WorldWideScience

Sample records for 3-d x-ray system

  1. Development of a 3-D x-ray system

    Evans, J P O

    1993-01-01

    major departure has been the introduction of a dual energy linear x-ray detector array which will allow, in general, the discrimination between organic and inorganic substances. The second design is a compromise between ease of visual inspection for human observers and optimum three-dimensional co-ordinate measurement capability. The system is part of an on going research programme into the possibility of introducing psychological depth cues into the resultant x-ray images. The research presented in this thesis was initiated to enhance the visual interpretation of complex x-ray images, specifically in response to problems encountered in the routine screening of freight by HM. Customs and Excise. This phase of the work culminated in the development of the first experimental machine. During this work the security industry was starting to adopt a new type of x-ray detector, namely the dual energy x-ray sensor. The Department of Transport made available funding to the Police Scientific Development Branch (P.S.D.B...

  2. Moving-Article X-Ray Imaging System and Method for 3-D Image Generation

    Fernandez, Kenneth R. (Inventor)

    2012-01-01

    An x-ray imaging system and method for a moving article are provided for an article moved along a linear direction of travel while the article is exposed to non-overlapping x-ray beams. A plurality of parallel linear sensor arrays are disposed in the x-ray beams after they pass through the article. More specifically, a first half of the plurality are disposed in a first of the x-ray beams while a second half of the plurality are disposed in a second of the x-ray beams. Each of the parallel linear sensor arrays is oriented perpendicular to the linear direction of travel. Each of the parallel linear sensor arrays in the first half is matched to a corresponding one of the parallel linear sensor arrays in the second half in terms of an angular position in the first of the x-ray beams and the second of the x-ray beams, respectively.

  3. TU-F-BRF-04: Registration of 3D Transesophageal Echocardiography and X-Ray Fluoroscopy Using An Inverse Geometry X-Ray System

    Purpose: To develop a method for the fusion of 3D echocardiography and Scanning-Beam Digital X-ray (SBDX) fluoroscopy to assist with catheter device and soft tissue visualization during interventional procedures. Methods: SBDX is a technology for low-dose inverse geometry x-ray fluoroscopy that performs digital tomosynthesis at multiple planes in real time. In this study, transesophageal echocardiography (TEE) images were fused with SBDX images by estimating the 3D position and orientation (the “pose”) of the TEE probe within the x-ray coordinate system and then spatially transforming the TEE image data to match this pose. An initial pose estimate was obtained through tomosynthesis-based 3D localization of points along the probe perimeter. Position and angle estimates were then iteratively refined by comparing simulated projections of a 3D probe model against SBDX x-ray images. Algorithm performance was quantified by imaging a TEE probe in different known orientations and locations within the x-ray field (0-30 degree tilt angle, up to 50 mm translation). Fused 3D TEE/SBDX imaging was demonstrated by imaging a tissue-mimicking polyvinyl alcohol cylindrical cavity as a catheter was navigated along the cavity axis. Results: Detected changes in probe tilt angle agreed with the known changes to within 1.2 degrees. For a 50 mm translation along the source-detector axis, the detected translation was 50.3 mm. Errors for in-plane translations ranged from 0.1 to 0.9 mm. In a fused 3D TEE/SBDX display, the catheter device was well visualized and coincident with the device shadow in the TEE images. The TEE images portrayed phantom boundaries that were not evident under x-ray. Conclusion: Registration of soft tissue anatomy derived from TEE imaging and device imaging from SBDX x-ray fluoroscopy is feasible. The simultaneous 3D visualization of these two modalities may be useful in interventional procedures involving the navigation of devices to soft tissue anatomy

  4. TU-F-BRF-04: Registration of 3D Transesophageal Echocardiography and X-Ray Fluoroscopy Using An Inverse Geometry X-Ray System

    Speidel, M; Hatt, C; Tomkowiak, M; Raval, A [University of Wisconsin, Madison, WI (United States); Funk, T [Triple Ring Technologies, Inc., Newark, CA (United States)

    2014-06-15

    Purpose: To develop a method for the fusion of 3D echocardiography and Scanning-Beam Digital X-ray (SBDX) fluoroscopy to assist with catheter device and soft tissue visualization during interventional procedures. Methods: SBDX is a technology for low-dose inverse geometry x-ray fluoroscopy that performs digital tomosynthesis at multiple planes in real time. In this study, transesophageal echocardiography (TEE) images were fused with SBDX images by estimating the 3D position and orientation (the “pose”) of the TEE probe within the x-ray coordinate system and then spatially transforming the TEE image data to match this pose. An initial pose estimate was obtained through tomosynthesis-based 3D localization of points along the probe perimeter. Position and angle estimates were then iteratively refined by comparing simulated projections of a 3D probe model against SBDX x-ray images. Algorithm performance was quantified by imaging a TEE probe in different known orientations and locations within the x-ray field (0-30 degree tilt angle, up to 50 mm translation). Fused 3D TEE/SBDX imaging was demonstrated by imaging a tissue-mimicking polyvinyl alcohol cylindrical cavity as a catheter was navigated along the cavity axis. Results: Detected changes in probe tilt angle agreed with the known changes to within 1.2 degrees. For a 50 mm translation along the source-detector axis, the detected translation was 50.3 mm. Errors for in-plane translations ranged from 0.1 to 0.9 mm. In a fused 3D TEE/SBDX display, the catheter device was well visualized and coincident with the device shadow in the TEE images. The TEE images portrayed phantom boundaries that were not evident under x-ray. Conclusion: Registration of soft tissue anatomy derived from TEE imaging and device imaging from SBDX x-ray fluoroscopy is feasible. The simultaneous 3D visualization of these two modalities may be useful in interventional procedures involving the navigation of devices to soft tissue anatomy.

  5. Twin robotic x-ray system for 2D radiographic and 3D cone-beam CT imaging

    Fieselmann, Andreas; Steinbrener, Jan; Jerebko, Anna K.; Voigt, Johannes M.; Scholz, Rosemarie; Ritschl, Ludwig; Mertelmeier, Thomas

    2016-03-01

    In this work, we provide an initial characterization of a novel twin robotic X-ray system. This system is equipped with two motor-driven telescopic arms carrying X-ray tube and flat-panel detector, respectively. 2D radiographs and fluoroscopic image sequences can be obtained from different viewing angles. Projection data for 3D cone-beam CT reconstruction can be acquired during simultaneous movement of the arms along dedicated scanning trajectories. We provide an initial evaluation of the 3D image quality based on phantom scans and clinical images. Furthermore, initial evaluation of patient dose is conducted. The results show that the system delivers high image quality for a range of medical applications. In particular, high spatial resolution enables adequate visualization of bone structures. This system allows 3D X-ray scanning of patients in standing and weight-bearing position. It could enable new 2D/3D imaging workflows in musculoskeletal imaging and improve diagnosis of musculoskeletal disorders.

  6. Development of a lab-scale, high-resolution, tube-generated X-ray computed-tomography system for three-dimensional (3D) materials characterization

    The design and construction of a modular high resolution X-ray computed tomography (XCT) system is highlighted in this paper. The design approach is detailed for meeting a specified set of instrument performance goals tailored towards experimental versatility and high resolution imaging. The XCT tool is unique in the detector and X-ray source design configuration, enabling control in the balance between detection efficiency and spatial resolution. The system package is also unique: The sample manipulation approach implemented enables a wide gamut of in situ experimentation to analyze structure evolution under applied stimulus, by optimizing scan conditions through a high degree of controllability. The component selection and design process is detailed: Incorporated components are specified, custom designs are shared, and the approach for their integration into a fully functional XCT scanner is provided. Custom designs discussed include the dual-target X-ray source cradle which maintains position and trajectory of the beam between the two X-ray target configurations with respect to a scintillator mounting and positioning assembly and the imaging sensor, as well as a novel large-format X-ray detector with enhanced adaptability. The instrument is discussed from an operational point of view, including the details of data acquisition and processing implemented for 3D imaging via micro-CT. The performance of the instrument is demonstrated on a silica-glass particle/hydroxyl-terminated-polybutadiene (HTPB) matrix binder PBX simulant. Post-scan data processing, specifically segmentation of the sample's relevant microstructure from the 3D reconstruction, is provided to demonstrate the utility of the instrument. - Highlights: • Custom built X-ray tomography system for microstructural characterization • Detector design for maximizing polychromatic X-ray detection efficiency • X-ray design offered for maximizing X-ray flux with respect to imaging resolution

  7. Development of a lab-scale, high-resolution, tube-generated X-ray computed-tomography system for three-dimensional (3D) materials characterization

    Mertens, J.C.E., E-mail: james.mertens@asu.edu; Williams, J.J., E-mail: jason.williams@asu.edu; Chawla, Nikhilesh, E-mail: nchawla@asu.edu

    2014-06-01

    The design and construction of a modular high resolution X-ray computed tomography (XCT) system is highlighted in this paper. The design approach is detailed for meeting a specified set of instrument performance goals tailored towards experimental versatility and high resolution imaging. The XCT tool is unique in the detector and X-ray source design configuration, enabling control in the balance between detection efficiency and spatial resolution. The system package is also unique: The sample manipulation approach implemented enables a wide gamut of in situ experimentation to analyze structure evolution under applied stimulus, by optimizing scan conditions through a high degree of controllability. The component selection and design process is detailed: Incorporated components are specified, custom designs are shared, and the approach for their integration into a fully functional XCT scanner is provided. Custom designs discussed include the dual-target X-ray source cradle which maintains position and trajectory of the beam between the two X-ray target configurations with respect to a scintillator mounting and positioning assembly and the imaging sensor, as well as a novel large-format X-ray detector with enhanced adaptability. The instrument is discussed from an operational point of view, including the details of data acquisition and processing implemented for 3D imaging via micro-CT. The performance of the instrument is demonstrated on a silica-glass particle/hydroxyl-terminated-polybutadiene (HTPB) matrix binder PBX simulant. Post-scan data processing, specifically segmentation of the sample's relevant microstructure from the 3D reconstruction, is provided to demonstrate the utility of the instrument. - Highlights: • Custom built X-ray tomography system for microstructural characterization • Detector design for maximizing polychromatic X-ray detection efficiency • X-ray design offered for maximizing X-ray flux with respect to imaging resolution

  8. Accuracy of x-ray image-based 3D localization from two C-arm views: a comparison between an ideal system and a real device

    Brost, Alexander; Strobel, Norbert; Yatziv, Liron; Gilson, Wesley; Meyer, Bernhard; Hornegger, Joachim; Lewin, Jonathan; Wacker, Frank

    2009-02-01

    arm X-ray imaging devices are commonly used for minimally invasive cardiovascular or other interventional procedures. Calibrated state-of-the-art systems can, however, not only be used for 2D imaging but also for three-dimensional reconstruction either using tomographic techniques or even stereotactic approaches. To evaluate the accuracy of X-ray object localization from two views, a simulation study assuming an ideal imaging geometry was carried out first. This was backed up with a phantom experiment involving a real C-arm angiography system. Both studies were based on a phantom comprising five point objects. These point objects were projected onto a flat-panel detector under different C-arm view positions. The resulting 2D positions were perturbed by adding Gaussian noise to simulate 2D point localization errors. In the next step, 3D point positions were triangulated from two views. A 3D error was computed by taking differences between the reconstructed 3D positions using the perturbed 2D positions and the initial 3D positions of the five points. This experiment was repeated for various C-arm angulations involving angular differences ranging from 15° to 165°. The smallest 3D reconstruction error was achieved, as expected, by views that were 90° degrees apart. In this case, the simulation study yielded a 3D error of 0.82 mm +/- 0.24 mm (mean +/- standard deviation) for 2D noise with a standard deviation of 1.232 mm (4 detector pixels). The experimental result for this view configuration obtained on an AXIOM Artis C-arm (Siemens AG, Healthcare Sector, Forchheim, Germany) system was 0.98 mm +/- 0.29 mm, respectively. These results show that state-of-the-art C-arm systems can localize instruments with millimeter accuracy, and that they can accomplish this almost as well as an idealized theoretical counterpart. High stereotactic localization accuracy, good patient access, and CT-like 3D imaging capabilities render state-of-the-art C-arm systems ideal devices for X-ray

  9. The EOS 2D/3D X-ray imaging system: A cost-effectiveness analysis quantifying the health benefits from reduced radiation exposure

    Objectives: To evaluate the cost-effectiveness of the EOS® 2D/3D X-ray imaging system compared with standard X-ray for the diagnosis and monitoring of orthopaedic conditions. Materials and methods: A decision analytic model was developed to quantify the long-term costs and health outcomes, expressed as quality-adjusted life years (QALYs) from the UK health service perspective. Input parameters were obtained from medical literature, previously developed cancer models and expert advice. Threshold analysis was used to quantify the additional health benefits required, over and above those associated with radiation-induced cancers, for EOS® to be considered cost-effective. Results: Standard X-ray is associated with a maximum health loss of 0.001 QALYs, approximately 0.4 of a day in full health, while the loss with EOS® is a maximum of 0.00015 QALYs, or 0.05 of a day in full health. On a per patient basis, EOS® is more expensive than standard X-ray by between £10.66 and £224.74 depending on the assumptions employed. The results suggest that EOS® is not cost-effective for any indication. Health benefits over and above those obtained from lower radiation would need to double for EOS to be considered cost-effective. Conclusion: No evidence currently exists on whether there are health benefits associated with imaging improvements from the use of EOS®. The health benefits from radiation dose reductions are very small. Unless EOS® can generate additional health benefits as a consequence of the nature and quality of the image, comparative patient throughput with X-ray will be the major determinant of cost-effectiveness

  10. Exceptionally preserved Cambrian trilobite digestive system revealed in 3D by synchrotron-radiation X-ray tomographic microscopy.

    Mats E Eriksson

    Full Text Available The Cambrian 'Orsten' fauna comprises exceptionally preserved and phosphatised microscopic arthropods. The external morphology of these fossils is well known, but their internal soft-tissue anatomy has remained virtually unknown. Here, we report the first non-biomineralised tissues from a juvenile polymerid trilobite, represented by digestive structures, glands, and connective strands harboured in a hypostome from the Swedish 'Orsten' fauna. Synchrotron-radiation X-ray tomographic microscopy enabled three-dimensional internal recordings at sub-micrometre resolution. The specimen provides the first unambiguous evidence for a J-shaped anterior gut and the presence of a crop with a constricted alimentary tract in the Trilobita. Moreover, the gut is Y-shaped in cross section, probably due to a collapsed lumen of that shape, another feature which has not previously been observed in trilobites. The combination of anatomical features suggests that the trilobite hypostome is functionally analogous to the labrum of euarthropods and that it was a sophisticated element closely integrated with the digestive system. This study also briefly addresses the preservational bias of the 'Orsten' fauna, particularly the near-absence of polymerid trilobites, and the taphonomy of the soft-tissue-harbouring hypostome.

  11. 3D Rotational X-Ray guidance for surgical interventions

    Kraats, Everine Brenda van de

    2005-01-01

    The research described in this thesis is aimed at increasing the accuracy and decreasing the invasiveness of surgical procedures, with a focus on spine procedures, by using a combination of multi-modality images, computer-assisted navigation, intraoperative 3D rotational X-ray (3DRX) imaging, and mi

  12. 3D synchrotron x-ray microtomography of paint samples

    Ferreira, Ester S. B.; Boon, Jaap J.; van der Horst, Jerre; Scherrer, Nadim C.; Marone, Federica; Stampanoni, Marco

    2009-07-01

    Synchrotron based X-ray microtomography is a novel way to examine paint samples. The three dimensional distribution of pigment particles, binding media and their deterioration products as well as other features such as voids, are made visible in their original context through a computing environment without the need of physical sectioning. This avoids manipulation related artefacts. Experiments on paint chips (approximately 500 micron wide) were done on the TOMCAT beam line (TOmographic Microscopy and Coherent rAdiology experimenTs) at the Paul Scherrer Institute in Villigen, CH, using an x-ray energy of up to 40 keV. The x-ray absorption images are obtained at a resolution of 350 nm. The 3D dataset was analysed using the commercial 3D imaging software Avizo 5.1. Through this process, virtual sections of the paint sample can be obtained in any orientation. One of the topics currently under research are the ground layers of paintings by Cuno Amiet (1868- 1961), one of the most important Swiss painters of classical modernism, whose early work is currently the focus of research at the Swiss Institute for Art Research (SIK-ISEA). This technique gives access to information such as sample surface morphology, porosity, particle size distribution and even particle identification. In the case of calcium carbonate grounds for example, features like microfossils present in natural chalks, can be reconstructed and their species identified, thus potentially providing information towards the mineral origin. One further elegant feature of this technique is that a target section can be selected within the 3D data set, before exposing it to obtain chemical data. Virtual sections can then be compared with cross sections of the same samples made in the traditional way.

  13. 3D Hydrodynamic & Radiative Transfer Models of X-ray Emission from Colliding Wind Binaries

    Russell, Christopher M P; Owocki, Stanley P; Corcoran, Michael F; Hamaguchi, Kenji; Sugawara, Yasuharu

    2014-01-01

    Colliding wind binaries (CWBs) are unique laboratories for X-ray astrophysics. The massive stars in these systems possess powerful stellar winds with speeds up to $\\sim$3000 km s$^{-1}$, and their collision leads to hot plasma (up to $\\sim10^8$K) that emit thermal X-rays (up to $\\sim$10 keV). Many X-ray telescopes have observed CWBs, including Suzaku, and our work aims to model these X-ray observations. We use 3D smoothed particle hydrodynamics (SPH) to model the wind-wind interaction, and then perform 3D radiative transfer to compute the emergent X-ray flux, which is folded through X-ray telescopes' response functions to compare directly with observations. In these proceedings, we present our models of Suzaku observations of the multi-year-period, highly eccentric systems $\\eta$ Carinae and WR 140. The models reproduce the observations well away from periastron passage, but only $\\eta$ Carinae's X-ray spectrum is reproduced at periastron; the WR 140 model produces too much flux during this more complicated p...

  14. Towards magnetic 3D x-ray imaging

    Fischer, Peter; Streubel, R.; Im, M.-Y.; Parkinson, D.; Hong, J.-I.; Schmidt, O. G.; Makarov, D.

    2014-03-01

    Mesoscale phenomena in magnetism will add essential parameters to improve speed, size and energy efficiency of spin driven devices. Multidimensional visualization techniques will be crucial to achieve mesoscience goals. Magnetic tomography is of large interest to understand e.g. interfaces in magnetic multilayers, the inner structure of magnetic nanocrystals, nanowires or the functionality of artificial 3D magnetic nanostructures. We have developed tomographic capabilities with magnetic full-field soft X-ray microscopy combining X-MCD as element specific magnetic contrast mechanism, high spatial and temporal resolution due to the Fresnel zone plate optics. At beamline 6.1.2 at the ALS (Berkeley CA) a new rotation stage allows recording an angular series (up to 360 deg) of high precision 2D projection images. Applying state-of-the-art reconstruction algorithms it is possible to retrieve the full 3D structure. We will present results on prototypic rolled-up Ni and Co/Pt tubes and glass capillaries coated with magnetic films and compare to other 3D imaging approaches e.g. in electron microscopy. Supported by BES MSD DOE Contract No. DE-AC02-05-CH11231 and ERC under the EU FP7 program (grant agreement No. 306277).

  15. X-ray imaging of laser produced plasmas by a compound 3D x-ray lens

    Pilot scheme for the study of plasma under extreme condition is implemented using a compound 3D X-ray lens. Hard X-ray image of laser plasma produced by irradiating of copper foil by intense laser pulse was recorded using this lens

  16. New opportunities for 3D materials science of polycrystalline materials at the micrometre lengthscale by combined use of X-ray diffraction and X-ray imaging

    Ludwig, W.; King, A.; Reischig, P.;

    2009-01-01

    Non-destructive, three-dimensional (3D) characterization of the grain structure in mono-phase polycrystalline materials is an open challenge in material science. Recent advances in synchrotron based X-ray imaging and diffraction techniques offer interesting possibilities for mapping 3D grain shapes...... and crystallographic orientations for certain categories of polycrystalline materials. Direct visualisation of the three-dimensional grain boundary network or of two-phase (duplex) grain structures by means of absorption and/or phase contrast techniques may be possible, but is restricted to specific...... material systems. A recent extension of this methodology, termed X-ray diffraction contrast tomography (DCT), combines the principles of X-ray diffraction imaging, three-dimensional X-ray diffraction microscopy (3DXRD) and image reconstruction from projections. DCT provides simultaneous access to 3D grain...

  17. 3D ablation catheter localisation using individual C-arm x-ray projections

    Haase, C.; Schäfer, D.; Dössel, O.; Grass, M.

    2014-11-01

    Cardiac ablation procedures during electrophysiology interventions are performed under x-ray guidance with a C-arm imaging system. Some procedures require catheter navigation in complex anatomies like the left atrium. Navigation aids like 3D road maps and external tracking systems may be used to facilitate catheter navigation. As an alternative to external tracking a fully automatic method is presented here that enables the calculation of the 3D location of the ablation catheter from individual 2D x-ray projections. The method registers a high resolution, deformable 3D attenuation model of the catheter to a 2D x-ray projection. The 3D localization is based on the divergent beam projection of the catheter. On an individual projection, the catheter tip is detected in 2D by image filtering and a template matching method. The deformable 3D catheter model is adapted using the projection geometry provided by the C-arm system and 2D similarity measures for an accurate 2D/3D registration. Prior to the tracking and registration procedure, the deformable 3D attenuation model is automatically extracted from a separate 3D cone beam CT reconstruction of the device. The method can hence be applied to various cardiac ablation catheters. In a simulation study of a virtual ablation procedure with realistic background, noise, scatter and motion blur an average 3D registration accuracy of 3.8 mm is reached for the catheter tip. In this study four different types of ablation catheters were used. Experiments using measured C-arm fluoroscopy projections of a catheter in a RSD phantom deliver an average 3D accuracy of 4.5 mm.

  18. Statistical skull models from 3D X-ray images

    Berar, M; Bailly, G; Payan, Y; Berar, Maxime; Desvignes, Michel; Payan, Yohan

    2006-01-01

    We present 2 statistical models of the skull and mandible built upon an elastic registration method of 3D meshes. The aim of this work is to relate degrees of freedom of skull anatomy, as static relations are of main interest for anthropology and legal medicine. Statistical models can effectively provide reconstructions together with statistical precision. In our applications, patient-specific meshes of the skull and the mandible are high-density meshes, extracted from 3D CT scans. All our patient-specific meshes are registrated in a subject-shared reference system using our 3D-to-3D elastic matching algorithm. Registration is based upon the minimization of a distance between the high density mesh and a shared low density mesh, defined on the vertexes, in a multi resolution approach. A Principal Component analysis is performed on the normalised registrated data to build a statistical linear model of the skull and mandible shape variation. The accuracy of the reconstruction is under the millimetre in the shape...

  19. 3D global estimation and augmented reality visualization of intra-operative X-ray dose.

    Rodas, Nicolas Loy; Padoy, Nicolas

    2014-01-01

    The growing use of image-guided minimally-invasive surgical procedures is confronting clinicians and surgical staff with new radiation exposure risks from X-ray imaging devices. The accurate estimation of intra-operative radiation exposure can increase staff awareness of radiation exposure risks and enable the implementation of well-adapted safety measures. The current surgical practice of wearing a single dosimeter at chest level to measure radiation exposure does not provide a sufficiently accurate estimation of radiation absorption throughout the body. In this paper, we propose an approach that combines data from wireless dosimeters with the simulation of radiation propagation in order to provide a global radiation risk map in the area near the X-ray device. We use a multi-camera RGBD system to obtain a 3D point cloud reconstruction of the room. The positions of the table, C-arm and clinician are then used 1) to simulate the propagation of radiation in a real-world setup and 2) to overlay the resulting 3D risk-map onto the scene in an augmented reality manner. By using real-time wireless dosimeters in our system, we can both calibrate the simulation and validate its accuracy at specific locations in real-time. We demonstrate our system in an operating room equipped with a robotised X-ray imaging device and validate the radiation simulation on several X-ray acquisition setups. PMID:25333145

  20. Gamma/x-ray linear pushbroom stereo for 3D cargo inspection

    Zhu, Zhigang; Hu, Yu-Chi

    2006-05-01

    For evaluating the contents of trucks, containers, cargo, and passenger vehicles by a non-intrusive gamma-ray or X-ray imaging system to determine the possible presence of contraband, three-dimensional (3D) measurements could provide more information than 2D measurements. In this paper, a linear pushbroom scanning model is built for such a commonly used gamma-ray or x-ray cargo inspection system. Accurate 3D measurements of the objects inside a cargo can be obtained by using two such scanning systems with different scanning angles to construct a pushbroom stereo system. A simple but robust calibration method is proposed to find the important parameters of the linear pushbroom sensors. Then, a fast and automated stereo matching algorithm based on free-form deformable registration is developed to obtain 3D measurements of the objects under inspection. A user interface is designed for 3D visualization of the objects in interests. Experimental results of sensor calibration, stereo matching, 3D measurements and visualization of a 3D cargo container and the objects inside, are presented.

  1. Measuring the 3D shape of X-ray clusters

    Samsing, Johan; Hansen, Steen H

    2012-01-01

    Observations and numerical simulations of galaxy clusters strongly indicate that the hot intracluster x-ray emitting gas is not spherically symmetric. In many earlier studies spherical symmetry has been assumed partly because of limited data quality, however new deep observations and instrumental designs will make it possible to go beyond that assumption. Measuring the temperature and density profiles are of interest when observing the x-ray gas, however the spatial shape of the gas itself also carries very useful information. For example, it is believed that the x-ray gas shape in the inner parts of galaxy clusters is greatly affected by feedback mechanisms, cooling and rotation, and measuring this shape can therefore indirectly provide information on these mechanisms. In this paper we present a novel method to measure the three-dimensional shape of the intracluster x-ray emitting gas. We can measure the shape from the x-ray observations only, i.e. the method does not require combination with independent mea...

  2. New developments for 3D CT at high X-ray energy

    CT is well suited both for measurements and for flaw detection in cast metal products which as a rule have a complex shape and internal caverns. Currently available tomographs for 3D scanning of large objects still have shortcomings. Line detectors - normally operated with a 450 kV X-ray source - are slow. Systems with detector panels normally have 225 kV microfocus tubes which provide insufficient power. The microfocus tube cannot be replaced by a 450 kV tube as scattered radiation at higher energies will considerably reduce the image quality of the tomograms. In the context of European research projects during the past few years, Empa developed new methods for faster data acquisition with line detector systems and correction of scattered radiation for CT with conical beams and with panel detectors. The contribution outlines the state of the art and also presents new trends, especially for fast 3D volume scanning with high X-ray energy

  3. 3D localization of electrophysiology catheters from a single x-ray cone-beam projection

    Purpose: X-ray images allow the visualization of percutaneous devices such as catheters in real time but inherently lack depth information. The provision of 3D localization of these devices from cone beam x-ray projections would be advantageous for interventions such as electrophysiology (EP), whereby the operator needs to return a device to the same anatomical locations during the procedure. A method to achieve real-time 3D single view localization (SVL) of an object of known geometry from a single x-ray image is presented. SVL exploits the change in the magnification of an object as its distance from the x-ray source is varied. The x-ray projection of an object of interest is compared to a synthetic x-ray projection of a model of said object as its pose is varied. Methods: SVL was tested with a 3 mm spherical marker and an electrophysiology catheter. The effect of x-ray acquisition parameters on SVL was investigated. An independent reference localization method was developed to compare results when imaging a catheter translated via a computer controlled three-axes stage. SVL was also performed on clinical fluoroscopy image sequences. A commercial navigation system was used in some clinical image sequences for comparison. Results: SVL estimates exhibited little change as x-ray acquisition parameters were varied. The reproducibility of catheter position estimates in phantoms denoted by the standard deviations, (σx, σy, σz) = (0.099 mm,  0.093 mm,  2.2 mm), where x and y are parallel to the detector plane and z is the distance from the x-ray source. Position estimates (x, y, z) exhibited a 4% systematic error (underestimation) when compared to the reference method. The authors demonstrated that EP catheters can be tracked in clinical fluoroscopic images. Conclusions: It has been shown that EP catheters can be localized in real time in phantoms and clinical images at fluoroscopic exposure rates. Further work is required to characterize performance in clinical

  4. 3D localization of electrophysiology catheters from a single x-ray cone-beam projection

    Robert, Normand, E-mail: normand.robert@sri.utoronto.ca; Polack, George G.; Sethi, Benu; Rowlands, John A. [Physical Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Crystal, Eugene [Division of Cardiology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada)

    2015-10-15

    Purpose: X-ray images allow the visualization of percutaneous devices such as catheters in real time but inherently lack depth information. The provision of 3D localization of these devices from cone beam x-ray projections would be advantageous for interventions such as electrophysiology (EP), whereby the operator needs to return a device to the same anatomical locations during the procedure. A method to achieve real-time 3D single view localization (SVL) of an object of known geometry from a single x-ray image is presented. SVL exploits the change in the magnification of an object as its distance from the x-ray source is varied. The x-ray projection of an object of interest is compared to a synthetic x-ray projection of a model of said object as its pose is varied. Methods: SVL was tested with a 3 mm spherical marker and an electrophysiology catheter. The effect of x-ray acquisition parameters on SVL was investigated. An independent reference localization method was developed to compare results when imaging a catheter translated via a computer controlled three-axes stage. SVL was also performed on clinical fluoroscopy image sequences. A commercial navigation system was used in some clinical image sequences for comparison. Results: SVL estimates exhibited little change as x-ray acquisition parameters were varied. The reproducibility of catheter position estimates in phantoms denoted by the standard deviations, (σ{sub x}, σ{sub y}, σ{sub z}) = (0.099 mm,  0.093 mm,  2.2 mm), where x and y are parallel to the detector plane and z is the distance from the x-ray source. Position estimates (x, y, z) exhibited a 4% systematic error (underestimation) when compared to the reference method. The authors demonstrated that EP catheters can be tracked in clinical fluoroscopic images. Conclusions: It has been shown that EP catheters can be localized in real time in phantoms and clinical images at fluoroscopic exposure rates. Further work is required to characterize

  5. NDE of spacecraft materials using 3D Compton backscatter x-ray imaging

    Burke, E. R.; Grubsky, V.; Romanov, V.; Shoemaker, K.

    2016-02-01

    We present the results of testing of the NDE performance of a Compton Imaging Tomography (CIT) system for single-sided, penetrating 3D inspection. The system was recently developed by Physical Optics Corporation (POC) and delivered to NASA for testing and evaluation. The CIT technology is based on 3D structure mapping by collecting the information on density profiles in multiple object cross sections through hard x-ray Compton backscatter imaging. The individual cross sections are processed and fused together in software, generating a 3D map of the density profile of the object which can then be analyzed slice-by-slice in x, y, or z directions. The developed CIT scanner is based on a 200-kV x-ray source, flat-panel x-ray detector (FPD), and apodized x-ray imaging optics. The CIT technology is particularly well suited to the NDE of lightweight aerospace materials, such as the thermal protection system (TPS) ceramic and composite materials, micrometeoroid and orbital debris (MMOD) shielding, spacecraft pressure walls, inflatable habitat structures, composite overwrapped pressure vessels (COPVs), and aluminum honeycomb materials. The current system provides 3D localization of defects and features with field of view 20x12x8 cm3 and spatial resolution ˜2 mm. In this paper, we review several aerospace NDE applications of the CIT technology, with particular emphasis on TPS. Based on the analysis of the testing results, we provide recommendations for continued development on TPS applications that can benefit the most from the unique capabilities of this new NDE technology.

  6. 3D contrast-enhanced MR portography and direct X-ray portography: a correlation study

    Objective: To evaluate the accuracy of 3D contrast-enhanced MR portography (3D CEMRP) by correlating with direct X-ray portography. Methods: Twenty-six patients underwent 3D CEMRP study. The findings of 3D CEMRP including the patency of the portal vein and its intrahepatic left and right branches, as well as collaterals were evaluated and compared with those from direct x-ray portography. Causes of disagreement between the two methods were analyzed. Results: The main portal vein appearance was accordant with 3D CEMRP and direct x-ray portography in all cases. For intrahepatic portal veins, the results agreed in 21 patients but disagreed in 5. In one patient with a huge tumor in right liver, the right posterior portal vein was classified as occluded at 3D CEMRP, but displaced and diffusely narrowed at direct x-ray portography. The findings of left intrahepatic portal vein were discordant in three patients with hepatocelluar carcinoma in the left lobe. 3D CE MRP demonstrated complete occlusion of the left portal veins, whereas direct x-ray portography showed proximal narrowing and distal occlusion. In another patient with hepatocelluar carcinoma, a small non-occlusive thrombus involving the sagittal segment of the left portal vein was seen on MRP but not on direct x-ray portography. With demonstration of portosystemic collaterals, 3D CEMRP showed results similar to those of X-ray portography, except one recanalized para-umbilical vein was excluded from the limited scan coverage. Conclusion: 3D CE MRP correlated well with direct x-ray portography in most cases. Compared with direct portography, 3D CEMRP had limitation in distinguishing narrowing of an intrahepatic portal vein from occlusion. But it showed advantage in demonstrating small thrombus within portal vein. (authors)

  7. 3D Reconstruction from X-ray Fluoroscopy for Clinical Veterinary Medicine using Differential Volume Rendering

    Khongsomboon, Khamphong; Hamamoto, Kazuhiko; Kondo, Shozo

    3D reconstruction from ordinary X-ray equipment which is not CT or MRI is required in clinical veterinary medicine. Authors have already proposed a 3D reconstruction technique from X-ray photograph to present bone structure. Although the reconstruction is useful for veterinary medicine, the thechnique has two problems. One is about exposure of X-ray and the other is about data acquisition process. An x-ray equipment which is not special one but can solve the problems is X-ray fluoroscopy. Therefore, in this paper, we propose a method for 3D-reconstruction from X-ray fluoroscopy for clinical veterinary medicine. Fluoroscopy is usually used to observe a movement of organ or to identify a position of organ for surgery by weak X-ray intensity. Since fluoroscopy can output a observed result as movie, the previous two problems which are caused by use of X-ray photograph can be solved. However, a new problem arises due to weak X-ray intensity. Although fluoroscopy can present information of not only bone structure but soft tissues, the contrast is very low and it is very difficult to recognize some soft tissues. It is very useful to be able to observe not only bone structure but soft tissues clearly by ordinary X-ray equipment in the field of clinical veterinary medicine. To solve this problem, this paper proposes a new method to determine opacity in volume rendering process. The opacity is determined according to 3D differential coefficient of 3D reconstruction. This differential volume rendering can present a 3D structure image of multiple organs volumetrically and clearly for clinical veterinary medicine. This paper shows results of simulation and experimental investigation of small dog and evaluation by veterinarians.

  8. 3D reconstruction from X-ray fluoroscopy for clinical veterinary medicine using differential volume rendering

    3D reconstruction from ordinary X-ray equipment which is not CT or MRI is required in clinical veterinary medicine. Authors have already proposed a 3D reconstruction technique from X-ray photograph to present bone structure. Although the reconstruction is useful for veterinary medicine, the technique has two problems. One is about exposure of X-ray and the other is about data acquisition process. An x-ray equipment which is not special one but can solve the problems is X-ray fluoroscopy. Therefore, in this paper, we propose a method for 3D-reconstruction from X-ray fluoroscopy for clinical veterinary medicine. Fluoroscopy is usually used to observe a movement of organ or to identify a position of organ for surgery by weak X-ray intensity. Since fluoroscopy can output a observed result as movie, the previous two problems which are caused by use of X-ray photograph can be solved. However, a new problem arises due to weak X-ray intensity. Although fluoroscopy can present information of not only bone structure but soft tissues, the contrast is very low and it is very difficult to recognize some soft tissues. It is very useful to be able to observe not only bone structure but soft tissues clearly by ordinary X-ray equipment in the field of clinical veterinary medicine. To solve this problem, this paper proposes a new method to determine opacity in volume rendering process. The opacity is determined according to 3D differential coefficient of 3D reconstruction. This differential volume rendering can present a 3D structure image of multiple organs volumetrically and clearly for clinical veterinary medicine. This paper shows results of simulation and experimental investigation of small dog and evaluation by veterinarians. (author)

  9. Three-Dimensional Backscatter X-Ray Imaging System Project

    National Aeronautics and Space Administration — The overall objective of the proposal is to design, develop and demonstrate a potentially portable Compton x-ray scatter 3D-imaging system by using specially...

  10. New opportunities for 3D materials science of polycrystalline materials at the micrometre lengthscale by combined use of X-ray diffraction and X-ray imaging

    Non-destructive, three-dimensional (3D) characterization of the grain structure in mono-phase polycrystalline materials is an open challenge in material science. Recent advances in synchrotron based X-ray imaging and diffraction techniques offer interesting possibilities for mapping 3D grain shapes and crystallographic orientations for certain categories of polycrystalline materials. Direct visualisation of the three-dimensional grain boundary network or of two-phase (duplex) grain structures by means of absorption and/or phase contrast techniques may be possible, but is restricted to specific material systems. A recent extension of this methodology, termed X-ray diffraction contrast tomography (DCT), combines the principles of X-ray diffraction imaging, three-dimensional X-ray diffraction microscopy (3DXRD) and image reconstruction from projections. DCT provides simultaneous access to 3D grain shape, crystallographic orientation and local attenuation coefficient distribution. The technique applies to the larger range of plastically undeformed, polycrystalline mono-phase materials, provided some conditions on grain size and texture are fulfilled. The straightforward combination with high-resolution microtomography opens interesting new possibilities for the observation of microstructure related damage and deformation mechanisms in these materials.

  11. 3D contrast-enhanced MR portography and direct X-ray portography: a correlation study

    Our objective was to compare 3D contrast-enhanced MR portography (3D CE MRP) on a 1.5-T MR imager with direct X-ray portography. Twenty-six consecutive patients underwent 3D CE MRP with in-plane resolution of 1.4 or 1.8 mm, and direct X-ray portography. The findings of these two methods were evaluated and compared. The main portal vein (PV), right PV with its anterior and posterior segmental branches, and left PV including its sagittal segment were shown clearly without diagnostic problem in all cases on MRP. The main PV appearance was accordant with MRP and X-ray. For intrahepatic PVs, the results agreed in 21 patients but disagreed in 5 patients. In 1 patient with a huge tumor in right liver, the right posterior PV was classified as occluded at MRP, but diffusely narrowed at X-ray. The findings of left intrahepatic PV were discordant in 3 patients with hepatocelluar carcinoma in the left lobe. The MRP demonstrated complete occlusion of the left PVs, whereas X-ray showed proximal narrowing and distal occlusion. In another patient with hepatocelluar carcinoma, a small non-occlusive thrombus involving the sagittal segment of the left PV was seen on MRP but not on X-ray. With demonstration of varices and portosystemic shunts, MRP showed results similar to those of X-ray, except one recanalized para-umbilical vein was excluded from the field of view at MRP due to the patient's limited ability of breathholding. The 3D CE MRP correlated well with direct X-ray portography in most cases, it was limited in distinguishing narrowing of an intrahepatic PV from occlusion, but it showed advantage in demonstrating small thrombus within PV. (orig.)

  12. 3-d chemical imaging using angle-scan nanotomography in a soft X-ray scanning transmission X-ray microscope

    Three-dimensional chemical mapping using angle scan nanotomography in a soft X-ray scanning transmission X-ray microscope (STXM) has been used to investigate the spatial distributions of a low density polyacrylate polyelectrolyte ionomer inside submicron sized polystyrene microspheres. Acquisition of tomograms at multiple photon energies provides true, quantifiable 3-d chemical sensitivity. Both pre-O 1s and C 1s results are shown. The study reveals aspects of the 3-d distribution of the polyelectrolyte that were inferred indirectly or had not been known prior to this study. The potential and challenges for extension of the technique to studies of other polymeric and to biological systems is discussed. (orig.)

  13. Evaluation of a new method for stenosis quantification from 3D x-ray angiography images

    Betting, Fabienne; Moris, Gilles; Knoplioch, Jerome; Trousset, Yves L.; Sureda, Francisco; Launay, Laurent

    2001-05-01

    A new method for stenosis quantification from 3D X-ray angiography images has been evaluated on both phantom and clinical data. On phantoms, for the parts larger or equal to 3 mm, the standard deviation of the measurement error has always found to be less or equal to 0.4 mm, and the maximum measurement error less than 0.17 mm. No clear relationship has been observed between the performances of the quantification method and the acquisition FoV. On clinical data, the 3D quantification method proved to be more robust to vessel bifurcations than its 3D equivalent. On a total of 15 clinical cases, the differences between 2D and 3D quantification were always less than 0.7 mm. The conclusion is that stenosis quantification from 3D X-4ay angiography images is an attractive alternative to quantification from 2D X-ray images.

  14. Direct assessment of 3D foot bone kinematics using biplanar X-ray fluoroscopy and an automatic model registration method

    Ito, Kohta; Hosoda, Koh; Shimizu, Masahiro; Ikemoto, Shuhei; Kume, Shinnosuke; Nagura, Takeo; Imanishi, Nobuaki; Aiso, Sadakazu; Jinzaki, Masahiro; Ogihara, Naomichi

    2015-01-01

    Background Quantifying detailed 3-dimensional (3D) kinematics of the foot in contact with the ground during locomotion is crucial for understanding the biomechanical functions of the complex musculoskeletal structure of the foot. Biplanar X-ray fluoroscopic systems and model-based registration techniques have recently been employed to capture and visualise 3D foot bone movements in vivo, but such techniques have generally been performed manually. In the present study, we developed an automati...

  15. X-ray tomography: Biological cells in 3-D at better than 50 nm resolution

    Full text: X-ray microscopy can be used to image whole, hydrated, specimens with a spatial resolution 5-10 times better than that obtained using visible light microscopy. X-ray imaging at photon energies below the K- absorption edge of oxygen, referred to as the water window, exploits the strong natural contrast for organic material embedded in a mostly water matrix. With a transmission X-ray microscope using Fresnel zone plate optics, specimens up to 10 microns thick can be examined. The highest X-ray transmission in hydrated samples is obtained at a wavelength of 2.4 nm but, due to the low numerical aperture of zone plate lenses operated in st order diffraction mode the structures resolved are much larger than the X-ray wavelength. Because of the low NA of X-ray lenses (NA=0.05), combined with the effect of polychromatic illumination and a wavelength dependant focal length, the effective depth of ld is large (6-10 microns). The experiments presented here were performed at the Advanced Light Source using the full ld transmission X-ray microscope, XM-1. This microscope employs a bend magnet X-ray source and zone plate condenser and objective lenses. The condenser zone plate acts as a monochromator and the X-ray images are recorded directly on a cooled, back-thinned 1024x1024 pixel CCD camera. The sample holder was a rotationally symmetric glass tube; the region containing the sample was 10 microns in diameter with a wall thickness of 200 nm. Live yeast cells were loaded into the tube, rapidly frozen by a blast of liquid nitrogen-cooled helium gas, and maintained at 140 deg C by a steady flow of cold helium. The image sequence spanned 180 deg and consisted of 45 images spaced by 4 deg. The images were aligned to a common axis and computed tomographic reconstruction was used to obtain the 3-D X-ray linear absorption coefficient. Volume rendering and animation of reconstructed data was performed using the 3-D program, Amira. Acquisition time for 90 images was 3 min

  16. X-Ray Nanofocus CT: Visualising Of Internal 3D-Structures With Submicrometer Resolution

    Weinekoetter, Christian

    2008-09-01

    High-resolution X-ray Computed Tomography (CT) allows the visualization and failure analysis of the internal micro structure of objects—even if they have complicated 3D-structures where 2D X-ray microscopy would give unclear information. During the past several years, computed tomography has progressed to higher resolution and quicker reconstruction of the 3D-volume. Most recently it even allows a three-dimensional look into the inside of materials with submicron resolution. With the use of nanofocus® tube technology, nanoCT®-systems are pushing forward into application fields that were exclusive to high cost and rare available synchrotron techniques. The study was performed with the new nanotom, a very compact laboratory system which allows the analysis of samples up to 120 mm in diameter and weighing up to 1 kg with exceptional voxel-resolution down to nanoCT-examinations e.g. of synthetic materials, metals, ceramics, composite materials, mineral and organic samples. There are a few physical effects influencing the CT quality, such as beam-hardening within the sample or ring-artefacts, which can not be completely avoided. To optimize the quality of high resolution 3D volumes, the nanotom® includes a variety of effective software tools to reduce ring-artefacts and correct beam hardenings or drift effects which occurred during data acquisition. The resulting CT volume data set can be displayed in various ways, for example by virtual slicing and sectional views in any direction of the volume. By the fact that this requires only a mouse click, this technique will substitute destructive mechanical slicing and cutting in many applications. The initial CT results obtained with the nanotom® demonstrate that it is now possible to analyze the three-dimensional micro structure of materials and small objects with submicrometer resolution. Any internal difference in material, density or porosity within a sample can be visualized and data like distances can be measured

  17. Development of 2D, pseudo 3D and 3D x-ray imaging for early diagnosis of breast cancer and rheumatoid arthritis

    By using plane-wave x-rays with synchrotron radiation refraction-based x-ray medical imaging can be used to visualize soft tissue, as reported in this paper. This method comprises two-dimensional (2D) x-ray dark-field imaging (XDFI), the tomosynthesis of pseudo 3D (sliced) x-ray imaging by the adoption of XDFI and 3D x-ray imaging by utilizing a newly devised algorithm. We aim to make contribution to the early diagnosis of breast cancer, which is a major cancer among women, and rheumatoid arthritises which cannot be detected in its early stages. (author)

  18. 3-D Multiphase Segmentation of X-Ray Micro Computed Tomography Data of Geologic Materials

    Tuller, M.; Kulkarni, R.; Fink, W.

    2011-12-01

    Advancements of noninvasive imaging methods such as X-Ray Computed Tomography (CT) led to a recent surge of applications in Geoscience. While substantial efforts and resources have been devoted to advance CT technology and micro-scale analysis, the development of a stable 3-D multiphase image segmentation method applicable to large datasets is lacking. To eliminate the need for wet/dry or dual energy scans, image alignment, and subtraction analysis, commonly applied in synchrotron X-Ray micro CT, a segmentation method based on a Bayesian Markov Random Field (MRF) framework amenable to true 3-D multiphase processing was developed and evaluated. Furthermore, several heuristic and deterministic combinatorial optimization schemes required to solve the labeling problem of the MRF image model were implemented and tested for computational efficiency and their impact on segmentation results. Test results for natural and artificial porous media datasets demonstrate great potential of the MRF image model for 3-D multiphase segmentation.

  19. Element-specific X-ray phase tomography of 3D structures at the nanoscale.

    Donnelly, Claire; Guizar-Sicairos, Manuel; Scagnoli, Valerio; Holler, Mirko; Huthwelker, Thomas; Menzel, Andreas; Vartiainen, Ismo; Müller, Elisabeth; Kirk, Eugenie; Gliga, Sebastian; Raabe, Jörg; Heyderman, Laura J

    2015-03-20

    Recent advances in fabrication techniques to create mesoscopic 3D structures have led to significant developments in a variety of fields including biology, photonics, and magnetism. Further progress in these areas benefits from their full quantitative and structural characterization. We present resonant ptychographic tomography, combining quantitative hard x-ray phase imaging and resonant elastic scattering to achieve ab initio element-specific 3D characterization of a cobalt-coated artificial buckyball polymer scaffold at the nanoscale. By performing ptychographic x-ray tomography at and far from the Co K edge, we are able to locate and quantify the Co layer in our sample to a 3D spatial resolution of 25 nm. With a quantitative determination of the electron density we can determine that the Co layer is oxidized, which is confirmed with microfluorescence experiments. PMID:25839287

  20. X-ray scattering in the elastic regime as source for 3D imaging reconstruction technique

    Kocifaj, Miroslav; Mego, Michal

    2015-11-01

    X-ray beams propagate across a target object before they are projected onto a regularly spaced array of detectors to produce a routine X-ray image. A 3D attenuation coefficient distribution is obtained by tomographic reconstruction where scattering is usually regarded as a source of parasitic signals which increase the level of electromagnetic noise that is difficult to eliminate. However, the elastically scattered radiation could be a valuable source of information, because it can provide a 3D topology of electron densities and thus contribute significantly to the optical characterization of the scanned object. The scattering and attenuation data form a complementary base for concurrent retrieval of both electron density and attenuation coefficient distributions. In this paper we developed the 3D reconstruction method that combines both data inputs and produces better image resolution compared to traditional technology.

  1. A new system for the X-ray examination of casualties: easier, faster examnination without changing the patient's position by means of the Vertix 3 D

    Due to the adjustment problems with the traditional overhead support, repeatedly the conventional radiation systems applied until today in emergency departments resulted to be disadvantageous. Another disadvantage is that the patient's position has often to be changed in order to photograph the individual sections to be examined. With a stirrup system attached to the overhead support and a patient table board with a thin plate vertically adjustable, these disadvantages can be eliminated. Since the system works with a fixed raster cassette with a high camera shaft ratio, a lighter constructional design and an easier operation without an impairment of image quality are rendered possible. This study describes the applicability of a new unit especially designed for emergency diagnostics, which is supplemented with a previously programmed generator, a table board with vertical adjustment and an exchangeable mobile sliding mattress. (orig.)

  2. 3D Radio and X-Ray Modeling and Data Analysis Software: Revealing Flare Complexity

    Nita, Gelu M; Kuznetsov, Alexey A; Kontar, Eduard P; Gary, Dale E

    2014-01-01

    We have undertaken a major enhancement of our IDL-based simulation tools developed earlier for modeling microwave and X-ray emission. The object-based architecture provides an interactive graphical user interface that allows the user to import photospheric magnetic field maps and perform magnetic field extrapolations to almost instantly generate 3D magnetic field models, to investigate the magnetic topology of these models by interactively creating magnetic field lines and associated magnetic flux tubes, to populate the flux tubes with user-defined nonuniform thermal plasma and anisotropic, nonuniform, nonthermal electron distributions; to investigate the spatial and spectral properties of radio and X-ray emission calculated from the model, and to compare the model-derived images and spectra with observational data. The application integrates shared-object libraries containing fast gyrosynchrotron emission codes developed in FORTRAN and C++, soft and hard X-ray codes developed in IDL, a FORTRAN-based potentia...

  3. A method based on diffraction theory for predicting 3D focusing performance of compound refractive X-ray lenses

    Zichun Le; Kai Liu; Jingqiu Liang

    2005-01-01

    A method based on the diffraction theory for estimating the three-dimensional (3D) focusing performance of the compound refractive X-ray lenses is presented in this paper. As a special application, the 3D X-ray intensity distribution near the focus is derived for a plano-concave compound refractive X-ray lens.Moreover, the computer codes are developed and some results of 3D focusing performance for a compound refractive X-ray lens with Si material are shown and discussed.

  4. On the presence of Fe(IV) in Fe-ZSM-5 and FeSrO3-x --unequivocal detection of the 3d4 spin system by resonant inelastic X-ray scattering.

    Pirngruber, Gerhard D; Grunwaldt, Jan-Dierk; van Bokhoven, Jeroen A; Kalytta, Andreas; Reller, Armin; Safonova, Olga V; Glatzel, Pieter

    2006-09-21

    The contribution of a 3d(4) spin configuration to the valence electronic structure of Fe compounds can be probed via spin-selective Fe K-pre-edge absorption spectra, using resonant inelastic X-ray scattering (RIXS). The 3d(4) configuration of Fe(IV) can be unequivocally detected even in a mixture with the high-spin 3d(5) configuration of Fe(III). This is demonstrated on the perovskite FeSrO(3-x) with formal oxidation state Fe(IV). When the technique was applied to an Fe-ZSM-5 catalyst during reaction with N(2)O, no 3d(4) configuration was detected. The formation of Fe(IV) upon reaction of Fe-ZSM-5 with N(2)O can, therefore, be ruled out. PMID:16970419

  5. A Bayesian approach to real-time 3D tumor localization via monoscopic x-ray imaging during treatment delivery

    Purpose: Monoscopic x-ray imaging with on-board kV devices is an attractive approach for real-time image guidance in modern radiation therapy such as VMAT or IMRT, but it falls short in providing reliable information along the direction of imaging x-ray. By effectively taking consideration of projection data at prior times and/or angles through a Bayesian formalism, the authors develop an algorithm for real-time and full 3D tumor localization with a single x-ray imager during treatment delivery. Methods: First, a prior probability density function is constructed using the 2D tumor locations on the projection images acquired during patient setup. Whenever an x-ray image is acquired during the treatment delivery, the corresponding 2D tumor location on the imager is used to update the likelihood function. The unresolved third dimension is obtained by maximizing the posterior probability distribution. The algorithm can also be used in a retrospective fashion when all the projection images during the treatment delivery are used for 3D localization purposes. The algorithm does not involve complex optimization of any model parameter and therefore can be used in a ''plug-and-play'' fashion. The authors validated the algorithm using (1) simulated 3D linear and elliptic motion and (2) 3D tumor motion trajectories of a lung and a pancreas patient reproduced by a physical phantom. Continuous kV images were acquired over a full gantry rotation with the Varian TrueBeam on-board imaging system. Three scenarios were considered: fluoroscopic setup, cone beam CT setup, and retrospective analysis. Results: For the simulation study, the RMS 3D localization error is 1.2 and 2.4 mm for the linear and elliptic motions, respectively. For the phantom experiments, the 3D localization error is < 1 mm on average and < 1.5 mm at 95th percentile in the lung and pancreas cases for all three scenarios. The difference in 3D localization error for different scenarios is small and is not

  6. 3D-CT imaging using characteristic X-rays and visible lights produced by ion micro-beam bombardment

    Ishii, K.; Matsuyama, S.; Yamazaki, H.; Watanabe, Y.; Kawamura, Y.; Yamaguchi, T.; Momose, G.; Kikuchi, Y.; Terakawa, A.; Galster, W.

    2006-08-01

    We improved the spatial resolution of a 3D-CT imaging system consisting of a micro-beam and an X-ray CCD camera of 1 mega pixels (Hamamatsu photonics C8800X), whose element size is 8 μm × 8 μm providing an image size of 8 mm × 8 mm. A small ant of ∼6 mm body length was placed in a small tube, rotated by a stepping motor, and a spatial resolution of 4 μm for X-ray micron-CT using characteristic Ti-K-X-rays (4.558 keV) produced by 3 MeV proton micro-beams was obtained. We applied the X-ray micron-CT to a small ant's head and obtained the fine structures of the head's interior. Because the CCD is sensitive to visible light, we also examined the capability of light micron-CT using visible red light from an Al2O3(Cr) ruby scintillator and applied the micron-CT to a small red tick. Though the red tick is highly transparent to Ti-K-X-rays, visible red light does not penetrate through the red tick. The most serious problem was dispersion of lights due to Thomson scattering resulting in obscure projection images.

  7. Bone histomorphometric quantification by X-ray phase contrast and transmission 3D SR microcomputed tomography

    Full text: Conventional histomorphometry is an important method for quantitative evaluation of bone microstructure. X-ray computed tomography is a noninvasive technique, which can be used to evaluate histomorphometric indices. In this technique, the output 3D images are used to quantify the whole sample, differently from the conventional one, in which the quantification is performed in 2D slices and extrapolated for 3D case. Looking for better resolutions and visualization of soft tissues, X-ray phase contrast imaging technique was developed. The objective of this work was to perform histomorphometric quantification of human cancellous bone using 3D synchrotron X ray computed microtomography, using two distinct techniques: transmission and phase contrast, in order to compare the results and evaluate the viability of applying the same methodology of quantification for both technique. All experiments were performed at the ELETTRA Synchrotron Light Laboratory in Trieste (Italy). MicroCT data sets were collected using the CT set-up on the SYRMEP (Synchrotron Radiation for Medical Physics) beamline. Results showed that there is a better correlation between histomorphometric parameters of both techniques when morphological filters had been used. However, using these filters, some important information given by phase contrast are lost and they shall be explored by new techniques of quantification

  8. 3D X-ray microscopy: image formation, tomography and instrumentation

    Selin, Mårten

    2016-01-01

    Tomography in soft X-ray microscopy is an emerging technique for obtaining quantitative 3D structural information about cells. One of its strengths, compared with other techniques, is that it can image intact cells in their near-native state at a few 10 nm’s resolution, without staining. However, the methods for reconstructing 3D-data rely on algorithms that assume projection data, which the images are generally not due to the imaging systems’ limited depth of focus. To bring out the full pot...

  9. X-ray flat panel detectors and X-ray tubes contributing to development of X-ray diagnostic systems

    X-ray flat panel detectors (FPDs) and X-ray tubes are key devices allowing X-ray diagnostic systems to support more sophisticated medical care. FPDs provide valuable information for the diagnosis of various diseases through the conversion of X-ray images of the human body into electronic signals, while X-ray tubes are used in a wide range of applications such as computed tomography (CT), angiography, fluoroscopy, mammography, and dental systems. Toshiba Electron Tubes and Devices Co., Ltd. has developed and commercialized FPDs providing high-quality diagnostic X-ray images with low dose exposure through the development of cutting-edge technologies including a fine crystal formation technology for cesium iodide (CsI) scintillators, thin-film transistor (TFT) arrays with photodiodes, and so on. In the field of X-ray tubes that can generate a high output of X-rays, we have developed a liquid metal hydrodynamic bearing (LM bearing) technology for various diagnostic systems including medical CT systems with a long lifetime and high rotation speed, and cardiovascular imaging systems with quiet operation. Furthermore, LM bearing technology reduces the burden on the environment by replacing insulating oil with water coolant for the cooling system and making the X-ray tubes more compact. (author)

  10. Application of 3D X-ray CT data sets to finite element analysis

    Finite Element Modeling (FEM) is becoming more important as industry drives toward concurrent engineering. A fundamental hindrance to fully exploiting the power of FEM is the human effort required to acquire complex part geometry, particularly as-built geometry, as a FEM mesh. Many Quantitative Non Destructive Evaluation (QNDE) techniques that produce three-dimensional (3D) data sets provide a substantial reduction in the effort required to apply FEM to as-built parts. This paper describes progress at LLNL on the application of 3D X-ray computed tomography (CT) data sets to more rapidly produce high-quality FEM meshes of complex, as-built geometries. Issues related to the volume segmentation of the 3D CT data as well as the use of this segmented data to tailor generic hexahedral FEM meshes to part specific geometries are discussed. The application of these techniques to FEM analysis in the medical field is reported here

  11. Application of high magnification to 3D x-ray computed tomography

    A system was previously described for direct three-dimensional x-ray computed tomography which embodies both a means of performing reconstruction from cone-beam projection data and a means of acquiring such data. After replacing the microfocus source the system resolution under standard conditions is now determined primarily by the spatial resolution of the x-ray image intensifier which serves as the two dimensional detector. To more fully exploit the potential of the x-ray source and to bypass the limits of the detection system the use of high geometric magnification was explored. Initial findings are presented for both a conventional full-field configuration and a configuration in which only a limited volume of a sample can be reconstructed. The results indicate the utility of combining aspects of microradiography with those of computed tomography

  12. Reservoir core porosity in the Resende formation using 3D high-resolution X-ray computed microtomography

    The storage capacity and production of oil are influenced, among other things, by rocks and fluids characteristics. Porosity is one of the most important characteristics to be analyzed in oil industry, mainly in oil prospection because it represents the direct capacity of storage fluids in the rocks. By definition, porosity is the ratio of pore volume to the total bulk volume of the formation, expressed in percentage, being able to be absolute or effective. The aim of this study was to calculate porosity by 3D High-Resolution X-ray Computed Microtomography using core plugs from Resende Formation which were collected in Porto Real, Rio de Janeiro State. This formation is characterized by sandstones and fine conglomerates with associated fine siliciclastic sediments, and the paleoenviroment is interpreted as a braided fluvial system. For acquisitions data, it was used a 3D high resolution microtomography system which has a microfocus X-ray tube (spot size < 5μm) and a 12-bit cooled X-ray camera (CCD fiber-optically coupled to a scintillator) operated at 100 kV and 100 μA. Twenty-two samples taken at different depths from two boreholes were analyzed. A total of 961 slices were performed with a resolution of 14.9 μm. The results demonstrated that μ-CT is a reliable and effective technique. Through the images and data it was possible to quantify the porosity and to view the size and shape of porous. (author)

  13. Probing Local Mineralogy in 3D with Dual Energy X-Ray Microscopy

    Gelb, J.; Yun, S.; Doerr, D.; Hunter, L.; Johnson, B.; Merkle, A.; Fahey, K.

    2013-12-01

    In recent years, 3D imaging of rock microstructures has become routine practice for determining pore-scale properties in the geosciences. X-Ray imaging techniques, such as X-Ray Microscopy (XRM), have demonstrated several unique capabilities: namely, the ability to characterize the same sample across a range of length scales and REVs (from millimeters to nanometers), and to perform these characterizations on the same sample over a range of times/treatments (e.g., to observe fluid transporting through the pore networks in a flow cell). While the XRM technique is a popular choice for structural (i.e., pore) characterization, historically it has provided little mineralogical information. This means that resulting simulations are either based on pore structure alone, or rely on correlative chemical mapping techniques for compositionally-sensitive models. Recent advancements in XRM techniques are now enabling compositional sensitivity for a variety of geological sample types. By collecting high-resolution 3D tomography data sets at two different source settings (energies), results may be mixed together to enhance the appearance (contrast) of specific materials. This approach is proving beneficial, for example, to mining applications to locate and identify precious metals, as well as for oil & gas applications to map local hydrophobicity. Here, we will introduce the technique of dual energy X-Ray microscopy, showing how it extends the capabilities of traditional XRM techniques, affording the same high resolution structural information while adding 3D compositional data. Application examples will be shown to illustrate its effectiveness at both the single to sub-micron length scale for mining applications as well as at the 150 nm length scale for shale rock analysis.

  14. A 3D kinematics measurement of knee joint using X-ray projection images

    Most of previous studies about joint kinematic analysis using X-ray image needed totally clear outline bones. However, to obtain the clear outline is not easy in clinical because X-ray image of knee often overlaps with bones. In this study, the method of kinetic analysis that uses the outline, which was not totally clear, was proposed. In order to achieve the aim, P type Fourier Descriptor that can be used in an open curve was applied. And, the library database was preliminary selected using feature vectors which were based on shape feature, initial point and terminal point of the outline. After an outline of the object was divided in three parts, template pattern matching was performed. In results, the standard deviation of errors of patella were θx=1.00±0.84 deg, θy=0.55±0.65 deg and θz=0.62±0.12 deg. As to femur, tibia and patella, a part of divided outlines influenced the accuracy of our proposal method. This result shows that, even if all outline of bone is not clear on X-ray image, 3D kinematic analysis can be carried out. (author)

  15. 3D numerical model of the Omega Nebula (M17): simulated thermal X-ray emission

    Reyes-Iturbide, J; Rosado, M; Rodríguez-Gónzalez, A; González, R F; Esquivel, A

    2009-01-01

    We present 3D hydrodynamical simulations of the superbubble M17, also known as the Omega nebula, carried out with the adaptive grid code yguazu'-a, which includes radiative cooling. The superbubble is modelled considering the winds of 11 individual stars from the open cluster inside the nebula (NGC 6618), for which there are estimates of the mass loss rates and terminal velocities based on their spectral types. These stars are located inside a dense interstellar medium, and they are bounded by two dense molecular clouds. We carried out three numerical models of this scenario, considering different line of sight positions of the stars (the position in the plane of the sky is known, thus fixed). Synthetic thermal X-ray emission maps are calculated from the numerical models and compared with ROSAT observations of this astrophysical object. Our models reproduce successfully both the observed X-ray morphology and the total X-ray luminosity, without taking into account thermal conduction effects.

  16. Portable fluid X-ray diagnostic system

    A portable X-ray image system is described comprising: (a) a base assembly including panels and hinges joining the panels together along edges, and compression stops for biasing the hinges to compensate for the weight of payload when mounted on the base assembly, the compression stops being located for interaction with the hinges for biasing the panels to exhibit upward bowing when laid upon a flat surface prior to loading, and to provide resiliency for facilitating the base assembly assuming a substantially flat configuration when a predetermined payload is placed upon the base assembly; (b) an X-ray member; (c) apparatus for detachably mounting a table member to the base assembly to hold the table member at a location above the base; (d) an X-ray source; (e) means for sensing X-rays to form an image; (f) means for mounting the X-ray source and the X-ray sensing means on opposite sides relative to the table member and supported by the base assembly; (g) releasable clamping apparatus associated with the hinges for rendering the joints of the base assembly substantially rigid; (h) means for adjustably leveling the base assembly, and (i) means for indicating the attitude of the base assembly with respect to the horizontal

  17. Development of confocal 3D X-ray fluorescence instrument and its applications to micro depth profiling

    We have developed a confocal micro X-ray fluorescence instrument. Two independent X-ray tubes of Mo and Cr targets were installed to this instrument. Two polycapillary full X-ray lenses were attached to two X-ray tubes, and a polycapillary half X-ray lens was also attached to the X-ray detector (silicon drift detector, SDD). Finally, three focus spots of three lenses were adjusted at a common position. By using this confocal micro X-ray fluorescence instrument, depth profiling for layered samples were performed. It was found that depth resolution depended on energy of X-ray fluorescence that was measured. In addition, X-ray elemental maps were determined at different depths for an agar sample including metal fragments of Cu, Ti and Au. The elemental maps showed actual distributions of metal fragments in the agar, indicating that the confocal micro X-ray fluorescence is a feasible technique for non-destructive depth analysis and 3D X-ray fluorescence analysis. (author)

  18. Analysis of a 3D imaging device by reconstruction from cone beam X ray radiographs

    The aim of our study is to analyse the principle of a 3D imaging device which attempts to restore the local density on a cuberill from a set of digital radiographs taken around the object. We have to use a ponctual radiation source to localize the acquisition lines. Therefore the attenuation measurements are modelled by the cone beam X ray transform. In the analysis of the inverse problem, we work out two inversion diagrams which compute the original function, the image of the object, by a sequence of transforms. The theoretical and algorithmical difficulty comes from the fact that, even in the simple case of a circular acquisition trajectory, the cone-shaped geometry prohibits splitting the problem into a superposition of reconstructions in two dimensions. We describe a novel theoretical framework based on the Radon transform. In this new representation space, it becomes possible by a rebinning operation to redistribute the integral values associated to planes from the coordinates system linked to source positions to the spherical coordinates system of the domain. To ensure this shift of space, we have established two formulas, the first approximate but leading to faster processing, related to the Radon transform, the second exact, related to the first derivative of the Radon transform. The inversion of these transforms completes the reconstruction. We state a theorem where we present the hypothesis under which the exact diagram does restore the original function. These are not verified for a circular trajectory, owing to a shadow zone in the Radon domain associated to the planes which intersect the object but not the trajectory. We propose either to restore the missing information or to use an oscillating trajectory

  19. 3D X-rays application for precision measurement of the cell structure of extruded polystyrene

    Lim, J. Y.; Kim, K. Y.; Shin, H. S.; Yeom, S.; Lee, S. E.

    2015-12-01

    While the thermal performance of existing insulation materials have been determined by blister gases, the thermal performance of future insulation materials will be dependent on the cell size and independent foam content as we use eco-friendly blister gases with a higher thermal conductivity. However, with the current technology we are only able to guess the whole cell size and independent foam content through SEM applied 2D fragmentary scanning but are still far from the level of accurate cell structure data extraction. Under this situation, we utilized X-ray CT scanned 3D images to identify and shape the cell structure and proposed a method of inferring the whole distribution and independent foam content as accurately as possible. According to X-ray CT scanning images and SEM images, the shape was similar but according to tracer applied CT scanning images, the cell size distribution was 380∼400 pm within the range of the general insulation diameter distribution which had the highest reliability. As for extrusion foaming polystyrene, we need additional image processing to identify the independent foam content as its density is too low. So, it is recommended to raise the 3D cell structure completeness of XPS by improving the scanning accuracy.

  20. Design of smart 3D-digital X-ray microtomographic scanners for non-destructive testing of materials and components of electronic devices with a multilayered structure

    Syryamkin, V. I., E-mail: hailun@mail.ru; Klestov, S. A., E-mail: klestov-simon@mail.ru; Echina, E. S., E-mail: zrtom1@mail.ru [National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Suntsov, S. B., E-mail: sbsun@iss-reshetnev.ru [National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Academician M.F. Reshetnev Information Satellite Systems, Zheleznogorsk, Krasnoyarsk region, 662972 (Russian Federation)

    2015-10-27

    The article studies the operating procedures of an X-ray microtomographic scanner and the module of reconstruction and analysis 3D-image of a test sample in particular. An algorithm for 3D-image reconstruction based on image shadow projections and mathematical methods of the processing are described. Chapter 1 describes the basic principles of X-ray tomography and general procedures of the device developed. Chapters 2 and 3 are devoted to the problem of resources saving by the system during the X-ray tomography procedure, which is achieved by preprocessing of the initial shadow projections. Preprocessing includes background noise removing from the images, which reduces the amount of shadow projections in general and increases the efficiency of the group shadow projections compression. Chapter 4 covers general procedures of defect search, which is based on vector analysis principles. In conclusion, the main applications of X-ray tomography are presented.

  1. Design of smart 3D-digital X-ray microtomographic scanners for non-destructive testing of materials and components of electronic devices with a multilayered structure

    The article studies the operating procedures of an X-ray microtomographic scanner and the module of reconstruction and analysis 3D-image of a test sample in particular. An algorithm for 3D-image reconstruction based on image shadow projections and mathematical methods of the processing are described. Chapter 1 describes the basic principles of X-ray tomography and general procedures of the device developed. Chapters 2 and 3 are devoted to the problem of resources saving by the system during the X-ray tomography procedure, which is achieved by preprocessing of the initial shadow projections. Preprocessing includes background noise removing from the images, which reduces the amount of shadow projections in general and increases the efficiency of the group shadow projections compression. Chapter 4 covers general procedures of defect search, which is based on vector analysis principles. In conclusion, the main applications of X-ray tomography are presented

  2. Design of smart 3D-digital X-ray microtomographic scanners for non-destructive testing of materials and components of electronic devices with a multilayered structure

    Syryamkin, V. I.; Suntsov, S. B.; Klestov, S. A.; Echina, E. S.

    2015-10-01

    The article studies the operating procedures of an X-ray microtomographic scanner and the module of reconstruction and analysis 3D-image of a test sample in particular. An algorithm for 3D-image reconstruction based on image shadow projections and mathematical methods of the processing are described. Chapter 1 describes the basic principles of X-ray tomography and general procedures of the device developed. Chapters 2 and 3 are devoted to the problem of resources saving by the system during the X-ray tomography procedure, which is achieved by preprocessing of the initial shadow projections. Preprocessing includes background noise removing from the images, which reduces the amount of shadow projections in general and increases the efficiency of the group shadow projections compression. Chapter 4 covers general procedures of defect search, which is based on vector analysis principles. In conclusion, the main applications of X-ray tomography are presented.

  3. X-ray devices contributing to sophistication of X-ray diagnostic systems

    X-ray tubes to generate X-rays, as well as X-ray image intensifiers (I.I.s) and X-ray flat panel detectors (FPDs) to convert X-ray images into electronic signals, are key devices in X-ray diagnostic systems, which are playing a major role in the advancement of diagnosis and treatment. Toshiba Electron Tubes and Devices Co., Ltd. has been offering optimal products incorporating the most advanced technologies to customers through continuous technological innovations. These include a high-sensitivity technology for X-ray I.I.s and X-ray FPDs to suppress patient exposure doses, a focal spot design technology for X-ray tubes and high-resolution technologies for X-ray I.I.s and X-ray FPDs that enhance image quality and make it possible to detect smaller lesion areas, and a noise reduction technology for X-ray tubes to realize a comfortable medical environment with reduced stress on both patients and medical staff. (author)

  4. Multi-contrast 3D X-ray imaging of porous and composite materials

    Grating-based X-ray computed tomography allows for simultaneous and nondestructive determination of the full X-ray complex index of refraction and the scattering coefficient distribution inside an object in three dimensions. Its multi-contrast capabilities combined with a high resolution of a few micrometers make it a suitable tool for assessing multiple phases inside porous and composite materials such as concrete. Here, we present quantitative results of a proof-of-principle experiment performed on a concrete sample. Thanks to the complementarity of the contrast channels, more concrete phases could be distinguished than in conventional attenuation-based imaging. The phase-contrast reconstruction shows high contrast between the hardened cement paste and the aggregates and thus allows easy 3D segmentation. Thanks to the dark-field image, micro-cracks inside the coarse aggregates are visible. We believe that these results are extremely interesting in the field of porous and composite materials studies because of unique information provided by grating interferometry in a non-destructive way

  5. X-ray color imaging with 3D sensitive voxel detector

    X-ray imaging is today widely used in a broad range of applications. Nevertheless some limitations are represented by the inability to distinguish between a thick layer of low Z material and a thin layer of high Z material, and by the beam hardening, where the incident X-ray spectrum is modified as the beam traverses the sample. Such effects cause problems in many applications (e.g. CT reconstruction) generating artifacts and worsening the spatial resolution. This work presents a new technique allowing spectral sensitivity using a new 3D voxel detector based on the Timepix pixel detector. The device is designed as a layered stack of several Timepix sensors. The readout chip is thinned down to reduce the amount of insensitive absorbing material. Every single layers in the stack act as a filter, i.e. each stack layer visualizes a different part of the spectrum attenuated by the object giving further information about the object composition. The comparison of attenuation levels observed in different detector layers can be used to estimate the extent of the beam hardening effect in the imaged object and thus point out differences in the material composition.

  6. Multi-contrast 3D X-ray imaging of porous and composite materials

    Sarapata, Adrian; Herzen, Julia [Lehrstuhl für Biomedizinische Physik, Physik-Department and Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); Ruiz-Yaniz, Maite [Lehrstuhl für Biomedizinische Physik, Physik-Department and Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); European Synchrotron Radiation Facility, 38000 Grenoble (France); Zanette, Irene [Lehrstuhl für Biomedizinische Physik, Physik-Department and Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0QX (United Kingdom); Rack, Alexander [European Synchrotron Radiation Facility, 38000 Grenoble (France); Pfeiffer, Franz [Lehrstuhl für Biomedizinische Physik, Physik-Department and Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); Institut für Diagnostische und Interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München, 81675 München (Germany)

    2015-04-13

    Grating-based X-ray computed tomography allows for simultaneous and nondestructive determination of the full X-ray complex index of refraction and the scattering coefficient distribution inside an object in three dimensions. Its multi-contrast capabilities combined with a high resolution of a few micrometers make it a suitable tool for assessing multiple phases inside porous and composite materials such as concrete. Here, we present quantitative results of a proof-of-principle experiment performed on a concrete sample. Thanks to the complementarity of the contrast channels, more concrete phases could be distinguished than in conventional attenuation-based imaging. The phase-contrast reconstruction shows high contrast between the hardened cement paste and the aggregates and thus allows easy 3D segmentation. Thanks to the dark-field image, micro-cracks inside the coarse aggregates are visible. We believe that these results are extremely interesting in the field of porous and composite materials studies because of unique information provided by grating interferometry in a non-destructive way.

  7. Registration of 2D x-ray images to 3D MRI by generating pseudo-CT data

    van der Bom, M. J.; Pluim, J. P. W.; Gounis, M. J.; van de Kraats, E. B.; Sprinkhuizen, S. M.; Timmer, J.; Homan, R.; Bartels, L. W.

    2011-02-01

    Spatial and soft tissue information provided by magnetic resonance imaging can be very valuable during image-guided procedures, where usually only real-time two-dimensional (2D) x-ray images are available. Registration of 2D x-ray images to three-dimensional (3D) magnetic resonance imaging (MRI) data, acquired prior to the procedure, can provide optimal information to guide the procedure. However, registering x-ray images to MRI data is not a trivial task because of their fundamental difference in tissue contrast. This paper presents a technique that generates pseudo-computed tomography (CT) data from multi-spectral MRI acquisitions which is sufficiently similar to real CT data to enable registration of x-ray to MRI with comparable accuracy as registration of x-ray to CT. The method is based on a k-nearest-neighbors (kNN)-regression strategy which labels voxels of MRI data with CT Hounsfield Units. The regression method uses multi-spectral MRI intensities and intensity gradients as features to discriminate between various tissue types. The efficacy of using pseudo-CT data for registration of x-ray to MRI was tested on ex vivo animal data. 2D-3D registration experiments using CT and pseudo-CT data of multiple subjects were performed with a commonly used 2D-3D registration algorithm. On average, the median target registration error for registration of two x-ray images to MRI data was approximately 1 mm larger than for x-ray to CT registration. The authors have shown that pseudo-CT data generated from multi-spectral MRI facilitate registration of MRI to x-ray images. From the experiments it could be concluded that the accuracy achieved was comparable to that of registering x-ray images to CT data.

  8. Preliminary Investigation: 2D-3D Registration of MR and X-ray Cardiac Images Using Catheter Constraints

    Truong, Michael V.N.; Aslam, Abdullah; Rinaldi, Christopher Aldo; Razavi, Reza; Penney, Graeme P.; Rhode, Kawal

    2009-01-01

    Cardiac catheterization procedures are routinely guided by X-ray fluoroscopy but suffer from poor soft-tissue contrast and a lack of depth information. These procedures often employ pre-operative magnetic resonance or computed tomography imaging for treatment planning due to their excellent soft-tissue contrast and 3D imaging capabilities. We developed a 2D-3D image registration method to consolidate the advantages of both modalities by overlaying the 3D images onto the X-ray. Our method uses...

  9. Application of the probability theory in predicting 3D focusing behaviors of compound X-ray refractive lenses

    Zichun Le; Xinjian Zhao; Jingqiu Liang; Yaping Sun; Kai Liu; Ming Zhang; Shuqin Guo; Bisheng Quan

    2005-01-01

    A theoretical method based on the diffractive theory is used for predicting three-dimensional (3D) focusing performances of the compound X-rays refractive lenses (CRLs). However, the derivation of the 3D intensity distribution near focus for the X-ray refractive lenses is quite complicated. In this paper, we introduce a simple theoretical method that is based on the first and second moments in the theory of probability. As an example, the 3D focusing performance of a CRL with Si material is predicted. Moreover, the results are compared with those obtained by the diffractive theory. It is shown that the method introduced in this paper is accurate enough.

  10. Local ISM 3D Distribution and Soft X-ray Background Inferences for Nearby Hot Gas

    Puspitarini, L.; Lallement, R.; Snowden, Steven L.; Vergely, J.-L.; Snowden, S.

    2014-01-01

    Three-dimensional (3D) interstellar medium (ISM) maps can be used to locate not only interstellar (IS) clouds, but also IS bubbles between the clouds that are blown by stellar winds and supernovae, and are filled by hot gas. To demonstrate this, and to derive a clearer picture of the local ISM, we compare our recent 3D IS dust distribution maps to the ROSAT diffuse Xray background maps after removal of heliospheric emission. In the Galactic plane, there is a good correspondence between the locations and extents of the mapped nearby cavities and the soft (0.25 keV) background emission distribution, showing that most of these nearby cavities contribute to this soft X-ray emission. Assuming a constant dust to gas ratio and homogeneous 106 K hot gas filling the cavities, we modeled in a simple way the 0.25 keV surface brightness along the Galactic plane as seen from the Sun, taking into account the absorption by the mapped clouds. The data-model comparison favors the existence of hot gas in the solar neighborhood, the so-called Local Bubble (LB). The inferred mean pressure in the local cavities is found to be approx.9,400/cu cm K, in agreement with previous studies, providing a validation test for the method. On the other hand, the model overestimates the emission from the huge cavities located in the third quadrant. Using CaII absorption data, we show that the dust to CaII ratio is very small in those regions, implying the presence of a large quantity of lower temperature (non-X-ray emitting) ionized gas and as a consequence a reduction of the volume filled by hot gas, explaining at least part of the discrepancy. In the meridian plane, the two main brightness enhancements coincide well with the LB's most elongated parts and chimneys connecting the LB to the halo, but no particular nearby cavity is found towards the enhancement in the direction of the bright North Polar Spur (NPS) at high latitude. We searched in the 3D maps for the source regions of the higher energy

  11. Automated materials discrimination using 3D dual energy X ray images

    The ability of a human observer to identify an explosive device concealed in complex arrangements of objects routinely encountered in the 2D x-ray screening of passenger baggage at airports is often problematic. Standard dual-energy x-ray techniques enable colour encoding of the resultant images in terms of organic, inorganic and metal substances. This transmission imaging technique produces colour information computed from a high-energy x-ray signal and a low energy x-ray signal (80keVeff ≤ 13) to be automatically discriminated from many layers of overlapping substances. This is achieved by applying a basis materials subtraction technique to the data provided by a wavelet image segmentation algorithm. This imaging technique is reliant upon the image data for the masking substances to be discriminated independently of the target material. Further work investigated the extraction of depth data from stereoscopic images to estimate the mass density of the target material. A binocular stereoscopic dual-energy x-ray machine previously developed by the Vision Systems Group at The Nottingham Trent University in collaboration with The Home Office Science and Technology Group provided the image data for the empirical investigation. This machine utilises a novel linear castellated dual-energy x-ray detector recently developed by the Vision Systems Group. This detector array employs half the number of scintillator-photodiode sensors in comparison to a conventional linear dual-energy sensor. The castellated sensor required the development of an image enhancement algorithm to remove the spatial interlace effect in the resultant images prior to the calibration of the system for materials discrimination. To automate the basis materials subtraction technique a wavelet image segmentation and classification algorithm was developed. This enabled overlapping image structures in the x-rayed baggage to be partitioned. A series of experiments was conducted to investigate the

  12. 2D and 3D Refraction Based X-ray Imaging Suitable for Clinical and Pathological Diagnosis

    Ando, Masami; Bando, Hiroko; Chen, Zhihua; Chikaura, Yoshinori; Choi, Chang-Hyuk; Endo, Tokiko; Esumi, Hiroyasu; Gang, Li; Hashimoto, Eiko; Hirano, Keiichi; Hyodo, Kazuyuki; Ichihara, Shu; Jheon, SangHoon; Kim, HongTae; Kim, JongKi; Kimura, Tatsuro; Lee, ChangHyun; Maksimenko, Anton; Ohbayashi, Chiho; Park, SungHwan; Shimao, Daisuke; Sugiyama, Hiroshi; Tang, Jintian; Ueno, Ei; Yamasaki, Katsuhito; Yuasa, Tetsuya

    2007-01-01

    The first observation of micro papillary (MP) breast cancer by x-ray dark-field imaging (XDFI) and the first observation of the 3D x-ray internal structure of another breast cancer, ductal carcinoma in-situ (DCIS), are reported. The specimen size for the sheet-shaped MP was 26 mm × 22 mm × 2.8 mm, and that for the rod-shaped DCIS was 3.6 mm in diameter and 4.7 mm in height. The experiment was performed at the Photon Factory, KEK: High Energy Accelerator Research Organization. We achieved a high-contrast x-ray image by adopting a thickness-controlled transmission-type angular analyzer that allows only refraction components from the object for 2D imaging. This provides a high-contrast image of cancer-cell nests, cancer cells and stroma. For x-ray 3D imaging, a new algorithm due to the refraction for x-ray CT was created. The angular information was acquired by x-ray optics diffraction-enhanced imaging (DEI). The number of data was 900 for each reconstruction. A reconstructed CT image may include ductus lactiferi, micro calcification and the breast gland. This modality has the possibility to open up a new clinical and pathological diagnosis using x-ray, offering more precise inspection and detection of early signs of breast cancer.

  13. 2D and 3D Refraction Based X-ray Imaging Suitable for Clinical and Pathological Diagnosis

    The first observation of micro papillary (MP) breast cancer by x-ray dark-field imaging (XDFI) and the first observation of the 3D x-ray internal structure of another breast cancer, ductal carcinoma in-situ (DCIS), are reported. The specimen size for the sheet-shaped MP was 26 mm x 22 mm x 2.8 mm, and that for the rod-shaped DCIS was 3.6 mm in diameter and 4.7 mm in height. The experiment was performed at the Photon Factory, KEK: High Energy Accelerator Research Organization. We achieved a high-contrast x-ray image by adopting a thickness-controlled transmission-type angular analyzer that allows only refraction components from the object for 2D imaging. This provides a high-contrast image of cancer-cell nests, cancer cells and stroma. For x-ray 3D imaging, a new algorithm due to the refraction for x-ray CT was created. The angular information was acquired by x-ray optics diffraction-enhanced imaging (DEI). The number of data was 900 for each reconstruction. A reconstructed CT image may include ductus lactiferi, micro calcification and the breast gland. This modality has the possibility to open up a new clinical and pathological diagnosis using x-ray, offering more precise inspection and detection of early signs of breast cancer

  14. Efficient feature-based 2D/3D registration of transesophageal echocardiography to x-ray fluoroscopy for cardiac interventions

    Hatt, Charles R.; Speidel, Michael A.; Raval, Amish N.

    2014-03-01

    We present a novel 2D/ 3D registration algorithm for fusion between transesophageal echocardiography (TEE) and X-ray fluoroscopy (XRF). The TEE probe is modeled as a subset of 3D gradient and intensity point features, which facilitates efficient 3D-to-2D perspective projection. A novel cost-function, based on a combination of intensity and edge features, evaluates the registration cost value without the need for time-consuming generation of digitally reconstructed radiographs (DRRs). Validation experiments were performed with simulations and phantom data. For simulations, in silica XRF images of a TEE probe were generated in a number of different pose configurations using a previously acquired CT image. Random misregistrations were applied and our method was used to recover the TEE probe pose and compare the result to the ground truth. Phantom experiments were performed by attaching fiducial markers externally to a TEE probe, imaging the probe with an interventional cardiac angiographic x-ray system, and comparing the pose estimated from the external markers to that estimated from the TEE probe using our algorithm. Simulations found a 3D target registration error of 1.08(1.92) mm for biplane (monoplane) geometries, while the phantom experiment found a 2D target registration error of 0.69mm. For phantom experiments, we demonstrated a monoplane tracking frame-rate of 1.38 fps. The proposed feature-based registration method is computationally efficient, resulting in near real-time, accurate image based registration between TEE and XRF.

  15. X-ray diffraction contrast tomography (DCT) system, and an X-ray diffraction contrast tomography (DCT) method

    2012-01-01

    Source: US2012008736A An X-ray diffraction contrast tomography system (DCT) comprising a laboratory X-ray source (2), a staging device (5) rotating a polycrystalline material sample in the direct path of the X-ray beam, a first X-ray detector (6) detecting the direct X-ray beam being transmitted...

  16. 3-D surface profile measurements of large x-ray synchrotron radiation mirrors using stitching interferometry

    Stitching interferometry, using small-aperture, high-resolution, phase-measuring interferometry, has been proposed for quite some time now as a metrology technique to obtain 3-dimensional profiles of surfaces of oversized optical components and substrates. The aim of this work is to apply this method to the specific case of long grazing-incidence x-ray mirrors, such as those used in beamlines at synchrotron radiation facilities around the world. Both fabrication and characterization of these mirrors would greatly benefit from this technique because it offers the potential for providing measurements with accuracy and resolution better than those obtained using existing noncontact laser profilers, such as the long trace profiler (LTP). Measurement data can be used as feedback for computer-controlled fabrication processes to correct for possible topography errors. The data can also be used for simulating and predicting mirror performance under realistic conditions. A semiautomated stitching system was built and tested at the X-ray Optics Metrology Laboratory of the Advanced Photon Source at Argonne National Laboratory. The initial objective was to achieve a measurement sensitivity on the order of 1 (micro)rad rms. Preliminary tests on a 1 m-long x-ray mirror showed system repeatability of less than 0.6 (micro)rad rms. This value is comparable to that of a conventional LTP. The measurement accuracy was mostly affected by environmental perturbations and system calibration effects. With a fully automated and improved system (to be built in the near future), we expect to achieve measurement sensitivity on the order of 0.0 (micro)rad rms or better. In this paper, after a brief review of basic principles and general technical difficulties and challenges of the stitching technique, a detailed description of the measurement setup is given and preliminary results obtained with it are analyzed and discussed

  17. 3D X-Ray imaging of bone tissue from micro to nano scale and associated inverse problems

    Peyrin, F.; Toma, A; Sixou, B.; Denis, L.; Wang, L.(Universität Bochum, Institut für Experimentalphysik, Bochum, 44780, Germany); WEBER,L; Langer, M. (Marco); Cloetens, P.

    2015-01-01

    Imaging bone tissue from the organ to the cellular level is a major goal in bone research to understand, diagnose and predict bone fragility associated to bone disease such as osteoporosis. In this presentation, we show that X-ray CT is particularly well adapted to image bone in 3D up to the nanometer scale. After recalling the principles of 3D CT, we describe advances in bone CT imaging and the needs in associated inverse problems. Clinical X-ray CT is daily used to image skeletal tissue at ...

  18. 3D X-ray CT and diffusion measurements to assess tortuosity and constrictivity in a sedimentary rock

    Takahashi, Hiroaki; Seida, Yoshimi; Yui, Mikazu

    2015-01-01

    A high-resolution, three-dimensional (3D) image of the interior of the sedimentary rock was obtained by means of nano-focus X-ray computer tomography (X-ray CT). Using computational methods to analyze the 3D microstructure of the rock, we presented the tortuosity and geometrical constrictivity. We also presented results on the tritiated water (HTO) diffusion tests and a mercury intrusion porosimetry (MIP) test performed on the rock. We have compared these results to understand the dominant...

  19. Digital Pulse Processor for ION Beam Microprobe and Micro X Ray Fluorescence 2-D and 3-D Imaging

    For a long time, the implementation of optimal pulse processing in nuclear spectrometry was only possible with analogue electronic components. Following the development of fast analogue to digital converters, field programmable gate arrays, and digital signal processors, it became feasible to digitize pulses after a preamplifier or phototube and process them in a real time. Therefore, digital electronics, which were limited to data storage and control of the acquisition process, became feasible for signal processing as well. This brought numerous benefits, such as better energy resolution with higher data throughput, reduced size, easier upgrading, the ability to automate adjustment and control of the complete data acquisition process, and self-diagnostic capability. In the same time, evaluation of the Electronic Design Automation tools and Intellectual Property industry enables a System-On-a-Chip paradigm on high density reprogrammable devices and allows new approach for system level design. Such a design provides opportunity for small laboratories to develop a compact 'all digital' customized instrumentation. In this work, we presented a design of FPGA IP core for high resolution, digital X ray, γ ray or particle spectrometry using high level FPGA design tool (Xilinx System Generator and Matlab - Simulink). The IP core has been used to build a simple low cost digital spectrometer (Spartan 3 FPGA based) and advance system for ion beam microprobe and X ray fluorescence 2-D and 3-D imaging. (Virtex 4 FPGA based). (author)

  20. 3D RECONSTRUCTION FROM MULTI-VIEW MEDICAL X-RAY IMAGES – REVIEW AND EVALUATION OF EXISTING METHODS

    S. Hosseinian

    2015-12-01

    Full Text Available The 3D concept is extremely important in clinical studies of human body. Accurate 3D models of bony structures are currently required in clinical routine for diagnosis, patient follow-up, surgical planning, computer assisted surgery and biomechanical applications. However, 3D conventional medical imaging techniques such as computed tomography (CT scan and magnetic resonance imaging (MRI have serious limitations such as using in non-weight-bearing positions, costs and high radiation dose(for CT. Therefore, 3D reconstruction methods from biplanar X-ray images have been taken into consideration as reliable alternative methods in order to achieve accurate 3D models with low dose radiation in weight-bearing positions. Different methods have been offered for 3D reconstruction from X-ray images using photogrammetry which should be assessed. In this paper, after demonstrating the principles of 3D reconstruction from X-ray images, different existing methods of 3D reconstruction of bony structures from radiographs are classified and evaluated with various metrics and their advantages and disadvantages are mentioned. Finally, a comparison has been done on the presented methods with respect to several metrics such as accuracy, reconstruction time and their applications. With regards to the research, each method has several advantages and disadvantages which should be considered for a specific application.

  1. Sloped irradiation techniques in deep x-ray lithography for 3D shaping of microstructures

    Feiertag, Gregor; Ehrfeld, Wolfgang; Lehr, Heinz; Schmidt, Martin

    1997-07-01

    Deep x-ray lithography (DXRL) makes use of synchrotron radiation (SR) to transfer an absorber pattern from a mask into a thick resist layer. For most applications the direction of the SR beam is perpendicular to the mask and the resist plane. Subsequent replication techniques, e.g. electroforming, moulding or hot embossing, convert the resist relief obtained after development into micromechanical, microfluidic or micro- optical elements made from metals, polymers or ceramic materials. This process sequence is well known as the LIGA technique. The normal shadow printing process is complemented and enhanced by advanced techniques, e.g. by tilting the mask and the resist with respect to the SR beam or aligned multiple exposures to produce step-like structures. In this paper a technology for the fabrication of multidirectional inclined microstructures applying multiple tilted DXRL will be presented. Instead of one exposure with the mask/substrate assembly perpendicular to the SR beam, irradiation is performed several times applying tilt and rotational angles of the mask/substrate assembly relative to the SR beam. A huge variety of 3-D structures can be obtained using this technique. Some possible applications will be discussed.

  2. Mobile of 3D-X-Ray tomography for analysis of planar defects in welds by 'TomoCAR'

    Tomographical Computer Aided Radiology (TomoCAR) is based on the mechanical position control of an X-ray tube in front of a welding seam and the application of a planar array detector behind it. Several hundred radiometric projections in small angle steps are acquired. The tomographical reconstruction allows the three-dimensional (3D) representation of the defects. A new radiometric array detector system with a small internal unsharpness and high image contrast is used for the 2- and 3-dimensional visualization and sizing of planar defects with a defect opening of less than 100 μm. This detector is based on a CMOS-flat panel with a direct converting CdTe-single crystal layer. The small design allows the application of the mobile testing equipment for mechanized X-ray inspection in industrial plants. The physical pixel size of the detector amounts to 0,1x0,1 mm2. Nevertheless, this system yields a better spatial resolution than indirect converting detectors (e.g. cameras with fluorescence layers of Gd2O2S). It allows the reliable detection of planar defects with openings far below the detector pixel size by subpixel resolution. 'TomoCAR' is qualified at present in the context with a German pilot study following to the ENIQ guidelines for the employment within the nuclear power industry. (author)

  3. 3D Nanoscale Chemical Imaging of the Distribution of Aluminum Coordination Environments in Zeolites with Soft X-Ray Microscopy

    Aramburo, Luis R.; Liu, Yijin; Tyliszczak, Tolek; de Groot, Frank M. F.; Andrews, Joy C.; Weckhuysen, Bert M.

    2013-01-01

    Here, we present the first nanoscale chemical imaging study revealing the spatial distribution of the amount and coordination environment of aluminum in zeolite materials with 3D scanning transmission X-ray microscopy (STXM). For this purpose, we have focused on two showcase samples involving the in

  4. 3D electron density imaging using single scattered x rays with application to breast CT and mammographic screening

    van Uytven, Eric Peter

    Screening mammography is the current standard in detecting breast cancer. However, its fundamental disadvantage is that it projects a 3D object into a 2D image. Small lesions are difficult to detect when superimposed over layers of normal tissue. Commercial Computed Tomography (CT) produces a true 3D image yet has a limited role in mammography due to relatively low resolution and contrast. With the intent of enhancing mammography and breast CT, we have developed an algorithm which can produce 3D electron density images using a single projection. Imaging an object with x rays produces a characteristic scattered photon spectrum at the detector plane. A known incident beam spectrum, beam shape, and arbitrary 3D matrix of electron density values enable a theoretical scattered photon distribution to be calculated. An iterative minimization algorithm is used to make changes to the electron density voxel matrix to reduce regular differences between the theoretical and the experimentally measured distributions. The object is characterized by the converged electron density image. This technique has been validated in simulation using data produced by the EGSnrc Monte Carlo code system. At both mammographic and CT energies, a scanning polychromatic pencil beam was used to image breast tissue phantoms containing lesion-like inhomogeneities. The resulting Monte Carlo data is processed using a Nelder-Mead iterative algorithm (MATLAB) to produce the 3D matrix of electron density values. Resulting images have confirmed the ability of the algorithm to detect various 1x1x2.5 mm3 lesions with calcification content as low as 0.5% (p<0.005) at a dose comparable to mammography.

  5. Classification and quantification of pore shapes in sandstone reservoir rocks with 3-D X-ray micro-computed tomography

    Schmitt, Mayka; Halisch, Matthias; Müller, Cornelia; Peres Fernandes, Celso

    2016-02-01

    Recent years have seen a growing interest in the characterization of the pore morphologies of reservoir rocks and how the spatial organization of pore traits affects the macro behavior of rock-fluid systems. With the availability of 3-D high-resolution imaging, such as x-ray micro-computed tomography (µ-CT), the detailed quantification of particle shapes has been facilitated by progress in computer science. Here, we show how the shapes of irregular rock particles (pores) can be classified and quantified based on binary 3-D images. The methodology requires the measurement of basic 3-D particle descriptors (length, width, and thickness) and a shape classification that involves the similarity of artificial objects, which is based on main pore network detachments and 3-D sample sizes. Two main pore components were identified from the analyzed volumes: pore networks and residual pore ganglia. A watershed algorithm was applied to preserve the pore morphology after separating the main pore networks, which is essential for the pore shape characterization. The results were validated for three sandstones (S1, S2, and S3) from distinct reservoirs, and most of the pore shapes were found to be plate- and cube-like, ranging from 39.49 to 50.94 % and from 58.80 to 45.18 % when the Feret caliper descriptor was investigated in a 10003 voxel volume. Furthermore, this study generalizes a practical way to correlate specific particle shapes, such as rods, blades, cuboids, plates, and cubes to characterize asymmetric particles of any material type with 3-D image analysis.

  6. 21 CFR 892.1730 - Photofluorographic x-ray system.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Photofluorographic x-ray system. 892.1730 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1730 Photofluorographic x-ray system. (a) Identification. A photofluorographic x-ray system is a device that includes a fluoroscopic...

  7. Fully 3D-Integrated Pixel Detectors for X-Rays

    Deptuch, Grzegorz W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gabriella, Carini [SLAC National Accelerator Lab., Menlo Park, CA (United States); Enquist, Paul [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Grybos, Pawel [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Holm, Scott [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lipton, Ronald [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Maj, Piotr [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Patti, Robert [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Siddons, David Peter [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Szczygiel, Robert [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Yarema, Raymond [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-01-01

    The vertically integrated photon imaging chip (VIPIC1) pixel detector is a stack consisting of a 500-μm-thick silicon sensor, a two-tier 34-μm-thick integrated circuit, and a host printed circuit board (PCB). The integrated circuit tiers were bonded using the direct bonding technology with copper, and each tier features 1-μm-diameter through-silicon vias that were used for connections to the sensor on one side, and to the host PCB on the other side. The 80-μm-pixel-pitch sensor was the direct bonding technology with nickel bonded to the integrated circuit. The stack was mounted on the board using Sn–Pb balls placed on a 320-μm pitch, yielding an entirely wire-bond-less structure. The analog front-end features a pulse response peaking at below 250 ns, and the power consumption per pixel is 25 μW. We successful completed the 3-D integration and have reported here. Additionally, all pixels in the matrix of 64 × 64 pixels were responding on well-bonded devices. Correct operation of the sparsified readout, allowing a single 153-ns bunch timing resolution, was confirmed in the tests on a synchrotron beam of 10-keV X-rays. An equivalent noise charge of 36.2 e- rms and a conversion gain of 69.5 μV/e- with 2.6 e- rms and 2.7 μV/e- rms pixel-to-pixel variations, respectively, were measured.

  8. Accuracy evaluation of an X-ray microtomography system.

    Fernandes, Jaquiel S; Appoloni, Carlos R; Fernandes, Celso P

    2016-06-01

    Microstructural parameter evaluation of reservoir rocks is of great importance to petroleum production companies. In this connection, X-ray computed microtomography (μ-CT) has proven to be a quite useful method for the assessment of rocks, as it provides important microstructural parameters, such as porosity, permeability, pore size distribution and porous phase of the sample. X-ray computed microtomography is a non-destructive technique that enables the reuse of samples already measured and also yields 2-D cross-sectional images of the sample as well as volume rendering. This technique offers an additional advantage, as it does not require sample preparation, of reducing the measurement time, which is approximately one to three hours, depending on the spatial resolution used. Although this technique is extensively used, accuracy verification of measurements is hard to obtain because the existing calibrated samples (phantoms) have large volumes and are assessed in medical CT scanners with millimeter spatial resolution. Accordingly, this study aims to determine the accuracy of an X-ray computed microtomography system using a Skyscan 1172 X-ray microtomograph. To accomplish this investigation, it was used a nylon thread set with known appropriate diameter inserted into a glass tube. The results for porosity size and phase distribution by X-ray microtomography were very close to the geometrically calculated values. The geometrically calculated porosity and the porosity determined by the methodology using the μ-CT was 33.4±3.4% and 31.0±0.3%, respectively. The outcome of this investigation was excellent. It was also observed a small variability in the results along all 401 sections of the analyzed image. Minimum and maximum porosity values between the cross sections were 30.9% and 31.1%, respectively. A 3-D image representing the actual structure of the sample was also rendered from the 2-D images. PMID:27064197

  9. 3D printing in X-ray and gamma-ray imaging: A novel method for fabricating high-density imaging apertures

    Advances in 3D rapid-prototyping printers, 3D modeling software, and casting techniques allow for cost-effective fabrication of custom components in gamma-ray and X-ray imaging systems. Applications extend to new fabrication methods for custom collimators, pinholes, calibration and resolution phantoms, mounting and shielding components, and imaging apertures. Details of the fabrication process for these components, specifically the 3D printing process, cold casting with a tungsten epoxy, and lost-wax casting in platinum are presented.

  10. 3D Ultrastructural organization of whole Chlamydomonas reinhardtii cells studied by nanoscale soft x-ray tomography.

    Eric Hummel

    Full Text Available The complex architecture of their structural elements and compartments is a hallmark of eukaryotic cells. The creation of high resolution models of whole cells has been limited by the relatively low resolution of conventional light microscopes and the requirement for ultrathin sections in transmission electron microscopy. We used soft x-ray tomography to study the 3D ultrastructural organization of whole cells of the unicellular green alga Chlamydomonas reinhardtii at unprecedented spatial resolution. Intact frozen hydrated cells were imaged using the natural x-ray absorption contrast of the sample without any staining. We applied different fiducial-based and fiducial-less alignment procedures for the 3D reconstructions. The reconstructed 3D volumes of the cells show features down to 30 nm in size. The whole cell tomograms reveal ultrastructural details such as nuclear envelope membranes, thylakoids, basal apparatus, and flagellar microtubule doublets. In addition, the x-ray tomograms provide quantitative data from the cell architecture. Therefore, nanoscale soft x-ray tomography is a new valuable tool for numerous qualitative and quantitative applications in plant cell biology.

  11. Precision measurement of the $3d \\to 2p$ x-ray energy in kaonic $^4$He

    Okada, S; Bhang, H; Cargnelli, M; Chiba, J; Choi, Seonho; Curceanu, C; Fukuda, Y; Hanaki, T; Hayano, R S; Iio, M; Ishikawa, T; Ishimoto, S; Ishiwatari, T; Itahashi, K; Iwai, M; Iwasaki, M; Juhász, B; Kienle, P; Marton, J; Matsuda, Y; Ohnishi, H; Outa, H; Sato, M; Schmid, P; Suzuki, S; Suzuki, T; Tatsuno, H; Tomono, D; Widmann, E; Yamazaki, T; Yim, H; Zmeskal, J

    2007-01-01

    We have measured the Balmer-series x-rays of kaonic $^4$He atoms using novel large-area silicon drift x-ray detectors in order to study the low-energy $\\bar{K}$-nucleus strong interaction. The energy of the $3d \\to 2p$ transition was determined to be 6467 $\\pm$ 3 (stat) $\\pm$ 2 (syst) eV. The resulting strong-interaction energy-level shift is in agreement with theoretical calculations, thus eliminating a long-standing discrepancy between theory and experiment.

  12. Precision measurement of the 3 d → 2 p x-ray energy in kaonic 4He

    Okada, S.; Beer, G.; Bhang, H.; Cargnelli, M.; Chiba, J.; Choi, Seonho; Curceanu, C.; Fukuda, Y.; Hanaki, T.; Hayano, R. S.; Iio, M.; Ishikawa, T.; Ishimoto, S.; Ishiwatari, T.; Itahashi, K.; Iwai, M.; Iwasaki, M.; Juhász, B.; Kienle, P.; Marton, J.; Matsuda, Y.; Ohnishi, H.; Outa, H.; Sato, M.; Schmid, P.; Suzuki, S.; Suzuki, T.; Tatsuno, H.; Tomono, D.; Widmann, E.; Yamazaki, T.; Yim, H.; Zmeskal, J.

    2007-09-01

    We have measured the Balmer-series x-rays of kaonic 4He atoms using novel large-area silicon drift x-ray detectors in order to study the low-energy Kbar-nucleus strong interaction. The energy of the 3 d → 2 p transition was determined to be 6467 ± 3 (stat) ± 2 (syst) eV. The resulting strong-interaction energy-level shift is in agreement with theoretical calculations, thus eliminating a long-standing discrepancy between theory and experiment.

  13. Precision measurement of the 3d{yields}2p x-ray energy in kaonic {sup 4}He

    Okada, S. [RIKEN Nishina Center, RIKEN, Saitama 351-0198 (Japan)], E-mail: sokada@riken.jp; Beer, G. [Department of Physics and Astronomy, University of Victoria, British Columbia V8W 3P6 (Canada); Bhang, H. [Department of Physics, Seoul National University, Seoul 151-742 (Korea, Republic of); Cargnelli, M. [Stefan Meyer Institut fuer subatomare Physik, Austrian Academy of Sciences, A-1090 Vienna (Austria); Chiba, J. [Department of Physics, Tokyo University of Science, Chiba 278-8510 (Japan); Choi, Seonho [Department of Physics, Seoul National University, Seoul 151-742 (Korea, Republic of); Curceanu, C. [Laboratori Nazionali di Frascati, INFN, I-00044 Frascati (Italy); Fukuda, Y. [Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551 (Japan); Hanaki, T. [Department of Physics, Tokyo University of Science, Chiba 278-8510 (Japan); Hayano, R.S. [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); Iio, M. [RIKEN Nishina Center, RIKEN, Saitama 351-0198 (Japan); Ishikawa, T. [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); Ishimoto, S. [High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801 (Japan); Ishiwatari, T. [Stefan Meyer Institut fuer subatomare Physik, Austrian Academy of Sciences, A-1090 Vienna (Austria); Itahashi, K. [RIKEN Nishina Center, RIKEN, Saitama 351-0198 (Japan); Iwai, M. [High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801 (Japan); Iwasaki, M. [RIKEN Nishina Center, RIKEN, Saitama 351-0198 (Japan); Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551 (Japan); Juhasz, B. [Stefan Meyer Institut fuer subatomare Physik, Austrian Academy of Sciences, A-1090 Vienna (Austria); Kienle, P. [Stefan Meyer Institut fuer subatomare Physik, Austrian Academy of Sciences, A-1090 Vienna (Austria); Physik Department, Technische Universitaet Muenchen, D-85748 Garching (Germany)] (and others)

    2007-09-27

    We have measured the Balmer-series x-rays of kaonic {sup 4}He atoms using novel large-area silicon drift x-ray detectors in order to study the low-energy K-bar -nucleus strong interaction. The energy of the 3d{yields}2p transition was determined to be 6467{+-}3(stat){+-}2(syst) eV. The resulting strong-interaction energy-level shift is in agreement with theoretical calculations, thus eliminating a long-standing discrepancy between theory and experiment.

  14. Petrophysical analysis of limestone rocks by nuclear logging and 3D high-resolution X-ray computed microtomography

    This study presents the pore-space system analysis of the 2-ITAB-1-RJ well cores, which were drilled in the Sao Jose do Itaborai Basin, in the state of Rio de Janeiro, Brasil. The analysis presented herein has been developed based on two techniques: nuclear logging and 3D high-resolution X-ray computed microtomography. Nuclear logging has been proven to be the technique that provides better quality and more quantitative information about the porosity using radioactive sources. The Density Gamma Probe and the Neutron Sonde used in this work provide qualitative information about bulk density variations and compensated porosity of the geological formation. The samples obtained from the well cores were analyzed by microtomography. The use of this technique in sedimentary rocks allows quantitative evaluation of pore system and generates high-resolution 3D images (∼microns order). The images and data obtained by microtomography were integrated with the response obtained by nuclear logging. The results obtained by these two techniques allow the understanding of the pore-size distribution and connectivity, as well as the porosity values. Both techniques are important and they complement each other.

  15. Material Discriminated X-Ray CT System by Using New X-Ray Imager with Energy Discriminate Function

    Toru Aoki; Takuya Nakashima; Hisashi Morii; Yoichiro Neo; Hidenori Mimura

    2008-01-01

    Material discriminated X-ray CT system has been constructed by using conventional X-ray tube (white X-ray source) and photon-counting X-ray imager as an application with energy band detection. We have already reported material identify X-ray CT using K-shell edge method elsewhere. In this report the principle of material discrimination was adapted the separation of electron-density and atomic number from attenuation coefficient mapping in X-ray CT reconstructed image in two wavelength X-ray C...

  16. Calibration model of a dual gain flat panel detector for 2D and 3D x-ray imaging

    The continuing research and further development in flat panel detector technology have led to its integration into more and more medical x-ray systems for two-dimensional (2D) and three-dimensional (3D) imaging, such as fixed or mobile C arms. Besides the obvious advantages of flat panel detectors, like the slim design and the resulting optimum accessibility to the patient, their success is primarily a product of the image quality that can be achieved. The benefits in the physical and performance-related features as opposed to conventional image intensifier systems (e.g., distortion-free reproduction of imaging information or almost linear signal response over a large dynamic range) can be fully exploited, however, only if the raw detector images are correctly calibrated and postprocessed. Previous procedures for processing raw data contain idealizations that, in the real world, lead to artifacts or losses in image quality. Thus, for example, temperature dependencies or changes in beam geometry, as can occur with mobile C arm systems, have not been taken into account up to this time. Additionally, adverse characteristics such as image lag or aging effects have to be compensated to attain the best possible image quality. In this article a procedure is presented that takes into account the important dependencies of the individual pixel sensitivity of flat panel detectors used in 2D or 3D imaging and simultaneously minimizes the work required for an extensive recalibration. It is suitable for conventional detectors with only one gain mode as well as for the detectors specially developed for 3D imaging with dual gain read-out technology

  17. Differences of X-ray exposure between X-ray diagnostics with a conventional X-ray screen-system and with an image-intensifier-television-unit

    During X-ray diagnostics of patients in the II. Medizinische Poliklinik the X-ray exposure was determined. It corresponded to the data described in literature. Two groups were compared: 518 patients examined with a conventional X-ray screen-system and 642 patients examined with an image-intensifier-television-system. The results demonstrated that with exception of thoracical X-ray examination the replacing of the old system by the television system brought a remarkable increase of the X-ray exposure. The doses depended of the patients constitution to a high degree. (orig.)

  18. New insights into single-grain mechanical behavior from temperature-dependent 3-D coherent X-ray diffraction

    Coherent X-ray diffraction is able to yield non-destructively 3-D strain maps with unprecedented resolution in small isolated crystals. In this work we have used this technique to investigate the mechanical behavior of a single grain within a Au polycrystalline film. The 111 Bragg reflection from a 1250×950×475 nm single grain has been successfully measured in three dimensions during thermomechanical loading. From these 3-D reciprocal space maps the displacement field is obtained through a specific phase-retrieval procedure. The uz(x,y,z) component of the displacement field component is deduced as a function of temperature with a high spatial resolution of 17×17×22 nm within the single grain. This displacement field is discussed with respect to grain-to-grain interactions in the supported metal film. This study opens important perspectives for the evaluation of mechanical properties of polycrystals via coherent X-ray diffraction

  19. Plant tissues in 3D via X-ray tomography: simple contrasting methods allow high resolution imaging.

    Yannick M Staedler

    Full Text Available Computed tomography remains strongly underused in plant sciences despite its high potential in delivering detailed 3D phenotypical information because of the low X-ray absorption of most plant tissues. Existing protocols to study soft tissues display poor performance, especially when compared to those used on animals. More efficient protocols to study plant material are therefore needed. Flowers of Arabidopsis thaliana and Marcgravia caudata were immersed in a selection of contrasting agents used to treat samples for transmission electron microscopy. Grayscale values for floral tissues and background were measured as a function of time. Contrast was quantified via a contrast index. The thick buds of Marcgravia were scanned to determine which contrasting agents best penetrate thick tissues. The highest contrast increase with cytoplasm-rich tissues was obtained with phosphotungstate, whereas osmium tetroxide and bismuth tatrate displayed the highest contrast increase with vacuolated tissues. Phosphotungstate also displayed the best sample penetration. Furthermore, infiltration with phosphotungstate allowed imaging of all plants parts at a high resolution of 3 µm, which approaches the maximum resolution of our equipment: 1.5 µm. The high affinity of phosphotungstate for vasculature, cytoplasm-rich tissue, and pollen causes these tissues to absorb more X-rays than the surrounding tissues, which, in turn, makes these tissues appear brighter on the scan data. Tissues with different brightness can then be virtually dissected from each other by selecting the bracket of grayscale to be visualized. Promising directions for the future include in silico phenotyping and developmental studies of plant inner parts (e.g., ovules, vasculature, pollen, and cell nuclei via virtual dissection as well as correlations of quantitative phenotypes with omics datasets. Therefore, this work represents a crucial improvement of previous methods, allowing new directions of

  20. 3D Ultrastructural Organization of Whole Chlamydomonas reinhardtii Cells Studied by Nanoscale Soft X-Ray Tomography

    Hummel, Eric; Guttmann, Peter; Werner, Stephan; Tarek, Basel; SCHNEIDER, Gerd; Kunz, Michael; Frangakis, Achilleas S.; Westermann, Benedikt

    2012-01-01

    The complex architecture of their structural elements and compartments is a hallmark of eukaryotic cells. The creation of high resolution models of whole cells has been limited by the relatively low resolution of conventional light microscopes and the requirement for ultrathin sections in transmission electron microscopy. We used soft x-ray tomography to study the 3D ultrastructural organization of whole cells of the unicellular green alga Chlamydomonas reinhardtii at unprecedented spatial re...

  1. 3D ultrastructural organization of whole Chlamydomonas reinhardtii cells studied by nanoscale soft x-ray tomography

    Hummel, Eric; Guttmann, Peter; Werner, Stephan; Tarek, Basel; SCHNEIDER, Gerd; Kunz, Michael; Frangakis, Achilleas S.; Westermann, Benedikt

    2012-01-01

    The complex architecture of their structural elements and compartments is a hallmark of eukaryotic cells. The creation of high resolution models of whole cells has been limited by the relatively low resolution of conventional light microscopes and the requirement for ultrathin sections in transmission electron microscopy. We used soft x-ray tomography to study the 3D ultrastructural organization of whole cells of the unicellular green alga Chlamydomonas reinhardtii at unprecedented spatial re...

  2. Analytic 3D Imaging of Mammalian Nucleus at Nanoscale Using Coherent X-Rays and Optical Fluorescence Microscopy

    Song, Changyong; Takagi, Masatoshi; Park, Jaehyun; Xu, Rui; Gallagher-Jones, Marcus; Imamoto, Naoko; Ishikawa, Tetsuya

    2014-01-01

    Despite the notable progress that has been made with nano-bio imaging probes, quantitative nanoscale imaging of multistructured specimens such as mammalian cells remains challenging due to their inherent structural complexity. Here, we successfully performed three-dimensional (3D) imaging of mammalian nuclei by combining coherent x-ray diffraction microscopy, explicitly visualizing nuclear substructures at several tens of nanometer resolution, and optical fluorescence microscopy, cross confir...

  3. Damage assessment of particle-toughened carbon fibre composites subjected to impact and compression-after-impact using 3D X-ray tomography

    Bull, D. J.

    2014-01-01

    In this thesis, particle-toughened and untoughened, carbon fibre composite material systems with quasi-isotropic layups were investigated. This was to understand better the toughening behaviour leading to increased impact damage resistance and post-impact compression damage tolerance performance. To achieve this, mechanical testing and conventional ultrasonic C-scan methods were combined with damage assessments using several 3D X-ray computed tomography techniques. These consisted of lab base...

  4. Development of a CZT spectroscopic 3D imager prototype for hard X ray astronomy

    Auricchio, N.; Caroli, E.; Basili, A.; Schiavone, F.; Stephen, J. B.; Milano, L.; Benassi, G.; Zambelli, N.; Zappettini, A.; Del Sordo, S.; Moscatelli, F.; Budtz-Jørgensen, Carl; Kuvvetli, Irfan; Curado da Silva, R. M.

    The development of focusing optics based on wide band Laue lenses operating from ∼60 keV up to several hundreds of keV is particularly challenging. This type of hard X-ray or gamma ray optics requires a high performance focal plane detector in order to exploit to the best its intrinsic capabiliti...

  5. Lattice rotations of individual bulk grains. Part 1: 3D X-ray characterization

    Poulsen, H.F.; Margulies, L.; Schmidt, S.;

    2003-01-01

    Three-dimensional X-ray diffraction has been applied to characterise the plastic deformation of individualgrains deeply embedded in a 99.6% pure aluminium specimen. The specimen is 4 mm thick with an average grain size of 75 μm. The average latticerotation for each grain as well as the degree of...

  6. Automated materials discrimination using 3D dual energy X ray images

    Wang, T W

    2002-01-01

    The ability of a human observer to identify an explosive device concealed in complex arrangements of objects routinely encountered in the 2D x-ray screening of passenger baggage at airports is often problematic. Standard dual-energy x-ray techniques enable colour encoding of the resultant images in terms of organic, inorganic and metal substances. This transmission imaging technique produces colour information computed from a high-energy x-ray signal and a low energy x-ray signal (80keV

  7. 3D nanoscale imaging of biological samples with laboratory-based soft X-ray sources

    Dehlinger, Aurélie; Blechschmidt, Anne; Grötzsch, Daniel; Jung, Robert; Kanngießer, Birgit; Seim, Christian; Stiel, Holger

    2015-09-01

    In microscopy, where the theoretical resolution limit depends on the wavelength of the probing light, radiation in the soft X-ray regime can be used to analyze samples that cannot be resolved with visible light microscopes. In the case of soft X-ray microscopy in the water-window, the energy range of the radiation lies between the absorption edges of carbon (at 284 eV, 4.36 nm) and oxygen (543 eV, 2.34 nm). As a result, carbon-based structures, such as biological samples, posses a strong absorption, whereas e.g. water is more transparent to this radiation. Microscopy in the water-window, therefore, allows the structural investigation of aqueous samples with resolutions of a few tens of nanometers and a penetration depth of up to 10μm. The development of highly brilliant laser-produced plasma-sources has enabled the transfer of Xray microscopy, that was formerly bound to synchrotron sources, to the laboratory, which opens the access of this method to a broader scientific community. The Laboratory Transmission X-ray Microscope at the Berlin Laboratory for innovative X-ray technologies (BLiX) runs with a laser produced nitrogen plasma that emits radiation in the soft X-ray regime. The mentioned high penetration depth can be exploited to analyze biological samples in their natural state and with several projection angles. The obtained tomogram is the key to a more precise and global analysis of samples originating from various fields of life science.

  8. Two digital X-ray imaging systems for applications in X-ray diffraction

    Two digital X-ray imaging systems developed at the Rutherford Appleton Laboratory are described:- the Mark I and the Mark II. Both use a bidimensionally sensitive Multiwire proportional counter as the basic X-ray image transducer coupled to a digital microcomputer system. The Mark I system provides the advantages of high speed, high sensitivity digital imaging directly into the computer with the potential for software control of the sample orientation and environment. The Mark II system adds the novel features of signal averaging and multi-frame exposures. (author)

  9. A fast rigid-registration method of inferior limb X-ray image and 3D CT images for TKA surgery

    Ito, Fumihito; O. D. A, Prima; Uwano, Ikuko; Ito, Kenzo

    2010-03-01

    In this paper, we propose a fast rigid-registration method of inferior limb X-ray films (two-dimensional Computed Radiography (CR) images) and three-dimensional Computed Tomography (CT) images for Total Knee Arthroplasty (TKA) surgery planning. The position of the each bone, such as femur and tibia (shin bone), in X-ray film and 3D CT images is slightly different, and we must pay attention how to use the two different images, since X-ray film image is captured in the standing position, and 3D CT is captured in decubitus (face up) position, respectively. Though the conventional registration mainly uses cross-correlation function between two images,and utilizes optimization techniques, it takes enormous calculation time and it is difficult to use it in interactive operations. In order to solve these problems, we calculate the center line (bone axis) of femur and tibia (shin bone) automatically, and we use them as initial positions for the registration. We evaluate our registration method by using three patient's image data, and we compare our proposed method and a conventional registration, which uses down-hill simplex algorithm. The down-hill simplex method is an optimization algorithm that requires only function evaluations, and doesn't need the calculation of derivatives. Our registration method is more effective than the downhill simplex method in computational time and the stable convergence. We have developed the implant simulation system on a personal computer, in order to support the surgeon in a preoperative planning of TKA. Our registration method is implemented in the simulation system, and user can manipulate 2D/3D translucent templates of implant components on X-ray film and 3D CT images.

  10. New X-Ray Tomography Method Based on the 3D Radon Transform Compatible with Anisotropic Sources

    Vassholz, M.; Koberstein-Schwarz, B.; Ruhlandt, A.; Krenkel, M.; Salditt, T.

    2016-02-01

    In this work, we propose a novel computed tomography (CT) approach for three-dimensional (3D) object reconstruction, based on a generalized tomographic geometry with two-dimensional angular sampling (two angular degrees of freedom). The reconstruction is based on the 3D radon transform and is compatible with anisotropic beam conditions. This allows isotropic 3D imaging with a source, which can be extended along one direction for increased flux, while high resolution is achieved by a small source size only in the orthogonal direction. This novel scheme for analytical CT is demonstrated by numerical simulations and proof-of-concept experiments. In this way high resolution and coherence along a single direction determines the reconstruction quality of the entire 3D data set, opening up, for example, new opportunities to achieve nanoscale resolution and/or phase contrast with low brilliance sources such as laboratory x-ray or neutron sources.

  11. X-ray Emission Spectroscopy in Magnetic 3d-Transition Metals

    Iota, V; Park, J; Baer, B; Yoo, C; Shen, G

    2003-11-18

    The application of high pressure affects the band structure and magnetic interactions in solids by modifying nearest-neighbor distances and interatomic potentials. While all materials experience electronic changes with increasing pressure, spin polarized, strongly electron correlated materials are expected to undergo the most dramatic transformations. In such materials, (d and f-electron metals and compounds), applied pressure reduces the strength of on-site correlations, leading to increased electron delocalization and, eventually, to loss of its magnetism. In this ongoing project, we study the electronic and magnetic properties of Group VIII, 3d (Fe, Co and Ni) magnetic transition metals and their compounds at high pressures. The high-pressure properties of magnetic 3d-transition metals and compounds have been studied extensively over the years, because of iron being a major constituent of the Earth's core and its relevance to the planetary modeling to understand the chemical composition, internal structure, and geomagnetism. However, the fundamental scientific interest in the high-pressure properties of magnetic 3d-electron systems extends well beyond the geophysical applications to include the electron correlation-driven physics. The role of magnetic interactions in the stabilization of the ''non-standard'' ambient pressure structures of Fe, Co and Ni is still incompletely understood. Theoretical studies have predicted (and high pressure experiments are beginning to show) strong correlations between the electronic structure and phase stability in these materials. The phase diagrams of magnetic 3d systems reflect a delicate balance between spin interactions and structural configuration. At ambient conditions, the crystal structures of {alpha}-Fe(bcc) and {var_epsilon}-Co(hcp) phases depart from the standard sequence (hcp {yields} bcc{yields} hcp {yields} fcc), as observed in all other non-magnetic transition metals with increasing the d

  12. Methodology toward 3D micro X-ray fluorescence imaging using an energy dispersive charge-coupled device detector.

    Garrevoet, Jan; Vekemans, Bart; Tack, Pieter; De Samber, Björn; Schmitz, Sylvia; Brenker, Frank E; Falkenberg, Gerald; Vincze, Laszlo

    2014-12-01

    A new three-dimensional (3D) micro X-ray fluorescence (μXRF) methodology based on a novel 2D energy dispersive CCD detector has been developed and evaluated at the P06 beamline of the Petra-III storage ring (DESY) in Hamburg, Germany. This method is based on the illumination of the investigated sample cross-section by a horizontally focused beam (vertical sheet beam) while fluorescent X-rays are detected perpendicularly to the sheet beam by a 2D energy dispersive (ED) CCD detector allowing the collection of 2D cross-sectional elemental images of a certain depth within the sample, limited only by signal self-absorption effects. 3D elemental information is obtained by a linear scan of the sample in the horizontal direction across the vertically oriented sheet beam and combining the detected cross-sectional images into a 3D elemental distribution data set. Results of the 3D μXRF analysis of mineral inclusions in natural deep Earth diamonds are presented to illustrate this new methodology. PMID:25346101

  13. Mineral crystal alignment in mineralized fracture callus determined by 3D small-angle X-ray scattering

    Liu, Yifei; Manjubala, Inderchand; Roschger, Paul; Schell, Hanna; Duda, Georg N.; Fratzl, Peter

    2010-10-01

    Callus tissue formed during bone fracture healing is a mixture of different tissue types as revealed by histological analysis. But the structural characteristics of mineral crystals within the healing callus are not well known. Since two-dimensional (2D) scanning small-angle X-ray scattering (sSAXS) patterns showed that the size and orientation of callus crystals vary both spatially and temporally [1] and 2D electron microscopic analysis implies an anisotropic property of the callus morphology, the mineral crystals within the callus are also expected to vary in size and orientation in 3D. Three-dimensional small-angle X-ray scattering (3D SAXS), which combines 2D SAXS patterns collected at different angles of sample tilting, has been previously applied to investigate bone minerals in horse radius [2] and oim/oim mouse femur/tibia [3]. We implement a similar 3D SAXS method but with a different way of data analysis to gather information on the mineral alignment in fracture callus. With the proposed accurate yet fast assessment of 3D SAXS information, it was shown that the plate shaped mineral particles in the healing callus were aligned in groups with their predominant orientations occurring as a fiber texture.

  14. Mineral crystal alignment in mineralized fracture callus determined by 3D small-angle X-ray scattering

    Callus tissue formed during bone fracture healing is a mixture of different tissue types as revealed by histological analysis. But the structural characteristics of mineral crystals within the healing callus are not well known. Since two-dimensional (2D) scanning small-angle X-ray scattering (sSAXS) patterns showed that the size and orientation of callus crystals vary both spatially and temporally [1] and 2D electron microscopic analysis implies an anisotropic property of the callus morphology, the mineral crystals within the callus are also expected to vary in size and orientation in 3D. Three-dimensional small-angle X-ray scattering (3D SAXS), which combines 2D SAXS patterns collected at different angles of sample tilting, has been previously applied to investigate bone minerals in horse radius [2] and oim/oim mouse femur/tibia [3]. We implement a similar 3D SAXS method but with a different way of data analysis to gather information on the mineral alignment in fracture callus. With the proposed accurate yet fast assessment of 3D SAXS information, it was shown that the plate shaped mineral particles in the healing callus were aligned in groups with their predominant orientations occurring as a fiber texture.

  15. Analysis of the KROTOS KFC test by coupling X-Ray image analysis and MC3D calculations

    During a hypothetical severe accident sequence in a Pressurized Water Reactor (PWR), the hot molten materials (corium) issuing from the degraded reactor core may generate a steam explosion if they come in contact with water and may damage the structures and threaten the reactor integrity. The SERENA program is an international OECD project that aims at helping the understanding of this phenomenon also called Fuel Coolant Interaction (FCI) by providing data. CEA takes part in this program by performing tests in its KROTOS facility where steam explosions using prototypic corium can be triggered. Data about the different phases in the premixing are extracted from the KROTOS X-Ray radioscopy images by using KIWI software (KROTOS Image analysis of Water-corium Interaction) currently developed by CEA. The MC3D code, developed by IRSN, is a thermal-hydraulic multiphase code mainly dedicated to FCI studies. It is composed of two applications: premixing and explosion. An overall FCI calculation with MC3D requires a premixing calculation followed by an explosion calculation. The present paper proposes an alternative approach in which all the features of the premixing are extracted from the X-Ray pictures using the KIWI software and transferred to an MC3D dataset for a direct simulation of the explosion. The main hypothesis are discussed as well as the first explosion results obtained with MC3D for the KROTOS KFC test. These results are rather encouraging and are analyzed on the basis of comparisons with the experimental data. (authors)

  16. Single-shot 3D structure determination of nanocrystals with femtosecond X-ray free electron laser pulses

    Xu, Rui; Song, Changyong; Rodriguez, Jose A; Huang, Zhifeng; Chen, Chien-Chun; Nam, Daewoong; Park, Jaehyun; Gallagher-Jones, Marcus; Kim, Sangsoo; Kim, Sunam; Suzuki, Akihiro; Takayama, Yuki; Oroguchi, Tomotaka; Takahashi, Yukio; Fan, Jiadong; Zou, Yunfei; Hatsui, Takaki; Inubushi, Yuichi; Kameshima, Takashi; Yonekura, Koji; Tono, Kensuke; Togashi, Tadashi; Sato, Takahiro; Yamamoto, Masaki; Nakasako, Masayoshi; Yabashi, Makina; Ishikawa, Tetsuya; Miao, Jianwei

    2013-01-01

    Coherent diffraction imaging (CDI) using synchrotron radiation, X-ray free electron lasers (X-FELs), high harmonic generation, soft X-ray lasers, and optical lasers has found broad applications across several disciplines. An active research direction in CDI is to determine the structure of single particles with intense, femtosecond X-FEL pulses based on diffraction-before-destruction scheme. However, single-shot 3D structure determination has not been experimentally realized yet. Here we report the first experimental demonstration of single-shot 3D structure determination of individual nanocrystals using ~10 femtosecond X-FEL pulses. Coherent diffraction patterns are collected from high-index-faceted nanocrystals, each struck by a single X-FEL pulse. Taking advantage of the symmetry of the nanocrystal, we reconstruct the 3D structure of each nanocrystal from a single-shot diffraction pattern at ~5.5 nm resolution. As symmetry exists in many nanocrystals and virus particles, this method can be applied to 3D st...

  17. Analysis of the KROTOS KFC test by coupling X-Ray image analysis and MC3D calculations

    Brayer, C.; Charton, A.; Grishchenko, D.; Fouquart, P.; Bullado, Y.; Compagnon, F.; Correggio, P.; Cassiaut-Louis, N.; Piluso, P. [Commissariat a l' Energie Atomique et Aux Energies Alternatives, CEA Cadarache, DEN, F-13108 Saint-Paul-Les-Durance (France)

    2012-07-01

    During a hypothetical severe accident sequence in a Pressurized Water Reactor (PWR), the hot molten materials (corium) issuing from the degraded reactor core may generate a steam explosion if they come in contact with water and may damage the structures and threaten the reactor integrity. The SERENA program is an international OECD project that aims at helping the understanding of this phenomenon also called Fuel Coolant Interaction (FCI) by providing data. CEA takes part in this program by performing tests in its KROTOS facility where steam explosions using prototypic corium can be triggered. Data about the different phases in the premixing are extracted from the KROTOS X-Ray radioscopy images by using KIWI software (KROTOS Image analysis of Water-corium Interaction) currently developed by CEA. The MC3D code, developed by IRSN, is a thermal-hydraulic multiphase code mainly dedicated to FCI studies. It is composed of two applications: premixing and explosion. An overall FCI calculation with MC3D requires a premixing calculation followed by an explosion calculation. The present paper proposes an alternative approach in which all the features of the premixing are extracted from the X-Ray pictures using the KIWI software and transferred to an MC3D dataset for a direct simulation of the explosion. The main hypothesis are discussed as well as the first explosion results obtained with MC3D for the KROTOS KFC test. These results are rather encouraging and are analyzed on the basis of comparisons with the experimental data. (authors)

  18. Finding 3D Teeth Positions by Using 2D Uncalibrated Dental X-ray Images

    Sridhar, Bitra; Prasad, Dandey Venkata

    2010-01-01

    In Dental Radiology very often several radiographs (uncalibrated in position) are taken from the same person. The radiographs do not provide the depth details, and there is often requirement of three dimensional (3D) data to achieve better diagnosis by radiologist. The purpose of this project is a step forward to solve needs of dentists for evaluating the degree of severity of teeth cavities by 3D reconstruction implementing the uncalibrated radiographs. The 3D information retrieval from two ...

  19. Laser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human bone.

    Cole, J M; Wood, J C; Lopes, N C; Poder, K; Abel, R L; Alatabi, S; Bryant, J S J; Jin, A; Kneip, S; Mecseki, K; Symes, D R; Mangles, S P D; Najmudin, Z

    2015-01-01

    A bright μm-sized source of hard synchrotron x-rays (critical energy Ecrit > 30 keV) based on the betatron oscillations of laser wakefield accelerated electrons has been developed. The potential of this source for medical imaging was demonstrated by performing micro-computed tomography of a human femoral trabecular bone sample, allowing full 3D reconstruction to a resolution below 50 μm. The use of a 1 cm long wakefield accelerator means that the length of the beamline (excluding the laser) is dominated by the x-ray imaging distances rather than the electron acceleration distances. The source possesses high peak brightness, which allows each image to be recorded with a single exposure and reduces the time required for a full tomographic scan. These properties make this an interesting laboratory source for many tomographic imaging applications. PMID:26283308

  20. Laser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human bone

    Cole, J. M.; Wood, J. C.; Lopes, N. C.; Poder, K.; Abel, R. L.; Alatabi, S.; Bryant, J. S. J.; Jin, A.; Kneip, S.; Mecseki, K.; Symes, D. R.; Mangles, S. P. D.; Najmudin, Z.

    2015-08-01

    A bright μm-sized source of hard synchrotron x-rays (critical energy Ecrit > 30 keV) based on the betatron oscillations of laser wakefield accelerated electrons has been developed. The potential of this source for medical imaging was demonstrated by performing micro-computed tomography of a human femoral trabecular bone sample, allowing full 3D reconstruction to a resolution below 50 μm. The use of a 1 cm long wakefield accelerator means that the length of the beamline (excluding the laser) is dominated by the x-ray imaging distances rather than the electron acceleration distances. The source possesses high peak brightness, which allows each image to be recorded with a single exposure and reduces the time required for a full tomographic scan. These properties make this an interesting laboratory source for many tomographic imaging applications.

  1. Modeling and characterization of X-ray yield in a polychromatic, lab-scale, X-ray computed tomography system

    A modular X-ray computed micro-tomography (µXCT) system is characterized in terms of X-ray yield resulting both from the generated X-ray spectrum and from X-ray detection with an energy-sensitive detector. The X-ray computed tomography system is composed of a commercially available cone-beam microfocus X-ray source and a modular optically-coupled-CCD-scintillator X-ray detector. The X-ray yield is measured and reported in units independent from exposure time, X-ray tube beam target current, and cone-beam-to-detector geometry. The polychromatic X-ray source is modeled as a broad Bremsstrahlung X-ray spectrum in order to understand the effect of the controllable parameters, that is, X-ray tube accelerating voltage and X-ray beam filtering. An approach is adopted which expresses the absolute number of emitted X-rays. The response of the energy-sensitive detector to the modeled spectrum is modeled as a function of scintillator composition and thickness. The detection efficiency model for the polychromatic X-ray detector considers the response of the light collection system and the electronic imaging array in order to predict absolute count yield under the studied conditions. The modeling approach is applied to the specific hardware implemented in the current µXCT system. The model's predictions for absolute detection rate are in reasonable agreement with measured values under a range of conditions applied to the system for X-ray microtomography imaging, particularly for the LuAG:Ce scintillator material

  2. Modeling and characterization of X-ray yield in a polychromatic, lab-scale, X-ray computed tomography system

    Mertens, J.C.E.; Chawla, Nikhilesh, E-mail: nchawla@asu.edu

    2015-05-21

    A modular X-ray computed micro-tomography (µXCT) system is characterized in terms of X-ray yield resulting both from the generated X-ray spectrum and from X-ray detection with an energy-sensitive detector. The X-ray computed tomography system is composed of a commercially available cone-beam microfocus X-ray source and a modular optically-coupled-CCD-scintillator X-ray detector. The X-ray yield is measured and reported in units independent from exposure time, X-ray tube beam target current, and cone-beam-to-detector geometry. The polychromatic X-ray source is modeled as a broad Bremsstrahlung X-ray spectrum in order to understand the effect of the controllable parameters, that is, X-ray tube accelerating voltage and X-ray beam filtering. An approach is adopted which expresses the absolute number of emitted X-rays. The response of the energy-sensitive detector to the modeled spectrum is modeled as a function of scintillator composition and thickness. The detection efficiency model for the polychromatic X-ray detector considers the response of the light collection system and the electronic imaging array in order to predict absolute count yield under the studied conditions. The modeling approach is applied to the specific hardware implemented in the current µXCT system. The model's predictions for absolute detection rate are in reasonable agreement with measured values under a range of conditions applied to the system for X-ray microtomography imaging, particularly for the LuAG:Ce scintillator material.

  3. 3D tumor localization through real-time volumetric x-ray imaging for lung cancer radiotherapy

    Li, Ruijiang; Jia, Xun; Gu, Xuejun; Folkerts, Michael; Men, Chunhua; Song, William Y; Jiang, Steve B

    2011-01-01

    Recently we have developed an algorithm for reconstructing volumetric images and extracting 3D tumor motion information from a single x-ray projection. We have demonstrated its feasibility using a digital respiratory phantom with regular breathing patterns. In this work, we present a detailed description and a comprehensive evaluation of the improved algorithm. The algorithm was improved by incorporating respiratory motion prediction. The accuracy and efficiency were then evaluated on 1) a digital respiratory phantom, 2) a physical respiratory phantom, and 3) five lung cancer patients. These evaluation cases include both regular and irregular breathing patterns that are different from the training dataset. For the digital respiratory phantom with regular and irregular breathing, the average 3D tumor localization error is less than 1 mm. On an NVIDIA Tesla C1060 GPU card, the average computation time for 3D tumor localization from each projection ranges between 0.19 and 0.26 seconds, for both regular and irreg...

  4. Material Discriminated X-Ray CT System by Using New X-Ray Imager with Energy Discriminate Function

    Toru Aoki

    2008-04-01

    Full Text Available Material discriminated X-ray CT system has been constructed by using conventional X-ray tube (white X-ray source and photon-counting X-ray imager as an application with energy band detection. We have already reported material identify X-ray CT using K-shell edge method elsewhere. In this report the principle of material discrimination was adapted the separation of electron-density and atomic number from attenuation coefficient mapping in X-ray CT reconstructed image in two wavelength X-ray CT method using white X-ray source and energy discriminated X-ray imager by using two monochrome X-ray source method. The measurement phantom was prepared as four kinds material rods (Carbon(C, Iron(Fe, Copper(Cu, Titanium(Ti rods of 3mm-diameter inside an aluminum(Al rod of 20mm-diameter. We could observed material discriminated X-ray CT reconstructed image, however, the discrimination properties were not good than two monochrome X-ray CT method. This results was could be explained because X-ray scattering, beam-hardening and so on based on white X-ray source, which could not observe in two monochrome X-ray CT method. However, since our developed CdTe imager can be detect five energy-bands at the same time, we can use multi-band analysis to decrease the least square error margin. We will be able to obtain more high separation in atomic number mapping in X-ray CT reconstructed image by using this system.

  5. Laser beam plasma pinch x-ray system

    A system is provided for producing plasma pinch X-rays usable in X-ray lithography. Ionized heated plasma vapor is repeatably generated directly from solid material by impingement of a plurality of circumferentially spaced laser beams to generate an annulus of plasma. X-rays are generated by passing high current through the annular plasma in an axial gap between the solid material target electrode and another electrode, causing magnetic field radial inward plasma pinching to a central constricted area further heating the plasma and emitting X-rays. A central axially directed laser may further heat the plasma in the pinched area

  6. Precision spectroscopy of Kaonic helium-3 and helium-4 3d-->2p X-rays

    Ishiwatari, T.; Bazzi, M.; Bhang, H.; Beer, G.; Bombelli, L.; Bragadireanu, A. M.; Cargnelli, M.; Choi, S.; Corradi, G.; Curceanu, C.; d'Uffizi, A.; Enomoto, S.; Fiorini, C.; Frizzi, T.; Fujioka, H.; Fujiwara, Y.; Ghio, F.; Girolami, B.; Guaraldo, C.; Hashimoto, T.; Hayano, R. S.; Hiraiwa, T.; Iio, M.; Iliescu, M.; Ishimoto, S.; Itahashi, K.; Iwasaki, M.; Kienle, P.; Kou, H.; Levi Sandri, P.; Longoni, A.; Lucherini, V.; Marton, J.; Matsuda, Y.; Noumi, H.; Ohnishi, H.; Okada, S.; Outa, H.; Pietreanu, D.; Ponta, T.; Rizzo, A.; Romero Vidal, A.; Sakuma, F.; Sato, M.; Scordo, A.; Sekimoto, M.; Shi, H.; Sirghi, D. L.; Sirghi, F.; Suzuki, T.; Tanida, K.; Tatsuno, H.; Tokuda, M.; Tomono, D.; Toyoda, A.; Tsukada, K.; Tudorache, A.; Tudorache, V.; Vazquez Doce, O.; Widmann, E.; Wünschek, B.; Yamazaki, T.; Zmeskal, J.

    2010-08-01

    Recently, the shift of the kaonic helium-4 2p state was precisely determined by the E570 and SIDDHARTA experiments. Prior to the experiment by E570, the average of three earlier experimental results showed -43±8 eV, while most of the theoretical calculations give ˜0 eV. This five-sigma discrepancy between theory and experiment was known as the "kaonic helium puzzle". A recent theoretical model showed a possible resonance-like shift of maximum 10 eV for a certain value of a deep antikaon-nucleon interaction potential, which is different in helium 3 and helium 4. The E570 experiment determined the shift of the kaonic helium-4 2p state as +2±2 (stat)±2 (sys) eV in 2007. The SIDDHARTA experiment determined the shift as 0±6(stat)±2(sys) eV in 2009. The results of these experiments resolved the long-standing puzzle. A new experiment of the kaonic helium-3 X-ray measurement is being prepared by the J-PARC E17 collaborators, and the kaonic helium-3 X-ray data taken very recently by the SIDDHARTA experiment are on the way to be analyzed. The results of the E570, E17 and SIDDHARTA experiments examine the strong interaction for light nuclei with different isospin, and test furthermore recent theoretical predictions.

  7. Direct navigation on 3D rotational x-ray data acquired with a mobile propeller C-arm: accuracy and application in functional endoscopic sinus surgery

    Kraats, Everine B van de [Image Sciences Institute, University Medical Center Utrecht (Netherlands); Carelsen, Bart [Academic Medical Center Amsterdam, Medical Physics Department (Netherlands); Fokkens, Wytske J [Academic Medical Center Amsterdam, Department of Otorhinolaryngology (Netherlands); Boon, Sjirk N [Philips Medical Systems, Best (Netherlands); Noordhoek, Niels [Philips Medical Systems, Best (Netherlands); Niessen, Wiro J [Image Sciences Institute, University Medical Center Utrecht (Netherlands); Walsum, Theo van [Image Sciences Institute, University Medical Center Utrecht (Netherlands)

    2005-12-21

    Recently, three-dimensional (3D) rotational x-ray imaging has been combined with navigation technology, enabling direct 3D navigation for minimally invasive image guided interventions. In this study, phantom experiments are used to determine the accuracy of such a navigation set-up for a mobile C-arm with propeller motion. After calibration of the C-arm system, the accuracy is evaluated by pinpointing divots on a special-purpose phantom with known geometry. This evaluation is performed both with and without C-arm motion in between calibration and registration for navigation. The variation caused by each of the individual transformations in the calibration and registration process is also studied. The feasibility of direct navigation on 3D rotational x-ray images for functional endoscopic sinus surgery has been evaluated in a cadaver navigation experiment. Navigation accuracy was approximately 1.0 mm, which is sufficient for functional endoscopic sinus surgery. C-arm motion in between calibration and registration slightly degraded the registration accuracy by approximately 0.3 mm. Standard deviations of each of the transformations were in the range 0.15-0.31 mm. In the cadaver experiment, the navigation images were considered in good correspondence with the endoscopic images by an experienced ENT surgeon. Availability of 3D localization information provided by the navigation system was considered valuable by the ENT surgeon.

  8. Direct navigation on 3D rotational x-ray data acquired with a mobile propeller C-arm: accuracy and application in functional endoscopic sinus surgery

    Recently, three-dimensional (3D) rotational x-ray imaging has been combined with navigation technology, enabling direct 3D navigation for minimally invasive image guided interventions. In this study, phantom experiments are used to determine the accuracy of such a navigation set-up for a mobile C-arm with propeller motion. After calibration of the C-arm system, the accuracy is evaluated by pinpointing divots on a special-purpose phantom with known geometry. This evaluation is performed both with and without C-arm motion in between calibration and registration for navigation. The variation caused by each of the individual transformations in the calibration and registration process is also studied. The feasibility of direct navigation on 3D rotational x-ray images for functional endoscopic sinus surgery has been evaluated in a cadaver navigation experiment. Navigation accuracy was approximately 1.0 mm, which is sufficient for functional endoscopic sinus surgery. C-arm motion in between calibration and registration slightly degraded the registration accuracy by approximately 0.3 mm. Standard deviations of each of the transformations were in the range 0.15-0.31 mm. In the cadaver experiment, the navigation images were considered in good correspondence with the endoscopic images by an experienced ENT surgeon. Availability of 3D localization information provided by the navigation system was considered valuable by the ENT surgeon

  9. 21 CFR 892.1600 - Angiographic x-ray system.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Angiographic x-ray system. 892.1600 Section 892.1600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1600 Angiographic x-ray system....

  10. 21 CFR 892.1740 - Tomographic x-ray system.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tomographic x-ray system. 892.1740 Section 892.1740 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1740 Tomographic x-ray system....

  11. 21 CFR 892.1680 - Stationary x-ray system.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Stationary x-ray system. 892.1680 Section 892.1680 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1680 Stationary x-ray system....

  12. 21 CFR 892.1720 - Mobile x-ray system.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Mobile x-ray system. 892.1720 Section 892.1720 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1720 Mobile x-ray system. (a) Identification....

  13. 21 CFR 892.1710 - Mammographic x-ray system.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Mammographic x-ray system. 892.1710 Section 892.1710 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1710 Mammographic x-ray system....

  14. Magnetic exchange coupling in 3d-4f molecular nanomagnets investigated by X-ray magnetic circular dichroism

    Full text: Single-molecule magnets are exchange-coupled spin clusters showing slow relaxation of magnetization. In recent years, efforts have been intensified to increase the magnetization reversal barrier and thus enhance relaxation times by combining rare earth ions with transition-metal ions. Rare-earth ions exhibit very large magnetic anisotropies due to their strong spin-orbit coupling and their mostly unquenched orbital momentum. In this contribution we use X-ray magnetic circular dichroism to observe element-specific magnetization curves. In conjunction with SQUID magnetization and susceptibility measurements, we are able to obtain information about the magnetic coupling between 3d and 4f ions. (author)

  15. 3D quantitative analysis of graphite morphology in high strength cast iron by high-energy X-ray tomography

    The size and morphology of the graphite particles play a crucial role in determining various mechanical and thermal properties of cast iron. In the present study, we utilized high-energy synchrotron X-ray tomography to perform quantitative 3D-characterization of the distribution of graphite particles in high-strength compacted graphite iron (CGI). The size, shape, and spatial connectivity of graphite were examined. The analysis reveals that the compacted graphite can grow with a coral-tree-like morphology and span several hundred microns in the iron matrix

  16. Composite laminate impact damage assessment by high resolution 3D X-ray tomography and laminography

    Bull, D. J.; Sinclair, I.; Spearing, S.M.; Helfen, L.

    2011-01-01

    Improvements to toughening mechanisms in composite materials have hitherto relied on visual inspection techniques that can be rather limited, especially since the inherent damage behaviour is three-dimensional (3D) requiring high resolution to capture micro-cracks and similar damage. To achieve a better understanding of impact damage behaviour, synchrotron radiation computed laminography (SRCL) and computed tomography (SRCT) techniques were used to capture 3D damage mechanisms with voxel size...

  17. 2D/3D cryo x-ray fluorescence imaging at the bionanoprobe at the advanced photon source

    Chen, S., E-mail: sichen@aps.anl.gov; Vine, D. J.; Lai, B. [Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439 (United States); Paunesku, T.; Yuan, Y.; Woloschak, G. E. [Department of Radiation Oncology, Northwester University, Chicago, IL 60611 (United States); Deng, J. [Applied Physics, Northwestern University, Evanston, IL 60208 (United States); Jin, Q.; Hong, Y. P. [Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States); Flachenecker, C.; Hornberger, B. [Carl Zeiss X-ray Microscopy, Pleasanton, CA 94588 (United States); Brister, K. [Synchrotron Research Center, Northwestern University, Argonne, IL 60439 (United States); Jacobsen, C. [Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439 (United States); Applied Physics, Northwestern University, Evanston, IL 60208 (United States); Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States); Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208 (United States); Vogt, S. [Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439 (United States); Department of Radiation Oncology, Northwester University, Chicago, IL 60611 (United States)

    2016-01-28

    Trace elements, particularly metals, play very important roles in biological systems. Synchrotron-based hard X-ray fluorescence microscopy offers the most suitable capabilities to quantitatively study trace metals in thick biological samples, such as whole cells and tissues. In this manuscript, we have demonstrated X-ray fluorescence imaging of frozen-hydrated whole cells using the recent developed Bionanoprobe (BNP). The BNP provides spatial resolution down to 30 nm and cryogenic capabilities. Frozen-hydrated biological cells have been directly examined on a sub-cellular level at liquid nitrogen temperatures with minimal sample preparation.

  18. Understanding Plasticity and Fracture in Aluminum Alloys and their Composites by 3D X-ray Synchrotron Tomography and Microdiffraction

    Hruby, Peter

    Aluminum alloys and their composites are attractive materials for applications requiring high strength-to-weight ratios and reasonable cost. Many of these applications, such as those in the aerospace industry, undergo fatigue loading. An understanding of the microstructural damage that occurs in these materials is critical in assessing their fatigue resistance. Two distinct experimental studies were performed to further the understanding of fatigue damage mechanisms in aluminum alloys and their composites, specifically fracture and plasticity. Fatigue resistance of metal matrix composites (MMCs) depends on many aspects of composite microstructure. Fatigue crack growth behavior is particularly dependent on the reinforcement characteristics and matrix microstructure. The goal of this work was to obtain a fundamental understanding of fatigue crack growth behavior in SiC particle-reinforced 2080 Al alloy composites. In situ X-ray synchrotron tomography was performed on two samples at low (R=0.1) and at high (R=0.6) R-ratios. The resulting reconstructed images were used to obtain three-dimensional (3D) rendering of the particles and fatigue crack. Behaviors of the particles and crack, as well as their interaction, were analyzed and quantified. Four-dimensional (4D) visual representations were constructed to aid in the overall understanding of damage evolution. During fatigue crack growth in ductile materials, a plastic zone is created in the region surrounding the crack tip. Knowledge of the plastic zone is important for the understanding of fatigue crack formation as well as subsequent growth behavior. The goal of this work was to quantify the 3D size and shape of the plastic zone in 7075 Al alloys. X-ray synchrotron tomography and Laue microdiffraction were used to non-destructively characterize the volume surrounding a fatigue crack tip. The precise 3D crack profile was segmented from the reconstructed tomography data. Depth-resolved Laue patterns were obtained using

  19. Precision spectroscopy of Kaonic Helium 3d {sup {yields}} 2p X-rays

    Okada, S.; Iio, M.; Matsuda, Y.; Ohnishi, H.; Outa, H.; Suzuki, T.; Tomono, D. [Nishina Center for Accelerator-based Science, RIKEN, Wako, 351-0198 (Japan); Beer, G. [Department of Physics and Astronomy, University of Victoria, Victoria (Canada); Bhang, H. [Department of Physics, Seoul National University, Seoul, 151-742 (Korea, Republic of); Cargnelli, M. [Stefan Meyer Institut fuer subatomare Physik, Vienna (Austria); Chiba, J. [Department of Physics, Tokyo University of Science, Noda, 278-8510 (Japan); Choi, S. [Department of Physics, Seoul National University, Seoul, 151-742 (Korea, Republic of); Curceanu, C. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Fukuda, Y. [Department of Physics, Tokyo Institute of Technology, Meguro, 152-8551 (Japan); Hanaki, T. [Department of Physics, Tokyo University of Science, Noda, 278-8510 (Japan); Hayano, R.S.; Ishikawa, T. [Department of Physics, University of Tokyo, Bunkyo, 113-0033 (Japan); Ishimoto, S. [High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801 (Japan); Ishiwatari, T.; Juhasz, B.; Kienle, P.; Marton, J. [Stefan Meyer Institut fuer subatomare Physik, Vienna (Austria); Sato, M. [Department of Physics, Tokyo Institute of Technology, Meguro, 152-8551 (Japan); Schmid, P. [Stefan Meyer Institut fuer subatomare Physik, Vienna (Austria); Suzuki, S. [High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801 (Japan); Tatsuno, H. [Department of Physics, University of Tokyo, Bunkyo, 113-0033 (Japan); Widmann, E. [Stefan Meyer Institut fuer subatomare Physik, Vienna (Austria); Yamazaki, T. [Nishina Center for Accelerator-based Science, RIKEN, Wako, 351-0198 (Japan)]|[Department of Physics, University of Tokyo, Bunkyo, 113-0033 (Japan); Yim, H. [Department of Physics, Seoul National University, Seoul, 151-742 (Korea, Republic of); Zmeskal, J. [High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801 (Japan)

    2007-06-15

    We have measured the strong-interaction shift of 2p states of kaonic helium-4 atoms with a precision of {approx}2 eV using Silicon Drift Detectors (SDDs) which lead to much improved energy resolution and signal-to-noise ratio compared to the conventional Si(Li) x-ray detector used in the past experiments. The measurement will give an answer to the longstanding 'kaonic helium puzzle' and provide crucial information to understand the basis of the Akaishi-Yamazaki prediction of deeply-bound kaonic nuclei, which is one of the interpretations of the strange multibaryon candidates recently reported at KEK, DA{phi}NE and BNL.

  20. Precision spectroscopy of Kaonic Helium 3d → 2p X-rays

    Okada, S.; Beer, G.; Bhang, H.; Cargnelli, M.; Chiba, J.; Choi, S.; Curceanu, C.; Fukuda, Y.; Hanaki, T.; Hayano, R. S.; Iio, M.; Ishikawa, T.; Ishimoto, S.; Ishiwatari, T.; Itahashi, K.; Iwasaki, M.; Juhász, B.; Kienle, P.; Marton, J.; Matsuda, Y.; Ohnishi, H.; Outa, H.; Sato, M.; Schmid, P.; Suzuki, S.; Suzuki, T.; Tatsuno, H.; Tomono, D.; Widmann, E.; Yamazaki, T.; Yim, H.; Zmeskal, J.

    2007-06-01

    We have measured the strong-interaction shift of 2p states of kaonic helium-4 atoms with a precision of ˜2 eV using Silicon Drift Detectors (SDDs) which lead to much improved energy resolution and signal-to-noise ratio compared to the conventional Si(Li) x-ray detector used in the past experiments. The measurement will give an answer to the longstanding “kaonic helium puzzle” and provide crucial information to understand the basis of the Akaishi-Yamazaki prediction of deeply-bound kaonic nuclei, which is one of the interpretations of the strange multibaryon candidates recently reported at KEK, DAΦNE and BNL.

  1. 3D images of human hair using X-ray CT method with age

    Recently interest of the aging effects has been increased in Japanese society but it is still not known much about what happens on the aged hairs. The hair-density measurement revealed that the density of human hair decreases with age, which caused by the follow-out of proteins and peptides from the hairs. According to the results of hair investigation between 20 and 50 years women, effluences of protein and peptide become increasing with the age and the degree of the cosmetic treatment. Further studies based on the X-ray CT show that quantity of voids in hair increases with age, which is thought at the origin of the density decrease. (author)

  2. Mapping electronic ordering in chromium in 3D with x-ray microdiffraction

    Xu, Ruqing

    2015-03-01

    In the antiferromagnetic state of chromium, electrons form spin-density waves and charge-density waves with wave vector along one of the lattice cubic axes; the spontaneous ordering of the electrons breaks the lattice symmetry and creates domains within a single crystal. We report the first 3-dimentional mapping of charge-density wave domains in bulk polycrystalline chromium samples using differential-aperture x-ray microdiffraction at the Advanced Photon Source. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357

  3. Regularization Designs for Uniform Spatial Resolution and Noise Properties in Statistical Image Reconstruction for 3D X-ray CT

    Cho, Jang Hwan; Fessler, Jeffrey A.

    2014-01-01

    Statistical image reconstruction methods for X-ray computed tomography (CT) provide improved spatial resolution and noise properties over conventional filtered back-projection (FBP) reconstruction, along with other potential advantages such as reduced patient dose and artifacts. Conventional regularized image reconstruction leads to spatially variant spatial resolution and noise characteristics because of interactions between the system models and the regularization. Previous regularization d...

  4. Synchrotron X-ray tomography for 3D chemical diffusion measurement of a flame retardant in polystyrene

    In an on-going tomographic project, material properties of industrial polymer blends are being studied. This project uses 3D chemical analysis techniques to look at a polymer additive problem called blooming, related to the theory of aging and diffusion in glassy materials. The 3D images are acquired with synchrotron X-ray tomography because of its rapidity, good spatial resolution, large field-of-view, and elemental sensitivity. To investigate the chemical process of blooming, new procedures are developed to assess the flame retardant distribution as a function of annealing time in the sample. With the spatial chemical distribution we fit the concentrations to a diffusion equation to each time step in the annealing process. In this preliminary work, we study the dissolutions of a non-blooming flame retardant

  5. 2D-3D shape reconstruction of the distal femur from stereo X-Ray imaging using statistical shape models

    Baka, N.; Kaptein, B.L.; de Bruijne, Marleen; van Walsum, T.; Giphart, J.E.; Niessen, W.J.; Lelieveldt, B.P.F.

    2011-01-01

    as it lowers both the acquisition costs and the radiation dose compared to CT. We propose a method for pose estimation and shape reconstruction of 3D bone surfaces from two (or more) calibrated X-ray images using a statistical shape model (SSM). User interaction is limited to manual initialization of...... the mean shape. The proposed method combines a 3D distance based objective function with automatic edge selection on a Canny edge map. Landmark-edge correspondences are weighted based on the orientation difference of the projected silhouette and the corresponding image edge. The method was evaluated...... segmentations. Rigid registration of the ground truth shape to the biplane fluoroscopy achieved sub-millimeter accuracy (0.68mm) measured as root mean squared (RMS) point-to-surface (P2S) distance. The non-rigid reconstruction from the biplane fluoroscopy using the SSM also showed promising results (1.68mm RMS...

  6. Statistical coronary motion models for 2D+t/3D registration of X-ray coronary angiography and CTA

    Baka, N.; Metz, C.T.; Schultz, C.;

    2013-01-01

    Accurate alignment of intra-operative X-ray coronary angiography (XA) and pre-operative cardiac CT angiography (CTA) may improve procedural success rates of minimally invasive coronary interventions for patients with chronic total occlusions. It was previously shown that incorporating patient...... motion models to provide constraints for the 2D+t/3D registration. We propose a methodology for building statistical motion models of the coronary arteries from a training population of 4D CTA datasets. We compare the 2D+t/3D registration performance of the proposed statistical models with other motion...... estimates, including the patient specific motion extracted from 4D CTA, the mean motion of a population, the predicted motion based on the cardiac shape. The coronary motion models, constructed on a training set of 150 patients, had a generalization accuracy of 1mm root mean square point-to-point distance...

  7. A 3D CZT hard x-ray polarimeter for a balloon-borne payload

    Caroli, E.; Alvarez, J. M.; Auricchio, N.;

    2012-01-01

    status of the Crab pulsar, i.e. the polarization level and direction. The detector with 3D spatial resolution is based on a CZT spectrometer in a highly segmented configuration designed to operate as a high performance scattering polarimeter. We discuss different configurations based on recent...

  8. Calibration of x-ray digital tomosynthesis system including the compensation for image distortion

    Roh, Young Jun; Koh, Kuk Won; Cho, Hyungsuck; Kim, Jin-Young; Kim, Hyung C.; Byun, Jong-Eun

    1998-10-01

    X-ray laminography and DT (digital tomosynthesis) are promising technologies to form a cross-section image of 3D objects and can be a good solution for inspection interior defects of industrial products. It has been known that digital tomosynthesis method has several advantages over laminography method in that it can overcome the problems such as blurring effect or artifact. The DT system consists of a scanning x-ray tube, an image intensifier as an x-ray image detector, and a CCD camera. To acquire an x-ray image of an arbitrary plane of objects, a set of images (8 images or more) should be synthesized by averaging or minimally calculating point by point. The images, however are distorted according to the configurations of the image intensifier and the x-ray source position. To get a clear and accurate synthesized image, the corresponding points in the distorted images should be accurately determined, and therefore, precise calibration of the DT system is needed to map the corresponding points correctly. In this work, a series of calibration methods for the DT system are presented including the correction of the center offset between the x-ray and the image intensifer, the x-ray steering calibration, and the correction of the distortion of the image. The calibration models are implemented to the DT system and the experiment results are presented and discussed in detail.

  9. Solar System X-rays from Charge Exchange Processes

    Lisse, Carey M.; Christian, D. J.; Bhardwaj, A.; Dennerl, K.; Wolk, S. J.; Bodewits, D.; Combi, M. R.; Zurbuchen, T. H.; Lepri, S. T.

    2013-04-01

    The discovery of high energy x-ray emission in 1996 from comet C/1996 B2 (Hyakutake) uncovered a new class of x-ray emitting objects. Subsequent detections of the morphology, spectra, and time dependence of the x-rays from more than 20 comets have shown that the very soft (E charge-exchange interaction between highly charged solar wind minor ions and the comet's extended neutral atmosphere. Many solar system objects are now known to shine in the X-ray, including Venus, Mars, the Moon, the Earth, Jupiter, and Saturn, with total power outputs on the MW - GW scale. Like comets, the X-ray emission from the Earth's geo-corona, the Jovian & Saturnian aurorae, and the Martian halo are thought to be driven by charge exchange between highly charged minor (heavy) ions in the solar wind and gaseous neutral species in the bodies' atmosphere. The non-auroral X-ray emissions from Jupiter, Saturn, and Earth, and those from disks of Mars, Venus, and the Moon are produced by scattering of solar X-rays. The first soft X-ray observations of Earth’s aurora by Chandra shows that it is highly variable, and the giant planet aurorae are fascinating puzzles that are just beginning to yield their secrets and may be the only x-ray sources not driven directly by the Sun in the whole system as well as properties of hot exo-solar Jupiters. Observations of local solar system charge exchange processes can also help inform us about x-rays produced at more distant hot ionized gas/cold neutral gas interfaces, like the heliopause, stellar astrospheres, galactic star forming regions, and starburst galaxies.

  10. Development of a CZT spectroscopic 3D imager prototype for hard X ray astronomy

    Auricchio, N.; Caroli, E.; Basili, A.;

    2013-01-01

    measurement of the polarization status of the Crab nebula/pulsar between 100 and 500 keV. The prototype is made by packing 8 linear modules, each composed of one basic sensitive unit bonded onto a thin supporting ceramic layer. Each unit is a drift strip detector based on a CZT crystal, irradiated...... for the assembling of the proposed 3D CZT prototype and the result of the first performance tests on the CZT linear modules....

  11. High-Resolution X-ray Emission and X-ray Absorption Spectroscopy

    de Groot, F. M. F.

    2001-01-01

    In this review, high-resolution X-ray emission and X-ray absorption spectroscopy will be discussed. The focus is on the 3d transition-metal systems. To understand high-resolution X-ray emission and reso-nant X-ray emission, it is first necessary to spend some time discussing the X-ray absorption process. Section II discusses 1s X-ray absorption, i.e., the K edges, and section III deals with 2p X-ray absorption, the L edges. X-ray emission is discussed in, respectively, the L edges. X-ray emis...

  12. Quantitative X ray analysis system. User's manual and guide to X ray fluorescence technique

    This guide covers trimmed and re-arranged version 3.6 of the Quantitative X ray Analysis System (QXAS) software package that includes the most frequently used methods of quantitative analysis. QXAS is a comprehensive quantitative analysis package that has been developed by the IAEA through research and technical contracts. Additional development has also been carried out in the IAEA Laboratories in Seibersdorf where QXAS was extensively tested. New in this version of the manual are the descriptions of the Voigt-profile peak fitting, the backscatter fundamental parameters' and emission-transmission methods of chemical composition analysis, an expanded chapter on the X ray fluorescence physics, and completely revised and increased number of practical examples of utilization of the QXAS software package. The analytical data accompanying this manual were collected in the IAEA Seibersdorf Laboratories in the years 2006/2007

  13. Three-dimensional (3D) microstructural characterization and quantification of reflow porosity in Sn-rich alloy/copper joints by X-ray tomography

    In this paper high resolution X-ray tomography was used to characterize reflow porosity in Sn-3.9Ag-0.7Cu/Cu solder joints. The combination of two segmentation techniques was applied for the three-dimensional (3D) visualization of pores in the joints and the quantification on the characteristics of reflow porosity, including pore size, volume fraction and morphology. The size, morphology and distribution of porosity were visualized in 3D for three different solder joints. Since the results are relatively similar for all three, only the results of one joint are presented. Solder reflow porosity was mostly spherical, segregated along the solder/Cu interface, and had an average pore size of 30 μm in diameter. A few large pores (larger than 100 μm in diameter) were present, some of which had lower sphericity, i.e., they were more irregular. The presence of these large pores may significantly influence the mechanical behavior of solder joints. - Highlights: → Non-destructive 3D characterization and quantification of porosity in Pb-free solders by X-ray tomography → Two new image analysis and reconstruction tools are presented that can be used by the community at large → Pore size, volume fraction, and sphericity, is critical to understanding microstructure and modeling of these systems

  14. An optical & X-ray study of the counterpart to the SMC X-ray binary pulsar system SXP327

    Coe, M J; Corbet, R H D; Galache, J; McBride, V A; Townsend, L J; Udalski, A

    2008-01-01

    Optical and X-ray observations are presented here of a newly reported X-ray transient system in the Small Magellanic Cloud. The data reveal many previously unknown X-ray detections of this system and clear evidence for a 49.995d binary period. In addition, the optical photometry show recurring outburst features at the binary period which may well be indicative of the neutron star interacting with a circumstellar disk around a Be star.

  15. X-ray binary systems - Ariel V SSI observations

    The basis of our current theoretical understanding of galactic x-ray sources is reviewed. Models are outlined involving close binary systems containing a compact object accreting mass which has been lost from the nondegenerate star by a variety of mechanisms. The present status of galactic x-ray astronomy is discussed, with emphasis on the links between established observational categories and the characteristics of the proposed models. Observational results, consisting primarily of extended x-ray light curves derived from analysis of Ariel V SSI data are presented for two main classes of galactic x-ray source: (i) high-mass x-ray binaries containing an early-type giant or supergiant star; (ii) low-mass x-ray binaries in which the nondegenerate star is a late-type dwarf. For the high-mass binaries emphasis is placed on the determination and improvement of the orbital parameters; for the low-mass binaries, where a less complete picture is available, the discussion centres on the type of system involved, taking into account the optical observations of the source. Finally, the properties of two further categories - the sources in the galactic bulge and those associated with dwarf novae - are discussed as examples of rather different types of galactic x-ray emitter. In the case of the galactic bulge sources current observations have not led so far to a clear picture of the nature of the systems involved, indeed their binary membership is not established. X-ray emission from dwarf novae and related objects is a relatively recent discovery and represents the opening up of a new field of galactic x-ray astronomy. (author)

  16. High-resolution non-invasive 3D imaging of paint microstructure by synchrotron-based X-ray laminography

    Reischig, Péter; Helfen, Lukas; Wallert, Arie; Baumbach, Tilo; Dik, Joris

    2013-06-01

    The characterisation of the microstructure and micromechanical behaviour of paint is key to a range of problems related to the conservation or technical art history of paintings. Synchrotron-based X-ray laminography is demonstrated in this paper to image the local sub-surface microstructure in paintings in a non-invasive and non-destructive way. Based on absorption and phase contrast, the method can provide high-resolution 3D maps of the paint stratigraphy, including the substrate, and visualise small features, such as pigment particles, voids, cracks, wood cells, canvas fibres etc. Reconstructions may be indicative of local density or chemical composition due to increased attenuation of X-rays by elements of higher atomic number. The paint layers and their interfaces can be distinguished via variations in morphology or composition. Results of feasibility tests on a painting mockup (oak panel, chalk ground, vermilion and lead white paint) are shown, where lateral and depth resolution of up to a few micrometres is demonstrated. The method is well adapted to study the temporal evolution of the stratigraphy in test specimens and offers an alternative to destructive sampling of original works of art.

  17. High-resolution non-invasive 3D imaging of paint microstructure by synchrotron-based X-ray laminography

    Reischig, Peter [Karlsruhe Institute of Technology, Institute for Photon Science and Synchrotron Radiation, Eggenstein-Leopoldshafen (Germany); Delft University of Technology, Department of Materials Science and Engineering, Delft (Netherlands); Helfen, Lukas [Karlsruhe Institute of Technology, Institute for Photon Science and Synchrotron Radiation, Eggenstein-Leopoldshafen (Germany); European Synchrotron Radiation Facility, BP 220, Grenoble Cedex (France); Wallert, Arie [Rijksmuseum, Postbus 74888, Amsterdam (Netherlands); Baumbach, Tilo [Karlsruhe Institute of Technology, Institute for Photon Science and Synchrotron Radiation, Eggenstein-Leopoldshafen (Germany); Dik, Joris [Delft University of Technology, Department of Materials Science and Engineering, Delft (Netherlands)

    2013-06-15

    The characterisation of the microstructure and micromechanical behaviour of paint is key to a range of problems related to the conservation or technical art history of paintings. Synchrotron-based X-ray laminography is demonstrated in this paper to image the local sub-surface microstructure in paintings in a non-invasive and non-destructive way. Based on absorption and phase contrast, the method can provide high-resolution 3D maps of the paint stratigraphy, including the substrate, and visualise small features, such as pigment particles, voids, cracks, wood cells, canvas fibres etc. Reconstructions may be indicative of local density or chemical composition due to increased attenuation of X-rays by elements of higher atomic number. The paint layers and their interfaces can be distinguished via variations in morphology or composition. Results of feasibility tests on a painting mockup (oak panel, chalk ground, vermilion and lead white paint) are shown, where lateral and depth resolution of up to a few micrometres is demonstrated. The method is well adapted to study the temporal evolution of the stratigraphy in test specimens and offers an alternative to destructive sampling of original works of art. (orig.)

  18. High-resolution non-invasive 3D imaging of paint microstructure by synchrotron-based X-ray laminography

    The characterisation of the microstructure and micromechanical behaviour of paint is key to a range of problems related to the conservation or technical art history of paintings. Synchrotron-based X-ray laminography is demonstrated in this paper to image the local sub-surface microstructure in paintings in a non-invasive and non-destructive way. Based on absorption and phase contrast, the method can provide high-resolution 3D maps of the paint stratigraphy, including the substrate, and visualise small features, such as pigment particles, voids, cracks, wood cells, canvas fibres etc. Reconstructions may be indicative of local density or chemical composition due to increased attenuation of X-rays by elements of higher atomic number. The paint layers and their interfaces can be distinguished via variations in morphology or composition. Results of feasibility tests on a painting mockup (oak panel, chalk ground, vermilion and lead white paint) are shown, where lateral and depth resolution of up to a few micrometres is demonstrated. The method is well adapted to study the temporal evolution of the stratigraphy in test specimens and offers an alternative to destructive sampling of original works of art. (orig.)

  19. Characterization of 3D Trench PZT Capacitors for High Density FRAM Devices by Synchrotron X-ray Micro-diffraction

    Shin, Sangmin; Han, Hee; Park, Yong Jun; Choi, Jae-Young; Park, Youngsoo; Baik, Sunggi

    2007-01-01

    3D trench PbZrxTi1-xO3 (PZT) capacitors for 256 Mbit 1T-1C FRAM devices were characterized by synchrotron X-ray micro-diffraction at Pohang Light Source. Three layes, Ir/PZT/Ir were deposited on SiO2 trench holes with different widths ranging from 180 nm to 810 nm and 400 nm in depth by ALD and MOCVD. Each hole is separated from neighboring holes by 200 nm. The cross sectional TEM analysis for the trenches revealed that the PZT layers were consisted of columnar grains at the trench entrance and changes to polycrystalline granular grains at the lower part of the trench. The transition from columnar to granular grains was dependent on the trench size. The smaller trenches were favorable to granular grain formation. High resolution synchrotron X-ray diffraction analysis was performed to determine the crystal structure of each region. The beam was focused to about 500 μm and the diffraction patterns were obtained from a single trench. Only the peaks corresponding to ferroelectric tetragonal phases are observed for the trenches larger than 670 nm, which consist of fully columnar grains. However, the trenches smaller than 670 nm showed the peaks corresponding the pyrochlore phases, which suggested that the granular grains are of pyrochlore phases and non-ferroelectric.

  20. Characterization of 3D Trench PZT Capacitors for High Density FRAM Devices by Synchrotron X-ray Micro-diffraction

    3D trench PbZrxTi1-xO3 (PZT) capacitors for 256 Mbit 1T-1C FRAM devices were characterized by synchrotron X-ray micro-diffraction at Pohang Light Source. Three layers, Ir/PZT/Ir were deposited on SiO2 trench holes with different widths ranging from 180 nm to 810 nm and 400 nm in depth by ALD and MOCVD. Each hole is separated from neighboring holes by 200 nm. The cross sectional TEM analysis for the trenches revealed that the PZT layers were consisted of columnar grains at the trench entrance and changes to polycrystalline granular grains at the lower part of the trench. The transition from columnar to granular grains was dependent on the trench size. The smaller trenches were favorable to granular grain formation. High resolution synchrotron X-ray diffraction analysis was performed to determine the crystal structure of each region. The beam was focused to about 500 μm and the diffraction patterns were obtained from a single trench. Only the peaks corresponding to ferroelectric tetragonal phases are observed for the trenches larger than 670 nm, which consist of fully columnar grains. However, the trenches smaller than 670 nm showed the peaks corresponding the pyrochlore phases, which suggested that the granular grains are of pyrochlore phases and non-ferroelectric

  1. 3D deformation and strain analysis in compacted sugar using x-ray microtomography and digital volume correlation

    Understanding the displacement of granular beds under compaction is important for a range of industrial, geological and civil engineering applications. Such materials exhibit inhomogeneous internal displacements including strain localization, which mean that a method for the in situ evaluation of internal 3D displacement fields at high spatial resolutions would be a major development. This paper presents results from the compaction of a cylindrical bed of sugar, with diameter 7.0 mm and height 8.2 mm, using x-ray microtomography to evaluate the internal structure and digital volume correlation to calculate 3D displacement information from these data. In contrast to previous studies, which generally track a small number of marker particles, the research here uses the natural structure of the sugar to provide a random pattern for 3D image correlation, allowing full-field information to be captured. The results show good agreement when compared with a well-established 2D image correlation technique; moreover, they indicate structural features associated with deformation of granular materials that would not necessarily be observed in a 2D slice

  2. 3D images of paper obtained by phase-contrast X-ray microtomography: image quality and binarisation

    A series of paper samples was investigated using high-resolution phase-contrast microtomography at the beamline ID 22 of the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. It was shown that X-ray microtomography is a non-destructive method suitable for high resolution depicting real 3D-paper structures. The method detects highly localised changes in the refractive index of the sample, such as fibre-pore interfaces. The resulting tomograms represented an outlined image of the fibre structure with an image resolution of 1 μm. Analyses were performed in dry state, but in addition some were done in wet state. The raw data obtained were transformed into 3D images. The reconstructed slices were in general of rather good quality, even if both noise and ring-like artifacts were observed. These required special filtering efforts before a segmented binary volume could be obtained for further use of the data. This approach was made up of semi-automatic routines to convert the structure into a binary format. The resulting binary volumes can be used for further characterisation of the 3D-paper structure

  3. System for Gamma an X rays fluorescence spectrometric

    A system for spectrometry of gamma or fluorescence X rays is presented. It sis composed by a Si(Li) semiconductors detector, a charge sensitive preamplifier, a high voltage power supply, a spectrometric amplifier and a monolithic 1024 channels multichannel analyzers or an IBM compatible 4096 channels add - on- card multichannel analyzer. The system can be configured as a 1024 or 4096 channels gamma or fluorescent X rays spectrometer

  4. Critical dimension small angle X-ray scattering measurements of FinFET and 3D memory structures

    Settens, Charles; Bunday, Benjamin; Thiel, Brad; Kline, R. Joseph; Sunday, Daniel; Wang, Chengqing; Wu, Wen-li; Matyi, Richard

    2013-04-01

    We have demonstrated that transmission critical dimension small angle X-ray scattering (CD-SAXS) provides high accuracy and precision CD measurements on advanced 3D microelectronic architectures. The competitive advantage of CD-SAXS over current 3D metrology methods such as optical scatterometry is that CD-SAXS is able to decouple and fit cross-section parameters without any significant parameter cross-correlations. As the industry aggressively scales beyond the 22 nm node, CD-SAXS can be used to quantitatively measure nanoscale deviations in the average crosssections of FinFETs and high-aspect ratio (HAR) memory devices. Fitting the average cross-section of 18:1 isolated HAR contact holes with an effective trapezoid model yielded an average pitch of 796.9 +/- 0.4 nm, top diameter of 70.3 +/- 0.9 nm, height of 1088 +/- 4 nm, and sidewall angle below 0.1°. Simulations of dense 40:1 HAR contact holes and FinFET fin-gate crossbar structures have been analyzed using CD-SAXS to inquire the theoretical precision of the technique to measure important process parameters such as fin CD, height, and sidewall angle; BOX etch recess, thickness of hafnium oxide and titanium nitride layers; gate CD, height, and sidewall angle; and hafnium oxide and titanium nitride etch recess. The simulations of HAR and FinFET structures mimic the characteristics of experimental data collected at a synchrotron x-ray source. Using the CD-SAXS simulator, we estimate the measurement capabilities for smaller similar structures expected at future nodes to predict the applicability of this technique to fulfill important CD metrology needs.

  5. Significant acceleration of 2D-3D registration-based fusion of ultrasound and x-ray images by mesh-based DRR rendering

    Kaiser, Markus; John, Matthias; Borsdorf, Anja; Mountney, Peter; Ionasec, Razvan; Nöttling, Alois; Kiefer, Philipp; Seeburger, Jörg; Neumuth, Thomas

    2013-03-01

    For transcatheter-based minimally invasive procedures in structural heart disease ultrasound and X-ray are the two enabling imaging modalities. A live fusion of both real-time modalities can potentially improve the workflow and the catheter navigation by combining the excellent instrument imaging of X-ray with the high-quality soft tissue imaging of ultrasound. A recently published approach to fuse X-ray fluoroscopy with trans-esophageal echo (TEE) registers the ultrasound probe to X-ray images by a 2D-3D registration method which inherently provides a registration of ultrasound images to X-ray images. In this paper, we significantly accelerate the 2D-3D registration method in this context. The main novelty is to generate the projection images (DRR) of the 3D object not via volume ray-casting but instead via a fast rendering of triangular meshes. This is possible, because in the setting for TEE/X-ray fusion the 3D geometry of the ultrasound probe is known in advance and their main components can be described by triangular meshes. We show that the new approach can achieve a speedup factor up to 65 and does not affect the registration accuracy when used in conjunction with the gradient correlation similarity measure. The improvement is independent of the underlying registration optimizer. Based on the results, a TEE/X-ray fusion could be performed with a higher frame rate and a shorter time lag towards real-time registration performance. The approach could potentially accelerate other applications of 2D-3D registrations, e.g. the registration of implant models with X-ray images.

  6. Network based multi-channel digital flash X-ray imaging system

    A network based multi-channel digital flash X-ray imaging system has been developed. It can be used to acquire and digitize orthogonal flash X-ray images in multi-interval, and to distribute the images on the network. There is no need of films and chemical process, no anxiety of waiting and no trouble of film archiving. This system is useful for testing ballistics, jet, explode, armour-piercing and fast running machines. The system composing and acquired images are presented. The software for object separating, mass calculating, 3D positioning, speed determining and cavity reconstruction are described

  7. Network based multi-channel digital flash X-ray imaging system

    A network based multi-channel digital flash X-ray imaging system has been developed. It can be used to acquire and digitize orthogonal flash X-ray images in multi-interval, and to distribute the images on the network. There is no need of films and chemical process, no anxiety of waiting and no trouble of film archiving. This system is useful for testing ballistics, jet, explode, armour-piercing and fast running machines. The system composing and acquired images of terminal ballistics are presented. The software for object separating, profile calculating and 3D cavity reconstruction are described

  8. Two step formation of metal aggregates by surface X-ray radiolysis under Langmuir monolayers: 2D followed by 3D growth

    Smita Mukherjee

    2015-12-01

    Full Text Available In order to form a nanostructured metallic layer below a Langmuir monolayer, radiolysis synthesis was carried out in an adapted geometry that we call surface X-ray radiolysis. In this procedure, an X-ray beam produced by a synchrotron beamline intercepts the surface of an aqueous metal-ion solution covered by a Langmuir monolayer at an angle of incidence below the critical angle for total internal reflection. Underneath the organic layer, the X-ray beam induces the radiolytic synthesis of a nanostructured metal–organic layer whose ultrathin thickness is defined by the vertical X-ray penetration depth. We have shown that increasing the X-ray flux on the surface, which considerably enhances the kinetics of the silver layer formation, results in a second growth regime of silver nanocrystals. Here the formation of the oriented thin layer is followed by the appearance of a 3D powder of silver clusters.

  9. Two digital X-ray imaging systems for applications in X-ray diffraction

    Two digital X-ray imaging systems developed at the Rutherford Appleton Laboratory are described: the Mark I and the Mark II. Both use a bidimensionally sensitive multiwire proportional counter (MWPC) as the basic X-ray image transducer coupled, in the case of the Mark I to a Digital LSI 11-23 microcomputer system via CAMAC, and in the case of the Mark II to a Digital LSI 11-73 microcomputer system via custom-built data acquisition hardware mounted directly on the Q-bus of the microcomputer. The Mark I system provides the advantages of high speed, high sensitivity digital imaging directly into the computer with the potential for software control of the sample orientation and environment. The Mark II system adds the novel features of signal averaging and multiframe exposures. The dedicated digital memories have a resolution of 512x512 pixels of 16 bits, matching well to the spatial resolution of the xenon-filled MWPC (0.5 mm fwhm over an aperture of 200 mm x 200 mm). A 512x512x4 bit video graphics system displays the images in grey scales or colour. (orig.)

  10. A flying spot X-ray system for Compton backscatter imaging.

    Herr, M D; McInerney, J J; Lamser, D G; Copenhaver, G L

    1994-01-01

    A Compton X-ray backscatter imaging (CBI) system using a single detector and a mechanically rastered "flying spot" X-ray beam has been designed, built, and tested. While retaining the essential noninvasive imaging capability of previous multiple detector CBI devices, this single detector system incorporates several advances over earlier CBI devices: more efficient detection of scattered X-rays, reduced X-ray exposure, and a simplified scan protocol more suitable for use with humans. This new CBI system also has specific design features to permit automating data acquisition from multiple two-dimensional image planes for integration into a 3D dynamic surface image. A simulated multislice scan study of a human thorax phantom provided X-ray dosimetry data verifying a very low X-ray dose (~50 mrem) delivered by this imaging device. Validation experiments with mechanical models show that surface displacement at typical heart beat frequencies can be measured to the nearest 0.1 mm (SD). PMID:18218521

  11. The 3-D composition of the Galactic interstellar medium. The hot phases and X-ray absorbing material

    Pradas, J.; Kerp, J.

    2002-01-01

    We present maps of the Galactic X-ray Halo and constrain the location of X-ray absorbing gas using the X-ray radiation transfer as distance a indicator. Based on a consistent model of the soft X-ray background (SXRB) and the ROSAT all-sky survey, we derive the morphology of some components involved in the SXRB. In particular we focus on their spatial and temperature distributions across the sky. Starting from our SXRB model, we extract information on the 3-dimensional composition of the X-ray...

  12. Fast calculation of the X-ray transform from the radial derivative of the 3D Radon transform using gridding and fast backprojection techniques

    A method for the fast calculation of the X-ray transform from the radial derivative of the 3D Radon transform is presented. The introduced technique calculates the x-ray transformation of a given volume data set with an expected computational complexity of the order O(N2logN), instead of O(N3) for ray-tracing. The algorithm is capable of speeding up several applications such as intraoperative 2D/3D registration and tracking or virtual CT diagnosis. (author)

  13. Image quality of medical X-ray systems

    The quality of images made by medical X-ray systems can only be properly described if the visual system is also taken into account. In this thesis, the visual threshold contrast of edges, bars and disks has been chosen as the criterion. Since these objects resemble medical objects like tumour-mass outlines, blood vessels and micro-calcifications, a correlation with X-ray practice is possible. Only the conventional X-ray systems are considered, but a brief analysis of computerized tomography is given. Considerable attention is paid to unsharpness and the minimization of its influence on the threshold contrast, to the influence of the noise on the threshold contrast, and to the contrast formation as such. The consequences for the dose administered to the patient are also briefly analysed. (Auth.)

  14. An X-ray photometry system I: Chandra ACIS

    Grimm, H -J; Fabbiano, G; Elvis, M

    2008-01-01

    We present a system of X-ray photometry for the Chandra satellite. X-ray photometry can be a powerful tool to obtain flux estimates, hardness ratios, and colors unbiased by assumptions about spectral shape and independent of temporal and spatial changes in instrument characteristics. The system we have developed relies on our knowledge of effective area and the energy-to-channel conversion to construct filters similar to photometric filters in the optical bandpass. We show that the filters are well behaved functions of energy and that this X-ray photometric system is able to reconstruct fluxes to within about 20%, without color corrections, for non-pathological spectra. Even in the worst cases it is better than 50%. Our method also treats errors in a consistent manner, both statistical as well as systematic.

  15. Plural image signal system for scanning x-ray apparatus

    Radiographic images are produced by situating a subject (13) between a scanning x-ray source (16) and an x-ray detector (14) to produce electrical signals indicative of variations of x-ray transmissivity in different regions of the subject (13). A signal processing system (11) enables simultaneous display of a plurality of visible images at a plurality of display devices (52 to 55) with each image emphasizing a different aspect of the information generated by a given scanning of the subject. A feedback circuit (68) from the detector (14) to the x-ray source (16) maintains the average level of the detector signal constant while allowing short term fluctuations so that only abrupt or brief changes of x-ray transmissivity in the subject are visible in a first image at a first display device (52). A second image signal circuit (93) recovers the data suppressed by the feedback circuit (68) to enable a full contrast range image to be presented at another display device (53) and to enableines of an ultrasonic image and for later reading-out of stored lines via the dbye chosen metal dihalide vapor is ionized by ; the total economic market potential is 64.4% of the technical potential, or 2072.4 MW, equivalent to 83,621 BPDE; and the lack of an operating history-detailing system reliability, safety, and operating costs-iment and test components; technology testing; analytmperature fatigue stren obtained

  16. Radiation measurements around X-ray cabinet systems.

    Suric Mihic, M; Vucic, Z; Prlic, I; Lulic, I; Mestrovic, T

    2012-07-01

    Security personnel who operate X-ray units for the control of hand luggage and personal items at airports are generally not under dosimetric surveillance. A significant increase in the number of inspected items per passenger, due to rigorous air traffic security measures, raises a question of extended exposure of these workers to scattered X-ray radiation. A new approach to investigating directions of breaches of scattered X-ray radiation in the area near to an X-ray cabinet system, which is based on using active electronic dosemeters is presented. Influence of the increase in the number of inspected items in time on the dose rate is described. Time-dependent dose rates have showed a very good correlation with passengers undergoing security control prior to boarding an airplane. Measurements confirmed that an increase in the dose rate, coinciding with rush hours, was caused by scattered radiation passing through incompletely closed lead curtains. It is found that the doses at the entrance to the inspection tunnel are 50% higher than those at the exit, which is a consequence of inherent operational characteristics of X-ray cabinet systems. PMID:22302108

  17. Four-channel digital flash X-ray imaging system

    Four-channel digital flash X-ray imaging system is developed in authors' lab. Four radiography images at four time intervals of explosion and ballistic trajectory can be obtained using this system. The construction of the system, its specification, and its experimental results are presented

  18. A study of internal structure in components made by additive manufacturing process using 3 D X-ray tomography

    Raguvarun, K., E-mail: prajagopal@iitm.ac.in; Balasubramaniam, Krishnan, E-mail: prajagopal@iitm.ac.in; Rajagopal, Prabhu, E-mail: prajagopal@iitm.ac.in [Centre for NDE, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu (India); Palanisamy, Suresh [Swinburne University of Technology, Faculty of Engineering, Science and Technology, Hawthorn, Victoria 3122 Australia and Defence Materials Technology Centre, Hawthorn, Victoria 3122 (Australia); Nagarajah, Romesh; Kapoor, Ajay [Swinburne University of Technology, Faculty of Engineering, Science and Technology, Hawthorn, Victoria 3122 (Australia); Hoye, Nicholas; Curiri, Dominic [University of Wollongong, Faculty of Engineering, New South Wales 2522, Australia and Defence Materials Technology Centre, Hawthorn, Victoria 3122 (Australia)

    2015-03-31

    Additive manufacturing methods are gaining increasing popularity for rapidly and efficiently manufacturing parts and components in the industrial context, as well as for domestic applications. However, except when used for prototyping or rapid visualization of components, industries are concerned with the load carrying capacity and strength achievable by additive manufactured parts. In this paper, the wire-arc additive manufacturing (AM) process based on gas tungsten arc welding (GTAW) has been examined for the internal structure and constitution of components generated by the process. High-resolution 3D X-ray tomography is used to gain cut-views through wedge-shaped parts created using this GTAW additive manufacturing process with titanium alloy materials. In this work, two different control conditions for the GTAW process are considered. The studies reveal clusters of porosities, located in periodic spatial intervals along the sample cross-section. Such internal defects can have a detrimental effect on the strength of the resulting AM components, as shown in destructive testing studies. Closer examination of this phenomenon shows that defect clusters are preferentially located at GTAW traversal path intervals. These results highlight the strong need for enhanced control of process parameters in ensuring components with minimal defects and higher strength.

  19. A study of internal structure in components made by additive manufacturing process using 3 D X-ray tomography

    Additive manufacturing methods are gaining increasing popularity for rapidly and efficiently manufacturing parts and components in the industrial context, as well as for domestic applications. However, except when used for prototyping or rapid visualization of components, industries are concerned with the load carrying capacity and strength achievable by additive manufactured parts. In this paper, the wire-arc additive manufacturing (AM) process based on gas tungsten arc welding (GTAW) has been examined for the internal structure and constitution of components generated by the process. High-resolution 3D X-ray tomography is used to gain cut-views through wedge-shaped parts created using this GTAW additive manufacturing process with titanium alloy materials. In this work, two different control conditions for the GTAW process are considered. The studies reveal clusters of porosities, located in periodic spatial intervals along the sample cross-section. Such internal defects can have a detrimental effect on the strength of the resulting AM components, as shown in destructive testing studies. Closer examination of this phenomenon shows that defect clusters are preferentially located at GTAW traversal path intervals. These results highlight the strong need for enhanced control of process parameters in ensuring components with minimal defects and higher strength

  20. A Compact X-Ray System for Macromolecular Crystallography

    Gubarev, Mikhail; Ciszak, Ewa; Ponomarev, Igor; Gibson, Walter; Joy, Marshall

    2000-01-01

    We describe the design and performance of a high flux x-ray system for a macromolecular crystallography that combines a microfocus x-ray generator (40 micrometer full width at half maximum spot size at a power level of 46.5 W) and a collimating polycapillary optic. The Cu Ka lpha x-ray flux produced by this optimized system through a 500,um diam orifice is 7.0 times greater than the x-ray flux previously reported by Gubarev et al. [M. Gubarev et al., J. Appl. Crystallogr. 33, 882 (2000)]. The x-ray flux from the microfocus system is also 2.6 times higher than that produced by a rotating anode generator equipped with a graded multilayer monochromator (green optic, Osmic Inc. CMF24-48-Cu6) and 40% less than that produced by a rotating anode generator with the newest design of graded multilayer monochromator (blue optic, Osmic, Inc. CMF12-38-Cu6). Both rotating anode generators operate at a power level of 5000 W, dissipating more than 100 times the power of our microfocus x-ray system. Diffraction data collected from small test crystals are of high quality. For example, 42 540 reflections collected at ambient temperature from a lysozyme crystal yielded R(sub sym)=5.0% for data extending to 1.70 A, and 4.8% for the complete set of data to 1.85 A. The amplitudes of the observed reflections were used to calculate difference electron density maps that revealed positions of structurally important ions and water molecules in the crystal of lysozyme using the phases calculated from the protein model.

  1. A Compact X-Ray System for Macromolecular Crystallography. 5

    Gubarev, Mikhail; Ciszak, Ewa; Ponomarev, Igor; Joy, Marshall

    2000-01-01

    We describe the design and performance of a high flux x-ray system for macromolecular crystallography that combines a microfocus x-ray generator (40 gm FWHM spot size at a power level of 46.5Watts) and a 5.5 mm focal distance polycapillary optic. The Cu K(sub alpha) X-ray flux produced by this optimized system is 7.0 times above the X-ray flux previously reported. The X-ray flux from the microfocus system is also 3.2 times higher than that produced by the rotating anode generator equipped with a long focal distance graded multilayer monochromator (Green optic; CMF24-48-Cu6) and 30% less than that produced by the rotating anode generator with the newest design of graded multilayer monochromator (Blue optic; CMF12-38-Cu6). Both rotating anode generators operate at a power level of 5000 Watts, dissipating more than 100 times the power of our microfocus x-ray system. Diffraction data collected from small test crystals are of high quality. For example, 42,540 reflections collected at ambient temperature from a lysozyme crystal yielded R(sub sym) 5.0% for the data extending to 1.7A, and 4.8% for the complete set of data to 1.85A. The amplitudes of the reflections were used to calculate difference electron density maps that revealed positions of structurally important ions and water molecules in the crystal of lysozyme using the phases calculated from the protein model.

  2. 21 CFR 892.1750 - Computed tomography x-ray system.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Computed tomography x-ray system. 892.1750 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1750 Computed tomography x-ray system. (a) Identification. A computed tomography x-ray system is a diagnostic x-ray system intended...

  3. Simulation of a tangential soft x-ray imaging system

    Tangentially viewing soft x-ray (SXR) cameras are capable of detecting nonaxisymmetric plasma structures in magnetically confined plasmas. They are particularly useful for studying stationary perturbations or phenomenon that occur on a timescale faster than the plasma rotation period. Tangential SXR camera diagnostics are planned for the DIII-D and NSTX tokamaks to elucidate the static edge magnetic structure during the application of 3D perturbations. To support the design of the proposed diagnostics, a synthetic diagnostic model was developed using the CHIANTI database to estimate the SXR emission. The model is shown to be in good agreement with the measurements from an existing tangential SXR camera diagnostic on NSTX.

  4. X-ray tomography system to investigate granular materials during mechanical loading

    Athanassiadis, Athanasios G; Sidky, Emil; Pelizzari, Charles; Pan, Xiaochuan; Jaeger, Heinrich M

    2014-01-01

    We integrate a small and portable medical x-ray device with mechanical testing equipment to enable in-situ, non-invasive measurements of a granular material's response to mechanical loading. We employ an orthopedic C-arm as the x-ray source and detector to image samples mounted in the materials tester. We discuss the design of a custom rotation stage, which allows for sample rotation and tomographic reconstruction under applied compressive stress. We then discuss the calibration of the system for 3d computed tomography, as well as the subsequent image reconstruction process. Using this system to reconstruct packings of 3d-printed particles, we resolve packing features with 0.52 mm resolution in a (60 mm)$^3$ field of view. By analyzing the performance bounds of the system, we demonstrate that the reconstructions exhibit only moderate noise.

  5. Application of monochromatic keV X-ray source to X-ray drug delivery system

    Uesaka, Mitsuru; Taguchi, Hiroki; Mori, Azusa; Yusa, Noritaka; Kato, Takamitsu; Okayasu, Ryuichi

    2009-09-01

    X-ray Drug Delivery System (DDS) enhances accumulation of anti-cancer drug or contrast agent by surrounding it with polymer and Enhanced Penetration and Retention (EPR) effect. DDS uses advanced nano-scaled polymers that contain and deliver drug or contrast agent to cancers without side effects. Several X-ray DDSs pose high-Z atoms such as gold to absorb X-rays effectively and used as contrast agent for inspection. Moreover, they have radiation enhancement effect by emission of Auger electron and successive characteristic X-rays. The enhancement factor of gold is more than five. This could be used even for therapy. This new modality must be very important for inspection and therapy of deep cancers. We are making use of our X-band Compton scattering monochromatic keV X-ray source for the inspection. Numerical simulation on monochromatic X-ray CT for possible concentration of gold-colloid DDS considering the X-ray property from the source was done. Enough visibility was confirmed. Furthermore, in vitro experiment analyzed its toxic effect to cells by the Alkaline comet assay and fluorescent immunostaining method for single and double strand breaks of DNA. Availability of clear imaging for the inspection has been confirmed by the numerical simulation and the in-vitro evaluation of the therapy effect is under way.

  6. The 3D microscopic 'signature' of strain within glacial sediments revealed using X-ray computed microtomography

    Tarplee, Mark F. V.; van der Meer, Jaap J. M.; Davis, Graham R.

    2011-11-01

    X-ray computed microtomography (μCT), a non-destructive analytical technique, was used to create volumetric three-dimensional (3D) models representing the internal composition and structure of undisturbed pro- and subglacial soft sediment sample plugs for the purposes of identifying and analysing kinematic indicators. The technique is introduced and a methodology is presented addressing specific issues relating to the investigation of unlithified, polymineralic sediments. Six samples were selected based on their proximity to 'type' brittle and ductile deformation structures, or because of their perceived suitability for successful application of the technique. Analysis of a proglacial 'ideal' specimen permitted the 3D geometry of a suite of micro-faults and folds to be investigated and the strain history of the sample reconstructed. The poor contrast achieved in scanning a diamicton of glaciomarine origin is attributable to overconsolidation under normal loading, the sediment demonstrated to have undergone subsequent subglacial deformation. Another overconsolidated diamicton contains an extensive, small scale (scale. A volcanic lithic clast contrasts well with the surrounding matrix in a 'lodgement' till sample containing μCT (void) and thin-section evidence of clast ploughing. Initial ductile deformation was followed by dewatering of the matrix, which led to brittle failure and subsequent emplacement. Compelling evidence of clast rotation is located in the top of another sample, μCT analysis revealing that the grain has a proximal décollement surface orientated parallel to the plane of shear. The lenticular morphology of the rotational structure defined suggests an unequal distribution of forces along two of the principal stress axes. The excellent contrast between erratics contained within a sample and the enclosing till highlight the considerable potential of the technique in permitting the rapid (semi-)quantitative analysis of large datasets. The subglacial

  7. Precise 3D dimensional metrology using high-resolution x-ray computed tomography (μCT)

    Brunke, Oliver; Santillan, Javier; Suppes, Alexander

    2010-09-01

    Over the past decade computed tomography (CT) with conventional x-ray sources has evolved from an imaging method in medicine to a well established technology for industrial applications in fields such as material science, light metals and plastics processing, microelectronics and geology. By using modern microfocus and nanofocus X-ray tubes, parts can be scanned with sub-micrometer resolutions. Currently, micro-CT is a technology increasingly used for metrology applications in the automotive industry. CT offers big advantages compared with conventional tactile or optical coordinate measuring machines (CMMs). This is of greater importance if complex parts with hidden or difficult accessible surfaces have to be measured. In these cases, CT offers the advantage of a high density of measurement points and a non-destructive and fast capturing of the sample's complete geometry. When using this growing technology the question arises how precise a μCT based CMM can measure as compared to conventional and established methods for coordinate measurements. For characterizing the metrological capabilities of a tactile or optical CMM, internationally standardized parameters like length measurement error and probing error are defined and used. To increase the acceptance of CT as a metrological method, our work seeks to clarify the definition and usage of parameters used in the field of metrology as these apply to CT. In this paper, an overview of the process chain in CT based metrology will be given and metrological characteristics will be described. For the potential user of CT as 3D metrology tool it is important to show the measurement accuracy and repeatability on realistic samples. Following a discussion of CT metrology techniques, two samples are discussed. The first compares a measured CT Data set to CAD data using CMM data as a standard for comparison of results. The second data second realistic data set will compare the results of applying both the CMM method of

  8. Multiple-energy X-ray subtraction imaging system

    This invention relates to x-ray imaging systems, with particular reference to blood vessels. In a primary application the invention relates to obtaining isolated images of an administered contrast agent. The absorption of X-rays transmitted through a body is measured in a plurality of energy ranges and these measurements are processed to obtain image data with the soft tissue component eliminated. Such processed image data is obtained before and after the administration of a contrast agent, such as iodine, to the body. The two sets of processed image data are subtractively combined to obtain an isolated image of the contrast agent which is immune to motion of soft tissue. (author)

  9. Observational studies of X-ray binary systems

    The subject of Chapter 1 is theoretical. The other chapters, Ch. 2 to 6, contain original observational data and efforts towards their interpretation. Of these, Ch. 3, 4 and 5 deal with massive X-ray binaries, Ch. 6 with low-mass systems and Ch. 2 with Cygnus X-3, which we have not yet been able to assign to any of these two classes. The X-ray observations described were made with the COS-B satellite. Work based on UV and optical observations is described in Ch. 5. The UV observations were made with the IUE satellite, the optical observations at several ground-based observatories. (Auth.)

  10. Energy-dispersive X-ray diffraction mapping on a benchtop X-ray fluorescence system

    Lane, DW; Nyombi, A; Shackel, J

    2014-01-01

    A method for energy-dispersive X-ray diffraction mapping is presented, using a conventional low-power benchtop X-ray fluorescence spectrometer, the Seiko Instruments SEA6000VX. Hyper spectral X-ray maps with a 10µm step size were collected from polished metal surfaces, sectioned Bi, Pb and steel shot gun pellets. Candidate diffraction lines were identified by eliminating those that matched a characteristic line for an element and those predicted for escape peaks, sum peaks, and Rayleigh and C...

  11. 3D-printed photo-spectroelectrochemical devices for in situ and in operando X-ray absorption spectroscopy investigation.

    Achilli, Elisabetta; Minguzzi, Alessandro; Visibile, Alberto; Locatelli, Cristina; Vertova, Alberto; Naldoni, Alberto; Rondinini, Sandra; Auricchio, Ferdinando; Marconi, Stefania; Fracchia, Martina; Ghigna, Paolo

    2016-03-01

    Three-dimensional printed multi-purpose electrochemical devices for X-ray absorption spectroscopy are presented in this paper. The aim of this work is to show how three-dimensional printing can be a strategy for the creation of electrochemical cells for in situ and in operando experiments by means of synchrotron radiation. As a case study, the description of two cells which have been employed in experiments on photoanodes for photoelectrochemical water splitting are presented. The main advantages of these electrochemical devices are associated with their compactness and with the precision of the three-dimensional printing systems which allows details to be obtained that would otherwise be difficult. Thanks to these systems it was possible to combine synchrotron-based methods with complementary techniques in order to study the mechanism of the photoelectrocatalytic process. PMID:26917152

  12. Development of a stationary chest tomosynthesis system using carbon nanotube x-ray source array

    Shan, Jing

    X-ray imaging system has shown its usefulness for providing quick and easy access of imaging in both clinic settings and emergency situations. It greatly improves the workflow in hospitals. However, the conventional radiography systems, lacks 3D information in the images. The tissue overlapping issue in the 2D projection image result in low sensitivity and specificity. Both computed tomography and digital tomosynthesis, the two conventional 3D imaging modalities, requires a complex gantry to mechanically translate the x-ray source to various positions. Over the past decade, our research group has developed a carbon nanotube (CNT) based x-ray source technology. The CNT x-ray sources allows compacting multiple x-ray sources into a single x-ray tube. Each individual x-ray source in the source array can be electronically switched. This technology allows development of stationary tomographic imaging modalities without any complex mechanical gantries. The goal of this work is to develop a stationary digital chest tomosynthesis (s-DCT) system, and implement it for a clinical trial. The feasibility of s-DCT was investigated. It is found that the CNT source array can provide sufficient x-ray output for chest imaging. Phantom images have shown comparable image qualities as conventional DCT. The s-DBT system was then used to study the effects of source array configurations and tomosynthesis image quality, and the feasibility of a physiological gated s-DCT. Using physical measures for spatial resolution, the 2D source configuration was shown to have improved depth resolution and comparable in-plane resolution. The prospective gated tomosynthesis images have shown substantially reduction of image blur associated with lung motions. The system was also used to investigate the feasibility of using s-DCT as a diagnosis and monitoring tools for cystic fibrosis patients. A new scatter reduction methods for s-DCT was also studied. Finally, a s-DCT system was constructed by

  13. 21 CFR 872.1800 - Extraoral source x-ray system.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Extraoral source x-ray system. 872.1800 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1800 Extraoral source x-ray system. (a) Identification. An extraoral source x-ray system is an AC-powered device that produces x-rays and is intended...

  14. 21 CFR 872.1810 - Intraoral source x-ray system.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Intraoral source x-ray system. 872.1810 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1810 Intraoral source x-ray system. (a) Identification. An intraoral source x-ray system is an electrically powered device that produces x-rays and...

  15. Comparison of focused ion beam versus nano-scale X-ray computed tomography for resolving 3-D microstructures of porous fuel cell materials

    Wargo, E. A.; Kotaka, T.; Tabuchi, Y.; Kumbur, E. C.

    2013-11-01

    Focused ion beam-scanning electron microscopy (FIB-SEM) and nano-scale X-ray computed tomography (nano-CT) have emerged as two popular nanotomography techniques for quantifying the 3-D microstructure of porous materials. The objective of this study is to assess the unique features and limitations of FIB-SEM and nano-CT in capturing the 3-D microstructure and structure-related transport properties of porous fuel cell materials. As a test case, a sample of a micro-porous layer used in polymer electrolyte fuel cells is analyzed to obtain 3-D microstructure datasets using these two nanotomography techniques. For quantitative comparison purposes, several key transport properties are determined for these two datasets, including the porosity, pore connectivity, tortuosity, structural diffusivity coefficient, and chord length (i.e., void size) distributions. The results obtained for both datasets are evaluated against each other and experimental data when available. Additionally, these two techniques are compared qualitatively in terms of the acquired images, image segmentation, and general systems operation. The particular advantages and disadvantages of both techniques are highlighted, along with suggestions for best practice.

  16. A new approach to industrial x-ray gauging systems

    'Full-text:' Industrial X-ray Gauging Systems have traditionally been constructed by immersing the X-ray Tube and associated high voltage equipment in large, heavy tanks of circulating dielectric oil. Alternatively, they have been manufactured with smaller tube containment assemblies and separate high voltage sources. These more compact arrangements require that the tube's dielectric immersion be circulated through a heat exchanging cooling loop. Both traditional approaches result in very bulky, awkward, heavy units, that are at times, seemingly impossible to access, maintain and repair. Intergrated Industrial Systems, Inc. has now developed an economical, highly modular X-ray Gauging System that does not circum to the limiting physical factors of traditional systems. The new system has been specifically designed to provide robust long-term performance, but be easily accessed, maintained and repaired. Replacement of consumable components (e.g., X-ray Tubes) can be performed quickly, therefore minimizing downtime. The approach is a radical departure from contemporary philosophies, and makes it possible to apply X-ray gauging technologies in areas not previously considered. New techniques of high voltage power application, signal processing and theory of operation have been developed to achieve the necessary performance in the presence of the new physical arrangement and modularity. This paper will review this new system's design and operation, and compare it against traditional strategies, in terms of applicability and performance. Details of the system's components and the underlying theories/techniques that make such a compact, modular system possible are discussed. Experiences with this new system in both laboratory and harsh industrial applications will be presented and discussed. (author)

  17. Optical cone beam tomography of Cherenkov-mediated signals for fast 3D dosimetry of x-ray photon beams in water

    Purpose: To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF). Methods: An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a Feldkamp–Davis–Kress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian ECLIPSE treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts. Results: 3D light volumes were successfully reconstructed over a 400 × 400 × 350 mm3 volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%–99% pass fraction depending on the chosen threshold dose. Conclusions: The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water

  18. Optical cone beam tomography of Cherenkov-mediated signals for fast 3D dosimetry of x-ray photon beams in water

    Glaser, Adam K., E-mail: Adam.K.Glaser@dartmouth.edu, E-mail: Brian.W.Pogue@dartmouth.edu; Andreozzi, Jacqueline M. [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States); Zhang, Rongxiao [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Pogue, Brian W., E-mail: Adam.K.Glaser@dartmouth.edu, E-mail: Brian.W.Pogue@dartmouth.edu [Thayer School of Engineering and Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Gladstone, David J. [Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766 (United States)

    2015-07-15

    Purpose: To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF). Methods: An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a Feldkamp–Davis–Kress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian ECLIPSE treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts. Results: 3D light volumes were successfully reconstructed over a 400 × 400 × 350 mm{sup 3} volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%–99% pass fraction depending on the chosen threshold dose. Conclusions: The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water.

  19. Bayesian 3D X-ray computed tomography image reconstruction with a scaled Gaussian mixture prior model

    In order to improve quality of 3D X-ray tomography reconstruction for Non Destructive Testing (NDT), we investigate in this paper hierarchical Bayesian methods. In NDT, useful prior information on the volume like the limited number of materials or the presence of homogeneous area can be included in the iterative reconstruction algorithms. In hierarchical Bayesian methods, not only the volume is estimated thanks to the prior model of the volume but also the hyper parameters of this prior. This additional complexity in the reconstruction methods when applied to large volumes (from 5123 to 81923 voxels) results in an increasing computational cost. To reduce it, the hierarchical Bayesian methods investigated in this paper lead to an algorithm acceleration by Variational Bayesian Approximation (VBA) [1] and hardware acceleration thanks to projection and back-projection operators paralleled on many core processors like GPU [2]. In this paper, we will consider a Student-t prior on the gradient of the image implemented in a hierarchical way [3, 4, 1]. Operators H (forward or projection) and Ht (adjoint or back-projection) implanted in multi-GPU [2] have been used in this study. Different methods will be evalued on synthetic volume 'Shepp and Logan' in terms of quality and time of reconstruction. We used several simple regularizations of order 1 and order 2. Other prior models also exists [5]. Sometimes for a discrete image, we can do the segmentation and reconstruction at the same time, then the reconstruction can be done with less projections

  20. Classification and quantification of pore shapes in sandstone reservoir rocks with 3-D X-ray micro-computed tomography

    M. Schmitt

    2015-12-01

    Full Text Available Recent years have seen a growing interest in the characterization of the pore morphologies of reservoir rocks and how the spatial organization of pore traits affects the macro behaviour of rock-fluid systems. With the availability of 3-D high-resolution imaging (e.g. μ-CT, the detailed quantification of particle shapes has been facilitated by progress in computer science. Here, we show how the shapes of irregular rock particles (pores can be classified and quantified based on binary 3-D images. The methodology requires the measurement of basic 3-D particle descriptors and a shape classification that involves the similarity of artificial objects, which is based on main pore network detachments and 3-D sample sizes. The results were validated for three sandstones (S1, S2 and S3 from distinct reservoirs, and most of the pore shapes were found to be plate- and cube-like. Furthermore, this study generalizes a practical way to correlate specific particle shapes, such as rods, blades, cuboids, plates and cubes, to characterize asymmetric particles of any material type with 3-D image analysis.

  1. 3D structure of liquid sprays: X-ray μ -radiography and tomography by polycapillary based technique

    Marchitto, L.; Allocca, L.; Hampai, D.; Alfuso, S.; Dabagov, S. B.; Liedl, A.; Polese, C.

    2015-07-01

    This work reports the results of X-ray μ -tomographic investigation on the inner structure of high pressure fuel sprays. X-ray imaging is widely used in industry where non-destructive and high accuracy measurements of the samples morphology are required. A high flux beam can overcome the problems related to the low absorption of hydrocarbon chains as fossil fuels, therefore synchrotron X-ray sources are generally used for fuel sprays investigation. A desktop facility has successfully been used to characterize high pressure gasoline sprays for automotive applications. A X-ray tube coupled with polycapillary optics has been used providing a high flux beam with low divergence. In this paper the last improvements concerning quantitative measurements carried out on fuel sprays are reported.

  2. X-ray television system, SHIMAVISION 3200X

    X-ray television system 'SHIMAVISION 3200X' has been developed. This system has achieved large image size in radiography and fluoroscopy utilizing up to 17inch x 14inch cassette radiographic function attached to 2 channel 3 size cassetteless spotfilm device and utilizing 12inch I.I. at same table top height as 9inch I.I. Newly designed image processor makes fluoroscopic image high quality. (author)

  3. A density-based segmentation for 3D images, an application for X-ray micro-tomography

    Highlights: ► We revised the DBSCAN algorithm for segmentation and clustering of large 3D image dataset and classified multivariate image. ► The algorithm takes into account the coordinate system of the image data to improve the computational performance. ► The algorithm solved the instability problem in boundaries detection of the original DBSCAN. ► The segmentation results were successfully validated with synthetic 3D image and 3D XMT image of a pharmaceutical powder. - Abstract: Density-based spatial clustering of applications with noise (DBSCAN) is an unsupervised classification algorithm which has been widely used in many areas with its simplicity and its ability to deal with hidden clusters of different sizes and shapes and with noise. However, the computational issue of the distance table and the non-stability in detecting the boundaries of adjacent clusters limit the application of the original algorithm to large datasets such as images. In this paper, the DBSCAN algorithm was revised and improved for image clustering and segmentation. The proposed clustering algorithm presents two major advantages over the original one. Firstly, the revised DBSCAN algorithm made it applicable for large 3D image dataset (often with millions of pixels) by using the coordinate system of the image data. Secondly, the revised algorithm solved the non-stability issue of boundary detection in the original DBSCAN. For broader applications, the image dataset can be ordinary 3D images or in general, it can also be a classification result of other type of image data e.g. a multivariate image.

  4. A density-based segmentation for 3D images, an application for X-ray micro-tomography

    Tran, Thanh N., E-mail: thanh.tran@merck.com [Center for Mathematical Sciences Merck, MSD Molenstraat 110, 5342 CC Oss, PO Box 20, 5340 BH Oss (Netherlands); Nguyen, Thanh T.; Willemsz, Tofan A. [Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen (Netherlands); Pharmaceutical Sciences and Clinical Supplies, Merck MSD, PO Box 20, 5340 BH Oss (Netherlands); Kessel, Gijs van [Center for Mathematical Sciences Merck, MSD Molenstraat 110, 5342 CC Oss, PO Box 20, 5340 BH Oss (Netherlands); Frijlink, Henderik W. [Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen (Netherlands); Voort Maarschalk, Kees van der [Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen (Netherlands); Competence Center Process Technology, Purac Biochem, Gorinchem (Netherlands)

    2012-05-06

    Highlights: Black-Right-Pointing-Pointer We revised the DBSCAN algorithm for segmentation and clustering of large 3D image dataset and classified multivariate image. Black-Right-Pointing-Pointer The algorithm takes into account the coordinate system of the image data to improve the computational performance. Black-Right-Pointing-Pointer The algorithm solved the instability problem in boundaries detection of the original DBSCAN. Black-Right-Pointing-Pointer The segmentation results were successfully validated with synthetic 3D image and 3D XMT image of a pharmaceutical powder. - Abstract: Density-based spatial clustering of applications with noise (DBSCAN) is an unsupervised classification algorithm which has been widely used in many areas with its simplicity and its ability to deal with hidden clusters of different sizes and shapes and with noise. However, the computational issue of the distance table and the non-stability in detecting the boundaries of adjacent clusters limit the application of the original algorithm to large datasets such as images. In this paper, the DBSCAN algorithm was revised and improved for image clustering and segmentation. The proposed clustering algorithm presents two major advantages over the original one. Firstly, the revised DBSCAN algorithm made it applicable for large 3D image dataset (often with millions of pixels) by using the coordinate system of the image data. Secondly, the revised algorithm solved the non-stability issue of boundary detection in the original DBSCAN. For broader applications, the image dataset can be ordinary 3D images or in general, it can also be a classification result of other type of image data e.g. a multivariate image.

  5. Lens-coupled x-ray imaging systems

    Fan, Helen Xiang

    Digital radiography systems are important diagnostic tools for modern medicine. The images are produced when x-ray sensitive materials are coupled directly onto the sensing element of the detector panels. As a result, the size of the detector panels is the same size as the x-ray image. An alternative to the modern DR system is to image the x-ray phosphor screen with a lens onto a digital camera. Potential advantages of this approach include rapid readout, flexible magnification and field of view depending on applications. We have evaluated lens-coupled DR systems for the task of signal detection by analyzing the covariance matrix of the images for three cases, using a perfect detector and lens, when images are affected by blurring due to the lens and screen, and for a signal embedded in a complex random background. We compared the performance of lens-coupled DR systems using three types of digital cameras. These include a scientific CCD, a scientific CMOS, and a prosumer DSLR camera. We found that both the prosumer DSLR and the scientific CMOS have lower noise than the scientific CCD camera by looking at their noise power spectrum. We have built two portable low-cost DR systems, which were used in the field in Nepal and Utah. We have also constructed a lens-coupled CT system, which included a calibration routine and an iterative reconstruction algorithm written in CUDA.

  6. Observation of 3d84d-3d84p soft-x-ray laser emission in high-Z ions isoelectronic to Co I

    A transition analogous to the strongest 4d-4p nickel-like x-ray laser transition has been observed in cobaltlike ions within the same plasma. Amplified spontaneous emission from Co-like ions has been identified in laser-produced exploding-foil plasmas of Yb and Ta. The Co-like line exhibits similar time history to the Ni-like laser line and has a gain coefficient consistent with a significant Co-like population. The observation of this transition is of interest as fluorinelike analogs to neonlike 3p-3s x-ray lasers have never been seen although they are predicted to have gain

  7. Design and fabrication of micro X-ray diffraction system

    Park, Yang Soon; Han, Sun Ho; Kim, Jong Goo; Jee, Kwang Yong

    2006-10-15

    It has been observed that microstructure changes occur at the pellet periphery(rim) of the fuel at very high burn-up. Despite its narrow range (below some hundreds microns in depth), this peripheral region(rim) determines the behaviour of nuclear fuel. To determine lattice parameter with XRD at intervals as small as 30-50 {mu} m in radial direction of irradiated fuel samples, a micro X-ray diffraction system was designed and fabricated. This report describes the micro X-ray diffraction system consisted of an X-ray microbeam alignment system and a sample micro translation system, its characterization, and its performance test through the analysis for the micro region of some specimens. This system will be set in a radiation shielded glove box, and then used for analysis of lattice parameter change and the phase change at intervals as small as 30-50 {mu} m in radial direction of the rim of an irradiated fuel sample and a fuel cladding.

  8. 3D Imaging of Nickel Oxidation States using Full Field X-ray Absorption Near Edge Structure Nanotomography

    Nelson, George; Harris, William; Izzo, John; Grew, Kyle N. (Connecticut); (USARL)

    2012-01-20

    Reduction-oxidation (redox) cycling of the nickel electrocatalyst phase in the solid oxide fuel cell (SOFC) anode can lead to performance degradation and cell failure. A greater understanding of nickel redox mechanisms at the microstructural level is vital to future SOFC development. Transmission x-ray microscopy (TXM) provides several key techniques for exploring oxidation states within SOFC electrode microstructure. Specifically, x-ray nanotomography and x-ray absorption near edge structure (XANES) spectroscopy have been applied to study samples of varying nickel (Ni) and nickel oxide (NiO) compositions. The imaged samples are treated as mock SOFC anodes containing distinct regions of the materials in question. XANES spectra presented for the individual materials provide a basis for the further processing and analysis of mixed samples. Images of composite samples obtained are segmented, and the distinct nickel and nickel oxide phases are uniquely identified using full field XANES spectroscopy. Applications to SOFC analysis are discussed.

  9. Development of an X-ray System for High-resolution and tomography imaging with a laboratory X-ray source at Pusan National University

    This kind of radiography imaging skill has important factors; resolution is the most important one among them. Many researchers are already studying for making better resolution of an imaging system. We also set up the X-ray experiment system for various radiography imaging tests via X-ray at NRSL (Neutron and Radiological Science Lab) in Pusan national university. As the first step, X-ray imaging system has been installed and evaluated for X-ray high resolution and tomography imaging. In this study, we drive all steps to get high resolution X-ray images from components of system installed to the performance of system. In the experimental setup presented, a high resolution X-ray imaging system based on open type micro focus X-ray tube variable tube voltage and current, detector system with CMOS flat panel detector and CCD camera, stage translate a sample in micron was tested for getting X-ray high resolution and tomography imaging. We checked this X-ray system represents good performance on high resolution and tomography imaging taking radiography imaging of small fruit. In addition, by using this system, more experiments like X-ray phase contrast imaging, two pair X-ray and detector system and so on will be operated via flexibility of X-ray system at NRSL

  10. Automatic tool alignment in a backscatter x-ray scanning system

    Garretson, Justin; Hobart, Clinton G.; Gladwell, Thomas S.; Monda, Mark J.

    2015-06-16

    Technologies pertaining to backscatter x-ray scanning systems are described herein. The backscatter x-ray scanning system includes an x-ray source, which directs collimated x-rays along a plurality of output vectors towards a target. A detector detects diffusely reflected x-rays subsequent to respective collimated x-rays impacting the target, and outputs signals indicative of parameters of the detected x-rays. An image processing system generates an x-ray image based upon parameters of the detected x-rays, wherein each pixel in the image corresponds to a respective output vector. A user selects a particular portion of the image, and a tool is positioned such that its directional axis is coincident with the output vector corresponding to at least one pixel in the portion of the image.

  11. Automatic tool alignment in a backscatter X-ray scanning system

    Garretson, Justin; Hobart, Clinton G.; Gladwell, Thomas S.; Monda, Mark J.

    2015-11-17

    Technologies pertaining to backscatter x-ray scanning systems are described herein. The backscatter x-ray scanning system includes an x-ray source, which directs collimated x-rays along a plurality of output vectors towards a target. A detector detects diffusely reflected x-rays subsequent to respective collimated x-rays impacting the target, and outputs signals indicative of parameters of the detected x-rays. An image processing system generates an x-ray image based upon parameters of the detected x-rays, wherein each pixel in the image corresponds to a respective output vector. A user selects a particular portion of the image, and a medical device is positioned such that its directional axis is coincident with the output vector corresponding to at least one pixel in the portion of the image.

  12. High density resolution synchrotron radiation based x-ray microtomography (SR μCT) for quantitative 3D-morphometrics in zoological sciences

    Nickel, Michael; Hammel, Jörg U.; Herzen, Julia; Bullinger, Eric; Beckmann, Felix

    2008-08-01

    Zoological sciences widely rely on morphological data to reconstruct and understand body structures of animals. The best suitable methods like tomography allow for a direct representation of 3D-structures. In recent years, synchrotron radiation based x-ray microtomography (SR μCT) placed high resolutions to the disposal of morphologists. With the development of highly brilliant and collimated third generation synchrotron sources, phase contrast SR μCT became widely available. A number of scientific contributions stressed the superiority of phase contrast over absorption contrast. However, here we demonstrate the power of high density resolution methods based on absorption-contrast SRμCT for quantitative 3D-measurements of tissues and other delicate bio-structures in zoological sciences. We used beamline BW2 at DORIS III (DESY, Hamburg, Germany) to perform microtomography on tissue and mineral skeletons of marine sponges (Porifera) which were shock frozen and/or fixed in a glutamate osmium tetroxide solution, followed by critical point drying. High density resolution tomographic reconstructions allowed running quantitative 3D-image analyses in Matlab and ImageJ. By applying contrast and shape rule based algorithms we semi-automatically extracted and measured sponge body structures like mineral spicules, elements of the canal system or tissue structures. This lead to a better understanding of sponge biology: from skeleton functional morphology and internal water flow regimes to body contractility. Our high density resolution based quantitative approach can be applied to a wide variety of biological structures. However, two prerequisites apply: (1) maximum density resolution is necessary; (2) edge effects as seen for example in phase outline contrast SR μCT must not be present. As a consequence, to allow biological sciences to fully exploit the power of SR μCT further increase of density resolution in absorption contrast methods is desirable.

  13. Quality assurance of dual energy X ray absorptiometry (DEXA) systems

    DEXA scanning is currently the most widely used method to measure bone mineral density (BMD). DEXA systems are particularly important in the screening and management of osteoporosis, and the determination of fracture risk. Since the advent of DEXA in the 1960s, there has been rapid growth in their use in private and public medical institutions. Although DEXA scanners from different manufacturers are based on the same principle of X ray Spectrophotometry, most models vary in its implementation. Differences exist in the positioning of the X ray tube, the method of generating dual energy X ray beams and in the imaging geometry. The original DEXA systems (pencil beam) were low dose modalities and as such attracted little interest from the medical physics, engineering and radiation protection profession. However, new developments in DEXA imaging technology (fan beam and cone beam) result in higher exposure levels, shorter scan times, increased patient throughput and increased shielding requirements. One of the recommendations of the EU Osteoporosis Consultation Panel (2004) was to investigate the cost/utility ratio of introducing screening programmes. Furthermore, the patient population for DEXA scans is no longer just post menopausal women, DEXA scans are being prescribed for pre-menopausal women who are on certain types of contraceptives and people of all ages with eating disorders. Most DEXA scanners do not incorporate DAP meters, and Article 7 of the EU Council Directive 97/43 Euratom (MED) states that particular attention should be paid to RP for population screening systems, and the NRPB recommends that all X ray equipment should be subject to regular performance checks. However, there is limited published acceptance testing/QA guidelines for DEXA systems, and this provides a real challenge for QA testing in the field. This study presents the results of a DEXA equipment survey based on a QA protocol developed in-house. QA testing was performed on fourteen DEXA

  14. The Structure and Dynamics of an AGN Torus: CO Line Predictions for ALMA from 3D Hydrodynamical Simulations with X-ray Driven Chemistry

    Perez-Beaupuits, Juan-Pablo; Spaans, Marco

    2011-01-01

    Many efforts have been made to model the mass distribution and dynamical evolution of the circumnuclear gas in active galactic nuclei (AGNs). However, chemical evolution is not included in detail in three-dimensional (3-D) hydrodynamic simulations. The X-ray radiation from the AGN can drive the gas chemistry and affect the thermodynamics, as well as the excitation of the interstellar medium (ISM). Therefore, we estimate the effects (on chemical abundances and excitation) of X-ray irradiation by the AGN, for atomic and molecular gas in a 3-D hydrodynamic model of an AGN torus. We obtain the abundances of various species from an X-ray chemical model. A 3-D radiative transfer code estimates the level populations, which result in line intensity maps. Predictions for the CO J=1-0 to J=9-8 lines indicate that mid-J CO lines are excellent probes of density and dynamics in the central (1000m K) central (1) AGNs. The spatial scales (>0.25 pc) probed with our simulations match the size of the structures that ALMA will ...

  15. Mechanical, Electromagnetic, and X-ray Shielding Characterization of a 3D Printable Tungsten-Polycarbonate Polymer Matrix Composite for Space-Based Applications

    Shemelya, Corey M.; Rivera, Armando; Perez, Angel Torrado; Rocha, Carmen; Liang, Min; Yu, Xiaoju; Kief, Craig; Alexander, David; Stegeman, James; Xin, Hao; Wicker, Ryan B.; MacDonald, Eric; Roberson, David A.

    2015-08-01

    Material-extrusion three-dimensional (3D) printing has recently attracted much interest because of its process flexibility, rapid response to design alterations, and ability to create structures "on-the-go". For this reason, 3D printing has possible applications in rapid creation of space-based devices, for example cube satellites (CubeSat). This work focused on fabrication and characterization of tungsten-doped polycarbonate polymer matrix composites specifically designed for x-ray radiation-shielding applications. The polycarbonate-tungsten polymer composite obtained intentionally utilizes low loading levels to provide x-ray shielding while limiting effects on other properties of the material, for example weight, electromagnetic functionality, and mechanical strength. The fabrication process, from tungsten functionalization to filament extrusion and material characterization, is described, including printability, determination of x-ray attenuation, tensile strength, impact resistance, and gigahertz permittivity, and failure analysis. The proposed materials are uniquely advantageous when implemented in 3D printed structures, because even a small volume fraction of tungsten has been shown to substantially alter the properties of the resulting composite.

  16. Thin soil layer of green roof systems studied by X-Ray CT

    Šácha, Jan; Jelínková, Vladimíra; Dohnal, Michal

    2016-04-01

    The popular non-invasive visualization technique of X-ray computed tomography (CT) has been used for 3D examination of thin soil layer of vegetated roof systems. The two categories of anthropogenic soils, usually used for green roof systems, were scanned during the first months after green roof system construction. First was represented by stripped topsoil with admixed crushed bricks and was well graded in terms of particle size distribution. The other category represented a commercial lightweight technogenic substrate. The undisturbed soil samples of total volume of 62.8 ccm were studied be means of X-ray Computed Tomography using X-ray Inspection System GE Phoenix Nanomex 180T with resulting spatial resolution about 57 μm in all directions. For both soil categories visible macroporosity, connectivity (described by the Euler characteristic), dimensionless connectivity and critical cross section of pore network were determined. Moreover, the temporal structural changes of studied soils were discussed together with heat and water regime of the green roof system. The analysis of CT images of anthropogenic soils was problematic due to the different X-ray attenuation of individual constituents. The correct determination of the threshold image intensity differentiating the soil constituents from the air phase had substantial importance for soil pore network analyses. However, X-ray CT derived macroporosity profiles reveal significant temporal changes notably in the soil comprised the stripped topsoil with admixed crushed bricks. The results implies that the technogenic substrate is structurally more stable over time compared to the stripped topsoil. The research was realized as a part of the University Centre for Energy Efficient Buildings supported by the EU and with financial support from the Czech Science Foundation under project number 14-10455P.

  17. Stability of dislocation structures in copper towards stress relaxation investigated by high angular resolution 3D X-ray diffraction

    Jakobsen, Bo; Poulsen, Henning Friis; Lienert, Ulrich;

    2009-01-01

    A 300 µm thick tensile specimen of OFHC copper is subjected to a tensile loading sequence and deformed to a maximal strain of 3.11%. Using the novel three-dimensional X-ray diffraction method High angular resolution 3DXRD', the evolution of the microstructure within a deeply embedded grain is cha...

  18. Three-dimensional tracking of cardiac catheters using an inverse geometry x-ray fluoroscopy system

    Purpose: Scanning beam digital x-ray (SBDX) is an inverse geometry fluoroscopic system with high dose efficiency and the ability to perform continuous real-time tomosynthesis at multiple planes. This study describes a tomosynthesis-based method for 3D tracking of high-contrast objects and present the first experimental investigation of cardiac catheter tracking using a prototype SBDX system. Methods: The 3D tracking algorithm utilizes the stack of regularly spaced tomosynthetic planes that are generated by SBDX after each frame period (15 frames/s). Gradient-filtered versions of the image planes are generated, the filtered images are segmented into object regions, and then a 3D coordinate is calculated for each object region. Two phantom studies of tracking performance were conducted. In the first study, an ablation catheter in a chest phantom was imaged as it was pulled along a 3D trajectory defined by a catheter sheath (10, 25, and 50 mm/s pullback speeds). SBDX tip tracking coordinates were compared to the 3D trajectory of the sheath as determined from a CT scan of the phantom after the registration of the SBDX and CT coordinate systems. In the second study, frame-to-frame tracking precision was measured for six different catheter configurations as a function of image noise level (662-7625 photons/mm2 mean detected x-ray fluence at isocenter). Results: During catheter pullbacks, the 3D distance between the tracked catheter tip and the sheath centerline was 1.0±0.8 mm (mean ±one standard deviation). The electrode to centerline distances were comparable to the diameter of the catheter tip (2.3 mm), the confining sheath (4 mm outside diameter), and the estimated SBDX-to-CT registration error (±0.7 mm). The tip position was localized for all 332 image frames analyzed and 83% of tracked positions were inside the 3D sheath volume derived from CT. The pullback speeds derived from the catheter trajectories were within 5% of the programed pullback speeds. The tracking

  19. Development status of a CZT spectrometer prototype with 3D spatial resolution for hand x-ray astronomy

    Auricchio, N.; Caroli, E.; Basili, A.;

    2012-01-01

    of the polarization status of the Crab between 100 and 500 keV. The prototype is made by packing 8 linear modules, each composed of one basic sensitive unit bonded onto a thin supporting ceramic layer. Each unit is a drift strip detector based on a CZT crystal, irradiated transversally to the electric field direction...... is based on RENA-3 ASIC and the data handling system uses a custom electronics based on FPGA to provide the ASIC setting, the event handling logic, and the data acquisition. This paper mainly describes the components and the status of the undergoing activities for the construction of the proposed 3D CZT...

  20. Development of x-ray CT scanner system

    To contribute to the aging countermeasure of LWR and other science researches, three-dimensional X-ray system was installed in the hot laboratory of Japan Materials Testing Reactor. The equipment was installed within concrete No.3 cell in FY 2009, and put into service from FY 2011. With this system, Gamma-ray Offset Scanning Technique (GOST) was developed to reduce the influence of Gamma-rays that emitted from radioactive specimen itself to the CT image. Therefore, clear image was obtained for the irradiated test sample with high radio activity. (author)

  1. 21 CFR 892.1660 - Non-image-intensified fluoroscopic x-ray system.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Non-image-intensified fluoroscopic x-ray system... fluoroscopic x-ray system. (a) Identification. A non-image-intensified fluoroscopic x-ray system is a device... of x-radiation into a visible image. This generic type of device may include signal analysis...

  2. 21 CFR 892.1650 - Image-intensified fluoroscopic x-ray system.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Image-intensified fluoroscopic x-ray system. 892... fluoroscopic x-ray system. (a) Identification. An image-intensified fluoroscopic x-ray system is a device intended to visualize anatomical structures by converting a pattern of x-radiation into a visible...

  3. 21 CFR 892.1630 - Electrostatic x-ray imaging system.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrostatic x-ray imaging system. 892.1630... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1630 Electrostatic x-ray imaging system. (a) Identification. An electrostatic x-ray imaging system is a device intended for...

  4. X-ray computed tomography system for laboratory small-object imaging: Enhanced tomography solutions

    A portable X-ray tomography system has been installed and actually being tested at our medical imaging laboratory. This tomography system employs a combination of scintillator screen and CCD camera as image detector. The limit of spatial resolution of 290 μm of this imaging system is determined by the establishment of its modulation transfer function (MTF). In this work, we present attempts to address some issues such as limited resolution and low contrast through the development of affordable post-acquisition solutions based on the application of super-resolution method (projection onto convex sets, POCS) to create new projections set enabling the reconstruction of an improved 3D image in terms of contrast, resolution and noise. In addition to small-object examination, this tomography system is used for hands-on training activities involving students and scientists. - Highlights: • Characterization of an X-ray tomograph. • Determination of spatial resolution limit by the MTF. • Demonstration of 3D examination capability. • Enhancement of projections by super resolution POCS algorithm. • Enhancement of 3D image reconstruction by projections sets reorganization

  5. 3-D template simulation system in Total Hip Arthroplasty

    In Total Hip Arthroplastry, 2D template on Plain X-ray is usually used for preoperative planning. But deformity and contracture can cause malposition and measurement error. To reduce those problems, a 3D preoperative simulation system was developed. Three methods were compared in this study. One is to create very accurate AP and ML images which can use for standard 2D template. One is fully 3D preoperative template system using computer graphics. Last one is substantial simulation using stereo-lithography model. 3D geometry data of the bone was made from Helical 3-D CT data. AP and ML surface cutting 3D images of the femur were created using workstation (Advantage Workstation; GE Medical Systems). The extracted 3D geometry was displayed on personal computer using Magics (STL data visualization software), then 3D geometry of the stem was superimposed in it. The full 3D simulation system made it possible to observe the bone and stem geometry from any direction and by any section view. Stereo-lithography model was useful for detailed observation of the femur anatomy. (author)

  6. A density-based segmentation for 3D images, an application for X-ray micro-tomography.

    Tran, Thanh N; Nguyen, Thanh T; Willemsz, Tofan A; van Kessel, Gijs; Frijlink, Henderik W; van der Voort Maarschalk, Kees

    2012-05-01

    Density-based spatial clustering of applications with noise (DBSCAN) is an unsupervised classification algorithm which has been widely used in many areas with its simplicity and its ability to deal with hidden clusters of different sizes and shapes and with noise. However, the computational issue of the distance table and the non-stability in detecting the boundaries of adjacent clusters limit the application of the original algorithm to large datasets such as images. In this paper, the DBSCAN algorithm was revised and improved for image clustering and segmentation. The proposed clustering algorithm presents two major advantages over the original one. Firstly, the revised DBSCAN algorithm made it applicable for large 3D image dataset (often with millions of pixels) by using the coordinate system of the image data. Secondly, the revised algorithm solved the non-stability issue of boundary detection in the original DBSCAN. For broader applications, the image dataset can be ordinary 3D images or in general, it can also be a classification result of other type of image data e.g. a multivariate image. PMID:22502607

  7. X-RAY ABSORPTION ON URANIUM SYSTEMS AT VARIOUS THRESHOLDS

    Kalkowski, G.; Kaindl, G.; Brewer, W.; Krone, W

    1986-01-01

    We have studied the near edge X-ray absorption fine structure of various metallic and non-metallic U compounds at the L3, M3, M4,5, N4,5, and O4,5 thresholds using transmission and total-electron-yield techniques. At the L3 thresholds, a chemical shift of ≈4 eV between trivalent and tetravalent U compounds is observed, which drops to ≈2eV between the latter and hexavalent U systems. This indicates extended 5f character and a 5f count close to two in the high oxidation states. The M4,5 thresho...

  8. X-ray fluorescence (conventional and 3D) and scanning electron microscopy for the investigation of Portuguese polychrome glazed ceramics: Advances in the knowledge of the manufacturing techniques

    This work shows the first analytical results obtained by X-Ray Fluorescence (XRF) (conventional and 3D) and Scanning Electron Microscopy with Energy Dispersive System (SEM-EDS) on original Portuguese ceramic pieces produced between the 16th and 18th centuries in Coimbra and Lisbon. Experts distinguished these productions based only on the color, texture and brightness, which originates mislabeling in some cases. Thanks to lateral and spatial resolution in the micrometer regime, the results obtained with μ-XRF were essential in determining the glaze and pigment thicknesses by monitoring the profile of the most abundant element in each 'layer'. Furthermore, the dissemination of these elements throughout the glaze is different depending on the glaze composition, firing temperature and on the pigment itself. Hence, the crucial point of this investigation was to analyze and understand the interfaces color/glaze and glaze/ceramic support. Together with the XRF results, images captured by SEM and the corresponding semi-quantitative EDS data revealed different manufacturing processes used by the two production centers. Different capture modes were suitable to distinguish different crystals from the minerals that confer the color of the pigments used and to enhance the fact that some of them are very well spread through the glassy matrix, sustaining the theory of an evolved and careful procedure in the manufacturing process of the glaze.

  9. X-ray Studies of Planetary Systems: An Astro2010 Decadal Survey White Paper

    Feigelson, Eric; Drake, Jeremy; Elsner, Ronald; Glassgold, Alfred; Gudel, Manuel; Montmerle, Thierry; Ohashi, Takaya; Smith, Randall; Wargelin, Bradford; Wolk, Scott

    2009-01-01

    While it may seem counterintuitive that X-ray astronomy should give any insights into low-temperature planetary systems, planets orbit stars whose magnetized surfaces divert a small fraction of the stellar energy into high energy products: coronal UV and X-rays, flare X-rays and energetic particles, and a high-velocity stellar wind. In our Solar System, X-ray emission gives unique insights into the solar activity, planetary atmospheres, cometary comae, charge exchange physics, and space weath...

  10. Inversion of the 3D exponential x-ray transform for a half equatorial band and other semi-circular geometries.

    Noo, Frédéric; Clackdoyle, Rolf; Wagner, Jean-Marc

    2002-08-01

    This work presents new mathematical results on the inversion of the exponential x-ray transform. It is shown that a reconstruction formula can be obtained for any dataset whose projection directions consist of a union of half great circles on the unit sphere. A basic example of such a dataset is the semi-equatorial band. The discussion in the paper is mostly focused on this example. The reconstruction formula takes the form of a Neumann (geometric) series and is both exact and stable. The exponential x-ray transform has been mainly studied in SPECT imaging. In this context, our results demonstrate mathematically that fully 3D image reconstruction in SPECT with non-zero attenuation does not always require symmetric datasets (opposing views). PMID:12200935

  11. Inversion of the 3D exponential x-ray transform for a half equatorial band and other semi-circular geometries

    This work presents new mathematical results on the inversion of the exponential x-ray transform. It is shown that a reconstruction formula can be obtained for any dataset whose projection directions consist of a union of half great circles on the unit sphere. A basic example of such a dataset is the semi-equatorial band. The discussion in the paper is mostly focused on this example. The reconstruction formula takes the form of a Neumann (geometric) series and is both exact and stable. The exponential x-ray transform has been mainly studied in SPECT imaging. In this context, our results demonstrate mathematically that fully 3D image reconstruction in SPECT with non-zero attenuation does not always require symmetric datasets (opposing views). (author)

  12. Inversion of the 3D exponential x-ray transform for a half equatorial band and other semi-circular geometries

    Noo, Frederic [Department of Radiology, University of Utah, CAMT Building, Salt Lake City, UT (United States)]. E-mail: noo@doug.med.utah.edu; Clackdoyle, Rolf [Department of Radiology, University of Utah, CAMT Building, Salt Lake City, UT (United States); Wagner, Jean-Marc [Department of Telecommunications, University of Liege, Liege (Belgium)

    2002-08-07

    This work presents new mathematical results on the inversion of the exponential x-ray transform. It is shown that a reconstruction formula can be obtained for any dataset whose projection directions consist of a union of half great circles on the unit sphere. A basic example of such a dataset is the semi-equatorial band. The discussion in the paper is mostly focused on this example. The reconstruction formula takes the form of a Neumann (geometric) series and is both exact and stable. The exponential x-ray transform has been mainly studied in SPECT imaging. In this context, our results demonstrate mathematically that fully 3D image reconstruction in SPECT with non-zero attenuation does not always require symmetric datasets (opposing views). (author)

  13. Estimation of three-dimensional knee joint movement using bi-plane x-ray fluoroscopy and 3D-CT

    Haneishi, Hideaki; Fujita, Satoshi; Kohno, Takahiro; Suzuki, Masahiko; Miyagi, Jin; Moriya, Hideshige

    2005-04-01

    Acquisition of exact information of three-dimensional knee joint movement is desired in plastic surgery. Conventional X-ray fluoroscopy provides dynamic but just two-dimensional projected image. On the other hand, three-dimensional CT provides three-dimensional but just static image. In this paper, a method for acquiring three-dimensional knee joint movement using both bi-plane, dynamic X-ray fluoroscopy and static three-dimensional CT is proposed. Basic idea is use of 2D/3D registration using digitally reconstructed radiograph (DRR) or virtual projection of CT data. Original ideal is not new but the application of bi-plane fluoroscopy to natural bones of knee is reported for the first time. The technique was applied to two volunteers and successful results were obtained. Accuracy evaluation through computer simulation and phantom experiment with a knee joint of a pig were also conducted.

  14. 3D biometrics systems and applications

    Zhang, David

    2013-01-01

    Includes discussions on popular 3D imaging technologies, combines them with biometric applications, and then presents real 3D biometric systems Introduces many efficient 3D feature extraction, matching, and fusion algorithms Techniques presented have been supported by experimental results using various 3D biometric classifications

  15. Three-Dimensional Backscatter X-Ray Imaging System Project

    National Aeronautics and Space Administration — The NASA application requires a system that can generate 3D images of non-metallic material when access is limited to one side of the material. The objective of...

  16. A novel digital x-ray topography system

    X-ray topography (XRT) is recognized as being a powerful tool for directly imaging defects in single crystals, semiconductor wafers and epitaxially grown layers. The timely identification of defects can lead to increased yields and significant cost savings in wafer processing. The primary limitation to its general usage within the semiconductor community has been the difficulty in system use and difficulty in integration into an in-line analytical tool. We have developed a novel, high-speed digital XRT method that can be implemented on a standard high-resolution x-ray diffraction (HRXRD) system equipped with a wafer translation stage and a microfocus tube (or a small aperture in front of a standard point source). It is also appropriate for an in-line fab tool with robot loading and automated operation. In this paper, we discuss the theory and present examples from work undertaken on a variety of materials, including: silicon, compound semiconductors and ionic crystals. Reflection and transmission methods are illustrated. Data were collected on a HRXRD system with a microfocus source and a CCD detector, and an innovative software integration and processing algorithm. Algorithms for full automation of the alignment, exposure and data collection processes have been worked out. It is estimated that the dedicated XRT tool now in prototype form will be capable of scanning a full 300 mm wafer in reflection in under two hours at 50 μm resolution and one hour at 15 μm resolution

  17. The Best of Both Worlds: 3D X-ray Microscopy with Ultra-high Resolution and a Large Field of View

    Li, W.; Gelb, J.; Yang, Y.; Guan, Y.; Wu, W.; Chen, J.; Tian, Y.

    2011-09-01

    3D visualizations of complex structures within various samples have been achieved with high spatial resolution by X-ray computed nanotomography (nano-CT). While high spatial resolution generally comes at the expense of field of view (FOV). Here we proposed an approach that stitched several 3D volumes together into a single large volume to significantly increase the size of the FOV while preserving resolution. Combining this with nano-CT, 18-μm FOV with sub-60-nm resolution has been achieved for non-destructive 3D visualization of clustered yeasts that were too large for a single scan. It shows high promise for imaging other large samples in the future.

  18. Factors affecting the extraction of absorbed dose information in 3d polymer gel dosimeters by X-ray computed tomography

    It has been shown that a post irradiation change in the linear attenuation coefficient, μ of a polymer gel dosimeter can be measured by use of X-ray computerised tomography (CT). It is postulated that the change in μ may be primarily due to a change in physical density, ρ of the polymer gel dosimeter. In this work we examine the relationship between μ and ρ in a polymer gel dosimeter and consider the implications of a density change in relation to spatial resolution of the dosimeter. Other factors affecting the extraction of accurate dose information from polymer gel dosimeters are considered, such as imaging protocols and phantom design

  19. Quantitative 3D X-ray imaging of densification, delamination and fracture in a micro-composite under compression

    Bø Fløystad, Jostein; Skjønsfjell, Eirik Torbjørn Bakken; Guizar-Sicairos, Manuel; Høydalsvik, Kristin; He, Jianying; Andreasen, Jens Wenzel; Zhang, Zhiliang; Breiby, Dag Werner

    2015-01-01

    Phase-contrast three-dimensional tomograms showing in unprecedented detail the mechanical response of a micro-composite subjected to a mechanical compression test are reported. The X-ray ptychography images reveal the deformation and fracture processes of a 10 μm diameter composite, consisting of a spherical polymer bead coated with a nominally 210 nm metal shell. The beginning delamination of the shell from the core can be directly observed at an engineering strain of a few percent. Pre-exis...

  20. MTF Optimization in Digital Dental X-ray Systems

    Costa, E T; Costa, Eduardo Tavares; Albuquerque, Jorge Andre Girao

    2003-01-01

    In this work, we have studied the MTF optimisation relative to the detector aperture of four digital dental X-ray image systems: 1) Digora and Denoptix systems, based on PSPL detectors; 2) CDR and Sens-A-Ray 2000, based on CCD detectors. The MTF was evaluated by ERF method and linearized as a Gaussian process. The CCD based systems presented Gaussian characteristics. The PSPL based systems presented a composition of two Gaussian processes. We conclude that one process is due to the laser and stimulated light scattering inside the PSPL plate and the other is due to the laser beam focal aperture. Matching focal aperture to laser scattering allows the optimization of the PSPL systems resolution. An optimal pixel width found to be 62 um.

  1. Influence of closure on the 3D propagation of fatigue cracks in a nodular cast iron investigated by X-ray tomography and 3D volume correlation

    Synchrotron X-ray tomography was performed during in situ fatigue crack propagation in two small-size specimens made of nodular graphite cast iron. While direct image analysis allows us to retrieve the successive positions of the crack front, and to detect local crack retardation, volume correlation allows for the measurement of displacement fields in the bulk of the specimen. The stress intensity factors (SIFs), which are extracted from the measured displacement fields and the corresponding local crack growth rate all along the front, are in good agreement with published results. In particular, it is possible to link the non-propagation of a crack with crack closure in the crack opening displacement maps or with a local value of the measured SIF range. It is shown that a non-uniform closure process along the crack front induces an asymmetric arrest/growth of the crack.

  2. Applications of X-ray synchrotron microtomography for non-destructive 3D studies of paleontological specimens

    Paleontologists are quite recent newcomers among the users of X-ray synchrotron imaging techniques at the European Synchrotron Radiation Facility (ESRF). Studies of the external morphological characteristics of a fossil organism are not sufficient to extract all the information for a paleontological study. Nowadays observations of internal structures become increasingly important, but these observations should be non-destructive in order to preserve the important specimens. Conventional microtomography allows performing part of these investigations. Nevertheless, the best microtomographic images are obtained using third-generation synchrotrons producing hard X-rays, such as the ESRF. Firstly, monochromatisation avoids beam hardening that is frequently strong for paleontological samples. Secondly, the high beam intensity available at synchrotron radiation sources allows rapid data acquisition at very high spatial resolutions, resulting in precise mapping of the internal structures of the sample. Thirdly, high coherence leads to additional imaging possibilities: phase contrast radiography, phase contrast microtomography and holotomography. These methods greatly improve the image contrast and therefore allow studying fossils that cannot be investigated by conventional microtomography due to a high degree of mineralisation or low absorption contrast. Thanks to these different properties and imaging techniques, a synchrotron radiation source and the ESRF in particular appears as an almost ideal investigation tool for paleontology. (orig.)

  3. Measuring Performance of Energy-Dispersive X-ray Systems.

    Statham

    1998-11-01

    : As Si(Li) detector technology has matured, many of the fundamental problems have been addressed in the competition among manufacturers and there is now an expectation, implied by many textbooks, that all energy-dispersive X-ray (EDX) detectors are made and will perform in the same way. Although there has been some convergence in Si(Li) systems and these are still the most common, manufacturing recipes still differ and there are many alternative EDX devices, such as microcalorimeters and room temperature detectors, that have both advantages and disadvantages over Si(Li). Rather than emphasizing differences in technologies, performance measures should reveal benefits relevant to the intended application. The instrument is inevitably going to be a "black box" of integrated components; this article reviews some of the methods that have been applied and introduces some new techniques that can be used to assess performance without resorting to complex software or sophisticated mathematical algorithms. Sensitivity, resolution, artefacts, and stability are discussed with particular application to compositional analysis using electron beam excitation of X-rays in the 100-eV to 10-keV energy region. PMID:10087283

  4. Ultra-short wavelength x-ray system

    Umstadter, Donald; He, Fei; Lau, Yue-Ying

    2008-01-22

    A method and apparatus to generate a beam of coherent light including x-rays or XUV by colliding a high-intensity laser pulse with an electron beam that is accelerated by a synchronized laser pulse. Applications include x-ray and EUV lithography, protein structural analysis, plasma diagnostics, x-ray diffraction, crack analysis, non-destructive testing, surface science and ultrafast science.

  5. Gamma detector for use with luggage X-ray systems

    A new gamma radiation sensor has been designed for installation on several types of luggage x-ray machines and mobile x-ray vans operated by the U.S. Customs Service and the U.S. Department of State. The use of gamma detectors on x-ray machines imposed difficulties not usually encountered in the design of gamma detectors because the spectrum of scattered x-rays, which varied from machine to machine, extended to energies significantly higher than those of the low-energy isotopic emissions. In the original design, the lower level discriminator was raised above the x-ray end point energy resulting in the loss of the americium line associated with plutonium. This reduced the overall sensitivity to unshielded plutonium by a factor of approximately 100. An improved method was subsequently developed wherein collimation was utilized in conjunction with a variable counting threshold to permit accommodation of differing conditions of x-ray scattering. This design has been shown to eliminate most of the problems due to x-ray scattering while still capturing the americium emissions. The overall sensitivity has remained quite high, though varying slightly from one model of x-ray machine to another, depending upon the x-ray scattering characteristics of each model. (author)

  6. Interface Orientation Distribution during Grain Growth in Bulk SrTiO3 Measured by Means of 3D X-Ray Diffraction Contrast Tomography

    Syha, Melanie; Rheinheimer, Wolfgang; Bäurer, Michael;

    2012-01-01

    interface normal distribution clearly shows a preference for (100) oriented interfaces in the selected grains when annealed at 1600°C. This observation can be connected to existent interfacial energy estimations resulting from capillarity vector reconstructions. © 2012 Materials Research Society.......3D x-ray diffraction contrast tomography (DCT) is a non-destructive technique for the determination of grain shape and crystallography in polycrystalline bulk materials. Using this technique, a strontium titanate specimen was repeatedly measured between annealing steps.. A systematic analysis of...

  7. Communication: Systematic shifts of the lowest unoccupied molecular orbital peak in x-ray absorption for a series of 3d metal porphyrins

    García-Lastra, J. M.; Cook, P. L.; Himpsel, F.J.; Rubio, A.

    2010-01-01

    Porphyrins are widely used as dye molecules in solar cells. Knowing the energies of their frontier orbitals is crucial for optimizing the energy level structure of solar cells. We use near edge x-ray absorption fine structure (NEXAFS) spectroscopy to obtain the energy of the lowest unoccupied molecular orbital (LUMO) with respect to the N1s core level of the molecule. A systematic energy shift of the N1s to LUMO transition is found along a series of 3d metal octaethylporphyrins and explained ...

  8. Exposure reduction in general dental practice using digital x-ray imaging system for intraoral radiography with additional x-ray beam filter

    To measure exposure reduction in general dental practice using digital x-ray imaging systems for intraoral radiography with additional x-ray beam filter. Two digital x-ray imaging systems, Pana Digital (Pana-Heraus Dental) and CDR (Schick Technologies), were applied for intraoral radiography in general dental practice. Due to the high sensitivity to x-rays, additional x-ray beam filters for output reduction were used for examination. An Orex W II (Osada Electric Industry) x-ray generator was operated at 60 kVp, 7 mA. X-ray output (air-kerma; Gy) necessary for obtaining clinically acceptable images was measured at 0 to 20 cm in 5 cm steps from the cone tip using an ionizing chamber type 660 (Nuclear Associates) and compared with those for Ektaspeed Plus film (Eastman Kodak). The Pana Digital system was used with the optional filter supplied by Pana-Heraus Dental which reduced the output to 38%. The exposure necessary to obtain clinically acceptable images was only 40% of that for the film. The CDR system was used with the Dental X-ray Beam Filter Kit (Eastman Kodak) which reduced the x-ray output to 30%. The exposure necessary to obtain clinically acceptable images was only 20% of that for the film. The two digital x-ray imaging systems, Pana Digital and CDR, provided large dose savings (60-80%) compared with Ektaspeed Plus film when applied for intraoral radiography in general dental practice. (author)

  9. System for calibration of instruments of x-ray measurement (CIR-X) applying the PGCS

    The Department of Metrology of Ionizing Radiations of the ININ carries out calibration of instruments for X-ray measurement that determine the operation parameters in X-ray diagnostic machines of the health and private sectors. To facilitate this task, the Department of Automation and Instrumentation developed a system for acquisition and signals processing coming from a reference voltage divider with traceability at NIST that is connected directly to the X-rays tube. The system is integrated by the X-ray unit, the X-ray measurement equipment Dynalizer IIIU of RADCAL, a data acquisition card, a personal computer and the acquisition software and signals processing. (Author)

  10. A whole-system approach to x-ray spectroscopy in cargo inspection systems

    Langeveld, Willem G. J.; Gozani, Tsahi; Ryge, Peter; Sinha, Shrabani; Shaw, Tim; Strellis, Dan

    2013-04-01

    The bremsstrahlung x-ray spectrum used in high-energy, high-intensity x-ray cargo inspection systems is attenuated and modified by the materials in the cargo in a Z-dependent way. Therefore, spectroscopy of the detected x rays yields information about the Z of the x-rayed cargo material. It has previously been shown that such ZSpectroscopy (Z-SPEC) is possible under certain circumstances. A statistical approach, Z-SCAN (Z-determination by Statistical Count-rate ANalysis), has also been shown to be effective, and it can be used either by itself or in conjunction with Z-SPEC when the x-ray count rate is too high for individual x-ray spectroscopy. Both techniques require fast x-ray detectors and fast digitization electronics. It is desirable (and possible) to combine all techniques, including x-ray imaging of the cargo, in a single detector array, to reduce costs, weight, and overall complexity. In this paper, we take a whole-system approach to x-ray spectroscopy in x-ray cargo inspection systems, and show how the various parts interact with one another. Faster detectors and read-out electronics are beneficial for both techniques. A higher duty-factor x-ray source allows lower instantaneous count rates at the same overall x-ray intensity, improving the range of applicability of Z-SPEC in particular. Using an intensity-modulated advanced x-ray source (IMAXS) allows reducing the x-ray count rate for cargoes with higher transmission, and a stacked-detector approach may help material discrimination for the lowest attenuations. Image processing and segmentation allow derivation of results for entire objects, and subtraction of backgrounds. We discuss R&D performed under a number of different programs, showing progress made in each of the interacting subsystems. We discuss results of studies into faster scintillation detectors, including ZnO, BaF2 and PbWO4, as well as suitable photo-detectors, read-out and digitization electronics. We discuss high-duty-factor linear