WorldWideScience

Sample records for 3-d mesoscale impact

  1. Process analysis of the modelled 3-D mesoscale impact of aircraft emissions on the atmosphere

    Hendricks, J.; Ebel, A.; Lippert, E.; Petry, H. [Koeln Univ. (Germany). Inst. fuer Geophysik und Meterorologie

    1997-12-31

    A mesoscale chemistry transport model is applied to study the impact of aircraft emissions on the atmospheric trace gas composition. A special analysis of the simulations is conducted to separate the effects of chemistry, transport, diffusion and cloud processes on the transformation of the exhausts of a subsonic fleet cruising over the North Atlantic. The aircraft induced ozone production strongly depends on the tropopause height and the cruise altitude. Aircraft emissions may undergo an effective downward transport under the influence of stratosphere-troposphere exchange activity. (author) 12 refs.

  2. Impact of aircraft exhaust on the atmosphere. Box model studies and 3-D mesoscale numerical case studies of seasonal differences

    Petry, H.; Ebel, A.; Franzkowiak, V.; Hendricks, J.; Lippert, E.; Moellhoff, M. [Koeln Univ. (Germany). Inst. fuer Geophysik und Meteorologie

    1997-12-31

    The impact of aircraft emissions released in the tropopause region on atmospheric trace gases as O{sub 3} or HNO{sub 3} is investigated by means of model studies. Special emphasis is drawn on seasonal effects. A box model is applied as well as a 3-D mesoscale chemistry transport model. These model studies show that the impact of aircraft emissions on ozone in the tropopause region is much stronger in summer than in late autumn with a difference of one order of magnitude. (author) 14 refs.

  3. Rubber Impact on 3D Textile Composites

    Heimbs, Sebastian; Van Den Broucke, Björn; DUPLESSIS KERGOMARD, Yann; Dau, Frédéric; MALHERBE, Benoit

    2012-01-01

    A low velocity impact study of aircraft tire rubber on 3D textile-reinforced composite plates was performed experimentally and numerically. In contrast to regular unidirectional composite laminates, no delaminations occur in such a 3D textile composite. Yarn decohesions, matrix cracks and yarn ruptures have been identified as the major damage mechanisms under impact load. An increase in the number of 3D warp yarns is proposed to improve the impact damage resistance. The characteristic o...

  4. Towards high resolution mapping of 3-D mesoscale dynamics from observations

    B. Buongiorno Nardelli

    2012-10-01

    Full Text Available The MyOcean R&D project MESCLA (MEsoSCaLe dynamical Analysis through combined model, satellite and in situ data was devoted to the high resolution 3-D retrieval of tracer and velocity fields in the oceans, based on the combination of in situ and satellite observations and quasi-geostrophic dynamical models. The retrieval techniques were also tested and compared with the output of a primitive equation model, with particular attention to the accuracy of the vertical velocity field as estimated through the Q vector formulation of the omega equation. The project focused on a test case, covering the region where the Gulf Stream separates from the US East Coast. This work demonstrated that innovative methods for the high resolution mapping of 3-D mesoscale dynamics from observations can be used to build the next generations of operational observation-based products.

  5. Modeling heterogeneous materials failure: 3D meso-scale models with embedded discontinuities

    Benkemoun, Nathan; Hautefeuille, Martin; Colliat, Jean-Baptiste; Ibrahimbegovic, Adnan

    2010-01-01

    We present a meso-scale model for failure of heterogeneous quasi-brittle materials. The model problem of heterogeneous materials that is addressed in detail is based on two-phase 3D representation of reinforced heterogeneous materials, such as concrete, where the inclusions are melt within the matrix. The quasi-brittle failure mechanisms are described by the spatial truss representation, which is defined by the chosen Voronoi mesh. In order to explicitly incorporate heterogeneities with no ne...

  6. Rubber Impact on 3D Textile Composites

    Heimbs, Sebastian; Van Den Broucke, Björn; Duplessis Kergomard, Yann; Dau, Frederic; Malherbe, Benoit

    2012-06-01

    A low velocity impact study of aircraft tire rubber on 3D textile-reinforced composite plates was performed experimentally and numerically. In contrast to regular unidirectional composite laminates, no delaminations occur in such a 3D textile composite. Yarn decohesions, matrix cracks and yarn ruptures have been identified as the major damage mechanisms under impact load. An increase in the number of 3D warp yarns is proposed to improve the impact damage resistance. The characteristic of a rubber impact is the high amount of elastic energy stored in the impactor during impact, which was more than 90% of the initial kinetic energy. This large geometrical deformation of the rubber during impact leads to a less localised loading of the target structure and poses great challenges for the numerical modelling. A hyperelastic Mooney-Rivlin constitutive law was used in Abaqus/Explicit based on a step-by-step validation with static rubber compression tests and low velocity impact tests on aluminium plates. Simulation models of the textile weave were developed on the meso- and macro-scale. The final correlation between impact simulation results on 3D textile-reinforced composite plates and impact test data was promising, highlighting the potential of such numerical simulation tools.

  7. Observed 3D Structure, Generation, and Dissipation of Oceanic Mesoscale Eddies in the South China Sea

    Zhang, Zhiwei; Tian, Jiwei; Qiu, Bo; Zhao, Wei; Chang, Ping; Wu, Dexing; Wan, Xiuquan

    2016-04-01

    Oceanic mesoscale eddies with horizontal scales of 50–300 km are the most energetic form of flows in the ocean. They are the oceanic analogues of atmospheric storms and are effective transporters of heat, nutrients, dissolved carbon, and other biochemical materials in the ocean. Although oceanic eddies have been ubiquitously observed in the world oceans since 1960s, our understanding of their three-dimensional (3D) structure, generation, and dissipation remains fragmentary due to lack of systematic full water-depth measurements. To bridge this knowledge gap, we designed and conducted a multi-months field campaign, called the South China Sea Mesoscale Eddy Experiment (S-MEE), in the northern South China Sea in 2013/2014. The S-MEE for the first time captured full-depth 3D structures of an anticyclonic and cyclonic eddy pair, which are characterized by a distinct vertical tilt of their axes. By observing the eddy evolution at an upstream versus downstream location and conducting an eddy energy budget analysis, the authors further proposed that generation of submesoscale motions most likely constitutes the dominant dissipation mechanism for the observed eddies.

  8. The impact of non-local buoyancy flux on the convective boundary layer development as simulated by a 3-D TKE-based subgrid mixing scheme in a mesoscale model

    Zhang, Xu; Bao, Jian-Wen; Chen, Baode

    2016-04-01

    This presentation highlights a study in which a series of dry convective boundary layer (CBL) simulations are carried out using a generalized 3-dimensional (3-D) TKE-based parameterization scheme of sub-grid turbulent mixing in the Weather Research and Forecasting (WRF) model. The simulated characteristics of dry CBL are analyzed for the purpose of evaluating this scheme in comparison with a commonly-used scheme for sub-grid turbulent mixing in NWP models (i.e., the Mellor-Yamada 1.5-order TKE scheme). The same surface layer scheme is used in all the simulations so that only the sensitivity of the WRF model to different parameterizations of the sub-grid turbulent mixing above the surface layer is examined. The effect of horizontal grid resolution on the simulated CBL is also examined by running the model with grid sizes of 200, 400 m, 600 m, 1 km and 3 km. We will first compare the characteristics of the simulated CBL using the two schemes with the WRF LES dataset. We will then illustrate the importance of including the non-local component in the vertical buoyancy specification in the 3-D TKE-based scheme. Finally, comparing the results from the simulations against coarse-grained WRF LES dataset, we will show the feasibility and advantage of replacing conventional planetary boundary layer parameterization schemes with a scale-aware 3-D TKE-based scheme in the WRF model.

  9. Impact Performance of 3D Integrated Cellular Woven Composite Panel

    TIAN Wei; ZHU Cheng-yan

    2006-01-01

    This paper studied the impact resistance of 3D integrated cellular woven composite panel under persudo-static impact,comprised the test result with property of typical 3D woven composites, analyzed some parameters that maybe affect composites' impact resistance and at last used SEM to observe the damage process and mechanism of samples. The result shows that the impact resistance of 3D integrated cellular woven composites is much better than the performance of typical 3D woven composites; it is an active method to improve the impact resistance of composites that developing preform with cellular on the basis of typical 3D woven structure; for different 3D integrated cellular woven structure, the value of absorbed-energy is incrensing with the hollow percentage; tiny deformation will not emerge on samples until the acting force gets to 85% of the maximum;similar with typical 3D woven composites, the delaminated phenomenon of 3D integrated cellular woven composites is also unapparent during impact process.

  10. Mesoscale Ocean Altimetry Requirements and Impact of GPS-R measurements for Ocean Mesoscale Circulation Mapping

    Le Traon, P Y; Ruffini, G; Cardellach, E

    2002-01-01

    In the framework of the PARIS Beta project, fundamental milestones have been reached for the definition of future GNSS-R (Global Navigation Satellite System signal Reflections) altimetry missions (the PARIS concept). The most important one is the confirmation of the significant impact that GNSS-R data can have on mesoscale oceanography, as we discuss here. In this report, we first briefly review the contribution of satellite altimetry to mesoscale oceanography. We then summarise recent results obtained on the mapping capabilities of existing and future altimeter missions. From these analyses, refined requirements for mesoscale ocean altimetry (in terms of space/time sampling and accuracy) are derived. A review of on-going and planned altimetric missions is then performed and we analyse how these configurations match the user requirements. Then we will describe the simulation approach and impact analysis of GPS-R data.

  11. The business impact and value of 3-D seismic

    3-D Seismic has had a profound and lasting impact on the hydrocarbon exploration and production industry. It is a technology which is often excellent at assessing the risk associated with trap definition, seal and reservoir distribution, the very parameters which are the most critical to optimizing the economics associated with E and P projects. This paper discusses Amoco Corporation's experience with 3-D Seismic when used for new field rate acceleration, older field extension, and wildcat exploration. Its emphasis is on assessing the value added by 3-D by reviewing recent E and P experiences in a post-appraisal mode and then in applying the lessons learned from these analyses and case histories to potential new projects. This work is significant because it first assesses the impact 3-D has had on a large number of business situations at Amoco; that is, it is based on data collected on159 3-D surveys acquired at Amoco between 1991--1994. Second, it uses the data collected from these surveys and applies the business improvements observed in the data to typical international business opportunities to quantify, in expected value $ terms, the value that the technology brings to an average project. Finally, it looks at project economics not only from an oil company perspective, but from the standpoint of a host government, with a discussion of insights and implications of the data, economics and techniques utilized

  12. Mesoscale Modeling of Impact Compaction of Primitive Solar System Solids

    Davison, Thomas M; Bland, Philip A

    2016-01-01

    We have developed a method for simulating the mesoscale compaction of early solar system solids in low velocity impact events, using the iSALE shock physics code. Chondrules are represented by nonporous disks, placed within a porous matrix. By simulating impacts into bimodal mixtures over a wide range of parameter space (including the chondrule-to-matrix ratio, the matrix porosity and composition and the impact velocity), we have shown how each of these parameters influences the shock processing of heterogeneous materials. The temperature after shock processing shows a strong dichotomy: matrix temperatures are elevated much higher than the chondrules, which remain largely cold. Chondrules can protect some matrix from shock compaction, with shadow regions in the lee side of chondrules exhibiting higher porosity that elsewhere in the matrix. Using the results from this mesoscale modelling, we show how the $\\varepsilon-\\alpha$ porous compaction model parameters depend on initial bulk porosity. We also show that ...

  13. The impact of 3D printing on trade and FDI

    Abeliansky, Ana L.; Martínez-Zarzoso, Imnaculada; Prettner, Klaus

    2015-01-01

    This paper analyzes the effects of 3D printing technologies on the volume of trade and on the structure of FDI. A standard model with firm-specific heterogeneity generates three main predictions. First, 3D printers are introduced in areas with high economic activity that also face high transport costs. Second, technological progress related to 3D printing machines leads to a gradual replacement of FDI that relies on traditional production structures with FDI based on 3D printing techniques. A...

  14. A cloud chemistry module for the 3-D cloud-resolving mesoscale model Meso-NH with application to idealized cases

    M. Leriche

    2013-08-01

    Full Text Available A complete chemical module has been developed for use in the Meso-NH three-dimensional cloud resolving mesoscale model. This module includes gaseous- and aqueous-phase chemical reactions that are analysed by a pre-processor generating the Fortran90 code automatically. The kinetic solver is based on a Rosenbrock algorithm, which is robust and accurate for integrating stiff systems and especially multiphase chemistry. The exchange of chemical species between the gas phase and cloud droplets and raindrops is computed kinetically by mass transfers considering non-equilibrium between the gas- and the condensed phases. Microphysical transfers of chemical species are considered for the various cloud microphysics schemes available, which are based on one-moment or two-moment schemes. The pH of the droplets and of the raindrops is diagnosed separately as the root of a high order polynomial equation. The chemical concentrations in the ice phase are modelled in a single phase encompassing the two categories of precipitating ice particles (snow and graupel of the microphysical scheme. The only process transferring chemical species in ice is retention during freezing or riming of liquid hydrometeors. Three idealized simulations are reported, which highlight the sensitivity of scavenging efficiency to the choice of the microphysical scheme and the retention coefficient in the ice phase. A two-dimensional warm, shallow convection case is used to compare the impact of the microphysical schemes on the temporal evolution and rates of acid precipitation. Acid wet deposition rates are shown to be overestimated when a one-moment microphysics scheme is used compared to a two-moment scheme. The difference is induced by a better prediction of raindrop radius and raindrop number concentration in the latter scheme. A two-dimensional mixed-phase squall line and a three-dimensional mixed-phase supercell were simulated to test the sensitivity of cloud vertical transport to

  15. A cloud chemistry module for the 3-D cloud-resolving mesoscale model Meso-NH with application to idealized cases

    M. Leriche

    2013-02-01

    Full Text Available A complete chemical module has been developed for use in the Meso-NH three-dimensional cloud resolving mesoscale model. This module includes gaseous and aqueous phase chemical reactions that are analysed by a pre-processor generating the Fortran90 code automatically. The kinetic solver is based on a Rosenbrock algorithm, which is robust and accurate for integrating stiff systems and especially multiphase chemistry. The exchange of chemical species between the gas phase and cloud droplets and raindrops is computed kinetically by mass transfers considering non-equilibrium between the gas and the condensed phases. Microphysical transfers of chemical species are considered for the various cloud microphysics schemes available, which are based on one-moment or two-moment schemes. The pH of the droplets and of the raindrops is diagnosed separately as the root of a high order polynomial equation. The chemical concentrations in the ice phase are modelled in a single phase encompassing the two categories of precipitating ice particles (snow and graupel of the microphysical scheme. The only process transferring chemical species in ice is retention during freezing or riming of liquid hydrometeors. Three idealized simulations are reported, which highlight the sensitivity of scavenging efficiency to the choice of the microphysical scheme and the retention coefficient in the ice phase. A two-dimensional warm, shallow convection case is used to compare the impact of the microphysical schemes on the temporal evolution and rates of acid precipitation. Acid wet deposition rates are shown to be overestimated when a one-moment microphysics scheme is used compared to a two-moment scheme. The difference is induced by a better prediction of raindrop radius and raindrop number concentration in the latter scheme. A two-dimensional mixed-phase squall line and a three-dimensional mixed-phase supercell were simulated to test the sensitivity of cloud vertical transport to

  16. 3-D mesoscale MHD simulations of magnetospheric cusp-like configurations: cusp diamagnetic cavities and boundary structure

    E. Adamson

    2012-02-01

    Full Text Available We present results from mesoscale simulations of the magnetospheric cusp region for both strongly northward and strongly southward interplanetary magnetic field (IMF. Simulation results indicate an extended region of depressed magnetic field and strongly enhanced plasma β which exhibits a strong dependence on IMF orientation. These structures correspond to the Cusp Diamagnetic Cavities (CDC's. The typical features of these CDC's are generally well reproduced by the simulation. The inner boundaries between the CDC and the magnetosphere are gradual transitions which form a clear funnel shape, regardless of IMF orientation. The outer CDC/magnetosheath boundary exhibits a clear indentation in both the x-z and y-z planes for southward IMF, while it is only indented in the x-z plane for northward, with a convex geometry in the y-z plane. The outer boundary represents an Alfvénic transition, mostly consistent with a slow-shock, indicating that reconnection plays an important role in structuring the high-altitude cusp region.

  17. Analysis of Impact of 3D Printing Technology on Traditional Manufacturing Technology

    Wu, Niyan; Chen, Qi; Liao, Linzhi; Wang, Xin

    With quiet rise of 3D printing technology in automobile, aerospace, industry, medical treatment and other fields, many insiders hold different opinions on its development. This paper objectively analyzes impact of 3D printing technology on mold making technology and puts forward the idea of fusion and complementation of 3D printing technology and mold making technology through comparing advantages and disadvantages of 3D printing mold and traditional mold making technology.

  18. Mesoscale Modeling of Impact Compaction of Primitive Solar System Solids

    Davison, Thomas M.; Collins, Gareth S.; Bland, Philip A.

    2016-04-01

    We have developed a method for simulating the mesoscale compaction of early solar system solids in low-velocity impact events using the iSALE shock physics code. Chondrules are represented by non-porous disks, placed within a porous matrix. By simulating impacts into bimodal mixtures over a wide range of parameter space (including the chondrule-to-matrix ratio, the matrix porosity and composition, and the impact velocity), we have shown how each of these parameters influences the shock processing of heterogeneous materials. The temperature after shock processing shows a strong dichotomy: matrix temperatures are elevated much higher than the chondrules, which remain largely cold. Chondrules can protect some matrix from shock compaction, with shadow regions in the lee side of chondrules exhibiting higher porosity that elsewhere in the matrix. Using the results from this mesoscale modeling, we show how the ε ‑ α porous-compaction model parameters depend on initial bulk porosity. We also show that the timescale for the temperature dichotomy to equilibrate is highly dependent on the porosity of the matrix after the shock, and will be on the order of seconds for matrix porosities of less than 0.1, and on the order of tens to hundreds of seconds for matrix porosities of ∼0.3–0.5. Finally, we have shown that the composition of the post-shock material is able to match the bulk porosity and chondrule-to-matrix ratios of meteorite groups such as carbonaceous chondrites and unequilibrated ordinary chondrites.

  19. A nonlinear 3D containment analysis for airplane impact

    In the Federal Republic of Germany, it is pertinent safety philosophy to design nuclear facilities against airplane impact, despite its very unlikely probability of occurrence. For safety reasons, the following conditions have to be met: 1) In the close impact area of the projectile, the structure can be stressed up to its ultimate load capacity, so that impact energy is dissipated partly. Hereby, it must be strictly clarified that local structural failure within the impact zone is avoided. 2) Residual impact energy is transferred to the 'non-disturbed' containment structure and to the interior structure. The subject of reinforced concrete structures under impact loads shows still clear gaps between the findings of experimental and analytical analyses. To clarify this highly nonlinear phenomena comprehensive tests have recently been performed in Germany. It is the aim of this paper to carry out a three-dimensional analysis of a nuclear facility. To perform the calculations, the finite element ADINA code is applied. In order to obtain optimum results, a very fine mesh leading to several thousand DOF is used. To model the impact area of the concrete structure realistically, its linear and mostly nonlinear material behaviour as well as its failure criteria must be taken into account. Herewith the structural response is reduced due to increased energy dissipation. This reduction rate is valued by variation of the assumed size of impact zone, the load impact location and the assumed load-time function. (orig./RW)

  20. Impacted teeth in the maxilla: usefulness of 3D Dental-CT for preoperative evaluation

    Objective: To compare the shapes of roots of impacted teeth shown in three-dimensional computed tomographic images (3D Dental-computed tomography (CT) images) and plain radiographs and to determine whether 3D Dental-CT images are useful for examination before performing an operation for extraction of a maxillary impacted tooth. Methods and patients: Images obtained from patients who had impacted teeth in the maxilla, including impacted mesial supernumerary teeth in 13 patients, impacted incisors in two patients, impacted canines in 11 patients, impacted premolars in four patients and impacted molars in three patients, were used in this study. In all patients, plain radiographs and 3D Dental-CT images were retrospectively reviewed by an oral radiologist for evidence of root dilaceration before operations to extract the impacted teeth were performed. The findings in the images were compared with intraoperative findings in all cases. Results: The mean specificity and sensitivity of plain radiographs were 95 and 8%, respectively, while those of 3D Dental-CT images were 100 and 77%, respectively. There was a statistically significant (P<0.01) difference between the depiction capabilities of plain radiographs and 3D Dental-CT images with regard to dilacerations of roots of impacted teeth. Discussion and conclusion: CT may enable radiologists to make a quick and accurate diagnosis of tooth impaction. 3D Dental-CT images are useful for determining the root shape of an impacted tooth in the maxilla

  1. THE IMPACT OF 3D PRINTING TECHNOLOGY ON THE SOCIETY AND ECONOMY

    Alexandru Pîrjan; Dana-Mihaela Petroşanu

    2013-01-01

    In this paper, we analyse the evolution of 3D printing technology, its applications and numerous social, economic, geopolitical, security and environmental consequences. We compare some of the most significant existing 3D printing solutions, taking into account the acquisition price, the technical specifications, their main advantages and limitations. Just as it happened in the past decades with the personal computers and Internet, the impact of 3-D printing will gradually increase in the fut...

  2. TNO : The impact of 3-D printing on supply chain management

    Janssen, G.R.; Blankers, I.J.; Moolenburgh, E.A.; Posthumus, A.L.

    2014-01-01

    It is said that 3-D printing, officially known as additive manufacturing, has the potential to become the biggest single disruptive phenomenon to impact global industry since mass production lines were introduced early in the twentieth century. McKinsey Global Institute named 3-D printing as one of

  3. 3D Printing and Its Disruptive Impacts on Supply Chains of the Future

    Sebastian Mohr; Omera Khan

    2015-01-01

    3D printing technology has emerged as one of the most disruptive innovations to impact the global supply chain and logistics industry. The technology is impacting our personal and professional lives, with some claiming that the technology will revolutionize and replace existing manufacturing technologies, while others argue that the technology merely enhances some aspects of the production process. Whether evolutionary or revolutionary, 3D printing technology is recognized as a striking trend...

  4. The impact of land-surface wetness heterogeneity on mesoscale heat fluxes

    Chen, Fei; Avissar, Roni

    1994-01-01

    Vertical heat fluxes associated with mesoscale circulations generated by land-surface wetness discontinuities are often stronger than turbulent fluxes, especially in the upper part of the atmospheric planetary boundary layer. As a result, they contribute significantly to the subgrid-scale fluxes in large-scale atmospheric models. Yet they are not considered in these models. To provide some insights into the possible parameterization of these fluxes in large-scale models, a state-of-the-art mesoscale numerical model was used to investigate the relationships between mesoscale heat fluxes and atmospheric and land-surface characteristics that play a key role in the generation of mesoscale circulations. The distribution of land-surface wetness, the wavenumber and the wavelength of the land-surface discontinuities, and the large-scale wind speed have a significant impact on the mesoscale heat fluxes. Empirical functions were derived to characterize the relationships between mesoscale heat fluxes and the spatial distribution of land-surface wetness. The strongest mesoscale heat fluxes were obtained for a wavelength of forcing corresponding approximately to the local Rossby deformation radius. The mesoscale heat fluxes are weakened by large-scale background winds but remain significant even with moderate winds.

  5. Impact of the 3-D model strategy on science learning of the solar system

    Alharbi, Mohammed

    The purpose of this mixed method study, quantitative and descriptive, was to determine whether the first-middle grade (seventh grade) students at Saudi schools are able to learn and use the Autodesk Maya software to interact and create their own 3-D models and animations and whether their use of the software influences their study habits and their understanding of the school subject matter. The study revealed that there is value to the science students regarding the use of 3-D software to create 3-D models to complete science assignments. Also, this study aimed to address the middle-school students' ability to learn 3-D software in art class, and then ultimately use it in their science class. The success of this study may open the way to consider the impact of 3-D modeling on other school subjects, such as mathematics, art, and geography. When the students start using graphic design, including 3-D software, at a young age, they tend to develop personal creativity and skills. The success of this study, if applied in schools, will provide the community with skillful young designers and increase awareness of graphic design and the new 3-D technology. Experimental method was used to answer the quantitative research question, are there significant differences applying the learning method using 3-D models (no 3-D, premade 3-D, and create 3-D) in a science class being taught about the solar system and its impact on the students' science achievement scores? Descriptive method was used to answer the qualitative research questions that are about the difficulty of learning and using Autodesk Maya software, time that students take to use the basic levels of Polygon and Animation parts of the Autodesk Maya software, and level of students' work quality.

  6. Mesoscale morphology at nanoscale resolution: serial block-face scanning electron microscopy reveals fine 3D detail of a novel silk spinneret system in a tube-building tanaid crustacean

    Kaji, Tomonari; Kakui, Keiichi; Miyazaki, Naoyuki; Murata, Kazuyoshi; Palmer, A. Richard

    2016-01-01

    Background The study of morphology is experiencing a renaissance due to rapid improvements in technologies for 3D visualization of complex internal and external structures. But 3D visualization of the internal structure of mesoscale objects — those in the 10–1000 μm range — remains problematic. They are too small for microCT, many lack suitable specific fluorescent markers for confocal microscopy, or they require labor-intensive stacking and smoothing of individual TEM images. Here we illustr...

  7. Impact of packet losses in scalable 3D holoscopic video coding

    Conti, Caroline; Nunes, Paulo; Ducla Soares, Luís.

    2014-05-01

    Holoscopic imaging became a prospective glassless 3D technology to provide more natural 3D viewing experiences to the end user. Additionally, holoscopic systems also allow new post-production degrees of freedom, such as controlling the plane of focus or the viewing angle presented to the user. However, to successfully introduce this technology into the consumer market, a display scalable coding approach is essential to achieve backward compatibility with legacy 2D and 3D displays. Moreover, to effectively transmit 3D holoscopic content over error-prone networks, e.g., wireless networks or the Internet, error resilience techniques are required to mitigate the impact of data impairments in the user quality perception. Therefore, it is essential to deeply understand the impact of packet losses in terms of decoding video quality for the specific case of 3D holoscopic content, notably when a scalable approach is used. In this context, this paper studies the impact of packet losses when using a three-layer display scalable 3D holoscopic video coding architecture previously proposed, where each layer represents a different level of display scalability (i.e., L0 - 2D, L1 - stereo or multiview, and L2 - full 3D holoscopic). For this, a simple error concealment algorithm is used, which makes use of inter-layer redundancy between multiview and 3D holoscopic content and the inherent correlation of the 3D holoscopic content to estimate lost data. Furthermore, a study of the influence of 2D views generation parameters used in lower layers on the performance of the used error concealment algorithm is also presented.

  8. Mesoscale eddies in the South China Sea and their impact on temperature profiles

    WANG Guihua; SU Jilan; LI Rongfeng

    2005-01-01

    Some life history statistics of the mesoscale eddies ofthe South China Sea (SCS) derived from altimetry data will be further discussed according their different formation periods.A total of three ATLAS (autonomous temperature line acquisition system)mooring buoys data will be analyzed to discuss eddies' impact on temperature profiles.They identify that the intraseasonal variation of SCSthermocline is partly controlled by mesoscale eddies.

  9. Composite laminate impact damage assessment by high resolution 3D X-ray tomography and laminography

    Bull, D. J.; Sinclair, I.; Spearing, S.M.; Helfen, L.

    2011-01-01

    Improvements to toughening mechanisms in composite materials have hitherto relied on visual inspection techniques that can be rather limited, especially since the inherent damage behaviour is three-dimensional (3D) requiring high resolution to capture micro-cracks and similar damage. To achieve a better understanding of impact damage behaviour, synchrotron radiation computed laminography (SRCL) and computed tomography (SRCT) techniques were used to capture 3D damage mechanisms with voxel size...

  10. 3D Printing and Its Disruptive Impacts on Supply Chains of the Future

    Sebastian Mohr

    2015-11-01

    Full Text Available 3D printing technology has emerged as one of the most disruptive innovations to impact the global supply chain and logistics industry. The technology is impacting our personal and professional lives, with some claiming that the technology will revolutionize and replace existing manufacturing technologies, while others argue that the technology merely enhances some aspects of the production process. Whether evolutionary or revolutionary, 3D printing technology is recognized as a striking trend that will significantly impact supply chains. Although the expansion of 3D printing in the private consumer market is an interesting development in its own right, the biggest potential for disruption lies in industrial applications and how 3D printing will influence supply chains of the future. In this article, we examine the areas of the supply chain most likely to be disrupted by 3D printing technology and we identify the key questions that must be answered in a roadmap for future research and practice. While we seek answers to these questions, we suggest that managers should develop a flexible change management strategy to mitigate the effects of disruption to their future supply chains and take advantage of the resulting opportunities. Those that do nothing will be left wanting, because the influence of 3D printing technology on supply chains is expected to grow.

  11. Impact of Level of Details in the 3d Reconstruction of Trees for Microclimate Modeling

    Bournez, E.; Landes, T.; Saudreau, M.; Kastendeuch, P.; Najjar, G.

    2016-06-01

    In the 21st century, urban areas undergo specific climatic conditions like urban heat islands which frequency and intensity increase over the years. Towards the understanding and the monitoring of these conditions, vegetation effects on urban climate are studied. It appears that a natural phenomenon, the evapotranspiration of trees, generates a cooling effect in urban environment. In this work, a 3D microclimate model is used to quantify the evapotranspiration of trees in relation with their architecture, their physiology and the climate. These three characteristics are determined with field measurements and data processing. Based on point clouds acquired with terrestrial laser scanner (TLS), the 3D reconstruction of the tree wood architecture is performed. Then the 3D reconstruction of leaves is carried out from the 3D skeleton of vegetative shoots and allometric statistics. With the aim of extending the simulation on several trees simultaneously, it is necessary to apply the 3D reconstruction process on each tree individually. However, as well for the acquisition as for the processing, the 3D reconstruction approach is time consuming. Mobile laser scanners could provide point clouds in a faster way than static TLS, but this implies a lower point density. Also the processing time could be shortened, but under the assumption that a coarser 3D model is sufficient for the simulation. In this context, the criterion of level of details and accuracy of the tree 3D reconstructed model must be studied. In this paper first tests to assess their impact on the determination of the evapotranspiration are presented.

  12. Low-Cost Impact Detection and Location for Automated Inspections of 3D Metallic Based Structures

    Carlos Morón

    2015-05-01

    Full Text Available This paper describes a new low-cost means to detect and locate mechanical impacts (collisions on a 3D metal-based structure. We employ the simple and reasonably hypothesis that the use of a homogeneous material will allow certain details of the impact to be automatically determined by measuring the time delays of acoustic wave propagation throughout the 3D structure. The location of strategic piezoelectric sensors on the structure and an electronic-computerized system has allowed us to determine the instant and position at which the impact is produced. The proposed automatic system allows us to fully integrate impact point detection and the task of inspecting the point or zone at which this impact occurs. What is more, the proposed method can be easily integrated into a robot-based inspection system capable of moving over 3D metallic structures, thus avoiding (or minimizing the need for direct human intervention. Experimental results are provided to show the effectiveness of the proposed approach.

  13. Finite element analysis of the impact response of reinforced concrete structures using DYNA3D

    Reinforced concrete structures in nuclear installations are potentially subject to accidental impact from external or internally generated hazards. These include: soft impacts such as aircraft crash on containment structures; and hard impacts such as heavy dropped loads on pond floors, or plant-generated fragments on structural and protective walls. The explicit finite element code DYNA3D has been used extensively for analysis of the response of structures to dynamic loadings, and a constitutive material model for reinforced concrete has been developed within DYNA3D to represent local cracking and crushing due to impact loads, as well as treating the elastic and plastic global response modes of the structure. This model has been extensively validated against impact tests for simulated aircraft impact on containment structures, but more recent interest has concentrated on analysis of hard impacts on floors and walls. Whilst a simplified constitutive model is adequate for the response to soft impacts, in which the dominant response mode is flexural, the local damage and high rates experienced in hard impacts have required further development of the material model. This paper describes the main features of the constitutive model, and presents the results of a validation case of a heavy dropped load on a reinforced concrete floor. (author)

  14. FURTHER CASE STUDIES ON THE IMPACT OF MESOSCALE CONVECTIVE SYSTEMS ON REGIONAL OZONE AND HAZE DISTRIBUTIONS

    The report is a continuation of an earlier effort to study the impact of mesoscale convective precipitation systems upon distributions of aerosol and photochemical oxidant pollutants in the planetary boundary layer (PBL). Analyses of surface visibility and ozone data revealed a d...

  15. Nonlinear 3D calculations of turbine blade impact on turbine cover

    This paper present the approach used at the VUJE institute for the evaluation of a ruptured blade impact on the current protection cover of a SKODA 220 MW turbine. Firstly, it briefly describes experiments (Hopkinson-Davies split bar facility, Taylor tests) and numerical simulations used to obtain realistic material parameters needed for the Cowper- Symonds material model that is implemented in the code LS-DYNA3D. Then, numerical simulations, by using the code, of the ruptured blade impact on various protection barriers are presented. These simulations make it possible to find an optimal solution for a new turbine protection cover. (author)

  16. A self-healing 3D woven fabric reinforced shape memory polymer composite for impact mitigation

    In this paper, a three-dimensional (3D) woven fabric reinforced shape memory polymer composite for impact mitigation was proposed, fabricated, programmed using a three-step strain-controlled thermomechanical cycle at a pre-strain level of 5% and machined to two groups of specimens (G1 and G2) with dimensions 152.4 mm × 101.6 mm × 12.7 mm. The specimens were impact tested, transversely, centrally and repeatedly with 32 and 42 J of energy. G1 specimens were healed after each impact until perforation occurred. G2 specimens were not healed after each impact and served as controls. At 32 J impact energy, G2 specimens were perforated at the 9th impact while G1 specimens lasted until the 15th impact; at 42 J impact energy, G2 specimens were perforated at the 5th impact while G1 specimens were perforated at the 7th impact. Visual inspection, C-scan, and scanning electron microscopy techniques were used to evaluate damage, failure modes, and healing efficiency

  17. Impact of 3-D printed PLA- and chitosan-based scaffolds on human monocyte/macrophage responses: unraveling the effect of 3-D structures on inflammation.

    Almeida, Catarina R; Serra, Tiziano; Oliveira, Marta I; Planell, Josep A; Barbosa, Mário A; Navarro, Melba

    2014-02-01

    Recent studies have pointed towards a decisive role of inflammation in triggering tissue repair and regeneration, while at the same time it is accepted that an exacerbated inflammatory response may lead to rejection of an implant. Within this context, understanding and having the capacity to regulate the inflammatory response elicited by 3-D scaffolds aimed for tissue regeneration is crucial. This work reports on the analysis of the cytokine profile of human monocytes/macrophages in contact with biodegradable 3-D scaffolds with different surface properties, architecture and controlled pore geometry, fabricated by 3-D printing technology. Fabrication processes were optimized to create four different 3-D platforms based on polylactic acid (PLA), PLA/calcium phosphate glass or chitosan. Cytokine secretion and cell morphology of human peripheral blood monocytes allowed to differentiate on the different matrices were analyzed. While all scaffolds supported monocyte/macrophage adhesion and stimulated cytokine production, striking differences between PLA-based and chitosan scaffolds were found, with chitosan eliciting increased secretion of tumor necrosis factor (TNF)-α, while PLA-based scaffolds induced higher production of interleukin (IL)-6, IL-12/23 and IL-10. Even though the material itself induced the biggest differences, the scaffold geometry also impacted on TNF-α and IL-12/23 production, with chitosan scaffolds having larger pores and wider angles leading to a higher secretion of these pro-inflammatory cytokines. These findings strengthen the appropriateness of these 3-D platforms to study modulation of macrophage responses by specific parameters (chemistry, topography, scaffold architecture). PMID:24211731

  18. Origins and impacts of mesoscale meanders in the Agulhas Current

    Elipot, S.; Beal, L. M.

    2014-12-01

    The Agulhas Current (AC) is the western boundary current of the South Indian subtropical gyre and is also the pathway for the inter-basin exchange of water, heat and salt between the Indian Ocean and the Atlantic Ocean, and thus a crucial part of the global overturning circulation of the world ocean. The AC, which otherwise flows stably along the coast of South Africa, undergoes dramatic offshore excursions from its mean path, forming large mesoscale solitary meanders propagating downstream and potentially linked to the leakage of Indian Ocean waters to the South Atlantic. These irregular meander events have been referred to as Natal Pulses.Here we present new observations and analyses of Agulhas meanders using full-depth velocity mooring observations from the Agulhas Current Time series experiment (ACT). Detailed analyses of the in-situ velocity reveal important differences between the behavior of the flow during solitary meander events and during meander events of smaller amplitude. During solitary meanders, an onshore cyclonic circulation and an offshore anticyclonic circulation act in concert to displace the jet offshore, leading to sudden and strong positive conversion of kinetic energy of the mean flow to the meander. In contrast, smaller amplitude meanderings are principally represented by a single cyclonic circulation spanning the entire jet that acts to displace the jet without significantly extracting kinetic energy from the mean flow. Solitary meander events can be traced upstream using satellite altimetry and linked to either Mozambique Channel eddies or Madagascar dipoles, the latter possibly part of a basin-wide pattern of propagating sea level anomalies consistent with Rossby wave dynamics. However, only a small number of these anomalies lead to solitary meanders. Altimetric observations suggest 1.5 meanders per year and show that the two-year period during ACT when no events were observed is unprecedented in the 20-year satellite record.

  19. Modeling the Impact of Drizzle and 3D Cloud Structure on Remote Sensing of Effective Radius

    Platnick, Steven; Zinner, Tobias; Ackerman, S.

    2008-01-01

    Remote sensing of cloud particle size with passive sensors like MODIS is an important tool for cloud microphysical studies. As a measure of the radiatively relevant droplet size, effective radius can be retrieved with different combinations of visible through shortwave infrared channels. MODIS observations sometimes show significantly larger effective radii in marine boundary layer cloud fields derived from the 1.6 and 2.1 pm channel observations than for 3.7 pm retrievals. Possible explanations range from 3D radiative transport effects and sub-pixel cloud inhomogeneity to the impact of drizzle formation on the droplet distribution. To investigate the potential influence of these factors, we use LES boundary layer cloud simulations in combination with 3D Monte Carlo simulations of MODIS observations. LES simulations of warm cloud spectral microphysics for cases of marine stratus and broken stratocumulus, each for two different values of cloud condensation nuclei density, produce cloud structures comprising droplet size distributions with and without drizzle size drops. In this study, synthetic MODIS observations generated from 3D radiative transport simulations that consider the full droplet size distribution will be generated for each scene. The operational MODIS effective radius retrievals will then be applied to the simulated reflectances and the results compared with the LES microphysics.

  20. Simulation of the impact of 3-D porosity distribution in metallic U-10Zr fuels

    Yun, Di; Yacout, Abdellatif M.; Stan, Marius; Bauer, Theodore H.; Wright, Arthur E.

    2014-05-01

    Evolution of porosity generated in metallic U-Zr fuel irradiated in fast spectrum reactors leads to changes in fuel properties and impacts important phenomena such as heat transport and constituent redistribution. The porosity is generated as a result of the accumulation of fission gases and is affected by the possible bond sodium infiltration into the fuel. Typically, the impact of porosity development on properties, such as thermal conductivity, is accounted for through empirical correlations that are dependent on porosity and infiltrated sodium fractions. Currently available simulation tools make it possible to take into account fuel 3-D porosity distributions, potentially eliminating the need for such correlations. This development allows for a more realistic representation of the porosity evolution in metallic fuel and creates a framework for truly mechanistic fuel development models. In this work, COMSOL multi-physics simulation platform is used to model 3-D porosity distributions and simulate heat transport in metallic U-10Zr fuel. Available experimental data regarding microstructural evolution of fuel that was irradiated in EBR-II and associated phase stability information are used to guide the simulation. The impact of changes in porosity characteristics on material properties is estimated and the results are compared with calculated temperature distributions. The simulations demonstrate the developed capability and importance of accounting for detailed porosity distribution features for accurate fuel performance evaluation.

  1. 3D Characterization of the Magnetic Signature of a Medium Sized Impact Crater at Odessa, TX

    Robinson, A.; Soule, D.; Everett, M.; Rodman, T.; Mangue Ndong, M.; Pereira, A.; Platt, P.; Trahan, A.

    2008-12-01

    Meteorite impacts are a common occurrence throughout Earth's geologic history. Many of the surface expressions of large ancient impacts have been subsequently erased by weathering and erosion processes. The study of preserved meteorite impacts is necessary to better understand this natural hazard which has been increasingly linked to rapid climate change and mass extinctions. The 60 ka Odessa meteorite crater located in Ector Co. Texas, is unique because it is not only well-preserved, but also has been the subject of extensive geologic examination. Geologic mapping and numeric models indicate that the crater was caused by a relatively small oblique impactor. The crater rim is remarkably well exposed. Much of the ejecta blanket is present, although deeply eroded. There has been considerable site disturbance due to drilling, shaft excavation, trenching, construction of a museum, trails, and the oil/gas activity in surrounding fields. Two previous geophysical investigations have shown that our data clearly corresponds to large-scale thrust deformation. With this in mind we have performed 3D high resolution magnetic gradiometer surveys that will allow us to quantify and characterize the magnetic signature of small to medium impacts. We will tie this data set to a 3D photorealistic outcrop image provided by laser scanning with coarser-scale, below-ground geophysical information. Our geophysical imagery provides a useful constraint on numerical simulations of the impact and its immediate regional-scale environmental effects. This information can be used to identify impact sites whose surface expression has been erased by natural erosional processes, allowing for improved frequency estimates and improved geo-hazard assessment.

  2. Impact of Particle Size of Ceramic Granule Blends on Mechanical Strength and Porosity of 3D Printed Scaffolds

    Sebastian Spath; Philipp Drescher; Hermann Seitz

    2015-01-01

    3D printing is a promising method for the fabrication of scaffolds in the field of bone tissue engineering. To date, the mechanical strength of 3D printed ceramic scaffolds is not sufficient for a variety of applications in the reconstructive surgery. Mechanical strength is directly in relation with the porosity of the 3D printed scaffolds. The porosity is directly influenced by particle size and particle-size distribution of the raw material. To investigate this impact, a hydroxyapatite gran...

  3. 3D Finite Element Analysis of a Man Hip Joint Femur under Impact Loads

    YU Xue-zhong; GUO Yi-mu; LI Jun; ZHANG Yun-qiu; HE Rong-xin

    2007-01-01

    The biomechanical characters of the bone fracture of the man femoral hip joint under impact loads are explored. Methods: A biosystem model of the man femoral hip joint by using the GE ( General Electric) lightspeed multi-lay spiral CT is conducted. A 3D finite element model is established by employing the finite element software ANSYS. The FE analysis mainly concentrates on the effects of the impact directions arising from intense movements and the parenchyma on the femoral hip joint on the stress distributions of the proximal femur. Results:The parenchyma on the hip joint has relatively large relaxation effect on the impact loads. Conclusion:Effects of the angle δ of the impact load to the anterior direction and the angle γ of the impact load to the femur shaft on the bone fracture are given;δ has larger effect on the stress and strain distributions than the angle γ, which mainly represents the fracture of the upper femur including the femoral neck fracture when the posterolateral femur is impacted, consistent with the clinical results.

  4. A DYNA3D calculation for impact on a pipe target

    This report describes experimental studies to examine the response of pipework, typical of that used in nuclear power plants, to the impact of missiles representing fragments of disintegrating machinery. The finite element code DYNA3D has been used to make a calculation for one experiment in which an instrumented target pipe was impacted by a cylindrical steel billet. Transient displacement of the missile and target as well as permanent deformations of the target pipe were well-predicted by the code. The code reproduced the main features of the experimental transient strain measurements with the timings of the various straining phases being calculated very closely. Detailed quantitative comparisons cannot be made because of the lack of appropriate facilities in the GRAPE post-processing code. (U.K.)

  5. Impact of Particle Size of Ceramic Granule Blends on Mechanical Strength and Porosity of 3D Printed Scaffolds

    Sebastian Spath

    2015-07-01

    Full Text Available 3D printing is a promising method for the fabrication of scaffolds in the field of bone tissue engineering. To date, the mechanical strength of 3D printed ceramic scaffolds is not sufficient for a variety of applications in the reconstructive surgery. Mechanical strength is directly in relation with the porosity of the 3D printed scaffolds. The porosity is directly influenced by particle size and particle-size distribution of the raw material. To investigate this impact, a hydroxyapatite granule blend with a wide particle size distribution was fractioned by sieving. The specific fractions and bimodal mixtures of the sieved granule blend were used to 3D print specimens. It has been shown that an optimized arrangement of fractions with large and small particles can provide 3D printed specimens with good mechanical strength due to a higher packing density. An increase of mechanical strength can possibly expand the application area of 3D printed hydroxyapatite scaffolds.

  6. Research on the Impact of 3D Printing on the International Supply Chain

    Zhen Chen

    2016-01-01

    In recent years 3D printing technology is developing rapidly. In the foreseeable future, when 3D printing is widely used, the world’s industrial structure will be greatly changed. Based on the actual data, this paper constructs an international supply chain model using system dynamics method. And it simulates the reconstruction trend of the supply chain after 3D printing application. The conclusion shows that the universal application of 3D printing will lead to the worldwide transport volume...

  7. 3-D geometrical analysis tool for meteoroids/debris impact risk assessment

    Borde, J.; Drolshagen, G.

    1991-01-01

    It is widely appreciated that meteoroids and space debris are critical factors in the safety and reliability of future missions, especially long-term mission such as the Space Station Freedom. In this paper, enhanced a 3-D numerical analysis tool for meteoroids/debris risk evaluation is presented. It is based on presently available environment and particle/wall interaction models together with spacecraft shielding design. This provides impact probabilities and resulting damaging effects using realistic geometrical treatments. The shielding by other parts of the spacecraft is considered. It accounts for directional and geometrical effects both in the environment and in the damage evaluation. It includes the latest environment and design models and allows an easy updating of these data as they are improved upon. This tool is a new application of the ESABASE framework, a geometrical system level analysis and engineering tool developed by MATRA ESPACE for ESA/ESTEC.

  8. The potential impact of 3D telepresence technology on task performance in emergency trauma care

    Söderholm, Hanna M.; Sonnenwald, Diane H.; Cairns, Bruce;

    2007-01-01

    simulated emergency situation 60 paramedics diagnosed and treated a trauma victim while working alone or in collaboration with a physician via 2D video or a 3D proxy. Analysis of paramedics' task performance shows that the fewest harmful procedures occurred in the 3D proxy condition. Paramedics in the 3D...

  9. Test impact on the overall die-to-wafer 3D stacked IC cost

    Taouil, M.; Hamdioui, S.; Beenakker, K.; Marinissen, E.J.

    2011-01-01

    One of the key challenges in 3D Stacked-ICs (3D-SIC) is to guarantee high product quality at minimal cost. Quality is mostly determined by the applied tests and cost trade-offs. Testing 3D-SICs is very challenging due to several additional test moments for the mid-bond stacks, i.e., partially create

  10. Impact of SLA assimilation in the Sicily Channel Regional Model: model skills and mesoscale features

    A. Olita

    2012-07-01

    Full Text Available The impact of the assimilation of MyOcean sea level anomalies along-track data on the analyses of the Sicily Channel Regional Model was studied. The numerical model has a resolution of 1/32° degrees and is capable to reproduce mesoscale and sub-mesoscale features. The impact of the SLA assimilation is studied by comparing a simulation (SIM, which does not assimilate data with an analysis (AN assimilating SLA along-track multi-mission data produced in the framework of MyOcean project. The quality of the analysis was evaluated by computing RMSE of the misfits between analysis background and observations (sea level before assimilation. A qualitative evaluation of the ability of the analyses to reproduce mesoscale structures is accomplished by comparing model results with ocean colour and SST satellite data, able to detect such features on the ocean surface. CTD profiles allowed to evaluate the impact of the SLA assimilation along the water column. We found a significant improvement for AN solution in terms of SLA RMSE with respect to SIM (the averaged RMSE of AN SLA misfits over 2 years is about 0.5 cm smaller than SIM. Comparison with CTD data shows a questionable improvement produced by the assimilation process in terms of vertical features: AN is better in temperature while for salinity it gets worse than SIM at the surface. This suggests that a better a-priori description of the vertical error covariances would be desirable. The qualitative comparison of simulation and analyses with synoptic satellite independent data proves that SLA assimilation allows to correctly reproduce some dynamical features (above all the circulation in the Ionian portion of the domain and mesoscale structures otherwise misplaced or neglected by SIM. Such mesoscale changes also infer that the eddy momentum fluxes (i.e. Reynolds stresses show major changes in the Ionian area. Changes in Reynolds stresses reflect a different pumping of eastward momentum from the eddy to

  11. Measuring the impact of 3D data geometric modeling on spatial analysis: Illustration with Skyview factor

    Brasebin, M.; Perret, J.; Mustière, S.; Weber, C.

    2012-10-01

    The increased availability of 3D urban data reflects a growing interest in 3D spatial analysis. As 3D spatial analysis often uses complex 3D data, studies of the potential gains of using more detailed 3D urban databases for specific uses is an important issue. First, more complex data implies an increase in time and memory usage for the analysis (and calls for more research on the efficiency of the algorithms used). Second, detailed 3D urban data are complex to produce, expensive and it is important to be well informed in order to decide whether of not to invest in such data. Currently, many studies have been led about the fitness for use of 2D data but they are very scarce concerning 3D data. This article presents a method to determine the influence of 3D modeling on the results of 3D analysis by isolating the potential sources of errors (such as roof modeling and geometric accuracy). This method is applied on two 3D datasets (LOD1 and LOD2) and a 3D indicator (the sky view factor or SVF). The results show that the significant influence of roof modeling is globally compensated by the difference in geometric modeling but that important local variations are noticed. Nevertheless, for 75% of the SVF processed the difference between the results using these two databases is lower than 2%.

  12. 3-D hydrodynamic modelling of flood impacts on a building and indoor flooding processes

    Gems, Bernhard; Mazzorana, Bruno; Hofer, Thomas; Sturm, Michael; Gabl, Roman; Aufleger, Markus

    2016-06-01

    Given the current challenges in flood risk management and vulnerability assessment of buildings exposed to flood hazards, this study presents three-dimensional numerical modelling of torrential floods and its interaction with buildings. By means of a case study application, the FLOW-3D software is applied to the lower reach of the Rio Vallarsa torrent in the village of Laives (Italy). A single-family house on the flood plain is therefore considered in detail. It is exposed to a 300-year flood hydrograph. Different building representation scenarios, including an entire impervious building envelope and the assumption of fully permeable doors, light shafts and windows, are analysed. The modelling results give insight into the flooding process of the building's interior, the impacting hydrodynamic forces on the exterior and interior walls, and further, they quantify the impact of the flooding of a building on the flow field on the surrounding flood plain. The presented study contributes to the development of a comprehensive physics-based vulnerability assessment framework. For pure water floods, this study presents the possibilities and limits of advanced numerical modelling techniques within flood risk management and, thereby, the planning of local structural protection measures.

  13. Research on the Impact of 3D Printing on the International Supply Chain

    Zhen Chen

    2016-01-01

    Full Text Available In recent years 3D printing technology is developing rapidly. In the foreseeable future, when 3D printing is widely used, the world’s industrial structure will be greatly changed. Based on the actual data, this paper constructs an international supply chain model using system dynamics method. And it simulates the reconstruction trend of the supply chain after 3D printing application. The conclusion shows that the universal application of 3D printing will lead to the worldwide transport volume shrinking dramatically. The manufacturing activities will gradually outflow to the countries which are closer to the final customers. The relevant countries should carry out feasible measures to face this opportunity and challenge. The measures include the reform of logistics facilities, the logistics cooperation with the origin of 3D printing materials, and the matched transportation of 3D printing materials and traditional processing ones.

  14. Multidimensional morphometric 3D MRI analyses for detecting brain abnormalities in children: impact of control population.

    Wilke, Marko; Rose, Douglas F; Holland, Scott K; Leach, James L

    2014-07-01

    Automated morphometric approaches are used to detect epileptogenic structural abnormalities in 3D MR images in adults, using the variance of a control population to obtain z-score maps in an individual patient. Due to the substantial changes the developing human brain undergoes, performing such analyses in children is challenging. This study investigated six features derived from high-resolution T1 datasets in four groups: normal children (1.5T or 3T data), normal clinical scans (3T data), and patients with structural brain lesions (3T data), with each n = 10. Normative control data were obtained from the NIH study on normal brain development (n = 401). We show that control group size substantially influences the captured variance, directly impacting the patient's z-scores. Interestingly, matching on gender does not seem to be beneficial, which was unexpected. Using data obtained at higher field scanners produces slightly different base rates of suprathreshold voxels, as does using clinically derived normal studies, suggesting a subtle but systematic effect of both factors. Two approaches for controlling suprathreshold voxels in a multidimensional approach (combining features and requiring a minimum cluster size) were shown to be substantial and effective in reducing this number. Finally, specific strengths and limitations of such an approach could be demonstrated in individual cases. PMID:25050423

  15. Use of 3D imaging in CT of the acute trauma patient: impact of a PACS-based software package.

    Soto, Jorge A; Lucey, Brain C; Stuhlfaut, Joshua W; Varghese, Jose C

    2005-04-01

    To evaluate the impact of a picture archiving and communication systems (PACS)-based software package on the requests for 3D reconstructions of multidetector CT (MDCT) data sets in the emergency radiology of a level 1 trauma center, we reviewed the number and type of physician requests for 3D reconstructions of MDCT data sets for patients admitted after sustaining multiple trauma, during a 12-month period (January 2003-December 2003). During the first 5 months of the study, 3D reconstructions were performed in dedicated workstations located separately from the emergency radiology CT interpretation area. During the last 7 months of the study, reconstructions were performed online by the attending radiologist or resident on duty, using a software package directly incorporated into the PACS workstations. The mean monthly number of 3D reconstructions requested during the two time periods was compared using Student's t test. The monthly mean +/- SD of 3D reconstructions performed before and after 3D software incorporation into the PACS was 34+/-7 (95% CI, 10-58) and 132+/-31 (95% CI, 111-153), respectively. This difference was statistically significant (p<0.0001). In the multiple trauma patient, implementation of PACS-integrated software increases utilization of 3D reconstructions of MDCT data sets. PMID:16028324

  16. Eye Tracking to Explore the Impacts of Photorealistic 3d Representations in Pedstrian Navigation Performance

    Dong, Weihua; Liao, Hua

    2016-06-01

    Despite the now-ubiquitous two-dimensional (2D) maps, photorealistic three-dimensional (3D) representations of cities (e.g., Google Earth) have gained much attention by scientists and public users as another option. However, there is no consistent evidence on the influences of 3D photorealism on pedestrian navigation. Whether 3D photorealism can communicate cartographic information for navigation with higher effectiveness and efficiency and lower cognitive workload compared to the traditional symbolic 2D maps remains unknown. This study aims to explore whether the photorealistic 3D representation can facilitate processes of map reading and navigation in digital environments using a lab-based eye tracking approach. Here we show the differences of symbolic 2D maps versus photorealistic 3D representations depending on users' eye-movement and navigation behaviour data. We found that the participants using the 3D representation were less effective, less efficient and were required higher cognitive workload than using the 2D map for map reading. However, participants using the 3D representation performed more efficiently in self-localization and orientation at the complex decision points. The empirical results can be helpful to improve the usability of pedestrian navigation maps in future designs.

  17. Impact of strengthening fluids on roughness of 3D printed models

    T. Galeta

    2015-01-01

    Full Text Available For some applications, 3D printed parts usually do not have satisfactory mechanical properties, so to broaden their usage, additive technologies should be combined with the well-known metallurgical processes, such as investment and others casting techniques. 3D printing developers persistently introduce new base materials and strengthening fluids which may cause different surface roughness. Therefore, in this paper, the authors have tested the roughness of 3D printed samples strengthened with common, but also with alternative fluids. Measurements proved that fluids do have significant influence on the roughness.

  18. The mesoscale moisture variability and its impact on the energy transfer through the boundary layer

    Frech, M.

    1998-01-01

    The impact of mesoscale moisture variability on the vertical energy transfer through a pre-frontal boundary layer is studied with NOPEX aircraft data. The moisture variability relates to a cold front which passed the area 2 1/2 hours after the observations. We find a density front ahead of the cold front. The large vertical divergence of the turbulent moisture flux in the surface layer is partly related to this moisture variability. Large scale horizontal advection contributes to the observed vertical turbulent flux divergence. The estimated horizontal mesoscale advection term in the budget of sensible heat and moisture is on average small but locally it can be large. This term acts to re-distribute moisture in the boundary layer and leads to sub-grid variations of relative humidity which is an important parameter for boundary layer cloud models. The distinct spatial variations of specific humidity are mainly related to synoptic forcing and not to heterogeneity in the surface energy balance. (orig.)

  19. Propagation of impact-induced shock waves in porous sandstone using mesoscale modeling

    GÜLdemeister, Nicole; WÜNnemann, Kai; Durr, Nathanael; Hiermaier, Stefan

    2013-01-01

    Abstract-Generation and propagation of shock waves by meteorite impact is significantly affected by material properties such as porosity, water content, and strength. The objective of this work was to quantify processes related to the shock-induced compaction of pore space by numerical modeling, and compare the results with data obtained in the framework of the Multidisciplinary Experimental and Modeling Impact Research Network (MEMIN) impact experiments. We use mesoscale models resolving the collapse of individual pores to validate macroscopic (homogenized) approaches describing the bulk behavior of porous and water-saturated materials in large-scale models of crater formation, and to quantify localized shock amplification as a result of pore space crushing. We carried out a suite of numerical models of planar shock wave propagation through a well-defined area (the "sample") of porous and/or water-saturated material. The porous sample is either represented by a homogeneous unit where porosity is treated as a state variable (macroscale model) and water content by an equation of state for mixed material (ANEOS) or by a defined number of individually resolved pores (mesoscale model). We varied porosity and water content and measured thermodynamic parameters such as shock wave velocity and particle velocity on meso- and macroscales in separate simulations. The mesoscale models provide additional data on the heterogeneous distribution of peak shock pressures as a consequence of the complex superposition of reflecting rarefaction waves and shock waves originating from the crushing of pores. We quantify the bulk effect of porosity, the reduction in shock pressure, in terms of Hugoniot data as a function of porosity, water content, and strength of a quartzite matrix. We find a good agreement between meso-, macroscale models and Hugoniot data from shock experiments. We also propose a combination of a porosity compaction model (ɛ-α model) that was previously only used for

  20. Radiobiology goes 3D: How ECM and cell morphology impact on cell survival after irradiation

    Translational research is essential to find new therapeutic approaches to improve cancer patient survival. Despite extensive efforts in preclinical studies, many novel therapies fail to turn out to be translational from bench to beside. Therefore, new models better reflecting the conditions in vivo are needed to generate results, which transfer reliably into the clinic. The use of three-dimensional (3D) cell culture models has provided new emerging insights into the understanding of cellular behavior upon cancer therapies. Interestingly, cells cultured in a 3D extracellular matrix are more radio- and chemoresistant than cells grown under conventional 2D conditions. In this review, we summarize and discuss underlying mechanisms of this phenomenon including integrin-mediated cell-matrix interactions, cell shape, nuclear organization and chromatin structure. Identifying the molecular differences between 2D and 3D cultured cells will offer the opportunity to improve our research and widen our therapeutic possibilities against cancer.

  1. Patient doses in paediatric interventional cardiology: impact of 3D rotational angiography

    The aim of this study was to calculate the contribution of 3D rotational angiography to radiation doses received by paediatric patients in a cardiac catheterisation laboratory. The percentage increase in the median value of air kerma-area product due to cone beam CT was 33 and 16% for diagnostic and therapeutic procedures, respectively. Results are presented separately for five age groups and ten weight groups. Several methods for reducing radiation from 3D rotational angiography are suggested and patient doses are compared with previously published values. (paper)

  2. Solar radiation transport in the cloudy atmosphere: a 3D perspective on observations and climate impacts

    The interplay of sunlight with clouds is a ubiquitous and often pleasant visual experience, but it conjures up major challenges for weather, climate, environmental science and beyond. Those engaged in the characterization of clouds (and the clear air nearby) by remote sensing methods are even more confronted. The problem comes, on the one hand, from the spatial complexity of real clouds and, on the other hand, from the dominance of multiple scattering in the radiation transport. The former ingredient contrasts sharply with the still popular representation of clouds as homogeneous plane-parallel slabs for the purposes of radiative transfer computations. In typical cloud scenes the opposite asymptotic transport regimes of diffusion and ballistic propagation coexist. We survey the three-dimensional (3D) atmospheric radiative transfer literature over the past 50 years and identify three concurrent and intertwining thrusts: first, how to assess the damage (bias) caused by 3D effects in the operational 1D radiative transfer models? Second, how to mitigate this damage? Finally, can we exploit 3D radiative transfer phenomena to innovate observation methods and technologies? We quickly realize that the smallest scale resolved computationally or observationally may be artificial but is nonetheless a key quantity that separates the 3D radiative transfer solutions into two broad and complementary classes: stochastic and deterministic. Both approaches draw on classic and contemporary statistical, mathematical and computational physics.

  3. Impact of 3D magnetic field structure on boundary and divertor plasmas in stellarator/heliotron devices

    Kobayashi, M. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Feng, Y. [Max-Planck-Institute fuer Plasmaphysik, D-17491 Greifswald (Germany); Xu, Y. [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041 (China); Tabares, F.L. [Laboratorio Nacional de Fusion, Ciemat, Madrid (Spain); Ida, K. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Schmitz, O. [University of Wisconsin – Madison, WI (United States); Evans, T.E. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States); Frerichs, H. [University of Wisconsin – Madison, WI (United States); Liang, Y. [Forschungszentrum Jülich GmbH Institut für Energie- und Klimaforschung – Plasmaphysik, Jülich (Germany); Bader, A. [University of Wisconsin – Madison, WI (United States); Itoh, K.; Yamada, H. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Ghendrih, Ph.; Ciraolo, G. [IRFM, CEA Cadarache, St Paul Lez Durance (France); Tafalla, D.; Lopez-Fraguas, A. [Laboratorio Nacional de Fusion, Ciemat, Madrid (Spain); Guo, H.Y. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States); Institute of Plasma Physics, CAS, Hefei (China); Cui, Z.Y. [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041 (China); Reiter, D. [Forschungszentrum Jülich GmbH Institut für Energie- und Klimaforschung – Plasmaphysik, Jülich (Germany); Asakura, N. [Japan Atomic Energy Agency, Rokkasho, Aomori 039-3212 (Japan); and others

    2015-08-15

    This paper overviews recent progress on the experimental identification and physics interpretation of 3D effects of magnetic field geometry on divertor transport. The 3D effects are elucidated as a consequence of competition between transports parallel (||) and perpendicular (⊥) to magnetic field, in open field lines cut by divertor plates, or in magnetic islands. The competition has strong impacts on divertor functions, such as determination of density regime, impurity screening, and detachment control. The effects of magnetic perturbation on the edge electric field and turbulent transport are also discussed. Based on the experiments and numerical simulations, key parameters governing the 3D transport physics for the individual divertor functions, e.g. pumping efficiency through divertor density regime, impurity screening and detachment control, are discussed.

  4. An experimental analysis for the impact of 3D variation assi- milation of satellite data on typhoon track simulation

    XIE Hongqin; WU Zengmao; GAO Shanhong

    2004-01-01

    A series of test simulations are performed to evaluate the impact of satellite-derived meteorological data on numerical typhoon track prediction. Geostationary meteorological satellite (GMS-5) and NOAA's TIROS operational vertical sounder (TOVS) observations are used in the experiments. A three-dimensional variational (3D-Var) assimilation scheme is developed to assimilate the satellite data directly into the Penn State-NCAR nonhydrostatic meteorological model (MM5). Three-dimensional objective analysis fields based on the T213 results and conventional observations are employed as the background fields of the initialization. The comparisons of the simulated typhoon tracks are carried out, which correspond respectively to assimilate different kinds of satellite data. It is found that, compared with the experiment without satellite data assimilation, the 3D-Var assimilation schemes lead to significant improvements on typhoon track prediction. Track errors reduce from approximately 25% at 24 h to approximately 30% at 48 h for 3D-Var assimilation experiments.

  5. A global model simulation for 3-D radiative transfer impact on surface hydrology over Sierra Nevada and Rocky Mountains

    W.-L. Lee

    2014-12-01

    Full Text Available We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the Western United States, specifically the Rocky Mountains and Sierra Nevada using CCSM4 (CAM4/CLM4 global model with a 0.23° × 0.31° resolution for simulations over 6 years. In 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation [3-D − PP (plane-parallel] adjustment to ensure that energy balance at the surface is conserved in global climate simulations based on 3-D radiation parameterization. We show that deviations of the net surface fluxes are not only affected by 3-D mountains, but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while decreases for higher elevations with a minimum in April. Liquid runoff significantly decreases in higher elevations after April due to reduced SWE and precipitation.

  6. 3D Modelling of the impact of outflow channel events on Late Hesperian Mars climate.

    Turbet, M.; Forget, F.; Wordsworth, R.; Head, J. W.

    2015-10-01

    During late Hesperian, large outflow channels observed in the Chryse Planitia area [1] are thought to have been carved by catastrophic and sudden water floods [2,3]. It has been speculated that such events may have modified the climate, at least locally and episodically, and could have induced precipitations and even rain [4] that could explain the formation of Late Hesperian valley networks under a cold contemporaneous climate. We present below 3D modeling of a sudden and extreme release of warm liquid water in the Chryse Planitia area on ancient Mars, assuming a faint young Sun and CO2 -dominated atmospheres thicker than today. 3D climate modeling under these conditions [5,6], and performed with a water cycle taking into account water vapor and clouds, have not been able yet to produce liquid water or at least significant precipitations by climatic processes anywhere on the planet, even when maximizing the greenhouse effect of CO2 ice clouds.

  7. Application of 3-D Urbanization Index to Assess Impact of Urbanization on Air Temperature.

    Wu, Chih-Da; Lung, Shih-Chun Candice

    2016-01-01

    The lack of appropriate methodologies and indicators to quantify three-dimensional (3-D) building constructions poses challenges to authorities and urban planners when formulating polices to reduce health risks due to heat stress. This study evaluated the applicability of an innovative three-dimensional Urbanization Index (3DUI), based on remote sensing database, with a 5 m spatial resolution of 3-D man-made constructions to representing intra-urban variability of air temperature by assessing correlation of 3DUI with air temperature from a 3-D perspective. The results showed robust high correlation coefficients, ranging from 0.83 to 0.85, obtained within the 1,000 m circular buffer around weather stations regardless of season, year, or spatial location. Our findings demonstrated not only the strength of 3DUI in representing intra-urban air-temperature variability, but also its great potential for heat stress assessment within cities. In view of the maximum correlation between building volumes within the 1,000 m circular buffer and ambient air temperature, urban planning should consider setting ceilings for man-made construction volume in each 2 × 2 km(2) residential community for thermal environment regulation, especially in Asian metropolis with high population density in city centers. PMID:27079537

  8. STEM and ICT Instructional Worlds: The 3D Experience, The impact on today’s students

    William Edward Roberts

    2013-02-01

    Full Text Available In our project, 3D immersive virtual worlds have been implemented in middle schools for instruction in science, technology, engineering, and mathematics (STEM.  The learning and playing, as a curricular tool, has enormous potential for engaging children of all ages in deep learning (Lim, Nonis, &  Hedberg 2006. STEM and ICT Instructional Worlds: The 3D Experience (STEM-ICT 3D is funded by the National Science Foundation Innovative Technology Experiences for Students and Teachers (ITEST program. The project is intended to inspire middle school students to pursue studies and careers in science, technology, engineering, and mathematics – particularly information and communication technology (ICT fields - as well as prepare students with the skills necessary to succeed in STEM education and careers. The project, based on research suggesting student gains in engagement, efficacy, and achievement (Barab, et al, 2005; Educause, 2006; Ketelhut, et al, 2006 proposes to translate the success of an earlier pilot toward a model that can be replicated in other middle schools over time.

  9. Application of 3-D Urbanization Index to Assess Impact of Urbanization on Air Temperature

    Wu, Chih-Da; Lung, Shih-Chun Candice

    2016-04-01

    The lack of appropriate methodologies and indicators to quantify three-dimensional (3-D) building constructions poses challenges to authorities and urban planners when formulating polices to reduce health risks due to heat stress. This study evaluated the applicability of an innovative three-dimensional Urbanization Index (3DUI), based on remote sensing database, with a 5 m spatial resolution of 3-D man-made constructions to representing intra-urban variability of air temperature by assessing correlation of 3DUI with air temperature from a 3-D perspective. The results showed robust high correlation coefficients, ranging from 0.83 to 0.85, obtained within the 1,000 m circular buffer around weather stations regardless of season, year, or spatial location. Our findings demonstrated not only the strength of 3DUI in representing intra-urban air-temperature variability, but also its great potential for heat stress assessment within cities. In view of the maximum correlation between building volumes within the 1,000 m circular buffer and ambient air temperature, urban planning should consider setting ceilings for man-made construction volume in each 2 × 2 km2 residential community for thermal environment regulation, especially in Asian metropolis with high population density in city centers.

  10. The impact of flattening-filter-free beam technology on 3D conformal RT

    The removal of the flattening filter (FF) leads to non-uniform fluence distribution with a considerable increase in dose rate. It is possible to adapt FFF beams (flattening-filter-free) in 3D conformal radiation therapy (3D CRT) by using field in field techniques (FiF). The aim of this retrospective study is to clarify whether the quality of 3D CRT plans is influenced by the use of FFF beams. This study includes a total of 52 CT studies of RT locations that occur frequently in clinical practice. Dose volume targets were provided for the PTV of breast (n=13), neurocranium (n=11), lung (n=7), bone metastasis (n=10) and prostate (n=11) in line with ICRU report 50/62. 3D CRT planning was carried out using FiF methods. Two clinically utilized photon energies are used for a Siemens ARTISTE linear accelerator in FFF mode at 7MVFFF and 11MVFFF as well as in FF mode at 6MVFF and 10MVFF. The plan quality in relation to the PTV coverage, OAR (organs at risk) and low dose burden as well as the 2D dosimetric verification is compared with FF plans. No significant differences were found between FFF and FF plans in the mean dose for the PTV of breast, lung, spine metastasis and prostate. The low dose parameters V5Gy and V10Gy display significant differences for FFF and FF plans in some subgroups. The DVH analysis of the OAR revealed some significant differences. Significantly more fields (1.9 – 4.5) were necessary in the use of FFF beams for each location (p<0.0001) in order to achieve PTV coverage. All the tested groups displayed significant increases (1.3 – 2.2 times) in the average number of necessary MU with the use of FFF beams (p<0.001). This study has shown that the exclusive use of a linear accelerator in FFF mode is feasible in 3D CRT. It was possible to realize RT plans in comparable quality in typical cases of clinical radiotherapy. The 2D dosimetric validation of the modulated fields verified the dose calculation and thus the correct reproduction of the

  11. Impact of mesoscale meteorological processes on anomalous radar propagation conditions over the northern Adriatic area

    Telišman Prtenjak, Maja; Horvat, Igor; Tomažić, Igor; Kvakić, Marko; Viher, Mladen; Grisogono, Branko

    2015-09-01

    The impact of mesoscale structures on the occurrence of anomalous propagation (AP) conditions for radio waves, including ducts, superrefractive, and subrefractive conditions, was studied. The chosen meteorological situations are the bora wind and the sporadic sea/land breeze (SB/LB) during three selected cases over a large portion of the northern Adriatic. For this purpose, we used available radio soundings and numerical mesoscale model simulations (of real cases and their sensitivity tests) at a horizontal resolution of 1.5 km and 81 vertical levels. The model simulated the occurrences of AP conditions satisfactorily, although their intensities and frequency were underestimated at times. Certain difficulties appeared in reproducing the vertical profile of the modified refractive index, which is mainly dependent on the accuracy of the modeled humidity. The spatial distributions of summer AP conditions reveal that the surface layer above the sea (roughly between 30 and 100 m asl) is often covered by superrefractive conditions and ducts. The SB is highly associated with the formations of AP conditions: (i) in the first 100 m asl, where trapping and superrefractive conditions form because of the advection of cold and moist air, and (ii) inside the transition layer between the SB body and the elevated return flow in the form of subrefractive conditions. When deep convection occurs, all three types of AP conditions are caused by the downdraft beneath the cumulonimbus cloud base in its mature phase that creates smaller but marked pools of cold and dry air. The bora wind usually creates a pattern of AP conditions associated with the hydraulic jump and influences distribution of AP conditions over the sea surface.

  12. Dosimetric impact of different CT datasets for stereotactic treatment planning using 3D conformal radiotherapy or volumetric modulated arc therapy

    Oechsner, Markus; Odersky, Leonhard; Berndt, Johannes; Combs, Stephanie Elisabeth; Wilkens, Jan Jakob; DUMA, MARCIANA NONA

    2015-01-01

    Background The purpose of this study was to assess the impact on dose to the planning target volume (PTV) and organs at risk (OAR) by using four differently generated CT datasets for dose calculation in stereotactic body radiotherapy (SBRT) of lung and liver tumors. Additionally, dose differences between 3D conformal radiotherapy and volumetric modulated arc therapy (VMAT) plans calculated on these CT datasets were determined. Methods Twenty SBRT patients, ten lung cases and ten liver cases, ...

  13. Recipes for correcting the impact of effective mesoscale resolution on the estimation of extreme winds

    Larsén, Xiaoli Guo; Ott, Søren; Badger, Jake;

    2012-01-01

    Extreme winds derived from simulations using mesoscale models are underestimated due to the effective spatial and temporal resolutions. This is reflected in the spectral domain as an energy deficit in the mesoscale range. The energy deficit implies smaller spectral moments and thus underestimatio...

  14. Eccentricity in Images of Circular and Spherical Targets and its Impact to 3D Object Reconstruction

    Luhmann, T.

    2014-06-01

    This paper discusses a feature of projective geometry which causes eccentricity in the image measurement of circular and spherical targets. While it is commonly known that flat circular targets can have a significant displacement of the elliptical image centre with respect to the true imaged circle centre, it can also be shown that the a similar effect exists for spherical targets. Both types of targets are imaged with an elliptical contour. As a result, if measurement methods based on ellipses are used to detect the target (e.g. best-fit ellipses), the calculated ellipse centre does not correspond to the desired target centre in 3D space. This paper firstly discusses the use and measurement of circular and spherical targets. It then describes the geometrical projection model in order to demonstrate the eccentricity in image space. Based on numerical simulations, the eccentricity in the image is further quantified and investigated. Finally, the resulting effect in 3D space is estimated for stereo and multi-image intersections. It can be stated that the eccentricity is larger than usually assumed, and must be compensated for high-accuracy applications. Spherical targets do not show better results than circular targets. The paper is an updated version of Luhmann (2014) new experimental investigations on the effect of length measurement errors.

  15. The impact of martian mesoscale winds on surface temperature and on the determination of thermal inertia

    Spiga, Aymeric; Forget, François; Madeleine, Jean-Baptiste; Montabone, Luca; Lewis, Stephen R.; Millour, Ehouarn

    2011-04-01

    Radiative control of surface temperature is a key characteristic of the martian environment and its low-density atmosphere. Here we show through meteorological modeling that surface temperature can be far from radiative equilibrium over numerous sloping terrains on Mars, where nighttime mesoscale katabatic winds impact the surface energy budget. Katabatic circulations induce both adiabatic atmospheric heating and enhancement of downward sensible heat flux, which then becomes comparable to radiative flux and acts to warm the ground. Through this mechanism, surface temperature can increase up to 20 K. One consequence is that warm signatures of surface temperature over slopes, observed through infrared spectrometry, cannot be systematically associated with contrasts of intrinsic soil thermal inertia. Apparent thermal inertia maps retrieved thus far possibly contain wind-induced structures. Another consequence is that surface temperature observations close to sloping terrains could allow the validation of model predictions for martian katabatic winds, provided contrasts in intrinsic thermal inertia can be ruled out. The thermal impact of winds is mostly discussed in this paper in the particular cases of Olympus Mons/Lycus Sulci and Terra Meridiani but is generally significant over any sloped terrains in low thermal inertia areas. It is even general enough to apply under daytime conditions, thereby providing a possible explanation for observed afternoon surface cooling, and to ice-covered terrains, thereby providing new insights on how winds could have shaped the present surface of Mars.

  16. A global model simulation for 3-D radiative transfer impact on surface hydrology over the Sierra Nevada and Rocky Mountains

    Lee, W.-L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H.-H.

    2015-05-01

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and the Sierra Nevada, using the global CCSM4 (Community Climate System Model version 4; Community Atmosphere Model/Community Land Model - CAM4/CLM4) with a 0.23° x 0.31° resolution for simulations over 6 years. In a 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation (3-D-PP (plane-parallel)) adjustment to ensure that the energy balance at the surface is conserved in global climate simulations based on 3-D radiation parameterization. We show that deviations in the net surface fluxes are not only affected by 3-D mountains but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher-elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while it decreases for higher elevations, with a minimum in April. Liquid runoff significantly decreases at higher elevations after April due to reduced SWE and precipitation.

  17. Automatic contact algorithm in ppercase[dyna3d] for crashworthiness and impact problems

    This paper presents a new approach for the automatic definition and treatment of mechanical contact in explicit non-linear finite element analysis. Automatic contact offers the benefits of significantly reduced model construction time and fewer opportunities for user error, but faces significant challenges in reliability and computational costs. Key aspects of the proposed new method include automatic identification of adjacent and opposite surfaces in the global search phase, and the use of a well-defined surface normal which allows a consistent treatment of shell intersection and corner contact conditions without adhoc rules. The paper concludes with three examples which illustrate the performance of the newly proposed algorithm in the public ppercase[dyna3d] code. ((orig.))

  18. Impact of 3D-model thickness on FE-simulations of microstructure

    Soppa, Ewa, E-mail: ewa.soppa@mpa.uni-stuttgart.de [Materialpruefungsanstalt (MPA), University of Stuttgart, Pfaffenwaldring 32, 70569 Stuttgart (Germany); Nellesen, Jens [Dortmunder Initiative zur rechnerintegrierten Fertigung (RIF) e.V., Joseph-von-Fraunhofer-Strasse 20, 44227 Dortmund (Germany); Romanova, Varvara [Institute of Strength Physics and Materials Science, SB RAS, pr. Academicheskii 2/1, 634021 Tomsk (Russian Federation); Fischer, Gottfried [Dortmunder Initiative zur rechnerintegrierten Fertigung (RIF) e.V., Joseph-von-Fraunhofer-Strasse 20, 44227 Dortmund (Germany); Crostack, Horst-Artur [Lehrstuhl fuer Qualitaetswesen (LQW), Technische Universitaet Dortmund, Joseph-von-Fraunhofer-Str. 20, 44227 Dortmund (Germany); Beckmann, Felix [GKSS-Research Center, c/o GKSS at DESY, Notkestr. 85, 22607 Hamburg (Germany)

    2010-01-15

    To investigate the effect of model thickness on simulated strain and stress fields in two-phase materials three-dimensional and two-dimensional finite element simulations were performed. The microstructure of the models was generated both by a stochastic procedure and by transforming computer tomograms representing the microstructure into a FE mesh (artificial and realistic models, respectively). The simulated equivalent plastic strains at the surface of the realistic model were compared to equivalent strain maps obtained by digital image correlation of SEM images. The results of this study demonstrate that 2D FE simulations generally do not describe the mechanical behaviour of two-phase materials adequately. The calculated distribution of surface strain coincides with the measured one only if the thickness of 3D model exceeds a minimum value that corresponds to microstructural length scale of the material. Therefore, the thickness should be equal or larger than this minimum to get correct results at the surface.

  19. Electron impact excitation of the 3d104p 2P state in copper

    Differential and total cross sections for the excitation of the 3d104p state in copper by electrons have been measured at incident energies of 20, 40, 60, 80 and 100 eV. The differential cross sections cover the angular range from 2.5o to 130o. Absolute values of the cross sections have been assigned using a generalized oscillator strength technique and the validity of this technique is explored in some detail. The measured cross sections are compared with those predicted by several theories where it is found that the close-coupling calculation of Msezane and Henry accurately predicts the value of the total cross sections for incident energies greater than 20 eV. Agreement between theory and experiment for the differential cross sections is poor. The present measurements of the differential cross sections resolves the ambiguity in the absolute values of the cross sections measured by Trajmar and coworkers. (author)

  20. Radiation-induced second cancers: the impact of 3D-CRT and IMRT

    Information concerning radiation-induced malignancies comes from the A-bomb survivors and from medically exposed individuals, including second cancers in radiation therapy patients. The A-bomb survivors show an excess incidence of carcinomas in tissues such as the gastrointestinal tract, breast, thyroid, and bladder, which is linear with dose up to about 2.5 Sv. There is great uncertainty concerning the dose-response relationship for radiation-induced carcinogenesis at higher doses. Some animal and human data suggest a decrease at higher doses, usually attributed to cell killing; other data suggest a plateau in dose. Radiotherapy patients also show an excess incidence of carcinomas, often in sites remote from the treatment fields; in addition there is an excess incidence of sarcomas in the heavily irradiated in-field tissues. The transition from conventional radiotherapy to three-dimensional conformal radiation therapy (3D-CRT) involves a reduction in the volume of normal tissues receiving a high dose, with an increase in dose to the target volume that includes the tumor and a limited amount of normal tissue. One might expect a decrease in the number of sarcomas induced and also (less certain) a small decrease in the number of carcinomas. All around, a good thing. By contrast, the move from 3D-CRT to intensity-modulated radiation therapy (IMRT) involves more fields, and the dose-volume histograms show that, as a consequence, a larger volume of normal tissue is exposed to lower doses. In addition, the number of monitor units is increased by a factor of 2 to 3, increasing the total body exposure, due to leakage radiation. Both factors will tend to increase the risk of second cancers. Altogether, IMRT is likely to almost double the incidence of second malignancies compared with conventional radiotherapy from about 1% to 1.75% for patients surviving 10 years. The numbers may be larger for longer survival (or for younger patients), but the ratio should remain the same

  1. Radiation-induced second cancers: the impact of 3D-CRT and IMRT

    Hall, Eric J.; Wuu, Cheng-Shie

    2003-01-01

    Information concerning radiation-induced malignancies comes from the A-bomb survivors and from medically exposed individuals, including second cancers in radiation therapy patients. The A-bomb survivors show an excess incidence of carcinomas in tissues such as the gastrointestinal tract, breast, thyroid, and bladder, which is linear with dose up to about 2.5 Sv. There is great uncertainty concerning the dose-response relationship for radiation-induced carcinogenesis at higher doses. Some animal and human data suggest a decrease at higher doses, usually attributed to cell killing; other data suggest a plateau in dose. Radiotherapy patients also show an excess incidence of carcinomas, often in sites remote from the treatment fields; in addition there is an excess incidence of sarcomas in the heavily irradiated in-field tissues. The transition from conventional radiotherapy to three-dimensional conformal radiation therapy (3D-CRT) involves a reduction in the volume of normal tissues receiving a high dose, with an increase in dose to the target volume that includes the tumor and a limited amount of normal tissue. One might expect a decrease in the number of sarcomas induced and also (less certain) a small decrease in the number of carcinomas. All around, a good thing. By contrast, the move from 3D-CRT to intensity-modulated radiation therapy (IMRT) involves more fields, and the dose-volume histograms show that, as a consequence, a larger volume of normal tissue is exposed to lower doses. In addition, the number of monitor units is increased by a factor of 2 to 3, increasing the total body exposure, due to leakage radiation. Both factors will tend to increase the risk of second cancers. Altogether, IMRT is likely to almost double the incidence of second malignancies compared with conventional radiotherapy from about 1% to 1.75% for patients surviving 10 years. The numbers may be larger for longer survival (or for younger patients), but the ratio should remain the same.

  2. A WRF simulation of the impact of 3-D radiative transfer on surface hydrology over the Rocky–Sierra Mountains

    K. N. Liou

    2013-07-01

    Full Text Available Essentially all modern climate models utilize a plane-parallel (PP radiative transfer approach in physics parameterizations; however, the potential errors that arise from neglecting three-dimensional (3-D interactions between radiation and mountains/snow on climate simulations have not been studied and quantified. This paper is a continuation of our efforts to investigate 3-D mountains/snow effects on solar flux distributions and their impact on surface hydrology over the Western United States, specifically the Rocky and Sierra-Nevada Mountains. We use the Weather Research and Forecasting (WRF model applied at a 30 km grid resolution with incorporation of a 3-D radiative transfer parameterization covering a time period from 1 November 2007 to 31 May 2008 during which abundant snowfall occurred. Comparison of the 3-D WRF simulation with the observed snow water equivalent (SWE and precipitation from Snowpack Telemetry (SNOTEL sites shows reasonable agreement in terms of spatial patterns and daily and seasonal variability, although the simulation generally has a positive precipitation bias. We show that 3-D mountain features have a profound impact on the diurnal and monthly variation of surface radiative and heat fluxes and on the consequent elevation-dependence of snowmelt and precipitation distributions. In particular, during the winter months, large deviations (3-D–PP of the monthly mean surface solar flux are found in the morning and afternoon hours due to shading effects for elevations below 2.5 km. During spring, positive deviations shift to earlier morning. Over the mountain tops above 3 km, positive deviations are found throughout the day, with the largest values of 40–60 W m−2 occurring at noon during the snowmelt season of April to May. The monthly SWE deviations averaged over the entire domain show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher elevation areas

  3. Application of Lidar Data and 3D-City Models in Visual Impact Simulations of Tall Buildings

    Czynska, K.

    2015-04-01

    The paper examines possibilities and limitations of application of Lidar data and digital 3D-city models to provide specialist urban analyses of tall buildings. The location and height of tall buildings is a subject of discussions, conflicts and controversies in many cities. The most important aspect is the visual influence of tall buildings to the city landscape, significant panoramas and other strategic city views. It is an actual issue in contemporary town planning worldwide. Over 50% of high-rise buildings on Earth were built in last 15 years. Tall buildings may be a threat especially for historically developed cities - typical for Europe. Contemporary Earth observation, more and more available Lidar scanning and 3D city models are a new tool for more accurate urban analysis of the tall buildings impact. The article presents appropriate simulation techniques, general assumption of geometric and computational algorithms - available methodologies and individual methods develop by author. The goal is to develop the geometric computation methods for GIS representation of the visual impact of a selected tall building to the structure of large city. In reference to this, the article introduce a Visual Impact Size method (VIS). Presented analyses were developed by application of airborne Lidar / DSM model and more processed models (like CityGML), containing the geometry and it's semantics. Included simulations were carried out on an example of the agglomeration of Berlin.

  4. The impact of ICT on market organisation – A case of 3D-models in engineering consultancy

    Falch, Morten

    2014-01-01

    This paper analyses the impact of the use of ICT in production and delivery of technical engineering consultancy services on business structures with regard to industry convergence and transaction costs. The paper takes an empirical study on the introduction of 3D-modelling tools in the building...... section in a Scandinavian engineering consultancy firm as its point of departure. The discussion identifies three different structural aspects, which all are affected by the use of ICT: Internationalisation vs. Local markets, Outsourcing vs. Structural integration, and Division of work between actors...

  5. Large-scale 3D modeling of projectile impact damage in brittle plates

    Seagraves, A.; Radovitzky, R.

    2015-10-01

    The damage and failure of brittle plates subjected to projectile impact is investigated through large-scale three-dimensional simulation using the DG/CZM approach introduced by Radovitzky et al. [Comput. Methods Appl. Mech. Eng. 2011; 200(1-4), 326-344]. Two standard experimental setups are considered: first, we simulate edge-on impact experiments on Al2O3 tiles by Strassburger and Senf [Technical Report ARL-CR-214, Army Research Laboratory, 1995]. Qualitative and quantitative validation of the simulation results is pursued by direct comparison of simulations with experiments at different loading rates and good agreement is obtained. In the second example considered, we investigate the fracture patterns in normal impact of spheres on thin, unconfined ceramic plates over a wide range of loading rates. For both the edge-on and normal impact configurations, the full field description provided by the simulations is used to interpret the mechanisms underlying the crack propagation patterns and their strong dependence on loading rate.

  6. Analysis of thermomechanical response of polycrystalline HMX under impact loading through mesoscale simulations

    D. B. Hardin

    2014-09-01

    Full Text Available We investigate the response of polycrystalline HMX (Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine under impact loading through a 3-dimensional mesoscale model that explicitly accounts for anisotropic elasticity, crystalline plasticity, and heat conduction. This model is used to quantify the variability in temperature and stress fields due to random distributions of the orientations of crystalline grains in HMX under the loading scenarios considered. The simulations carried out concern the response of fully dense HMX polycrystalline ensembles under impact loading at imposed boundary velocities from 50 to 400 m/s. The polycrystalline ensemble studied consists of a geometrically arranged distribution of bi-modally sized and shaped grains. To quantify the effect of crystalline slip, two models with different numbers of available slip systems are used, reflecting differing characterizations of the slip systems of the HMX molecular crystal in the literature. The effects of microstructure and anisotropy on the distribution of heating and stress evolution are investigated. The results obtained indicate that crystalline response anisotropy at the microstructure level plays an important role in influencing both the overall response and the localization of stress and temperature. The overall longitudinal stress is up to 16% higher and the average temperature rise is only half in the material with fewer potential slip systems compared to those in the material with more available slip systems. Local stresses can be as high as twice the average stresses. The results show that crystalline anisotropy induces significant heterogeneities in both mechanical and thermal fields that previously have been neglected in the analyses of the behavior of HMX-based energetic materials.

  7. Damage assessment of particle-toughened carbon fibre composites subjected to impact and compression-after-impact using 3D X-ray tomography

    Bull, D. J.

    2014-01-01

    In this thesis, particle-toughened and untoughened, carbon fibre composite material systems with quasi-isotropic layups were investigated. This was to understand better the toughening behaviour leading to increased impact damage resistance and post-impact compression damage tolerance performance. To achieve this, mechanical testing and conventional ultrasonic C-scan methods were combined with damage assessments using several 3D X-ray computed tomography techniques. These consisted of lab base...

  8. TAMDAR Observation Assimilation in WRF 3D-Var and Its Impact on Hurricane Ike (2008) Forecast

    Hong-Li WANG; Xiang-Yu HUANG

    2012-01-01

    This study evaluates the impact of atmospheric observations from the Tropospheric Airborne Meteorological Data Reporting (TAMDAR) observing system on numerical weather prediction of hurricane Ike (2008) using three-dimensional data assimilation system for the Weather Research and Forecast (WRF) model (WRF 3D-Var). The TAMDAR data assimilation capability is added to WRF 3D-Var by incorporating the TAMDAR observation operator and corresponding observation processing procedure. Two 6-h cycling data assimilation and forecast experiments are conducted. Track and intensity forecasts are verified against the best track data from the National Hurricane Center. The results show that, on average, assimilating TAMDAR observations has a positive impact on the forecasts of hurricane Ike. The TAMDAR data assimilation reduces the track errors by about 30 km for 72-h forecasts. Improvements in intensity forecasts are also seen after four 6-h data assimilation cycles. Diagnostics show that assimilation of TAMDAR data improves subtropical ridge and steering flow in regions along Ike's track, resulting in better forecasts.

  9. Simulation of the Initial 3-D Instability of an Impacting Drop Vortex Ring

    Sigurdson, Lorenz; Wiwchar, Justin; Walther, Jens Honore

    2013-01-01

    Computational vortex particle method simulations of a perturbed vortex ring are performed to recreate and understand the instability seen in impacting water drop experiments. Three fundamentally different initial vorticity distributions are used to attempt to trigger a Widnall instability, a...... Rayleigh centrifugal instability, or a vortex breakdown-type instability. Simulations which simply have a perturbed solitary ring result in an instability similar to that seen experimentally. Waviness of the core which would be expected from a Widnall instability is not visible. Adding an opposite......, though tests are not conclusive. Perhaps the opposite-signed secondary vortex was not strong enough or placed appropriately. Elliptical streamlines , as expected, are visible in the core of the solitary ring at early times. Support from the Canadian Natural Sciences and Engineering Research Council grant...

  10. The Impact of Mesoscale Environmental Uncertainty on the Prediction of a Tornadic Supercell Storm Using Ensemble Data Assimilation Approach

    Nusrat Yussouf

    2013-01-01

    Full Text Available Numerical experiments over the past years indicate that incorporating environmental variability is crucial for successful very short-range convective-scale forecasts. To explore the impact of model physics on the creation of environmental variability and its uncertainty, combined mesoscale-convective scale data assimilation experiments are conducted for a tornadic supercell storm. Two 36-member WRF-ARW model-based mesoscale EAKF experiments are conducted to provide background environments using either fixed or multiple physics schemes across the ensemble members. Two 36-member convective-scale ensembles are initialized using background fields from either fixed physics or multiple physics mesoscale ensemble analyses. Radar observations from four operational WSR-88Ds are assimilated into convective-scale ensembles using ARPS model-based 3DVAR system and ensemble forecasts are launched. Results show that the ensemble with background fields from multiple physics ensemble provides more realistic forecasts of significant tornado parameter, dryline structure, and near surface variables than ensemble from fixed physics background fields. The probabilities of strong low-level updraft helicity from multiple physics ensemble correlate better with observed tornado and rotation tracks than probabilities from fixed physics ensemble. This suggests that incorporating physics diversity across the ensemble can be important to successful probabilistic convective-scale forecast of supercell thunderstorms, which is the main goal of NOAA’s Warn-on-Forecast initiative.

  11. Testing remote sensing on artificial observations: impact of drizzle and 3-D cloud structure on effective radius retrievals

    T. Zinner

    2010-10-01

    Full Text Available Remote sensing of cloud effective particle size with passive sensors like the Moderate Resolution Imaging Spectroradiometer (MODIS is an important tool for cloud microphysical studies. As a measure of the radiatively relevant droplet size, effective radius can be retrieved with different combinations of visible through shortwave and midwave infrared channels. In practice, retrieved effective radii from these combinations can be quite different. This difference is perhaps indicative of different penetration depths and path lengths for the spectral reflectances used. In addition, operational liquid water cloud retrievals are based on the assumption of a relatively narrow distribution of droplet sizes; the role of larger precipitation particles in these distributions is neglected. Therefore, possible explanations for the discrepancy in some MODIS spectral size retrievals could include 3-D radiative transport effects, including sub-pixel cloud inhomogeneity, and/or the impact of drizzle formation.

    For three cloud cases the possible factors of influence are isolated and investigated in detail by the use of simulated cloud scenes and synthetic satellite data: marine boundary layer cloud scenes from large eddy simulations (LES with detailed microphysics are combined with Monte Carlo radiative transfer calculations that explicitly account for the detailed droplet size distributions as well as 3-D radiative transfer to simulate MODIS observations. The operational MODIS optical thickness and effective radius retrieval algorithm is applied to these and the results are compared to the given LES microphysics.

    We investigate two types of marine cloud situations each with and without drizzle from LES simulations: (1 a typical daytime stratocumulus deck at two times in the diurnal cycle and (2 one scene with scattered cumulus. Only small impact of drizzle formation on the retrieved domain average and on the differences between the three

  12. The impact of forest regeneration on streamflow in 12 meso-scale humid tropical catchments

    H. E. Beck

    2013-03-01

    Full Text Available Although regenerating forests make up an increasingly large portion of humid tropical landscapes, comparatively little is known of their water use and effects on streamflow (Q. Since the 1950s the island of Puerto Rico has experienced widespread abandonment of pastures and agricultural lands, followed by forest regeneration. This paper examines the possible impacts of forest regeneration on several Q metrics for 12 meso-scale catchments (23–346 km2; mean precipitation 1720–3422 mm yr−1 with long (33–51 yr and simultaneous records for Q, precipitation (P, potential evapotranspiration (PET, and land cover. A simple spatially-lumped, conceptual rainfall-runoff model that uses daily P and PET time series as inputs (HBV-light was used to simulate Q for each catchment. Annual time series of observed and simulated values of four Q metrics were calculated. A least-squares trend was fitted through annual time series of the residual difference between observed and simulated time series of each Q metric. From this the total cumulative change  was calculated, representing the change in each metric after controlling for climate variability and water storage carry-over effects between years. Negative values of  were found for most catchments and Q metrics, suggesting enhanced actual evapotranspiration overall following forest regeneration. However, correlations between changes in urban or forest area and values of  were insignificant (p ≥ 0.389 for all Q metrics. This suggests there is no convincing evidence that changes in the chosen Q metrics in these Puerto Rican catchments can be ascribed to changes in urban or forest area. The present results are in line with previous studies of meso- and macro-scale (sub-tropical catchments, which generally found no significant change in Q that can be attributed to changes in forest cover. Possible explanations for the apparent lack of a clear signal may include: errors in the land-cover, climate, Q

  13. Multi-scale 3D imaging of carbon fibre laminate impact and compression after impact damage using computed tomography and laminography

    Bull, D. J.; Helfen, L.; Sinclair, I.; Spearing, S.M.

    2012-01-01

    3D X-ray computed tomography (CT) was used to study the effects of particle toughening within unidirectional carbon fibre reinforced polymer (CFRP) materials subjected to impact damage, followed by ex situ CT of compression after impact (CAI) tests at incremental loads. A multi-scale approach utilizing synchrotron radiation CT and laminography was used to study the damage micro-mechanisms of impact-loaded specimens, and micro-focus CT (?CT) assessed damage at meso- and macro-scopic levels. Fo...

  14. Propagation of Impact-Induced Shock Waves in Heterogenous Rocks Using Mesoscale Modeling

    Güldemeister, N.; Durr, N.; Wünnemann, K.; Elbeshausen, D.; Hiermaier, S.

    2011-03-01

    In the framework of the “MEMIN” project, the effect of porosity in dry and water-saturated sandstone on shock wave loading is investigated. We conducted a series of numerical experiments of shock wave propagation in porous material using macro- as well as mesoscale models.

  15. Testing remote sensing on artificial observations: impact of drizzle and 3-D cloud structure on effective radius retrievals

    T. Zinner

    2010-01-01

    Full Text Available Remote sensing of cloud effective particle size with passive sensors like the Moderate Resolution Imaging Spectroradiometer (MODIS is an important tool for cloud microphysical studies. As a measure of the radiatively relevant droplet size, effective radius can be retrieved with different combinations of visible through shortwave and midwave infrared channels. In practice, retrieved effective radii from these combinations can be quite different. This difference is perhaps indicative of different penetration depths and path lengths for the spectral reflectances used. In addition, operational liquid water cloud retrievals are based on the assumption of a relatively narrow distribution of droplet sizes; the role of larger precipitation particles in these distributions is neglected. Therefore, possible explanations for the discrepancy in some MODIS spectral size retrievals could include 3-D radiative transport effects, including sub-pixel cloud inhomogeneity, and/or the impact of drizzle formation.

    The possible factors of influence are isolated and investigated in detail by the use of simulated cloud scenes and synthetic satellite data: marine boundary layer cloud scenes from large eddy simulations (LES with detailed microphysics are combined with Monte Carlo radiative transfer calculations that explicitly account for the detailed droplet size distributions as well as 3-D radiative transfer to simulate MODIS observations. The operational MODIS optical thickness and effective radius retrieval algorithm is applied to these and the results are compared to the given LES microphysics.

    We investigate two types of marine cloud situations each with and without drizzle from LES simulations: (1 a typical daytime stratocumulus deck at two times in the diurnal cycle and (2 one scene with scattered cumulus. Only small impact of drizzle formation on the retrieved domain average and on the differences between the three effective radius retrievals

  16. Impact of mesoscale order on open-circuit voltage in organic solar cells.

    Poelking, Carl; Tietze, Max; Elschner, Chris; Olthof, Selina; Hertel, Dirk; Baumeier, Björn; Würthner, Frank; Meerholz, Klaus; Leo, Karl; Andrienko, Denis

    2015-04-01

    Structural order in organic solar cells is paramount: it reduces energetic disorder, boosts charge and exciton mobilities, and assists exciton splitting. Owing to spatial localization of electronic states, microscopic descriptions of photovoltaic processes tend to overlook the influence of structural features at the mesoscale. Long-range electrostatic interactions nevertheless probe this ordering, making local properties depend on the mesoscopic order. Using a technique developed to address spatially aperiodic excitations in thin films and in bulk, we show how inclusion of mesoscale order resolves the controversy between experimental and theoretical results for the energy-level profile and alignment in a variety of photovoltaic systems, with direct experimental validation. Optimal use of long-range ordering also rationalizes the acceptor-donor-acceptor paradigm for molecular design of donor dyes. We predict open-circuit voltages of planar heterojunction solar cells in excellent agreement with experimental data, based only on crystal structures and interfacial orientation. PMID:25532071

  17. Impact of nonlinear 3D equilibrium response on edge topology and divertor heat load in Wendelstein 7-X

    Suzuki, Y.; Geiger, J.

    2016-06-01

    The impact of the 3D equilibrium response on the plasma edge topology is studied. In Wendelstein 7-X, the island divertor concept is used to assess scenarios for quasi-steady-state operation. However, the boundary islands necessary for the island divertor are strongly susceptible to plasma beta and toroidal current density effects because of the low magnetic shear. The edge magnetic topology for quasi-steady-state operation scenarios is calculated with the HINT-code to study the accompanying changes of the magnetic field structures. Two magnetic configurations have been selected, which had been investigated in self consistent neoclassical transport simulations for low bootstrap current but which use the alternative natural island chains to the standard iota value of 1 (ι b   =  5/5, periodicity), namely, at high-iota (ι b   =  5/4) and at low-iota (ι b   =  5/6). For the high-iota configuration, the boundary islands are robust but the stochasticity around them is enhanced with beta. The addition of toroidal current densities enhances the stochasticity further. The increased stochasticity changes the footprints on in-vessel components with a direct impact on the corresponding heat loads. In the low-iota configuration the boundary islands used for the island divertor are dislocated radially due to the low shear and even show healing effects, i.e. the island width vanishes. In the latter case the plasma changes from divertor to limiter operation. To realize the predicted high-performance quasi-steady-state operation of the transport simulations, further adjustments of the magnetic configuration may be necessary to achieve a proper divertor compatibility of the scenarios.

  18. The impact of anticyclonic mesoscale structures on microbial food webs in the Mediterranean Sea

    U. Christaki

    2011-01-01

    Full Text Available The abundance and activity of the major members of the heterotrophic microbial community – from viruses to ciliates – were studied along a longitudinal transect across the Mediterranean Sea in the summer of 2008. The Mediterranean Sea is characterized by a west to the east gradient of deepening of DCM (deep chlorophyll maximum and increasing oligotrophy reflected in gradients of heterotrophic microbial biomass and production. However, within this longitudinal trend, hydrological mesoscale features exist and likely influence microbial dynamics. We show here the importance of mesoscale structures by a description of the structure and function of the microbial food web through an investigation of 3 geographically distant eddies within a longitudinal transect. Three selected sites each located in the center of an anticyclonic eddy were intensively investigated: in the Algero-Provencal Basin (St. A, the Ionian Basin (St. B, and the Levantine Basin (St. C. The 3 geographically distant eddies showed the lowest values of the different heterotrophic compartments of the microbial food web, and except for viruses in site C, all stocks were higher in the neighboring stations outside the eddies. During our study the 3 eddies showed equilibrium between GCP (Gross Community Production and DCR (Dark Community Respiration; moreover, the west-east (W-E gradient was evident in terms of heterotrophic biomass but not in terms of production. Means of integrated PPp values were higher at site B (~190 mg C m−2 d−1 and about 15% lower at sites A and C (~160 mg C m−2 d−1. Net community production fluxes were similar at all three stations exhibiting equilibrium between gross community production and dark community respiration.

  19. Impact of intensified Indian Ocean winds on mesoscale variability in the Agulhas system

    Backeberg, Björn C.; Penven, Pierrick; Rouault, Mathieu

    2012-08-01

    South of Africa, the Agulhas Current retroflects and a portion of its waters flows into the South Atlantic Ocean, typically in the form of Agulhas rings. This flux of warm and salty water from the Indian to the Atlantic Ocean (the Agulhas leakage) is now recognized as a key element in global climate. An Agulhas leakage shutdown has been associated with extreme glacial periods, whereas a vigorous increase has preceded shifts towards interglacials. In the absence of a coherent observing system, studies of the Agulhas have relied heavily on ocean models, which have revealed a possible recent increase in Agulhas leakage. However, owing to the high levels of oceanic turbulence, model solutions of the region are highly sensitive to their numerical choices, stressing the need for observations to confirm these important model results. Here, using satellite altimetry observations from 1993 to 2009, we show that the mesoscale variability of the Agulhas system, in particular in the Mozambique Channel and south of Madagascar, has intensified. This seems to result from an increased South Equatorial Current driven by enhanced trade winds over the tropical Indian Ocean. Overall, the intensified mesoscale variability of the Agulhas system is reflected in accelerated eddy propagation, in its source regions as well as the retroflection from which eddies propagate into the South Atlantic Ocean. This suggests that the Agulhas leakage may have increased from 1993 to 2009, confirming previous modelling studies that have further implied an increased Agulhas leakage may compensate a deceleration of meridional overturning circulation associated with a freshening of the North Atlantic Ocean.

  20. Atmospheric Motion Vectors from INSAT-3D: Initial quality assessment and its impact on track forecast of cyclonic storm NANAUK

    Deb, S. K.; Kishtawal, C. M.; Kumar, Prashant; Kiran Kumar, A. S.; Pal, P. K.; Kaushik, Nitesh; Sangar, Ghansham

    2016-03-01

    The advanced Indian meteorological geostationary satellite INSAT-3D was launched on 26 July 2013 with an improved imager and an infrared sounder and is placed at 82°E over the Indian Ocean region. With the advancement in retrieval techniques of different atmospheric parameters and with improved imager data have enhanced the scope for better understanding of the different tropical atmospheric processes over this region. The retrieval techniques and accuracy of one such parameter, Atmospheric Motion Vectors (AMV) has improved significantly with the availability of improved spatial resolution data along with more options of spectral channels in the INSAT-3D imager. The present work is mainly focused on providing brief descriptions of INSAT-3D data and AMV derivation processes using these data. It also discussed the initial quality assessment of INSAT-3D AMVs for a period of six months starting from 01 February 2014 to 31 July 2014 with other independent observations: i) Meteosat-7 AMVs available over this region, ii) in-situ radiosonde wind measurements, iii) cloud tracked winds from Multi-angle Imaging Spectro-Radiometer (MISR) and iv) numerical model analysis. It is observed from this study that the qualities of newly derived INSAT-3D AMVs are comparable with existing two versions of Meteosat-7 AMVs over this region. To demonstrate its initial application, INSAT-3D AMVs are assimilated in the Weather Research and Forecasting (WRF) model and it is found that the assimilation of newly derived AMVs has helped in reduction of track forecast errors of the recent cyclonic storm NANAUK over the Arabian Sea. Though, the present study is limited to its application to one case study, however, it will provide some guidance to the operational agencies for implementation of this new AMV dataset for future applications in the Numerical Weather Prediction (NWP) over the south Asia region.

  1. The impact of active versus passive use of 3D technology: a study of dental students at Wuhan University, China.

    Qi, Shengcai; Yan, Yanhong; Li, Rong; Hu, Jian

    2013-11-01

    A variety of computer-based 3D applications are becoming regular tools for dental students for self-learning. This study investigated the learning effectiveness of junior dental students in passively versus actively controlling the 3D virtual scenes of implant dentistry. Participants were randomized into three groups and were exposed to three designs of educational materials: traditional 2D webpages (2D); active-controlling 3D webpages (A3); and passive-controlling 3D webpages (P3). After reviewing the webpages, the participants were asked to complete a posttest to assess the relative quality of information acquisition. Their responses were compared and analyzed. The results indicated that the P3 group received the highest score of 26.4±3.1 on the post-test, significantly better than the A3 group, which had the worst performance with a score of 20.3±4.0. The 2D group received a score of 24.2±4.6. There was a significant correlation between the scores on a mental rotations test and the subjects' performance on the posttest (pimpacts on students, especially for individuals with low spatial ability. PMID:24192420

  2. Impact of mesoscale eddies on water transport between the Pacific Ocean and the Bering Sea

    Prants, S V; Budyansky, M V; Uleysky, M Yu

    2013-01-01

    Sea surface height anomalies observed by satellites in 1993--2012 are combined with simulation and observations by surface drifters and Argo floats to study water flow pattern in the Near Strait (NS) connected the Pacific Ocean with the Bering Sea. Daily Lagrangian latitudinal maps, computed with the AVISO surface velocity field, and calculation of the transport across the strait show that the flow through the NS is highly variable and controlled by mesoscale and submesoscale eddies in the area. On the seasonal scale, the flux through the western part of the NR is negatively correlated with the flux through its eastern part ($r=-0.93$). On the interannual time scale, a significant positive correlation ($r=0.72$) is diagnosed between the NS transport and the wind stress in winter. Increased southward component of the wind stress decreases the northward water transport through the strait. Positive wind stress curl over the strait area in winter--spring generates the cyclonic circulation and thereby enhances the...

  3. Impact of the common genetic associations of age-related macular degeneration upon systemic complement component C3d levels.

    Tina Ristau

    Full Text Available Age-related macular degeneration (AMD is a common condition that leads to severe vision loss and dysregulation of the complement system is thought to be associated with the disease. To investigate associations of polymorphisms in AMD susceptibility genes with systemic complement activation, 2655 individuals were genotyped for 32 single nucleotide polymorphisms (SNPs in or near 23 AMD associated risk genes. Component 3 (C3 and its catabolic fragment C3d were measured in serum and AMD staging was performed using multimodal imaging. The C3d/C3 ratio was calculated and associations with environmental factors, SNPs and various haplotypes of complement factor H (CFH genes and complement factor B (CFB genes were analyzed. Linear models were built to measure the influence of genetic variants on the C3d/C3 ratio. The study cohort included 1387 patients with AMD and 1268 controls. Higher C3d/C3 ratios were found for current smoker (p = 0.002, higher age (p = 1.56 × 10(-7, AMD phenotype (p = 1.15 × 10(-11 and the two SNPs in the C3 gene rs6795735 (p = 0.04 and rs2230199 (p = 0.04. Lower C3d/C3 ratios were found for diabetes (p = 2.87 × 10(-6, higher body mass index (p = 1.00 × 10(-13, the SNPs rs1410996 (p = 0.0001, rs800292 (p = 0.003, rs12144939 (p = 4.60 × 10(-6 in CFH, rs4151667 (p = 1.01 × 10(-5 in CFB and individual haplotypes in CFH and CFB. The linear model revealed a corrected R-square of 0.063 including age, smoking status, gender, and genetic polymorphisms explaining 6.3% of the C3d/C3 ratio. After adding the AMD status the corrected R-square was 0.067. In conclusion, none of the evaluated genetic polymorphisms showed an association with increased systemic complement activation apart from two SNPs in the C3 gene. Major genetic and non-genetic factors for AMD were not associated with systemic complement activation.

  4. Exploring the Impact of Visual Complexity Levels in 3d City Models on the Accuracy of Individuals' Orientation and Cognitive Maps

    Rautenbach, V.; Çöltekin, A.; Coetzee, S.

    2015-08-01

    In this paper we report results from a qualitative user experiment (n=107) designed to contribute to understanding the impact of various levels of complexity (mainly based on levels of detail, i.e., LoD) in 3D city models, specifically on the participants' orientation and cognitive (mental) maps. The experiment consisted of a number of tasks motivated by spatial cognition theory where participants (among other things) were given orientation tasks, and in one case also produced sketches of a path they `travelled' in a virtual environment. The experiments were conducted in groups, where individuals provided responses on an answer sheet. The preliminary results based on descriptive statistics and qualitative sketch analyses suggest that very little information (i.e., a low LoD model of a smaller area) might have a negative impact on the accuracy of cognitive maps constructed based on a virtual experience. Building an accurate cognitive map is an inherently desired effect of the visualizations in planning tasks, thus the findings are important for understanding how to develop better-suited 3D visualizations such as 3D city models. In this study, we specifically discuss the suitability of different levels of visual complexity for development planning (urban planning), one of the domains where 3D city models are most relevant.

  5. Nuclear contribution into single-event upset in 3D on-board electronics at moderate energy cosmic proton impact

    Chechenin, N. G.; Chuvilskaya, T. V.; Shirokova, A. A.

    2016-05-01

    In continuation and development of our previous works where nuclear reactions of moderate energy (10 - 400 MeV) protons with Si, Al and W have been investigated, the results of reactions with Cu are reported in this paper. Cu is a most important component in composition of materials in contact pads and pathways of modern and perspective ultra large-scale integration circuitry, especially in 3D topology.

  6. Impact of continuing scaling on the device performance of 3D cylindrical junction-less charge trapping memory

    Xinkai, Li; Zongliang, Huo; Lei, Jin; Dandan, Jiang; Peizhen, Hong; Qiang, Xu; Zhaoyun, Tang; Chunlong, Li; Tianchun, Ye

    2015-09-01

    This work presents a comprehensive analysis of 3D cylindrical junction-less charge trapping memory device performance regarding continuous scaling of the structure dimensions. The key device performance, such as program/erase speed, vertical charge loss, and lateral charge migration under high temperature are intensively studied using the Sentaurus 3D device simulator. Although scaling of channel radius is beneficial for operation speed improvement, it leads to a retention challenge due to vertical leakage, especially enhanced charge loss through TPO. Scaling of gate length not only decreases the program/erase speed but also leads to worse lateral charge migration. Scaling of spacer length is critical for the interference of adjacent cells and should be carefully optimized according to specific cell operation conditions. The gate stack shape is also found to be an important factor affecting the lateral charge migration. Our results provide guidance for high density and high reliability 3D CTM integration. Project supported by the National Natural Science Foundation of China (Nos. 61474137, 61176073, 61306107).

  7. Impact of deep convection in the tropical tropopause layer in West Africa: in-situ observations and mesoscale modelling

    F. Fierli

    2010-02-01

    Full Text Available We present the analysis of the impact of convection on the composition of the tropical tropopause layer region (TTL in West-Africa during the AMMA-SCOUT campaign. Geophysica M55 aircraft observations of water vapor, ozone, aerosol and CO2 show perturbed values at altitudes ranging from 14 km to 17 km (above the main convective outflow and satellite data indicates that air detrainment is likely originated from convective cloud east of the flight. Simulations of the BOLAM mesoscale model, nudged with infrared radiance temperatures, are used to estimate the convective impact in the upper troposphere and to assess the fraction of air processed by convection. The analysis shows that BOLAM correctly reproduces the location and the vertical structure of convective outflow. Model-aided analysis indicates that in the outflow of a large convective system, deep convection can largely modify chemical composition and aerosol distribution up to the tropical tropopause. Model analysis also shows that, on average, deep convection occurring in the entire Sahelian transect (up to 2000 km E of the measurement area has a non negligible role in determining TTL composition.

  8. Impact of deep convection in the tropical tropopause layer in West Africa: in-situ observations and mesoscale modelling

    F. Fierli

    2011-01-01

    Full Text Available We present the analysis of the impact of convection on the composition of the tropical tropopause layer region (TTL in West-Africa during the AMMA-SCOUT campaign. Geophysica M55 aircraft observations of water vapor, ozone, aerosol and CO2 during August 2006 show perturbed values at altitudes ranging from 14 km to 17 km (above the main convective outflow and satellite data indicates that air detrainment is likely to have originated from convective cloud east of the flights. Simulations of the BOLAM mesoscale model, nudged with infrared radiance temperatures, are used to estimate the convective impact in the upper troposphere and to assess the fraction of air processed by convection. The analysis shows that BOLAM correctly reproduces the location and the vertical structure of convective outflow. Model-aided analysis indicates that convection can influence the composition of the upper troposphere above the level of main outflow for an event of deep convection close to the observation site. Model analysis also shows that deep convection occurring in the entire Sahelian transect (up to 2000 km E of the measurement area has a non negligible role in determining TTL composition.

  9. 3D video

    Lucas, Laurent; Loscos, Céline

    2013-01-01

    While 3D vision has existed for many years, the use of 3D cameras and video-based modeling by the film industry has induced an explosion of interest for 3D acquisition technology, 3D content and 3D displays. As such, 3D video has become one of the new technology trends of this century.The chapters in this book cover a large spectrum of areas connected to 3D video, which are presented both theoretically and technologically, while taking into account both physiological and perceptual aspects. Stepping away from traditional 3D vision, the authors, all currently involved in these areas, provide th

  10. 3D Animation Essentials

    Beane, Andy

    2012-01-01

    The essential fundamentals of 3D animation for aspiring 3D artists 3D is everywhere--video games, movie and television special effects, mobile devices, etc. Many aspiring artists and animators have grown up with 3D and computers, and naturally gravitate to this field as their area of interest. Bringing a blend of studio and classroom experience to offer you thorough coverage of the 3D animation industry, this must-have book shows you what it takes to create compelling and realistic 3D imagery. Serves as the first step to understanding the language of 3D and computer graphics (CG)Covers 3D anim

  11. A comparison of multi-scale 3D X-ray tomographic inspection techniques for assessing carbon fibre composite impact damage

    Bull, D. J.; Helfen, L.; Sinclair, I.; Spearing, S.M.; Baumbach, T.

    2013-01-01

    Tomographic imaging using both laboratory sources and synchrotron radiation (SR) was performed to achieve a multi-scale damage assessment of carbon fibre composites subjected to impact damage, allowing various internal damage modes to be studied in three-dimensions. The focus of this study is the comparison of different tomographic methods, identifying their capabilities and limitations, and their use in a complementary manner for creating an overall 3D damage assessment at both macroscopic a...

  12. An amalgamation of 3D city models in urban air quality modelling for improving visual impact analysis

    Ujang, U.; Anton, F.; Ariffin, A.;

    2015-01-01

    Geographical Information Systems (GISs) can be seen as a common tool to map and visualize the air quality index based on geographical locations. However, in urban areas, the area resolution for air quality models is less than 2 kilometres.Since the main emissions agent in urban areas is predomina......,engineers and policy makers to design the street geometry (building height and width, green areas, pedestrian walks, roads width, etc.).......Geographical Information Systems (GISs) can be seen as a common tool to map and visualize the air quality index based on geographical locations. However, in urban areas, the area resolution for air quality models is less than 2 kilometres.Since the main emissions agent in urban areas is...... physical data input. The Level of Details (LoD) in 3D city models (i.e. LoD1 and LoD2) ascertains the potentials of implementing air quality modelling for urban areas. Therefore, this research is focused towards investigating the integration of 3D city models in air quality modelling for urban areas. The...

  13. Brief communication: Impact of mesh resolution for MISMIP and MISMIP3d experiments using Elmer/Ice

    Gagliardini, O.; Brondex, J.; Gillet-Chaulet, F.; Tavard, L.; Peyaud, V.; Durand, G.

    2016-02-01

    The dynamical contribution of marine ice sheets to sea level rise is largely controlled by grounding line (GL) dynamics. Two marine ice sheet model intercomparison exercises, namely MISMIP and MISMIP3d, have been proposed to the community to test and compare the ability of models to capture the GL dynamics. Both exercises are known to present a discontinuity of the friction at the GL, which is believed to increase the model sensitivity to mesh resolution. Here, using Elmer/Ice, the only Stokes model which completed both intercomparisons, the sensitivity to the mesh resolution is studied from an extended MISMIP experiment in which the friction continuously decreases over a transition distance and equals zero at the GL. Using this MISMIP-like setup, it is shown that the sensitivity to the mesh resolution is not improved for a vanishing friction at the GL. For the original MISMIP experiment, i.e. for a discontinuous friction at the GL, we further show that the results are moreover very sensitive to the way the friction is interpolated in the close vicinity of the GL. In the light of these new insights, and thanks to increased computing resources, new results for the MISMIP3d experiments obtained for higher resolutions than previously published are made available for future comparisons as the Supplement.

  14. The role of mesoscale meteorology in modulating the 222Rn concentrations in Huelva (Spain) – impact of phosphogypsum piles

    The combined analysis of 222Rn activity concentrations and mesoscale meteorological conditions at Huelva city (Spain) was addressed in this study to understand the potential impact of phosphogypsum piles on the 222Rn activity concentrations registered at this area. Hourly mean data from April 2012 to February 2013 registered at two sampling sites (Huelva city and in the background station of El Arenosillo, located 27 km to the south-east) have been used in the study. The results of the present study showed a large difference in mean radon concentrations between the two stations during the sampling period, 6.3 ± 0.4 Bq m−3 at Huelva and 3.0 ± 0.2 Bq m−3 at El Arenosillo. The analysis has demonstrated that hourly 222Rn concentrations at Huelva city above 22 Bq m−3, with nocturnal peaks up to 50 Bq/m3, mainly coincided with the occurrence of a pure sea-land breeze cycle. Mesoscale circulations in this region are mainly characterized by two patterns of sea-land breeze, pure and non-pure, with the phosphosypsum piles directly upstream (south) of the city during the afternoon on pure sea-breeze days. The difference between mean 222Rn activity concentrations at Huelva city were 9.9 ± 1.5 Bq m−3 for the pure pattern and 3.3 ± 0.5 Bq m−3 for the non-pure pattern, while in the background station concentrations were 3.9 ± 0.4 Bq m−3 and 2.8 ± 0.4 Bq m−3 respectively. Considering these large differences, a detailed analysis of composites and case studies of representative sea-land breeze cycles of both types and their impact on 222Rn activity concentration was performed. The results suggested that the presence of the phosphogypsum piles was necessary in order to justify the high 222Rn activity concentrations observed at Huelva compared with the background station in the afternoons on pure sea breeze days (1.5–2.0 Bq m−3). On the other hand, large night time differences between the two sites on these days were likely to be

  15. 3-D numerical approach to simulate the overtopping volume caused by an impulse wave comparable to avalanche impact in a reservoir

    Gabl, R.; Seibl, J.; Gems, B.; Aufleger, M.

    2015-12-01

    The impact of an avalanche in a reservoir induces impulse waves, which pose a threat to population and infrastructure. For a good approximation of the generated wave height and length as well as the resulting overtopping volume over structures and dams, formulas, which are based on different simplifying assumptions, can be used. Further project-specific investigations by means of a scale model test or numerical simulations are advisable for complex reservoirs as well as the inclusion of hydraulic structures such as spillways. This paper presents a new approach for a 3-D numerical simulation of the avalanche impact in a reservoir. In this model concept the energy and mass of the avalanche are represented by accelerated water on the actual hill slope. Instead of snow, only water and air are used to simulate the moving avalanche with the software FLOW-3D. A significant advantage of this assumption is the self-adaptation of the model avalanche onto the terrain. In order to reach good comparability of the results with existing research at ETH Zürich, a simplified reservoir geometry is investigated. Thus, a reference case has been analysed including a variation of three geometry parameters (still water depth in the reservoir, freeboard of the dam and reservoir width). There was a good agreement of the overtopping volume at the dam between the presented 3-D numerical approach and the literature equations. Nevertheless, an extended parameter variation as well as a comparison with natural data should be considered as further research topics.

  16. EUROPEANA AND 3D

    D. Pletinckx

    2012-09-01

    Full Text Available The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  17. Parameterization of 3D Radiative Transfer over Mountains and Investigation of its Impact on Surface Hydrology over the Western United States Using WRF

    Gu, Y.; Liou, K.; Leung, L.; Lee, W.; Fovell, R. G.

    2013-12-01

    Modern climate models have used a plane-parallel (PP) radiative transfer approach in physics parameterizations; however, the potential errors that arise from neglecting three-dimensional (3D) interactions between radiation and mountains/snow on climate simulations have not been studied and quantified. We have developed a surface solar radiation parameterization based on the regression analysis of flux deviations between 3D and conventional PP radiative transfer models, which has been incorporated into the Weather Research and Forecasting (WRF) model to investigate the impact of the spatial and temporal distribution and variation of surface solar fluxes on surface hydrology. Using the Rocky and Sierra-Nevada Mountains in the Western United States as a testbed, the WRF model with the incorporation of the 3D parameterization is applied at a 30 km grid resolution covering a time period from November 1, 2007 to May 31, 2008 during which abundant snowfall occurred. Comparison of the 3D WRF simulation with the observed snow water equivalent (SWE) and precipitation from Snowpack Telemetry (SNOTEL) sites shows reasonable agreement in terms of spatial patterns and daily and seasonal variability, although the simulation generally has a positive precipitation bias. We show that 3D mountain features have a profound impact on the diurnal and monthly variation of surface radiative and heat fluxes and on the consequent elevation-dependence of snowmelt and precipitation distributions. For lower elevations, positive deviations (3D - PP) of the monthly mean surface solar flux are found in the morning and afternoon hours, while negative deviations are shown between 10 am-2 pm during the winter months, leading to reduced diurnal variations. Over the mountain tops above 3 km, positive deviations are found throughout the day, with the largest values of 40 - 60 W/m2 occurring at noon during the snowmelt season of April to May. The monthly SWE deviations averaged over the entire domain

  18. Solid works 3D

    This book explains modeling of solid works 3D and application of 3D CAD/CAM. The contents of this book are outline of modeling such as CAD and 2D and 3D, solid works composition, method of sketch, writing measurement fixing, selecting projection, choosing condition of restriction, practice of sketch, making parts, reforming parts, modeling 3D, revising 3D modeling, using pattern function, modeling necessaries, assembling, floor plan, 3D modeling method, practice floor plans for industrial engineer data aided manufacturing, processing of CAD/CAM interface.

  19. Development of a Hausdorff distance based 3D quantification technique to evaluate the CT imaging system impact on depiction of lesion morphology

    Sahbaee, Pooyan; Robins, Marthony; Solomon, Justin; Samei, Ehsan

    2016-04-01

    The purpose of this study was to develop a 3D quantification technique to assess the impact of imaging system on depiction of lesion morphology. Regional Hausdorff Distance (RHD) was computed from two 3D volumes: virtual mesh models of synthetic nodules or "virtual nodules" and CT images of physical nodules or "physical nodules". The method can be described in following steps. First, the synthetic nodule was inserted into anthropomorphic Kyoto thorax phantom and scanned in a Siemens scanner (Flash). Then, nodule was segmented from the image. Second, in order to match the orientation of the nodule, the digital models of the "virtual" and "physical" nodules were both geometrically translated to the origin. Then, the "physical" was gradually rotated at incremental 10 degrees. Third, the Hausdorff Distance was calculated from each pair of "virtual" and "physical" nodules. The minimum HD value represented the most matching pair. Finally, the 3D RHD map and the distribution of RHD were computed for the matched pair. The technique was scalarized using the FWHM of the RHD distribution. The analysis was conducted for various shapes (spherical, lobular, elliptical, and speculated) of nodules. The calculated FWHM values of RHD distribution for the 8-mm spherical, lobular, elliptical, and speculated "virtual" and "physical" nodules were 0.23, 0.42, 0.33, and 0.49, respectively.

  20. Unassisted 3D camera calibration

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  1. Open 3D Projects

    Felician ALECU

    2010-01-01

    Full Text Available Many professionals and 3D artists consider Blender as being the best open source solution for 3D computer graphics. The main features are related to modeling, rendering, shading, imaging, compositing, animation, physics and particles and realtime 3D/game creation.

  2. KPG Index versus OPG Measurements: A Comparison between 3D and 2D Methods in Predicting Treatment Duration and Difficulty Level for Patients with Impacted Maxillary Canines

    Domenico Dalessandri

    2014-01-01

    Full Text Available Aim. The aim of this study was to test the agreement between orthopantomography (OPG based 2D measurements and the KPG index, a new index based on 3D Cone Beam Computed Tomography (CBCT images, in predicting orthodontic treatment duration and difficulty level of impacted maxillary canines. Materials and Methods. OPG and CBCT images of 105 impacted canines were independently scored by three orthodontists at t0 and after 1 month (t1, using the KPG index and the following 2D methods: distance from cusp tip and occlusal plane, cusp tip position in relation to the lateral incisor, and canine inclination. Pearson’s coefficients were used to evaluate the degree of agreement and the χ2 with Yates correction test was used to assess the independence between them. Results. Inter- and intrarater reliability were higher with KPG compared to 2D methods. Pearson’s coefficients showed a statistically significant association between all the indexes, while the χ2 with Yates correction test resulted in a statistically significant rejection of independency only for one 2D index. Conclusions. 2D indexes for predicting impacted maxillary canines treatment duration and difficulty sometimes are discordant; a 3D index like the KPG index could be useful in solving these conflicts.

  3. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    Buning, P.

    1994-01-01

    five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The Apollo implementation of PLOT3D uses some of the capabilities of

  4. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    Buning, P.

    1994-01-01

    five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The Apollo implementation of PLOT3D uses some of the capabilities of

  5. Dynamic pulse buckling of cylindrical shells under axial impact: A comparison of 2D and 3D finite element calculations with experimental data

    A series of tests investigating dynamic pulse buckling of a cylindrical shell under axial impact is compared to several 2D and 3D finite element simulations of the event. The purpose of the work is to investigate the performance of various analysis codes and element types on a problem which is applicable to radioactive material transport packages, and ultimately to develop a benchmark problem to qualify finite element analysis codes for the transport package design industry. Four axial impact tests were performed on 4 in-diameter, 8 in-long, 304 L stainless steel cylinders with a 3/16 in wall thickness. The cylinders were struck by a 597 lb mass with an impact velocity ranging from 42.2 to 45.1 ft/sec. During the impact event, a buckle formed at each end of the cylinder, and one of the two buckles became unstable and collapsed. The instability occurred at the top of the cylinder in three tests and at the bottom in one test. Numerical simulations of the test were performed using the following codes and element types: PRONTO2D with axisymmetric four-node quadrilaterals; PRONTO3D with both four-node shells and eight-node hexahedrons; and ABAQUS/Explicit with axisymmetric two-node shells and four-node quadrilaterals, and 3D four-node shells and eight-node hexahedrons. All of the calculations are compared to the tests with respect to deformed shape and impact load history. As in the tests, the location of the instability is not consistent in all of the calculations. However, the calculations show good agreement with impact load measurements with the exception of an initial load spike which is proven to be the dynamic response of the load cell to the impact. Finally, the PRONIT02D calculation is compared to the tests with respect to strain and acceleration histories. Accelerometer data exhibited good qualitative agreement with the calculations. The strain comparisons show that measurements are very sensitive to gage placement

  6. 3d-3d correspondence revisited

    Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-01

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  7. Impact of observations in a mesoscale NWP model in the Arctic

    Randriamampianina, Roger; Máté, Mile; Guedj, Stephanie; Schyberg, Harald

    2016-04-01

    In the frame of the EU-funded project ACCESS (Arctic Climate Change, Economy and Society), MET Norway aimed 1) to describe the present monitoring and forecasting capabilities in the Arctic; and 2) to identify the key factors limiting the forecasting capabilities and to give recommendations on key areas to improve the forecasting capabilities in the Arctic. The first task was assessed using observing system experiments (OSE), while second one was evaluated applying observing system simulation experiments (OSSE). We have observed that the NWP forecast quality is lower in the Arctic than in the regions further south. An earlier research indicated that one of factors behind this is the composition of the observing system in the Arctic, in particular the scarceness of conventional observations. To further assess possible strategies for alleviating the situation and propose scenarios for a future Arctic observing system, we have performed a set of experiments to gain a more detailed insight in the contribution of the components of the present observing system in a regional state-of-the-art non-hydrostatic NWP model. These observing system experiments have been evaluated 1) in terms of a measure of the information content of observations with respect to analysis quality and 2) with respect to the impact on forecasts assessed (a) through case studies, (b) through a norm measuring the impact on forecasts and (c) through the quality of forecasts verified with available reference observations. The OSE studies show that conventional observations (Synop, Buoys) can play an important role in correcting the surface state of the model, but prove that the present upper-air conventional (Radiosondes, Arcraft) observations in the area are too scarce to have a significant effect on forecasts. We demonstrate that satellite sounding data play important role in improving forecasts quality at present. This is the case with the satellite temperature sounding data (AMSU-A, IASI), as well as

  8. Assessing impact of climate and land use change on water quality in two contrasting meso-scale catchments in Poland

    Marcinkowski, Pawel; Kardel, Ignacy; Ksiezniak, Marta; Berezowski, Tomasz; Okruszko, Tomasz; Mezghani, Abdelkader; Dobler, Andreas; Piniewski, Mikolaj

    2016-04-01

    The Upper Narew (4280 km2) and the Barycz (5520 km2) are two Polish, meso-scale, lowland catchments, contrasting in terms of land use, water management and water quality. Semi-distributed process-based SWAT model was applied in both catchments for assessment of climate change impact on selected water quality parameters. The model setup was developed based on high-resolution inputs, e.g. 5 km gridded precipitation and temperature dataset and 30 m Landsat8-based land cover map. Multi-site calibration and validation against observed discharge, sediment loads and nutrients loads (nitrogen and phosphorus compounds) gave predominantly satisfactory goodness-of-fit measures which enabled further model use for scenario analysis. Impact of land use on water quality can be assessed by comparing nutrients loads and concentrations simulated for the current conditions between two contrasting catchments. Both specific loads and concentrations of major nitrogen and phosphorous forms were on average 80-100% higher in the Barycz than in the Upper Narew catchment. This is a result of more intensive agricultural practices taking place in the Barycz, unlike the Upper Narew where agriculture is mostly extensive. Large parts of the Barycz catchment have been designed as the Nitrates Vulnerable Zones and since 2007 there are legal restrictions concerning agricultural practices in these areas. Nine GCM-RCM runs projected to the year 2100 for RCP 4.5 and 8.5 provided within the EURO-CORDEX experiment were first bias-corrected using quantile mapping method and then used as an ensemble of climate change scenarios in SWAT. Precipitation projections were largely consistent in showing an increasing precipitation trend, present particularly in winter and spring, in both catchments. This clearly affected the hydrological and biogeochemical cycle and resulted in higher projected water yield, increased erosion, and elevated nitrogen and phosphorus emission to water bodies. The rate of change caused

  9. IZDELAVA TISKALNIKA 3D

    Brdnik, Lovro

    2015-01-01

    Diplomsko delo analizira trenutno stanje 3D tiskalnikov na trgu. Prikazan je razvoj in principi delovanja 3D tiskalnikov. Predstavljeni so tipi 3D tiskalnikov, njihove prednosti in slabosti. Podrobneje je predstavljena zgradba in delovanje koračnih motorjev. Opravljene so meritve koračnih motorjev. Opisana je programska oprema za rokovanje s 3D tiskalniki in komponente, ki jih potrebujemo za izdelavo. Diploma se oklepa vprašanja, ali je izdelava 3D tiskalnika bolj ekonomična kot pa naložba v ...

  10. Stress analysis of a complete maxillary denture under various drop impact conditions: a 3D finite element study.

    Sunbuloglu, Emin

    2015-01-01

    Complete maxillary dentures are one of the most economic and easy ways of treatment for edentulous patients and are still widely used. However, their survival rate is slightly above three years. It is presumed that the failure reasons are not only due to normal fatigue but also emerge from damage based on unavoidable improper usage. Failure types other than long-term fatigue, such as over-deforming, also influence the effective life span of dentures. A hypothesis is presumed, stating that the premature/unexpected failures may be initiated by impact on dentures, which can be related to dropping them on the ground or other effects such as biting crispy food. Thus, the behavior of a complete maxillary denture under impact loading due to drop on a rigid surface was investigated using the finite element method utilizing explicit time integration and a rate-sensitive elastoplastic material model of polymethylmethacrylate (PMMA). Local permanent deformations have been observed along with an emphasis on frenulum region of the denture, regardless of the point of impact. Contact stresses at the tooth-denture base were also investigated. The spread of energy within the structure via wave propagation is seen to play a critical role in this fact. Stress-wave propagation is also seen to be an important factor that decreases the denture's fatigue life. PMID:24945936

  11. The 2D versus 3D imaging trade-off: The impact of over- or under-estimating small throats for simulating permeability in porous media

    Peters, C. A.; Crandell, L. E.; Um, W.; Jones, K. W.; Lindquist, W. B.

    2011-12-01

    property distributions were used to generate different network flow models, to examine permeability alterations due to reaction-induced changes in throat sizes. 3D CT images, limited to a resolution of approximately 4 microns, miss small throats present at grain-to-grain contacts. The higher resolution of SEM images captures small throats between grains, however grain surface roughness and other small scale features may be misinterpreted. Precise determination of throat distributions requires careful thresholding to distinguish flow-conducting throats from throats leading to pores that are really just surface roughness. Using the pore network model, the sensitivity of permeability to the throat size roughness threshold was evaluated. Permeabilities calculated from the 2D and 3D pore and throat size distributions are compared to determine the impact of the lower resolution 3D images missing small throats.

  12. Impacts of 3-D radiative effects on satellite cloud detection and their consequences on cloud fraction and aerosol optical depth retrievals

    Yang, Yuekui; di Girolamo, Larry

    2008-02-01

    We present the first examination on how 3-D radiative transfer impacts satellite cloud detection that uses a single visible channel threshold. The 3-D radiative transfer through predefined heterogeneous cloud fields embedded in a range of horizontally homogeneous aerosol fields have been carried out to generate synthetic nadir-viewing satellite images at a wavelength of 0.67 μm. The finest spatial resolution of the cloud field is 30 m. We show that 3-D radiative effects cause significant histogram overlap between the radiance distribution of clear and cloudy pixels, the degree to which depends on many factors (resolution, solar zenith angle, surface reflectance, aerosol optical depth (AOD), cloud top variability, etc.). This overlap precludes the existence of a threshold that can correctly separate all clear pixels from cloudy pixels. The region of clear/cloud radiance overlap includes moderately large (up to 5 in our simulations) cloud optical depths. Purpose-driven cloud masks, defined by different thresholds, are applied to the simulated images to examine their impact on retrieving cloud fraction and AOD. Large (up to 100s of %) systematic errors were observed that depended on the type of cloud mask and the factors that influence the clear/cloud radiance overlap, with a strong dependence on solar zenith angle. Different strategies in computing domain-averaged AOD were performed showing that the domain-averaged BRF from all clear pixels produced the smallest AOD biases with the weakest (but still large) dependence on solar zenith angle. The large dependence of the bias on solar zenith angle has serious implications for climate research that uses satellite cloud and aerosol products.

  13. Impact of HONO sources on the performance of mesoscale air quality models

    Gonçalves, M.; Dabdub, D.; Chang, W. L.; Jorba, O.; Baldasano, J. M.

    2012-07-01

    Nitrous acid (HONO) photolysis constitutes a primary source of OH in the early morning, which leads to changes in model gas-phase and particulate matter concentrations. However, state-of-the-art models of chemical mechanisms share a common representation of gas-phase chemistry leading to HONO that fails in reproducing the observed profiles. Hence, there is a growing interest in improving the definition of additional HONO sources within air quality models, i.e. direct emissions or heterogeneous reactions. In order to test their feasibility under atmospheric conditions, the WRF-ARW/HERMES/CMAQ modeling system is applied with high horizontal resolution (4 × 4 km2) to Spain for November 24-27, 2008. HONO modeled sources include: (1) direct emissions from on-road transport; NO2 hydrolysis on aerosol and ground surfaces, the latter with (2) kinetics depending exclusively on available surfaces for reaction and (3) refined kinetics considering also relative humidity dependence; and (4) photoenhanced NO2 reduction on ground surfaces. The DOMINO measurement campaign performed in El Arenosillo (Southern Spain) provides valuable HONO observations. Modeled HONO results are consistently below observations, even when the most effective scenario is assessed, corresponding to contributions of direct emissions and NO2 hydrolysis with the simplest kinetics parameterization. With the additional sources of HONO, PM2.5 predictions can be up to 14% larger in urban areas. Quantified impacts on secondary pollutants have to be taken as a low threshold, due to the proven underestimation of HONO levels. It is fundamental to improve HONO sources definition within air quality models, both for the scientific community and decision makers.

  14. 3D and Education

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  15. Numerical simulations of impacts involving porous bodies: I. Implementing sub-resolution porosity in a 3D SPH Hydrocode

    Jutzi, M; Michel, P

    2008-01-01

    In this paper, we extend our Smooth Particle Hydrodynamics (SPH) impact code to include the effect of porosity at a sub-resolution scale by adapting the so-called $P-alpha$ model. Many small bodies in the different populations of asteroids and comets are believed to contain a high degree of porosity and the determination of both their collisional evolution and the outcome of their disruption requires that the effect of porosity is taken into account in the computation of those processes. Here, we present our model and show how porosity interfaces with the elastic-perfectly plastic material description and the brittle fracture model generally used to simulate the fragmentation of non-porous rocky bodies. We investigate various compaction models and discuss their suitability to simulate the compaction of (highly) porous material. Then, we perform simple test cases where we compare results of the simulations to the theoretical solutions. We also present a Deep Impact-like simulation to show the effect of porosit...

  16. Dynamic pulse buckling of cylindrical shells under axial impact: A benchmark study of 2D and 3D finite element calculations

    A series of tests investigating dynamic pulse buckling of a cylindrical shell under axial impact is compared to several 2D and 3D finite element simulations of the event. The purpose of the work is to investigate the performance of various analysis codes and element types on a problem which is applicable to radioactive material transport packages, and ultimately to develop a benchmark problem to qualify finite element analysis codes for the transport package design industry. During the pulse buckling tests, a buckle formed at each end of the cylinder, and one of the two buckles became unstable and collapsed. Numerical simulations of the test were performed using PRONTO, a Sandia developed transient dynamics analysis code, and ABAQUS/Explicit with both shell and continuum elements. The calculations are compared to the tests with respect to deformed shape and impact load history

  17. The impact of 3D image guided prostate brachytherapy on therapeutic ratio: the Quebec University Hospital experience

    Purpose: to evaluate the impact of adaptative image-guided brachytherapy on therapeutic outcome and toxicity in prostate cancer. Materials and methods: the 1110 first patients treated at the C.H.U.Q.-l'Hotel-Dieu de Quebec were divided in five groups depending on the technique used for the implantation, the latest being intra operative treatment planning. Biochemical disease free survival (5-b.D.F.S.), toxicities and dosimetric parameters were compared between the groups. Results: 5-b.D.F.S. (A.S.T.R.O. + Houston) were of 88.5% and 90.5% for the whole cohort. The use of intra operative treatment planning resulted in better dosimetric parameters. Clinically, this resulted in a decreased use of urethral catheterization, from 18.8% in group 1 to 5.2% in group 5, and in a reduction in severe acute urinary side effects (21.3 vs 33.3% P = 0.01) when compared with pre-planning. There was also less late gastrointestinal side effects (groups 5 vs 1: 26.6 vs 43.2% P < 0.05). Finally, when compared with pre-planning, intra operative treatment planning was associated with a smaller reduction between planned D90 and the dose calculated at the CT scan 1 month after the implant (38 vs 66 Gy). Conclusion: the evolution of prostate brachytherapy technique toward intra operative treatment planning allowed dosimetric gains which resulted in significant clinical benefits by increasing the therapeutic ratio mainly through a decreased urinary toxicity. A longer follow-up will answer the question whether there is an impact on 5-b.D.F.S.. (authors)

  18. Climate change impact on the discharge in meso-scale catchments and consequences for the hydropower-production in Switzerland

    Rössler, Ole; Hänggi, Pascal; Köplin, Nina; Meyer, Rapahel; Schädler, Bruno; Weingartner, Rolf

    2013-04-01

    The potential effect of climate change on hydrology is the acceleration of the hydrological cycle that in turn will likely cause changes in the discharge regime. As a result, socio-economic systems (e.g., tourism, hydropower industry) may be drastically affected. In this study, we comprehensively analyzed the effect of climate change on different hydrological components like mean and low-flow levels, and drought stress in mesoscale catchments of Switzerland. In terms of mean flows approx. 200 catchments in Switzerland were simulated for the reference period 1984-2005 using the hydrological model PREVAH and projection for near (2025-2046) and far future (2074-2095) are based on delta-change values of 10 ENSEMBLES regional climate models assuming A1B emission scenario (CH2011 climate scenario data sets). We found seven distinct response types of catchments, each exhibiting a characteristic annual cycle of hydrologic change. A general pattern observed for all catchments, is the clearly decreasing summer runoff. Hence, within a second analysis of future discharge a special focus was set on summer low flow in a selection of 29 catchments in the Swiss Midlands. Low flows are critical as they have great implications on water usage and biodiversity. We re-calibrated the hydrological model PREVAH with a focus on base-flow and gauged discharge and used the aforementioned climate data sets and simulation time periods. We found low flow situations to be very likely to increase in both, magnitude and duration, especially in central and western Switzerland plateau. At third, the drought stress potential was analyzed by simulating the soil moisture level under climate change conditions in a high mountain catchment. We used the distributed hydrological model WaSiM-ETH for this aspect as soil characteristics are much better represented in this model. Soil moisture in forests below 2000 m a.s.l. were found to be affected at most, which might have implication to their function as

  19. Individualized margins in 3D conformal radiotherapy planning for lung cancer: analysis of physiological movements and their dosimetric impacts.

    Germain, François; Beaulieu, Luc; Fortin, André

    2008-01-01

    In conformal radiotherapy planning for lung cancer, respiratory movements are not taken into account when a single computed tomography (CT) scan is performed. This study examines tumor movements to design individualized margins to account for these movements and evaluates their dosimetric impacts on planning volume. Fifteen patients undergoing CT-based planning for radical radiotherapy for localized lung cancer formed the study cohort. A reference plan was constructed based on reference gross, clinical, and planning target volumes (rGTV, rCTV, and rPTV, respectively). The reference plans were compared with individualized plans using individualized margins obtained by using 5 serial CT scans to generate individualized target volumes (iGTV, iCTV, and iPTV). Three-dimensional conformal radiation therapy was used for plan generation using 6- and 23-MV photon beams. Ten plans for each patient were generated and dose-volume histograms (DVHs) were calculated. Comparisons of volumetric and dosimetric parameters were performed using paired Student t-tests. Relative to the rGTV, the total volume occupied by the superimposed GTVs increased progressively with each additional CT scans. With the use of all 5 scans, the average increase in GTV was 52.1%. For the plans with closest dosimetric coverage, target volume was smaller (iPTV/rPTV ratio 0.808) but lung irradiation was only slightly decreased. Reduction in the proportion of lung tissue that received 20 Gy or more outside the PTV (V20) was observed both for 6-MV plans (-0.73%) and 23-MV plans (-0.65%), with p = 0.02 and p = 0.04, respectively. In conformal RT planning for the treatment of lung cancer, the use of serial CT scans to evaluate respiratory motion and to generate individualized margins to account for these motions produced only a limited lung sparing advantage. PMID:18262123

  20. Individualized Margins in 3D Conformal Radiotherapy Planning for Lung Cancer: Analysis of Physiological Movements and Their Dosimetric Impacts

    In conformal radiotherapy planning for lung cancer, respiratory movements are not taken into account when a single computed tomography (CT) scan is performed. This study examines tumor movements to design individualized margins to account for these movements and evaluates their dosimetric impacts on planning volume. Fifteen patients undergoing CT-based planning for radical radiotherapy for localized lung cancer formed the study cohort. A reference plan was constructed based on reference gross, clinical, and planning target volumes (rGTV, rCTV, and rPTV, respectively). The reference plans were compared with individualized plans using individualized margins obtained by using 5 serial CT scans to generate individualized target volumes (iGTV, iCTV, and iPTV). Three-dimensional conformal radiation therapy was used for plan generation using 6- and 23-MV photon beams. Ten plans for each patient were generated and dose-volume histograms (DVHs) were calculated. Comparisons of volumetric and dosimetric parameters were performed using paired Student t-tests. Relative to the rGTV, the total volume occupied by the superimposed GTVs increased progressively with each additional CT scans. With the use of all 5 scans, the average increase in GTV was 52.1%. For the plans with closest dosimetric coverage, target volume was smaller (iPTV/rPTV ratio 0.808) but lung irradiation was only slightly decreased. Reduction in the proportion of lung tissue that received 20 Gy or more outside the PTV (V20) was observed both for 6-MV plans (-0.73%) and 23-MV plans (-0.65%), with p = 0.02 and p = 0.04, respectively. In conformal RT planning for the treatment of lung cancer, the use of serial CT scans to evaluate respiratory motion and to generate individualized margins to account for these motions produced only a limited lung sparing advantage

  1. 3D non-woven polyvinylidene fluoride scaffolds: fibre cross section and texturizing patterns have impact on growth of mesenchymal stromal cells.

    Anne Schellenberg

    Full Text Available Several applications in tissue engineering require transplantation of cells embedded in appropriate biomaterial scaffolds. Such structures may consist of 3D non-woven fibrous materials whereas little is known about the impact of mesh size, pore architecture and fibre morphology on cellular behavior. In this study, we have developed polyvinylidene fluoride (PVDF non-woven scaffolds with round, trilobal, or snowflake fibre cross section and different fibre crimp patterns (10, 16, or 28 needles per inch. Human mesenchymal stromal cells (MSCs from adipose tissue were seeded in parallel on these scaffolds and their growth was compared. Initial cell adhesion during the seeding procedure was higher on non-wovens with round fibres than on those with snowflake or trilobal cross sections. All PVDF non-woven fabrics facilitated cell growth over a time course of 15 days. Interestingly, proliferation was significantly higher on non-wovens with round or trilobal fibres as compared to those with snowflake profile. Furthermore, proliferation increased in a wider, less dense network. Scanning electron microscopy (SEM revealed that the MSCs aligned along the fibres and formed cellular layers spanning over the pores. 3D PVDF non-woven scaffolds support growth of MSCs, however fibre morphology and mesh size are relevant: proliferation is enhanced by round fibre cross sections and in rather wide-meshed scaffolds.

  2. 3D Printing Making the Digital Real .

    Miss Prachi More

    2013-07-01

    Full Text Available 3D printing is quickly expanding field, with the popularity and uses for 3D printers growing every day. 3D printing can be used to prototype, create replacement parts, and is even versatile enough to print prostheses and medical implants. It will have a growing impact on our world, as more and more people gain access to these amazing machines.[1] In this article, we would like to attempt to give an introduction of the technology. 3Dimensions printing is a method of converting a virtual 3D model into a physical object. 3D printing is a category of rapid prototyping technology. 3D printers typically work by printing successive layers on top of the previous to build up a three dimensional object. 3D printing is a revolutionary method for creating 3D models with the use of inkjet technology.[7

  3. 3D virtuel udstilling

    Tournay, Bruno; Rüdiger, Bjarne

    2006-01-01

    3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s.......3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s....

  4. Impact of 4DVAR Assimilation of Rainfall Data on the Simulation of Mesoscale Precipitation Systems in a Mei-yu Heavy Rainfall Event

    2007-01-01

    The multi-scale weather systems associated with a mei-yu front and the corresponding heavy precipitation during a particular heavy rainfall event that occurred on 4-5 July 2003 in east China were successfully simulated through rainfall assimilation using the PSU/NCAR non-hydrostatic, mesoscale, numerical model (MM5) and its four-dimensional, variational, data assimilation (4DVAR) system. For this case, the improvement of the process via the 4DVAR rainfall assimilation into the simulation of mesoscale precipitation systems is investigated. With the rainfall assimilation, the convection is triggered at the right location and time, and the evolution and spatial distribution of the mesoscale convective systems (MCSs) are also more correctly simulated. Through the interactions between MCSs and the weather systems at different scales,including the low-level jet and mei-yu front, the simulation of the entire mei-yu weather system is significantly improved, both during the data assimilation window and the subsequent 12-h period. The results suggest that the rainfall assimilation first provides positive impact at the convective scale and the influences are then propagated upscale to the meso- and sub-synoptic scales.Through a set of sensitive experiments designed to evaluate the impact of different initial variables on the simulation of mei-yu heavy rainfall, it was found that the moisture field and meridional wind had the strongest effect during the convection initialization stage, however, after the convection was fully triggered,all of the variables at the initial condition seemed to have comparable importance.

  5. Quantification of anthropogenic impact on groundwater-dependent terrestrial ecosystem using geochemical and isotope tools combined with 3-D flow and transport modelling

    Zurek, A. J.; Witczak, S.; Dulinski, M.; Wachniew, P.; Rozanski, K.; Kania, J.; Postawa, A.; Karczewski, J.; Moscicki, W. J.

    2015-02-01

    Groundwater-dependent ecosystems (GDEs) have important functions in all climatic zones as they contribute to biological and landscape diversity and provide important economic and social services. Steadily growing anthropogenic pressure on groundwater resources creates a conflict situation between nature and man which are competing for clean and safe sources of water. Such conflicts are particularly noticeable in GDEs located in densely populated regions. A dedicated study was launched in 2010 with the main aim to better understand the functioning of a groundwater-dependent terrestrial ecosystem (GDTE) located in southern Poland. The GDTE consists of a valuable forest stand (Niepolomice Forest) and associated wetland (Wielkie Błoto fen). It relies mostly on groundwater from the shallow Quaternary aquifer and possibly from the deeper Neogene (Bogucice Sands) aquifer. In July 2009 a cluster of new pumping wells abstracting water from the Neogene aquifer was set up 1 km to the northern border of the fen. A conceptual model of the Wielkie Błoto fen area for the natural, pre-exploitation state and for the envisaged future status resulting from intense abstraction of groundwater through the new well field was developed. The main aim of the reported study was to probe the validity of the conceptual model and to quantify the expected anthropogenic impact on the studied GDTE. A wide range of research tools was used. The results obtained through combined geologic, geophysical, geochemical, hydrometric and isotope investigations provide strong evidence for the existence of upward seepage of groundwater from the deeper Neogene aquifer to the shallow Quaternary aquifer supporting the studied GDTE. Simulations of the groundwater flow field in the study area with the aid of a 3-D flow and transport model developed for Bogucice Sands (Neogene) aquifer and calibrated using environmental tracer data and observations of hydraulic head in three different locations on the study area

  6. Underwater 3D filming

    Roberto Rinaldi

    2014-12-01

    Full Text Available After an experimental phase of many years, 3D filming is now effective and successful. Improvements are still possible, but the film industry achieved memorable success on 3D movie’s box offices due to the overall quality of its products. Special environments such as space (“Gravity” and the underwater realm look perfect to be reproduced in 3D. “Filming in space” was possible in “Gravity” using special effects and computer graphic. The underwater realm is still difficult to be handled. Underwater filming in 3D was not that easy and effective as filming in 2D, since not long ago. After almost 3 years of research, a French, Austrian and Italian team realized a perfect tool to film underwater, in 3D, without any constrains. This allows filmmakers to bring the audience deep inside an environment where they most probably will never have the chance to be.

  7. A new method to explore the spectral impact of the piriform fossae on the singing voice: benchmarking using MRI-based 3D-printed vocal tracts.

    Delvaux, Bertrand; Howard, David

    2014-01-01

    The piriform fossae are the 2 pear-shaped cavities lateral to the laryngeal vestibule at the lower end of the vocal tract. They act acoustically as side-branches to the main tract, resulting in a spectral zero in the output of the human voice. This study investigates their spectral role by comparing numerical and experimental results of MRI-based 3D printed Vocal Tracts, for which a new experimental method (based on room acoustics) is introduced. The findings support results in the literature: the piriform fossae create a spectral trough in the region 4-5 kHz and act as formants repellents. Moreover, this study extends those results by demonstrating numerically and perceptually the impact of having large piriform fossae on the sung output. PMID:25048199

  8. A new method to explore the spectral impact of the piriform fossae on the singing voice: benchmarking using MRI-based 3D-printed vocal tracts.

    Bertrand Delvaux

    Full Text Available The piriform fossae are the 2 pear-shaped cavities lateral to the laryngeal vestibule at the lower end of the vocal tract. They act acoustically as side-branches to the main tract, resulting in a spectral zero in the output of the human voice. This study investigates their spectral role by comparing numerical and experimental results of MRI-based 3D printed Vocal Tracts, for which a new experimental method (based on room acoustics is introduced. The findings support results in the literature: the piriform fossae create a spectral trough in the region 4-5 kHz and act as formants repellents. Moreover, this study extends those results by demonstrating numerically and perceptually the impact of having large piriform fossae on the sung output.

  9. Blender 3D cookbook

    Valenza, Enrico

    2015-01-01

    This book is aimed at the professionals that already have good 3D CGI experience with commercial packages and have now decided to try the open source Blender and want to experiment with something more complex than the average tutorials on the web. However, it's also aimed at the intermediate Blender users who simply want to go some steps further.It's taken for granted that you already know how to move inside the Blender interface, that you already have 3D modeling knowledge, and also that of basic 3D modeling and rendering concepts, for example, edge-loops, n-gons, or samples. In any case, it'

  10. 3D Digital Modelling

    Hundebøl, Jesper

    wave of new building information modelling tools demands further investigation, not least because of industry representatives' somewhat coarse parlance: Now the word is spreading -3D digital modelling is nothing less than a revolution, a shift of paradigm, a new alphabet... Research qeustions. Based...... on empirical probes (interviews, observations, written inscriptions) within the Danish construction industry this paper explores the organizational and managerial dynamics of 3D Digital Modelling. The paper intends to - Illustrate how the network of (non-)human actors engaged in the promotion (and arrest) of 3......D Modelling (in Denmark) stabilizes - Examine how 3D Modelling manifests itself in the early design phases of a construction project with a view to discuss the effects hereof for i.a. the management of the building process. Structure. The paper introduces a few, basic methodological concepts...

  11. Professional Papervision3D

    Lively, Michael

    2010-01-01

    Professional Papervision3D describes how Papervision3D works and how real world applications are built, with a clear look at essential topics such as building websites and games, creating virtual tours, and Adobe's Flash 10. Readers learn important techniques through hands-on applications, and build on those skills as the book progresses. The companion website contains all code examples, video step-by-step explanations, and a collada repository.

  12. Mesoscale Simulations of Powder Compaction

    Lomov, Ilya.; Fujino, Don; Antoun, Tarabay; Liu, Benjamin

    2009-12-01

    Mesoscale 3D simulations of shock compaction of metal and ceramic powders have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating a well-characterized shock compaction experiment of a porous ductile metal. Simulation results using the Steinberg material model and handbook values for solid 2024 aluminum showed good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not as well studied as metals, so a simple material model for solid ceramic (tungsten carbide) has been calibrated to match experimental compaction curves. Direct simulations of gas gun experiments with ceramic powders have been performed and showed good agreement with experimental data. The numerical shock wave profile has same character and thickness as that measured experimentally using VISAR. The numerical results show reshock states above the single-shock Hugoniot line as observed in experiments. We found that for good quantitative agreement with experiments 3D simulations are essential.

  13. MESOSCALE SIMULATIONS OF POWDER COMPACTION

    Mesoscale 3D simulations of shock compaction of metal and ceramic powders have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating a well-characterized shock compaction experiment of a porous ductile metal. Simulation results using the Steinberg material model and handbook values for solid 2024 aluminum showed good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not as well studied as metals, so a simple material model for solid ceramic (tungsten carbide) has been calibrated to match experimental compaction curves. Direct simulations of gas gun experiments with ceramic powders have been performed and showed good agreement with experimental data. The numerical shock wave profile has same character and thickness as that measured experimentally using VISAR. The numerical results show reshock states above the single-shock Hugoniot line as observed in experiments. We found that for good quantitative agreement with experiments 3D simulations are essential.

  14. 3D Spectroscopic Instrumentation

    Bershady, Matthew A

    2009-01-01

    In this Chapter we review the challenges of, and opportunities for, 3D spectroscopy, and how these have lead to new and different approaches to sampling astronomical information. We describe and categorize existing instruments on 4m and 10m telescopes. Our primary focus is on grating-dispersed spectrographs. We discuss how to optimize dispersive elements, such as VPH gratings, to achieve adequate spectral resolution, high throughput, and efficient data packing to maximize spatial sampling for 3D spectroscopy. We review and compare the various coupling methods that make these spectrographs ``3D,'' including fibers, lenslets, slicers, and filtered multi-slits. We also describe Fabry-Perot and spatial-heterodyne interferometers, pointing out their advantages as field-widened systems relative to conventional, grating-dispersed spectrographs. We explore the parameter space all these instruments sample, highlighting regimes open for exploitation. Present instruments provide a foil for future development. We give an...

  15. 3D Projection Installations

    Halskov, Kim; Johansen, Stine Liv; Bach Mikkelsen, Michelle

    2014-01-01

    Three-dimensional projection installations are particular kinds of augmented spaces in which a digital 3-D model is projected onto a physical three-dimensional object, thereby fusing the digital content and the physical object. Based on interaction design research and media studies, this article...... contributes to the understanding of the distinctive characteristics of such a new medium, and identifies three strategies for designing 3-D projection installations: establishing space; interplay between the digital and the physical; and transformation of materiality. The principal empirical case, From...... Fingerplan to Loop City, is a 3-D projection installation presenting the history and future of city planning for the Copenhagen area in Denmark. The installation was presented as part of the 12th Architecture Biennale in Venice in 2010....

  16. Herramientas SIG 3D

    Francisco R. Feito Higueruela

    2010-04-01

    Full Text Available Applications of Geographical Information Systems on several Archeology fields have been increasing during the last years. Recent avances in these technologies make possible to work with more realistic 3D models. In this paper we introduce a new paradigm for this system, the GIS Thetrahedron, in which we define the fundamental elements of GIS, in order to provide a better understanding of their capabilities. At the same time the basic 3D characteristics of some comercial and open source software are described, as well as the application to some samples on archeological researchs

  17. Bootstrapping 3D fermions

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-01

    We study the conformal bootstrap for a 4-point function of fermions in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge C T . We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N . We also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  18. Interaktiv 3D design

    Villaume, René Domine; Ørstrup, Finn Rude

    2002-01-01

    Projektet undersøger potentialet for interaktiv 3D design via Internettet. Arkitekt Jørn Utzons projekt til Espansiva blev udviklet som et byggesystem med det mål, at kunne skabe mangfoldige planmuligheder og mangfoldige facade- og rumudformninger. Systemets bygningskomponenter er digitaliseret som...... 3D elementer og gjort tilgængelige. Via Internettet er det nu muligt at sammenstille og afprøve en uendelig  række bygningstyper som  systemet blev tænkt og udviklet til....

  19. 3D Dental Scanner

    Kotek, L.

    2015-01-01

    This paper is about 3D scan of plaster dental casts. The main aim of the work is a hardware and software proposition of 3D scan system for scanning of dental casts. There were used camera, projector and rotate table for this scanning system. Surface triangulation was used, taking benefits of projections of structured light on object, which is being scanned. The rotate table is controlled by PC. The camera, projector and rotate table are synchronized by PC. Controlling of stepper motor is prov...

  20. TOWARDS: 3D INTERNET

    Ms. Swapnali R. Ghadge

    2013-01-01

    In today’s ever-shifting media landscape, it can be a complex task to find effective ways to reach your desired audience. As traditional media such as television continue to lose audience share, one venue in particular stands out for its ability to attract highly motivated audiences and for its tremendous growth potential the 3D Internet. The concept of '3D Internet' has recently come into the spotlight in the R&D arena, catching the attention of many people, and leading to a lot o...

  1. Case study: Beauty and the Beast 3D: benefits of 3D viewing for 2D to 3D conversion

    Handy Turner, Tara

    2010-02-01

    From the earliest stages of the Beauty and the Beast 3D conversion project, the advantages of accurate desk-side 3D viewing was evident. While designing and testing the 2D to 3D conversion process, the engineering team at Walt Disney Animation Studios proposed a 3D viewing configuration that not only allowed artists to "compose" stereoscopic 3D but also improved efficiency by allowing artists to instantly detect which image features were essential to the stereoscopic appeal of a shot and which features had minimal or even negative impact. At a time when few commercial 3D monitors were available and few software packages provided 3D desk-side output, the team designed their own prototype devices and collaborated with vendors to create a "3D composing" workstation. This paper outlines the display technologies explored, final choices made for Beauty and the Beast 3D, wish-lists for future development and a few rules of thumb for composing compelling 2D to 3D conversions.

  2. Tangible 3D Modelling

    Hejlesen, Aske K.; Ovesen, Nis

    2012-01-01

    This paper presents an experimental approach to teaching 3D modelling techniques in an Industrial Design programme. The approach includes the use of tangible free form models as tools for improving the overall learning. The paper is based on lecturer and student experiences obtained through...

  3. Shaping 3-D boxes

    Stenholt, Rasmus; Madsen, Claus B.

    2011-01-01

    Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data...

  4. 3D Harmonic Echocardiography:

    M.M. Voormolen

    2007-01-01

    textabstractThree dimensional (3D) echocardiography has recently developed from an experimental technique in the ’90 towards an imaging modality for the daily clinical practice. This dissertation describes the considerations, implementation, validation and clinical application of a unique

  5. Aerosol impact on atmospheric meso-scale circulation over the Baltic region: A HARMONIE model case study and verification versus radar data

    Palamarchuk, Iuliia; Mahura, Alexander; Ivanov, Sergiy; Ruban, Igor; Pavlova, Hanna

    2015-04-01

    An important goal in operational weather forecasting is an accurate prediction of precipitation on meso-scales. This demands, among the others, detailed representation of aerosol impact on the troposphere. Various direct, semi-direct and indirect effects of aerosols lead to significant changes in amount and distribution of precipitation, especially for weak patterns. Features of the atmosphere sensitivity to aerosols is studied employing the HARMONIE (Hirlam Aladin Regional/Meso-scale Operational NWP In Europe) model. Numerical experiments are performed for the Baltic region during the BaltRad experiment (August 2010). The focus of the study is the life-time of convective cells along with feedbacks from aerosols toward meteorological parameters, physical and dynamical mechanisms responsible for developing of precipitation forecast features, direct and indirect aerosol effects. Numerical results are verified by comparing model microphysics fields versus radar reflectivity.

  6. 3D Printing Making the Digital Real .

    Miss Prachi More

    2013-01-01

    3D printing is quickly expanding field, with the popularity and uses for 3D printers growing every day. 3D printing can be used to prototype, create replacement parts, and is even versatile enough to print prostheses and medical implants. It will have a growing impact on our world, as more and more people gain access to these amazing machines.[1] In this article, we would like to attempt to give an introduction of the technology. 3Dimensions printing is a method of converting a virtual 3D mod...

  7. LandSIM3D: modellazione in real time 3D di dati geografici

    Lambo Srl Lambo Srl

    2009-01-01

    LandSIM3D: realtime 3D modelling of geographic dataLandSIM3D allows to model in 3D an existing landscape in a few hours only and geo-referenced offering great landscape analysis and understanding tools. 3D projects can then be inserted into the existing landscape with ease and precision. The project alternatives and impact can then be visualized and studied into their immediate environmental. The complex evolution of the landscape in the future can also be simulated and the landscape model ca...

  8. Transportstromen verschuiven door toepassing 3-D

    Janssen, G.R.

    2014-01-01

    3-D printing is aan een gestage opmars bezig.ln een paar jaar tijd is er een miljardenmarkt ontstaan die exponentieel groeit. TNO deed onderzoek naar de impact van deze ontwikkelingen op supply chains.

  9. 3D animace

    Klusoň, Jindřich

    2010-01-01

    Computer animation has a growing importance and application in the world. With expansion of technologies increases quality of the final animation as well as number of 3D animation software. This thesis is currently mapped animation software for creating animation in film, television industry and video games which are advisable users requirements. Of them were selected according to criteria the best - Autodesk Maya 2011. This animation software is unique with tools for creating special effects...

  10. SU-E-T-596: Axillary Nodes Radiotherapy Boost Field Dosimetric Impact Study: Oblique Field and Field Optimization in 3D Conventional Breast Cancer Radiation Treatment

    Purpose: To evaluate dosimetric impact of two axillary nodes (AX) boost techniques: (1) posterior-oblique optimized field boost (POB), (2) traditional posterior-anterior boost (PAB) with field optimization (O-PAB), for a postmastectomy breast patient with positive axillary lymph nodes. Methods: Five patients, 3 left and 2 right chest walls, were included in this study. All patients were simulated in 5mm CT slice thickness. Supraclavicular (SC) and level I/II/III AX were contoured based on the RTOG atlas guideline. Five treatment plans, (1) tangential chest wall, (2) oblique SC including AX, (3) PAB, O-PAB and POB, were created for each patient. Three plan sums (PS) were generated by sum one of (3) plan with plan (1) and (2). The field optimization was done through PS dose distribution, which included a field adjustment, a fractional dose, a calculation location and a gantry angle selection for POB. A dosimetric impact was evaluated by comparing a SC and AX coverage, a PS maximum dose, an irradiated area percentage volume received dose over 105% prescription dose (V105), an ipsi-laterial mean lung dose (MLD), an ipsi-laterial mean humeral head dose (MHHD), a mean heart dose (MHD) (for left case only) and their DVH amount these three technique. Results: O-PAB, POB and PAB dosimetric results showed that there was no significant different on SC and AX coverage (p>0.43) and MHD (p>0.16). The benefit of sparing lung irradiation from PAB to O-PAB to POB was significant (p<0.004). PAB showed a highest PS maximum dose (p<0.005), V105 (p<0.023) and MLD (compared with OPAB, p=0.055). MHHD showed very sensitive to the patient arm positioning and anatomy. O-PAB convinced a lower MHHD than PAB (p=0.03). Conclusion: 3D CT contouring plays main role in accuracy radiotherapy. Dosimetric advantage of POB and O-PAB was observed for a better normal tissue irradiation sparing

  11. SU-E-T-596: Axillary Nodes Radiotherapy Boost Field Dosimetric Impact Study: Oblique Field and Field Optimization in 3D Conventional Breast Cancer Radiation Treatment

    Su, M [Mount Sinai School of Medicine, Elmhurst, NY (United States); Sura, S

    2014-06-01

    Purpose: To evaluate dosimetric impact of two axillary nodes (AX) boost techniques: (1) posterior-oblique optimized field boost (POB), (2) traditional posterior-anterior boost (PAB) with field optimization (O-PAB), for a postmastectomy breast patient with positive axillary lymph nodes. Methods: Five patients, 3 left and 2 right chest walls, were included in this study. All patients were simulated in 5mm CT slice thickness. Supraclavicular (SC) and level I/II/III AX were contoured based on the RTOG atlas guideline. Five treatment plans, (1) tangential chest wall, (2) oblique SC including AX, (3) PAB, O-PAB and POB, were created for each patient. Three plan sums (PS) were generated by sum one of (3) plan with plan (1) and (2). The field optimization was done through PS dose distribution, which included a field adjustment, a fractional dose, a calculation location and a gantry angle selection for POB. A dosimetric impact was evaluated by comparing a SC and AX coverage, a PS maximum dose, an irradiated area percentage volume received dose over 105% prescription dose (V105), an ipsi-laterial mean lung dose (MLD), an ipsi-laterial mean humeral head dose (MHHD), a mean heart dose (MHD) (for left case only) and their DVH amount these three technique. Results: O-PAB, POB and PAB dosimetric results showed that there was no significant different on SC and AX coverage (p>0.43) and MHD (p>0.16). The benefit of sparing lung irradiation from PAB to O-PAB to POB was significant (p<0.004). PAB showed a highest PS maximum dose (p<0.005), V105 (p<0.023) and MLD (compared with OPAB, p=0.055). MHHD showed very sensitive to the patient arm positioning and anatomy. O-PAB convinced a lower MHHD than PAB (p=0.03). Conclusion: 3D CT contouring plays main role in accuracy radiotherapy. Dosimetric advantage of POB and O-PAB was observed for a better normal tissue irradiation sparing.

  12. Dimensional accuracy of 3D printed vertebra

    Ogden, Kent; Ordway, Nathaniel; Diallo, Dalanda; Tillapaugh-Fay, Gwen; Aslan, Can

    2014-03-01

    3D printer applications in the biomedical sciences and medical imaging are expanding and will have an increasing impact on the practice of medicine. Orthopedic and reconstructive surgery has been an obvious area for development of 3D printer applications as the segmentation of bony anatomy to generate printable models is relatively straightforward. There are important issues that should be addressed when using 3D printed models for applications that may affect patient care; in particular the dimensional accuracy of the printed parts needs to be high to avoid poor decisions being made prior to surgery or therapeutic procedures. In this work, the dimensional accuracy of 3D printed vertebral bodies derived from CT data for a cadaver spine is compared with direct measurements on the ex-vivo vertebra and with measurements made on the 3D rendered vertebra using commercial 3D image processing software. The vertebra was printed on a consumer grade 3D printer using an additive print process using PLA (polylactic acid) filament. Measurements were made for 15 different anatomic features of the vertebral body, including vertebral body height, endplate width and depth, pedicle height and width, and spinal canal width and depth, among others. It is shown that for the segmentation and printing process used, the results of measurements made on the 3D printed vertebral body are substantially the same as those produced by direct measurement on the vertebra and measurements made on the 3D rendered vertebra.

  13. Massive 3D Supergravity

    Andringa, Roel; de Roo, Mees; Hohm, Olaf; Sezgin, Ergin; Townsend, Paul K

    2009-01-01

    We construct the N=1 three-dimensional supergravity theory with cosmological, Einstein-Hilbert, Lorentz Chern-Simons, and general curvature squared terms. We determine the general supersymmetric configuration, and find a family of supersymmetric adS vacua with the supersymmetric Minkowski vacuum as a limiting case. Linearizing about the Minkowski vacuum, we find three classes of unitary theories; one is the supersymmetric extension of the recently discovered `massive 3D gravity'. Another is a `new topologically massive supergravity' (with no Einstein-Hilbert term) that propagates a single (2,3/2) helicity supermultiplet.

  14. Massive 3D supergravity

    Andringa, Roel; Bergshoeff, Eric A; De Roo, Mees; Hohm, Olaf [Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Sezgin, Ergin [George and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Townsend, Paul K, E-mail: E.A.Bergshoeff@rug.n, E-mail: O.Hohm@rug.n, E-mail: sezgin@tamu.ed, E-mail: P.K.Townsend@damtp.cam.ac.u [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2010-01-21

    We construct the N=1 three-dimensional supergravity theory with cosmological, Einstein-Hilbert, Lorentz Chern-Simons, and general curvature squared terms. We determine the general supersymmetric configuration, and find a family of supersymmetric adS vacua with the supersymmetric Minkowski vacuum as a limiting case. Linearizing about the Minkowski vacuum, we find three classes of unitary theories; one is the supersymmetric extension of the recently discovered 'massive 3D gravity'. Another is a 'new topologically massive supergravity' (with no Einstein-Hilbert term) that propagates a single (2,3/2) helicity supermultiplet.

  15. TOWARDS: 3D INTERNET

    Ms. Swapnali R. Ghadge

    2013-08-01

    Full Text Available In today’s ever-shifting media landscape, it can be a complex task to find effective ways to reach your desired audience. As traditional media such as television continue to lose audience share, one venue in particular stands out for its ability to attract highly motivated audiences and for its tremendous growth potential the 3D Internet. The concept of '3D Internet' has recently come into the spotlight in the R&D arena, catching the attention of many people, and leading to a lot of discussions. Basically, one can look into this matter from a few different perspectives: visualization and representation of information, and creation and transportation of information, among others. All of them still constitute research challenges, as no products or services are yet available or foreseen for the near future. Nevertheless, one can try to envisage the directions that can be taken towards achieving this goal. People who take part in virtual worlds stay online longer with a heightened level of interest. To take advantage of that interest, diverse businesses and organizations have claimed an early stake in this fast-growing market. They include technology leaders such as IBM, Microsoft, and Cisco, companies such as BMW, Toyota, Circuit City, Coca Cola, and Calvin Klein, and scores of universities, including Harvard, Stanford and Penn State.

  16. Mesoscale eddies are oases for higher trophic marine life

    Godø, Olav R.

    2012-01-17

    Mesoscale eddies stimulate biological production in the ocean, but knowledge of energy transfers to higher trophic levels within eddies remains fragmented and not quantified. Increasing the knowledge base is constrained by the inability of traditional sampling methods to adequately sample biological processes at the spatio-temporal scales at which they occur. By combining satellite and acoustic observations over spatial scales of 10 s of km horizontally and 100 s of m vertically, supported by hydrographical and biological sampling we show that anticyclonic eddies shape distribution and density of marine life from the surface to bathyal depths. Fish feed along density structures of eddies, demonstrating that eddies catalyze energy transfer across trophic levels. Eddies create attractive pelagic habitats, analogous to oases in the desert, for higher trophic level aquatic organisms through enhanced 3-D motion that accumulates and redistributes biomass, contributing to overall bioproduction in the ocean. Integrating multidisciplinary observation methodologies promoted a new understanding of biophysical interaction in mesoscale eddies. Our findings emphasize the impact of eddies on the patchiness of biomass in the sea and demonstrate that they provide rich feeding habitat for higher trophic marine life. 2012 God et al.

  17. Impact of 3D image-based PDR brachytherapy on outcome of patients treated for cervix carcinoma in France: Results of the French STIC prospective study

    Purpose: In 2005 a French multicentric non randomized prospective study was initiated to compare two groups of patients treated for cervix carcinoma according to brachytherapy (BT) method: 2D vs 3D dosimetry. The BT dosimetric planning method was chosen for each patient in each center according to the availability of the technique. This study describes the results for 705 out of 801 patients available for analysis. Patients and methods: For the 2D arm, dosimetry was planned on orthogonal X-Rays using low dose rate (LDR) or pulsed dose rate (PDR) BT. For the 3D arm, dosimetry was planned on 3D imaging (mainly CT) and performed with PDR BT. Each center could follow the dosimetric method they were used to, according to the chosen radioelement and applicator. Manual or graphical optimization was allowed. Three treatment regimens were defined: Group 1: BT followed by surgery; 165 patients (2D arm: 76; 3D arm: 89); Group 2: EBRT (+chemotherapy), BT, then surgery; 305 patients (2D arm: 142; 3D arm: 163); Group 3: EBRT (+chemotherapy), then BT; 235 patients, (2D arm: 118; 3D arm: 117). The DVH parameters for CTVs (High Risk CTV and Intermediate Risk CTV) and organs at risk (OARs) were computed as recommended by GYN GEC ESTRO guidelines. Total doses were converted to equivalent doses in 2 Gy fractions (EQD2). Side effects were prospectively assessed using the CTCAEv3.0. Results: The 2D and 3D arms were well balanced with regard to age, FIGO stage, histology, EBRT dose and chemotherapy. For each treatment regimen, BT doses and volumes were comparable between the 2D and 3D arms in terms of dose to point A, isodose 60 Gy volume, dose to ICRU rectal points, and TRAK. Dosimetric data in the 3D arm showed that the dose delivered to 90% of the High Risk CTV (HR CTV D90) was respectively, 81.2 Gyα/β10, 63.2 Gyα/β10 and 73.1 Gyα/β10 for groups 1, 2 and 3. The Intermediate Risk (IR) CTV D90 was respectively, 58.5 Gyα/β10, 57.3 Gyα/β10 and 61.7 Gyα/β10 for groups 1, 2 and

  18. Flash 3D Rendezvous and Docking Sensor Project

    National Aeronautics and Space Administration — 3D Flash Ladar is a breakthrough technology for many emerging and existing 3D vision areas, and sensor improvements will have an impact on nearly all these fields....

  19. Recognition of Symmetric 3D Bodies

    Suk, Tomáš; Flusser, Jan

    2014-01-01

    Roč. 6, č. 3 (2014), s. 722-757. ISSN 2073-8994 R&D Projects: GA ČR GAP103/11/1552 Institutional support: RVO:67985556 Keywords : rotation symmetry * reflection symmetry * 3D complex moments * 3D rotation invariants Subject RIV: JD - Computer Applications, Robotics Impact factor: 0.826, year: 2014 http://library.utia.cas.cz/separaty/2014/ZOI/suk-0431156.pdf

  20. 3D printing for dummies

    Hausman, Kalani Kirk

    2014-01-01

    Get started printing out 3D objects quickly and inexpensively! 3D printing is no longer just a figment of your imagination. This remarkable technology is coming to the masses with the growing availability of 3D printers. 3D printers create 3-dimensional layered models and they allow users to create prototypes that use multiple materials and colors.  This friendly-but-straightforward guide examines each type of 3D printing technology available today and gives artists, entrepreneurs, engineers, and hobbyists insight into the amazing things 3D printing has to offer. You'll discover methods for

  1. 3D monitor

    Szkandera, Jan

    2009-01-01

    Tato bakalářská práce se zabývá návrhem a realizací systému, který umožní obraz scény zobrazovaný na ploše vnímat prostorově. Prostorové vnímání 2D obrazové informace je umožněno jednak stereopromítáním a jednak tím, že se obraz mění v závislosti na poloze pozorovatele. Tato práce se zabývá hlavně druhým z těchto problémů. This Bachelor's thesis goal is to design and realize system, which allows user to perceive 2D visual information as three-dimensional. 3D visual preception of 2D image i...

  2. Mobile 3D tomograph

    Mobile tomographs often have the problem that high spatial resolution is impossible owing to the position or setup of the tomograph. While the tree tomograph developed by Messrs. Isotopenforschung Dr. Sauerwein GmbH worked well in practice, it is no longer used as the spatial resolution and measuring time are insufficient for many modern applications. The paper shows that the mechanical base of the method is sufficient for 3D CT measurements with modern detectors and X-ray tubes. CT measurements with very good statistics take less than 10 min. This means that mobile systems can be used, e.g. in examinations of non-transportable cultural objects or monuments. Enhancement of the spatial resolution of mobile tomographs capable of measuring in any position is made difficult by the fact that the tomograph has moving parts and will therefore have weight shifts. With the aid of tomographies whose spatial resolution is far higher than the mechanical accuracy, a correction method is presented for direct integration of the Feldkamp algorithm

  3. Analogy between impact of architectural design characteristics of learning spaces on learners in the physical world and 3D virtual world

    Saleeb, Noha; Dafoulas, George

    2010-01-01

    This research starts by establishing from literature the importance of architectural design elements of physical learning spaces on face-to-face learning, hence, after illustrating examples of different types of architecture in Second Life, delves into exploring the effect of individual architectural features of 3D virtual building design, such as color, shape of class, lighting and open spaces, height of space, textures and other aspects on higher education learners during online e-learni...

  4. X3D: Extensible 3D Graphics Standard

    Daly, Leonard; Brutzman, Don

    2007-01-01

    The article of record as published may be located at http://dx.doi.org/10.1109/MSP.2007.905889 Extensible 3D (X3D) is the open standard for Web-delivered three-dimensional (3D) graphics. It specifies a declarative geometry definition language, a run-time engine, and an application program interface (API) that provide an interactive, animated, real-time environment for 3D graphics. The X3D specification documents are freely available, the standard can be used without paying any royalties,...

  5. 3D game environments create professional 3D game worlds

    Ahearn, Luke

    2008-01-01

    The ultimate resource to help you create triple-A quality art for a variety of game worlds; 3D Game Environments offers detailed tutorials on creating 3D models, applying 2D art to 3D models, and clear concise advice on issues of efficiency and optimization for a 3D game engine. Using Photoshop and 3ds Max as his primary tools, Luke Ahearn explains how to create realistic textures from photo source and uses a variety of techniques to portray dynamic and believable game worlds.From a modern city to a steamy jungle, learn about the planning and technological considerations for 3D modelin

  6. 3D Printing an Octohedron

    Aboufadel, Edward F.

    2014-01-01

    The purpose of this short paper is to describe a project to manufacture a regular octohedron on a 3D printer. We assume that the reader is familiar with the basics of 3D printing. In the project, we use fundamental ideas to calculate the vertices and faces of an octohedron. Then, we utilize the OPENSCAD program to create a virtual 3D model and an STereoLithography (.stl) file that can be used by a 3D printer.

  7. Magnetic resonance imaging-targeted, 3D transrectal ultrasound-guided fusion biopsy for prostate cancer: Quantifying the impact of needle delivery error on diagnosis

    Purpose: Magnetic resonance imaging (MRI)-targeted, 3D transrectal ultrasound (TRUS)-guided “fusion” prostate biopsy intends to reduce the ∼23% false negative rate of clinical two-dimensional TRUS-guided sextant biopsy. Although it has been reported to double the positive yield, MRI-targeted biopsies continue to yield false negatives. Therefore, the authors propose to investigate how biopsy system needle delivery error affects the probability of sampling each tumor, by accounting for uncertainties due to guidance system error, image registration error, and irregular tumor shapes. Methods: T2-weighted, dynamic contrast-enhanced T1-weighted, and diffusion-weighted prostate MRI and 3D TRUS images were obtained from 49 patients. A radiologist and radiology resident contoured 81 suspicious regions, yielding 3D tumor surfaces that were registered to the 3D TRUS images using an iterative closest point prostate surface-based method to yield 3D binary images of the suspicious regions in the TRUS context. The probabilityP of obtaining a sample of tumor tissue in one biopsy core was calculated by integrating a 3D Gaussian distribution over each suspicious region domain. Next, the authors performed an exhaustive search to determine the maximum root mean squared error (RMSE, in mm) of a biopsy system that gives P ≥ 95% for each tumor sample, and then repeated this procedure for equal-volume spheres corresponding to each tumor sample. Finally, the authors investigated the effect of probe-axis-direction error on measured tumor burden by studying the relationship between the error and estimated percentage of core involvement. Results: Given a 3.5 mm RMSE for contemporary fusion biopsy systems,P ≥ 95% for 21 out of 81 tumors. The authors determined that for a biopsy system with 3.5 mm RMSE, one cannot expect to sample tumors of approximately 1 cm3 or smaller with 95% probability with only one biopsy core. The predicted maximum RMSE giving P ≥ 95% for each tumor was

  8. Magnetic resonance imaging-targeted, 3D transrectal ultrasound-guided fusion biopsy for prostate cancer: Quantifying the impact of needle delivery error on diagnosis

    Martin, Peter R., E-mail: pmarti46@uwo.ca [Department of Medical Biophysics, The University of Western Ontario, London, Ontario N6A 3K7 (Canada); Cool, Derek W. [Department of Medical Imaging, The University of Western Ontario, London, Ontario N6A 3K7, Canada and Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 3K7 (Canada); Romagnoli, Cesare [Department of Medical Imaging, The University of Western Ontario, London, Ontario N6A 3K7 (Canada); Fenster, Aaron [Department of Medical Biophysics, The University of Western Ontario, London, Ontario N6A 3K7 (Canada); Department of Medical Imaging, The University of Western Ontario, London, Ontario N6A 3K7 (Canada); Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 3K7 (Canada); Ward, Aaron D. [Department of Medical Biophysics, The University of Western Ontario, London, Ontario N6A 3K7 (Canada); Department of Oncology, The University of Western Ontario, London, Ontario N6A 3K7 (Canada)

    2014-07-15

    Purpose: Magnetic resonance imaging (MRI)-targeted, 3D transrectal ultrasound (TRUS)-guided “fusion” prostate biopsy intends to reduce the ∼23% false negative rate of clinical two-dimensional TRUS-guided sextant biopsy. Although it has been reported to double the positive yield, MRI-targeted biopsies continue to yield false negatives. Therefore, the authors propose to investigate how biopsy system needle delivery error affects the probability of sampling each tumor, by accounting for uncertainties due to guidance system error, image registration error, and irregular tumor shapes. Methods: T2-weighted, dynamic contrast-enhanced T1-weighted, and diffusion-weighted prostate MRI and 3D TRUS images were obtained from 49 patients. A radiologist and radiology resident contoured 81 suspicious regions, yielding 3D tumor surfaces that were registered to the 3D TRUS images using an iterative closest point prostate surface-based method to yield 3D binary images of the suspicious regions in the TRUS context. The probabilityP of obtaining a sample of tumor tissue in one biopsy core was calculated by integrating a 3D Gaussian distribution over each suspicious region domain. Next, the authors performed an exhaustive search to determine the maximum root mean squared error (RMSE, in mm) of a biopsy system that gives P ≥ 95% for each tumor sample, and then repeated this procedure for equal-volume spheres corresponding to each tumor sample. Finally, the authors investigated the effect of probe-axis-direction error on measured tumor burden by studying the relationship between the error and estimated percentage of core involvement. Results: Given a 3.5 mm RMSE for contemporary fusion biopsy systems,P ≥ 95% for 21 out of 81 tumors. The authors determined that for a biopsy system with 3.5 mm RMSE, one cannot expect to sample tumors of approximately 1 cm{sup 3} or smaller with 95% probability with only one biopsy core. The predicted maximum RMSE giving P ≥ 95% for each

  9. Quantifying mesoscale neuroanatomy using X-ray microtomography

    Dyer, Eva L.; Roncal, William Gray; Fernandes, Hugo L.; Gürsoy, Doga; Xiao, Xianghui; Vogelstein, Joshua T.; Jacobsen, Chris; Körding, Konrad P.; Kasthuri, Narayanan

    2016-01-01

    Common methods for imaging the 3D microstructure of the brain often require slicing the brain, imaging these slices, and stitching the images back together. In contrast, X-rays allow access into centimeter-thick samples without sectioning, providing an unique and largely untapped approach for producing large 3D mesoscale brain maps. Here we demonstrate the use of synchrotron X-ray microtomography ($\\mu$CT) for brain science and provide a much needed toolkit for analyzing the large datasets af...

  10. 3D modelling and recognition

    Rodrigues, Marcos; Robinson, Alan; Alboul, Lyuba; Brink, Willie

    2006-01-01

    3D face recognition is an open field. In this paper we present a method for 3D facial recognition based on Principal Components Analysis. The method uses a relatively large number of facial measurements and ratios and yields reliable recognition. We also highlight our approach to sensor development for fast 3D model acquisition and automatic facial feature extraction.

  11. Mesoscale Simulations of Power Compaction

    Lomov, I; Fujino, D; Antoun, T; Liu, B

    2009-08-06

    Mesoscale 3D simulations of metal and ceramic powder compaction in shock waves have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating shock compaction of porous well-characterized ductile metal using Steinberg material model. Results of the simulations with handbook values for parameters of solid 2024 aluminum have good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not so well studied as metals, so material model for ceramic (tungsten carbide) has been fitted to shock compression experiments of non-porous samples and further calibrated to match experimental compaction curves. Direct simulations of gas gun experiments with ceramic powder have been performed and showed good agreement with experimental data. Numerical shock wave profile has same character and thickness as measured with VISAR. Numerical results show reshock states above the single-shock Hugoniot line also observed in experiments. They found that to receive good quantitative agreement with experiment it is essential to perform 3D simulations.

  12. 3-D contextual Bayesian classifiers

    Larsen, Rasmus

    distribution for the pixel values as well as a prior distribution for the configuration of class variables within the cross that is made of a pixel and its four nearest neighbours. We will extend these algorithms to 3-D, i.e. we will specify a simultaneous Gaussian distribution for a pixel and its 6 nearest 3......-D neighbours, and generalise the class variable configuration distributions within the 3-D cross given in 2-D algorithms. The new 3-D algorithms are tested on a synthetic 3-D multivariate dataset....

  13. Taming Supersymmetric Defects in 3d-3d Correspondence

    Gang, Dongmin; Romo, Mauricio; Yamazaki, Masahito

    2015-01-01

    We study knots in 3d Chern-Simons theory with complex gauge group $SL(N,\\mathbb{C})$, in the context of its relation with 3d $\\mathcal{N}=2$ theory (the so-called 3d-3d correspondence). The defect has either co-dimension 2 or co-dimension 4 inside the 6d $(2,0)$ theory, which is compactified on a 3-manifold $\\hat{M}$. We identify such defects in various corners of the 3d-3d correspondence, namely in 3d $SL(N,\\mathbb{C})$ Chern-Simons theory, in 3d $\\mathcal{N}=2$ theory, in 5d $\\mathcal{N}=2$ super Yang-Mills theory, and in the M-theory holographic dual. We can make quantitative checks of the 3d-3d correspondence by computing partition functions at each of these theories. This Letter is a companion to a longer paper, which contains more details and more results.

  14. A new method to explore the spectral impact of the piriform fossae on the singing voice:Benchmarking using MRI-based 3D-printed vocal tracts

    Bertrand Delvaux; David Howard

    2014-01-01

    The piriform fossae are the 2 pear-shaped cavities lateral to the laryngeal vestibule at the lower end of the vocal tract. They act acoustically as side-branches to the main tract, resulting in a spectral zero in the output of the human voice. This study investigates their spectral role by comparing numerical and experimental results of MRI-based 3D printed Vocal Tracts, for which a new experimental method (based on room acoustics) is introduced. The findings support results in the literature...

  15. 3D Printing Functional Nanocomposites

    Leong, Yew Juan

    2016-01-01

    3D printing presents the ability of rapid prototyping and rapid manufacturing. Techniques such as stereolithography (SLA) and fused deposition molding (FDM) have been developed and utilized since the inception of 3D printing. In such techniques, polymers represent the most commonly used material for 3D printing due to material properties such as thermo plasticity as well as its ability to be polymerized from monomers. Polymer nanocomposites are polymers with nanomaterials composited into the ...

  16. 3D Elevation Program—Virtual USA in 3D

    Lukas, Vicki; Stoker, J.M.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  17. 3D IBFV : Hardware-Accelerated 3D Flow Visualization

    Telea, Alexandru; Wijk, Jarke J. van

    2003-01-01

    We present a hardware-accelerated method for visualizing 3D flow fields. The method is based on insertion, advection, and decay of dye. To this aim, we extend the texture-based IBFV technique for 2D flow visualization in two main directions. First, we decompose the 3D flow visualization problem in a

  18. 3D for Graphic Designers

    Connell, Ellery

    2011-01-01

    Helping graphic designers expand their 2D skills into the 3D space The trend in graphic design is towards 3D, with the demand for motion graphics, animation, photorealism, and interactivity rapidly increasing. And with the meteoric rise of iPads, smartphones, and other interactive devices, the design landscape is changing faster than ever.2D digital artists who need a quick and efficient way to join this brave new world will want 3D for Graphic Designers. Readers get hands-on basic training in working in the 3D space, including product design, industrial design and visualization, modeling, ani

  19. A 3-D Contextual Classifier

    Larsen, Rasmus

    1997-01-01

    . This includes the specification of a Gaussian distribution for the pixel values as well as a prior distribution for the configuration of class variables within the cross that is m ade of a pixel and its four nearest neighbours. We will extend this algorithm to 3-D, i.e. we will specify a simultaneous Gaussian...... distr ibution for a pixel and its 6 nearest 3-D neighbours, and generalise the class variable configuration distribution within the 3-D cross. The algorithm is tested on a synthetic 3-D multivariate dataset....

  20. 3D Bayesian contextual classifiers

    Larsen, Rasmus

    2000-01-01

    We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours.......We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours....

  1. Interactive 3D multimedia content

    Cellary, Wojciech

    2012-01-01

    The book describes recent research results in the areas of modelling, creation, management and presentation of interactive 3D multimedia content. The book describes the current state of the art in the field and identifies the most important research and design issues. Consecutive chapters address these issues. These are: database modelling of 3D content, security in 3D environments, describing interactivity of content, searching content, visualization of search results, modelling mixed reality content, and efficient creation of interactive 3D content. Each chapter is illustrated with example a

  2. 3-D printers for libraries

    Griffey, Jason

    2014-01-01

    As the maker movement continues to grow and 3-D printers become more affordable, an expanding group of hobbyists is keen to explore this new technology. In the time-honored tradition of introducing new technologies, many libraries are considering purchasing a 3-D printer. Jason Griffey, an early enthusiast of 3-D printing, has researched the marketplace and seen several systems first hand at the Consumer Electronics Show. In this report he introduces readers to the 3-D printing marketplace, covering such topics asHow fused deposition modeling (FDM) printing workBasic terminology such as build

  3. Tropical deep convection and its impact on composition in global and mesoscale models - Part 1: Meteorology and comparison with observations.

    M. R. Russo

    2010-08-01

    Full Text Available Tropical convection is a very important atmospheric process acting on the water cycle, radiative budget of the atmosphere and air composition of the upper troposphere and lower stratosphere (UTLS, and it affects a broad range of spatial and temporal scales. The fast vertical transport in convective plumes can efficiently redistribute water vapour and pollutants up to the Tropical Tropopause Layer (TTL, and therefore affect the composition of the lower stratosphere. Chemistry Climate Models and Chemistry Transport Models are routinely used to study chemical processes in the atmosphere. In these models convection and convective transport of tracers are parameterised, and due to the interplay of chemical and dynamical processes, it has proven difficult to evaluate the convective transport of chemical species by comparison with observed chemical fields.

    In this work we investigate different characteristics of tropical convection by using convective proxies from many independent observational datasets (including surface precipitation rates, cloud top pressure and OLR. We use observations to analyse the seasonal cycle and geographical preferences of convection, and its impact on water vapour. Using highly temporally resolved cloud top data we calculate the frequency distribution of high clouds in three tropical regions. The observational data is used as a benchmark for a number of numerical models, with a view to assess the ability of models to reproduce the seasonality, preferential location and vertical extent of tropical convection. Finally we discuss the implications of our findings on modelling the composition of the upper troposphere and lower stratosphere.

  4. Increasing the impact of medical image computing using community-based open-access hackathons: The NA-MIC and 3D Slicer experience.

    Kapur, Tina; Pieper, Steve; Fedorov, Andriy; Fillion-Robin, J-C; Halle, Michael; O'Donnell, Lauren; Lasso, Andras; Ungi, Tamas; Pinter, Csaba; Finet, Julien; Pujol, Sonia; Jagadeesan, Jayender; Tokuda, Junichi; Norton, Isaiah; Estepar, Raul San Jose; Gering, David; Aerts, Hugo J W L; Jakab, Marianna; Hata, Nobuhiko; Ibanez, Luiz; Blezek, Daniel; Miller, Jim; Aylward, Stephen; Grimson, W Eric L; Fichtinger, Gabor; Wells, William M; Lorensen, William E; Schroeder, Will; Kikinis, Ron

    2016-10-01

    The National Alliance for Medical Image Computing (NA-MIC) was launched in 2004 with the goal of investigating and developing an open source software infrastructure for the extraction of information and knowledge from medical images using computational methods. Several leading research and engineering groups participated in this effort that was funded by the US National Institutes of Health through a variety of infrastructure grants. This effort transformed 3D Slicer from an internal, Boston-based, academic research software application into a professionally maintained, robust, open source platform with an international leadership and developer and user communities. Critical improvements to the widely used underlying open source libraries and tools-VTK, ITK, CMake, CDash, DCMTK-were an additional consequence of this effort. This project has contributed to close to a thousand peer-reviewed publications and a growing portfolio of US and international funded efforts expanding the use of these tools in new medical computing applications every year. In this editorial, we discuss what we believe are gaps in the way medical image computing is pursued today; how a well-executed research platform can enable discovery, innovation and reproducible science ("Open Science"); and how our quest to build such a software platform has evolved into a productive and rewarding social engineering exercise in building an open-access community with a shared vision. PMID:27498015

  5. Modelling of Criegee Intermediates using the 3-D global model, STOCHEM-CRI and investigating their global impacts on Secondary Organic Aerosol formation

    Khan, M. Anwar H.; Cooke, Michael; Utembe, Steve; Archibald, Alexander; Derwent, Richard; Jenkin, Mike; Lyons, Kyle; Kent, Adam; Percival, Carl; Shallcross, Dudley E.

    2016-04-01

    Gas phase reactions of ozone with unsaturated compounds form stabilized Criegee intermediates (sCI) which play an important role in controlling the budgets of many tropospheric species including OH, organic acids and secondary organic aerosols (SOA). Recently sCI has been proposed to play a significant role in atmospheric sulfate and nitrate chemistry by forming sulfuric acid (promoter of aerosol formation) and nitrate radical (a powerful oxidizing agent). sCI can also undergo association reactions with water, alcohols, and carboxylic acids to form hydroperoxides and with aldehydes and ketones to form secondary ozonides. The products from these reactions are low volatility compounds which can contribute to the formation of SOA. The importance of plant emitted alkenes (isoprene, monoterpenes, sesquiterpenes) in the production of SOA through sCI formation have already been investigated in laboratory studies. However, the SOA formation from these reactions are absent in current global models. Thus, the formation of SOA has been incorporated in the global model, STOCHEM-CRI, a 3-D global chemistry transport model and the role of CI chemistry in controlling atmospheric composition and climate, and the influence of water vapor has been discussed in the study.

  6. Improvement of 3D Scanner

    2003-01-01

    The disadvantage remaining in 3D scanning system and its reasons are discussed. A new host-and-slave structure with high speed image acquisition and processing system is proposed to quicken the image processing and improve the performance of 3D scanning system.

  7. 3D Printing for Bricks

    ECT Team, Purdue

    2015-01-01

    Building Bytes, by Brian Peters, is a project that uses desktop 3D printers to print bricks for architecture. Instead of using an expensive custom-made printer, it uses a normal standard 3D printer which is available for everyone and makes it more accessible and also easier for fabrication.

  8. Modular 3-D Transport model

    MT3D was first developed by Chunmiao Zheng in 1990 at S.S. Papadopulos & Associates, Inc. with partial support from the U.S. Environmental Protection Agency (USEPA). Starting in 1990, MT3D was released as a pubic domain code from the USEPA. Commercial versions with enhanced capab...

  9. Using 3D in Visualization

    Wood, Jo; Kirschenbauer, Sabine; Döllner, Jürgen;

    2005-01-01

    The notion of three-dimensionality is applied to five stages of the visualization pipeline. While 3D visulization is most often associated with the visual mapping and representation of data, this chapter also identifies its role in the management and assembly of data, and in the media used...... to display 3D imagery. The extra cartographic degree of freedom offered by using 3D is explored and offered as a motivation for employing 3D in visualization. The use of VR and the construction of virtual environments exploit navigational and behavioral realism, but become most usefil when combined...... with abstracted representations embedded in a 3D space. The interactions between development of geovisualization, the technology used to implement it and the theory surrounding cartographic representation are explored. The dominance of computing technologies, driven particularly by the gaming industry...

  10. 3D-PRINTING OF BUILD OBJECTS

    SAVYTSKYI M. V.

    2016-03-01

    Full Text Available Raising of problem. Today, in all spheres of our life we can constate the permanent search for new, modern methods and technologies that meet the principles of sustainable development. New approaches need to be, on the one hand more effective in terms of conservation of exhaustible resources of our planet, have minimal impact on the environment and on the other hand to ensure a higher quality of the final product. Construction is not exception. One of the new promising technology is the technology of 3D -printing of individual structures and buildings in general. 3Dprinting - is the process of real object recreating on the model of 3D. Unlike conventional printer which prints information on a sheet of paper, 3D-printer allows you to display three-dimensional information, i.e. creates certain physical objects. Currently, 3D-printer finds its application in many areas of production: machine building elements, a variety of layouts, interior elements, various items. But due to the fact that this technology is fairly new, it requires the creation of detailed and accurate technologies, efficient equipment and materials, and development of common vocabulary and regulatory framework in this field. Research Aim. The analysis of existing methods of creating physical objects using 3D-printing and the improvement of technology and equipment for the printing of buildings and structures. Conclusion. 3D-printers building is a new generation of equipment for the construction of buildings, structures, and structural elements. A variety of building printing technics opens up wide range of opportunities in the construction industry. At this stage, printers design allows to create low-rise buildings of different configurations with different mortars. The scientific novelty of this work is to develop proposals to improve the thermal insulation properties of constructed 3D-printing objects and technological equipment. The list of key terms and notions of construction

  11. Impact of inter- and intrafraction deviations and residual set-up errors on PTV margins. Different alignment techniques in 3D conformal prostate cancer radiotherapy

    Langsenlehner, T.; Doeller, C.; Winkler, P.; Kapp, K.S. [Graz Medical Univ. (Austria). Dept. of Therapeutic Radiology and Oncology; Galle, G. [Graz Medical Univ. (Austria). Dept. of Urology

    2013-04-15

    The aim of this work was to analyze interfraction and intrafraction deviations and residual set-up errors (RSE) after online repositioning to determine PTV margins for 3 different alignment techniques in prostate cancer radiotherapy. The present prospective study included 44 prostate cancer patients with implanted fiducials treated with three-dimensional (3D) conformal radiotherapy. Daily localization was based on skin marks followed by marker detection using kilovoltage (kV) imaging and subsequent patient repositioning. Additionally, in-treatment megavoltage (MV) images were obtained for each treatment field. In an off-line analysis of 7,273 images, interfraction prostate motion, RSE after marker-based prostate localization, prostate position during each treatment session, and the effect of treatment time on intrafraction deviations were analyzed to evaluate PTV margins. Margins accounting for interfraction deviation, RSE and intrafraction motion were 14.1, 12.9, and 15.1 mm in anterior-posterior (AP), superior-inferior (SI), and left-right (LR) direction for skin mark alignment and 9.6, 8.7, and 2.6 mm for bony structure alignment, respectively. Alignment to implanted markers required margins of 4.6, 2.8, and 2.5 mm. As margins to account for intrafraction motion increased with treatment prolongation PTV margins could be reduced to 3.9, 2.6, and 2.4 mm if treatment time was {<=} 4 min. With daily online correction and repositioning based on implanted fiducials, a significant reduction of PTV margins can be achieved. The use of an optimized workflow with faster treatment techniques such as volumetric modulated arc techniques (VMAT) could allow for a further decrease. (orig.)

  12. ADT-3D Tumor Detection Assistant in 3D

    Jaime Lazcano Bello

    2008-12-01

    Full Text Available The present document describes ADT-3D (Three-Dimensional Tumor Detector Assistant, a prototype application developed to assist doctors diagnose, detect and locate tumors in the brain by using CT scan. The reader may find on this document an introduction to tumor detection; ADT-3D main goals; development details; description of the product; motivation for its development; result’s study; and areas of applicability.

  13. 5-axis 3D Printer

    Grutle, Øyvind Kallevik

    2015-01-01

    3D printers have in recent years become extremely popular. Even though 3D printing technology have existed since the late 1980's, it is now considered one of the most significant technological breakthroughs of the twenty-first century. Several different 3D printing processes have been invented during the years. But it is the fused deposition modeling (FDM) which was one of the first invented that is considered the most popular today. Even though the FDM process is the most popular, it still s...

  14. Handbook of 3D integration

    Garrou , Philip; Ramm , Peter

    2014-01-01

    Edited by key figures in 3D integration and written by top authors from high-tech companies and renowned research institutions, this book covers the intricate details of 3D process technology.As such, the main focus is on silicon via formation, bonding and debonding, thinning, via reveal and backside processing, both from a technological and a materials science perspective. The last part of the book is concerned with assessing and enhancing the reliability of the 3D integrated devices, which is a prerequisite for the large-scale implementation of this emerging technology. Invaluable reading fo

  15. Exploration of 3D Printing

    Lin, Zeyu

    2014-01-01

    3D printing technology is introduced and defined in this Thesis. Some methods of 3D printing are illustrated and their principles are explained with pictures. Most of the essential parts are presented with pictures and their effects are explained within the whole system. Problems on Up! Plus 3D printer are solved and a DIY product is made with this machine. The processes of making product are recorded and the items which need to be noticed during the process are the highlight in this th...

  16. Tuotekehitysprojekti: 3D-tulostin

    Pihlajamäki, Janne

    2011-01-01

    Opinnäytetyössä tutustuttiin 3D-tulostamisen teknologiaan. Työssä käytiin läpi 3D-tulostimesta tehty tuotekehitysprojekti. Sen lisäksi esiteltiin yleisellä tasolla tuotekehitysprosessi ja syntyneiden tulosten mahdollisia suojausmenetelmiä. Tavoitteena tässä työssä oli kehittää markkinoilta jo löytyvää kotitulostin-tasoista 3D-laiteteknologiaa lähemmäksi ammattilaistason ratkaisua. Tavoitteeseen pyrittiin keskittymällä parantamaan laitteella saavutettavaa tulostustarkkuutta ja -nopeutt...

  17. Color 3D Reverse Engineering

    2002-01-01

    This paper presents a principle and a method of col or 3D laser scanning measurement. Based on the fundamental monochrome 3D measureme nt study, color information capture, color texture mapping, coordinate computati on and other techniques are performed to achieve color 3D measurement. The syste m is designed and composed of a line laser light emitter, one color CCD camera, a motor-driven rotary filter, a circuit card and a computer. Two steps in captu ring object's images in the measurement process: Firs...

  18. 3-D neutron transport benchmarks

    A set of 3-D neutron transport benchmark problems proposed by the Osaka University to NEACRP in 1988 has been calculated by many participants and the corresponding results are summarized in this report. The results of Keff, control rod worth and region-averaged fluxes for the four proposed core models, calculated by using various 3-D transport codes are compared and discussed. The calculational methods used were: Monte Carlo, Discrete Ordinates (Sn), Spherical Harmonics (Pn), Nodal Transport and others. The solutions of the four core models are quite useful as benchmarks for checking the validity of 3-D neutron transport codes

  19. 3D on the internet

    Puntar, Matej

    2012-01-01

    The purpose of this thesis is the presentation of already established and new technologies of displaying 3D content in a web browser. The thesis begins with a short presentation of the history of 3D content available on the internet and its development together with advantages and disadvantages of individual technologies. The latter two are described in detail as well is their use and the differences among them. Special emphasis has been given to WebGL, the newest technology of 3D conte...

  20. Impact of time-of-flight on indirect 3D and direct 4D parametric image reconstruction in the presence of inconsistent dynamic PET data.

    Kotasidis, F A; Mehranian, A; Zaidi, H

    2016-05-01

    reconstruction can substantially prevent kinetic parameter error propagation either from erroneous kinetic modelling, inter-frame motion or emission/transmission mismatch. Furthermore, we demonstrate the benefits of TOF in parameter estimation when conventional post-reconstruction (3D) methods are used and compare the potential improvements to direct 4D methods. Further improvements could possibly be achieved in the future by combining TOF direct 4D image reconstruction with adaptive kinetic models and inter-frame motion correction schemes. PMID:27049697

  1. Dosimetric impact of inter-observer variability for 3D conformal radiotherapy and volumetric modulated arc therapy: the rectal tumor target definition case

    To assess the dosimetric effect induced by inter-observer variability in target definition for 3D-conformal RT (3DCRT) and volumetric modulated arc therapy by RapidArc (RA) techniques for rectal cancer treatment. Ten patients with rectal cancer subjected to neo-adjuvant RT were randomly selected from the internal database. Four radiation oncologists independently contoured the clinical target volume (CTV) in blind mode. Planning target volume (PTV) was defined as CTV + 7 mm in the three directions. Afterwards, shared guidelines between radiation oncologists were introduced to give general criteria for the contouring of rectal target and the four radiation oncologists defined new CTV following the guidelines. For each patient, six intersections (I) and unions (U) volumes were calculated coupling the contours of the various oncologists. This was repeated for the contours drawn after the guidelines. Agreement Index (AI = I/U) was calculated pre and post guidelines. Two RT plans (one with 3DCRT technique using 3–4 fields and one with RA using a single modulated arc) were optimized on each radiation oncologist’s PTV. For each plan the PTV volume receiving at least 95% of the prescribed dose (PTV V95%) was calculated for both target and non-target PTVs. The inter-operator AI pre-guidelines was 0.57 and was increased up to 0.69 post-guidelines. The maximum volume difference between the various CTV couples, drawn for each patient, passed from 380 ± 147 cm3 to 137 ± 83 cm3 after the introduction of guidelines. The mean percentage for the non-target PTV V95% was 93.7 ± 9.2% before and 96.6 ± 4.9%after the introduction of guidelines for the 3DCRT, for RA the increase was more relevant, passing from 86.5 ± 13.8% (pre) to 94.5 ± 7.5% (post). The OARs were maximally spared with VMAT technique while the variability between pre and post guidelines was not relevant in both techniques. The contouring inter-observer variability has dosimetric effects in the PTV coverage

  2. Impact of time-of-flight on indirect 3D and direct 4D parametric image reconstruction in the presence of inconsistent dynamic PET data

    Kotasidis, F. A.; Mehranian, A.; Zaidi, H.

    2016-05-01

    reconstruction can substantially prevent kinetic parameter error propagation either from erroneous kinetic modelling, inter-frame motion or emission/transmission mismatch. Furthermore, we demonstrate the benefits of TOF in parameter estimation when conventional post-reconstruction (3D) methods are used and compare the potential improvements to direct 4D methods. Further improvements could possibly be achieved in the future by combining TOF direct 4D image reconstruction with adaptive kinetic models and inter-frame motion correction schemes.

  3. Heterodyne 3D ghost imaging

    Yang, Xu; Zhang, Yong; Yang, Chenghua; Xu, Lu; Wang, Qiang; Zhao, Yuan

    2016-06-01

    Conventional three dimensional (3D) ghost imaging measures range of target based on pulse fight time measurement method. Due to the limit of data acquisition system sampling rate, range resolution of the conventional 3D ghost imaging is usually low. In order to take off the effect of sampling rate to range resolution of 3D ghost imaging, a heterodyne 3D ghost imaging (HGI) system is presented in this study. The source of HGI is a continuous wave laser instead of pulse laser. Temporal correlation and spatial correlation of light are both utilized to obtain the range image of target. Through theory analysis and numerical simulations, it is demonstrated that HGI can obtain high range resolution image with low sampling rate.

  4. Conducting polymer 3D microelectrodes

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi;

    2010-01-01

    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained...

  5. Main: TATCCAYMOTIFOSRAMY3D [PLACE

    Full Text Available TATCCAYMOTIFOSRAMY3D S000256 01-August-2006 (last modified) kehi TATCCAY motif found in rice (O. ... otif and G motif (see S000130) are responsible for sugar ... repression (Toyofuku et al. 1998); GATA; amylase; ...

  6. Combinatorial 3D Mechanical Metamaterials

    Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin

    2015-03-01

    We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.

  7. 3D Face Appearance Model

    Lading, Brian; Larsen, Rasmus; Åström, Kalle

    2006-01-01

    We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}......We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}...

  8. 3D Face Apperance Model

    Lading, Brian; Larsen, Rasmus; Astrom, K

    2006-01-01

    We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations......We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations...

  9. AI 3D Cybug Gaming

    Ahmed, Zeeshan

    2010-01-01

    In this short paper I briefly discuss 3D war Game based on artificial intelligence concepts called AI WAR. Going in to the details, I present the importance of CAICL language and how this language is used in AI WAR. Moreover I also present a designed and implemented 3D War Cybug for AI WAR using CAICL and discus the implemented strategy to defeat its enemies during the game life.

  10. Systematic measurement of the relative electron-impact excitation cross section of the 3d→2p1P1 resonance and 3D1 intercombination lines in mid-Z neonlike ions

    The relative electron-impact cross sections for exciting the 3d→2p1P1 resonance and 3D1 intercombination lines have been measured in nine neonlike ions between Cr14+ and Kr26+. The ratio drops from about 4.4 for Cr14+ to less than unity for Kr26+ in response to an increase in relativistic effects. A measurement of the dependence of this ratio on electron energy is presented for Fe16+. No dependence on electron energy is found. The measured ratios are generally lower than theory, showing that the relative intensity of the intercombination line is larger than predicted and illustrating the difficulty to predict electron-impact excitation cross sections in the intermediate coupling regime at the level needed for spectral diagnostics

  11. Acid rain: Mesoscale model

    Hsu, H. M.

    1980-01-01

    A mesoscale numerical model of the Florida peninsula was formulated and applied to a dry, neutral atmosphere. The prospective use of the STAR-100 computer for the submesoscale model is discussed. The numerical model presented is tested under synoptically undisturbed conditions. Two cases, differing only in the direction of the prevailing geostrophic wind, are examined: a prevailing southwest wind and a prevailing southeast wind, both 6 m/sec at all levels initially.

  12. Mesoscale hybrid calibration artifact

    Tran, Hy D.; Claudet, Andre A.; Oliver, Andrew D.

    2010-09-07

    A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

  13. From 3D view to 3D print

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  14. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  15. 3D high resolution stratigraphy of early rift deltaic deposits in the Sergipe-Alagoas basin: impact on the reservoir compartmentalization; Estratigrafia de alta resolucao 3D em depositos deltaicos do inicio do rifte da bacia de Sergipe-Alagoas: impacto na compartimentacao de reservatorios

    Borba, Claudio [Petroleo Brasileiro S. A. (PETROBRAS/UO-SEAL), Aracaju, SE (Brazil). Unidade de Operacoes de Exploracao e Producao de Sergipe e Alagoas], E-mail: cborba@petrobras.com; Paim, Paulo Sergio Gomes [Universidade do Vale do Rio dos Sinos (UNISINOS), Sao Leopoldo, RS (Brazil)], E-mail: ppaim@unisinos.br; Garcia, Antonio Jorge Vasconcellos [Universidade Federal de Sergipe (UFS), Aracaju, SE (Brazil)], E-mail: garciageo@pq.cnpq.br

    2009-05-15

    A high resolution stratigraphic study applied to reservoir characterization, based on well logs, cuts and cores from the Furado Field, a mature oil field of the Alagoas Sub-basin, was carried out on deltaic strata of the lower portion of the Barra de Itiuba Formation (early rifting of the Sergipe-Alagoas Basin). Three lacustrine systems tracts were recognized within a 3rd order sequence: the low stand systems tract (tectonic pulse initiation) that includes extensive, medium- to coarse-grained fluvial-deltaic sandstones that display good reservoir quality; the transgressive systems tract (tectonic climax), which comprises lacustrine and pro delta shale and distal delta front, fine- to very fine-grained sandstone; and the high stand system tract (tectonic quiescence) that encompasses several cycles of delta front progradation and related poor quality reservoirs relative to those of the low stand system tract. The 4th order sequences are represented by climate-driven transgressive-regressive cycles that constitute independent reservoirs, equivalent to a reservoir zones. This high resolution stratigraphic framework was then used on the building of the 3D geologic model, which honored the systems tracts geometry, and related facies, as well as the paleostructure, including a syn-depositional fault propagation anticline. Several normal faults split the reservoirs at different scales. Their potential impact on reservoir fragmentation was approached through the use of fault juxtaposition and shale gouge ratio diagrams. (author)

  16. Remote 3D Medical Consultation

    Welch, Greg; Sonnenwald, Diane H.; Fuchs, Henry; Cairns, Bruce; Mayer-Patel, Ketan; Yang, Ruigang; State, Andrei; Towles, Herman; Ilie, Adrian; Krishnan, Srinivas; Söderholm, Hanna M.

    Two-dimensional (2D) video-based telemedical consultation has been explored widely in the past 15-20 years. Two issues that seem to arise in most relevant case studies are the difficulty associated with obtaining the desired 2D camera views, and poor depth perception. To address these problems we are exploring the use of a small array of cameras to synthesize a spatially continuous range of dynamic three-dimensional (3D) views of a remote environment and events. The 3D views can be sent across wired or wireless networks to remote viewers with fixed displays or mobile devices such as a personal digital assistant (PDA). The viewpoints could be specified manually or automatically via user head or PDA tracking, giving the remote viewer virtual head- or hand-slaved (PDA-based) remote cameras for mono or stereo viewing. We call this idea remote 3D medical consultation (3DMC). In this article we motivate and explain the vision for 3D medical consultation; we describe the relevant computer vision/graphics, display, and networking research; we present a proof-of-concept prototype system; and we present some early experimental results supporting the general hypothesis that 3D remote medical consultation could offer benefits over conventional 2D televideo.

  17. Materialedreven 3d digital formgivning

    Hansen, Flemming Tvede

    2010-01-01

    Formålet med forskningsprojektet er for det første at understøtte keramikeren i at arbejde eksperimenterende med digital formgivning, og for det andet at bidrage til en tværfaglig diskurs om brugen af digital formgivning. Forskningsprojektet fokuserer på 3d formgivning og derved på 3d digital...... formgivning og Rapid Prototyping (RP). RP er en fællesbetegnelse for en række af de teknikker, der muliggør at overføre den digitale form til 3d fysisk form. Forskningsprojektet koncentrerer sig om to overordnede forskningsspørgsmål. Det første handler om, hvordan viden og erfaring indenfor det keramiske...... fagområde kan blive udnyttet i forhold til 3d digital formgivning. Det andet handler om, hvad en sådan tilgang kan bidrage med, og hvordan den kan blive udnyttet i et dynamisk samspil med det keramiske materiale i formgivningen af 3d keramiske artefakter. Materialedreven formgivning er karakteriseret af en...

  18. Novel 3D media technologies

    Dagiuklas, Tasos

    2015-01-01

    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The contributions are based on the results of the FP7 European Project ROMEO, which focuses on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the future Internet. The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of consistent video quality to fixed and mobile users. ROMEO will present hybrid networking solutions that combine the DVB-T2 and DVB-NGH broadcas...

  19. 3D future internet media

    Dagiuklas, Tasos

    2014-01-01

    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The main contributions are based on the results of the FP7 European Projects ROMEO, which focus on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the Future Internet (www.ict-romeo.eu). The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of constant video quality to both fixed and mobile users. ROMEO will design and develop hybrid-networking solutions that co...

  20. PLOT3D/AMES, DEC VAX VMS VERSION USING DISSPLA (WITH TURB3D)

    Buning, P.

    1994-01-01

    five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The VAX/VMS/DISSPLA implementation of PLOT3D supports 2-D polygons as

  1. PLOT3D/AMES, DEC VAX VMS VERSION USING DISSPLA (WITHOUT TURB3D)

    Buning, P. G.

    1994-01-01

    five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The VAX/VMS/DISSPLA implementation of PLOT3D supports 2-D polygons as

  2. The Cambrian Explosion of Popular 3D Printing

    Juan Luis Chulilla Cano

    2011-01-01

    The unexpected appearance of 3D printing has caught many of technology analyst by surprise. In this paper we aim to provide a social context to the feedback loops that have generated this rapid evolution of technologies and skills involved in 3D printing, as well as and online communities related with 3D printing and the impact of this evolution on media an popular imaginary… and our near future.

  3. The Cambrian Explosion of Popular 3D Printing

    Juan Luis Chulilla Cano

    2011-12-01

    Full Text Available The unexpected appearance of 3D printing has caught many of technology analyst by surprise. In this paper we aim to provide a social context to the feedback loops that have generated this rapid evolution of technologies and skills involved in 3D printing, as well as and online communities related with 3D printing and the impact of this evolution on media an popular imaginary… and our near future.

  4. Natural and anthropogenic impacts on biogeochemical cycle in Yangtze River basin: Source, transformation and fate of dissolved organic matter (DOM) characterized by 3-D fluorescence spectroscopy

    Gan, Shuchai; Wu, Ying; Bao, Hongyan; Zhang, Jing

    2013-04-01

    Inland waters play an important role in the global carbon cycle as reactors for DOM cycling, transformation and transportation. With large amounts of terrestrial DOM, the Yangtze River is vital for coastal environment and ecosystem. In the context of climate change, it's critical to evaluate both hydrodynamic conditions and increasing human activities' impacts on biogeochemical cycle of DOM in Yangtze River across different climatic and hydrologic regions which are poorly understood. What's more, the hydrologic condition changes caused by the Three Gorges Dam (TGD, world's largest power station in terms of installed capacity) have recently proven to be a partition factor for fluvial particle. However, it's still an enigma for dissolved matter cycle. To address those issues, this study applies EEMs combined with bulk characteristics, chlorophyll and absorption spectrum in an attempt to assess characteristics and dynamics of DOM in Yangtze River. It's a novel optical approach that could 'see' molecular structure of DOM without the limits of time-consuming and laborious molecular measurements. Combined with parallel factor analysis, 5 individual fluorescent components have been identified: 3 humic-like (H1, H2, H3) and 2 protein-like components (P1, P2). With typical bioavailability and photo-reactivity, these components suggest different sources and dynamics. On the whole, both DOC and the sum of all 5 components (? Fluo) increased remarkably from the upper reach especially to the Three Gorge Dam and thereafter remained constant (R2between DOC and - Fluo: 0.92). The protein-like components (- P) accounted for 1/4 of - Fluo with apparently weak correlations with DOC and chlorophyll, which implied that the DOM is not dominated by autochthonous production, especially for the upper reach with high concentration of total suspended matter. As for Humic-like component, increasing H1 and DOC in the TGD reservoir area implied impacts from human activities there with intercept

  5. Modification of 3D milling machine to 3D printer

    Halamíček, Lukáš

    2015-01-01

    Tato práce se zabývá přestavbou gravírovací frézky na 3D tiskárnu. V první části se práce zabývá možnými technologiemi 3D tisku a možností jejich využití u přestavby. Dále jsou popsány a vybrány vhodné součásti pro přestavbu. V další části je realizováno řízení ohřevu podložky, trysky a řízení posuvu drátu pomocí softwaru TwinCat od společnosti Beckhoff na průmyslovém počítači. Výsledkem práce by měla být oživená 3D tiskárna. This thesis deals with rebuilding of engraving machine to 3D pri...

  6. 3D Imager and Method for 3D imaging

    Kumar, P.; Staszewski, R.; Charbon, E.

    2013-01-01

    3D imager comprising at least one pixel, each pixel comprising a photodetectorfor detecting photon incidence and a time-to-digital converter system configured for referencing said photon incidence to a reference clock, and further comprising a reference clock generator provided for generating the re

  7. 3D Cell Culture in Alginate Hydrogels

    Therese Andersen

    2015-03-01

    Full Text Available This review compiles information regarding the use of alginate, and in particular alginate hydrogels, in culturing cells in 3D. Knowledge of alginate chemical structure and functionality are shown to be important parameters in design of alginate-based matrices for cell culture. Gel elasticity as well as hydrogel stability can be impacted by the type of alginate used, its concentration, the choice of gelation technique (ionic or covalent, and divalent cation chosen as the gel inducing ion. The use of peptide-coupled alginate can control cell–matrix interactions. Gelation of alginate with concomitant immobilization of cells can take various forms. Droplets or beads have been utilized since the 1980s for immobilizing cells. Newer matrices such as macroporous scaffolds are now entering the 3D cell culture product market. Finally, delayed gelling, injectable, alginate systems show utility in the translation of in vitro cell culture to in vivo tissue engineering applications. Alginate has a history and a future in 3D cell culture. Historically, cells were encapsulated in alginate droplets cross-linked with calcium for the development of artificial organs. Now, several commercial products based on alginate are being used as 3D cell culture systems that also demonstrate the possibility of replacing or regenerating tissue.

  8. 3D Virtual Reality for Teaching Astronomy

    Speck, Angela; Ruzhitskaya, L.; Laffey, J.; Ding, N.

    2012-01-01

    We are developing 3D virtual learning environments (VLEs) as learning materials for an undergraduate astronomy course, in which will utilize advances both in technologies available and in our understanding of the social nature of learning. These learning materials will be used to test whether such VLEs can indeed augment science learning so that it is more engaging, active, visual and effective. Our project focuses on the challenges and requirements of introductory college astronomy classes. Here we present our virtual world of the Jupiter system and how we plan to implement it to allow students to learn course material - physical laws and concepts in astronomy - while engaging them into exploration of the Jupiter's system, encouraging their imagination, curiosity, and motivation. The VLE can allow students to work individually or collaboratively. The 3D world also provides an opportunity for research in astronomy education to investigate impact of social interaction, gaming features, and use of manipulatives offered by a learning tool on students’ motivation and learning outcomes. Use of this VLE is also a valuable source for exploration of how the learners’ spatial awareness can be enhanced by working in 3D environment. We will present the Jupiter-system environment along with a preliminary study of the efficacy and usability of our Jupiter 3D VLE.

  9. Validation of TRAB-3D

    TRAB-3D is a reactor dynamics code with three-dimensional neutronics coupled to core and circuit thermal-hydraulics. The code, entirely developed at VTT, can be used in transient and accident analyses of boiling (BWR) and pressurized water (PWR) reactors with rectangular fuel bundle geometry. The validation history of TRAB-3D includes calculation of international benchmark exercises, as well as comparisons with measured data from real plant transients. The most recent validation case is a load rejection test performed at the Olkiluoto 1 nuclear power plant in 1998 in connection with the power uprating project. The fact that there is local power measurement data available from this test makes it a suitable case for three-dimensional core model validation. The agreement between the results of the TRAB-3D calculation and the measurements is very good. (orig.)

  10. Crowded Field 3D Spectroscopy

    Becker, T; Roth, M M; Becker, Thomas; Fabrika, Sergei; Roth, Martin M.

    2003-01-01

    The quantitative spectroscopy of stellar objects in complex environments is mainly limited by the ability of separating the object from the background. Standard slit spectroscopy, restricting the field of view to one dimension, is obviously not the proper technique in general. The emerging Integral Field (3D) technique with spatially resolved spectra of a two-dimensional field of view provides a great potential for applying advanced subtraction methods. In this paper an image reconstruction algorithm to separate point sources and a smooth background is applied to 3D data. Several performance tests demonstrate the photometric quality of the method. The algorithm is applied to real 3D observations of a sample Planetary Nebula in M31, whose spectrum is contaminated by the bright and complex galaxy background. The ability of separating sources is also studied in a crowded stellar field in M33.

  11. Markerless 3D Face Tracking

    Walder, Christian; Breidt, Martin; Bulthoff, Heinrich;

    2009-01-01

    We present a novel algorithm for the markerless tracking of deforming surfaces such as faces. We acquire a sequence of 3D scans along with color images at 40Hz. The data is then represented by implicit surface and color functions, using a novel partition-of-unity type method of efficiently...... combining local regressors using nearest neighbor searches. Both these functions act on the 4D space of 3D plus time, and use temporal information to handle the noise in individual scans. After interactive registration of a template mesh to the first frame, it is then automatically deformed to track...... the scanned surface, using the variation of both shape and color as features in a dynamic energy minimization problem. Our prototype system yields high-quality animated 3D models in correspondence, at a rate of approximately twenty seconds per timestep. Tracking results for faces and other objects...

  12. 3D vector flow imaging

    Pihl, Michael Johannes

    The main purpose of this PhD project is to develop an ultrasonic method for 3D vector flow imaging. The motivation is to advance the field of velocity estimation in ultrasound, which plays an important role in the clinic. The velocity of blood has components in all three spatial dimensions, yet...... conventional methods can estimate only the axial component. Several approaches for 3D vector velocity estimation have been suggested, but none of these methods have so far produced convincing in vivo results nor have they been adopted by commercial manufacturers. The basis for this project is the Transverse...... on the TO fields are suggested. They can be used to optimize the TO method. In the third part, a TO method for 3D vector velocity estimation is proposed. It employs a 2D phased array transducer and decouples the velocity estimation into three velocity components, which are estimated simultaneously based on 5...

  13. 3D-grafiikkamoottori mobiililaitteille

    Vahlman, Lauri

    2014-01-01

    Tässä insinöörityössä käydään läpi mobiililaitteille suunnatun yksinkertaisen 3D-grafiikkamoottorin suunnittelu ja toteutus käyttäen OpenGL ES -rajapintaa. Työssä esitellään grafiikkamoottorin toteutuksessa käytettyjä tekniikoita sekä tutustutaan moottorin rakenteeseen ja toteutuksellisiin yksityiskohtiin. Työn alkupuolella tutustutaan myös modernin 3D-grafiikan yleisiin periaatteisiin ja toimintaan sekä käydään läpi 3D-grafiikkaan liittyviä suorituskykyongelmia. Työn loppupuolella esitel...

  14. PLOT3D/AMES, GENERIC UNIX VERSION USING DISSPLA (WITHOUT TURB3D)

    Buning, P.

    1994-01-01

    five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The UNIX/DISSPLA implementation of PLOT3D supports 2-D polygons as

  15. PLOT3D/AMES, GENERIC UNIX VERSION USING DISSPLA (WITH TURB3D)

    Buning, P.

    1994-01-01

    five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The UNIX/DISSPLA implementation of PLOT3D supports 2-D polygons as

  16. 3D Computations and Experiments

    Couch, R; Faux, D; Goto, D; Nikkel, D

    2004-04-05

    This project consists of two activities. Task A, Simulations and Measurements, combines all the material model development and associated numerical work with the materials-oriented experimental activities. The goal of this effort is to provide an improved understanding of dynamic material properties and to provide accurate numerical representations of those properties for use in analysis codes. Task B, ALE3D Development, involves general development activities in the ALE3D code with the focus of improving simulation capabilities for problems of mutual interest to DoD and DOE. Emphasis is on problems involving multi-phase flow, blast loading of structures and system safety/vulnerability studies.

  17. 3D proton beam micromachining

    Focused high energy ion beam micromachining is the newest of the micromachining techniques. There are about 50 scanning proton microprobe facilities worldwide, but so far only few of them showed activity in this promising field. High energy ion beam micromachining using a direct-write scanning MeV ion beam is capable of producing 3D microstructures and components with well defined lateral and depth geometry. The technique has high potential in the manufacture of 3D molds, stamps, and masks for X-ray lithography (LIGA), and also in the rapid prototyping of microcomponents either for research purposes or for components testing prior to batch production. (R.P.)

  18. The impact of including spatially longitudinal heterogeneities of vessel oxygen content and vascular fraction in 3D tumor oxygenation models on predicted radiation sensitivity

    Lagerlöf, Jakob H., E-mail: Jakob@radfys.gu.se [Department of Radiation Physics, Göteborg University, Göteborg 41345 (Sweden); Kindblom, Jon [Department of Oncology, Sahlgrenska University Hospital, Göteborg 41345 (Sweden); Bernhardt, Peter [Department of Radiation Physics, Göteborg University, Göteborg 41345, Sweden and Department of Nuclear Medicine, Sahlgrenska University Hospital, Göteborg 41345 (Sweden)

    2014-04-15

    necrotic fraction and D{sub 99}, necrotic fractions ranging from 0% to 97%, and a maximal D{sub 99} increment of 57%. Only minor differences were observed between different vessel architectures, i.e., CVF vs VVF. In the smallest tumor with a low necrotic fraction, the D{sub 99} strictly decreased with increasing blood velocity. Increasing blood velocity also decreased the necrotic fraction in all tumor sizes. VF had the most profound influence on both the necrotic fraction and on D{sub 99}. Conclusions: Our present analysis of necrotic formation and the impact of tumor oxygenation on D{sub 99} demonstrated the importance of including longitudinal variations in vessel oxygen content in tumor models. For small tumors, radiosensitivity was particularly dependent on VF and slightly dependent on the blood velocity and vessel arrangement. These dependences decreased with increasing tumor size, because the necrotic fraction also increased, thereby decreasing the number of viable tumor cells that required sterilization. The authors anticipate that the present model will be useful for estimating tumor oxygenation and radiation response in future detailed studies.

  19. Studying the impact of overshooting convection on the tropopause tropical layer (TTL) water vapor budget at the continental scale using a mesoscale model

    Behera, Abhinna; Rivière, Emmanuel; Marécal, Virginie; Claud, Chantal; Rysman, Jean-François; Geneviève, Seze

    2016-04-01

    Water vapour budget is a key component in the earth climate system. In the tropical upper troposphere, lower stratosphere (UTLS), it plays a central role both on the radiative and the chemical budget. Its abundance is mostly driven by slow ascent above the net zero radiative heating level followed by ice crystals' formation and sedimentation, so called the cold trap. In contrast to this large scale temperature driven process, overshooting convection penetrating the stratosphere could be one piece of the puzzle. It has been proven to hydrate the lower stratosphere at the local scale. Satellite-borne H2O instruments can not measure with a fine enough resolution the water vapour enhancements caused by overshooting convection. The consequence is that it is difficult to estimate the role of overshooting deep convection at the global scale. Using a mesoscale model i.e., Brazilian Regional Atmospheric Modelling System (BRAMS), past atmospheric conditions have been simulated for the full wet season i.e., Nov 2012 to Mar 2013 having a single grid with horizontal resolution of 20 km × 20km over a large part of Brazil and South America. This resolution is too coarse to reproduce overshooting convection in the model, so that this simulation should be used as a reference (REF) simulation, without the impact of overshooting convection in the TTL water budget. For initialisation, as well as nudging the grid boundary in every 6 hours, European Centre for Medium-Range Weather Forecasts (ECMWF) analyses has been used. The size distribution of hydrometeors and number of cloud condensation nuclei (CCN) are fitted in order to best reproduce accumulated precipitations derived from Tropical Rainfall Measuring Mission (TRMM). Similarly, GOES and MSG IR mages have been thoroughly compared with model's outputs, using image correlation statistics for the position of the clouds. The model H2O variability during the wet season, is compared with the in situ balloon-borne measurements during

  20. Sea breeze: Induced mesoscale systems and severe weather

    Nicholls, M. E.; Pielke, R. A.; Cotton, W. R.

    1990-01-01

    Sea-breeze-deep convective interactions over the Florida peninsula were investigated using a cloud/mesoscale numerical model. The objective was to gain a better understanding of sea-breeze and deep convective interactions over the Florida peninsula using a high resolution convectively explicit model and to use these results to evaluate convective parameterization schemes. A 3-D numerical investigation of Florida convection was completed. The Kuo and Fritsch-Chappell parameterization schemes are summarized and evaluated.

  1. Mesoscale texture of cement hydrates.

    Ioannidou, Katerina; Krakowiak, Konrad J; Bauchy, Mathieu; Hoover, Christian G; Masoero, Enrico; Yip, Sidney; Ulm, Franz-Josef; Levitz, Pierre; Pellenq, Roland J-M; Del Gado, Emanuela

    2016-02-23

    Strength and other mechanical properties of cement and concrete rely upon the formation of calcium-silicate-hydrates (C-S-H) during cement hydration. Controlling structure and properties of the C-S-H phase is a challenge, due to the complexity of this hydration product and of the mechanisms that drive its precipitation from the ionic solution upon dissolution of cement grains in water. Departing from traditional models mostly focused on length scales above the micrometer, recent research addressed the molecular structure of C-S-H. However, small-angle neutron scattering, electron-microscopy imaging, and nanoindentation experiments suggest that its mesoscale organization, extending over hundreds of nanometers, may be more important. Here we unveil the C-S-H mesoscale texture, a crucial step to connect the fundamental scales to the macroscale of engineering properties. We use simulations that combine information of the nanoscale building units of C-S-H and their effective interactions, obtained from atomistic simulations and experiments, into a statistical physics framework for aggregating nanoparticles. We compute small-angle scattering intensities, pore size distributions, specific surface area, local densities, indentation modulus, and hardness of the material, providing quantitative understanding of different experimental investigations. Our results provide insight into how the heterogeneities developed during the early stages of hydration persist in the structure of C-S-H and impact the mechanical performance of the hardened cement paste. Unraveling such links in cement hydrates can be groundbreaking and controlling them can be the key to smarter mix designs of cementitious materials. PMID:26858450

  2. PLOT3D/AMES, UNIX SUPERCOMPUTER AND SGI IRIS VERSION (WITHOUT TURB3D)

    Buning, P.

    1994-01-01

    five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. In addition to providing the advantages of performing complex

  3. PLOT3D/AMES, UNIX SUPERCOMPUTER AND SGI IRIS VERSION (WITH TURB3D)

    Buning, P.

    1994-01-01

    five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. In addition to providing the advantages of performing complex

  4. Making Inexpensive 3-D Models

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  5. 3D Face Appearance Model

    Lading, Brian; Larsen, Rasmus; Åström, Kalle

    2006-01-01

    We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}

  6. 3D Face Apperance Model

    Lading, Brian; Larsen, Rasmus; Astrom, K

    2006-01-01

    We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations

  7. 3D Printing: Exploring Capabilities

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  8. 3D terahertz beam profiling

    Pedersen, Pernille Klarskov; Strikwerda, Andrew; Wang, Tianwu;

    2013-01-01

    We present a characterization of THz beams generated in both a two-color air plasma and in a LiNbO3 crystal. Using a commercial THz camera, we record intensity images as a function of distance through the beam waist, from which we extract 2D beam profiles and visualize our measurements into 3D beam...

  9. Viewing galaxies in 3D

    Krajnović, Davor

    2016-01-01

    Thanks to a technique that reveals galaxies in 3D, astronomers can now show that many galaxies have been wrongly classified. Davor Krajnovi\\'c argues that the classification scheme proposed 85 years ago by Edwin Hubble now needs to be revised.

  10. Designing TSVs for 3D Integrated Circuits

    Khan, Nauman

    2013-01-01

    This book explores the challenges and presents best strategies for designing Through-Silicon Vias (TSVs) for 3D integrated circuits.  It describes a novel technique to mitigate TSV-induced noise, the GND Plug, which is superior to others adapted from 2-D planar technologies, such as a backside ground plane and traditional substrate contacts. The book also investigates, in the form of a comparative study, the impact of TSV size and granularity, spacing of C4 connectors, off-chip power delivery network, shared and dedicated TSVs, and coaxial TSVs on the quality of power delivery in 3-D ICs. The authors provide detailed best design practices for designing 3-D power delivery networks.  Since TSVs occupy silicon real-estate and impact device density, this book provides four iterative algorithms to minimize the number of TSVs in a power delivery network. Unlike other existing methods, these algorithms can be applied in early design stages when only functional block- level behaviors and a floorplan are available....

  11. 3D hierarchical computational model of wood as a cellular material with fibril reinforced, heterogeneous multiple layers

    Qing, Hai; Mishnaevsky, Leon

    2009-01-01

    A 3D hierarchical computational model of deformation and stiffness of wood, which takes into account the structures of wood at several scale levels (cellularity, multilayered nature of cell walls, composite-like structures of the wall layers) is developed. At the mesoscale, the softwood cell is...... presented as a 3D hexagon-shape-tube with multilayered walls. The layers in the softwood cell are considered as considered as composite reinforced by microfibrils (celluloses). The elastic properties of the layers are determined with Halpin–Tsai equations, and introduced into mesoscale finite element...

  12. PLOT3D/AMES, SGI IRIS VERSION (WITH TURB3D)

    Buning, P.

    1994-01-01

    five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. In each of these areas, the IRIS implementation of PLOT3D offers

  13. PLOT3D/AMES, SGI IRIS VERSION (WITHOUT TURB3D)

    Buning, P.

    1994-01-01

    five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. In each of these areas, the IRIS implementation of PLOT3D offers

  14. Priprava 3D modelov za 3D tisk

    Pikovnik, Tomaž

    2015-01-01

    Po mnenju nekaterih strokovnjakov bo aditivna proizvodnja (ali 3D tiskanje) spremenila proizvodnjo industrijo, saj si bo vsak posameznik lahko natisnil svoj objekt po želji. V diplomski nalogi so predstavljene nekatere tehnologije aditivne proizvodnje. V nadaljevanju diplomske naloge je predstavljena izdelava makete hiše v merilu 1:100, vse od modeliranja do tiskanja. Poseben poudarek je posvečen predelavi modela, da je primeren za tiskanje, kjer je razvit pristop za hitrejše i...

  15. Post processing of 3D models for 3D printing

    Pikovnik, Tomaž

    2015-01-01

    According to the opinion of some experts the additive manufacturing or 3D printing will change manufacturing industry, because any individual could print their own model according to his or her wishes. In this graduation thesis some of the additive manufacturing technologies are presented. Furthermore in the production of house scale model in 1:100 is presented, starting from modeling to printing. Special attention is given to postprocessing of the building model elements us...

  16. 3D Cameras: 3D Computer Vision of Wide Scope

    May, Stefan; Pervoelz, Kai; Surmann, Hartmut

    2007-01-01

    First of all, a short comparison of range sensors and their underlying principles was given. The chapter further focused on 3D cameras. The latest innovations have given a significant improvement for the measurement accuracy, wherefore this technology has attracted attention in the robotics community. This was also the motivation for the examination in this chapter. On this account, several applications were presented, which represents common problems in the domain of autonomous robotics. For...

  17. DYNA3D2000*, Explicit 3-D Hydrodynamic FEM Program

    1 - Description of program or function: DYNA3D2000 is a nonlinear explicit finite element code for analyzing 3-D structures and solid continuum. The code is vectorized and available on several computer platforms. The element library includes continuum, shell, beam, truss and spring/damper elements to allow maximum flexibility in modeling physical problems. Many materials are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding, single surface contact and automatic contact generation. 2 - Method of solution: Discretization of a continuous model transforms partial differential equations into algebraic equations. A numerical solution is then obtained by solving these algebraic equations through a direct time marching scheme. 3 - Restrictions on the complexity of the problem: Recent software improvements have eliminated most of the user identified limitations with dynamic memory allocation and a very large format description that has pushed potential problem sizes beyond the reach of most users. The dominant restrictions remain in code execution speed and robustness, which the developers constantly strive to improve

  18. 3-D Relativistic MHD Simulations

    Nishikawa, K.-I.; Frank, J.; Koide, S.; Sakai, J.-I.; Christodoulou, D. M.; Sol, H.; Mutel, R. L.

    1998-12-01

    We present 3-D numerical simulations of moderately hot, supersonic jets propagating initially along or obliquely to the field lines of a denser magnetized background medium with Lorentz factors of W = 4.56 and evolving in a four-dimensional spacetime. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently in the simulations. This effect is analogous to pushing Japanese ``noren'' or vertical Venetian blinds out of the way while the slats are allowed to bend in 3-D space rather than as a 2-D slab structure.

  19. 3D Printed Robotic Hand

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  20. Forensic 3D Scene Reconstruction

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene

  1. Forensic 3D Scene Reconstruction

    LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN; SMALL,DANIEL E.

    1999-10-12

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  2. [Real time 3D echocardiography

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  3. Wireless 3D Chocolate Printer

    FROILAN G. DESTREZA

    2014-02-01

    Full Text Available This study is for the BSHRM Students of Batangas State University (BatStateU ARASOF for the researchers believe that the Wireless 3D Chocolate Printer would be helpful in their degree program especially on making creative, artistic, personalized and decorative chocolate designs. The researchers used the Prototyping model as procedural method for the successful development and implementation of the hardware and software. This method has five phases which are the following: quick plan, quick design, prototype construction, delivery and feedback and communication. This study was evaluated by the BSHRM Students and the assessment of the respondents regarding the software and hardware application are all excellent in terms of Accuracy, Effecitveness, Efficiency, Maintainability, Reliability and User-friendliness. Also, the overall level of acceptability of the design project as evaluated by the respondents is excellent. With regard to the observation about the best raw material to use in 3D printing, the chocolate is good to use as the printed material is slightly distorted,durable and very easy to prepare; the icing is also good to use as the printed material is not distorted and is very durable but consumes time to prepare; the flour is not good as the printed material is distorted, not durable but it is easy to prepare. The computation of the economic viability level of 3d printer with reference to ROI is 37.14%. The recommendation of the researchers in the design project are as follows: adding a cooling system so that the raw material will be more durable, development of a more simplified version and improving the extrusion process wherein the user do not need to stop the printing process just to replace the empty syringe with a new one.

  4. INGRID, 3-D Mesh Generator for Program DYNA3D and NIKE3D and FACET and TOPAZ3D

    1 - Description of program or function: INGRID is a general-purpose, three-dimensional mesh generator developed for use with finite element, nonlinear, structural dynamics codes. INGRID generates the large and complex input data files for DYNA3D (NESC 9909), NIKE3D (NESC 9725), FACET, and TOPAZ3D. One of the greatest advantages of INGRID is that virtually any shape can be described without resorting to wedge elements, tetrahedrons, triangular elements or highly distorted quadrilateral or hexahedral elements. Other capabilities available are in the areas of geometry and graphics. Exact surface equations and surface intersections considerably improve the ability to deal with accurate models, and a hidden line graphics algorithm is included which is efficient on the most complicated meshes. The most important new capability is associated with the boundary conditions, loads, and material properties required by nonlinear mechanics programs. Commands have been designed for each case to minimize user effort. This is particularly important since special processing is almost always required for each load or boundary condition. 2 - Method of solution: Geometries are described primarily using the index space notation of the INGEN program (NESC 975) with an additional type of notation, index progression. Index progressions provide a concise and simple method for describing complex structures; the concept was developed to facilitate defining multiple regions in index space. Rather than specifying the minimum and maximum indices for a region, one specifies the progression of indices along the I, J and K directions, respectively. The index progression method allows the analyst to describe most geometries including nodes and elements with roughly the same amount of input as a solids modeler

  5. Tehokas 3D-animaatiotuotanto

    Järvinen, Manu

    2009-01-01

    Opinnäytetyössä tutkittiin tehokasta tapaa toteuttaa minuutin mittainen animaatio Scene.org Awards -tapahtuman avajaisseremoniaan. Kyseinen video toteutettiin osana opinnäytetyötä. Työhön osallistui tekijän lisäksi 3D-mallintaja sekä muusikko. Työkaluina käytettiin pääasiassa Autodesk 3ds Max-, sekä Adobe After Effects- ja Adobe Photoshop -ohjelmia. Opinnäytetyö koostuu animaatioprojektin tuotantoputken ja tiedostonhallintamallin perinpohjaisesta läpikäymisestä sekä sen asian tutkimisesta...

  6. Making Inexpensive 3-D Models

    Manos, Harry

    2016-03-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the TPT theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity well tailored to specific class lessons. Most of the supplies are readily available in the home or at school: rubbing alcohol, a rag, two colors of spray paint, art brushes, and masking tape. The cost of these supplies, if you don't have them, is less than 20.

  7. How 3-D Movies Work

    吕铁雄

    2011-01-01

    难度:★★★★☆词数:450 建议阅读时间:8分钟 Most people see out of two eyes. This is a basic fact of humanity,but it’s what makes possible the illusion of depth(纵深幻觉) that 3-D movies create. Human eyes are spaced about two inches apart, meaning that each eye gives the brain a slightly different perspective(透视感)on the same object. The brain then uses this variance to quickly determine an object’s distance.

  8. Virtual 3-D Facial Reconstruction

    Martin Paul Evison

    2000-06-01

    Full Text Available Facial reconstructions in archaeology allow empathy with people who lived in the past and enjoy considerable popularity with the public. It is a common misconception that facial reconstruction will produce an exact likeness; a resemblance is the best that can be hoped for. Research at Sheffield University is aimed at the development of a computer system for facial reconstruction that will be accurate, rapid, repeatable, accessible and flexible. This research is described and prototypical 3-D facial reconstructions are presented. Interpolation models simulating obesity, ageing and ethnic affiliation are also described. Some strengths and weaknesses in the models, and their potential for application in archaeology are discussed.

  9. Towards magnetic 3D x-ray imaging

    Fischer, Peter; Streubel, R.; Im, M.-Y.; Parkinson, D.; Hong, J.-I.; Schmidt, O. G.; Makarov, D.

    2014-03-01

    Mesoscale phenomena in magnetism will add essential parameters to improve speed, size and energy efficiency of spin driven devices. Multidimensional visualization techniques will be crucial to achieve mesoscience goals. Magnetic tomography is of large interest to understand e.g. interfaces in magnetic multilayers, the inner structure of magnetic nanocrystals, nanowires or the functionality of artificial 3D magnetic nanostructures. We have developed tomographic capabilities with magnetic full-field soft X-ray microscopy combining X-MCD as element specific magnetic contrast mechanism, high spatial and temporal resolution due to the Fresnel zone plate optics. At beamline 6.1.2 at the ALS (Berkeley CA) a new rotation stage allows recording an angular series (up to 360 deg) of high precision 2D projection images. Applying state-of-the-art reconstruction algorithms it is possible to retrieve the full 3D structure. We will present results on prototypic rolled-up Ni and Co/Pt tubes and glass capillaries coated with magnetic films and compare to other 3D imaging approaches e.g. in electron microscopy. Supported by BES MSD DOE Contract No. DE-AC02-05-CH11231 and ERC under the EU FP7 program (grant agreement No. 306277).

  10. 3-D visualization of ensemble weather forecasts – Part 1: The visualization tool Met.3D (version 1.0

    M. Rautenhaus

    2015-02-01

    Full Text Available We present Met.3D, a new open-source tool for the interactive 3-D visualization of numerical ensemble weather predictions. The tool has been developed to support weather forecasting during aircraft-based atmospheric field campaigns, however, is applicable to further forecasting, research and teaching activities. Our work approaches challenging topics related to the visual analysis of numerical atmospheric model output – 3-D visualization, ensemble visualization, and how both can be used in a meaningful way suited to weather forecasting. Met.3D builds a bridge from proven 2-D visualization methods commonly used in meteorology to 3-D visualization by combining both visualization types in a 3-D context. We address the issue of spatial perception in the 3-D view and present approaches to using the ensemble to allow the user to assess forecast uncertainty. Interactivity is key to our approach. Met.3D uses modern graphics technology to achieve interactive visualization on standard consumer hardware. The tool supports forecast data from the European Centre for Medium Range Weather Forecasts and can operate directly on ECMWF hybrid sigma-pressure level grids. We describe the employed visualization algorithms, and analyse the impact of the ECMWF grid topology on computing 3-D ensemble statistical quantitites. Our techniques are demonstrated with examples from the T-NAWDEX-Falcon 2012 campaign.

  11. Positional Awareness Map 3D (PAM3D)

    Hoffman, Monica; Allen, Earl L.; Yount, John W.; Norcross, April Louise

    2012-01-01

    The Western Aeronautical Test Range of the National Aeronautics and Space Administration s Dryden Flight Research Center needed to address the aging software and hardware of its current situational awareness display application, the Global Real-Time Interactive Map (GRIM). GRIM was initially developed in the late 1980s and executes on older PC architectures using a Linux operating system that is no longer supported. Additionally, the software is difficult to maintain due to its complexity and loss of developer knowledge. It was decided that a replacement application must be developed or acquired in the near future. The replacement must provide the functionality of the original system, the ability to monitor test flight vehicles in real-time, and add improvements such as high resolution imagery and true 3-dimensional capability. This paper will discuss the process of determining the best approach to replace GRIM, and the functionality and capabilities of the first release of the Positional Awareness Map 3D.

  12. 3D Printable Graphene Composite

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C-1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  13. 3D printed bionic ears.

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

  14. 3D Ion Temperature Reconstruction

    Tanabe, Hiroshi; You, Setthivoine; Balandin, Alexander; Inomoto, Michiaki; Ono, Yasushi

    2009-11-01

    The TS-4 experiment at the University of Tokyo collides two spheromaks to form a single high-beta compact toroid. Magnetic reconnection during the merging process heats and accelerates the plasma in toroidal and poloidal directions. The reconnection region has a complex 3D topology determined by the pitch of the spheromak magnetic fields at the merging plane. A pair of multichord passive spectroscopic diagnostics have been established to measure the ion temperature and velocity in the reconnection volume. One setup measures spectral lines across a poloidal plane, retrieving velocity and temperature from Abel inversion. The other, novel setup records spectral lines across another section of the plasma and reconstructs velocity and temperature from 3D vector and 2D scalar tomography techniques. The magnetic field linking both measurement planes is determined from in situ magnetic probe arrays. The ion temperature is then estimated within the volume between the two measurement planes and at the reconnection region. The measurement is followed over several repeatable discharges to follow the heating and acceleration process during the merging reconnection.

  15. LOTT RANCH 3D PROJECT

    The Lott Ranch 3D seismic prospect located in Garza County, Texas is a project initiated in September of 1991 by the J.M. Huber Corp., a petroleum exploration and production company. By today's standards the 126 square mile project does not seem monumental, however at the time it was conceived it was the most intensive land 3D project ever attempted. Acquisition began in September of 1991 utilizing GEO-SEISMIC, INC., a seismic data contractor. The field parameters were selected by J.M. Huber, and were of a radical design. The recording instruments used were GeoCor IV amplifiers designed by Geosystems Inc., which record the data in signed bit format. It would not have been practical, if not impossible, to have processed the entire raw volume with the tools available at that time. The end result was a dataset that was thought to have little utility due to difficulties in processing the field data. In 1997, Yates Energy Corp. located in Roswell, New Mexico, formed a partnership to further develop the project. Through discussions and meetings with Pinnacle Seismic, it was determined that the original Lott Ranch 3D volume could be vastly improved upon reprocessing. Pinnacle Seismic had shown the viability of improving field-summed signed bit data on smaller 2D and 3D projects. Yates contracted Pinnacle Seismic Ltd. to perform the reprocessing. This project was initiated with high resolution being a priority. Much of the potential resolution was lost through the initial summing of the field data. Modern computers that are now being utilized have tremendous speed and storage capacities that were cost prohibitive when this data was initially processed. Software updates and capabilities offer a variety of quality control and statics resolution, which are pertinent to the Lott Ranch project. The reprocessing effort was very successful. The resulting processed data-set was then interpreted using modern PC-based interpretation and mapping software. Production data, log data

  16. 3D Printing of Graphene Aerogels.

    Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong

    2016-04-01

    3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (printed graphene aerogel presents superelastic and high electrical conduction. PMID:26861680

  17. 3D biometrics systems and applications

    Zhang, David

    2013-01-01

    Includes discussions on popular 3D imaging technologies, combines them with biometric applications, and then presents real 3D biometric systems Introduces many efficient 3D feature extraction, matching, and fusion algorithms Techniques presented have been supported by experimental results using various 3D biometric classifications

  18. 3D Structural Patterns in Scalable, Elastomeric Scaffolds Guide Engineered Tissue Architecture

    Kolewe, Martin E.; Park, Hyoungshin; Gray, Caprice; Ye, Xiaofeng; Langer, Robert; Freed, Lisa E.

    2013-01-01

    Microfabricated elastomeric scaffolds with 3D structural patterns are created by semi-automated layer-by-layer assembly of planar polymer sheets with through-pores. The meso-scale interconnected pore architectures governed by the relative alignment of layers are shown to direct cell and muscle-like fiber orientation in both skeletal and cardiac muscle, enabling scale up of tissue constructs towards clinically relevant dimensions.

  19. Photopolymers in 3D printing applications

    Pandey, Ramji

    2014-01-01

    3D printing is an emerging technology with applications in several areas. The flexibility of the 3D printing system to use variety of materials and create any object makes it an attractive technology. Photopolymers are one of the materials used in 3D printing with potential to make products with better properties. Due to numerous applications of photopolymers and 3D printing technologies, this thesis is written to provide information about the various 3D printing technologies with particul...

  20. Natural fibre composites for 3D Printing

    Pandey, Kapil

    2015-01-01

    3D printing has been common option for prototyping. Not all the materials are suitable for 3D printing. Various studies have been done and still many are ongoing regarding the suitability of the materials for 3D printing. This thesis work discloses the possibility of 3D printing of certain polymer composite materials. The main objective of this thesis work was to study the possibility for 3D printing the polymer composite material composed of natural fibre composite and various different ...

  1. Life in 3D is never flat: 3D models to optimise drug delivery.

    Fitzgerald, Kathleen A; Malhotra, Meenakshi; Curtin, Caroline M; O' Brien, Fergal J; O' Driscoll, Caitriona M

    2015-10-10

    The development of safe, effective and patient-acceptable drug products is an expensive and lengthy process and the risk of failure at different stages of the development life-cycle is high. Improved biopharmaceutical tools which are robust, easy to use and accurately predict the in vivo response are urgently required to help address these issues. In this review the advantages and challenges of in vitro 3D versus 2D cell culture models will be discussed in terms of evaluating new drug products at the pre-clinical development stage. Examples of models with a 3D architecture including scaffolds, cell-derived matrices, multicellular spheroids and biochips will be described. The ability to simulate the microenvironment of tumours and vital organs including the liver, kidney, heart and intestine which have major impact on drug absorption, distribution, metabolism and toxicity will be evaluated. Examples of the application of 3D models including a role in formulation development, pharmacokinetic profiling and toxicity testing will be critically assessed. Although utilisation of 3D cell culture models in the field of drug delivery is still in its infancy, the area is attracting high levels of interest and is likely to become a significant in vitro tool to assist in drug product development thus reducing the requirement for unnecessary animal studies. PMID:26220617

  2. 三维正交机织复合材料弹道侵彻数值模拟%Numerical Simulation of 3D Orthogonal Woven Composite Impacted by a Spherical Bullet

    余育苗; 王肖均; 李永池; 王志海

    2009-01-01

    We present numerical simulation of Kevlar/Vinyl 3D orthogonal woven composite impacted by a spherical bullet with LS-Dyna software. Orthogonal constitutive equation with damage tensor and Hashin failure criteria are adopted for the Kevlar/Vinyl target. Time history of penetration velocity and loading of bullet show that steady penetration process and residual velocity agree well with experimental date. The damage modes basically reflect experimental results. Penetration process and damage modes are studied in details by analyzing damage evolution along the x fiber and interface matrix. It shows that the simulations are in good agreement with experiments.%利用LS-Dyna有限元软件开展球形弹弹道侵彻Kevlar/乙烯基树脂三维正交机织复合材料的模拟研究,靶板采用含损伤的正交各向异性本构模型和Hashin失效准则,子弹剩余速度的计算值和实验值符合较好,破坏形貌和实验基本一致,并给出侵彻速度时程曲线;结合x方向纤维和面内基体的损伤演化图,分析弹道侵彻过程和材料的破坏模式.

  3. Advanced Data Visualization in Astrophysics: The X3D Pathway

    Vogt, Frédéric P. A.; Owen, Chris I.; Verdes-Montenegro, Lourdes; Borthakur, Sanchayeeta

    2016-02-01

    Most modern astrophysical data sets are multi-dimensional; a characteristic that can nowadays generally be conserved and exploited scientifically during the data reduction/simulation and analysis cascades. However, the same multi-dimensional data sets are systematically cropped, sliced, and/or projected to printable two-dimensional diagrams at the publication stage. In this article, we introduce the concept of the “X3D pathway” as a mean of simplifying and easing the access to data visualization and publication via three-dimensional (3D) diagrams. The X3D pathway exploits the facts that (1) the X3D 3D file format lies at the center of a product tree that includes interactive HTML documents, 3D printing, and high-end animations, and (2) all high-impact-factor and peer-reviewed journals in astrophysics are now published (some exclusively) online. We argue that the X3D standard is an ideal vector for sharing multi-dimensional data sets because it provides direct access to a range of different data visualization techniques, is fully open source, and is a well-defined standard from the International Organization for Standardization. Unlike other earlier propositions to publish multi-dimensional data sets via 3D diagrams, the X3D pathway is not tied to specific software (prone to rapid and unexpected evolution), but instead is compatible with a range of open-source software already in use by our community. The interactive HTML branch of the X3D pathway is also actively supported by leading peer-reviewed journals in the field of astrophysics. Finally, this article provides interested readers with a detailed set of practical astrophysical examples designed to act as a stepping stone toward the implementation of the X3D pathway for any other data set.

  4. Advanced 3-D Ultrasound Imaging

    Rasmussen, Morten Fischer

    been completed. This allows for precise measurements of organs dimensions and makes the scan more operator independent. Real-time 3-D ultrasound imaging is still not as widespread in use in the clinics as 2-D imaging. A limiting factor has traditionally been the low image quality achievable using...... and removes the need to integrate custom made electronics into the probe. A downside of row-column addressing 2-D arrays is the creation of secondary temporal lobes, or ghost echoes, in the point spread function. In the second part of the scientific contributions, row-column addressing of 2-D arrays...... was investigated. An analysis of how the ghost echoes can be attenuated was presented.Attenuating the ghost echoes were shown to be achieved by minimizing the first derivative of the apodization function. In the literature, a circular symmetric apodization function was proposed. A new apodization layout...

  5. Conducting Polymer 3D Microelectrodes

    Jenny Emnéus

    2010-12-01

    Full Text Available Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described electrodes are possibly suitable for future in-vitro neurological measurements.

  6. Supernova Remnant in 3-D

    2009-01-01

    of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through. The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave. This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron. High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these structures, but their orientation and

  7. 3D printers in medicine, it present and future

    Kosheutova, N. V.

    2014-01-01

    This article is devoted to modern technologies in medicine and exactly to the technologies of 3D printing. The creation of 3-D printing back in 1984 brought the promise of a new age in manufacturing. Although it has only begun its takeoff, there is already so much we are able to do with the technology. From building screwdrivers to chairs to cars, the possibilities are endless. More importantly, however, is the impact of 3-D printing in medicine. In the past few years, biomedical engineers an...

  8. 3D multiplexed immunoplasmonics microscopy

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  9. Kuvaus 3D-tulostamisesta hammastekniikassa

    Munne, Mauri; Mustonen, Tuomas; Vähäjylkkä, Jaakko

    2013-01-01

    3D-tulostaminen kehittyy nopeasti ja yleistyy koko ajan. Tulostimien tarkkuuksien kehittyessä 3D-tulostus on ottamassa myös jalansijaa hammastekniikan alalta. Tämän opinnäytetyön tarkoituksena on kuvata 3D-tulostamisen tilaa hammastekniikassa. 3D-tulostaminen on Suomessa vielä melko harvinaista, joten opinnäytetyön tavoitteena on koota yhteen kaikki mahdollinen tieto liittyen 3D-tulostamiseen hammastekniikassa. Tavoitteena on myös 3D-tulostimen testaaminen käytännössä aina suun skannaami...

  10. NIF Ignition Target 3D Point Design

    Jones, O; Marinak, M; Milovich, J; Callahan, D

    2008-11-05

    We have developed an input file for running 3D NIF hohlraums that is optimized such that it can be run in 1-2 days on parallel computers. We have incorporated increasing levels of automation into the 3D input file: (1) Configuration controlled input files; (2) Common file for 2D and 3D, different types of capsules (symcap, etc.); and (3) Can obtain target dimensions, laser pulse, and diagnostics settings automatically from NIF Campaign Management Tool. Using 3D Hydra calculations to investigate different problems: (1) Intrinsic 3D asymmetry; (2) Tolerance to nonideal 3D effects (e.g. laser power balance, pointing errors); and (3) Synthetic diagnostics.

  11. 3D multiplexed immunoplasmonics microscopy.

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-21

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K(+) channel subunit KV1.1) on human cancer CD44(+) EGFR(+) KV1.1(+) MDA-MB-231 cells and reference CD44(-) EGFR(-) KV1.1(+) 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third

  12. ORMGEN3D, 3-D Crack Geometry FEM Mesh Generator

    1 - Description of program or function: ORMGEN3D is a finite element mesh generator for computational fracture mechanics analysis. The program automatically generates a three-dimensional finite element model for six different crack geometries. These geometries include flat plates with straight or curved surface cracks and cylinders with part-through cracks on the outer or inner surface. Mathematical or user-defined crack shapes may be considered. The curved cracks may be semicircular, semi-elliptical, or user-defined. A cladding option is available that allows for either an embedded or penetrating crack in the clad material. 2 - Method of solution: In general, one eighth or one-quarter of the structure is modelled depending on the configuration or option selected. The program generates a core of special wedge or collapsed prism elements at the crack front to introduce the appropriate stress singularity at the crack tip. The remainder of the structure is modelled with conventional 20-node iso-parametric brick elements. Element group I of the finite element model consists of an inner core of special crack tip elements surrounding the crack front enclosed by a single layer of conventional brick elements. Eight element divisions are used in a plane orthogonal to the crack front, while the number of element divisions along the arc length of the crack front is user-specified. The remaining conventional brick elements of the model constitute element group II. 3 - Restrictions on the complexity of the problem: Maxima of 5,500 nodes, 4 layers of clad elements

  13. Elastoplastic shell analysis in DYNA3D

    Computer simulation of the elastoplastic behavior of thin shell structures under transient dynamic loads play an important role in many programs at Lawrence Livermore National Laboratory (LLNL) in Livermore, Calif. Often the loads are severe and the structure undergoes plastic (or permanent) deformation. These simulations are effectively performed using DYNA3D, an explicit nonlinear finite element code developed at LLNL for simulating and analyzing the large-deformation dynamic response of solids and structures. It is generally applicable to problems where the loading and response are of short duration and contain significant high-frequency components. Typical problems of this type include the contact of two impacting bodies and the resulting elastoplastic structural behavior. The objective of this investigation was to examine and improve upon the elastoplastic shell modeling capability in DYNA3D. This article summarizes the development of a new four-node quadrilateral finite element shell formulation, the YASE shell, and compares two basic methods (the stress-resultant and the thickness-resultant methods) employed in elastoplastic constitutive algorithms for shell structure modeling

  14. 3D Monitoring of LHCb Inner Tracker

    Sainvitu, Pascal

    2015-01-01

    The positions of the Inner Tracker (IT) detectors of the LHCb experiment installed in the LHC at CERN are impacted by the LHCb dipole magnet powering. In the past the movements of the stations have been measured using standard survey methods during magnet tests in shutdown periods. But the survey targets are visible only in very narrow spaces and the access to the IT is very difficult, even impossible in the central region when the detector is closed. Finally the precision of the standard survey measurement is affected by the poor configuration. In 2013 and 2014, during the first long shutdown of the LHC (LS1), the CERN Survey team (EN/MEF-SU) in collaboration with the LHCb Technical Coordination and the EPFL (Ecole Polytechnique Fédérale de LAUSANNE, CH), developed a permanent monitoring system which has been tested and installed in order to allow the 3D position measurement of the IT stations, even during the run periods, with a precision of 100 microns at 1 sigma level. The 3D Monitoring system of the LH...

  15. 3D multiplexed immunoplasmonics microscopy

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  16. Crowdsourcing Based 3d Modeling

    Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.

    2016-06-01

    Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  17. Mesoscale fabrication and design

    Hayes, Gregory R.

    A strong link between mechanical engineering design and materials science and engineering fabrication can facilitate an effective and adaptable prototyping process. In this dissertation, new developments in the lost mold-rapid infiltration forming (LM-RIF) process is presented which demonstrates the relationship between these two fields of engineering in the context of two device applications. Within the LM-RIF process, changes in materials processing and mechanical design are updated iteratively, often aided by statistical design of experiments (DOE). The LM-RIF process was originally developed by Antolino and Hayes et al to fabricate mesoscale components. In this dissertation the focus is on advancements in the process and underlying science. The presented advancements to the LM-RIF process include an augmented lithography procedure, the incorporation of engineered aqueous and non-aqueous colloidal suspensions, an assessment of constrained drying forces during LM-RIF processing, mechanical property evaluation, and finally prototype testing and validation. Specifically, the molding procedure within the LM-RIF process is capable of producing molds with thickness upwards of 1mm, as well as multi-layering to create three dimensional structures. Increasing the mold thickness leads to an increase in the smallest feature resolvable; however, the increase in mold thickness and three dimensional capability has expanded the mechanical design space. Tetragonally stabilized zirconia (3Y-TZP) is an ideal material for mesoscale instruments, as it is biocompatible, exhibits high strength, and is chemically stable. In this work, aqueous colloidal suspensions were formulated with two new gel-binder systems, increasing final natural orifice translumenal endoscopic surgery (NOTES) instrument yield from 0% to upwards of 40% in the best case scenario. The effects of the gel-binder system on the rheological behavior of the suspension along with the thermal characteristics of the gel

  18. Will 3D printers manufacture your meals?

    Bommel, K.J.C. van

    2013-01-01

    These days, 3D printers are laying down plastics, metals, resins, and other materials in whatever configurations creative people can dream up. But when the next 3D printing revolution comes, you'll be able to eat it.

  19. Eesti 3D jaoks kitsas / Virge Haavasalu

    Haavasalu, Virge

    2009-01-01

    Produktsioonifirma Digitaalne Sputnik: Kaur ja Kaspar Kallas tegelevad filmide produtseerimise ning 3D digitaalkaamerate tootearendusega (Silicon Imaging LLC). Vendade Kallaste 3D-kaamerast. Kommenteerib Eesti Filmi Sihtasutuse direktor Marge Liiske

  20. Sliding Adjustment for 3D Video Representation

    Galpin Franck

    2002-01-01

    Full Text Available This paper deals with video coding of static scenes viewed by a moving camera. We propose an automatic way to encode such video sequences using several 3D models. Contrary to prior art in model-based coding where 3D models have to be known, the 3D models are automatically computed from the original video sequence. We show that several independent 3D models provide the same functionalities as one single 3D model, and avoid some drawbacks of the previous approaches. To achieve this goal we propose a novel algorithm of sliding adjustment, which ensures consistency of successive 3D models. The paper presents a method to automatically extract the set of 3D models and associate camera positions. The obtained representation can be used for reconstructing the original sequence, or virtual ones. It also enables 3D functionalities such as synthetic object insertion, lightning modification, or stereoscopic visualization. Results on real video sequences are presented.

  1. 3D Flash LIDAR Space Laser Project

    National Aeronautics and Space Administration — Advanced Scientific Concepts, Inc. (ASC) is a small business that has developed 3D Flash LIDAR systems for space and terrestrial applications. 3D Flash LIDAR is...

  2. A daily global mesoscale ocean eddy dataset from satellite altimetry.

    Faghmous, James H; Frenger, Ivy; Yao, Yuanshun; Warmka, Robert; Lindell, Aron; Kumar, Vipin

    2015-01-01

    Mesoscale ocean eddies are ubiquitous coherent rotating structures of water with radial scales on the order of 100 kilometers. Eddies play a key role in the transport and mixing of momentum and tracers across the World Ocean. We present a global daily mesoscale ocean eddy dataset that contains ~45 million mesoscale features and 3.3 million eddy trajectories that persist at least two days as identified in the AVISO dataset over a period of 1993-2014. This dataset, along with the open-source eddy identification software, extract eddies with any parameters (minimum size, lifetime, etc.), to study global eddy properties and dynamics, and to empirically estimate the impact eddies have on mass or heat transport. Furthermore, our open-source software may be used to identify mesoscale features in model simulations and compare them to observed features. Finally, this dataset can be used to study the interaction between mesoscale ocean eddies and other components of the Earth System. PMID:26097744

  3. 3D Additive Manufacturing Symposium & Workshop

    Unver, Ertu; Taylor, Andrew

    2015-01-01

    The IMI /3M BIC 3D Additive Manufacturing Symposium and Workshop was hosted by 3M Buckley Innovation Centre on March 17th 2015. The event was attended by the major players in precision engineering, 3D additive design and manufacturing: Representatives from EOS, Renishaw, HK 3D Printing IMI Plc Senior Management team, design engineers, programmers and academics from the University of Huddersfield School of Art Design & Architecture, 3M Buckley centre 3D printing management and designers shared...

  4. Face Detection with a 3D Model

    Barbu, Adrian; Lay, Nathan; Gramajo, Gary

    2014-01-01

    This paper presents a part-based face detection approach where the spatial relationship between the face parts is represented by a hidden 3D model with six parameters. The computational complexity of the search in the six dimensional pose space is addressed by proposing meaningful 3D pose candidates by image-based regression from detected face keypoint locations. The 3D pose candidates are evaluated using a parameter sensitive classifier based on difference features relative to the 3D pose. A...

  5. 3D PHOTOGRAPHS IN CULTURAL HERITAGE

    Schuhr, W.; J. D. Lee; Kiel, St.

    2013-01-01

    This paper on providing "oo-information" (= objective object-information) on cultural monuments and sites, based on 3D photographs is also a contribution of CIPA task group 3 to the 2013 CIPA Symposium in Strasbourg. To stimulate the interest in 3D photography for scientists as well as for amateurs, 3D-Masterpieces are presented. Exemplary it is shown, due to their high documentary value ("near reality"), 3D photography support, e.g. the recording, the visualization, the interpret...

  6. 3-D CT for cardiovascular treatment planning

    Wildermuth, S.; Leschka, S.; Duru, F.; Alkadhi, H. [Inst. for Diagnostic Radiology, Univ. Hospital Zurich (Switzerland)

    2005-11-15

    The recently developed 64-slice CT scanner together with the use of 2-D and 3-D reconstructions can aid the cardiovascular surgeon and interventional radiologist in visualizing exact geometric relationships to plan and execute complex procedures via minimally invasive or standard approaches.Cardiac 64-slice CT considerably benefits from the high temporal and spatial resolution allowing the reliable depiction of small coronary segments. Similarly, abdominal vascular 64-slice CT became possible within short examination times and allowing an optimal arterial contrast bolus exploitation. We demonstrate four representative cardiac and abdominal examples using the new 64-slice CT technology which reveal the impact of the new scanner generation for cardiovascular treatment planning. (orig.)

  7. Dynamics of 3D isolated thermal filaments

    Walkden, N R; Militello, F; Omotani, J T

    2016-01-01

    Simulations have been carried out to establish how electron thermal physics, introduced in the form of a dynamic electron temperature, affects isolated filament motion and dynamics in 3D. It is found that thermal effects impact filament motion in two major ways when the filament has a significant temperature perturbation compared to its density perturbation: They lead to a strong increase in filament propagation in the bi-normal direction and a significant decrease in net radial propagation. Both effects arise from the temperature dependence of the sheath current which leads to a non-uniform floating potential, with the latter effect supplemented by faster pressure loss. The reduction in radial velocity can only occur when the filament cross-section loses angular symmetry. The behaviour is observed across different filament sizes and suggests that filaments with much larger temperature perturbations than density perturbations are more strongly confined to the near SOL region.

  8. Advanced Data Visualization in Astrophysics: the X3D Pathway

    Vogt, F P A; Verdes-Montenegro, L; Borthakur, S

    2015-01-01

    Most modern astrophysical datasets are multi-dimensional; a characteristic that can nowadays generally be conserved and exploited scientifically during the data reduction/simulation and analysis cascades. Yet, the same multi-dimensional datasets are systematically cropped, sliced and/or projected to printable two-dimensional (2-D) diagrams at the publication stage. In this article, we introduce the concept of the "X3D pathway" as a mean of simplifying and easing the access to data visualization and publication via three-dimensional (3-D) diagrams. The X3D pathway exploits the facts that 1) the X3D 3-D file format lies at the center of a product tree that includes interactive HTML documents, 3-D printing, and high-end animations, and 2) all high-impact-factor & peer-reviewed journals in Astrophysics are now published (some exclusively) online. We argue that the X3D standard is an ideal vector for sharing multi-dimensional datasets, as it provides direct access to a range of different data visualization tec...

  9. 3D textiles for composite reinforcements

    Fangueiro, Raúl; Mingxing, Z.; Hong, H; Soutinho, Hélder Filipe Cunha; Gonçalves, P.; Araújo, Mário Duarte de

    2010-01-01

    This paper presents an overview on the last developments on 3D textile structures for composite reinforcements. The application of innovative 3D shaped weft-knitted preforms in GFRP tube joints is presented and discussed. Moreover, the mechanical behaviour of 3D hybrid basalt fiber reinforced composite material sis also presented and discussed.

  10. 3D modelling for multipurpose cadastre

    Abduhl Rahman, A.; Van Oosterom, P.J.M.; Hua, T.C.; Sharkawi, K.H.; Duncan, E.E.; Azri, N.; Hassan, M.I.

    2012-01-01

    Three-dimensional (3D) modelling of cadastral objects (such as legal spaces around buildings, around utility networks and other spaces) is one of the important aspects for a multipurpose cadastre (MPC). This paper describes the 3D modelling of the objects for MPC and its usage to the knowledge of 3D

  11. Wake modelling combining mesoscale and microscale models

    Badger, Jake; Volker, Patrick; Prospathospoulos, J.; Sieros, G.; Ott, Søren; Réthoré, Pierre-Elouan; Hahmann, Andrea N.; Hasager, Charlotte Bay

    2013-01-01

    In this paper the basis for introducing thrust information from microscale wake models into mesocale model wake parameterizations will be described. A classification system for the different types of mesoscale wake parameterizations is suggested and outlined. Four different mesoscale wake...

  12. Fully Automatic 3D Reconstruction of Histological Images

    Bagci, Ulas

    2009-01-01

    In this paper, we propose a computational framework for 3D volume reconstruction from 2D histological slices using registration algorithms in feature space. To improve the quality of reconstructed 3D volume, first, intensity variations in images are corrected by an intensity standardization process which maps image intensity scale to a standard scale where similar intensities correspond to similar tissues. Second, a subvolume approach is proposed for 3D reconstruction by dividing standardized slices into groups. Third, in order to improve the quality of the reconstruction process, an automatic best reference slice selection algorithm is developed based on an iterative assessment of image entropy and mean square error of the registration process. Finally, we demonstrate that the choice of the reference slice has a significant impact on registration quality and subsequent 3D reconstruction.

  13. 3-D Perspective Pasadena, California

    2000-01-01

    This perspective view shows the western part of the city of Pasadena, California, looking north towards the San Gabriel Mountains. Portions of the cities of Altadena and La Canada, Flintridge are also shown. The image was created from three datasets: the Shuttle Radar Topography Mission (SRTM) supplied the elevation data; Landsat data from November 11, 1986 provided the land surface color (not the sky) and U.S. Geological Survey digital aerial photography provides the image detail. The Rose Bowl, surrounded by a golf course, is the circular feature at the bottom center of the image. The Jet Propulsion Laboratory is the cluster of large buildings north of the Rose Bowl at the base of the mountains. A large landfill, Scholl Canyon, is the smooth area in the lower left corner of the scene. This image shows the power of combining data from different sources to create planning tools to study problems that affect large urban areas. In addition to the well-known earthquake hazards, Southern California is affected by a natural cycle of fire and mudflows. Wildfires strip the mountains of vegetation, increasing the hazards from flooding and mudflows for several years afterwards. Data such as shown on this image can be used to predict both how wildfires will spread over the terrain and also how mudflows will be channeled down the canyons. The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission was designed to collect three dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency

  14. Light Attenuation Method for 3D data acquisition (LAM3D) of bottom particle deposits

    Er, Jenn Wei; Law, Adrian W. K.; Adams, E. Eric; Yang, Yang

    2015-11-01

    We have developed a novel experimental technique, Light Attenuation Method for 3D data acquisition (LAM3D), to acquire three-dimensional spatial characteristics and temporal development of bottom particle deposits. The new technique performs data acquisition with higher spatial and temporal resolution than existing approaches with laser and ultrasonic 3D profilers, and is therefore ideal for laboratory investigations with fast varying changes in the sediment bed, such as the developing deposition profile from sediment clouds commonly formed during dredging or land reclamation projects and the dynamic evolution in movable bed processes in rivers. The principle of the technique is based on the analysis of the light attenuation due to multiple light scattering through the particle deposits layer compared to the clear water column. With appropriate calibration, the particles size and distribution thickness can be quantified by the transmitted light spectrum. In the presentation, we will first show our measurement setup with a light panel for calibrated illumination and a system of DSLR cameras for the light capturing. Subsequently, we shall present the experimental results of fast evolving deposition profile of a barge-disposed sediment cloud upon its bottom impact on the sea bed.

  15. Esiselvitys elintarvikkeiden 3D-tulostamisesta

    Teva, Arno

    2015-01-01

    Opinnäytetyön tavoitteena oli laatia esiselvitys 3D-tulostamisesta elintarvikealalla. 3D-tulostaminen on uusi ja jatkuvasti kehittyvä ala, joka tulee vaikuttamaan myös elintarvikealan kehittymiseen. Työn tarkoituksena oli selvittää elintarvikenäkökulmasta 3D-tulostamiseen liittyviä tekijöitä. Aiheen toimeksiantajana oli Hämeen ammattikorkeakoulu ja kohderyhmänä elintarvikealan Pk-yritykset. Opinnäytetyössä esitellään yleisimpiä 3D-tulostusmenetelmiä ja selvitetään 3D-tulostamista tietokone...

  16. PRIPRAVA MODELOV ZA 3D - TISK

    Črešnik, Igor

    2015-01-01

    V diplomskem delu predstavljamo pripravo modela na 3D-tisk. V prvem delu smo preleteli zgodovino tiska. Predstavili smo tehnologijo 3D-tiska ter različne tehnike tiskanja, ki jih uporabljajo določeni tiskalniki. V nadaljevanju smo pregledali različne tipe 3D-tiskalnikov, ki se uporabljajo za domačo ali komercialno uporabo ter izpostavili njihove prednosti in slabosti. V zadnjem delu diplomskega dela smo na praktičnem primeru 3D-modela hiše prikazali proces priprave modela za 3D-tisk. Pri delu...

  17. 3D-tulostimien tutkiminen painotalolle

    Toivonen, Aleksi

    2014-01-01

    Opinnäytetyön tavoitteena oli perehtyä 3D-tulostamiseen ja tutkia painotaloon sopivia 3D-tulostimia ja 3D-tulostamiseen liittyviä tekniikoita. Opinnäytetyön tavoitteena oli myös pohtia painotalolle mahdollisia 3D-tulostamiseen liittyviä tuotekonsepteja yrityksille ja yksityisille kuluttajille. Painoalan yrityksen tarkoituksena on sijoittaa lähitulevaisuudessa 3D-tulostimeen, joten opinnäytetyö oli ajankohtainen tutkimustyö yritykselle. Opinnäytetyön toimeksiantajana toimi painoalan yritys. ...

  18. BUILDING A HOMEMADE 3D PRINTER

    Tunc, Baran

    2015-01-01

    3D printing has been attracted much attention around the world due to its high potential of new application fields. In this respect, developing and inventing new filament materials for 3D printers or new techniques of 3D printing are the main interest of the many materials scientists. This paper reports a comprehensive overview of 3D printing followed by a summary of my ongoing study of building a composite homemade 3D printer. At this stage of this study, a CNC router was successfully conver...

  19. 3D Printing our future: Now

    Taylor, Andrew; Unver, Ertu

    2015-01-01

    This 3D Printing our Future:Now talk and visual presentation was given to delegates at the IMI 3D Workshop held at 3M Buckley Innovation Centre on 17th March 2015. The event was hosted by 3Mbuckley Innovation Centre for IMI plc a global engineering company, 3M, and leading 3D additive manufacturing technology providers: EOS, Renishaw and HK 3D printing to disseminate and share their experience on the latest 3D additive design and manufacturing technologies available to the engineering an...

  20. Investigating Mobile Stereoscopic 3D Touchscreen Interaction

    Colley, Ashley; Hakkila, Jonna; SCHOENING, Johannes; Posti, Maaret

    2013-01-01

    3D output is no longer limited to large screens in cinemas or living rooms. Nowadays more and more mobile devices are equipped with autostereoscopic 3D (S3D) touchscreens. As a consequence interaction with 3D content now also happens whilst users are on the move. In this paper we carried out a user study with 27 participants to assess how mobile interaction, i.e. whilst walking, with mobile S3D devices, differs from interaction with 2D mobile touchscreens. We investigate the difference in tou...

  1. ViHAP3D - Final report

    Scopigno, Roberto

    2005-01-01

    Nearly all of our cultural heritage is inherently three-dimensional. Recent hard- and software developments enabled 3D computer graphics to be one of the most powerful means to represent complex data sets. The ViHAP3D project (ViHAP3D is an acronym for Virtual Heritage - High Quality 3D Acquisition and Presentation) aimed therefore at preserving, presenting, accessing, and promoting cultural heritage using interactive, high-quality 3D graphics. The vision of the project was to create an exact...

  2. Wafer level 3-D ICs process technology

    Tan, Chuan Seng; Reif, L Rafael

    2009-01-01

    This book focuses on foundry-based process technology that enables the fabrication of 3-D ICs. The core of the book discusses the technology platform for pre-packaging wafer lever 3-D ICs. However, this book does not include a detailed discussion of 3-D ICs design and 3-D packaging. This is an edited book based on chapters contributed by various experts in the field of wafer-level 3-D ICs process technology. They are from academia, research labs and industry.

  3. View-based 3-D object retrieval

    Gao, Yue

    2014-01-01

    Content-based 3-D object retrieval has attracted extensive attention recently and has applications in a variety of fields, such as, computer-aided design, tele-medicine,mobile multimedia, virtual reality, and entertainment. The development of efficient and effective content-based 3-D object retrieval techniques has enabled the use of fast 3-D reconstruction and model design. Recent technical progress, such as the development of camera technologies, has made it possible to capture the views of 3-D objects. As a result, view-based 3-D object retrieval has become an essential but challenging res

  4. Web-based interactive visualization of 3D video mosaics using X3D standard

    CHON Jaechoon; LEE Yang-Won; SHIBASAKI Ryosuke

    2006-01-01

    We present a method of 3D image mosaicing for real 3D representation of roadside buildings, and implement a Web-based interactive visualization environment for the 3D video mosaics created by 3D image mosaicing. The 3D image mosaicing technique developed in our previous work is a very powerful method for creating textured 3D-GIS data without excessive data processing like the laser or stereo system. For the Web-based open access to the 3D video mosaics, we build an interactive visualization environment using X3D, the emerging standard of Web 3D. We conduct the data preprocessing for 3D video mosaics and the X3D modeling for textured 3D data. The data preprocessing includes the conversion of each frame of 3D video mosaics into concatenated image files that can be hyperlinked on the Web. The X3D modeling handles the representation of concatenated images using necessary X3D nodes. By employing X3D as the data format for 3D image mosaics, the real 3D representation of roadside buildings is extended to the Web and mobile service systems.

  5. The Art of 3D Sculpted Printing : Royal Coat of Arms Case Study

    Unver, Ertu; Swann, David; Bailey, Rowan; Govindarajan, Iniyanrajan; Dollan, Fiona

    2013-01-01

    Design, Development and Prototyping of a Royal Coat of Arms using 3D printing technology: Presented to the HRH the Duke of York, Prince Andrew What and Why? The MA 3D Digital Design team was approached by 3M Buckley Centre to create a 3D printed gift item to then be presented to HRH the Duke of York. Introduction: Digital 3D software and the use of 3D modelling is impacting on the evolution and efficiency of productivity and manufacturing across the design industries. 3D printin...

  6. 3D laptop for defense applications

    Edmondson, Richard; Chenault, David

    2012-06-01

    Polaris Sensor Technologies has developed numerous 3D display systems using a US Army patented approach. These displays have been developed as prototypes for handheld controllers for robotic systems and closed hatch driving, and as part of a TALON robot upgrade for 3D vision, providing depth perception for the operator for improved manipulation and hazard avoidance. In this paper we discuss the prototype rugged 3D laptop computer and its applications to defense missions. The prototype 3D laptop combines full temporal and spatial resolution display with the rugged Amrel laptop computer. The display is viewed through protective passive polarized eyewear, and allows combined 2D and 3D content. Uses include robot tele-operation with live 3D video or synthetically rendered scenery, mission planning and rehearsal, enhanced 3D data interpretation, and simulation.

  7. User-centered 3D geovisualisation

    Nielsen, Anette Hougaard

    2004-01-01

    3D Geovisualisation is a multidisciplinary science mainly utilizing geographically related data, developing software systems for 3D visualisation and producing relevant models. In this paper the connection between geoinformation stored as 3D objects and the end user is of special interest....... In a broader perspective, the overall aim is to develop a language in 3D Geovisualisation gained through usability projects and the development of a theoretical background. A conceptual level of user-centered 3D Geovisualisation is introduced by applying a categorisation originating from Virtual Reality....... The conceptual level is used to structure and organise user-centered 3D Geovisualisation into four categories: representation, rendering, interface and interaction. The categories reflect a process of development of 3D Geovisualisation where objects can be represented verisimilar to the real world...

  8. 3D Chaotic Functions for Image Encryption

    Pawan N. Khade

    2012-05-01

    Full Text Available This paper proposes the chaotic encryption algorithm based on 3D logistic map, 3D Chebyshev map, and 3D, 2D Arnolds cat map for color image encryption. Here the 2D Arnolds cat map is used for image pixel scrambling and 3D Arnolds cat map is used for R, G, and B component substitution. 3D Chebyshev map is used for key generation and 3D logistic map is used for image scrambling. The use of 3D chaotic functions in the encryption algorithm provide more security by using the, shuffling and substitution to the encrypted image. The Chebyshev map is used for public key encryption and distribution of generated private keys.

  9. Challenges in Lagrangian transport and predictability in 3D flows

    Branicki, M.; Wiggins, S.; Kirwan, A. D.; Malek-Madani, R.

    2011-12-01

    The interplay between the geometrical theory of dynamical systems and the trajectory-based description of aperiodically time-dependent fluid flows has led to significant advances in understanding the role of chaotic transport in geophysical flows at scales dominated by advection. Lagrangian transport analysis utilizing either the time-dependent geometry of intersecting stable and unstable manifolds of the so-called Distinguished Hyperbolic Trajectories (DHT), or ridges of finite-time Lyapunov exponent fields (LCS), provide a much needed and complementary insight into ephemeral mechanisms responsible for the existence of `leaky' transport barriers and 'leaky' mesoscale eddies. However, to date most oceanic applications have been confined to 2D analysis of near surface regions in 'perfect' flows not accounting for model or measurement error, and with the tacit assumption of negligible vertical velocities. I will systematically address issues concerning the regimes of applicability of two-dimensional analysis in 3D aperiodically time-dependent flows, as well as outstanding challenges in fully 3D Lagrangian transport analysis. Even for perfect horizontal velocities, little is known about the vertical extent of stable/unstable manifolds associated with DHTs and/or other special structures relevant to stratified 3D flows. In particular, their sensitivity to errors in the vertical velocities and data assimilation methods has been little studied. Rigorous results regarding the above issues will be illustrated by revealing and mathematically tractable toy models, as well as examples from a detailed study in an eddy-rich region from the Gulf of Mexico and the Mediterranean. New ways of quantifying the uncertainty in Lagrangian predictions will also be presented.

  10. Functioning of the planktonic ecosystem of the Rhone River plume (NW Mediterranean during spring and its impact on the carbon export: a field data and 3-D modelling combined approach

    P. A. Auger

    2010-12-01

    Full Text Available Low-salinity water (LSW, Salinity < 37.5 lenses detached from the Rhone River plume under specific wind conditions tend to favour the biological productivity and potentially a transfer of energy to higher trophic levels on the Gulf of Lions (GoL. A field cruise conducted in May 2006 (BIOPRHOFI followed some LSW lenses by using a lagrangian strategy. A thorough analysis of the available data set enabled to further improve our understanding of the LSW lenses' functioning and their potential influence on marine ecosystems. Through an innovative 3-D coupled hydrodynamic-biogeochemical modelling approach, a specific calibration dedicated to river plume ecosystems was then proposed and validated on field data. Exploring the role of ecosystems on the particulate organic carbon (POC export and deposition on the shelf, a sensitivity analysis to the particulate organic matter inputs from the Rhone River was carried out from 1 April to 15 July 2006. Over such a typical end-of-spring period marked by moderate floods, the main deposition area of POC was identified alongshore between 0 and 50 m depth on the GoL, extending the Rhone prodelta to the west towards the exit of the shelf. Moreover, the main deposition area of terrestrial POC was found on the prodelta region, which confirms recent results from sediment data. The averaged daily deposition of particulate organic carbon over the whole GoL is estimated by the model between 40 and 80 mgC/m2, which is in the range of previous secular estimations. The role of ecosystems on the POC export toward sediments or offshore areas was actually highlighted and feedbacks between ecosystems and particulate organic matters are proposed to explain paradoxical model results to the sensitivity test. In fact, the conversion of organic matter in living organisms would increase the retention of organic matter in the food web and this matter transfer along the food web could explain the minor quantity of POC of

  11. Atmospheric Delay Reduction using Ray Tracing Technique through Meso-scale Numerical Weather Data for Space Geodesy

    Ichikawa, Ryuichi; Hobiger, Thomas; Shoji, Yoshinori; Koyama, Yasuhiro; Kondo, Tesuro

    2010-05-01

    We have been developing a state-of-art tool to estimate the atmospheric path delays by ray-tracing through meso-scale analysis (MANAL data) data with 10km grid interval, which is operationally used for numerical weather prediction by Japan Meteorological Agency (JMA). The tools, which we have named 'KAshima RAytracing Tools (KARAT)', are capable of calculating total slant delays and ray-bending angles considering real atmospheric phenomena. The KARAT can estimate atmospheric slant delays by three different calculation schemes. These are (1) a piece-wise linear propagation, (2) an analytical 2-D ray-propagation model by Thayer, and (3) a 3-D Eikonal solver. By computing GPS PPP solutions for 57 GPS sites of the GEONET (GPS Earth Observation Network System) operated by Geographical Survey Institute (GSI) of Japan it could be shown that KARAT performs slightly better than results based on the Global Mapping Function (GMF) and the Vienna Mapping Function 1 (VMF1), whereas for the latter two also linear gradient models had to be applied. The grid interval of the MANAL data was updated from 10km to 5km on April 7, 2009. In addition, on October 27, 2009 the JMA started data assimilation of zenith wet delay obtained by the GEONET for meso-scale numerical weather prediction. We are now evaluating impacts of data scheme improvements and assimilation strategy change on the slant delay reduction. We will include these preliminary results in our presentation.

  12. Applications of Open Source 3-D Printing on Small Farms

    Joshua M. Pearce

    2013-12-01

    Full Text Available There is growing evidence that low-cost open-source 3-D printers can reduce costs by enabling distributed manufacturing of substitutes for both specialty equipment and conventional mass-manufactured products. The rate of 3-D printable designs under open licenses is growing exponentially and there arealready hundreds of designs applicable to small-scale organic farming. It has also been hypothesized that this technology could assist sustainable development in rural communities that rely on small-scale organic agriculture. To gauge the present utility of open-source 3-D printers in this organic farm context both in the developed and developing world, this paper reviews the current open-source designs available and evaluates the ability of low-cost 3-D printers to be effective at reducing the economic costs of farming.This study limits the evaluation of open-source 3-D printers to only the most-developed fused filament fabrication of the bioplastic polylactic acid (PLA. PLA is a strong biodegradable and recyclable thermoplastic appropriate for a range of representative products, which are grouped into five categories of prints: handtools, food processing, animal management, water management and hydroponics. The advantages and shortcomings of applying 3-D printing to each technology are evaluated. The results show a general izabletechnical viability and economic benefit to adopting open-source 3-D printing for any of the technologies, although the individual economic impact is highly dependent on needs and frequency of use on a specific farm. Capital costs of a 3-D printer may be saved from on-farm printing of a single advanced analytical instrument in a day or replacing hundreds of inexpensive products over a year. In order for the full potential of open-source 3-D printing to be realized to assist organic farm economic resiliency and self-sufficiency, future work is outlined in five core areas: designs of 3-D printable objects, 3-D printing

  13. 3-D Technology Approaches for Biological Ecologies

    Liu, Liyu; Austin, Robert; U. S-China Physical-Oncology Sciences Alliance (PS-OA) Team

    Constructing three dimensional (3-D) landscapes is an inevitable issue in deep study of biological ecologies, because in whatever scales in nature, all of the ecosystems are composed by complex 3-D environments and biological behaviors. Just imagine if a 3-D technology could help complex ecosystems be built easily and mimic in vivo microenvironment realistically with flexible environmental controls, it will be a fantastic and powerful thrust to assist researchers for explorations. For years, we have been utilizing and developing different technologies for constructing 3-D micro landscapes for biophysics studies in in vitro. Here, I will review our past efforts, including probing cancer cell invasiveness with 3-D silicon based Tepuis, constructing 3-D microenvironment for cell invasion and metastasis through polydimethylsiloxane (PDMS) soft lithography, as well as explorations of optimized stenting positions for coronary bifurcation disease with 3-D wax printing and the latest home designed 3-D bio-printer. Although 3-D technologies is currently considered not mature enough for arbitrary 3-D micro-ecological models with easy design and fabrication, I hope through my talk, the audiences will be able to sense its significance and predictable breakthroughs in the near future. This work was supported by the State Key Development Program for Basic Research of China (Grant No. 2013CB837200), the National Natural Science Foundation of China (Grant No. 11474345) and the Beijing Natural Science Foundation (Grant No. 7154221).

  14. FROM 3D MODEL DATA TO SEMANTICS

    My Abdellah Kassimi

    2012-01-01

    Full Text Available The semantic-based 3D models retrieval systems have become necessary since the increase of 3D modelsdatabases. In this paper, we propose a new method for the mapping problem between 3D model data andsemantic data involved in semantic based retrieval for 3D models given by polygonal meshes. First, wefocused on extracting invariant descriptors from the 3D models and analyzing them to efficient semanticannotation and to improve the retrieval accuracy. Selected shape descriptors provide a set of termscommonly used to describe visually a set of objects using linguistic terms and are used as semanticconcept to label 3D model. Second, spatial relationship representing directional, topological anddistance relationships are used to derive other high-level semantic features and to avoid the problem ofautomatic 3D model annotation. Based on the resulting semantic annotation and spatial concepts, anontology for 3D model retrieval is constructed and other concepts can be inferred. This ontology is usedto find similar 3D models for a given query model. We adopted the query by semantic example approach,in which the annotation is performed mostly automatically. The proposed method is implemented in our3D search engine (SB3DMR, tested using the Princeton Shape Benchmark Database.

  15. Meso-scale effects of tropical deforestation in Amazonia: preparatory LBA modelling studies

    Dolman, A. J.; M. A. Silva Dias; J.-C. Calvet; Ashby, M.; A. S. Tahara; C. Delire; Kabat, P.; Fisch, G. A.; Nobre, C.A.

    1999-01-01

    As part of the preparation for the Large-Scale Biosphere Atmosphere Experiment in Amazonia, a meso-scale modelling study was executed to highlight deficiencies in the current understanding of land surface atmosphere interaction at local to sub-continental scales in the dry season. Meso-scale models were run in 1-D and 3-D mode for the area of Rondonia State, Brazil. The important conclusions are that without calibration it is difficult to model the energy partitioning of pasture; modelling th...

  16. 3D Systems” ‘Stuck in the Middle’ of the 3D Printer Boom?

    A. Hoffmann (Alan)

    2014-01-01

    textabstract3D Systems, the pioneer of 3D printing, predicted a future where "kids from 8 to 80" could design and print their ideas at home. By 2013, 9 years after the creation of the first working 3D printer, there were more than 30 major 3D printing companies competing for market share. 3DS and it

  17. Shear stress behavior in mesoscale simulations of granular materials

    Fujino, Don; Lomov, Ilya; Antoun, Tarabay; Vitali, Efrem

    2012-03-01

    3D mesoscale simulations of shock propagation in porous solids and powders have been performed with the Eulerian hydrocode GEODYN. The results indicate that voids can have a profound effect on the stress state in the material behind the shock front. The simulations can explain experimentally observed wave profiles that are difficult to interpret in the context of the classical elastic-plastic theory. In particular, a quasielastic precursor is observed in reshock simulations. This effect persists even at extremely low porosity values, down to 0.1% by volume. Stress relaxation is pronounced in simulations involving wave propagation, but is not observed in uniform ramp loading. In this sense, the relaxation phenomenon is non-local in nature and classic continuum models are inadequate for its description. Simulations show that the response of highly porous powders is dominated by deviatoric stress relaxation in the shock regime. We propose an enhancement which can be easily integrated into most existing porous material continuum models for modeling the shockinduced relaxation phenomena observed in the mesoscale simulation. The model calculates the microkinetic energy generated by dynamic loading and stores it as an internal state variable. The rate of production and dissipation of microkinetic energy and other model parameters are calibrated based on the mesoscale results. The augmented continuum model represents the deviatoric stress behavior observed under different regimes of dynamic loading.

  18. 3D-tulostus : case Printrbot

    Arvekari, Lassi

    2013-01-01

    Opinnäytetyön tavoitteena on selvittää 3D-tulostustekniikan perusteita ja 3D-tulostuksen nykytilannetta. 3D-tulostukseen sopivien mallien luomista tutkitaan ja mallin tekemiseen on etsitty toimivia ohjesääntöjä. Tärkeä osa työtä on tutkia mitä vaiheita 3D-tulostimen hankinnassa kotikäyttöön tulee vastaan. Käytännön kokeita varten opinnäytetyössä on case Printrbot, jossa on tutustuttu edulliseen 3D-tulostuslaitteeseen kokoonpanosta lähtien. Työn kuluessa selvisi että edulliset 3D-tulos...

  19. Identification of the transition arrays 3d74s-3d74p in Br X and 3d64s-3d64p in Br XI

    We report a beam-foil study of multiply ionized bromine in the region 400-1300A, performed with 6 and 8 MeV Br ions from a tandem accelerator. At these energies transitions belonging to Fe-like Br X and Mn-like Br XI are expected to be prominent. We have identified 31 lines as 3d74s-3d74p transitions in Br X, from which 16 levels of the previously unknown 3d74s configuration could be established. We have also added 6 new 3d74p levels to the 99 previously known. For Br XI we have classified 9 lines as 3d64s-3d64p combinations. The line identifications have been corroborated by isoelectronic comparisons and theoretical calculations using the superposition-of-configurations technique. (orig.)

  20. 3D Dynamic Echocardiography with a Digitizer

    Oshiro, Osamu; Matani, Ayumu; Chihara, Kunihiro

    1998-05-01

    In this paper,a three-dimensional (3D) dynamic ultrasound (US) imaging system,where a US brightness-mode (B-mode) imagetriggered with an R-wave of electrocardiogram (ECG)was obtained with an ultrasound diagnostic deviceand the location and orientation of the US probewere simultaneously measured with a 3D digitizer, is described.The obtained B-mode imagewas then projected onto a virtual 3D spacewith the proposed interpolation algorithm using a Gaussian operator.Furthermore, a 3D image was presented on a cathode ray tube (CRT)and stored in virtual reality modeling language (VRML).We performed an experimentto reconstruct a 3D heart image in systole using this system.The experimental results indicatethat the system enables the visualization ofthe 3D and internal structure of a heart viewed from any angleand has potential for use in dynamic imaging,intraoperative ultrasonography and tele-medicine.

  1. Spatial data modelling for 3D GIS

    Abdul-Rahman, Alias

    2007-01-01

    This book covers fundamental aspects of spatial data modelling specifically on the aspect of three-dimensional (3D) modelling and structuring. Realisation of ""true"" 3D GIS spatial system needs a lot of effort, and the process is taking place in various research centres and universities in some countries. The development of spatial data modelling for 3D objects is the focus of this book.

  2. MMDB: 3D structures and macromolecular interactions

    Madej, Thomas; Addess, Kenneth J.; Fong, Jessica H.; Geer, Lewis Y.; Geer, Renata C.; Lanczycki, Christopher J; Liu, Chunlei; Lu, Shennan; Marchler-Bauer, Aron; Panchenko, Anna R.; Chen, Jie; Thiessen, Paul A; Wang, Yanli; Zhang, Dachuan; Bryant, Stephen H.

    2011-01-01

    Close to 60% of protein sequences tracked in comprehensive databases can be mapped to a known three-dimensional (3D) structure by standard sequence similarity searches. Potentially, a great deal can be learned about proteins or protein families of interest from considering 3D structure, and to this day 3D structure data may remain an underutilized resource. Here we present enhancements in the Molecular Modeling Database (MMDB) and its data presentation, specifically pertaining to biologically...

  3. Compression of 3D models with NURBS

    Santa Cruz Ducci, Diego; Ebrahimi, Touradj

    2005-01-01

    With recent progress in computing, algorithmics and telecommunications, 3D models are increasingly used in various multimedia applications. Examples include visualization, gaming, entertainment and virtual reality. In the multimedia domain 3D models have been traditionally represented as polygonal meshes. This piecewise planar representation can be thought of as the analogy of bitmap images for 3D surfaces. As bitmap images, they enjoy great flexibility and are particularly well suited to des...

  4. Volume-Rendering-Based Interactive 3D Measurement for Quantitative Analysis of 3D Medical Images

    Yakang Dai; Jian Zheng; Yuetao Yang; Duojie Kuai; Xiaodong Yang

    2013-01-01

    3D medical images are widely used to assist diagnosis and surgical planning in clinical applications, where quantitative measurement of interesting objects in the image is of great importance. Volume rendering is widely used for qualitative visualization of 3D medical images. In this paper, we introduce a volume-rendering-based interactive 3D measurement framework for quantitative analysis of 3D medical images. In the framework, 3D widgets and volume clipping are integrated with volume render...

  5. 3D-tulostuksen viipalointiohjelmien vertailu

    Virolainen, Ville

    2015-01-01

    Opinnäytetyön tavoitteena on selventää 3D-tulostamisen prosessia yksityisen käyttäjän näkökulmasta sekä luoda testitulostuksia, joiden perusteella pystytään vertailemaan prosessissa käytettävien viipalointiohjelmien toimintaa keskenään. Työssä perehdytään aluksi 3D-tulostuksen teoriataustaan, jonka jälkeen suoritetaan 3D-tulostimella testitulostukset käyttäen kolmea eri viipalointiohjelmaa. 3D-tulostamisella tarkoitetaan prosessia, jonka tarkoituksena on luoda kolmiulotteinen objekti käyt...

  6. Illustrating Mathematics using 3D Printers

    Knill, Oliver; Slavkovsky, Elizabeth

    2013-01-01

    3D printing technology can help to visualize proofs in mathematics. In this document we aim to illustrate how 3D printing can help to visualize concepts and mathematical proofs. As already known to educators in ancient Greece, models allow to bring mathematics closer to the public. The new 3D printing technology makes the realization of such tools more accessible than ever. This is an updated version of a paper included in book Low-Cost 3D Printing for science, education and Sustainable Devel...

  7. BIM tietomalli ja 3D-tulostus

    Myllykoski, Joonas; Palonen, Teemu

    2015-01-01

    Tämän opinnäytetyön tavoitteena oli selvittää miten Tekla Structures ohjelmalla luotu 3D-malli saadaan tulostettua koulun 3D-tulostimella sekä tutkittiin voidaanko Tekla Structuresin ominaisuuksia hyödyntää 3D-tulostamisessa ja miten tulostus onnistuu autocadilla. Selvitimme myös mahdollisia 3D-tulostusteknologian sovelluksia tulevaisuuden rakennustuotannossa ja sen näkymiä rakennusteollisuudessa sekä erilaisia tulostus menetelmiä joita voitaisiin mahdollisesti hyödyntää rakennusteollisuudess...

  8. A 3d game in python

    Xu, Minghui

    2014-01-01

    3D game has widely been accepted and loved by many game players. More and more different kinds of 3D games were developed to feed people’s needs. The most common programming language for development of 3D game is C++ nowadays. Python is a high-level scripting language. It is simple and clear. The concise syntax could speed up the development cycle. This project was to develop a 3D game using only Python. The game is about how a cat lives in the street. In order to live, the player need...

  9. Interaktiivinen 3D HTML5-selaimissa

    Aaltonen, Jani

    2013-01-01

    Insinöörityön tavoitteena oli tutkia Metropolia Ammattikorkeakoulun mahdollisuuksia tuottaa interaktiivista 3D:tä verkkoselaimiin WebGL:n avulla ja käyttäen ammattikorkeakoulun 3D-mallinnusohjelmaa. WebGL on ohjelmointirajapinta, jolla saadaan luotua 3D-grafiikkaa verkkoselaimeen ilman ylimääräisiä liitännäisiä. Insinöörityö tehtiin Metropolia Ammattikorkeakoululle, ja sen tuloksia käytetään sekä osana opetusta että mahdollisesti 3D-sisällön tuottamiseen ammattikorkeakoulua varten. Työssä...

  10. Calibration for 3D Structured Light Measurement

    2007-01-01

    A calibration procedure was developed for three-dimensional(3D) binocular structured light measurement systems. In virtue of a specially designed pattern, matching points in stereo images are extracted. And then sufficient 3D space points are obtained through pairs of images with the intrinsic and extrinsic parameters of each camera estimated prior and consequently some lights are calibrated by means of multi point fitting. Finally, a mathematical model is applied to interpolate and approximate all dynamic scanning lights based on geometry. The process of calibration method is successfully used in the binocular 3D measurement system based on structured lights and the 3D reconstruction results are satisfying.

  11. Getting started in 3D with Maya

    Watkins, Adam

    2012-01-01

    Deliver professional-level 3D content in no time with this comprehensive guide to 3D animation with Maya. With over 12 years of training experience, plus several award winning students under his belt, author Adam Watkins is the ideal mentor to get you up to speed with 3D in Maya. Using a structured and pragmatic approach Getting Started in 3D with Maya begins with basic theory of fundamental techniques, then builds on this knowledge using practical examples and projects to put your new skills to the test. Prepared so that you can learn in an organic fashion, each chapter builds on the know

  12. Can 3D Printing change your business?

    Unver, Ertu

    2013-01-01

    This presentation is given to businesses / companies with an interest in 3D Printing and Additive Manufacturing in West Yorkshire, UK Organised by the Calderdale and Kirklees Manufacturing Alliance. http://www.ckma.co.uk/ by Dr Ertu Unver Senior Lecturer / Product Design / MA 3D Digital Design / University of Huddersfield Location : 3M BIC, Date : 11th April, Time : 5.30 – 8pm Additive manufacturing or 3D printing is a process of making a three-dimensional (3D) objects from...

  13. 3D modelling for multipurpose cadastre

    Abduhl Rahman, A.; P. J. M. Van Oosterom; T. C. Hua; Sharkawi, K.H.; E. E. Duncan; Azri, N.; Hassan, M. I.

    2012-01-01

    Three-dimensional (3D) modelling of cadastral objects (such as legal spaces around buildings, around utility networks and other spaces) is one of the important aspects for a multipurpose cadastre (MPC). This paper describes the 3D modelling of the objects for MPC and its usage to the knowledge of 3D cadastre since more and more related agencies attempt to develop or embed 3D components into the MPC. We also intend to describe the initiative by Malaysian national mapping and cadastral agency (...

  14. FastScript3D - A Companion to Java 3D

    Koenig, Patti

    2005-01-01

    FastScript3D is a computer program, written in the Java 3D(TM) programming language, that establishes an alternative language that helps users who lack expertise in Java 3D to use Java 3D for constructing three-dimensional (3D)-appearing graphics. The FastScript3D language provides a set of simple, intuitive, one-line text-string commands for creating, controlling, and animating 3D models. The first word in a string is the name of a command; the rest of the string contains the data arguments for the command. The commands can also be used as an aid to learning Java 3D. Developers can extend the language by adding custom text-string commands. The commands can define new 3D objects or load representations of 3D objects from files in formats compatible with such other software systems as X3D. The text strings can be easily integrated into other languages. FastScript3D facilitates communication between scripting languages [which enable programming of hyper-text markup language (HTML) documents to interact with users] and Java 3D. The FastScript3D language can be extended and customized on both the scripting side and the Java 3D side.

  15. Game-Like Language Learning in 3-D Virtual Environments

    Berns, Anke; Gonzalez-Pardo, Antonio; Camacho, David

    2013-01-01

    This paper presents our recent experiences with the design of game-like applications in 3-D virtual environments as well as its impact on student motivation and learning. Therefore our paper starts with a brief analysis of the motivational aspects of videogames and virtual worlds (VWs). We then go on to explore the possible benefits of both in the…

  16. 3D PDF - a means of public access to geological 3D - objects, using the example of GTA3D

    Slaby, Mark-Fabian; Reimann, Rüdiger

    2013-04-01

    In geology, 3D modeling has become very important. In the past, two-dimensional data such as isolines, drilling profiles, or cross-sections based on those, were used to illustrate the subsurface geology, whereas now, we can create complex digital 3D models. These models are produced with special software, such as GOCAD ®. The models can be viewed, only through the software used to create them, or through viewers available for free. The platform-independent PDF (Portable Document Format), enforced by Adobe, has found a wide distribution. This format has constantly evolved over time. Meanwhile, it is possible to display CAD data in an Adobe 3D PDF file with the free Adobe Reader (version 7). In a 3D PDF, a 3D model is freely rotatable and can be assembled from a plurality of objects, which can thus be viewed from all directions on their own. In addition, it is possible to create moveable cross-sections (profiles), and to assign transparency to the objects. Based on industry-standard CAD software, 3D PDFs can be generated from a large number of formats, or even be exported directly from this software. In geoinformatics, different approaches to creating 3D PDFs exist. The intent of the Authority for Mining, Energy and Geology to allow free access to the models of the Geotectonic Atlas (GTA3D), could not be realized with standard software solutions. A specially designed code converts the 3D objects to VRML (Virtual Reality Modeling Language). VRML is one of the few formats that allow using image files (maps) as textures, and to represent colors and shapes correctly. The files were merged in Acrobat X Pro, and a 3D PDF was generated subsequently. A topographic map, a display of geographic directions and horizontal and vertical scales help to facilitate the use.

  17. An aerial 3D printing test mission

    Hirsch, Michael; McGuire, Thomas; Parsons, Michael; Leake, Skye; Straub, Jeremy

    2016-05-01

    This paper provides an overview of an aerial 3D printing technology, its development and its testing. This technology is potentially useful in its own right. In addition, this work advances the development of a related in-space 3D printing technology. A series of aerial 3D printing test missions, used to test the aerial printing technology, are discussed. Through completing these test missions, the design for an in-space 3D printer may be advanced. The current design for the in-space 3D printer involves focusing thermal energy to heat an extrusion head and allow for the extrusion of molten print material. Plastics can be used as well as composites including metal, allowing for the extrusion of conductive material. A variety of experiments will be used to test this initial 3D printer design. High altitude balloons will be used to test the effects of microgravity on 3D printing, as well as parabolic flight tests. Zero pressure balloons can be used to test the effect of long 3D printing missions subjected to low temperatures. Vacuum chambers will be used to test 3D printing in a vacuum environment. The results will be used to adapt a current prototype of an in-space 3D printer. Then, a small scale prototype can be sent into low-Earth orbit as a 3-U cube satellite. With the ability to 3D print in space demonstrated, future missions can launch production hardware through which the sustainability and durability of structures in space will be greatly improved.

  18. 3D ultrafast ultrasound imaging in vivo

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra—and inter-observer variability. (fast track communication)

  19. Modeling the reactive halogen plume from Ambrym volcano and its impact on the troposphere with the CCATT-BRAMS mesoscale model

    Jourdain, L.; Roberts, T. J.; M. Pirre; Josse, B.

    2015-01-01

    Ambrym volcano (Vanuatu, Southwest Pacific) is one of the largest sources of continuous volcanic emissions worldwide. As well as releasing SO2 that is oxidized to sulfate, volcanic plumes in the troposphere are shown to undergo reactive halogen chemistry whose atmospheric impacts have been little explored to date. Here, two-way nested simulations were performed with the regional scale model CCATT-BRAMS to test our understanding of the volcano plume chemical...

  20. 3-D structures of planetary nebulae

    Steffen, Wolfgang

    2016-01-01

    Recent advances in the 3-D reconstruction of planetary nebulae are reviewed. We include not only results for 3-D reconstructions, but also the current techniques in terms of general methods and software. In order to obtain more accurate reconstructions, we suggest to extend the widely used assumption of homologous nebula expansion to map spectroscopically measured velocity to position along the line of sight.

  1. 3D printing of functional structures

    Krijnen, G.J.M.

    2016-01-01

    The technology colloquial known as ‘3D printing’ has developed in such diversity in printing technologies and application fields that meanwhile it seems anything is possible. However, clearly the ideal 3D Printer, with high resolution, multi-material capability, fast printing, etc. is yet to be deve

  2. 3D Printed Block Copolymer Nanostructures

    Scalfani, Vincent F.; Turner, C. Heath; Rupar, Paul A.; Jenkins, Alexander H.; Bara, Jason E.

    2015-01-01

    The emergence of 3D printing has dramatically advanced the availability of tangible molecular and extended solid models. Interestingly, there are few nanostructure models available both commercially and through other do-it-yourself approaches such as 3D printing. This is unfortunate given the importance of nanotechnology in science today. In this…

  3. Perception of detail in 3D images

    Heyndrickx, I.; Kaptein, R.

    2009-01-01

    A lot of current 3D displays suffer from the fact that their spatial resolution is lower compared to their 2D counterparts. One reason for this is that the multiple views needed to generate 3D are often spatially multiplexed. Besides this, imperfect separation of the left- and right-eye view leads t

  4. 3D Reconstruction of NMR Images

    Peter Izak; Milan Smetana; Libor Hargas; Miroslav Hrianka; Pavol Spanik

    2007-01-01

    This paper introduces experiment of 3D reconstruction NMR images scanned from magnetic resonance device. There are described methods which can be used for 3D reconstruction magnetic resonance images in biomedical application. The main idea is based on marching cubes algorithm. For this task was chosen sophistication method by program Vision Assistant, which is a part of program LabVIEW.

  5. Stereo 3-D Vision in Teaching Physics

    Zabunov, Svetoslav

    2012-01-01

    Stereo 3-D vision is a technology used to present images on a flat surface (screen, paper, etc.) and at the same time to create the notion of three-dimensional spatial perception of the viewed scene. A great number of physical processes are much better understood when viewed in stereo 3-D vision compared to standard flat 2-D presentation. The…

  6. 3D, or Not to Be?

    Norbury, Keith

    2012-01-01

    It may be too soon for students to be showing up for class with popcorn and gummy bears, but technology similar to that behind the 3D blockbuster movie "Avatar" is slowly finding its way into college classrooms. 3D classroom projectors are taking students on fantastic voyages inside the human body, to the ruins of ancient Greece--even to faraway…

  7. The 3D-city model

    Holmgren, Steen; Rüdiger, Bjarne; Tournay, Bruno

    2001-01-01

    We have worked with the construction and use of 3D city models for about ten years. This work has given us valuable experience concerning model methodology. In addition to this collection of knowledge, our perception of the concept of city models has changed radically. In order to explain...... of 3D city models....

  8. Immersive 3D Geovisualization in Higher Education

    Philips, Andrea; Walz, Ariane; Bergner, Andreas; Graeff, Thomas; Heistermann, Maik; Kienzler, Sarah; Korup, Oliver; Lipp, Torsten; Schwanghart, Wolfgang; Zeilinger, Gerold

    2015-01-01

    In this study, we investigate how immersive 3D geovisualization can be used in higher education. Based on MacEachren and Kraak's geovisualization cube, we examine the usage of immersive 3D geovisualization and its usefulness in a research-based learning module on flood risk, called GEOSimulator. Results of a survey among participating students…

  9. Parametrizable cameras for 3D computational steering

    Mulder, J.D.; Wijk, J.J. van

    1997-01-01

    We present a method for the definition of multiple views in 3D interfaces for computational steering. The method uses the concept of a point-based parametrizable camera object. This concept enables a user to create and configure multiple views on his custom 3D interface in an intuitive graphical man

  10. Wow! 3D Content Awakens the Classroom

    Gordon, Dan

    2010-01-01

    From her first encounter with stereoscopic 3D technology designed for classroom instruction, Megan Timme, principal at Hamilton Park Pacesetter Magnet School in Dallas, sensed it could be transformative. Last spring, when she began pilot-testing 3D content in her third-, fourth- and fifth-grade classrooms, Timme wasn't disappointed. Students…

  11. 3D background aerodynamics using CFD

    Sørensen, Niels N.

    2002-01-01

    3D rotor computations for the Greek Geovilogiki (GEO) 44 meter rotor equipped with 19 meters blades are performed. The lift and drag polars are extracted at five spanvise locations r/R= (.37, .55, .71, .82, .93) based on identification of stagnationpoints between 2D and 3D computations. The inner...

  12. 3D directional coupler for impulse UWB

    Le Kernec, Julien; KLEPAL, Martin; Sokol, Vratislav

    2011-01-01

    The AWS Group developed a UWB radar and UWB transceiver for indoor people location and tracking. A radar concept has been developed. This paper will describe step by step the realization of a UWB directional coupler with a novel 3-D architecture. This paper gives a walkthrough of our design of the 3-D directional coupler.

  13. 3D Rigid Registration by Cylindrical Phase Correlation Method

    Bican, Jakub; Flusser, Jan

    2009-01-01

    Roč. 30, č. 10 (2009), s. 914-921. ISSN 0167-8655 R&D Projects: GA MŠk 1M0572; GA ČR GA102/08/1593 Grant ostatní: GAUK(CZ) 48908 Institutional research plan: CEZ:AV0Z10750506 Keywords : 3D registration * correlation methods * Image registration Subject RIV: BD - Theory of Information Impact factor: 1.303, year: 2009 http://library.utia.cas.cz/separaty/2009/ZOI/bican-3d digit registration by cylindrical phase correlation method.pdf

  14. Imaging 3D strain field monitoring during hydraulic fracturing processes

    Chen, Rongzhang; Zaghloul, Mohamed A. S.; Yan, Aidong; Li, Shuo; Lu, Guanyi; Ames, Brandon C.; Zolfaghari, Navid; Bunger, Andrew P.; Li, Ming-Jun; Chen, Kevin P.

    2016-05-01

    In this paper, we present a distributed fiber optic sensing scheme to study 3D strain fields inside concrete cubes during hydraulic fracturing process. Optical fibers embedded in concrete were used to monitor 3D strain field build-up with external hydraulic pressures. High spatial resolution strain fields were interrogated by the in-fiber Rayleigh backscattering with 1-cm spatial resolution using optical frequency domain reflectometry. The fiber optics sensor scheme presented in this paper provides scientists and engineers a unique laboratory tool to understand the hydraulic fracturing processes in various rock formations and its impacts to environments.

  15. Limited Feedback for 3D Massive MIMO under 3D-UMa and 3D-UMi Scenarios

    Zheng Hu

    2015-01-01

    Full Text Available For three-dimensional (3D massive MIMO utilizing the uniform rectangular array (URA in the base station (BS, we propose a limited feedback transmission scheme in which the channel state information (CSI feedback operations for horizontal domain and vertical domain are separate. Compared to the traditional feedback scheme, the scheme can reduce the feedback overhead, code word index search complexity, and storage requirement. Also, based on the zenith of departure angle (ZoD distribution in 3D-Urban Macro Cell (3D-UMa and 3D-Urban Micro Cell (3D-UMi scenarios, we propose the angle quantization codebook for vertical domain, while the codebook of long term evolution-advanced (LTE-Advanced is still adopted in horizontal domain to preserve compatibility with the LTE-Advanced. Based on the angle quantization codebook, the subsampled 3-bit DFT codebook is designed for vertical domain. The system-level simulation results reveal that, to compromise the feedback overhead and system performance, 2-bit codebook for 3D-UMa scenario and 3-bit codebook for 3D-UMi scenario can meet requirements in vertical domain. The feedback period for vertical domain can also be extended appropriately to reduce the feedback overhead.

  16. Terajets produced by 3D dielectric cuboids

    Pacheco-Peña, V; Minin, I V; Minin, O V

    2014-01-01

    The capability of generating terajets using 3D dielectric cuboids working at terahertz (THz) frequencies (as analogues of nanojets in the infrared band) are introduced and studied numerically. The focusing performance of the terajets are evaluated in terms of the transversal full width at half maximum along x- and y- directions using different refractive indexes for a 3D dielectric cuboid with a fixed geometry, obtaining a quasi-symmetric terajet with a subwavelength resolution of ~0.46{\\lambda}0 when the refractive index is n = 1.41. Moreover, the backscattering enhancement produced when metal particles are introduced in the terajet region is demonstrated for a 3D dielectric cuboid and compared with its 2D counterpart. The results of the jet generated for the 3D case are experimentally validated at sub-THz waves, demonstrating the ability to produce terajets using 3D cuboids.

  17. Fabrication of 3D Silicon Sensors

    Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; /SINTEF, Oslo; Kenney, C.; Hasi, J.; /SLAC; Da Via, C.; /Manchester U.; Parker, S.I.; /Hawaii U.

    2012-06-06

    Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.

  18. 3D-grafiikka ja pelimoottorit

    Sillanpää, Otto

    2014-01-01

    Tässä opinnäytetyössä tutkitaan miten 3D-mallit saadaan sellaiseen muotoon, että ne olisivat käytettävissä eri pelimoottoreissa. Tutkimuksen tarkoituksena on selvittää, miten luodaan 3D-malleja pelimoottoreihin, sekä miten 3D-mallinnusohjelmat ja pelimoottorit eroavat toisistaan, kun käsitellään 3D-malleja. Tässä työssä pelimoottoreina toimivat Valven Source sekä Epic Gamesin Unreal Engine 3. 3D-mallinnusohjelmista käytössä olivat Autodeskin 3ds Max 2014 ja Blender Foundationin Blender 2.7...

  19. Maintaining and troubleshooting your 3D printer

    Bell, Charles

    2014-01-01

    Maintaining and Troubleshooting Your 3D Printer by Charles Bell is your guide to keeping your 3D printer running through preventive maintenance, repair, and diagnosing and solving problems in 3D printing. If you've bought or built a 3D printer such as a MakerBot only to be confounded by jagged edges, corner lift, top layers that aren't solid, or any of a myriad of other problems that plague 3D printer enthusiasts, then here is the book to help you get past all that and recapture the joy of creative fabrication. The book also includes valuable tips for builders and those who want to modify the

  20. 6D Interpretation of 3D Gravity

    Herfray, Yannick; Scarinci, Carlos

    2016-01-01

    We show that 3D gravity, in its pure connection formulation, admits a natural 6D interpretation. The 3D field equations for the connection are equivalent to 6D Hitchin equations for the Chern-Simons 3-form in the total space of the principal bundle over the 3-dimensional base. Turning this construction around one gets an explanation of why the pure connection formulation of 3D gravity exists. More generally, we interpret 3D gravity as the dimensional reduction of the 6D Hitchin theory. To this end, we show that any SU(2) invariant closed 3-form in the total space of the principal SU(2) bundle can be parametrised by a connection together with a 2-form field on the base. The dimensional reduction of the 6D Hitchin theory then gives rise to 3D gravity coupled to a topological 2-form field.

  1. MO-A-9A-01: Innovation in Medical Physics Practice: 3D Printing Applications

    Ehler, E [University of Minnesota, Minneapolis, MN (United States); Perks, J [UC Davis Medical Center, Sacramento, CA (United States); Rasmussen, K [East Carolina University, Greenville, NC (United States); Bakic, P [University of Pennsylvania, Philadelphia, PA (United States)

    2014-06-15

    3D printing, also called additive manufacturing, has great potential to advance the field of medicine. Many medical uses have been exhibited from facial reconstruction to the repair of pulmonary obstructions. The strength of 3D printing is to quickly convert a 3D computer model into a physical object. Medical use of 3D models is already ubiquitous with technologies such as computed tomography and magnetic resonance imaging. Thus tailoring 3D printing technology to medical functions has the potential to impact patient care. This session will discuss applications to the field of Medical Physics. Topics discussed will include introduction to 3D printing methods as well as examples of real-world uses of 3D printing spanning clinical and research practice in diagnostic imaging and radiation therapy. The session will also compare 3D printing to other manufacturing processes and discuss a variety of uses of 3D printing technology outside the field of Medical Physics. Learning Objectives: Understand the technologies available for 3D Printing Understand methods to generate 3D models Identify the benefits and drawbacks to rapid prototyping / 3D Printing Understand the potential issues related to clinical use of 3D Printing.

  2. MO-A-9A-01: Innovation in Medical Physics Practice: 3D Printing Applications

    3D printing, also called additive manufacturing, has great potential to advance the field of medicine. Many medical uses have been exhibited from facial reconstruction to the repair of pulmonary obstructions. The strength of 3D printing is to quickly convert a 3D computer model into a physical object. Medical use of 3D models is already ubiquitous with technologies such as computed tomography and magnetic resonance imaging. Thus tailoring 3D printing technology to medical functions has the potential to impact patient care. This session will discuss applications to the field of Medical Physics. Topics discussed will include introduction to 3D printing methods as well as examples of real-world uses of 3D printing spanning clinical and research practice in diagnostic imaging and radiation therapy. The session will also compare 3D printing to other manufacturing processes and discuss a variety of uses of 3D printing technology outside the field of Medical Physics. Learning Objectives: Understand the technologies available for 3D Printing Understand methods to generate 3D models Identify the benefits and drawbacks to rapid prototyping / 3D Printing Understand the potential issues related to clinical use of 3D Printing

  3. The psychology of the 3D experience

    Janicke, Sophie H.; Ellis, Andrew

    2013-03-01

    With 3D televisions expected to reach 50% home saturation as early as 2016, understanding the psychological mechanisms underlying the user response to 3D technology is critical for content providers, educators and academics. Unfortunately, research examining the effects of 3D technology has not kept pace with the technology's rapid adoption, resulting in large-scale use of a technology about which very little is actually known. Recognizing this need for new research, we conducted a series of studies measuring and comparing many of the variables and processes underlying both 2D and 3D media experiences. In our first study, we found narratives within primetime dramas had the power to shift viewer attitudes in both 2D and 3D settings. However, we found no difference in persuasive power between 2D and 3D content. We contend this lack of effect was the result of poor conversion quality and the unique demands of 3D production. In our second study, we found 3D technology significantly increased enjoyment when viewing sports content, yet offered no added enjoyment when viewing a movie trailer. The enhanced enjoyment of the sports content was shown to be the result of heightened emotional arousal and attention in the 3D condition. We believe the lack of effect found for the movie trailer may be genre-related. In our final study, we found 3D technology significantly enhanced enjoyment of two video games from different genres. The added enjoyment was found to be the result of an increased sense of presence.

  4. 3D Visualization Development of SIUE Campus

    Nellutla, Shravya

    Geographic Information Systems (GIS) has progressed from the traditional map-making to the modern technology where the information can be created, edited, managed and analyzed. Like any other models, maps are simplified representations of real world. Hence visualization plays an essential role in the applications of GIS. The use of sophisticated visualization tools and methods, especially three dimensional (3D) modeling, has been rising considerably due to the advancement of technology. There are currently many off-the-shelf technologies available in the market to build 3D GIS models. One of the objectives of this research was to examine the available ArcGIS and its extensions for 3D modeling and visualization and use them to depict a real world scenario. Furthermore, with the advent of the web, a platform for accessing and sharing spatial information on the Internet, it is possible to generate interactive online maps. Integrating Internet capacity with GIS functionality redefines the process of sharing and processing the spatial information. Enabling a 3D map online requires off-the-shelf GIS software, 3D model builders, web server, web applications and client server technologies. Such environments are either complicated or expensive because of the amount of hardware and software involved. Therefore, the second objective of this research was to investigate and develop simpler yet cost-effective 3D modeling approach that uses available ArcGIS suite products and the free 3D computer graphics software for designing 3D world scenes. Both ArcGIS Explorer and ArcGIS Online will be used to demonstrate the way of sharing and distributing 3D geographic information on the Internet. A case study of the development of 3D campus for the Southern Illinois University Edwardsville is demonstrated.

  5. EMMA model: an advanced operational mesoscale air quality model for urban and regional environments

    Mesoscale air quality models are an important tool to forecast and analyse the air quality in regional and urban areas. In recent years an increased interest has been shown by decision makers in these types of software tools. The complexity of such a model has grown exponentially with the increase of computer power. Nowadays, medium workstations can run operational versions of these modelling systems successfully. Presents a complex mesoscale air quality model which has been installed in the Environmental Office of the Madrid community (Spain) in order to forecast accurately the ozone, nitrogen dioxide and sulphur dioxide air concentrations in a 3D domain centred on Madrid city. Describes the challenging scientific matters to be solved in order to develop an operational version of the atmospheric mesoscale numerical pollution model for urban and regional areas (ANA). Some encouraging results have been achieved in the attempts to improve the accuracy of the predictions made by the version already installed. (Author)

  6. CEREC3D瓷嵌体治疗后牙邻面缺损所致食物嵌塞的疗效评价%Clinical evaluation of molar food impaction for proximal teeth defect with CEREC 3D ceramic inlay

    卢礼; 张纲; 张萍; 周燕; 裘松波

    2011-01-01

    Objective: To evaluate the clinical effect of CEREC3D inlay on food impaction in molar caused by dental defect. Methods: One hundred and thirty teeth with food impaction in molar caused by proximal defect in 112 patients were divided into three groups, 57 teeth in CEREC 3D inlay group, 11 teeth in gold alloy inlay group, 62 teeth in glass ionomer filling group. Clinical effects of restoration fracture, restoration loss, food impaction, gingivitis, secondary caries were evaluated after 1 year and analyzed with Chi-square test. Results: Two inlays were fractured in CEREC 3D inlay group with success rate 96.43%. According torestoration loss, food impaction, gingivitis, secondary caries, there was no significant difference between CEREC 3D inlay group and gold alloy inlay group(P>0.05), but CEREC 3D inlay group showed superiority than glass ionomer filling group (P<0.05). Conclusion: CEREC 3D inlay might be a better restoration for proximal defect and a promising prospect in food impaction treatment.%目的:探讨CEREC 3D瓷嵌体治疗牙体缺损所致食物嵌塞的临床效果.方法:收集后牙邻面缺损致食物嵌塞112例130颗牙,将患者分为3组:CEREC3D嵌体组57颗牙,金合金嵌体组11颗牙,玻璃离子充填组62颗牙;1年后观察临床疗效,检查记录修复体折断、脱落、食物嵌塞、牙龈炎、继发龋情况,对3组结果采用卡方检验进行统计分析.结果:CEREC3D嵌体除2例发生折断外无其他并发症,成功率96.43%,其在抗修复体脱落、食物嵌塞、龈炎、继发龋等方面与金合金嵌体差异无显著性(P>0.05),但明显优于玻璃离子充填(P<0.05).结论:邻面缺损需恢复邻接关系的食物嵌塞病例,CEREC3D嵌体有明显优势.

  7. Mesoscale Elucidation of Biofilm Shear Behavior

    Barai, Pallab; Mukherjee, Partha P

    2015-01-01

    Formation of bacterial colonies as biofilm on the surface/interface of various objects has the potential to impact not only human health and disease but also energy and environmental considerations. Biofilms can be regarded as soft materials, and comprehension of their shear response to external forces is a key element to the fundamental understanding. A mesoscale model has been presented in this article based on digitization of a biofilm microstructure. Its response under externally applied shear load is analyzed. Strain stiffening type behavior is readily observed under high strain loads due to the unfolding of chains within soft polymeric substrate. Sustained shear loading of the biofilm network results in strain localization along the diagonal direction. Rupture of the soft polymeric matrix can potentially reduce the intercellular interaction between the bacterial cells. Evolution of stiffness within the biofilm network under shear reveals two regions: a) initial increase in stiffness due to strain stiffe...

  8. Semi- and virtual 3D dosimetry in clinical practice

    Korreman, S. S.

    2013-01-01

    In this review, 3D dosimetry is divided in three categories; "true" 3D, semi-3D and virtual 3D. Virtual 3D involves the use of measurement arrays either before or after beam entry in the patient/phantom, whereas semi-3D involves use of measurement arrays in phantoms mimicking the patient. True 3D...

  9. Modeling the reactive halogen plume from Ambrym volcano and its impact on the troposphere with the CCATT-BRAMS mesoscale model

    Jourdain, L.; Roberts, T. J.; Pirre, M.; Josse, B.

    2015-12-01

    Ambrym volcano (Vanuatu, Southwest Pacific) is one of the largest sources of continuous volcanic emissions worldwide. As well as releasing SO2 that is oxidized to sulfate, volcanic plumes in the troposphere are shown to undergo reactive halogen chemistry whose atmospheric impacts have been little explored to date. Here, two-way nested simulations were performed with the regional scale model CCATT-BRAMS to test our understanding of the volcano plume chemical processing and to assess the impact of Ambrym on atmospheric chemistry at local and regional scales. We focus on an episode of extreme passive degassing that occurred in early 2005 and for which airborne DOAS measurements of SO2 and BrO columns, in the near downwind plume, have been reported. The model was developed to include reactive halogen chemistry and a volcanic emission source specific to this extreme degassing event. SO2 simulated columns show very good quantitative agreement with the DOAS observations as well as with OMI data, suggesting that the plume direction as well as its dilution are well represented. Simulations are presented with and without a high-temperature initialization that includes radicals formed by high temperature partial oxidation of magmatic gases by ambient air. When included high-temperature chemistry initialization, the model is able to capture the observed BrO/SO2 trend with distance from the vent in the near downwind plume. However, the maximum of BrO columns enhancement is still underestimated by a factor 3. The model identifies total in-plume depletion of ozone (15 ppbv) as a limiting factor to the partitioning of reactive bromine into BrO, of particular importance in this very strong plume at low background ozone conditions. Impacts of Ambrym in the Southwest Pacific region were also evaluated. As the plume disperses regionally, reactive halogen chemistry continues on sulfate aerosols produced by SO2 oxidation and promotes BrCl formation. Ozone depletion is weaker than at

  10. Modeling the reactive halogen plume from Ambrym volcano and its impact on the troposphere with the CCATT-BRAMS mesoscale model

    L. Jourdain

    2015-12-01

    Full Text Available Ambrym volcano (Vanuatu, Southwest Pacific is one of the largest sources of continuous volcanic emissions worldwide. As well as releasing SO2 that is oxidized to sulfate, volcanic plumes in the troposphere are shown to undergo reactive halogen chemistry whose atmospheric impacts have been little explored to date. Here, two-way nested simulations were performed with the regional scale model CCATT-BRAMS to test our understanding of the volcano plume chemical processing and to assess the impact of Ambrym on atmospheric chemistry at local and regional scales. We focus on an episode of extreme passive degassing that occurred in early 2005 and for which airborne DOAS measurements of SO2 and BrO columns, in the near downwind plume, have been reported. The model was developed to include reactive halogen chemistry and a volcanic emission source specific to this extreme degassing event. SO2 simulated columns show very good quantitative agreement with the DOAS observations as well as with OMI data, suggesting that the plume direction as well as its dilution are well represented. Simulations are presented with and without a high-temperature initialization that includes radicals formed by high temperature partial oxidation of magmatic gases by ambient air. When included high-temperature chemistry initialization, the model is able to capture the observed BrO/SO2 trend with distance from the vent in the near downwind plume. However, the maximum of BrO columns enhancement is still underestimated by a factor 3. The model identifies total in-plume depletion of ozone (15 ppbv as a limiting factor to the partitioning of reactive bromine into BrO, of particular importance in this very strong plume at low background ozone conditions. Impacts of Ambrym in the Southwest Pacific region were also evaluated. As the plume disperses regionally, reactive halogen chemistry continues on sulfate aerosols produced by SO2 oxidation and promotes BrCl formation. Ozone depletion is

  11. Integrating 3D visualisation in landscape design and environmental planning

    Lange, E.; Hehl-Lange, S.

    2006-07-01

    Information is a key element in environmental decision making. In landscape and environmental planning, information can be presented in a number of ways, ranging from texts and statistics to realistic representations such as 3D visualisations. We assume that 3D visualisations of scenarios for landscape changes are a key element for informed decision making. In order to assess the role of 3D visualisation in the planning and decision making process, we have examined three case studies related to generating energy (i.e., hydro power, reclamation of a brown coal surface mine, and wind turbines). In the early 1990s when 3D visualisation technology was just becoming more widely available, the application was typically limited to large infrastructure projects that were often subject to an environmental impact assessment. At that time 3D visualisation was only used to show the results of the planning and decision making process. There are indications that this is now changing towards integrating visualisation already in the earliest planning steps. Such integration allows both planning experts and the public to engage on equal footing in the entire planning and decision making process.

  12. Resonant excitation channels in the 3d10-3d94s and 3d10-3d94p transitions of nickel-like Mo14+ and Zr12+

    Fournier, K. B.; Goldstein, W. H.; May, M.; Finkenthal, M.; Terry, J. L.

    1996-05-01

    At energies below the threshold for direct electron impact excitation, resonant excitations can make a significant contribution to the total excitation rate of a given energy level. In this paper, the rates of resonant excitation into the levels of the 3d94s and 3d94p configurations of Mo14+ have been calculated using a fully relativistic, multiconfiguration atomic structure code and detailed accounting of energy levels. By including the effects of resonant excitations in collisional-radiative models for the spectrum of Ni I-like Mo14+ and (by isoelectronic scaling) Zr12+, the ratio of the emissivity of the 3d10-4d94s E2 transitions to the emissivity of the 3d10-3d94p E1 transitions is greatly enhanced, and sensitivity to electron temperature in the ratio is introduced. This ratio is density sensitive for ne>=1013 cm-3, and therefore, given knowledge of either local temperature or density conditions, the E2-E1 ratio can serve as a diagnostic for local conditions in magnetically confined fusion plasmas. The current work demonstrates the need to include resonant excitations in collisional-radiative models of the soft x-ray emission of nickel-like ions. Good agreement is found between measurements of E1 and E2 line brightness ratios made in a tokamak plasma, and the predictions of collisional-radiative models in the present work.

  13. Resonant excitation channels in the 3d10-3d94s and 3d10-3d94p transitions of nickel-like Mo14+ and Zr12+

    At energies below the threshold for direct electron impact excitation, resonant excitations can make a significant contribution to the total excitation rate of a given energy level. In this paper, the rates of resonant excitation into the levels of the 3d94s and 3d94p configurations of Mo14+ have been calculated using a fully relativistic, multiconfiguration atomic structure code and detailed accounting of energy levels. By including the effects of resonant excitations in collisional-radiative models for the spectrum of NiI endash like Mo14+ and (by isoelectronic scaling) Zr12+, the ratio of the emissivity of the 3d10-4d94s E2 transitions to the emissivity of the 3d10-3d94p E1 transitions is greatly enhanced, and sensitivity to electron temperature in the ratio is introduced. This ratio is density sensitive for ne≥1013 cm-3, and therefore, given knowledge of either local temperature or density conditions, the E2-E1 ratio can serve as a diagnostic for local conditions in magnetically confined fusion plasmas. The current work demonstrates the need to include resonant excitations in collisional-radiative models of the soft x-ray emission of nickel-like ions. Good agreement is found between measurements of E1 and E2 line brightness ratios made in a tokamak plasma, and the predictions of collisional-radiative models in the present work. copyright 1996 The American Physical Society

  14. 3D object-oriented image analysis in 3D geophysical modelling

    Fadel, I.; van der Meijde, M.; Kerle, N.;

    2015-01-01

    Non-uniqueness of satellite gravity interpretation has traditionally been reduced by using a priori information from seismic tomography models. This reduction in the non-uniqueness has been based on velocity-density conversion formulas or user interpretation of the 3D subsurface structures (objects......) based on the seismic tomography models and then forward modelling these objects. However, this form of object-based approach has been done without a standardized methodology on how to extract the subsurface structures from the 3D models. In this research, a 3D object-oriented image analysis (3D OOA......) approach was implemented to extract the 3D subsurface structures from geophysical data. The approach was applied on a 3D shear wave seismic tomography model of the central part of the East African Rift System. Subsequently, the extracted 3D objects from the tomography model were reconstructed in the 3D...

  15. 3D Reconstruction Technique for Tomographic PIV

    姜楠; 包全; 杨绍琼

    2015-01-01

    Tomographic particle image velocimetry(Tomo-PIV) is a state-of-the-art experimental technique based on a method of optical tomography to achieve the three-dimensional(3D) reconstruction for three-dimensional three-component(3D-3C) flow velocity measurements. 3D reconstruction for Tomo-PIV is carried out herein. Meanwhile, a 3D simplified tomographic reconstruction model reduced from a 3D volume light inten-sity field with 2D projection images into a 2D Tomo-slice plane with 1D projecting lines, i.e., simplifying this 3D reconstruction into a problem of 2D Tomo-slice plane reconstruction, is applied thereafter. Two kinds of the most well-known algebraic reconstruction techniques, algebraic reconstruction technique(ART) and multiple algebraic reconstruction technique(MART), are compared as well. The principles of the two reconstruction algorithms are discussed in detail, which has been performed by a series of simulation images, yielding the corresponding recon-struction images that show different features between the ART and MART algorithm, and then their advantages and disadvantages are discussed. Further discussions are made for the standard particle image reconstruction when the background noise of the pre-initial particle image has been removed. Results show that the particle image recon-struction has been greatly improved. The MART algorithm is much better than the ART. Furthermore, the computa-tional analyses of two parameters(the particle density and the number of cameras), are performed to study their effects on the reconstruction. Lastly, the 3D volume particle field is reconstructed by using the improved algorithm based on the simplified 3D tomographic reconstruction model, which proves that the algorithm simplification is feasible and it can be applied to the reconstruction of 3D volume particle field in a Tomo-PIV system.

  16. Extra Dimensions: 3D in PDF Documentation

    Experimental science is replete with multi-dimensional information which is often poorly represented by the two dimensions of presentation slides and print media. Past efforts to disseminate such information to a wider audience have failed for a number of reasons, including a lack of standards which are easy to implement and have broad support. Adobe's Portable Document Format (PDF) has in recent years become the de facto standard for secure, dependable electronic information exchange. It has done so by creating an open format, providing support for multiple platforms and being reliable and extensible. By providing support for the ECMA standard Universal 3D (U3D) and the ISO PRC file format in its free Adobe Reader software, Adobe has made it easy to distribute and interact with 3D content. Until recently, Adobe's Acrobat software was also capable of incorporating 3D content into PDF files from a variety of 3D file formats, including proprietary CAD formats. However, this functionality is no longer available in Acrobat X, having been spun off to a separate company. Incorporating 3D content now requires the additional purchase of a separate plug-in. In this talk we present alternatives based on open source libraries which allow the programmatic creation of 3D content in PDF format. While not providing the same level of access to CAD files as the commercial software, it does provide physicists with an alternative path to incorporate 3D content into PDF files from such disparate applications as detector geometries from Geant4, 3D data sets, mathematical surfaces or tesselated volumes.

  17. An Improved Version of TOPAZ 3D

    Krasnykh, Anatoly K

    2003-01-01

    An improved version of the TOPAZ 3D gun code is presented as a powerful tool for beam optics simulation. In contrast to the previous version of TOPAZ 3D, the geometry of the device under test is introduced into TOPAZ 3D directly from a CAD program, such as Solid Edge or AutoCAD. In order to have this new feature, an interface was developed, using the GiD software package as a meshing code. The article describes this method with two models to illustrate the results.

  18. Matching Feature Points in 3D World

    Avdiu, Blerta

    2012-01-01

    This thesis work deals with the most actual topic in Computer Vision field which is scene understanding and this using matching of 3D feature point images. The objective is to make use of Saab’s latest breakthrough in extraction of 3D feature points, to identify the best alignment of at least two 3D feature point images. The thesis gives a theoretical overview of the latest algorithms used for feature detection, description and matching. The work continues with a brief description of the simu...

  19. 3-D Human Modeling and Animation

    Ratner, Peter

    2012-01-01

    3-D Human Modeling and Animation Third Edition All the tools and techniques you need to bring human figures to 3-D life Thanks to today's remarkable technology, artists can create and animate realistic, three-dimensional human figures that were not possible just a few years ago. This easy-to-follow book guides you through all the necessary steps to adapt your own artistic skill in figure drawing, painting, and sculpture to this exciting digital canvas. 3-D Human Modeling and Animation, Third Edition starts you off with simple modeling, then prepares you for more advanced techniques for crea

  20. General Concept of 3D SLAM

    Zhang, Peter; Millos, Evangelous; Gu, Jason

    2009-01-01

    This chapter established an approach to solve the full 3D SLAM problem, applied to an underwater environment. First, a general approach to the 3D SLAM problem was presented, which included the models in 3D case, data association and estimation algorithm. For an underwater mobile robot, a new measurement system was designed for large area's globally-consistent SLAM: buoys for long-range estimation, and camera for short-range estimation and map building. Globally-consistent results could be obt...

  1. FUN3D Manual: 12.5

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, William L.; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2014-01-01

    This manual describes the installation and execution of FUN3D version 12.5, including optional dependent packages. FUN3D is a suite of computational uid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables ecient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  2. FUN3D Manual: 13.0

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bill; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2016-01-01

    This manual describes the installation and execution of FUN3D version 13.0, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  3. FUN3D Manual: 12.9

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2016-01-01

    This manual describes the installation and execution of FUN3D version 12.9, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  4. FUN3D Manual: 12.4

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2014-01-01

    This manual describes the installation and execution of FUN3D version 12.4, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixedelement unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  5. 3D Media and the Semantic Web

    Spagnuolo, Michela; Falcidieno, Bianca

    2009-01-01

    3D content is widely recognized as the next wave of digital media. The success of 3D communities and mapping applications (for example, Second Life and GoogleEarth) and the decreasing costs of producing 3D environments are leading analysts to predict a dramatic shift in how people see and navigate the Internet. Greg Sterling, founder of the research fi rm Sterling Market Intelligence, suggests that"the Internet could very well be on its way to shifting from a text-based environment to a visua...

  6. 3D grafika a hry

    Vataščinová, Lenka

    2016-01-01

    In my bachelor thesis, I am going to introduce the topic of 3D graphics in the game environment. Firstly, I will provide a brief introduction of history of 3D graphics in general, but with the emphasis on history of game industry in particular. Next, I will present 3D graphics of RPG games in particular, and I will analyse the graphical side of digital work production. The main contribution of this thesis is provided in the practical part, which deals with creation of an environment for an an...

  7. An Improved Version of TOPAZ 3D

    An improved version of the TOPAZ 3D gun code is presented as a powerful tool for beam optics simulation. In contrast to the previous version of TOPAZ 3D, the geometry of the device under test is introduced into TOPAZ 3D directly from a CAD program, such as Solid Edge or AutoCAD. In order to have this new feature, an interface was developed, using the GiD software package as a meshing code. The article describes this method with two models to illustrate the results

  8. Robot Arms with 3D Vision Capabilities

    Borangiu, Theodor; Alexandru DUMITRACHE

    2010-01-01

    This chapter presented two applications of 3D vision in industrial robotics. The first one allows 3D reconstruction of decorative objects using a laser-based profile scanner mounted on a 6-DOF industrial robot arm, while the scanned part is placed on a rotary table. The second application uses the same profile scanner for 3D robot guidance along a complex path, which is learned automatically using the laser sensor and then followed using a physical tool. While the laser sensor is an expensive...

  9. Automatic balancing of 3D models

    Christiansen, Asger Nyman; Schmidt, Ryan; Bærentzen, Jakob Andreas

    2014-01-01

    3D printing technologies allow for more diverse shapes than are possible with molds and the cost of making just one single object is negligible compared to traditional production methods. However, not all shapes are suitable for 3D print. One of the remaining costs is therefore human time spent......, in these cases, we will apply a rotation of the object which only deforms the shape a little near the base. No user input is required but it is possible to specify manufacturing constraints related to specific 3D print technologies. Several models have successfully been balanced and printed using both polyjet...

  10. 3D Printing the ATLAS' barrel toroid

    Goncalves, Tiago Barreiro

    2016-01-01

    The present report summarizes my work as part of the Summer Student Programme 2016 in the CERN IR-ECO-TSP department (International Relations – Education, Communication & Outreach – Teacher and Student Programmes). Particularly, I worked closely with the S’Cool LAB team on a science education project. This project included the 3D designing, 3D printing, and assembling of a model of the ATLAS’ barrel toroid. A detailed description of the project' development is presented and a short manual on how to use 3D printing software and hardware is attached.

  11. Participation and 3D Visualization Tools

    Mullins, Michael; Jensen, Mikkel Holm; Henriksen, Sune;

    2004-01-01

    With a departure point in a workshop held at the VR Media Lab at Aalborg University , this paper deals with aspects of public participation and the use of 3D visualisation tools. The workshop grew from a desire to involve a broad collaboration between the many actors in the city through using new...... perceptions of architectural representation in urban design where 3D visualisation techniques are used. It is the authors? general finding that, while 3D visualisation media have the potential to increase understanding of virtual space for the lay public, as well as for professionals, the lay public require...

  12. The reactor dynamics code DYN3D

    The article provides an overview on the code DYN3D which is a three-dimensional core model for steady-state, dynamic and depletion calculations in reactor cores with quadratic or hexagonal fuel assembly geometry being developed by the Helmholtz-Zentrum Dresden-Rossendorf for more than 20 years. The current paper gives an overview on the basic DYN3D models and the available code couplings. The verification and validation status is shortly outlined. The paper concludes with the current developments of the DYN3D code. For more detailed information the reader is referred to the publications cited in the corresponding chapters.

  13. 3D-hahmojen toteutus mobiilipeliin

    Kemppainen, Matti

    2012-01-01

    Mobiilipelien suosio on kasvanut räjähdysmäisesti viime vuosina älypuhelinten kehittymisen myötä. Tässä opinnäytetyössä selvitetään kolmiulotteisen pelihahmon toteutusprosessi mobiilipeliin. Lisäksi pohditaan maksullisten ja ilmaisten ohjelmien eroja toteutuksessa. Pelihahmojen toteutus perustuu mobiilipeliprojektiin peliyrityksessä, jossa työskentelin graafikkona. Ohjelmien vertailussa on mukana 3D Studio Max, Blender 3D, Photoshop ja GIMP. Käytännön osuudessa käydään läpi 3D-pelihahmon...

  14. Pharmacophore definition and 3D searches.

    Langer, T; Wolber, G

    2004-12-01

    The most common pharmacophore building concepts based on either 3D structure of the target or ligand information are discussed together with the application of such models as queries for 3D database search. An overview of the key techniques available on the market is given and differences with respect to algorithms used and performance obtained are highlighted. Pharmacophore modelling and 3D database search are shown to be successful tools for enriching screening experiments aimed at the discovery of novel bio-active compounds.: PMID:24981486

  15. Computer Modelling of 3D Geological Surface

    Kodge B. G.

    2011-02-01

    Full Text Available The geological surveying presently uses methods and tools for the computer modeling of 3D-structures of the geographical subsurface and geotechnical characterization as well as the application of geoinformation systems for management and analysis of spatial data, and their cartographic presentation. The objectives of this paper are to present a 3D geological surface model of Latur district in Maharashtra state of India. This study is undertaken through the several processes which are discussed in this paper to generate and visualize the automated 3D geological surface model of a projected area.

  16. 3D face modeling, analysis and recognition

    Daoudi, Mohamed; Veltkamp, Remco

    2013-01-01

    3D Face Modeling, Analysis and Recognition presents methodologies for analyzing shapes of facial surfaces, develops computational tools for analyzing 3D face data, and illustrates them using state-of-the-art applications. The methodologies chosen are based on efficient representations, metrics, comparisons, and classifications of features that are especially relevant in the context of 3D measurements of human faces. These frameworks have a long-term utility in face analysis, taking into account the anticipated improvements in data collection, data storage, processing speeds, and application s

  17. Computer Modelling of 3D Geological Surface

    Kodge, B G

    2011-01-01

    The geological surveying presently uses methods and tools for the computer modeling of 3D-structures of the geographical subsurface and geotechnical characterization as well as the application of geoinformation systems for management and analysis of spatial data, and their cartographic presentation. The objectives of this paper are to present a 3D geological surface model of Latur district in Maharashtra state of India. This study is undertaken through the several processes which are discussed in this paper to generate and visualize the automated 3D geological surface model of a projected area.

  18. 3D tulostus - digitaalisesta mallista esineeksi

    Muurinen, Kimmo

    2013-01-01

    Tässä opinnäytetyössä esitellään 3D tulostuksen tekniikka ja materiaaleja, suunnitellaan ja tuotetaan esimerkkikappaleen digitaalinen malli, sekä tulostetaan muovinen esine digi-taalisen mallin pohjalta. Työn tavoitteena on perehdyttää lukija prosessiin, jossa itse tuotettu digitaalinen malli tulostetaan käyttäen harrastajakäyttöön tarkoitettua edullista 3D tulostinta. Esimerkkikappaleen eri osien mallinnusprosessi näytetään kokonaisuudessaan ja kerro-taan perusteita 3D mallinnuksesta...

  19. 3D-MR cholangio-angiography

    Ohkawa, Shinichi [Isehara Kyohdoh Hospital, Kanagawa (Japan); Hiramatsu, Kyoichi

    1995-04-01

    This report introduces a new 3D-MR cholangio-angiography technique using 3D Fast SE MR cholangiography and 3D phase contrast MR angiography for obstructive jaundice. In all eight cases, dilated biliary tracts as well as portal veins were clearly visualized in the same image. This new technique helped to determine the operability and surgical strategy for cases with obstructive jaundice. It also provided anatomical guidance for surgical procedures. This study suggests that this technique may replace the currently used modalities for obstructive jaundice. (author).

  20. A high capacity 3D steganography algorithm.

    Chao, Min-Wen; Lin, Chao-hung; Yu, Cheng-Wei; Lee, Tong-Yee

    2009-01-01

    In this paper, we present a very high-capacity and low-distortion 3D steganography scheme. Our steganography approach is based on a novel multilayered embedding scheme to hide secret messages in the vertices of 3D polygon models. Experimental results show that the cover model distortion is very small as the number of hiding layers ranges from 7 to 13 layers. To the best of our knowledge, this novel approach can provide much higher hiding capacity than other state-of-the-art approaches, while obeying the low distortion and security basic requirements for steganography on 3D models. PMID:19147891

  1. XML3D and Xflow: combining declarative 3D for the Web with generic data flows.

    Klein, Felix; Sons, Kristian; Rubinstein, Dmitri; Slusallek, Philipp

    2013-01-01

    Researchers have combined XML3D, which provides declarative, interactive 3D scene descriptions based on HTML5, with Xflow, a language for declarative, high-performance data processing. The result lets Web developers combine a 3D scene graph with data flows for dynamic meshes, animations, image processing, and postprocessing. PMID:24808080

  2. Nonlaser-based 3D surface imaging

    Lu, Shin-yee; Johnson, R.K.; Sherwood, R.J. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    3D surface imaging refers to methods that generate a 3D surface representation of objects of a scene under viewing. Laser-based 3D surface imaging systems are commonly used in manufacturing, robotics and biomedical research. Although laser-based systems provide satisfactory solutions for most applications, there are situations where non laser-based approaches are preferred. The issues that make alternative methods sometimes more attractive are: (1) real-time data capturing, (2) eye-safety, (3) portability, and (4) work distance. The focus of this presentation is on generating a 3D surface from multiple 2D projected images using CCD cameras, without a laser light source. Two methods are presented: stereo vision and depth-from-focus. Their applications are described.

  3. Curating Architectural 3D CAD Models

    MacKenzie Smith

    2009-06-01

    Full Text Available Normal 0 Increasing demand to manage and preserve 3-dimensional models for a variety of physical phenomena (e.g., building and engineering designs, computer games, or scientific visualizations is creating new challenges for digital archives. Preserving 3D models requires identifying technical formats for the models that can be maintained over time, and the available formats offer different advantages and disadvantages depending on the intended future uses of the models. Additionally, the metadata required to manage 3D models is not yet standardized, and getting intellectual proposal rights for digital models is uncharted territory.  The FACADE Project at MIT is investigating these challenges in the architecture, engineering and construction (AEC industry and has developed recommendations and systems to support digital archives in dealing with digital 3D models and related data. These results can also be generalized to other domains doing 3D modeling.

  4. 3D Visualization of Recent Sumatra Earthquake

    Nayak, Atul; Kilb, Debi

    2005-04-01

    Scientists and visualization experts at the Scripps Institution of Oceanography have created an interactive three-dimensional visualization of the 28 March 2005 magnitude 8.7 earthquake in Sumatra. The visualization shows the earthquake's hypocenter and aftershocks recorded until 29 March 2005, and compares it with the location of the 26 December 2004 magnitude 9 event and the consequent seismicity in that region. The 3D visualization was created using the Fledermaus software developed by Interactive Visualization Systems (http://www.ivs.unb.ca/) and stored as a ``scene'' file. To view this visualization, viewers need to download and install the free viewer program iView3D (http://www.ivs3d.com/products/iview3d).

  5. 3DSEM: A 3D microscopy dataset.

    Tafti, Ahmad P; Kirkpatrick, Andrew B; Holz, Jessica D; Owen, Heather A; Yu, Zeyun

    2016-03-01

    The Scanning Electron Microscope (SEM) as a 2D imaging instrument has been widely used in many scientific disciplines including biological, mechanical, and materials sciences to determine the surface attributes of microscopic objects. However the SEM micrographs still remain 2D images. To effectively measure and visualize the surface properties, we need to truly restore the 3D shape model from 2D SEM images. Having 3D surfaces would provide anatomic shape of micro-samples which allows for quantitative measurements and informative visualization of the specimens being investigated. The 3DSEM is a dataset for 3D microscopy vision which is freely available at [1] for any academic, educational, and research purposes. The dataset includes both 2D images and 3D reconstructed surfaces of several real microscopic samples. PMID:26779561

  6. Copper Electrodeposition for 3D Integration

    Beica, Rozalia; Ritzdorf, Tom

    2008-01-01

    Two dimensional (2D) integration has been the traditional approach for IC integration. Due to increasing demands for providing electronic devices with superior performance and functionality in more efficient and compact packages, has driven the semiconductor industry to develop more advanced packaging technologies. Three-dimensional (3D) approaches address both miniaturization and integration required for advanced and portable electronic products. Vertical integration proved to be essential in achieving a greater integration flexibility of disparate technologies, reason for which a general trend of transition from 2D to 3D integration is currently being observed in the industry. 3D chip integration using through silicon via (TSV) copper is considered one of the most advanced technologies among all different types of 3D packaging technologies. Copper electrodeposition is one of technologies that enable the formation of TSV structures. Because of its well-known application for copper damascene, it was believed ...

  7. 3D-printed bioanalytical devices

    Bishop, Gregory W.; Satterwhite-Warden, Jennifer E.; Kadimisetty, Karteek; Rusling, James F.

    2016-07-01

    While 3D printing technologies first appeared in the 1980s, prohibitive costs, limited materials, and the relatively small number of commercially available printers confined applications mainly to prototyping for manufacturing purposes. As technologies, printer cost, materials, and accessibility continue to improve, 3D printing has found widespread implementation in research and development in many disciplines due to ease-of-use and relatively fast design-to-object workflow. Several 3D printing techniques have been used to prepare devices such as milli- and microfluidic flow cells for analyses of cells and biomolecules as well as interfaces that enable bioanalytical measurements using cellphones. This review focuses on preparation and applications of 3D-printed bioanalytical devices.

  8. Mobile 3D Viewer Supporting RFID System

    Kim, J. J.; Yang, S. W.; Choi, Y. [Chungang Univ., Seoul (Korea, Republic of)

    2007-07-01

    As hardware capabilities of mobile devices are being rapidly enhanced, applications based upon mobile devices are also being developed in wider areas. In this paper, a prototype mobile 3D viewer with the object identification through RFID system is presented. To visualize 3D engineering data such as CAD data, we need a process to compute triangulated data from boundary based surface like B-rep solid or trimmed surfaces. Since existing rendering engines on mobile devices do not provide triangulation capability, mobile 3D programs have focused only on an efficient handling with pre-tessellated geometry. We have developed a light and fast triangulation process based on constrained Delaunay triangulation suitable for mobile devices in the previous research. This triangulation software is used as a core for the mobile 3D viewer on a PDA with RFID system that may have potentially wide applications in many areas.

  9. Mobile 3D Viewer Supporting RFID System

    As hardware capabilities of mobile devices are being rapidly enhanced, applications based upon mobile devices are also being developed in wider areas. In this paper, a prototype mobile 3D viewer with the object identification through RFID system is presented. To visualize 3D engineering data such as CAD data, we need a process to compute triangulated data from boundary based surface like B-rep solid or trimmed surfaces. Since existing rendering engines on mobile devices do not provide triangulation capability, mobile 3D programs have focused only on an efficient handling with pre-tessellated geometry. We have developed a light and fast triangulation process based on constrained Delaunay triangulation suitable for mobile devices in the previous research. This triangulation software is used as a core for the mobile 3D viewer on a PDA with RFID system that may have potentially wide applications in many areas

  10. Pentingnya Pengetahuan Anatomi untuk 3D Artist

    Anton Sugito Kurniawan

    2011-03-01

    Full Text Available No matter how far the current technological advances, anatomical knowledge will still be needed as a basis for making a good character design. Understanding anatomy will help us in the placement of the articulation of muscles and joints, thus more realistic modeling of 3d characters will be achieved in the form and movement. As a 3d character artist, anatomy should be able to inform in every aspect of our work. Each 3D/CG (Computer Graphics-artist needs to know how to use software applications, but what differentiates a 3d artist with a computer operator is an artistic vision and understanding of the basic shape of the human body. Artistic vision could not easily be taught, but a CG-artist may study it on their own from which so many reference sources may help understand and deepen their knowledge of anatomy.

  11. Eyes on the Earth 3D

    Kulikov, anton I.; Doronila, Paul R.; Nguyen, Viet T.; Jackson, Randal K.; Greene, William M.; Hussey, Kevin J.; Garcia, Christopher M.; Lopez, Christian A.

    2013-01-01

    Eyes on the Earth 3D software gives scientists, and the general public, a realtime, 3D interactive means of accurately viewing the real-time locations, speed, and values of recently collected data from several of NASA's Earth Observing Satellites using a standard Web browser (climate.nasa.gov/eyes). Anyone with Web access can use this software to see where the NASA fleet of these satellites is now, or where they will be up to a year in the future. The software also displays several Earth Science Data sets that have been collected on a daily basis. This application uses a third-party, 3D, realtime, interactive game engine called Unity 3D to visualize the satellites and is accessible from a Web browser.

  12. Networked 3D Virtual Museum System

    2003-01-01

    Virtual heritage has become increasingly important in the conservation, preservation, and interpretation of our cultural and natural history. Moreover, rapid advances in digital technologies in recent years offer virtual heritage new direction. This paper introduces our approach toward a networked 3D virtual museum system, especially, how to model, manage, present virtual heritages and furthermore how to use computer network for the share of virtual heritage in the networked virtual environment. This paper first addresses a 3D acquisition and processing technique for virtual heritage modeling and shows some illustrative examples. Then, this paper describes a management of virtual heritage assets that are composed by various rich media. This paper introduces our schemes to present the virtual heritages, which include 3D virtual heritage browser system, CAVE system, and immersive VR theater. Finally, this paper presents the new direction of networked 3D virtual museum of which main idea is remote guide of the virtual heritage using the mixed reality technique.

  13. Advanced 3D Object Identification System Project

    National Aeronautics and Space Administration — Optra will build an Advanced 3D Object Identification System utilizing three or more high resolution imagers spaced around a launch platform. Data from each imager...

  14. 3D-printed bioanalytical devices.

    Bishop, Gregory W; Satterwhite-Warden, Jennifer E; Kadimisetty, Karteek; Rusling, James F

    2016-07-15

    While 3D printing technologies first appeared in the 1980s, prohibitive costs, limited materials, and the relatively small number of commercially available printers confined applications mainly to prototyping for manufacturing purposes. As technologies, printer cost, materials, and accessibility continue to improve, 3D printing has found widespread implementation in research and development in many disciplines due to ease-of-use and relatively fast design-to-object workflow. Several 3D printing techniques have been used to prepare devices such as milli- and microfluidic flow cells for analyses of cells and biomolecules as well as interfaces that enable bioanalytical measurements using cellphones. This review focuses on preparation and applications of 3D-printed bioanalytical devices. PMID:27250897

  15. 3D Biomaterial Microarrays for Regenerative Medicine

    Gaharwar, Akhilesh K.; Arpanaei, Ayyoob; Andresen, Thomas Lars;

    2015-01-01

    Three dimensional (3D) biomaterial microarrays hold enormous promise for regenerative medicine because of their ability to accelerate the design and fabrication of biomimetic materials. Such tissue-like biomaterials can provide an appropriate microenvironment for stimulating and controlling stem...

  16. Measuring Visual Closeness of 3-D Models

    Morales, Jose A.

    2012-09-01

    Measuring visual closeness of 3-D models is an important issue for different problems and there is still no standardized metric or algorithm to do it. The normal of a surface plays a vital role in the shading of a 3-D object. Motivated by this, we developed two applications to measure visualcloseness, introducing normal difference as a parameter in a weighted metric in Metro’s sampling approach to obtain the maximum and mean distance between 3-D models using 3-D and 6-D correspondence search structures. A visual closeness metric should provide accurate information on what the human observers would perceive as visually close objects. We performed a validation study with a group of people to evaluate the correlation of our metrics with subjective perception. The results were positive since the metrics predicted the subjective rankings more accurately than the Hausdorff distance.

  17. Lightning fast animation in Element 3D

    Audronis, Ty

    2014-01-01

    An easy-to-follow and all-inclusive guide, in which the underlying principles of 3D animation as well as their importance are explained in detail. The lessons are designed to teach you how to think of 3D animation in such a way that you can troubleshoot any problem, or animate any scene that comes your way.If you are a Digital Artist, Animation Artist, or a Game Programmer and you want to become an expert in Element 3D, this is the book for you. Although there are a lot of basics for beginners in this book, it includes some advanced techniques for both animating in Element 3D, and overcoming i

  18. 3D-FPA Hybridization Improvements Project

    National Aeronautics and Space Administration — Advanced Scientific Concepts, Inc. (ASC) is a small business, which has developed a compact, eye-safe 3D Flash LIDARTM Camera (FLC) well suited for real-time...

  19. 3D Flash LIDAR Space Laser Project

    National Aeronautics and Space Administration — Advanced Scientific Concepts, Inc (ASC) is a small business, which has developed a compact, eye-safe 3D Flash LIDARTM Camera (FLC) well suited for real-time...

  20. High-risk clinical target volume delineation in CT-guided cervical cancer brachytherapy - Impact of information from FIGO stage with or without systematic inclusion of 3D documentation of clinical gynecological examination

    Hegazy, Neamat [Dept. of Radiotherapy, Comprehensive Cancer Centre Vienna, Medical Univ. of Vienna, Vienna (Austria); Dept. of Clinical Oncology, Medical Univ. of Alexandria, Alexandria (Egypt); Poetter Rickard; Kirisits, Christian [Dept. of Radiotherapy, Comprehensive Cancer Centre Vienna, Medical Univ. of Vienna, Vienna (Austria); Christian Doppler Lab. for Medical Radiation Research for Radiation Oncology, Medical Univ. Vienna (Austria); Berger, Daniel; Federico, Mario; Sturdza, Alina; Nesvacil, Nicole [Dept. of Radiotherapy, Comprehensive Cancer Centre Vienna, Medical Univ. of Vienna, Vienna (Austria)], e-mail: nicole.nesvacil@meduniwien.ac.at

    2013-10-15

    Purpose: The aim of the study was to improve computed tomography (CT)-based high-risk clinical target volume (HR CTV) delineation protocols for cervix cancer patients, in settings without any access to magnetic resonance imaging (MRI) at the time of brachytherapy. Therefore the value of a systematic integration of comprehensive three-dimensional (3D) documentation of repetitive gynecological examination for CT-based HR CTV delineation protocols, in addition to information from FIGO staging, was investigated. In addition to a comparison between reference MRI contours and two different CT-based contouring methods (using complementary information from FIGO staging with or without additional 3D clinical drawings), the use of standardized uterine heights was also investigated. Material and methods: Thirty-five cervix cancer patients with CT- and MR-images and 3D clinical drawings at time of diagnosis and brachytherapy were included. HR CTV{sub stage} was based on CT information and FIGO stage. HR CTV{sub stage} {sub +3Dclin} was contoured on CT using FIGO stage and 3D clinical drawing. Standardized HR CTV heights were: 1/1, 2/3 and 1/2 of uterine height. MRI-based HR CTV was delineated independently. Resulting widths, thicknesses, heights, and volumes of HR CTV{sub stage}, HR CTV{sub stage+3Dclin} and MRI-based HR CTV contours were compared. Results: The overall normalized volume ratios (mean{+-}SD of CT/MRI{sub ref} volume) of HR CTV{sub stage} and HR{sub stage+3Dclin} were 2.6 ({+-}0.6) and 2.1 ({+-}0.4) for 1/1 and 2.3 ({+-}0.5) and 1.8 ({+-}0.4), for 2/3, and 1.9 ({+-}0.5) and 1.5 ({+-}0.3), for 1/2 of uterine height. The mean normalized widths were 1.5{+-}0.2 and 1.2{+-}0.2 for HR CTV{sub stage} and HR CTV{sub stage+3Dclin}, respectively (p < 0.05). The mean normalized heights for HR CTV{sub stage} and HR CTV{sub stage+3Dclin} were both 1.7{+-}0.4 for 1/1 (p < 0.05.), 1.3{+-}0.3 for 2/3 (p < 0.05) and 1.1{+-}0.3 for 1/2 of uterine height. Conclusion: CT-based HR

  1. Nonequilibrium Response of the Daytime Atmospheric Boundary Layer to Mesoscale Forcing

    Brasseur, James; Jayaraman, Bajali; Haupt, Sue; Lee, Jared

    2015-11-01

    The essential turbulence structure of the daytime atmospheric boundary layer (ABL) is driven by interactions between shear and buoyancy. A relatively strong inversion layer ``lid'' typically confines the ABL turbulence, whose height grows during the day with increasing surface heat flux (Q0) to ~ 1-2 km before collapsing with Q0 towards the day's end. The 3D ``microscale'' ABL turbulence is forced largely in the horizontal by winds above the capping inversion at the ``mesoscale'' at the O(100) km scale. Whereas the ``canonical'' ABL is in equilibrium and quasi-stationary, quasi-2D weather dynamics at the mesoscale is typically nonstationary at sub-diurnal time scales. We study the consequences of nonstationarity in the quasi-2D mesoscale forcing in horizontal winds and solar heating on the dynamics of ABL turbulence and especially on the potential for significant deviations from the canonical equilibrium state. We apply high-fidelity LES of the dry cloudless ABL over Kansas in July forced at the mesoscale (WRF) with statistical homogeneity in the horizontal. We find significant deviations from equilibrium that appear in a variety of interesting ways. One of the more interesting results is that the changes in mesoscale wind direction at the diurnal time scale can destabilize the ABL and sometimes cause a transition in ABL eddy structure that are normally associated with increased surface heating. Supported by DOE. Computer resources by the Penn State ICS.

  2. Evolution, Interaction, and Intrinsic Properties of Dislocations in Intermetallics: Anisotropic 3D Dislocation Dynamics Approach

    Qian Chen

    2008-08-18

    The generation, motion, and interaction of dislocations play key roles during the plastic deformation process of crystalline solids. 3D Dislocation Dynamics has been employed as a mesoscale simulation algorithm to investigate the collective and cooperative behavior of dislocations. Most current research on 3D Dislocation Dynamics is based on the solutions available in the framework of classical isotropic elasticity. However, due to some degree of elastic anisotropy in almost all crystalline solids, it is very necessary to extend 3D Dislocation Dynamics into anisotropic elasticity. In this study, first, the details of efficient and accurate incorporation of the fully anisotropic elasticity into 3D discrete Dislocation Dynamics by numerically evaluating the derivatives of Green's functions are described. Then the intrinsic properties of perfect dislocations, including their stability, their core properties and disassociation characteristics, in newly discovered rare earth-based intermetallics and in conventional intermetallics are investigated, within the framework of fully anisotropic elasticity supplemented with the atomistic information obtained from the ab initio calculations. Moreover, the evolution and interaction of dislocations in these intermetallics as well as the role of solute segregation are presented by utilizing fully anisotropic 3D dislocation dynamics. The results from this work clearly indicate the role and the importance of elastic anisotropy on the evolution of dislocation microstructures, the overall ductility and the hardening behavior in these systems.

  3. 3D Reconstruction of NMR Images

    Peter Izak

    2007-01-01

    Full Text Available This paper introduces experiment of 3D reconstruction NMR images scanned from magnetic resonance device. There are described methods which can be used for 3D reconstruction magnetic resonance images in biomedical application. The main idea is based on marching cubes algorithm. For this task was chosen sophistication method by program Vision Assistant, which is a part of program LabVIEW.

  4. Multifractal modelling and 3D lacunarity analysis

    This study presents a comparative evaluation of lacunarity of 3D grey level models with different types of inhomogeneity. A new method based on the 'Relative Differential Box Counting' was developed to estimate the lacunarity features of grey level volumes. To validate our method, we generated a set of 3D grey level multifractal models with random, anisotropic and hierarchical properties. Our method gives a lacunarity measurement correlated with the theoretical one and allows a better model classification compared with a classical approach.

  5. Massive 3D gravity Big Bounce

    The properties of an extension of the new massive 3D gravity by scalar matter with Higgs-like self-interaction are investigated. Its perturbative unitarity consistency is verified for a family of cosmological bounce solutions found by the superpotential method. They correspond to the lower bound λ=-1 of the BHT unitarity window and describe eternally accelerated 3D Universe between two initial/final stable dS3 vacua states.

  6. 3D Printing for Tissue Engineering

    Richards, Dylan Jack; Tan, Yu; Jia, Jia; Yao, Hai; Mei, Ying

    2013-01-01

    Tissue engineering aims to fabricate functional tissue for applications in regenerative medicine and drug testing. More recently, 3D printing has shown great promise in tissue fabrication with a structural control from micro- to macro-scale by using a layer-by-layer approach. Whether through scaffold-based or scaffold-free approaches, the standard for 3D printed tissue engineering constructs is to provide a biomimetic structural environment that facilitates tissue formation and promotes host ...

  7. Ajosimulaation toteutus Unity 3D -pelimoottorilla

    Tapio, Tomi

    2014-01-01

    Opinnäytetyön aiheena oli ajosimulaation toteutus Unity 3D -pelimoottorilla. Työn idea syntyi, kun ENVI-oppimisympäristöön tarvittiin liikealustalla toimiva ambulanssisimulaattori, jonka avulla opiskelijat voisivat oppia erilaisia hoitotilanteita. ENVI on terveydenalan opiskelijoiden virtuaalinen oppimisympäristö. Työn toimeksiantaja oli ohjelmistotekniikan laboratorio pLAB, joka sijaitsee Lapin ammattikorkeakoulun tiloissa Rantavitikalla. Opinnäytetyön tavoitteena oli toteuttaa Unity 3D ...

  8. Luovasta konseptisuunnittelusta 3D-mainoselokuvaan

    Salo, Suvi

    2015-01-01

    Insinöörityön tavoite oli luoda 3D-mainoselokuva myynnin tueksi ja nostaa esiin IT-alan yrityksen ja sen yksikön tuottamien palveluiden laajuutta ja yrityksen tapaa tuottaa tulostuspalvelua. Toteutettu mainoselokuva on tarkoitettu julkaistavaksi verkossa yrityksen omalla Youtube-kanavalla ja verkkosivuilla. 3D-mainoselokuvan suunnittelussa käytettiin luovan konseptisuunnittelun keinoja jalostaa tarina kohderyhmälähtöiseksi. Aluksi selvitettiin asiakasrajapinnan haastattelujen avulla kohde...

  9. 3D printing: technology and processing

    Kurinov, Ilya

    2016-01-01

    The objective of the research was to improve the process of 3D printing on the laboratory machine. In the study processes of designing, printing and post-print-ing treatment were improved. The study was commissioned by Mikko Ruotsalainen, head of the laboratory. The data was collected during the test work. All the basic information about 3D printing was taken from the Internet or library. As the results of the project higher model accuracy, solutions for post-printing treatment, printin...

  10. 3D printing of functional structures

    Krijnen, G.J.M.

    2016-01-01

    The technology colloquial known as ‘3D printing’ has developed in such diversity in printing technologies and application fields that meanwhile it seems anything is possible. However, clearly the ideal 3D Printer, with high resolution, multi-material capability, fast printing, etc. is yet to be developed. Nevertheless, one can al- ready start to wonder what possibilities for electrical engineering applications will become available in the near future. Here I try to give a brief and balanced o...

  11. Massive 3D Gravity Big-Bounce

    Louzada, H L C; Sotkov, G M

    2010-01-01

    The properties of an extension of the New Massive 3D Gravity by scalar matter with Higgs-like self-interaction are investigated. Its perturbative unitarity consistency is verified for a family of cosmological Bounce solutions found by the superpotential method. They correspond to the lower bound ${\\lambda = -1}$ of the BHT unitarity window and describe eternally accelerated 3D Universe between two initial/final stable $dS_3$ vacua states.

  12. 3D Printing Electrically Small Spherical Antennas

    Kim, Oleksiy S.

    2013-01-01

    3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations.......3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations....

  13. Visual Attention in 3D Video Games.

    Seif El-Nasr, Magy; Yan, Su

    2006-01-01

    Understanding players’ visual attention patterns within an interactive 3D game environment is an important research area that can improve game level design and graphics. Several graphics techniques use a perception based rendering method to enhance graphics quality while achieving the fast rendering speed required for fast-paced 3D video games. Game designers can also enhance game play by adjusting the level design, texture and color choices, and objects’ locations, if such decisions are info...

  14. Embedding 3D into multipurpose cadastre

    A. A. Rahman; T. C. Hua; P. J. M. Van Oosterom

    2011-01-01

    There is no doubt that the cadastral map provides a useful entrance to information in a land parcel based information system. However, such information system could be made more meaningful and useful if it can be extended for multiple usages with multi data layers, and in three-dimensions (3D). Currently, many national mapping and cadastral agencies (NMCAs) and users deal with complex situations, and we believe that 3D could enhance the understanding of the situations better. This paper descr...

  15. Improving Accuracy for 3D RFID Localization

    Chun Hung Wong; Yan Shun Cheng; Tse Lung Wong; Jinsong Han; Yiyang Zhao

    2012-01-01

    Radio Frequency Identification (RFID) becomes a prevalent labeling and localizing technique in the recent years. Deploying indoor RFID localization systems facilitates many applications. Previous approaches, however, are most based on 2D design and cannot provide 3D location information. The lack of one-dimensional information may lead 2D-based systems to inaccurate localization. In this paper, we develop an indoor 3D RFID localization system based on active tag array. In particular, we emplo...

  16. Adaptive Enhancement of 3D Scenes using Hierarchical Registration of Texture-Mapped 3D Models

    Ramalingam, Srikumar; Lodha, Suresh

    2003-01-01

    Adaptive fusion of new information in a 3D urban scene is an important goal to achieve in computer vision, graphics, and visualization. In this work we acquire new image pairs of a scene from closer distances and extract 3D models of successively higher resolutions. We present a new hierarchical approach to register these texture-mapped 3D models with a coarse 3D texture mapped model of an urban scene. First, we use the standard reconstruction algorithm to construct 3D models after establishi...

  17. X3D Interoperability and X3D Progress, Common Problems versus Stable Growth [video

    Tourtelotte, Dale R.; Brutzman, Don

    2010-01-01

    In large measure, the vision of making it easier to create and use 3D spatial data has been achieved through The Extensible 3D (X3D) Earth project. This project created a standards-based 3D visualization infrastructure for visualizing all manner of real-world objects and information constructs in a geospatial context. The ability to archive models using stable commercial tools and noncommercial international standards ensures that 3D work can remain accessible and repeatable for many years to...

  18. Developing a 3D virtual geology field trip in Unity 3D: reflection of our experiences

    Minocha, Shailey

    2014-01-01

    As a part of The OpenScience Laboratory(), an initiative of The Open University, UK and The Wolfson Foundation, we have developed a 3D simulation of a Geology field trip (), using the Unity 3D software (). The learning activities within the 3D App are designed to mirror the experience of a real field trip. The design and development of the 3D App has involved people with diverse skills in a University environment while working closely with an external developer who brought in Unity and 3D mod...

  19. PRETVORBA 3D MODELOV IZ PROGRAMA BLENDER V BINARNI ZAPIS IGRALNEGA POGONA PRISM3D

    Lušenc, Simon

    2014-01-01

    Magistrsko delo predstavi binarni zapis 3D modelov, uporabljenih v igralnem pogonu Prism3D in razvoj dodatka za pretvorbo 3D modelov s programskim orodjem Blender, ki ga tudi najprej na kratko opišemo. V nadaljevanju analiziramo zapise uporabljenih datotek, kar nam omogoči razvoj dodatka za uvoz in izvoz 3D modela, uporabljenega v igralnem pogonu Prism3D. Po predstavljeni izdelavi dodatka z vizualno primerjavo ocenimo njegovo uspešnosti in podamo možne izboljšave.

  20. Auto convergence for stereoscopic 3D cameras

    Zhang, Buyue; Kothandaraman, Sreenivas; Batur, Aziz Umit

    2012-03-01

    Viewing comfort is an important concern for 3-D capable consumer electronics such as 3-D cameras and TVs. Consumer generated content is typically viewed at a close distance which makes the vergence-accommodation conflict particularly pronounced, causing discomfort and eye fatigue. In this paper, we present a Stereo Auto Convergence (SAC) algorithm for consumer 3-D cameras that reduces the vergence-accommodation conflict on the 3-D display by adjusting the depth of the scene automatically. Our algorithm processes stereo video in realtime and shifts each stereo frame horizontally by an appropriate amount to converge on the chosen object in that frame. The algorithm starts by estimating disparities between the left and right image pairs using correlations of the vertical projections of the image data. The estimated disparities are then analyzed by the algorithm to select a point of convergence. The current and target disparities of the chosen convergence point determines how much horizontal shift is needed. A disparity safety check is then performed to determine whether or not the maximum and minimum disparity limits would be exceeded after auto convergence. If the limits would be exceeded, further adjustments are made to satisfy the safety limits. Finally, desired convergence is achieved by shifting the left and the right frames accordingly. Our algorithm runs real-time at 30 fps on a TI OMAP4 processor. It is tested using an OMAP4 embedded prototype stereo 3-D camera. It significantly improves 3-D viewing comfort.

  1. Assessing 3d Photogrammetry Techniques in Craniometrics

    Moshobane, M. C.; de Bruyn, P. J. N.; Bester, M. N.

    2016-06-01

    Morphometrics (the measurement of morphological features) has been revolutionized by the creation of new techniques to study how organismal shape co-varies with several factors such as ecophenotypy. Ecophenotypy refers to the divergence of phenotypes due to developmental changes induced by local environmental conditions, producing distinct ecophenotypes. None of the techniques hitherto utilized could explicitly address organismal shape in a complete biological form, i.e. three-dimensionally. This study investigates the use of the commercial software, Photomodeler Scanner® (PMSc®) three-dimensional (3D) modelling software to produce accurate and high-resolution 3D models. Henceforth, the modelling of Subantarctic fur seal (Arctocephalus tropicalis) and Antarctic fur seal (Arctocephalus gazella) skulls which could allow for 3D measurements. Using this method, sixteen accurate 3D skull models were produced and five metrics were determined. The 3D linear measurements were compared to measurements taken manually with a digital caliper. In addition, repetitive measurements were recorded by varying researchers to determine repeatability. To allow for comparison straight line measurements were taken with the software, assuming that close accord with all manually measured features would illustrate the model's accurate replication of reality. Measurements were not significantly different demonstrating that realistic 3D skull models can be successfully produced to provide a consistent basis for craniometrics, with the additional benefit of allowing non-linear measurements if required.

  2. RAG-3D: a search tool for RNA 3D substructures.

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; Schlick, Tamar

    2015-10-30

    To address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D-a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool-designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally described in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding. PMID:26304547

  3. 3-D SAR image formation from sparse aperture data using 3-D target grids

    Bhalla, Rajan; Li, Junfei; Ling, Hao

    2005-05-01

    The performance of ATR systems can potentially be improved by using three-dimensional (3-D) SAR images instead of the traditional two-dimensional SAR images or one-dimensional range profiles. 3-D SAR image formation of targets from radar backscattered data collected on wide angle, sparse apertures has been identified by AFRL as fundamental to building an object detection and recognition capability. A set of data has been released as a challenge problem. This paper describes a technique based on the concept of 3-D target grids aimed at the formation of 3-D SAR images of targets from sparse aperture data. The 3-D target grids capture the 3-D spatial and angular scattering properties of the target and serve as matched filters for SAR formation. The results of 3-D SAR formation using the backhoe public release data are presented.

  4. 3D-mallien muokkaus 3D-tulostamista varten CAD-ohjelmilla

    Lehtimäki, Jarmo

    2013-01-01

    Insinöörityössäni käsitellään 3D-mallien tulostamista ja erityisesti 3D-mallien mallintamista niin, että kappaleiden valmistaminen 3D-tulostimella onnistuisi mahdollisimman hyvin. Työ tehtiin Prohoc Oy:lle, joka sijaitsee Vaasassa. 3D-tulostuspalveluun tuli jatkuvasti 3D-malleja, joiden tulostuksessa oli ongelmia. Työssäni tutkin näiden ongelmien syntyä ja tein ohjeita eri 3D-mallinnusohjelmille, joiden tarkoituksena on auttaa tekemään helpommin tulostettavia 3D-malleja. Työhön kuului myös et...

  5. A 3D multilevel model of damage and strength of wood: Analysis of microstructural effects

    Qing, Hai; Mishnaevsky, Leon

    2011-01-01

    A 3D hierarchical computational model of damage and strength of wood is developed. The model takes into account the four scale microstructures of wood, including the microfibril reinforced structure at nanoscale, multilayered cell walls at microscale, hexagon-shape-tube cellular structure at meso...... arrangements and cellulose strength distributions on the tensile strength of wood is studied numerically. Good agreement of the theoretical results with experimental data has been obtained.......A 3D hierarchical computational model of damage and strength of wood is developed. The model takes into account the four scale microstructures of wood, including the microfibril reinforced structure at nanoscale, multilayered cell walls at microscale, hexagon-shape-tube cellular structure at...... mesoscale and annual rings at the macroscale. With the use of the developed hierarchical model, the influence of the microstructure, including microfibril angle (MFA), the cell shape and the wood density (annual ring structure), differences between earlywood and latewood as well as microstructural...

  6. PLOT3D Export Tool for Tecplot

    Alter, Stephen

    2010-01-01

    The PLOT3D export tool for Tecplot solves the problem of modified data being impossible to output for use by another computational science solver. The PLOT3D Exporter add-on enables the use of the most commonly available visualization tools to engineers for output of a standard format. The exportation of PLOT3D data from Tecplot has far reaching effects because it allows for grid and solution manipulation within a graphical user interface (GUI) that is easily customized with macro language-based and user-developed GUIs. The add-on also enables the use of Tecplot as an interpolation tool for solution conversion between different grids of different types. This one add-on enhances the functionality of Tecplot so significantly, it offers the ability to incorporate Tecplot into a general suite of tools for computational science applications as a 3D graphics engine for visualization of all data. Within the PLOT3D Export Add-on are several functions that enhance the operations and effectiveness of the add-on. Unlike Tecplot output functions, the PLOT3D Export Add-on enables the use of the zone selection dialog in Tecplot to choose which zones are to be written by offering three distinct options - output of active, inactive, or all zones (grid blocks). As the user modifies the zones to output with the zone selection dialog, the zones to be written are similarly updated. This enables the use of Tecplot to create multiple configurations of a geometry being analyzed. For example, if an aircraft is loaded with multiple deflections of flaps, by activating and deactivating different zones for a specific flap setting, new specific configurations of that aircraft can be easily generated by only writing out specific zones. Thus, if ten flap settings are loaded into Tecplot, the PLOT3D Export software can output ten different configurations, one for each flap setting.

  7. A microfluidic device for 2D to 3D and 3D to 3D cell navigation

    Shamloo, Amir; Amirifar, Leyla

    2016-01-01

    Microfluidic devices have received wide attention and shown great potential in the field of tissue engineering and regenerative medicine. Investigating cell response to various stimulations is much more accurate and comprehensive with the aid of microfluidic devices. In this study, we introduced a microfluidic device by which the matrix density as a mechanical property and the concentration profile of a biochemical factor as a chemical property could be altered. Our microfluidic device has a cell tank and a cell culture chamber to mimic both 2D to 3D and 3D to 3D migration of three types of cells. Fluid shear stress is negligible on the cells and a stable concentration gradient can be obtained by diffusion. The device was designed by a numerical simulation so that the uniformity of the concentration gradients throughout the cell culture chamber was obtained. Adult neural cells were cultured within this device and they showed different branching and axonal navigation phenotypes within varying nerve growth factor (NGF) concentration profiles. Neural stem cells were also cultured within varying collagen matrix densities while exposed to NGF concentrations and they experienced 3D to 3D collective migration. By generating vascular endothelial growth factor concentration gradients, adult human dermal microvascular endothelial cells also migrated in a 2D to 3D manner and formed a stable lumen within a specific collagen matrix density. It was observed that a minimum absolute concentration and concentration gradient were required to stimulate migration of all types of the cells. This device has the advantage of changing multiple parameters simultaneously and is expected to have wide applicability in cell studies.

  8. A microfluidic device for 2D to 3D and 3D to 3D cell navigation

    Microfluidic devices have received wide attention and shown great potential in the field of tissue engineering and regenerative medicine. Investigating cell response to various stimulations is much more accurate and comprehensive with the aid of microfluidic devices. In this study, we introduced a microfluidic device by which the matrix density as a mechanical property and the concentration profile of a biochemical factor as a chemical property could be altered. Our microfluidic device has a cell tank and a cell culture chamber to mimic both 2D to 3D and 3D to 3D migration of three types of cells. Fluid shear stress is negligible on the cells and a stable concentration gradient can be obtained by diffusion. The device was designed by a numerical simulation so that the uniformity of the concentration gradients throughout the cell culture chamber was obtained. Adult neural cells were cultured within this device and they showed different branching and axonal navigation phenotypes within varying nerve growth factor (NGF) concentration profiles. Neural stem cells were also cultured within varying collagen matrix densities while exposed to NGF concentrations and they experienced 3D to 3D collective migration. By generating vascular endothelial growth factor concentration gradients, adult human dermal microvascular endothelial cells also migrated in a 2D to 3D manner and formed a stable lumen within a specific collagen matrix density. It was observed that a minimum absolute concentration and concentration gradient were required to stimulate migration of all types of the cells. This device has the advantage of changing multiple parameters simultaneously and is expected to have wide applicability in cell studies. (paper)

  9. Accelerated partial breast irradiation using 3D conformal radiation therapy (3D-CRT)

    Purpose: We present a novel three-dimensional conformal radiation therapy (3D-CRT) technique to treat the lumpectomy cavity, plus a 1.5-cm margin, in patients with early-stage breast cancer and study its clinical feasibility. Methods and Materials: A 3D-CRT technique for partial-breast irradiation was developed using archived CT scans from 7 patients who underwent an active breathing control study. The clinical feasibility of this technique was then assessed in 9 patients who were prospectively enrolled on an Investigational Review Board-approved protocol of partial-breast irradiation. The prescribed dose was 34 Gy in 5 patients and 38.5 Gy in 4 patients, delivered in 10 fractions twice daily over 5 consecutive days. The impact of both breathing motion and patient setup uncertainty on clinical target volume (CTV) coverage was studied, and an appropriate CTV-to-PTV (planning target volume) margin was calculated. Results: By adding a CTV-to-PTV 'breathing-only' margin of 5 mm, 98%-100% of the CTV remained covered by the 95% isodose surface at the extremes of normal inhalation and normal exhalation. The 'total' CTV-to-PTV margin employed to accommodate organ motion and setup error (10 mm) was found to be sufficient to accommodate the observed uncertainty in the delivery precision. Patient tolerance was excellent, and acute toxicity was minimal. No skin changes were noted during treatment, and at the initial 4-8-week follow-up visit, only mild localized hyperpigmentation and/or erythema was observed. No instances of symptomatic radiation pneumonitis have occurred. Conclusions: Accelerated partial-breast irradiation using 3D-CRT is technically feasible, and acute toxicity to date has been minimal. A CTV-to-PTV margin of 10 mm seems to provide coverage for most patients. However, more patients and additional studies will be needed to validate the accuracy of this margin, and longer follow-up will be needed to assess acute and chronic toxicity, tumor control, and cosmetic

  10. Fluorescence detector for capillary separations fabricated by 3D printing

    Přikryl, Jan; Foret, František

    2014-01-01

    Roč. 86, č. 24 (2014), s. 11951-11956. ISSN 0003-2700 R&D Projects: GA ČR(CZ) GBP206/12/G014; GA MŠk(CZ) EE2.3.20.0182 Grant ostatní: GA AV ČR(CZ) M200311201 Institutional support: RVO:68081715 Keywords : 3D print * additive manufacturing * fluorescence * LIF * LED Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 5.636, year: 2014

  11. ICER-3D Hyperspectral Image Compression Software

    Xie, Hua; Kiely, Aaron; Klimesh, matthew; Aranki, Nazeeh

    2010-01-01

    Software has been developed to implement the ICER-3D algorithm. ICER-3D effects progressive, three-dimensional (3D), wavelet-based compression of hyperspectral images. If a compressed data stream is truncated, the progressive nature of the algorithm enables reconstruction of hyperspectral data at fidelity commensurate with the given data volume. The ICER-3D software is capable of providing either lossless or lossy compression, and incorporates an error-containment scheme to limit the effects of data loss during transmission. The compression algorithm, which was derived from the ICER image compression algorithm, includes wavelet-transform, context-modeling, and entropy coding subalgorithms. The 3D wavelet decomposition structure used by ICER-3D exploits correlations in all three dimensions of sets of hyperspectral image data, while facilitating elimination of spectral ringing artifacts, using a technique summarized in "Improving 3D Wavelet-Based Compression of Spectral Images" (NPO-41381), NASA Tech Briefs, Vol. 33, No. 3 (March 2009), page 7a. Correlation is further exploited by a context-modeling subalgorithm, which exploits spectral dependencies in the wavelet-transformed hyperspectral data, using an algorithm that is summarized in "Context Modeler for Wavelet Compression of Hyperspectral Images" (NPO-43239), which follows this article. An important feature of ICER-3D is a scheme for limiting the adverse effects of loss of data during transmission. In this scheme, as in the similar scheme used by ICER, the spatial-frequency domain is partitioned into rectangular error-containment regions. In ICER-3D, the partitions extend through all the wavelength bands. The data in each partition are compressed independently of those in the other partitions, so that loss or corruption of data from any partition does not affect the other partitions. Furthermore, because compression is progressive within each partition, when data are lost, any data from that partition received

  12. 3D technologies in safeguards applications

    The Additional Protocol to the Non-Proliferation Treaty foresees improved verification of existing nuclear installations. To be effective new advanced capabilities must be developed and fielded to increase the accuracy of verification and detection of changes in the facilities. New systems need to be portable, simple to use and yet highly accurate and dependable. 3D laser technologies proved to be effective in Design Information Verification (DIV). IAEA has successfully used the system in Rokkasho Reprocessing Plant. The system allowed IAEA to carry out rapid and accurate DIVs far faster and more accurately than had been possible in the past. A typical example from a mockup area at the JRC is presented. A further application of 3D laser technologies is to perform the verification of the facility buildings. Typical plants are located on sites of few square kilometres with tens of buildings, housing process and storage facilities. This requires systems that are capable of measuring and verifying long distances and easy to handle in an outdoor environment. This paper presents an overview of the different 3D technologies and discusses its potential use in safeguards applications: - Design Information Verification. - 3D Surveillance (overcomes the flatten world of classical 2D Surveillance and provides accurate quantitative (i.e., distance) measurements. - Object self authentication (spatial forensics), including the verification of closure welds on containers. - Outdoor verification System or verification of the facility buildings and outdoor perimeters. For the verification of outdoor areas the paper presents a transportable system capable of acquiring on the fly 3D geometric data from a large installation. The proposed system is a scaled based approach combining different sensors and 3D reconstruction techniques depending on the size of the scene/objects to be modelled and accuracy of the final model. The system is mounted on a vehicle and integrates 3D laser

  13. 3D rotational angiography after non-traumatic SAH; 3D-Rotationskatheterangiografie nach nicht traumatischer SAB

    Ringelstein, A.; Moenninghoff, C.; Hahnemann, M.L.; Forsting, M.; Schlamann, M. [Univ. Duisburg-Essen, Essen (Germany). Dept. of Diagnostic nd Interventional Radiology and Neuroradiology; Mueller, O.; Sure, U. [Univ. Hopsital, Essen (Germany). Hospital of Neurosurgery

    2014-07-15

    In about 15 % of patients with SAH no causative vascular lesions can be found in acute imaging with CTA and DSA. Usually, repeat DSA is mandatory and bears the usual risk of invasive angiography. The present study attempts to assess the diagnostic impact of 3 D rotational angiography in order to avoid repeat DSA. From January 2004 to December 2012, 649 patients with an acute non-traumatic SAH were examined. 91 patients with negative initial imaging diagnostics concerning the bleeding source were included in this study. These patients underwent a second angiography scan: 61 in 4-plane technique, and 30 with 2-plane technique and additional 3 D DSA. Two cohorts were compared: patients with repeat angiography in conventional 4-plane technique from 2004 to July 2008 and 2-plane technique with additional 3 D rotational DSA from 2008 to 2012. Statistical significance was verified by means of Fisher's exact test. In the second DSA scan, 4 aneurysms in 4 patients (4/91; 4.4 %) were found and treated subsequently. Within the first 4.5 years of this study, 401 patients with SAH were treated and 61 of them underwent repeat angiography (15.2 %) compared to 30 of 248 patients (12.1 %) in the last 4.5 years of this study. In the first group we found 3 aneurysms during repeat angiography, and in the second group we found 1. No significance was reached (p = 0.29) but there was a tendency towards higher diagnostic security using 3D-DSA. Using 3 D rotational DSA in initial imaging workup might help to reduce false-negative results concerning the bleeding source of acute SAH. At least because of this fact, 3 D rotational DSA should be part of the diagnostic workup after acute SAH.

  14. 3-D Graphical Password Used For Authentication

    Vidya Mhaske-Dhamdhere

    2012-03-01

    Full Text Available In today’s world, security isimportant aspect in day to day life.So,everyone used various ways for securitypurpose. People use passwords for theirsecurity.Generally, everyone uses textualpassword. Textual password is combinationof alphabets and numbers. People keeptextual password as name of their favoritethings, actors or actress, dish andmeaningful word from dictionary. But theperson who is very close to that person caneasily guess the password.Graphical password is advancedversion of password. Graphical passwordshave received considerable attention latelyas Potential alternatives to text-basedpasswords.Graphical password is composedof images, parts of images, or sketches[4]-[7]. These passwords are very easy to useand remember. Biometric password is anextended feature of graphical passwords.Biometric password is consisting of facerecognition, thumb impression, eye retinaand heartbeats pulses[10].In this paper, we present andevaluate our contribution, i.e., the 3-Dpassword. The 3-D password is a multifactorauthentication scheme. To be authenticated,we present a 3-D virtual environment wherethe user navigates and interacts with variousobjects. The sequence of actions andinteractions toward the objects inside the 3-D environment constructs the user’s 3-Dpassword. The 3-D password can combinemost existing authentication schemes suchas textual passwords, graphical passwords,and various types of biometrics into a 3-Dvirtual environment. The design of the 3-Dvirtual environment and the type of objectsselected determine the 3-D password keyspace[10].

  15. Heat Equation to 3D Image Segmentation

    Nikolay Sirakov

    2006-04-01

    Full Text Available This paper presents a new approach, capable of 3D image segmentation and objects' surface reconstruction. The main advantages of the method are: large capture range; quick segmentation of a 3D scene/image to regions; multiple 3D objects reconstruction. The method uses centripetal force and penalty function to segment the entire 3D scene/image to regions containing a single 3D object. Each region is inscribed in a convex, smooth closed surface, which defines a centripetal force. Then the surface is evolved by the geometric heat differential equation toward the force's direction. The penalty function is defined to stop evolvement of those surface patches, whose normal vectors encountered object's surface. On the base of the theoretical model Forward Difference Algorithm was developed and coded by Mathematica. Stability convergence condition, truncation error and calculation complexity of the algorithm are determined. The obtained results, advantages and disadvantages of the method are discussed at the end of this paper.

  16. 3D bioprinting for engineering complex tissues.

    Mandrycky, Christian; Wang, Zongjie; Kim, Keekyoung; Kim, Deok-Ho

    2016-01-01

    Bioprinting is a 3D fabrication technology used to precisely dispense cell-laden biomaterials for the construction of complex 3D functional living tissues or artificial organs. While still in its early stages, bioprinting strategies have demonstrated their potential use in regenerative medicine to generate a variety of transplantable tissues, including skin, cartilage, and bone. However, current bioprinting approaches still have technical challenges in terms of high-resolution cell deposition, controlled cell distributions, vascularization, and innervation within complex 3D tissues. While no one-size-fits-all approach to bioprinting has emerged, it remains an on-demand, versatile fabrication technique that may address the growing organ shortage as well as provide a high-throughput method for cell patterning at the micrometer scale for broad biomedical engineering applications. In this review, we introduce the basic principles, materials, integration strategies and applications of bioprinting. We also discuss the recent developments, current challenges and future prospects of 3D bioprinting for engineering complex tissues. Combined with recent advances in human pluripotent stem cell technologies, 3D-bioprinted tissue models could serve as an enabling platform for high-throughput predictive drug screening and more effective regenerative therapies. PMID:26724184

  17. Lifting Object Detection Datasets into 3D.

    Carreira, Joao; Vicente, Sara; Agapito, Lourdes; Batista, Jorge

    2016-07-01

    While data has certainly taken the center stage in computer vision in recent years, it can still be difficult to obtain in certain scenarios. In particular, acquiring ground truth 3D shapes of objects pictured in 2D images remains a challenging feat and this has hampered progress in recognition-based object reconstruction from a single image. Here we propose to bypass previous solutions such as 3D scanning or manual design, that scale poorly, and instead populate object category detection datasets semi-automatically with dense, per-object 3D reconstructions, bootstrapped from:(i) class labels, (ii) ground truth figure-ground segmentations and (iii) a small set of keypoint annotations. Our proposed algorithm first estimates camera viewpoint using rigid structure-from-motion and then reconstructs object shapes by optimizing over visual hull proposals guided by loose within-class shape similarity assumptions. The visual hull sampling process attempts to intersect an object's projection cone with the cones of minimal subsets of other similar objects among those pictured from certain vantage points. We show that our method is able to produce convincing per-object 3D reconstructions and to accurately estimate cameras viewpoints on one of the most challenging existing object-category detection datasets, PASCAL VOC. We hope that our results will re-stimulate interest on joint object recognition and 3D reconstruction from a single image. PMID:27295458

  18. 3D analysis methods - Study and seminar

    The first part of the report results from a study that was performed as a Nordic co-operation activity with active participation from Studsvik Scandpower and Westinghouse Atom in Sweden, and VTT in Finland. The purpose of the study was to identify and investigate the effects rising from using the 3D transient com-puter codes in BWR safety analysis, and their influence on the transient analysis methodology. One of the main questions involves the critical power ratio (CPR) calculation methodology. The present way, where the CPR calculation is per-formed with a separate hot channel calculation, can be artificially conservative. In the investigated cases, no dramatic minimum CPR effect coming from the 3D calculation is apparent. Some cases show some decrease in the transient change of minimum CPR with the 3D calculation, which confirms the general thinking that the 1D calculation is conservative. On the other hand, the observed effect on neutron flux behaviour is quite large. In a slower transient the 3D effect might be stronger. The second part of the report is a summary of a related seminar that was held on the 3D analysis methods. The seminar was sponsored by the Reactor Safety part (NKS-R) of the Nordic Nuclear Safety Research Programme (NKS). (au)

  19. 3D camera tracking from disparity images

    Kim, Kiyoung; Woo, Woontack

    2005-07-01

    In this paper, we propose a robust camera tracking method that uses disparity images computed from known parameters of 3D camera and multiple epipolar constraints. We assume that baselines between lenses in 3D camera and intrinsic parameters are known. The proposed method reduces camera motion uncertainty encountered during camera tracking. Specifically, we first obtain corresponding feature points between initial lenses using normalized correlation method. In conjunction with matching features, we get disparity images. When the camera moves, the corresponding feature points, obtained from each lens of 3D camera, are robustly tracked via Kanade-Lukas-Tomasi (KLT) tracking algorithm. Secondly, relative pose parameters of each lens are calculated via Essential matrices. Essential matrices are computed from Fundamental matrix calculated using normalized 8-point algorithm with RANSAC scheme. Then, we determine scale factor of translation matrix by d-motion. This is required because the camera motion obtained from Essential matrix is up to scale. Finally, we optimize camera motion using multiple epipolar constraints between lenses and d-motion constraints computed from disparity images. The proposed method can be widely adopted in Augmented Reality (AR) applications, 3D reconstruction using 3D camera, and fine surveillance systems which not only need depth information, but also camera motion parameters in real-time.

  20. 3-D MRI for lumbar degenerative diseases

    Three-dimensional (3-D) magnetic resonance (MR) images obtained from 10 patients with lumbar degenerative diseases were retrospectively reviewed to determine how far 3-D MR imaging is capable of demonstrating nerve roots. In 8 of the 10 patients, the area up to the dorsal root ganglion was visualized on 3-D MR images. Thus, it is capable of detecting a wide area of nerve roots, thereby allowing the determination of running of nerve root, and size and location of dorsal root ganglion. In delineating the area from the dural canal to root cyst, 3-D MR imaging was equal to conventional myelography. The former was superior to the latter in detecting the positional relation between the degenerative intervertebral disc and the nerve root, and herniation-compressed root cyst. In 3 of 9 patients who presented with root symptoms, disturbed nerve roots were of high signal on 3-D MR images. This may suggest that it has the potential for selectively detecting root nerves associated with clinical manifestations. (N.K.)