WorldWideScience

Sample records for 3-dimensional tracking device

  1. The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events

    Alme, J; Appelshäuser, H; Bablok, S; Bialas, N; Bolgen, R; Bonnes, U; Bramm, R; Braun-Munzinger, P; Campagnolo, R; Christiansen, P; Dobrin, A; Engster, C; Fehlker, D; Foka, P; Frankenfeld, U; Gaardhøje, J J; Garabatos, C; Glässel, P; Gonzalez Gutierrez, C; Gros, P; Gustafsson, H A; Helstrup, H; Hoch, M; Ivanov, M; Janik, R; Junique, A; Kalweit, A; Keidel, R; Kniege, S; Kowalski, M; Larsen, D T; Lesenechal, Y; Lenoir, P; Lindegaard, N; Lippmann, C; Mager, M; Mast, M; Matyja, A; Munkejord, M; Musa, L; Nielsen, B S; Nikolic, V; Oeschler, H; Olsen, E K; Oskarsson, A; Osterman, L; Pikna, M; Rehman, A; Renault, G; Renfordt, R; Rossegger, S; Röhrich, D; Røed, K; Richter, M; Rueshmann, G; Rybicki, A; Sann, H; Schmidt, H R; Siska, M; Sitár, B; Soegaard, C; Soltveit, H K; Soyk, D; Stachel, J; Stelzer, H; Stenlund, E; Stock, R; Strmen, P; Szarka, I; Ullaland, K; Vranic, D; Veenhof, R; Westergaard, J; Wiechula, J; Windelband, B

    2010-01-01

    The design, construction, and commissioning of the ALICE Time-Projection Chamber (TPC) is described. It is the main device for pattern recognition, tracking, and identification of charged particles in the ALICE experiment at the CERN LHC. The TPC is cylindrical in shape with a volume close to 90 m^3 and is operated in a 0.5 T solenoidal magnetic field parallel to its axis. In this paper we describe in detail the design considerations for this detector for operation in the extreme multiplicity environment of central Pb--Pb collisions at LHC energy. The implementation of the resulting requirements into hardware (field cage, read-out chambers, electronics), infrastructure (gas and cooling system, laser-calibration system), and software led to many technical innovations which are described along with a presentation of all the major components of the detector, as currently realized. We also report on the performance achieved after completion of the first round of stand-alone calibration runs and demonstrate result...

  2. A new 3-dimensional head fixation device for brain imaging

    We have developed a new head fixation device for studies of brain function. This device was designed to immobilize subject's heads during image scanning and to precisely reproduce the head position for two different imaging modalities such as MRI and PET. The device consists of a plastic frame, a pillow filled with beads of styrene foam, and a face mask of thermoplastic resin which was originally intended for application in radiotherapy. A bridge for biting was incorporated into the mask for stable fixation. The device enables immobilization of subject's heads with good reproducibility of position at the practical level. Our results indicate that this head fixation system is useful for fixation of head during activation studies using PET. (author)

  3. Unobservable Problem of Target Tracking with Bearing-only Measurements in 3-dimensional Space

    XU Zhi-gang; SHENG An-dong

    2008-01-01

    The bearings-only tracking (BOT) system is said to be observability if and only if the target motion parameters can be uniquely determined by noise-free bearing measurements. By utilizing the method of orthogonal vectors and characteristic of linear matrix equation, the problem of observability for BOT in noise-free bearings measurements from single observer is discussed based on the target and observer traveling in the 3-dimensional space. A proposition that BOT for target and observer traveling in the 3-dimensional space with constant acceleration remains unsolvable is presented and proved. By proving the proposition, it is also shown that some motion parameter ratios of target can be estimated under certain condition satisfied by measurements and time samples. The proposition is extended to arbitrary rank of manoeuvre for the observer and the target, which BOT remains unobservable property while the rank of target manoeuvre is higher than that of the observer manoeuvre. The theoretical analysis of this paper provides the guidelines for how the observer trajectory should be formulated to avoid unobservable state for BOT in practice application.

  4. Tracking Error analysis of Concentrator Photovoltaic Module Using Total 3-Dimensional Simulator

    Ota, Yasuyuki; Nishioka, Kensuke

    2011-12-01

    A 3-dimensional (3D) operating simulator for concentrator photovoltaic (CPV) module using triple-junction solar cell was developed. By connecting 3D equivalent circuit simulation for triple-junction solar cell and ray-trace simulation for optics model, the operating characteristics of CPV module were calculated. A typical flat Fresnel lens and homogenizer were adapted to the optics model. The influence of tracking error on the performance of CPV module was calculated. There was the correlation between the optical efficiency and Isc. However, Pm was not correlated with these values, and was strongly dependent on FF. We can use this total simulator for the evaluation and optimization from the light incidence to operating characteristic of CPV modules.

  5. Satellite and acoustic tracking device

    Berumen, Michael L.

    2014-02-20

    The present invention relates a method and device for tracking movements of marine animals or objects in large bodies of water and across significant distances. The method and device can track an acoustic transmitter attached to an animal or object beneath the ocean surface by employing an unmanned surface vessel equipped with a hydrophone array and GPS receiver.

  6. GPS Navigation and Tracking Device

    Yahya Salameh Khraisat

    2011-10-01

    Full Text Available Since the introduction of GPS Navigation systems in the marketplace, consumers and businesses have been coming up with innovative ways to use the technology in their everyday life. GPS Navigation and Tracking systems keep us from getting lost when we are in strange locations, they monitor children when they are away from home, keep track of business vehicles and can even let us know where a philandering partner is at all times. Because of this we attend to build a GPS tracking device to solve the mentioned problems. Our work consists of the GPS module that collects data from satellites and calculates the position information before transmitting them to the user’s PC (of Navigation system or observers (of Tracking System using wireless technology (GSM.

  7. Error analysis of a direct current electromagnetic tracking system in digitizing 3-dimensional surface geometries.

    Milne, A D; Lee, J M

    1999-01-01

    The direct current electromagnetic tracking device has seen increasing use in biomechanics studies of joint kinematics and anatomical surface geometry. In these applications, a stylus is attached to a sensor to measure the spatial location of three-dimensional landmarks. Stylus calibration is performed by rotating the stylus about a fixed point in space and using regression analysis to determine the tip offset vector. Measurement errors can be induced via several pathways, including; intrinsic system errors in sensor position or angle and tip offset calibration errors. A detailed study was performed to determine the errors introduced in digitizing small surfaces with different stylus lengths (35, 55, and 65 mm) and approach angles (30 and 45 degrees) using a plastic calibration board and hemispherical models. Two-point discrimination errors increased to an average of 1.93 mm for a 254 mm step size. Rotation about a single point produced mean errors of 0.44 to 1.18 mm. Statistically significant differences in error were observed with increasing approach angles (p < 0.001). Errors of less than 6% were observed in determining the curvature of a 19 mm hemisphere. This study demonstrates that the "Flock of Birds" can be used as a digitizing tool with accuracy better than 0.76% over 254 mm step sizes. PMID:11143353

  8. Visualized fuelling process and 3 dimensional reactivity device and core monitor

    A new reactor fueling animated graphical display and a 3 dimensional view of the reactor core display are presented that are useful for the physics fuelling engineer, the Control Room Operators, the fuel handling operators and the fuel handling support engineers. Data is downloaded from the online fuelling computer to a data server that is network accessible. The fuelling display and 3Dview display can run on any network connected Computer. The animated graphical fuelling display offers a huge reduction in cognitive workload for all users. The authors recommend that animated graphical displays be developed and utilized wherever personnel have to visualize complex equipment operation. (author)

  9. '3-Dimensional' TEM silicon-device analysis by combining plan-view and FIB sample preparation

    Cross-sectional transmission electron microscopy (TEM) analysis has become routinely used in semiconductor industry to support failure and yield analysis. Plan-view transmission electron microscopy analysis however is much less frequently performed. In this paper it is illustrated that plan-view transmission electron microscopy analysis can add valuable information in yield analysis studies, especially when crystal defects are involved. '3-Dimensional' information can be obtained by combining cross-sectional transmission electron microscopy analysis with plan-view analysis. If the available material is limited, it can become a difficult choice whether to go for a cross-sectional or a plan-view analysis. Therefore it was explored if a cross-sectional specimen could still be made out of a plan-view specimen, using the plan-view analysis to locate the failure site precisely. This has recently been successfully done using the in-situ lift-out technique in the focused ion beam machine

  10. Implementing Bluetooth LE in a Tracking Device

    Oinas, Jaakko

    2015-01-01

    The final year project described in this thesis dealt with integrating Bluetooth low energy (LE) technology to a tracking device system. The project was part of a larger research project of Navigil Ltd, where the possibilities of utilizing Bluetooth LE in a tracking device system were studied. The ML7105 system-on-chip, which offers possibility for LE technology, had already been chosen in the project and it was also used in this final year project. The final year project included studying th...

  11. Multiparametric electronic devices based on nuclear tracks

    Fink, D. [HMI Berlin, Glienicker Str. 100, 14109 Berlin (Germany)], E-mail: FINK@HMI.DE; Saad, A. [HMI Berlin, Glienicker Str. 100, 14109 Berlin (Germany); Basic Science Department, Faculty of Science, Al Balqa University, Salt (Jordan); Dhamodaran, S. [HMI Berlin, Glienicker Str. 100, 14109 Berlin (Germany); School of Physics, University of Hyderabad, Hyderabad 500 046 (India); Chandra, A. [HMI Berlin, Glienicker Str. 100, 14109 Berlin (Germany); Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Fahrner, W.R. [Chair of Electronic Devices, Institute of Electrotechnique, Fernuniversitaet, Hagen (Germany); Hoppe, K. [South Westfalia University of Applied Sciences, Hagen (Germany); Chadderton, L.T. [Institute of Advanced Studies, ANU Canberra, GPO Box 4, ACT (Australia)

    2008-08-15

    An overview is given on a family of novel electronic devices consisting of an insulating layer containing conducting or semiconducting nuclear tracks, deposited on a semiconducting substrate, and connected by at least one back and two surface contacts. Conducting and semiconducting latent tracks may emerge directly from swift heavy ion irradiation. Etched tracks in insulators can be filled with adequate materials to make them conducting or semiconducting. For this purpose metallic or semiconducting nanoclusters were deposited. We have denoted termed these devices made with latent tracks as 'tunable electronic anisotropic material on semiconductor' (TEAMS), if based on latent ion tracks, and as 'tunable electronic material in pores in oxide on semiconductor' (TEMPOS), if based on etched tracks. Depending on the band-to-band transition between tracks and substrate and on the ratio of surface to track conductivity, the current/voltage characteristics of TEAMS and TEMPOS structures can be modified in many different ways leading to tunable resistors, capacitors and diodes. Both devices show negative differential resistances. This should enable tunable tunneldiodes. TEAMS or TEMPOS structures can be controlled by various external physical and/or chemical parameters leading to sensors. It is even possible to combine different input currents and/or external parameters according to AND/OR logics. The currents through a clustered layer on a TEMPOS structure can be described by the Barbasi-Albert model of network theory enabling to calculate a 'radius of influence'r{sub ROI} around each surface contact, beyond which neighboring contacts do not influence each other. The radius of influence can be well below 1{mu}m leading to nanometric TEMPOS structures.

  12. Heating-Rate-Triggered Carbon-Nanotube-based 3-Dimensional Conducting Networks for a Highly Sensitive Noncontact Sensing Device

    Tai, Yanlong; Lubineau, Gilles

    2016-01-01

    Recently, flexible and transparent conductive films (TCFs) are drawing more attention for their central role in future applications of flexible electronics. Here, we report the controllable fabrication of TCFs for moisture-sensing applications based on heating-rate-triggered, 3-dimensional porous conducting networks through drop casting lithography of single-walled carbon nanotube (SWCNT)/poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS) ink. How ink formula and baking conditions influence the self-assembled microstructure of the TCFs is discussed. The sensor presents high-performance properties, including a reasonable sheet resistance (2.1 kohm/sq), a high visible-range transmittance (>69%, PET = 90%), and good stability when subjected to cyclic loading (>1000 cycles, better than indium tin oxide film) during processing, when formulation parameters are well optimized (weight ratio of SWCNT to PEDOT:PSS: 1:0.5, SWCNT concentration: 0.3 mg/ml, and heating rate: 36 °C/minute). Moreover, the benefits of these kinds of TCFs were verified through a fully transparent, highly sensitive, rapid response, noncontact moisture-sensing device (5 × 5 sensing pixels). PMID:26818091

  13. Heating-Rate-Triggered Carbon-Nanotube-based 3-Dimensional Conducting Networks for a Highly Sensitive Noncontact Sensing Device

    Tai, Yanlong

    2016-01-28

    Recently, flexible and transparent conductive films (TCFs) are drawing more attention for their central role in future applications of flexible electronics. Here, we report the controllable fabrication of TCFs for moisture-sensing applications based on heating-rate-triggered, 3-dimensional porous conducting networks through drop casting lithography of single-walled carbon nanotube (SWCNT)/poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS) ink. How ink formula and baking conditions influence the self-assembled microstructure of the TCFs is discussed. The sensor presents high-performance properties, including a reasonable sheet resistance (2.1 kohm/sq), a high visible-range transmittance (>69%, PET = 90%), and good stability when subjected to cyclic loading (>1000 cycles, better than indium tin oxide film) during processing, when formulation parameters are well optimized (weight ratio of SWCNT to PEDOT:PSS: 1:0.5, SWCNT concentration: 0.3 mg/ml, and heating rate: 36 °C/minute). Moreover, the benefits of these kinds of TCFs were verified through a fully transparent, highly sensitive, rapid response, noncontact moisture-sensing device (5 × 5 sensing pixels).

  14. Heating-Rate-Triggered Carbon-Nanotube-based 3-Dimensional Conducting Networks for a Highly Sensitive Noncontact Sensing Device

    Tai, Yanlong; Lubineau, Gilles

    2016-01-01

    Recently, flexible and transparent conductive films (TCFs) are drawing more attention for their central role in future applications of flexible electronics. Here, we report the controllable fabrication of TCFs for moisture-sensing applications based on heating-rate-triggered, 3-dimensional porous conducting networks through drop casting lithography of single-walled carbon nanotube (SWCNT)/poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS) ink. How ink formula and baking conditions influence the self-assembled microstructure of the TCFs is discussed. The sensor presents high-performance properties, including a reasonable sheet resistance (2.1 kohm/sq), a high visible-range transmittance (>69%, PET = 90%), and good stability when subjected to cyclic loading (>1000 cycles, better than indium tin oxide film) during processing, when formulation parameters are well optimized (weight ratio of SWCNT to PEDOT:PSS: 1:0.5, SWCNT concentration: 0.3 mg/ml, and heating rate: 36 °C/minute). Moreover, the benefits of these kinds of TCFs were verified through a fully transparent, highly sensitive, rapid response, noncontact moisture-sensing device (5 × 5 sensing pixels).

  15. Image Quality of the 3 Dimensional Phase-Contrast Technique in an Intracranial Magnetic Resonance Angiography with Artifacts Caused by Orthodontic Devices: A Comparison with 3 Dimensional Time-of-Flight Technique

    To evaluate the degree of image distortion caused by orthodontic devices during a intracranial magnetic resonance angiography (MRA), and to determine the effectiveness of the 3 dimensional phase-contrast (3D PC). Subjects were divided into group A (n = 20) wearing a home-made orthodontic device, and group B (n = 10) with an actual orthodontic device. A 3.0T MR scanner was used, applying 3D time-of-flight (TOF) and 3D PC. Two board-certified radiologists evaluated images independently based on a four point scale classifying segments of the circle of Willis. Magnetic susceptibility variations and contrast-to-noise ratio (CNR) on maximum intensity projection images were measured. In group A, scores of the 3D TOF and 3D PC were 2.84 ± 0.1 vs. 2.88 ± 0.1 (before) and 1.8 ± 0.4 vs 2.83 ± 0.1 (after wearing device), respectively. In group B, the scores of 3D TOF and 3D PC were 1.86 ± 0.43 and 2.81 ± 0.15 (p = 0.005), respectively. Magnetic susceptibility variations showed meaningful results after wearing the device (p = 0.0001). CNRs of the 3D PC before and after wearing device were 142.9 ± 6.6 vs. 140.8 ± 7.2 (p = 0.7507), respectively. In the 3D TOF, CNRs were 324.8 ± 25.4 vs. 466.3 ± 41.7 (p = 0.0001). The 3D PC may be a solution method for distorted images by magnetic susceptibility in the intracranial MRA compared with 3D TOF.

  16. A Study on the System and Method for Drawing 3-Dimensional Cable Object with the cable tracking Navigation

    3D cable tracking system with navigation makes it possible to easily search the objects which users want to retrieve and to measure the visual, spatial and structural distance by connecting the existing cable management system with 3D cable tracking system with navigation. With this consideration, we hope to create a more advanced cable management system in the future. I would like to describes the management system and method of the cable installed in the nuclear power plant, and how to build the database of the system. More specifically, it will be operated to the maintenance and management function, and the life management system of the cable, describing the creation method of three-dimensional cable object formed by the information of trace route through navigation and how to build the system database automatically

  17. A Study on the System and Method for Drawing 3-Dimensional Cable Object with the cable tracking Navigation

    Bhang, Keugjin; Jung, Sunchul [Central Research Institute, Daejeon (Korea, Republic of); Hong, Junhee [Chungnam Univ., Daejeon (Korea, Republic of)

    2013-05-15

    3D cable tracking system with navigation makes it possible to easily search the objects which users want to retrieve and to measure the visual, spatial and structural distance by connecting the existing cable management system with 3D cable tracking system with navigation. With this consideration, we hope to create a more advanced cable management system in the future. I would like to describes the management system and method of the cable installed in the nuclear power plant, and how to build the database of the system. More specifically, it will be operated to the maintenance and management function, and the life management system of the cable, describing the creation method of three-dimensional cable object formed by the information of trace route through navigation and how to build the system database automatically.

  18. Accuracy of Real-time Couch Tracking During 3-dimensional Conformal Radiation Therapy, Intensity Modulated Radiation Therapy, and Volumetric Modulated Arc Therapy for Prostate Cancer

    Purpose: To evaluate the accuracy of real-time couch tracking for prostate cancer. Methods and Materials: Intrafractional motion trajectories of 15 prostate cancer patients were the basis for this phantom study; prostate motion had been monitored with the Calypso System. An industrial robot moved a phantom along these trajectories, motion was detected via an infrared camera system, and the robotic HexaPOD couch was used for real-time counter-steering. Residual phantom motion during real-time tracking was measured with the infrared camera system. Film dosimetry was performed during delivery of 3-dimensional conformal radiation therapy (3D-CRT), step-and-shoot intensity modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT). Results: Motion of the prostate was largest in the anterior–posterior direction, with systematic (∑) and random (σ) errors of 2.3 mm and 2.9 mm, respectively; the prostate was outside a threshold of 5 mm (3D vector) for 25.0%±19.8% of treatment time. Real-time tracking reduced prostate motion to ∑=0.01 mm and σ = 0.55 mm in the anterior–posterior direction; the prostate remained within a 1-mm and 5-mm threshold for 93.9%±4.6% and 99.7%±0.4% of the time, respectively. Without real-time tracking, pass rates based on a γ index of 2%/2 mm in film dosimetry ranged between 66% and 72% for 3D-CRT, IMRT, and VMAT, on average. Real-time tracking increased pass rates to minimum 98% on average for 3D-CRT, IMRT, and VMAT. Conclusions: Real-time couch tracking resulted in submillimeter accuracy for prostate cancer, which transferred into high dosimetric accuracy independently of whether 3D-CRT, IMRT, or VMAT was used.

  19. Going beyond 2D: following membrane diffusion and topography in the IgE-Fc[epsilon]RI system using 3-dimensional tracking microscopy

    Wells, Nathan P [Los Alamos National Laboratory; Lessard, Guillaume A [Los Alamos National Laboratory; Phipps, Marry E [Los Alamos National Laboratory; Goodwin, Peter M [Los Alamos National Laboratory; Werner, James H [Los Alamos National Laboratory; Lidke, Diane S [UNM; Wilson, Bridget S [UNM

    2008-01-01

    The ability to follow and observe single molecules as they function in live cells would represent a major milestone for molecular-cellular biology. Here we present a tracking microscope that is able to track quantum dots in 3 dimensions and simultaneously record time-resolved emission statistics from a single dot. This innovative microscopy approach is based on four spatial filters and closed loop feedback to constantly keep a single quantum dot in the focal spot. Using this microscope, we demonstrate the ability to follow quantum dot-labeled IgE antibodies bound to Fc{epsilon}Rl membrane receptors in live RBL-2H3 cells. The results are consistent with prior studies of 2 dimensional membrane diffusion (Andrews et al., Nat. Cell Biol., 10, 955, 2008). In addition, the microscope captures motion in the axial (Z) direction, which permits tracking of diffusing receptors relative the 'hills and valley' of the dynamically changing membrane landscape. Our novel approach is uniquely capable of following single-molecule dynamics on live cells with 3 dimensional spatial resolution.

  20. Heating-Rate-Triggered Carbon-Nanotube-based 3-Dimensional Conducting Networks for a Highly Sensitive Noncontact Sensing Device

    Yanlong Tai; Gilles Lubineau

    2016-01-01

    Recently, flexible and transparent conductive films (TCFs) are drawing more attention for their central role in future applications of flexible electronics. Here, we report the controllable fabrication of TCFs for moisture-sensing applications based on heating-rate-triggered, 3-dimensional porous conducting networks through drop casting lithography of single-walled carbon nanotube (SWCNT)/poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS) ink. How ink formula and baking condit...

  1. Energy-efficient Trajectory Tracking for Mobile Devices

    Kjærgaard, Mikkel Baun; Bhattacharya, Sourav; Blunck, Henrik;

    2011-01-01

    Emergent location-aware applications often require tracking trajectories of mobile devices over a long period of time. To be useful, the tracking has to be energy-efficient to avoid having a major impact on the battery life of the mobile de vice. Furthermore, when trajectory information needs to be...... sent to a remote server, on-device simplification of the trajectories is needed to reduce the amount of data transmission. While there has recently been a lot of work on energy-efficient position tracking, the energy-efficient tracking of trajectories has not been addressed in previous work. In this...

  2. Demonstrating EnTracked a System for Energy-Efficient Position Tracking for Mobile Devices

    Kjærgaard, Mikkel Baun; Jensen, Jakob Langdal; Godsk, Torben; Toftkjær, Thomas

    An important feature of a modern mobile device is that it can position itself. Not only for use on the device but also for remote applications that require tracking of the device. To be useful, such position tracking has to be energy-efficient to avoid having a major impact on the battery life of...... the mobile device. To address this challenge we have build a system named EnTracked that, based on the estimation and prediction of system conditions and mobility, schedules position updates to both minimize energy consumption and optimize robustness. In this demonstration we would like to show how...

  3. ISSUES IN IMPLEMENTING MARKER BASED TRACKING ON MASS MOBILE DEVICES

    Kravtsov A. A.

    2015-11-01

    Full Text Available Tracking is a vast field of research associated with navigation, robotics, and virtual environments (virtual reality. Tracking for augmented reality requires higher level of precision, increased range of action, as well as work with a wider variety of input data. It is important that augmented reality technology requires tracking in real time, which also complicates the task. Correct visualization of objects in three-dimensional space requires six degrees of freedom tracking: three position values (x, y, z and three angles (rotation around the respective axes to determine the orientation. To solve this problem, different approaches and sensor types are being used. In this article, we present a brief history of the development of tracking technology and analyze the current approaches to implement the process of tracking on mass mobile devices such as smartphones and tablet computers. We also describe some issues in implementing optical marker based tracking for visualization of large scale models

  4. Location tracking forensics on mobile devices

    Sack, Stefan; Kröger, Knut; Creutzburg, Reiner

    2013-03-01

    The spread of navigation devices has increased significantly over the last 10 years. With the help of the current development of even smaller navigation receiver units it is to navigate with almost any current smart phone. Modern navigation systems are no longer limited to satellite navigation, but use current techniques, e.g. WLAN localization. Due to the increased use of navigation devices their relevance to forensic investigations has risen rapidly. Because navigation, for example with navigation equipment and smartphones, have become common place these days, also the amount of saved navigation data has risen rapidly. All of these developments lead to a necessary forensic analysis of these devices. However, there are very few current procedures for investigating of navigation devices. Navigation data is forensically interesting because by the position of the devices in most cases the location and the traveled path of the owner can be reconstructed. In this work practices for forensic analysis of navigation devices are developed. Different devices will be analyzed and it is attempted, by means of forensic procedures to restore the traveled path of the mobile device. For analysis of the various devices different software and hardware is used. There will be presented common procedures for securing and testing of mobile devices. Further there will be represented the specials in the investigation of each device. The different classes considered are GPS handhelds, mobile navigation devices and smartphones. It will be attempted, wherever possible, to read all data of the device. The aim is to restore complete histories of the navigation data and to forensically study and analyze these data. This is realized by the usage of current forensic software e.g. TomTology or Oxygen Forensic Suite. It is also attempted to use free software whenever possible. Further alternative methods are used (e.g. rooting) to access locked data of the unit. To limit the practical work the

  5. Object tracking on mobile devices using binary descriptors

    Savakis, Andreas; Quraishi, Mohammad Faiz; Minnehan, Breton

    2015-03-01

    With the growing ubiquity of mobile devices, advanced applications are relying on computer vision techniques to provide novel experiences for users. Currently, few tracking approaches take into consideration the resource constraints on mobile devices. Designing efficient tracking algorithms and optimizing performance for mobile devices can result in better and more efficient tracking for applications, such as augmented reality. In this paper, we use binary descriptors, including Fast Retina Keypoint (FREAK), Oriented FAST and Rotated BRIEF (ORB), Binary Robust Independent Features (BRIEF), and Binary Robust Invariant Scalable Keypoints (BRISK) to obtain real time tracking performance on mobile devices. We consider both Google's Android and Apple's iOS operating systems to implement our tracking approach. The Android implementation is done using Android's Native Development Kit (NDK), which gives the performance benefits of using native code as well as access to legacy libraries. The iOS implementation was created using both the native Objective-C and the C++ programing languages. We also introduce simplified versions of the BRIEF and BRISK descriptors that improve processing speed without compromising tracking accuracy.

  6. Buoys and other devices for oil spill tracking

    Fingas, Merv [Spill Science (Canada)], email: fingasmerv@shaw.ca

    2011-07-01

    This study presents an assessment of some of the existing oil spill tracking devices, mainly buoys, from 1970 up to the present time. The goal of this study is to evaluate the performance of oil tracking devices based on their design, deviation from the oil, and their accuracy in following spills as they move. A total of 33 different devices were tested, including oil sampling buoys, passive devices, buoys with incorporated radio tracking devices, and buoys for oceanographic purposes. Tests were held in different marine regions, with different oil types, and for varying test times. Results showed that deviations from the oil tracks varied between devices. It was suggested that testing time affects the buoy validation process, but that the kind of oil used has very little effect. Additionally, the testing process must be performed using real oil in regions where wind and current do not align. In conclusion, buoys fitted with satellite trackers were recommended, however those prepared for oceanographic purposes were not.

  7. Energy-efficient Trajectory Tracking for Mobile Devices

    Mikkel Kjærgaard; Sourav Bhattacharya; Henrik Blunck; Petteri Nurmi

    2011-01-01

    Emergent location-aware applications often require tracking trajectories of mobile devices over a long period of time. To be useful, the tracking has to be energy-efficient to avoid having a major impact on the battery life of the mobile de vice. Furthermore, when trajectory information needs to be sent to a remote server, on-device simplification of the trajectories is needed to reduce the amount of data transmission. While there has recently been a lot of work on energy-efficient position t...

  8. Device-free object tracking using passive tags

    Han, Jinsong; Zhao, Kun; Jiang, Zhiping

    2014-01-01

    This SpringerBrief examines the use of cheap commercial passive RFID tags to achieve accurate device-free object-tracking. It presents a sensitive detector, named Twins, which uses a pair of adjacent passive tags to detect uncooperative targets (such as intruders). Twins leverages a newly observed phenomenon called critical state that is caused by interference among passive tags.The author expands on the previous object tracking methods, which are mostly device-based, and reveals a new interference model and their extensive experiments for validation. A prototype implementation of the Twins-ba

  9. Enhancement of sun-tracking with optoelectronic devices

    Wu, Jiunn-Chi

    2015-09-01

    Sun-tracking is one of the most challenging tasks in implementing CPV. In order to justify the additional complexity of sun-tracking, careful assessment of performance of CPV by monitoring the performance of sun-tracking is vital. Measurement of accuracy of sun-tracking is one of the important tasks in an outdoor test. This study examines techniques with three optoelectronic devices (i.e. position sensitive device (PSD), CCD and webcam). Outdoor measurements indicated that during sunny days (global horizontal insolation (GHI) > 700 W/m2), three devices recorded comparable tracking accuracy of 0.16˜0.3°. The method using a PSD has fastest sampling rate and is able to detect the sun's position without additional image processing. Yet, it cannot identify the sunlight effectively during low insolation. The techniques with a CCD and a webcam enhance the accuracy of centroid of sunlight via the optical lens and image processing. The image quality acquired using a webcam and a CCD is comparable but the webcam is more affordable than that of CCD because it can be assembled with consumer-graded products.

  10. Basic simulation models of phase tracking devices using Matlab

    Tranter, William

    2010-01-01

    The Phase-Locked Loop (PLL), and many of the devices used for frequency and phase tracking, carrier and symbol synchronization, demodulation, and frequency synthesis, are fundamental building blocks in today's complex communications systems. It is therefore essential for both students and practicing communications engineers interested in the design and implementation of modern communication systems to understand and have insight into the behavior of these important and ubiquitous devices. Since the PLL behaves as a nonlinear device (at least during acquisition), computer simulation can be used

  11. On Improving the Energy Efficiency and Robustness of Position Tracking for Mobile Devices

    Kjærgaard, Mikkel Baun

    An important feature of a modern mobile device is that it can position itself and support remote position tracking. To be useful, such position tracking has to be energy-efficient to avoid having a major impact on the battery life of the mobile device. Furthermore, tracking has to robustly deliver...... different mobile devices....

  12. EnTracked: Energy-Efficient Robust Position Tracking for Mobile Devices

    Kjærgaard, Mikkel Baun; Jensen, Jakob Langdal; Godsk, Torben;

    2009-01-01

    extensive experimental results by profiling how devices consume power, by emulation on collected data and by validation in several real-world deployments. Results from this profiling show how a device consumes power while tracking its position. Results from the emulation indicate that the system can...... estimate and predict system conditions and mobility. Furthermore they provide evidence for that the system can lower the energy consumption considerably and remain robust when faced with changing system conditions. By validation in several real-world deployments we provide evidence that the real system...

  13. Using DNA devices to track anticancer drug activity.

    Kahanda, Dimithree; Chakrabarti, Gaurab; Mcwilliams, Marc A; Boothman, David A; Slinker, Jason D

    2016-06-15

    It is beneficial to develop systems that reproduce complex reactions of biological systems while maintaining control over specific factors involved in such processes. We demonstrated a DNA device for following the repair of DNA damage produced by a redox-cycling anticancer drug, beta-lapachone (β-lap). These chips supported ß-lap-induced biological redox cycle and tracked subsequent DNA damage repair activity with redox-modified DNA monolayers on gold. We observed drug-specific changes in square wave voltammetry from these chips at therapeutic ß-lap concentrations of high statistical significance over drug-free control. We also demonstrated a high correlation of this change with the specific ß-lap-induced redox cycle using rational controls. The concentration dependence of ß-lap revealed significant signal changes at levels of high clinical significance as well as sensitivity to sub-lethal levels of ß-lap. Catalase, an enzyme decomposing peroxide, was found to suppress DNA damage at a NQO1/catalase ratio found in healthy cells, but was clearly overcome at a higher NQO1/catalase ratio consistent with cancer cells. We found that it was necessary to reproduce key features of the cellular environment to observe this activity. Thus, this chip-based platform enabled tracking of ß-lap-induced DNA damage repair when biological criteria were met, providing a unique synthetic platform for uncovering activity normally confined to inside cells. PMID:26901461

  14. 3 - Dimensional Body Measurement Technology

    ZHOU Xu-dong; LI Yan-mei

    2002-01-01

    3 - dimensional body measurement technology, the basis of developing high technology in industry, accelerates digital development of aplparel industry. This paper briefly introduces the history of 3 - dimensional body measurement technology, and recounts the principle and primary structure of some types of 3 - dimensional automatic body measurement system. With this understanding, it discusses prospect of 3- dimensional CAD and virtual technology used in apparel industry.

  15. Design, fabrication, and delivery of a charge injection device as a stellar tracking device

    Burke, H. K.; Michon, G. J.; Tomlinson, H. W.; Vogelsong, T. L.; Grafinger, A.; Wilson, R.

    1979-01-01

    Six 128 x 128 CID imagers fabricated on bulk silicon and with thin polysilicon upper-level electrodes were tested in a star tracking mode. Noise and spectral response were measured as a function of temperature over the range of +25 C to -40 C. Noise at 0 C and below was less than 40 rms carriers/pixel for all devices at an effective noise bandwidth of 150 Hz. Quantum yield for all devices averaged 40% from 0.4 to 1.0 microns with no measurable temperature dependence. Extrapolating from these performance parameters to those of a large (400 x 400) array and accounting for design and processing improvements, indicates that the larger array would show a further improvement in noise performance -- on the order of 25 carriers. A preliminary evaluation of the projected performance of the 400 x 400 array and a representative set of star sensor requirements indicates that the CID has excellent potential as a stellar tracking device.

  16. Verification of MLC based real-time tumor tracking using an electronic portal imaging device

    Han-Oh, Sarah; Yi, Byong Yong; Lerma, Fritz; Berman, Barry L.; Gui, Minzhi; Yu, Cedric

    2010-01-01

    Purpose: The authors have developed a novel technique using an electronic portal imaging device (EPID) to verify the geometrical accuracy of delivery of dose-rate-regulated tracking (DRRT). This technique, called verification of real-time tracking with EPID (VORTE), can potentially be used for both on-line and off-line quality assurance (QA) of MLC-based dynamic tumor tracking.

  17. ISSUES IN IMPLEMENTING MARKER BASED TRACKING ON MASS MOBILE DEVICES

    Kravtsov A. A.; Loyko V. I.

    2015-01-01

    Tracking is a vast field of research associated with navigation, robotics, and virtual environments (virtual reality). Tracking for augmented reality requires higher level of precision, increased range of action, as well as work with a wider variety of input data. It is important that augmented reality technology requires tracking in real time, which also complicates the task. Correct visualization of objects in three-dimensional space requires six degrees of freedom tracking: three position ...

  18. GPU-based quasi-real-time Track Recognition in Imaging Devices: from raw Data to Particle Tracks

    Bozza, Cristiano; De Sio, Chiara; Stellacci, Simona Maria

    2015-01-01

    Nuclear emulsions as tracking devices have been used by recent experiments thanks to fast automatic microscopes for emulsion readout. Automatic systems are evolving towards GPU-based solutions. Real-time imaging is needed to drive the motion of the microscope axes and 3D track recognition occurs quasi-online in local GPU clusters. The algorithms implemented in the Quick Scanning System are sketched. Most of them are very general and might turn out useful for other detector

  19. An open-source framework for testing tracking devices using Lego Mindstorms

    Jomier, Julien; Ibanez, Luis; Enquobahrie, Andinet; Pace, Danielle; Cleary, Kevin

    2009-02-01

    In this paper, we present an open-source framework for testing tracking devices in surgical navigation applications. At the core of image-guided intervention systems is the tracking interface that handles communication with the tracking device and gathers tracking information. Given that the correctness of tracking information is critical for protecting patient safety and for ensuring the successful execution of an intervention, the tracking software component needs to be thoroughly tested on a regular basis. Furthermore, with widespread use of extreme programming methodology that emphasizes continuous and incremental testing of application components, testing design becomes critical. While it is easy to automate most of the testing process, it is often more difficult to test components that require manual intervention such as tracking device. Our framework consists of a robotic arm built from a set of Lego Mindstorms and an open-source toolkit written in C++ to control the robot movements and assess the accuracy of the tracking devices. The application program interface (API) is cross-platform and runs on Windows, Linux and MacOS. We applied this framework for the continuous testing of the Image-Guided Surgery Toolkit (IGSTK), an open-source toolkit for image-guided surgery and shown that regression testing on tracking devices can be performed at low cost and improve significantly the quality of the software.

  20. 21 CFR 872.2060 - Jaw tracking device.

    2010-04-01

    ..., while at rest and during jaw movement. (2) Classification. Class I (general controls). The device is... connection to a personal computer. The device may be a part of a system of devices, contributing jaw position information to be considered with data from other diagnostic components. (2) Classification. Class II...

  1. On Improving the Energy Efficiency and Robustness of Position Tracking for Mobile Devices

    Kjærgaard, Mikkel Baun

    2010-01-01

    position updates when faced with changing conditions such as delays and changing positioning conditions. Previous work has established dynamic tracking systems, such as our EnTracked system, as a solution to address these issues. In this paper we propose a responsibility division for position tracking into...... sensor management strategies and position update protocols and combine the sensor management strategy of EnTracked with position update protocols, which enables the system to further reduce the power consumption with up to 268 mW extending the battery life with up to 36\\%. As our evaluation identify that...... different mobile devices....

  2. High Resolution Tracking Devices Based on Capillaries Filled with Liquid Scintillator

    Bonekamper, D; Vassiltchenko, V; Wolff, T

    2002-01-01

    %RD46 %title\\\\ \\\\The aim of the project is to develop high resolution tracking devices based on thin glass capillary arrays filled with liquid scintillator. This technique provides high hit densities and a position resolution better than 20 $\\mu$m. Further, their radiation hardness makes them superior to other types of tracking devices with comparable performance. Therefore, the technique is attractive for inner tracking in collider experiments, microvertex devices, or active targets for short-lived particle detection. High integration levels in the read-out based on the use of multi-pixel photon detectors and the possibility of optical multiplexing allow to reduce considerably the number of output channels, and, thus, the cost for the detector.\\\\ \\\\New optoelectronic devices have been developed and tested: the megapixel Electron Bombarded CCD (EBCCD), a high resolution image-detector having an outstanding capability of single photo-electron detection; the Vacuum Image Pipeline (VIP), a high-speed gateable pi...

  3. Sound source tracking device for telematic spatial sound field reproduction

    Cardenas, Bruno

    This research describes an algorithm that localizes sound sources for use in telematic applications. The localization algorithm is based on amplitude differences between various channels of a microphone array of directional shotgun microphones. The amplitude differences will be used to locate multiple performers and reproduce their voices, which were recorded at close distance with lavalier microphones, spatially corrected using a loudspeaker rendering system. In order to track multiple sound sources in parallel the information gained from the lavalier microphones will be utilized to estimate the signal-to-noise ratio between each performer and the concurrent performers.

  4. The device for ultra-filtration of liquid radioactive waste using the track membranes

    Full text: The ultra-filtration device was designed and fabricated intended for consistent selective treatment on the track membrance of radionuclide waste from the WWR-K reactor from the main radionuclide contaminants : 137 Cs, 60Co and 90Sr. In order to maintain the productivity of the device for the long time, the device includes the system of periodical short-term washing of membranes by the reverse flow of the purified liquid. The advantage of this device is the significant weight reduction of the products to be disposed as compared with the known technologies of LRW purification

  5. A new electromagnetic positioning method for tracking invaded medical devices using MARG sensors

    Wang, Sen; Chen, Xiao-dong; Du, Cheng-yang; Wang, Yi; Yu, Dao-yin

    2013-08-01

    In clinical medicine, electromagnetic tracking (EMT) system, with its safely penetrating property for human tissue, has been an effective tracking and guiding method for invaded medical devices which are invisible inside a human body. However, traditional EMT system only implements magnetic methods to solve the complex 6-DOF equations and demands an ideal magnetic-field distribution model exited by electromagnetic coils or permanent magnet, resulting in poor anti-interference performance. This paper proposed a new method, combining EMT with the attitude convergence algorithm using MARG sensors. This fusion method reduces the information reliability on the external field, simplifies the complexity of magnetic analysis, and improves the robustness. Except for the accuracy testify experiment, we impose artificial interference to the DC voltage which excites external electromagnetic coils, and the tracking system could still maintain a high positioning stability.

  6. Clinical trials of the new 3-dimensional reticular intrauterine device for reproductive women%新型立体式网状宫内节育器初步临床观察

    邱毅; 王磊光; 于玲

    2014-01-01

    为了观察新型立体式网状宫内节育器(3-DR-IUD)的避孕效果及副反应,将152例志愿受试者随机分为两组,即接受3-DR-IUD组和放置元宫药铜宫内节育器(2-D-IUD)组,每组各76例,常规放置3-DR-IUD和2-D-IUD。分别于术后1个月、3个月、6个月和12个月进行随访,了解放置宫内节育器(IUD)后副反应(如腹痛、腰痛、阴道出血持续时间及出血量、白带等)的发生率、带器妊娠率、IUD脱落率、因症取出率、续用率及避孕效果,并利用B超、X光腹部平片检查3-DR-IUD位置等。两组各76例均成功放置了IUD,术中均无明显疼痛。3-DR-IUD组术后出现白带增多、月经期延长、不规则出血、月经量增多及腰腹部疼痛等副反应6例(7.9%),而2-D-IUD组出现31例(40.8%),两组比较差异有统计学意义(P<0.0001)。3-DR-IUD组无脱落,无带器妊娠者,3个月时因对硅橡胶过敏取出1例,12个月时终止率为1.3%,续用率为98.7%(75/76);2-D-IUD组终止率为13.2%,续用率为86.8%(66/76),两组比较差异有统计学意义(P=0.009)。实验结果表明,3-DR-IUD具有很好的避孕效果,术后副反应轻微,可为育龄妇女提供新的、安全、高效的IUD。%This study aimed at exploring a new 3-dimensional reticular intrauterine device (3-DR-IUD) composed of nitinol and silicone rubber and observing the contraceptive efficacy and side effects of the device in reproductive women. The frame of the 3-DR-IUD was con-structed with silicone rubber and nitinol wire. The 3-DR-IUD was placed into uterus in an outpa-tient procedure. One hundred and fifty-two women were divided equally into the 3-DR-IUD group (n=76) and the 2-dimensional intrauterine device (2-D-IUD) group (n=76,control group). Patient follow-ups were performed in 1~12 months post-operation. The side effects of intrauterine device (IUD),such as abnormal leucorrhea,menstrual flow changes in uterine

  7. 3-D Audio in Mobile Communication Devices: Methods for Mobile Head-Tracking

    Christoph Pörschmann

    2007-12-01

    Full Text Available Future generations of mobile communication devices will serve more and more as multimedia platforms capable of reproducing high quality audio. In order to achieve a 3-D sound perception the reproduction quality of audio via headphones can be significantly increased by applying binaural technology. To be independent of individual head-related transfer functions (HRTFs and to guarantee a good performance for all listeners, an adaptation of the synthesized sound field to the listener′s head movements is required.In this article several methods of head-tracking for mobile communication devices are presented and compared. A system for testing the identified methods is set up and experiments are performed to evaluate the prosand cons of each method. The implementation of such a device in a 3-D audio system is described and applications making use of such a system are identified and discussed.

  8. Testing an attachment method for solar-powered tracking devices on a long-distance migrating shorebird

    Chan, Ying Chi; Brugge, Maarten; Tibbitts, T. Lee; Dekinga, Anne; Porter, Ron; Klaassen, Raymond; Piersma, Theunis

    2016-01-01

    Small solar-powered satellite transmitters and GPS data loggers enable continuous, multi-year, and global tracking of birds. What is lacking, however, are reliable methods to attach these tracking devices to small migratory birds so that (1) flight performance is not impacted and (2) tags are retain

  9. Combining Charge Couple Devices and Rate Sensors for the Feedforward Control System of a Charge Coupled Device Tracking Loop.

    Tang, Tao; Tian, Jing; Zhong, Daijun; Fu, Chengyu

    2016-01-01

    A rate feed forward control-based sensor fusion is proposed to improve the closed-loop performance for a charge couple device (CCD) tracking loop. The target trajectory is recovered by combining line of sight (LOS) errors from the CCD and the angular rate from a fiber-optic gyroscope (FOG). A Kalman filter based on the Singer acceleration model utilizes the reconstructive target trajectory to estimate the target velocity. Different from classical feed forward control, additive feedback loops are inevitably added to the original control loops due to the fact some closed-loop information is used. The transfer function of the Kalman filter in the frequency domain is built for analyzing the closed loop stability. The bandwidth of the Kalman filter is the major factor affecting the control stability and close-loop performance. Both simulations and experiments are provided to demonstrate the benefits of the proposed algorithm. PMID:27347970

  10. Ultrahigh Resolution 3-Dimensional Imaging Project

    National Aeronautics and Space Administration — Southwest Sciences proposes to develop innovative instrumentation for the rapid, 3-dimensional imaging of biological tissues with cellular resolution. Our approach...

  11. 3-dimensional polymer gel dosimetry

    Recently developed techniques in conformal radiotherapy demand special properties of radiation dosimeters. Polymer gel dosimeter evaluated by nuclear magnetic resonance (NMR) is promising tool which can be used for measuring rather complicated 3-dimensional dose distributions with required precision of ± 5 %. This system is based on radiation-induced polymerisation and cross-linking of acrylic monomers which are uniformly dispersed in aqueous gel. The formation of cross-linked polymers in the irradiated regions of the gel increases the NMR relaxation rates of neighbouring water protons. BANG-2 type polymer gel was prepared. The composition of gel dosimeter was as follows: 3 % N,N'-methylene-bisacrylamide, 3 % acrylic acid, 1 % sodium hydroxide, 5 % gelatine, and 88 % water, where all percentages are by weight. The dosimeters in glass vessels were homogeneously irradiated by 60Co gamma photons in a Gammacell 220 unit and by 4 MV, 6 MV and 18 MV X ray photons on Varian Clinac 600C and 2100 C linear accelerators by doses in the range of 0-50 Gy. Evaluation of dosimeters was performed on Siemens EXPERT 1 T and Siemens VISION 1,5 T scanners. Multi-echo CPMG sequence with 16 echoes was used for the evaluation of T2-relaxation times in irradiated gel dosimeters. The dependence of 1/T2 response of dosimeters was studied on following factors: absorbed dose, energy of applied radiation, temperature during NMR evaluation, time since irradiation to NMR evaluation and strength of the magnetic field. An exponential dependence of 1/T2 response on absorbed dose in the range of 0-50 Gy was observed, in the range 0-10 Gy the data could be fitted by a linear function. There was observed no dependence of 1/T2 response on: energy (for three different photon energies used in this study), strength of magnetic field of NMR scanner, time from irradiation of the dosimeters to NMR evaluation. Increase of gel dosimeter 1/T2 response with the decrease of the temperature during NMR evaluation

  12. Design of a new tracking device for on-line dose monitor in ion therapy

    Traini, Giacomo; Bollella, Angela; Collamati, Francesco; De Lucia, Erika; Faccini, Riccardo; Ferroni, Fernando; Frallicciardi, Paola Maria; Mancini-Terracciano, Carlo; Marafini, Michela; Mattei, Ilaria; Miraglia, Federico; Muraro, Silvia; Paramatti, Riccardo; Piersanti, Luca; Pinci, Davide; Rucinski, Antoni; Russomando, Andrea; Sarti, Alessio; Sciubba, Adalberto; Senzacqua, Martina; Solfaroli-Camillocci, Elena; Toppi, Marco; Voena, Cecilia; Patera, Vincenzo

    2016-01-01

    Charged Particle Therapy is a technique for cancer treatment that exploits hadron beams, mostly protons and carbons. A critical issue is the monitoring of the dose released by the beam to the tumor and to the surrounding tissues. We present the design of a new tracking device for monitoring on-line the dose in ion therapy through the detection of secondary charged particles produced by the beam interactions in the patient tissues. In fact, the charged particle emission shape can be correlated with the spatial dose release and the Bragg peak position. The detector uses the information provided by 12 layers of scintillating fibers followed by a plastic scintillator and a small calorimeter made of a pixelated Lutetium Fine Silicate crystal. Simulations have been performed to evaluate the achievable spatial resolution and a possible application of the device for the monitoring of the dose pro?le in a real treatment is presented.

  13. Inter-eye: Interactive error compensation for eye-tracking devices

    De Cecco, Mariolino; Zanetti, Matteo; Fornaser, Alberto; Leuci, Malvina; Conci, Nicola

    2016-06-01

    This paper presents a new method for systematic errors compensation in modern eye-tracking devices. Systematic errors, together with repeatability errors, reduce the possible use of eye trackers for several applications such as moving into an indoor environment and enabling the user to indicate precisely the target only with the support of his/her eyes. The new method relies on an interactive procedure that enables the system to accurately estimate the systematic effect in few seconds and thus compensate it in a fast and accurate way. Results show that the uncertainty can be dramatically decreased for a low-cost device on a 17 inches screen from 100 pixels to approximately 15 pixels.

  14. Teleportation of a 3-dimensional GHZ State

    Cao, Hai-Jing; Wang, Huai-Sheng; Li, Peng-Fei; Song, He-Shan

    2012-05-01

    The process of teleportation of a completely unknown 3-dimensional GHZ state is considered. Three maximally entangled 3-dimensional Bell states function as quantum channel in the scheme. This teleportation scheme can be directly generalized to teleport an unknown d-dimensional GHZ state.

  15. 3-dimensional Griess algebras and Miyamoto involutions

    lam, Ching Hung; Yamauchi, Hiroshi

    2016-01-01

    We consider a series of VOAs generated by 3-dimensional Griess algebras. We will show that these VOAs can be characterized by their 3-dimensional Griess algebras and their structures are uniquely determined. As an application, we will determine the groups generated by the Miyamoto involutions associated to Virasoro vectors of our VOAs.

  16. Design of a computer game using an eye-tracking device for eye's activity rehabilitation

    Lin, Chern-Sheng; Huan, Chia-Chin; Chan, Chao-Ning; Yeh, Mau-Shiun; Chiu, Chuang-Chien

    2004-07-01

    An eye mouse interface that can be used to operate a computer using the movement of the eyes is described. We developed this eye-tracking system for eye motion disability rehabilitation. When the user watches the screen of a computer, a charge-coupled device will catch images of the user's eye and transmit it to the computer. A program, based on a new cross-line tracking and stabilizing algorithm, will locate the center point of the pupil in the images. The calibration factors and energy factors are designed for coordinate mapping and blink functions. After the system transfers the coordinates of pupil center in the images to the display coordinate, it will determine the point at which the user gazed on the display, then transfer that location to the game subroutine program. We used this eye-tracking system as a joystick to play a game with an application program in a multimedia environment. The experimental results verify the feasibility and validity of this eye-game system and the rehabilitation effects for the user's visual movement.

  17. Comparison of Global Navigation Satellite System Devices on Speed Tracking in Road (TranSPORT Applications

    Matej Supej

    2014-12-01

    Full Text Available Global Navigation Satellite Systems (GNSS are, in addition to being most widely used vehicle navigation method, becoming popular in sport-related tests. There is a lack of knowledge regarding tracking speed using GNSS, therefore the aims of this study were to examine under dynamic conditions: (1 how accurate technologically different GNSS measure speed and (2 how large is latency in speed measurements in real time applications. Five GNSSs were tested. They were fixed to a car’s roof-rack: a  smart phone, a wrist watch, a handheld device, a professional system for testing vehicles and a high-end Real Time Kinematics (RTK GNSS. The speed data were recorded and analyzed during rapid acceleration and deceleration as well as at steady speed. The study produced four main findings. Higher frequency and high quality GNSS receivers track speed at least at comparable accuracy to a vehicle speedometer. All GNSS systems measured maximum speed and movement at a constant speed well. Acceleration and deceleration have different level of error at different speeds. Low cost GNSS receivers operating at 1 Hz sampling rate had high latency (up to 2.16 s and are not appropriate for tracking speed in real time, especially during dynamic movements.

  18. Mechanical engineering and design of silicon-based particle tracking devices

    The Mechanical Engineering and Electronics Division of the Los Alamos National Laboratory has been investigating silicon-based particle tracking device technology as part of the Superconducting Super Collider-sponsored silicon subsystem collaboration. Structural, thermal, and materials issues have been addressed. This paper discussed detector structural integrity and stability, including detailed finite element models of the silicon chip support and predictive methods used in designing with advanced composite materials. Electronic thermal loading and efficient dissipation of such energy using heat pipe technology has been investigated. The use of materials whose coefficients of thermal expansion are engineered to match silicon or to be near zero, as appropriate, have been explored. Material analysis and test results from radiation, chemical, and static loading are compared with analytical predictions and discussed. 1 ref., 2 figs., 1 tab

  19. XpertTrack: Precision Autonomous Measuring Device Developed for Real Time Shipments Tracker.

    Viman, Liviu; Daraban, Mihai; Fizesan, Raul; Iuonas, Mircea

    2016-01-01

    This paper proposes a software and hardware solution for real time condition monitoring applications. The proposed device, called XpertTrack, exchanges data through the GPRS protocol over a GSM network and monitories temperature and vibrations of critical merchandise during commercial shipments anywhere on the globe. Another feature of this real time tracker is to provide GPS and GSM positioning with a precision of 10 m or less. In order to interpret the condition of the merchandise, the data acquisition, analysis and visualization are done with 0.1 °C accuracy for the temperature sensor, and 10 levels of shock sensitivity for the acceleration sensor. In addition to this, the architecture allows increasing the number and the types of sensors, so that companies can use this flexible solution to monitor a large percentage of their fleet. PMID:26978360

  20. HyperCube: A Small Lensless Position Sensing Device for the Tracking of Flickering Infrared LEDs

    Thibaut Raharijaona

    2015-07-01

    Full Text Available An innovative insect-based visual sensor is designed to perform active marker tracking. Without any optics and a field-of-view of about 60°, a novel miniature visual sensor is able to locate flickering markers (LEDs with an accuracy much greater than the one dictated by the pixel pitch. With a size of only 1 cm3 and a mass of only 0.33 g, the lensless sensor, called HyperCube, is dedicated to 3D motion tracking and fits perfectly with the drastic constraints imposed by micro-aerial vehicles. Only three photosensors are placed on each side of the cubic configuration of the sensing device, making this sensor very inexpensive and light. HyperCube provides the azimuth and elevation of infrared LEDs flickering at a high frequency (>1 kHz with a precision of 0.5°. The minimalistic design in terms of small size, low mass and low power consumption of this visual sensor makes it suitable for many applications in the field of the cooperative flight of unmanned aerial vehicles and, more generally, robotic applications requiring active beacons. Experimental results show that HyperCube provides useful angular measurements that can be used to estimate the relative position between the sensor and the flickering infrared markers.

  1. MobileRF: A Robust Device-Free Tracking System Based On a Hybrid Neural Network HMM Classifier

    Paul, Anindya S.; Wan, Eric A.; Adenwala, Fatema; Schafermeyer, Erich; Preiser, Nick; Kaye, Jeffrey; Jacobs, Peter G.

    2014-01-01

    We present a device-free indoor tracking system that uses received signal strength (RSS) from radio frequency (RF) transceivers to estimate the location of a person. While many RSS-based tracking systems use a body-worn device or tag, this approach requires no such tag. The approach is based on the key principle that RF signals between wall-mounted transceivers reflect and absorb differently depending on a person’s movement within their home. A hierarchical neural network hidden Markov model ...

  2. A device for tracking-down the defective fuel rods in a reactor

    The paper gives first the fuel element description and its operation. If a cladding defect arises, some of the fission isotopes pass into the primary cooling system and, as these isotopes are extremely radio-active, the danger of primary cooling system contamination occurs what entails expensive decontamination operations. For identification of the bundle containing the defective pins a simple, modular device was designed and made. It works by pointing-out the bundle(s) which has at least one defective fuel pin. After tracking, the fuel bundle is picked-up from the core and searching is continued to point-out the defective pin inside post-irradiation-hot cells. For dosimetric survey in the reactor hall, an aerosol detector was used. When an accident arises the released noble gases will be detected by this detector. The detector can give no information where the damage is located for one of the fuel pins inside the irradiation devices (loop or capsule) can also get defective and consequently it can release radioactive noble gases in the reactor hall. For avoiding this a radioactive survey device for core cooling agent was mounted by the primary cooling system. The device for defective fuel rod identification in the nuclear reactor is composed of the following components: - a device for water sampling from the fuel bundle; - a suction valve; - a handling tool; - an electric pump; - ionic filters; - a flexible hose. When fission isotopes arise in primary cooling system, the device is brought to the edge of the reactor pool in a sharp positioning. By means of the handling tool the sampling device is inserted at the top of the fuel bundle. The suction inlet circuit and the electric pump are filled with pool water, and after that the ionic filter and outlet circuit are filled also. The electric pump is actuated and the following circuit is operated: fuel bundle, electric pump, ionic filter, pool. For avoiding the overheating of the pump, part of the flow is by

  3. Testing an attachment method for solar-powered tracking devices on a long-distance migrating shorebird

    Chan, Y.-C; Brugge, M.; Tibbitts, T.L.; Dekinga, A.; Porter, R.; Klaassen, R.H.G.; Piersma, T.

    2016-01-01

    Small solar-powered satellite transmitters andGPS data loggers enable continuous, multi-year, and globaltracking of birds. What is lacking, however, are reliablemethods to attach these tracking devices to small migratorybirds so that (1) flight performance is not impacted and (2)tags are retained du

  4. Properties of 3-dimensional line location models

    Brimberg, Jack; Juel, Henrik; Schöbel, Anita

    2002-01-01

    We consider the problem of locating a line with respect to some existing facilities in 3-dimensional space, such that the sum of weighted distances between the line and the facilities is minimized. Measuring distance using the l\\_p norm is discussed, along with the special cases of Euclidean and...

  5. Homological aperiodic tilings of 3-dimensional geometries

    Nowak, Piotr W

    2012-01-01

    We construct the first aperiodic tiles for two amenable 3-dimensional Lie groups: Sol and the Heisenberg group. Our construction relies on the use of higher-dimensional uniformly finite homology. In particular, we settle completely the existence of aperiodic tiles for all of the non-compact geometries of 3-manifolds appearing in the geometrization conjecture.

  6. GPS tracking devices reveal foraging strategies of black-legged kittiwakes

    Kotzerka, Jana; Garthe, Stefan; Hatch, Scott A.

    2010-01-01

    The Black-legged Kittiwake Rissa tridactyla is the most abundant gull species in the world, but some populations have declined in recent years, apparently due to food shortage. Kittiwakes are surface feeders and thus can compensate for low food availability only by increasing their foraging range and/or devoting more time to foraging. The species is widely studied in many respects, but long-distance foraging and the limitations of conventional radio telemetry have kept its foraging behavior largely out of view. The development of Global Positioning System (GPS) loggers is advancing rapidly. With devices as small as 8 g now available, it is possible to use this technology for tracking relatively small species of oceanic birds like kittiwakes. Here we present the first results of GPS telemetry applied to Black-legged Kittiwakes in 2007 in the North Pacific. All but one individual foraged in the neritic zone north of the island. Three birds performed foraging trips only close to the colony (within 13 km), while six birds had foraging ranges averaging about 40 km. The maximum foraging range was 59 km, and the maximum distance traveled was 165 km. Maximum trip duration was 17 h (mean 8 h). An apparently bimodal distribution of foraging ranges affords new insight on the variable foraging behaviour of Black-legged Kittiwakes. Our successful deployment of GPS loggers on kittiwakes holds much promise for telemetry studies on many other bird species of similar size and provides an incentive for applying this new approach in future studies.

  7. A WiFi Tracking Device Printed Directly on Textile for Wearable Electronics Applications

    Krykpayev, Bauyrzhan

    2015-12-01

    reported which utilize an interface layer [1{13]. No sophisticated circuit or a system level design involving integration of components on textile has been demonstrated in this medium before. This work, for the first time, demonstrates a complete system printed on a polyester/cotton T-shirt, that helps in tracking the person who is wearing that T-shirt through a smart phone or any Internet enabled device. A low cost dielectric material (Creative Materials 116-20 Dielectric ink) is used to print the interface layer through manual screen printing method. The circuit layout and antenna have been ink-jet printed with silver nano-particles based conductive ink. Utilizing WiFi technology, this wearable tracking system can locate the position of lost children, senior citizens, patients or people in uniforms, lab coats, hospital gowns, etc. The device is small enough (55 mm x 45 mm) and light weight (10.5g w/o battery) for people to comfortably wear it and can be easily concealed in case discretion is required. Field tests have revealed that a person can be localized with up to 8 meters accuracy and the device can wirelessly communicate with a hand-held receiver placed 55 meters away. Future development of the method with techniques such as automated screen printing, pick and place components, and digital ink-jet printing can pave the way for mass production.

  8. 3-dimensional shaped aluminium foam sandwiches

    Baumeister, J. [Fraunhofer-Institut fuer Fertigungstechnik und Angewandte Materialforschung, Bremen (Germany); Baumgaertner, F. [Schunk Sintermetalltechnik, Giessen (Germany); Gers, H. [Honsel AG, Meschede (Germany); Seeliger, W. [Wilhelm Karmann GmbH, Osnabrueck (Germany)

    2000-07-01

    3-dimensional shaped sandwich panels with a very high stiffness can be produced in an elegant way by combining aluminium face sheets with an aluminium foam core. For this, a mixture of aluminium powder and a foaming agent is compressed to a semi-finished product of nearly vanishing porosity by extrusion, powder rolling or hot isostatic pressing. The resulting foamable semi-finished aluminium material is roll clad with sheets of conventional sheet or aluminium. As a result a precursor material is obtained consisting of two face sheets which are metallurgically bonded to the foamable core layer. This sandwich precursor material can be shaped into a 3-dimensional part by conventional techniques, e.g. by stamping or deep drawing. In a final step the foamable precursor material is heated up to the melting point of the core layer thus initiating its expansion into the desired 3-dimensional shaped sandwich structure. The porosity of the foamed core layer is in the range from 80-90% so that the integral density of the sandwich structure can be as low as 0,7 g/cm{sup 3}. The sandwich materials combine the low weight and high bending stiffness with the advantages of the face sheets, i.e. the high strength and weldability. The manufacturing process will be described in detail and the material properties will be shown. Current and future possible applications will be outlined as well as concrete parts produced up to date. (orig.)

  9. A New Approach to 3-Dimensional Fields

    agashe, sadanand

    2016-01-01

    A new approach, using the operator "x d/dx + y d/dy + z d/dz", is introduced for studying 3-dimensional scalar and vector fields. The approach uses a property of the operator which is similar to that of the Laplacian operator, but the operator does not seem to have been used before. Also, the operator requires only once-differentiability of the fields. Using it, a number of new formulas are derived and new proofs given for many classical results such as the Helmholtz theorem, the Poisson form...

  10. 3-dimensional defect TQFTs and their tricategories

    Carqueville, Nils; Schaumann, Gregor

    2016-01-01

    We initiate a systematic study of 3-dimensional `defect' topological quantum field theories, that we introduce as symmetric monoidal functors on stratified and decorated bordisms. For every such functor we construct a tricategory with duals, which is the natural categorification of a pivotal bicategory. This captures the algebraic essence of defect TQFTs, and it gives precise meaning to the fusion of line and surface defects as well as their duality operations. As examples, we discuss how Reshetikhin-Turaev and Turaev-Viro theories embed into our framework, and how they can be extended to defect TQFTs.

  11. 3-dimensional bioprinting for tissue engineering applications.

    Gu, Bon Kang; Choi, Dong Jin; Park, Sang Jun; Kim, Min Sup; Kang, Chang Mo; Kim, Chun-Ho

    2016-01-01

    The 3-dimensional (3D) printing technologies, referred to as additive manufacturing (AM) or rapid prototyping (RP), have acquired reputation over the past few years for art, architectural modeling, lightweight machines, and tissue engineering applications. Among these applications, tissue engineering field using 3D printing has attracted the attention from many researchers. 3D bioprinting has an advantage in the manufacture of a scaffold for tissue engineering applications, because of rapid-fabrication, high-precision, and customized-production, etc. In this review, we will introduce the principles and the current state of the 3D bioprinting methods. Focusing on some of studies that are being current application for biomedical and tissue engineering fields using printed 3D scaffolds. PMID:27114828

  12. A dilogarithmic 3-dimensional Ising tetrahedron

    Broadhurst, D J

    1999-01-01

    In 3 dimensions, the Ising model is in the same universality class as unknown analytical nature. In contrast, all single-scale 4-dimensional tetrahedra were reduced, in hep-th/9803091, to special values of exponentially convergent polylogarithms. Combining dispersion relations with the integer-relation finder PSLQ, we find that $C^{Tet}/2^{5/2} = Cl_2(4\\alpha) - Cl_2(2\\alpha)$, with $Cl_2(\\theta):=\\sum_{n>0}\\sin(n\\theta)/n^2$ and 1,000-digit precision and readily yields 50,000 digits of $C^{Tet}$, after transformation to an exponentially convergent sum, akin to those studied in math.CA/9803067. It appears that this 3-dimensional result entails a polylogarithmic ladder beginning with the classical formula for $\\pi/\\sqrt2$, in the manner that 4-dimensional results build on that for $\\pi/\\sqrt3$.

  13. Scientific visualization of 3-dimensional optimized stellarator configurations

    The design techniques and physics analysis of modern stellarator configurations for magnetic fusion research rely heavily on high performance computing and simulation. Stellarators, which are fundamentally 3-dimensional in nature, offer significantly more design flexibility than more symmetric devices such as the tokamak. By varying the outer boundary shape of the plasma, a variety of physics features, such as transport, stability, and heating efficiency can be optimized. Scientific visualization techniques are an important adjunct to this effort as they provide a necessary ergonomic link between the numerical results and the intuition of the human researcher. The authors have developed a variety of visualization techniques for stellarators which both facilitate the design optimization process and allow the physics simulations to be more readily understood

  14. Heavy Flavor Tracker (HFT): A new inner tracking device at STAR

    STAR Collaboration; Bouchet, J.; STAR Collaboration

    2009-11-01

    The HFT, a new inner tracking detector for STAR, aims to measure the charmed hadron nuclear modification factor as well as their elliptic flow to the low p region (˜0.5 GeV/c) by measuring the displaced vertices of charmed particles.

  15. Heavy Flavor Tracker (HFT): A new inner tracking device at STAR

    The HFT, a new inner tracking detector for STAR, aims to measure the charmed hadron nuclear modification factor as well as their elliptic flow to the low pT region (∼0.5 GeV/c) by measuring the displaced vertices of charmed particles.

  16. Test of scintillating bars coupled to Silicon Photomultipliers for a charged particle tracking device

    Cecchini, S; Esposti, L Degli; Lax, I; Mandrioli, G; Mauri, N; Pasqualini, L; Patrizii, L; Pozzato, M; Sirri, G; Tenti, M

    2016-01-01

    The results obtained in laboratory tests, using scintillator bars read by silicon photomultipliers are reported. The present approach is the first step for designing a precision tracking system to be placed inside a free magnetized volume for the charge identification of low energy crossing particles. The devised system is demonstrated able to provide a spatial resolution better than 2 mm.

  17. Heavy Flavor Tracker (HFT) : A new inner tracking device at STAR

    Bouchet, Jonathan; Collaboration, for the STAR

    2009-01-01

    The HFT, a new inner tracking detector for STAR, aims to measure the charmed hadron nuclear modification factor as well as their elliptic flow to the low $p_\\mathrm{T}$ region ($\\sim$0.5 GeV/c) by measuring the displaced vertices of charmed particles.

  18. Heavy Flavor Tracker (HFT) : A new inner tracking device at STAR

    2009-01-01

    The HFT, a new inner tracking detector for STAR, aims to measure the charmed meson nuclear modification factor as well as their elliptic flow in low $p_\\mathrm{T}$ region (0.5 - 2 GeV/c) by measuring the displaced vertices of charmed particles.

  19. Development of reprogrammable high frame-rate detector devices for laser communication pointing, acquisition and tracking

    Norton, Terita; Conner, Kenneth; Covington, Richard; Ngo, Hung; Rink, Christine

    2008-02-01

    A Two Terminal Laser Communication Test Bed has been developed at The Aerospace Corporation. This paper presents the design and preliminary results of a reprogrammable detector within the Test Bed for use in pointing, acquisition, and tracking between a Satellite-to-Satellite Laser Communication link. The detector may be commanded by an emulated spacecraft Command & Data Handling subsystem to switch between full-array scanning and "small sized" N x M pixel Field of View (FOV) for high-rate laser tracking. The approach follows a parallel path to implement the signal processing algorithm on two different hardware resources: a Field Programmable Gate Array (FPGA) and a Digital Signal Processor (DSP). The focus of this effort is to present a methodology for testing and evaluating various techniques for advanced focal plane array (FPA) hardware, as well as sensor FPA control, image processing and laser beam X & Y position algorithms.

  20. Nuclear track membranes in devices for air cleaning personnel viability support and biotechnological protection

    A brief review of designs development in the field of nuclear track membranes application for air cleaning and keeping clean zones and technological volumes sterile, carried out in Nuclear Reaction Laboratory of JINR, have been presented. Several technical solutions have been shown. That are: find air cleaning filter, local clean work place, gas exchanger, diffusion respirator, bio-technological protection of fermenter and membrane bioreactor. 21 refs, 12 figs

  1. Comparison of Global Navigation Satellite System Devices on Speed Tracking in Road (Tran)SPORT Applications

    Matej Supej; Ivan Čuk

    2014-01-01

    Global Navigation Satellite Systems (GNSS) are, in addition to being most widely used vehicle navigation method, becoming popular in sport-related tests. There is a lack of knowledge regarding tracking speed using GNSS, therefore the aims of this study were to examine under dynamic conditions: (1) how accurate technologically different GNSS measure speed and (2) how large is latency in speed measurements in real time applications. Five GNSSs were tested. They were fixed to a car’s roof-rack: ...

  2. Tracking geomagnetic fluctuations to picotesla accuracy using two superconducting quantum interference device vector magnetometers

    Henry, S. [University of Oxford, Department of Physics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Pozzo di Borgo, E. [UAPV, UMR1114 EMMAH, F-84914 Avignon, France and INRA, UMR1114 EMMAH, F-84914 Avignon (France); Cavaillou, A. [LSBB URL, UMS 3538 UNS/UAPV/CNRS La Grande Combe, F-84400 Rustrel (France)

    2013-02-15

    SQUIDs can be used to monitor the three vector components of the geomagnetic field to a high precision at very low frequencies, yet as they are susceptible to external interference, the accuracy to which they can track changes in the dc field over long periods has been unclear. We have carried out simultaneous measurements of the geomagnetic field recorded using two independent 3-axis SQUID magnetometers at the Laboratoire Souterrain a Bas Bruit (LSBB). We demonstrate a technique to take the difference between a linear transform of the three signals from one magnetometer, and a reference signal from the other, in order to account for any difference in alignment and calibration, and track local signals at a sub-nT level. We confirmed that both systems tracked the same signal with an RMS difference as low as 56pT over a period of 72 h. To our knowledge this is the first such demonstration of the long term accuracy of SQUID magnetometers for monitoring geomagnetic fields.

  3. Performance Analysis of 3-Dimensional Turbo Codes

    Rosnes, Eirik

    2011-01-01

    In this work, we consider the minimum distance properties and convergence thresholds of 3-dimensional turbo codes (3D-TCs), recently introduced by Berrou et al.. Here, we consider binary 3D-TCs while the original work of Berrou et al. considered double-binary codes. In the first part of the paper, the minimum distance properties are analyzed from an ensemble perspective, both in the finite-length regime and in the asymptotic case of large block lengths. In particular, we analyze the asymptotic weight distribution of 3D-TCs and show numerically that their typical minimum distance dmin may, depending on the specific parameters, asymptotically grow linearly with the block length, i.e., the 3D-TC ensemble is asymptotically good for some parameters. In the second part of the paper, we derive some useful upper bounds on the dmin when using quadratic permutation polynomial (QPP) interleavers with a quadratic inverse. Furthermore, we give examples of interleaver lengths where an upper bound appears to be tight. The b...

  4. Tracking the presence of users by the presence of their device

    Arteev, Pavel

    2014-01-01

    Real-time locating systems (RTLS) are systems, which can automatically identify and track the objects. Such a system can be helpful at university in a way that students can find in which auditorium a professor is present at that moment or at hospital for the fast detection of rooms in which nurses are present.In this thesis the prototype of the Real-time locating system based on the Bluetooth Low Energy technology was build and demonstrated. System was developed using Reactive Blocks SDK. The...

  5. Studies of the possibility to use Gas Pixel Detector as a fast trigger tracking device

    Sinev, N.; Bashindzhagyan, G.; Korotkova, N.; Romaniouk, A.; Tikhomirov, V.

    2016-02-01

    Gas Pixel Detector (GPD) technology offers new possibilities, which make them very attractive for application in existing and future accelerator experiments and beyond. GPDs combine advantages of silicon and gaseous detectors. They can be produced radiation hard and with low power consumption using relatively cheap technology. Low capacitance of the individual pixel channel allows us to obtain a large signal to noise ratio. Using a time projection method for GPD readout one obtains 3D track image with precise coordinate (31 µm) and angular information (0.40°). This feature would allow us to achieve performance of one GPD layer equal to a few layers of silicon detectors. Implementation of a fast readout and data processing at the front-end level allows one to reconstruct a track segment in less than 1 μs, and to use this information for the first level trigger generation. The relevant algorithms of data acquisition and analysis are described and the results of simulations are presented in this paper.

  6. Analysis on Supporting Stability for Track Subgrade Dynamic Response In-situ Test Device Based on NSGA-II

    Feilong Zheng

    2013-07-01

    Full Text Available The dynamic response test to the subgrade plays a very important role in railway construction and a new in-situ test system is proposed. This paper presents the application of non-dominated sorting genetic algorithm-II (NSGA-II to analyze the stability of the supporting equipment for track subgrade dynamic response in-situ test device. Its stability is related with the extension length of the hydraulic cylinders and the backward condition of the supporting equipment - the hydraulic excavator. The problem is formulated as a multi-objective optimization problem with the objective of maximizing  the supporting force for the test device. An 85 tons excavator is picked as the case to study. The first optimal results show the excavator may not support the test system successfully. After redesigning the boom and adding its weight and length as new parameters, the second optimize results indicate the test device can work normally.

  7. Cardiothoracic Applications of 3-dimensional Printing.

    Giannopoulos, Andreas A; Steigner, Michael L; George, Elizabeth; Barile, Maria; Hunsaker, Andetta R; Rybicki, Frank J; Mitsouras, Dimitris

    2016-09-01

    Medical 3-dimensional (3D) printing is emerging as a clinically relevant imaging tool in directing preoperative and intraoperative planning in many surgical specialties and will therefore likely lead to interdisciplinary collaboration between engineers, radiologists, and surgeons. Data from standard imaging modalities such as computed tomography, magnetic resonance imaging, echocardiography, and rotational angiography can be used to fabricate life-sized models of human anatomy and pathology, as well as patient-specific implants and surgical guides. Cardiovascular 3D-printed models can improve diagnosis and allow for advanced preoperative planning. The majority of applications reported involve congenital heart diseases and valvular and great vessels pathologies. Printed models are suitable for planning both surgical and minimally invasive procedures. Added value has been reported toward improving outcomes, minimizing perioperative risk, and developing new procedures such as transcatheter mitral valve replacements. Similarly, thoracic surgeons are using 3D printing to assess invasion of vital structures by tumors and to assist in diagnosis and treatment of upper and lower airway diseases. Anatomic models enable surgeons to assimilate information more quickly than image review, choose the optimal surgical approach, and achieve surgery in a shorter time. Patient-specific 3D-printed implants are beginning to appear and may have significant impact on cosmetic and life-saving procedures in the future. In summary, cardiothoracic 3D printing is rapidly evolving and may be a potential game-changer for surgeons. The imager who is equipped with the tools to apply this new imaging science to cardiothoracic care is thus ideally positioned to innovate in this new emerging imaging modality. PMID:27149367

  8. Control design for robust tracking and smooth transition in power systems with battery/supercapacitor hybrid energy storage devices

    Jung, Hoeguk; Wang, Haifeng; Hu, Tingshu

    2014-12-01

    This paper considers some control design problems in a power system driven by battery/supercapacitor hybrid energy storage devices. The currents in the battery and the supercapacitor are actively controlled by two bidirectional buck-boost converters. Two control objectives are addressed in this paper: one is to achieve robust tracking of two reference variables, the battery current and the load voltage, the other is to achieve smooth transition of these variables during load switch. Based on the state-space averaged model we newly developed, the control design problems are converted into numerically efficient optimization problems with linear matrix inequality (LMI) constraints. An experimental system is constructed to validate the control design methods.

  9. Tracking log displacement during floods in the Tagliamento River using RFID and GPS tracker devices

    Ravazzolo, D.; Mao, L.; Picco, L.; Lenzi, M. A.

    2015-01-01

    Large pieces of in-channel wood can exert an important role on the ecological and morphological properties of gravel-bed rivers. On the other side, when transported during flood events, large wood can become a source of risk for sensitive structures such as bridges. However, wood displacement and velocity in river systems are still poorly understood, especially in large gravel-bed rivers. This study focuses on log transport in a valley reach of Tagliamento River (Italy). Log displacement during flood events of different magnitudes recorded from June 2010 to October 2011 has been analysed thanks to the installation of 113 radio frequency identification (RFID) tags and 42 GPS tracker devices in logs of different dimensions. Recovery rates of logs equipped with RFID and GPS trackers were about 43% and 42%, respectively. The GPS devices allowed us to analyse in details the log displacement and transport overtime, indicating a higher log entrainment during rising limb of hydrographs. The threshold for the entrainment of logs from low bars is around 40% of bankfull water stage. No clear relationship was found between the peak of flood and log displacement length and velocity. However, log displacement length and velocity appear significantly correlated to the ratio between the peak of flow and the water stage exceeding the flow duration curve for 25% of time (i.e. the ratio hmax/h25 ratio). Log deposition was observed to occur at the peak flow, and logs transported during ordinary events are preferably deposited on low bars. This study reveals the potentials of GPS tracker devices to monitor the entrainment and movements of logs in large gravel-bed rivers during floods. These observations could be useful for better planning of river management practices and strategies involving the use of large wood pieces and could help for calibrating wood budgets at the reach scale.

  10. Introduction of FDA’s Medical Device Tracking Requirements%美国FDA医疗器械追踪要求介绍

    方玉; 邵玉波; 苑富强; 李一捷

    2014-01-01

    An integrated medical devices tracking system in effective operation is needed to sufifciently perform the recal of a medical devices. Seeing the fact that we do not have an act speciifcal y enacted for medical devices tracking system, this article introduced the basic contents of Medical Device Tracking Requirements of FDA. Although China’s political and legal system greatly differ from that of the US, the essential train of thought showed in Medical Device Tracking Requirements remains considerable reference value.%医疗器械召回的有效实施,需要有完整并有效运行的医疗器械追踪体系与之相配合。针对我国目前尚无专门的医疗器械追踪法规的现状,本文介绍了美国FDA《医疗器械追踪要求》的基本内容。虽然中美双方在国体、政体以及法律架构方面存在较大差异,但FDA对医疗器械追踪要求的法则设计思路仍具有重要的参考价值。

  11. 3-dimensional analysis of FELIX brick with hole

    Electromagnetic induction on FELIX brick with a hole has been analyzed with 3-Dimensional EDDYNET computer code. Incorporating loop currents on hexahedral meshes, the 3-Dimensional EDDYNET program solves eddy current problems by a network approach, and provides good accuracy even for coarse meshes. (author)

  12. Testing an attachment method for solar-powered tracking devices on a long-distance migrating shorebird

    Chan, Ying-Chi; Brugge, Martin; Tibbitts, T. Lee; Dekinga, Anne; Porter, Ron; Klaassen, Raymond H. G.; Piersma, Theunis

    2016-01-01

    Small solar-powered satellite transmitters and GPS data loggers enable continuous, multi-year, and global tracking of birds. What is lacking, however, are reliable methods to attach these tracking devices to small migratory birds so that (1) flight performance is not impacted and (2) tags are retained during periods of substantial mass change associated with long-distance migration. We developed a full-body harness to attach tags to Red Knots (Calidris canutus), a medium-sized shorebird (average mass 124 g) that undertakes long-distance migrations. First, we deployed dummy tags on captive birds and monitored them over a complete migratory fattening cycle (February–July 2013) during which time they gained and lost 31–110 g and underwent a pre-alternate moult of body feathers. Using each individual’s previous year fattening and moult data in captivity as controls, we compared individual mass and moult differences between years between the tagged and reference groups, and concluded that the attachment did not impact mass and moult cycles. However, some birds shed feathers under the tags and under the polyester harness line commonly used in avian harnesses. Feather shedding was alleviated by switching to smoothed-bottom tags and monofilament harness lines. To field-trial this design, we deployed 5-g satellite transmitters on ten Red Knots released on 3 October 2013 in the Dutch Wadden Sea. Bird movements and tag performance appeared normal. However, nine tags stopped transmitting 11–170 days post-release which was earlier than expected. We attribute this to bird mortality rather than failure of the attachments or transmitters and suggest that the extra weight and drag caused by the tag and its feather-blocking shield increased the chance of depredation by the locally common Peregrine Falcons (Falco peregrinus). Our results demonstrate that species- and place-specific contexts can strongly determine tagging success. While captive trials are an important first

  13. A novel solar cell fabricated with spiral photo-electrode for capturing sunlight 3-dimensionally

    LIU; Yong; SHEN; Hui

    2006-01-01

    A novel solar cell fabricated with spiral photo-electrode for capturing sunlight 3-dimensionally (3D-cell) is proposed in this paper. We studied its performance both in solar simulator and in nature sunlight. Spiral photo-electrode of 3D-cell can receive sunlight from all directions and therefore can track the sun passively. And it is much insensitive to solar azimuth angle and shade. In addition, it increases the area to obtain scattered sunlight and reflected light. Compared with the dye-sensitized solar cells using sandwich structure, it would be more advantageous in the sealing technique.

  14. Popularity of Tracking Device as an Anti-theft Measure and Impact of its sales on Sales of Auto Insurance Policies: Evidence from Karachi, Pakistan

    Syed Karamat Ullah Hussainy; Salman Bashir; Syed Luqman Hakim

    2009-01-01

    In this paper attempt has been made to examine the popularity of tracking devices and its impact on the sales of automobiles insurance policies. Literature review revealed that people insure their vehicles to protect them from theft as well as from other perils such as fire, SRCC, accidental losses and third party liability. The coverage is mainly obtained to prevent theft, which has the major significance. Insurance companies have been trying since a long time to curtail the cost of theft, w...

  15. 3 dimensional volume MR imaging of intratemporal facial nerve

    Seo, Jeong Jin; Kang, Heoung Keun; Kim, Hyun Ju; Kim, Jae Kyu; Jung, Hyun Ung; Moon, Woong Jae [Chonnam University Medical School, Kwangju (Korea, Republic of)

    1994-10-15

    To evaluate the usefulness of 3 dimensional volume MR imaging technique for demonstrating the facial nerves and to describe MR findings in facial palsy patients and evaluate the significance of facial nerve enhancement. We reviewed the MR images of facial nerves obtained with 3 dimensional volume imaging technique before and after intravenous administration of Gadopentetate dimeglumine in 13 cases who had facial paralysis and 33 cases who had no facial palsy. And we analyzed the detectability of ananatomical segments of intratemporal facial nerves and facial nerve enhancement. When the 3 dimensional volume MR images of 46 nerves were analyzed subjectively, the nerve courses of 43(93%) of 46 nerves were effectively demonstrated on 3 dimensional volume MR images. Internal acoustic canal portions and geniculate ganglion of facial nerve were well visualized on axial images and tympanic and mastoid segments were well depicted on oblique sagittal images. 10 of 13 patients(77%) were visibly enhanced along at least one segment of the facial nerve with swelling or thickening, and nerves of 8 of normal 33 cases(24%) were enhanced without thickening or swelling. MR findings of facial nerve parelysis is asymmetrical thickening of facial nerve with contrast enhancement. The 3 dimensional volume MR imaging technique should be a useful study for the evaluation of intratemporal facial nerve disease.

  16. 49 CFR 214.511 - Required audible warning devices for new on-track roadway maintenance machines.

    2010-10-01

    ... SAFETY On-Track Roadway Maintenance Machines and Hi-Rail Vehicles § 214.511 Required audible warning...) An automatic change-of-direction alarm which provides an audible signal that is at least...

  17. DESIGN OF ROBUST TWO-AXIS SYSTEMS FOR STABILIZATION AND TRACKING OF INFORMATION-MEASURING DEVICES OPERATED ON GROUND VEHICLES

    Olga Sushchenko

    2014-06-01

    Full Text Available Design features of the information-measuring robust stabilization and tracking systems operated on the ground vehicles are considered. The mathematical description of the control object mounted in the two-axis gimbals    is obtained. Design features of the two-axis robust stabilization and tracking systems based on the structural H.. -synthesis are researched. The simulation results are given

  18. Differential Cross Section Kinematics for 3-dimensional Transport Codes

    Norbury, John W.; Dick, Frank

    2008-01-01

    In support of the development of 3-dimensional transport codes, this paper derives the relevant relativistic particle kinematic theory. Formulas are given for invariant, spectral and angular distributions in both the lab (spacecraft) and center of momentum frames, for collisions involving 2, 3 and n - body final states.

  19. Controlled teleportation of a 3-dimensional bipartite quantum state

    Cao, Hai-Jing; Chen, Zhong-Hua; Song, He-Shan

    2008-07-01

    A controlled teleportation scheme of an unknown 3-dimensional (3D) two-particle quantum state is proposed, where a 3D Bell state and 3D GHZ state function as the quantum channel. This teleportation scheme can be directly generalized to teleport an unknown d-dimensional bipartite quantum state.

  20. Controlled teleportation of a 3-dimensional bipartite quantum state

    Cao Haijing; Chen Zhonghua [Physics Department, Shanghai University of Electric Power, Shanghai 201300 (China); Song Heshan [Physics Department, Dalian University of Technology, Dalian 116024 (China)], E-mail: 2007000084@shiep.edu.cn

    2008-07-15

    A controlled teleportation scheme of an unknown 3-dimensional (3D) two-particle quantum state is proposed, where a 3D Bell state and 3D GHZ state function as the quantum channel. This teleportation scheme can be directly generalized to teleport an unknown d-dimensional bipartite quantum state.

  1. 2 and 3-dimensional Hamiltonians with Shape Invariance Symmetry

    Jafarizadeh, M. A.; Panahi-Talemi, H.; Faizi, E.

    2000-01-01

    Via a special dimensional reduction, that is, Fourier transforming over one of the coordinates of Casimir operator of su(2) Lie algebra and 4-oscillator Hamiltonian, we have obtained 2 and 3 dimensional Hamiltonian with shape invariance symmetry. Using this symmetry we have obtained their eigenspectrum. In the mean time we show equivalence of shape invariance symmetry and Lie algebraic symmetry of these Hamiltonians.

  2. 3-Dimensional reconstruction of fluorescent structures in tardigrades

    Franz BRÜMMER

    2007-09-01

    Full Text Available Tardigrades are microscopic animals, thus brightfield microscopy is a well established method for tardigrade observation. Modern techniques in functional genetics like fluorescence in situ hybridisation or fluorescently labelled expression markers demand high resolution fluorescence microscopy. Nevertheless tardigrades are still considered to be difficult objects for fluorescence techniques as they are covered by an opaque and diffracting cuticle. We show a modern technique of structured light illumination that enables us to acquire thin optical sections and consequently to reconstruct 3-dimensional structures in tardigrades with a high spatial resolution in all 3 dimensions. This technique is evaluated on taxonomically valuable internal as well as external structures of eutardigrades: the bucco-pharyngeal apparatus and the claws. The 3-dimensional reconstructions allow the measurement of distances in all 3 dimensions.

  3. Catalytic carbon deposition on 3-dimensional carbon fibre supports

    Thornton, Matthew James

    2005-01-01

    Catalytic carbon deposition reactions, using methane, ethane or synthetic natural gas (1.8 vol. % propane, 6.7 vol. % ethane and balance methane) as the carbon-containing gas feedstock with or without the addition of hydrogen, have been investigated over nickel, cobalt and iron catalysts supported on 3-dimensional carbon fibre supports, using both a horizontal tube furnace and an isothermal, isobaric induction furnace. The transition metal catalysts were prepared by impregnating 3-dimens...

  4. Anti-de Sitter 3-dimensional Gravity with Torsion

    Blagojevic, M; Vasilic, M.

    2004-01-01

    Using the canonical formalism, we study the asymptotic symmetries of the topological 3-dimensional gravity with torsion. In the anti-de Sitter sector, the symmetries are realized by two independent Virasoro algebras with classical central charges. In the simple case of the teleparallel vacuum geometry, the central charges are equal to each other and have the same value as in general relativity, while in the general Riemann-Cartan geometry, they become different.

  5. The 3-Dimensional Core Model DYN3D

    Mittag, Siegfried; Rohde, Ulrich; Grundmann, Ulrich

    2010-01-01

    Analyzing the safety margins in transients and accidents of nuclear reactors 3-dimensional models of the core were used to avoid conservative assumptions needed for point kinetics or 1-dimensional models. Therefore the 3D code DYN3D has been developed for the analysis of reactivity initiated accidents (RIA) in thermal nuclear reactors. The power distributions are calculated with the help of nodal expansion methods (NEM) for hexagonal and Cartesian geometry. The fuel rod model and the thermohy...

  6. GLOBAL STABILITY IN TIME-DELAYED 3-DIMENSIONAL RICHARDS MODEL

    2010-01-01

    We obtain the global attractivity and global asymptotical stability of positive equilibria to a 3-dimensional Richards model with delays. Our results do not depend on the size-asymmetry parameter which measures the degree of the curvature of size-growth among individuals over the entire growth curve, and the shape parameter which affects the shape of model curve. Lastly, we gave a numerical simulation to verify the feasibility of our main results.

  7. Circuit-Switched Gossiping in the 3-Dimensional Torus Networks

    Delmas, Olivier; Pérennes, Stéphane

    1996-01-01

    In this paper we describe, in the case of short messages, an efficient gossiping algorithm for 3-dimensional torus networks (wrap-around or toroidal meshes) that uses synchronous circuit-switched routing. The algorithm is based on a recursive decomposition of a torus. The algorithm requires an optimal number of rounds and a quasi-optimal number of intermediate switch settings to gossip in an $7^i \\times 7^i \\times 7^i$ torus.

  8. Decay vertex reconstruction and 3-dimensional lifetime determination at BESⅢ

    XU Min; HE Kang-Lin; ZHANG Zi-Ping; WANG Yi-Fang; BIAN Jian-Ming; CAO Guo-Fu; CAO Xue-Xiang; CHEN Shen-Jian; DENG Zi-Yan; FU Cheng-Dong; GAO Yuan-Ning; HAN Lei; NAN Shao-Qing; HE Miao; HU Ji-Feng; HU Xiao-Wei; HUANG Bin; HUANG Xing-Tao; JIA Lu-Kui; JI Xiao-Sin; LI Hai-Bo; LI Wei-Dong; LIANG Yu-Wie; LIU Chun-Xiu; LIU Huai-Min; LIU Ying; LIU Yong; LUO Tao; L(U) Qi-Wen; MA Qiu-Mei; MA Xiang; MAO Ya-Jun; MAO Ze-Pu; MO Xiao-Hu; NING Fei-Peng; PING Rong-Gang; QIU Jin-Fa; SONG Wen-Bo; SUN Sheng-Sen; SUN Xiao-Dong; SUN Yong-Zhao; TIAN Hao-Lai; WANG Ji-Ke; WANG Liang-Liang; WEN Shuo-Pin; WU Ling-Hui; WU Zhi; XIE Yu-Guang; YAN Jie; YAN Liang; YAO Jian; YUAN Chang-Zheng; YUAN Ye; ZHANG Chang-Chun; ZHANG Jian-Yong; ZHANG Lei; ZHANG Xue-Yao; ZHANG Yao; ZHENG Yang-Heng; ZHU Yong-Sheng; ZOU Jia-Heng

    2009-01-01

    This paper focuses mainly on the vertex reconstruction of resonance particles with a relatively long lifetime such as KSO, A, as well as on lifetime measurements using a 3-dimensional fit. The kinematic constraints between the production and decay vertices and the decay vertex fitting algorithm based on the least squares method are both presented. Reconstruction efficiencies including experimental resolutions are discussed. The results and systematic errors are calculated based on a Monte Carlo simulation.

  9. Invasive 3-Dimensional Organotypic Neoplasia from Multiple Normal Human Epithelia

    Ridky, Todd W.; Chow, Jennifer M.; Wong, David J.; Khavari, Paul A

    2010-01-01

    Refined cancer models are required to assess the burgeoning number of potential targets for cancer therapeutics within a rapid and clinically relevant context. Here we utilize tumor-associated genetic pathways to transform primary human epithelial cells from epidermis, oropharynx, esophagus, and cervix into genetically defined tumors within a human 3-dimensional (3-D) tissue environment incorporating cell-populated stroma and intact basement membrane. These engineered organotypic tissues reca...

  10. Temporal, 3-dimensional, cellular anatomy of corneal wound tissue.

    Jester, J V; Petroll, W M; Barry, P. A.; Cavanagh, H D

    1995-01-01

    We have evaluated temporally the 3-dimensional cellular anatomy of corneal wound tissue in the rabbit eye using in vivo tandem scanning confocal microscopy. In vivo microscopic studies showed that corneal fibroblast migrated into the wound as an interconnected cellular meshwork with long, thin, randomly oriented cell processes. Interconnection of fibroblasts was further confirmed by localisation of monoclonal antibodies to connexin 43 which demonstrated prominent staining of putative gap junc...

  11. LWR core safety analysis with Areva's 3-dimensional methods

    The quality of the safety analysis strongly affects the confidence in the operational safety of a reactor. To ensure the highest quality, it is essential that the methodology consists of appropriate analysis tools and an extensive validation base. Sophisticated 3-dimensional core models ensure that all physical effects relevant for safety are treated and the results are reliable and conservative. The validation base includes measurement campaigns in test facilities and comparisons of the predictions of steady state and transient measured data gathered from plants during many years of operation. Thus, the core models achieve reliable and comprehensive results for a wide range of applications. As an example an overview of the application experience as well as the validation base of AREVA's 3-dimensional codes is given. The importance and necessity of the comprehensive 3-dimensional methodology is illustrated with examples of a BWR and PWR safety analysis. For BWR transient application the analysis of regional power oscillations is considered and regarding the PWR safety analysis an example referring to fast enthalpy rise and the maximum fuel temperature caused by a rod ejection accident is shown. (orig.)

  12. Are Currently Available Wearable Devices for Activity Tracking and Heart Rate Monitoring Accurate, Precise, and Medically Beneficial?

    El-Amrawy, Fatema; Nounou, Mohamed Ismail

    2015-01-01

    Objectives The new wave of wireless technologies, fitness trackers, and body sensor devices can have great impact on healthcare systems and the quality of life. However, there have not been enough studies to prove the accuracy and precision of these trackers. The objective of this study was to evaluate the accuracy, precision, and overall performance of seventeen wearable devices currently available compared with direct observation of step counts and heart rate monitoring. Methods Each partic...

  13. Performances of Different Global Positioning System Devices for Time-Location Tracking in Air Pollution Epidemiological Studies

    Guillermo Jaimes; Rob McConnell; Chengsheng Jiang; Zhen Liu; Douglas Houston; Jun Wu

    2010-01-01

    Background: People’s time-location patterns are important in air pollution exposure assessment because pollution levels may vary considerably by location. A growing number of studies are using global positioning systems (GPS) to track people’s time-location patterns. Many portable GPS units that archive location are commercially available at a cost that makes their use feasible for epidemiological studies. Methods: We evaluated the performance of five portable GPS data loggers and two GPS cel...

  14. Development of Pattern Recognition Software for Tracks of Ionizing Radiation In Medipix2-Based (TimePix) Pixel Detector Devices

    Vilalta, R.; Kuchibhotla, S.; Valerio, R.; Pinsky, L.

    2011-12-01

    The principal aim of our project is to develop an efficient pattern recognition tool for the automated identification and classification of tracks of ionizing radiation as measured by a TimePix version of the hybrid semiconductor Medipix2 pixel detector system. Such a software tool would have a number of applications including dosimeters to assess the risk of human exposure to radiation, and area monitors to characterize the general background radiation environment harmful to humans and electronic equipment. We are particularly interested in the development of the real-time analysis software needed to support an operational dosimeter that can assess the radiation environment during space missions. Our software development project makes use of data taken in beams of heavy ions at HIMAC (Heavy Ion Medical Accelerator Facility) in Chiba, Japan, including data from several different heavy ions with similar Linear Energy Transfers (LETs) for calibration purposes. We describe two modules of our pattern recognition tool: feature generation and classification. Our first module builds on a segmentation algorithm that identifies tracks from the pixel image assuming an approximately elliptical form that varies in size and degree of elongation based on multiple factors, including the particle species and angle of incidence. Determining the charge and energy of the particles creating each track is a particularly challenging task because different energy and charge incident particles can produce very similar patterns. Our classification module invokes different algorithms such as decision trees, support vector machines, and Bayesian classifiers.

  15. DESIGN OF TWO-DIMENSION SOLAR TRACKING DEVICE WITH HORIZONTAL STAGGERED CROSS AXIS%水平十字交错轴二维太阳跟踪装置的研制

    许志龙; 王成志; 刘菊东; 黄种明; 李超; 张耀明

    2013-01-01

    基于地球绕太阳运行轨迹进行理论分析和研究,设计了一种水平十字交错轴二维太阳跟踪装置,讨论其机械结构和控制方案,并运用于光伏光热一体机中试电站.该装置可带动多个聚光单元同步跟踪太阳,降低了太阳跟踪装置的成本,特别适合于屋面太阳跟踪装置的应用.%A kind of two-dimension solar tracking device with horizontal staggered cross axis was designed based on the theoretical analysis and research of the theory on the trajectory of the earth' s movement round the sun.Its mechanical structure and control system were introduced.The device was successfully applied to the pilot plant of Photoelectric and Photothermic integration devices.The solar tracking device with horizontal staggered cross axis can drive several condenser units synchronously,and reduce the costs of solar tracking devices.This device is adequate for solar tracking device on roof.

  16. Development of a 3-dimensional seismic isolation floor for computer systems

    In this paper, we investigated the applicability of a seismic isolation floor as a method for protecting computer systems from strong earthquakes, such as computer systems in nuclear power plants. Assuming that the computer system is guaranteed for 250 cm/s2 of input acceleration in the horizontal and vertical directions as the seismic performance, the basic design specification of the seismic isolation floor is considered as follows. Against S1 level earthquakes, the maximum acceleration response of the seismic isolation floor in the horizontal and vertical directions is kept less than 250 cm/s2 to maintain continuous computer operation. Against S2 level earthquakes, the isolation floor allows large horizontal movement and large displacement of the isolation devices to reduce the acceleration response, although it is not guaranteed to be less than 250 cm/s2. By reducing the acceleration response, however, serious damage to the computer systems is reduced, so that they can be restarted after an earthquake. Usually, seismic isolation floor systems permit 2-dimensional (horizontal) isolation. However, in the case of just-under-seated earthquakes, which have large vertical components, the vertical acceleration response of this system is amplified by the lateral vibration of the frame of the isolation floor. Therefore, in this study a 3-dimensional seismic isolation floor, including vertical isolation, was developed. This paper describes 1) the experimental results of the response characteristics of the 3-dimensional seismic isolation floor built as a trial using a 3-dimensional shaking table, and 2) comparison of a 2-dimensional analytical model, for motion in one horizontal direction and the vertical direction, to experimental results. (J.P.N.)

  17. Formation and microstructural analysis of 3-dimensional titanium oxide structures via large surface electron beam irradiation

    Recently, in photo electronic devices industry, titanium oxide which was known to have good optical and electrical characteristic's been studied in the microstructural aspect to increase the conversion efficiency, such as making variable architecture, coating the titanium oxide nano-tube with the quantum dots which have higher band gap materials than this, etc. However, the process of making 3-dimensional titanium oxide structure with general deposition system such as hydrothermal growth, CVO, PVD and ALD had more variables and longer time consumption to make nano structures than electron beam irradiation case. Herein, we proceed with making new titanium oxide nano-screen-testing electron beam irradiation. The metal alkoxide composed of the 1 mol of titanium iso-propoxide and the 1 mol of acetylation reacted with water in propylene glycol methyl ether acetate and isopropyl alcohol solvent. After this process which made the bonding among Ti, O and other organics, the polymer solution was deposited on various types of substrate, such as anodized aluminum oxide mail. Kist. ac., Ag nano dots on SiO2 thin film, Au nano dots on SiO2 thin film, etc. The electron beam irradiation was progressed with the vertical accelerator facility of EB tech which was the company in Dijon, Korea The shape, microstructure and chemical composition of the irradiated polymers were characterized using TEM, XRD, Sem and EDS. The three types of Ti-Ox 3-dimensional structure were made; nano dot cluster, spike-like structure and dendrite structure. Each type of these structures was composed of different mircrostructures. Especially, the formation the 3-dimensional structures via electron beam irradiation was not only effected by the electron beam irradiation conditions but also effected by solution concentrate, conductivity and surface energy of substrate

  18. A Kind of Dual-axis Automatic Tracking Solar Energy Device%一种基于双轴的太阳能自动跟踪装置

    张新亮

    2015-01-01

    为了提高太阳能电池的转换效率,设计了一种以M sp430F149单片机为核心,基于双轴的太阳能自动跟踪装置。该装置能精确跟踪太阳运动轨迹,使太阳能电池组件在晴天时始终垂直接收太阳光;在阴天时自动切换至时钟式跟踪,其转换效率高、成本低。实验结果表明,对比固定安装的太阳能电池板,在相同条件下,采用太阳能自动跟踪装置的太阳能电池板的接收率提高了约40%。%A novel automatic dual-axis tracking solar energy device with the core of Msp430F149 is designed to improve conversion efficiency of the solar panel .The solar energy device can make solar panel always vertical to the sunlight at sunny day .Otherwise , the clock model will be used .The device is of high conversion efficiency and low cost .The experiment indicates that compared with the device that the solar panel is fixed ,the new device can improve the efficiency by 40% in a day under the same condition .

  19. 3-dimensional self-calibrating coastal oil spill trajectory tracking and contaminant transport using HF radar

    A study was conducted to demonstrate the dynamic behaviour of the turbulent mixing process in coastal environments for both advection and dispersion transport. The spatial variability of the coefficients that characterize the process was also examined. Every transport model should be calibrated to include specific information regarding geomorphology and climatic conditions. HF-radar equipment eliminates the need for model-recalibration and validation for transport models of coefficients which have spatial-temporal variations. The HF-radar has a grid resolution of 1000 m, providing real-time velocity coefficients by measuring surface currents. Dispersion coefficients can be derived from velocity time-series using the principle of Autocorrelation Functions (ACF) for time series. This concept was applied to two Gulf of Mexico bays in Texas, Corpus Christi and Matagorda. It was determined that the within-bay spatial variability of dispersion coefficients were many orders of magnitude higher than between-bay variability. The proposed model effectively reduced model complexity. The results of a 3-D dimensional contaminant transport model was presented. It was successfully used in the simulation of a contaminant spill scenario in the two bays using spatially distributed time-dependent transport coefficients. 5 refs., 8 figs

  20. Incorporating interactive 3-dimensional graphics in astronomy research papers

    Barnes, David G

    2007-01-01

    Most research data collections created or used by astronomers are intrinsically multi-dimensional. In contrast, all visual representations of data presented within research papers are exclusively 2-dimensional. We present a resolution of this dichotomy that uses a novel technique for embedding 3-dimensional (3-d) visualisations of astronomy data sets in electronic-format research papers. Our technique uses the latest Adobe Portable Document Format extensions together with a new version of the S2PLOT programming library. The 3-d models can be easily rotated and explored by the reader and, in some cases, modified. We demonstrate example applications of this technique including: 3-d figures exhibiting subtle structure in redshift catalogues, colour-magnitude diagrams and halo merger trees; 3-d isosurface and volume renderings of cosmological simulations; and 3-d models of instructional diagrams and instrument designs.

  1. Protalign: a 3-dimensional protein alignment assessment tool.

    Meads, D; Hansen, M D; Pang, A

    1999-01-01

    Protein fold recognition (sometimes called threading) is the prediction of a protein's 3-dimensional shape based on its similarity to a protein of known structure. Fold predictions are low resolution; that is, no effort is made to rotate the protein's component amino acid side chains into their correct spatial orientations. The goal is simply to recognize the protein family member that most closely resembles the target sequence of unknown structure and to create a sensible alignment of the target to the known structure (i.e., a structure-sequence alignment). To facilitate this type of structure prediction, we have designed a low resolution molecular graphics tool. ProtAlign introduces the ability to interact with and edit alignments directly in the 3-dimensional structure as well as in the usual 2-dimensional layout. It also contains several functions and features to help the user assess areas within the alignment. ProtAlign implements an open pipe architecture to allow other programs to access its molecular graphics capabilities. In addition, it is capable of "driving" other programs. Because amino acid side chain orientation is not relevant in fold recognition, we represent amino acid residues as abstract shapes or glyphs much like Lego (tm) blocks and we borrow techniques from comparative flow visualization using streamlines to provide clean depictions of the entire protein model. By creating a low resolution representation of protein structure, we are able to at least double the amount of information on the screen. At the same time, we create a view that is not as busy as the corresponding representations using traditional high resolution visualization methods which show detailed atomic structure. This eliminates distracting and possibly misleading visual clutter resulting from the mapping of protein alignment information onto a high resolution display of the known structure. This molecular graphics program is implemented in Open GL to facilitate porting to

  2. A feasibility study to track cosmic muons using a detector with SiPM devices based on amplitude discrimination

    Stanca, D; Brancus, I; Mitrica, B; Balaceanu, A; Cautisanu, B; Gherghel-Lascu, A; Haungs, A; Mathes, H -J; Rebel, H; Saftoiu, A; Sima, O; Mosu, T

    2016-01-01

    The possibility to build a SiPM-readout muon detector (SiRO), using plastic scintillators with optical fibers as sensitive volume and readout by SiPM photo-diodes, is investigated. SiRO shall be used for tracking cosmic muons based on amplitude discrimination. The detector concept foresees a stack of 6 active layers, grouped in 3 sandwiches for determining the muon trajectories through 3 planes. After investigating the characteristics of the photodiodes, tests have been performed using two detection modules, each being composed from a plastic scintillator sheet, $100 \\times 25 \\times 1\\,$cm$^{3}$, with 12 parallel, equidistant ditches; each ditch filled with an optical fiber of $1.5\\,$mm thickness and always two fibers connected to form a channel. The attenuation of the light response along the optical fiber and across the channels have been tested. The measurements of the incident muons based on the input amplitude discrimination indicate that this procedure is not efficient and therefore not sufficient, as ...

  3. PWR core safety analysis with 3-dimensional methods

    Highlights: • An overview of AREVA’s safety analysis codes their coupling is provided. • The validation base and licensing applications of these codes are summarized. • Coupled codes and methods provide improved margins and non-conservative results. • Examples for REA and inadvertent opening of the pressurizer safety valve are given. - Abstract: The main focus of safety analysis is to demonstrate the required safety level of the reactor core. Because of the demanding requirements, the quality of the safety analysis strongly affects the confidence in the operational safety of a reactor. To ensure the highest quality, it is essential that the methodology consists of appropriate analysis tools, an extensive validation base, and last but not least highly educated engineers applying the methodology. The sophisticated 3-dimensional core models applied by AREVA ensure that all physical effects relevant for safety are treated and the results are reliable and conservative. Presently AREVA employs SCIENCE, CASMO/NEMO and CASCADE-3D for pressurized water reactors. These codes are currently being consolidated into the next generation 3D code system ARCADIA®. AREVA continuously extends the validation base, including measurement campaigns in test facilities and comparisons of the predictions of steady state and transient measured data gathered from plants during many years of operation. Thus, the core models provide reliable and comprehensive results for a wide range of applications. For the application of these powerful tools, AREVA is taking benefit of its interdisciplinary know-how and international teamwork. Experienced engineers of different technical backgrounds are working together to ensure an appropriate interpretation of the calculation results, uncertainty analysis, along with continuously maintaining and enhancing the quality of the analysis methodologies. In this paper, an overview of AREVA’s broad application experience as well as the broad validation

  4. Multiple assets position determination in a 3-dimensional environment using the APRS protocol

    Foutzitzis, Evangelos K.

    2007-01-01

    Increased situational awareness in the battlefield is one of the main objectives in today?s operations and applies to all levels of commands. Several attempts have been made to use tracking devices for detecting and continuously updating the positional data of friendly assets on a map. Current applications like Falcon View fulfill their objective in presenting the location of targets of interest on a digital mapping environment. Falcon View is a geographic information system (GIS) used extens...

  5. Design of Tracking Position Device Based on GSM & GPS%基于GSM和GPS的跟踪定位装置的设计

    郭文晨; 王长坤

    2014-01-01

    本文提出了一种基于GSM技术和GPS技术的跟踪定位装置的设计方案。该系统由主控模块、GSM模块、GPS模块、LCD显示模块、电源模块等组成。系统采用STC12C5A60S2单片机作为控制核心,实时读取GPS模块采集的数据并处理,最后显示在LCD显示屏上。同时利用GSM模块,将处理后的信息通过短信的方式发送给用户手机,满足用户远程跟踪、控制移动目标的需求。%This paper puts forward a design of tracking position device based on the technology of GSM and GPS. This system is consist of many modules, including the master control module, the GSM and GPS module, the LED display module and the power module, etc. By using the STC12C5A60S2 microcontroller as the control core, this system can load and process the data collected by the GPS module, and displays those on the LED screen. And by applying the GSM, the processed information will be sent to the users through messages to meet user's needs of remote tracking and moving target controlling.

  6. The 3-dimensional construction of the Rae craton, central Canada

    Snyder, David B.; Craven, James A.; Pilkington, Mark; Hillier, Michael J.

    2015-10-01

    Reconstruction of the 3-dimensional tectonic assembly of early continents, first as Archean cratons and then Proterozoic shields, remains poorly understood. In this paper, all readily available geophysical and geochemical data are assembled in a 3-D model with the most accurate bedrock geology in order to understand better the geometry of major structures within the Rae craton of central Canada. Analysis of geophysical observations of gravity and seismic wave speed variations revealed several lithospheric-scale discontinuities in physical properties. Where these discontinuities project upward to correlate with mapped upper crustal geological structures, the discontinuities can be interpreted as shear zones. Radiometric dating of xenoliths provides estimates of rock types and ages at depth beneath sparse kimberlite occurrences. These ages can also be correlated to surface rocks. The 3.6-2.6 Ga Rae craton comprises at least three smaller continental terranes, which "cratonized" during a granitic bloom. Cratonization probably represents final differentiation of early crust into a relatively homogeneous, uniformly thin (35-42 km), tonalite-trondhjemite-granodiorite crust with pyroxenite layers near the Moho. The peak thermotectonic event at 1.86-1.7 Ga was associated with the Hudsonian orogeny that assembled several cratons and lesser continental blocks into the Canadian Shield using a number of southeast-dipping megathrusts. This orogeny metasomatized, mineralized, and recrystallized mantle and lower crustal rocks, apparently making them more conductive by introducing or concentrating sulfides or graphite. Little evidence exists of thin slabs similar to modern oceanic lithosphere in this Precambrian construction history whereas underthrusting and wedging of continental lithosphere is inferred from multiple dipping discontinuities.

  7. Development and Validation of a 3-Dimensional CFB Furnace Model

    Vepsäläinen, Arl; Myöhänen, Karl; Hyppäneni, Timo; Leino, Timo; Tourunen, Antti

    At Foster Wheeler, a three-dimensional CFB furnace model is essential part of knowledge development of CFB furnace process regarding solid mixing, combustion, emission formation and heat transfer. Results of laboratory and pilot scale phenomenon research are utilized in development of sub-models. Analyses of field-test results in industrial-scale CFB boilers including furnace profile measurements are simultaneously carried out with development of 3-dimensional process modeling, which provides a chain of knowledge that is utilized as feedback for phenomenon research. Knowledge gathered by model validation studies and up-to-date parameter databases are utilized in performance prediction and design development of CFB boiler furnaces. This paper reports recent development steps related to modeling of combustion and formation of char and volatiles of various fuel types in CFB conditions. Also a new model for predicting the formation of nitrogen oxides is presented. Validation of mixing and combustion parameters for solids and gases are based on test balances at several large-scale CFB boilers combusting coal, peat and bio-fuels. Field-tests including lateral and vertical furnace profile measurements and characterization of solid materials provides a window for characterization of fuel specific mixing and combustion behavior in CFB furnace at different loads and operation conditions. Measured horizontal gas profiles are projection of balance between fuel mixing and reactions at lower part of furnace and are used together with both lateral temperature profiles at bed and upper parts of furnace for determination of solid mixing and combustion model parameters. Modeling of char and volatile based formation of NO profiles is followed by analysis of oxidizing and reducing regions formed due lower furnace design and mixing characteristics of fuel and combustion airs effecting to formation ofNO furnace profile by reduction and volatile-nitrogen reactions. This paper presents

  8. Tracking objects, Tracking agents

    Bullot, Nicolas J.; Rysiew, Patrick

    2005-01-01

    Animals and humans have to keep track of individuals in their environment, both in perception (sensorimotor tracking) and in cognition (e.g., spatio-temporal localization and linguistic reference via memory, communication and reasoning). Items that are typical targets for tracking are things such as stationary physical objects (e.g., rocks, plants, trees, buildings, or attached artifacts), moving physical objects (e.g., animals, certain artifacts) and human beings. All such items are located ...

  9. Experimental Validation of Plastic Mandible Models Produced by a “Low-Cost” 3-Dimensional Fused Deposition Modeling Printer

    Maschio, Federico; Pandya, Mirali; Olszewski, Raphael

    2016-01-01

    Background The objective of this study was to investigate the accuracy of 3-dimensional (3D) plastic (ABS) models generated using a low-cost 3D fused deposition modelling printer. Material/Methods Two human dry mandibles were scanned with a cone beam computed tomography (CBCT) Accuitomo device. Preprocessing consisted of 3D reconstruction with Maxilim software and STL file repair with Netfabb software. Then, the data were used to print 2 plastic replicas with a low-cost 3D fused deposition mo...

  10. Printed Tag Real-time Tracking

    Bilal, Rana M.

    2014-09-18

    Disclosed are various embodiments for monitoring tracking devices capable of seamless indoor and outdoor tracking transitions. A tracking device may comprise, for example, printable circuitry and antennas combined with one or more receivers/transceivers on a substrate. The tracking device may be configured, for example, to localize the tracking device via GPS or an alternative localization strategy based on a determination of whether GPS communication is available. A modified RSSI fingerprinting methodology may be used to accurately determine a location of the tracking device using Wi-Fi access points. A device monitoring service may communicate with internal and/or external mapping API\\'s to render a device monitoring user interface comprising a visual representation of the location of the tracking device.

  11. Auto-measuring System of 3- Dimensional Human Body

    李勇; 尚保平; 付小莉; 尚会超

    2001-01-01

    To realize the automation of fashion industry measuring,designing and manufacturing, the auto-measurement of 3D size of human body is of great importance. The auto measurement system of 3D human body based on Charge Coupled Devices (CCD) and infrared sensors is presented in this paper. The system can measure the bare size of human body that excludes the effect of clothing quickly and accurately.

  12. A Novel Methodology for Thermal Analysis & 3-Dimensional Memory Integration

    Cherian, Annmol; Augustine, Ajay; Jose, Jemy; Pangracious, Vinod

    2011-01-01

    The semiconductor industry is reaching a fascinating confluence in several evolutionary trends that will likely lead to a number of revolutionary changes in the design, implementation, scaling, and the use of computer systems. However, recently Moore's law has come to a stand-still since device scaling beyond 65 nm is not practical. 2D integration has problems like memory latency, power dissipation, and large foot-print. 3D technology comes as a solution to the problems posed by 2D integratio...

  13. A NOVEL ARCHITECTURE OF MAXIMUM POWER POINT TRACKING FOR ULTRA-LOW-POWER BASED HYBRID ENERGY HARVESTER IN UBIQUITOUS DEVICES: A REVIEW

    Michelle Lim Sern Mi

    2013-01-01

    Full Text Available This research work presents a novel architecture of an Ultra-Low-Power (ULP based Hybrid Energy Harvester (HEH consisting of multiple input sources such as kinetic, thermal and solar energy, harvested from passive human power. Having multiple ambient sources mitigates limitations caused by single sources especially for bodily-worn applications; however, this results in impedance mismatch among the different integrated sources. To overcome this limitation, the proposed ULP-HEH will use one power management unit with Maximum Power Point Tracking (MPPT algorithm and impedance matching considerations to efficiently manage and combine power harvested from all three sources to achieve ULP consumptions. Among other crucial sub-modules of the ULP-HEH are its Asynchronous Finite State Machine (AFSM cum resource sharing arbiter to prioritize and share energy sources for overall power reduction, an efficient rectification scheme for the piezoelectric input, an adaptive feedback for ULP conditioning, Zero-Current Switching (ZCS for semi-lossless switching, a self-start circuit for low ambient startup, a Boost converter, a Buck regulator, a fuzzy-based micro-battery charger and a de-multiplexer to switch between harvesting or charging capabilities. All of which are implemented for maximum output extraction and minimal losses. This ULP-HEH will be developed in PSPICE software, Verilog coding under Mentor Graphics environment and later to be verified using Field Programmable Gate Array (FPGA board before the final layout implementation in CMOS 0.13-µm process technology. This battery-less ULP-HEH is expected to deliver 3.0-5.0V of regulated voltage output from low ambient sources of 35 mV at startup. An efficiency of 90% with an output power of 650 µm is expected when all sources are summed. Also, this ULP-HEH is aimed at reducing power consumption to at least twice (<70 µW of conventional approaches. The proposed ULP-HEH can be used for ULP bodily

  14. Gravity-sensitive signaling drives 3-dimensional formation of multicellular thyroid cancer spheroids.

    Grosse, Jirka; Wehland, Markus; Pietsch, Jessica; Schulz, Herbert; Saar, Katrin; Hübner, Norbert; Eilles, Christoph; Bauer, Johann; Abou-El-Ardat, Khalil; Baatout, Sarah; Ma, Xiao; Infanger, Manfred; Hemmersbach, Ruth; Grimm, Daniela

    2012-12-01

    This study focused on the effects induced by a random positioning machine (RPM) on FTC-133 thyroid cancer cells and evaluated signaling elements involved in 3-dimensional multicellular tumor spheroid (MCTS) formation. The cells were cultured on the RPM, a device developed to simulate microgravity, and under static 1-g conditions. After 24 h on the RPM, MCTSs swimming in culture supernatants were found, in addition to growth of adherent (AD) cells. Cells grown on the RPM showed higher levels of NF-κB p65 protein and apoptosis than 1-g controls, a result also found earlier in endothelial cells. Employing microarray analysis, we found 487 significantly regulated transcripts belonging not only to the apoptosis pathway but also to other biological processes. Selected transcripts were analyzed with quantitative real-time PCR using the same samples. Compared with 1-g IL-6, IL-8, CD44, and OPN were significantly up-regulated in AD cells but not in MCTSs, while ERK1/2, CAV2, TLN1, and CTGF were significantly down-regulated in AD cells. Simultaneously, the expression of ERK2, IL-6, CAV2, TLN1, and CTGF was reduced in MCTSs. IL-6 protein expression and secretion mirrored its gene expression. Thus, we concluded that the signaling elements IL-6, IL-8, OPN, TLN1, and CTGF are involved with NF-κB p65 in RPM-dependent thyroid carcinoma cell spheroid formation. PMID:22964303

  15. Slab track

    Golob, Tina

    2014-01-01

    The last 160 years has been mostly used conventional track with ballasted bed, sleepers and steel rail. Ensuring the high speed rail traffic, increasing railway track capacities, providing comfortable and safe ride as well as high reliability and availability railway track, has led to development of innovative systems for railway track. The so-called slab track was first built in 1972 and since then, they have developed many different slab track systems around the world. Slab track was also b...

  16. Security of Mobile Tracking Systems

    Dan Mihai Dinu

    2013-12-01

    Full Text Available This document will describe an implementation of a closed Mobile Tracking System which can be used with Android devices but can be extended to any platform. A user is able to setup the system and permanently receive location updates from his tracked devices. The system is completely secured and it sends transparent location updates. It can be used in many ways. As a Proof of Concept the system will be implemented over a Car Fleet Tracking example.

  17. A new concept in biometric identification 3-dimensional hand geometry

    A new type of biometric identifier which utilizes hand outline measurements made in three dimensions is described. This device uses solid state imaging with no moving parts. The important characteristics of accuracy, speed, user tolerability, small template size, low power, portability and reliability are discussed. A complete stand-alone biometric access control station with sufficient memory for 10,000 users and weighing less than 10 pounds has been built and tested. A test was conducted involving daily use by 112 users over a seven week period during which over 6300 access attempts were made. The single try equal error rate was found to be 0.4%. There were no false rejects when three tries were allowed before access was denied. Defeat with an artifact is difficult because the hand must be copied in all three dimensions

  18. Monolithically integrated Helmholtz coils by 3-dimensional printing

    3D printing technology is of great interest for the monolithic fabrication of integrated systems; however, it is a challenge to introduce metallic components into 3D printed molds to enable broader device functionality. Here, we develop a technique for constructing a multi-axial Helmholtz coil by injecting a eutectic liquid metal Gallium Indium alloy (EGaIn) into helically shaped orthogonal cavities constructed in a 3D printed block. The tri-axial solenoids each carry up to 3.6 A of electrical current and produce magnetic field up to 70 G. Within the central section of the coil, the field variation is less than 1% and is in agreement with theory. The flow rates and critical pressures required to fill the 3D cavities with liquid metal also agree with theoretical predictions and provide scaling trends for filling the 3D printed parts. These monolithically integrated solenoids may find future applications in electronic cell culture platforms, atomic traps, and miniaturized chemical analysis systems based on nuclear magnetic resonance.

  19. Implementation of new echocardiographic modalities in routine practice in a general hospital – Pocket-size cardiac ultrasound and 3 dimensional echocardiography. Studies on feasibility and diagnostic accuracy

    2015-01-01

    This thesis is based upon the implementation of pocket-size cardiac ultrasound (PCU) among medical students and residents in internal medicine and 3 dimensional echocardiography (3DE) in routine care at a general hospital. The introduction of widely available and handy ultrasound devices has represented a challenge to the medical community as implementation in clinical practice can be made by non-specialists. In view of favorable results from the non-expert use of the larger laptop-sized d...

  20. Development of a hybrid solar tracking device using a GPS and a photo-sensor capable of operating at low solar radiation intensity

    Lee, Hyo Geun; Kim, Sang Suk; Kim, Sung Jo; Park, Su-Jin; Yun, Chang-wuk; Im, Gil-pyeong

    2015-09-01

    The PhotoVoltaic System, which is and environmentally-sound source of sustainable energy among most representaion of what alternative energy resources, is in the limelight [1]. Especially, the concentration photovoltaic system (CPV) is more effective than the general photovoltaic system. However, In existing CPV systems tracking the sun position when insolation is low or rapidly changing due to clouds and fog is pratically impossible. For this reason, obtain satisfactory power generation is difficult. In this reserely a hybrid method for tracking the sun's altitude/latitude angles by combining a GPS sensor with an existing tracking system was developed. This study tested the accuracy of tracking when the hybrid tracking system was applied to a 5 kW photovoltaic system, Currently, this study is performing tests to demonstrate the tracking accuracy by testing CPV modules instead of applying general PV modules for the system. In the future, the application of this system in a define MCPV(MCPV) module will improve the efficiency of power generation.

  1. Device of Solar Automatic Tracking Based on MC9S12DG128%基于MC9S12DG128的太阳能自动追踪装置

    王旭; 肖广朋; 康留旺

    2012-01-01

    This paper introduces a device of solar automatic tracking based on MCU's controlling, including solar panels, DC motor, driver and controller, which connecting with photosensitive semiconductor, photoelectric detection and tracking module and tracking trajectory module. The device benefits from both advantages of two modules, using photoelectric detection and tracking module as sunny, judging the sun's position with A/D conversion circuit of photosensitive diode and controlling solar panels with the stepper motor to track the sunshine; using tracking trajectory module as cloudy, calculating the angle of the position and height of the sun at that time through software to track. It can control precisely the rotational speed and direction of DC motor to achieve operation of start, rotating clockwise or counter clockwise of motor%本文描述了一种基于单片机控制的太阳能自动追踪装置,包括太阳能电池板、直流电动机、驱动器、控制单元、光敏半导体、光电检测追踪模块和视日运动轨迹追踪模块。该装置吸收了光电检测追踪模式和视曰运动轨迹追踪模式这两者的长处,晴天时采用光电检测追踪模式,利用光敏二极管的A/D转换电路来判断太阳位置,配合步进电机控制太阳能电池板对阳光进行即时追踪;阴雨天时进入视日运动轨迹追踪模式,通过软件计算当时太阳的方位角和高度角来进行追踪。可以对直流电机转速和转动方向进行精确的控制,实现电机的启动、正转、反转等操作。

  2. Various approaches to the modelling of large scale 3-dimensional circulation in the Ocean

    Shaji, C.; Bahulayan, N.; Rao, A.D; Dube, S.K.

    In this paper, the three different approaches to the modelling of large scale 3-dimensional flow in the ocean such as the diagnostic, semi-diagnostic (adaptation) and the prognostic are discussed in detail. Three-dimensional solutions are obtained...

  3. Initial magnetic field configurations for 3-dimensional simulations of astrophysical jets

    Jorgensen, M.; R. Ouyed; Christensen, M.

    2001-01-01

    We solve, and provide analytical expressions, for current-free magnetic configurations in the context of initial setups of 3-dimensional simulations of astrophysical jets involving an accretion disk corona in hydrostatic balance around a central object. These configurations which thread through the accretion disk and its corona preserve the initial hydrostatic state. This work sets stage for future 3-dimensional jet simulations (including disk rotation and mass-load) where launching, accelera...

  4. Observation of a New Magnetic Response in 3-Dimensional Split Ring Resonators under Normal Incidence

    Chiam, S. Y.; Bettiol, A. A.; Bahou, M.; Han, J; Moser, H. O.; Watt, F

    2008-01-01

    So far, research in the field of metamaterials has been carried out largely with arrays of flat, 2-dimensional structures. Here, we report a newly identified magnetic resonance in Split Cylinder Resonators (SCRs), a 3-dimensional version of the Split Ring Resonator (SRR), which were fabricated with the Proton Beam Writing technique. Experimental and numerical results indicate a hitherto unobserved 3-dimensional resonance mode under normal incidence at about 26 THz, when the SCR depth is appro...

  5. The 3-dimensional Einstein-Klein-Gordon system in characteristic numerical relativity

    Barreto, W.; Da Silva, A.; Gomez, R.; Lehner, L.; Rosales, L.; Winicour, J.

    2005-01-01

    We incorporate a massless scalar field into a 3-dimensional code for the characteristic evolution of the gravitational field. The extended 3-dimensional code for the Einstein--Klein--Gordon system is calibrated to be second order convergent. It provides an accurate calculation of the gravitational and scalar radiation at infinity. As an application, we simulate the fully nonlinear evolution of an asymmetric scalar pulse of ingoing radiation propagating toward an interior Schwarzschild black h...

  6. 75 FR 69447 - Agency Information Collection Activities; Proposed Collection; Comment Request; Medical Devices...

    2010-11-12

    ... Collection; Comment Request; Medical Devices; Device Tracking AGENCY: Food and Drug Administration, HHS... device information is collected to facilitate identifying the current location of medical devices and... solicits comments on information collection requirements for the tracking of medical devices. DATES:...

  7. Research and Implementation of mobile device positioning tracking system%移动终端的定位跟踪系统研究与实现

    徐涛; 范辉

    2013-01-01

      Location tracking technology refers to a specific location technology to get the mobile phone or the user's terminal location information (longitude, latitude coordinates, etc.), and marker the position of the terminal on the electronic map for tracking technologies or services. The system is integrated with a GPS positioning technology, WEBGIS, GSM communications network, GPRS packet radio technology, middleware, and other technology to achieve tracking the mobile terminal location functions, and achieve real-time tracking for the terminal staff and dynamic management of location information. Mobile location tracking technology can be applied to the following places: tracking services, information services, security services and pay services.%  定位跟踪技术是指通过特定的定位技术来获取移动手机或终端用户的位置信息(经度、纬度坐标等),并且在电子地图上对跟踪终端的位置进行标注的技术或服务。该系统综合使用了GPS定位技术、WEBGIS、GSM通信网络、GPRS无线分组技术、中间件等技术实现了对移动的终端进行定位跟踪的功能,实现对终端人员的实时跟踪和位置信息的动态管理。移动定位跟踪技术的主要应用场所有以下4种:追踪服务、信息服务、安全服务和付帐服务。

  8. Design of collaborative target tracking system using digital micro-mirror device%基于数字微镜阵列的协同目标跟踪系统设计

    朱涵; 张滋黎; 唐亚军; 郭喜庆; 周维虎

    2014-01-01

    Aiming at the situation that the multi-lens target tracking systems have poor collabo-ration and the single-lens systems have narrow tracking view field w hich cannot realize wide field tracking ,a coordination tracking system which can track target in wide field and observe local target simultaneously was designed .The system ,based on the performance of high re-flectivity and field segmentation of digital micro-mirror device (DMD) ,has good practicability , great real-time performance and simple structure etc .In validation experiments ,the width field segmentation system realizes 50ms synergistic imaging cycle ,and the less than 2% absolute position error of narrow filed image center adjustment system can make contributions to the so-lution of overlap problem between local targets beam center and narrow filed imaging system's axis .%针对多镜头目标跟踪系统协同性差及单镜头系统目标跟踪观测过程中视场小、无法实现宽视场跟踪的现状,设计了能同时实现宽视场跟踪窄视场局部目标检测的协同跟踪系统。该系统基于数字微镜阵列高反射率、高性能视场分割的特点。验证实验中,宽窄视场分割系统实现了50 m s的协同成像周期;窄视场像中心调整系统不超过2%的绝对位置误差,为局部目标光束中心难以与窄视场成像系统视轴重合问题的解决提供了实验依据。

  9. Wire-based tracking using mutual information

    Andrade-Cetto, J.; Thomas, Federico

    2006-01-01

    Wire-based tracking devices are an affordable alternative to costly tracking devices. They consist of a fixed base and a platform, attached to the moving object, connected by six wires whose tension is maintained along the tracked trajectory. One important shortcoming of this kind of devices is that they are forced to operate in reduced workspaces so as to avoid singular configurations. Singularities can be eliminated by adding more wires but this causes more wire interferences, and a higher ...

  10. An improved tracking technique for visual measurements of ionic polymer–metal composites (IPMC) actuators using Compute Unified Device Architecture (CUDA)

    The implementation of a real-time measurement system based on visual measurements of displacement of an actuator–cantilever is presented in this paper. This work is aimed at accelerating image processing for the fast tracking of small actuators based on ionic polymer–metal composites using the graphics processing unit (GPU) approach. The proposed processing techniques for point tracking are based on the analysis of subsequent images of the moving item. The area-segmentation approach is used which combines region prediction, successive scanning, edge filtering and match processing. The overall implementation uses the CPU and GPU, while the results achieved indicate that the computation process speeds up by more than 40×. This is a quite useful improvement especially for real-time measurement and control applications of closed-loop systems based on IPMC materials

  11. The 3-Dimensional q-Deformed Harmonic Oscillator and Magic Numbers of Alkali Metal Clusters

    Bonatsos, Dennis; Raychev, P P; Roussev, R P; Terziev, P A; Bonatsos, Dennis

    1999-01-01

    Magic numbers predicted by a 3-dimensional q-deformed harmonic oscillator with Uq(3) > SOq(3) symmetry are compared to experimental data for alkali metal clusters, as well as to theoretical predictions of jellium models, Woods--Saxon and wine bottle potentials, and to the classification scheme using the 3n+l pseudo quantum number. The 3-dimensional q-deformed harmonic oscillator correctly predicts all experimentally observed magic numbers up to 1500 (which is the expected limit of validity for theories based on the filling of electronic shells), thus indicating that Uq(3), which is a nonlinear extension of the U(3) symmetry of the spherical (3-dimensional isotropic) harmonic oscillator, is a good candidate for being the symmetry of systems of alkali metal clusters.

  12. Tracking and back-tracking

    Lorenzo Pigueiras, Eduardo; Narvarte Fernandez, Luis; Muñoz Cano, Javier

    2011-01-01

    This paper presents a review of back-tracking geometry not only for single axis but also for two-axis tracking and analyses the corresponding energy gains. It compares the different back-tracking strategies with the ideal tracking in terms of energy yield concluding, on the one hand, that back-tracking is more useful for single horizontal axis than for the single vertical one, and on the other hand, that back-tracking is more efficient when applied in the primary axis of a two-axis tracker

  13. A Fortran program (RELAX3D) to solve the 3 dimensional Poisson (Laplace) equation

    RELAX3D is an efficient, user friendly, interactive FORTRAN program which solves the Poisson (Laplace) equation Λ2=p for a general 3 dimensional geometry consisting of Dirichlet and Neumann boundaries approximated to lie on a regular 3 dimensional mesh. The finite difference equations at these nodes are solved using a successive point-iterative over-relaxation method. A menu of commands, supplemented by HELP facility, controls the dynamic loading of the subroutine describing the problem case, the iterations to converge to a solution, and the contour plotting of any desired slices, etc

  14. Cable tracking system proposal

    The Experimental Facilities Division requires a labeling system to identify and catalog the instrumentation, control, and computer cables that will run throughout the building. Tom Sheridan from the MIS Group has already made some general suggestions about the information that could be included in an Oracle-based Cable Tracking System (E-mail text distributed by Gary Gunderson on the 27th of August). Glenn Decker's LS Note No. 191 is also relevant to the subject since it addresses name assignment rules for the storage ring devices. The intent of this note is to recommend a mechanism for tracking wires/cables, with enough specifics, to which all groups in the Division would adhere when pulling cables. Because most cables will run between various beamline devices, hutch safety components, and equipment racks, any method of tracking cables is related to the Equipment Tracking System. That system has been developed by the APS Project personnel and is described in the APS Project Equipment Tracking System Guidelines (DRAFT). It can be adopted to XFD's needs. Two essential features of the Cable Tracking System are: 1) Each cable shell have a unique Identifier, and 2) Cable label must contain information that is helpful during troubleshooting in the field. The Identifier is an alphanumeric string of characters that will originate in the Oraclebased Cable Tracking System. It is not necessary for the identifier to carry a lot of intelligence its primary purpose is simply to provide a link to the database. Bar-coding the Identifier would make it easy to combine cable information with the Equipment Tracking System

  15. Dynamics of large scale 3-dimensional circulation of the Indian Ocean

    Swapna, P.

    One of the main objective of this thesis is to adapt and configure a fully non-linear, primitive equation type, sigma co-ordinate 3-dimensional circulation model for the entire Indian Ocean area which can be run on diagnostic, semi...

  16. Full 3-dimensional digital workflow for multicomponent dental appliances : A proof of concept

    van der Meer, W. Joerd; Vissink, Arjan; Ren, Yijin

    2016-01-01

    BACKGROUND: The authors used a 3-dimensional (3D) printer and a bending robot to produce a multicomponent dental appliance to assess whether 3D digital models of the dentition are applicable for a full digital workflow. METHODS: The authors scanned a volunteer's dentition with an intraoral scanner (

  17. Fast convergence to an invariant measure for non-intersecting 3-dimensional Brownian paths

    Lawler, Gregory F

    2010-01-01

    We consider pairs of 3-dimensional Brownian paths, started at the origin and conditioned to have no intersections after time zero. We show that there exists a unique measure on pairs of paths that is invariant under this conditioning, while improving the previously known rate of convergence to stationarity.

  18. 3-Dimensional Cahn-Hilliard Equation with Concentration Dependent Mobility and Gradient Dependent Potential

    Rui HUANG; Yang CAO

    2011-01-01

    In this paper we investigate the initial boundary value problem of Cahn-Hilliard equation with concentration dependent mobility and gradient dependent potential. By the energy method and the theory of Campanato spaces, we prove the existence and the uniqueness of classical solutions in 3-dimensional space.

  19. Is nonangiogenesis a novel pathway for cancer progression? A study using 3-dimensional tumour reconstructions

    Adighibe, O; Micklem, K; Campo, L; Ferguson, M.; Harris, A; Pozos, R; Gatter, K; Pezzella, F.

    2006-01-01

    The nonangiogenic lung tumour is characterized by neoplastic cells co-opting the pre-existent vasculature and filling the alveoli space. 3-Dimensional reconstruction of the tumour reveals that this particular tumour progresses without neovascularization and there is no major destruction of the lung's architectural integrity.

  20. 3-dimensional orthodontics visualization system with dental study models and orthopantomograms

    Zhang, Hua; Ong, S. H.; Foong, K. W. C.; Dhar, T.

    2005-04-01

    The aim of this study is to develop a system that provides 3-dimensional visualization of orthodontic treatments. Dental plaster models and corresponding orthopantomogram (dental panoramic tomogram) are first digitized and fed into the system. A semi-auto segmentation technique is applied to the plaster models to detect the dental arches, tooth interstices and gum margins, which are used to extract individual crown models. 3-dimensional representation of roots, generated by deforming generic tooth models with orthopantomogram using radial basis functions, is attached to corresponding crowns to enable visualization of complete teeth. An optional algorithm to close the gaps between deformed roots and actual crowns by using multi-quadratic radial basis functions is also presented, which is capable of generating smooth mesh representation of complete 3-dimensional teeth. User interface is carefully designed to achieve a flexible system with as much user friendliness as possible. Manual calibration and correction is possible throughout the data processing steps to compensate occasional misbehaviors of automatic procedures. By allowing the users to move and re-arrange individual teeth (with their roots) on a full dentition, this orthodontic visualization system provides an easy and accurate way of simulation and planning of orthodontic treatment. Its capability of presenting 3-dimensional root information with only study models and orthopantomogram is especially useful for patients who do not undergo CT scanning, which is not a routine procedure in most orthodontic cases.

  1. 3-Dimensional and Interactive Istanbul University Virtual Laboratory Based on Active Learning Methods

    Ince, Elif; Kirbaslar, Fatma Gulay; Yolcu, Ergun; Aslan, Ayse Esra; Kayacan, Zeynep Cigdem; Alkan Olsson, Johanna; Akbasli, Ayse Ceylan; Aytekin, Mesut; Bauer, Thomas; Charalambis, Dimitris; Gunes, Zeliha Ozsoy; Kandemir, Ceyhan; Sari, Umit; Turkoglu, Suleyman; Yaman, Yavuz; Yolcu, Ozgu

    2014-01-01

    The purpose of this study is to develop a 3-dimensional interactive multi-user and multi-admin IUVIRLAB featuring active learning methods and techniques for university students and to introduce the Virtual Laboratory of Istanbul University and to show effects of IUVIRLAB on students' attitudes on communication skills and IUVIRLAB. Although…

  2. Study of new chaotic flows on a family of 3-dimensional systems with quadratic nonlinearities

    Based on a wider systematic search on a family of 3-dimensional systems with quadratic nonlinearities, three new simple chaotic systems were found. One of them has the unusual feature of having a stable equilibrium point, and it is the simplest one of other chaotic flows with this property. The others have some interesting special properties

  3. On Maximal Surfaces in Certain Non-Flat 3-Dimensional Robertson-Walker Spacetimes

    Romero, Alfonso, E-mail: aromero@ugr.es [Universidad de Granada, Departamento de Geometria y Topologia (Spain); Rubio, Rafael M., E-mail: rmrubio@uco.es [Universidad de Cordoba, Departamento de Matematicas, Campus de Rabanales (Spain)

    2012-09-15

    An upper bound for the integral, on a geodesic disc, of the squared length of the gradient of a distinguished function on any maximal surface in certain non-flat 3-dimensional Robertson-Walker spacetimes is obtained. As an application, a new proof of a known Calabi-Bernstein's theorem is given.

  4. MPS II: a tracking detector system for large high rate experiments

    The MPS II tracking detector system, developed for a variety of low cross section experiments that are only practical in a high beam rate environment, is described. It was built as a general purpose device for use in a fixed target (AGS) situation where the beam passes through all elements of the detector. The electronics is dead-timeless so that high efficiency is achieved at event rates as high as 106/sec/ch. This capability would allow these detectors to be used as close as 20 cm from a hadron-hadron collider at 1 Tev of luminosity up to 1033/cm2/sec. The detector is a multilayer-modular drift chamber using stereo projections to provide for 3-dimensional event reconstruction

  5. Clinical advantage and limitation of the 3-dimensional magnetic resonance imaging of the brain

    The authors discuss practical techniques of 3-dimensional magnetic resonance images. Raw data for 3-dimensional MRI were acquired using a 3D turbo-FLASH sequence. The data were processed in the following three ways; 1) volume rendering of all the raw data, 2) segmentation of the brain from other tissue using other software and the volume rendering of all the raw data, and 3) reconstruction of 2-dimensional image of the arbitrary orientation (oblique-oblique and curvature) using multi-planar reconstruction (MPR). In addition to these basic techniques, a surgical window technique, maximum intensity projection (MIP), and skin marking using fatty acid gel in capsules can provide the following unique images; 1) surface images of the skin, skull and brain, 2) images of the arteries and the main cortical vein superimposed on the brain-surface images, and 3) surgical images simulating craniotomy. The drawbacks of 3-dimensional MRI at present are twofold; 1)it requires mini-computers, which is not always available at every clinical site, and 2) the time necessary for data processing and image reconstruction depends on the performance of the computer, but in any case the segmentation of the brain from other soft tissue is a time-consuming job, one which generally takes several hours. However, it is expected that these present limitations of 3-dimentional MRI are only temporary because fast and high cost-performance computers for this specific purpose (image processing) have recently become available. The authors stress that the most important factor which drives the development of a high cost-performance system for 3-dimensional MRI is the demand from clinicians, who realize the advantages of 3-dimensional MRI. (author)

  6. 跟踪图像生成技术应用于光电设备模拟训练%Technology of tracking image generating applied in simulation training of photoelectric device

    于洋; 李丹

    2015-01-01

    To solve the problem of lacking cooperation targets in the army’s dairy training of the pho-toelectric device,a generating algorithm of the dummy tracking image is presented based on the com-puter’s processing.This algorithm can generate the tracking image of the dummy target according to the theoretical trajectory,the prototype,the characteristic parameters and the three view of target, and also integrating the information of rotation position for the photoelectric device.The results show that the algorithm can effectively solve the army’s training problem,which can make the operator ma-nipulate the device on the basis of the dummy tracking image to complete the dairy training.At the same time,the algorithm has been optimized to improve the computer efficiency,which the working time is about 5~6 ms to generate the dummy tracking image for a standard PAL type analog image with 25 Hz cycle.By analyzing of the result,the precision of tracking image is about 1″and measure up for the army’s dairy training.%针对光电设备在部队日常训练中缺乏合作目标的问题,提出了一种基于计算机处理的虚拟跟踪图像生成算法,该算法根据目标的理论弹道、目标类型、目标特征参数及目标的三视图,结合光电设备转台位置信息生成虚拟目标跟踪图像。该算法有效解决了在部队的日常训练中无合作目标的问题,在生成虚拟图像后,可让操作人员根据虚拟跟踪图像对设备进行操作,完成日常训练。同时,在算法的研究过程中充分考虑处理耗时,在经过算法优化后,虚拟跟踪图像生成算法的耗时在5~6 ms 左右,针对标准 PAL 制式的模拟图像25 Hz 的周期,可完成对虚拟跟踪图像的生成。对虚拟图像进行判读,计算虚拟图像的目标位置精度为1″左右,满足部队日常训练使用要求。

  7. The Application of Device Transformation of TRIZ Theory in the Dumper Track Alignment%TRIZ理论在翻车机轨道对准装置改造方面的应用

    孙哲

    2015-01-01

    为了提高翻车机系统的安全性,保证翻车机系统的安全、经济运行,必须要保证翻车机轨道错位能被准确地检测出来。对翻车机轨道对准装置目前存在的问题及原因进行分析,并提出改进方案。%In order to improve the safety of car dumper system, guarantee of car dumper system security, economic operation, we must to ensure that the car dumper rail misalignment can be detected accurately. Analyze the problems and reasons of the dumper track alignment device at present, and put forward the improvement plan.

  8. Development of Plasma Cutting Tracking Device for Spiral Welded Pipe%伺服控制跟踪在螺旋焊管生产线上的应用

    王昌龙; 陈靖芯; 秦永法; 竺志大

    2013-01-01

    薄壁螺旋焊管定长切割多数采用机械刀轮跟踪,往往存在切口不齐的问题。设计了一套用于螺旋焊管机的等离子切割跟踪装置,该系统由两路测速传感器、直流伺服电机、齿轮减速器、双丝杠螺母驱动的带有等离子切割喷枪的小车组成,通过调节伺服控制脉冲频率与所需送板速度之间的比例关系、送板速度与小车前进速度之间的比例关系,使切割小车与钢管伸长同步。测试结果表明,伺服跟踪误差小于1 cm ,远小于机械刀轮跟踪1 cm~3 cm的误差。%A knife flywheel is generally used in steel pipe cutting ,an uprightness incision is not available .A set of plasma cutting tracking device for spiral pipe is developed .This system is composed of two speed sensors ,DC servo motor ,gear retarder ,a vehicle with plasma gun drove by double screw and nut .Using this system regulates the velocity ratio of vehicle to plate (vvehicle/vplate ) ,to make the vehicle moving at the same speed of pipe extension .Experiment results show the error of servo tracking is less than the mechanical tracking ,the former is below 1 cm and the latter is 1 cm~3 cm .

  9. An Improved Point-track Optimal Assignment Algorithm

    Zhonglei Zhang; Weihua Zhang; Li Zhou

    2013-01-01

    In order to improve the accuracy of data association of the Optimal Assignment (OA) algorithm based on dynamic information, an improved Point-Track Optimal Assignment (IPTOA) algorithm based on multi-source information is proposed. The improved algorithm gets valid 3-tuple of measurement set by solving 3-Dimensional (3-D) assignment problem which is based on dynamic information. Then fuses multi-source information by combination rule of D-S evidence theory and constructs the point-track corre...

  10. Use of 3-dimensional body scans for body-image research.

    Domina, Tanya; Heuberger, Roschelle; MacGillivray, Maureen

    2008-04-01

    This preliminary study explored the use of highly realistic 3-dimensional body-scan images as a potential tool, taking advantage of a much more specific and expanded representation of the entire body. Traditionally, body-image research makes use of various contour drawing scales whose 2-dimensional figures increase proportionately and do not match the shape of many women. The study tested whether body-scanned images (N = 85) could be consistently "matched" to individual figures on a contour drawing scale. Internal consistency and interrater reliability were calculated and high coefficients were observed (alpha = .97, kappa = .80). The potential of utilizing 3-dimensional images either as more realistic somatotypes in contour-rating scales or as a measurement of body-image satisfaction using computer manipulation of a digital image is discussed. PMID:18556919

  11. The application of 3-dimensional CAT scan reconstruction for maxillofacial deformities

    It has been found very useful to recognize craniofacial deformities 3-dimensionally, and to observe 3-D Cat scan reconstructions that have been performed by others. Thus, starting in 1985, we have developed a 3-D CT system that combines conventional X-ray CAT scan hardware to a 3-Dimensional display software. In this paper we report on our 3-CT system, its basic algorithm, and its basic processes, i.e., the threshold process, the perspective process, the shading process and the display. The mixture shading which we have developed makes 3-D displays clearer and more natural. Also, we have applied our 3-D display to 39 cases of maxillofacial diformities. (author)

  12. Conditioned Media From Adipose-Derived Stromal Cells Accelerates Healing in 3-Dimensional Skin Cultures.

    Collawn, Sherry S; Mobley, James A; Banerjee, N Sanjib; Chow, Louise T

    2016-04-01

    Wound healing involves a number of factors that results in the production of a "closed" wound. Studies have shown, in animal models, acceleration of wound healing with the addition of adipose-derived stromal cells (ADSC). The cause for the positive effect which these cells have on wound healing has not been elucidated. We have previously shown that addition of ADSC to the dermal equivalent in 3-dimensional skin cultures accelerates reepithelialization. We now demonstrate that conditioned media (CM) from cultured ADSC produced a similar rate of healing. This result suggests that a feedback from the 3-dimensional epithelial cultures to ADSC was not necessary to effect the accelerated reepithelialization. Mass spectrometry of CM from ADSC and primary human fibroblasts revealed differences in secretomes, some of which might have roles in the accelerating wound healing. Thus, the use of CM has provided some preliminary information on a possible mode of action. PMID:26954733

  13. DYNAMICAL CONSISTENCE IN 3-DIMENSIONAL TYPE-K COMPETITIVE LOTKA-VOLTERRA SYSTEM

    2012-01-01

    A 3-dimensional type-K competitive Lotka-Volterra system is considered in this paper. Two discretization schemes are applied to the system with an positive interior fixed point, and two corresponding discrete systems are obtained. By analyzing the local dynamics of the corresponding discrete system near the interior fixed point, it is showed that this system is not dynamically consistent with the continuous counterpart system.

  14. Energy Sources of the Dominant Frequency Dependent 3-dimensional Atmospheric Modes

    Schubert, S.

    1985-01-01

    The energy sources and sinks associated with the zonally asymmetric winter mean flow are investigated as part of an on-going study of atmospheric variability. Distinctly different horizontal structures for the long, intermediate and short time scale atmospheric variations were noted. In previous observations, the 3-dimensional structure of the fluctuations is investigated and the relative roles of barotropic and baroclinic terms are assessed.

  15. BPS operators from the Wilson loop in the 3-dimensional supersymmetric Chern-Simons theory

    Fujita, Mitsutoshi

    2009-01-01

    We consider the small deformation of the pointlike Wilson loop in the 3-dimensional N=6 superconformal Chern-Simons theory. By Taylor expansion of the pointlike Wilson loop in powers of the loop variables, we obtain the BPS operators that correspond to the excited string states of the dual IIA string theory on the pp wave background. The BPS conditions of the Wilson loop constrain both the loop variables and the forms of the operators obtained in the Taylor expansion.

  16. 3-dimensional eddy current analysis of a conducting shell of a superconducting generator by using IBIEM

    To ensure reliable operation of superconducting field windings of a superconducting generator it is necessary to screen the field windings from time-varying magnetic fields. An electrothermal shield is used for this screening in order to protect the superconducting material from quench phenomenon. This screening effect is due to the eddy currents in the electrothermal shield. In this paper, these eddy currents in the conducting shell are analyzed numerically by using 3-dimensional indirect boundary integral equation method (IBIEM)

  17. Manufacture of Near Net Shaped 3- Dimensional Components for Industrial Applications

    Kennedy, David; Brosnan, Donal

    2005-01-01

    The development of near net shape 3-Dimensional products for industrial applications has been one main goal for Manufacturing Industries over the last few decades. Processes such as polymer blow moulding and its various stages of development, glass forming, extrusion, forging, centrifugal and sand casting, bulge forming and vacuum forming are typical processes that have contributed to this development. Current practices centre on Surface coatings, Rapid Prototyping, laser forming and nanotech...

  18. Application of 3-dimensional digital subtraction technique in the diagnosing and treating malignant esophageal stenosis

    Objective: To evaluate 3-dimensional digital subtraction technique in diagnosing and treating the malignant esophageal stenosis. Methods: After oral administration of contrast media, both two-dimensional and three-dimensional digital subtraction radiography of narrowed segment of esophagus were performed in forty patients with malignant esophageal stenosis caused by advanced esophageal carcinoma. The images obtained from 3-dimensional digital subtraction technique were compared with the images of the same patient's conventional esophageal air-barium double contrast pictures and 2-dimensional digital subtraction pictures. The results were analyzed. Results: Three-dimensional digital subtraction images could well display the position of the malignant esophageal stenosis. On the images the lesion's length could be precisely measured, the lesion's ulcer and perforation shape could be clearly demonstrated, and subtler esophageal fistula could be detected, which was very helpful for accurately localizing the lesion and selecting suitable endo-esophageal stent. Conclusion: The 3-dimensional digital subtraction technique is very useful in diagnosing malignant esophageal stenosis. With the help of the 3D images the lesion can be precisely localized and the suitable esophageal stent can be effectively selected and placed. (authors)

  19. Self-regulating solar tracking device and its control method%自主调节跟踪的太阳能装置及控制方法

    朱俊昊; 何中杰

    2012-01-01

    In order to solve the problems of low photovoltaic power generation efficiency for that the angle of sun and solar panels is difficult to maintain the vertical, an automatic tracking which could maintain the vertical of the sun and solar panels to improve the efficiency of photovoltaic was designed. The control strategy and adjustment algorithm of the system were presented. The control system has single-chip microcomputer AT89C51 as the core, and can judge independently whether meet the boot operation conditions according to environmental conditions. If the conditions are satisfied, according to the duration of sunshine and the control periods, the solar elevation angle and azimuth angle are regulated by two groups of stepping motors and driving mechanism respectively, thus making the implementation of the time-division automatic tracking regulation control all day, which makes the panels and sunlight keeping the vertical angle, to obtain the best efficiency. If the weather conditions do not meet the requirements, for example, mechanism will shut down automatically when it rains or the illuminance is insufficient, and automatical change of the attitude could avoid unnecessary outside force damage when the wind may cause damage. The experimental results show that the system has the advantages of convenient installation, low initial investment and operating costs, and good reliability. Compared to the fixed installation of photovoltaic system, the photovoltaic conversion efficiency of the system is significantly improved.%针对太阳能装置工作日阳光和电池板成角难保持垂直,光伏发电效率低的问题,推出了一种可以保持阳光和电池板垂直以提高光伏发电效率的自动跟踪控制系统,给出了相关控制策略及调节算法.该控制系统以AT89C51单片机为核心,依据环境条件自主判断是否满足开机运行要求,如条件满足,则根据当日的日照时问,控制时段,分别由两组步进电机及驱动

  20. Experimental Validation of Plastic Mandible Models Produced by a "Low-Cost" 3-Dimensional Fused Deposition Modeling Printer.

    Maschio, Federico; Pandya, Mirali; Olszewski, Raphael

    2016-01-01

    BACKGROUND The objective of this study was to investigate the accuracy of 3-dimensional (3D) plastic (ABS) models generated using a low-cost 3D fused deposition modelling printer. MATERIAL AND METHODS Two human dry mandibles were scanned with a cone beam computed tomography (CBCT) Accuitomo device. Preprocessing consisted of 3D reconstruction with Maxilim software and STL file repair with Netfabb software. Then, the data were used to print 2 plastic replicas with a low-cost 3D fused deposition modeling printer (Up plus 2®). Two independent observers performed the identification of 26 anatomic landmarks on the 4 mandibles (2 dry and 2 replicas) with a 3D measuring arm. Each observer repeated the identifications 20 times. The comparison between the dry and plastic mandibles was based on 13 distances: 8 distances less than 12 mm and 5 distances greater than 12 mm. RESULTS The mean absolute difference (MAD) was 0.37 mm, and the mean dimensional error (MDE) was 3.76%. The MDE decreased to 0.93% for distances greater than 12 mm CONCLUSIONS Plastic models generated using the low-cost 3D printer UPplus2® provide dimensional accuracies comparable to other well-established rapid prototyping technologies. Validated low-cost 3D printers could represent a step toward the better accessibility of rapid prototyping technologies in the medical field. PMID:27003456

  1. Experimental Validation of Plastic Mandible Models Produced by a “Low-Cost” 3-Dimensional Fused Deposition Modeling Printer

    Maschio, Federico; Pandya, Mirali; Olszewski, Raphael

    2016-01-01

    Background The objective of this study was to investigate the accuracy of 3-dimensional (3D) plastic (ABS) models generated using a low-cost 3D fused deposition modelling printer. Material/Methods Two human dry mandibles were scanned with a cone beam computed tomography (CBCT) Accuitomo device. Preprocessing consisted of 3D reconstruction with Maxilim software and STL file repair with Netfabb software. Then, the data were used to print 2 plastic replicas with a low-cost 3D fused deposition modeling printer (Up plus 2®). Two independent observers performed the identification of 26 anatomic landmarks on the 4 mandibles (2 dry and 2 replicas) with a 3D measuring arm. Each observer repeated the identifications 20 times. The comparison between the dry and plastic mandibles was based on 13 distances: 8 distances less than 12 mm and 5 distances greater than 12 mm. Results The mean absolute difference (MAD) was 0.37 mm, and the mean dimensional error (MDE) was 3.76%. The MDE decreased to 0.93% for distances greater than 12 mm. Conclusions Plastic models generated using the low-cost 3D printer UPplus2® provide dimensional accuracies comparable to other well-established rapid prototyping technologies. Validated low-cost 3D printers could represent a step toward the better accessibility of rapid prototyping technologies in the medical field. PMID:27003456

  2. Track 5: safety in engineering, construction, operations, and maintenance. Reactor physics design, validation, and operating experience. 5. A Negative Reactivity Feedback Device for Actinide Burner Cores

    Lead-bismuth eutectic (LBE) cooled reactors are of considerable interest because they may be useful for destruction of actinides in a cost-effective manner, particularly cores fueled predominantly with minor actinides, which gain reactivity with burnup. However, they also pose several design challenges: 1. a small (and perhaps even slightly positive) Doppler feedback; 2. small effective delayed neutron yield; 3. a small negative feedback from axial fuel expansion; 4. positive coolant void and temperature coefficients for conventional designs. This has motivated a search for palliative measures, leading to conceptualization of the reactivity feedback device (RFD). The RFD consists of an in-core flask containing helium gas, tungsten wool, and a small reservoir of LBE that communicates with vertical tubes housing neutron absorber floats. The upper part of these guide tubes contains helium gas that is vented into a separate, cooler ex-core helium gas plenum. The principle of operation is as follows: 1. The tungsten wool, hence the helium gas in the in-core plenum, is heated by gammas and loses heat to the walls by convection and conduction (radiation is feeble for monatomic gases and, in any event, intercepted by the tungsten wool). An energy balance determines the gas temperature, hence, pressure, which is 10 atm here. The energy loss rate can be adjusted by using xenon or a gas mixture in place of helium. The tungsten wool mass, which is 1 vol% wool here, can also be increased to increase gamma heating and further retard convection; alternatively, a Dewar flask could be used in place of the additional wool. 2. An increase in core power causes a virtually instantaneous increase in gamma flux, hence, gas heatup: The thermal time constant of the tungsten filaments and their surrounding gas film is ∼40 μs. 3. The increased gas temperature is associated with an increased gas pressure, which forces more liquid metal into the float guide tubes: LBE will rise ∼100 cm

  3. Comparison of 3-dimensional dose reconstruction system between fluence-based system and dose measurement-guided system.

    Nakaguchi, Yuji; Ono, Takeshi; Onitsuka, Ryota; Maruyama, Masato; Shimohigashi, Yoshinobu; Kai, Yudai

    2016-01-01

    COMPASS system (IBA Dosimetry, Schwarzenbruck, Germany) and ArcCHECK with 3DVH software (Sun Nuclear Corp., Melbourne, FL) are commercial quasi-3-dimensional (3D) dosimetry arrays. Cross-validation to compare them under the same conditions, such as a treatment plan, allows for clear evaluation of such measurement devices. In this study, we evaluated the accuracy of reconstructed dose distributions from the COMPASS system and ArcCHECK with 3DVH software using Monte Carlo simulation (MC) for multi-leaf collimator (MLC) test patterns and clinical VMAT plans. In a phantom study, ArcCHECK 3DVH showed clear differences from COMPASS, measurement and MC due to the detector resolution and the dose reconstruction method. Especially, ArcCHECK 3DVH showed 7% difference from MC for the heterogeneous phantom. ArcCHECK 3DVH only corrects the 3D dose distribution of treatment planning system (TPS) using ArcCHECK measurement, and therefore the accuracy of ArcCHECK 3DVH depends on TPS. In contrast, COMPASS showed good agreement with MC for all cases. However, the COMPASS system requires many complicated installation procedures such as beam modeling, and appropriate commissioning is needed. In terms of clinical cases, there were no large differences for each QA device. The accuracy of the compass and ArcCHECK 3DVH systems for phantoms and clinical cases was compared. Both systems have advantages and disadvantages for clinical use, and consideration of the operating environment is important. The QA system selection is depending on the purpose and workflow in each hospital. PMID:27179708

  4. A Laser Scanning Tracking Method

    Xu, Gaoyue; Hu, Baoli; Wang, Jiangping

    1988-04-01

    In this paper, a new tracking approach, a laser scanning tracking method (LSTM) is proposed. The LSTM has been designed to track a cylindrical retroreflective target mounted on the object, which makes plane motion. The retroreflector pasted by scotchlite reflective sheeting (mad. in 3M ,0.) i s located by scanning a laser beam in holizontal. When the retroreflector is struck, its position that is azimuth is read by microcomputer and the aiming device is servocontrolled by microcomputer according to this azimuth immediately. This is a step-by-step tracking method. The time of servo-reponse is less than one millisecona in actual tests. The angular accuracy is less than 0.5 milliradian. The track angular velocity is greater than one radian/second.

  5. 3-Dimensional quantitative detection of nanoparticle content in biological tissue samples after local cancer treatment

    Rahn, Helene, E-mail: helene.rahn@gmail.com [Institute of Fluid Mechanics, Chair of Magnetofluiddynamics, Technische Universitaet Dresden, Dresden 01069 (Germany); Alexiou, Christoph [ENT-Department, Section for Experimental Oncology and Nanomedicine (Else Kröner-Fresenius-Stiftungsprofessur), University Hospital Erlangen, Waldstraße 1, Erlangen 91054 (Germany); Trahms, Lutz [Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, Berlin 10587 (Germany); Odenbach, Stefan [Institute of Fluid Mechanics, Chair of Magnetofluiddynamics, Technische Universitaet Dresden, Dresden 01069 (Germany)

    2014-06-01

    X-ray computed tomography is nowadays used for a wide range of applications in medicine, science and technology. X-ray microcomputed tomography (XµCT) follows the same principles used for conventional medical CT scanners, but improves the spatial resolution to a few micrometers. We present an example of an application of X-ray microtomography, a study of 3-dimensional biodistribution, as along with the quantification of nanoparticle content in tumoral tissue after minimally invasive cancer therapy. One of these minimal invasive cancer treatments is magnetic drug targeting, where the magnetic nanoparticles are used as controllable drug carriers. The quantification is based on a calibration of the XµCT-equipment. The developed calibration procedure of the X-ray-µCT-equipment is based on a phantom system which allows the discrimination between the various gray values of the data set. These phantoms consist of a biological tissue substitute and magnetic nanoparticles. The phantoms have been studied with XµCT and have been examined magnetically. The obtained gray values and nanoparticle concentration lead to a calibration curve. This curve can be applied to tomographic data sets. Accordingly, this calibration enables a voxel-wise assignment of gray values in the digital tomographic data set to nanoparticle content. Thus, the calibration procedure enables a 3-dimensional study of nanoparticle distribution as well as concentration. - Highlights: • Local cancer treatments are promising in reducing negative side effects occurring during conventional chemotherapy. • The nanoparticles play an important role in delivering drugs to the designated area during local cancer treatments as magnetic drug targeting. • We study the nanoparticles distribution in tumor tissue after magnetic drug targeting with X-ray computed tomography. • We achieved a 3-dimensional quantification of the nanoparticles content in tumor tissue out of digital tomographic data.

  6. Freehand biopsy guided by electromagnetic needle tracking

    Ewertsen, C; Nielsen, Marie Kristina Rue; Nielsen, M Bachmann

    2011-01-01

    To evaluate the overall accuracy and time spent on biopsy guided by electromagnetic needle tracking in a phantom compared with the standard technique of US-guided biopsy with an attached steering device. Furthermore, to evaluate off-plane biopsy guided by needle tracking.......To evaluate the overall accuracy and time spent on biopsy guided by electromagnetic needle tracking in a phantom compared with the standard technique of US-guided biopsy with an attached steering device. Furthermore, to evaluate off-plane biopsy guided by needle tracking....

  7. Pulsatile support using a rotary left ventricular assist device with an electrocardiography-synchronized rotational speed control mode for tracking heart rate variability.

    Arakawa, Mamoru; Nishimura, Takashi; Takewa, Yoshiaki; Umeki, Akihide; Ando, Masahiko; Kishimoto, Yuichiro; Kishimoto, Satoru; Fujii, Yutaka; Date, Kazuma; Kyo, Shunei; Adachi, Hideo; Tatsumi, Eisuke

    2016-06-01

    We previously developed a novel control system for a continuous-flow left ventricular assist device (LVAD), the EVAHEART, and demonstrated that sufficient pulsatility can be created by increasing its rotational speed in the systolic phase (pulsatile mode) in a normal heart animal model. In the present study, we assessed this system in its reliability and ability to follow heart rate variability. We implanted an EVAHEART via left thoracotomy into five goats for the Study for Fixed Heart Rate with ventricular pacing at 80, 100, 120 and 140 beats/min and six goats for the Study for native heart rhythm. We tested three modes: the circuit clamp, the continuous mode and the pulsatile mode. In the pulsatile mode, rotational speed was increased during the initial 35 % of the RR interval by automatic control based on the electrocardiogram. Pulsatility was evaluated by pulse pressure and dP/dt max of aortic pressure. As a result, comparing the pulsatile mode with the continuous mode, the pulse pressure was 28.5 ± 5.7 vs. 20.3 ± 7.9 mmHg, mean dP/dt max was 775.0 ± 230.5 vs 442.4 ± 184.7 mmHg/s at 80 bpm in the study for fixed heart rate, respectively (P < 0.05). The system successfully determined the heart rate to be 94.6 % in native heart rhythm. Furthermore, pulse pressure was 41.5 ± 7.9 vs. 27.8 ± 5.6 mmHg, mean dP/dt max was 716.2 ± 133.9 vs 405.2 ± 86.0 mmHg/s, respectively (P < 0.01). In conclusion, our newly developed the pulsatile mode for continuous-flow LVADs reliably provided physiological pulsatility with following heart rate variability. PMID:26608806

  8. Communications and tracking technology discipline

    Romanofsky, Robert

    1990-01-01

    Viewgraphs on communications and tracking technology discipline for Space Station Freedom are presented. The objective is to develop devices, components, and analytical methods to enhance and enable technology to meet space station evolutionary requirements for multiple access (proximity) communications, space-to-ground communications, and tracking as it pertains to rendezvous and docking as well as potential orbital debris warning systems. Topics covered include: optical communications and tracking; monolithic microwave integrated circuit systems; traveling wave tube technology; advanced modulation and coding; and advanced automation.

  9. BPS operators from the Wilson loop in the 3-dimensional supersymmetric Chern-Simons theory

    Fujita, Mitsutoshi

    2009-01-01

    We consider the small deformation of the point-like Wilson loop in the 3-dimensional $\\mathcal{N}=6$ superconformal Chern-Simons theory. By Taylor expansion of the point-like Wilson loop in powers of the loop variables, we obtain the BPS operators that correspond to the excited string states of the dual IIA string theory on the pp wave background. The BPS conditions of the Wilson loop constrain both the loop variables and the forms of the operators obtained in the Taylor expansion.

  10. Development of water packing mitigation scheme for MARS 3- dimensional thermal-hydraulic module

    Water packing mitigation scheme was developed to enhance the numerical stability and calculational efficiency of MARS 3-dimensional thermal-hydraulic module. The water packing phenomena is unphysical pressure spike which occurs in a two-phase system thermal-hydraulic code using Eulerian finite difference method. Great velocities developed from large pressure spike slow down the calculation efficiency due to the stability limit. Also, large pressure spike and subsequent low pressure can make errors in thermodynamic state table search. The developed water packing mitigation scheme was implemented in MARS3D module. It is shown from the results of some benchmark problema that numerical stability and calculational efficiency were improved

  11. Screening for proximal coronary artery anomalies with 3-dimensional MR coronary angiography

    Prakken, Niek H.; Cramer, Maarten J; Olimulder, Marlon A; Agostoni, Pierfrancesco; Mali, Willem P; Velthuis, Birgitta K

    2010-01-01

    Under 35 years of age, 14% of sudden cardiac death in athletes is caused by a coronary artery anomaly (CAA). Free-breathing 3-dimensional magnetic resonance coronary angiography (3D-MRCA) has the potential to screen for CAA in athletes and non-athletes as an addition to a clinical cardiac MRI protocol. A 360 healthy men and women (207 athletes and 153 non-athletes) aged 18–60 years (mean age 31 ± 11 years, 37% women) underwent standard cardiac MRI with an additional 3D-MRCA within a maximum o...

  12. Fractal dimensions from a 3-dimensional intermittency analysis in e+e- annihilation

    The intermittency structure of multihadronic e+e- annihilation is analyzed by evaluating the factorial moments F2-F5 in 3-dimensional Lorentz invariant phase space as a function of the resolution scale. We interpret our data in the language of fractal objects. It turns out that the fractal dimension depends on the resolution scale in a way that can be attributed to geometrical resolution effects and dynamical effects, such as the π0 Dalitz decay. The LUND 7.2 hadronization model provides an excellent description of the data. There is no indication of unexplained multiplicity fluctuations in small phase space regions. (orig.)

  13. Development of a 3-Dimensional Dosimetry System for Leksell Gamma Knife-Perfexion

    Yoon, KyoungJun; Kwak, Jungwon; Lee, DoHeui; Cho, Byungchul; Lee, Sangwook; Ahn, SeungDo

    2015-01-01

    The purpose of our study is to develop a new, 3-dimensional dosimetry system to verify the accuracy of dose deliveries in Leksell Gamma Knife-Perfexion TM (LGKP) (Elekta, Norcross, GA, USA). The instrument consists of a moving head phantom, an embedded thin active layer and a CCD camera system and was designed to be mounted to LGKP. As an active material concentrically located in the hemispheric head phantom, we choose Gafchromic EBT3 films and Gd2O2S;Tb phosphor sheets for dosimetric measure...

  14. Shaking test of 3-dimensional isolator by using air spring and rubber bearing

    A new 3-dimensional isolator is proposed, where a high-pressure air spring is mounted on a laminated rubber bearing. The vertical flexibility is induced by the air spring, while the horizontal one is primarily by the laminated rubber bearing. To examine the effectiveness of the above concept, shaking tests of experimental models were performed, where a concrete block weighing about 24 tons was mounted on the four isolators. For suppressing rocking motions, an inclined support method was also tested. The results were satisfactory and the effectiveness of new isolators was confirmed

  15. Hamiltonian Analysis of 3-Dimensional Connection Dynamics in Bondi-like Coordinates

    Huang, Chao-Guang

    2016-01-01

    The Hamiltonian analysis for a 3-dimensional $SO(1,1)\\times T_+$-connection dynamics is conducted in a Bondi-like coordinate system.A null coframe with 5 independent variables and 9 connection coefficients are treated as basic configuration variables.All constraints and their consistency conditions, as well as the equations of motion,for the system are presented.There is no physical degree of freedom in the system as expected.The Ba\\~nados-Teitelboim-Zanelli spacetime as an example is used to check the analysis.

  16. Towards a mathematical definition of Coulomb branches of $3$-dimensional $\\mathcal N=4$ gauge theories, II

    Braverman, Alexander; Nakajima, Hiraku

    2016-01-01

    Consider the $3$-dimensional $\\mathcal N=4$ supersymmetric gauge theory associated with a compact Lie group $G_c$ and its quaternionic representation $\\mathbf M$. Physicists study its Coulomb branch, which is a noncompact hyper-K\\"ahler manifold with an $\\mathrm{SU}(2)$-action, possibly with singularities. We give a mathematical definition of the Coulomb branch as an affine algebraic variety with $\\mathbb C^\\times$-action when $\\mathbf M$ is of a form $\\mathbf N\\oplus\\mathbf N^*$, as the second step of the proposal given in arXiv:1503.03676.

  17. Spinorial Characterizations of Surfaces into 3-dimensional Pseudo-Riemannian Space Forms

    We give a spinorial characterization of isometrically immersed surfaces of arbitrary signature into 3-dimensional pseudo-Riemannian space forms. This generalizes a recent work of the first author for spacelike immersed Lorentzian surfaces in ℝ2,1 to other Lorentzian space forms. We also characterize immersions of Riemannian surfaces in these spaces. From this we can deduce analogous results for timelike immersions of Lorentzian surfaces in space forms of corresponding signature, as well as for spacelike and timelike immersions of surfaces of signature (0, 2), hence achieving a complete spinorial description for this class of pseudo-Riemannian immersions.

  18. The usefulness of 3-dimensional CT angiography for surgeries at the craniovertebral junction

    We preoperatively examined 77 patients for VA anomalies by 3-dimensional computed tomography angiography (3D-CTA) in order to avoid intraoperative vertebral artery (VA) injury during instrumentation surgery at the craniovertebral junction. An abnormal course of the VA in the extraosseous region was detected in 10 patients (13.0%), and a high-riding VA was identified in 21 patients (27.3%). The incidence of VA anomalies in the extraosseous and intraosseous regions was higher in patients with a congenital skeletal anomaly at the craniovertebral junction. Preoperative 3D-CTA allowed precise identification of anomalous VAs and reduction of the risk of intraoperative injury of the VA. (author)

  19. Study on 3-dimensional base isolation system applying to new type power plant reactor: part 2 (hydraulic 3-dimensional base-isolation system)

    Three dimensional (3D) seismic isolation devices have been developed to use for the base isolation system of the heavy building like a nuclear reactor building. The developed seismic isolation system is composed of rolling seal type air springs and the hydraulic type springs with rocking suppression system for vertical base isolation device. In horizontal direction, the same laminated rubber bearings are used as horizontal isolation device for these systems. The performances and the applicability have already been evaluated by the technical feasibility tests and performance tests for each system. In this study, it was evaluated that the performance of the 3D base isolation system with rolling seal type air springs combined with hydraulic rocking suppression devices. In this paper, the results of performance tests for hydraulic rocking suppression system will be reported. A 1/7 scaled model of the 3D base isolation devices were manufactured and some performance test were executed for each device. For the hydraulic rocking suppression system, forced dynamic loading test was carried out in order to measure the frictional and oil flow resistance force on each cylinder. And the vibration table tests were carried out with supported weight of 228 MN in order to evaluate and to confirm the horizontal and vertical isolation performance, rocking suppression performance, and the applicability of the this seismic isolation system as the combined system. 4 rolling seal type air springs and 4 hydraulic load-carrying cylinders with rocking suppression devices supported the weight. As a result, the proposed system was verified that it could be applied to the actual nuclear power plant building to be target. (authors)

  20. Automated, non-linear registration between 3-dimensional brain map and medical head image

    In this paper, we propose an automated, non-linear registration method between 3-dimensional medical head image and brain map in order to efficiently extract the regions of interest. In our method, input 3-dimensional image is registered into a reference image extracted from a brain map. The problems to be solved are automated, non-linear image matching procedure, and cost function which represents the similarity between two images. Non-linear matching is carried out by dividing the input image into connected partial regions, transforming the partial regions preserving connectivity among the adjacent images, evaluating the image similarity between the transformed regions of the input image and the correspondent regions of the reference image, and iteratively searching the optimal transformation of the partial regions. In order to measure the voxelwise similarity of multi-modal images, a cost function is introduced, which is based on the mutual information. Some experiments using MR images presented the effectiveness of the proposed method. (author)

  1. MR imaging of the knee joint with 3-dimensional gradient echo

    Authors considered and discussed whether various lesions of the knee joint can be diagnosed under the MR imaging condition with a pulse sequence of 3-dimensional fourier transformed gradient recalled acquisition in the steady state and what advantages the method has. The apparatus was 1.5T Signa (General Electric) equipped with surface coil for the knee. The consecutive 124 sagittal images of 0.8 mm thickness taken primarily for 3-dimensional reconstruction were processed to give any cross sections of coronary, horizontal, sagittal or further additional ones. Subjects were 243 knees (138 internal derangement and 105 osteoarthritis) whose lesions were confirmed by arthroscope or by arthrostomy after the MR imaging. Comparison of the MR imaging and surgical finding revealed that accuracy, specificity and sensitivity of the present MR imaging method were all >90% for diagnosis of internal derangement of anterior cruciate ligament and meniscus. For osteoarthritis, the method was thought useful for evaluation of the depth of cartilage deficit. (K.H.)

  2. Contactless 2-dimensional laser sensor for 3-dimensional wire position and tension measurements

    Prall, Matthias; Joehren, R; Ortjohann, H W; Reinhardt, M; Weinheimer, Ch

    2009-01-01

    We have developed a contact-free 2-dimensional laser sensor with which the position of wires can be measured in 3 dimensions with an accuracy of better than 10 micrometer and with which the tension of the wires can be determined with an accuracy of 0.04 N. These measurements can be made from a distance of 15 cm. The sensor consists of commercially available laser pointers, lenses, color filters and photodiodes. In our application we have used this laser sensor together with an automated 3 dimensional coordinate table. For a single position measurement, the laser sensor is moved by the 3-dimensional coordinate table in a plane and determines the coordinates at which the wires intersect with this plane. The position of the plane itself (the third coordinate) is given by the third axis of the measurement table which is perpendicular to this plane. The control and readout of the table and the readout of the laser sensor were realized with LabVIEW. The precision of the position measurement in the plane was determi...

  3. Crossover from 2-dimensional to 3-dimensional aggregations of clusters on square lattice substrates

    Cheng, Yi; Zhu, Yu-Hong; Pan, Qi-Fa; Yang, Bo; Tao, Xiang-Ming; Ye, Gao-Xiang

    2015-11-01

    A Monte Carlo study on the crossover from 2-dimensional to 3-dimensional aggregations of clusters is presented. Based on the traditional cluster-cluster aggregation (CCA) simulation, a modified growth model is proposed. The clusters (including single particles and their aggregates) diffuse with diffusion step length l (1 ≤ l ≤ 7) and aggregate on a square lattice substrate. If the number of particles contained in a cluster is larger than a critical size sc, the particles at the edge of the cluster have a possibility to jump onto the upper layer, which results in the crossover from 2-dimensional to 3-dimensional aggregations. Our simulation results are in good agreement with the experimental findings. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374082 and 11074215), the Science Foundation of Zhejiang Province Department of Education, China (Grant No. Y201018280), the Fundamental Research Funds for Central Universities, China (Grant No. 2012QNA3010), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100101110005).

  4. Morphological Control of Cells on 3-Dimensional Multi-Layer Nanotopographic Structures.

    Jeong, Heon-Ho; Noh, Young-Mu; Song, Hwan-Moon; Lee, Sang-Ho; Park, Jin-Sung; Lee, Chang-Soo

    2015-05-01

    The extracellular matrix (ECM) environment is known to play an important role in the process of various cell regulatory mechanisms. We have investigated the ability of 3-dimensional ECM geometries to induce morphological changes in cells. Bi-layer polymeric structures with submicron scale stripe patterns were fabricated using a two-step nano-imprinting technique, and the orientation angle (θ(α)) of the upper layer was controlled by changing its alignment with respect to the orientation of the bottom layer. When cells were grown on the mono-layer stripe structure with a single orientation, they elongated along the direction of the stripe pattern. On bi-layer polymer structures, the cell morphologies gradually changed and became rounded, with an increase of θα up to 90 degrees, but the polarities of these cells were still aligned along the orientation of the upper layer. As a result, we show that the polarity and the roundness of cells can be independently regulated by adjusting the orientation of 3-dimensional hierarchical ECM topography. PMID:26505024

  5. 3-dimensional computer model to simulate fluid flow and contaminant transport through a rock fracture system

    A 3-dimensional fracture generating scheme is presented which can be used to simulate water flow and contaminant (solute) transport through fracture system of a rock. It is presently limited to water saturated conditions, zero permeability for the rock matrix, and steady state water flow, but allows for transient solute transport. The scheme creates finite planar plates of uniform thickness which represent fractures in 3-dimensional space. A given fracture (plate) has the following descriptors: center location, orientation, shape, areal extent and aperture. Each parameter can be described by an appropriate probability distribution. Individual fractures are generated to form an assemblage of a certain fracture density. All fracture intersections and boundary/fracture intersections are determined and deadend fractures are eliminated. Flow through the fracture assemblage is considered laminar and described by Poiseuille's law. The principle of mass conservation at each intersection is used to develop the global matrix equation, which is solved subject to specified boundary conditions to yield the head and flow distribution at each intersection. Solute transport is considered to be advective between intersections with complete mixing at each intersection. Solutes added to the flow system can be explicitly followed and concentration vs. time relationships can be determined anywhere in the system. Some examples are included

  6. Computer implementation of 3-dimensional stairs-appearance graph display of the neutron flux distribution in the reactor core

    A treatment method of displaying neutron flux distribution on the computer terminator with 3-dimensional stairs-appearance graph is described. Experiments show that this method and associated software written with BASIC are successful

  7. SECOND-ORDER OPTIMALITY CONDITIONS FOR OPTIMAL CONTROL PROBLEMS GOVERNED BY 3-DIMENSIONAL NEVIER-STOKES EQUATIONS

    2006-01-01

    This article is concerned with second-order necessary and sufficient optimality conditions for optimal control problems governed by 3-dimensional Navier-Stokes equations. The periodic state constraint is considered.

  8. Biomechanical 3-Dimensional Finite Element Analysis of Obturator Protheses Retained with Zygomatic and Dental Implants in Maxillary Defects

    Akay, Canan; Yaluğ, Suat

    2015-01-01

    Background The objective of this study was to investigate the stress distribution in the bone around zygomatic and dental implants for 3 different implant-retained obturator prostheses designs in a Aramany class IV maxillary defect using 3-dimensional finite element analysis (FEA). Material\\Methods A 3-dimensional finite element model of an Aramany class IV defect was created. Three different implant-retained obturator prostheses were modeled: model 1 with 1 zygomatic implant and 1 dental imp...

  9. Superconvergent tracking

    In this paper we develop a new technique (superconvergent tracking) for tracking particles through a circular accelerator or a transport line with nonlinear elements. We use the superconvergent perturbation theory of Kolmogorov to solve the Hamilton-Jacobi equation (approximately) over a finite time interval. This transformation defines a map from the initial conditions to the state of the system at some later time. This technique can be iterated to examine long-term stability in betatron phase space in a circular accelerator, or it can be used to calculate the trajectory in betatron phase space of particles in a transport line. We verify the algorithm with two test cases in one degree of freedom and then develop the technique to track the two transverse degrees of freedom in a general accelerator lattice with sextupoles. As an example we track a section of the Superconducting Super Collider (SSC) arcs with and without sextupole errors in the bending magnets. (author) 14 refs., 15 figs., 1 tab

  10. Impact of the difference in power frequency on diamond-like carbon thin film coating over 3-dimensional objects

    With a type of capacitatively coupled plasma enhanced chemical vapor deposition (PECVD) technique, where two specially designed electrodes face to each other, the inner surface of hollow 3-dimensional objects such as poly(ethylene terephthalate) (PET) bottles can be coated with diamond-like carbon (DLC) thin film. DLC-coated PET bottles obtained with this technique have an enhanced gas barrier property, and therefore are applicable to industrial use such as for the extension of the shelf-life of contents sensitive to gas permeation. In this paper, the impact of power frequency ranging from 2.5 to 13.56 MHz was studied in order to research the behavior of plasma inside PET bottles and resultant properties. Different power frequency turned out to be influential on gas barrier property, the overall and distribution of tint, and adhesion between DLC and PET substrate. In addition, positron annihilation turned out to be powerful tool for the comparison of different coating conditions because it clarifies the homogeneity of DLC thin films through providing information on overall structure and thickness of them. These findings can be used for the optimization not only in the beverage PET bottle application, but also in other capacitatively coupled PECVD devices. - Highlights: • We demonstrated an effective methodology for the homogeneity of thin films. • We described the influence of power frequency on plasma and resultant thin film. • Diamond-like carbon coated on poly(ethylene terephthalate) bottles was used. • Different frequency provided homogenous thin films based on the above methodology. • For the industrial performance of the bottles, optimization was found at 6 MHz

  11. Impact of the difference in power frequency on diamond-like carbon thin film coating over 3-dimensional objects

    Nakaya, Masaki, E-mail: m-nakaya@kirin.co.jp [Packaging Technology Development Center, Technology Development Department, Kirin Brewery Co., Ltd., 1-17-1 Namamugi, Tsurumi-ku, Yokohama, Kanagawa 230-8682 (Japan); Shimizu, Mari [Packaging Technology Development Center, Technology Development Department, Kirin Brewery Co., Ltd., 1-17-1 Namamugi, Tsurumi-ku, Yokohama, Kanagawa 230-8682 (Japan); Uedono, Akira [Division of Applied Physics, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan)

    2014-08-01

    With a type of capacitatively coupled plasma enhanced chemical vapor deposition (PECVD) technique, where two specially designed electrodes face to each other, the inner surface of hollow 3-dimensional objects such as poly(ethylene terephthalate) (PET) bottles can be coated with diamond-like carbon (DLC) thin film. DLC-coated PET bottles obtained with this technique have an enhanced gas barrier property, and therefore are applicable to industrial use such as for the extension of the shelf-life of contents sensitive to gas permeation. In this paper, the impact of power frequency ranging from 2.5 to 13.56 MHz was studied in order to research the behavior of plasma inside PET bottles and resultant properties. Different power frequency turned out to be influential on gas barrier property, the overall and distribution of tint, and adhesion between DLC and PET substrate. In addition, positron annihilation turned out to be powerful tool for the comparison of different coating conditions because it clarifies the homogeneity of DLC thin films through providing information on overall structure and thickness of them. These findings can be used for the optimization not only in the beverage PET bottle application, but also in other capacitatively coupled PECVD devices. - Highlights: • We demonstrated an effective methodology for the homogeneity of thin films. • We described the influence of power frequency on plasma and resultant thin film. • Diamond-like carbon coated on poly(ethylene terephthalate) bottles was used. • Different frequency provided homogenous thin films based on the above methodology. • For the industrial performance of the bottles, optimization was found at 6 MHz.

  12. Simple computer program to model 3-dimensional underground heat flow with realistic boundary conditions

    Metz, P. D.

    A FORTRAN computer program called GROCS (GRound Coupled Systems) has been developed to study 3-dimensional underground heat flow. Features include the use of up to 30 finite elements or blocks of Earth which interact via finite difference heat flow equations and a subprogram which sets realistic time and depth dependent boundary conditions. No explicit consideration of mositure movement or freezing is given. GROCS has been used to model the thermal behavior of buried solar heat storage tanks (with and without insulation) and serpentine pipe fields for solar heat pump space conditioning systems. The program is available independently or in a form compatible with specially written TRNSYS component TYPE subroutines. The approach taken in the design of GROCS, the mathematics contained and the program architecture, are described. Then, the operation of the stand-alone version is explained. Finally, the validity of GROCS is discussed.

  13. Development of 3-dimensional lattice gas automata method and applicability to the triggering of vapor explosion

    It is pointed out that large-scale vapor explosion may occur during a severe accident of a nuclear power plant. It is important to predict the possibility of the vapor explosion for the accident management of the nuclear power plant during a severe accident. In the present study, 3-dimensional 15-velocity model was developed based on the 2-dimensional 9-velocity model. This proposed model is applied to the numerical simulation of triggering of vapor explosion, i.e. vapor film collapse behavior by external force and droplet atomization. The objective of the present research is to validate the applicability of this model to simulate the triggering of vapor explosion compared with experimental data. (author)

  14. Using 3-dimensional printing to create presurgical models for endodontic surgery.

    Bahcall, James K

    2014-09-01

    Advances in endodontic surgery--from both a technological and procedural perspective-have been significant over the last 18 years. Although these technologies and procedural enhancements have significantly improved endodontic surgical treatment outcomes, there is still an ongoing challenge of overcoming the limitations of interpreting preoperative 2-dimensional (2-D) radiographic representation of a 3-dimensional (3-D) in vivo surgical field. Cone-beam Computed Tomography (CBCT) has helped to address this issue by providing a 3-D enhancement of the 2-D radiograph. The next logical step to further improve a presurgical case 3-D assessment is to create a surgical model from the CBCT scan. The purpose of this article is to introduce 3-D printing of CBCT scans for creating presurgical models for endodontic surgery. PMID:25197746

  15. Reference Trajectory Generation for 3-Dimensional Walking of a Humanoid Robot

    2007-01-01

    Humanoid walking planning is a complicated task because of the high number of degrees of freedom (DOFs) and the variable mechanical structure during walking. In this paper, a planning method for 3-dimensional (3-D) walking movements was developed based on a model of a typical humanoid robot with 12 DOFs on the lower body. The planning process includes trajectory generation for the hip, ankle, and knee joints in the Cartesian space. The balance of the robot was ensured by adjusting the hip motion. The angles for each DOF were obtained from 3-D kinematics calculation. The calculation gave reference trajectories of all the DOFs on the humanoid robot which were used to control the real robot. The simulation results show that the method is effective.

  16. Towards a mathematical definition of Coulomb branches of $3$-dimensional $\\mathcal N=4$ gauge theories, I

    Nakajima, Hiraku

    2015-01-01

    Consider the $3$-dimensional $\\mathcal N=4$ supersymmetric gauge theory associated with a compact Lie group $G$ and its quaternionic representation $\\mathbf M$. Physicists study its Coulomb branch, which is a noncompact hyper-K\\"ahler manifold, such as instanton moduli spaces on $\\mathbb R^4$, $SU(2)$-monopole moduli spaces on $\\mathbb R^3$, etc. In this paper and its sequel, we propose a mathematical definition of the coordinate ring of the Coulomb branch, using the vanishing cycle cohomology group of a certain moduli space for a gauged $\\sigma$-model on the $2$-sphere associated with $(G,\\mathbf M)$. In this first part, we check that the cohomology group has the correct graded dimensions expected from the monopole formula proposed by Cremonesi, Hanany and Zaffaroni arXiv:1309.2657. A ring structure (on the cohomology of a modified moduli space) will be introduced in the sequel of this paper.

  17. A 3-Dimensional Cockpit Display with Traffic and Terrain Information for the Small Aircraft Transportation System

    UijtdeHaag, Maarten; Thomas, Robert; Rankin, James R.

    2004-01-01

    The report discusses the architecture and the flight test results of a 3-Dimensional Cockpit Display of Traffic and terrain Information (3D-CDTI). The presented 3D-CDTI is a perspective display format that combines existing Synthetic Vision System (SVS) research and Automatic Dependent Surveillance-Broadcast (ADS-B) technology to improve the pilot's situational awareness. The goal of the 3D-CDTI is to contribute to the development of new display concepts for NASA's Small Aircraft Transportation System research program. Papers were presented at the PLANS 2002 meeting and the ION-GPS 2002 meeting. The contents of this report are derived from the results discussed in those papers.

  18. DIEP Flap Breast Reconstruction Using 3-dimensional Surface Imaging and a Printed Mold

    Koichi Tomita, MD, PhD

    2015-03-01

    Full Text Available Summary: Recent advances in 3-dimensional (3D surface imaging technologies allow for digital quantification of complex breast tissue. We performed 11 unilateral breast reconstructions with deep inferior epigastric artery perforator (DIEP flaps (5 immediate, 6 delayed using 3D surface imaging for easier surgery planning and 3D-printed molds for shaping the breast neoparenchyma. A single- or double-pedicle flap was preoperatively planned according to the estimated tissue volume required and estimated total flap volume. The DIEP flap was then intraoperatively shaped with a 3D-printed mold that was based on a horizontally inverted shape of the contralateral breast. Cosmetic outcomes were assessed as satisfactory, as confirmed by the postoperative 3D measurements of bilateral breasts. We believe that DIEP flap reconstruction assisted with 3D surface imaging and a 3D-printed mold is a simple and quick method for rebuilding a symmetric breast.

  19. DIEP Flap Breast Reconstruction Using 3-dimensional Surface Imaging and a Printed Mold.

    Tomita, Koichi; Yano, Kenji; Hata, Yuki; Nishibayashi, Akimitsu; Hosokawa, Ko

    2015-03-01

    Recent advances in 3-dimensional (3D) surface imaging technologies allow for digital quantification of complex breast tissue. We performed 11 unilateral breast reconstructions with deep inferior epigastric artery perforator (DIEP) flaps (5 immediate, 6 delayed) using 3D surface imaging for easier surgery planning and 3D-printed molds for shaping the breast neoparenchyma. A single- or double-pedicle flap was preoperatively planned according to the estimated tissue volume required and estimated total flap volume. The DIEP flap was then intraoperatively shaped with a 3D-printed mold that was based on a horizontally inverted shape of the contralateral breast. Cosmetic outcomes were assessed as satisfactory, as confirmed by the postoperative 3D measurements of bilateral breasts. We believe that DIEP flap reconstruction assisted with 3D surface imaging and a 3D-printed mold is a simple and quick method for rebuilding a symmetric breast. PMID:25878927

  20. Application and Program Composition of the Virtual Laminated 3 Dimensional Degenerated Element in the Bridge Structure

    YAN Xing-fei; He Shuan-hai; SUN limin

    2003-01-01

    The text include two aspects, one is the general finite element method (FEM), the other is bridge special FEM. And two viewpoints are used in it, one is the theory of FEM, the other is the practical program-making. The virtual laminated 3 dimensional degenerated element with vivid character is introduced in this paper and a large-scale computer program of FEM is manufactured. 1In addition, some current advantaged computer technology is used to make simple pre- and post processing program in order to exemplify and calculate easily in the process of researching. By using a factual example, the text also prove the method simply and resultful for analyze of bridge.

  1. Freehand biopsy guided by electromagnetic needle tracking

    Ewertsen, C; Nielsen, Marie Kristina Rue; Nielsen, M Bachmann

    2011-01-01

    To evaluate the overall accuracy and time spent on biopsy guided by electromagnetic needle tracking in a phantom compared with the standard technique of US-guided biopsy with an attached steering device. Furthermore, to evaluate off-plane biopsy guided by needle tracking....

  2. Solar Tracking System

    Nguyen, Nam

    2016-01-01

    The goal of this thesis was to develop a laboratory prototype of a solar tracking system, which is able to enhance the performance of the photovoltaic modules in a solar energy system. The operating principle of the device is to keep the photovoltaic modules constantly aligned with the sunbeams, which maximises the exposure of solar panel to the Sun’s radiation. As a result, more output power can be produced by the solar panel. The work of the project included hardware design and implemen...

  3. Doppler tracking

    Thomas, Christopher Jacob

    This study addresses the development of a methodology using the Doppler Effect for high-resolution, short-range tracking of small projectiles and vehicles. Minimal impact on the design of the moving object is achieved by incorporating only a transmitter in it and using ground stations for all other components. This is particularly useful for tracking objects such as sports balls that have configurations and materials that are not conducive to housing onboard instrumentation. The methodology developed here uses four or more receivers to monitor a constant frequency signal emitted by the object. Efficient and accurate schemes for filtering the raw signals, determining the instantaneous frequencies, time synching the frequencies from each receiver, smoothing the synced frequencies, determining the relative velocity and radius of the object and solving the nonlinear system of equations for object position in three dimensions as a function of time are developed and described here.

  4. Eye Gaze Tracking for Human Computer Interaction

    Drewes, Heiko

    2010-01-01

    With a growing number of computer devices around us, and the increasing time we spend for interacting with such devices, we are strongly interested in finding new interaction methods which ease the use of computers or increase interaction efficiency. Eye tracking seems to be a promising technology to achieve this goal. This thesis researches interaction methods based on eye-tracking technology. After a discussion of the limitations of the eyes regarding accuracy and speed, including a gene...

  5. Tracking Porters

    Bruun, Maja Hojer; Krause-Jensen, Jakob; Nielsen, Margit Saltofte

    2015-01-01

    Anthropology attempts to gain insight into people's experiential life-worlds through long-term fieldwork. The quality of anthropological knowledge production, however, does not depend solely on the duration of the stay in the field, but also on a particular way of seeing social situations. The...... two weeks the students followed the work of a group of porters. Drawing on anthropological concepts and research strategies the students gained crucial insights about the potential effects of using tracking technologies in the hospital....

  6. On the Need for Comprehensive Validation of Deformable Image Registration, Investigated With a Novel 3-Dimensional Deformable Dosimeter

    Purpose: To introduce and evaluate a novel deformable 3-dimensional (3D) dosimetry system (Presage-Def/Optical-CT) and its application toward investigating the accuracy of dose deformation in a commercial deformable image registration (DIR) package. Methods and Materials: Presage-Def is a new dosimetry material consisting of an elastic polyurethane matrix doped with radiochromic leuco dye. Radiologic and mechanical properties were characterized using standard techniques. Dose-tracking feasibility was evaluated by comparing dose distributions between dosimeters irradiated with and without 27% lateral compression. A checkerboard plan of 5-mm square fields enabled precise measurement of true deformation using 3D dosimetry. Predicted deformation was determined from a commercial DIR algorithm. Results: Presage-Def exhibited a linear dose response with sensitivity of 0.0032 ΔOD/(Gy∙cm). Mass density is 1.02 g/cm3, and effective atomic number is within 1.5% of water over a broad (0.03-10 MeV) energy range, indicating good water-equivalence. Elastic characteristics were close to that of liver tissue, with Young's modulus of 13.5-887 kPa over a stress range of 0.233-303 kPa, and Poisson's ratio of 0.475 (SE, 0.036). The Presage-Def/Optical-CT system successfully imaged the nondeformed and deformed dose distributions, with isotropic resolution of 1 mm. Comparison with the predicted deformed 3D dose distribution identified inaccuracies in the commercial DIR algorithm. Although external contours were accurately deformed (submillimeter accuracy), volumetric dose deformation was poor. Checkerboard field positioning and dimension errors of up to 9 and 14 mm, respectively, were identified, and the 3D DIR-deformed dose γ passing rate was only γ3%/3mm = 60.0%. Conclusions: The Presage-Def/Optical-CT system shows strong potential for comprehensive investigation of DIR algorithm accuracy. Substantial errors in a commercial DIR were found in the conditions evaluated. This work

  7. Characterization of tracked radiofrequency ablation in phantom

    In radiofrequency ablation (RFA), successful therapy requires accurate, image-guided placement of the ablation device in a location selected by a predictive treatment plan. Current planning methods rely on geometric models of ablations that are not sensitive to underlying physical processes in RFA. Implementing plans based on computational models of RFA with image-guided techniques, however, has not been well characterized. To study the use of computational models of RFA in planning needle placement, this work compared ablations performed with an optically tracked RFA device with corresponding models of the ablations. The calibration of the tracked device allowed the positions of distal features of the device, particularly the tips of the needle electrodes, to be determined to within 1.4±0.6 mm of uncertainty. Ablations were then performed using the tracked device in a phantom system based on an agarose-albumin mixture. Images of the sliced phantom obtained from the ablation experiments were then compared with the predictions of a bioheat transfer model of RFA, which used the positional data of the tracked device obtained during ablation. The model was demonstrated to predict 90% of imaged pixels classified as being ablated. The discrepancies between model predictions and observations were analyzed and attributed to needle tracking inaccuracy as well as to uncertainties in model parameters. The results suggest the feasibility of using finite element modeling to plan ablations with predictable outcomes when implemented using tracked RFA

  8. Eye tracking in user experience design

    Romano Bergstorm, Jennifer

    2014-01-01

    Eye Tracking for User Experience Design explores the many applications of eye tracking to better understand how users view and interact with technology. Ten leading experts in eye tracking discuss how they have taken advantage of this new technology to understand, design, and evaluate user experience. Real-world stories are included from these experts who have used eye tracking during the design and development of products ranging from information websites to immersive games. They also explore recent advances in the technology which tracks how users interact with mobile devices, large-screen displays and video game consoles. Methods for combining eye tracking with other research techniques for a more holistic understanding of the user experience are discussed. This is an invaluable resource to those who want to learn how eye tracking can be used to better understand and design for their users. * Includes highly relevant examples and information for those who perform user research and design interactive experi...

  9. Real Time Vehicle Tracking System using GSM and GPS Technology- An Anti-theft Tracking System

    Kunal Maurya; Mandeep Singh; Neelu Jain

    2012-01-01

    A vehicle tracking system is an electronic device installed in a vehicle to enable the owner or a third party to track the vehicle's location. This paper proposed to design a vehicle tracking system that works using GPS and GSM technology, which would be the cheapest source of vehicle tracking and it would work as anti-theft system. It is an embedded system which is used for tracking and positioning of any vehicle by using Global Positioning System (GPS) and Global system for mobile communica...

  10. Drift and proportional tracking chambers

    Many techniques have been exploited in constructing tracking chambers, particle detectors which measure the trajectories and momenta of charged particles. The particular features of high-energy interactions - charged particle multiplicities, angular correlations and complex vertex topologies, to name a few - and the experimental environment of the accelerator - event rates, background rates, and so on - accent the importance of certain detector characteristics. In high energy e+e-, anti pp and pp interactions the final states are dominated by closely collimated jets of high multiplicity, requiring good track-pair resolution in the tracking chamber. High energy particles deflect very little in limited magnetic field volumes, necessitating good spatial resolution for accurate momentum measurements. The colliding beam technique generally requires a device easily adapted to full solid-angle coverage, and the high event rates expected in some of these machines put a premium on good time resolution. Finally, the production and subsequent decays of the tau, charmed and beautiful mesons will provide multiple vertex topologies. To reconstruct these vertices reliably will require considerable improvements in spatial resolution and track-pair resolution. This lecture considers the proportional counter and its descendant, the drift chamber, as tracking chambers. Its goal is to review the physics of this device in order to understand its performance limitations and promises

  11. Hierarchical fringe tracking

    Petrov, Romain G.; Elhalkouj, Thami; Boskri, Abdelkarim; Folcher, Jean-Pierre; Lagarde, Stéphane; Bresson, Yves; Benkhaldoun, Zouhair; Lazrek, Mohamed; Rakshit, Suvendu

    2014-07-01

    The limiting magnitude is a key issue for optical interferometry. Pairwise fringe trackers based on the integrated optics concepts used for example in GRAVITY seem limited to about K=10.5 with the 8m Unit Telescopes of the VLTI, and there is a general "common sense" statement that the efficiency of fringe tracking, and hence the sensitivity of optical interferometry, must decrease as the number of apertures increases, at least in the near infrared where we are still limited by detector readout noise. Here we present a Hierarchical Fringe Tracking (HFT) concept with sensitivity at least equal to this of a two apertures fringe trackers. HFT is based of the combination of the apertures in pairs, then in pairs of pairs then in pairs of groups… The key HFT module is a device that behaves like a spatial filter for two telescopes (2TSF) and transmits all or most of the flux of a cophased pair in a single mode beam. We give an example of such an achromatic 2TSF, based on very broadband dispersed fringes analyzed by grids, and show that it allows piston measures from very broadband fringes with only 3 to 5 pixels per fringe tracker. We show the results of numerical simulation indicating that our device is a good achromatic spatial filter and allowing a first evaluation of its coupling efficiency, which is similar to this of a single mode fiber on a single aperture. Our very preliminary results indicate that HFT has a good chance to be a serious candidate for the most sensitive fringe tracking with the VLTI and also interferometers with much larger number of apertures. On the VLTI the first rough estimate of the magnitude gain with regard to the GRAVITY internal FT is between 2.5 and 3.5 magnitudes in K, with a decisive impact on the VLTI science program for AGNs, Young stars and planet forming disks.

  12. INNER TRACKING

    P. Sharp

    The CMS Inner Tracking Detector continues to make good progress. The Objective for 2006 was to complete all of the CMS Tracker sub-detectors and to start the integration of the sub-detectors into the Tracker Support Tube (TST). The Objective for 2007 is to deliver to CMS a completed, installed, commissioned and calibrated Tracking System (Silicon Strip and Pixels) aligned to < 100µ in April 2008 ready for the first physics collisions at LHC. In November 2006 all of the sub-detectors had been delivered to the Tracker Integration facility (TIF) at CERN and the tests and QA procedures to be carried out on each sub-detector before integration had been established. In December 2006, TIB/TID+ was integrated into TOB+, TIB/TID- was being prepared for integration, and TEC+ was undergoing tests at the final tracker operating temperature (-100 C) in the Lyon cold room. In February 2007, TIB/TID- has been integrated into TOB-, and the installation of the pixel support tube and the services for TI...

  13. A 60GHz-Band 3-Dimensional System-in-Package Transmitter Module with Integrated Antenna

    Suematsu, Noriharu; Yoshida, Satoshi; Tanifuji, Shoichi; Kameda, Suguru; Takagi, Tadashi; Tsubouchi, Kazuo

    A low cost, ultra small Radio Frequency (RF) transceiver module with integrated antenna is one of the key technologies for short range millimeter-wave wireless communication. This paper describes a 60GHz-band transmitter module with integrated dipole antenna. The module consists of three pieces of low-cost organic resin substrate. These substrates are vertically stacked by employing Cu ball bonding 3-dimensional (3-D) system-in-package (SiP) technology and the MMIC's are mounted on each organic substrates by using Au-stud bump bonding (SBB) technique. The planer dipole antenna is fabricated on the top of the stacked organic substrate to avoid the influence of the grounding metal on the base substrate. At 63GHz, maximum actual gain of 6.0dBi is obtained for fabricated planar dipole antenna. The measured radiation patterns are agreed with the electro-magnetic (EM) simulated result, therefore the other RF portion of the 3-D front-end module, such as flip chip mounted IC's on the top surface of the module, does not affect the antenna characteristics. The results show the feasibility of millimeter-wave low cost, ultra small antenna integrated module using stacked organic substrates.

  14. Bioactive glass-poly (ε-caprolactone) composite scaffolds with 3 dimensionally hierarchical pore networks

    Hierarchically mesoporous-macroporous-giant-porous bioactive glass/poly ε-caprolactone (PCL) composite scaffolds were prepared using a combination of the sol-gel method, evaporation-induced self-assembly process in the presence of nonionic triblock copolymer, EO100PO65EO100 (F127), as template, salt leaching method, and rapid prototyping techniques. F127 acts as a template, inducing the formation of mesopores, NaCl with sizes between 25 and 33 μm provides macro-pores after leaching, and rapid prototyping produces giant-pores. The structure and morphology of the scaffolds were characterized by the field emission scanning electron microscopy, transmission electron microscopy, and Hg porosimetry. The mechanical properties of the scaffolds were examined by the dynamic mechanical analysis. Their in vitro bioactivities were confirmed by immersing the scaffolds in simulated body fluid. Their biocompatibilities were also evaluated by culturing human bone marrow stromal cells on the scaffolds. The scaffolds show good molding capabilities, mechanical properties, 3 dimensionally well-interconnected pore structures, bioactivities, and biocompatibilities in vitro. Depending on the amount of NaCl, the scaffolds also show unique sponge-like properties, but still retain better mechanical properties than general salt leaching derived PCL scaffolds. All of the data provide good evidence that the obtained scaffolds possess excellent potential for applications in the fields of tissue engineering and drug storage.

  15. Research on the method of cavitations resistance in a piezoelectric pump with 3-dimensional mesh structure

    ZHANG Jian-hui; XIA Qi-xiao; Bai Heng-jun; NING Hong-gang; ONUKI Akiyoshi

    2006-01-01

    The volume valve piezoelectric pump has received increasing attention from many areas because of its different characteristics such as the absence of chemical pollution and electromagnetic pollution.However,when the pump is working,it produces cavitations and the air bubbles that originate from these will flow out of the pump.Cavitations occurring in the pump will bring out noise and shorten the life of the pump.Furthermore,air bubbles flowing out of the pump will hinder its application in areas such as medical treatment and health care where blood transfusion and infusion are concerned.As a solution to this disadvantage,the CR3DMS (cavitations resistance with 3-dimensional mesh structure) method is developed,which is tested and verified to be effective on not only reducing the occurrence of cavitations and eliminating cavitations' flowing out,but also restraining the emission of noise.In conclusion,the pump with CR3DMS,on the relationship between flow and driving frequency and the relationship between flow and the number of Resistant-Layers in both theory and test,are analyzed.

  16. A Novel Method of Orbital Floor Reconstruction Using Virtual Planning, 3-Dimensional Printing, and Autologous Bone.

    Vehmeijer, Maarten; van Eijnatten, Maureen; Liberton, Niels; Wolff, Jan

    2016-08-01

    Fractures of the orbital floor are often a result of traffic accidents or interpersonal violence. To date, numerous materials and methods have been used to reconstruct the orbital floor. However, simple and cost-effective 3-dimensional (3D) printing technologies for the treatment of orbital floor fractures are still sought. This study describes a simple, precise, cost-effective method of treating orbital fractures using 3D printing technologies in combination with autologous bone. Enophthalmos and diplopia developed in a 64-year-old female patient with an orbital floor fracture. A virtual 3D model of the fracture site was generated from computed tomography images of the patient. The fracture was virtually closed using spline interpolation. Furthermore, a virtual individualized mold of the defect site was created, which was manufactured using an inkjet printer. The tangible mold was subsequently used during surgery to sculpture an individualized autologous orbital floor implant. Virtual reconstruction of the orbital floor and the resulting mold enhanced the overall accuracy and efficiency of the surgical procedure. The sculptured autologous orbital floor implant showed an excellent fit in vivo. The combination of virtual planning and 3D printing offers an accurate and cost-effective treatment method for orbital floor fractures. PMID:27137437

  17. Optimal iodine dose for 3-dimensional multidetector-row CT angiography of the liver

    Purpose: To clarify the optimal iodine dose of contrast material for 3-dimensional multidetector-row CT angiography (3D-MDCTA) of the venous vasculature of the liver using volume rendering technique. Materials and methods: This study included 103 patients who were randomly assigned to 5 contrast-enhanced MDCT protocol groups with different body-weight-tailored doses of contrast material: 500, 600, 630, 650, and 700 mgI/kg body weight. The arterial, portal, and hepatic parenchymal phases were obtained to evaluate enhancement values of the aorta, portal vein, and hepatic vein. Visualization of the portal and hepatic veins on the volume-rendering images of 3D-MDCTA was evaluated using a 5-point grade. Dunnett's test was used to compare the mean enhancement value and mean grades of image quality (700 mgI/kg dose group was control). Results: The mean enhancement values of portal and hepatic vein in the group with 500 and 600 mgI/kg were significantly lower than those of the control group. During visual assessment, a significantly lower mean grades were observed in 500 mgI/kg groups for the portal vein, and 500 and 600 mgI/kg groups for hepatic vein. There were no significant intergroup differences in mean enhancement values and visual assessment among the groups using 630 mgI/kg or more. Conclusion: Iodine doses of 630 mgI/kg was recommended for 3D-MDCTA

  18. 3-DIMENSIONAL Numerical Modeling on the Combustion and Emission Characteristics of Biodiesel in Diesel Engines

    Yang, Wenming; An, Hui; Amin, Maghbouli; Li, Jing

    2014-11-01

    A 3-dimensional computational fluid dynamics modeling is conducted on a direct injection diesel engine fueled by biodiesel using multi-dimensional software KIVA4 coupled with CHEMKIN. To accurately predict the oxidation of saturated and unsaturated agents of the biodiesel fuel, a multicomponent advanced combustion model consisting of 69 species and 204 reactions combined with detailed oxidation pathways of methyl decenoate (C11H22O2), methyl-9-decenoate (C11H20O2) and n-heptane (C7H16) is employed in this work. In order to better represent the real fuel properties, the detailed chemical and thermo-physical properties of biodiesel such as vapor pressure, latent heat of vaporization, liquid viscosity and surface tension were calculated and compiled into the KIVA4 fuel library. The nitrogen monoxide (NO) and carbon monoxide (CO) formation mechanisms were also embedded. After validating the numerical simulation model by comparing the in-cylinder pressure and heat release rate curves with experimental results, further studies have been carried out to investigate the effect of combustion chamber design on flow field, subsequently on the combustion process and performance of diesel engine fueled by biodiesel. Research has also been done to investigate the impact of fuel injector location on the performance and emissions formation of diesel engine.

  19. Automated image analysis reveals the dynamic 3-dimensional organization of multi-ciliary arrays

    Domenico F. Galati

    2016-01-01

    Full Text Available Multi-ciliated cells (MCCs use polarized fields of undulating cilia (ciliary array to produce fluid flow that is essential for many biological processes. Cilia are positioned by microtubule scaffolds called basal bodies (BBs that are arranged within a spatially complex 3-dimensional geometry (3D. Here, we develop a robust and automated computational image analysis routine to quantify 3D BB organization in the ciliate, Tetrahymena thermophila. Using this routine, we generate the first morphologically constrained 3D reconstructions of Tetrahymena cells and elucidate rules that govern the kinetics of MCC organization. We demonstrate the interplay between BB duplication and cell size expansion through the cell cycle. In mutant cells, we identify a potential BB surveillance mechanism that balances large gaps in BB spacing by increasing the frequency of closely spaced BBs in other regions of the cell. Finally, by taking advantage of a mutant predisposed to BB disorganization, we locate the spatial domains that are most prone to disorganization by environmental stimuli. Collectively, our analyses reveal the importance of quantitative image analysis to understand the principles that guide the 3D organization of MCCs.

  20. Immediate 3-dimensional ridge augmentation after extraction of periodontally hopeless tooth using chinblock graft

    Desai, Ankit; Thomas, Raison; A. Baron, Tarunkumar; Shah, Rucha; Mehta, Dhoom-Singh

    2015-01-01

    Background The aim of the present study was to evaluate clinically and radiographically, the efficacy of immediate ridge augmentation to reconstruct the vertical and horizontal dimensions at extraction sites of periodontally hopeless tooth using an autogenous chin block graft. Material and Methods A total of 11 patients (7 male & 4 female) with localized advanced bone loss around single rooted teeth having hopeless prognosis and indicated for extraction were selected for the study. The teeth were atraumatically extracted and deficient sites were augmented using autogenous chin block graft. Parameters like clinically soft tissue height - width and also radiographic ridge height -width were measured before and 6 months after augmentation. Obtained results were tabulated and analysed statistically. Results After 6 months of immediate ridge augmentation, the mean gain in radiographic vertical height and horizontal width was 7.64 + 1.47 mm (P = 0.005) and 5.28 + 0.46 mm (P = 0.007) respectively which was found to be statistically significant (P extraction site. It can provide adequate hard and soft tissue foundation for perfect 3-Dimensional prosthetic positioning of implant in severely deficient ridges. Key words:Immediate ridge augmentation, periondontally hopeless tooth, autogenous chin graft, dental implant. PMID:26644832

  1. 3-dimensional conformal radiotherapy for cervical and upper-thoracic esophageal cancer

    Objective: To evaluate the effect of 3-dimensional conformal radiotherapy (3D CRT) and prognostic factors for cervical and upper-thoracic esophageal cancer. Methods: Between July 1998 and July 2001, 33 patients with cervical and upper-thoracic esophageal cancer were treated with 3D CRT(2 Gy per day, 5 sessions a week to a total dose of 66-68 Gy over 6-7 weeks). Acute toxicities and survival rates were evaluated by Kaplan-Meier method and prognostic factors were analyzed by Cox proportional hazard model. Results: The 1-, 2-, 3-year local control rates were 87.9%, 75.8%, 45.5% respectively. The 1-, 2-, 3-year disease-free and overall survival rates were 72.7%, 60.6%, 30.3% and 78.8%, 66.8%, 44.2% respectively. GradeI- II acute esophagitis and bronchitis were the most common radiation side effects. Multivariate analysis revealed that the depth of primary tumor invasion, regional lymph node metastasis and tumor length were independent prognostic factors (P<0.05). Conclusions: 3D CRT can be considered as an effective and feasible approach to cervical and upper-thoracic esophageal cancer treatment. The depth of primary tumor invasion, regional lymph node status and tumor length are important prognostic indicators for cervical and upper-thoracic esophageal cancer. (authors)

  2. Casting of 3-dimensional footwear prints in snow with foam blocks.

    Petraco, Nicholas; Sherman, Hal; Dumitra, Aurora; Roberts, Marcel

    2016-06-01

    Commercially available foam blocks are presented as an alternative material for the casting and preservation of 3-dimensional footwear impressions located in snow. The method generates highly detailed foam casts of questioned footwear impressions. These casts can be compared to the known outsole standards made from the suspects' footwear. Modification of the commercially available foam casting blocks is simple and fast. The foam block is removed and a piece of cardboard is secured to one side of the block with painter's masking tape. The prepared foam block is then placed back into its original box, marked appropriately, closed and stored until needed. When required the foam block is carefully removed from its storage box and gently placed, foam side down, over the questioned footwear impression. Next, the crime scene technician's hands are placed on top of the cardboard and pressure is gently applied by firmly pressing down onto the impression. The foam cast is removed, dried and placed back into its original container and sealed. The resulting 3D impressions can be directly compared to the outsole of known suspected item(s) of footwear. PMID:27124876

  3. SBNCT plan: A 3-dimensional treatment planning system for boron neutron capture therapy

    The need for accurate and comprehensive 3-dimensional treatment planning for boron neutron capture therapy (BNCT) has been debated for the past several years. Although many argue against the need for elaborate and expensive treatment planning programs which mimic conventional radiotherapy planning systems, it is clear that in order to realize significant gains over conventional fractionated radiation therapy, patients must be treated to the edge of normal tissue tolerance. Just how close to this edge is dictated by the uncertainties in dosimetry. Hence the focus of BNCT planning is the determination of dose distribution throughout normal tissue volumes. Although precise geometric manipulation of the epithermal neutron beam is not achievable, the following variables play an important role in BNCT optimization: patient orientation, dose fractionation, number of fields, megawatt-minutes per fraction, use of surface bolus, and use of collimation. Other variables which are not as easily adjustable and would not, therefore, be part of treatment planning optimization, include external patient contour, internal patient heterogeneities, boron compound distributions, and RBE's. The boron neutron capture therapy planning system developed at SUNY Stony Brook (SBNCT-Plan) was designed as an interactive graphic tool to assist the radiation oncologist in generating the optimum plan for a neutron capture treatment

  4. An experimental study for qualitatively diagnosing stapes lesions by helical 3-dimensional CT

    Kawaue, Akifumi; Kuki, Kiyonori; Yamanaka, Noboru [Wakayama Medical Univ., Wakayama (Japan); Nishimura, Michihiko

    2001-08-01

    To evaluate qualitative diagnosis of stapes lesions by 3-dimensional computed tomography (3D-CT) combined with superselective image processing (3D-SS) of stapes, we studied helical 3D-CT on a phantom model of the temporal bone. Two stapes models were used-1 made from the bone filler, Celatite, consistent in bone density but changing in cross sectional area, and the other made from an apacerum rod used in quantitative computed tomography (QCT), consistent in cross sectional area but changing in bone density. These stapes models were put into a skull phantom and analyzed by helical 3D-CT. The influence of the tympanic cavity conditions on CT images of stapes was evaluated by filling the phantom model with Vaseline following 3D selective reconstruction. In all stapes models, lowering the lower CT window width threshold resulted in an enlarged cross-sectional area of the model. The higher the bone density, the lower the increase in cross-sectional area in the image. The stapes model with lower density had greater influence on the imaging by tympanic cavity conditions and was likely to be misdiagnosed as showing higher bone density. Based on the experimental study, 3D-SS by helical 3D-CT appears to be a useful measure for qualitatively diagnosing stapes lesions. (author)

  5. Development of a 3-Dimensional Dosimetry System for Leksell Gamma Knife-Perfexion

    Yoon, KyoungJun; Lee, DoHeui; Cho, ByungChul; Lee, SangWook; Ahn, SeungDo

    2015-01-01

    The purpose of our study is to develop a new, 3-dimensional dosimetry system to verify the accuracy of dose deliveries in Leksell Gamma Knife-Perfexion TM (LGKP) (Elekta, Norcross, GA, USA). The instrument consists of a moving head phantom, an embedded thin active layer and a CCD camera system and was designed to be mounted to LGKP. As an active material concentrically located in the hemispheric head phantom, we choose Gafchromic EBT3 films and Gd2O2S;Tb phosphor sheets for dosimetric measurements. Also, to compensate the lack of backscatter, we located a 1 cm thick PMMA plate downstream of the active layer. The PMMA plate was transparent for scintillation lights to reach the CCD with 1200x1200 pixels by a 5.2 um pitch. Using this system, three hundred images by a 0.2 mm slice gap were acquired under each of three collimator setups, i.e. 4 mm, 8 mm, and 16 mm, respectively. The 2D projected images taken by CCD camera were compared with the dose distributions measured by EBT3 films in the same conditions. All ...

  6. Embedding and publishing interactive, 3-dimensional, scientific figures in Portable Document Format (PDF files.

    David G Barnes

    Full Text Available With the latest release of the S2PLOT graphics library, embedding interactive, 3-dimensional (3-d scientific figures in Adobe Portable Document Format (PDF files is simple, and can be accomplished without commercial software. In this paper, we motivate the need for embedding 3-d figures in scholarly articles. We explain how 3-d figures can be created using the S2PLOT graphics library, exported to Product Representation Compact (PRC format, and included as fully interactive, 3-d figures in PDF files using the movie15 LaTeX package. We present new examples of 3-d PDF figures, explain how they have been made, validate them, and comment on their advantages over traditional, static 2-dimensional (2-d figures. With the judicious use of 3-d rather than 2-d figures, scientists can now publish, share and archive more useful, flexible and faithful representations of their study outcomes. The article you are reading does not have embedded 3-d figures. The full paper, with embedded 3-d figures, is recommended and is available as a supplementary download from PLoS ONE (File S2.

  7. 3-dimensional amorphous silicon solar cells deposited on ZnO nanocolumns

    Čampa, A.; Neykova, Neda; Moulin, E.; Hruška, Karel; Haug, F.J.; Topič, M.; Ballif, C.; Vaněček, Milan

    Berlin: WIP, 2014, s. 1678-1681. ISBN 3-936338-34-5. [European Photovoltaic Energy Conference and Exhibition /29./. Amsterdam (NL), 22.09.2014-26.09.2014] R&D Projects: GA MŠk 7E12029 EU Projects: European Commission(XE) 283501 - Fast Track Institutional support: RVO:68378271 Keywords : nanocolumns * ZnO * optical modeling * thin film solar cell Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  8. Real-Time Head Pose Tracking with Online Face Template Reconstruction.

    Li, Songnan; Ngan, King Ngi; Paramesran, Raveendran; Sheng, Lu

    2016-09-01

    We propose a real-time method to accurately track the human head pose in the 3-dimensional (3D) world. Using a RGB-Depth camera, a face template is reconstructed by fitting a 3D morphable face model, and the head pose is determined by registering this user-specific face template to the input depth video. PMID:26584487

  9. Wildlife conservation and rail track monitoring using wireless sensor networks

    Mathur, Prateek; Nielsen, Rasmus Hjorth; Prasad, Neeli R.; Prasad, Ramjee

    2014-01-01

    n this paper we put forward an approach, first of its kind, to collectively address conservation of elephants by preventing their death being overrun by trains and monitoring the integrity of the rail track. It utilizes a unique method for deterring the elephants using infrasonic sound from crossing the rail track. For obtaining this output the sensing devices are placed in proximity areas of the rail track using a novel passive node mobility mechanism. These devices act as an input to the ac...

  10. Quantified Facial Soft-tissue Strain in Animation Measured by Real-time Dynamic 3-Dimensional Imaging

    Vivian M. Hsu, MD

    2014-09-01

    Conclusions: This pilot study illustrates that the face can be objectively and quantitatively evaluated using dynamic major strain analysis. The technology of 3-dimensional optical imaging can be used to advance our understanding of facial soft-tissue dynamics and the effects of animation on facial strain over time.

  11. Characterization of the 3-dimensional microstructure of a graphite negative electrode from a Li-ion battery

    Shearing, P.R.; Howard, L.E.; Jørgensen, Peter Stanley; Brandon, N.P.; Harris, S.J.

    2010-01-01

    The 3-dimensional microstructure of a porous electrode from a lithium-ion battery has been characterized for the first time. We use X-ray tomography to reconstruct a 43 × 348 × 478 μm sample volume with voxel dimensions of 480 nm, subsequent division of the reconstructed volumes into sub-volumes of...

  12. The accuracy of reformatted images using a new virtual 3-dimensional dental implant system

    Choi, Jin Seok; Kim, Eun Kyung; Han, Won Jeong [Dankook University College of Medicine, Seoul (Korea, Republic of)

    2003-09-15

    To compare the measurements of the mandible and the detectability of the mandibular canal on reformatted images using a newly developed 3-dimensional implant simulation program with traditionally used CT multiplanar reconstruction program and true measurements. Ten dry dog mandibles were used in this study. Occlusal templates for CT examination were fabricated and marked with gutta percha at ten sites. Axial CT scans were taken and reconstructed using DentaScan (D group) and Vimplant program (V group), and each mandible was sectioned at the previously marked sites (R group). Maximum vertical height (H) and maximum width (W) of the mandible, the distances from buccal border of the mandibular canal to the most buccal aspect of the mandible (X), and the distance from the superior border of the mandibular canal to the alveolar crest (Y) were measured, and the mandibular measurements in each group were compared. Detectability of mandibular canal was evaluated using a 3-point scale in both V and D groups by three oral radiologists and compared. H in the V group was slightly greater than that in the D group, and W and X in the V group was slightly less than those in the D group. H in the V group was less than that in the R group, and W and X in the V group was larger than those in the R group. The detectability of the mandibular canal did not show statistically significant differences between V and D groups. The results of the experiment show that the newly developed, inexpensive Vimplant simulation program can be used as an alternative to the traditionally used, and more expensive CT multiplanar reconstruction program.

  13. Novel Radiobiological Gamma Index for Evaluation of 3-Dimensional Predicted Dose Distribution

    Sumida, Iori, E-mail: sumida@radonc.med.osaka-u.ac.jp [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka (Japan); Yamaguchi, Hajime; Kizaki, Hisao; Aboshi, Keiko; Tsujii, Mari; Yoshikawa, Nobuhiko; Yamada, Yuji [Department of Radiation Oncology, NTT West Osaka Hospital, Osaka (Japan); Suzuki, Osamu; Seo, Yuji [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka (Japan); Isohashi, Fumiaki [Department of Radiation Oncology, NTT West Osaka Hospital, Osaka (Japan); Yoshioka, Yasuo [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka (Japan); Ogawa, Kazuhiko [Department of Radiation Oncology, NTT West Osaka Hospital, Osaka (Japan)

    2015-07-15

    Purpose: To propose a gamma index-based dose evaluation index that integrates the radiobiological parameters of tumor control (TCP) and normal tissue complication probabilities (NTCP). Methods and Materials: Fifteen prostate and head and neck (H&N) cancer patients received intensity modulated radiation therapy. Before treatment, patient-specific quality assurance was conducted via beam-by-beam analysis, and beam-specific dose error distributions were generated. The predicted 3-dimensional (3D) dose distribution was calculated by back-projection of relative dose error distribution per beam. A 3D gamma analysis of different organs (prostate: clinical [CTV] and planned target volumes [PTV], rectum, bladder, femoral heads; H&N: gross tumor volume [GTV], CTV, spinal cord, brain stem, both parotids) was performed using predicted and planned dose distributions under 2%/2 mm tolerance and physical gamma passing rate was calculated. TCP and NTCP values were calculated for voxels with physical gamma indices (PGI) >1. We propose a new radiobiological gamma index (RGI) to quantify the radiobiological effects of TCP and NTCP and calculate radiobiological gamma passing rates. Results: The mean RGI gamma passing rates for prostate cases were significantly different compared with those of PGI (P<.03–.001). The mean RGI gamma passing rates for H&N cases (except for GTV) were significantly different compared with those of PGI (P<.001). Differences in gamma passing rates between PGI and RGI were due to dose differences between the planned and predicted dose distributions. Radiobiological gamma distribution was visualized to identify areas where the dose was radiobiologically important. Conclusions: RGI was proposed to integrate radiobiological effects into PGI. This index would assist physicians and medical physicists not only in physical evaluations of treatment delivery accuracy, but also in clinical evaluations of predicted dose distribution.

  14. A customized bolus produced using a 3-dimensional printer for radiotherapy.

    Shin-Wook Kim

    Full Text Available OBJECTIVE: Boluses are used in high-energy radiotherapy in order to overcome the skin sparing effect. In practice though, commonly used flat boluses fail to make a perfect contact with the irregular surface of the patient's skin, resulting in air gaps. Hence, we fabricated a customized bolus using a 3-dimensional (3D printer and evaluated its feasibility for radiotherapy. METHODS: We designed two kinds of bolus for production on a 3D printer, one of which was the 3D printed flat bolus for the Blue water phantom and the other was a 3D printed customized bolus for the RANDO phantom. The 3D printed flat bolus was fabricated to verify its physical quality. The resulting 3D printed flat bolus was evaluated by assessing dosimetric parameters such as D1.5 cm, D5 cm, and D10 cm. The 3D printed customized bolus was then fabricated, and its quality and clinical feasibility were evaluated by visual inspection and by assessing dosimetric parameters such as Dmax, Dmin, Dmean, D90%, and V90%. RESULTS: The dosimetric parameters of the resulting 3D printed flat bolus showed that it was a useful dose escalating material, equivalent to a commercially available flat bolus. Analysis of the dosimetric parameters of the 3D printed customized bolus demonstrated that it is provided good dose escalation and good contact with the irregular surface of the RANDO phantom. CONCLUSIONS: A customized bolus produced using a 3D printer could potentially replace commercially available flat boluses.

  15. Evaluation of xerostomia following 3 dimensional conformal radiotherapy for nasopharyngeal cancer patients

    This study is to evaluate the xerostomia following 3-dimensional conformal radiation therapy (3D CRT) in nasopharynx cancer patients using the xerostomia questionnaire score (XQS). Questionnaire study was done on 51 patients with nasopharynx cancer who received 3D CRT from Dec. 2000 to Aug. 2005. 3D CRT technique is based on 'serial shrinking field' concept by 3 times of computed tomography (CT) simulation. Total target dose to the primary tumor was 72 Gy with 1.8 Gy daily fractions. Xerostomia was assessed with 4-questions XQS, and the associations between XQS and time elapsed after RT, age, sex, stage, concurrent chemotherapy, an parotid dose were analyzed. Concurrent chemotherapy was given to 40 patients and RT alone was given to 11 patients. The median time elapsed after 3D CRT was 20 (1 ∼ 58) months and the mean XQS of all 51 patients was 8.4 ± 1.9 (6 ∼ 14). XQS continuously and significantly decreased over time after 3D CRT (χ 2 -0.484, ρ < 0.05). There was no significant difference in XQS according to sex, age, and stag. However, XQS of concurrent chemotherapy patients was significantly higher than RT alone patients (ρ = 0.001). XQS of patients receiving total mean parotid dose ≥ 35 Gy was significantly higher than < 35 Gy (ρ = 0.05). Decreasing tendency of XQS over time after 3D CRT was observed. Concurrent chemotherapy and total mean parotid dose ≥ 35 Gy were suggested to adversely affect radiation-induced xerostomia

  16. Albedo and heat transport in 3-dimensional model simulations of the early Archean climate

    H. Kienert

    2013-01-01

    Full Text Available At the beginning of the Archean eon (ca. 3.8 billion yr ago, the Earth's climate state was significantly different from today due to the lower solar luminosity, smaller continental fraction, higher rotation rate and, presumably, significantly larger greenhouse gas concentrations. All these aspects play a role in solutions to the "faint young Sun problem" which must explain why the ocean surface was not fully frozen at that time. Here, we present 3-dimensional model simulations of climate states that are consistent with early Archean boundary conditions and have different CO2 concentrations, aiming at an understanding of the fundamental characteristics of the early Archean climate system. We focus on three states: one of them is ice-free, one has the same mean surface air temperature of 288 K as today's Earth and the third one is the coldest stable state in which there is still an area with liquid surface water (i.e. the critical state at the transition to a "snowball Earth". We find a reduction in meridional heat transport compared to today which leads to a steeper latitudinal temperature profile and has atmospheric as well as oceanic contributions. Ocean surface velocities are largely zonal, and the strength of the atmospheric meridional circulation is significantly reduced in all three states. These aspects contribute to the observed relation between global mean temperature and albedo, which we suggest as a parameterisation of the ice-albedo feedback for 1-dimensional model simulations of the early Archean and thus the faint young Sun problem.

  17. Development of a 3-dimensional dosimetry system for Leksell Gamma Knife Perfexion

    Yoon, KyoungJun; Kwak, JungWon; Lee, DoHeui; Cho, ByungChul; Lee, SangWook; Ahn, SeungDo

    2015-07-01

    The purpose of our study is to develop a new, 3-dimensional dosimetry system to verify the accuracy of dose deliveries in Leksell Gamma Knife Perfexion (LGKP) (Elekta, Norcross, GA, USA). The instrument consists of a moving head phantom, an embedded thin active layer and a CCD camera system and was designed to be mounted to LGKP. As an active material concentrically located in the hemispheric head phantom, we choose Gafchromic EBT3 films and Gd2O2S:Tb phosphor sheets for dosimetric measurements. Also, to compensate for the lack of backscatter, we located a 1-cm-thick poly methyl methacrylate (PMMA) plate downstream of the active layer. The PMMA plate was transparent to scintillation light to reach the CCD with 1200 × 1200 pixels and a 5.2 µm pitch. With this system, 300 images with a 0.2-mm slice gap were acquired under each of three collimator setups, i.e. 4-mm, 8-mm, and 16-mm, respectively. The 2D projected images taken by the CCD camera were compared with the dose distributions measured by the EBT3 films under the same conditions. All 2D distributions were normalized to the maximum values derived by fitting peaks for each collimator setup. The differences in the full widths at half maximum (FWHM) of 2D profiles between CCD images and film doses were measured to be less than 0.3-mm. The scanning task for all peak regions took less than three minutes with the new instrument. So it can be utilized as a QA tool for the Gamma knife radiosurgery system instead of film dosimetry, the use of which requires much more time and many more resources.

  18. SU-E-T-104: Development of 3 Dimensional Dosimetry System for Gamma Knife

    Yoon, K; Kwak, J; Cho, B; Lee, D; Ahn, S [Asan Medical Center, Seoul (Korea, Republic of)

    2014-06-01

    Purpose: The aim of this study was to develop a new 3 dimensional dosimetry system to verify the dosimetric accuracy of Leksell Gamma Knife-Perfexion™ (LGK) (Elekta, Norcross, GA). Methods: We designed and manufactured a lightweight dosimetry instrument to be equipped with the head frame to LGK. It consists of a head phantom, a scintillator, a CCD camera and a step motor. The 10×10 cm2 sheet of Gd2O3;Tb phosphor or Gafchromic EBT3 film was located at the center of the 16 cm diameter hemispherical PMMA, the head phantom. The additional backscatter compensating material of 1 cm thick PMMA plate was placed downstream of the phosphor sheet. The backscatter plate was transparent for scintillation lights to reach the CCD camera with 1200×1200 pixels by 5.2 um pitch. With This equipment, 300 images with 0.2 mm of slice gap were acquired under three collimator setups (4mm, 8mm and 16mm), respectively. The 2D projected doses from 3D distributions were compared with the exposured film dose. Results: As all doses normalized by the maximum dose value in 16 mm setup, the relative differences between the equipment dose and film dose were 0.2% for 4mm collimator and 0.5% for 8mm. The acquisition of 300 images by the equipment took less than 3 minutes. Conclusion: The new equipment was verified to be a good substitute to radiochromic film, with which required more time and resources. Especially, the new methods was considered to provide much convenient and faster solution in the 3D dose acquisition for LGK.

  19. The accuracy of reformatted images using a new virtual 3-dimensional dental implant system

    To compare the measurements of the mandible and the detectability of the mandibular canal on reformatted images using a newly developed 3-dimensional implant simulation program with traditionally used CT multiplanar reconstruction program and true measurements. Ten dry dog mandibles were used in this study. Occlusal templates for CT examination were fabricated and marked with gutta percha at ten sites. Axial CT scans were taken and reconstructed using DentaScan (D group) and Vimplant program (V group), and each mandible was sectioned at the previously marked sites (R group). Maximum vertical height (H) and maximum width (W) of the mandible, the distances from buccal border of the mandibular canal to the most buccal aspect of the mandible (X), and the distance from the superior border of the mandibular canal to the alveolar crest (Y) were measured, and the mandibular measurements in each group were compared. Detectability of mandibular canal was evaluated using a 3-point scale in both V and D groups by three oral radiologists and compared. H in the V group was slightly greater than that in the D group, and W and X in the V group was slightly less than those in the D group. H in the V group was less than that in the R group, and W and X in the V group was larger than those in the R group. The detectability of the mandibular canal did not show statistically significant differences between V and D groups. The results of the experiment show that the newly developed, inexpensive Vimplant simulation program can be used as an alternative to the traditionally used, and more expensive CT multiplanar reconstruction program.

  20. Oxidation behavior of ammonium in a 3-dimensional biofilm-electrode reactor.

    Tang, Jinjing; Guo, Jinsong; Fang, Fang; Chen, Youpeng; Lei, Lijing; Yang, Lin

    2013-12-01

    Excess nitrogenous compounds are detrimental to natural water systems and to human health. To completely realize autohydrogenotrophic nitrogen removal, a novel 3-dimensional biofilm-electrode reactor was designed. Titanium was electroplated with ruthenium and used as the anode. Activated carbon fiber felt was used as the cathode. The reactor was separated into two chambers by a permeable membrane. The cathode chamber was filled with granular graphite and glass beads. The cathode and cathode chamber were inhabited with domesticated biofilm. In the absence of organic substances, a nitrogen removal efficiency of up to 91% was achieved at DO levels of 3.42 +/- 0.37 mg/L when the applied current density was only 0.02 mA/cm2. The oxidation of ammonium in biofilm-electrode reactors was also investigated. It was found that ammonium could be oxidized not only on the anode but also on particle electrodes in the cathode chamber of the biofilm-electrode reactor. Oxidation rates of ammonium and nitrogen removal efficiency were found to be affected by the electric current loading on the biofilm-electrode reactor. The kinetic model of ammonium at different electric currents was analyzed by a first-order reaction kinetics equation. The regression analysis implied that when the current density was less than 0.02 mA/cm2, ammonium removal was positively correlated to the current density. However, when the current density was more than 0.02 mA/cm2, the electric current became a limiting factor for the oxidation rate of ammonium and nitrogen removal efficiency. PMID:24649670

  1. Estimating the costs of intensity-modulated and 3-dimensional conformal radiotherapy in Ontario

    Yong, J.H.E.; McGowan, T.; Redmond-Misner, R.; Beca, J.; Warde, P.; Gutierrez, E.; Hoch, J.S.

    2016-01-01

    Background Radiotherapy is a common treatment for many cancers, but up-to-date estimates of the costs of radiotherapy are lacking. In the present study, we estimated the unit costs of intensity-modulated radiotherapy (imrt) and 3-dimensional conformal radiotherapy (3D-crt) in Ontario. Methods An activity-based costing model was developed to estimate the costs of imrt and 3D-crt in prostate cancer. It included the costs of equipment, staff, and supporting infrastructure. The framework was subsequently adapted to estimate the costs of radiotherapy in breast cancer and head-and-neck cancer. We also tested various scenarios by varying the program maturity and the use of volumetric modulated arc therapy (vmat) alongside imrt. Results From the perspective of the health care system, treating prostate cancer with imrt and 3D-crt respectively cost $12,834 and $12,453 per patient. The cost of radiotherapy ranged from $5,270 to $14,155 and was sensitive to analytic perspective, radiation technique, and disease site. Cases of head-and-neck cancer were the most costly, being driven by treatment complexity and fractions per treatment. Although imrt was more costly than 3D-crt, its cost will likely decline over time as programs mature and vmat is incorporated. Conclusions Our costing model can be modified to estimate the costs of 3D-crt and imrt for various disease sites and settings. The results demonstrate the important role of capital costs in studies of radiotherapy cost from a health system perspective, which our model can accommodate. In addition, our study established the need for future analyses of imrt cost to consider how vmat affects time consumption.

  2. An Improved Point-track Optimal Assignment Algorithm

    Zhonglei Zhang

    2013-12-01

    Full Text Available In order to improve the accuracy of data association of the Optimal Assignment (OA algorithm based on dynamic information, an improved Point-Track Optimal Assignment (IPTOA algorithm based on multi-source information is proposed. The improved algorithm gets valid 3-tuple of measurement set by solving 3-Dimensional (3-D assignment problem which is based on dynamic information. Then fuses multi-source information by combination rule of D-S evidence theory and constructs the point-track correlation matrix between valid 3-tuple of measurement and target track. Compared with the optimal assignment algorithm based on dynamic information, the new algorithm effectively fuses multi-source information to correlate measurement data, which improves the performance of multi-target tracking in different degrees. Simulation results verify the feasibility and effectiveness of the new algorithm.

  3. DNA damage intensity in fibroblasts in a 3-dimensional collagen matrix correlates with the Bragg curve energy distribution of a high LET particle

    The DNA double-strand break (DSB) damage response induced by high energy charged particles on lung fibroblast cells embedded in a 3-dimensional (3-D) collagen tissue equivalents was investigated using antibodies to the DNA damage response proteins gamma-histone 2AX (γ-H2AX) and phosphorylated DNA-PKcs (p-DNA-PKcs). 3-D tissue equivalents were irradiated in positions across the linear distribution of the Bragg curve profiles of 307.7 MeV/nucleon, 556.9 MeV/nucleon, or 967.0 MeV/nucleon 56Fe ions at a dose of 0.30 Gy. Patterns of discrete DNA damage streaks across nuclei or saturated nuclear damage were observed, with saturated nuclear damage being more predominant as samples were positioned closer to the physical Bragg peak. Quantification of the DNA damage signal intensities at each distance for each of the examined energies revealed a biological Bragg curve profile with a pattern of DNA damage intensity similar to the physical Bragg curve for the particular energy. Deconvolution microscopy of nuclei with streaked or saturated nuclear damage pattern revealed more details of the damage, with evidence of double-strand breaks radially distributed from the main particle track as well as multiple discrete tracks within saturated damage nuclei. These 3-D culture systems can be used as a biological substrate to better understand the interaction of heavy charged particles of different energies with tissue and could serve as a basis to model space-radiation-induced cancer initiation and progression.

  4. DNA damage intensity in fibroblasts in a 3-dimensional collagen matrix correlates with the Bragg curve energy distribution of a high LET particle

    Roig, Andres I.; Hight, Suzie K.; Minna, John D.; Shay, Jerry W.; Rusek, Adam; Story, Michael D.

    2012-01-01

    Purpose The DNA double-strand break (DSB) damage response induced by high energy charged particles on lung fibroblast cells embedded in a 3-dimensional (3-D) collagen tissue equivalents was investigated using antibodies to the DNA damage response proteins gamma-histone 2AX (γ-H2AX) and phosphorylated DNA-PKcs (p-DNA-PKcs). Materials and methods 3-D tissue equivalents were irradiated in positions across the linear distribution of the Bragg curve profiles of 307.7 MeV/nucleon, 556.9 MeV/nucleon, or 967.0 MeV/nucleon 56Fe ions at a dose of 0.30 Gy. Results Patterns of discrete DNA damage streaks across nuclei or saturated nuclear damage were observed, with saturated nuclear damage being more predominant as samples were positioned closer to the physical Bragg peak. Quantification of the DNA damage signal intensities at each distance for each of the examined energies revealed a biological Bragg curve profile with a pattern of DNA damage intensity similar to the physical Bragg curve for the particular energy. Deconvolution microscopy of nuclei with streaked or saturated nuclear damage pattern revealed more details of the damage, with evidence of double-strand breaks radially distributed from the main particle track as well as multiple discrete tracks within saturated damage nuclei. Conclusions These 3-D culture systems can be used as a biological substrate to better understand the interaction of heavy charged particles of different energies with tissue and could serve as a basis to model space-radiation-induced cancer initiation and progression. PMID:20201648

  5. A track ion counter

    A method to measure the frequency of production of ions in a gas is described. The characteristics of a device, which is named a track ion counter, are presented. The counter consists of two cylindrical volumes separated by a diaphragm with 500μm dia. orifice. The device is connected to an oil diffusion pump with high pumping speed. The gas flow through the orifice determines the pressure in the upper and the lower volumes of the device. The positive ions produced in a cylindrical volume above an orifice by charged particles traversing that volume move in a constant electric field. Some of these ions passing through the orifice are accelerated and detected by an electron multiplier. The absolute efficiency of ions detection from the domain above the orifice have been determined. The measurements were carried out for single charged ions of N2, H2, CH4, CO2. The preliminary measurements of the frequency of ions created within cylindrical gas domain equivalent to 0.15nm dia. and 7.6nm height tissue cylinder are reported

  6. A quasi-3-dimensional simulation method for a high-voltage level-shifting circuit structure

    Liu Jizhi; Chen Xingbi

    2009-01-01

    A new quasi-three-dimensional (quasi-3D) numeric simulation method for a high-voltage level-shifting circuit structure is proposed. The performances of the 3D structure are analyzed by combining some 2D device structures; the 2D devices are in two planes perpendicular to each other and to the surface of the semiconductor. In comparison with Davinci, the full 3D device simulation tool, the quasi-3D simulation method can give results for the potential and current distribution of the 3D high-voltage level-shifting circuit structure with appropriate accuracy and the total CPU time for simulation is significantly reduced. The quasi-3D simulation technique can be used in many cases with advantages such as saving computing time, making no demands on the high-end computer terminals, and being easy to operate.

  7. Track Construction Manual.

    Banke, Ron; Di Gennaro, Guy; Ediger, Rick; Garner, Lanny; Hersom, Steve; Miller, Jack; Nemeth, Ron; Petrucelli, Jim; Sierks, Donna; Smith, Don; Swank, Kevin; West, Kevin

    This book establishes guidelines for the construction and maintenance of tracks by providing information for building new tracks or upgrading existing tracks. Subjects covered include running track planning and construction, physical layout, available surfaces, and maintenance. General track requirements and construction specifications are…

  8. Fuzzy Logic Particle Tracking

    2005-01-01

    A new all-electronic Particle Image Velocimetry technique that can efficiently map high speed gas flows has been developed in-house at the NASA Lewis Research Center. Particle Image Velocimetry is an optical technique for measuring the instantaneous two component velocity field across a planar region of a seeded flow field. A pulsed laser light sheet is used to illuminate the seed particles entrained in the flow field at two instances in time. One or more charged coupled device (CCD) cameras can be used to record the instantaneous positions of particles. Using the time between light sheet pulses and determining either the individual particle displacements or the average displacement of particles over a small subregion of the recorded image enables the calculation of the fluid velocity. Fuzzy logic minimizes the required operator intervention in identifying particles and computing velocity. Using two cameras that have the same view of the illumination plane yields two single exposure image frames. Two competing techniques that yield unambiguous velocity vector direction information have been widely used for reducing the single-exposure, multiple image frame data: (1) cross-correlation and (2) particle tracking. Correlation techniques yield averaged velocity estimates over subregions of the flow, whereas particle tracking techniques give individual particle velocity estimates. For the correlation technique, the correlation peak corresponding to the average displacement of particles across the subregion must be identified. Noise on the images and particle dropout result in misidentification of the true correlation peak. The subsequent velocity vector maps contain spurious vectors where the displacement peaks have been improperly identified. Typically these spurious vectors are replaced by a weighted average of the neighboring vectors, thereby decreasing the independence of the measurements. In this work, fuzzy logic techniques are used to determine the true

  9. INNER TRACKING

    P. Sharp

    The CMS Inner Tracking Detector continues to make good progress. The successful commissioning of ~ 25% of the Silicon Strip Tracker was completed in the Tracker Integration Facility (TIF) at CERN on 18 July 2007 and the Tracker has since been prepared for moving and installation into CMS at P5. The Tracker will be ready to move on schedule in September 2007. The Installation of the Tracker cooling pipes and LV cables between Patch Panel 1 (PP1) on the inside the CMS magnet cryostat, and the cooling plants and power system racks on the balconies has been completed. The optical fibres from PP1 to the readout FEDs in the USC will be installed in parallel with the installation of the EB/HB services, and will be completed in October. It is planned to install the Tracker into CMS at the end of October, after the completion of the installation of the EB/HB services. The Tracker will then be connected to the pre-installed services on YB0 and commissioned with CMS in December. The FPix and BPix continue to make ...

  10. INNER TRACKING

    P. Sharp

    The CMS Inner Tracking Detector continues to make good progress. The successful commissioning of ~ 25% of the Silicon Strip Tracker was completed in the Tracker Integration Facility (TIF) at CERN in July 2007 and the Tracker has since been prepared for moving and installation into CMS at P5. The Tracker was ready to move on schedule in September 2007. The Installation of the Tracker cooling pipes and LV cables between Patch Panel 1 (PP1) on the inside the CMS magnet cryostat, and the cooling plants and power system racks on the balconies has been completed. The optical fibres from PP1 to the readout FEDs in the USC have been installed, together with the Tracker cable channels, in parallel with the installation of the EB/HB services. All of the Tracker Safety, Power, DCS and the VME Readout Systems have been installed at P5 and are being tested and commissioned with CMS. It is planned to install the Tracker into CMS before Christmas. The Tracker will then be connected to the pre-installed services on Y...

  11. A fantasy on tracking inside the Xenon ball

    Ideally, a tracking device for the Xenon-ball should be able to determine the direction, impact point, and momentum of isolated charged tracks with good resolution. Due to the limited volume offered by the Xenon-ball and because of the high event rates at the SSC, typical tracking devices such as drift chambers are not practical. Toward this end, the pixel device discussed by D. Nygren at this workshop, and/or microstrip devices seem to be the best candidates for this application. For this study the authors assume the use of microstrip devices with 25 μm minimal pitch for our tracking system. However, with the advent of 25 Am x 100 μm pixel devices, the microstrips could be replaced without any loss in momentum resolution and with the added advantage of two dimensional coordinate measurements resulting in fewer ambiguities and superior pattern recognition capabilities

  12. Titan global climate model: A new 3-dimensional version of the IPSL Titan GCM

    Lebonnois, Sébastien; Burgalat, Jérémie; Rannou, Pascal; Charnay, Benjamin

    2012-03-01

    We have developed a new 3-dimensional climate model for Titan’s atmosphere, using the physics of the IPSL Titan 2-dimensional climate model with the current version of the LMDZ General Circulation Model dynamical core. Microphysics and photochemistry are still computed as zonal averages. This GCM covers altitudes from surface to 500 km altitude, with barotropic waves now being resolved and the diurnal cycle included. The boundary layer scheme has been changed, yielding a strong improvement in the tropospheric zonal wind profile modeled at Huygens descent position and season. The potential temperature profile is fairly consistent with Huygens observations in the lowest 10 km. The latitudinal profile of the near-surface temperature is close to observed values. The minimum of zonal wind observed by the Huygens probe just above the tropopause is also present in these simulations, and its origin is discussed by comparing solar heating and dynamical transport of energy. The stratospheric temperature and wind fields are consistent with our previous works. Compared to observations, the zonal wind peak is too weak (around 120 m/s) and too low (around 200 km). The temperature structures appear to be compressed in altitude, and depart strongly from observations in the upper stratosphere. These discrepancies are correlated, and most probably related to the altitude of the haze production. The model produces a detached haze layer located more than 150 km lower than observed by the Cassini instruments. This low production altitude is due to the current position of the GCM upper boundary. However, the temporal behaviour of the detached haze layer in the model may explain the seasonal differences observed between Cassini and Voyager 1. The waves present in the GCM are analyzed, together with their respective roles in the angular momentum budget. Though the role of the mean meridional circulation in momentum transport is similar to previous work, and the transport by barotropic

  13. 3-Dimensional modelling of chick embryo eye development and growth using high resolution magnetic resonance imaging.

    Goodall, Nicola; Kisiswa, Lilian; Prashar, Ankush; Faulkner, Stuart; Tokarczuk, Paweł; Singh, Krish; Erichsen, Jonathan T; Guggenheim, Jez; Halfter, Willi; Wride, Michael A

    2009-10-01

    Magnetic resonance imaging (MRI) is a powerful tool for generating 3-dimensional structural and functional image data. MRI has already proven valuable in creating atlases of mouse and quail development. Here, we have exploited high resolution MRI to determine the parameters necessary to acquire images of the chick embryo eye. Using a 9.4 Tesla (400 MHz) high field ultra-shielded and refrigerated magnet (Bruker), MRI was carried out on paraformaldehyde-fixed chick embryos or heads at E4, E6, E8, and E10. Image data were processed using established and custom packages (MRICro, ImageJ, ParaVision, Bruker and mri3dX). Voxel dimensions ranged from 62.5 microm to 117.2 microm. We subsequently used the images obtained from the MRI data in order to make precise measurements of chick embryo eye surface area, volume and axial length from E4 to E10. MRI was validated for accurate sizing of ocular tissue features by direct comparison with previously published literature. Furthermore, we demonstrate the utility of high resolution MRI for making accurate measurements of morphological changes due to experimental manipulation of chick eye development, thereby facilitating a better understanding of the effects on chick embryo eye development and growth of such manipulations. Chondroitin sulphate or heparin were microinjected into the vitreous cavity of the right eyes of each of 3 embryos at E5. At E10, embryos were fixed and various eye parameters (volume, surface area, axial length and equatorial diameter) were determined using MRI and normalised with respect to the un-injected left eyes. Statistically significant alterations in eye volume (p < 0.05; increases with chondroitin sulphate and decreases with heparin) and changes in vitreous homogeneity were observed in embryos following microinjection of glycosaminoglycans. Furthermore, in the heparin-injected eyes, significant disturbances at the vitreo-retinal boundary were observed as well as retinal folding and detachment

  14. New Technique for Developing a Proton Range Compensator With Use of a 3-Dimensional Printer

    Ju, Sang Gyu, E-mail: sg.ju@samsung.com [Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Kim, Min Kyu; Hong, Chae-Seon; Kim, Jin Sung; Han, Youngyih; Choi, Doo Ho [Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Shin, Dongho; Lee, Se Byeong [Proton Therapy Center, National Cancer Center, Gyeonggi-do (Korea, Republic of)

    2014-02-01

    Purpose: A new system for manufacturing a proton range compensator (RC) was developed by using a 3-dimensional printer (3DP). The physical accuracy and dosimetric characteristics of the new RC manufactured by 3DP (RC{sub 3}DP) were compared with those of a conventional RC (RC{sub C}MM) manufactured by a computerized milling machine (CMM). Methods and Materials: An RC for brain tumor treatment with a scattered proton beam was calculated with a treatment planning system, and the resulting data were converted into a new format for 3DP using in-house software. The RC{sub 3}DP was printed with ultraviolet curable acrylic plastic, and an RC{sub C}MM was milled into polymethylmethacrylate using a CMM. The inner shape of both RCs was scanned by using a 3D scanner and compared with TPS data by applying composite analysis (CA; with 1-mm depth difference and 1 mm distance-to-agreement criteria) to verify their geometric accuracy. The position and distal penumbra of distal dose falloff at the central axis and field width of the dose profile at the midline depth of spread-out Bragg peak were measured for the 2 RCs to evaluate their dosimetric characteristics. Both RCs were imaged on a computed tomography scanner to evaluate uniformity of internal density. The manufacturing times for both RCs were compared to evaluate the production efficiency. Results: The pass rates for the CA test were 99.5% and 92.5% for RC{sub 3}DP and RC{sub C}MM, respectively. There was no significant difference in dosimetric characteristics and uniformity of internal density between the 2 RCs. The net fabrication times of RC{sub 3}DP and RC{sub C}MM were about 18 and 3 hours, respectively. Conclusions: The physical accuracy and dosimetric characteristics of RC{sub 3}DP were comparable with those of the conventional RC{sub C}MM, and significant system minimization was provided.

  15. Hierarchical fringe tracking

    Petrov, Romain G; Boskri, Abdelkarim; Folcher, Jean-Pierre; Lagarde, Stephane; Bresson, Yves; Benkhaldoum, Zouhair; Lazrek, Mohamed; Rakshit, Suvendu

    2014-01-01

    The limiting magnitude is a key issue for optical interferometry. Pairwise fringe trackers based on the integrated optics concepts used for example in GRAVITY seem limited to about K=10.5 with the 8m Unit Telescopes of the VLTI, and there is a general "common sense" statement that the efficiency of fringe tracking, and hence the sensitivity of optical interferometry, must decrease as the number of apertures increases, at least in the near infrared where we are still limited by detector readout noise. Here we present a Hierarchical Fringe Tracking (HFT) concept with sensitivity at least equal to this of a two apertures fringe trackers. HFT is based of the combination of the apertures in pairs, then in pairs of pairs then in pairs of groups. The key HFT module is a device that behaves like a spatial filter for two telescopes (2TSF) and transmits all or most of the flux of a cophased pair in a single mode beam. We give an example of such an achromatic 2TSF, based on very broadband dispersed fringes analyzed by g...

  16. Editorial Commentary: Single-Image Slice Magnetic Resonance Imaging Assessments Do Not Predict 3-Dimensional Muscle Volume.

    Brand, Jefferson C

    2016-01-01

    No single-image magnetic resonance imaging (MRI) assessment-Goutallier classification, Fuchs classification, or cross-sectional area-is predictive of whole-muscle volume or fatty atrophy of the supraspinatus or infraspinatus. Rather, 3-dimensional MRI measurement of whole-muscle volume and fat-free muscle volume is required and is associated with shoulder strength, which is clinically relevant. Three-dimensional MRI may represent a new gold standard for assessment of the rotator cuff musculature using imaging and may help to predict the feasibility of repair of a rotator cuff tear as well as the postoperative outcome. Unfortunately, 3-dimensional MRI assessment of muscle volume is labor intensive and is not widely available for clinical use. PMID:26743416

  17. Intelligent Layout Method of the Powerhouse for Tank & Armored Vehicles Based on 3-Dimensional Rectangular Packing Theory

    WANG Yan-long; MAO Ming; LU Yi-ping; BIE Jie-min

    2005-01-01

    Probes into a new and effective method in arranging the powerhouses of tank & armored vehicles. Theory and method of 3-dimensional rectangular packing are adapted to arrange effectively almost all the systems and components in the powerhouse of the vehicle, thus the study can be regarded as an attempt for the theory's engineering applications in the field of tank & armored vehicle design. It is proved that most parts of the solutions attained are reasonable, and some of the solutions are innovative.

  18. Accuracy of 3-Dimensional Transoesophageal Echocardiography in Assessment of Prosthetic Mitral Valve Dehiscence with Comparison to Anatomical Specimens

    Martin R. Brown

    2010-01-01

    Full Text Available The evolution of echocardiography from 2-Dimensional Transthoracic Echo through to real time 3-Dimensional Transoesophageal Echo has enabled more accurate visualisation and quantification of valvular disorders especially prosthetic mitral valve paravalvular regurgitation. However, validation of accuracy is rarely confirmed by surgical or post-mortem specimens. We present a case directly comparing different echocardiographic modality images to post mortem specimens in a patient with prosthetic mitral valve paravalvular regurgitation.

  19. Preparation of 1-3 Dimensional PZT-NFO Nanocomposite Films by Off-axis Magnetron Sputtering

    ZHANG Hui, MA Yong-Jun, WANG Yi-Cheng, WEN Dan-Dan, YE Fei, BAI Fei-Ming

    2014-04-01

    Full Text Available Self-assembled nanocomposite Pb(Zr0.52Ti0.48O3-NiFe2O4 films were prepared on the (001-oriented MgAl2O4 substrates by a 90° off-axis magnetron sputtering method. The influences of substrate temperature, argon over oxygen ratio and sputtering power on the structure and properties of PZT-NFO nanocomposite films were studied. The optimal growth conditions are substrate temperature of 800 °C, argon over oxygen ratio of 1:1 and sputtering power of 160 W. XRD studies reveal that the PZT-NFO film is epitaxial along both the in-plane and out-of-plane directions, and the vertical lattice mismatch between the PZT phase and the NFO phase is very small. AFM and SEM analysis show that the PZT-NFO films have clear 1-3 dimensional nanocomposite structure, and the diameter of NFO nanorods is 80-150 nm. Further decreasing argon over oxygen ratio is beneficial for the formation of NFO. However, increasing RF power causes a transition from an 1-3 dimensional nanocomposite to a 0-3 dimensional chaotic structure. Magnetic measurement shows that the saturation magnetization of NFO phase is 120-160 kA/m, lower than that of bulk NFO phase, possibly due to the interfacial diffusion between the NFO and the PZT phases.

  20. Unified description of magic numbers of metal clusters in terms of the 3-dimensional q-deformed harmonic oscillator

    Bonatsos, Dennis; Lenis, D; Raychev, P P; Roussev, R P; Terziev, P A

    2000-01-01

    Magic numbers predicted by a 3-dimensional q-deformed harmonic oscillator with Uq(3)>SOq(3) symmetry are compared to experimental data for atomic clusters of alkali metals (Li, Na, K, Rb, Cs), noble metals (Cu, Ag, Au), divalent metals (Zn, Cd), and trivalent metals (Al, In), as well as to theoretical predictions of jellium models, Woods-Saxon and wine bottle potentials, and to the classification scheme using the 3n+l pseudo quantum number. In alkali metal clusters and noble metal clusters the 3-dimensional q-deformed harmonic oscillator correctly predicts all experimentally observed magic numbers up to 1500 (which is the expected limit of validity for theories based on the filling of electronic shells), while in addition it gives satisfactory results for the magic numbers of clusters of divalent metals and trivalent metals, thus indicating that Uq(3), which is a nonlinear extension of the U(3) symmetry of the spherical (3-dimensional isotropic) harmonic oscillator, is a good candidate for being the symmetry ...

  1. Dynamic kirigami structures for integrated solar tracking

    Lamoureux, Aaron; Lee, Kyusang; Shlian, Matthew; Forrest, Stephen R.; Shtein, Max

    2015-09-01

    Optical tracking is often combined with conventional flat panel solar cells to maximize electrical power generation over the course of a day. However, conventional trackers are complex and often require costly and cumbersome structural components to support system weight. Here we use kirigami (the art of paper cutting) to realize novel solar cells where tracking is integral to the structure at the substrate level. Specifically, an elegant cut pattern is made in thin-film gallium arsenide solar cells, which are then stretched to produce an array of tilted surface elements which can be controlled to within +/-1°. We analyze the combined optical and mechanical properties of the tracking system, and demonstrate a mechanically robust system with optical tracking efficiencies matching conventional trackers. This design suggests a pathway towards enabling new applications for solar tracking, as well as inspiring a broader range of optoelectronic and mechanical devices.

  2. Solar tracking system

    Okandan, Murat; Nielson, Gregory N.

    2016-07-12

    Solar tracking systems, as well as methods of using such solar tracking systems, are disclosed. More particularly, embodiments of the solar tracking systems include lateral supports horizontally positioned between uprights to support photovoltaic modules. The lateral supports may be raised and lowered along the uprights or translated to cause the photovoltaic modules to track the moving sun.

  3. Bald Eagle Tracking Project Report Rappahannock River Valley National Wildlife Refuge 2009

    US Fish and Wildlife Service, Department of the Interior — The purpose of this study was to learn, by use of tracking devices, the locations of bald eagle high use areas for foraging and roosting. Tracking will provide...

  4. Simultaneous Bimaxillary Surgery and Mandibular Reconstruction With a 3-Dimensional Printed Titanium Implant Fabricated by Electron Beam Melting: A Preliminary Mechanical Testing of the Printed Mandible.

    Lee, Ui-Lyong; Kwon, Jae-Sung; Woo, Su-Heon; Choi, Young-Jun

    2016-07-01

    A woman presented with a long history of mandibular defects posterior to the left lower first premolar caused by inadequate reconstruction after removal of a tumor on the left side of the mandible. In the frontal view, extreme facial asymmetry was apparent. The dental midline of the mandible was deviated 10 mm to the left compared with the dental midline of the maxilla, and all maxillary teeth were inclined to the left owing to dental compensation. There was an 8-mm maxillary occlusal cant relative to the maxillary first molar. Bimaxillary surgery using computer-assisted designed and computer-assisted manufactured devices without an intermediate occlusal splint was performed to align the maxilla and mandible at the correct position, and reconstructive surgery for the mandible using a 3-dimensional printed titanium mandible was concurrently performed. In particular, during the virtual mandible design, 2 abutments that enabled the prosthetic restoration were included in the mandible using a computer-assisted design program. This report describes the successful functional and esthetic reconstruction of the mandible using electron beam melting technology, an alternative technique for reconstruction of mandibles that did not undergo radiation therapy. PMID:27060494

  5. Two-track categories

    Blanc, David

    2010-01-01

    We describe a 2-dimensional analogue of track categories, called two-track categories, and show that it can be used to model categories enriched in 2-type mapping spaces. We also define a Baues-Wirsching type cohomology theory for track categories, and explain how it can be used to classify two-track extensions of a track category D by a module over D.

  6. Lip segmentation and tracking for facial palsy

    Park, MinJae; Seo, JongMo; Park, KwangSuk

    2006-02-01

    We developed the asymmetry analyzing system for facial palsy patient's rehabilitation progress study. Using PC standard imaging device, captured 640*480 RGB image is converted into HSV space. A Lip-shape mask is extracted by thresholding. By taking 5 regions consisted in one region on lip and four regions on face skin, reasonable thresholds are determined by Fuzzy C-Means clustering. The extreme points on the lip shape mask are extracted to get the seeds for tracking. Segmented seed points are tracking by Iterative Lucas-Kanade tracking method in pyramids at 30 fps and recording simultaneously. To reduce the disk writing load on computer, we use asynchronous mode file writing, which is going to transfer to and review by clinician. Tracking shows quite reliable results, but sometimes the tracked points are following along the lip line because of the similar contrasts. Therefore, the first strategy to improve the reliability of tracking is using the high contrast points, such as left and right maximal point of lip shape. The second is clustering some points near the maximal points and eliminating outlying tracking points. The third is rechecking the lip shape using lip segmentation when the operator confirms that subject's maximal lip moving. Left and right tracking points are compared in forms of trajectory plot.

  7. TRUSS: Tracking Risk with Ubiquitous Smart Sensing

    Dublon, Gershon; Paradiso, Joseph A.; Mayton, Brian Dean; Palacios, Sebastian Ricardo

    2012-01-01

    We present TRUSS, or Tracking Risk with Ubiquitous Smart Sensing, a novel system that infers and renders safety context on construction sites by fusing data from wearable devices, distributed sensing infrastructure, and video. Wearables stream real-time levels of dangerous gases, dust, noise, light quality, altitude, and motion to base stations that synchronize the mobile devices, monitor the environment, and capture video. At the same time, low-power video collection and processing nodes tra...

  8. Boundary conditions for the solution of the 3-dimensional Poisson equation in open metallic enclosures

    Biswas, Debabrata; Kumar, Raghwendra

    2015-01-01

    Numerical solution of the Poisson equation in metallic enclosures, open at one or more ends, is important in many practical situations such as High Power Microwave (HPM) or photo-cathode devices. It requires imposition of a suitable boundary condition at the open end. In this paper, methods for solving the Poisson equation are investigated for various charge densities and aspect ratios of the open ends. It is found that a mixture of second order and third order local asymptotic boundary condition (ABC) is best suited for large aspect ratios while a proposed non-local matching method, based on the solution of the Laplace equation, scores well when the aspect ratio is near unity for all charge density variations, including ones where the centre of charge is close to an open end or the charge density is non-localized. The two methods complement each other and can be used in electrostatic calculations where the computational domain needs to be terminated at the open boundaries of the metallic enclosure.

  9. Polymer lattices as mechanically tunable 3-dimensional photonic crystals operating in the infrared

    Broadly tunable photonic crystals in the near- to mid-infrared region could find use in spectroscopy, non-invasive medical diagnosis, chemical and biological sensing, and military applications, but so far have not been widely realized. We report the fabrication and characterization of three-dimensional tunable photonic crystals composed of polymer nanolattices with an octahedron unit-cell geometry. These photonic crystals exhibit a strong peak in reflection in the mid-infrared that shifts substantially and reversibly with application of compressive uniaxial strain. A strain of ∼40% results in a 2.2 μm wavelength shift in the pseudo-stop band, from 7.3 μm for the as-fabricated nanolattice to 5.1 μm when strained. We found a linear relationship between the overall compressive strain in the photonic crystal and the resulting stopband shift, with a ∼50 nm blueshift in the reflection peak position per percent increase in strain. These results suggest that architected nanolattices can serve as efficient three-dimensional mechanically tunable photonic crystals, providing a foundation for new opto-mechanical components and devices across infrared and possibly visible frequencies

  10. A 3-dimensional interdigitated electrode geometry for the enhancement of charge collection efficiency in diamond detectors

    Forneris, J; Olivero, P; Picollo, F; Re, A; Marinelli, M; Pompili, F; Verona, C; Rinati, G Verona; Benetti, M; Cannata, D; Di Pietrantonio, F

    2016-01-01

    In this work, a single crystal CVD diamond film with a novel three-dimensional (3D) interdigitated electrode geometry has been fabricated with the Reactive Ion Etching (RIE) technique in order to increase the charge collection efficiency (CCE) with respect to that obtained by standard superficial electrodes. The geometrical arrangement of the electric field lines due to the 3D patterning of the electrodes results in a shorter travel path for the excess charge carriers, thus contributing to a more efficient charge collection mech-anism. The CCE of the device was mapped by means of the Ion Beam Induced Charge (IBIC) technique. A 1 MeV proton micro-beam was raster scanned over the active area of the diamond detector under different bias voltage conditions, enabling to probe the charge transport properties of the detector up to a depth of 8 {\\mu}m below the sample surface. The experimental results, supported by the numerical simulations, show a significant improvement in the 3D-detector performance (i.e. CCE, ene...

  11. Polymer lattices as mechanically tunable 3-dimensional photonic crystals operating in the infrared

    Chernow, V. F., E-mail: vchernow@caltech.edu [Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California 91125 (United States); Alaeian, H. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States); Dionne, J. A. [Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States); Greer, J. R. [Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California 91125 (United States); The Kavli Nanoscience Institute, California Institute of Technology, Pasadena, California 91125 (United States)

    2015-09-07

    Broadly tunable photonic crystals in the near- to mid-infrared region could find use in spectroscopy, non-invasive medical diagnosis, chemical and biological sensing, and military applications, but so far have not been widely realized. We report the fabrication and characterization of three-dimensional tunable photonic crystals composed of polymer nanolattices with an octahedron unit-cell geometry. These photonic crystals exhibit a strong peak in reflection in the mid-infrared that shifts substantially and reversibly with application of compressive uniaxial strain. A strain of ∼40% results in a 2.2 μm wavelength shift in the pseudo-stop band, from 7.3 μm for the as-fabricated nanolattice to 5.1 μm when strained. We found a linear relationship between the overall compressive strain in the photonic crystal and the resulting stopband shift, with a ∼50 nm blueshift in the reflection peak position per percent increase in strain. These results suggest that architected nanolattices can serve as efficient three-dimensional mechanically tunable photonic crystals, providing a foundation for new opto-mechanical components and devices across infrared and possibly visible frequencies.

  12. Development of 3-dimensional time-dependent density functional theory and its application to gas diffusion in nanoporous materials.

    Liu, Yu

    2016-05-11

    I developed a novel time-dependent density functional theory (TDDFT) and applied it to complicated 3-dimensional systems for the first time. Superior to conventional TDDFT, the diffusion coefficient is modeled as a function of density profile, which is self-determined by the entropy scaling rule instead using an input parameter. The theory was employed to mimic gas diffusion in a nanoporous material. The TDDFT prediction on the transport diffusivity was reasonable compared to simulations. Moreover, the time-dependent density profiles gave an insight into the microscopic mechanism of the diffusion process. PMID:27121986

  13. 3-dimensional local field polarization vector mapping of a focused radially polarized beam using gold nanoparticle functionalized tips.

    Ahn, J S; Kihm, H W; Kihm, J E; Kim, D S; Lee, K G

    2009-02-16

    We have measured local electric field polarization vectors in 3-dimensional space on the nanoscale. A radial polarized light is generated by using a radial polarization converter and focused by an objective lens. Gold nanoparticle functionalized tips are used to scatter the focused field into the far-field region. Two different methods, rotational analyzer ellipsometry and Stokes parameters, are used in determining the polarization state of the scattered light. Two methods give consistent results with each other. Three dimensional local polarization vectors could be reconstructed by applying back transformation of the fully characterized polarizability tensor of the tip. PMID:19219131

  14. Large Scale Wi-Fi tracking using a Botnet of Wireless Routers

    Rouveyrol, Pierre; Raveneau, Patrice; Cunche, Mathieu

    2015-01-01

    International audience Wi-Fi tracking is a method relying on signals emitted by portable devices to track individuals for commercial, security or surveillance purposes. Wi-Fi tracking has the potential to passively track a large fraction of the population [12] and is therefore an ideal population surveillance technology and a serious privacy threat. We argue that Wi-Fi routers make an ideal building block to create a large scale Wi-Fi tracking system. This paper first presents the interest...

  15. Particle Tracking in Circular Accelerators Using the Exact Hamiltonian in SixTrack

    Fjellstrom, Mattias; Hansson, Johan

    2013-12-13

    Particle motion in accelerators is in general complex. Tracking codes are developed to simulate beam dynamics in accelerators. SixTrack is a long lived particle tracking code maintained at CERN, the European Organization for Nuclear Research. A particle accelerator consists of a large number of magnets and other electromagnetic devices that guide the particle through the accelerator. Each device defines its own equation of motion, which often cannot be solved exactly. For this purpose, a number of approximations are introduced in order to facilitate the solution and to speed up the computation. In a high-energy accelerator, the particle has small transverse momentum components. This is exploited in the small-angle approximation. In this approximation the equations of motion are expanded to a low order in the transverse momentum components. In low-energy particle accelerators, or in tracking with large momentum deviations, this approximation is invalid. The equations of motion of a particle passing through a f...

  16. A low error reconstruction method for confocal holography to determine 3-dimensional properties

    Jacquemin, P.B., E-mail: pbjacque@nps.edu [Mechanical Engineering, University of Victoria, EOW 548,800 Finnerty Road, Victoria, BC (Canada); Herring, R.A. [Mechanical Engineering, University of Victoria, EOW 548,800 Finnerty Road, Victoria, BC (Canada)

    2012-06-15

    A confocal holography microscope developed at the University of Victoria uniquely combines holography with a scanning confocal microscope to non-intrusively measure fluid temperatures in three-dimensions (Herring, 1997), (Abe and Iwasaki, 1999), (Jacquemin et al., 2005). The Confocal Scanning Laser Holography (CSLH) microscope was built and tested to verify the concept of 3D temperature reconstruction from scanned holograms. The CSLH microscope used a focused laser to non-intrusively probe a heated fluid specimen. The focused beam probed the specimen instead of a collimated beam in order to obtain different phase-shift data for each scan position. A collimated beam produced the same information for scanning along the optical propagation z-axis. No rotational scanning mechanisms were used in the CSLH microscope which restricted the scan angle to the cone angle of the probe beam. Limited viewing angle scanning from a single view point window produced a challenge for tomographic 3D reconstruction. The reconstruction matrices were either singular or ill-conditioned making reconstruction with significant error or impossible. Establishing boundary conditions with a particular scanning geometry resulted in a method of reconstruction with low error referred to as 'wily'. The wily reconstruction method can be applied to microscopy situations requiring 3D imaging where there is a single viewpoint window, a probe beam with high numerical aperture, and specified boundary conditions for the specimen. The issues and progress of the wily algorithm for the CSLH microscope are reported herein. -- Highlights: Black-Right-Pointing-Pointer Evaluation of an optical confocal holography device to measure 3D temperature of a heated fluid. Black-Right-Pointing-Pointer Processing of multiple holograms containing the cumulative refractive index through the fluid. Black-Right-Pointing-Pointer Reconstruction issues due to restricting angular scanning to the numerical aperture of the

  17. Large-eddy-simulation of 3-dimensional Rayleigh-Taylor instability in incompressible fluids

    WANG; Lili

    2002-01-01

    [1]Sharp, D. H., An overview of Rayleigh-Taylor instability, Physica D, 1984, 12: 3-18.[2]Baker, G. R., Meiron, D. I., Orszag, S. A., Vortex simulation of the Rayleigh-Taylor instability, Phys. Fluids, 1980, 23: 1485-1490.[3]Tryggvason, G., Numerical simulations of the Rayleigh-Taylor instability, J. Comput. Phys., 1988, 75: 253-282.[4]Mulder, W., Osher, S., Sethian, J., Computing interface motion in compressible gas dynamics, J. Comput. Phys., 1992, 100: 209-228.[5]Osher, S., Sethian, J., Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Compput. Phys., 1988, 79(1): 12-49.[6]Li, X. L., Study of three-dimensional Rayleigh-Taylor instability in compressible fluids through level set method and parallel computation, Phys. Fluids, 1993, A(5): 1904-1913.[7]Holmes, R. L, Grove, J. W., Sharp, D. H., Numerical investigation of Richtmyer-Meshkov instability using front tracking, J. Fluid Mech., 1995, 301: 51-64.[8]Gardner, C., Glimm, J., McBryan, O. et al., The dynamics of bubble growth for Rayleigh-Taylor unstable interfaces, Phys. Fluids, 1988, 31: 447-465.[9]He Xiaoyi, Chen Shiyi, Zhang Raoyang, A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability, J. Comput Phys., 1999, 152: 642-663.[10]Li, X. L., Jin, B. X., Glimm, J., Numerical study for the three-dimensional Rayleigh-Taylor instability through the TVD/AC scheme and parallel computation, J. Comput. Phys., 1996, 126: 343-355.[11]Taylor, G. I., The stability of liquid surface when accelerated in a direction perpendicular to their planes, I, Proc. Roy. Soc., London, 1950, A201: 192-196.[12]Abarzhi, S. I., Stable steady flow in the Rayleigh-Taylor instability, Phs. Rev. Lett., 1998, 81: 337-340.[13]Zhang, Q., The motion of single-mode Rayleigh-Taylor unstable interfaces, IMPACT Comput. Sci. Eng., 1991, 3: 277-389.[14]Deardorff. J. W

  18. Forward tracking detectors

    Klaus Mönig

    2007-11-01

    Forward tracking is an essential part of a detector at the international linear collider (ILC). The requirements for forward tracking are explained and the proposed solutions in the detector concepts are shown.

  19. The Complexities of Self-Tracking

    Sjöklint, Mimmi; Constantiou, Ioanna; Trier, Matthias

    2015-01-01

    The activity of self-tracking is an emerging trend that often involves adopting wearable technology. Vendors promise new personal insights and opportunities to optimize health and lifestyle by adopting such devices. Spurred by these promises, users are also driven by curiosity and exploration to ...... coping tactics, such as disregard, procrastination, selective attribution and neglect....

  20. Economic Tracking Portfolios

    Owen Lamont

    1999-01-01

    An economic tracking portfolio is a portfolio of assets with returns that track an economic variable. Monthly returns on stocks and bonds are useful in forecasting post-war US output, consumption, labor income, inflation, stock returns, bond returns, and Treasury bill returns. These forecasting relationships define portfolios that track market expectations about future economic variables. Using tracking portfolio returns as instruments for future economic variables substantially raises the es...

  1. Test-beam performance of a tracking TRD prototype

    A tracking transition radiation detector prototype has been constructed and tested. It consists of 192 straw tubes, 4 mm in diameter, embedded in a polyethylene block acting as radiator. Its performance has been studied as an electron identifier as well as a tracking device for minimum-ionizing particles. (orig.)

  2. Advanced Tracking of Vehicles

    Jensen, Christian Søndergaard; Li, K.-J.; Pakalnis, Stardas;

    2005-01-01

    server-side updates. This is achieved by designing, prototyping, and testing novel tracking techniques that exploit knowledge of the road network and past movement. These resulting tracking techniques are to support mobile services that rely on the existence of a central server that continuously tracks...

  3. APPLICATION FOR AIRCRAFT TRACKING

    Ostroumov, Ivan; Kuz’menko, Natalia

    2011-01-01

    Abstract. In the article the important problems of software development for aircraft tracking have beendiscussed. Position reports of ACARS have been used for aircraft tracking around the world.An algorithm of aircraft coordinates decoding and visualization of aircraft position on the map has beenrepresented.Keywords: ACARS, aircraft, internet, position, software, tracking.

  4. Track and Field Facilities.

    Wood, Tony

    2001-01-01

    Discusses planning and design tips that help ensure track and field facilities are successful and well-suited to both school and community use. Examines approaches to determining the best track surface and ways to maximize track and field flexibility with limited space. (GR)

  5. Open and disconnected magnetic field lines within coronal mass ejections in the solar wind: Evidence for 3-dimensional reconnection

    Gosling, J. T.; Birn, J.; McComas, D. J.; Phillips, J. L.; Hesse, M.

    1995-01-01

    Measurements of suprathermal electron fluxes in the solar wind at energies greater than approximatley 80 eV indicate that magnetic field lines within coronal mass ejections. CMEs, near and beyond 1 AU are normally connected to the Sun at both ends. However, a preliminary reexamination of events previously identified as CMEs in the ISEE 3 data reveals that about 1/4 of all such events contain limited regions where field lines appear to be either connected to the Sun at only one end or connected to the outer heliosphere at both ends. Similar intervals of open and disconnected field lines within CMEs have been identified in the Ulysses observations. We believe that these anomalous field topologies within CMEs are most naturally interpreted in terms of 3-dimensional reconnection behind CMEs close to the Sun. Such reconnection also provides a natural explanation both for the flux rope topology of many CMEs as well as the coronal loops formed during long-duration solar soft X ray events. Although detailed numerical simulations of 3-dimensional reconnection behind CMEs are not yet available, such simulations have been done for the qualitatively similar geometry that prevails within the geomagnetic tail. Those simulations of plasmoid formation in the geomagnetic tail do produce the mixture of field topologies within plasmoids discussed here for CMEs.

  6. Evaluation on activation activity of reactor in JRR-2 applied 3 dimensional model to neutron flux calculation

    Revaluation to activation activity of reactor evaluated at the notification of dismantling submitted in 1997 was carried out in JRR-2 where decommissioning was advanced now. In the revaluation, estimation accuracy on neutron streaming at various horizontal experimental tubes was improved by applying 3 dimensional model to neutron transport calculation that had been carried out by 2 dimensional model, and calculating with TORT. As the result, excessive overestimations on horizontal experimental tubes and biological shield that had greatly contributed to total activation activity in evaluation at the notification of dismantling was revised, sum of their activation activities in the revaluation decreased to 1/18 (case after 1 year from the permanent shutdown of reactor) of evaluation at the notification of dismantling, and the structural materials that had large activation activity were changed. By the above, it was shown that introducing 3 dimensional model was effective in evaluation on activation activity of the research reactor that had a lot of various experimental tubes. Total activation activity of reactor by the revaluation depended on control rods, thermal shield plates and horizontal experimental tubes, and the value after 1 year from the permanent shutdown of reactor was 1.9x1014 Bq. (author)

  7. Influence of slice thickness of computed tomography and type of rapid protyping on the accuracy of 3-dimensional medical model

    This study was to evaluate the influence of slice thickness of computed tomography (CT) and rapid protyping (RP) type on the accuracy of 3-dimensional medical model. Transaxial CT data of human dry skull were taken from multi-detector spiral CT. Slice thickness were 1, 2, 3 and 4 mm respectively. Three-dimensional image model reconstruction using 3-D visualization medical software (V-works 3.0) and RP model fabrication were followed. 2-RP models were 3D printing (Z402, Z Corp., Burlington, USA) and Stereolithographic Apparatus model. Linear measurements of anatomical landmarks on dry skull, 3-D image model, and 2-RP models were done and compared according to slice thickness and RP model type. There were relative error percentage in absolute value of 0.97, 1.98, 3.83 between linear measurements of dry skull and image models of 1, 2, 3 mm slice thickness respectively. There was relative error percentage in absolute value of 0.79 between linear measurements of dry skull and SLA model. There was relative error difference in absolute value of 2.52 between linear measurements of dry skull and 3D printing model. These results indicated that 3-dimensional image model of thin slice thickness and stereolithographic RP model showed relative high accuracy.

  8. Tracking of Head Movements for Motion Control

    Salai, Robert

    2009-01-01

    The capture of gestures in order to use them as input for intuitive control has been investigated exhaustively in recent years. However, for the most part this has resulted in relatively expensive devices. The contribution of this report is the investigation on the feasibility of the development of a low-cost vision based input device for the tracking of head movements, concerning the use of them for motion control. The input device relies on the infrared camera, along with the built-in image...

  9. Bayesian multiple target tracking

    Streit, Roy L

    2013-01-01

    This second edition has undergone substantial revision from the 1999 first edition, recognizing that a lot has changed in the multiple target tracking field. One of the most dramatic changes is in the widespread use of particle filters to implement nonlinear, non-Gaussian Bayesian trackers. This book views multiple target tracking as a Bayesian inference problem. Within this framework it develops the theory of single target tracking, multiple target tracking, and likelihood ratio detection and tracking. In addition to providing a detailed description of a basic particle filter that implements

  10. Tracking by Neural Nets

    Jofrehei, Arash

    2015-01-01

    Current track reconstruction methods start with two points and then for each layer loop through all possible hits to find proper hits to add to that track. Another idea would be to use this large number of already reconstructed events and/or simulated data and train a machine on this data to find tracks given hit pixels. Training time could be long but real time tracking is really fast. Simulation might not be as realistic as real data but tracking efficiency is 100 percent for that while by using real data we would probably be limited to current efficiency. The fact that this approach can be a lot faster and even more efficient than current methods by using simulation data can make it a great alternative for current track reconstruction methods used in both triggering and tracking.

  11. Smart Vehicle Tracking System

    K.P.Kamble

    2012-08-01

    Full Text Available It is amazing to know how simple ideas can give a whole new dimension to the tracking and navigation industry and smart vehicle tracking system is used for tracking the vehicles. You can optimize driver routes, save petrol or gas and time, reduce theft and control the vehicle functions. Many a times it is not required to track your vehicle or target globally. In majority of cases tracking is more restricted to local purposes only, such as tracking movement of vehicle within city, tracking the raw materials within industrial estate or to know the present position of your daughter or son within city. But unfortunately in the pursuit of making things complex this simple idea is forgotten. This simple yet powerful idea forms the basis of this revolutionary project. All this coupled with a very low cost, a robust design and tremendous market potential makes this model even more attractive.

  12. Tracks: Nurses and the Tracking Network

    2012-06-06

    This podcast highlights the utility of the National Environmental Public Health Tracking Network for nurses in a variety of work settings. It features commentary from the American Nurses Association and includes stories from a public health nurse in Massachusetts.  Created: 6/6/2012 by National Center for Environmental Health (NCEH)/Division of Environmental Hazards and Health Effects (DEHHE)/Environmental Health Tracking Branch (EHTB).   Date Released: 6/6/2012.

  13. Five-Year Outcomes, Cosmesis, and Toxicity With 3-Dimensional Conformal External Beam Radiation Therapy to Deliver Accelerated Partial Breast Irradiation

    Purpose: To report the interim results from a study comparing the efficacy, toxicity, and cosmesis of breast-conserving treatment with accelerated partial breast irradiation (APBI) or whole breast irradiation (WBI) using 3-dimensional conformal external beam radiation therapy (3D-CRT). Methods and Materials: 102 patients with early-stage breast cancer who underwent breast-conserving surgery were randomized to receive either WBI (n=51) or APBI (n=51). In the WBI arm, 48 Gy was delivered to the whole breast in daily fractions of 2 Gy, with or without additional 10 Gy to the tumor bed. In the APBI arm, patients received 37.5 Gy in 3.75 Gy per fraction delivered twice daily. Toxicity results were scored according to the Radiation Therapy Oncology Group Common Toxicity Criteria. Skin elasticity was measured using a dedicated device (Multi-Skin-Test-Center MC-750-B2, CKelectronic-GmbH). Cosmetic results were assessed by the physician and the patients as good/excellent, regular, or poor. Results: The median follow-up time was 5 years. No local recurrences were observed. No significant differences in survival rates were found. APBI reduced acute side effects and radiation doses to healthy tissues compared with WBI (P75% of patients in the APBI arm had excellent or good cosmesis, and these outcomes appear to be stable over time. The percentage of patients with excellent/good cosmetic results was similar in both groups. Conclusions: APBI delivered by 3D-CRT to the tumor bed for a selected group of early-stage breast cancer patients produces 5-year results similar to those achieved with conventional WBI

  14. GPS-Aided Video Tracking

    Udo Feuerhake

    2015-08-01

    Full Text Available Tracking moving objects is both challenging and important for a large variety of applications. Different technologies based on the global positioning system (GPS and video or radio data are used to obtain the trajectories of the observed objects. However, in some use cases, they fail to provide sufficiently accurate, complete and correct data at the same time. In this work we present an approach for fusing GPS- and video-based tracking in order to exploit their individual advantages. In this way we aim to combine the reliability of GPS tracking with the high geometric accuracy of camera detection. For the fusion of the movement data provided by the different devices we use a hidden Markov model (HMM formulation and the Viterbi algorithm to extract the most probable trajectories. In three experiments, we show that our approach is able to deal with challenging situations like occlusions or objects which are temporarily outside the monitored area. The results show the desired increase in terms of accuracy, completeness and correctness.

  15. Photovoltaic device

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-06-02

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  16. Photovoltaic device

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-09-01

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device (10) with a multilayered photovoltaic cell assembly (100) and a body portion (200) joined at an interface region (410) and including an intermediate layer (500), at least one interconnecting structural member (1500), relieving feature (2500), unique component geometry, or any combination thereof.

  17. Concentration device

    2013-01-01

    A concentration device (2) for filter filtration concentration of particles (4) from a volume of a fluid (6). The concentration device (2) comprises a filter (8) configured to filter particles (4) of a predefined size in the volume of the fluid (6). The concentration device (2) comprises...

  18. Tracking dynamic team activity

    Tambe, M. [Univ. of Southern California, Marina del Rey, CA (United States)

    1996-12-31

    AI researchers are striving to build complex multi-agent worlds with intended applications ranging from the RoboCup robotic soccer tournaments, to interactive virtual theatre, to large-scale real-world battlefield simulations. Agent tracking - monitoring other agent`s actions and inferring their higher-level goals and intentions - is a central requirement in such worlds. While previous work has mostly focused on tracking individual agents, this paper goes beyond by focusing on agent teams. Team tracking poses the challenge of tracking a team`s joint goals and plans. Dynamic, real-time environments add to the challenge, as ambiguities have to be resolved in real-time. The central hypothesis underlying the present work is that an explicit team-oriented perspective enables effective team tracking. This hypothesis is instantiated using the model tracing technology employed in tracking individual agents. Thus, to track team activities, team models are put to service. Team models are a concrete application of the joint intentions framework and enable an agent to track team activities, regardless of the agent`s being a collaborative participant or a non-participant in the team. To facilitate real-time ambiguity resolution with team models: (i) aspects of tracking are cast as constraint satisfaction problems to exploit constraint propagation techniques; and (ii) a cost minimality criterion is applied to constrain tracking search. Empirical results from two separate tasks in real-world, dynamic environments one collaborative and one competitive - are provided.

  19. Solution of 2- and 3-dimensional PDE problems: an implicit time-integration method for parallel processing

    The numerical solution of multi-dimensional partial differential equations poses extremely high demands on computing capacity. For the solution of the 3-dimensional partial differential equations of the fluiddynamics a semidiscrete solution technique (discrete in space, continuous in time) is used. The resulting large system of ordinary differential equations (103 - 105 unknowns) may be oscillatory stiff which requires for its efficient solution an ODE-solver of high order which is A (α) - stable, with α > 890. The ODE-solver FEBE is presented which can make use of parallel processing on the subroutine level. Parallelisation is possible on the level of the general ODE-solver algorithm and on the level of solving the implicit matrix equation. For the solution of the implicit matrix equation system a fractional step method is used which is well qualified for parallel computing

  20. Evaluation of 3 dimensional CT angiography (3D-CTA) in internal A-V fistula complications

    We examined internal A-V fistula complications in 6 patients using 3D-CTA and plain angiography of internal A-V fistulae (PAG). Technical specifications of 3D-CTA were carried out with a CT scan unit (X vison GX, Toshiba, Japan) using the shade surface display method. As to visualization of various changes occurring in vascular structures. 3D-CTA was comparable to PAG. Furthermore, 3D-CTA allowed superior visualization of arteries and veins in patients with a large shunt blood volume. Although further improvement of software, in terms of 3 dimensional reconstruction, is needed we consider this a potentially valuable tool for examining internal A-V fistula complications. (author)

  1. Open reduction and internal fixation aided by intraoperative 3-dimensional imaging improved the articular reduction in 72 displaced acetabular fractures

    Eckardt, Henrik; Lind, Dennis; Toendevold, Erik

    2015-01-01

    Background and purpose - During acetabular fracture surgery, the acetabular roof is difficult to visualize with 2-dimensional fluoroscopic views. We assessed whether intraoperative 3-dimensional (3D) imaging can aid the surgeon to achieve better articular reduction and improve implant fixation....... Patients and methods - We operated on 72 acetabular fractures using intraoperative 3D imaging and compared the operative results, duration of surgery, and complications with those for 42 consecutive acetabular fracture operations conducted using conventional fluoroscopic imaging. Postoperative reduction...... was evaluated on reconstructed coronal and sagittal images of the acetabulum. Results - The fracture severity and patient characteristics were similar in the 2 groups. In the 3D group, 46 of 72 patients (0.6) had a perfect result after open reduction and internal fixation, and in the control group, 17...

  2. Evaluation of 3 dimensional CT angiography (3D-CTA) in internal A-V fistula complications

    Yanagisawa, Takayoshi; Otsubo, Osamu; Takahashi, Ikuo [Towa Hospital, Tokyo (Japan)] [and others

    1997-02-01

    We examined internal A-V fistula complications in 6 patients using 3D-CTA and plain angiography of internal A-V fistulae (PAG). Technical specifications of 3D-CTA were carried out with a CT scan unit (X vison GX, Toshiba, Japan) using the shade surface display method. As to visualization of various changes occurring in vascular structures. 3D-CTA was comparable to PAG. Furthermore, 3D-CTA allowed superior visualization of arteries and veins in patients with a large shunt blood volume. Although further improvement of software, in terms of 3 dimensional reconstruction, is needed we consider this a potentially valuable tool for examining internal A-V fistula complications. (author)

  3. Preoperative evaluation of vertebral and posterior communicating arteries using 3-dimensional CT angiography before cervical posterior instrumentation surgery

    We preoperatively examined 45 patients to investigate the frequency of an anomalous vertebral artery (VA) and the presence of a posterior communicating artery (PCOM) using 3-dimensional CT angiography (3D-CTA). Asymmetry of the VAs was detected in eight patients (18%). Anomalous VAs in the intra- or extraosseous region, including a high-riding VA, persistent 1st intersegmental artery, and ponticulus posticus, were found in a total of 8 patients (18%). Nineteen patients (42%) did not have a PCOM on either side. When a VA, especially the VA on the dominant side, is injured during cervical instrumentation, catastrophic vascular complications occur in approximately 7% of patients who have asymmetrical VAs without collateral circulation. Preoperative 3D-CTA provides information on anomalous VAs and collateral circulation that is crucial to preventing vascular complications. (author)

  4. Color Image Processing and Object Tracking System

    Klimek, Robert B.; Wright, Ted W.; Sielken, Robert S.

    1996-01-01

    This report describes a personal computer based system for automatic and semiautomatic tracking of objects on film or video tape, developed to meet the needs of the Microgravity Combustion and Fluids Science Research Programs at the NASA Lewis Research Center. The system consists of individual hardware components working under computer control to achieve a high degree of automation. The most important hardware components include 16-mm and 35-mm film transports, a high resolution digital camera mounted on a x-y-z micro-positioning stage, an S-VHS tapedeck, an Hi8 tapedeck, video laserdisk, and a framegrabber. All of the image input devices are remotely controlled by a computer. Software was developed to integrate the overall operation of the system including device frame incrementation, grabbing of image frames, image processing of the object's neighborhood, locating the position of the object being tracked, and storing the coordinates in a file. This process is performed repeatedly until the last frame is reached. Several different tracking methods are supported. To illustrate the process, two representative applications of the system are described. These applications represent typical uses of the system and include tracking the propagation of a flame front and tracking the movement of a liquid-gas interface with extremely poor visibility.

  5. The Kinect as an interventional tracking system

    Wang, Xiang L.; Stolka, Philipp J.; Boctor, Emad; Hager, Gregory; Choti, Michael

    2012-02-01

    This work explores the suitability of low-cost sensors for "serious" medical applications, such as tracking of interventional tools in the OR, for simulation, and for education. Although such tracking - i.e. the acquisition of pose data e.g. for ultrasound probes, tissue manipulation tools, needles, but also tissue, bone etc. - is well established, it relies mostly on external devices such as optical or electromagnetic trackers, both of which mandate the use of special markers or sensors attached to each single entity whose pose is to be recorded, and also require their calibration to the tracked entity, i.e. the determination of the geometric relationship between the marker's and the object's intrinsic coordinate frames. The Microsoft Kinect sensor is a recently introduced device for full-body tracking in the gaming market, but it was quickly hacked - due to its wide range of tightly integrated sensors (RGB camera, IR depth and greyscale camera, microphones, accelerometers, and basic actuation) - and used beyond this area. As its field of view and its accuracy are within reasonable usability limits, we describe a medical needle-tracking system for interventional applications based on the Kinect sensor, standard biopsy needles, and no necessary attachments, thus saving both cost and time. Its twin cameras are used as a stereo pair to detect needle-shaped objects, reconstruct their pose in four degrees of freedom, and provide information about the most likely candidate.

  6. Exabyte helical scan devices at Fermilab

    Exabyte 8mm helical scan storage devices are in use at Fermilab in a number of applications. These devices have the functionality of magnetic tape, but use media which is much more economical and much more dense than conventional 9 track tape. 6 refs., 3 figs

  7. Exabyte helical scan devices at Fermilab

    Constanta-Fanourakis, P.; Kaczar, K.; Oleynik, G.; Petravick, D.; Votava, M.; White, V.; Hockney, G.; Bracker, S.; de Miranda, J.M.

    1989-05-01

    Exabyte 8mm helical scan storage devices are in use at Fermilab in a number of applications. These devices have the functionality of magnetic tape, but use media which is much more economical and much more dense than conventional 9 track tape. 6 refs., 3 figs.

  8. Thermal evaluation of a sun tracking solar cooker

    El-Tous, Yousif; Al-Mofleh, Anwar [Department of Electrical Engineering, Faculty of Engineering Technology, Al-Balqa' Applied University, P.O. Box 15008, Amman (Jordan); Badran, Omar. O. [Department of Mechanical Engineering, Faculty of Engineering Technology, Al-Balqa Appllied University, P.O. Box 15008, Amman (Jordan)

    2012-07-01

    Solar energy is one of many important types of renewable energy. Jordan is of great needs for renewable energy systems applications since it depends totally in generation of its required energy on imported oil. This study is an experimental work of tracking system developed for enhancing the solar heating using solar cooker. An electronic sun tracking device was used for rotating the solar heater with the movement of the sun. A comparison between fixed and sun tracked cooker showed that the use of sun tracking increased the heating temperature by 36% due to the increase in radiation concentration and using internal mirror reflectors. The programming method used for tracking control works efficiently in all weather conditions regardless of the presence of clouds. It can be used as backup control circuit in which relays are the essential control devices.

  9. Etched track radiometers in radon measurements: a review

    Nikolaev, V A

    1999-01-01

    Passive radon radiometers, based on alpha particle etched track detectors, are very attractive for the assessment of radon exposure. The present review considers various devices used for measurement of the volume activity of radon isotopes and their daughters and determination of equilibrium coefficients. Such devices can be classified into 8 groups: (i) open or 'bare' detectors, (ii) open chambers, (iii) sup 2 sup 2 sup 2 Rn chambers with an inlet filter, (iv) advanced sup 2 sup 2 sup 2 Rn radiometers, (v) multipurpose radiometers, (vi) radiometers based on a combination of etched track detectors and an electrostatic field, (vii) radiometers based on etched track detectors and activated charcoal and (viii) devices for the measurement of radon isotopes and/or radon daughters by means of track parameter measurements. Some of them such as the open detector and the chamber with an inlet filter have a variety of modifications and are applied widely both in geophysical research and radon dosimetric surveys. At the...

  10. Tracking fast neutrons

    Both neutron absorption and elastic scattering can be used to measure neutron momentum. Based on elastic collisions, the linear momentum of a fast neutron can be measured from as few as two consecutive recoil ion tracks plus the vertex position of the third collision, or ‘two and half’ ion tracks. If the time delay between the first two consecutive ion tracks is also measured, the number of ion tracks can be reduced to one and a half. The angular and magnitude resolutions are limited by ion range straggling to about 10%. Multi-wire proportional chambers and light-field imaging can be used for fast neutron tracking. Light-field imaging is free of charge-diffusion-induced image blur, but the limited number of photons available can be a challenge. 1H, 2H and 3He could be used for the initial development of fast neutron trackers based on light-field imaging. -- Highlights: • We describe the basic principle of fast neutron tracking through elastic collisions and absorption; • We calculate tracking errors, which are limited by ion range straggling. • Multi-wire proportional chamber and light field imaging are discussed for fast neutron tracking; • Time projection of ion tracks can be achieved by detecting photons

  11. Online Supervised Subspace Tracking

    Xie, Yao; Song, Ruiyang; Dai, Hanjun; Li, Qingbin; Song, Le

    2015-01-01

    We present a framework for supervised subspace tracking, when there are two time series $x_t$ and $y_t$, one being the high-dimensional predictors and the other being the response variables and the subspace tracking needs to take into consideration of both sequences. It extends the classic online subspace tracking work which can be viewed as tracking of $x_t$ only. Our online sufficient dimensionality reduction (OSDR) is a meta-algorithm that can be applied to various cases including linear r...

  12. Tracking in anatomic pathology.

    Pantanowitz, Liron; Mackinnon, Alexander C; Sinard, John H

    2013-12-01

    Bar code-based tracking solutions, long present in clinical pathology laboratories, have recently made an appearance in anatomic pathology (AP) laboratories. Tracking of AP "assets" (specimens, blocks, slides) can enhance laboratory efficiency, promote patient safety, and improve patient care. Routing of excess clinical material into research laboratories and biorepositories are other avenues that can benefit from tracking of AP assets. Implementing tracking is not as simple as installing software and turning it on. Not all tracking solutions are alike. Careful analysis of laboratory workflow is needed before implementing tracking to assure that this solution will meet the needs of the laboratory. Such analysis will likely uncover practices that may need to be modified before a tracking system can be deployed. Costs that go beyond simply that of purchasing software will be incurred and need to be considered in the budgeting process. Finally, people, not technology, are the key to assuring quality. Tracking will require significant changes in workflow and an overall change in the culture of the laboratory. Preparation, training, buy-in, and accountability of the people involved are crucial to the success of this process. This article reviews the benefits, available technology, underlying principles, and implementation of tracking solutions for the AP and research laboratory. PMID:23634908

  13. Wearable Tracking Tags Test Privacy Boundaries at the U. of Washington

    Dotinga, Randy

    2008-01-01

    Tags such as the radio-frequency identifications or RFIDs are devices that make it possible for individuals to be tracked and their location reported back to a database. The devices--chips with radio antennas--emit signals, and tracking them reveals the movement of people or things. Many stores use the technology to catch shoplifters at exits. To…

  14. Color image processing and object tracking workstation

    Klimek, Robert B.; Paulick, Michael J.

    1992-01-01

    A system is described for automatic and semiautomatic tracking of objects on film or video tape which was developed to meet the needs of the microgravity combustion and fluid science experiments at NASA Lewis. The system consists of individual hardware parts working under computer control to achieve a high degree of automation. The most important hardware parts include 16 mm film projector, a lens system, a video camera, an S-VHS tapedeck, a frame grabber, and some storage and output devices. Both the projector and tapedeck have a computer interface enabling remote control. Tracking software was developed to control the overall operation. In the automatic mode, the main tracking program controls the projector or the tapedeck frame incrementation, grabs a frame, processes it, locates the edge of the objects being tracked, and stores the coordinates in a file. This process is performed repeatedly until the last frame is reached. Three representative applications are described. These applications represent typical uses and include tracking the propagation of a flame front, tracking the movement of a liquid-gas interface with extremely poor visibility, and characterizing a diffusion flame according to color and shape.

  15. Microfluidic Device

    Tai, Yu-Chong (Inventor); Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor); Kasdan, Harvey L. (Inventor)

    2016-01-01

    Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.

  16. Tracking of Humans and Robots Using Laser Range Finders

    Bršcic, Drazen; Sasaki, Takeshi; Hashimoto, Hideki

    There exist various applications where tracking of humans or robots in an area is needed. An example of such applications are Intelligent Spaces, where humans and robots share a common space and their positions are tracked by a system of sensors in the space. In this paper a system for tracking both humans and robots that utilizes laser range finders as sensing devices is described. The details of the extraction of objects from the laser scan, data association and estimation are given, and results of tracking humans and robots are described. Calibration of the distributed laser range finders, which is important for the operation of the tracking system is also described, both in a manual and automated variant and experimental results are given. Finally, the inclusion of a laser range finder onboard the mobile robot in the tracking process is described and accompanied with experimental results. The distributed fusion of static and onboard sensors is also discussed.

  17. Motion Tracking for Medical Imaging: A Non-Visible Structured Light Tracking Approach

    Olesen, Oline Vinter; Paulsen, Rasmus Reinhold; Højgaard, Liselotte;

    2012-01-01

    We present a system for head motion tracking in 3D brain imaging. The system is based on facial surface reconstruction and tracking using a structured light (SL) scanning principle. The system is designed to fit into narrow 3D medical scanner geometries limiting the field of view. It is tested in a...... clinical setting on the high resolution research tomograph (HRRT), Siemens PET scanner with a head phantom and volunteers. The SL system is compared to a commercial optical tracking system, the Polaris Vicra system, from NDI based on translatory and rotary ground truth motions of the head phantom. The...... customized version of this projector replacing a visible light LED with a 850 nm near infrared LED. The latter system does not provide additional discomfort by visible light projection into the patient’s eyes. The main advantage over existing head motion tracking devices, including the Polaris Vicra system...

  18. Eye-Tracking

    Gabriela GROSSECK

    2006-01-01

    Full Text Available Eye-tracking: one of the newest and most efficient methods of improving on-line marketing communication is called eye-tracking. Marketers have borrowed this technique, usually used in psychological and medical research, in order to study web users with the help of a video camera incorporated in the monitor.

  19. Why we are tracking

    Tække, Jesper

    2015-01-01

    In this short essay, concerning why we are tracking, I will try to frame tracking as an evolutionary developed skill that humans need to survive. From an evolutionary point zero life must reflect upon itself in regard to its surrounding world as a kind of societal self-synchronization in this...

  20. Photon track evolution

    Given the time scale of biological, biochemical, biophysical and physical effects in a radiation exposure of living tissue, the first physical stage can be considered to be independent of time. All the physical interactions caused by the incident photons happen at the same starting time. From this point of view it would seem that the evolution of photon tracks is not a relevant topic for analysis; however, if the photon track is considered as a sequence of several interactions, there are several steps until the total degradation of the energy of the primary photon. We can characterise the photon track structure by the probability p(E,j), that is, the probability that a photon with energy E suffers j secondary interactions. The aim of this work is to analyse the photon track structure by considering j as a step of the photon track evolution towards the total degradation of the photon energy. Low energy photons (<150 keV) are considered, with water phantoms and half-extended geometry. The photon track evolution concept is presented and compared with the energy deposition along the track and also with the spatial distribution of the several steps in the photon track. (authors)

  1. UWB Tracking Software Development

    Gross, Julia; Arndt, Dickey; Ngo, Phong; Phan, Chau; Dusl, John; Ni, Jianjun; Rafford, Melinda

    2006-01-01

    An Ultra-Wideband (UWB) two-cluster Angle of Arrival (AOA) tracking prototype system is currently being developed and tested at NASA Johnson Space Center for space exploration applications. This talk discusses the software development efforts for this UWB two-cluster AOA tracking system. The role the software plays in this system is to take waveform data from two UWB radio receivers as an input, feed this input into an AOA tracking algorithm, and generate the target position as an output. The architecture of the software (Input/Output Interface and Algorithm Core) will be introduced in this talk. The development of this software has three phases. In Phase I, the software is mostly Matlab driven and calls C++ socket functions to provide the communication links to the radios. This is beneficial in the early stage when it is necessary to frequently test changes in the algorithm. Phase II of the development is to have the software mostly C++ driven and call a Matlab function for the AOA tracking algorithm. This is beneficial in order to send the tracking results to other systems and also to improve the tracking update rate of the system. The third phase is part of future work and is to have the software completely C++ driven with a graphics user interface. This software design enables the fine resolution tracking of the UWB two-cluster AOA tracking system.

  2. On the Wrong Track.

    Black, Susan

    1992-01-01

    By any measure--student achievement, social development, or democratic values--ability grouping and tracking practices are indefensible and unsupported by research. Tracking allows schools to practice in-school segregation and perpetuate unequal opportunities and unequal socialization within classrooms. Jonathan Kozol's investigation shows how…

  3. Can Tracking Improve Learning?

    Duflo, Esther; Dupas, Pascaline; Kremer, Michael

    2009-01-01

    Tracking students into different classrooms according to their prior academic performance is controversial among both scholars and policymakers. If teachers find it easier to teach a homogeneous group of students, tracking could enhance school effectiveness and raise test scores of both low- and high-ability students. If students benefit from…

  4. Large scale tracking algorithms.

    Hansen, Ross L.; Love, Joshua Alan; Melgaard, David Kennett; Karelitz, David B.; Pitts, Todd Alan; Zollweg, Joshua David; Anderson, Dylan Z.; Nandy, Prabal; Whitlow, Gary L.; Bender, Daniel A.; Byrne, Raymond Harry

    2015-01-01

    Low signal-to-noise data processing algorithms for improved detection, tracking, discrimination and situational threat assessment are a key research challenge. As sensor technologies progress, the number of pixels will increase signi cantly. This will result in increased resolution, which could improve object discrimination, but unfortunately, will also result in a significant increase in the number of potential targets to track. Many tracking techniques, like multi-hypothesis trackers, suffer from a combinatorial explosion as the number of potential targets increase. As the resolution increases, the phenomenology applied towards detection algorithms also changes. For low resolution sensors, "blob" tracking is the norm. For higher resolution data, additional information may be employed in the detection and classfication steps. The most challenging scenarios are those where the targets cannot be fully resolved, yet must be tracked and distinguished for neighboring closely spaced objects. Tracking vehicles in an urban environment is an example of such a challenging scenario. This report evaluates several potential tracking algorithms for large-scale tracking in an urban environment.

  5. Incentives from Curriculum Tracking

    Koerselman, Kristian

    2013-01-01

    Curriculum tracking creates incentives in the years before its start, and we should therefore expect test scores to be higher during those years. I find robust evidence for incentive effects of tracking in the UK based on the UK comprehensive school reform. Results from the Swedish comprehensive school reform are inconclusive. Internationally, I…

  6. Persistent Aerial Tracking

    Mueller, Matthias

    2016-04-13

    In this thesis, we propose a new aerial video dataset and benchmark for low altitude UAV target tracking, as well as, a photo-realistic UAV simulator that can be coupled with tracking methods. Our benchmark provides the rst evaluation of many state of-the-art and popular trackers on 123 new and fully annotated HD video sequences captured from a low-altitude aerial perspective. Among the compared trackers, we determine which ones are the most suitable for UAV tracking both in terms of tracking accuracy and run-time. We also present a simulator that can be used to evaluate tracking algorithms in real-time scenarios before they are deployed on a UAV "in the field", as well as, generate synthetic but photo-realistic tracking datasets with free ground truth annotations to easily extend existing real-world datasets. Both the benchmark and simulator will be made publicly available to the vision community to further research in the area of object tracking from UAVs. Additionally, we propose a persistent, robust and autonomous object tracking system for unmanned aerial vehicles (UAVs) called Persistent Aerial Tracking (PAT). A computer vision and control strategy is applied to a diverse set of moving objects (e.g. humans, animals, cars, boats, etc.) integrating multiple UAVs with a stabilized RGB camera. A novel strategy is employed to successfully track objects over a long period, by \\'handing over the camera\\' from one UAV to another. We integrate the complete system into an off-the-shelf UAV, and obtain promising results showing the robustness of our solution in real-world aerial scenarios.

  7. Nuzzer: A Large-Scale Device-Free Passive Localization System for Wireless Environments

    Seifeldin, Moustafa; Youssef, Moustafa

    2009-01-01

    The widespread usage of wireless local area networks and mobile devices has fostered the interest in localization systems for wireless environments. The majority of research in the context of wireless-based localization systems has focused on device-based active localization, in which a device is attached to tracked entities. Recently, device-free passive localization (DfP) has been proposed where the tracked entity is neither required to carry devices nor participate actively in the localiza...

  8. Digital characterization of particle tracks for microdosimetry

    Work is in progress to develop a digital approach to microdosimetry and to construct a prototype instrument to obtain digital information about charged-particle tracks. The objective of such a device is to measure the numbers of electrons produced in various subvolumes of a chamber gas along a particle's path. This paper describes results of Monte Carlo calculations of charged-particle tracks in a cubical time-projection ionization chamber containing methane. Results are presented to show the effects of electron diffusion during charge collection. The calculations indicate that the optimum ratio of field strength and pressure is about 0.6 volts cm-1 torr-1. Examples of proton, carbon-ion, and electron tracks are shown. 2 refs., 6 figs

  9. Robust Solar Position Sensor for Tracking Systems

    Ritchie, Ewen; Argeseanu, Alin; Leban, Krisztina Monika

    2009-01-01

    The paper proposes a new solar position sensor used in tracking system control. The main advantages of the new solution are the robustness and the economical aspect. Positioning accuracy of the tracking system that uses the new sensor is better than 1°. The new sensor uses the ancient principle...... of the solar clock. The sensitive elements are eight ordinary photo-resistors. It is important to note that all the sensors are not selected simultaneously. It is not necessary for sensor operating characteristics to be quasi-identical because the sensor principle is based on extreme operating duty measurement...... (bright or dark). In addition, the proposed solar sensor significantly simplifies the operation of the tracking control device....

  10. Characterisation of a track structure imaging detector

    The spatial distribution of radiation-induced ionizations in sub-cellular structures plays an important role in the initial formation of radiation damage to biological tissues. Using the nanodosimetry approach, physical characteristics of the track structure can be measured and correlated to DNA damage. In this work, a novel nano-dosimeter is presented, which detects positive ions produced by radiation interacting with a gas-sensitive volume in order to obtain a high resolution image of the radiation track structure. The characterisation of the detector prototype was performed and different configurations of the device were tested by varying the detector cathode material and the working gas. Preliminary results show that the ionisation cluster size distribution can be obtained with this approach. Further work is planned to improve the detector efficiency in order to register the complete three-dimensional track structure of ionising radiation. (authors)

  11. Characterisation of a track structure imaging detector.

    Casiraghi, M; Bashkirov, V A; Hurley, R F; Schulte, R W

    2015-09-01

    The spatial distribution of radiation-induced ionisations in sub-cellular structures plays an important role in the initial formation of radiation damage to biological tissues. Using the nanodosimetry approach, physical characteristics of the track structure can be measured and correlated to DNA damage. In this work, a novel nanodosimeter is presented, which detects positive ions produced by radiation interacting with a gas-sensitive volume in order to obtain a high resolution image of the radiation track structure. The characterisation of the detector prototype was performed and different configurations of the device were tested by varying the detector cathode material and the working gas. Preliminary results show that the ionisation cluster size distribution can be obtained with this approach. Further work is planned to improve the detector efficiency in order to register the complete three-dimensional track structure of ionising radiation. PMID:25877534

  12. Creation of nanoscale objects by swift heavy ion track manipulations

    In this work we give an overview of the possibilities to create new objects with nanoscale dimensions with ion tracks, for future applications. This can be realized in two ways: by manipulation of latent swift heavy ion (SHI) tracks, or by embedding specific structures within etched SHI tracks. In the first case one can make use of irradiation effects such as phase transitions and chemical or structural changes along the tracks. In the latter case, one can fill etched SHI tracks with metals, semiconductors, insulating and conducting polymers, fullerite, or colloides. Wires and tubules with outer diameters, between about 50 nm and 5 μm and lengths of up to about 100 μm can be obtained. The most important production techniques are galvanic and chemical depositions. Ion Transmission Spectrometry has turned out to be an especially useful tool for the characterisation of the produced objects. Present studies aim at the construction of condensers, magnets, diodes, and sensors in etched tracks. An obstacle for the practical realization of smallest-size polymeric ion track devices is the statistical distribution of the ion tracks on the target areas, which yields some pixels without any track, and other pixels even with overlapping tracks on a given sample. In a first test experiment we demonstrate that one can, in principle, overcome that problem by taking self-ordered porous foils as masks for subsequent high-fluence SHI irradiation. (author)

  13. 3-dimensional free standing micro-structures by proton beam writing of Su 8-silver nanoParticle polymeric composite

    Proton beam lithography a maskless direct-write lithographic technique (well suited for producing 3-Dimensional microstructures in a range of resist and semiconductor materials) is demonstrated as an effective tool in the creation of electrically conductive freestanding micro-structures in an Su 8 + Nano Silver polymer composite. The structures produced show non-ohmic conductivity and fit the percolation theory conduction model of tunneling of separated nanoparticles. Measurements show threshold switching and a change in conductivity of at least 4 orders of magnitude. The predictable range of protons in materials at a given energy is exploited in the creation of high aspect ratio, free standing micro-structures, made from a commercially available SU8 Silver nano-composite (GMC3060 form Gersteltec Inc. a negative tone photo-epoxy with added metallic nano-particles(Silver)) to create films with enhanced electrical properties when exposed and cured. Nano-composite films are directly written on with a finely focused MeV accelerated Proton particle beam. The energy loss of the incident proton beams in the target polymer nano- composite film is concentrated at the end of its range, where damage occurs; changing the chemistry of the nano-composite film via an acid initiated polymerization - creating conduction paths. Changing the energy of the incident beams provide exposed regions with different penetration and damage depth - exploited in the demonstrated cantilever microstructure.

  14. The Accuracy of Prostate Cancer Localization Diagnosed on Transrectal Ultrasound-Guided Biopsy Compared to 3-Dimensional Transperineal Approach

    Kevin Krughoff

    2013-01-01

    Full Text Available Background. Prostate cancer is often understaged following 12-core transrectal ultrasound- (TRUS- guided biopsies. Our goal is to understand where cancers are typically missed by this method. Methods. Transperineal 3-dimensional mapping biopsy (3DMB provides a more accurate depiction of disease status than transrectal ultrasound- (TRUS- guided biopsy. We compared 3DMB findings in men with prior TRUS-guided biopsies to determine grade and location of missed cancer. Results were evaluated for 161 men with low-risk organ confined prostate cancer. Results. The number of cancer-positive biopsy zones per patient with TRUS was 1.38 ± 1.21 compared to 3.33 ± 4.06 with 3DMB, with most newly discovered cancers originating from the middle lobe and apex. Approximately half of all newly discovered cancerous zones resulted from anterior 3DMB sampling. Gleason upgrade was recognized in 56 patients using 3DMB. When both biopsy methods found positive cores in a given zone, Gleason upgrades occurred most frequently in the middle left and right zones. TRUS cancer-positive zones not confirmed by 3DMB were most often the basal zones. Conclusion. Most cancer upgrades and cancers missed from TRUS biopsy originated in the middle left zone of the prostate, specifically in anterior regions. Anterior sampling may lead to more accurate diagnosis and appropriate followup.

  15. Morphological analysis and preoperative simulation of a double-chambered right ventricle using 3-dimensional printing technology.

    Shirakawa, Takashi; Koyama, Yasushi; Mizoguchi, Hiroki; Yoshitatsu, Masao

    2016-05-01

    We present a case of a double-chambered right ventricle in adulthood, in which we tried a detailed morphological assessment and preoperative simulation using 3-dimensional (3D) heart models for improved surgical planning. Polygonal object data for the heart were constructed from computed tomography images of this patient, and transferred to a desktop 3D printer to print out models in actual size. Medical staff completed all of the work processes. Because the 3D heart models were examined by hand, observed from various viewpoints and measured by callipers with ease, we were able to create an image of the complete form of the heart. The anatomical structure of an anomalous bundle was clearly observed, and surgical approaches to the lesion were simulated accurately. During surgery, we used an incision on the pulmonary infundibulum and resected three muscular components of the stenosis. The similarity between the models and the actual heart was excellent. As a result, the operation for this rare defect was performed safely and successfully. We concluded that the custom-made model was useful for morphological analysis and preoperative simulation. PMID:26860990

  16. Evaluation of the Zone of Influence and Entrainment Impacts for an Intake Using a 3-Dimensional Hydrodynamic and Transport Model

    Shwet Prakash

    2014-04-01

    Full Text Available Ballast water systems in large LNG carriers are essential for proper operations and stability. Water withdrawn from the surrounding environment to supply to the ballast can pose entrainment and impingement risk to the resident fish population. Quantification of these risks and the net effect on population is usually quite challenging and complex. Various methods over the last several decades have been developed and are available in the literature for quantification of entrainment of mobile and immobile lifestages of resident fish. In this study, a detailed 3-dimensional model was developed to estimate the entrainment of ichthyoplankton (fish eggs and larvae and fish from an estuarine environment during the repeated short-term operation of a ballast water intake for an LNG carrier. It was also used to develop a zone of influence to determine the ability of mobile life stages to avoid impingement. The ichthyoplankton model is an Equivalent Adult Model (EAM and assesses the number of breeding adults lost to the population. The EAM incorporates four different methods developed between 1978 and 2005. The study also considers the uncertainty in estimates for the lifestage data and, as such, performs sensitivity analyses to evaluate the confidence level achievable in such quantitative estimates for entrainment.

  17. Evaluation of Temperature and Stress Distribution on 2 Different Post Systems Using 3-Dimensional Finite Element Analysis

    Değer, Yalçın; Adigüzel, Özkan; Özer, Senem Yiğit; Kaya, Sadullah; Polat, Zelal Seyfioğlu; Bozyel, Bejna

    2015-01-01

    Background The mouth is exposed to thermal irritation from hot and cold food and drinks. Thermal changes in the oral cavity produce expansions and contractions in tooth structures and restorative materials. The aim of this study was to investigate the effect of temperature and stress distribution on 2 different post systems using the 3-dimensional (3D) finite element method. Material/Methods The 3D finite element model shows a labio-lingual cross-sectional view of the endodontically treated upper right central incisor and supporting periodontal ligament with bone structures. Stainless steel and glass fiber post systems with different physical and thermal properties were modelled in the tooth restored with composite core and ceramic crown. We placed 100 N static vertical occlusal loading onto the center of the incisal surface of the tooth. Thermal loads of 0°C and 65°C were applied on the model for 5 s. Temperature and thermal stresses were determined on the labio-lingual section of the model at 6 different points. Results The distribution of stress, including thermal stress values, was calculated using 3D finite element analysis. The stainless steel post system produced more temperature and thermal stresses on the restorative materials, tooth structures, and posts than did the glass fiber reinforced composite posts. Conclusions Thermal changes generated stresses in the restorative materials, tooth, and supporting structures. PMID:26615495

  18. Comparing our results - a GML3-based application schema for the exchange of 3-dimensional geomorphic objects

    Löwner, M.-O.

    2009-04-01

    We present a GML-based application schema for the representation and exchange of true 3-dimensional geomorphologic landforms like rock slopes and their internal and interconnecting processes. Worldwide researchers of very different disciplines work on the behaviour of steep rock slopes and free faces. This behaviour is determined by many factors e.g. the rock slope's geometry, its internal structures, and processes that work on and below the surface. Erosion rates are of interest in terms of both, the geomorphological sediment approach as well as natural risk assessment. The latter refers to buildings and infrastructure in the close vicinity of free faces. While these topics are multi disciplinary research areas an agreement of data description and data exchange is essential to compare results. Geographical data can be shared over the Internet using Web Feature Services. The precondition is the development of a semantic model or ontology based on international standards like GML3 as an implementation of the ISO 109107 and others. Here we propose such an application model for data exchange purposes that fulfils the following requirements: First, an object-oriented view of landforms with a true 3D geometric data format was established. Second, the internal structure and attributes of landforms can be stored. Third, the interaction of processes and landforms is represented. Fourth, the change of all these mentioned attributes over time was considered.

  19. Arrays of ZnO nanocolumns for 3-dimensional very thin amorphous and microcrystalline silicon solar cells

    We report on the hydrothermal growth of high quality arrays of single crystalline zinc oxide (ZnO) nanocolumns, oriented perpendicularly to the transparent conductive oxide substrate. In order to obtain precisely defined spacing and arrangement of ZnO nanocolumns over an area up to 0.5 cm2, we used electron beam lithography. Vertically aligned ZnO (multicrystalline or single crystals) nanocolumns were grown in an aqueous solution of zinc nitrate hexahydrate and hexamethylenetetramine at 95 °C, with a growth rate 0.5 ÷ 1 μm/h. The morphology of the nanostructures was visualized by scanning electron microscopy. Such nanostructured ZnO films were used as a substrate for the recently developed 3-dimensional thin film silicon (amorphous, microcrystalline) solar cell, with a high efficiency potential. The photoelectrical and optical properties of the ZnO nanocolumns and the silicon absorber layers of these type nanostructured solar cells were investigated in details. - Highlights: • Vertically-oriented ZnO nanocolumns were grown by hydrothermal method. • The ZnO nanocolumns were grown over an area of 0.5 cm2. • For precise arrangement of the ZnO nanocolumns electron beam lithography was used. • We report on 3-D design of nanostructured solar cell. • Optical thickness of nanostructured cell was three times higher compared to flat cell

  20. Metal organic framework derived magnetically separable 3-dimensional hierarchical Ni@C nanocomposites: Synthesis and adsorption properties

    Song, Yixuan; Qiang, Tingting; Ye, Ming; Ma, Qiuyang; Fang, Zhen

    2015-12-01

    Design an effective absorbent that has high surface area, and perfect recyclable is imperative for pollution elimination. Herein, we report a facile two-step strategy to fabricate magnetically separable 3-dimensional (3D) hierarchical carbon-coated nickel (Ni@C) nanocomposites by calcinating nickel based metal organic framework (Ni3(OH)2(C8H4O4)2(H2O)4). SEM and TEM images illuminate that the nanocomposites were constructed by 8 nm nickel nanoparticle encapsulated in 3D flake like carbon. The specific surface area of the obtained nanocomposites is up to 120.38 m2 g-1. Room temperature magnetic measurement indicates the nanocomposites show soft magnetism property, which endows the nanocomposites with an ideal fast magnetic separable property. The maximum adsorption capacity of the nanocomposites for rhodamine B is 84.5 mg g-1. Furthermore, the nanocomposites also exhibit a high adsorption capacity for heavy metal ions. The adsorbent can be very easily separated from the solution by using a common magnet without exterior energy. The as-prepared Ni@C nanocomposites can apply in waste water treatment on a large-scale as a new adsorbent with high efficiency and excellent recyclability.

  1. Meta-analysis of incidence of early lung toxicity in 3-dimensional conformal irradiation of breast carcinomas

    This meta-analysis aims to ascertain the significance of early lung toxicity with 3-Dimensional (3D) conformal irradiation for breast carcinomas and identify the sub-groups of patients with increased risk. Electronic databases, reference sections of major oncological textbooks and identified studies were searched for synonyms of breast radiotherapy and radiation pneumonitis (RP). Major studies in thoracic irradiation were reviewed to identify factors frequently associated with RP. Meta-analysis for RP incidence estimation and odds ratio calculation were carried out. The overall incidence of Clinical and Radiological RP is 14% and 42% respectively. Ten studies were identified. Dose-volume Histogram (DVH) related dosimetric factors (Volume of lung receiving certain dose, Vdose and Mean lung Dose, MLD), supraclavicular fossa (SCF) irradiation and age are significantly associated with RP, but not sequential chemotherapy and concomitant use of Tamoxifen. A poorly powered study in IMN group contributed to the negative finding. Smoking has a trend towards protective effect against RP. Use of other modalities may be considered when Ipsilateral lung V20Gy > 30% or MLD > 15 Gy. Extra caution is needed in SCF and IMN irradiation as they are likely to influence these dosimetric parameters

  2. Application of optical coherence tomography (OCT) as a 3-dimensional imaging technique for roll-to-roll coated polymer solar cells

    Thrane, Lars; Jørgensen, Thomas Martini; Jørgensen, Mikkel;

    2012-01-01

    The 3-dimensional imaging of complete polymer solar cells prepared by roll-to-roll coating was carried out using high-resolution 1322 nm optical coherence tomography (OCT) system. We found it possible to image the 3-dimensional structure of the entire solar cell that comprises UV-barrier, barrier...... material, adhesive, substrate and active solar cell multilayer structure. The achievable resolution was 12 μm in the lateral plane and 4.5 μm in the depth. We found that the OCT technique could be readily employed to identify coating defects in the functional layers. We finally identify the limitations of...

  3. Electromagnetic tracking and steering for catheter navigation

    O'Donoghue, Kilian

    2014-01-01

    This thesis explores the use of electromagnetics for both steering and tracking of medical instruments in minimally invasive surgeries. The end application is virtual navigation of the lung for biopsy of early stage cancer nodules. Navigation to the peripheral regions of the lung is difficult due to physical dimensions of the bronchi and current methods have low successes rates for accurate diagnosis. Firstly, the potential use of DC magnetic fields for the actuation of catheter devices with ...

  4. Five-Year Outcomes, Cosmesis, and Toxicity With 3-Dimensional Conformal External Beam Radiation Therapy to Deliver Accelerated Partial Breast Irradiation

    Rodríguez, Núria, E-mail: nrodriguez@parcdesalutmar.cat [Department of Radiation Oncology, Hospital de la Esperanza, Parc de Salut MAR, Barcelona (Spain); Universidad Pompeu Fabra, Barcelona (Spain); Sanz, Xavier [Department of Radiation Oncology, Hospital de la Esperanza, Parc de Salut MAR, Barcelona (Spain); Universidad Pompeu Fabra, Barcelona (Spain); Dengra, Josefa [Department of Radiation Oncology, Hospital de la Esperanza, Parc de Salut MAR, Barcelona (Spain); Foro, Palmira [Department of Radiation Oncology, Hospital de la Esperanza, Parc de Salut MAR, Barcelona (Spain); Universidad Pompeu Fabra, Barcelona (Spain); Membrive, Ismael; Reig, Anna [Department of Radiation Oncology, Hospital de la Esperanza, Parc de Salut MAR, Barcelona (Spain); Quera, Jaume [Department of Radiation Oncology, Hospital de la Esperanza, Parc de Salut MAR, Barcelona (Spain); Universidad Pompeu Fabra, Barcelona (Spain); Fernández-Velilla, Enric; Pera, Óscar; Lio, Jackson; Lozano, Joan [Department of Radiation Oncology, Hospital de la Esperanza, Parc de Salut MAR, Barcelona (Spain); Algara, Manuel [Department of Radiation Oncology, Hospital de la Esperanza, Parc de Salut MAR, Barcelona (Spain); Universidad Pompeu Fabra, Barcelona (Spain)

    2013-12-01

    Purpose: To report the interim results from a study comparing the efficacy, toxicity, and cosmesis of breast-conserving treatment with accelerated partial breast irradiation (APBI) or whole breast irradiation (WBI) using 3-dimensional conformal external beam radiation therapy (3D-CRT). Methods and Materials: 102 patients with early-stage breast cancer who underwent breast-conserving surgery were randomized to receive either WBI (n=51) or APBI (n=51). In the WBI arm, 48 Gy was delivered to the whole breast in daily fractions of 2 Gy, with or without additional 10 Gy to the tumor bed. In the APBI arm, patients received 37.5 Gy in 3.75 Gy per fraction delivered twice daily. Toxicity results were scored according to the Radiation Therapy Oncology Group Common Toxicity Criteria. Skin elasticity was measured using a dedicated device (Multi-Skin-Test-Center MC-750-B2, CKelectronic-GmbH). Cosmetic results were assessed by the physician and the patients as good/excellent, regular, or poor. Results: The median follow-up time was 5 years. No local recurrences were observed. No significant differences in survival rates were found. APBI reduced acute side effects and radiation doses to healthy tissues compared with WBI (P<.01). Late skin toxicity was no worse than grade 2 in either group, without significant differences between the 2 groups. In the ipsilateral breast, the areas that received the highest doses (ie, the boost or quadrant) showed the greatest loss of elasticity. WBI resulted in a greater loss of elasticity in the high-dose area compared with APBI (P<.05). Physician assessment showed that >75% of patients in the APBI arm had excellent or good cosmesis, and these outcomes appear to be stable over time. The percentage of patients with excellent/good cosmetic results was similar in both groups. Conclusions: APBI delivered by 3D-CRT to the tumor bed for a selected group of early-stage breast cancer patients produces 5-year results similar to those achieved with

  5. Adaptive constraints for feature tracking

    K. I. Hodges

    1999-01-01

    In this paper extensions to an existing tracking algorithm are described. These extensions implement adaptive tracking constraints in the form of regional upper-bound displacements and an adaptive track smoothness constraint. Together, these constraints make the tracking algorithm more flexible than the original algorithm (which used fixed tracking parameters) and provide greater confidence in the tracking results. The result of applying the new algorithm to high-resolution ...

  6. TrackPunch

    Weigert, Jonas

    2014-01-01

    TrackPunch is a music streaming service that turns music discovery into a social experience. Our platform provides users with an elegant way to find new music based on their friends' listening habits. We aggregate music data from top music sources to index who influences each user individually. Our users can search, listen to, and share high quality content from GrooveShark, and SoundCloud, and YouTube for free. On TrackPunch, your next favorite song awaits. TrackPunch is a music streaming...

  7. Real-Time Tumor Tracking in the Lung Using an Electromagnetic Tracking System

    Shah, Amish P., E-mail: Amish.Shah@orlandohealth.com [Department of Radiation Oncology, MD Anderson Cancer Center Orlando, Orlando, Florida (United States); Kupelian, Patrick A.; Waghorn, Benjamin J.; Willoughby, Twyla R.; Rineer, Justin M.; Mañon, Rafael R.; Vollenweider, Mark A.; Meeks, Sanford L. [Department of Radiation Oncology, MD Anderson Cancer Center Orlando, Orlando, Florida (United States)

    2013-07-01

    Purpose: To describe the first use of the commercially available Calypso 4D Localization System in the lung. Methods and Materials: Under an institutional review board-approved protocol and an investigational device exemption from the US Food and Drug Administration, the Calypso system was used with nonclinical methods to acquire real-time 4-dimensional lung tumor tracks for 7 lung cancer patients. The aims of the study were to investigate (1) the potential for bronchoscopic implantation; (2) the stability of smooth-surface beacon transponders (transponders) after implantation; and (3) the ability to acquire tracking information within the lung. Electromagnetic tracking was not used for any clinical decision making and could only be performed before any radiation delivery in a research setting. All motion tracks for each patient were reviewed, and values of the average displacement, amplitude of motion, period, and associated correlation to a sinusoidal model (R{sup 2}) were tabulated for all 42 tracks. Results: For all 7 patients at least 1 transponder was successfully implanted. To assist in securing the transponder at the tumor site, it was necessary to implant a secondary fiducial for most transponders owing to the transponder's smooth surface. For 3 patients, insertion into the lung proved difficult, with only 1 transponder remaining fixed during implantation. One patient developed a pneumothorax after implantation of the secondary fiducial. Once implanted, 13 of 14 transponders remained stable within the lung and were successfully tracked with the tracking system. Conclusions: Our initial experience with electromagnetic guidance within the lung demonstrates that transponder implantation and tracking is achievable though not clinically available. This research investigation proved that lung tumor motion exhibits large variations from fraction to fraction within a single patient and that improvements to both transponder and tracking system are still

  8. LHCb VELO Tracking Resolutions

    Alexander, Michael

    2011-01-01

    The excellent tracking performance of the Vertex Locator (VELO) at LHCb is presented. The resolutions it achieves on single hits, impact parameters, and primary vertex positions are shown, with particular attention paid to measurement of impact parameters.

  9. Case Analysis Tracking System

    National Archives and Records Administration — CATS tracks Public and Federal Agency Reference Requests for OPF (Official Personnel Folder) , EMF (Employee Medical Folder), and eOPF (electronic Official...

  10. 1996 : Track Count Protocol

    US Fish and Wildlife Service, Department of the Interior — The goal of St. Vincent National Wildlife Refuge's Track Count Protocol is to provide an index to the population size of game animals inhabiting St. Vincent Island.

  11. Track Loading Vehicle - TLV

    Federal Laboratory Consortium — The TLV is designed to apply forces close to the strength limits of the rails and other track structure components, such as ties, rail fasteners, and ballast, while...

  12. Financial Disclosure Tracking System

    US Agency for International Development — USAID's FDTS identifies personal service contractors and local employees who should file disclosure reports. It tracks late filers and identifies those who must...

  13. Neonate turtle tracking data

    National Oceanic and Atmospheric Administration, Department of Commerce — The objectives of this project are to use novel satellite tracking methods to provide improved estimation of threats at foraging areas and along migration routes...

  14. Human Capital Tracking Tool

    Department of Transportation — AVS is now required to collect, track, and report on data from the following Flight, Business and Workforce Plan. The Human Resource Management's Performance Target...

  15. Energy Tracking Software Platform

    Ryan Davis; Nathan Bird; Rebecca Birx; Hal Knowles

    2011-04-04

    Acceleration has created an interactive energy tracking and visualization platform that supports decreasing electric, water, and gas usage. Homeowners have access to tools that allow them to gauge their use and track progress toward a smaller energy footprint. Real estate agents have access to consumption data, allowing for sharing a comparison with potential home buyers. Home builders have the opportunity to compare their neighborhood's energy efficiency with competitors. Home energy raters have a tool for gauging the progress of their clients after efficiency changes. And, social groups are able to help encourage members to reduce their energy bills and help their environment. EnergyIT.com is the business umbrella for all energy tracking solutions and is designed to provide information about our energy tracking software and promote sales. CompareAndConserve.com (Gainesville-Green.com) helps homeowners conserve energy through education and competition. ToolsForTenants.com helps renters factor energy usage into their housing decisions.

  16. Human Capital Tracking Tool

    Department of Transportation — AVS is now required to collect, track, and report on data from the following Flight, Business and Workforce Plan. The Human Resource Management’s Performance Target...

  17. LHCb on track

    2006-01-01

    On 7 and 8 June 2006, the last large component of the LHCb experiment was lowered into the cavern. This 10-tonne, 18-metre long metal structure known as 'the bridge' will support the LHCb tracking system.

  18. Fabrication and electrical characteristics of graphene-based charge-trap memory devices

    Lee, Se J. [Dongguk University, Seoul (Korea, Republic of); Kim, Sung M.; Song, Emil B.; Wang, Kang L. [University of California Los Angeles, CA (United States); Seo, David H. [Samsung Electronics Co. Ltd., Yongin (Korea, Republic of); Seo, Sun A. [Sejong University, Seoul (Korea, Republic of)

    2012-07-15

    Graphene-based non-volatile charge-trap memory devices were fabricated and characterized to investigate the implementation effect of both 2-dimensional graphene and the 3-dimensional memory structure. The single-layer-graphene (SLG) channel devices exhibit larger memory windows compared to the multi-layer-graphene (MLG) channel devices. This originates from the gate-coupling strength being larger in SLG devices than in MLG devices. Namely, the electrostatic charge screening effect becomes enhanced upon increasing the number of graphene layers; therefore, the gate tunability is reduced in MLG compared to SLG. The results suggest that SLG is more desirable for memory applications than MLG.

  19. Thermonuclear device

    Purpose: To provide a thermonuclear device which causes the thermal expansion of a vacuum vessel to freely escape without refraining and is provided with a vacuum vessel having an excellently large rigidity against an electromagnetic force transiently acting whils retaining a predetermined position. Constitution: The device for supporting the vacuum vessel comprises piston cylinder means in which a pressurized fluid is sealed in cylinder chambers at both sides of a piston and with which these cylinder chambers are liquidly communicated through throttling means, and means for fixing any of the piston and the cylinder of said piston cylinder means to a bed-plate retaining the support device and another to the vacuum vessel. The vacuum vessel is retained through a connecting rod or the like connected to the cylinder of the support device. (Aizawa, K.)

  20. Location Update Accuracy in Human Tracking system using Zigbee modules

    Amutha, B

    2009-01-01

    A location and tracking system becomes very important to our future world of pervasive computing. An algorithm for accurate location information is being incorporated in the human walking model and in the blind human walking model. We want to implement an accurate location tracking mechanism using Zigbee along with GPS, we have incorporated Markov chain algorithm for establishing accuracy. Normal Human and blind human walking steps were actually taken in the known environment within our campus and the Markov chain algorithm was used for smoothening the stepwise variation in location updates. A comparison module is also implemented to show the difference between normal human and blind human walking step variations. This accuracy is used for designing a blind tracking device so that the device can be used by the blind for finding the path without obstacles. We present a system level approach to localizing and tracking Human and blind users on a basis of different sources of location information [GPS plus Zigbee...

  1. Application of a parallel 3-dimensional hydrogeochemistry HPF code to a proposed waste disposal site at the Oak Ridge National Laboratory

    The objectives of this study are (1) to parallelize a 3-dimensional hydrogeochemistry code and (2) to apply the parallel code to a proposed waste disposal site at the Oak Ridge National Laboratory (ORNL). The 2-dimensional hydrogeochemistry code HYDROGEOCHEM, developed at the Pennsylvania State University for coupled subsurface solute transport and chemical equilibrium processes, was first modified to accommodate 3-dimensional problem domains. A bi-conjugate gradient stabilized linear matrix solver was then incorporated to solve the matrix equation. We chose to parallelize the 3-dimensional code on the Intel Paragons at ORNL by using an HPF (high performance FORTRAN) compiler developed at PGI. The data- and task-parallel algorithms available in the HPF compiler proved to be highly efficient for the geochemistry calculation. This calculation can be easily implemented in HPF formats and is perfectly parallel because the chemical speciation on one finite-element node is virtually independent of those on the others. The parallel code was applied to a subwatershed of the Melton Branch at ORNL. Chemical heterogeneity, in addition to physical heterogeneities of the geological formations, has been identified as one of the major factors that affect the fate and transport of contaminants at ORNL. This study demonstrated an application of the 3-dimensional hydrogeochemistry code on the Melton Branch site. A uranium tailing problem that involved in aqueous complexation and precipitation-dissolution was tested. Performance statistics was collected on the Intel Paragons at ORNL. Implications of these results on the further optimization of the code were discussed

  2. Computerized identification and classification of stance phases as made by front og hind feet of walking cows based on 3-dimensional ground reaction forces

    Skjøth, F; Thorup, Vivi Mørkøre; do Nascimento, Omar Feix; Ingvartsen, Klaus Lønne; Rasmussen, Morten Dam; Voigt, Michael

    2013-01-01

    force information. Features were derived from measurements made using two parallel 3-dimensional force plates. The approach presented is based on clustering of Centre of Pressure (COP) trace points over space and time, combined with logical sequencing of stance phases based on the dynamics of...

  3. Nanostructural evolution of Cr-rich precipitates in a Cu-Cr-Zr alloy during heat treatment studied by 3 dimensional atom probe

    Hatakeyama, Masahiko; Toyama, Takeshi; Nagai, Yasuyoshi;

    2008-01-01

    Nanostructural evolution of Cr (Cr-rich) precipitates in a Cu-0.78%Cr-0.13%Zr alloy has been studied after aging and overaging (reaging) by laser assisted local electrode 3 dimensional atom probe (Laser-LEAP). This material is a candidate for the first wall and divertor components of future fusion...

  4. Digitization of streamer tracks

    The digitization of streamer tracks is performed by use of a 383x512 element CCD image sensor and a video digitizer in the CAMAC format. By this means, an on-line measurement was carried out on the deflection angles of β-rays due to multiple Coulomb scattering in neon gas. The results indicates the general feasibility of digital recording of track data. (orig.)

  5. Provenance Tracking in UNICORE

    Giesler, André; Hagemeier, Björn; Czekala, Myriam

    2015-01-01

    The automated tracking and storage of provenance information allows users of scientific workflow systems to validate and reproduce results of their experiments. Until now, UNICORE has not been providing comprehensive provenance features. For this reason, we plan to equip UNICORE with a flexible provenance tracking mechanism. Our goal is to ensure a suitable traceability of job and workflow processes into a description format supporting query capabilities and interoperability. In a first step,...

  6. Ferroelectric devices

    Uchino, Kenji

    2009-01-01

    Updating its bestselling predecessor, Ferroelectric Devices, Second Edition assesses the last decade of developments-and setbacks-in the commercialization of ferroelectricity. Field pioneer and esteemed author Uchino provides insight into why this relatively nascent and interdisciplinary process has failed so far without a systematic accumulation of fundamental knowledge regarding materials and device development.Filling the informational void, this collection of information reviews state-of-the-art research and development trends reflecting nano and optical technologies, environmental regulat

  7. Accuracy Evaluation of a 3-Dimensional Surface Imaging System for Guidance in Deep-Inspiration Breath-Hold Radiation Therapy

    Purpose: To investigate the applicability of 3-dimensional (3D) surface imaging for image guidance in deep-inspiration breath-hold radiation therapy (DIBH-RT) for patients with left-sided breast cancer. For this purpose, setup data based on captured 3D surfaces was compared with setup data based on cone beam computed tomography (CBCT). Methods and Materials: Twenty patients treated with DIBH-RT after breast-conserving surgery (BCS) were included. Before the start of treatment, each patient underwent a breath-hold CT scan for planning purposes. During treatment, dose delivery was preceded by setup verification using CBCT of the left breast. 3D surfaces were captured by a surface imaging system concurrently with the CBCT scan. Retrospectively, surface registrations were performed for CBCT to CT and for a captured 3D surface to CT. The resulting setup errors were compared with linear regression analysis. For the differences between setup errors, group mean, systematic error, random error, and 95% limits of agreement were calculated. Furthermore, receiver operating characteristic (ROC) analysis was performed. Results: Good correlation between setup errors was found: R2=0.70, 0.90, 0.82 in left-right, craniocaudal, and anterior-posterior directions, respectively. Systematic errors were ≤0.17 cm in all directions. Random errors were ≤0.15 cm. The limits of agreement were −0.34-0.48, −0.42-0.39, and −0.52-0.23 cm in left-right, craniocaudal, and anterior-posterior directions, respectively. ROC analysis showed that a threshold between 0.4 and 0.8 cm corresponds to promising true positive rates (0.78-0.95) and false positive rates (0.12-0.28). Conclusions: The results support the application of 3D surface imaging for image guidance in DIBH-RT after BCS.

  8. Analysis of power spectrum density in the PWR fuel assembly using the 3-dimensional LES turbulent model of Fluent-6

    Turbulence-induced vibration is an important concern in the design of the spacer grids of nuclear power plants. This study addresses numerically and statistically the effects of random pressures due to turbulent flows upon the fluctuating responses to the power spectrum density in one-dimensional nuclear fuel rod supported simply by the spacer grids. The dynamic forces produced by the pressure fluctuation on the rod surface are calculated by the 3-dimensional large eddy simulation turbulent model in Fluent-6 to simulate the flow field in the same as being measured empirically via pressure transducers. To acquire response to fluctuating pressure, the mode response equation of vibration is used in case of a cylindrical rod in one-dimensional case. The first modal longitudinal joint acceptance integral including a coherence function is also an important parameter affecting the displacement in the form of the root-mean-square of modal responses along with the damping ratio. The root mean square of the lateral displacement in addition to the natural frequency is studied using the power spectral density (PSD) and the longitudinal joint acceptance integral in a fundamental mode. The PSD random pressure on the middle point of the rod shows the typical turbulence pattern: the PSD energy decreases slightly in a low frequency region, but decreases rapidly and linearly with frequency as the frequency exceeds a certain value. The PSD in a very high frequency region is obtained assuming the slope is constant in a logarithmic graph after smoothing the PSD. It turns out that the root-mean-square of displacement ranges from 15 to 40 micro-meter at the maximum value using the mode response equation under the modal damping ratio ranging from 0.01 to 0.05. (authors)

  9. Effects of Non-Uniform Wall Heating on Thermal and Momentum Fields in a 3-Dimensional Urban Environment

    Nazarian, N.; Kleissl, J. P.

    2014-12-01

    As urbanization progresses, microclimate modifications are also aggravated and the increasing environmental concerns call for more sophisticated methods of urban microclimate analysis. Comprehensive numerical simulations for a clear summer day in southern California are performed in a compact low-rise urban environment. The effect of realistic unsteady, non-uniform thermal forcing, that is caused by solar insolation and inter-building shadowing on thermal and flow conditions are analyzed based on Algebraic Wall-Modeled Large Eddy Simulation (LES) model. The urban thermal field is influenced by urban density, material properties and local weather conditions, as well as urban canyon flow. Urban canyon conditions are translated into vertical and horizontal bulk Richardson numbers indicating atmospheric instability and solar tilt with respect to the momentum forcing of the canyon vortex, respectively. The effect of roof heating is found to be critical on the vortex formation between buildings when the vertical bulk Richardson number is low. Variations of Convective Heat Transfer Coefficients (CHTCs) along building walls are studied and the street canyon ventilation performance is characterized by the mean of air exchange rate (ACH). It is found that volumetric air exchange from street canyons, as well as the distribution of heat transfer along the wall depends strongly on the three-dimensional orientation of the heated wall in relation to wind direction. For example, air removal increases by surface heating and is larger when the leeward wall is heated. In summary, we demonstrate the importance of considering complex realistic conditions on 3-dimensional thermal and momentum fields in Urban Environments.

  10. Absence of toxicity with hypofractionated 3-dimensional radiation therapy for inoperable, early stage non-small cell lung cancer

    Hypofractionated radiotherapy may overcome repopulation in rapidly proliferating tumors such as lung cancer. It is more convenient for the patients and reduces health care costs. This study reports our results on patients with medically inoperable, early stage, non-small cell lung cancer (NSCLC) treated with hypofractionation. Stage T1-2N0 NSCLC patients were treated with hypofractionation alone, 52.5 Gy/15 fractions, in 3 weeks, with 3-dimensional conformal planning. T1-2N1 patients with the hilar lymphnode close to the primary tumor were also eligible for this treatment. We did not use any approach to reduce respiratory motion, but it was monitored in all patients. Elective nodal radiotherapy was not performed. Routine follow up included assessment for acute and late toxicity and radiological tumor response. Median follow up time was 29 months for the surviving patients. Thirty-two patients with a median age of 76 years, T1 = 15 and T2 = 17, were treated. Median planning target volume (PTV) volume was 150cc and median V16 of both lungs was 13%. The most important finding of this study is that toxicity was minimal. Two patients had grade ≤ 2 acute pneumonitis and 3 had mild (grade 1) acute esophagitis. There was no late toxicity. Actuarial 1 and 2-year overall survival rates are 78% and 56%, cancer specific survival rates (CSS) are 90% and 74%, and local relapse free survival rates are 93% and 76% respectively. 3-D planning, involved field hypofractionation at a dose of 52.5 Gy in 15 daily fractions is safe, well tolerated and easy radiation treatment for medically inoperable lung cancer patients. It shortens by half the traditional treatment. Results compare favorably with previously published studies. Further studies are needed to compare similar technique with other treatments such as surgery and stereotactic radiotherapy

  11. Automorphosis of higher plants in space is simulated by using a 3-dimensional clinostat or by application of chemicals

    Miyamoto, K.; Hoshino, T.; Hitotsubashi, R.; Yamashita, M.; Ueda, J.

    In STS-95 space experiments, etiolated pea seedlings grown under microgravity conditions in space have shown to be automorphosis. Epicotyls were almost straight but the most oriented toward the direction far from their cotyledons with ca. 45 degrees from the vertical line as compared with that on earth. In order to know the mechanism of microgravity conditions in space to induce automorphosis, we introduced simulated microgravity conditions on a 3-dimensional clinostat, resulting in the successful induction of automorphosis-like growth and development. Kinetic studies revealed that epicotyls bent at their basal region or near cotyledonary node toward the direction far from the cotyledons with about 45 degrees in both seedlings grown on 1 g and under simulated microgravity conditions on the clinostat within 48 hrs after watering. Thereafter epicotyls grew keeping this orientation under simulated microgravity conditions on the clinostat, whereas those grown on 1 g changed the growth direction to vertical direction by negative gravitropic response. Automorphosis-like growth and development was induced by the application of auxin polar transport inhibitors (2,3,5-triiodobenzoic acid, N-(1-naphtyl)phthalamic acid, 9-hydroxyfluorene-9-carboxylic acid), but not an anti-auxin, p-chlorophenoxyisobutyric acid. Automorphosis-like epicotyl bending was also phenocopied by the application of inhibitors of stretch-activated channel, LaCl3 and GdCl3, and by the application of an inhibitor of protein kinase, cantharidin. These results suggest that automorphosis-like growth in epicotyls of etiolated pea seedlings is due to suppression of negative gravitropic responses on 1 g, and the growth and development of etiolated pea seedlings under 1 g conditions requires for normal activities of auxin polar transport and the gravisensing system relating to calcium channels. Possible mechanisms of perception and transduction of gravity signals to induce automorphosis are discussed.

  12. Joint environmental assessment for western NPR-1 3-dimensional seismic project at Naval Petroleum Reserve No. 1, Kern County, California

    NONE

    1996-05-01

    The Department of Energy (DOE), in conjunction with the Bureau of Land Management (BLM), has prepared an Environmental Assessment (DOE/EA-1124) to identify and evaluate the potential environmental impacts of the proposed geophysical seismic survey on and adjacent to the Naval Petroleum Reserve No.1 (NPR-1), located approximately 35 miles west of Bakersfield, California. NPR-1 is jointly owned and operated by the federal government and Chevron U.S.A. Production Company. The federal government owns about 78 percent of NPR-1, while Chevron owns the remaining 22 percent. The government`s interest is under the jurisdiction of DOE, which has contracted with Bechtel Petroleum Operations, Inc. (BPOI) for the operation and management of the reserve. The 3-dimensional seismic survey would take place on NPR-1 lands and on public and private lands adjacent to NPR-1. This project would involve lands owned by BLM, California Department of Fish and Game (CDFG), California Energy Commission (CEC), The Nature Conservancy, the Center for Natural Lands Management, oil companies (Chevron, Texaco, and Mobil), and several private individuals. The proposed action is designed to provide seismic data for the analysis of the subsurface geology extant in western NPR-1 with the goal of better defining the commercial limits of a currently producing reservoir (Northwest Stevens) and three prospective hydrocarbon bearing zones: the {open_quotes}A Fan{close_quotes} in Section 7R, the 19R Structure in Section 19R, and the 13Z Structure in Section 13Z. Interpreting the data is expected to provide NPR-1 owners with more accurate locations of structural highs, faults, and pinchouts to maximize the recovery of the available hydrocarbon resources in western NPR-1. Completion of this project is expected to increase NPR-1 recoverable reserves, and reduce the risks and costs associated with further exploration and development in the area.

  13. Construction of 3-dimensional ZnO-nanoflower structures for high quantum and photocurrent efficiency in dye sensitized solar cell

    Graphical abstract: - Highlights: • The structural and optical characterizations of ZnO nanoflowers were carried out on ITO by hydrothermal method. • Dye sensitized solar cell based ZnO nanoflowers were constructed on substrate. • The surface morphology effect on quantum efficiency and solar conversion efficiency were investigated. - Abstract: 3-dimensional ZnO nanoflower were obtained on FTO (F:SnO2) substrate by hydrothermal method in order to produce high efficiency dye sensitized solar cells (DSSCs). We showed that nanoflowers structures have nanoscale branches that stretch to fill gaps on the substrate and these branches of nano-leaves provide both a larger surface area and a direct pathway for electron transport along the channels. It was found that the solar conversion efficiency and quantum efficiency (QE) or incident photon to current conversion efficiencies (IPCE) is highly dependent on nanoflower surface due to high electron injection process. The highest solar conversion efficiency of 5.119 and QE of 60% was obtained using ZnO nanoflowers/N719 dye/I−/I−3 electrolyte. In this study, three dimensional (3D)-nanoflower and one dimensional (1D)-nanowires ZnO nanostructures were also compared against each other in respect to solar conversion efficiency and QE measurements. In the case of the 1D-ZnO nanowire conversion efficiency (η) of 2.222% and IPCE 47% were obtained under an illumination of 100 mW/cm2. It was confirmed that the performance of the 3D-nanoflowers was better than about 50% that of the 1D-nanowire dye-sensitized solar cells

  14. The quantified self a sociology of self-tracking

    Lupton, Deborah

    2016-01-01

    With the advent of digital devices and software, self-tracking practices have gained new adherents and have spread into a wide array of social domains. The Quantified Self movement has emerged to promote 'self knowledge through numbers'. In this ground-breaking book, Deborah Lupton critically analyses the social, cultural and political dimensions of contemporary self-tracking and identifies the concepts of selfhood, human embodiment and the value of data that underpin them.

  15. Science and technology with nuclear tracks in solids

    Buford-Price, P

    2005-01-01

    Fission track dating has greatly expanded its usefulness to geology over the last 40 years. It is central to thermochronology—the use of shortened fission tracks to decipher the thermal history, movement, and provenance of rocks. When combined with other indicators, such as zircon color and (U–Th)/He, a range of temperatures from C to C can be studied. Combining fission track analysis with cosmogenic nuclide decay rates, one can study landscape development and denudation of passive margins. Technological applications have expanded from biological filters, radon mapping, and dosimetry to the use of ion track microtechnology in microlithography, micromachining by ion track etching, microscopic field emission tips, magnetic nanowires as magnetoresistive sensors, microfluidic devices, physiology of ion channels in single cells, and so on. In nuclear and particle physics, relatively insensitive glass detectors have been almost single-handedly responsible for our knowledge of cluster radioactivity, and plastic ...

  16. An Improved Variable-Frequency Drive Based on Current Tracking

    Zhiwei He

    2013-11-01

    Full Text Available Variable frequency devices are widely used in many power systems. A current tracking based VFD is proposed in this paper. The output current is firstly fed back and compared with a standard sine wave, the difference of them is then used for a PI regulator to control the PWM signal, so as to change the output current accordingly to make it approach the standard sine wave. Simulation and experiments results show that the current tracking VFD not only has a fast dynamic response, high current tracking precision, current limiting ability, but also has small distortion of the output sine wave current and low loss of the motor.    

  17. In vivo tracking for cell therapies

    The success of a particular cellular therapy regime requires the therapeutic agent to migrate expeditiously to the intended target in sufficient numbers and to provoke a desirable response. There are many variables associated with the production, administration and host that need to be investigated to maximize the resulting therapeutic benefit. The large number of factors which may contribute to, or detract from, treatment efficacy can make therapy optimization an arduous procedure. Direct visualization of in vivo migration patterns using nuclear medicine techniques greatly assists the appraisal of the multitude of variables. Conventional radionuclide cell labeling is a proven, simple and sensitive technique which can provide whole body biodistribution information. Labeling with a PET isotope offers greater sensitivity, much improved 3-dimensional resolution and quantification. In general, current efforts are increasingly concentrating on this technology. Imaging studies can supply definitive evidence of successful targeting and allow quantification of the degree of migration to a particular site. Incorporating tracking studies into clinical trials of cell-based therapy at the earliest stage can provide proof of mechanism of the therapy and permit evaluation of the many contributory variables, even on a patient-by-patient basis

  18. Superconducting device

    The present invention provides a superconducting device to be used in a thermonuclear device and capable of unifying a current distribution in a parallel superconducting main line without consumption of liquid helium caused by Joule loss. That is, the device has a paired coils comprising a coil comprising one of plurality of superconducting wires and another coil comprising the other of plurality of superconducting wires and having a reverse winding or negative mutual inductance relative to the coil. A circuit comprising a portion of a main line is disposed to the one coil of the paired coils, and a circuit comprising the remainder of the main line is connected to the other coil each in series. The circuit has a parallel constitution. Such a constitution can provide an effect of unifying the current distribution in the main line without consumption of liquid helium due to Joule loss. (I.S.)

  19. A 3-Dimensional Model of Water-Bearing Sequences in the Dominguez Gap Region, Long Beach, California

    Ponti, Daniel J.; Ehman, Kenneth D.; Edwards, Brian D.; Tinsley, John C., III; Hildenbrand, Thomas; Hillhouse, John W.; Hanson, Randall T.; McDougall, Kristen; Powell, Charles L.; Wan, Elmira; Land, Michael; Mahan, Shannon; Sarna-Wojcicki, Andrei M.

    2007-01-01

    A 3-dimensional computer model of the Quaternary sequence stratigraphy in the Dominguez gap region of Long Beach, California has been developed to provide a robust chronostratigraphic framework for hydrologic and tectonic studies. The model consists of 13 layers within a 16.5 by 16.1 km (10.25 by 10 mile) square area and extends downward to an altitude of -900 meters (-2952.76 feet). Ten sequences of late Pliocene to Holocene age are identified and correlated within the model. Primary data to build the model comes from five reference core holes, extensive high-resolution seismic data obtained in San Pedro Bay, and logs from several hundred water and oil wells drilled in the region. The model is best constrained in the vicinity of the Dominguez gap seawater intrusion barrier where a dense network of subsurface data exist. The resultant stratigraphic framework and geologic structure differs significantly from what has been proposed in earlier studies. An important new discovery from this approach is the recognition of ongoing tectonic deformation throughout nearly all of Quaternary time that has impacted the geometry and character of the sequences. Anticlinal folding along a NW-SE trend, probably associated with Quaternary reactivation of the Wilmington anticline, has uplifted and thinned deposits along the fold crest, which intersects the Dominguez gap seawater barrier near Pacific Coast Highway. A W-NW trending fault system that approximately parallels the fold crest has also been identified. This fault progressively displaces all but the youngest sequences down to the north and serves as the southern termination of the classic Silverado aquifer. Uplift and erosion of fining-upward paralic sequences along the crest of the young fold has removed or thinned many of the fine-grained beds that serve to protect the underlying Silverado aquifer from seawater contaminated shallow groundwater. As a result of this process, the potential exists for vertical migration of

  20. Hydrogel Based 3-Dimensional (3D System for Toxicity and High-Throughput (HTP Analysis for Cultured Murine Ovarian Follicles.

    Hong Zhou

    Full Text Available Various toxicants, drugs and their metabolites carry potential ovarian toxicity. Ovarian follicles, the functional unit of the ovary, are susceptible to this type of damage at all stages of their development. However, despite of the large scale of potential negative impacts, assays that study ovarian toxicity are limited. Exposure of cultured ovarian follicles to toxicants of interest served as an important tool for evaluation of toxic effects for decades. Mouse follicles cultured on the bottom of a culture dish continue to serve an important approach for mechanistic studies. In this paper, we demonstrated the usefulness of a hydrogel based 3-dimensional (3D mouse ovarian follicle culture as a tool to study ovarian toxicity in a different setup. The 3D in vitro culture, based on fibrin alginate interpenetrating network (FA-IPN, preserves the architecture of the ovarian follicle and physiological structure-function relationship. We applied the novel 3D high-throughput (HTP in vitro ovarian follicle culture system to study the ovotoxic effects of an anti-cancer drug, Doxorobucin (DXR. The fibrin component in the system is degraded by plasmin and appears as a clear circle around the encapsulated follicle. The degradation area of the follicle is strongly correlated with follicle survival and growth. To analyze fibrin degradation in a high throughput manner, we created a custom MATLAB® code that converts brightfield micrographs of follicles encapsulated in FA-IPN to binary images, followed by image analysis. We did not observe any significant difference between manually processed images to the automated MATLAB® method, thereby confirming that the automated program is suitable to measure fibrin degradation to evaluate follicle health. The cultured follicles were treated with DXR at concentrations ranging from 0.005 nM to 200 nM, corresponding to the therapeutic plasma levels of DXR in patients. Follicles treated with DXR demonstrated decreased

  1. Developing The Solar Tracking System for Trough Solar Concentrator

    Nguyen Huy Bich

    2016-01-01

    Full Text Available The efficiency of the trough solar concentrator strongly depends on the position of its absorber surface with the sun.  Controlling the solar radiation concentrated collectors automatically tracking with the sun plays as the key factor to enhance the energy absorption. An automatic controlling device that can rotating the parabolic trough solar concentrator to the sun is calculated, designed, manufactured, and testing successfully. The experimental results show that the device tracks the sun during the day very well. The sensor has adjusted position of collector good when the intensity of solar radiation changes due to weather.

  2. Clean tracks for ATLAS

    2006-01-01

    First cosmic ray tracks in the integrated ATLAS barrel SCT and TRT tracking detectors. A snap-shot of a cosmic ray event seen in the different layers of both the SCT and TRT detectors. The ATLAS Inner Detector Integration Team celebrated a major success recently, when clean tracks of cosmic rays were detected in the completed semiconductor tracker (SCT) and transition radiation tracker (TRT) barrels. These tracking tests come just months after the successful insertion of the SCT into the TRT (See Bulletin 09/2006). The cosmic ray test is important for the experiment because, after 15 years of hard work, it is the last test performed on the fully assembled barrel before lowering it into the ATLAS cavern. The two trackers work together to provide millions of channels so that particles' tracks can be identified and measured with great accuracy. According to the team, the preliminary results were very encouraging. After first checks of noise levels in the final detectors, a critical goal was to study their re...

  3. Track finding efficiency in BABAR

    We describe several studies to measure the charged track reconstruction efficiency and asymmetry of the BABAR detector. The first two studies measure the tracking efficiency of a charged particle using τ and initial state radiation decays. The third uses the τ decays to study the asymmetry in tracking, the fourth measures the tracking efficiency for low momentum tracks, and the last measures the reconstruction efficiency of KS0 particles. The first section also examines the stability of the measurements vs. BABAR running periods

  4. AIRSHIP ATTITUDE TRACKING SYSTEM

    WANG Xiao-liang; SHAN Xue-xiong

    2006-01-01

    The attitude tracking control problem for an airship with parameter uncertainties and external disturbances was considered in this paper. The mathematical model of the airship attitude is a multi-input/multi-output uncertain nonlinear system. Based on the characteristics of this system, a design method of robust output tracking controllers was adopted based on the upper-bounds of the uncertainties. Using the input/output feedback linearization approach and Liapunov method, a control law was designed, which guarantees that the system output exponentially tracks the given desired output. The controller is easy to compute and complement. Simulation results show that, in the closed-loop system, precise attitude control is accomplished in spite of the uncertainties and external disturbances in the system.

  5. The STAR Tracking Upgrade

    Simon, Frank

    2007-01-01

    The STAR experiment at the Relativistic Heavy Ion Collider RHIC studies the new state of matter produced in relativistic heavy ion collisions and the spin structure of the nucleon in collisions of polarized protons. In order to improve the capabilities for heavy flavor measurements and the reconstruction of charged vector bosons an upgrade of the tracking system both in the central and the forward region is pursued. The challenging environments of high track multiplicity in heavy ion collisions and of high luminosity in polarized proton collisions require the use of new technologies. The proposed inner tracking system, optimized for heavy flavor identification, is using active pixel sensors close to the collision point and silicon strip technology further outward. Charge sign determination for electrons and positrons from the decay of W bosons will be provide by 6 large-area triple GEM disks currently under development. A prototype of the active pixel detectors has been tested in the STAR experiment, and an e...

  6. Stratification devices

    Andersen, Elsa; Furbo, Simon

    2008-01-01

    results in longer operation periods and improved utilization of the solar collector. Thermal stratification can be achieved, for example by using inlet stratification devices at all inlets to the storage tank. This paper presents how thermal stratification is established and utilized by means of inlet...

  7. Large Scale Wi-Fi tracking using a Botnet of Wireless Routers

    Rouveyrol, Pierre; Raveneau, Patrice; Cunche, Mathieu

    2015-01-01

    Wi-Fi tracking is a method relying on signals emitted by portable devices to track individuals for commercial, security or surveillance purposes. Wi-Fi tracking has the potential to passively track a large fraction of the population [12] and is therefore an ideal population surveillance technology and a serious privacy threat. We argue that Wi-Fi routers make an ideal building block to create a large scale Wi-Fi tracking system. This paper first presents the interesting features of Wi-Fi rout...

  8. Tracking Your Development

    Hennum, Kelly M

    2011-01-01

    This book provides you with the means to set development goals and to track your progress on achieving them. It can help you efficiently gather and make sense of information about your progress and avoid common pitfalls that can block your development. Tracking your development can be captures in a few steps: articulating your goal, creating an action plan, gathering information about your behavior, indentifying barriers and support, and revising your action plan. Taking these steps will greatly increase the likelihood of achieving your goals.

  9. Simple front tracking

    Glimm, J.; Grove, J.W.; Li, X.; Zhao, N.

    1999-04-01

    A new and simplified front tracking algorithm has been developed as an aspect of the extension of this algorithm to three dimensions. Here the authors emphasize two main results: (1) a simplified description of the microtopology of the interface, based on interface crossings with cell block edges, and (2) an improved algorithm for the interaction of a tracked contact discontinuity with an untracked shock wave. For the latter question, they focus on the post interaction jump at the contact, which is a purely 1D issue. Comparisons to other methods, including the level set method, are included.

  10. Spirit Leaves Telling Tracks

    2004-01-01

    Scientists have found clues about the nature of martian soil through analyzing wheel marks from the Mars Exploration Rover Spirit in this image. The image was taken by Spirit's rear hazard-identification camera just after the rover drove approximately 1 meter (3 feet) northwest off the Columbia Memorial Station (lander platform) early Thursday morning. That the wheel tracks are shallow indicates the soil has plenty of strength to support the moving rover. The well-defined track characteristics suggest the presence of very fine particles in the martian soil (along with larger particles). Scientists also think the soil may have some cohesive properties.

  11. Computationally efficient Bayesian tracking

    Aughenbaugh, Jason; La Cour, Brian

    2012-06-01

    In this paper, we describe the progress we have achieved in developing a computationally efficient, grid-based Bayesian fusion tracking system. In our approach, the probability surface is represented by a collection of multidimensional polynomials, each computed adaptively on a grid of cells representing state space. Time evolution is performed using a hybrid particle/grid approach and knowledge of the grid structure, while sensor updates use a measurement-based sampling method with a Delaunay triangulation. We present an application of this system to the problem of tracking a submarine target using a field of active and passive sonar buoys.

  12. The Tensor Track, IV

    Rivasseau, Vincent

    2016-01-01

    This note is a sequel to the previous series "Tensor Track I-III". Assuming some familiarity with the tensor track approach to quantum gravity, we provide a brief introduction to the developments of the last two years and to their corresponding bibliography. They center around understanding the interface between random matrices and random tensors through the intermediate field representation, finding new types of $1/N$ expansions by enhancing sub-leading tensor interactions, exploring the renormalization group flows in the tensor theory space, and developing the constructive aspects of the theory.

  13. 3-Dimensional numerical study of cooling performance of a heat sink with air-water flow through mini-channel

    Majumder, Sambit; Majumder, Abhik; Bhaumik, Swapan

    2016-07-01

    The present microelectronics market demands devices with high power dissipation capabilities having enhanced cooling per unit area. The drive for miniaturizing the devices to even micro level dimensions is shooting up the applied heat flux on such devices, resulting in complexity in heat transfer and cooling management. In this paper, a method of CPU processor cooling is introduced where active and passive cooling techniques are incorporated simultaneously. A heat sink consisting of fins is designed, where water flows internally through the mini-channel fins and air flows externally. Three dimensional numerical simulations are performed for large set of Reynolds number in laminar region using finite volume method for both developing flows. The dimensions of mini-channel fins are varied for several aspect ratios such as 1, 1.33, 2 and 4. Constant temperature (T) boundary condition is applied at heat sink base. Channel fluid temperature, pressure drop are analyzed to obtain best cooling option in the present study. It has been observed that as the aspect ratio of the channel decreases Nusselt number decreases while pressure drop increases. However, Nusselt number increases with increase in Reynolds number.

  14. Programmed device for coordinate measuring mechanisms

    The programmed device providing the automatic measurement of the coordinate of a continuously travelling carriage with stepwise control of the pitch and measurement range in wide limits is described. The matching of measured points at the direct and return travels of the carriage is within 50 mcm. The device was developed to automize the measurement of charged particles tracks by means of floating-wire method. It may be also used in different recorders

  15. Proof of confinement of static quarks in 3-dimensional U(1) lattice gauge theory for all values of the coupling constant

    We study the 3-dimensional pure U(1) lattice gauge theory with Villain action which is related to the 3-dimensional Z-ferro-magnet by an exact duality transformation (and also to a Coulomb system). We show that its string tension α is nonzero for all values of the coupling constant g2, and obeys and bound α >= const x msub(D)β-1 for small ag2, with β = 4π2/g2 and m2sub(D) = (2β/a3)esup(-βupsiloncb(0)/2) (a = lattice spacing). A continuum limit a → 0, msub(D) fixed, exists and represents a scalar free field theory of mass msub(D). The string tension αmsub(D)-2 in physical units tends to infinite in this limit. Characteristic differences in the behavior of the model for large and small coupling constant ag2 are found. Renormalization group aspects are discussed. (orig.)

  16. Optical coherence tomography (OCT) as a 3-dimensional imaging technique for non-destructive testing of roll-to-roll coated polymer solar cells

    Thrane, Lars; Jørgensen, Thomas Martini; Jørgensen, Mikkel;

    2013-01-01

    We have recently demonstrated the first application of optical coherence tomography (OCT) as a 3-dimensional (3D) imaging technique to visualize the internal structure of complete multilayered polymer solar cell modules (Thrane et al., Solar Energy Materials & Solar Cells 97, 181-185 (2012)). The 3......D imaging of complete polymer solar cells prepared by roll-to-roll coating was carried out using a high-resolution 1322nm OCT system having a 4.5 microns axial resolution and a 12 microns lateral resolution. It was possible to image the 3-dimensional structure of the entire solar cell that comprise...... UV-barrier, barrier material, adhesive, substrate and active solar cell multilayer structure. In addition, it was found that the OCT technique could be readily employed to identify coating defects in the functional layers, making it a potential technique to enable process control by real...

  17. A New Approach of In Vivo Musculoskeletal Tissue Engineering Using the Epigastric Artery as Central Core Vessel of a 3-Dimensional Construct

    Dunda, Sebastian E.; Schriever, T.; Rosen, C; C. Opländer; Tolba, R.H.; Diamantouros, S.; Jockenhoevel, S.; Pallua, N

    2012-01-01

    The creation of musculoskeletal tissue represents an alternative for the replacement of soft tissue in reconstructive surgery. However, most of the approaches of creating artificial tissue have their limitations in the size as the maximally obtainable dimension of bioartificial tissue (BAT) is limited due to the lack of supporting vessels within the 3-dimensional construct. The seeded myoblasts require high amounts of perfusion, oxygen, and nutrients to survive. To achieve this, we developed ...

  18. Transcriptional profiling of radiation damage and preventive treatments in a 3-dimensional (3D) human cell culture model of oral mucositis

    Lambros, Maria P.; DeSalvo, Michael K.; Jonathan Moreno; Hari Chandana Mulamalla; Lavanya Kondapalli

    2015-01-01

    Cancer patients who receive radiation are often afflicted by oral mucositis, a debilitating disease, characterized by mouth sores and difficulty in swallowing. Oftentimes, cancer patients afflicted with mucositis must stop life-saving therapies. Thus it is very important to prevent mucositis before it develops. Using a validated organotypic model of human oral mucosa, a 3-dimensional cell culture model of human oral keratinocytes, it has been shown that a mixture (NAC–QYD) of N-acetyl cystein...

  19. Comparative Effectiveness of 3-Dimensional vs 2-Dimensional and High-Definition vs Standard-Definition Neuroendoscopy: A Preclinical Randomized Crossover Study

    Marcus, Hani J; Hughes-Hallett, Archie; Cundy, Thomas P.; Di Marco, Aimee; Pratt, Philip; Nandi, Dipankar; Darzi, Ara; Yang, Guang-Zhong

    2013-01-01

    BACKGROUND: Although the potential benefits of 3-dimensional (3-D) vs 2-dimensional (2-D) and high-definition (HD) vs standard-definition (SD) endoscopic visualization have long been recognized in other surgical fields, such endoscopes are generally considered too large and bulky for use within the brain. The recent development of 3-D and HD neuroendoscopes may therefore herald improved depth perception, better appreciation of anatomic details, and improved overall surgical performance. OBJEC...

  20. 3-D Visualisation: Using Internet-based Activities to Enhance Student Understanding of 3-dimensional Spatial Relationships

    Boyle, A. P.; Williams, M.; Williams, P.

    2011-12-01

    Spatial ability forms its own category separate from verbal ability. Various spatial abilities have been identified over the last three decades and classified into three types: mental rotation, spatial rotation and spatial visualization, which have been linked to high performance in STEM subjects. Geoscience demands spatial thinking from learners and practitioners, and spatial literacy has been seen as a fundamental skill in Geography, Earth & Environmental Sciences (GEES disciplines) essential for progression. First year GEES students not only have to cope with new learning and teaching environments (Maguire et al., 2008), but, arriving with different science backgrounds, are faced with the challenge of developing essential skills that may be novel for them. These essential skills are subject-specific, as well as transferable, and require an understanding of 3-dimensional spatial relationships. However, spatial skills can be troublesome for some students to master. Not only do many students find difficulty in acquiring spatial skills, facing a succession of hurdles that need to be overcome in developing their understanding, but also educators, often strong spatial thinkers themselves and unaware of the degree to which some students are spatially-challenged, may find it difficult to help. Recent studies have suggested that performance on abstract and applied spatial tasks may be enhanced through instruction and practice and spatially-intensive geoscience courses may strengthen performance on spatial tasks. At Liverpool, many first year geoscience modules require understanding of 3-D spatial relationships, often from initial 2-D observations (e.g. mineralogy, petrography, vulcanology, sedimentology, palaeontology, geological map work, structural geology and fieldwork). In this paper we outline work, supported by the UK Subject Centre for Geography, Earth and Environmental Sciences (GEES), involving first year geosciences students at Liverpool, in which we explored

  1. Space charge tracking code for a synchrotron accelerator

    Ottinger, M.B.; Tajima, T. [Univ. of Texas, Austin, TX (United States); Hiramoto, K. [Hitachi Ltd., Hitachi, Ibaraki (Japan). Hitachi Research Lab.

    1997-06-01

    An algorithm has been developed to compute particle tracking, including self-consistent space charge effects for synchrotron accelerators. In low-energy synchrotrons space charge plays a central role in enhancing emittance of the beam. The space charge effects are modeled by mutually interacting (through the Coulombic force) N cylindrical particles (2-{1/2}-dimensional dynamics) whose axis is in the direction of the equilibrium particle flow. On the other hand, their interaction with synchrotron lattice magnets is treated with the thin-lens approximation and in a fully 3-dimensional way. Since the existing method to treat space charge fully self-consistently involved 3-D space charge effect computation, the present method allows far more realistic physical parameters and runs in far shorter time (about 1/20). Some examples on space charge induced instabilities are presented.

  2. Optical tracking of nanoscale particles in microscale environments

    Mathai, P. P.; Liddle, J. A.; Stavis, S. M.

    2016-03-01

    The trajectories of nanoscale particles through microscale environments record useful information about both the particles and the environments. Optical microscopes provide efficient access to this information through measurements of light in the far field from nanoparticles. Such measurements necessarily involve trade-offs in tracking capabilities. This article presents a measurement framework, based on information theory, that facilitates a more systematic understanding of such trade-offs to rationally design tracking systems for diverse applications. This framework includes the degrees of freedom of optical microscopes, which determine the limitations of tracking measurements in theory. In the laboratory, tracking systems are assemblies of sources and sensors, optics and stages, and nanoparticle emitters. The combined characteristics of such systems determine the limitations of tracking measurements in practice. This article reviews this tracking hardware with a focus on the essential functions of nanoparticles as optical emitters and microenvironmental probes. Within these theoretical and practical limitations, experimentalists have implemented a variety of tracking systems with different capabilities. This article reviews a selection of apparatuses and techniques for tracking multiple and single particles by tuning illumination and detection, and by using feedback and confinement to improve the measurements. Prior information is also useful in many tracking systems and measurements, which apply across a broad spectrum of science and technology. In the context of the framework and review of apparatuses and techniques, this article reviews a selection of applications, with particle diffusion serving as a prelude to tracking measurements in biological, fluid, and material systems, fabrication and assembly processes, and engineered devices. In so doing, this review identifies trends and gaps in particle tracking that might influence future research.

  3. Energy Tracking Diagrams

    Scherr, Rachel E.; Harrer, Benedikt W.; Close, Hunter G.; Daane, Abigail R.; DeWater, Lezlie S.; Robertson, Amy D.; Seeley, Lane; Vokos, Stamatis

    2016-01-01

    Energy is a crosscutting concept in science and features prominently in national science education documents. In the "Next Generation Science Standards," the primary conceptual learning goal is for learners to conserve energy as they "track" the transfers and transformations of energy within, into, or out of the system of…

  4. General defocusing particle tracking.

    Barnkob, Rune; Kähler, Christian J; Rossi, Massimiliano

    2015-09-01

    A General Defocusing Particle Tracking (GDPT) method is proposed for tracking the three-dimensional motion of particles in Lab-on-a-chip systems based on a set of calibration images and the normalized cross-correlation function. In comparison with other single-camera defocusing particle-tracking techniques, GDPT possesses a series of key advantages: it is applicable to particle images of arbitrary shapes, it is intuitive and easy to use, it can be used without advanced knowledge of optics and velocimetry theory, it is robust against outliers and overlapping particle images, and it requires only equipment which is standard in microfluidic laboratories. We demonstrate the method by tracking the three-dimensional motion of 2 μm spherical particles in a microfluidic channel using three different optical arrangements. The position of the particles was measured with an estimated uncertainty of 0.1 μm in the in-plane direction and 2 μm in the depth direction for a measurement volume of 1510 × 1270 × 160 μm(3). A ready-to-use GUI implementation of the method can be acquired on . PMID:26201498

  5. Dust Devil Tracks

    2002-01-01

    (Released 8 May 2002) The Science This image, centered near 50.0 S and 17.7 W displays dust devil tracks on the surface. Most of the lighter portions of the image likely have a thin veneer of dust settled on the surface. As a dust devil passes over the surface, it acts as a vacuum and picks up the dust, leaving the darker substrate exposed. In this image there is a general trend of many of the tracks running from east to west or west to east, indicating the general wind direction. There is often no general trend present in dust devil tracks seen in other images. The track patterns are quite ephemeral and can completely change or even disappear over the course of a few months. Dust devils are one of the mechanisms that Mars uses to constantly pump dust into the ubiquitously dusty atmosphere. This atmospheric dust is one of the main driving forces of the present Martian climate. The Story Vrrrrooooooooom. Think of a tornado, the cartoon Tasmanian devil, or any number of vacuum commercials that powerfully suck up swirls of dust and dirt. That's pretty much what it's like on the surface of Mars a lot of the time. Whirlpools of wind called

  6. Tracking Politics with POWER

    Moreira, Silvio; Batista, David S.; Carvalho, Paula; Couto, Francisco M.; Silva, Mario J.

    2013-01-01

    Purpose: POWER is an ontology of political processes and entities. It is designed for tracking politicians, political organizations and elections, both in mainstream and social media. The aim of this paper is to propose a data model to describe political agents and their relations over time. Design/methodology/approach: The authors propose a data…

  7. Fast Passenger Tracks Network

    2008-01-01

    China’s fast passenger tracks network consists of four parts:express rail- way with speeds between 300km/h and 350 kin/h,passenger rail lines with speeds between 200 km/h and 250 km/h,intercity high-speed railways that run

  8. Apple Shuns Tracking Tool

    2011-01-01

    Apple Inc. is advising software de- velopers to stop using a feature in software for its iPhones and iPads .that has been linked to privacyconcerns, a move that would also take away a widely used tool for tracking users and their behavior. Developers who write programs for Apple's lOS operating system have been using a unique.

  9. Manure Tracking Book

    This document provides an example of the ‘Manure Tracking Book’ that was used by the fifty-four Wisconsin dairy farmers who participated in the “On Farmers’ Ground” nutrient management research project. This Book was used to systematically tract how, when and where farmers spread manure, and factors...

  10. Velenje - Mislinja cycle track regulation

    Vidonja, Klemen

    2013-01-01

    In my graduation thesis, I am planning a cycle track from Velenje to Mislinja, where it will be connected to an existing bike track to Otiški vrh. The cycle track would be placed on a deserted railway route from Velenje to Dravograd. A short section of cycle track is already in use, but it has to be repared. I planned the rest of the cycle track and I regulated it in a turist – recreational manner, suitable for all types of riders. The cycle track is placed away from traffic, does not dema...

  11. Thermal Tracking of Sports Players

    Gade, Rikke; Moeslund, Thomas B.

    2014-01-01

    We present here a real-time tracking algorithm for thermal video from a sports game. Robust detection of people includes routines for handling occlusions and noise before tracking each detected person with a Kalman filter. This online tracking algorithm is compared with a state-of-the-art offline...... multi-target tracking algorithm. Experiments are performed on a manually annotated 2-minutes video sequence of a real soccer game. The Kalman filter shows a very promising result on this rather challenging sequence with a tracking accuracy above 70 % and is superior compared with the offline tracking...

  12. Reconstruction 3-dimensional image from 2-dimensional image of status optical coherence tomography (OCT) for analysis of changes in retinal thickness

    Arinilhaq,; Widita, Rena [Department of Physics, Nuclear Physics and Biophysics Research Group, Institut Teknologi Bandung (Indonesia)

    2014-09-30

    Optical Coherence Tomography is often used in medical image acquisition to diagnose that change due easy to use and low price. Unfortunately, this type of examination produces a two-dimensional retinal image of the point of acquisition. Therefore, this study developed a method that combines and reconstruct 2-dimensional retinal images into three-dimensional images to display volumetric macular accurately. The system is built with three main stages: data acquisition, data extraction and 3-dimensional reconstruction. At data acquisition step, Optical Coherence Tomography produced six *.jpg images of each patient were further extracted with MATLAB 2010a software into six one-dimensional arrays. The six arrays are combined into a 3-dimensional matrix using a kriging interpolation method with SURFER9 resulting 3-dimensional graphics of macula. Finally, system provides three-dimensional color graphs based on the data distribution normal macula. The reconstruction system which has been designed produces three-dimensional images with size of 481 × 481 × h (retinal thickness) pixels.

  13. A New Approach of In Vivo Musculoskeletal Tissue Engineering Using the Epigastric Artery as Central Core Vessel of a 3-Dimensional Construct

    Sebastian E. Dunda

    2012-01-01

    Full Text Available The creation of musculoskeletal tissue represents an alternative for the replacement of soft tissue in reconstructive surgery. However, most of the approaches of creating artificial tissue have their limitations in the size as the maximally obtainable dimension of bioartificial tissue (BAT is limited due to the lack of supporting vessels within the 3-dimensional construct. The seeded myoblasts require high amounts of perfusion, oxygen, and nutrients to survive. To achieve this, we developed a 3-dimensional scaffold which features the epigastric artery as macroscopic core vessel inside the BAT in a rat model (perfused group, =4 and a control group (=3 without the epigastric vessels and, therefore, without perfusion. The in vivo monitoring of the transplanted myoblasts was assessed by bioluminescence imaging and showed both the viability of the epigastric artery within the 3-dimensional construct and again that cell survival in vivo is highly depending on the blood supply with the beginning of capillarization within the BAT seven days after transplantation in the perfused group. However, further studies focussing on the matrix improvement will be necessary to create a transplantable BAT with the epigastric artery as anastomosable vessel.

  14. Stress changes of lateral collateral ligament at different knee flexion with or without displaced movements: a 3-dimensional finite element analysis

    ZHONG Yan-lin; WANG You; WANG Hai-peng; RONG Ke; XIE Le

    2011-01-01

    Objective: To create a 3-dimensional finite element model of knee ligaments and to analyse the stress changes of lateral collateral ligament (LCL) with or without displaced movements at different knee flexion conditions.Methods: A four-major-ligament contained knee specimen from an adult died of skull injury was prepared for CT scanning with the detectable ligament insertion footprints,locations and orientations precisely marked in advance. The CT scanning images were converted to a 3-dimensional model of the knee with the 3-dimensional reconstruction technique and transformed into finite element model by the software of ANSYS. The model was validated using experimental and numerical results obtained by other scientists.The natural stress changes of LCL at five different knee flexion angles (0°, 30°, 60°, 90°, 120°) and under various motions of anterior-posterior tibial translation, tibial varus rotation and internal-external tibial rotation were measured.Results: The maximum stress reached to 87%-113%versus natural stress in varus motion at early 30° of knee flexions. The stress values were smaller than the peak value of natural stress at 0° (knee full extension) when knee bending was over 60° of flexion in anterior-posterior tibial translation and internal-external rotation.Conclusion: LCL is vulnerable to varus motion in almost all knee bending positions and susceptible to anterlor-posterior tibial translation or internal-external rotation at early 30° of knee flexions.

  15. Eye-tracking for web usability research

    Michał Laskowski

    2011-06-01

    Full Text Available Testing usability with eye-tracking enables to understand a new dimension of user interaction. We can research areas that are most interesting for users and what behavior patterns causes it. It is possible to identify page elements that attract attention and to which the user is blind. The eye-tracker device is very accurate, it can measure up to 120 times per second the position of the eye on the screen. Using research data it is possible to draw gaze plots report and heat map chart for further analysis. In my opinion the greatest challenge for performing eye-tracking research is to use appropriate methodology, such as set exposure time, fixation length, recruit representatives group, set up relaxing testing condition for users to react in a natural way.

  16. How to track protists in three dimensions

    Drescher, Knut; Leptos, Kyriacos C.; Goldstein, Raymond E.

    2009-01-01

    We present an apparatus optimized for tracking swimming micro-organisms in the size range of 10-1000 μm, in three dimensions (3Ds), far from surfaces, and with negligible background convective fluid motion. Charge coupled device cameras attached to two long working distance microscopes synchronously image the sample from two perpendicular directions, with narrow band dark-field or bright-field illumination chosen to avoid triggering a phototactic response. The images from the two cameras can be combined to yield 3D tracks of the organism. Using additional, highly directional broad-spectrum illumination with millisecond timing control the phototactic trajectories in 3D of organisms ranging from Chlamydomonas to Volvox can be studied in detail. Surface-mediated hydrodynamic interactions can also be investigated without convective interference. Minimal modifications to the apparatus allow for studies of chemotaxis and other taxes.

  17. Low Cost Eye Tracking: The Current Panorama

    Onur Ferhat

    2016-01-01

    Full Text Available Despite the availability of accurate, commercial gaze tracker devices working with infrared (IR technology, visible light gaze tracking constitutes an interesting alternative by allowing scalability and removing hardware requirements. Over the last years, this field has seen examples of research showing performance comparable to the IR alternatives. In this work, we survey the previous work on remote, visible light gaze trackers and analyze the explored techniques from various perspectives such as calibration strategies, head pose invariance, and gaze estimation techniques. We also provide information on related aspects of research such as public datasets to test against, open source projects to build upon, and gaze tracking services to directly use in applications. With all this information, we aim to provide the contemporary and future researchers with a map detailing previously explored ideas and the required tools.

  18. Low Cost Eye Tracking: The Current Panorama.

    Ferhat, Onur; Vilariño, Fernando

    2016-01-01

    Despite the availability of accurate, commercial gaze tracker devices working with infrared (IR) technology, visible light gaze tracking constitutes an interesting alternative by allowing scalability and removing hardware requirements. Over the last years, this field has seen examples of research showing performance comparable to the IR alternatives. In this work, we survey the previous work on remote, visible light gaze trackers and analyze the explored techniques from various perspectives such as calibration strategies, head pose invariance, and gaze estimation techniques. We also provide information on related aspects of research such as public datasets to test against, open source projects to build upon, and gaze tracking services to directly use in applications. With all this information, we aim to provide the contemporary and future researchers with a map detailing previously explored ideas and the required tools. PMID:27034653

  19. Real Time Vehicle Tracking System using GSM and GPS Technology- An Anti-theft Tracking System

    Kunal Maurya

    2012-06-01

    Full Text Available A vehicle tracking system is an electronic device installed in a vehicle to enable the owner or a third party to track the vehicle's location. This paper proposed to design a vehicle tracking system that works using GPS and GSM technology, which would be the cheapest source of vehicle tracking and it would work as anti-theft system. It is an embedded system which is used for tracking and positioning of any vehicle by using Global Positioning System (GPS and Global system for mobile communication (GSM. This design will continuously monitor a moving Vehicle and report the status of the Vehicle on demand. For doing so an AT89C51 microcontroller is interfaced serially to a GSM Modem and GPS Receiver. A GSM modem is used to send the position (Latitude and Longitude of the vehicle from a remote place. The GPS modem will continuously give the data i.e. the latitude and longitude indicating the position of the vehicle. The same data is sent to the mobile at the other end from where the position of the vehicle is demanded. When the request by user is sent to the number at the GSM modem, the system automatically sends a return reply to that mobile indicating the position of the vehicle in terms of latitude and longitude in real time.

  20. Spot: An accurate and efficient multi-entity device-free WLAN localization system

    Sabek, Ibrahim; Youssef, Moustafa

    2012-01-01

    Device-free (DF) localization in WLANs has been introduced as a value-added service that allows tracking indoor entities that do not carry any devices. Previous work in DF WLAN localization focused on the tracking of a single entity due to the intractability of the multi-entity tracking problem whose complexity grows exponentially with the number of humans being tracked. In this paper, we introduce Spot as an accurate and efficient system for multi-entity DF detection and tracking. Spot is ba...

  1. 78 FR 21612 - Medical Device Classification Product Codes; Guidance for Industry and Food and Drug...

    2013-04-11

    ...The Food and Drug Administration (FDA) is announcing the availability of the guidance entitled ``Medical Device Classification Product Codes.'' This document describes how device product codes are used in a variety of FDA program areas to regulate and track medical devices regulated by the Center for Devices and Radiological Health (CDRH) and the Center for Biologics Evaluation and Research......

  2. The Stability Study on Support Equipment for Field Test of Track Subgrade Dynamic Response Test Device%轨道路基动力响应测试装置现场试验支撑设备稳定性研究

    郑飞龙; 曾良才; 开岗生

    2013-01-01

    Take the support equipment for track subgrade dynamic response field test as the research object,the maximum support reaction forces which are determined by excavator hydraulic cylinders and backward condition are studied and the related mechanical models are established with analytic geometry and theoretical mechanics.A type of excavator is used as an example to get the optimization calculation of extended length of the hydraulic cylinders with multi-objective optimal genetic algorithm and a set of Pareto solutions is obtained for the maximum support reaction force and then its stability are analyzed.The results show that the support reaction force provided by the excavator can meet the requirements of the test device that it can work stably.%以轨道路基动力响应现场试验支撑装置为研究对象,运用解析几何与理论力学的方法,对挖掘机各液压缸闭锁力及后倾条件所决定的最大支撑反力进行了研究,建立了相关力学模型.以某型号挖掘机为例,采用多目标最优遗传算法对各液压缸伸出长度进行了优化计算,得出了一组使支撑反力最大时的Pareto解,并进行了稳定性分析.分析结果表明,挖掘机所提供的支撑反力能满足试验装置要求,能够稳定工作.

  3. Kalman Filter Track Fits and Track Breakpoint Analysis

    Astier, Pierre; Cardini, Alessandro; Cousins, Robert D.; Letessier-Selvon, Antoine; Popov, Boris A.; Vinogradova, Tatiana

    1999-01-01

    We give an overview of track fitting using the Kalman filter method in the NOMAD detector at CERN, and emphasize how the wealth of by-product information can be used to analyze track breakpoints (discontinuities in track parameters caused by scattering, decay, etc.). After reviewing how this information has been previously exploited by others, we describe extensions which add power to breakpoint detection and characterization. We show how complete fits to the entire track, with breakpoint par...

  4. Better features to track by estimating the tracking convergence region

    Zivkovic, Zoran; Heijden, van der Ferdinand; Deprettere, E.F.; Belloum, A.; Heijnsdijk, J.W.J.; Stappen, van der F.

    2002-01-01

    Reliably tracking key points and textured patches from frame to frame is the basic requirement for many bottomup computer vision algorithms. The problem of selecting the features that can be tracked well is addressed here. The Lucas-Kanade tracking procedure is commonly used. We propose a method to

  5. Better features to track by estimating the tracking convergence region

    Zivkovic, Zoran; Heijden, van der Ferdinand; Kasturi, R.; Laurendeau, D.; Suen, C.

    2002-01-01

    Reliably tracking key points and textured patches from frame to frame is the basic requirement for many bottom-up computer vision algorithms. The problem of selecting the features that can be tracked well is addressed. The Lucas-Kanade tracking procedure is commonly used. We propose a method to esti

  6. Evolution of the 3-dimensional video system for facial motion analysis: ten years' experiences and recent developments.

    Tzou, Chieh-Han John; Pona, Igor; Placheta, Eva; Hold, Alina; Michaelidou, Maria; Artner, Nicole; Kropatsch, Walter; Gerber, Hans; Frey, Manfred

    2012-08-01

    Since the implementation of the computer-aided system for assessing facial palsy in 1999 by Frey et al (Plast Reconstr Surg. 1999;104:2032-2039), no similar system that can make an objective, three-dimensional, quantitative analysis of facial movements has been marketed. This system has been in routine use since its launch, and it has proven to be reliable, clinically applicable, and therapeutically accurate. With the cooperation of international partners, more than 200 patients were analyzed. Recent developments in computer vision--mostly in the area of generative face models, applying active--appearance models (and extensions), optical flow, and video-tracking-have been successfully incorporated to automate the prototype system. Further market-ready development and a business partner will be needed to enable the production of this system to enhance clinical methodology in diagnostic and prognostic accuracy as a personalized therapy concept, leading to better results and higher quality of life for patients with impaired facial function. PMID:21734549

  7. On processing GPS tracking data of car-movements in Borlänge, Sweden

    Zhao, Xiaoyun

    2014-01-01

    The advancement of GPS technology enables GPS devices not only to be used as orientation and navigation tools, but also to track travelled routes. GPS tracking data provides essential information for a broad range of urban planning applications such as transportation routing and planning, traffic management and environmental control. This paper describes on processing the data that was collected by tracking the cars of 316 volunteers over a seven-week period. The detailed information is extra...

  8. Design of the Track Correlator for the DTBX Trigger

    Martinelli, Roberto; Zotto, Pierluigi

    1999-01-01

    The fully reviewed design of the Track Correlator ( TRACO) developed for the muon barrel drift tubes first level trigger is presented. Details of the project and a study of the expected performance of the device, based on a full GEANT simulation using the CMS113 version of the detector, are given.

  9. Moscow State University CW race-track microtron status

    Continuous wave (CW) race-track microtron (RTM) with the maximum output energy of 175 MeV and beam current 100 mcA is under construction at the Institute of Nuclear Physics of Moscow State University. This paper presents the specifications for the device, status of its construction, and information on the testing of the injector

  10. Unconstrained multiple-people tracking

    Rowe, Daniel; Reid, Ian; Gonzàlez, Jordi; Villanueva, Juan J.

    2006-01-01

    This work presents two main contributions to achieve robust multiple-target tracking in uncontrolled scenarios. A novel system which consists on a hierarchical architecture is proposed. Each level is devoted to one of the main tracking functionalities: target detection, low-level tracking, and high-level tasks such as target-appearance representation, or event management. Secondly, tracking performances are enhanced by on-line building and updating multiple appearance models. Successful exper...

  11. On train track splitting sequences

    Masur, Howard; Schleimer, Saul

    2010-01-01

    We show that the subsurface projection of a train track splitting sequence is an unparameterized quasi-geodesic in the curve complex of the subsurface. For the proof we introduce induced tracks, efficient position, and wide curves. This result is an important step in the proof that the disk complex is Gromov hyperbolic. As another application we show that train track sliding and splitting sequences give quasi-geodesics in the train track graph, generalizing a result of Hamenstaedt [Invent. Math.].

  12. Simple Online and Realtime Tracking

    Bewley, Alex; Ge, ZongYuan; Ott, Lionel; Ramos, Fabio; Upcroft, Ben

    2016-01-01

    This paper explores a pragmatic approach to multiple object tracking where the main focus is to associate objects efficiently for online and realtime applications. To this end, detection quality is identified as a key factor influencing tracking performance, where changing the detector can improve tracking by up to 18.9%. Despite only using a rudimentary combination of familiar techniques such as the Kalman Filter and Hungarian algorithm for the tracking components, this approach achieves an ...

  13. Thermal Tracking of Sports Players

    Rikke Gade; Moeslund, Thomas B

    2014-01-01

    We present here a real-time tracking algorithm for thermal video from a sports game. Robust detection of people includes routines for handling occlusions and noise before tracking each detected person with a Kalman filter. This online tracking algorithm is compared with a state-of-the-art offline multi-target tracking algorithm. Experiments are performed on a manually annotated 2-minutes video sequence of a real soccer game. The Kalman filter shows a very promising result on this rather chall...

  14. Test beam performance of a tracking TRD [Transition Radiation Detector] prototype

    A Tracking Transition Radiation Detector prototype has been constructed and tested. It consists of 240 straw tubes, 4 mm in diameter, imbedded in a polyethylene block acting as the radiator. Its performance as an electron identifier as well as a tracking device for minimum ionizing particles has been determined. 2 refs., 6 figs

  15. The track nanotechnology

    The discipline now called Solid State Nuclear Track Detection (SSNTD) dates back to 1958 and has its roots in the United Kingdom. Its strength stems chiefly from factors such as its simplicity, small geometry, permanent maintenance of the nuclear record and other diversified applications. A very important field with exciting applications reported recently in conjuction with the nuclear track technique is nanotechnology, which has applications in biology, chemistry, industry, medicare and health, information technology, biotechnology, and metallurgical and chemical technologies. Nanotechnology requires material design followed by the study of the quantum effects for final produced applications in sensors, medical diagnosis, information technology to name a few. We, in this article, present a review of past and present applications of SSNTD suggesting ways to apply the technique in nanotechnology, with special reference to development of nanostructure for applications utilising nanowires, nanofilters and sensors.

  16. On particle track detectors

    Benton, E. V.; Gruhn, T. A.; Andrus, C. H.

    1973-01-01

    Aqueous sodium hydroxide is widely used to develop charged particle tracks in polycarbonate film, particularly Lexan. The chemical nature of the etching process for this system has been determined. A method employing ultra-violet absorbance was developed for monitoring the concentration of the etch products in solution. Using this method it was possible to study the formation of the etching solution saturated in etch products. It was found that the system super-saturates to a significant extent before precipitation occurs. It was also learned that the system approaches its equilibrium state rather slowly. It is felt that both these phenomena may be due to the presence of surfactant in the solution. In light of these findings, suggestions are given regarding the preparation and maintenance of the saturated etch solution. Two additional research projects, involving automated techniques for particle track analysis and particle identification using AgCl crystals, are briefly summarized.

  17. The track nanotechnology

    Waheed, A. [British Institute of Technology and E-Commerce, London E7 9HZ (United Kingdom); Physics Department, University of Reading, Reading RG6 6AF (United Kingdom); Forsyth, D., E-mail: dforsyth@bite.ac.u [British Institute of Technology and E-Commerce, London E7 9HZ (United Kingdom); Watts, A. [Department of Physics, UCL, London Centre of Nanotechnology (LCN), 17-19 Gordon Street, London WC1H OAH (United Kingdom); Saad, A.F. [Physics Department, Faculty of Science, Garyounis University, Benghazi (Libyan Arab Jamahiriya); Mitchell, G.R. [British Institute of Technology and E-Commerce, London E7 9HZ (United Kingdom); Physics Department, University of Reading, Reading RG6 6AF (United Kingdom); Farmer, M. [British Institute of Technology and E-Commerce, London E7 9HZ (United Kingdom); Harris, P.J.F. [Physics Department, University of Reading, Reading RG6 6AF (United Kingdom)

    2009-10-15

    The discipline now called Solid State Nuclear Track Detection (SSNTD) dates back to 1958 and has its roots in the United Kingdom. Its strength stems chiefly from factors such as its simplicity, small geometry, permanent maintenance of the nuclear record and other diversified applications. A very important field with exciting applications reported recently in conjuction with the nuclear track technique is nanotechnology, which has applications in biology, chemistry, industry, medicare and health, information technology, biotechnology, and metallurgical and chemical technologies. Nanotechnology requires material design followed by the study of the quantum effects for final produced applications in sensors, medical diagnosis, information technology to name a few. We, in this article, present a review of past and present applications of SSNTD suggesting ways to apply the technique in nanotechnology, with special reference to development of nanostructure for applications utilising nanowires, nanofilters and sensors.

  18. Structural Sparse Tracking

    Zhang, Tianzhu

    2015-06-01

    Sparse representation has been applied to visual tracking by finding the best target candidate with minimal reconstruction error by use of target templates. However, most sparse representation based trackers only consider holistic or local representations and do not make full use of the intrinsic structure among and inside target candidates, thereby making the representation less effective when similar objects appear or under occlusion. In this paper, we propose a novel Structural Sparse Tracking (SST) algorithm, which not only exploits the intrinsic relationship among target candidates and their local patches to learn their sparse representations jointly, but also preserves the spatial layout structure among the local patches inside each target candidate. We show that our SST algorithm accommodates most existing sparse trackers with the respective merits. Both qualitative and quantitative evaluations on challenging benchmark image sequences demonstrate that the proposed SST algorithm performs favorably against several state-of-the-art methods.

  19. Track the talent : methodiekbeschrijving

    Bos, Antoinette; Abdallah, Sebastian

    2008-01-01

    Track the Talent is een beschrijving van een methodiek van Stichting Stedelijk Jongerenwerk Amsterdam en Stichting Hart voor Amsterdam. De beschrijving is uitgevoerd door Youth Spot, een samenwerkingsverband tussen SJA en de Hogeschool van Amsterdam. In het kader van dit project werden twee groepen rechtstreeks met elkaar verbonden: een groep kansarme jongeren die net niet of net wel klaar waren met school en een groep bedrijven die op zoek waren naar nieuwe werknemers. De jongeren gingen op ...

  20. PARTICLE BEAM TRACKING CIRCUIT

    Anderson, O.A.

    1959-05-01

    >A particle-beam tracking and correcting circuit is described. Beam induction electrodes are placed on either side of the beam, and potentials induced by the beam are compared in a voltage comparator or discriminator. This comparison produces an error signal which modifies the fm curve at the voltage applied to the drift tube, thereby returning the orbit to the preferred position. The arrangement serves also to synchronize accelerating frequency and magnetic field growth. (T.R.H.)

  1. Progressive Fleet tracking systems

    Smětal, Matěj

    2011-01-01

    This bachelor thesis is focused on the importance of vehicle tracking as a part of Fleet management for company's success. The theoretical part contains analysis of positioning systems GPS and GLONASS, describes the structure and principles of its functioning. The practical part contains implementation of Fleet management system into Russian company"Cech č. 1", Ltd. Practical part consists of information gained from internal sources of the company.

  2. Tracking environmental costs

    Tracking Environmental Costs and Investments in SAP will provide us with a managerial tool that will help us understand better the magnitude of the financial resources we are dedicating to environmental protection activities and investments. Environmental Cost Accounting is a new project in Slovenske Elektrarne that will be particularly valuable for the Company's environmental management initiatives, such as waste monitoring, cleaner production, eco-design and environmental management systems; its launch is expected in September. (author)

  3. BESⅢ track fitting algorithm

    WANG Ji-Ke; MAO Ze-Pu; BIAN Jian-Ming; CAO Guo-Fu; CAO Xue-Xiang; CHEN Shen-Jian; DENG Zi-Yan; FU Cheng-Dong; GAO Yuan-Ning; HE Kang-Lin; HE Miao; HUA Chun-Fei; HUANG Bin; HUANG Xing-Tao; JI Xiao-Sin; LI Fei; LI Hai-Bo; LI Wei-Dong; LIANG Yu-Tie; LIU Chun-Xiu; LIU Huai-Min; LIU Suo; LIU Ying-Jie; MA Qiu-Mei; MA Xiang; MAO Ya-Jun; MO Xiao-Hu; PAN Ming-Hua; PANG Cai-Ying; PING Rong-Gang; QIN Ya-Hong; QIU Jin-Fa; SUN Sheng-Sen; SUN Yong-Zhao; WANG Liang-Liang; WEN Shuo-Pin; WU Ling-Hui; XIE Yu-Guang; XU Min; YAN Liang; YOU Zheng-Yun; YUAN Chang-Zheng; YUAN Ye; ZHANG Bing-Yun; ZHANG Chang-Chun; ZHANG Jian-Yong; ZHANG Xue-Yao; ZHANG Yao; ZHENG Yang-Heng; ZHU Ke-Jun; ZHU Yong-Sheng; ZHU Zhi-Li; ZOU Jia-Heng

    2009-01-01

    A track fitting algorithm based on the Kalman filter method has been developed for BESⅢ of BEPCⅡ.The effects of multiple scattering and energy loss when the charged particles go through the detector,non-uniformity of magnetic field (NUMF) and wire sag, etc., have been carefully handled.This algorithm works well and the performance satisfies the physical requirements tested by the simulation data.

  4. Video-based Chinese Input System via Fingertip Tracking

    Chih-Chang Yu

    2012-10-01

    Full Text Available In this paper, we propose a system to detect and track fingertips online and recognize Mandarin Phonetic Symbol (MPS for user‐friendly Chinese input purposes. Using fingertips and cameras to replace pens and touch panels as input devices could reduce the cost and improve the ease‐of‐use and comfort of computer‐human interface. In the proposed framework, particle filters with enhanced appearance models are applied for robust fingertip tracking. Afterwards, MPS combination recognition is performed on the tracked fingertip trajectories using Hidden Markov Models. In the proposed system, the fingertips of the users could be robustly tracked. Also, the challenges of entering, leaving and virtual strokes caused by video‐based fingertip input can be overcome. Experimental results have shown the feasibility and effectiveness of the proposed work.

  5. Energy Tracking Diagrams

    Scherr, Rachel E.; Harrer, Benedikt W.; Close, Hunter G.; Daane, Abigail R.; DeWater, Lezlie S.; Robertson, Amy D.; Seeley, Lane; Vokos, Stamatis

    2016-02-01

    Energy is a crosscutting concept in science and features prominently in national science education documents. In the Next Generation Science Standards, the primary conceptual learning goal is for learners to conserve energy as they track the transfers and transformations of energy within, into, or out of the system of interest in complex physical processes. As part of tracking energy transfers among objects, learners should (i) distinguish energy from matter, including recognizing that energy flow does not uniformly align with the movement of matter, and should (ii) identify specific mechanisms by which energy is transferred among objects, such as mechanical work and thermal conduction. As part of tracking energy transformations within objects, learners should (iii) associate specific forms with specific models and indicators (e.g., kinetic energy with speed and/or coordinated motion of molecules, thermal energy with random molecular motion and/or temperature) and (iv) identify specific mechanisms by which energy is converted from one form to another, such as incandescence and metabolism. Eventually, we may hope for learners to be able to optimize systems to maximize some energy transfers and transformations and minimize others, subject to constraints based in both imputed mechanism (e.g., objects must have motion energy in order for gravitational energy to change) and the second law of thermodynamics (e.g., heating is irreversible). We hypothesize that a subsequent goal of energy learning—innovating to meet socially relevant needs—depends crucially on the extent to which these goals have been met.

  6. The STAR tracking upgrade

    The STAR experiment at the Relativistic Heavy Ion Collider RHIC studies the new state of matter produced in relativistic heavy ion collisions and the spin structure of the nucleon in collisions of polarized protons. In order to improve the capabilities for heavy flavor measurements and the reconstruction of charged vector bosons an upgrade of the tracking system both in the central and the forward region is pursued. The challenging environments of high track multiplicity in heavy ion collisions and of high luminosity in polarized proton collisions require the use of new technologies. The proposed inner tracking system, optimized for heavy flavor identification, is using active pixel sensors close to the collision point and silicon strip technology further outward. Charge sign determination for electrons and positrons from the decay of W bosons will be provide by 6 large-area triple GEM disks currently under development. A prototype of the active pixel detectors has been tested in the STAR experiment, and an extensive beam test of triple GEM detectors using GEM foils produced by Tech-Etch of Plymouth, MA has been done at Fermilab

  7. Thermonuclear device

    Purpose: To absorb fabrication errors in radial toroidal coils and a spacer and completely fill the gap between them by the provision of an expansion device between the coils and the supporting spacer by injecting fillers of a predetermined composition. Constitution: An expansion device comprising an expansion plate, packings inserted into grooves formed in the outer circumference of the expansion plate and a recessed pressure receiving plate is inserted between the wall surface of radial toroidal coils and a spacer for maintaining the gap between the toroidal coils. Then, filler comprising polyester resin and glass beads incorporated therein is injected from an injection aperture of the recessed pressure receiving plate having an exhaust aperture at the upper part. The filler is solidified and enables the fabrication error in the coils and the spacer to be absorbed. Since the gap between the coils and the spacer is completely filled, the tumbling force of the coils can surely be transmitted by way of the spacer to upper and lower racks. (Moriyama, K.)

  8. Scalable devices

    Krüger, Jens J.

    2014-01-01

    In computer science in general and in particular the field of high performance computing and supercomputing the term scalable plays an important role. It indicates that a piece of hardware, a concept, an algorithm, or an entire system scales with the size of the problem, i.e., it can not only be used in a very specific setting but it\\'s applicable for a wide range of problems. From small scenarios to possibly very large settings. In this spirit, there exist a number of fixed areas of research on scalability. There are works on scalable algorithms, scalable architectures but what are scalable devices? In the context of this chapter, we are interested in a whole range of display devices, ranging from small scale hardware such as tablet computers, pads, smart-phones etc. up to large tiled display walls. What interests us mostly is not so much the hardware setup but mostly the visualization algorithms behind these display systems that scale from your average smart phone up to the largest gigapixel display walls.

  9. Track structure of carbon ions: measurements and simulations.

    Conte, V; Colautti, P; Moro, D; Grosswendt, B

    2014-10-01

    The likelihood of radiation to produce clustered damages in irradiated biological tissue and the reparability of such damages are closely related to the stochastics of localised ionising interactions within small volumes of nanometre sizes, determined by the particle track structure. Track structure investigations in nanometre-sized volumes have been subject of research for several decades, mainly by means of Monte Carlo simulations. Today, the 'track-nanodosimeter', installed at the TANDEM-ALPI accelerator complex of LNL, is a measuring device able to count the electrons produced in a 20-nm equivalent sensitive site (De Nardo et al. A detector for track-nanodosimetry. Nucl. Instrum. Methods. Phys. Res. A 484: , 312-326 (2002)). It allows studying track structure properties both in the near neighbourhood of a primary particle trajectory and separately in the penumbra region. An extended study for different ionising particles of medical interest has been recently performed with the track-nanodosimeter (Conte et al. Track structure of light ions: experiments and simulations. New J. Phys. 14: , 093010, (2012)). Here, new experimental data and results of Monte Carlo simulations for 240- and 96-MeV (12)C-ions are presented and discussed. PMID:24249779

  10. Systems and methods of eye tracking calibration

    2014-01-01

    parameters relate to a calibration of a calculation of gaze information of a user of the device, where the gaze information indicates where the user is looking. While the one or more objects are displayed, eye movement information associated with the user is determined, which indicates eye movement of one...... or more eye features associated with at least one eye of the user. The eye movement information is associated with a first object location of the one or more objects. The one or more calibration parameters are calculated based on the first object location being associated with the eye movement information.......Methods and systems to facilitate eye tracking control calibration are provided. One or more objects are displayed on a display of a device, where the one or more objects are associated with a function unrelated to a calculation of one or more calibration parameters. The one or more calibration...

  11. Quality of Slab Track Construction – Track Alignment Design and Track Geometry

    Šestáková Janka

    2015-05-01

    Full Text Available The slab track superstructure design (without ballast is a perspective construction especially for building tunnels and bridges in the modernized sections of railway tracks in Slovakia. Monitoring of the structure described in this article is focused on the transition areas between standard structure with ballast and slab track construction.

  12. Quality of Slab Track Construction – Track Alignment Design and Track Geometry

    Šestáková Janka

    2015-01-01

    The slab track superstructure design (without ballast) is a perspective construction especially for building tunnels and bridges in the modernized sections of railway tracks in Slovakia. Monitoring of the structure described in this article is focused on the transition areas between standard structure with ballast and slab track construction.

  13. Quality of Slab Track Construction - Track Alignment Design and Track Geometry

    Šestáková, Janka

    2015-05-01

    The slab track superstructure design (without ballast) is a perspective construction especially for building tunnels and bridges in the modernized sections of railway tracks in Slovakia. Monitoring of the structure described in this article is focused on the transition areas between standard structure with ballast and slab track construction.

  14. Practical microwave electron devices

    Meurant, Gerard

    2013-01-01

    Practical Microwave Electron Devices provides an understanding of microwave electron devices and their applications. All areas of microwave electron devices are covered. These include microwave solid-state devices, including popular microwave transistors and both passive and active diodes; quantum electron devices; thermionic devices (including relativistic thermionic devices); and ferrimagnetic electron devices. The design of each of these devices is discussed as well as their applications, including oscillation, amplification, switching, modulation, demodulation, and parametric interactions.

  15. Thermal Tracking of Sports Players

    Rikke Gade

    2014-07-01

    Full Text Available We present here a real-time tracking algorithm for thermal video from a sports game. Robust detection of people includes routines for handling occlusions and noise before tracking each detected person with a Kalman filter. This online tracking algorithm is compared with a state-of-the-art offline multi-target tracking algorithm. Experiments are performed on a manually annotated 2-minutes video sequence of a real soccer game. The Kalman filter shows a very promising result on this rather challenging sequence with a tracking accuracy above 70% and is superior compared with the offline tracking approach. Furthermore, the combined detection and tracking algorithm runs in real time at 33 fps, even with large image sizes of 1920 × 480 pixels.

  16. Influence of tracks densities in solid state nuclear track detectors

    When Solid State Nuclear Track Detectors (SSNTD) is employed to measure nuclear tracks produced mainly by fission fragments and alpha particles, it is considered that the tracks observation work is performed under an efficiency, ε0, which is independent of the track density (number of tracks/area unit). There are not published results or experimental data supporting such an assumption. In this work the dependence of ε0 with track density is studied basing on experimental data. To perform this, pieces of CR-39 cut from a sole 'mother sheet' were coupled to thin uranium films for different exposition times and the resulting ratios between track density and exposition time were compared. Our results indicate that ε0 is constant for track densities between 103 and 105 cm-2. At our etching conditions track overlapping makes impossible the counting for densities around 1.7 x 105 cm-2. For track densities less than 103 cm-2, ε0 , was not observed to be constant. (authors). 4 refs., 2 figs

  17. Electrical devices and remote monitoring

    New technologies are being applied in all spheres of life such as phones and computers. Since 2001 this technologies are incorporated, to implantable devices, such as Holter monitoring, pacemaker defibrillators and resynchronizers. Furthermore, the use of this technology, requires significant adaptation and change in traditional methods, is simple to use, versatile, and has shown a lot of benefits to patient care and medical activity. Increasingly tracking units pacemakers or defibrillators are using these monitoring systems and are being applied to a larger volume of patients

  18. A 3-DIMENSIONAL MATRIX ASSAY THAT MAY HELP PREDICT TREATMENT RESPONSE TO TEMOZOLOMIDE IN PATIENTS WITH GLIOBASTOMA: SUBGROUP ANALYSIS OF PATIENTS UNDERGOING MGMT TESTING

    Megyesi, Joseph F.; Costello, Penny; McDonald, Warren; Macdonald, David; Easaw, Jay

    2014-01-01

    BACKGROUND: (blind field). METHODS: Records for patients treated for newly diagnosed or recurrent glioblastoma were analyzed. All patients had undergone surgical resection and tumor specimens at time of surgery were available for culture in a 3-dimensional matrix assay and observed for growth and invasion. Drug effects on mean invasion and growth were expressed as a ratio relative to control conditions. Length of survival was compared between temozolomide treated patients whose screening results had predicted a positive or negative response to temozolomide. The MGMT status of a subgroup of these patients was analyzed and correlated with the response of tumor tissue in the assay to temozolomide. RESULTS: Fifty-eight patients with glioblastoma were assessed. Each patient's tumor displayed a unique invasion and response profile. We looked in particular at the correlation between the outcome of a patient with glioblastoma treated with temozolomide and the response of that patient's tumor tissue to temozolomide in the 3-dimensional assay. Mean survival time for patients whose tumors were not significantly sensitive to temozolomide in the assay was 181.7 +/- 43 days. Mean survival time for patients whose tumors were significantly sensitive to temozolomide in the assay was 290.0 +/- 33 days. Twelve patients underwent MGMT testing. In 10 of the 12 patients there was a correlation between tumor response in the assay and MGMT status. CONCLUSIONS: The 3-dimensional assay may help predict glioblastoma patients who will show a treatment response to temozolomide. There appears to be a positive correlation between the response profiles in the assay to the MGMT status of the patient's tumor. SECONDARY CATEGORY: n/a.

  19. PLASMA DEVICE

    Baker, W.R.

    1961-08-22

    A device is described for establishing and maintaining a high-energy, rotational plasma for use as a fast discharge capacitor. A disc-shaped, current- conducting plasma is formed in an axinl magnetic field and a crossed electric field, thereby creating rotational kinetic enengy in the plasma. Such energy stored in the rotation of the plasma disc is substantial and is convertible tc electrical energy by generator action in an output line electrically coupled to the plasma volume. Means are then provided for discharging the electrical energy into an external circuit coupled to the output line to produce a very large pulse having an extremely rapid rise time in the waveform thereof. (AE C)

  20. Development of a 3-dimensional calculation model of the Danish research reactor DR3 to analyse a proposal to a new core design called ring-core

    A 3-dimensional calculation model of the Danish research reactor DR3 has been developed. Demands of a more effective utilization of the reactor and its facilities has required a more detailed calculation tool than applied so far. A great deal of attention has been devoted to the treatment of the coarse control arms. The model has been tested against measurements with satisfying results. Furthermore the model has been used to analyse a proposal to a new core design called ring-core where 4 central fuel elements are replaced by 4 dummy elements to increase the thermal flux in the center of the reactor. (author)

  1. Differences in sensitivity to mTHPC-mediated photodynamic therapy of neurons, glial cells and MCF7 cells in a 3-dimensional cell culture model

    Wright, K E; MacRobert, A J; Phillips, J. B.

    2008-01-01

    The effect of photodynamic therapy (PDT) on the cells of the nervous system is an important consideration in the treatment of tumours that are located within or adjacent to the brain, spinal cord and peripheral nerves. Previous studies have reported the sparing of nerves during PDT using meta-tetrahydroxyphenylchlorin (mTHPC, Foscan®) in patients and in animal models. The aim of this study was to investigate the effects of mTHPC on key nervous system cells using a 3-dimensional cell culture s...

  2. Tracking of electrochemical impedance of batteries

    Piret, H.; Granjon, P.; Guillet, N.; Cattin, V.

    2016-04-01

    This paper presents an evolutionary battery impedance estimation method, which can be easily embedded in vehicles or nomad devices. The proposed method not only allows an accurate frequency impedance estimation, but also a tracking of its temporal evolution contrary to classical electrochemical impedance spectroscopy methods. Taking into account constraints of cost and complexity, we propose to use the existing electronics of current control to perform a frequency evolutionary estimation of the electrochemical impedance. The developed method uses a simple wideband input signal, and relies on a recursive local average of Fourier transforms. The averaging is controlled by a single parameter, managing a trade-off between tracking and estimation performance. This normalized parameter allows to correctly adapt the behavior of the proposed estimator to the variations of the impedance. The advantage of the proposed method is twofold: the method is easy to embed into a simple electronic circuit, and the battery impedance estimator is evolutionary. The ability of the method to monitor the impedance over time is demonstrated on a simulator, and on a real Lithium ion battery, on which a repeatability study is carried out. The experiments reveal good tracking results, and estimation performance as accurate as the usual laboratory approaches.

  3. Gaze Tracking Through Smartphones

    Skovsgaard, Henrik; Hansen, John Paulin; Møllenbach, Emilie

    Mobile gaze trackers embedded in smartphones or tablets provide a powerful personal link to game devices, head-mounted micro-displays, pc´s, and TV’s. This link may offer a main road to the mass market for gaze interaction, we suggest.......Mobile gaze trackers embedded in smartphones or tablets provide a powerful personal link to game devices, head-mounted micro-displays, pc´s, and TV’s. This link may offer a main road to the mass market for gaze interaction, we suggest....

  4. High Lithium Transference Number Electrolytes via Creation of 3-Dimensional, Charged, Nanoporous Networks from Dense Functionalized Nanoparticle Composites

    Schaefer, Jennifer L.

    2013-03-26

    High lithium transference number, tLi+, electrolytes are desired for use in both lithium-ion and lithium metal rechargeable battery technologies. Historically, low tLi+ electrolytes have hindered device performance by allowing ion concentration gradients within the cell, leading to high internal resistances that ultimately limit cell lifetime, charging rates, and energy density. Herein, we report on the synthesis and electrochemical features of electrolytes based on nanoparticle salts designed to provide high tLi+. The salts are created by cofunctionalization of metal oxide nanoparticles with neutral organic ligands and tethered lithium salts. When dispersed in a conducting fluid such as tetraglyme, they spontaneously form a charged, nanoporous network of particles at moderate nanoparticle loadings. Modification of the tethered anion chemistry from -SO3 - to -SO3BF3 - is shown to enhance ionic conductivity of the electrolytes by facilitating ion pair dissociation. At a particle volume fraction of 0.15, the electrolyte exists as a self-supported, nanoporous gel with an optimum ionic conductivity of 10 -4 S/cm at room temperature. Galvanostatic polarization measurements on symmetric lithium metal cells containing the electrolyte show that the cell short circuit time, tSC, is inversely proportional to the square of the applied current density tSC ∼ J-2, consistent with previously predicted results for traditional polymer-in-salt electrolytes with low tLi+. Our findings suggest that electrolytes with tLi+ ≈ 1 and good ion-pair dissociation delay lithium dendrite nucleation and may lead to improved lithium plating in rechargeable batteries with metallic lithium anodes. © 2013 American Chemical Society.

  5. Hierarchical fringe tracking

    Petrov, Romain G.; Elhalkouj, Thami; Boskri, Abdelkarim; Folcher, Jean-Pierre; Lagarde, Stephane; Bresson, Yves; Benkhaldoum, Zouhair; Lazrek, Mohamed; Rakshit, Suvendu

    2014-01-01

    The limiting magnitude is a key issue for optical interferometry. Pairwise fringe trackers based on the integrated optics concepts used for example in GRAVITY seem limited to about K=10.5 with the 8m Unit Telescopes of the VLTI, and there is a general "common sense" statement that the efficiency of fringe tracking, and hence the sensitivity of optical interferometry, must decrease as the number of apertures increases, at least in the near infrared where we are still limited by detector readou...

  6. Bearings only naval tracking

    Barth, M.J.

    1984-11-01

    Two commonly used Extended Kalman Filter tracking algorithms utilize the Relative Cartesian and Modified Polar coordinate systems. This report compares the two algorithms by exercising a destroyer-Submarine (DD/SS) computer simulation. A simple engagement geometry is employed which encompasses the major DD/SS options available. Error statistics are developed by Monte Carlo methods. Results are presented which show that the circular error depends upon the diagonal values of the error covariance matrix. The results also support (but do not establish) that the optimum DD manuevuer is that which minimizes the range while maximizing the bearing rate. 4 refs., 5 figs., 4 tabs.

  7. Track reconstruction at the ILC: the ILD tracking software

    One of the key requirements for Higgs physics at the International Linear Collider ILC is excellent track reconstruction with very good momentum and impact parameter resolution. ILD is one of the two detector concepts at the ILC. Its central tracking system comprises of an outer Si-tracker, a highly granular TPC, an intermediate silicon tracker and a pixel vertex detector, and it is complemented by silicon tracking disks in the forward direction. Large hit densities from beam induced coherent electron-positron pairs at the ILC pose an additional challenge to the pattern recognition algorithms. We present the recently developed new ILD tracking software, the pattern recognition algorithms that are using clustering techniques, Cellular Automatons and Kalman filter based track extrapolation. The performance of the ILD tracking system is evaluated using a detailed simulation including dead material, gaps and imperfections.

  8. A 3D diamond detector for particle tracking

    A novel device using single-crystal chemical vapour deposited diamond and resistive electrodes in the bulk forming a 3D diamond detector is presented. The electrodes of the device were fabricated with laser assisted phase change of diamond into a combination of diamond-like carbon, amorphous carbon and graphite. The connections to the electrodes of the device were made using a photo-lithographic process. The electrical and particle detection properties of the device were investigated. A prototype detector system consisting of the 3D device connected to a multi-channel readout was successfully tested with 120 GeV protons proving the feasibility of the 3D diamond detector concept for particle tracking applications for the first time

  9. Virtual Security Zones for Student Tracking System Using GPS Watch

    Keerthi Priya.D

    2014-11-01

    Full Text Available This Project is to design and develop a smart GPS watch that will track the position of the attached person (ex: school children & elderly, monitors for a sudden fall and alerts the authority in the event of a fall or when that person crosses a given border line of a predefined zone using a combination of GSM and WPAN radio communication. Since this is a security system, GPS watch should be always attached to the monitored person and removing or damaging this device should be prohibited. To achieve this, a Flexi Force Sensor is attached to the back of the device and it senses the grip force of the device with the user skin. The device will send an SMS to the authorities if the device gets tampered or removed by any means. This system is going to implement a ARM Cortex-M3 microcontroller

  10. Track structure of carbon ions: measurements and simulations

    The likelihood of radiation to produce clustered damages in irradiated biological tissue and the reparability of such damages are closely related to the stochastics of localised ionising interactions within small volumes of nanometre sizes, determined by the particle track structure. Track structure investigations in nanometre-sized volumes have been subject of research for several decades, mainly by means of Monte Carlo simulations. Today, the 'track-nano-dosimeter', installed at the TANDEM-ALPI accelerator complex of LNL, is a measuring device able to count the electrons produced in a 20-nm equivalent sensitive site (De Nardo et al. A detector for track-nanodosimetry. Nucl. Instrum. Methods. Phys. Res. A 484, 312-326 (2002)). It allows studying track structure properties both in the near neighbourhood of a primary particle trajectory and separately in the penumbra region. An extended study for different ionising particles of medical interest has been recently performed with the track-nano-dosimeter (Conte et al. Track structure of light ions: experiments and simulations. New J. Phys. 14, 093010, (2012)). Here, new experimental data and results of Monte Carlo simulations for 240- and 96-MeV 12C-ions are presented and discussed. In conclusion, it can be stated that the shape of the ionisation cluster-size distributions in the track-core region of particles' tracks results to be mainly determined by the mean free ionisation-path length of the primary particles. In the penumbra region, the shape of the distributions is almost independent of the impact parameter and also of the particle type and velocity. The probability of target hits changes with the quality of the primary particles, but the hit target experiences the same ionisation clustering, irrespectively of particle type and velocity. The relative frequency of target hits results to be proportional to the mean number of ionizations produced by the primary particle along a path length D. (authors)

  11. Intruder detection and tracking using UWB technology

    Schiavone, Guy A.; Wahid, Parveen; Palaniappan, Ravishankar; Tracy, Judd; Vandoorn, Eric; Micikevicius, Paulis; Hughes, Charles

    2004-08-01

    UWB communication is essentially the transmission and receiving of ultra short electromagnetic energy pulses. Short pulses mean wide bandwidths, often greatly exceeding 25% of the nominal center frequency. Modern UWB radio is characterized by very low power transmission (in the range of tens of microwatts) and wide bandwidths (greater than a gigahertz). One of the major applications of Ultra-wide band technology has been for detection and tracking of intruders in different environments. Based on some of our previous work [1,2] we developed a hybrid Ray-tracing/FDTD technique to study the indoor and outdoor propagation of UWB signals. The basic goal of this paper is to describe the experimental and simulation studies that were conducted to locate and track an intruder inside a UWB sensor web system. The sensor was developed using the Time Domain P-200 device and the software was developed using MATLAB. Return scans from UWB devices are analyzed to determine the noise floor and the signal strength. Using the noise floor level a threshold level is set above which the alarm will be triggered to determine the presence of an intruder. The probability of false alarm (PFA) is also determined using the Signal-to-Noise ratio and the threshold. We vary the PFA to lower the false alarm to a minimum level. We also determine the noise statistics of the system using Non-parametric Kolmogorov-Smirnov (KS) test. Using this basic UWB sensor web system we will try to determine the physical dimensions of the intruder and also track multiple intruders on the system.

  12. Gaze Tracking Through Smartphones

    Skovsgaard, Henrik; Hansen, John Paulin; Møllenbach, Emilie

    2013-01-01

    Mobile gaze trackers embedded in smartphones or tablets provide a powerful personal link to game devices, head-mounted micro-displays, pc´s, and TV’s. This link may offer a main road to the mass market for gaze interaction, we suggest.

  13. Measurement of Radon concentration in groundwater by technique of nuclear track detector

    A method for measuring radon concentration in groundwater using nuclear track detector LR-115 stripping is reported. The radon-monitoring device in groundwater is a small box with two pieces of nuclear track detector and all these materials is placed in a plastic bag made by polyethylene. It is very suitable to measure radon concentration in groundwater well in long term. Alpha tracks produced by radon and it daughter on nuclear track detector is counted automatically by spark counting method. The paper also presents some results of radon concentration in some groundwater well and mineral water sources. (author)

  14. The tracking system

    Mozar Jose de Brito

    2008-07-01

    Full Text Available The surveillance of the people is examined by means of some theoretical considerations under Foucault point of view. These are utilized to study four distinct technological systems. The aim of this revision is discuss the analytical applicability of Foucault’s Panoptic. The starting point is a postulate: new technology has the potential to affect the social relationship in some complex ways. This claim justifies this exploratory essay, that employ some cases afford by the specialized literature. In three situations the Panoptic is found insufficient or inappropriate. But in the truck tracking system the metaphor is found good enough. In conclusion, this could suggest the applicability of the model depends on the sort of the surveillance system in question. However, despite the fact that in some cases the reality is far way of the conditions of the model, the Panoptic metaphor can be conveniently and gainfully applied as illustrated in this paper. Key-words: surveillance, power, Panoptic, tracking system, GPS.

  15. Laser device

    Scott, Jill R.; Tremblay, Paul L.

    2007-07-10

    A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.

  16. Laser device

    Scott, Jill R.; Tremblay, Paul L.

    2004-11-23

    A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.

  17. Markerless 3D Head Tracking for Motion Correction in High Resolution PET Brain Imaging

    Olesen, Oline Vinter

    This thesis concerns application specific 3D head tracking. The purpose is to improve motion correction in position emission tomography (PET) brain imaging through development of markerless tracking. Currently, motion correction strategies are based on either the PET data itself or tracking devices...... images. Incorrect motion correction can in the worst cases result in wrong diagnosis or treatment. The evolution of a markerless custom-made structured light 3D surface tracking system is presented. The system is targeted at state-of-the-art high resolution dedicated brain PET scanners with a resolution...... of a few millimeters. Stateof- the-art hardware and software solutions are integrated into an operational device. This novel system is tested against a commercial tracking system popular in PET brain imaging. Testing and demonstrations are carried out in clinical settings. A compact markerless...

  18. An interface tracking model for droplet electrocoalescence.

    Erickson, Lindsay Crowl

    2013-09-01

    This report describes an Early Career Laboratory Directed Research and Development (LDRD) project to develop an interface tracking model for droplet electrocoalescence. Many fluid-based technologies rely on electrical fields to control the motion of droplets, e.g. microfluidic devices for high-speed droplet sorting, solution separation for chemical detectors, and purification of biodiesel fuel. Precise control over droplets is crucial to these applications. However, electric fields can induce complex and unpredictable fluid dynamics. Recent experiments (Ristenpart et al. 2009) have demonstrated that oppositely charged droplets bounce rather than coalesce in the presence of strong electric fields. A transient aqueous bridge forms between approaching drops prior to pinch-off. This observation applies to many types of fluids, but neither theory nor experiments have been able to offer a satisfactory explanation. Analytic hydrodynamic approximations for interfaces become invalid near coalescence, and therefore detailed numerical simulations are necessary. This is a computationally challenging problem that involves tracking a moving interface and solving complex multi-physics and multi-scale dynamics, which are beyond the capabilities of most state-of-the-art simulations. An interface-tracking model for electro-coalescence can provide a new perspective to a variety of applications in which interfacial physics are coupled with electrodynamics, including electro-osmosis, fabrication of microelectronics, fuel atomization, oil dehydration, nuclear waste reprocessing and solution separation for chemical detectors. We present a conformal decomposition finite element (CDFEM) interface-tracking method for the electrohydrodynamics of two-phase flow to demonstrate electro-coalescence. CDFEM is a sharp interface method that decomposes elements along fluid-fluid boundaries and uses a level set function to represent the interface.

  19. A new track reconstruction algorithm for the Mu3e experiment based on a fast multiple scattering fit

    A new fast track reconstruction algorithm developed for the high track multiplicity environment of the Mu3e experiment where track uncertainties are dominated by multiple scattering is presented. The goal of the Mu3e experiment is to search for the LFV decay μ+ → e+e−e+. To reach the sensitivity of 10-16 the experiment will be performed at a future high intensity beam line (HiMB) at the Paul-Scherrer Institute (Switzerland) providing more than 109 muons per second. Muons with a momentum of about 28 MeV/c are stopped on a target. Their decay at rest, in which mainly low momentum electrons with energies below 53 MeV are produced, is measured by the Mu3e tracking detector consisting of four cylindrical layers of thin silicon pixel sensors. The high granularity of the pixel detector with a pixel size of 80 × 80 μm2 allows for precise track reconstruction in the high occupancy environment of the Mu3e experiment reaching up to 100 tracks per readout frame of 50 ns. These tracks will be reconstructed online using a trigger-less readout scheme. The implementation of a fast 3-dimensional multiple scattering fit based on hit triplets, where spatial uncertainties are ignored, is described and performance results in the context of Mu3e experiment are presented. Also the implementation on Graphics Processor Units (GPUs) for fast online reconstruction is discussed

  20. Silicon tracking detectors in high-energy physics

    Since the fifties, semiconductors have been used as energy spectrometers, mainly in unsegmented ways. With the planar technique of processing silicon sensors in unprecedented precession, strip-like segmentation has allowed precise tracking and even vertexing, culminating in the early eighties with NA11 in the tagging of heavy flavor quarks - here the c-quark. With the later miniaturization of electronics, dense detector application was made possible, and large-scale systems were established in the heart of all LEP detectors, permitting vertexing in barrel-like detectors. At the time of LEP and the TEVATRON, tasks were still bifurcated. Small silicon detectors (up to three layers) did the vertexing and further out, gaseous detectors (e.g., drift chambers or time-projection chambers) with larger lever arms did the tracking. In RUN II of the CDF detector, larger silicon tracking devices, still complemented by a huge drift chamber, began to use a stand-alone tracking. At the LHC, ATLAS and CMS bifurcate in a slightly different way. Silicon pixel detectors are responsible for the vertexing, and large volume silicon strip detectors (up to 14 layers) are the main tracking devices. Silicon tracking systems are a fundamental part of modern multipurpose high-energy physics experiments. Despite the vertexing and thus the heavy quark tagging, silicon tracking detectors in combination with a strong B-field deliver the most accurate momentum measurement, and for a large range, also the best energy measurement. In this paper, the functionality of pixel and strip sensors will be introduced, and historical examples will be given to highlight the different implementations of the past 30 years.