, Omveer [Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi – 110016 (India); Dahiya, Raj P. [Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi – 110016 (India); Deenbandhu Chhotu Ram University of Science and Technology, Murthal–131039 (India)

    2015-08-28

    We have established a hot cathode arc discharge plasma system, where different stainless steel samples can be treated by monitoring the plasma parameters and nitriding parameters independently. In the present work, a mixture of 70% N{sub 2} and 30% H{sub 2} gases was fed into the plasma chamber and the treatment time and substrate temperature were optimized for treating 304L Stainless Steel samples. Various physical techniques such as x-ray diffraction, energy dispersive x-ray spectroscopy and micro-vickers hardness tester were employed to determine the structural, surface composition and surface hardness of the treated samples.

  13. Optimisation of CO2 laser welding of thin sheets made of stainless steel 304 L. Fabrication of prototype detection modules for a large size electromagnetic calorimeter

    For the new calorimeter detector, to be used in UA1 experiment at CERN proton-antiproton collider, about 35'000 stainless steel boxes with a volume of the order of 500 x 400 x 3 mm3, containing immerged electrodes in Tetramethylpentane (TMP) are required. The first hundred prototype boxes were built at CERN using CO2 laser welding technique. The results of a systematic experimental investigation and optimization of the welding parameters for 0.1 mm thick 304 L stainless steel sheets are presented

  14. Investigation of micro-structure and micro-hardness properties of 304L stainless steel treated in a hot cathode arc discharge plasma

    We have established a hot cathode arc discharge plasma system, where different stainless steel samples can be treated by monitoring the plasma parameters and nitriding parameters independently. In the present work, a mixture of 70% N2 and 30% H2 gases was fed into the plasma chamber and the treatment time and substrate temperature were optimized for treating 304L Stainless Steel samples. Various physical techniques such as x-ray diffraction, energy dispersive x-ray spectroscopy and micro-vickers hardness tester were employed to determine the structural, surface composition and surface hardness of the treated samples

  15. The role of atomic hydrogen and hydrogen-induced martensites in hydrogen embrittlement of type 304L stainless steel

    潘川; 褚武扬; 李正邦; 梁东图; 宿彦京; 乔利杰

    2002-01-01

    The role of atomic hydrogen and hydrogen-induced martensites in hydrogen embrittlement in slow strain rate tensile tests and hydrogen-induced delayed cracking (HIC) in sustained load tests for type 304 L stainless steel was quantitatively studied.The results indicated that hydrogen-induced martensites formed when hydrogen concentration C0 exceeded 30 ppm,and increased with an increase in C0,i.e.M(vol%)=62-82.5exp(-C0/102).The relative plasticity loss caused by the martensites increased linearly with increasing amount of the martensites,i.e.Iδ(M),%=0.45M(vol %)=27.9-37.1 exp(-C0/102).The plasticity loss caused by atomic hydrogen Iδ(H) increased with an increase in C0 and reached a saturation value Iδ(H)max=40% when C0>100 ppm.Iδ(H) decreased with an increase in strain rate ,i.e.Iδ(H),%=-21.9-9.9,and was zero when ≥c=0.032/s.HIC under sustained load was due to atomic hydrogen,and the threshold stress intensity for HIC decreased linearly with lnC0,i.e.KIH(Mpam1/2)=91.7-10.1 lnC0(ppm).The fracture surface of HIC was dimple if KI was high or/and C0 was low,otherwise it was quasi-cleavage.The boundary line between ductile and brittle fracture surface was KI-54+25exp(-C0/153)=0.``

  16. A 3D finite element analysis of temperature and stress fields in girth welded 304L stainless steel pipe

    A 3D finite element analysis model was developed to simulate a multipass, narrow gap pipe girth welding process. The pipe simulated was a Type 304L stainless steel pipe with a diameter of 406 mm, a thickness of 12.7 mm, and a narrow groove configuration. This pipe was finished in four continuous welding passes with one start-stop position. Temperatures, deformations and strains were recorded in real time during pipe welding. The thermal results from this model were tuned to match the calculated temperature histories with the comparable experimental thermal cycles. The calculated temperature histories were found to be axisymmetrically distributed around the pipe except in locations close to the welding start-stop position. This is in good agreement with what was observed from the experimental data. The calculated stress results show that the tensile residual stress zone on the pipe inner surface is about 30 mm from the weld centerline on each side and the tensile residual stress zone in the pipe wall thickness is about 5 mm from the pipe inner surface for up to 19 mm from the weld centerline (WCL). The calculated residual stresses are, in general, axisymmetrically distributed around the pipe except in locations near the welding start-stop position. This is not in agreement with what was noted from the experimental results. The comparison between the calculated stress results with the limited neutron diffraction residual stress measurements on the pipe inner surface demonstrates reasonable agreement between them. This 3D model is the first attempt at simulation of a full multipass girth pipe welding process. Much improvement could be realized, but more experimental residual stress measurements on pipe weldments are needed to verify this model

  17. THE EMPHASIS OF PHASE TRANSFORMATIONS AND ALLOYING CONSTITUENTS ON HOT CRACKING SUSCEPTIBILITY OF TYPE 304L AND 316L STAINLESS STEEL WELDS

    RATI SALUJA; K. M. MOEED

    2012-01-01

    Hot cracking is a significant problem due to transformation of retained ferrite into sigma phase, which results preferential corrosion of ferrite. The Hot Cracking Susceptibility is high for fully austenitic compositions but specimens with 5 to 30% ferrite were quite resistant to cracking. Hot cracking in 304L and 316L is amplified by low-melting eutectics containing impurities such as S, P, Si, N. It could be diminished by small increase in C, N, Cr, Ni, Si or by substantial increase in Mn c...

  18. Low temperature thermal aging of austenitic stainless steel welds: Kinetics and effects on mechanical properties

    Highlights: ► Embrittlement of 304L and 316L welds after aging up to 20,000 h. ► Spinodal decomposition and G-phase precipitation in ferrite at 400 °C. Only spinodal decomposition at 335 and 365 °C. ► Charpy impact, microhardness and tensile tests for evaluation of aging embrittlement and its kinetics determined. - Abstract: Austenitic stainless steel welds in components used in light water reactors are susceptible to thermal aging embrittlement at reactor operating temperature of around 300 °C after a long service life. In this study, low temperature aging embrittlement of types 304L and 316L stainless steel welds with 10% ferrite was investigated on the basis of changes in mechanical properties and microstructure after aging up to 20,000 h at 335, 365 and 400 °C. Spinodal decomposition and G-phase precipitation in the ferrite was observed after aging which lead to embrittlement in the material. In contrast to the small effect on tensile properties, the impact toughness was significantly degraded after aging. Charpy impact test of the aged samples showed decrease in upper-shelf and lower-shelf energy and increase in ductile brittle transition temperature. Large increase in the microhardness of ferrite phase was observed with no change in austenite hardness. The embrittlement in 316L weld was higher compared to 304L weld for similar aging condition. The kinetics of aging embrittlement was established based on Arrhenius relationship. A constant activation energy was determined for 304L weld in the temperature range 335–400 °C, however, 316L weld showed different activation energy values in each temperature range.

  19. Low temperature thermal aging of austenitic stainless steel welds: Kinetics and effects on mechanical properties

    Chandra, K., E-mail: kchandra@barc.gov.in [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kain, Vivekanand [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Bhutani, Vikas [Punjab Engineering College, Chandigarh 160 012 (India); Raja, V.S. [Indian Institute of Technology, Mumbai 400 076 (India); Tewari, R.; Dey, G.K. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Chakravartty, J.K. [Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2012-02-01

    Highlights: Black-Right-Pointing-Pointer Embrittlement of 304L and 316L welds after aging up to 20,000 h. Black-Right-Pointing-Pointer Spinodal decomposition and G-phase precipitation in ferrite at 400 Degree-Sign C. Only spinodal decomposition at 335 and 365 Degree-Sign C. Black-Right-Pointing-Pointer Charpy impact, microhardness and tensile tests for evaluation of aging embrittlement and its kinetics determined. - Abstract: Austenitic stainless steel welds in components used in light water reactors are susceptible to thermal aging embrittlement at reactor operating temperature of around 300 Degree-Sign C after a long service life. In this study, low temperature aging embrittlement of types 304L and 316L stainless steel welds with 10% ferrite was investigated on the basis of changes in mechanical properties and microstructure after aging up to 20,000 h at 335, 365 and 400 Degree-Sign C. Spinodal decomposition and G-phase precipitation in the ferrite was observed after aging which lead to embrittlement in the material. In contrast to the small effect on tensile properties, the impact toughness was significantly degraded after aging. Charpy impact test of the aged samples showed decrease in upper-shelf and lower-shelf energy and increase in ductile brittle transition temperature. Large increase in the microhardness of ferrite phase was observed with no change in austenite hardness. The embrittlement in 316L weld was higher compared to 304L weld for similar aging condition. The kinetics of aging embrittlement was established based on Arrhenius relationship. A constant activation energy was determined for 304L weld in the temperature range 335-400 Degree-Sign C, however, 316L weld showed different activation energy values in each temperature range.

  20. Effect of cold work and type of load in the SCC behaviour of austenitic stainless steels in PWR conditions

    Austenitic stainless steels are susceptible to SCC in high temperature water, even in reducing environment such as the PWR primary water. Both laboratory results and field evidences confirm that stainless steels are susceptible to SCC when these materials are in a cold work condition. CGR experiments have been performed in order to assess the factors influencing SCC propagation in stainless steels. Compact tension specimens were fabricated of 316 L, 304 L and 347 SS to evaluate the influence of degree of cold work and its way of application, water chemistry, temperature and loading conditions. (authors)

  1. Recycle of radiologically contaminated austenitic stainless steels

    The United States Department of Energy owns large quantities of radiologically contaminated austenitic stainless steel which could by recycled for reuse if appropriate release standards were in place. Unfortunately, current policy places the formulation of a release standard for USA industry years, if not decades, away. The Westinghouse Savannah River Company, Idaho National Engineering Laboratory and various university and industrial partners are participating in initiative to recycle previously contaminated austenitic stainless steels into containers for the storage and disposal of radioactive wastes. This paper describes laboratory scale experiments which demonstrated the decontamination and remelt of stainless steel which had been contaminated with radionuclides

  2. Effects of alloy and solution chemistry on the fracture of passive films on austenitic stainless steel

    The Taguchi analysis method was used to simultaneously study the effects of alloy chemistry, pH, and halide ion concentrations on the fracture of electrochemically grown passive films using a nanoindentation technique. Three austenitic stainless steels, 304L, 316L, and 904L were potentiostatically polarized in hydrochloric acid solutions. The fracture load was dominated primarily by alloy chemistry. Passive films mechanically weaken as the atomic iron concentration increases in the film. Prolonged anodic ageing time increases the fracture load of passive films

  3. Effects of alloy and solution chemistry on the fracture of passive films on austenitic stainless steel

    Alamr, A. [School of Mechanical and Materials Engineering, Washington State University, P.O. Box 642920, Pullman, WA 99164-2920 (United States)]. E-mail: alamrz@wsu.edu; Bahr, D.F. [School of Mechanical and Materials Engineering, Washington State University, P.O. Box 642920, Pullman, WA 99164-2920 (United States)]. E-mail: bahr@mail.wsu.edu; Jacroux, Michael [Department of Statistics, Washington State University, Pullman, WA 99164-3144 (United States) ]. E-mail: jacroux@wsu.edu

    2006-04-15

    The Taguchi analysis method was used to simultaneously study the effects of alloy chemistry, pH, and halide ion concentrations on the fracture of electrochemically grown passive films using a nanoindentation technique. Three austenitic stainless steels, 304L, 316L, and 904L were potentiostatically polarized in hydrochloric acid solutions. The fracture load was dominated primarily by alloy chemistry. Passive films mechanically weaken as the atomic iron concentration increases in the film. Prolonged anodic ageing time increases the fracture load of passive films.

  4. Effect of cryorolling on the microstructure and tensile properties of bulk nano-austenitic stainless steel

    We report the synthesis of nanostructured austenitic AISI 304L stainless steel (SS) through cryorolling (CR) and reversion annealing in the temperature range of 700–800 °C. Severe CR at sub-zero temperature promotes twinning in γ-austenite, which transform into α'-martensite with lath thickness of 50–100 nm. Whereas, 50–300 nm size γ-grains recrystallize in nano-twinned α' through reversion annealing as confirmed by transmission electron microscopy (TEM) and electron back scattered diffraction (EBSD) imaging. The evolution of highly processable bulk nano-austenitic SS with bimodal grain size distribution on achieving high strength (~1295 MPa), large tensile ductility (~0.47), and true necking strain of 0.59, have been discussed

  5. Hydrogen Environment Embrittlement on Austenitic Stainless Steels from Room Temperature to Low Temperatures

    Ogata, Toshio

    2015-12-01

    Hydrogen environment embrittlement (HEE) on austenitic stainless steels SUS304, 304L, and 316L in the high pressure hydrogen gas was evaluated from ambient temperature to 20 K using a very simple mechanical properties testing procedure. In the method, the high- pressure hydrogen environment is produced just inside the hole in the specimen and the specimen is cooled in a cooled-alcohol dewar and a cryostat with a GM refrigerator. The effect of HEE was observed in tensile properties, especially at lower temperatures, and fatigue properties at higher stress level but almost no effect around the stress level of yield strength where almost no strain-induced martensite was produced. So, no effect of HEE on austenitic stainless steels unless the amount of the ferrite phase is small.

  6. Cast alumina forming austenitic stainless steels

    Muralidharan, Govindarajan; Yamamoto, Yukinori; Brady, Michael P

    2013-04-30

    An austenitic stainless steel alloy consisting essentially of, in terms of weight percent ranges 0.15-0.5C; 8-37Ni; 10-25Cr; 2.5-5Al; greater than 0.6, up to 2.5 total of at least one element selected from the group consisting of Nb and Ta; up to 3Mo; up to 3Co; up to 1W; up to 3Cu; up to 15Mn; up to 2Si; up to 0.15B; up to 0.05P; up to 1 total of at least one element selected from the group consisting of Y, La, Ce, Hf, and Zr; alumina, and a stable essentially single phase FCC austenitic matrix microstructure, the austenitic matrix being essentially delta-ferrite free and essentially BCC-phase-free. A method of making austenitic stainless steel alloys is also disclosed.

  7. Explosive Surface Hardening of Austenitic Stainless Steel

    Kovacs-Coskun, T.

    2016-04-01

    In this study, the effects of explosion hardening on the microstructure and the hardness of austenitic stainless steel have been studied. The optimum explosion hardening technology of austenitic stainless steel was researched. In case of the explosive hardening used new idea mean indirect hardening setup. Austenitic stainless steels have high plasticity and can be easily cold formed. However, during cold processing the hardening phenomena always occurs. Upon the explosion impact, the deformation mechanism indicates a plastic deformation and this deformation induces a phase transformation (martensite). The explosion hardening enhances the mechanical properties of the material, includes the wear resistance and hardness. In case of indirect hardening as function of the setup parameters specifically the flayer plate position the hardening increased differently. It was find a relationship between the explosion hardening setup and the hardening level.

  8. Lean-alloyed austenitic stainless steel with high resistance against hydrogen environment embrittlement

    Highlights: · Hydrogen environment embrittlement of austenitic steel. · Novel alloying concept for austenitic stainless steel with improved HEE resistance. · Influence of austenite stability and strain-induced α-martensite on HEE. · Cost efficiency by reduced amounts of nickel and molybdenum. · Influence of silicon on HEE. - Abstract: To address the upcoming austenitic stainless steel market for automotive applications involving hydrogen technology, a novel lean - alloyed material was developed and characterized. It comprises lower contents of nickel and molybdenum compared to existing steels for high - pressure hydrogen uses, for instance 1.4435 (AISI 316L). Alloying with manganese and carbon ensures a sufficient stability of the austenite at 8 wt.% of nickel while silicon is added to improve resistance against embrittlement by dissolved hydrogen. Investigations were performed by tensile testing in air and 400 bar hydrogen at 25 deg. C, respectively. In comparison to a standard 1.4307 (AISI 304L) material, a significant improvement of ductility was found. The materials concept is presented in general and discussed with regard to austenite stability and microstructure.

  9. Influence of Size on the Microstructure and Mechanical Properties of an AISI 304L Stainless Steel—A Comparison between Bulk and Fibers

    Francisco J. Baldenebro-Lopez

    2015-01-01

    Full Text Available In this work, the mechanical properties and microstructural features of an AISI 304L stainless steel in two presentations, bulk and fibers, were systematically studied in order to establish the relationship among microstructure, mechanical properties, manufacturing process and effect on sample size. The microstructure was analyzed by XRD, SEM and TEM techniques. The strength, Young’s modulus and elongation of the samples were determined by tensile tests, while the hardness was measured by Vickers microhardness and nanoindentation tests. The materials have been observed to possess different mechanical and microstructural properties, which are compared and discussed.

  10. Crack propagation in stainless steel AISI 304L in Hydrogen Chemistry conditions (HWC); Propagacion de Grietas en Acero Inoxidable AISI 304L en Condiciones de Quimica de Hidrogeno (HWC)

    Diaz S, A.; Fuentes C, P.; Merino C, F. [ININ, Carretera Mexico -Toluca s/n, La Marquesa, Ocoyoacac, Mexico (Mexico); Castano M, V. [Instituto de Fisica Aplicada, UNAM, Km 15.5 Carretera Queretaro-San Luis Potosi, Juriquilla, Queretaro (Mexico)]. e-mail: ads@nuclear.inin.mx

    2006-07-01

    Velocities of crack growth in samples type CT pre cracking of stainless steel AISI 304l solder and sensitized thermally its were obtained by the Rising Displacement method or of growing displacement. It was used a recirculation circuit that simulates the operation conditions of a BWR type reactor (temperature of 280 C and a pressure of 8 MPa) with the chemistry modified by the addition of hydrogen with and without the addition of impurities of a powerful oxidizer like the Cu{sup +} ion. In each essay stayed a displacement velocity was constant of 1x10{sup -9} m/s, making a continuous pursuit of the advance of the crack by the electric potential drop technique. Contrary to the idea of mitigation of the crack propagation velocity by effect of the addition of the hydrogen in the system, the values of the growth velocities obtained by this methodology went similar to the opposing ones under normal operation conditions. To the finish of the rehearsal one carries out the fractographic analysis of the propagation surfaces, which showed cracks growth in trans and intergranular way, evidencing the complexity of the regulator mechanisms of the IGSCC like in mitigation conditions as the alternative Hydrogen Chemistry. (Author)

  11. Propagation of crevices in stainless steel AISI304L in conditions of hydrogen chemistry (HWC); Propagacion de grietas en acero inoxidable AISI304L en condiciones de quimica de hidrogeno (HWC)

    Diaz S, A.; Fuentes C, P.; Merino C, F. [ININ, 52750 Ocoyoacac, Estado de Mexico (Mexico); Castano M, V. [IFA-UNAM, Juriquilla, Queretaro (Mexico)]. e-mail: ads@nuclear.inin.mx

    2006-07-01

    Crevice growth velocities in samples of AISI 304L stainless steel thermally welded and sensitized were obtained by the Rising displacement method or of growing displacement. It was used a recirculation circuit in where the operation conditions of a BWR type reactor were simulated (temperature of 288 C and a pressure of 8 MPa) with the chemistry modified by the addition of hydrogen with and without the addition of impurities of a powerful oxidizer like the Cu{sup ++} ion. CT pre cracked specimens were used and each rehearsal stayed to one constant displacement velocity of 1 x 10{sup -9} m/s (3.6 {mu}m/hr), making a continuous pursuit of the advance of the crack by the electric potential drop technique. To the end of the rehearsal it was carried out the fractographic analysis of the propagation surfaces. The values of the growth velocities obtained by this methodology went similar to the opposing ones under normal conditions of operation; while the fractographic analysis show the cracks propagation in trans and intergranular ways, evidencing the complexity of the regulator mechanisms of the one IGSCC even under controlled ambient conditions or with mitigation methodologies like the alternative hydrogen chemistry. (Author)

  12. Thermal fatigue cracking of austenitic stainless steels

    This report deals with the thermal fatigue cracking of austenitic stainless steels as AISI 316 LN and 304 L. Such damage has been clearly observed for some components used in Fast Breeder reactors (FBR) and Pressure Water Reactor (PWR). In order to investigate thermal fatigue, quasi-structural specimen have been used. In this frame, facilities enforcing temperature variations similar to those found under the operation conditions have been progressively developed. As for components, loading results from impeded dilatation. In the SPLASH facility, the purpose was to establish accurate crack initiation conditions in order to check the relevance of the usual component design methodology. The tested specimen is continuously heated by the passage of an electrical DC current, and submitted to cyclic thermal down shock (up to 1000 deg C/s) by means of periodical spraying of water on two opposite specimen faces. The number of cycles to crack initiation Ni is deduced from periodic examinations of the quenched surfaces, by means of optical microscopy. It is considered that initiation occurs when at least one 50μm to 150□m long crack is observed. Additional SPLASH tests were performed for N >> Ni, with a view to investigate the evolution of a surface multiple cracking network with the number of cycles N. The CYTHIA test was mainly developed for the purpose of assessing crack growth dynamics of one isolated crack in thermal fatigue conditions. Specimens consist of thick walled tubes with a 1 mm circular groove is spark-machined at the specimen centre. During the test, the external wall of the tube is periodically heated by using a HF induction coil (1 MHz), while its internal wall is permanently cooled by flowing water. Total crack growth is derived from post-mortem examinations, whereby the thermal fatigue final rupture surface is oxidized at the end of the test. The specimen is broken afterwards under mechanical fatigue at room temperature. All the tests confirm that usual

  13. Tritium in austenitic stainless steel vessels

    Austenitic stainless steels are normally recommended for components of hydrogen-handling equipment in applications where high in-service reliability is required. The literature leading to this recommendation is reviewed, and it is shown that AISI Type 316L stainless is particularly suitable for use in tritium-handling and storage systems. When made of this steel, the storage vessels will be extremely resistant to any degradation from tritium in both routine and accident conditions. (author)

  14. An experience with in-service fabrication and inspection of austenitic stainless steel piping in high temperature sodium system

    Highlights: • Procedure for changing 304L SS pipe to 316L SS in sodium loop has been established. • Hot leg made of 304L SS was isolated from existing cold leg made of 316LN SS. • Innovative welding was used in joining the new 316L SS pipe with existing 316LN SS. • The old components of 304L SS piping have been integrated with the new piping. - Abstract: A creep testing facility along with dynamic sodium loop was installed at Indira Gandhi Centre for Atomic Research, Kalpakkam, India to assess the creep behavior of fast reactor structural materials in flowing sodium. Type 304L austenitic stainless steel was used in the low cross section piping of hot-leg whereas 316LN austenitic stainless steel in the high cross section cold-leg of the sodium loop. The intended service life of the sodium loop was 10 years. The loop has performed successfully in the stipulated time period. To enhance its life time, it has been decided to replace the 304L piping with 316L piping in the hot-leg. There were more than 300 welding joints involved in the integration of cold-leg with the new 316L hot-leg. Continuous argon gas flow was maintained in the loop during welding to avoid contamination of sodium residue with air. Several innovative welding procedures have been adopted for joining the new hot-leg with the existing cold-leg in the presence of sodium residue adopting TIG welding technique. The joints were inspected for 100% X-ray radiography and qualified by performing tensile tests. The components used in the discarded hot-leg were retrieved, cleaned and integrated in the renovated loop. A method of cleaning component of sodium residue has been established. This paper highlights the in-service fabrication and inspection of the renovation

  15. Experimental investigation of Tie6Ale4V titanium alloy and 304L stainless steel friction welded with copper interlayer

    R. KUMAR; M. BALASUBRAMANIAN

    2015-01-01

    The basic principle of friction welding is intermetallic bonding at the stage of super plasticity attained with self-generating heat due to friction and finishing at upset pressure. Now the dissimilar metal joints are especially popular in defense, aerospace, automobile, bio-medical, refinery and nuclear engineerings. In friction welding, some special alloys with dual phase are not joined successfully due to poor bonding strength. The alloy surfaces after bonding also have metallurgical changes in the line of interfacing. The reported research work in this area is scanty. Although the sound weld zone of direct bonding between Tie6Ale4V and SS304L was obtained though many trials, the joint was not successful. In this paper, the friction welding characteristics between Tie6Ale4V and SS304L into which pure oxygen free copper (OFC) was introduced as interlayer were investigated. BoxeBehnken design was used to minimize the number of experiments to be performed. The weld joint was analyzed for its mechanical strength. The highest tensile strength between Tie6Ale4V and SS304L between which pure copper was used as insert metal was acquired. Micro-structural analysis and elemental analysis were carried out by EDS, and the formation of intermetallic compound at the interface was identified by XRD analysis.

  16. The microstructural, mechanical, and fracture properties of austenitic stainless steel alloyed with gallium

    Kolman, D. G.; Bingert, J. F.; Field, R. D.

    2004-11-01

    The mechanical and fracture properties of austenitic stainless steels (SSs) alloyed with gallium require assessment in order to determine the likelihood of premature storage-container failure following Ga uptake. AISI 304 L SS was cast with 1, 3, 6, 9, and 12 wt pct Ga. Increased Ga concentration promoted duplex microstructure formation with the ferritic phase having a nearly identical composition to the austenitic phase. Room-temperature tests indicated that small additions of Ga (less than 3 wt pct) were beneficial to the mechanical behavior of 304 L SS but that 12 wt pct Ga resulted in a 95 pct loss in ductility. Small additions of Ga are beneficial to the cracking resistance of stainless steel. Elastic-plastic fracture mechanics analysis indicated that 3 wt pct Ga alloys showed the greatest resistance to crack initiation and propagation as measured by fatigue crack growth rate, fracture toughness, and tearing modulus. The 12 wt pct Ga alloys were least resistant to crack initiation and propagation and these alloys primarily failed by transgranular cleavage. It is hypothesized that Ga metal embrittlement is partially responsible for increased embrittlement.

  17. Austenitic stainless steels for cryogenic service

    Dalder, E.N.C.; Juhas, M.C.

    1985-09-19

    Presently available information on austenitic Fe-Cr-Ni stainless steel plate, welds, and castings for service below 77 K are reviewed with the intent (1) of developing systematic relationships between mechanical properties, composition, microstructure, and processing, and (2) of assessing the adequacy of these data bases in the design, fabrication, and operation of engineering systems at 4 K.

  18. Corrosion of plasma nitrided austenitic stainless steels

    The corrosion behaviour of plasma nitrided austenitic stainless steel grades AISI 304, 316 and 321 was studied at various temperatures. Certain plasma nitriding cycles included a post-oxidation treatment. The corrosion rates were measured using linear polarisation technique. Results showed that corrosion rate increased with the plasma nitriding temperature. Minimum deterioration occurred at 653K. (author). 2 tabs., 4 figs., 10 refs

  19. Austenitic stainless steels for cryogenic service

    Presently available information on austenitic Fe-Cr-Ni stainless steel plate, welds, and castings for service below 77 K are reviewed with the intent (1) of developing systematic relationships between mechanical properties, composition, microstructure, and processing, and (2) of assessing the adequacy of these data bases in the design, fabrication, and operation of engineering systems at 4 K

  20. Dependence of the cyclic stress–strain curve on loading history and its interaction with fatigue of 304L stainless steel

    Highlights: ► Contrary to low deformation, cyclic curve is not unique at high strain amplitude. ► However, as the loading was continued cyclic hardening tends to stabilize. ► Cyclic hardening is mainly kinematic type, isotropic component remains quasi-linear. ► Increasing in pre-hardening strain amplitude has almost no effect on fatigue damage. ► Fatigue life decreasing is associated with formation of walls, cells and defect bands. - Abstract: This study investigates the effects of loading history on the cyclic stress–strain curve and fatigue behavior of 304L stainless steel at room temperature. Tension–compression tests were performed on the same specimen under controlled strain, using several loading sequences of increasing or decreasing amplitude. The results show that the cyclic curve is not unique, as it depends on the loading sequence. The same predeformed specimens were subjected to fatigue tests. The results showed that fatigue life is significantly reduced by the previous loading history. A previously developed method for determining the effect of prehardening was evaluated. Microstructural analyses were also performed; the microstructures after preloading and their evolution during the fatigue cycles were characterized by transmission electron microscopy (TEM). The results of these analyses improve our understanding of the macroscopic properties of 304L stainless steel and can help us identify the causes of failure and lifetime reduction.

  1. Stress corrosion cracking of austenitic stainless steel core internal weld

    Microstructural analyses by several advanced metallographic techniques were conducted on austenitic stainless steel mockup and core shroud welds that cracked in boiling water reactors. Contrary to previous beliefs, heat-affected zones of the cracked Type 304L as well as 304 SS core shroud welds and mockup shielded-metal-arc welds were free of grain-boundary carbides, which shows that core shroud failure cannot be explained by classical intergranular stress corrosion cracking. Neither martensite nor delta-ferrite films were present on grain boundaries. However, as a result of exposure to weld fumes, the heat-affected zones of the core shroud welds were significantly contaminated by oxygen and fluorine which migrate to grain boundaries. Significant oxygen contamination seems to promote fluorine contamination and suppress thermal sensitization. Results of slow-strain-rate tensile tests indicate also that fluorine exacerbate the susceptibility of irradiated steels to intergranular stress corrosion cracking. These observations, combined with previous reports on the strong influence of weld flux, indicate that oxygen and fluorine contamination and fluorine-catalyzed stress corrosion play a major role in cracking of core shroud welds

  2. The role of microchemical and microstructural effects in the IASCC of high purity austenitic stainless steels

    The role of chromium depletion and radiation hardening on the irradiation assisted stress corrosion cracking in CERT tests in high purity 288 degrees C water following proton irradiation at either 400 degrees C or 200 degrees C has been examined using ultra high purity 304L stainless steel and austenitic Fe/xCr/24Ni (x=15, 20, 24) alloys. No intergranular cracking was found in any of the irradiated 254 wt% nickel alloys after CERT tests in 2 ppm O2 water at 288 degrees C, with 0.5, 1.0 or 3.2 μS/cm conductivity, while the UHP 304L alloy cracked extensively. Since the 24 wt% Ni alloys experienced severe grain boundary Cr depletion (from 6.3 at% to 13 at% below bulk), these results suggest that Ni improves the resistance of the irradiated alloys to cracking. Conversely, these results also show little correlation with grain boundary Cr depletion. Cracking of the UHP 304L alloy still occurred, although to a lesser extent, when the sample was irradiated at 200 degrees C where radiation induced segregation was expected to be significantly suppressed. This indicated that radiation hardening may play a role in IASCC in high temperature water

  3. Expanded austenite in nitrided layers deposited on austenitic and super austenitic stainless steel grades

    In this work nitrided layers deposited on austenitic and super austenitic stainless steels were analyzed through optical microscopy and X-rays diffraction analysis (XRD). It was observed that the formation of N supersaturated phase, called expanded austenite, has promoted significant increment of hardness (> 1000HV). XRD results have indicated the anomalous displacement of the diffracted peaks, in comparison with the normal austenite. This behavior, combined with peaks broadening, it was analyzed in different nitriding temperatures which results showed good agreement with the literature. (author)

  4. Analyses of oxide films grown on AISI 304L stainless steel and Incoloy 800HT exposed to supercritical water environment

    Fulger, Manuela; Mihalache, Maria; Ohai, Dumitru; Fulger, Stefan; Valeca, Serban Constantin

    2011-08-01

    Supercritical water (SCW) is being considered as a cooling medium for the next generation nuclear reactors because it provides high thermal efficiency and plant simplification. However, materials corrosion has been identified as a critical problem due to the oxidative nature of supercritical water. Thus, for safety using of these nuclear reactor systems a systematic study of candidate materials corrosion is needed. As in other high temperature environments, corrosion in SCW occurs by the growth of an oxide layer on the materials surface. The current work aims to evaluate oxidation behavior of AISI 304L SS and Incoloy 800HT in water at supercritical temperatures in the range 723-873 K under a pressure of 25 MPa for up to 1680 h. After exposure to deaerated supercritical water, the samples were investigated using gravimetry, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS). Oxide films grown on these materials have a layered structure with an outer layer consisting of a mixture of iron oxide/iron-nickel spinel oxides and an inner layer consisting of chromium oxide in the case of Incoloy 800HT and nickel-chromium spinel oxide in the case of AISI 304L SS. The mass gains for Incoloy 800HT at all temperatures were small, while comparatively with AISI 304L SS which exhibited higher oxidation rates. In the same time the results obtained by EIS indicate the best corrosion resistance of oxides grown on Incoloy 800HT surface.

  5. Analyses of oxide films grown on AISI 304L stainless steel and Incoloy 800HT exposed to supercritical water environment

    Fulger, Manuela, E-mail: manuela.fulger@nuclear.ro [Institute for Nuclear Research Pitesti, POB 78, Campului Street, No. 1, 115400 Mioveni (Romania); Mihalache, Maria; Ohai, Dumitru [Institute for Nuclear Research Pitesti, POB 78, Campului Street, No. 1, 115400 Mioveni (Romania); Fulger, Stefan [University Politechnica Bucharest, Splaiul Independentei Street, No. 313, Bucharest 060042 (Romania); Valeca, Serban Constantin [University of Pitesti, Targul din Vale Street, No. 1, 110040 Pitesti (Romania)

    2011-08-15

    Supercritical water (SCW) is being considered as a cooling medium for the next generation nuclear reactors because it provides high thermal efficiency and plant simplification. However, materials corrosion has been identified as a critical problem due to the oxidative nature of supercritical water. Thus, for safety using of these nuclear reactor systems a systematic study of candidate materials corrosion is needed. As in other high temperature environments, corrosion in SCW occurs by the growth of an oxide layer on the materials surface. The current work aims to evaluate oxidation behavior of AISI 304L SS and Incoloy 800HT in water at supercritical temperatures in the range 723-873 K under a pressure of 25 MPa for up to 1680 h. After exposure to deaerated supercritical water, the samples were investigated using gravimetry, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS). Oxide films grown on these materials have a layered structure with an outer layer consisting of a mixture of iron oxide/iron-nickel spinel oxides and an inner layer consisting of chromium oxide in the case of Incoloy 800HT and nickel-chromium spinel oxide in the case of AISI 304L SS. The mass gains for Incoloy 800HT at all temperatures were small, while comparatively with AISI 304L SS which exhibited higher oxidation rates. In the same time the results obtained by EIS indicate the best corrosion resistance of oxides grown on Incoloy 800HT surface.

  6. Comparative study in the induced corrosion by sulfate reducing microorganisms, in a stainless steel 304L sensitized and a carbon steel API X65

    In spite of the operational experience related with the presence of the phenomenon of microbiological corrosion (MIC) in industrial components, it was not but until the decade of the 80 s when the nuclear industry recognized its influence in some systems of Nuclear Generating Power plants. At the moment, diverse studies that have tried to explain the generation mechanism of this phenomenon exist; however, they are even important queries that to solve, especially those related with the particularities of the affected metallic substrates. Presently work, the electrochemical behavior of samples of stainless steel AISI 304L sensitized is evaluated and the carbon steel APIX65, before the action of sulfate reducing microorganisms low the same experimental conditions; found that for the APIX65 the presence of this type of bacteria promoted the formation of a stable biofilm that allowed the maintenance of the microorganisms that damaged the material in isolated places where stings were generated; while in the AISI 304L, it was not detected damage associated to the inoculated media. The techniques of Resistance to the Polarization and Tafel Extrapolation, allowed the calculation of the speed of uniform corrosion, parameter that doesn't seem to be influenced by the presence of the microorganisms; while that noise electrochemical it distinguished in real time, the effect of the sulfate reducing in the steel APIX65. (Author)

  7. Stress corrosion cracking susceptibility of various austenitic stainless steel pipe welds in high temperature oxygenated water

    Stress corrosion cracking (SCC) susceptibility of various austenitic stainless steel pipe welds has been studied by means of constant load tensile tests and pipe tests in 2880C water containing 26 ppm dissolved oxygen. The results obtained are summarized as follows: (1) SCC susceptibility of SUS 304 pipe welds is comparatively low under the condition of as-welded. It becomes, however, high remarkably by grinder operation and/or low temperature sensitization heat treatment. The distribution of time of failure on SUS 304 pipe welds can be expressed as a log-normal or Weibull distribution. (2) SUS 304L, 304NG, 316NG, and 347 stainless steel pipe welds have a good SCC resistance and sensitization resistance. Furthermore, the life estimation on alternate pipe welds was conducted statistically. (author)

  8. Embrittlement of austenitic stainless steel welds

    To prevent hot-cracking, austenitic stainless steel welds generally contain a small percent of delta ferrite. Although ferrite has been found to effectively prevent hot-cracking, it can lead to embrittlement of welds when exposed to elevated temperatures. The aging behavior of type-308 stainless steel weld has been examined over a range of temperatures 475--850 C for times up to 10,000 hrs. Upon aging, and depending on the temperature range, the unstable ferrite may undergo a variety of solid state transformations. These phase changes creep-rupture and Charpy impact properties

  9. Pitting corrosion resistant austenite stainless steel

    van Rooyen, D.; Bandy, R.

    A pitting corrosion resistant austenite stainless steel comprises 17 to 28 wt. % chromium, 15 to 26 wt. % nickel, 5 to 8 wt. % molybdenum, and 0.3 to 0.5 wt. % nitrogen, the balance being iron, unavoidable impurities, minor additions made in the normal course of melting and casting alloys of this type, and may optionally include up to 10 wt. % of manganese, up to 5 wt. % of silicon, and up to 0.08 wt. % of carbon.

  10. Effect of Specimen Diameter on Tensile Properties of Austenitic Stainless Steels in Liquid Hydrogen and Gaseous Helium at 20K

    Fujii, H.; Ohmiya, S.; Shibata, K.; Ogata, T.

    2006-03-01

    Tensile tests using round bar type specimens of 3, 5 and 7 mm in diameter were conducted at 20K in liquid hydrogen and also in gaseous helium at the same temperature for three major austenitic stainless steels, JIS SUS304L, 316L and 316LN, extensively used for cryogenic applications including liquid hydrogen transportation and storage vessels. Stress-strain curves were considerably different between circumstances and also specimen diameter, resulting in differences of strength and ductility. In liquid hydrogen, serrated deformation appeared after considerable work hardening and more active in specimens with larger diameter. Meanwhile serrated deformation was observed from the early stage of plastic deformation in gaseous helium at 20 K and serration was more frequent in specimens with smaller diameter. The serrated deformation behaviors were numerically simulated for 304L steel with taking thermal properties such as thermal conductivity, specific heat, heat transfer from specimens to cryogenic media into account, and some agreement with the experiments was obtained.

  11. Assessment and comparison of oxides grown on 304l ods steel and 304l ss in water environment in supercritical conditions

    In order to fulfil superior cladding for new reactor generation G IV, the austenitic304L stainless steel was improved by oxide dispersion strengthening (ODS), using two nano-oxides: titanium and yttrium oxides. The behaviour of the new material resulted, 304 ODS, in water at supercritical temperature of about 550OC and 25 MPa pressure, was considered. The oxidation kinetics by weigh gain measurements for both materials have been estimated and compared. The weight gain of ODS samples is higher than basic austenitic steel up to 1320 hours. The oxides developed on the ODS samples in SCPW are layered and more uniform than in 304L SS. The protectively character of oxide films was estimated by different techniques. The morphology of oxide surface, the layering and chemical formula of oxides films were investigated by scanning electron microscopy (SEM), Energy Dispersion X-Ray Spectrometry (EDS), electrochemical impedance spectrometry (EIS) and by Small Angle X-ray Diffraction (SAXD). 1. (authors)

  12. Ultrasonic testing of austenitic stainless steel welds

    Ultrasonic testing of austenitic stainless steel welds has been considered difficult because of the high noise level and remarkable attenuation of ultrasonic waves. To improve flaw detectability in this kind of steel, various inspection techniques have been studied. A series of tests indicated: (1) The longitudinal angle beam transducers newly developed during this study can detect 4.8 mm dia. side drilled holes in dissimilar metal welds (refraction angle: 550 from SUS side, 450 from CS side) and in cast stainless steel welds (refraction angle: 450, inspection frequency: 1 MHz). (2) Cracks more than 5% t in depth in the heat affected zones of fine-grain stainless steel pipe welds can be detected by the 450 shear wave angle beam method (inspection frequency: 2 MHz). (3) The pattern recognition method using frequency analysis technology was presumed useful for discriminating crack signals from spurious echoes. (author)

  13. Electron beam welding of austenitic stainless steel

    Austenitic stainless steel is used for liquid metal-cooled fast breeder reactors with operating temperature of about 550 deg C, because its elevated temperature properties are excellent and the results of use are abundant. The welded joints in LMFBRs require high degree of safety, and the application of electron beam welding is studied to make welding joints of high quality. When the inelastic deformation in a certain limit is allowed as prescribed in the ASME Code, Case 1592, the elevated temperature properties of the welded joints of structures are particularly important. The materials tested were 10 mm thick plates of SUS 304, SUS 316 and SUS 321 steels, and 150 kV - 40 mA electron beam welder was employed. The method of welding was one side, one pass Uranami welding, and first, the appropriate welding conditions were decided. Elevated temperature tensile test was carried out on the parent materials and welded joints by electron beam welding and coated arc welding. Creep rupture test and elevated temperature fatigue test were also carried out. In EB-welded austenitic stainless steel, delta ferrite is scattered finely in austenite, and its quantity is very small and less than 1.5%. The tensile strength and 0.2% proof stress of EB-welded joints are almost same as those of parent materials. The creep rupture and fatigue properties of the joints are also close to those of parent materials. (Kako, I.)

  14. Austenitic stainless steels with cryogenic resistance

    The most used austenitic stainless steels are alloyed with chromium and nickel and have a reduced carbon content, usually lower than 0.1 % what ensures corresponding properties for processing by plastic deformation at welding, corrosion resistance in aggressive environment and toughness at low temperatures. Steels of this kind alloyed with manganese are also used to reduce the nickel content. By alloying with manganese which is a gammageneous element one ensures the stability of austenites. Being cheaper these steels may be used extensively for components and equipment used in cryogenics field. The best results were obtained with steels of second group, AMnNi, in which the designed chemical composition was achieved, i.e. the partial replacement of nickel by manganese ensured the toughness at cryogenic temperatures. If these steels are supplementary alloyed, their strength properties may increase to the detriment of plasticity and toughness, although the cryogenic character is preserved

  15. Nickel-free austenitic stainless steels for medical applications

    Ke Yang and Yibin Ren

    2010-01-01

    The adverse effects of nickel ions being released into the human body have prompted the development of high-nitrogen nickel-free austenitic stainless steels for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also much improves steel properties. Here we review the harmful effects associated with nickel in medical stainless steels, the advantages of nitrogen in stainless steels, and emphatically, the development of high-nitrogen nickel-free stainl...

  16. Effects of δ-ferrite and welding structure on high-cycle fatigue properties of austenitic stainless steels weld metals

    We studied the effects of δ-ferrite and welding structure on high-cycle fatigue properties for austenitic stainless steel weld metals at cryogenic temperatures. SUS304L and SUS316L weld metals contained 0% δ-ferrite (0% material) and 10% δ-ferrite (10% material) were prepared. High-cycle fatigue tests were carried out at 293, 77 and 4 K. The S-N curves of those weld metals shifted towards higher stress levels, i.e., the longer life side, with decreasing test temperature. The ratios of 106-cycles fatigue strength (FS) to tensile strength (TS) of 0% material decreased from 0.8 to 0.45 and those of 10% material decreased between 0.35 to 0.65 with decreasing test temperature. Fatigue crack initiation sites of SUS304L 10% material were almost at blowholes, and those of SUS316L 10% material were at weld pass interface boundaries. On the other hand, those of 0% materials were considered to be due to the interface of the solidification structure. Although δ-ferrite reduces toughness at cryogenic temperatures in austenitic stainless steel weld metals, the effects of δ-ferrite on high-cycle fatigue properties are not significant

  17. Nickel-free austenitic stainless steels for medical applications

    Ke Yang and Yibin Ren

    2010-01-01

    Full Text Available The adverse effects of nickel ions being released into the human body have prompted the development of high-nitrogen nickel-free austenitic stainless steels for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also much improves steel properties. Here we review the harmful effects associated with nickel in medical stainless steels, the advantages of nitrogen in stainless steels, and emphatically, the development of high-nitrogen nickel-free stainless steels for medical applications. By combining the benefits of stable austenitic structure, high strength and good plasticity, better corrosion and wear resistances, and superior biocompatibility compared to the currently used 316L stainless steel, the newly developed high-nitrogen nickel-free stainless steel is a reliable substitute for the conventional medical stainless steels.

  18. Effect of Hydrogen Charging on the Tensile and Constant Load Properties of an Austenitic Stainless Steel Weldment

    2001-01-01

    The effect of cathodic hydrogen charging on the tensile and constant load properties was determined for an austenitic stainless steel weldment comprising a 304L steel in the solution treated condition as a base metal and a 308L filler steel as a weld metal. Part of the 304L solution treated steel was separately given additional sensitization treatment to simulate the microstructure that would develop in the heat affected zone. Tests were performed at room temperature on notched round bar specimens. Hydrogen charging resulted in a pronounced embrittlement of the tested materials. This was manifested mainly as a considerable loss in the dluctility of tensile specimens and a decrease in the time to failure and threshold stress of constant load specimens. The 308L weld metal exhibited the highest, and the 304L solution treated steel the lowest, resistance to hydrogen embrittlement. Hydrogen embrittlement was associated with the formation of strain induced martensite as well as a transition from brittle to ductile fracture morphology onwards the centre of the specimens.

  19. Low-Temperature Nitriding of Deformed Austenitic Stainless Steels with Various Nitrogen Contents Obtained by Prior High-Temperature Solution Nitriding

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas Lundin;

    2016-01-01

    In the past decades, high nitrogen steels (HNS) have been regarded as substitutes for conventional austenitic stainless steels because of their superior mechanical and corrosion properties. However, the main limitation to their wider application is their expensive production process. As an...... alternative, high-temperature solution nitriding has been applied to produce HNS from three commercially available stainless steel grades (AISI 304L, AISI 316, and EN 1.4369). The nitrogen content in each steel alloy is varied and its influence on the mechanical properties and the stability of the austenite...... investigated. Both hardness and yield stress increase and the alloys remain ductile. In addition, strain-induced transformation of austenite to martensite is suppressed, which is beneficial for subsequent low-temperature nitriding of the surface of deformed alloys. The combination of high- and low...

  20. The resistance of austenitic stainless steels to pitting corrosion in simulated BFS/OPC pore waters containing thiosulphate ions

    Current plans for the disposal of intermediate-level nuclear waste involve the use of austenitic stainless steel drums. The immediate environment seen by both the inner and outer surfaces of these drums will be alkaline, as a consequence of the encasement of both the drum and its contents in concrete. Normally there would be no risk of localized corrosion of the steel in this situation, but a possible complication is introduced by the use of blast-furnace slag (BFS) to decrease the permeability of the concrete. Metal sulphides in the BFS react with air and water to yield thiosulphate ions, which are known to be corrosive towards stainless steels in environments of near-neutral pH. This research was carried out to study the effects of thiosulphate at alkaline pH, simulating the concrete environment. Types 304L and 316L stainless steel have been tested for pitting corrosion resistance in simulated BFS/Ordinary Portland Cement pore waters of pH 10-13, at 20oC and 50oC. The results show that the 316L steel is essentially immune to pitting. The 304L steel shows some pitting at the higher temperature, especially at the higher chloride concentrations, but only at pH values of less than 12, which would require serious deterioration of the cement matrix. (author)

  1. Friction Stir Welding of austenitic stainless steels

    C. Meran

    2010-11-01

    Full Text Available Purpose: Friction Stir Welding (FSW was applied austenitic stainless steels that is difficult to weld using FSW technique. Proper weld can be obtained by using appropriate welding parameter. In this paper, the effect of different tool rotational speeds, traverse speeds, compressive tool forces, and tool angles was investigated.Design/methodology/approach: The dimension of 3 mm x 75 mm x 150 mm two stainless steel plates were used and butt welded by FSW method using 7.5 kW vertical head milling machine. All welded test specimens were prepared perpendicular to the weld line in order to determine the mechanical properties and tested with 12 MPa/sec stress rate under stress control using a servo-hydraulic Instron 8801. Microstructure of the welding zone and macrograph of the heat affected zone was investigated by SEM.Findings: The average grain size in the SZ was between 3 and 7 μm, which is smaller than that in the BM. The average grain size in the HAZ was about 20 μm, which is half of that in the BM.Fine-grained microstructures are present the welded area. The dark bands observed in the weld zone were also detected the microstructure of the transition zone. Dark and narrow bands do not consist of pores or cavities. It was determined that these bands do not process an ultra fine-grained microstructure. They are Cr2O3 oxide layers which over the surface of stainless steels may have been ruptured during friction stir welding and may form bands inside the welding bead due to stirring.Research limitations/implications: The proper cooling system helps to prevent the stirrer tool from the deformation.Practical implications: The strength of the welded zone of AISI 304 stainless steel can be easily found by implementing welding design parameters and high quality joints can be obtained.Originality/value: This study was performed in the frame of the TUBITAK project no 106M504, „Friction Stir Weldability of Stainless Steels and Investigation of the

  2. Heat transfer and fluid flow during keyhole mode laser welding of tantalum, Ti-6Al-4V, 304L stainless steel and vanadium

    Because of the complexity of several simultaneous physical processes, most heat transfer models of keyhole mode laser welding require some simplifications to make the calculations tractable. The simplifications often limit the applicability of each model to the specific materials systems for which the model is developed. In this work, a rigorous, yet computationally efficient, keyhole model is developed and tested on tantalum, Ti-6Al-4V, 304L stainless steel and vanadium. Unlike previous models, this one combines an existing model to calculate keyhole shape and size with numerical fluid flow and heat transfer calculations in the weld pool. The calculations of the keyhole profile involved a point-by-point heat balance at the keyhole walls considering multiple reflections of the laser beam in the vapour cavity. The equations of conservation of mass, momentum and energy are then solved in three dimensions assuming that the temperatures at the keyhole wall reach the boiling point of the different metals or alloys. A turbulence model based on Prandtl's mixing length hypothesis was used to estimate the effective viscosity and thermal conductivity in the liquid region. The calculated weld cross-sections agreed well with the experimental results for each metal and alloy system examined here. In each case, the weld pool geometry was affected by the thermal diffusivity, absorption coefficient, and the melting and boiling points, among the various physical properties of the alloy. The model was also used to better understand solidification phenomena and calculate the solidification parameters at the trailing edge of the weld pool. These calculations indicate that the solidification structure became less dendritic and coarser with decreasing weld velocities over the range of speeds investigated in this study. Overall, the keyhole weld model provides satisfactory simulations of the weld geometries and solidification sub-structures for diverse engineering metals and alloys

  3. Thermal fatigue of austenitic stainless steel: influence of surface conditions through a multi-scale approach

    Some cases of cracking of 304L austenitic stainless steel components due to thermal fatigue were encountered in particular on the Residual Heat Removal Circuits (RHR) of the Pressurized Water Reactor (PWR). EDF has initiated a R and D program to understand assess the risks of damage on nuclear plant mixing zones. The INTHERPOL test developed at EDF is designed in order to perform pure thermal fatigue test on tubular specimen under mono-frequency thermal load. These tests are carried out under various loadings, surface finish qualities and welding in order to give an account of these parameters on crack initiation. The main topic of this study is the research of a fatigue criterion using a micro:macro modelling approach. The first part of work deals with material characterization (stainless steel 304L) emphasising the specificities of the surface roughness link with a strong hardening gradient. The first results of the characterization on the surface show a strong work-hardening gradient on a 250 microns layer. This gradient does not evolved after thermal cycling. Micro hardness measurements and TEM observations were intensively used to characterize this gradient. The second part is the macroscopic modelling of INTHERPOL tests in order to determine the components of the stress and strain tensors due to thermal cycling. The third part of work is thus to evaluate the effect of surface roughness and hardening gradient using a calculation on a finer scale. This simulation is based on the variation of dislocation density. A goal for the future is the determination of the fatigue criterion mainly based on polycrystalline modelling. Stocked energy or critical plane being available that allows making a sound choice for the criteria. (author)

  4. Effect of Geobacter sulfurreducens on the microbial corrosion of mild steel, ferritic and austenitic stainless steels

    Mehanna, Maha; Basséguy, Régine; Délia, Marie-Line; Bergel, Alain

    2009-01-01

    The influence of Geobacter sulfurreducens was tested on the anaerobic corrosion of four different steels: mild steel 1145, ferritic steel 403 and austenitic steels 304L and 316L. Within a few hours, the presence of cells induced a free potential (Eoc) ennoblement around +0.3 V on 1145 mild steel, 403 ferritic steel and 304L austenitic steels and slightly less on 316L. The kinetics of Eoc ennoblement depended on the amount of bacteria in the inoculum, but the final potential value depended ess...

  5. He blisters on welded austenitic stainless steel

    Surface blisters of single-crystal and polycrystalline metals induced by He-ion irradiation have been investigated by many researchers and several blister-formation mechanisms have been proposed. But there is no report on what blister densities and blister sizes are to be expected on a welded 316 austenitic stainless steel in use as a fusion reactor material. An experiment was carried out, and details are given. The exfoliation of blisters was almost not observed until the total dose of 2 x 1022 ions m-2 was reached. A figure shows the blister densities for every increment in blister diameter of 0.5 μm on the base and weld metals. A second figure shows the corresponding blister densities on the base and weld metals annealed at 653 K for 4.5 ksec after He-ion irradiation. The total blister densities of the base metals decrease to 4.3 to 5.5 x 1010 blisters m-2 and the average blister sizes increase to 2.8 to 3.2 μm. This phenomenon indicates that the implanted He ions diffuse in the weld and base metals. The blister sizes on the weld metals are smaller than those on the base metals and the densities on the weld metals are greater than those on the base metals. (author)

  6. Application of strain scanning method to stress measurement of austenitic stainless steel

    A strain scanning method was applied to the stress measurement of austenitic stainless steel (SUS304L). The sizes of its gauge volume were a width of 2 mm and a height of 0.2 mm, and the grain size of the specimen was 37 micrometers. Enough accuracy of the measured stress was not obtained due to the coarse grain of the specimen. To improve the coarse grain problem, three methods of oscillation were examined such as in-plane rotation, out-of-plane tilt and translation. The translation method can increase the number of the grains by changing the amplitude. For the translation method, the accurate measurement is possible if it is 10000 numbers or more of grains. However, the numbers of the grains by the other oscillations were not enough. For the translation method, a strict parallel between the specimen surface and the translation plane was necessary. It succeeded in adjusting the strict parallel. The residual stress distribution of the shot-peened austenitic steel was measured by our method. (author)

  7. Comparative study in the induced corrosion by sulfate reducing microorganisms, in a stainless steel 304L sensitized and a carbon steel API X65; Estudio comparativo de la corrosion inducida por microorganismos sulfatorreductores, en un acero inoxidable 304L sensibilizado y un acero al carbono API X65

    Diaz S, A.; Gonzalez F, E.; Arganis J, C.; Luna C, P.; Carapia M, L. [ININ, Carretera Mexico-Toluca Km. 36.5, 52045 Estado de Mexico (Mexico)]. e-mail: ads@nuclear.inin.mx

    2004-07-01

    In spite of the operational experience related with the presence of the phenomenon of microbiological corrosion (MIC) in industrial components, it was not but until the decade of the 80 s when the nuclear industry recognized its influence in some systems of Nuclear Generating Power plants. At the moment, diverse studies that have tried to explain the generation mechanism of this phenomenon exist; however, they are even important queries that to solve, especially those related with the particularities of the affected metallic substrates. Presently work, the electrochemical behavior of samples of stainless steel AISI 304L sensitized is evaluated and the carbon steel APIX65, before the action of sulfate reducing microorganisms low the same experimental conditions; found that for the APIX65 the presence of this type of bacteria promoted the formation of a stable biofilm that allowed the maintenance of the microorganisms that damaged the material in isolated places where stings were generated; while in the AISI 304L, it was not detected damage associated to the inoculated media. The techniques of Resistance to the Polarization and Tafel Extrapolation, allowed the calculation of the speed of uniform corrosion, parameter that doesn't seem to be influenced by the presence of the microorganisms; while that noise electrochemical it distinguished in real time, the effect of the sulfate reducing in the steel APIX65. (Author)

  8. Fatigue crack growth in metastable austenitic stainless steels

    Mei, Z.; Chang, G.; Morris, J.W. Jr.

    1988-06-01

    The research reported here is an investigation of the influence of the mechanically induced martensitic transformation on the fatigue crack growth rate in 304-type steels. The alloys 304L and 304LN were used to test the influence of composition, the testing temperatures 298 K and 77 K were used to study the influence of test temperature, and various load ratios (R) were used to determine the influence of the load ratio. It was found that decreasing the mechanical stability of the austenite by changing composition or lowering temperature decreases the fatigue crack growth rate. The R-ratio effect is more subtle. The fatigue crack growth rate increases with increasing R-ratio, even though this change increases the martensite transformation. Transformation-induced crack closure can explain the results in the threshold regime, but cannot explain the R-ratio effect at higher cyclic stress intensities. 26 refs., 6 figs.

  9. Contribution to analysis of fatigue crack propagation at room temperature in low carbon austenitic steels type 18-10(304L) and Mo 17-12(316L). Relation between macroscopic and microscopic phenomena

    Low cycle fatigue phenomenon on the structural components of reactors is one of the most important problem. In this paper were carried out some fatigue tests on stainless steels type Z2CN18-10 (AISI 304L) and Z2CND17-12 (AISI 316L) at room temperature in air and in a corrosive medium (NaCl solution at different pH values). Length of cracks and crack propagation under stresses were determined. Z2CND17-12 has a better behavior than Z2CN18-10 because of a better structural stability both in air and in a corrosive environment. Structure was examined by transmission electron microscopy and microhardness was measured in the perturbed zones

  10. 76 FR 43981 - Circular Welded Austenitic Stainless Pressure Pipe From the People's Republic of China: Final...

    2011-07-22

    ... International Trade Administration Circular Welded Austenitic Stainless Pressure Pipe From the People's Republic... antidumping duty order on circular welded austenitic stainless pressure pipe from the People's Republic of..., 2010. \\1\\ See Circular Welded Austenitic Stainless Pressure Pipe From the People's Republic of...

  11. Failure of austenitic stainless steel tubes during steam generator operation

    M. Głowacka; J. Łabanowski; S. Topolska

    2012-01-01

    Purpose: of this study is to analyze the causes of premature failure of steam generator coil made of austenitic stainless steel. Special attention is paid to corrosion damage processes within the welded joints.Design/methodology/approach: Examinations were conducted several segments of the coil made of seamless cold-formed pipes Ø 23x2.3 mm, of austenitic stainless steel grade X6CrNiTi18-10 according to EN 10088-1:2007. The working time of the device was 6 months. The reason for the withdrawa...

  12. Correlation of radiation-induced changes in microstructure/microchemistry, density and thermo-electric power of type 304L and 316 stainless steels irradiated in the Phénix reactor

    Annealed specimens of type 304L and 316 stainless steel and cold-worked 316 specimens were irradiated in the Phénix reactor in the temperature range 381–394 °C and to different damage doses up to 39 dpa. The microstructure and microchemistry of both 304L and 316 have been examined using the combination of the different techniques of TEM to establish the void swelling and precipitation behavior under neutron irradiation. TEM observations are compared with results of measurements of immersion density and thermo-electric power obtained on the same irradiated stainless steels. The similarities and differences in their behavior on different scales are used to understand the factors in terms of the chemical composition and metallurgical state of steels, affecting the precipitation under irradiation and the swelling behavior. Irradiation induces the formation of some precipitate phases (e.g., M6C and M23C6-type carbides, and γ’- and G-phases), Frank loops and cavities. According to the metallurgical state and chemical composition of the steel, the amount of each type of radiation-induced defects is not the same, affecting their density and thermo-electric power

  13. AES depth profiles in Mo-coated 304L stainless steel achieved by RF-magnetron sputtering and influence of Mo on the corrosion in 3.5% NaCl solution

    Saidi, D. [Département de métallurgie, Division de Technologie du Combustible, Centre de Recherche Nucléaire de Draria CRND, BP. 43 Draria, Alger (Algeria); Zaid, B., E-mail: zaidbachir@yahoo.com [Département de métallurgie, Division de Technologie du Combustible, Centre de Recherche Nucléaire de Draria CRND, BP. 43 Draria, Alger (Algeria); Souami, N. [Centre de Recherche Nucléaire d’Alger CRNA, 2 Bd. Frantz Fanon, Alger (Algeria); Saoula, N. [Division des Milieux Ionisés et Lasers, Centre de Développement des Technologies Avancées CDTA, Cité du 20 août 1956, Baba Hassan, BP n 17, Alger (Algeria); Siad, M. [Centre de Recherche Nucléaire d’Alger CRNA, 2 Bd. Frantz Fanon, Alger (Algeria); Si Ahmed, A. [Im2np, UMR 7334 CNRS, Aix-Marseille Université, 13397 Marseille Cedex 20 (France); Biberian, J.P. [CINaM, UMR 7525 CNRS, Aix Marseille Université, 13288 Marseille Cedex 9 (France)

    2015-10-05

    Highlights: • Mo coating of 304L stainless steel is achieved via RF-magnetron sputtering. • The AES depth profiles before and after annealing in air (at 973 K) are analyzed. • The corrosions in NaCl solution of bare and Mo-coated samples are compared. • Mo-coated steels exhibit better corrosion behaviors. • The positive action of Mo oxide via its semi-conducting properties is deduced. - Abstract: Molybdenum-coated 304L stainless steel samples, fabricated by RF-magnetron sputtering, are characterized by Auger Electron Spectroscopy (AES) before and after annealing in air at 973 K. The electrochemical parameters of bare and coated materials, in NaCl 3.5% water solution at 298 K, are derived from the potentiodynamic polarization curves. The corrosion current of Mo-coated samples (before and after annealing) is significantly lower than that of its bare counterpart. The information gained from the AES depth profiles leads us to infer that the positive action of molybdenum on the corrosion behavior may be attributed to the changes induced by the semi-conducting properties of Mo oxide in the passive film.

  14. Nanostructured nickel-free austenitic stainless steel/hydroxyapatite composites.

    Tulinski, Maciej; Jurczyk, Mieczyslaw

    2012-11-01

    In this work Ni-free austenitic stainless steels with nanostructure and their nanocomposites with hydroxyapatite are presented and characterized by means of X-ray diffraction and optical profiling. The samples were synthesized by mechanical alloying, heat treatment and nitriding of elemental microcrystalline powders with addition of hydroxyapatite (HA). In our work we wanted to introduce into stainless steel hydroxyapatite ceramics that have been intensively studied for bone repair and replacement applications. Such applications were chosen because of their high biocompatibility and ability to bond to bone. Since nickel-free austenitic stainless steels seem to have better mechanical properties, corrosion resistance and biocompatibility compared to 316L stainless steels, it is possible that composite made of this steel and HA could improve properties, as well. Mechanical alloying and nitriding are very effective technologies to improve the corrosion resistance of stainless steel. Similar process in case of nanocomposites of stainless steel with hydroxyapatite helps achieve even better mechanical properties and corrosion resistance. Hence nanocrystalline nickel-free stainless steels and nickel-free stainless steel/hydroxyapatite nanocomposites could be promising bionanomaterials for use as a hard tissue replacement implants, e.g., orthopedic implants. In such application, the surface roughness and more specifically the surface topography influences the proliferation of cells (e.g., osteoblasts). PMID:23421285

  15. Austenitic stainless steel patterning by plasma assisted diffusion treatments

    The new concept of surface texturing or surface patterning on austenitic stainless steel by plasma assisted diffusion treatment is presented in this paper. It allows the creation of uniform micro or nano relief with regularly shaped asperities or depressions. Plasma assisted diffusion treatments are based on the diffusion of nitrogen and/or carbon in a metallic material at moderate to elevated temperatures. Below 420 deg. C, a plasma assisted nitriding treatment of austenitic stainless steel produces a phase usually called expanded austenite. Expanded austenite is a metastable nitrogen supersaturated solid solution with a disordered fcc structure and a distorted lattice. The nitrided layer with the expanded austenite is highly enriched in nitrogen (from 10 to 35 at%) and submitted to high compressive residual stresses. From mechanical consideration, it is shown that the only possible deformation occurs in the direction perpendicular to the surface. Such an expansion of the layer from the initial surface of the substrate to the gas phase is used here for surface patterning of stainless steel parts. The surface patterning is performed by using masks (TEM grid) and multi-dipolar plasmas.

  16. Nitrogen bearing austenitic stainless steels for surgical implants

    Tschiptschin, A.P.; Aidar, C.H.; Alonso-Falleiros, N. [Sao Paulo Univ. (Brazil). Escola Politecnica; Neto, F.B. [Instituto de Pesquisas Tecnologicas, Sao Paulo (Brazil)

    1999-07-01

    Nitrogen addition promotes substantial improvements on general and localized corrosion performance of stainless steels. In recent times high nitrogen (up to 0.6 wt%) and Mn bearing super austenitic stainless steel has been studied for medical applications due to its low Ni content, the so called body friendly alloys. 18%Cr, 0.4%N and 15%Mn stainless steels were cast either from electrolytic or commercial master alloys in induction furnace, forged, solubilized at 1423K for 3 hours and water quenched. Delta ferrite and carbide precipitate free structures were observed. (orig.)

  17. Further investigation of the structure and properties of austenitic stainless steel after plasma nitriding

    Menthe, E.; Rie, K.-T. [Technische Univ. Braunschweig (Germany). Inst. fuer Oberflaechentechnik und Plasmatechnische Werkstoffentwicklung

    1999-09-01

    A series of plasma nitriding experiments has been conducted on AISI 304L austenitic stainless steel at temperatures ranging from 375 to 475 C using pulsed-DC plasma with different pulse duty cycles, N{sub 2}-H{sub 2} gas mixtures and treatment times. It is shown that a wide range of treatment parameters exist that allow the formation of the S-phase. The formation and growth of this surface layer depend strongly on the treatment parameters, such as nitrogen partial pressure and duty cycle. Within the parameter range investigated, the layer growth appears to be diffusion controlled with an activation energy about 107 kJ/mol. The formation of CrN precipitates during plasma nitriding is not accompanied by the formation of bcc iron, which might be expected due to the loss of free chromium. However, the S-phase transforms into CrN and bcc iron following a heat treatment at 450 C or higher for 25 h. The wear rate after plasma nitriding is greatly reduced compared with the untreated material. (orig.)

  18. Improvement of the mechanical properties of austenitic stainless steel after plasma nitriding

    Menthe, E.; Bulak, A.; Zimmermann, A.; Rie, K.-T. [Technische Univ. Braunschweig (Germany). Inst. fuer Oberflaechentechnik und Plasmatechnische Werkstoffentwicklung; Olfe, J. [Fraunhofer Institut fuer Schicht- und Oberflaechentechnik, Braunschweig (Germany)

    2000-11-01

    In this paper, we report on a series of experiments designed to study the influence of plasma nitriding on the mechanical properties of austenitic stainless steel. Plasma nitriding experiments were conducted on AISI 304L steel in a temperature range of 375-475 C using pulsed-DC plasma with different N{sub 2}-H{sub 2} gas mixtures and treatment times. Firstly the formation and the microstructure of the modified layer will be highlighted followed by the results of hardness measurement, adhesion testing, wear resistance and fatigue life tests. The modified surface was analyzed directly after plasma nitriding as well as using a depth profiling method. The microhardness after plasma nitriding is increased up to 19 GPa, that is a factor of five higher compared to the untreated material (3.3 GPa). The adhesion is examined by Rockwell indentation and scratch test. No delamination of the treated layer could be observed. The wear rate after plasma nitriding is significantly reduced compared to the untreated material. Plasma nitriding produces compressive stress inside the modified layer, which can be easily derived from the bending of thin metal foil, which was treated only on one side. The treatment influences the fatigue life, which can be raised by a factor of 10 at a low stress level (230 MPa). (orig.)

  19. Reliability of welded austenitic stainless steel containing base metal delta ferrite

    Shalaby, Hamdy M. [Kuwait Institute for Scientific Research (Kuwait)

    2004-07-01

    The paper presents the results of a failure case study carried out on welded 304L stainless steel (SS) pipeline of waste gas header (WGH). The environment inside the WGH was mainly wet steam with hydrocarbons, H{sub 2}S, oxygen, CO{sub 2}, organic acids, and organic chlorides. The outside pipe wall temperature was 91-97 deg C. The failure of the pipe was at the heat-affected zone (HAZ). The study was made on four welded pipeline samples, three of which were in service. The pipe samples were welded using three different techniques that included autogenous gas tungsten arc, shielded metal arc, and flux core arc. The investigation revealed that cracking at HAZ was due to base metal delta ferrite decay accompanied with sigma phase formation due to high heat input during welding. However, the morphology and orientation of the cracks suggested that stress-rupture and stress corrosion cracking had occurred. The presence of base metal delta ferrite made all used welding procedures un-successful. The study concluded that utilization of delta ferrite free austenitic SS should eliminate the problem. (author)

  20. Effect of Cold-Rolling on Precipitation Phenomena in Sensitized Type 316L and 340L Austenitic Stainless Steels

    H.Tsubakino; A.Yamamoto; T. Yamada; L.Liu; M.Terasawa; S.Nakahigashi; H.Harada

    2004-01-01

    Precipitation phenomena in Type 316L and 304L stainless steels were studied mainly by transmission electron microscopic (TEM) observations after cold-rolling ranging from 0% (as solution annealed) to 80% reduction in thickness,and then by sensitization treatment. Precipitates were identified by electron diffraction analysis and EDS analysis.Precipitates observed in sensitized 316L stainless steel were sigma and chi phases, whereas carbide and sigma were observed in sensitized 304L stainless steel. Recrystallized grains were formed in 30% cold-rolled and sensitized 304L.However, the tendency toward recrystallization in sensitized 316L was much lower than in 304L. Precipitation of sigma and chi phases was accelerated by cold-rolling and they were observed at grain boundaries in lower cold-rolling; they were also seen, in grain interiors in higher cold-rolling. Higher deformation induced partially recrystallization combined with precipitation, resulting in the formation of heterogeneous microstructures.

  1. Experimental study of behavior and functional capability of ferritic steel elbows and austenitic stainless steel thin-walled elbows

    The results are presented of two series of tests performed on 900 large-radius elbows. A first series of 10 tests was conducted on TU 42 C (equivalent to ASME SA 106 grade B) ferritic steel elbows with an outside diameter-to-wall thickness ratio of 6.7. A second series of 15 tests was conducted on Z2 CN 18-10 (equivalent to ASME TP 304 L) austenitic stainless steel elbows with an outside diameter-to-wall thickness ratio of 90. These elbows were subjected to in-plane (opening and closing) and out-of-plane bending moments. Changes in elbow angular deflection and ovalization of the mid-section were recorded as a function of applied moment. Measurements were made well into the plastic region. Influence of pressure, temperature and cyclic loading was also studied. The tests supplied extensive data on the behaviour of thin-walled austenitic stainless steel elbows when subjected to large displacements, including ability of the elbow to carry the flow under high loadings. Analysis in accordance with the requirements of the RCC-M1 was also performed to quantify flow area reduction at stress limits allowed by these rules, in addition to the displacement amplitude margin allowed by the level D service limit criteria with respect to the experimental limit moment. A criteria is proposed which aims to limit secondary stresses under faulted conditions. (author)

  2. Initiation of stress corrosion cracking in pre-stained austenitic stainless steels exposed to primary water

    Austenitic stainless steels are widely used in primary circuits of Pressurized Water Reactors (PWR) plants. However, a limited number of cases of Intergranular Stress Corrosion Cracking (IGSCC) has been detected in cold-worked (CW) areas of non-sensitized austenitic stainless steel components in French PWRs. A previous program launched in the early 2000's identified the required conditions for SCC of cold-worked stainless steels. It was found that a high strain hardening coupled with a cyclic loading favoured SCC. The present study aims at better understanding the role of pre-straining on crack initiation and at developing an engineering model for IGSCC initiation of 304L and 316L stainless steels in primary water. Such model will be based on SCC initiation tests on notched (not pre-cracked) specimens under 'trapezoidal' cyclic loading. The effects of pre-straining (tensile versus cold rolling), cold-work level and strain path on the SCC mechanisms are investigated. Experimental results demonstrate the dominating effect of strain path on SCC susceptibility for all pre-straining levels. Initiation can be understood as crack density and crack depth. A global criterion has been proposed to integrate both aspects of initiation. Maps of SCC initiation susceptibility have been proposed. A critical crack depth between 10 and 20 μm has been demonstrated to define transition between slow propagation and fast propagation for rolled materials. For tensile pre-straining, the critical crack depth is in the range 20 - 50 μm. Experimental evidences support the notion of a KISCC threshold, whose value depends on materials, pre-straining ant load applied. The initiation time has been found to depend on the applied loading as a function of (σmaxmax/YV)11,5. The effect of both strain path and surface hardening is indirectly taken into account via the yield stress. In this study, material differences rely on strain path effect on mechanical properties. As a result, a stress high

  3. Tritium in austenitic stainless steel vessels

    The vessel used for the long-term storage of tritium (titanium tritide) will be of welded 316L stainless steel construction. The 316L stainless is chosen partially because of its excellent resistance, in the wrought condition, to any degradation of mechanical properties from contact with hydrogen isotopes. The work reported here was undertaken to check that the welds in the vessel would have a satisfactory response to the hydrogen isotopes. A satisfactory response has been demonstrated, leading to a general conclusion that the titanium tritide/316L stainless steel vessel combination provides an extremely reliable storage facility for the tritium

  4. Ferrite stability in duplex austenitic stainless steel welds

    The presence of ferrite in austenitic stainless steel welds is known to be beneficial in avoiding hot cracking problems. In particular, the primary delta ferrite mode of solidification is important. For alloy compositions in which primary ferrite forms, it has been shown that up to approximately 40% ferrite may exist in the as-solidified structures. With further cooling, the ferrite becomes unstable, transforming to austenite. However, under typical welding conditions, the cooling rate is sufficiently high to suppress the complete transformation of ferrite and some residual ferrite is retained. For example, for Type 308 austenitic stainless steel filler metal, gas-tungsten arc welds contain 6 to 10% ferrite, although under equilibrium conditions at elevated temperatures, this same alloy can be homogenized into a fully austenitic structure. Thus, it is clear the retained ferrite in such duplex structure welds is unstable and transforms during elevated temperature applications. The stability of ferrite was investigated by measuring its composition after several different thermal treatments. The composition was measured by means of analytical electron microscopy of thinned foils, and only the major constituents, iron, chromium, and nickel, were analyzed. The composition of ferrite was measured as a function of aging time and temperature. It was found that, during aging, the ferrite composition changes and approaches a metastable equilibrium limit before eventually transforming to sigma phase or austenite. This limiting composition was determined as a function of temperature

  5. The influence of fabricating conditions and stability of austenite on forming behaviour of austenitic stainless steels

    The object of the investigation is the effect of various conditions of cold rolling austenitic stainless steels on the mechanical and technological properties and on the behaviour during forming with requirements in stretching and deep drawing. Fabricating 3 coils of various stability of austenite the degree of cold forming between the annealing processes is varied by cold rolling from the thickness of hot rolled coil to final thickness without or with one or two intermediate annealings. The most important results for cold forming sheets are: most favourable stretch forming behaviour is gained with instable austenitic steels, becomes better with increasing sheet thickness most favourable deep drawing behaviour is gained with highest degrees of cold rolling before final annealing, is undependent from the stability of austenite. Favourable is cold rolling to the highest degree before intermediate annealing, whilst the deformation before final annealing is of greater importance. According to the results conditions can be given for cold rolling to get best forming behaviour. (orig.)

  6. Oxidation resistant high creep strength austenitic stainless steel

    Brady, Michael P.; Pint, Bruce A.; Liu, Chain-Tsuan; Maziasz, Philip J.; Yamamoto, Yukinori; Lu, Zhao P.

    2010-06-29

    An austenitic stainless steel displaying high temperature oxidation and creep resistance has a composition that includes in weight percent 15 to 21 Ni, 10 to 15 Cr, 2 to 3.5 Al, 0.1 to 1 Nb, and 0.05 to 0.15 C, and that is free of or has very low levels of N, Ti and V. The alloy forms an external continuous alumina protective scale to provide a high oxidation resistance at temperatures of 700 to 800.degree. C. and forms NbC nanocarbides and a stable essentially single phase fcc austenitic matrix microstructure to give high strength and high creep resistance at these temperatures.

  7. Influence of Martensite Fraction on the Stabilization of Austenite in Austenitic-Martensitic Stainless Steels

    Huang, Qiuliang; De Cooman, Bruno C.; Biermann, Horst; Mola, Javad

    2016-05-01

    The influence of martensite fraction ( f α') on the stabilization of austenite was studied by quench interruption below M s temperature of an Fe-13Cr-0.31C (mass pct) stainless steel. The interval between the quench interruption temperature and the secondary martensite start temperature, denoted as θ, was used to quantify the extent of austenite stabilization. In experiments with and without a reheating step subsequent to quench interruption, the variation of θ with f α' showed a transition after transformation of almost half of the austenite. This trend was observed regardless of the solution annealing temperature which influenced the martensite start temperature. The transition in θ was ascribed to a change in the type of martensite nucleation sites from austenite grain and twin boundaries at low f α' to the faults near austenite-martensite (A-M) boundaries at high f α'. At low temperatures, the local carbon enrichment of such boundaries was responsible for the enhanced stabilization at high f α'. At high temperatures, relevant to the quenching and partitioning processing, on the other hand, the pronounced stabilization at high f α' was attributed to the uniform partitioning of the carbon stored at A-M boundaries into the austenite. Reduction in the fault density of austenite served as an auxiliary stabilization mechanism at high temperatures.

  8. Solidification cracking in austenitic stainless steel welds

    V Shankar; T P S Gill; S L Mannan; S Sundaresan

    2003-06-01

    Solidification cracking is a significant problem during the welding of austenitic stainless steels, particularly in fully austenitic and stabilized compositions. Hot cracking in stainless steel welds is caused by low-melting eutectics containing impurities such as S, P and alloy elements such as Ti, Nb. The WRC-92 diagram can be used as a general guide to maintain a desirable solidification mode during welding. Nitrogen has complex effects on weld-metal microstructure and cracking. In stabilized stainless steels, Ti and Nb react with S, N and C to form low-melting eutectics. Nitrogen picked up during welding significantly enhances cracking, which is reduced by minimizing the ratio of Ti or Nb to that of C and N present. The metallurgical propensity to solidification cracking is determined by elemental segregation, which manifests itself as a brittleness temperature range or BTR, that can be determined using the varestraint test. Total crack length (TCL), used extensively in hot cracking assessment, exhibits greater variability due to extraneous factors as compared to BTR. In austenitic stainless steels, segregation plays an overwhelming role in determining cracking susceptibility.

  9. Precipitation effects in austenitic stainless weld metals

    Creep-rupture specimen of similar welded joints of X6CrNi 18 11 (1.4948/AISI 304) and X6CrNiMo 17 13 (1.4919/AISI 316) show only low elongation after longtime testing. The reason for this loss of ductility was found by metallographic investigations. The weld metal of five joints had ferrite contents from 3 to 7.5%, due to a primary ferritic solidification. During creep testing in the temperature range from 500 to 800deg C carbide precipitation takes place at the austenite-ferrite grain boundaries, because delta ferrite is not in a state of equilibrium at these temperatures. After carbon has been used up, the remaining delta ferrite changes into sigma phase, if its alloying element content is high enough. In the upper temperature range, coagulation of sigma phase is dominating. At these large particles grain boundary migration is hindered. During the grain boundary sliding sigma phase particles break and initiate creep cracks. In fully austenintic weld metal sigma precipitation starts at austenite - austenite grain boundaries. During creep testing, void formation starts at sigma particles. Growing of voids leads to grain separations. (orig.)

  10. Austenite Formation from Martensite in a 13Cr6Ni2Mo Supermartensitic Stainless Steel

    Bojack, A.; Zhao, L.; Morris, P.F.; Sietsma, J.

    2016-01-01

    The influence of austenitization treatment of a 13Cr6Ni2Mo supermartensitic stainless steel (X2CrNiMoV13-5-2) on austenite formation during reheating and on the fraction of austenite retained after tempering treatment is measured and analyzed. The results show the formation of austenite in two stage

  11. Microstructural characterisation of carbon implanted austenitic stainless steel

    Low carbon (316L) austenitic stainless steel has been implanted with carbon ions with a fluence of 5 x 1017 C ions/cm2 using an ion energy of 75 keV. The effect of carbon ion implantation on the microstructure of the austenitic steel has been examined in cross-section using transmission electron microscopy (TEM) both before and after implantation, and the implantation data correlated with a computer based simulation, TRIM (Transport and Range of Ions in Matter). It has been found that the high-fluence carbon ion implantation modified the microstructure of the steel, as demonstrated by the presence of two amorphous layers separated by a layer of expanded austenite

  12. Microstructural characterisation of carbon implanted austenitic stainless steel

    Murphy, M.E. [Scientific Affairs Research Group, Stryker Orthopaedics, Raheen Business Park, Limerick (Ireland)]. E-mail: matthew.murphy@stryker.com; Insley, G.M. [Scientific Affairs Research Group, Stryker Orthopaedics, Raheen Business Park, Limerick (Ireland); Laugier, M.T. [Department of Physics, University of Limerick, Limerick (Ireland); Newcomb, S.B. [Sonsam Ltd., Glebe Laboratories, Newport, Tipperary (Ireland)

    2005-06-01

    Low carbon (316L) austenitic stainless steel has been implanted with carbon ions with a fluence of 5 x 10{sup 17} C ions/cm{sup 2} using an ion energy of 75 keV. The effect of carbon ion implantation on the microstructure of the austenitic steel has been examined in cross-section using transmission electron microscopy (TEM) both before and after implantation, and the implantation data correlated with a computer based simulation, TRIM (Transport and Range of Ions in Matter). It has been found that the high-fluence carbon ion implantation modified the microstructure of the steel, as demonstrated by the presence of two amorphous layers separated by a layer of expanded austenite.

  13. THE EFFECT OF SMALL AMOUNTS OF ELEMENTS ON SHAPES OF POTENTIODYNAMIC AND POTENTIOSTATIC CURVES OF AISI 304L AND AISI 316L STAINLESS STEELS IN CHLORIDE MEDIA

    D. Pulino-Sagradi

    1997-06-01

    Full Text Available Abstract - Samples of high purity grade and commercial purity grade type AISI 304L and AISI 316L steels were studied by the potentiodynamic and potentiostatic techniques in a naturally aerated 3.5% NaCl aqueous solution at a controlled temperature of (23±2°C. The anodic polarization curves of the potentiodynamic technique showed that not always is it possible to determine pitting potential: most of the curves of commercial purity grade steels displayed a smooth curvature in the region where the current density should increase sharply. The density current versus time potentiostatic curves also showed different shapes according to the purity grade steels: for the commercial purity grade steels, the current density showed large oscillations with time (related to unstable pits, whereas for the high purity grade steels, a regular behavior of current density as a function of time was found (related to stable pits

  14. Failure of austenitic stainless steel tubes during steam generator operation

    M. Głowacka

    2012-12-01

    Full Text Available Purpose: of this study is to analyze the causes of premature failure of steam generator coil made of austenitic stainless steel. Special attention is paid to corrosion damage processes within the welded joints.Design/methodology/approach: Examinations were conducted several segments of the coil made of seamless cold-formed pipes Ø 23x2.3 mm, of austenitic stainless steel grade X6CrNiTi18-10 according to EN 10088-1:2007. The working time of the device was 6 months. The reason for the withdrawal of the generator from the operation was leaks in the coil tube caused by corrosion damage. The metallographic investigations were performed with the use of light microscope and scanning electron microscope equipped with the EDX analysis attachment.Findings: Examinations of coil tubes indicated severe corrosion damages as pitting corrosion, stress corrosion cracking, and intergranular corrosion within base material and welded joints. Causes of corrosion was defined as wrong choice of austenitic steel grade, improper welding technology, lack of quality control of water supply and lack of surface treatment of stainless steel pipes.Research limitations/implications: It was not known the quality of water supply of steam generator and this was the reason for some problems in the identification of corrosion processes.Practical implications: Based on the obtained research results and literature studies some recommendations were formulated in order to avoid failures in the application of austenitic steels in the steam generators. These recommendations relate to the selection of materials, processing technology and working environment.Originality/value: Article clearly shows that attempts to increase the life time of evaporator tubes and steam coils by replacing non-alloy or low alloy structural steel by austenitic steel, without regard to restrictions on its use, in practice often fail.

  15. Fatigue behavior of welded austenitic stainless steel in different environments

    D. S. Yawas; S.Y. Aku; S.O. Aluko

    2014-01-01

    The fatigue behavior of welded austenitic stainless steel in 0.5 M hydrochloric acid and wet steam corrosive media has been investigated. The immersion time in the corrosive media was 30 days to simulate the effect on stainless steel structures/equipment in offshore and food processing applications and thereafter annealing heat treatment was carried out on the samples. The findings from the fatigue tests show that seawater specimens have a lower fatigue stress of 0.5 × 10−5 N/mm2 for the heat...

  16. Creep embrittlement of austenitic stainless steels with titanium addition

    Some cold-worked austenitic stainless steels of the 316 type with titanium addition exhibit a low creep ductility and a notch sensitivity in the temperature range of 5500C to 7500C and for times to rupture from 10 to 10000 hours. It has been shown that this embrittlement increases highly with cold-work percentage, with solution annealing temperature, and depends on chemical composition because these factors can modify the difference of hardness between grains and grain boundaries

  17. Manifestations of DSA in austenitic stainless steels and inconel alloys

    The aim of the investigation was to examine and compare different types of DSA (Dynamic Strain Aging) manifestations in AISI 316 austenitic stainless steel (SS) and Inconel 600 and Inconel 690 alloys by means of slow strain rate tensile testing, mechanical loss spectrometry (internal friction) and transmission electron microscopy (TEM). Another aim was to determine differences in the resulting dislocation structures and internal friction response of materials showing and not showing DSA behaviour

  18. Study of irradiation damage structures in austenitic stainless steels

    Hamada, Shozo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-08-01

    The irradiation damage microstructures in austenitic stainless steels, which have been proposed to be a candidate of structural materials of a fusion reactor, under ions and neutrons irradiation have been studied. In ion irradiation experiments, cross-sectional observation of the depth distribution of damage formed due to ion irradiation became available. Comparison and discussion between experimental results with TEM and the calculated ones in the depth profiles of irradiation damage microstructures. Further, dual-phase stainless steels, consisted of ferritic/austenitic phases, showed irradiation-induced/enhanced precipitation during ion irradiation. High Flux Isotope Reactor with high neutron fluxes was employed in neutron-irradiation experiments. Swelling of 316 steel showed irradiation temperature dependence and this had strong correlation with phase instability under heavy damage level. Swelling resistance of Ti-modified austenitic stainless steel, which has good swelling resistance, decreased during high damage level. This might be caused by the instability of Ti-carbide particles. The preparation method to reduce higher radioactivity of neutron-irradiated TEM specimen was developed. (author). 176 refs.

  19. Superficial and electrochemical study of stainless steel 304l with an inhibitory protective coating (TiO{sub 2} and ZrO{sub 2}); Estudio superficial y electroquimico de acero inoxidable 304L con una capa protectora inhibidora (TiO{sub 2} y ZrO{sub 2})

    Davila N, M. L.; Contreras R, A.; Arganis J, C. R., E-mail: aida.contreras@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    The degradation mechanisms in the boiling water reactors (BWR) have been an alert focus for owners, especially the cracking by stress corrosion cracking (SCC), therefore different techniques have been studied to inhibit this problem inside which is the water injection of hydrogen feeding (HWC, Hydrogen Water Chemistry), together with the noble metals injection (NMCA, Nobel Metal Chemical Addition) and the ceramic materials injection that form an inhibitory protective coating (Ipc). In this work the Ipc was simulated, for which were carried out hydro-thermals deposits starting from suspensions of 1000 ppm of zirconium oxide in its crystalline phase baddeleyite and titanium oxides in its anatase and rutile phases, on test tubes of stainless steel 304l previously rusty under simulated conditions of pressure and temperature of a BWR (288 C and 8 MPa). The superficial characterization was realized by scanning electron microscopy, energy-dispersive of X-ray and X-ray diffraction. The capacity to mitigate the corrosion was studied with the electrochemical technique of Tafel polarization (288 C and 8 MPa). The steel presents the formation of two oxide coatings formed by magnetite and hematite. The baddeleyite presents a deposit more thick and homogeneous it also presents the most negative electrochemical potential of corrosion, what indicates that it has the bigger capacity to mitigate the SCC. (Author)

  20. Study of diffusion welding between the zirconium alloy Zy{sub 4} and the stainless steel 304L. Morphology of the interface and nature of the phases formed; Etude du soudage diffusion entre l'alliage de zirconium Zy{sub 4} et l'acier inoxydable 304L. Morphologie de l'interface et nature des phases formees

    Taouinet, M. [Centre de Recherche Nucleaire de Draria (CRNA), Alger (Algeria); Lebaili, S. [Universite des Sciences et de la Technologie Houari Boumediene, Lab. de Science et Genie des Materiaux, Faculte de Genie Mecanique et Genie des Procedes, Alger (Algeria); Souami, N. [Centre de Recherche Nucleaire d' Alger (CRNA), Alger (Algeria)

    2009-07-01

    We approach a study on the solid state diffusion bonding between zircaloy (Zy{sub 4}) and stainless steel (304L) for an application in the sector of the nuclear power. The diffusion couples prepared underwent treatments at the temperatures ranging between 850 and 1020 C in a controlled atmosphere and under dynamic pressures. We give a particular attention to the morphology of the interface, formed, and to the determination of the nature of the compounds formed. The observations and chemical analysis are realized by ESEM-EDX and XRD. The quantitative distribution as well as the detailed localization of the basic chemical elements are defined by chemical profiles, and series of images X. The junction of diffusion consists of three zones distinct, formed from a solid solution FeCr({alpha}), rich in Cr in the form of a homogeneous edge, localized in steel side. The two other zones of the center of the Zy{sub 4} side are two phase of type Zr{sub {alpha}}, (FeCr){sub {alpha}}-Zr(Fe, Cr){sub 2} and Zr{sub {alpha}}-Zr{sub 2}(Fe{sub 1-x}Ni{sub x}), 0.15{<=}x{<=}0.25. The detailed results obtained, are a regrouping, between those obtained from the observations and chemical analysis and radio crystallographic. The values of the measured micro-hardnesses give very heterogeneous filiations to the level of the interface. (authors)

  1. Corrosion Behavior of Austenitic and Duplex Stainless Steels in Lithium Bromide

    Ayo Samuel AFOLABI; Alaneme, K.K.; Samson Oluwaseyi BADA

    2009-01-01

    The corrosion behavior of austenitic and duplex stainless steels in various concentrations of lithium, bromide solution was investigated by using the conventional weight loss measurement method. The results obtained show that corrosion of these steels occurred due to the aggressive bromide ion in the medium. Duplex stainless steel shows a greater resistance to corrosion than austenitic stainless steel in the medium. This was attributed to equal volume proportion of ferrite and austenite in th...

  2. Amorphous stainless steel coatings prepared by reactive magnetron-sputtering from austenitic stainless steel targets

    Cusenza, Salvatore; Schaaf, Peter

    2009-01-01

    Stainless steel films were reactively magnetron sputtered in argon/methane gas flow onto oxidized silicon wafers using austenitic stainless-steel targets. The deposited films of about 200 nm thickness were characterized by conversion electron Mössbauer spectroscopy, magnetooptical Kerr-effect, X-ray diffraction, scanning electron microscopy, Rutherford backscattering spectrometry, atomic force microscopy, corrosion resistance tests, and Raman spectroscopy. These complementary methods were us...

  3. Materials Reliability Program Environmental Fatigue Testing of Type 304L Stainless Steel U-Bends in Simulated PWR Primary Water (MRP-100), Phase A (Optimization of Test Procedures and Baseline Testing)

    OAK-B135 Laboratory data generated over the past two decades indicate the possibility of a significant reduction in component fatigue life when reactor water environmental effects are experimentally simulated. However, these laboratory data have not been confirmed by nuclear power plant component operating experience. In a recent comprehensive review of laboratory, component and structural test data performed through the EPRI Materials Reliability Program, flow rate was identified as a critical variable that was generally not considered in laboratory studies but is applicable in plant operating environments. Available corrosion fatigue data for carbon/low-alloy steel piping components suggest that high flow is beneficial regarding the effects of reactor water environments. Similar information is lacking for stainless steel piping materials. MRP-49 recommended that additional laboratory testing be performed to improve the applicability of laboratory test results under simulated reactor water environmental conditions for stainless steel materials. This report documents progress made in an extensive testing program underway to evaluate the effects of flow rate on fatigue of 304L stainless steel in simulated PWR primary water

  4. Fatigue behavior of welded austenitic stainless steel in different environments

    D.S. Yawas

    2014-01-01

    Full Text Available The fatigue behavior of welded austenitic stainless steel in 0.5 M hydrochloric acid and wet steam corrosive media has been investigated. The immersion time in the corrosive media was 30 days to simulate the effect on stainless steel structures/equipment in offshore and food processing applications and thereafter annealing heat treatment was carried out on the samples. The findings from the fatigue tests show that seawater specimens have a lower fatigue stress of 0.5 × 10−5 N/mm2 for the heat treated sample and 0.1 × 10−5 N/mm2 for the unheat-treated sample compared to the corresponding hydrochloric acid and steam samples. The post-welding heat treatment was found to increase the mechanical properties of the austenitic stainless steel especially tensile strength but it reduces the transformation and thermal stresses of the samples. These findings were further corroborated by the microstructural examination of the stainless steel specimen.

  5. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by austenitic filler metal

    Eghlimi, Abbas, E-mail: a.eghlimi@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Shamanian, Morteza [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Eskandarian, Masoomeh [Department of Materials Engineering, Shiraz University, Shiraz 71348-51154 (Iran, Islamic Republic of); Zabolian, Azam [Department of Natural Resources, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Szpunar, Jerzy A. [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9 (Canada)

    2015-08-15

    The evolution of microstructure and texture across an as-welded dissimilar UNS S32750 super duplex/UNS S30403 austenitic stainless steel joint welded by UNS S30986 (AWS A5.9 ER309LMo) austenitic stainless steel filler metal using gas tungsten arc welding process was evaluated by optical micrography and EBSD techniques. Due to their fabrication through rolling process, both parent metals had texture components resulted from deformation and recrystallization. The weld metal showed the highest amount of residual strain and had large austenite grain colonies of similar orientations with little amounts of skeletal ferrite, both oriented preferentially in the < 001 > direction with cub-on-cube orientation relationship. While the super duplex stainless steel's heat affected zone contained higher ferrite than its parent metal, an excessive grain growth was observed at the austenitic stainless steel's counterpart. At both heat affected zones, austenite underwent some recrystallization and formed twin boundaries which led to an increase in the fraction of high angle boundaries as compared with the respective base metals. These regions showed the least amount of residual strain and highest amount of recrystallized austenite grains. Due to the static recrystallization, the fraction of low degree of fit (Σ) coincident site lattice boundaries, especially Σ3 boundaries, was increased in the austenitic stainless steel heat affected zone, while the formation of subgrains in the ferrite phase increased the content of < 5° low angle boundaries at that of the super duplex stainless steel. - Graphical abstract: Display Omitted - Highlights: • Extensive grain growth in the HAZ of austenitic stainless steel was observed. • Intensification of < 100 > orientated grains was observed adjacent to both fusion lines. • Annealing twins with Σ3 CSL boundaries were formed in the austenite of both HAZ. • Cub-on-cube OR was observed between austenite and ferrite in the weld

  6. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by austenitic filler metal

    The evolution of microstructure and texture across an as-welded dissimilar UNS S32750 super duplex/UNS S30403 austenitic stainless steel joint welded by UNS S30986 (AWS A5.9 ER309LMo) austenitic stainless steel filler metal using gas tungsten arc welding process was evaluated by optical micrography and EBSD techniques. Due to their fabrication through rolling process, both parent metals had texture components resulted from deformation and recrystallization. The weld metal showed the highest amount of residual strain and had large austenite grain colonies of similar orientations with little amounts of skeletal ferrite, both oriented preferentially in the < 001 > direction with cub-on-cube orientation relationship. While the super duplex stainless steel's heat affected zone contained higher ferrite than its parent metal, an excessive grain growth was observed at the austenitic stainless steel's counterpart. At both heat affected zones, austenite underwent some recrystallization and formed twin boundaries which led to an increase in the fraction of high angle boundaries as compared with the respective base metals. These regions showed the least amount of residual strain and highest amount of recrystallized austenite grains. Due to the static recrystallization, the fraction of low degree of fit (Σ) coincident site lattice boundaries, especially Σ3 boundaries, was increased in the austenitic stainless steel heat affected zone, while the formation of subgrains in the ferrite phase increased the content of < 5° low angle boundaries at that of the super duplex stainless steel. - Graphical abstract: Display Omitted - Highlights: • Extensive grain growth in the HAZ of austenitic stainless steel was observed. • Intensification of < 100 > orientated grains was observed adjacent to both fusion lines. • Annealing twins with Σ3 CSL boundaries were formed in the austenite of both HAZ. • Cub-on-cube OR was observed between austenite and ferrite in the weld

  7. Effect of Geobacter sulfurreducens on the microbial corrosion of mild steel, ferritic and austenitic stainless steels

    Mehanna, Maha [Laboratoire de Genie Chimique, CNRS - Universite de Toulouse, 5 rue Paulin Talabot, BP1301, 31029 Toulouse (France)], E-mail: mum34@psu.edu; Basseguy, Regine; Delia, Marie-Line; Bergel, Alain [Laboratoire de Genie Chimique, CNRS - Universite de Toulouse, 5 rue Paulin Talabot, BP1301, 31029 Toulouse (France)

    2009-11-15

    The influence of Geobacter sulfurreducens was tested on the anaerobic corrosion of four different steels: mild steel 1145, ferritic steel 403 and austenitic steels 304L and 316L. Within a few hours, the presence of cells induced a free potential (E{sub oc}) ennoblement around +0.3 V on 1145 mild steel, 403 ferritic steel and 304L austenitic steels and slightly less on 316L. The kinetics of E{sub oc} ennoblement depended on the amount of bacteria in the inoculum, but the final potential value depended essentially on the nature of the material. This effect was due to the capacity of G. sulfurreducens to create a direct cathodic reaction on steel surfaces, extracting the electrons directly from material. The presence of bacterial cells modified the corrosion features of mild steel and ferritic steel, so that corrosion attacks were gathered in determined zones of the surface. Local corrosion was significantly enhanced on ferritic steel. Potential ennoblement was not sufficient to induce corrosion on austenitic steels. In contrast G. sulfurreducens delayed the occurrence of pitting on 304L steel because of its capability to oxidize acetate at high potential values. The electrochemical behaviour of 304L steel was not affected by the concentration of soluble electron donor (acetate, 1-10 mM) or the amount of planktonic cells; it was directly linked to the biofilm coverage. After polarization pitting curves had been recorded, microscopic observations showed that pits propagated only in the surface zones where cell settlement was the densest. The study evidenced that Geobacter sulfurreducens can control the electrochemical behaviour of steels in complex ways that can lead to severe corrosion. As Geobacteraceae are ubiquitous species in sediments and soils they should now be considered as possible crucial actors in the microbial corrosion of buried equipment.

  8. Effect of Geobacter sulfurreducens on the microbial corrosion of mild steel, ferritic and austenitic stainless steels

    The influence of Geobacter sulfurreducens was tested on the anaerobic corrosion of four different steels: mild steel 1145, ferritic steel 403 and austenitic steels 304L and 316L. Within a few hours, the presence of cells induced a free potential (Eoc) ennoblement around +0.3 V on 1145 mild steel, 403 ferritic steel and 304L austenitic steels and slightly less on 316L. The kinetics of Eoc ennoblement depended on the amount of bacteria in the inoculum, but the final potential value depended essentially on the nature of the material. This effect was due to the capacity of G. sulfurreducens to create a direct cathodic reaction on steel surfaces, extracting the electrons directly from material. The presence of bacterial cells modified the corrosion features of mild steel and ferritic steel, so that corrosion attacks were gathered in determined zones of the surface. Local corrosion was significantly enhanced on ferritic steel. Potential ennoblement was not sufficient to induce corrosion on austenitic steels. In contrast G. sulfurreducens delayed the occurrence of pitting on 304L steel because of its capability to oxidize acetate at high potential values. The electrochemical behaviour of 304L steel was not affected by the concentration of soluble electron donor (acetate, 1-10 mM) or the amount of planktonic cells; it was directly linked to the biofilm coverage. After polarization pitting curves had been recorded, microscopic observations showed that pits propagated only in the surface zones where cell settlement was the densest. The study evidenced that Geobacter sulfurreducens can control the electrochemical behaviour of steels in complex ways that can lead to severe corrosion. As Geobacteraceae are ubiquitous species in sediments and soils they should now be considered as possible crucial actors in the microbial corrosion of buried equipment.

  9. Experimental investigation of the residual stresses of 304L tubular welded joints; Caracterisation des contraintes residuelles sur assemblages soudes tubulaires en acier 304L

    Monin, L.; Panier, S.; Hariri, S.; Zakrzewski, D. [Ecole des Mines de Douai, 941, rue Charles Bourseul, BP 10838, 59508 DOUAI Cedex (France); Faidi, C. [EDF-SEPTEN, 12-14, avenue Dutrievoz, 69628 VILLEURBANNE (France)

    2007-07-01

    In the nuclear energy industry, the use of components made of austenitic stainless steel is widely spread, because of its specific thermal properties. The assembly of these pressure vessels and piping by welding processes often requires surface mechanical operations. These operations aim at hardening surfaces and lowering roughness. Nevertheless the main effect of these operations is the occurrence of residual stresses which can have positive or negative effects on the fatigue life. In this study, we focus on the evaluation and relaxation of residual stresses level on AISI 304L austenitic stainless steel tubular welded structures. Some of these rings are base metal rings (which stand as reference), the rest presents a longitudinal and symmetrical Y-weld joint, with or without grinding. Surface residual stresses, and their relaxation, were determined by using the X-ray diffraction method. (authors) [French] L'utilisation de composants en acier inoxydable austenitique, aux proprietes thermiques bien specifiques, est tres courante dans le domaine de la production d'energie nucleaire. Les procedes d'assemblage par soudage de ces equipements sous pression requierent des traitements de parachevement mecanique afin d'ameliorer l'etat de surface et modifier l'etat mecanique en introduisant des contraintes residuelles, qui peuvent avoir une influence sur la duree de vie de la structure. Cette etude porte sur la caracterisation et la relaxation des contraintes residuelles, determinees sur des eprouvettes annulaires specifiques en acier inoxydable austenitique de type 304L, a l'etat brut ou avec des soudures, arasees ou non. La methode de determination utilisee est la diffraction des rayons X. La relaxation de ces contraintes au cours d'essais de fatigue est egalement etudiee. (auteurs)

  10. Evaluation of Microstructure and Mechanical Properties in Dissimilar Austenitic/Super Duplex Stainless Steel Joint

    Rahmani, Mehdi; Eghlimi, Abbas; Shamanian, Morteza

    2014-10-01

    To study the effect of chemical composition on microstructural features and mechanical properties of dissimilar joints between super duplex and austenitic stainless steels, welding was attempted by gas tungsten arc welding process with a super duplex (ER2594) and an austenitic (ER309LMo) stainless steel filler metal. While the austenitic weld metal had vermicular delta ferrite within austenitic matrix, super duplex stainless steel was mainly comprised of allotriomorphic grain boundary and Widmanstätten side plate austenite morphologies in the ferrite matrix. Also the heat-affected zone of austenitic base metal comprised of large austenite grains with little amounts of ferrite, whereas a coarse-grained ferritic region was observed in the heat-affected zone of super duplex base metal. Although both welded joints showed acceptable mechanical properties, the hardness and impact strength of the weld metal produced using super duplex filler metal were found to be better than that obtained by austenitic filler metal.

  11. Determination of delta ferrite volumetric fraction in austenitic stainless steel

    Measurements of delta ferrite volumetric fraction in AISI 304 austenitic stainless steels were done by X-ray diffraction, quantitative metallography (point count) and by means of one specific commercial apparatus whose operational principle is magnetic-inductive: The Ferrite Content Meter 1053 / Institut Dr. Foerster. The results obtained were comparated with point count, the reference method. It was also investigated in these measurements the influence of the martensite induced by mechanical deformation. Determinations by X-ray diffraction, by the ratio between integrated intensities of the ferrite (211) and austenite (311) lines, are in excelent agreement with those taken by point count. One correction curve for the lectures of the commercial equipment in focus was obtained, for the range between zero and 20% of delta ferrite in 18/8 stainless steels. It is demonstrated that, depending on the employed measurement method and surface finishing of the material to be analysed, the presence of martensite produced by mechanical deformation of the austenitic matrix is one problem to be considered. (Author)

  12. Corrosion resistance of kolsterised austenitic 304 stainless steel

    Abudaia, F. B., E-mail: fabudaia@yahoo.com; Khalil, E. O., E-mail: ekhalil9@yahoo.com; Esehiri, A. F., E-mail: Hope-eseheri@hotmail.co.uk; Daw, K. E., E-mail: Khawladaw@yahoo.com [University of Tripoli Department of Materials and Metallurgical Eng, Tripoli-Libya P.O.Box13589 (Libya)

    2015-03-30

    Austenitic stainless suffers from low wear resistance in applications where rubbing against other surfaces is encountered. This drawback can be overcome by surface treatment such as coating by hard materials. Other treatments such as carburization at relatively low temperature become applicable recently to improve hardness and wear resistance. Carburization heat treatment would only be justified if the corrosion resistance is unaffected. In this work samples of 304 stainless steels treated by colossal supersaturation case carburizing (known as Kolsterising) carried out by Bodycote Company was examined for pitting corrosion resistance at room temperature and at 50 °C. Comparison with results obtained for untreated samples in similar testing conditions show that there is no deterioration in the pitting resistance due to the Kolsterising heat treatment. X ray diffraction patterns obtained for Kolsterising sample showed that peaks correspond to the austenite phase has shifted to lower 2θ values compared with those of the untreated sample. The shift is an indication for expansion of austenite unit cells caused by saturation with diffusing carbon atoms. The XRD of Kolsterising samples also revealed additional peaks appeared in the patterns due to formation of carbides in the kolsterised layer. Examination of these additional peaks showed that these peaks are attributed to a type of carbide known as Hagg carbide Fe{sub 2}C{sub 5}. The absence of carbides that contain chromium means that no Cr depletion occurred in the layer and the corrosion properties are maintained. Surface hardness measurements showed large increase after Kolsterising heat treatment.

  13. Effect of shot peening on metastable austenitic stainless steels

    Fargas, G., E-mail: gemma.fargas@upc.edu [CIEFMA - Departament de Ciència dels Materials i Enginyeria Metallúrgica, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain); CRnE, Centre de Recerca en Nanoenginyeria, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain); Roa, J.J.; Mateo, A. [CIEFMA - Departament de Ciència dels Materials i Enginyeria Metallúrgica, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain); CRnE, Centre de Recerca en Nanoenginyeria, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain)

    2015-08-12

    In this work, shot peening was performed in a metastable austenitic stainless steel EN 1.4318 (AISI 301LN) in order to evaluate its effect on austenite to martensite phase transformation and also the influence on the fatigue limit. Two different steel conditions were considered: annealed, i.e., with a fully austenitic microstructure, and cold rolled, consisting of a mixture of austenite and martensite. X-ray diffraction, electron back-scattered diffraction and focus ion beam, as well as nanoindentation techniques, were used to elucidate deformation mechanisms activated during shot peening and correlate with fatigue response. Results pointed out that extensive plastic deformation and phase transformation developed in annealed specimens as a consequence of shot peening. However, the increase of roughness and the generation of microcracks led to a limited fatigue limit improvement. In contrast, shot peened cold rolled specimens exhibited enhanced fatigue limit. In the latter case, the main factor that determined the influence on the fatigue response was the distance from the injector, followed successively by the exit speed of the shots and the coverage factor.

  14. Effect of shot peening on metastable austenitic stainless steels

    In this work, shot peening was performed in a metastable austenitic stainless steel EN 1.4318 (AISI 301LN) in order to evaluate its effect on austenite to martensite phase transformation and also the influence on the fatigue limit. Two different steel conditions were considered: annealed, i.e., with a fully austenitic microstructure, and cold rolled, consisting of a mixture of austenite and martensite. X-ray diffraction, electron back-scattered diffraction and focus ion beam, as well as nanoindentation techniques, were used to elucidate deformation mechanisms activated during shot peening and correlate with fatigue response. Results pointed out that extensive plastic deformation and phase transformation developed in annealed specimens as a consequence of shot peening. However, the increase of roughness and the generation of microcracks led to a limited fatigue limit improvement. In contrast, shot peened cold rolled specimens exhibited enhanced fatigue limit. In the latter case, the main factor that determined the influence on the fatigue response was the distance from the injector, followed successively by the exit speed of the shots and the coverage factor

  15. Strain induced grain boundary migration effects on grain growth of an austenitic stainless steel during static and metadynamic recrystallization

    Static and metadynamic recrystallization of an AISI 304L austenitic stainless steel was investigated at 1100 °C and 10− 2 s− 1 strain rate. The kinetics of recrystallization was determined through double hit compression tests. Two strain levels were selected for the first compression hit: εf = 0.15 for static recrystallization (SRX) and 0.25 for metadynamic recrystallization (MDRX). Both the as-deformed and the recrystallized microstructures were investigated through optical microscopy and electron back-scattered diffraction (EBSD) technique. During deformation, strain induced grain boundary migration appeared to be significant, producing a square-like grain boundary structure aligned along the directions of the maximum shear stresses in compression. EBSD analysis revealed to be as a fundamental technique that the dislocation density was distributed heterogeneously in the deformed grains. Grain growth driven by surface energy reduction was also investigated, finding that it was too slow to explain the experimental data. Based on microstructural results, it was concluded that saturation of the nucleation sites occurred in the first stages of recrystallization, while grain growth driven by strain induced grain boundary migration (SIGBM) dominated the subsequent stages. - Highlights: • Recrystallization behavior of a stainless steel was investigated at 1100 °C. • EBSD revealed that the dislocation density distribution was heterogeneous during deformation. • Saturation of nucleation sites occurred in the first stages of recrystallization. • Strain induced grain boundary migration (SIGBM) effects were significant. • Grain growth driven by SIGBM dominated the subsequent stages

  16. Defect microstructures and deformation mechanisms in irradiated austenitic stainless steels

    Microstructural evolution and deformation behavior of austenitic stainless steels are evaluated for neutron, heavy-ion and proton irradiated materials. Radiation hardening in austenitic stainless steels is shown to result from the evolution of small interstitial dislocation loops during light-water-reactor (LWR) irradiation. Available data on stainless steels irradiated under LWR conditions have been analyzed and microstructural characteristics assessed for the critical fluence range (0.5 too 10 dpa) where irradiation-assisted stress corrosion cracking susceptibility is observed. Heavy-ion and proton irradiations are used to produce similar defect microstructures enabling the investigation of hardening and deformation mechanisms. Scanning electron, atomic force and transmission electron microscopies are employed to examine tensile test strain rate and temperature effects on deformation characteristics. Dislocation loop microstructures are found to promote inhomogeneous planar deformation within the matrix and regularly spaced steps at the surface during plastic deformation. Twinning is the dominant deformation mechanism at rapid strain rates and at low temperatures, while dislocation channeling is favored at slower strain rates and at higher temperatures. Both mechanisms produce highly localized deformation and large surface slip steps. Channeling, in particular, is capable of creating extensive dislocation pileups and high stresses at internal grain boundaries which may promote intergranular cracking

  17. A review of hot cracking in austenitic stainless steel weldments

    The occurrence of hot cracking in austenitic stainless steel weldments is discussed with respect to its origin and metallurgical contributory factors. Of the three types of hot cracking, namely solidification cracking, liquation and ductility dip cracking, solidification cracking occurs in the interdendritic regions in weld metal while liquation and ductility dip cracking occur intergranularly in the heat-affected zone (HAZ). Segregation of impurity and minor elements such as sulphur, phosphorous, silicon, niobium, boron etc to form low melting eutectic phases has been found to be the major cause of hot cracking. Control of HAZ cracking requires minimisation of impurity elements in the base metal. In stabilized stainless steels containing niobium, higher amounts of delta-ferrite have been found necessary to prevent cracking than in unstabilized compositions. Titanium compounds have been found to cause liquation cracking in maraging steels and titanium containing stainless steels and superalloys. In nitrogen added stainless steels, cracking resistance decreases when the solidification mode changes to primary austenitic due to nitrogen addition. A review of the test methods to evaluate hot cracking behaviour showed that several external restraint and semi-self-restraint tests are available. The finger Test, WRC Fissure Bend Test, the PVR test and the Varestraint Test are described along with typical test results. Hot ductility testing to reveal HAZ cracking tendency during welding is described, which is of particular importance to stabilized stainless steels. Based on the literature, recommendations are made for welding stabilized and nitrogen added steels, indicating areas of further work. (author). 81 refs., 30 figs., 1 tab

  18. Fatigue crack growth of a metastable austenitic stainless steel

    Martelo, D.F.; Mateo García, Antonio Manuel; Chapetti, M.D.

    2015-01-01

    The fatigue crack growth behavior of an austenitic metastable stainless steel AISI 301LN in the Paris region is investigated in this work. The fatigue crack growth rate curves are evaluated in terms of different parameters such as the range of stress intensity factor Delta K, the effective stress intensity factor Delta K-eff, and the two driving force parameter proposed by Kujawski K*.; The finite element method is used to calculate the stress intensity factor of the specimens used in this in...

  19. On the Development of the Brass-Type Texture in Austenitic Stainless Steel

    Singh, C. D.

    1993-01-01

    It has been clarified and demonstrated that the conclusions drawn by Singh, Ramaswamy and Suryanarayana (1992) in an investigation of development of rolling textures in an austenitic stainless steel are correct. The observations and reinterpretations drawn by Leffers (1993) are without any proper scientific basis and do not hold good at least in austenitic stainless steel.

  20. 75 FR 70908 - Circular Welded Austenitic Stainless Pressure Pipe From the People's Republic of China: Extension...

    2010-11-19

    ... International Trade Administration Circular Welded Austenitic Stainless Pressure Pipe From the People's Republic... of the antidumping duty order on circular welded austenitic stainless pressure pipe from the People's... for Revocation in Part, 75 FR 22107 (April 27, 2010). The period of review (``POR'') is September...

  1. Hydrogen embrittlement of SUS 316 austenitic stainless steel weldments

    In order to understand the degrading behavior of hydrogen embrittlement of SUS 316 austenitic stainless steel weldment, base metal and welded joints which were welded with EBW and SMAW and heat-treated at 650 0C - 24 hr for carbide and 850 0C - 6 hr for Sigma-phase precipitation after welding were evaluated in tensile test at room temperature with and without hydrogen charging in the autoclave at 450 0C - 220 atm - 48 hr treatment. As a result the drastic degrading to 40 % in reduction in area of the welded joint was observed when hydrogen of 41 ppm was contained in the welded joint of SUS 316 stainless steel. (author)

  2. Precipitation and cavity formation in austenitic stainless steels during irradiation

    Microstructural evolution in austenitic stainless steels subjected to displacement damage at high temperature is strongly influenced by the interactions between helium atoms and second phase particles. Cavity nucleation occurs by the trapping of helium at partially coherent particle-matrix interfaces. The recent precipitate point defect collector theory describes the more rapid growth of precipitate-attached cavities compared to matrix cavities where the precipitate-matrix interface collects point defects to augment the normal point deflect flux to the cavitry. Data are presented which support these ideas. It is shown that during nickel ion irradiation of a titanium-modified stainless steel at 6750C the rate of injection of helium has a strong effect on the total swelling and also on the nature and distribution of precipitate phases

  3. Ion beam nitriding of single and polycrystalline austenitic stainless steel

    Polycrystalline and single crystalline [orientations (001) and (011)] AISI 316L austenitic stainless steel was implanted at 400 deg. C with 1.2 keV nitrogen ions using a high current density of 0.5 mA cm-2. The nitrogen distribution profiles were determined using nuclear reaction analysis (NRA). The structure of nitrided polycrystalline stainless steel samples was analyzed using glancing incidence and symmetric x-ray diffraction (XRD) while the structure of the nitrided single crystalline stainless steel samples was analyzed using x-ray diffraction mapping of the reciprocal space. For identical treatment conditions, it is observed that the nitrogen penetration depth is larger for the polycrystalline samples than for the single crystalline ones. The nitrogen penetration depth depends on the orientation, the being more preferential for nitrogen diffusion than . In both type of samples, XRD analysis shows the presence of the phase usually called 'expanded' austenite or γN phase. The lattice expansion depends on the crystallographic plane family, the (001) planes showing an anomalously large expansion. The reciprocal lattice maps of the nitrided single crystalline stainless steel demonstrate that during nitriding lattice rotation takes place simultaneously with lattice expansion. The analysis of the results based on the presence of stacking faults, residual compressive stress induced by the lattice expansion, and nitrogen concentration gradient indicates that the average lattice parameter increases with the nitrided layer depth. A possible explanation of the anomalous expansion of the (001) planes is presented, which is based on the combination of faster nitriding rate in the (001) oriented grains and the role of stacking faults and compressive stress

  4. Austenite Formation from Martensite in a 13Cr6Ni2Mo Supermartensitic Stainless Steel

    Bojack, A.; Zhao, L; Morris, P. F.; Sietsma, J.

    2016-01-01

    The influence of austenitization treatment of a 13Cr6Ni2Mo supermartensitic stainless steel (X2CrNiMoV13-5-2) on austenite formation during reheating and on the fraction of austenite retained after tempering treatment is measured and analyzed. The results show the formation of austenite in two stages. This is probably due to inhomogeneous distribution of the austenite-stabilizing elements Ni and Mn, resulting from their slow diffusion from martensite into austenite and carbide and nitride dis...

  5. Material Characterization of Fatigue Specimens made from Meta-stable Austenitic Stainless Steel

    The main objective of the EU-project CRETE (Contract No.: FIS5-1999-00280) was to assess the capability and the reliability of innovative NDT-inspection techniques for the detection of material degradation, induced by thermal fatigue and neutron irradiation, of metastable austenitic and ferritic low-alloy steel. Several project partners tested aged or irradiated samples, using various techniques (acoustic, magnetic and thermoelectric). However, these indirect methods require a careful interpretation of the measured signal in terms of micro-structural evolutions due to ageing of the material. Therefore the material had to be characterized in its undamaged, as well as in its damaged state. The present report summarises only the material characterization of the fatigue specimens. It is issued simultaneously as an PSI Bericht and the CRETE work package 3 (WP3) report. Each partner according to their own specifications purchased three materials under investigation, namely AISI 347, AISI 321 and AISI 304L. After sending the material to PSI, all fatigue specimens were manufactured by the same Swiss company. Each partner was responsible for his fatigue tests which are documented in the report WP1, written by FANP. In order to characterize the material in its unfatigued as well as in its fatigued state and to consider microstructural changes related to fatigue damage the methods listed below were employed either by PSI or by INSA de Lyon: (1) Inductive Coupled Plasma Emission Photometry (ICP-OES) was applied to determine the chemical composition, (2) Scanning electron microscopy (SEM) for observing cracks, slip bands between grain and twin boundaries, - Ferromaster for measuring the magnetic permeability, (3) Physical Properties Measuring System (PPMS) for measuring magnetization characteristics, (4) Neutron- and advanced X-ray diffraction methods for the quantitative determination of martensite, - Transmission electron microscopy (TEM) for the observation of crystalline

  6. Nano/ultrafine grained austenitic stainless steel through the formation and reversion of deformation-induced martensite: Mechanisms, microstructures, mechanical properties, and TRIP effect

    Shirdel, M., E-mail: mshirdel1989@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Mirzadeh, H., E-mail: hmirzadeh@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Advanced Metalforming and Thermomechanical Processing Laboratory, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Parsa, M.H., E-mail: mhparsa@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Center of Excellence for High Performance Materials, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Advanced Metalforming and Thermomechanical Processing Laboratory, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2015-05-15

    A comprehensive study was carried out on the strain-induced martensitic transformation, its reversion to austenite, the resultant grain refinement, and the enhancement of strength and strain-hardening ability through the transformation-induced plasticity (TRIP) effect in a commercial austenitic 304L stainless steel with emphasis on the mechanisms and the microstructural evolution. A straightforward magnetic measurement device, which is based on the measurement of the saturation magnetization, for evaluating the amount of strain-induced martensite after cold rolling and reversion annealing in metastable austenitic stainless steels was used, which its results were in good consistency with those of the X-ray diffraction (XRD) method. A new parameter called the effective reduction in thickness was introduced, which corresponds to the reasonable upper bound on the obtainable martensite fraction based on the saturation in the martensitic transformation. By means of thermodynamics calculations, the reversion mechanisms were estimated and subsequently validated by experimental results. The signs of thermal martensitic transformation at cooling stage after reversion at 850 °C were found, which was attributed to the rise in the martensite start temperature due to the carbide precipitation. After the reversion treatment, the average grain sizes were around 500 nm and the nanometric grains of the size of ~ 65 nm were also detected. The intense grain refinement led to the enhanced mechanical properties and observation of the change in the work-hardening capacity and TRIP effect behavior. A practical map as a guidance for grain refining and characterizing the stability against grain growth was proposed, which shows the limitation of the reversion mechanism for refinement of grain size. - Graphical abstract: Display Omitted - Highlights: • Nano/ultrafine grained austenitic stainless steel through martensite treatment • A parameter descriptive of a reasonable upper bound on

  7. Expanded austenite in nitrided layers deposited on austenitic and super austenitic stainless steel grades; Analise da austenita expandida em camadas nitretadas em acos inoxidaveis austeniticos e superaustenitico

    Casteletti, L.C.; Fernandes, F.A.P.; Heck, S.C. [Universidade de Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). Escola de Engenharia. Dept. de Engenharia de Materais, Aeronautica e Automobilistica; Oliveira, A.M. [Instituto de Educacao, Ciencia e Tecnologia do Maranhao (IFMA), Sao Luis, MA (Brazil); Gallego, J., E-mail: gallego@dem.feis.unesp.b [UNESP, Ilha Solteira, SP (Brazil). Dept. Engenharia Mecanica

    2010-07-01

    In this work nitrided layers deposited on austenitic and super austenitic stainless steels were analyzed through optical microscopy and X-rays diffraction analysis (XRD). It was observed that the formation of N supersaturated phase, called expanded austenite, has promoted significant increment of hardness (> 1000HV). XRD results have indicated the anomalous displacement of the diffracted peaks, in comparison with the normal austenite. This behavior, combined with peaks broadening, it was analyzed in different nitriding temperatures which results showed good agreement with the literature. (author)

  8. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing.

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands. PMID:26601037

  9. Decomposition kinetics of expanded austenite with high nitrogen contents

    Christiansen, Thomas; Somers, Marcel A. J.

    2006-01-01

    This paper addresses the decomposition kinetics of synthesized homogeneous expanded austenite formed by gaseous nitriding of stainless steel AISI 304L and AISI 316L with nitrogen contents up to 38 at.% nitrogen. Isochronal annealing experiments were carried out in both inert (N2) and reducing (H2......) atmospheres. Differential thermal analysis (DTA) and thermogravimetry were applied for identification of the decomposition reactions and X-ray diffraction analysis was applied for phase analysis. CrN precipitated upon annealing; the activation energies are 187 kJ/mol and 128 kJ/mol for AISI 316L and AISI 304L...

  10. Decomposition kinetics of expanded austenite with high nitrogen contents

    Christiansen, Thomas; Somers, Marcel A. J.

    2006-01-01

    ) atmospheres. Differential thermal analysis (DTA) and thermogravimetry were applied for identification of the decomposition reactions and X-ray diffraction analysis was applied for phase analysis. CrN precipitated upon annealing; the activation energies are 187 kJ/mol and 128 kJ/mol for AISI 316L and AISI 304L......This paper addresses the decomposition kinetics of synthesized homogeneous expanded austenite formed by gaseous nitriding of stainless steel AISI 304L and AISI 316L with nitrogen contents up to 38 at.% nitrogen. Isochronal annealing experiments were carried out in both inert (N2) and reducing (H2...

  11. Mechanized welding of austenitic precision stainless steel tubes

    Austenitic stainless steel tubes of material no. 1,4541 and 1,4550 are used for the tube systems to transport active and inactive gases in reactor experiments. A fully mechanical method was developed for the joining of these tubes by welding which makes use of an electrode holder with surrounding W electrode. This method, whose application is described here, enables the joining of the tubes in all welding positions. A pulsating direct current is used as welding current. Breaking tests on the welded samples gave values corresponding to the strength of the materials mentioned. The welded seams are subjected to the helium leak test and to the X-ray test. (GSCH/LH)

  12. Small punch creep test in a 316 austenitic stainless steel

    Saucedo-Munoz, M. L.; Komazaki, S. I.; Hashida, T.; Lopez-Hirata, V. M.

    2015-03-30

    The small punch creep test was applied to evaluate the creep behavior of a 316 type austenitic stainless steel at temperatures of 650, 675 and 700 degree centigrade. The small punch test was carried out using a creep tester with a specimen size of 10x10x0.3 mm at 650, 675 and 700 degree centigrade using loads from 199 to 512 N. The small punch creep curves show the three stages found in the creep curves of the conventional uniaxial test. The conventional creep relationships which involve parameters such as creep rate, stress, time to rupture and temperature were followed with the corresponding parameters of small punch creep test and they permitted to explain the creep behavior in this steel. The mechanism and activation energy of the deformation process were the grain boundary sliding and diffusion, respectively, during creep which caused the intergranular fracture in the tested specimens. (Author)

  13. Formability analysis of austenitic stainless steel-304 under warm conditions

    Lade, Jayahari; Singh, Swadesh Kumar; Banoth, Balu Naik; Gupta, Amit Kumar

    2013-12-01

    A warm deep drawing process of austenitic stainless steel-304 (ASS-304) of circular blanks with coupled ther mal analysis is studied in this article. 65 mm blanks were deep drawn at different temperatures and thickness distribution is experimentally measured after cutting the drawn component into two halves. The process is simulated using explicit fin ite element code LS-DYNA. A Barlat 3 parameter model is used in the simulation, as the material is anisotropic up to 30 0°C. Material properties for the simulation are determined at different temperatures using a 5 T UTM coupled with a furn ace. In this analysis constant punch speed and variable blank holder force (BHF) is applied to draw cups without wrinkle.

  14. Small punch creep test in a 316 austenitic stainless steel

    The small punch creep test was applied to evaluate the creep behavior of a 316 type austenitic stainless steel at temperatures of 650, 675 and 700 degree centigrade. The small punch test was carried out using a creep tester with a specimen size of 10x10x0.3 mm at 650, 675 and 700 degree centigrade using loads from 199 to 512 N. The small punch creep curves show the three stages found in the creep curves of the conventional uniaxial test. The conventional creep relationships which involve parameters such as creep rate, stress, time to rupture and temperature were followed with the corresponding parameters of small punch creep test and they permitted to explain the creep behavior in this steel. The mechanism and activation energy of the deformation process were the grain boundary sliding and diffusion, respectively, during creep which caused the intergranular fracture in the tested specimens. (Author)

  15. Residual stresses of water-jet peened austenitic stainless steel

    The specimen material was austenitic stainless steel, SUS316L. The residual stress was induced by water-jet peening. The residual stress was measured using the 311 diffraction with conventional X-rays. The measured residual stress showed the equi-biaxial stress state. To investigate thermal stability of the residual stress, the specimen was aged thermally at 773K in air to 1000h. The residual stress kept the equi-biaxial stress state against the thermal aging. Lattice plane dependency of the residual stress induced by water-jet peening was evaluated using hard synchrotron X-rays. The residual stress measured by the soft lattice plane showed the equi-biaxial stress state, but the residual stress measured by the hard lattice plane did not. In addition, the distributions of the residual stress in the depth direction were measured using a strain scanning method with hard synchrotron X-rays and neutrons. (author)

  16. Thermal deformation behavior and microstructure of nuclear austenitic stainless steel

    2009-01-01

    Gleeble-1500D thermal simulation tester was employed in the hot-compression investigation of as-cast nuclear 304 austenitic stainless steel under conditions: deformation temperature 950―1200℃; deformations 30% and 50%; deformation rates 0.01 and 0.1 s?1. The results show that the flow stress decreases with temperature rise under the same strain rate and deformation, that the flow stress increases with deformation under the same temperature and strain rate, and that the flow stress increases with strain rate under the same temperature condition, i.e., work hardening becomes distinct. Materials exhibit better strength-toughness when the strain rate is 0.01 s-1, the deformation is 50%, and the temperature is 1050℃.

  17. Low temperature sensitization of austenitic stainless steel weldments

    The effect of long heat treatments on the structure and degree of sensitization of the HAZ in an austenitic stainless steel weld joint were studied. In the literature review sensitization as a phenomenon and the various metallurgical factors that affect sensitization are presented. Sensitization that occurs at temperatures well below the normal sensitization range, the so called low temperature sensitization (LTS), is described and the various variables affecting the susceptibility to LTS are considered. Transmission electron microscopy revealed that M23C6 carbides precipitate on rain boundaries in the HAZ. After welding the carbides are small and the degree of sensitization is low, but aging at temperatures below the precipitation range caused the growth of previously nucleated carbides. At the same time the degree of sensitization increased considerably. The degree of sensitization was evaluated with various intergranular corrosion tests. The electrochemical EPR-test proved to be suitable for measuring small changes in the degree of sensitization. (author)

  18. Lattice dynamics of high-pressure hydrogenated austenitic stainless steels

    Hoelzel, M [Darmstadt University of Technology, Institute for Materials Science, Petersenstrasse 23, 64287 Darmstadt (Germany); Rajevac, V [Darmstadt University of Technology, Institute for Materials Science, Petersenstrasse 23, 64287 Darmstadt (Germany); Danilkin, S A [Bragg Institute, ANSTO, New Illawarra Road, Lucas Heights, NSW 2234PMB 1, Menai (Australia); Udovic, T J [National Institute of Standards and Technology, NIST Center for Neutron Research, 100 Bureau Drive, MS 8562, Gaithersburg, MD 20899-8562 (United States); Wipf, H [Darmstadt University of Technology, Institute for Solid State Physics, Hochschulstrasse 6, 64289 Darmstadt (Germany); Fuess, H [Darmstadt University of Technology, Institute for Materials Science, Petersenstrasse 23, 64287 Darmstadt (Germany)

    2005-06-15

    The vibrational spectra of hydrogenated austenitic stainless steels AISI 304 (Fe/Cr18/Ni10) and AISI 310 (Fe/Cr25/Ni20) were investigated by inelastic neutron scattering. Based on the results of previous neutron diffraction studies, the data have been analysed by model calculations. The peaks corresponding to the optical modes show a significant broadening because of the variation of vibrational energies from one hydrogen site to another in the alloys. At high hydrogen contents (hydrogen-to-metal atomic ratios H/Me {approx}1) the peak profile is dominated by hydrogen-hydrogen interactions. Correspondingly, the optical peaks show a splitting into longitudinal and transverse modes for H/Me {approx}1. A continuous lowering of the vibrational energies with increasing hydrogen content was observed for both steels, reflecting a weakening of the hydrogen-metal interactions with increasing hydrogen-metal atomic distance.

  19. Lattice dynamics of high-pressure hydrogenated austenitic stainless steels

    The vibrational spectra of hydrogenated austenitic stainless steels AISI 304 (Fe/Cr18/Ni10) and AISI 310 (Fe/Cr25/Ni20) were investigated by inelastic neutron scattering. Based on the results of previous neutron diffraction studies, the data have been analysed by model calculations. The peaks corresponding to the optical modes show a significant broadening because of the variation of vibrational energies from one hydrogen site to another in the alloys. At high hydrogen contents (hydrogen-to-metal atomic ratios H/Me ∼1) the peak profile is dominated by hydrogen-hydrogen interactions. Correspondingly, the optical peaks show a splitting into longitudinal and transverse modes for H/Me ∼1. A continuous lowering of the vibrational energies with increasing hydrogen content was observed for both steels, reflecting a weakening of the hydrogen-metal interactions with increasing hydrogen-metal atomic distance

  20. Interaction of deuterium with SS316 austenitic stainless steel

    Accumulation and desorption of deuterium implanted in SS316 austenitic stainless steel to concentrations ∼1 at.%, the influence of helium and radiation-induced defects on the process of mass transfer of deuterium and the mechanical properties of steel at different levels of damage were studied. The samples were irradiated with 15 keV/D, 30 keV/He and 1.4 MeV/Ar ions. For modeling of the defect structure formed in the materials of nuclear power plants, the irradiation with high-energy argon ions was performed. Studies were carried out by means of ion implantation, nuclear reactions D(3He,p)4He with analyzing beam of 3He (E = 0.3...1.4 MeV), thermal desorption spectroscopy, transmission electron microscopy and nanoindentation. It was found that the retention of deuterium in steel is increased significantly in the presence of radiation damage created by helium and argon pre-implantation

  1. Thermal stability of ultrafine-grained austenitic stainless steels

    Ultrafine-grained 316 and 304 austenitic stainless steel samples have been produced by high pressure torsion. Their microstructure, after deformation and annealing at a temperature in the 350-900 deg. C range, has been characterized using several techniques (transmission electron microscopy, X-ray diffraction, Moessbauer spectroscopy). The average grain size in the ultrafine-grained 316 is about 40 nm while it is larger in the ultrafine-grained 304 due to a smaller deformation. Results show the formation of α'-martensite during deformation in both steels while ε-martensite is formed only in the 304 steel. Annealing at 350 deg. C induces the decrease of α'-martensite content in the 316 steel. The trend is different in the 304 steel, in which the α'-martensite content increases. Recrystallization of grains is observed from 700 deg. C. Moessbauer spectroscopy shows a reduction of the level of solute atoms in α'-martensite during annealing.

  2. Corrosion of an austenite and ferrite stainless steel weld

    BRANIMIR N. GRGUR

    2011-07-01

    Full Text Available Dissimilar metal connections are prone to frequent failures. These failures are attributed to the difference in the mechanical properties across the weld, the coefficients of thermal expansion of the two types of steels and the resulting creep at the interface. For the weld analyzed in this research, it was shown that corrosion measurements can be used for a proper evaluation of the quality of weld material and for the prediction of whether or not the material, after the applied welding process, can be in service without failures. It was found that the corrosion of the weld analyzed in this research resulted from the simultaneous activity of different types of corrosion. In this study, electrochemical techniques including polarization and metallographic analysis were used to analyze the corrosion of a weld material of ferrite and austenitic stainless steels. Based on surface, chemical and electrochemical analyses, it was concluded that corrosion occurrence was the result of the simultaneous activity of contact corrosion (ferrite and austenitic material conjuction, stress corrosion (originating from deformed ferrite structure and inter-granular corrosion (due to chromium carbide precipitation. The value of corrosion potential of –0.53 V shows that this weld, after the thermal treatment, is not able to repassivate a protective oxide film.

  3. The sub-zero Celsius treatment of precipitation hardenable semi-austenitic stainless steel

    Villa, Matteo; Hansen, Mikkel Fougt; Somers, Marcel A. J.

    2015-01-01

    A precipitation hardenable semi-austenitic stainless steel AISI 632 grade was austenitized according to industrial specifications and thereafter subjected to isothermal treatment at sub-zero Celsius temperatures. During treatment, austenite transformed to martensite. The isothermal austenite......-to-martensite transformation was monitored in situ by magnetometry and data was used to sketch a TTT diagram for transformation. As an alternative treatment, after austenitization the material was immersed in boiling nitrogen and up-quenched to room temperature by immersion in water prior to be subjected to isothermal...

  4. Effect of implantation defects on the corrosion of austenitic stainless steels in pressurized water reactor primary medium

    Internal parts of pressurized water reactor (PWR) vessels are often made of austenitic stainless steels (304L and 316L). These structural materials are exposed to an oxidizing medium under irradiation and mechanical stresses. Under these conditions, they can suffer damages by IASCC (Irradiation-Assisted Stress Corrosion Cracking). The first step in this cracking phenomenon is the initiation, which implies the breakdown of the passive layer. The nature and the structure of the oxide film formed on these steels are key factors in initiation of IASCC cracks. In this context, the objective of this work is first to better understand the oxidation mechanisms of stainless steels in primary medium and second to study the effects of irradiation induced defects on the oxide film formed on stainless steels in primary medium. Xenon ions and protons, were implanted in 316L-type austenitic stainless steel samples, respectively at an energy of 240 and 230 keV in order to simulate the irradiation defects. Implanted and non-implanted samples were exposed in a corrosion loop at 325 C to an aqueous medium containing 1000 ppm of boron, 2 ppm of lithium and 1,19.10-3 mol.L-1 of dissolved hydrogen. The samples were analyzed by TEM before and after exposure to primary medium in order to characterize both the defects generated by the implantation and the nature, structure, and morphology of the formed oxide. Comparing implanted and non-implanted samples has shown that the nature and the density of defects in the alloy subsurface played an important role on the composition (mainly on the content of Cr and Mo) and on the thickness of the inner layer. The study of the oxidation kinetics by coupling two ion beam analysis techniques (NRA and RBS) has revealed different behavior between the two types of samples: non-implanted and implanted. Tracer experiments (using D and 18O) were conducted to study the growth mechanism of the inner oxide layer and the associated transport mechanisms. The

  5. Hydrogen-related phase transformations in austenitic stainless steels

    Narita, N.; Altstetter, C. J.; Birnbaum, H. K.

    1982-08-01

    The effect of hydrogen and stress (strain) on the stability of the austenite phase in stainless steels was investigated. Hydrogen was introduced by severe cathodic charging and by elevated temperature equilibration with high pressure H2 gas. Using X-ray diffraction and magnetic techniques, the behavior of two “stable” type AISI310 steels and an “unstable” type AISI304 steel was studied during charging and during the outgassing period following charging. Transformation from the fcc γ phase to an expanded fcc phase, γ*, and to the hcp ɛ phase occurred during cathodic charging. Reversion of the γ* and e phases to the original γ structure and formation of the bcc α structure were examined, and the kinetics of these processes was studied. The γ* phase was shown to be ferromagnetic with a subambient Curie temperature. The γ⇆ɛ phase transition was studied after hydrogen charging in high pressure gas, as was the formation of a during outgassing. These results are interpreted as effects of hydrogen and stress (strain) on the stability of the various phases. A proposed psuedo-binary phase diagram for the metal-hydrogen system was proposed to account for the formation of the γ* phase. The relation of these phase changes to hydrogen embrittlement and stress corrosion cracking of stainless steel is discussed.

  6. Mechanical Properties of Thermally Aged Austenitic Stainless Steel Welds and Cast Austenitic Stainless Steel

    Conventional test methods for tensile and J-R properties of such weld require large size specimens. Meanwhile, small punch (SP) test has advantages of using small size samples at specific location. In this study, the mechanical property changes caused by the thermal aging were evaluated for the stainless steel welds and CASSs using tensile, J-R, and SP test. Based on the results, correlations were developed to estimate the fracture toughness using the load-displacement curve of SP tests. Finally, the fracture surfaces of compact tension (CT) and SP test specimens are compared and discussed in view of the effect of thermal aging on microstructure. Stainless steel welds of ER316L and ER347 as well as CASS (CF8M) were thermally aged at 400 .deg. C for 5,000 h. So far, tensile properties and fracture toughness of un-aged materials were carried out at room temperature and 320 .deg. C as a reference data. In order to evaluate the effect of thermal aging on mechanical properties, aged specimens are being tested and the changes in these properties will be discussed. In addition, correlations will be developed to estimate the fracture toughness in between J-R curve and SP curve

  7. Fractographic studies of hydrogen embrittlement of AISI 316L austenitic stainless steel

    This paper concerns a fractographic examination of hydrogen embrittlement of a stable AISI 316L type austenitic stainless steel. The objective is a better understanding of the possible role of hydrogen in stress corrosion cracking processes. (author)

  8. Effect of Grain Size on Mechanical Properties of Nickel-Free High Nitrogen Austenitic Stainless Steel

    LI Hua-bing; JIANG Zhou-hua; ZHANG Zu-rui; YANG Yan

    2009-01-01

    The fine grained structures of nickel-free high nitrogen austenitic stainless steels had been obtained by means of cold rolling and subsequent annealing.The relationship between microstructure and mechanical properties and gain size of nickel-free high nitrogen austenitic stainless steels was examined.High strength and good ductility of the steel were found.In the grain size range,the Hall-Petch dependency for yield stress,tensile strength,and hardness was valid for grain size ranges for the nickel-free high nitrogen austenitic stainless steel.In the present study,the ductility of cold rolled nickel-free high nitrogen austenitic stainless steel decreased with annealing time when the grain size was refined.The fracture surfaces of the tensile specimens in the grain size range were covered with dimples as usually seen in a ductile fracture mode.

  9. Fabrication of high nitrogen austenitic stainless steels with excellent mechanical and pitting corrosion properties

    Hua-bing Li; Zhou-hua Jiang; Yang Cao; Zu-rui Zhang

    2009-01-01

    18Cr18Mn2Mo0.9N high nitrogen austenitic stainless steel exhibits high strength and good ductility at room temperature. The steel shows typical duc-tile-brittle transition behavior and excellent pitting corrosion resistance properties.

  10. A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications.

    Talha, Mohd; Behera, C K; Sinha, O P

    2013-10-01

    The field of biomaterials has become a vital area, as these materials can enhance the quality and longevity of human life. Metallic materials are often used as biomaterials to replace structural components of the human body. Stainless steels, cobalt-chromium alloys, commercially pure titanium and its alloys are typical metallic biomaterials that are being used for implant devices. Stainless steels have been widely used as biomaterials because of their very low cost as compared to other metallic materials, good mechanical and corrosion resistant properties and adequate biocompatibility. However, the adverse effects of nickel ions being released into the human body have promoted the development of "nickel-free nitrogen containing austenitic stainless steels" for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also much improves steel properties. Here we review the harmful effects associated with nickel and emphatically the advantages of nitrogen in stainless steel, as well as the development of nickel-free nitrogen containing stainless steels for medical applications. By combining the benefits of stable austenitic structure, high strength, better corrosion and wear resistance and superior biocompatibility in comparison to the currently used austenitic stainless steel (e.g. 316L), the newly developed nickel-free high nitrogen austenitic stainless steel is a reliable substitute for the conventionally used medical stainless steels. PMID:23910251