WorldWideScience

Sample records for 3-d inelastic analysis

  1. 3-D inelastic analysis methods for hot section components (base program). [turbine blades, turbine vanes, and combustor liners

    Wilson, R. B.; Bak, M. J.; Nakazawa, S.; Banerjee, P. K.

    1984-01-01

    A 3-D inelastic analysis methods program consists of a series of computer codes embodying a progression of mathematical models (mechanics of materials, special finite element, boundary element) for streamlined analysis of combustor liners, turbine blades, and turbine vanes. These models address the effects of high temperatures and thermal/mechanical loadings on the local (stress/strain) and global (dynamics, buckling) structural behavior of the three selected components. These models are used to solve 3-D inelastic problems using linear approximations in the sense that stresses/strains and temperatures in generic modeling regions are linear functions of the spatial coordinates, and solution increments for load, temperature and/or time are extrapolated linearly from previous information. Three linear formulation computer codes, referred to as MOMM (Mechanics of Materials Model), MHOST (MARC-Hot Section Technology), and BEST (Boundary Element Stress Technology), were developed and are described.

  2. The MHOST finite element program: 3-D inelastic analysis methods for hot section components. Volume 1: Theoretical manual

    Nakazawa, Shohei

    1991-01-01

    Formulations and algorithms implemented in the MHOST finite element program are discussed. The code uses a novel concept of the mixed iterative solution technique for the efficient 3-D computations of turbine engine hot section components. The general framework of variational formulation and solution algorithms are discussed which were derived from the mixed three field Hu-Washizu principle. This formulation enables the use of nodal interpolation for coordinates, displacements, strains, and stresses. Algorithmic description of the mixed iterative method includes variations for the quasi static, transient dynamic and buckling analyses. The global-local analysis procedure referred to as the subelement refinement is developed in the framework of the mixed iterative solution, of which the detail is presented. The numerically integrated isoparametric elements implemented in the framework is discussed. Methods to filter certain parts of strain and project the element discontinuous quantities to the nodes are developed for a family of linear elements. Integration algorithms are described for linear and nonlinear equations included in MHOST program.

  3. Second-Order Inelastic Dynamic Analysis of 3D Semi-Rigid Steel Frames Under Earthquake Loads with Three Components

    In this study, it has been presented an algorithm for second-order elastoplastic dynamic time-history analysis of three dimensional frames that have steel members with semirigid joints. The proposed analysis accounts for material, geometric and connection nonlinearities. Material nonlinearity have been modeled by the Ramberg-Osgood relation. While the geometric nonlinearity caused by axial force has been described by the use of the geometric stiffness matrix, the nonlinearity caused by the interaction between the axial force and bending moment has been also described by the use of the stability functions. The independent hardening model has been used to describe the nonlinear behaviour of semi-rigid connections. Dynamic equation of motion has been solved by Newmark's constant acceleration method in time history domain

  4. DYNA3D, 3-D Finite Elements for Dynamic Response of Inelastic Solids

    1 - Description of program or function: DYNA3D is an explicit, three- dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contain 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermo-elastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, and inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity, closed form update shell plasticity, and Frazer-Nash rubber model. The IBM 3090 version does not contain the last two models mentioned. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of ten equations of state including linear polynomial, JWL high explosive, Sack 'Tuesday' high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interfaces data for contact surfaces. 2 - Method of solution: A contact

  5. 3D face modeling, analysis and recognition

    Daoudi, Mohamed; Veltkamp, Remco

    2013-01-01

    3D Face Modeling, Analysis and Recognition presents methodologies for analyzing shapes of facial surfaces, develops computational tools for analyzing 3D face data, and illustrates them using state-of-the-art applications. The methodologies chosen are based on efficient representations, metrics, comparisons, and classifications of features that are especially relevant in the context of 3D measurements of human faces. These frameworks have a long-term utility in face analysis, taking into account the anticipated improvements in data collection, data storage, processing speeds, and application s

  6. Automated analysis of 3D echocardiography

    Stralen, Marijn van

    2009-01-01

    In this thesis we aim at automating the analysis of 3D echocardiography, mainly targeting the functional analysis of the left ventricle. Manual analysis of these data is cumbersome, time-consuming and is associated with inter-observer and inter-institutional variability. Methods for reconstruction o

  7. 3D analysis methods - Study and seminar

    The first part of the report results from a study that was performed as a Nordic co-operation activity with active participation from Studsvik Scandpower and Westinghouse Atom in Sweden, and VTT in Finland. The purpose of the study was to identify and investigate the effects rising from using the 3D transient com-puter codes in BWR safety analysis, and their influence on the transient analysis methodology. One of the main questions involves the critical power ratio (CPR) calculation methodology. The present way, where the CPR calculation is per-formed with a separate hot channel calculation, can be artificially conservative. In the investigated cases, no dramatic minimum CPR effect coming from the 3D calculation is apparent. Some cases show some decrease in the transient change of minimum CPR with the 3D calculation, which confirms the general thinking that the 1D calculation is conservative. On the other hand, the observed effect on neutron flux behaviour is quite large. In a slower transient the 3D effect might be stronger. The second part of the report is a summary of a related seminar that was held on the 3D analysis methods. The seminar was sponsored by the Reactor Safety part (NKS-R) of the Nordic Nuclear Safety Research Programme (NKS). (au)

  8. Volume-Rendering-Based Interactive 3D Measurement for Quantitative Analysis of 3D Medical Images

    Yakang Dai; Jian Zheng; Yuetao Yang; Duojie Kuai; Xiaodong Yang

    2013-01-01

    3D medical images are widely used to assist diagnosis and surgical planning in clinical applications, where quantitative measurement of interesting objects in the image is of great importance. Volume rendering is widely used for qualitative visualization of 3D medical images. In this paper, we introduce a volume-rendering-based interactive 3D measurement framework for quantitative analysis of 3D medical images. In the framework, 3D widgets and volume clipping are integrated with volume render...

  9. Elastic and inelastic neutron scattering studies on 3d and 4f magnetic compounds

    First, some theoretical aspects of neutron scattering techniques are given, and the cyrogenic equipment and the neutron spectrometers employed are described. Experiments on a 3-d Ising system are described, performed at very low temperatures and in a magnetic field. Experimental proof has been obtained for the theoretical prediction that the critical behaviour of a d-dimensional Ising system in a transverse magnetic field near T=0 is identical to that of a d+1 dimensional Ising system as a function of temperature in zero field. Experiments are described on a Ni2+ compound which represents a good example of a 1-d antiferromagnetic Heisenberg (HAF), spin s=1, system. The results give evidence for the so called 'Haldane conjecture', a theory which predicts that the ground state of HAF systems with integer spin is a nonmagnetic many-body singlet. The excited states are separated from the ground state by an energy gap. Contrastingly, half-integer spin systems are predicted to have no such gap. A short introduction is given to phenomena in rare earth, 4f compunds, like the Kondo effect and heavy fermion behaviour. Experimental results on the RE hexaborides are reported, among which CeB6, a typical Kondo system with complex magnetic orderings. Furthermore, inelastic neutron scattering experiments on NdB6 and CeB6, performed in order to get insight in the various reaction mechanisms, are presented. Finally a report is given on magnetic correlations and excitations in two nonmagnetically ordered heavy fermion compounds, CeCu6 and CeRu2Si2 and their interpretation in the light of existing theories. 201 refs.; 61 figs.; 4 tabs

  10. 3D object-oriented image analysis in 3D geophysical modelling

    Fadel, I.; van der Meijde, M.; Kerle, N.;

    2015-01-01

    Non-uniqueness of satellite gravity interpretation has traditionally been reduced by using a priori information from seismic tomography models. This reduction in the non-uniqueness has been based on velocity-density conversion formulas or user interpretation of the 3D subsurface structures (objects......) based on the seismic tomography models and then forward modelling these objects. However, this form of object-based approach has been done without a standardized methodology on how to extract the subsurface structures from the 3D models. In this research, a 3D object-oriented image analysis (3D OOA......) approach was implemented to extract the 3D subsurface structures from geophysical data. The approach was applied on a 3D shear wave seismic tomography model of the central part of the East African Rift System. Subsequently, the extracted 3D objects from the tomography model were reconstructed in the 3D...

  11. Multifractal modelling and 3D lacunarity analysis

    This study presents a comparative evaluation of lacunarity of 3D grey level models with different types of inhomogeneity. A new method based on the 'Relative Differential Box Counting' was developed to estimate the lacunarity features of grey level volumes. To validate our method, we generated a set of 3D grey level multifractal models with random, anisotropic and hierarchical properties. Our method gives a lacunarity measurement correlated with the theoretical one and allows a better model classification compared with a classical approach.

  12. 3D face analysis for demographic biometrics

    Tokola, Ryan A [ORNL; Mikkilineni, Aravind K [ORNL; Boehnen, Chris Bensing [ORNL

    2015-01-01

    Despite being increasingly easy to acquire, 3D data is rarely used for face-based biometrics applications beyond identification. Recent work in image-based demographic biometrics has enjoyed much success, but these approaches suffer from the well-known limitations of 2D representations, particularly variations in illumination, texture, and pose, as well as a fundamental inability to describe 3D shape. This paper shows that simple 3D shape features in a face-based coordinate system are capable of representing many biometric attributes without problem-specific models or specialized domain knowledge. The same feature vector achieves impressive results for problems as diverse as age estimation, gender classification, and race classification.

  13. Multifractal modelling and 3D lacunarity analysis

    Hanen, Akkari, E-mail: bettaieb.hanen@topnet.t [Laboratoire de biophysique, TIM, Faculte de Medecine (Tunisia); Imen, Bhouri, E-mail: bhouri_imen@yahoo.f [Unite de recherche ondelettes et multifractals, Faculte des sciences (Tunisia); Asma, Ben Abdallah, E-mail: asma.babdallah@cristal.rnu.t [Laboratoire de biophysique, TIM, Faculte de Medecine (Tunisia); Patrick, Dubois, E-mail: pdubois@chru-lille.f [INSERM, U 703, Lille (France); Hedi, Bedoui Mohamed, E-mail: medhedi.bedoui@fmm.rnu.t [Laboratoire de biophysique, TIM, Faculte de Medecine (Tunisia)

    2009-09-28

    This study presents a comparative evaluation of lacunarity of 3D grey level models with different types of inhomogeneity. A new method based on the 'Relative Differential Box Counting' was developed to estimate the lacunarity features of grey level volumes. To validate our method, we generated a set of 3D grey level multifractal models with random, anisotropic and hierarchical properties. Our method gives a lacunarity measurement correlated with the theoretical one and allows a better model classification compared with a classical approach.

  14. Deep inelastic scattering off scalar mesons in the 1/N expansion from the D3D7-brane system

    Kovensky, Nicolas; Schvellinger, Martin

    2016-01-01

    Deep inelastic scattering (DIS) of charged leptons off scalar mesons in the $1/N$ expansion is studied by using the gauge/gravity duality. We focus on the D3D7-brane system and investigate the corresponding structure functions by considering both the high energy limit and the $1/N$ expansion. These limits do not commute. From the D7-brane DBI action we derive a Lagrangian at sub-leading order in the D7-brane fluctuations and obtain a number of interactions some of which become relevant for two-hadron final-state DIS. By considering first the high energy limit followed by the large $N$ one, our results fit lattice QCD data within $1.27\\%$ for the first three moments of $F_2$ for the lightest pseudoscalar meson.

  15. 3D motion analysis via energy minimization

    Wedel, Andreas

    2009-10-16

    This work deals with 3D motion analysis from stereo image sequences for driver assistance systems. It consists of two parts: the estimation of motion from the image data and the segmentation of moving objects in the input images. The content can be summarized with the technical term machine visual kinesthesia, the sensation or perception and cognition of motion. In the first three chapters, the importance of motion information is discussed for driver assistance systems, for machine vision in general, and for the estimation of ego motion. The next two chapters delineate on motion perception, analyzing the apparent movement of pixels in image sequences for both a monocular and binocular camera setup. Then, the obtained motion information is used to segment moving objects in the input video. Thus, one can clearly identify the thread from analyzing the input images to describing the input images by means of stationary and moving objects. Finally, I present possibilities for future applications based on the contents of this thesis. Previous work in each case is presented in the respective chapters. Although the overarching issue of motion estimation from image sequences is related to practice, there is nothing as practical as a good theory (Kurt Lewin). Several problems in computer vision are formulated as intricate energy minimization problems. In this thesis, motion analysis in image sequences is thoroughly investigated, showing that splitting an original complex problem into simplified sub-problems yields improved accuracy, increased robustness, and a clear and accessible approach to state-of-the-art motion estimation techniques. In Chapter 4, optical flow is considered. Optical flow is commonly estimated by minimizing the combined energy, consisting of a data term and a smoothness term. These two parts are decoupled, yielding a novel and iterative approach to optical flow. The derived Refinement Optical Flow framework is a clear and straight-forward approach to

  16. Elastoplastic shell analysis in DYNA3D

    Computer simulation of the elastoplastic behavior of thin shell structures under transient dynamic loads play an important role in many programs at Lawrence Livermore National Laboratory (LLNL) in Livermore, Calif. Often the loads are severe and the structure undergoes plastic (or permanent) deformation. These simulations are effectively performed using DYNA3D, an explicit nonlinear finite element code developed at LLNL for simulating and analyzing the large-deformation dynamic response of solids and structures. It is generally applicable to problems where the loading and response are of short duration and contain significant high-frequency components. Typical problems of this type include the contact of two impacting bodies and the resulting elastoplastic structural behavior. The objective of this investigation was to examine and improve upon the elastoplastic shell modeling capability in DYNA3D. This article summarizes the development of a new four-node quadrilateral finite element shell formulation, the YASE shell, and compares two basic methods (the stress-resultant and the thickness-resultant methods) employed in elastoplastic constitutive algorithms for shell structure modeling

  17. Preprint Big City 3D Visual Analysis

    Lv, Zhihan; Li, Xiaoming; Zhang, Baoyun; Wang, Weixi; Feng, Shengzhong; Hu, Jinxing

    2015-01-01

    This is the preprint version of our paper on EUROGRAPHICS 2015. A big city visual analysis platform based on Web Virtual Reality Geographical Information System (WEBVRGIS) is presented. Extensive model editing functions and spatial analysis functions are available, including terrain analysis, spatial analysis, sunlight analysis, traffic analysis, population analysis and community analysis.

  18. Implications of stress range for inelastic analysis

    The elastic stress range over a complete load cycle is routinely used to formulate simplified rules regarding the inelastic behavior of structures operating at elevated temperature. For example, a 300 series stainless steel structure operating at elevated temperature, in all probability, would satisfy the ASME Boiler and Pressure Vessel Code criteria if the linearized elastic stress range is less than three times the material yield strength. However, at higher elastic stress ranges it is difficult to judge, a priori, that a structural component would comply with inelastic Code criteria after a detailed inelastic analysis. The purpose of this paper is to illustrate that it is not the elastic stress range but the stress intensities at specific times during a thermal transient which provide a better insight into the inelastic response of the structure. The specific example of the CRBRP flued head design demonstrates that the temperature differential between various parts of the structure can be changed by modifying the insulation pattern and heat flow path in the structure, without significantly altering the elastic stress range over a complete load cycle. However, the modified design did reduce the stress intensity during steady state elevated temperature operation. This modified design satisfied the inelastic Code criteria whereas the initial design failed to comply with the strain accumulation criterion

  19. 3 D Numerical Field Analysis at NAC

    The NAC [1] was established in 1977 as a multi-disciplinary research centre to provide particle beams for basic and applied physics research, for advanced particle radiotherapy and for supplying accelerator-produced radioisotopes for nuclear medicine and research. The finite differences computer programs VEPO 2 and POFEL 3 were developed from the early 1970's over more than one decade for electromagnetic field analysis at NAC[2]. They were successfully used in the design of the sector magnets of our 200 MeV separated-sector cyclotron [3]. In the late 80's NAC implemented the more user-friendly software package Poisson/Super Fish [4], for two-dimensional numerical field analysis

  20. Static inelastic analysis of RC shear walls

    陈勤; 钱稼茹

    2002-01-01

    A macro-model of a reinforced concrete (RC) shear wall is developed for static inelastic analysis. The model iscomposed of RC column elements and RC membrane elements. The column elements are used to model the boundary zone andthe membrane elements are used to model the wall panel. Various types of constitutive relationships of concrete could beadopted for the two kinds of elements. To perform analysis, the wall is divided into layers along its height. Two adjacent layersare connected with a rigid beam. There are only three unknown displacement components for each layer. A method called singledegree of freedom compensation is adopted to solve the peak value of the capacity curve. The post-peak stage analysis isperformed using a forced iteration approach. The macro-model developed in the study and the complete process analysismethodology are verified by the experimental and static inelastic analytical results of four RC shear wall specimens.

  1. 3D surface analysis and classification in neuroimaging segmentation.

    Zagar, Martin; Mlinarić, Hrvoje; Knezović, Josip

    2011-06-01

    This work emphasizes new algorithms for 3D edge and corner detection used in surface extraction and new concept of image segmentation in neuroimaging based on multidimensional shape analysis and classification. We propose using of NifTI standard for describing input data which enables interoperability and enhancement of existing computing tools used widely in neuroimaging research. In methods section we present our newly developed algorithm for 3D edge and corner detection, together with the algorithm for estimating local 3D shape. Surface of estimated shape is analyzed and segmented according to kernel shapes. PMID:21755723

  2. 3D Surface Analysis and Classification in Neuroimaging Segmentation

    Žagar, Martin; Mlinarić, Hrvoje; Knezović, Josip

    2011-01-01

    This work emphasizes new algorithms for 3D edge and corner detection used in surface extraction and new concept of image segmentation in neuroimaging based on multidimensional shape analysis and classification. We propose using of NifTI standard for describing input data which enables interoperability and enhancement of existing computing tools used widely in neuroimaging research. In methods section we present our newly developed algorithm for 3D edge and corner detection, togeth...

  3. Performance Analysis of a 3D Ionosphere Tomographic Model

    Liu Zhi-zhao; Gao Yang

    2003-01-01

    A 3D high precision ionospheric model is developed based on tomography technique. This tomographic model employs GPS data observed by an operational network of dual-frequency GPS receivers. The methodology of developing a 3D ionospheric tomography model is briefly summarized. However emphasis is put on the analysis and evaluation of the accuracy variation of 3D ionosphere modeling with respect to the change of GPS data cutoff angle.Three typical cutoff angle values (15°, 20° and 25°) are tested. For each testing cutoff angle, the performances of the3D ionospheric model constructed using tomography technique are assessed by calibrating the model predicted ionospheric TEC with the GPS measured TEC and by employing the model predicted TEC to a practical GPS positioning application single point positioning (SPP).Test results indicate the 3D model predicted VTEC has about 0.4 TECU improvement in accuracy when cutoff angle rises from 15° to 20°. However, no apparent improvement is found from 20° to 25°. The model's improvement is also validated by the better SPP accuracy of 3D model than its counterpart-dual frequency model in the 20° and 25° cases.

  4. Analysis of the of bones through 3D computerized tomography

    This work shows the analysis of the internal structure of the bones samples through 3D micro tomography technique (3D-μTC). The comprehension of the bone structure is particularly important when related to osteoporosis diagnosis because this implies in a deterioration of the trabecular bone architecture, which increases the fragility and the possibility to have bone fractures. Two bone samples (human calcaneous and Wistar rat femur) were used, and the method was a radiographic system in real time with an X Ray microfocus tube. The quantifications parameters are based on stereological principles and they are five: a bone volume fraction, trabecular number, the ratio between surface and bone volume, the trabecular thickness and the trabecular separation. The quantifications were done with a program developed especially for this purpose in Nuclear Instrumentation Laboratory - COPPE/UFRJ. This program uses as input the 3D reconstructions images and generates a table with the quantifications. The results of the human calcaneous quantifications are presented in tables 1 and 2, and the 3D reconstructions are illustrated in Figure 5. The Figure 6 illustrate the 2D reconstructed image and the Figure 7 the 3D visualization respectively of the Wistar femur sample. The obtained results show that the 3D-μTC is a powerful technique that can be used to analyze bone microstructures. (author)

  5. Computerized diagnostic data analysis and 3-D visualization

    Purpose: To survey methods for 3D data visualization and image analysis which can be used for computer based diagnostics. Material and methods: The methods available are explained in short terms and links to the literature are presented. Methods which allow basic manipulation of 3D data are windowing, rotation and clipping. More complex methods for visualization of 3D data are multiplanar reformation, volume projections (MIP, semi-transparent projections) and surface projections. Methods for image analysis comprise local data transformation (e.g. filtering) and definition and application of complex models (e.g. deformable models). Results: Volume projections produce an impression of the 3D data set without reducing the data amount. This supports the interpretation of the 3D data set and saves time in comparison to any investigation which requires examination of all slice images. More advanced techniques for visualization, e.g. surface projections and hybrid rendering visualize anatomical information to a very detailed extent, but both techniques require the segmentation of the structures of interest. Image analysis methods can be used to extract these structures (e.g. an organ) from the image data. Discussion: At the present time volume projections are robust and fast enough to be used routinely. Surface projections can be used to visualize complex and presegmented anatomical features. (orig.)

  6. Inelastic neutron scattering studies on the 3d-4f heterometallic single-molecule magnet Mn2Nd2

    The discovery of slow relaxation and quantum tunneling of the magnetization in Mn12ac more than 15 years ago has inspired both physicists and chemists alike. This class of molecules, now called single-molecule magnets (SMMs), has very recently been expanded to heterometallic clusters incorporating transition metal and rare earth ions. The 4f ions were chosen because of their large angular momentum and magnetic anisotropy. Inelastic neutron scattering experiments were performed on the time-of-flight disk-chopper spectrometer IN5 at ILL on the SMM Mn2Nd2. A magnetic model was developed which perfectly describes all data, including the magnetic data. It was found that neither the large anisotropy nor the large angular momentum of the NdIII ions is the main reason for the SMM behavior in this molecule. Our analysis of the data indicates that it is the weak coupling of the NdIII ions to the MnIII ions, usually considered as a drawback of rare earth ions, which enhances the relaxation time and therefore leads to SMM behavior.

  7. SAMA: A Method for 3D Morphological Analysis.

    Paulose, Tessie; Montévil, Maël; Speroni, Lucia; Cerruti, Florent; Sonnenschein, Carlos; Soto, Ana M

    2016-01-01

    Three-dimensional (3D) culture models are critical tools for understanding tissue morphogenesis. A key requirement for their analysis is the ability to reconstruct the tissue into computational models that allow quantitative evaluation of the formed structures. Here, we present Software for Automated Morphological Analysis (SAMA), a method by which epithelial structures grown in 3D cultures can be imaged, reconstructed and analyzed with minimum human intervention. SAMA allows quantitative analysis of key features of epithelial morphogenesis such as ductal elongation, branching and lumen formation that distinguish different hormonal treatments. SAMA is a user-friendly set of customized macros operated via FIJI (http://fiji.sc/Fiji), an open-source image analysis platform in combination with a set of functions in R (http://www.r-project.org/), an open-source program for statistical analysis. SAMA enables a rapid, exhaustive and quantitative 3D analysis of the shape of a population of structures in a 3D image. SAMA is cross-platform, licensed under the GPLv3 and available at http://montevil.theobio.org/content/sama. PMID:27035711

  8. MSLB coupled 3D neutronics-thermalhydraulic analysis of a large PWR using RELAP5-3D

    A RELAP5-3D model of the Westinghouse AP1000 NSSS has been set up and it has been used to analyze the MSLB accident. Main results (both spatial distributions and time trends) have been represented with 3D plots and graphical movies. The method applied allows accounting for the coupled 3D neutronics and thermalyhdraulics effects, suggesting to consider its applicability in Safety Analysis.(author)

  9. Software for 3D diagnostic image reconstruction and analysis

    Recent advances in computer technologies have opened new frontiers in medical diagnostics. Interesting possibilities are the use of three-dimensional (3D) imaging and the combination of images from different modalities. Software prepared in our laboratories devoted to 3D image reconstruction and analysis from computed tomography and ultrasonography is presented. In developing our software it was assumed that it should be applicable in standard medical practice, i.e. it should work effectively with a PC. An additional feature is the possibility of combining 3D images from different modalities. The reconstruction and data processing can be conducted using a standard PC, so low investment costs result in the introduction of advanced and useful diagnostic possibilities. The program was tested on a PC using DICOM data from computed tomography and TIFF files obtained from a 3D ultrasound system. The results of the anthropomorphic phantom and patient data were taken into consideration. A new approach was used to achieve spatial correlation of two independently obtained 3D images. The method relies on the use of four pairs of markers within the regions under consideration. The user selects the markers manually and the computer calculates the transformations necessary for coupling the images. The main software feature is the possibility of 3D image reconstruction from a series of two-dimensional (2D) images. The reconstructed 3D image can be: (1) viewed with the most popular methods of 3D image viewing, (2) filtered and processed to improve image quality, (3) analyzed quantitatively (geometrical measurements), and (4) coupled with another, independently acquired 3D image. The reconstructed and processed 3D image can be stored at every stage of image processing. The overall software performance was good considering the relatively low costs of the hardware used and the huge data sets processed. The program can be freely used and tested (source code and program available at

  10. A spherical harmonics intensity model for 3D segmentation and 3D shape analysis of heterochromatin foci.

    Eck, Simon; Wörz, Stefan; Müller-Ott, Katharina; Hahn, Matthias; Biesdorf, Andreas; Schotta, Gunnar; Rippe, Karsten; Rohr, Karl

    2016-08-01

    The genome is partitioned into regions of euchromatin and heterochromatin. The organization of heterochromatin is important for the regulation of cellular processes such as chromosome segregation and gene silencing, and their misregulation is linked to cancer and other diseases. We present a model-based approach for automatic 3D segmentation and 3D shape analysis of heterochromatin foci from 3D confocal light microscopy images. Our approach employs a novel 3D intensity model based on spherical harmonics, which analytically describes the shape and intensities of the foci. The model parameters are determined by fitting the model to the image intensities using least-squares minimization. To characterize the 3D shape of the foci, we exploit the computed spherical harmonics coefficients and determine a shape descriptor. We applied our approach to 3D synthetic image data as well as real 3D static and real 3D time-lapse microscopy images, and compared the performance with that of previous approaches. It turned out that our approach yields accurate 3D segmentation results and performs better than previous approaches. We also show that our approach can be used for quantifying 3D shape differences of heterochromatin foci. PMID:27037463

  11. Validation of OPERA3D PCMI Analysis Code

    This report will describe introduction of validation of OPERA3D code, and validation results that are directly related with PCMI phenomena. OPERA3D was developed for the PCMI analysis and validated using the in-pile measurement data. Fuel centerline temperature and clad strain calculation results shows close expectations with measurement data. Moreover, 3D FEM fuel model of OPERA3D shows slight hour glassing behavior of fuel pellet in contact case. Further optimization will be conducted for future application of OPERA3D code. Nuclear power plant consists of many complicated systems, and one of the important objects of all the systems is maintaining nuclear fuel integrity. However, it is inevitable to experience PCMI (Pellet Cladding Mechanical Interaction) phenomena at current operating reactors and next generation reactors for advanced safety and economics as well. To evaluate PCMI behavior, many studies are on-going to develop 3-dimensional fuel performance evaluation codes. Moreover, these codes are essential to set the safety limits for the best estimated PCMI phenomena aimed for high burnup fuel

  12. Numerical analysis of 3-D potential flow in centrifugal turbomachines

    Daiguji, H.

    1983-09-01

    A numerical method is developed for analysing a three-dimensional steady incompressible potential flow through an impeller in centrifugal turbomachines. The method is the same as the previous method which was developed for the axial flow turbomachines, except for some treatments in the downstream region. In order to clarify the validity and limitation of the method, a comparison with the existing experimental data and numerical results is made for radial flow compressor impellers. The calculated blade surface pressure distributions almost coincide with the quasi-3-D calculation by Krimerman and Adler (1978), but are different partly from the quasi-3-D calculation using one meridional flow analysis. It is suggested from this comparison that the flow through an impeller with high efficiency near the design point can be predicted by this fully 3-D numerical method.

  13. 3-D Experimental Fracture Analysis at High Temperature

    John H. Jackson; Albert S. Kobayashi

    2001-09-14

    T*e, which is an elastic-plastic fracture parameter based on incremental theory of plasticity, was determined numerically and experimentally. The T*e integral of a tunneling crack in 2024-T3 aluminum, three point bend specimen was obtained through a hybrid analysis of moire interferometry and 3-D elastic-plastic finite element analysis. The results were verified by the good agreement between the experimentally and numerically determined T*e on the specimen surface.

  14. Skeleton-Sectional Structural Analysis for 3D Printing

    Wen-Peng Xu; Wei Li; Li-Gang Liu

    2016-01-01

    3D printing has become popular and has been widely used in various applications in recent years. More and more home users have motivation to design their own models and then fabricate them using 3D printers. However, the printed objects may have some structural or stress defects as the users may be lack of knowledge on stress analysis on 3D models. In this paper, we present an approach to help users analyze a model’s structural strength while designing its shape. We adopt sectional structural analysis instead of conventional FEM (Finite Element Method) analysis which is computationally expensive. Based on sectional structural analysis, our approach imports skeletons to assist in integrating mesh designing, strength computing and mesh correction well. Skeletons can also guide sections building and load calculation for analysis. For weak regions with high stress over a threshold value in the model from analysis result, our system corrects them by scaling the corresponding bones of skeleton so as to make these regions stiff enough. A number of experiments have demonstrated the applicability and practicability of our approach.

  15. A 3D image analysis tool for SPECT imaging

    Kontos, Despina; Wang, Qiang; Megalooikonomou, Vasileios; Maurer, Alan H.; Knight, Linda C.; Kantor, Steve; Fisher, Robert S.; Simonian, Hrair P.; Parkman, Henry P.

    2005-04-01

    We have developed semi-automated and fully-automated tools for the analysis of 3D single-photon emission computed tomography (SPECT) images. The focus is on the efficient boundary delineation of complex 3D structures that enables accurate measurement of their structural and physiologic properties. We employ intensity based thresholding algorithms for interactive and semi-automated analysis. We also explore fuzzy-connectedness concepts for fully automating the segmentation process. We apply the proposed tools to SPECT image data capturing variation of gastric accommodation and emptying. These image analysis tools were developed within the framework of a noninvasive scintigraphic test to measure simultaneously both gastric emptying and gastric volume after ingestion of a solid or a liquid meal. The clinical focus of the particular analysis was to probe associations between gastric accommodation/emptying and functional dyspepsia. Employing the proposed tools, we outline effectively the complex three dimensional gastric boundaries shown in the 3D SPECT images. We also perform accurate volume calculations in order to quantitatively assess the gastric mass variation. This analysis was performed both with the semi-automated and fully-automated tools. The results were validated against manual segmentation performed by a human expert. We believe that the development of an automated segmentation tool for SPECT imaging of the gastric volume variability will allow for other new applications of SPECT imaging where there is a need to evaluate complex organ function or tumor masses.

  16. A software tool for 3D dose verification and analysis

    Sa'd, M. Al; Graham, J.; Liney, G. P.

    2013-06-01

    The main recent developments in radiotherapy have focused on improved treatment techniques in order to generate further significant improvements in patient prognosis. There is now an internationally recognised need to improve 3D verification of highly conformal radiotherapy treatments. This is because of the very high dose gradients used in modern treatment techniques, which can result in a small error in the spatial dose distribution leading to a serious complication. In order to gain the full benefits of using 3D dosimetric technologies (such as gel dosimetry), it is vital to use 3D evaluation methods and algorithms. We present in this paper a software solution that provides a comprehensive 3D dose evaluation and analysis. The software is applied to gel dosimetry, which is based on magnetic resonance imaging (MRI) as a read-out method. The software can also be used to compare any two dose distributions, such as two distributions planned using different methods of treatment planning systems, or different dose calculation algorithms.

  17. A software tool for 3D dose verification and analysis

    The main recent developments in radiotherapy have focused on improved treatment techniques in order to generate further significant improvements in patient prognosis. There is now an internationally recognised need to improve 3D verification of highly conformal radiotherapy treatments. This is because of the very high dose gradients used in modern treatment techniques, which can result in a small error in the spatial dose distribution leading to a serious complication. In order to gain the full benefits of using 3D dosimetric technologies (such as gel dosimetry), it is vital to use 3D evaluation methods and algorithms. We present in this paper a software solution that provides a comprehensive 3D dose evaluation and analysis. The software is applied to gel dosimetry, which is based on magnetic resonance imaging (MRI) as a read-out method. The software can also be used to compare any two dose distributions, such as two distributions planned using different methods of treatment planning systems, or different dose calculation algorithms.

  18. On applicability of the 3D nodal code DYN3D for the analysis of SFR cores

    DYN3D is an advanced multi-group nodal diffusion code originally developed for the 3D steady-state and transient analysis of the Light Water Reactor (LWR) systems with square and hexagonal fuel assembly geometries. The main objective of this work is to demonstrate the feasibility of using DYN3D for the modeling of Sodium cooled Fast Reactors (SFRs). In this study a prototypic European Sodium Fast Reactor (ESFR) core is simulated by DYN3D using homogenized multi-group cross sections produced with Monte Carlo (MC) reactor physics code Serpent. The results of the full core DYN3D calculations are in a very good agreement with the reference full core Serpent MC solution. (author)

  19. 3D Guided Wave Motion Analysis on Laminated Composites

    Tian, Zhenhua; Leckey, Cara; Yu, Lingyu

    2013-01-01

    Ultrasonic guided waves have proved useful for structural health monitoring (SHM) and nondestructive evaluation (NDE) due to their ability to propagate long distances with less energy loss compared to bulk waves and due to their sensitivity to small defects in the structure. Analysis of actively transmitted ultrasonic signals has long been used to detect and assess damage. However, there remain many challenging tasks for guided wave based SHM due to the complexity involved with propagating guided waves, especially in the case of composite materials. The multimodal nature of the ultrasonic guided waves complicates the related damage analysis. This paper presents results from parallel 3D elastodynamic finite integration technique (EFIT) simulations used to acquire 3D wave motion in the subject laminated carbon fiber reinforced polymer composites. The acquired 3D wave motion is then analyzed by frequency-wavenumber analysis to study the wave propagation and interaction in the composite laminate. The frequency-wavenumber analysis enables the study of individual modes and visualization of mode conversion. Delamination damage has been incorporated into the EFIT model to generate "damaged" data. The potential for damage detection in laminated composites is discussed in the end.

  20. Advanced computational tools for 3-D seismic analysis

    Barhen, J.; Glover, C.W.; Protopopescu, V.A. [Oak Ridge National Lab., TN (United States)] [and others

    1996-06-01

    The global objective of this effort is to develop advanced computational tools for 3-D seismic analysis, and test the products using a model dataset developed under the joint aegis of the United States` Society of Exploration Geophysicists (SEG) and the European Association of Exploration Geophysicists (EAEG). The goal is to enhance the value to the oil industry of the SEG/EAEG modeling project, carried out with US Department of Energy (DOE) funding in FY` 93-95. The primary objective of the ORNL Center for Engineering Systems Advanced Research (CESAR) is to spearhead the computational innovations techniques that would enable a revolutionary advance in 3-D seismic analysis. The CESAR effort is carried out in collaboration with world-class domain experts from leading universities, and in close coordination with other national laboratories and oil industry partners.

  1. Quantitative nanoscale analysis in 3D using electron tomography

    State-of-the-art electron tomography has been established as a powerful tool to image complex structures with nanometer resolution in 3D. Especially STEM tomography is used extensively in materials science in such diverse areas as catalysis, semiconductor materials, and polymer composites mainly providing qualitative information on morphology, shape and distribution of materials. However, for an increasing number of studies quantitative information, e.g. surface area, fractal dimensions, particle distribution or porosity are needed. A quantitative analysis is typically performed after segmenting the tomographic data, which is one of the main sources of error for the quantification. In addition to noise, systematic errors due to the missing wedge and due to artifacts from the reconstruction algorithm itself are responsible for these segmentation errors and improved algorithms are needed. This presentation will provide an overview of the possibilities and limitations of quantitative nanoscale analysis by electron tomography. Using catalysts and nano composites as applications examples, intensities and intensity variations observed for the 3D volume reconstructed by WBP and SIRT will be quantitatively compared to alternative reconstruction algorithms; implications for quantification of electron (or X-ray) tomographic data will be discussed and illustrated for quantification of particle size distributions, particle correlations, surface area, and fractal dimensions in 3D.

  2. Inelastic neutron scattering with polarization analysis

    Advances in neutron technology made during the past decade have permitted neutron inelastic scattering experiments to be performed with full polarization analysis. The power of this technique for the identification of components of dynamic spin fluctuations in magnetic systems is illustrated in this presentation by two experiments on the one-dimensional, X-Y antiferromagnet TMMC. In one experiment, spin fluctuations due to π-solitons were measured for the first time and information was obtained on soliton-soliton collision processes. In the other, a theory which apparently described finite-energy magnetic excitations measured with unpolarized neutrons was shown to be deficient. Both of these experiments were carried out at the Institut Laue-Langevin in Grenoble, France. 13 refs., 8 figs

  3. 3D Landslides Susceptibility Analysis in Romanian Subcarpathians

    Sandric, Ionuc; Ilinca, Viorel; Chitu, Zenaida; Jurchescu, Marta

    2015-04-01

    Most of the present day studies make use the 2.5D raster data formats for the landslide susceptibility analysis at regional scales. This data format has some disadvantages when geological and lithological settings are spatial discretized, hence these disadvantages propagate in the landslides susceptibility analysis and especially where only surface lithology is used. The main disadvantage when using 3D data models for the assessment of landslide susceptibility at regional scales is represented by the quality of the geological and lithological information that is available for a depth of no more than 100m. In order to mitigate this, a sufficient number of boreholes is required and sometimes is not available. In order to overcome the lack of borehole data, our approach was to make use of the present-day geological maps at scales ranging from 1:25,000 to 1:50,000 and to generate a geological 3D model up to a depth of 100m. The geological model was generated based on expert knowledge interpretations and geological cross sections provided on these geological maps. Using the 3D geological model a more complex 3D model was generated for the landslide susceptibility analysis that also contains information from other predictor factors like slope gradient, land-cover and land-use. For the landslide susceptibility analysis instead of using map algebra equations on classic pixel based data sets, the equations were adapted for 3D data models and map algebra equations on voxels. The test sites are located in the areas of Romanian Subcarpathians. The Romanian Subcarpathians are located to the exterior of the Carpathians. They consist of a large variety of rocks, flysch-type deposits in the inner part and molasse deposits in the outer part, ranging from a Cretacic-Paleogene to a Quaternary age. While some parts of the Subcarpathians have a basic geology, with a monoclinal geological structure, other parts like the Curvature Subcarpathians, present acomplex folded and faulted

  4. 3D Analysis of Nanocrystalline FeAl

    Full text: Nanocrystalline materials and nanostructures receive an increasing interest in materials science, since they often show unexpected physical properties. Their properties are closely linked to the size and 3D morphology of the nanostructures. Conventional transmission electron microscopy (TEM) analysis tools provide information on a projection of the nanostructures. Advanced analysis methods based on TEM can be used to determine the 3D morphology. In the present work a method based on TEM diffraction is developed that can be used to determine the size and morphology of the coherently scattering domains in 3D. In order to make bulk nanocrystalline materials several approaches have been used; one of them is based on their production by severe plastic deformation. Nanocrystalline intermetallic FeAl was made by high pressure torsion deformation of B2 ordered Fe-45at.%Al. The obtained bulk samples allow cutting out samples for TEM that can be directly linked to the shear direction and shear plane. Both, planar and cross sections of nanocrystalline FeAl were investigated to study the shape and morphology of the nanocrystals. In addition to the TEM images, electron diffraction patterns were recorded with a large range of different tilting angles. The morphology of the nanograins was analysed from the electron diffraction patterns by applying different tilting angles of the incident beam. A modified Williamson Hall plot was used to determine the coherently scattering domain size for each tilt angle. The analysis of the diffraction patterns was carried out with the software PASAD tools (www.univie.ac.at/pasad). From the results it was possible to determine quantitatively the size and morphology of the nanograins in 3D. The results show that the nanograins have a ellipsoidal shape and are elongated in shear direction, which is in good agreement with TEM images. In addition to the possibility to analyse nanostructures in 3D, TEM provides conveniently the possibility

  5. Error Analysis Of 3d Polygonal Model:A Survey

    Devendra Singh Rajput

    2012-05-01

    Full Text Available Various applications of computer graphics, (like animation, scientific visualization, and virtual reality involve the manipulation of geometric models. They are generally represented by triangular meshes due to its wide acceptance to process on rendering systems. The need of realism and high visual fidelity and the latest advances on scanning devices has increased complexity and size of triangular meshes. The original 3D model gets modified because of activities like approximation, transmission, processing and storage etc. Mostly the modification occurs due to simplification approaches which primarily use geometric distance metric as their simplification criteria. But it is hard to measure a small distance error accurately whereas other geometric or appearance error (like high curvature, thin region, color, texture, normals and volumetric has greater importance. Hence it is essential to understand the applicability of various parameters to evaluate the quality of 3D model. This paper briefly surveys the various errors analysis techniques, error metrics and tools to assess the quality of 3D mesh models.

  6. Analysis of the of bones through 3D computerized tomography; Analise de estrutura ossea atraves de microtomografia computadorizada 3D

    Lima, I.; Lopes, R.T. [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE), Rio de Janeiro, RJ (Brazil). Lab. de Instrumentacao Nuclear; Oliveira, L.F. [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. de Fisica. Dept. de Fisica Aplicada e Termodinamica; Alves, J.M. [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Escola de Engenharia

    2009-03-15

    This work shows the analysis of the internal structure of the bones samples through 3D micro tomography technique (3D-{mu}TC). The comprehension of the bone structure is particularly important when related to osteoporosis diagnosis because this implies in a deterioration of the trabecular bone architecture, which increases the fragility and the possibility to have bone fractures. Two bone samples (human calcaneous and Wistar rat femur) were used, and the method was a radiographic system in real time with an X Ray microfocus tube. The quantifications parameters are based on stereological principles and they are five: a bone volume fraction, trabecular number, the ratio between surface and bone volume, the trabecular thickness and the trabecular separation. The quantifications were done with a program developed especially for this purpose in Nuclear Instrumentation Laboratory - COPPE/UFRJ. This program uses as input the 3D reconstructions images and generates a table with the quantifications. The results of the human calcaneous quantifications are presented in tables 1 and 2, and the 3D reconstructions are illustrated in Figure 5. The Figure 6 illustrate the 2D reconstructed image and the Figure 7 the 3D visualization respectively of the Wistar femur sample. The obtained results show that the 3D-{mu}TC is a powerful technique that can be used to analyze bone microstructures. (author)

  7. 3D Massive MIMO Systems: Modeling and Performance Analysis

    Nadeem, Qurrat-Ul-Ain

    2015-07-30

    Multiple-input-multiple-output (MIMO) systems of current LTE releases are capable of adaptation in the azimuth only. Recently, the trend is to enhance system performance by exploiting the channel’s degrees of freedom in the elevation, which necessitates the characterization of 3D channels. We present an information-theoretic channel model for MIMO systems that supports the elevation dimension. The model is based on the principle of maximum entropy, which enables us to determine the distribution of the channel matrix consistent with the prior information on the angles. Based on this model, we provide analytical expression for the cumulative density function (CDF) of the mutual information (MI) for systems with a single receive and finite number of transmit antennas in the general signalto- interference-plus-noise-ratio (SINR) regime. The result is extended to systems with finite receive antennas in the low SINR regime. A Gaussian approximation to the asymptotic behavior of MI distribution is derived for the large number of transmit antennas and paths regime. We corroborate our analysis with simulations that study the performance gains realizable through meticulous selection of the transmit antenna downtilt angles, confirming the potential of elevation beamforming to enhance system performance. The results are directly applicable to the analysis of 5G 3D-Massive MIMO-systems.

  8. TECHNICAL ANALYSIS OF REMOTE 3D VISUALIZATION ON MOBILE DEVICES

    Ms. U. S. Junghare; Dr. V. M. Thakare; R. V. Dharaskar; S. S. Sherekar

    2012-01-01

    Considering the limitations of mobile devices like low bandwidth, less computation power, minimumstorage capacity etc it is not possible to store whole data for 3D visualization on mobile devices.Therefore to minimize the load of mobile devices there is use of server in case of remote 3D visualizationon mobile devices (clients). For 3D visualization on mobile devices various techniques are used at serverside as well as at mobile side for different purpose. Some techniques directly provides 3D...

  9. Uncertainty Analysis of RELAP5-3D

    Alexandra E Gertman; Dr. George L Mesina

    2012-07-01

    As world-wide energy consumption continues to increase, so does the demand for the use of alternative energy sources, such as Nuclear Energy. Nuclear Power Plants currently supply over 370 gigawatts of electricity, and more than 60 new nuclear reactors have been commissioned by 15 different countries. The primary concern for Nuclear Power Plant operation and lisencing has been safety. The safety of the operation of Nuclear Power Plants is no simple matter- it involves the training of operators, design of the reactor, as well as equipment and design upgrades throughout the lifetime of the reactor, etc. To safely design, operate, and understand nuclear power plants, industry and government alike have relied upon the use of best-estimate simulation codes, which allow for an accurate model of any given plant to be created with well-defined margins of safety. The most widely used of these best-estimate simulation codes in the Nuclear Power industry is RELAP5-3D. Our project focused on improving the modeling capabilities of RELAP5-3D by developing uncertainty estimates for its calculations. This work involved analyzing high, medium, and low ranked phenomena from an INL PIRT on a small break Loss-Of-Coolant Accident as wall as an analysis of a large break Loss-Of- Coolant Accident. Statistical analyses were performed using correlation coefficients. To perform the studies, computer programs were written that modify a template RELAP5 input deck to produce one deck for each combination of key input parameters. Python scripting enabled the running of the generated input files with RELAP5-3D on INL’s massively parallel cluster system. Data from the studies was collected and analyzed with SAS. A summary of the results of our studies are presented.

  10. DESIGN AND ANALYSIS OF 3D PRINTING PEN

    Mr. Nayan Jyoti Gogoi *, Prof. T. Jeyapoovan

    2016-01-01

    In present time 3d models and prototypes helping lot of engineers and in many technical areas mainly in design field to design a real model as quickly as possible with the help of 3d printing technology. The demand for 3d printing applications are increasing day by day and it is reaching to a height of end no of applications. In this project I am going to discuss how we can make an affordable and user friendly 3d printing device which can be used as a 3d printing pen as well as a device which...

  11. Comparative visual analysis of 3D urban wind simulations

    Röber, Niklas; Salim, Mohamed; Grawe, David; Leitl, Bernd; Böttinger, Michael; Schlünzen, Heinke

    2016-04-01

    Climate simulations are conducted in large quantity for a variety of different applications. Many of these simulations focus on global developments and study the Earth's climate system using a coupled atmosphere ocean model. Other simulations are performed on much smaller regional scales, to study very small fine grained climatic effects. These microscale climate simulations pose similar, yet also different, challenges for the visualization and the analysis of the simulation data. Modern interactive visualization and data analysis techniques are very powerful tools to assist the researcher in answering and communicating complex research questions. This presentation discusses comparative visualization for several different wind simulations, which were created using the microscale climate model MITRAS. The simulations differ in wind direction and speed, but are all centered on the same simulation domain: An area of Hamburg-Wilhelmsburg that hosted the IGA/IBA exhibition in 2013. The experiments contain a scenario case to analyze the effects of single buildings, as well as examine the impact of the Coriolis force within the simulation. The scenario case is additionally compared with real measurements from a wind tunnel experiment to ascertain the accuracy of the simulation and the model itself. We also compare different approaches for tree modeling and evaluate the stability of the model. In this presentation, we describe not only our workflow to efficiently and effectively visualize microscale climate simulation data using common 3D visualization and data analysis techniques, but also discuss how to compare variations of a simulation and how to highlight the subtle differences in between them. For the visualizations we use a range of different 3D tools that feature techniques for statistical data analysis, data selection, as well as linking and brushing.

  12. Performance Analysis of 3-D Monolithic Integrated Circuits

    Bobba, Shashikanth; Chakraborthy, Ashutosh; Olivier THOMAS (LEREPS-GRES); Batude, Perrine; Pavlidis, Vasileios; Micheli, Giovanni De

    2010-01-01

    3-D monolithic integration (3DMI), also termed as sequential integration, is a potential technology for future gigascale circuits. Since the device layers are processed in sequential order, the size of the vertical contacts is similar to traditional contacts unlike in the case of parallel 3-D integration with through silicon vias (TSVs). Given the advantage of such small contacts, 3DMI supports stacking active layers such that fine-grain integration of 3-D circuits can be implemented. This pa...

  13. Effects of eccentricity and order of vibration modes on the inelastic seismic response of 3D steel structures

    P. Sharifi, Naser; Sakulich, Aaron R.

    2014-04-01

    In torsionally coupled buildings, the total response of the structure is the result of the translational displacement of the story's center of stiffness and the displacement due to the roof's rotation. In structures with high eccentricity, the effect of the floor's rotation in the total response is considerable. The order of vibration modes is another important parameter that changes the contribution of the different translational and rotational modes in the total response. To explore the effects of eccentricity and the order of vibration modes on the total response, a number of 3-D steel moment-resistant frames with 4, 8, and 12 stories, with different eccentricities and plans, were considered. The structures were subjected to bidirectional seismic inputs so that their peak ground accelerations were scaled to 0.4g, 0.6g, and 0.8g. Increasing the eccentricity of the structure increases the participation of rotation in the total response. Furthermore, in torsionally flexible structures, where the first or second mode of vibration is a torsional mode, the contribution of the floor's rotation can be even greater. In some cases, the displacement of exterior columns is primarily the result of the floor's rotation. This suggests that to efficiently dampen the seismic displacement of such structures, the rotational mode of the building should be controlled.

  14. Binary pattern analysis for 3D facial action unit detection

    Sandbach, Georgia; Zafeiriou, Stefanos; Pantic, Maja

    2012-01-01

    In this paper we propose new binary pattern features for use in the problem of 3D facial action unit (AU) detection. Two representations of 3D facial geometries are employed, the depth map and the Azimuthal Projection Distance Image (APDI). To these the traditional Local Binary Pattern is applied, a

  15. 3D Modeling and Stress Analysis of Flare Piping

    Navath Ravikiran

    2014-10-01

    Full Text Available For transportation of fluid, steam or air piping system is widely used. For installing the piping system pipes, flanges, piping supports, valves, piping fittings etc. are used, which are piping elements. They are manufactured as per Codes and standards. Equipment and piping layout design as per process requirement and available space. Above layout made out by the help of General arrangement drawing, plant layout and P & ID. Then after flexibility providing to piping system, for compensate the different loads by the engineer. Stresses in pipe or piping systems are generated due to loads like expansion & contraction due to thermal load, seismic load, wind load, sustained load, reaction load etc. the stress analysis is done by help of software like CAESAR II. In this paper, a Flare pipe line is designed and 3D modeling is prepared in PDMS software. Attention is focused for stress analysis by Caesar-II software. So that various stress values, forces and deflections are analyzed at each node to make the design at safe operating conditions

  16. Analysis and investigation to draw up design method by inelastic analysis

    To realize small simple plant equipment, FBR design by inelastic analysis was studied. With the constitutive equation and analysis procedure proposed as the design method by inelastic analysis, effects of loading history on the results of inelastic analysis was investigated using a simple model. It was confirmed that estimation by the classical inelastic constitutive equation belonged to the safe site of loading history of the real reactor. The problems of application of the detailed constitutive equation to design were investigated. The creep fatigue damage evaluation logic in the intermediate retaining state, which is problem of estimation of strength on the basis of inelastic analysis, is studied. (S.Y.)

  17. 3D QSAR Analysis on Oxadiazole Derivatives as Anticancer Agents

    Sanmati K. Jain

    2011-07-01

    Full Text Available Three dimensional quantitative structure activity relationship (3D QSAR study by means of partial least square regression (PLSR method was performed on a series of 3-(Aryl-N-(Aryl-1, 2, 4-Oxadiazol-5-amines as antiproliferative agents using molecular design suite (VLifeMDS. This study was performed with 20 compounds (data set using sphere exclusion (SE algorithm and manual selection method used for the division of the data set into training and test set. PLSR methodology with stepwise (SW forward-backward variable selection method was used for building the QSAR models. Five predictive models were generated with sphere exclusion and two with manual data selection methods using PLSR. The most significant model is having correlation coefficient 0.9334 (squared correlation coefficient r2 = 0.8713 indicating noteworthy correlation between biological activity and descriptors. The model has internal predictivity 74.45% (q2 = 0.7445 and highest external predictivity 81.09 % (pred_r2 = 0.8109 and lowest error term for predictive correlation coefficient (pred_r2se = 0.1321. Model showed that steric (S_1278, S_751 and electrostatic (E_307 interactions play important role in determining antiproliferative activity. The molecular field analysis (MFA contour plots provided further understanding of the relationship between structural features of substituted oxadiazole derivatives and their activities which should be applicable to design newer potential antiproliferative agents.

  18. 3-D Printed Ultem 9085 Testing and Analysis

    Aguilar, Daniel; Christensen, Sean; Fox, Emmet J.

    2015-01-01

    The purpose of this document is to analyze the mechanical properties of 3-D printed Ultem 9085. This document will focus on the capabilities, limitations, and complexities of 3D printing in general, and explain the methods by which this material is tested. Because 3-D printing is a relatively new process that offers an innovative means to produce hardware, it is important that the aerospace community understands its current advantages and limitations, so that future endeavors involving 3-D printing may be completely safe. This document encompasses three main sections: a Slosh damage assessment, a destructive test of 3-D printed Ultem 9085 samples, and a test to verify simulation for the 3-D printed SDP (SPHERES Docking Port). Described below, 'Slosh' and 'SDP' refer to two experiments that are built using Ultem 9085 for use with the SPHERES (Synchronized Position Hold, Engage, Reorient, Experimental Satellites) program onboard the International Space Station (ISS) [16]. The SPHERES Facility is managed out of the National Aeronautics and Space Administration (NASA) Ames Research Center in California.

  19. Analysis of NEACRP 3D BWR core transient benchmark

    NEACRP BWR cold water injection benchmark is analyzed by two codes: TRAC-BF1/SKETCH-N code system by JAERI, Japan and TRAB-3D code by VTT Energy, Finland. Basic features of the codes are described. Neutronics modules of the codes apply nodal methods; separate calculations are performed to compare their accuracy. Thermal-hydraulics modules are significantly different: TRAC-BF1 uses two-phase two-fluid model, while TRAB-3D applies drift-flux model with four separated equations. A representative set of the global and local reactor parameters is given for both the steady-state and transient conditions. TRAB-3D calculations have been performed with two slip correlations: EPRI and the simple Zuber-Findley correlation. A comparison of the two TRAB results shows the importance of the slip model on some computed reactor parameters. The results of the TRAC-BF1/SKETCH-N and TRAB-3D codes are in a close agreement, especially when the advanced EPRI correlation is used in the TRAB-3D code. The presented data can be useful for assessment of other BWR codes. (author)

  20. 3D statistical failure analysis of monolithic dental ceramic crowns.

    Nasrin, Sadia; Katsube, Noriko; Seghi, Robert R; Rokhlin, Stanislav I

    2016-07-01

    For adhesively retained ceramic crown of various types, it has been clinically observed that the most catastrophic failures initiate from the cement interface as a result of radial crack formation as opposed to Hertzian contact stresses originating on the occlusal surface. In this work, a 3D failure prognosis model is developed for interface initiated failures of monolithic ceramic crowns. The surface flaw distribution parameters determined by biaxial flexural tests on ceramic plates and point-to-point variations of multi-axial stress state at the intaglio surface are obtained by finite element stress analysis. They are combined on the basis of fracture mechanics based statistical failure probability model to predict failure probability of a monolithic crown subjected to single-cycle indentation load. The proposed method is verified by prior 2D axisymmetric model and experimental data. Under conditions where the crowns are completely bonded to the tooth substrate, both high flexural stress and high interfacial shear stress are shown to occur in the wall region where the crown thickness is relatively thin while high interfacial normal tensile stress distribution is observed at the margin region. Significant impact of reduced cement modulus on these stress states is shown. While the analyses are limited to single-cycle load-to-failure tests, high interfacial normal tensile stress or high interfacial shear stress may contribute to degradation of the cement bond between ceramic and dentin. In addition, the crown failure probability is shown to be controlled by high flexural stress concentrations over a small area, and the proposed method might be of some value to detect initial crown design errors. PMID:27215334

  1. Digital holography microscopy in 3D biologic samples analysis

    In this work it is used a setup for Digital Holography Microscopy (MHD) for 3D biologic samples reconstruction. The phase contrast image reconstruction is done by using the Double propagation Method. The system was calibrated and tested by using a micrometric scale and pure phase object respectively. It was simulated the human red blood cell (erythrocyte) and beginning from the simulated hologram the digital 3D phase image for erythrocytes it was calculated. Also there was obtained experimental holograms of human erythrocytes and its corresponding 3D phase images, being evident the correspondence qualitative and quantitative between these characteristics in the simulated erythrocyte and in the experimentally calculated by DHM in both cases.

  2. Digital holography microscopy in 3D biologic samples analysis

    Ricardo, J O; Palacios, F; Palacios, G F; Sanchez, A [Department of Physics, University of Oriente (Cuba); Muramatsu, M [Department of General Physics, University of Sao Paulo - Sao Paulo (Brazil); Gesualdi, M [Engineering center, Models and Applied Social Science, UFABC - Sao Paulo (Brazil); Font, O [Department of Bio-ingeniering, University of Oriente - Santiago de Cuba (Cuba); Valin, J L [Mechanics Department, ISPJAE, Habana (Cuba); Escobedo, M; Herold, S [Department of Computation, University of Oriente (Cuba); Palacios, D F, E-mail: frpalaciosf@gmail.com [Department of Nuclear physics, University of Simon BolIva (Venezuela, Bolivarian Republic of)

    2011-01-01

    In this work it is used a setup for Digital Holography Microscopy (MHD) for 3D biologic samples reconstruction. The phase contrast image reconstruction is done by using the Double propagation Method. The system was calibrated and tested by using a micrometric scale and pure phase object respectively. It was simulated the human red blood cell (erythrocyte) and beginning from the simulated hologram the digital 3D phase image for erythrocytes it was calculated. Also there was obtained experimental holograms of human erythrocytes and its corresponding 3D phase images, being evident the correspondence qualitative and quantitative between these characteristics in the simulated erythrocyte and in the experimentally calculated by DHM in both cases.

  3. Analysis of quality of experience in 3D video systems

    Gutiérrez Sánchez, Jesús

    2016-01-01

    Esta tesis presenta un estudio exhaustivo sobre la evaluación de la calidad de experiencia (QoE, del inglés Quality of Experience) percibida por los usuarios de sistemas de vídeo 3D, analizando el impacto de los efectos introducidos por todos los elementos de la cadena de procesamiento de vídeo 3D. Por lo tanto, se presentan varias pruebas de evaluación subjetiva específicamente diseñadas para evaluar los sistemas considerados, teniendo en cuenta todos los factores perceptuales relacionados c...

  4. Hybrid segmentation framework for 3D medical image analysis

    Chen, Ting; Metaxas, Dimitri N.

    2003-05-01

    Medical image segmentation is the process that defines the region of interest in the image volume. Classical segmentation methods such as region-based methods and boundary-based methods cannot make full use of the information provided by the image. In this paper we proposed a general hybrid framework for 3D medical image segmentation purposes. In our approach we combine the Gibbs Prior model, and the deformable model. First, Gibbs Prior models are applied onto each slice in a 3D medical image volume and the segmentation results are combined to a 3D binary masks of the object. Then we create a deformable mesh based on this 3D binary mask. The deformable model will be lead to the edge features in the volume with the help of image derived external forces. The deformable model segmentation result can be used to update the parameters for Gibbs Prior models. These methods will then work recursively to reach a global segmentation solution. The hybrid segmentation framework has been applied to images with the objective of lung, heart, colon, jaw, tumor, and brain. The experimental data includes MRI (T1, T2, PD), CT, X-ray, Ultra-Sound images. High quality results are achieved with relatively efficient time cost. We also did validation work using expert manual segmentation as the ground truth. The result shows that the hybrid segmentation may have further clinical use.

  5. Yield and Cost Analysis or 3D Stacked ICs

    Taouil, M.

    2014-01-01

    3D stacking is an emerging technology promising many benefits such as low latency between stacked dies, reduced power consumption, high bandwidth communication, improved form factor and package volume density, heterogeneous integration, and low-cost manufacturing. However, it requires modification o

  6. 3D Massive MIMO Systems: Channel Modeling and Performance Analysis

    Nadeem, Qurrat-Ul-Ain

    2015-03-01

    Multiple-input-multiple-output (MIMO) systems of current LTE releases are capable of adaptation in the azimuth only. More recently, the trend is to enhance the system performance by exploiting the channel\\'s degrees of freedom in the elevation through the dynamic adaptation of the vertical antenna beam pattern. This necessitates the derivation and characterization of three-dimensional (3D) channels. Over the years, channel models have evolved to address the challenges of wireless communication technologies. In parallel to theoretical studies on channel modeling, many standardized channel models like COST-based models, 3GPP SCM, WINNER, ITU have emerged that act as references for industries and telecommunication companies to assess system-level and link-level performances of advanced signal processing techniques over real-like channels. Given the existing channels are only two dimensional (2D) in nature; a large effort in channel modeling is needed to study the impact of the channel component in the elevation direction. The first part of this work sheds light on the current 3GPP activity around 3D channel modeling and beamforming, an aspect that to our knowledge has not been extensively covered by a research publication. The standardized MIMO channel model is presented, that incorporates both the propagation effects of the environment and the radio effects of the antennas. In order to facilitate future studies on the use of 3D beamforming, the main features of the proposed 3D channel model are discussed. A brief overview of the future 3GPP 3D channel model being outlined for the next generation of wireless networks is also provided. In the subsequent part of this work, we present an information-theoretic channel model for MIMO systems that supports the elevation dimension. The model is based on the principle of maximum entropy, which enables us to determine the distribution of the channel matrix consistent with the prior information on the angles of departure and

  7. In-situ soil carbon analysis using inelastic neutron scattering

    In situ soil carbon analysis using inelastic neutron scattering (INS) is based on the emission of 4.43 MeV gamma rays from carbon nuclei excited by fast neutrons. This in-situ method has excellent potential for easily measuring soil carbon since it does not require soil core sampling and processing ...

  8. Correlative Microscopy for 3D Structural Analysis of Dynamic Interactions

    Jun, Sangmi; Zhao, Gongpu; Ning, Jiying; Gibson, Gregory A.; Watkins, Simon C.; Zhang, Peijun

    2013-01-01

    Cryo-electron tomography (cryoET) allows 3D visualization of cellular structures at molecular resolution in a close-to-physiological state1. However, direct visualization of individual viral complexes in their host cellular environment with cryoET is challenging2, due to the infrequent and dynamic nature of viral entry, particularly in the case of HIV-1. While time-lapse live-cell imaging has yielded a great deal of information about many aspects of the life cycle of HIV-13-7, the resolution ...

  9. Customisable 3D printed microfluidics for integrated analysis and optimisation.

    Monaghan, T; Harding, M J; Harris, R A; Friel, R J; Christie, S D R

    2016-08-16

    The formation of smart Lab-on-a-Chip (LOC) devices featuring integrated sensing optics is currently hindered by convoluted and expensive manufacturing procedures. In this work, a series of 3D-printed LOC devices were designed and manufactured via stereolithography (SL) in a matter of hours. The spectroscopic performance of a variety of optical fibre combinations were tested, and the optimum path length for performing Ultraviolet-visible (UV-vis) spectroscopy determined. The information gained in these trials was then used in a reaction optimisation for the formation of carvone semicarbazone. The production of high resolution surface channels (100-500 μm) means that these devices were capable of handling a wide range of concentrations (9 μM-38 mM), and are ideally suited to both analyte detection and process optimisation. This ability to tailor the chip design and its integrated features as a direct result of the reaction being assessed, at such a low time and cost penalty greatly increases the user's ability to optimise both their device and reaction. As a result of the information gained in this investigation, we are able to report the first instance of a 3D-printed LOC device with fully integrated, in-line monitoring capabilities via the use of embedded optical fibres capable of performing UV-vis spectroscopy directly inside micro channels. PMID:27452498

  10. Measuring the impact of 3D data geometric modeling on spatial analysis: Illustration with Skyview factor

    Brasebin, M.; Perret, J.; Mustière, S.; Weber, C.

    2012-10-01

    The increased availability of 3D urban data reflects a growing interest in 3D spatial analysis. As 3D spatial analysis often uses complex 3D data, studies of the potential gains of using more detailed 3D urban databases for specific uses is an important issue. First, more complex data implies an increase in time and memory usage for the analysis (and calls for more research on the efficiency of the algorithms used). Second, detailed 3D urban data are complex to produce, expensive and it is important to be well informed in order to decide whether of not to invest in such data. Currently, many studies have been led about the fitness for use of 2D data but they are very scarce concerning 3D data. This article presents a method to determine the influence of 3D modeling on the results of 3D analysis by isolating the potential sources of errors (such as roof modeling and geometric accuracy). This method is applied on two 3D datasets (LOD1 and LOD2) and a 3D indicator (the sky view factor or SVF). The results show that the significant influence of roof modeling is globally compensated by the difference in geometric modeling but that important local variations are noticed. Nevertheless, for 75% of the SVF processed the difference between the results using these two databases is lower than 2%.

  11. 3D numerical simulation and analysis of railgun gouging mechanism

    Jin-guo Wu

    2016-04-01

    Full Text Available A gouging phenomenon with a hypervelocity sliding electrical contact in railgun not only shortens the rail lifetime but also affects the interior ballistic performance. In this paper, a 3-D numerical model was introduced to simulate and analyze the generation mechanism and evolution of the rail gouging phenomenon. The results show that a rail surface bulge is an important factor to induce gouging. High density and high pressure material flow on the contact surface, obliquely extruded into the rail when accelerating the armature to a high velocity, can produce gouging. Both controlling the bulge size to a certain range and selecting suitable materials for rail surface coating will suppress the formation of gouging. The numerical simulation had a good agreement with experiments, which validated the computing model and methodology are reliable.

  12. Defect analysis by statistical fitting to 3D atomicmaps

    Balogh, Zoltán, E-mail: zbalo_01@uni-muenster.de [Institut für Materialphysik, Westfälische Wilhelms Universität-Münster, Wilhelm Klemm Straße 10, D-48149 Münster (Germany); Oberdorfer, Christian; Chellali, Mohammed Reda; Stender, Patrick; Nowak, Susann; Schmitz, Guido [Institut für Materialphysik, Westfälische Wilhelms Universität-Münster, Wilhelm Klemm Straße 10, D-48149 Münster (Germany)

    2013-09-15

    In this article we present a statistical fitting method for evaluation of atomic reconstructions which does not require a coarse-graining step. The fitting compares different models of chemical structure in their capability to explain the measured data set by a least square type merit function. Only preliminary qualitative assumptions about the possible chemical structure are required, while accurate quantitative parameters of the chosen model are delivered by fitting. The technique is particularly useful for singular defect structures with very high composition gradients, for which iso-concentration surfaces determined by coarse-graining become questionable or impossible. We demonstrate that particularly detailed information can be gained from triple junctions and grain boundaries. - Highlights: ► Direct fitting to 3D atomic distributions is proposed. ► Quantitative data is gained from small object with high composition gradients. ► Fitting is especially suitable for studying transport properties of defects.

  13. Defect analysis by statistical fitting to 3D atomicmaps

    In this article we present a statistical fitting method for evaluation of atomic reconstructions which does not require a coarse-graining step. The fitting compares different models of chemical structure in their capability to explain the measured data set by a least square type merit function. Only preliminary qualitative assumptions about the possible chemical structure are required, while accurate quantitative parameters of the chosen model are delivered by fitting. The technique is particularly useful for singular defect structures with very high composition gradients, for which iso-concentration surfaces determined by coarse-graining become questionable or impossible. We demonstrate that particularly detailed information can be gained from triple junctions and grain boundaries. - Highlights: ► Direct fitting to 3D atomic distributions is proposed. ► Quantitative data is gained from small object with high composition gradients. ► Fitting is especially suitable for studying transport properties of defects

  14. Analysis of 3-D Frictional Contact Mechanics Problems by a Boundary Element Method

    KEUM Bangyong; LIU Yijun

    2005-01-01

    The development of two boundary element algorithms for solving 3-D, frictional, and linear elastostatic contact problems is reported in this paper. The algorithms employ nonconforming discretizations for solving 3-D boundary element models, which provide much needed flexibility in the boundary element modeling for 3-D contact problems. These algorithms are implemented in a new 3-D boundary element code and verified using several examples. For the numerical examples studied, the results using the new boundary element algorithms match very well with the results using a commercial finite element code, and clearly demonstrate the feasibility of the new boundary element approach for 3-D contact analysis.

  15. On the presence of Fe(IV) in Fe-ZSM-5 and FeSrO3-x --unequivocal detection of the 3d4 spin system by resonant inelastic X-ray scattering.

    Pirngruber, Gerhard D; Grunwaldt, Jan-Dierk; van Bokhoven, Jeroen A; Kalytta, Andreas; Reller, Armin; Safonova, Olga V; Glatzel, Pieter

    2006-09-21

    The contribution of a 3d(4) spin configuration to the valence electronic structure of Fe compounds can be probed via spin-selective Fe K-pre-edge absorption spectra, using resonant inelastic X-ray scattering (RIXS). The 3d(4) configuration of Fe(IV) can be unequivocally detected even in a mixture with the high-spin 3d(5) configuration of Fe(III). This is demonstrated on the perovskite FeSrO(3-x) with formal oxidation state Fe(IV). When the technique was applied to an Fe-ZSM-5 catalyst during reaction with N(2)O, no 3d(4) configuration was detected. The formation of Fe(IV) upon reaction of Fe-ZSM-5 with N(2)O can, therefore, be ruled out. PMID:16970419

  16. 3D/1D Analysis of ICRF Antennas

    Maggiora, Riccardo; Lancellotti, Vito; Vecchi, Giuseppe

    2003-10-01

    An innovative tool has been realized for the 3D/1D simulation of Ion Cyclotron Radio Frequency (ICRF), i.e. accounting for antennas in a realistic 3D geometry and with an accurate 1D plasma model. The approach to the problem is based on an integral-equation formulation for the self-consistent evaluation of the current distribution on the conductors. The environment has been subdivided in two coupled region: the plasma region and the vacuum region. The two problems are linked by means of a magnetic current (electric field) distribution on the aperture between the two regions. In the vacuum region all the calculations are executed in the spatial domain while in the plasma region an extraction in the spectral domain of some integrals is employed that permits to significantly reduce the integration support and to obtain a high numerical efficiency leading to the practical possibility of using a large number of sub-domain (rectangular or triangular) basis functions on each solid conductor of the system. The plasma enters the formalism of the plasma region via a surface impedance matrix; for this reason any plasma model can be used; at present the FELICE code has been adopted, that affords density and temperature profiles, and FLR effects. The source term directly models the TEM mode of the coax feeding the antenna and the current in the coax is determined self-consistently, giving the input impedance/admittance of the antenna itself. Calculation of field distributions (both magnetic and electric), useful for sheath considerations, is included. This tool has been implemented in a suite, called TOPICA, that is modular and applicable to ICRF antenna structures of arbitrary shape. This new simulation tool can assist during the detailed design phase and for this reason can be considered a "Virtual Prototyping Laboratory" (VPL). The TOPICA suite has been tested against assessed codes and against measurements and data of mock-ups and existing antennas. The VPL is being used in

  17. Tensorial analysis of Eshelby stresses in 3D supercooled liquids

    Lemaître, Anaël

    2015-10-01

    It was recently proposed that the local rearrangements governing relaxation in supercooled liquids impress on the liquid medium long-ranged (Eshelby) stress fluctuations that accumulate over time. From this viewpoint, events must be characterized by elastic dipoles, which are second order tensors, and Eshelby fields are expected to show up in stress and stress increment correlations, which are fourth order tensor fields. We construct here an analytical framework that permits analyzing such tensorial correlations in isotropic media in view of accessing Eshelby fields. Two spherical bases are introduced, which correspond to Cartesian and spherical coordinates for tensors. We show how they can be used to decompose stress correlations and thus test such properties as isotropy and power-law scalings. Eshelby fields and the predicted stress correlations in an infinite medium are shown to belong to an algebra that can conveniently be described using the spherical tensor bases. Using this formalism, we demonstrate that the inherent stress field of 3D supercooled liquids is power law correlated and carries the signature of Eshelby fields, thus supporting the idea that relaxation events give rise to Eshelby stresses that accumulate over time.

  18. Tensorial analysis of Eshelby stresses in 3D supercooled liquids.

    Lemaître, Anaël

    2015-10-28

    It was recently proposed that the local rearrangements governing relaxation in supercooled liquids impress on the liquid medium long-ranged (Eshelby) stress fluctuations that accumulate over time. From this viewpoint, events must be characterized by elastic dipoles, which are second order tensors, and Eshelby fields are expected to show up in stress and stress increment correlations, which are fourth order tensor fields. We construct here an analytical framework that permits analyzing such tensorial correlations in isotropic media in view of accessing Eshelby fields. Two spherical bases are introduced, which correspond to Cartesian and spherical coordinates for tensors. We show how they can be used to decompose stress correlations and thus test such properties as isotropy and power-law scalings. Eshelby fields and the predicted stress correlations in an infinite medium are shown to belong to an algebra that can conveniently be described using the spherical tensor bases. Using this formalism, we demonstrate that the inherent stress field of 3D supercooled liquids is power law correlated and carries the signature of Eshelby fields, thus supporting the idea that relaxation events give rise to Eshelby stresses that accumulate over time. PMID:26520535

  19. 3D product authenticity model for online retail: An invariance analysis

    Algharabat, R; Dennis, C.

    2009-01-01

    This study investigates the effects of different levels of invariance analysis on three dimensional (3D) product authenticity model (3DPAM) constructs in the e- retailing context. A hypothetical retailer Web site presents a variety of laptops using 3D product visualisations. The proposed conceptual model achieves acceptable fit and the hypothesised paths are all valid. We empirically investigate the invariance across the subgroups to validate the results of our 3DPAM. We concluded that the 3D...

  20. QCD analysis of deep inelastic lepton scattering data

    The QCD analysis of structure functions of deep inelastic scattering of mesons on carbon, hydrogen, iron and neutrinos (antineutrinos) on iron has been performed in the leading and next-to-leading orders. The influence of sea quarks and gluons has been considered. The dependence of the obtained values of parameter Λ upon the effects of twist corrections, allowance for the target nucleus and heavy quark production threshold has been discussed

  1. Inelastic neutron scattering studies on the 3d-4f heterometallic single-molecule magnet Mn{sub 2}Nd{sub 2}

    Nehrkorn, Joscha; Milazzo, Ruggero; Stuiber, Stefan; Waldmann, Oliver [Physikalisches Institut, Universitaet Freiburg (Germany); Akhtar, Muhammad Nadeem; Lan, Yanhua; Powell, Annie K. [Institut fuer Anorganische Chemie, Universitaet Karlsruhe, KIT (Germany); Mutka, Hannu [Institut Laue-Langevin, Grenoble (France)

    2011-07-01

    The discovery of slow relaxation and quantum tunneling of the magnetization in Mn{sub 1}2ac more than 15 years ago has inspired both physicists and chemists alike. This class of molecules, now called single-molecule magnets (SMMs), has very recently been expanded to heterometallic clusters incorporating transition metal and rare earth ions. The 4f ions were chosen because of their large angular momentum and magnetic anisotropy. Inelastic neutron scattering experiments were performed on the time-of-flight disk-chopper spectrometer IN5 at ILL on the SMM Mn{sub 2}Nd{sub 2}. A magnetic model was developed which perfectly describes all data, including the magnetic data. It was found that neither the large anisotropy nor the large angular momentum of the Nd{sup I}II ions is the main reason for the SMM behavior in this molecule. Our analysis of the data indicates that it is the weak coupling of the Nd{sup I}II ions to the Mn{sup I}II ions, usually considered as a drawback of rare earth ions, which enhances the relaxation time and therefore leads to SMM behavior.

  2. Comprehensive Aerodynamic Analysis of a 10 MW Wind Turbine Rotor Using 3D CFD

    Zahle, Frederik; Bak, Christian; Sørensen, Niels N.;

    2014-01-01

    This article describes a comprehensive aerodynamic analysis carried out on the DTU 10 MW Reference Wind Turbine (DTU 10MW RWT), in which 3D CFD simulations were used to analyse the rotor performance and derive airfoil aerodynamic characteristics for use in aero-elastic simulation tools. The 3D CFD...... airfoil data derived using the Azimuthal Averaging Technique (AAT) was compared to airfoil data based on 2D CFD simulations on airfoil sections in combination with an array of 3D-correction engineering models, which indicated that the model by Chaviaropoulos and Hansen was in best agreement with the 3D...... CFD predictions. BEM simulations on the DTU 10MW RWT using the AAT-based airfoil data were carried out and compared to BEM simulations using the original airfoil data and the 3D CFD results, which showed clear improvements, particularly on the inner part of the rotor. Finally, 3D unsteady Detached...

  3. An optical real-time 3D measurement for analysis of facial shape and movement

    Zhang, Qican; Su, Xianyu; Chen, Wenjing; Cao, Yiping; Xiang, Liqun

    2003-12-01

    Optical non-contact 3-D shape measurement provides a novel and useful tool for analysis of facial shape and movement in presurgical and postsurgical regular check. In this article we present a system, which allows a precise 3-D visualization of the patient's facial before and after craniofacial surgery. We discussed, in this paper, the real time 3-D image capture, processing and the 3-D phase unwrapping method to recover complex shape deformation when the movement of the mouth. The result of real-time measurement for facial shape and movement will be helpful for the more ideal effect in plastic surgery.

  4. Automatic extraction of soft tissues from 3D MRI head images using model driven analysis

    This paper presents an automatic extraction system (called TOPS-3D : Top Down Parallel Pattern Recognition System for 3D Images) of soft tissues from 3D MRI head images by using model driven analysis algorithm. As the construction of system TOPS we developed, two concepts have been considered in the design of system TOPS-3D. One is the system having a hierarchical structure of reasoning using model information in higher level, and the other is a parallel image processing structure used to extract plural candidate regions for a destination entity. The new points of system TOPS-3D are as follows. (1) The TOPS-3D is a three-dimensional image analysis system including 3D model construction and 3D image processing techniques. (2) A technique is proposed to increase connectivity between knowledge processing in higher level and image processing in lower level. The technique is realized by applying opening operation of mathematical morphology, in which a structural model function defined in higher level by knowledge representation is immediately used to the filter function of opening operation as image processing in lower level. The system TOPS-3D applied to 3D MRI head images consists of three levels. First and second levels are reasoning part, and third level is image processing part. In experiments, we applied 5 samples of 3D MRI head images with size 128 x 128 x 128 pixels to the system TOPS-3D to extract the regions of soft tissues such as cerebrum, cerebellum and brain stem. From the experimental results, the system is robust for variation of input data by using model information, and the position and shape of soft tissues are extracted corresponding to anatomical structure. (author)

  5. Heat analysis of iron panel in 3-phase cubicles using 3-D finite element method

    This paper describes how to compute the temperature rise of panels in cubicles carrying 3-phase currents. The temperature rise is obtained by using 3-D finite element method combining the analysis of eddy current distribution in the panels with heat analysis of the cubicles. The usefulness of the 3-D heat analysis has already been obtained by another study. It is shown that our 3-D heat analysis is capable of evaluating a new design of 3-phase cubicles instead of the conventional trial and error approach. (Author)

  6. Analysis of 3D confocal images of capillaries

    Janáček, Jiří; Saxl, Ivan; Mao, X. W.; Eržen, I.; Kubínová, Lucie

    Saint-Etienne : International society for stereology, 2007, s. 12-15. [International congress for stereology /12./. Saint-Etienne (FR), 03.09.2007-07.09.2007] R&D Projects: GA AV ČR(CZ) IAA100110502 Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z10190503 Keywords : capillaries * confocal microscopy * image analysis Subject RIV: EA - Cell Biology

  7. Limit Analysis of 3D Reinforced Concrete Beam Elements

    Larsen, Kasper P.; Nielsen, Leif Otto; Poulsen, Peter Noe

    2012-01-01

    A new finite-element framework for lower-bound limit analysis of reinforced concrete beams, subjected to loading in three dimensions, is presented. The method circumvents the need for a direct formulation of a complex section-force-based yield criterion by creating a discrete representation of the...... Coulomb criterion is applied to the concrete stresses. The modified Coulomb criterion is approximated using second-order cone programming for improved performance over implementations using semidefinite programming. The element is verified by comparing the numerical results with analytical solutions....

  8. Stereo Scene Flow for 3D Motion Analysis

    Wedel, Andreas

    2011-01-01

    This book presents methods for estimating optical flow and scene flow motion with high accuracy, focusing on the practical application of these methods in camera-based driver assistance systems. Clearly and logically structured, the book builds from basic themes to more advanced concepts, culminating in the development of a novel, accurate and robust optic flow method. Features: reviews the major advances in motion estimation and motion analysis, and the latest progress of dense optical flow algorithms; investigates the use of residual images for optical flow; examines methods for deriving mot

  9. Analysis of the 3d9ns (n = 5, 6), 3d95p, 3d94f and 3d84s4p configurations of five times ionized arsenic (As VI)

    The spectrum of arsenic was photographed in the 100-1250 A region on grazing and normal incidence spectrographs. The spectrum of As VI was extended. Seven out of eight levels of the 3d95s and 6s configurations, 12 out of 12 levels of the 3d95p configuration, 13 out of 20 levels of the 3d94f configuration and 35 levels belonging to the 3d94s4p configuration have been established. Least-Square-Fitted parametric calculations involving configuration interactions both in even and odd parity systems were carried out to adequately interpret the spectrum. One hundred and thirty-two additional lines were classified in the As VI spectrum. A new value of the ionization limit was obtained. Thus, the 3d92D5/2 ground level in As VII lies 977500 cm-1 (121.17 eV) above the As VI ground state. (orig.)

  10. Solar Burst Analysis with 3D Loop Models

    Costa, Joaquim E R; Pinto, Tereza S N; Melnikov, Victor F

    2013-01-01

    A sample of Nobeyama flares was selected and analyzed using loop model for important flare parameters. The model for the flaring region consists of a three dimensional dipolar magnetic field, and spatial distributions of non-thermal electrons. We constructed a database by calculating the flare microwave emission for a wide range of these parameters. Out of this database with more than 5,000 cases we extracted general flare properties by comparing the observed and calculated microwave spectra. The analysis of NoRP data was mostly based in the center-to-limb variation of the flare properties with looptop and footpoint electron distributions and for NoRH maps on the resultant distribution of emission. One important aspect of this work is the comparison of the analysis of a flare using an inhomogeneous source model and a simplistic homogeneous source model. Our results show clearly that the homogeneous source hypothesis is not appropriate to describe the possible flare geometry and its use can easily produce misl...

  11. Galerkin Boundary Integral Analysis for the 3D Helmholtz Equation

    Swager, Melissa [Emporia State University; Gray, Leonard J [ORNL; Nintcheu Fata, Sylvain [ORNL

    2010-01-01

    A linear element Galerkin boundary integral analysis for the three-dimensional Helmholtz equation is presented. The emphasis is on solving acoustic scattering by an open (crack) surface, and to this end both a dual equation formulation and a symmetric hypersingular formulation have been developed. All singular integrals are defined and evaluated via a boundary limit process, facilitating the evaluation of the (finite) hypersingular Galerkin integral. This limit process is also the basis for the algorithm for post-processing of the surface gradient. The analytic integrations required by the limit process are carried out by employing a Taylor series expansion for the exponential factor in the Helmholtz fundamental solutions. For the open surface, the implementations are validated by comparing the numerical results obtained by using the two different methods.

  12. Time-Domain Analysis for 3-D Moored Systems

    肖越; 王言英

    2004-01-01

    In the paper, a comprehensive numerical study on the moored system is performed in time domain. The moored system, which is composed of the floating body sub-system and the mooring line sub-system, is calculated as a whole system by coupling. A time-domain method is applied to the analysis of the mooring line sub-system, and at the same time, an indirect time-domain method translated from frequency-domain to time-domain is developed to calculate the floating body sub-system. In the end, an FPSO vessel is calculated as a numerical example by the present method. A comparison of the result of the model test and that of the numerical method indicates that the present method is exact and effective.

  13. Global stability analysis of turbulent 3D wakes

    Rigas, Georgios; Sipp, Denis; Juniper, Matthew

    2015-11-01

    At low Reynolds numbers, corresponding to laminar and transitional regimes, hydrodynamic stability theory has aided the understanding of the dynamics of bluff body wake-flows and the application of effective control strategies. However, flows of fundamental importance to many industries, in particular the transport industry, involve high Reynolds numbers and turbulent wakes. Despite their turbulence, such wake flows exhibit organisation which is manifested as coherent structures. Recent work has shown that the turbulent coherent structures retain the shape of the symmetry-breaking laminar instabilities and only those manifest as large-scale structures in the near wake (Rigas et al., JFM vol. 750:R5 2014, JFM vol. 778:R2 2015). Based on the findings of the persistence of the laminar instabilities at high Reynolds numbers, we investigate the global stability characteristics of a turbulent wake generated behind a bluff three-dimensional axisymmetric body. We perform a linear global stability analysis on the experimentally obtained mean flow and we recover the dynamic characteristics and spatial structure of the coherent structures, which are linked to the transitional instabilities. A detailed comparison of the predictions with the experimental measurements will be provided.

  14. 3D nuclear track analysis by digital holographic microscopy

    Palacios, F. [Universidad de Oriente, Santiago de Cuba (Cuba); Palacios Fernandez, D., E-mail: danpalacios@cantv.ne [Universidad Simon Bolivar, P.O. 89000, Caracas 1080 (Venezuela, Bolivarian Republic of); Ricardo, J.; Palacios, G.F. [Universidad de Oriente, Santiago de Cuba (Cuba); Sajo-Bohus, L. [Universidad Simon Bolivar, P.O. 89000, Caracas 1080 (Venezuela, Bolivarian Republic of); Goncalves, E. [Polytechnical School, Sao Paulo University (USP) (Brazil); Valin, J.L. [Instituto Politecnico Superior ' Jose Antonio Echeverria' , Habana (Cuba); Monroy, F.A. [Universidad Nacional de Colombia, Sede Bogota (Colombia)

    2011-01-15

    A new method, based on Digital Holographic Microscopy (DHM), to visualize and to analyze etched tracks in SSNTD has been developed. The proposed method is based on the possibility of the digital holography to perform whole reconstruction of the recorded wave front, so that phase and intensity distribution at a plane located between the object and recording plane and along the reconstructed image of the object can be determined. In a DHM system, the back focal plane of the lens can be reconstructed so that complex amplitudes of the Fraunhofer diffraction of light distribution across the object can be known. With the knowledge and manipulation of the components of this plane is possible to design different methods of image analysis. In this paper, the DHM method was applied to determine the track parameters in CR-39 detectors, showing that most of studies carried out with Confocal Microscopy and Atomic Force Microscopy could be also done, with the sufficient exactitude and precision, but in a simpler and more economic way. The developed microholographic method provides a new alternative procedure that overcomes the current techniques at least in technological simplicity.

  15. 3D nuclear track analysis by digital holographic microscopy

    A new method, based on Digital Holographic Microscopy (DHM), to visualize and to analyze etched tracks in SSNTD has been developed. The proposed method is based on the possibility of the digital holography to perform whole reconstruction of the recorded wave front, so that phase and intensity distribution at a plane located between the object and recording plane and along the reconstructed image of the object can be determined. In a DHM system, the back focal plane of the lens can be reconstructed so that complex amplitudes of the Fraunhofer diffraction of light distribution across the object can be known. With the knowledge and manipulation of the components of this plane is possible to design different methods of image analysis. In this paper, the DHM method was applied to determine the track parameters in CR-39 detectors, showing that most of studies carried out with Confocal Microscopy and Atomic Force Microscopy could be also done, with the sufficient exactitude and precision, but in a simpler and more economic way. The developed microholographic method provides a new alternative procedure that overcomes the current techniques at least in technological simplicity.

  16. A nonlinear 3D containment analysis for airplane impact

    In the Federal Republic of Germany, it is pertinent safety philosophy to design nuclear facilities against airplane impact, despite its very unlikely probability of occurrence. For safety reasons, the following conditions have to be met: 1) In the close impact area of the projectile, the structure can be stressed up to its ultimate load capacity, so that impact energy is dissipated partly. Hereby, it must be strictly clarified that local structural failure within the impact zone is avoided. 2) Residual impact energy is transferred to the 'non-disturbed' containment structure and to the interior structure. The subject of reinforced concrete structures under impact loads shows still clear gaps between the findings of experimental and analytical analyses. To clarify this highly nonlinear phenomena comprehensive tests have recently been performed in Germany. It is the aim of this paper to carry out a three-dimensional analysis of a nuclear facility. To perform the calculations, the finite element ADINA code is applied. In order to obtain optimum results, a very fine mesh leading to several thousand DOF is used. To model the impact area of the concrete structure realistically, its linear and mostly nonlinear material behaviour as well as its failure criteria must be taken into account. Herewith the structural response is reduced due to increased energy dissipation. This reduction rate is valued by variation of the assumed size of impact zone, the load impact location and the assumed load-time function. (orig./RW)

  17. Using decision analysis to estimate 3-D seismic value-Minas field, Sumatra Indonesia

    Mangold, K.M.; Whitacre, T.P.; Seffibudianti (Caltex Pacific Indonesia, Sumatra (Indonesia))

    1996-01-01

    Decision Analysis has been used to estimate the value added from a 3-D seismic survey recorded over Minas field, Central Sumatra. The method involves comparing the expected values which result from the various decision options, such as acquiring 3-D or not. Probabilities must be assigned to the various branches of the decision tree. These include for example, the expected reliability of the 3-D data as well as the subsequent interpretation. Anticipated drilling results with and without 3-D are assessed after reviewing historical data and interviewing experts to obtain 10th, 50th and 90th percentile results for various scenarios. In this way the expected value, or cumulative distribution of the expected value of the 3-D can be computed and risk can be assessed. The Minas 3-D survey is the largest (450 square kilometers) of over 25 development 3-D surveys recorded by Caltex Pacific Indonesia (CPI) over its fields in Central Sumatra. This survey was conducted after nearly 50 years of production from more than 750 wells. CPI's 3-D experience has shown that increasing the subsurface resolution within complex high angle faulted areas results in new drilling locations in older mature fields such as Minas. Better knowledge of the oil producing reservoirs can also be used to optimize pattern waterflood locations, horizontal drilling and other tertiary recovery studies.

  18. Using decision analysis to estimate 3-D seismic value-Minas field, Sumatra Indonesia

    Mangold, K.M.; Whitacre, T.P.; Seffibudianti [Caltex Pacific Indonesia, Sumatra (Indonesia)

    1996-12-31

    Decision Analysis has been used to estimate the value added from a 3-D seismic survey recorded over Minas field, Central Sumatra. The method involves comparing the expected values which result from the various decision options, such as acquiring 3-D or not. Probabilities must be assigned to the various branches of the decision tree. These include for example, the expected reliability of the 3-D data as well as the subsequent interpretation. Anticipated drilling results with and without 3-D are assessed after reviewing historical data and interviewing experts to obtain 10th, 50th and 90th percentile results for various scenarios. In this way the expected value, or cumulative distribution of the expected value of the 3-D can be computed and risk can be assessed. The Minas 3-D survey is the largest (450 square kilometers) of over 25 development 3-D surveys recorded by Caltex Pacific Indonesia (CPI) over its fields in Central Sumatra. This survey was conducted after nearly 50 years of production from more than 750 wells. CPI`s 3-D experience has shown that increasing the subsurface resolution within complex high angle faulted areas results in new drilling locations in older mature fields such as Minas. Better knowledge of the oil producing reservoirs can also be used to optimize pattern waterflood locations, horizontal drilling and other tertiary recovery studies.

  19. A new global analysis of deep inelastic scattering data

    Zomer, F.; Pascaud, C. [Laboratoire de l' Accelerateur Lineaire, IN2P3-CNRS et Universite Paris-Sud, 91 - Orsay (France); Barone, V. [Universita di Torino, (Italy). Dipt. di Fisica Teorica; D.S.T.A. Universita, A. Avogadro, Alessandria (Italy)

    1999-10-01

    A new QCD analysis of Deep Inelastic Scattering (DIS) data is presented. All available neutrino and anti-neutrino cross-sections are reanalyzed and included in the fit, along with charged-lepton DIS and Drell-Yan data. A massive factorization scheme is used to describe the charm component of the structure functions. Next-to-leading order parton distribution functions are provided. In particular, the strange sea density is determined with a higher accuracy with respect to other global fits. (authors)

  20. QCD analysis of the polarized deep-inelastic world data

    The results of a recent next-to-leading order QCD analysis of the world data on polarized deep inelastic scattering are reported. New parameterizations are derived for the quark and gluon distributions, accounting for the massive Wilson coefficient for the charm quarks, and the value of αs(Mz2) is determined with correlated errors.We obtain αsNLO(Mz2)=0.1132 -0.0095+0.0056. Limits on potential higher twist contributions to the structure function g1(x,Q2) are derived.We also compare to the results obtained by other groups. (orig.)

  1. Static and dynamic stability analysis using 3D-DDA with incision body scheme

    Wang Jianquan; Lin Gao; Liu Jun

    2006-01-01

    Discontinuous deformation analysis (DDA) provides a powerful numerical tool for the analysis of discontinuous media. This method has been widely applied to the 2D analysis of discontinuous deformation. However, it is hindered from analyzing 3D rock engineering problems mainly due to the lack of reliable 3D contact detection algorithms for polyhedra.Contact detection is a key in 3-D DDA analysis. The limitations and advantages of existing contact detection schemes are discussed in this paper, and a new approach, called the incision body (IB), is proposed, taking into account the advantages of the existing methods. A computer code 3DIB, which uses the IB scheme as a 3D contact detection algorithm, was programmed with Visual C++. Static and dynamic stability analysis for three realistic engineering problems has been carried out. Furthermore, the focus is on studying the stability of a gravity dam on jointed rock foundation and dynamic stability of a fractured gravity dam subject to earthquake shaking. The simulation results show that the program 3DIB and incision body scheme are capable of detecting 3D block contacts correctly and hence simulating the open-close and slide process of jointed block masses. In addition, the code 3DIB could provide an effective tool for evaluating the safety of 3D dam structures, which is quite important for engineering problems.

  2. Steady state analysis of SFR cores using DYN3D-Serpent codes sequence

    A few-group cross section generation methodology for the deterministic analysis of SFR cores with DYN3D code has been proposed. The full core DYN3D results obtained using the few-group constants produced by Serpent agreed very well with that of the reference full core MC simulations. Such an agreement demonstrates the feasibility of the proposed few-group cross section generation procedure. In summary, this study showed that the Serpent-DYN3D code sequence can be successfully used for modeling fast spectrum reactor systems. (orig.)

  3. Transient dynamic and inelastic analysis of shells of revolution

    Advances in the limits of structural use in the aerospace and nuclear power industries over the past years have increased the requirements upon the applicable analytical computer programs to include accurate capabilities for inelastic and transient dynamic analyses. In many minds, however, this advanced capability is unequivocally linked with the large scale, general purpose, finite element programs. This idea is also combined with the view that, therefore, such analyses are prohibitively expensive and should be relegated to the 'last resort' classification. While this, in the general sense, may indeed be the case, if however, the user needs only to analyze structures falling into limited categories, he may find that a variety of smaller special purpose programs are available, which do not put an undue strain upon his resources. One such structural category is shells of revolution. This survey of programs will concentrate upon the analytical tools which have been developed predominantly for shells of revolution. The survey will be subdivided into three parts: a) consideration of programs for transient dynamic analysis, b) consideration of programs for inelastic analysis, and finally, c) consideration of programs capable of dynamic plasticity analysis. In each part, programs based upon finite difference, finite element, and numerical integration methods will be considered. The programs will be compared on the basis of analytical capabilities, and ease of idealization and use. In each part of the survey sample problems will be utilized to exemplify the state-of-the-art. (orig.)

  4. STEREOLOGY AND 3D MICROSCOPY: USEFUL ALTERNATIVES OR COMPETITORS IN THE QUANTITATIVE ANALYSIS OF MICROSTRUCTURES?

    Hans Eckart Exner

    2011-05-01

    Full Text Available With the rapid development of modern techniques for producing 3D images, the assessment of 3D geometry from 2D sections of projections by stereological methods seems to become more and more redundant. The paper aims to show the limits of the two approaches and to outline their relative advantages in practical applications. It is concluded that, for a large variety of applications, classical stereological methods are the most effective way to characterize 3D geometry of irregular microstructures. The basic equations for useful global (field parameters are summarized and their assessment by manual techniques is indicated. For other types of applications asking for complex parameters like shape, arrangement or size distribution, preference should be given to direct 3D measurements. Parameters obtained by 2D analysis of sections or projections are useful for comparison purposes, for empirical correlation analysis or for fingerprinting-type description. Field and feature parameters and the problems of data reductions are discussed.

  5. Pore3D: A software library for quantitative analysis of porous media

    Brun, Francesco [Sincrotrone Trieste S.C.p.A, S.S. 14 Km 163.5, 34149 Basovizza, Trieste (Italy); Department of Electrical, Electronic and Computer Engineering, University of Trieste, Via A. Valerio, 10, 34127 Trieste (Italy); Mancini, Lucia, E-mail: lucia.mancini@elettra.trieste.i [Sincrotrone Trieste S.C.p.A, S.S. 14 Km 163.5, 34149 Basovizza, Trieste (Italy); Kasae, Parnian [Sincrotrone Trieste S.C.p.A, S.S. 14 Km 163.5, 34149 Basovizza, Trieste (Italy); International Centre for Theoretical Physics, Strada Costiera, 11, 34151 Trieste (Italy); Favretto, Stefano [Department of Materials and Natural Resources, University of Trieste, Via A. Valerio, 2, 34127 Trieste (Italy); Dreossi, Diego; Tromba, Giuliana [Sincrotrone Trieste S.C.p.A, S.S. 14 Km 163.5, 34149 Basovizza, Trieste (Italy)

    2010-04-11

    In recent years great interest has been posed in imaging techniques like X-ray computed microtomography which in a nondestructive way produce three-dimensional (3D) images of the internal structure of, e.g. porous media. A major challenge lies in the quantitative analysis of the resulting images that allows a more comprehensive and objective characterization of the sample under investigation. A software able to handle and process large 3D image datasets with common hardware is therefore necessary in order to extract morphological and textural information directly from the images. In the present paper the Pore3D software library developed by the SYRMEP research group of the Elettra Synchrotron Light Laboratory in Trieste (Italy) is presented. The library consists of several state-of-the-art functions and procedures for performing filtering, segmentation and quantitative analysis of 3D images. The current status of the project and some applications are here reported.

  6. Pore3D: A software library for quantitative analysis of porous media

    In recent years great interest has been posed in imaging techniques like X-ray computed microtomography which in a nondestructive way produce three-dimensional (3D) images of the internal structure of, e.g. porous media. A major challenge lies in the quantitative analysis of the resulting images that allows a more comprehensive and objective characterization of the sample under investigation. A software able to handle and process large 3D image datasets with common hardware is therefore necessary in order to extract morphological and textural information directly from the images. In the present paper the Pore3D software library developed by the SYRMEP research group of the Elettra Synchrotron Light Laboratory in Trieste (Italy) is presented. The library consists of several state-of-the-art functions and procedures for performing filtering, segmentation and quantitative analysis of 3D images. The current status of the project and some applications are here reported.

  7. Shape Analysis of 3D Head Scan Data for U.S. Respirator Users

    Stephanie Lynch; Viscusi, Dennis J.; Stacey Benson; Slice, Dennis E.; Ziqing Zhuang

    2010-01-01

    In 2003, the National Institute for Occupational Safety and Health (NIOSH) conducted a head-and-face anthropometric survey of diverse, civilian respirator users. Of the 3,997 subjects measured using traditional anthropometric techniques, surface scans and 26 three-dimensional (3D) landmark locations were collected for 947 subjects. The objective of this study was to report the size and shape variation of the survey participants using the 3D data. Generalized Procrustes Analysis (GPA) was con...

  8. 3D photography in the objective analysis of volume augmentation including fat augmentation and dermal fillers.

    Meier, Jason D; Glasgold, Robert A; Glasgold, Mark J

    2011-11-01

    The authors present quantitative and objective 3D data from their studies showing long-term results with facial volume augmentation. The first study analyzes fat grafting of the midface and the second study presents augmentation of the tear trough with hyaluronic filler. Surgeons using 3D quantitative analysis can learn the duration of results and the optimal amount to inject, as well as showing patients results that are not demonstrable with standard, 2D photography. PMID:22004863

  9. 3D finite elements method (FEM) Analysis of basic process parameters in rotary piercing mill

    Z. Pater; J. Bartnicki; Kazanecki, J.

    2012-01-01

    In this paper 3D FEM analysis of process parameters and its infl uence in rotary piercing mill is presented. The FEM analyze of the rotary piercing process was made under the conditions of 3D state of strain with taking into consideration the thermal phenomena. The calculations were made with application of different rolls’ skew angles and different plug designs. In the result, progression of shapes, temperature and distributions of stress and strain were characterized. The numerical results ...

  10. Inelastic stress analysis of the IHX tube sheet

    The design of intermediate heat exchanger tube sheets of the VHTR Reactor requires serious attention. Its complicated shape causes significantly high thermal stresses at startup and shutdown, which requires the structural design be made by inelastic analysis rather than elastic analysis. A creep constitutive equation of Hastelloy X was therefore prepared based on literature data. Stress analysis and creep damage evaluation, made for flat and manifold tube sheets by finite element method, showed the structural life of the manifold type to be longer than that of the flat one. In addition, sensitivity analysis of the equation was performed in order to evaluate the influence of the dispersion in the data on the structural life

  11. Sensitivity Analysis of the Scattering-Based SARBM3D Despeckling Algorithm.

    Di Simone, Alessio

    2016-01-01

    Synthetic Aperture Radar (SAR) imagery greatly suffers from multiplicative speckle noise, typical of coherent image acquisition sensors, such as SAR systems. Therefore, a proper and accurate despeckling preprocessing step is almost mandatory to aid the interpretation and processing of SAR data by human users and computer algorithms, respectively. Very recently, a scattering-oriented version of the popular SAR Block-Matching 3D (SARBM3D) despeckling filter, named Scattering-Based (SB)-SARBM3D, was proposed. The new filter is based on the a priori knowledge of the local topography of the scene. In this paper, an experimental sensitivity analysis of the above-mentioned despeckling algorithm is carried out, and the main results are shown and discussed. In particular, the role of both electromagnetic and geometrical parameters of the surface and the impact of its scattering behavior are investigated. Furthermore, a comprehensive sensitivity analysis of the SB-SARBM3D filter against the Digital Elevation Model (DEM) resolution and the SAR image-DEM coregistration step is also provided. The sensitivity analysis shows a significant robustness of the algorithm against most of the surface parameters, while the DEM resolution plays a key role in the despeckling process. Furthermore, the SB-SARBM3D algorithm outperforms the original SARBM3D in the presence of the most realistic scattering behaviors of the surface. An actual scenario is also presented to assess the DEM role in real-life conditions. PMID:27347971

  12. Quantitative Analysis and Modeling of 3-D TSV-Based Power Delivery Architectures

    He, Huanyu

    As 3-D technology enters the commercial production stage, it is critical to understand different 3-D power delivery architectures on the stacked ICs and packages with through-silicon vias (TSVs). Appropriate design, modeling, analysis, and optimization approaches of the 3-D power delivery system are of foremost significance and great practical interest to the semiconductor industry in general. Based on fundamental physics of 3-D integration components, the objective of this thesis work is to quantitatively analyze the power delivery for 3D-IC systems, develop appropriate physics-based models and simulation approaches, understand the key issues, and provide potential solutions for design of 3D-IC power delivery architectures. In this work, a hybrid simulation approach is adopted as the major approach along with analytical method to examine 3-D power networks. Combining electromagnetic (EM) tools and circuit simulators, the hybrid approach is able to analyze and model micrometer-scale components as well as centimeter-scale power delivery system with high accuracy and efficiency. The parasitic elements of the components on the power delivery can be precisely modeled by full-wave EM solvers. Stack-up circuit models for the 3-D power delivery networks (PDNs) are constructed through a partition and assembly method. With the efficiency advantage of the SPICE circuit simulation, the overall 3-D system power performance can be analyzed and the 3-D power delivery architectures can be evaluated in a short computing time. The major power delivery issues are the voltage drop (IR drop) and voltage noise. With a baseline of 3-D power delivery architecture, the on-chip PDNs of TSV-based chip stacks are modeled and analyzed for the IR drop and AC noise. The basic design factors are evaluated using the hybrid approach, such as the number of stacked chips, the number of TSVs, and the TSV arrangement. Analytical formulas are also developed to evaluate the IR drop in 3-D chip stack in

  13. 3D thermo-chemical-mechanical analysis of the pultrusion process

    Baran, Ismet; Hattel, Jesper Henri; Tutum, Cem C.

    2013-01-01

    In the present study, a 3D Eulerian thermo-chemical analysis is sequentially coupled with a 3D Lagrangian quasi static mechanical analysis of the pultrusion process. The temperature and degree of cure profiles at the steady state are first calculated in the thermo-chemical analysis. In the...... mechanical analysis, the developments of the process induced stresses and distortions during the process are predicted using the already obtained temperature and degree of cure profiles together with the glass transition temperature. The predictions of the transverse transient stresses and distortions are...... found to be similar as compared to the available data in the literature. Using the proposed 3D mechanical analysis, different mechanical behaviour is obtained for the longitudinal stress development as distinct from the stress development in the transverse directions. Even though the matrix material is...

  14. Detection of Connective Tissue Disorders from 3D Aortic MR Images Using Independent Component Analysis

    Hansen, Michael Sass; Zhao, Fei; Zhang, Honghai;

    2006-01-01

    A computer-aided diagnosis (CAD) method is reported that allows the objective identification of subjects with connective tissue disorders from 3D aortic MR images using segmentation and independent component analysis (ICA). The first step to extend the model to 4D (3D + time) has also been taken....... ICA is an effective tool for connective tissue disease detection in the presence of sparse data using prior knowledge to order the components, and the components can be inspected visually. 3D+time MR image data sets acquired from 31 normal and connective tissue disorder subjects at end-diastole (R......-wave peak) and at 45\\$\\backslash\\$% of the R-R interval were used to evaluate the performance of our method. The automated 3D segmentation result produced accurate aortic surfaces covering the aorta. The CAD method distinguished between normal and connective tissue disorder subjects with a classification...

  15. Micromechanical analysis of thermo-inelastic multiphase short-fiber composites

    Aboudi, Jacob

    1994-01-01

    A micromechanical formulation is presented for the prediction of the overall thermo-inelastic behavior of multiphase composites which consist of short fibers. The analysis is an extension of the generalized method of cells that was previously derived for inelastic composites with continuous fibers, and the reliability of which was critically examined in several situations. The resulting three dimensional formulation is extremely general, wherein the analysis of thermo-inelastic composites with continuous fibers as well as particulate and porous inelastic materials are merely special cases.

  16. Mathematical modeling and reliability analysis of a 3D Li-ion battery

    RICHARD HONG PENG LIANG

    2014-02-01

    Full Text Available The three-dimensional (3D Li-ion battery presents an effective solution to issues affecting its two-dimensional counterparts, as it is able to attain high energy capacities for the same areal footprint without sacrificing power density. A 3D battery has key structural features extending in and fully utilizing 3D space, allowing it to achieve greater reliability and longevity. This study applies an electrochemical-thermal coupled model to a checkerboard array of alternating positive and negative electrodes in a 3D architecture with either square or circular electrodes. The mathematical model comprises the transient conservation of charge, species, and energy together with electroneutrality, constitutive relations and relevant initial and boundary conditions. A reliability analysis carried out to simulate malfunctioning of either a positive or negative electrode reveals that although there are deviations in electrochemical and thermal behavior for electrodes adjacent to the malfunctioning electrode as compared to that in a fully-functioning array, there is little effect on electrodes further away, demonstrating the redundancy that a 3D electrode array provides. The results demonstrate that implementation of 3D batteries allow it to reliably and safely deliver power even if a component malfunctions, a strong advantage over conventional 2D batteries.

  17. 3D finite element analysis of porous Ti-based alloy prostheses.

    Mircheski, Ile; Gradišar, Marko

    2016-11-01

    In this paper, novel designs of porous acetabular cups are created and tested with 3D finite element analysis (FEA). The aim is to develop a porous acetabular cup with low effective radial stiffness of the structure, which will be near to the architectural and mechanical behavior of the natural bone. For the realization of this research, a 3D-scanner technology was used for obtaining a 3D-CAD model of the pelvis bone, a 3D-CAD software for creating a porous acetabular cup, and a 3D-FEA software for virtual testing of a novel design of the porous acetabular cup. The results obtained from this research reveal that a porous acetabular cup from Ti-based alloys with 60 ± 5% porosity has the mechanical behavior and effective radial stiffness (Young's modulus in radial direction) that meet and exceed the required properties of the natural bone. The virtual testing with 3D-FEA of a novel design with porous structure during the very early stage of the design and the development of orthopedic implants, enables obtaining a new or improved biomedical implant for a relatively short time and reduced price. PMID:27015664

  18. Medical image analysis of 3D CT images based on extensions of Haralick texture features

    Tesař, Ludvík; Shimizu, A.; Smutek, D.; Kobatake, H.; Nawano, S.

    2008-01-01

    Roč. 32, č. 6 (2008), s. 513-520. ISSN 0895-6111 R&D Projects: GA AV ČR 1ET101050403; GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : image segmentation * Gaussian mixture model * 3D image analysis Subject RIV: IN - Informatics, Computer Science Impact factor: 1.192, year: 2008 http://library.utia.cas.cz/separaty/2008/AS/tesar-medical image analysis of 3d ct image s based on extensions of haralick texture features.pdf

  19. The integrated code system CASCADE-3D for advanced core design and safety analysis

    The new program system CASCADE-3D (Core Analysis and Safety Codes for Advanced Design Evaluation) links some of Siemens advanced code packages for in-core fuel management and accident analysis: SAV95, PANBOX/COBRA and RELAP5. Consequently by using CASCADE-3D the potential of modern fuel assemblies and in-core fuel management strategies can be much better utilized because safety margins which had been reduced due to conservative methods are now predicted more accurately. By this innovative code system the customers can now take full advantage of the recent progress in fuel assembly design and in-core fuel management.(author)

  20. 3D analysis of eddy current loss in the permanent magnet coupling

    Zhu, Zina; Meng, Zhuo

    2016-07-01

    This paper first presents a 3D analytical model for analyzing the radial air-gap magnetic field between the inner and outer magnetic rotors of the permanent magnet couplings by using the Amperian current model. Based on the air-gap field analysis, the eddy current loss in the isolation cover is predicted according to the Maxwell's equations. A 3D finite element analysis model is constructed to analyze the magnetic field spatial distributions and vector eddy currents, and then the simulation results obtained are analyzed and compared with the analytical method. Finally, the current losses of two types of practical magnet couplings are measured in the experiment to compare with the theoretical results. It is concluded that the 3D analytical method of eddy current loss in the magnet coupling is viable and could be used for the eddy current loss prediction of magnet couplings.

  1. QCD analysis of the polarized deep-inelastic world data

    Bluemlein, Johannes; Boettcher, Helmut

    2010-12-15

    The results of a recent next-to-leading order QCD analysis of the world data on polarized deep inelastic scattering are reported. New parameterizations are derived for the quark and gluon distributions, accounting for the massive Wilson coefficient for the charm quarks, and the value of {alpha}{sub s}(M{sub z}{sup 2}) is determined with correlated errors.We obtain {alpha}{sub s}{sup NLO}(M{sub z}{sup 2})=0.1132 {sub -0.0095}{sup +0.0056}. Limits on potential higher twist contributions to the structure function g{sub 1}(x,Q{sup 2}) are derived.We also compare to the results obtained by other groups. (orig.)

  2. QCD analysis of polarized deep inelastic scattering data

    A QCD analysis of the world data on polarized deep inelastic scattering is presented in next-to-leading order, including the heavy flavor Wilson coefficient in leading order in the fixed flavor number scheme. New parameterizations are derived for the quark and gluon distributions and the value of αs(Mz2) is determined. The impact of the variation of both the renormalization and factorization scales on the distributions and the value of αs is studied. We obtain αsNLO(MZ2)=0.1132 -0.0095+0.0056. The first moments of the polarized twist-2 parton distribution functions are calculated with correlated errors to allow for comparisons with results from lattice QCD simulations. Potential higher twist contributions to the structure function g1(x,Q2) are determined and found to be compatible with zero both for proton and deuteron targets. (orig.)

  3. Digital Curvatures Applied to 3D Object Analysis and Recognition: A Case Study

    Chen, Li

    2009-01-01

    In this paper, we propose using curvatures in digital space for 3D object analysis and recognition. Since direct adjacency has only six types of digital surface points in local configurations, it is easy to determine and classify the discrete curvatures for every point on the boundary of a 3D object. Unlike the boundary simplicial decomposition (triangulation), the curvature can take any real value. It sometimes makes difficulties to find a right value for threshold. This paper focuses on the global properties of categorizing curvatures for small regions. We use both digital Gaussian curvatures and digital mean curvatures to 3D shapes. This paper proposes a multi-scale method for 3D object analysis and a vector method for 3D similarity classification. We use these methods for face recognition and shape classification. We have found that the Gaussian curvatures mainly describe the global features and average characteristics such as the five regions of a human face. However, mean curvatures can be used to find ...

  4. Applications of 3-D reconstruction and 3-D image analysis using computer graphics in surgery of the oral and maxillofacial regions

    Using the 2-D data provided by CT-Tomography and MRI-tomography of oral and maxillofacial diseases (cyst, benign tumor, primary tumor and regional lymphnodes of malignant tumor), 3-D images were reconstructed and spatial analysis was attempted. We report the general concepts. The hardware used consisted of the Hewlett-Packard HP-9000/300, which utilizes a 16-bit CPU. A digitizer was used to construct 3-D images from serial CT-tomography and MRI-tomography images. Output was displayed on a color monitor and photographs. The 3 cases on which we used this technique included a 19-year-old male with plunging ranula, a 50-year-old male with maxillary pleomorphic adenoma, and a 58-year-old male with squamous cell carcinoma of the maxillary sinus (T3N3M0). As 3-D reconstruction can be done in any arbitrary direction or cross section, it is possible to spatially determine the position of the disease inside the body, its progression, and its relationship with adjacent organs. Through image analysis, it is possible to better understand the volume and surface area of the disease. 3-D image reconstruction is an effective tool in the determination of diagnosis, therapeutic guidelines, and surgical indications, as well as effectiveness of treatment. (author)

  5. 3D finite elements method (FEM Analysis of basic process parameters in rotary piercing mill

    Z. Pater

    2012-10-01

    Full Text Available In this paper 3D FEM analysis of process parameters and its infl uence in rotary piercing mill is presented. The FEM analyze of the rotary piercing process was made under the conditions of 3D state of strain with taking into consideration the thermal phenomena. The calculations were made with application of different rolls’ skew angles and different plug designs. In the result, progression of shapes, temperature and distributions of stress and strain were characterized. The numerical results of calculations were compared with results of stand test with use of 100Cr6 steel. The comparisons of numerical and experimental tests confirm good agreement between obtained results.

  6. Application of COREMELT-3D code at analysis of severe fast reactor accidents

    The code COREMELT for calculations of initial and transition stages of severe accident is considered. It is used to conduct connected calculations of nonstationary neutronic and thermohydraulic processes in sodium fast reactor core. The code has some versions depending on dimensions of solving problem and consists of thermohydraulic module COREMELT and neutronic module RADAR. Using the code COREMELT-3D connected calculations of core disassembly accidents of ULOF and UTOP type have been conducted for sodium fast reactors safety analysis. The main problem of code COREMELT-3D use is duration of calculation, speeding of the code is possible when calculating algorithms are parallelized

  7. From motion to faces: 3D-assisted automatic analysis of people

    Iacopo Masi

    2014-01-01

    From motion to faces: 3D-assisted automatic analysis of people. This work proposes new computer vision algorithms about recognizing people by exploiting the face and the imaged appearance of the body. Many computer vision algorithms are covered: tracking, face recognition and person re-identification.

  8. Comparative Analysis of Photogrammetric Methods for 3D Models for Museums

    Hafstað Ármannsdottir, Unnur Erla; Antón Castro, Francesc/François; Mioc, Darka

    2014-01-01

    The goal of this paper is to make a comparative analysis and selection of methodologies for making 3D models of historical items, buildings and cultural heritage and how to preserve information such as temporary exhibitions and archaeological findings. Two of the methodologies analyzed correspond...

  9. Measurement of Capillary Length from 3D Confocal Images Using Image Analysis and Stereology

    Janáček, Jiří; Saxl, Ivan; Mao, X. W.; Kubínová, Lucie

    Valencia : University of Valencia, 2007. s. 71-71. [Focus on Microscopy FOM 2007. 10.04.2007-13.04.2007, Valencia] Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z10190503 Keywords : spo2 * 3D image analysis * capillaries * confocal microscopy Subject RIV: EA - Cell Biology

  10. Open Plot Project: an open-source toolkit for 3-D structural data analysis

    S. Tavani

    2011-05-01

    Full Text Available In this work we present the Open Plot Project, an open-source software for structural data analysis, including a 3-D environment. The software includes many classical functionalities of structural data analysis tools, like stereoplot, contouring, tensorial regression, scatterplots, histograms and transect analysis. In addition, efficient filtering tools are present allowing the selection of data according to their attributes, including spatial distribution and orientation. This first alpha release represents a stand-alone toolkit for structural data analysis.

    The presence of a 3-D environment with digitalising tools allows the integration of structural data with information extracted from georeferenced images to produce structurally validated dip domains. This, coupled with many import/export facilities, allows easy incorporation of structural analyses in workflows for 3-D geological modelling. Accordingly, Open Plot Project also candidates as a structural add-on for 3-D geological modelling software.

    The software (for both Windows and Linux O.S., the User Manual, a set of example movies (complementary to the User Manual, and the source code are provided as Supplement. We intend the publication of the source code to set the foundation for free, public software that, hopefully, the structural geologists' community will use, modify, and implement. The creation of additional public controls/tools is strongly encouraged.

  11. Exploring 2D/3D input techniques for medical image analysis

    E.V. Zudilova-Seinstra; P.M.A. Sloot; P.J.H. de Koning; A. Suinesiaputra; R.J. van der Geest; J.H.C. Reiber

    2009-01-01

    We describe a series of experiments that compared the 2D and 3D input methods for selection and positioning tasks related to medical image analysis. For this study, we chose a switchable P5 glove controller, which can be used to provide both 2DOF and 6DOF input control. Our results suggest that for

  12. Evaluation of 2D and 3D glove input applied to medical image analysis

    E.V. Zudilova-Seinstra; P.J.H. de Koning; A. Suinesiaputra; B.W. van Schooten; R.J. van der Geest; J.H.C. Reiber; P.M.A. Sloot

    2010-01-01

    We describe a series of experiments that compared 2D/3D input methods for selection and positioning tasks related to medical image analysis. For our study, we chose a switchable P5 Glove Controller, which can be used to provide both 2DOF and 6DOF input control. Our results suggest that for both task

  13. Analysis of scalability of high-performance 3D image processing platform for virtual colonoscopy

    Yoshida, Hiroyuki; Wu, Yin; Cai, Wenli

    2014-03-01

    One of the key challenges in three-dimensional (3D) medical imaging is to enable the fast turn-around time, which is often required for interactive or real-time response. This inevitably requires not only high computational power but also high memory bandwidth due to the massive amount of data that need to be processed. For this purpose, we previously developed a software platform for high-performance 3D medical image processing, called HPC 3D-MIP platform, which employs increasingly available and affordable commodity computing systems such as the multicore, cluster, and cloud computing systems. To achieve scalable high-performance computing, the platform employed size-adaptive, distributable block volumes as a core data structure for efficient parallelization of a wide range of 3D-MIP algorithms, supported task scheduling for efficient load distribution and balancing, and consisted of a layered parallel software libraries that allow image processing applications to share the common functionalities. We evaluated the performance of the HPC 3D-MIP platform by applying it to computationally intensive processes in virtual colonoscopy. Experimental results showed a 12-fold performance improvement on a workstation with 12-core CPUs over the original sequential implementation of the processes, indicating the efficiency of the platform. Analysis of performance scalability based on the Amdahl's law for symmetric multicore chips showed the potential of a high performance scalability of the HPC 3DMIP platform when a larger number of cores is available.

  14. The DynDom3D Webserver for the Analysis of Domain Movements in Multimeric Proteins.

    Girdlestone, Christopher; Hayward, Steven

    2016-01-01

    DynDom3D is a program for the analysis of domain movements in multimeric proteins. Its inputs are two structure files that indicate a possible domain movement, but the onus has been on the user to process the files so that there is the necessary one-to-one equivalence between atoms in the two atom lists. This is often a prohibitive task to carry out manually, which has limited the application of DynDom3D. Here we report on a webserver with a preprocessor that automatically creates an equivalence between atoms using sequence alignment methods. The processed structure files are passed to DynDom3D and the results are presented on a webpage that includes molecular graphics for easy visualization. PMID:26540459

  15. 3D city models for CAAD-supported analysis and design of urban areas

    Sinning-Meister, M.; Gruen, A.; Dan, H.

    A joint research project was conducted at ETH Zurich to develop a user-friendly software environment for the representation, visual manipulation, analysis and design of urban areas. Three groups were involved in the project: (1) the 'Architecture and Planning' group defined the requirements and expectations for the system; (2) the 'Photogrammetry' group acquired and processed raster and 3D vector data to form a 3D model of the urban area; and (3) the 'CAAD' (Computer Aided Architectural Design) group embedded the data into AutoCAD and implemented database functionality. Results of the photogrammetry group are presented, including the implementation of a 'topology builder' which automatically fits roof planes to manually or semi-automatically measured roof points in order to create AutoCAD-compatible 3D building models. Digital orthoimages and derived products such as perspective views, and the geometric correction of house roofs in digital orthoimages also were generated for test sites in Switzerland.

  16. Quantitative data analysis methods for 3D microstructure characterization of Solid Oxide Cells

    Jørgensen, Peter Stanley

    . Alignment of the individual image slices is performed by automatic detection of ducial marks. Uneven illumination is corrected by tting hypersurfaces to the spatial intensity variation in the 3D image data. Routine use of quantitative three dimensional analysis of microstructure is generally restricted by...... for gaining further fundamental understanding of how microstructure affects performance. In this work, methods for automatic 3D characterization of microstructure are studied: from the acquisition of 3D image data by focused ion beam tomography to the extraction of quantitative measures that......The performance of electrochemical ceramic devices such as solid oxide fuel and electrolyser cells depends on the distribution of constituent phases on the micro or nano scale, also known as the microstructure. The microstructure governs key properties such as ion, electron and gas transport...

  17. A Review of Failure Analysis Methods for Advanced 3D Microelectronic Packages

    Li, Yan; Srinath, Purushotham Kaushik Muthur; Goyal, Deepak

    2016-01-01

    Advanced three dimensional (3D) packaging is a key enabler in driving form factor reduction, performance benefits, and package cost reduction, especially in the fast paced mobility and ultraportable consumer electronics segments. The high level of functional integration and the complex package architecture pose a significant challenge for conventional fault isolation (FI) and failure analysis (FA) methods. Innovative FI/FA tools and techniques are required to tackle the technical and throughput challenges. In this paper, the applications of FI and FA techniques such as Electro Optic Terahertz Pulse Reflectometry, 3D x-ray computed tomography, lock-in thermography, and novel physical sample preparation methods to 3D packages with package on package and stacked die with through silicon via configurations are reviewed, along with the key FI and FA challenges.

  18. Application of 3D X-ray CT data sets to finite element analysis

    Finite Element Modeling (FEM) is becoming more important as industry drives toward concurrent engineering. A fundamental hindrance to fully exploiting the power of FEM is the human effort required to acquire complex part geometry, particularly as-built geometry, as a FEM mesh. Many Quantitative Non Destructive Evaluation (QNDE) techniques that produce three-dimensional (3D) data sets provide a substantial reduction in the effort required to apply FEM to as-built parts. This paper describes progress at LLNL on the application of 3D X-ray computed tomography (CT) data sets to more rapidly produce high-quality FEM meshes of complex, as-built geometries. Issues related to the volume segmentation of the 3D CT data as well as the use of this segmented data to tailor generic hexahedral FEM meshes to part specific geometries are discussed. The application of these techniques to FEM analysis in the medical field is reported here

  19. High-resolution 3D micro-CT imaging of breast microcalcifications: a preliminary analysis

    Detection of microcalcifications on mammograms indicates the presence of breast lesion, and the shapes of the microcalcifications as seen by conventional mammography correlates with the probability of malignancy. This preliminary study evaluated the 3D shape of breast microcalcifications using micro-computed tomography (micro-CT) and compared the findings with those obtained using anatomopathological analysis. The study analyzed breast biopsy samples from 11 women with findings of suspicious microcalcifications on routine mammograms. The samples were imaged using a micro-CT (SkyScan 1076) at a resolution of 35 μm. Images were reconstructed using filtered back-projection and analyzed in 3D using surface rendering. The samples were subsequently analyzed by the pathology service. Reconstructed 3D images were compared with the corresponding histological slices. Anatomopathological analysis showed that 5 of 11 patients had ductal breast carcinoma in situ. One patient was diagnosed with invasive ductal carcinoma. Individual object analysis was performed on 597 microcalcifications. Malignant microcalcifications tended to be thinner and to have a smaller volume and surface area, while their surface area-to-volume ratio was greater than that of benign microcalcifications. The structure model index values were the same for malignant and benign microcalcifications. This is the first study to use micro-CT for quantitative 3D analysis of microcalcifications. This high-resolution imaging technique will be valuable for gaining a greater understanding of the morphologic characteristics of malignant and benign microcalcifications. The presence of many small microcalcifications can be an indication of malignancy. For the larger microcalcifications, 3D parameters confirmed the more irregular shape of malignant microcalcifications

  20. Dynamic Characteristic Analysis of Linear DC Motor by 3D EMCN Considering Input Voltage

    Ha, Kyung Ho; Yeom, Sang Bu [Changwon National University, Changwon(Korea); Hong, JUNG Pyo; Hur Jin; Kang Do Hyunc [Hanyang University(Seoul Campus), Seoul(Korea)

    2002-02-01

    In order to design the Linear DC Motor (LDM) With improved characteristics, transient and steady state analysis are required. Furthermore, 3D analysis is also needed to analyze the precise characteristics like thrust, time harmonics. This paper deals with the transient and dynamic characteristic analysis if LDM by coupling of external circuit and motion equation using 3D Equivalent Magnetic Circuit Network Method (EMCN). For the three dimensional analysis of electric machine, EMCN is very effective method that ensures high accuracy similar to FEM and short computation time. Also, The modeling by EMCN easily allows the mover to move with respect to the Sartre at each time Also, and the spatial moving step is determined by the solution of the mechanical motion equation and the computed electromagnetic thrust. The results are compared with experimental ones to clarify the usefulness and verify the accuracy of the proposed method. (author). 11 refs., 20 figs., 2 tabs.

  1. Digital Image Analysis of Cells : Applications in 2D, 3D and Time

    Pinidiyaarachchi, Amalka

    2009-01-01

    Light microscopes are essential research tools in biology and medicine. Cell and tissue staining methods have improved immensely over the years and microscopes are now equipped with digital image acquisition capabilities. The image data produced require development of specialized analysis methods. This thesis presents digital image analysis methods for cell image data in 2D, 3D and time sequences. Stem cells have the capability to differentiate into specific cell types. The mechanism behind di...

  2. Pumping simulations using 3D FEM analysis on multi-pumping wells

    Shuhei, KOTANI; Takahumi, KITAOKA; Makoto, NAKAMURA; Harushige, KUSUMI; 楠見, 晴重

    2011-01-01

    In this research, we chiefly conducted on-site measurement and analysis to examine how the pumping wells influence groundwater behavior. We established a 3D model for groundwater and make suggestions for the adequate management of the groundwater by a pumping simulation analysis. As a result, it can be seen from our research that the fluctuation of water level caused by group wells has been reproduced accurately by using our model.

  3. A comprehensive statistical framework for elastic shape analysis of 3D faces

    Kurtek, Sebastian; Drira, Hassen

    2015-01-01

    We develop a comprehensive statistical framework for analyzing shapes of 3D faces. In particular, we adapt a recent elastic shape analysis framework to the case of hemispherical surfaces, and explore its use in a number of processing applications. This framework provides a parameterization-invariant, elastic Riemannian metric, which allows the development of mathematically rigorous tools for statistical analysis. Specifically, this paper describes methods for registration, comparison and defo...

  4. Parallel Isosurface Extraction for 3D Data Analysis Workflows in Distributed Environments

    D'Agostino, Daniele; Clematis, Andrea; Gianuzzi, Vittoria

    2011-01-01

    Abstract In this paper we discuss the issues related to the development of efficient parallel implementations of the Marching Cubes algorithm, one of the most used methods for isosurface extraction, which is a fundamental operation for 3D data analysis and visualization. We present three possible parallelization strategies and we outline pros and cons of each of them, considering isosurface extraction as stand-alone operation or as part of a dynamic workflow. Our analysis shows tha...

  5. A 3-D aerodynamic method for the analysis of isolated horizontal-axis wind turbines

    Ammara, I.; Masson, C.; Paraschivoiu, I. [Ecole Polytechnique, Montreal (Canada)

    1997-12-31

    In most existing performance-analysis methods, wind turbines are considered isolated so that interference effects caused by other rotors or by the site topography are neglected. The main objective of this paper is to propose a practical 3-D method suitable for the study of these effects, in order to optimize the arrangement and the positioning of Horizontal-Axis Wind Turbines (HAWTs) in a wind farm. In the proposed methodology, the flow field around isolated HAWTs is predicted by solving the 3-D, time-averaged, steady-state, incompressible, Navier-Stokes equations in which the turbines are represented by distributions of momentum sources. The resulting governing equations are solved using a Control-Volume Finite Element Method (CVFEM). The fundamental aspects related to the development of a practical 3-D method are discussed in this paper, with an emphasis on some of the challenges that arose during its implementation. The current implementation is limited to the analysis of isolated HAWTs. Preliminary results have indicated that, the proposed 3-D method reaches the same level of accuracy, in terms of performance predictions, that the previously developed 2-D axisymmetric model and the well-known momentum-strip theory, while still using reasonable computers resources. It can be considered as a useful tool for the design of HAWTs. Its main advantages, however, are its intrinsic capacity to predict the details of the flow in the wake, and its capabilities of modelling arbitrary wind-turbine arrangements and including ground effects.

  6. Geomorphometric analysis of cave ceiling channels mapped with 3-D terrestrial laser scanning

    Gallay, Michal; Hochmuth, Zdenko; Kaňuk, Ján; Hofierka, Jaroslav

    2016-05-01

    The change of hydrological conditions during the evolution of caves in carbonate rocks often results in a complex subterranean geomorphology, which comprises specific landforms such as ceiling channels, anastomosing half tubes, or speleothems organized vertically in different levels. Studying such complex environments traditionally requires tedious mapping; however, this is being replaced with terrestrial laser scanning technology. Laser scanning overcomes the problem of reaching high ceilings, providing new options to map underground landscapes with unprecedented level of detail and accuracy. The acquired point cloud can be handled conveniently with dedicated software, but applying traditional geomorphometry to analyse the cave surface is limited. This is because geomorphometry has been focused on parameterization and analysis of surficial terrain. The theoretical and methodological concept has been based on two-dimensional (2-D) scalar fields, which are sufficient for most cases of the surficial terrain. The terrain surface is modelled with a bivariate function of altitude (elevation) and represented by a raster digital elevation model. However, the cave is a 3-D entity; therefore, a different approach is required for geomorphometric analysis. In this paper, we demonstrate the benefits of high-resolution cave mapping and 3-D modelling to better understand the palaeohydrography of the Domica cave in Slovakia. This methodological approach adopted traditional geomorphometric methods in a unique manner and also new methods used in 3-D computer graphics, which can be applied to study other 3-D geomorphological forms.

  7. 3D analysis of RC members by unified concrete plasticity model

    Gupta, S. [Nagoya Institute of Technology, Nagoya (Japan); Tanabe, T. [Nagoya University, Nagoya (Japan)

    1998-05-20

    Three Dimensional finite element analysis of reinforced concrete (RC) members is a very complicated matter. Many researchers have proposed various ways of analyzing RC members. Most of them present separate models for tension and compression. Recently Tanabe et al. proposed a plasticity model named Unified Concrete Plasticity Model which can be applied in multi-axial stress-strain situation. As a part of this research, this model was further developed and in this paper, the feasibility of application of this modified model is tested before further development and implementation of advanced features like inelastic unloading of concrete, advanced reinforcement models etc. This is done by three dimensional finite element analysis of simple problems like beam and cantilever. In this analysis, the details of longitudinal reinforcement and lateral reinforcement or stirrups are included. 24 refs., 17 figs., 3 tabs.

  8. Carotid artery stenosis: reproducibility of automated 3D CT angiography analysis method

    The aim of this study was to assess the reproducibility and anatomical accuracy of automated 3D CT angiography analysis software in the evaluation of carotid artery stenosis with reference to rotational DSA (rDSA). Seventy-two vessels in 36 patients with symptomatic carotid stenosis were evaluated by 3D CT angiography and conventional DSA (cDSA). Thirty-one patients also underwent rotational 3D DSA (rDSA). Multislice CT was performed with bolus tracking and slice thickness of 1.5 mm (1-mm collimation, table feed 5 mm/s) and reconstruction interval of 1.0 mm. Two observers independently performed the stenosis measurements on 3D CTA and on MPR rDSA according to the NASCET criteria. The first measurements on CTA utilized an analysis program with automatic stenosis recognition and quantitation. In the subsequent measurements, manual corrections were applied when necessary. Interfering factors for stenosis quantitation, such as calcifications, ulcerations, and adjacent vessels, were registered. Intraobserver and interobserver correlation for CTA were 0.89 and 0.90, respectively. (p<0.001). The interobserver correlation between two observers for MPR rDSA was 0.90 (p<0.001). The intertechnique correlation between CTA and rDSA was 0.69 (p<0.001) using automated measurements but increased to 0.81 (p<0.001) with the manually corrected measurements. Automated stenosis recognition achieved a markedly poorer correlation with MPR rDSA in carotids with interfering factors than those in cases where there were no such factors. Automated 3D CT angiography analysis methods are highly reproducible. Manually corrected measurements facilitated avoidance of the interfering factors, such as ulcerations, calcifications, and adjacent vessels, and thus increased anatomical accuracy of arterial delineation by automated CT angiography with reference to MPR rDSA. (orig.)

  9. Analysis results from the Los Alamos 2D/3D program

    Los Alamos National Laboratory is a participant in the 2D/3D program. Activities conducted at Los Alamos National Laboratory in support of 2D/3D program goals include analysis support of facility design, construction, and operation; provision of boundary and initial conditions for test-facility operations based on analysis of pressurized water reactors; performance of pretest and posttest predictions and analyses; and use of experimental results to validate and assess the single- and multi-dimensional, nonequilibrium features in the Transient Reactor Analysis Code (TRAC). During fiscal year 1987, Los Alamos conducted analytical assessment activities using data from the Slab Core Test Facility, The Cylindrical Core Test Facility, and the Upper Plenum Test Facility. Finally, Los Alamos continued work to provide TRAC improvements. In this paper, Los Alamos activities during fiscal year 1987 will be summarized; several significant accomplishments will be described in more detail to illustrate the work activities at Los Alamos

  10. Analysis results from the Los Alamos 2D/3D program

    Los Alamos National Laboratory is a participant in the 2D/3D program. Activities conducted at Los Alamos National Laboratory in support of 2D/3D program goals include analysis support of facility design, construction, and operation; provision of boundary and initial conditions for test-facility operations based on analysis of pressurized water reactors; performance of pretest and post-test predictions and analyses; and use of experimental results to validate and assess the single- and multi-dimensional, nonequilibrium features in the Transient Reactor Analysis Code (TRAC). During fiscal year 1987, Los Alamos conducted analytical assessment activities using data from the Slab Core Test Facility, the Cylindrical Core Test Facility, and the Upper Plenum Test Facility. Finally, Los Alamos continued work to provide TRAC improvements. In this paper, Los Alamos activities during fiscal year 1987 are summarized; several significant accomplishments are described in more detail to illustrate the work activities at Los Alamos

  11. Comparison: RELAP5-3D systems analysis code and fluent CFD code momentum equation formulations

    Recently the Idaho National Engineering and Environmental Laboratory (INEEL), in conjunction with Fluent Corporation, have developed a new analysis tool by coupling the Fluent computational fluid dynamics (CFD) code to the RELAP5-3D advanced thermal-hydraulic analysis code. This tool enables researchers to perform detailed, two- or three-dimensional analyses using Fluent's CFD capability while the boundary conditions required by the Fluent calculation are provided by the balance-of-system model created using RELAP5-3D. Fluent and RELAP5-3D have strengths that complement one another. CFD codes, such as Fluent, are commonly used to analyze the flow behavior in regions of a system where complex flow patterns are expected or present. On the other hand, RELAP5-3D was developed to analyze the behavior of two-phase systems that could be modeled in one-dimension. Empirical relationships were used where first-principle physics were not well developed. Both Fluent and RELAP5-3D are exemplary in their areas of specialization. The differences between Fluent and RELAP5 fundamentally stem from their field equations. This study focuses on the differences between the momentum equation representations in the two codes (the continuity equation formulations are equivalent for single phase flow). First the differences between the momentum equations are summarized. Next the effect of the differences in the momentum equations are examined by comparing the results obtained using both codes to study the same problem, i.e., fully-developed turbulent pipe flow. Finally, conclusions regarding the significance of the differences are given. (author)

  12. Integrated 3D-printed reactionware for chemical synthesis and analysis.

    Symes, Mark D; Kitson, Philip J; Yan, Jun; Richmond, Craig J; Cooper, Geoffrey J T; Bowman, Richard W; Vilbrandt, Turlif; Cronin, Leroy

    2012-05-01

    Three-dimensional (3D) printing has the potential to transform science and technology by creating bespoke, low-cost appliances that previously required dedicated facilities to make. An attractive, but unexplored, application is to use a 3D printer to initiate chemical reactions by printing the reagents directly into a 3D reactionware matrix, and so put reactionware design, construction and operation under digital control. Here, using a low-cost 3D printer and open-source design software we produced reactionware for organic and inorganic synthesis, which included printed-in catalysts and other architectures with printed-in components for electrochemical and spectroscopic analysis. This enabled reactions to be monitored in situ so that different reactionware architectures could be screened for their efficacy for a given process, with a digital feedback mechanism for device optimization. Furthermore, solely by modifying reactionware architecture, reaction outcomes can be altered. Taken together, this approach constitutes a relatively cheap, automated and reconfigurable chemical discovery platform that makes techniques from chemical engineering accessible to typical synthetic laboratories. PMID:22522253

  13. Multi-dimensional Seismic Response Analysis of Base-Isolated Frame Structure with 3D Isolator

    Xiong Shishu; Huang Liting; Chen Jinfeng; Su Jingsu

    2005-01-01

    The three-dimensional lead-rubber dish-spring bearing (3DB) is proposed in this paper. The 3DB is composed of lead rubber bearing (LRB) and dish-spring bearing (DSB) with damper in series. The 3DB put forward in this paper is effective in the resolution of difficulties in strong vertical capacity and vertical damping of three-dimensional isolation bearings. It effectively suppresses rocking motions as well. The analytical model and motion equations of multi-dimensional seismic responses of 3D base-isolated frame structures are established. Taking a five-storey frame structure as an example, an extensive simulation analysis is carried out. The results show that the 3D base-isolated structure with the proposed 3DB is effective in 3D isolation; it can reduce seismic responses by 50 % compared to a non-isolated structure. Therefore, the 3D isolation problem in building can be solved easily and effectively with the 3DB proposed in this paper.

  14. A finite element analysis of a 3D auxetic textile structure for composite reinforcement

    This paper reports the finite element analysis of an innovative 3D auxetic textile structure consisting of three yarn systems (weft, warp and stitch yarns). Different from conventional 3D textile structures, the proposed structure exhibits an auxetic behaviour under compression and can be used as a reinforcement to manufacture auxetic composites. The geometry of the structure is first described. Then a 3D finite element model is established using ANSYS software and validated by the experimental results. The deformation process of the structure at different compression strains is demonstrated, and the validated finite element model is finally used to simulate the auxetic behaviour of the structure with different structural parameters and yarn properties. The results show that the auxetic behaviour of the proposed structure increases with increasing compression strain, and all the structural parameters and yarn properties have significant effects on the auxetic behaviour of the structure. It is expected that the study could provide a better understanding of 3D auxetic textile structures and could promote their application in auxetic composites. (paper)

  15. Error Analysis of Terrestrial Laser Scanning Data by Means of Spherical Statistics and 3D Graphs

    Pedro Arias

    2010-11-01

    Full Text Available This paper presents a complete analysis of the positional errors of terrestrial laser scanning (TLS data based on spherical statistics and 3D graphs. Spherical statistics are preferred because of the 3D vectorial nature of the spatial error. Error vectors have three metric elements (one module and two angles that were analyzed by spherical statistics. A study case has been presented and discussed in detail. Errors were calculating using 53 check points (CP and CP coordinates were measured by a digitizer with submillimetre accuracy. The positional accuracy was analyzed by both the conventional method (modular errors analysis and the proposed method (angular errors analysis by 3D graphics and numerical spherical statistics. Two packages in R programming language were performed to obtain graphics automatically. The results indicated that the proposed method is advantageous as it offers a more complete analysis of the positional accuracy, such as angular error component, uniformity of the vector distribution, error isotropy, and error, in addition the modular error component by linear statistics.

  16. Statistical 3D shape analysis of gender differences in lateral ventricles

    He, Qing; Karpman, Dmitriy; Duan, Ye

    2010-03-01

    This paper aims at analyzing gender differences in the 3D shapes of lateral ventricles, which will provide reference for the analysis of brain abnormalities related to neurological disorders. Previous studies mostly focused on volume analysis, and the main challenge in shape analysis is the required step of establishing shape correspondence among individual shapes. We developed a simple and efficient method based on anatomical landmarks. 14 females and 10 males with matching ages participated in this study. 3D ventricle models were segmented from MR images by a semiautomatic method. Six anatomically meaningful landmarks were identified by detecting the maximum curvature point in a small neighborhood of a manually clicked point on the 3D model. Thin-plate spline was used to transform a randomly selected template shape to each of the rest shape instances, and the point correspondence was established according to Euclidean distance and surface normal. All shapes were spatially aligned by Generalized Procrustes Analysis. Hotelling T2 twosample metric was used to compare the ventricle shapes between males and females, and False Discovery Rate estimation was used to correct for the multiple comparison. The results revealed significant differences in the anterior horn of the right ventricle.

  17. A SAS2H/KENO-V Methodology for 3D Full Core depletion analysis

    This paper describes the use of a SAS2H/KENO-V methodology for 3D full core depletion analysis and illustrates its capabilities by applying it to burnup analysis of the IRIS core benchmarks. This new SAS2H/KENO-V sequence combines a 3D Monte Carlo full core calculation of node power distribution and a 1D Wigner-Seitz equivalent cell transport method for independent depletion calculation of each of the nodes. This approach reduces by more than an order of magnitude the time required for getting comparable results using the MOCUP code system. The SAS2H/KENO-V results for the asymmetric IRIS core benchmark are in good agreement with the results of the ALPHA/PHOENIX/ANC code system. (author)

  18. TMI-1 MSLB coupled 3-D neutronics/thermal hydraulics analysis: application of RELAP5-3D and comparison with different codes

    A comprehensive analysis of the double ended Main Steam Line Break (MSLB) accident assumed to occur in the Babcock and Wilcox nuclear power plant of Three Miles Island Unit 1 (TMI-1) has been carried out of the University of Pisa in co-operation with the University of Zagreb and the Texas A and M University. The overall activity has been completed within the framework of the participation in the OECD-CSNI/NSC (Committee on the Safety of Nuclear Installations - Nuclear Science Committee) 'PWR MSLB Benchmark'. Different code versions have been adopted in the analysis. Results from the following codes (or code versions) are described in this paper: RELAP5/MOD3.2.2, beta version, coupled with the 3-D neutron kinetics Parcs code; RELAP5/MOD3.2.2, gamma version, coupled with the 3-D neutron kinetics Quabbox code; RELAP5/3D, coupled with the 3-D neutron kinetics Nestle code. Boundary and initial conditions of the system including those relevant to the fuel status, have been supplied by Pensilvania State University that had a co-operation GPU (the utility, owner of TMI) and NRC (US Nuclear Regulatory Commission). The capability of the control rods to recover the accident has been demonstrated in all the cases as well as the capability of all the codes to predict the time evolution of the assigned transient. However, one stuck control rod caused some 're-criticality' or 'return-to-power' whose magnitude is largely affected by boundary and initial conditions. The comparison among the results obtained by adopting the same thermalhydraulic nodalization and the different 'coupled' code version is discussed in the present document. (author)

  19. Shape analysis of local facial patches for 3D facial expression recognition

    Maalej, Ahmed; Ben Amor, Boulbaba; Daoudi, Mohamed; Srivastava, Anuj; Berretti, Stefano

    2011-01-01

    International audience In this paper we address the problem of 3D facial expression recognition. We propose a local geometric shape analysis of facial surfaces coupled with machine learning techniques for expression classification. A computation of the length of the geodesic path between corresponding patches, using a Riemannian framework, in a shape space provides a quantitative information about their similarities. These measures are then used as inputs to several classification methods....

  20. MRI ANALYSIS OF 3D NORMAL AND POST-GLOSSECTOMY TONGUE MOTION IN SPEECH

    Xing, Fangxu; Murano, Emi Z.; Lee, Junghoon; Woo, Jonghye; Stone, Maureen; Prince, Jerry L.

    2013-01-01

    Measuring the internal muscular motion and deformation of the tongue during natural human speech is of high interest to head and neck surgeons and speech language pathologists. A pipeline for calculating 3D tongue motion from dynamic cine and tagged Magnetic Resonance (MR) images during speech has been developed. This paper presents the result of a complete analysis of eleven subjects’ (seven normal controls and four glossectomy patients) global tongue motion during speech obtained through MR...

  1. 3D STATE SPACE ANALYSIS AND FREE-EDGE EFFECT OF PIEZOELECTRIC LAMINATED THICK PLATES

    Han, Chao

    2014-01-01

    The accurate evaluation of interlaminar stresses is of great significance in the analysis and design of laminated and piezoelectric laminated structures because complex behaviours of these stresses near free edges initiate edge delamination that raises concerns about the structural integrity and reliability. This thesis presented 3D hybrid analyses on the interlaminar stresses to investigate the electromechanical coupling and free edge effects of piezoelectric laminated plates with an emphasi...

  2. ECOLOGICAL AND TECHNOLOGICAL ANALYSIS OF MATERIALS FOR 3D-PRINTING

    Є.О. Бовсуновський; Зінченко, Р. О.

    2016-01-01

    The article analyzes the main materials used for 3D-printing. Particular attention is paid to the study of ecological and technological analysis of the effects of the most widely used material: Polylactic Acid and Acrylonitrile Butadiene Styrene, as well as their professional series and Nylon, Polyethylene Terephthalate, TPE on the environment. The article deals with the characteristic features of the physical properties of materials (material) for their intended purpose, according sharing al...

  3. Importance of a 3D forward modeling tool for surface wave analysis methods

    Pageot, Damien; Le Feuvre, Mathieu; Donatienne, Leparoux; Philippe, Côte; Yann, Capdeville

    2016-04-01

    Since a few years, seismic surface waves analysis methods (SWM) have been widely developed and tested in the context of subsurface characterization and have demonstrated their effectiveness for sounding and monitoring purposes, e.g., high-resolution tomography of the principal geological units of California or real time monitoring of the Piton de la Fournaise volcano. Historically, these methods are mostly developed under the assumption of semi-infinite 1D layered medium without topography. The forward modeling is generally based on Thomson-Haskell matrix based modeling algorithm and the inversion is driven by Monte-Carlo sampling. Given their efficiency, SWM have been transfered to several scale of which civil engineering structures in order to, e.g., determine the so-called V s30 parameter or assess other critical constructional parameters in pavement engineering. However, at this scale, many structures may often exhibit 3D surface variations which drastically limit the efficiency of SWM application. Indeed, even in the case of an homogeneous structure, 3D geometry can bias the dispersion diagram of Rayleigh waves up to obtain discontinuous phase velocity curves which drastically impact the 1D mean velocity model obtained from dispersion inversion. Taking advantages of high-performance computing center accessibility and wave propagation modeling algorithm development, it is now possible to consider the use of a 3D elastic forward modeling algorithm instead of Thomson-Haskell method in the SWM inversion process. We use a parallelized 3D elastic modeling code based on the spectral element method which allows to obtain accurate synthetic data with very low numerical dispersion and a reasonable numerical cost. In this study, we choose dike embankments as an illustrative example. We first show that their longitudinal geometry may have a significant effect on dispersion diagrams of Rayleigh waves. Then, we demonstrate the necessity of 3D elastic modeling as a forward

  4. QCD analysis of polarized deep inelastic scattering data

    Bluemlein, Johannes; Boettcher, Helmut

    2010-05-15

    A QCD analysis of the world data on polarized deep inelastic scattering is presented in next-to-leading order, including the heavy flavor Wilson coefficient in leading order in the fixed flavor number scheme. New parameterizations are derived for the quark and gluon distributions and the value of {alpha}{sub s}(M{sub z}{sup 2}) is determined. The impact of the variation of both the renormalization and factorization scales on the distributions and the value of {alpha}{sub s} is studied. We obtain {alpha}{sub s}{sup NLO}(M{sub Z}{sup 2})=0.1132 {sub -0.0095}{sup +0.0056}. The first moments of the polarized twist-2 parton distribution functions are calculated with correlated errors to allow for comparisons with results from lattice QCD simulations. Potential higher twist contributions to the structure function g{sub 1}(x,Q{sup 2}) are determined and found to be compatible with zero both for proton and deuteron targets. (orig.)

  5. Performance analysis of high quality parallel preconditioners applied to 3D finite element structural analysis

    Kolotilina, L.; Nikishin, A.; Yeremin, A. [and others

    1994-12-31

    The solution of large systems of linear equations is a crucial bottleneck when performing 3D finite element analysis of structures. Also, in many cases the reliability and robustness of iterative solution strategies, and their efficiency when exploiting hardware resources, fully determine the scope of industrial applications which can be solved on a particular computer platform. This is especially true for modern vector/parallel supercomputers with large vector length and for modern massively parallel supercomputers. Preconditioned iterative methods have been successfully applied to industrial class finite element analysis of structures. The construction and application of high quality preconditioners constitutes a high percentage of the total solution time. Parallel implementation of high quality preconditioners on such architectures is a formidable challenge. Two common types of existing preconditioners are the implicit preconditioners and the explicit preconditioners. The implicit preconditioners (e.g. incomplete factorizations of several types) are generally high quality but require solution of lower and upper triangular systems of equations per iteration which are difficult to parallelize without deteriorating the convergence rate. The explicit type of preconditionings (e.g. polynomial preconditioners or Jacobi-like preconditioners) require sparse matrix-vector multiplications and can be parallelized but their preconditioning qualities are less than desirable. The authors present results of numerical experiments with Factorized Sparse Approximate Inverses (FSAI) for symmetric positive definite linear systems. These are high quality preconditioners that possess a large resource of parallelism by construction without increasing the serial complexity.

  6. Integrating Data Clustering and Visualization for the Analysis of 3D Gene Expression Data

    Data Analysis and Visualization (IDAV) and the Department of Computer Science, University of California, Davis, One Shields Avenue, Davis CA 95616, USA,; nternational Research Training Group ``Visualization of Large and Unstructured Data Sets,' ' University of Kaiserslautern, Germany; Computational Research Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA; Genomics Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley CA 94720, USA; Life Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley CA 94720, USA,; Computer Science Division,University of California, Berkeley, CA, USA,; Computer Science Department, University of California, Irvine, CA, USA,; All authors are with the Berkeley Drosophila Transcription Network Project, Lawrence Berkeley National Laboratory,; Rubel, Oliver; Weber, Gunther H.; Huang, Min-Yu; Bethel, E. Wes; Biggin, Mark D.; Fowlkes, Charless C.; Hendriks, Cris L. Luengo; Keranen, Soile V. E.; Eisen, Michael B.; Knowles, David W.; Malik, Jitendra; Hagen, Hans; Hamann, Bernd

    2008-05-12

    The recent development of methods for extracting precise measurements of spatial gene expression patterns from three-dimensional (3D) image data opens the way for new analyses of the complex gene regulatory networks controlling animal development. We present an integrated visualization and analysis framework that supports user-guided data clustering to aid exploration of these new complex datasets. The interplay of data visualization and clustering-based data classification leads to improved visualization and enables a more detailed analysis than previously possible. We discuss (i) integration of data clustering and visualization into one framework; (ii) application of data clustering to 3D gene expression data; (iii) evaluation of the number of clusters k in the context of 3D gene expression clustering; and (iv) improvement of overall analysis quality via dedicated post-processing of clustering results based on visualization. We discuss the use of this framework to objectively define spatial pattern boundaries and temporal profiles of genes and to analyze how mRNA patterns are controlled by their regulatory transcription factors.

  7. 3-D slug flow heat transfer analysis of coupled coolant cells in finite LMFBR bundles

    A three-dimensional single region slug flow heat transfer analysis for finite LMFBR rod bundles using a classical analytical solution method has been performed. According to the isolated single cell analysis, the results show that the peripheral clad temperature variation as well as the thermal entrance length are strongly dependent upon the degree of irregularity displayed by various coolant geometries. Since under the present LMFBR conditions, fully-developed temperature fields may hardly be established in such characteristic rod bundle regions, a 3-D heat transfer analysis seems to be mandatory. This implies that the results of fully developed heat transfer analyses are by far too conservative

  8. A combined 1D/3D fuel burnup analysis of generation IV light water reactor IRIS

    A combined 1D/3D methodology for the fuel burnup analysis of generation IV light water reactors with thin boron coating that covers the fuel rods is described in this paper. This methodology is founded on three approximations. The first approximation assumes that the problem of fuel depletion in the entire 3D core can be resolved into two independent problems. One is a 3D Monte Carlo evolution of power distribution in large volumes (nodes) with the KENO-V.a code, and the other is a transport method evolution of burnup dependent fuel composition in 1D Wigner-Seitz cell for each node independently. With the second approximation, the time-dependent fuel composition in the node (e.g., in the fuel assembly) is calculated by using a 1D fuel depletion analysis with the SAS2H control module from the SCALE-4.4a code system. The third approximation involves smearing the boron coating with the clad (by volume homogenization). The proposed SAS2H/KENO-V.a methodology is verified for the case of 2D x-y model of IRIS 15x15 fuel assembly (with a reflective boundary condition) by using two well benchmarked code systems. The first one is MOCUP, a coupled MCNP-4C and ORIGEN2.1 utility code, and the second is KENO-V.a/ORIGEN2.1 code system recently developed by authors of this paper. It has been found that the proposed SAS2H/KENO-V.a methodology gives a satisfactory accuracy for keff and nuclide composition. Finally, this methodology was applied for 3D burnup analysis of IRIS-1000 benchmark≠44 core. Detailed keff and power density evolution with burnup are reported. (author)

  9. Quantitative analysis of spinal curvature in 3D: application to CT images of normal spine

    The purpose of this study is to present a framework for quantitative analysis of spinal curvature in 3D. In order to study the properties of such complex 3D structures, we propose two descriptors that capture the characteristics of spinal curvature in 3D. The descriptors are the geometric curvature (GC) and curvature angle (CA), which are independent of the orientation and size of spine anatomy. We demonstrate the two descriptors that characterize the spinal curvature in 3D on 30 computed tomography (CT) images of normal spine and on a scoliotic spine. The descriptors are determined from 3D vertebral body lines, which are obtained by two different methods. The first method is based on the least-squares technique that approximates the manually identified vertebra centroids, while the second method searches for vertebra centroids in an automated optimization scheme, based on computer-assisted image analysis. Polynomial functions of the fourth and fifth degree were used for the description of normal and scoliotic spinal curvature in 3D, respectively. The mean distance to vertebra centroids was 1.1 mm (±0.6 mm) for the first and 2.1 mm (±1.4 mm) for the second method. The distributions of GC and CA values were obtained along the 30 images of normal spine at each vertebral level and show that maximal thoracic kyphosis (TK), thoracolumbar junction (TJ) and maximal lumbar lordosis (LL) on average occur at T3/T4, T12/L1 and L4/L5, respectively. The main advantage of GC and CA is that the measurements are independent of the orientation and size of the spine, thus allowing objective intra- and inter-subject comparisons. The positions of maximal TK, TJ and maximal LL can be easily identified by observing the GC and CA distributions at different vertebral levels. The obtained courses of the GC and CA for the scoliotic spine were compared to the distributions of GC and CA for the normal spines. The significant difference in values indicates that the descriptors of GC and CA

  10. Quantitative analysis of spinal curvature in 3D: application to CT images of normal spine

    Vrtovec, Tomaz; Likar, Bostjan; Pernus, Franjo [University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, SI-1000 Ljubljana (Slovenia)], E-mail: tomaz.vrtovec@fe.uni-lj.si, E-mail: bostjan.likar@fe.uni-lj.si, E-mail: franjo.pernus@fe.uni-lj.si

    2008-04-07

    The purpose of this study is to present a framework for quantitative analysis of spinal curvature in 3D. In order to study the properties of such complex 3D structures, we propose two descriptors that capture the characteristics of spinal curvature in 3D. The descriptors are the geometric curvature (GC) and curvature angle (CA), which are independent of the orientation and size of spine anatomy. We demonstrate the two descriptors that characterize the spinal curvature in 3D on 30 computed tomography (CT) images of normal spine and on a scoliotic spine. The descriptors are determined from 3D vertebral body lines, which are obtained by two different methods. The first method is based on the least-squares technique that approximates the manually identified vertebra centroids, while the second method searches for vertebra centroids in an automated optimization scheme, based on computer-assisted image analysis. Polynomial functions of the fourth and fifth degree were used for the description of normal and scoliotic spinal curvature in 3D, respectively. The mean distance to vertebra centroids was 1.1 mm ({+-}0.6 mm) for the first and 2.1 mm ({+-}1.4 mm) for the second method. The distributions of GC and CA values were obtained along the 30 images of normal spine at each vertebral level and show that maximal thoracic kyphosis (TK), thoracolumbar junction (TJ) and maximal lumbar lordosis (LL) on average occur at T3/T4, T12/L1 and L4/L5, respectively. The main advantage of GC and CA is that the measurements are independent of the orientation and size of the spine, thus allowing objective intra- and inter-subject comparisons. The positions of maximal TK, TJ and maximal LL can be easily identified by observing the GC and CA distributions at different vertebral levels. The obtained courses of the GC and CA for the scoliotic spine were compared to the distributions of GC and CA for the normal spines. The significant difference in values indicates that the descriptors of GC and

  11. A stabilized complementarity formulation for nonlinear analysis of 3D bimodular materials

    Zhang, L.; Zhang, H. W.; Wu, J.; Yan, B.

    2015-10-01

    Bi-modulus materials with different mechanical responses in tension and compression are often found in civil, composite, and biological engineering. Numerical analysis of bimodular materials is strongly nonlinear and convergence is usually a problem for traditional iterative schemes. This paper aims to develop a stabilized computational method for nonlinear analysis of 3D bimodular materials. Based on the parametric variational principle, a unified constitutive equation of 3D bimodular materials is proposed, which allows the eight principal stress states to be indicated by three parametric variables introduced in the principal stress directions. The original problem is transformed into a standard linear complementarity problem (LCP) by the parametric virtual work principle and a quadratic programming algorithm is developed by solving the LCP with the classic Lemke's algorithm. Update of elasticity and stiffness matrices is avoided and, thus, the proposed algorithm shows an excellent convergence behavior compared with traditional iterative schemes. Numerical examples show that the proposed method is valid and can accurately analyze mechanical responses of 3D bimodular materials. Also, stability of the algorithm is greatly improved.

  12. SHADOW EFFECT ON PHOTOVOLTAIC POTENTIALITY ANALYSIS USING 3D CITY MODELS

    N. Alam

    2012-07-01

    Full Text Available Due to global warming, green-house effect and various other drawbacks of existing energy sources, renewable energy like Photovoltaic system is being popular for energy production. The result of photovoltaic potentiality analysis depends on data quality and parameters. Shadow rapidly decreases performance of the Photovoltaic system and it always changes due to the movement of the sun. Solar radiation incident on earth's atmosphere is relatively constant but the radiation at earth's surface varies due to absorption, scattering, reflection, change in spectral content, diffuse component, water vapor, clouds and pollution etc. In this research, it is being investigated that how efficiently real-time shadow can be detected for both direct and diffuse radiation considering reflection and other factors in contrast with the existing shadow detection methods using latest technologies and what is the minimum quality of data required for this purpose. Of course, geometric details of the building geometry and surroundings directly affect the calculation of shadows. In principle, 3D city models or point clouds, which contain roof structure, vegetation, thematically differentiated surface and texture, are suitable to simulate exact real-time shadow. This research would develop an automated procedure to measure exact shadow effect from the 3D city models and a long-term simulation model to determine the produced energy from the photovoltaic system. In this paper, a developed method for detecting shadow for direct radiation has been discussed with its result using a 3D city model to perform a solar energy potentiality analysis.

  13. A stabilized complementarity formulation for nonlinear analysis of 3D bimodular materials

    Zhang, L.; Zhang, H. W.; Wu, J.; Yan, B.

    2016-06-01

    Bi-modulus materials with different mechanical responses in tension and compression are often found in civil, composite, and biological engineering. Numerical analysis of bimodular materials is strongly nonlinear and convergence is usually a problem for traditional iterative schemes. This paper aims to develop a stabilized computational method for nonlinear analysis of 3D bimodular materials. Based on the parametric variational principle, a unified constitutive equation of 3D bimodular materials is proposed, which allows the eight principal stress states to be indicated by three parametric variables introduced in the principal stress directions. The original problem is transformed into a standard linear complementarity problem (LCP) by the parametric virtual work principle and a quadratic programming algorithm is developed by solving the LCP with the classic Lemke's algorithm. Update of elasticity and stiffness matrices is avoided and, thus, the proposed algorithm shows an excellent convergence behavior compared with traditional iterative schemes. Numerical examples show that the proposed method is valid and can accurately analyze mechanical responses of 3D bimodular materials. Also, stability of the algorithm is greatly improved.

  14. A 3D transport-based core analysis code for research reactors with unstructured geometry

    Highlights: • A core analysis code package based on 3D neutron transport calculation in complex geometry is developed. • The fine considerations on flux mapping, control rod effects and isotope depletion are modeled. • The code is proved to be with high accuracy and capable of handling flexible operational cases for research reactors. - Abstract: As an effort to enhance the accuracy in simulating the operations of research reactors, a 3D transport core analysis code system named REFT was developed. HELIOS is employed due to the flexibility of describing complex geometry. A 3D triangular nodal SN method transport solver, DNTR, endows the package the capability of modeling cores with unstructured geometry assemblies. A series of dedicated methods were introduced to meet the requirements of research reactor simulations. Afterwards, to make it more user friendly, a graphical user interface was also developed for REFT. In order to validate the developed code system, the calculated results were compared with the experimental results. Both the numerical and experimental results are in close agreement with each other, with the relative errors of keff being less than 0.5%. Results for depletion calculations were also verified by comparing them with the experimental data and acceptable consistency was observed in results

  15. Quantitative analysis of the central-chest lymph nodes based on 3D MDCT image data

    Lu, Kongkuo; Bascom, Rebecca; Mahraj, Rickhesvar P. M.; Higgins, William E.

    2009-02-01

    Lung cancer is the leading cause of cancer death in the United States. In lung-cancer staging, central-chest lymph nodes and associated nodal stations, as observed in three-dimensional (3D) multidetector CT (MDCT) scans, play a vital role. However, little work has been done in relation to lymph nodes, based on MDCT data, due to the complicated phenomena that give rise to them. Using our custom computer-based system for 3D MDCT-based pulmonary lymph-node analysis, we conduct a detailed study of lymph nodes as depicted in 3D MDCT scans. In this work, the Mountain lymph-node stations are automatically defined by the system. These defined stations, in conjunction with our system's image processing and visualization tools, facilitate lymph-node detection, classification, and segmentation. An expert pulmonologist, chest radiologist, and trained technician verified the accuracy of the automatically defined stations and indicated observable lymph nodes. Next, using semi-automatic tools in our system, we defined all indicated nodes. Finally, we performed a global quantitative analysis of the characteristics of the observed nodes and stations. This study drew upon a database of 32 human MDCT chest scans. 320 Mountain-based stations (10 per scan) and 852 pulmonary lymph nodes were defined overall from this database. Based on the numerical results, over 90% of the automatically defined stations were deemed accurate. This paper also presents a detailed summary of central-chest lymph-node characteristics for the first time.

  16. Nonlinear analysis of chaotic flow in a 3D closed-loop pulsating heat pipe

    Pouryoussefi, S M

    2016-01-01

    Numerical simulation has been conducted for the chaotic flow in a 3D closed-loop pulsating heat pipe (PHP). Heat flux and constant temperature boundary conditions were applied for evaporator and condenser sections, respectively. Water and ethanol were used as working fluids. Volume of Fluid (VOF) method has been employed for two-phase flow simulation. Spectral analysis of temperature time series was carried out using Power Spectrum Density (PSD) method. Existence of dominant peak in PSD diagram indicated periodic or quasi-periodic behavior in temperature oscillations at particular frequencies. Correlation dimension values for ethanol as working fluid was found to be higher than that for water under the same operating conditions. Similar range of Lyapunov exponent values for the PHP with water and ethanol as working fluids indicated strong dependency of Lyapunov exponent to the structure and dimensions of the PHP. An O-ring structure pattern was obtained for reconstructed 3D attractor at periodic or quasi-peri...

  17. ELASTIC BEHAVIOR ANALYSIS OF 3D ANGLE-INTERLOCK WOVEN CERAMIC COMPOSITES

    Chang Yanjun; Jiao Guiqiong; Wang Bo; Liu Wei

    2006-01-01

    A micromechanical model for elastic behavior analysis of angle-interlock woven ceramic composites is proposed in this paper. This model takes into account the actual fabric structure by considering the fiber undulation and continuity in space, the cavities between adjacent yarns and the actual cross-section geometry of the yarn. Based on the laminate theory, the elastic properties of 3D angle-interlock woven ceramic composites are predicted. Different numbers of interlaced wefts have almost the same elastic moduli. The thickness of ceramic matrix has little effect on elastic moduli. When the undulation ratio increases longitudinal modulus decreases and the other Young's moduli increase. Good agreement between theoretical predictions and experimental results demonstrates the feasibility of the proposed model in analyzing the elastic properties of3D angle-interlock woven ceramic composites. The results of this paper verify the fact that the method of analyzing polyester matrix composites is suitable for woven ceramic composites.

  18. Experimental analysis of mechanical response of stabilized occipitocervical junction by 3D mark tracking technique

    Brémand F.

    2010-06-01

    Full Text Available This study is about a biomechanical comparison of some stabilization solutions for the occipitocervical junction. Four kinds of occipito-cervical fixations are analysed in this work: lateral plates fixed by two kinds of screws, lateral plates fixed by hooks and median plate. To study mechanical rigidity of each one, tests have been performed on human skulls by applying loadings and by studying mechanical response of fixations and bone. For this experimental analysis, a specific setup has been developed to impose a load corresponding to the flexion-extension physiological movements. 3D mark tracking technique is employed to measure 3D displacement fields on the bone and on the fixations. Observations of displacement evolution on the bone according to the fixation show different rigidities given by each solution.

  19. Quantitative analysis and feature recognition in 3-D microstructural data sets

    Lewis, A. C.; Suh, C.; Stukowski, M.; Geltmacher, A. B.; Spanos, G.; Rajan, K.

    2006-12-01

    A three-dimensional (3-D) reconstruction of an austenitic stainless-steel microstructure was used as input for an image-based finite-element model to simulate the anisotropic elastic mechanical response of the microstructure. The quantitative data-mining and data-warehousing techniques used to correlate regions of high stress with critical microstructural features are discussed. Initial analysis of elastic stresses near grain boundaries due to mechanical loading revealed low overall correlation with their location in the microstructure. However, the use of data-mining and feature-tracking techniques to identify high-stress outliers revealed that many of these high-stress points are generated near grain boundaries and grain edges (triple junctions). These techniques also allowed for the differentiation between high stresses due to boundary conditions of the finite volume reconstructed, and those due to 3-D microstructural features.

  20. Uncertainty analysis for 3D geological modeling using the Kriging variance

    Choi, Yosoon; Choi, Younjung; Park, Sebeom; Um, Jeong-Gi

    2014-05-01

    The credible estimation of geological properties is critical in many geosciences fields including the geotechnical engineering, environmental engineering, mining engineering and petroleum engineering. Many interpolation techniques have been developed to estimate the geological properties from limited sampling data such as borehole logs. The Kriging is an interpolation technique that gives the best linear unbiased prediction of the intermediate values. It also provides the Kriging variance which quantifies the uncertainty of the kriging estimates. This study provides a new method to analyze the uncertainty in 3D geological modeling using the Kriging variance. The cut-off values determined by the Kriging variance were used to effectively visualize the 3D geological models with different confidence levels. This presentation describes the method for uncertainty analysis and a case study which evaluates the amount of recoverable resources by considering the uncertainty.

  1. Mechanical performance and parameter sensitivity analysis of 3D braided composites joints.

    Wu, Yue; Nan, Bo; Chen, Liang

    2014-01-01

    3D braided composite joints are the important components in CFRP truss, which have significant influence on the reliability and lightweight of structures. To investigate the mechanical performance of 3D braided composite joints, a numerical method based on the microscopic mechanics is put forward, the modeling technologies, including the material constants selection, element type, grid size, and the boundary conditions, are discussed in detail. Secondly, a method for determination of ultimate bearing capacity is established, which can consider the strength failure. Finally, the effect of load parameters, geometric parameters, and process parameters on the ultimate bearing capacity of joints is analyzed by the global sensitivity analysis method. The results show that the main pipe diameter thickness ratio γ, the main pipe diameter D, and the braided angle α are sensitive to the ultimate bearing capacity N. PMID:25121121

  2. Stereoscopic motion analysis in densely packed clusters: 3D analysis of the shimmering behaviour in Giant honey bees

    Hoetzl Thomas; Ruether Matthias; Weihmann Frank; Maurer Michael; Kastberger Gerald; Kranner Ilse; Bischof Horst

    2011-01-01

    Abstract Background The detailed interpretation of mass phenomena such as human escape panic or swarm behaviour in birds, fish and insects requires detailed analysis of the 3D movements of individual participants. Here, we describe the adaptation of a 3D stereoscopic imaging method to measure the positional coordinates of individual agents in densely packed clusters. The method was applied to study behavioural aspects of shimmering in Giant honeybees, a collective defence behaviour that deter...

  3. 3D kinematic and dynamic analysis of the front crawl tumble turn in elite male swimmers.

    Puel, F; Morlier, J; Avalos, M; Mesnard, M; Cid, M; Hellard, P

    2012-02-01

    The aim of this study was to identify kinematic and dynamic variables related to the best tumble turn times (3mRTT, the turn time from 3-m in to 3-m out, independent variable) in ten elite male swimmers using a three-dimensional (3D) underwater analysis protocol and the Lasso (least absolute shrinkage and selection operator) as statistical method. For each swimmer, the best-time turn was analyzed with five stationary and synchronized underwater cameras. The 3D reconstruction was performed using the Direct Linear Transformation algorithm. An underwater piezoelectric 3D force platform completed the set-up to compute dynamic variables. Data were smoothed by the Savitzky-Golay filtering method. Three variables were considered relevant in the best Lasso model (3mRTT=2.58-0.425 RD+0.204 VPe+0.0046 TD): the head-wall distance where rotation starts (RD), the horizontal speed at the force peak (VPe), and the 3D length of the path covered during the turn (TD). Furthermore, bivariate analysis showed that upper body (CUBei) and lower limb extension indexes at first contact (CLLei) were also linked to the turn time (r=-0.65 and pvariables). Thus the best turn times were associated with a long RD, slower VPe and reduced TD. By an early transverse rotation, male elite swimmers reach the wall with a slightly flexed posture that results in fast extension. These swimmers opt for a movement that is oriented forward and they focus on reducing the distance covered. PMID:22176710

  4. Multi-scale uncertainty and sensitivity analysis of the TALL-3D experiment

    Highlights: • The ATHLET-CFX model of the TALL-3D facility behaves in a monotonic way regarding the propagation of the modeling uncertainty. • The biggest variations are observed in the temperature behavior. • A screening analysis identifies the most influential parameters. - Abstract: Over the last decades, the increase of the computational power has made feasible the computer modeling of complex thermal-hydraulic phenomena. These complex models use physical models to account for specific thermal-hydraulic phenomena. Each physical model requires a set of model input data. For several reasons (e.g. measurement uncertainties for stationary and time-dependent values, cost of the measurement campaign), the input data for the physical models cannot always be determined with precision. This lack of accuracy can significantly impair the model results. The analysis of the influence of these input uncertainties is therefore a key step to understand the model behavior and possibly improve its accuracy. The TALL-3D facility, built by KTH in the scope of the THINS project, aims at investigating challenging phenomena in a facility filled with lead–bismuth eutectic (LBE) containing a pool. The experimental data will be used for the validation of the models developed by the project partners. Based on the coupling between ANSYS CFX (CFD) and ATHLET (system code) implemented by the GRS, TUM performed an uncertainty and sensitivity analysis on the model of the TALL-3D facility. This analysis investigates the uncertainty in the output which is due to the uncertainty on the input (uncertainty analysis) and assesses the influence of the uncertain parameters (sensitivity analysis)

  5. Multi-scale uncertainty and sensitivity analysis of the TALL-3D experiment

    Geffray, Clotaire, E-mail: clotaire.geffray@ntech.mw.tum.de; Macián-Juan, Rafael

    2015-08-15

    Highlights: • The ATHLET-CFX model of the TALL-3D facility behaves in a monotonic way regarding the propagation of the modeling uncertainty. • The biggest variations are observed in the temperature behavior. • A screening analysis identifies the most influential parameters. - Abstract: Over the last decades, the increase of the computational power has made feasible the computer modeling of complex thermal-hydraulic phenomena. These complex models use physical models to account for specific thermal-hydraulic phenomena. Each physical model requires a set of model input data. For several reasons (e.g. measurement uncertainties for stationary and time-dependent values, cost of the measurement campaign), the input data for the physical models cannot always be determined with precision. This lack of accuracy can significantly impair the model results. The analysis of the influence of these input uncertainties is therefore a key step to understand the model behavior and possibly improve its accuracy. The TALL-3D facility, built by KTH in the scope of the THINS project, aims at investigating challenging phenomena in a facility filled with lead–bismuth eutectic (LBE) containing a pool. The experimental data will be used for the validation of the models developed by the project partners. Based on the coupling between ANSYS CFX (CFD) and ATHLET (system code) implemented by the GRS, TUM performed an uncertainty and sensitivity analysis on the model of the TALL-3D facility. This analysis investigates the uncertainty in the output which is due to the uncertainty on the input (uncertainty analysis) and assesses the influence of the uncertain parameters (sensitivity analysis)

  6. Coupled fully 3D neutron kinetics thermal-hydraulic computations for DNB analysis on PWRs

    Departure from Nucleate Boiling (DNB) is one of the major limiting factors of Pressurized Water Reactors (PWRs). Safety requires that occurrence of DNB should be precluded under normal or incidental operating conditions. To perform Main Steam Line Break (MSLB) accident calculations EDF have developed its own numerical tool OSCARD based on: the thermal-hydraulic THYC code for DNB analysis, the neutron kinetics COCCINELLE code for power distribution computations, the thermal-hydraulic CATHARE code to provide boundary conditions analysis with system scale computation. With OSCARD a fully three-dimensional (3D) representation of the core is proposed in conjunction with a two-phase flow porous-body approach (THYC) and two-group diffusion equations in the axial and lateral directions with Doppler and void reactivity feedback effects (COCCINELLE). OSCARD provides EDF with an alternative and independent way of evaluating fuel performance and safety margins. In the licensed approach, the coupled 3D neutron kinetics and thermal-hydraulic part of OSCARD steady computations is used to produce 3D power distribution in the reactor core at the most penalizing moment of the transient. Then this distribution is used as an input for THYC to perform thermal-hydraulic subchannel analysis. This 3 steps approach is used with simple conservative and bounding analysis assumptions, that can not occur in reality. In a prospective approach, OSCARD enables to combine thermal-hydraulic subchannel analysis with the neutron kinetics radial average channel model using a nodalization of one quarter of fuel assembly in order to perform one step DNB analysis. (author)

  7. Error analysis of 3D laser scanning system for gangue monitoring

    Hu, Shaoxing; Xia, Yuyang; Zhang, Aiwu

    2012-01-01

    The paper put forward the system error evaluation method of 3D scanning system for gangue monitoring; analyzed system errors including integrated error which can be avoided, and measurement error which needed whole analysis; firstly established the system equation after understanding the relationship of each structure. Then, used error independent effect and spread law to set up the entire error analysis system, and simulated the trend of error changing along X, Y, Z directions. At last, it is analytic that the laser rangefinder carries some weight in system error, and the horizontal and vertical scanning angles have some influences on system error in the certain vertical and horizontal scanning parameters.

  8. Human factors flight trial analysis for 2D/3D SVS

    Schiefele, Jens; Howland, Duncan; Maris, John; Wipplinger, Patrick

    2004-08-01

    The paper describes flight trials performed in Reno, NV. Flight trial were conducted with a Cheyenne 1 from Marinvent. Twelve pilots flew the Cheyenne in seventy-two approaches to the Reno airfield. All pilots flew completely andomized settings. Three different settings (standard displays, 2D moving map, and 2D/3D moving map) were evaluated. They included seamless evaluation for STAR, approach, and taxi operations. The flight trial goal was to evaluate the objective performance of pilots compared among the different settings. As dependent variables, positional and time accuracy were measured. Analysis was conducted by an ANOVA test. In parallel, all pilots answered subjective Cooper-Harper, situation awareness rating technique (SART), situational awareness probe (SAP), and questionnaires.This article describes the human factor analysis from flight trials performed in Reno, NV. Flight trials were conducted with a Cheyenne 1 from Marinvent. Thirteen pilots flew the Cheyenne in seventy-two approaches to the Reno airfield. All pilots flew completely randomized settings. Three different display configurations: Elec. Flight Information System (EFIS), EFIS and 2D moving map, and 3D SVS Primary Flight Display (PFD) and 2D moving map were evaluated. They included normal/abnormal procedure evaluation for: Steep turns and reversals, Unusual attitude recovery, Radar vector guidance towards terrain, Non-precision approaches, En-route alternate for non-IFR rated pilots encountering IMC, and Taxiing on complex taxi-routes. The flight trial goal was to evaluate the objective performance of pilots for the different display configurations. As dependent variables, positional and time data were measured. Analysis was performed by an ANOVA test. In parallel, all pilots answered subjective NASA Task Load Index, Cooper-Harper, Situation Awareness Rating Technique (SART), and questionnaires. The result shows that pilots flying 2D/3D SVS perform no worse than pilots with conventional

  9. 3D Axon structure extraction and analysis in confocal fluorescence microscopy images.

    Zhang, Yong; Zhou, Xiaobo; Lu, Ju; Lichtman, Jeff; Adjeroh, Donald; Wong, Stephen T C

    2008-08-01

    The morphological properties of axons, such as their branching patterns and oriented structures, are of great interest for biologists in the study of the synaptic connectivity of neurons. In these studies, researchers use triple immunofluorescent confocal microscopy to record morphological changes of neuronal processes. Three-dimensional (3D) microscopy image analysis is then required to extract morphological features of the neuronal structures. In this article, we propose a highly automated 3D centerline extraction tool to assist in this task. For this project, the most difficult part is that some axons are overlapping such that the boundaries distinguishing them are barely visible. Our approach combines a 3D dynamic programming (DP) technique and marker-controlled watershed algorithm to solve this problem. The approach consists of tracking and updating along the navigation directions of multiple axons simultaneously. The experimental results show that the proposed method can rapidly and accurately extract multiple axon centerlines and can handle complicated axon structures such as cross-over sections and overlapping objects. PMID:18336075

  10. Reconstruction Accuracy Assessment of Surface and Underwater 3D Motion Analysis: A New Approach

    Kelly de Jesus

    2015-01-01

    Full Text Available This study assessed accuracy of surface and underwater 3D reconstruction of a calibration volume with and without homography. A calibration volume (6000 × 2000 × 2500 mm with 236 markers (64 above and 88 underwater control points—with 8 common points at water surface—and 92 validation points was positioned on a 25 m swimming pool and recorded with two surface and four underwater cameras. Planar homography estimation for each calibration plane was computed to perform image rectification. Direct linear transformation algorithm for 3D reconstruction was applied, using 1600000 different combinations of 32 and 44 points out of the 64 and 88 control points for surface and underwater markers (resp.. Root Mean Square (RMS error with homography of control and validations points was lower than without it for surface and underwater cameras (P≤0.03. With homography, RMS errors of control and validation points were similar between surface and underwater cameras (P≥0.47. Without homography, RMS error of control points was greater for underwater than surface cameras (P≤0.04 and the opposite was observed for validation points (P≤0.04. It is recommended that future studies using 3D reconstruction should include homography to improve swimming movement analysis accuracy.

  11. Reconstruction Accuracy Assessment of Surface and Underwater 3D Motion Analysis: A New Approach

    de Jesus, Kelly; de Jesus, Karla; Figueiredo, Pedro; Vilas-Boas, João Paulo; Fernandes, Ricardo Jorge; Machado, Leandro José

    2015-01-01

    This study assessed accuracy of surface and underwater 3D reconstruction of a calibration volume with and without homography. A calibration volume (6000 × 2000 × 2500 mm) with 236 markers (64 above and 88 underwater control points—with 8 common points at water surface—and 92 validation points) was positioned on a 25 m swimming pool and recorded with two surface and four underwater cameras. Planar homography estimation for each calibration plane was computed to perform image rectification. Direct linear transformation algorithm for 3D reconstruction was applied, using 1600000 different combinations of 32 and 44 points out of the 64 and 88 control points for surface and underwater markers (resp.). Root Mean Square (RMS) error with homography of control and validations points was lower than without it for surface and underwater cameras (P ≤ 0.03). With homography, RMS errors of control and validation points were similar between surface and underwater cameras (P ≥ 0.47). Without homography, RMS error of control points was greater for underwater than surface cameras (P ≤ 0.04) and the opposite was observed for validation points (P ≤ 0.04). It is recommended that future studies using 3D reconstruction should include homography to improve swimming movement analysis accuracy. PMID:26175796

  12. 3D Product authenticity model for online retail: An invariance analysis

    Algharabat, R.

    2010-01-01

    Full Text Available This study investigates the effects of different levels of invariance analysis on three dimensional (3D product authenticity model (3DPAM constructs in the e- retailing context. A hypothetical retailer website presents a variety of laptops using 3D product visualisations. The proposed conceptual model achieves acceptable fit and the hypothesised paths are all valid. We empirically investigate the invariance across the subgroups to validate the results of our 3DPAM. We concluded that the 3D product authenticity model construct was invariant for our sample across different gender, level of education and study backgrounds. These findings suggested that all our subgroups conceptualised the 3DPAM similarly. Also the results show some non-invariance results for the structural and latent mean models. The gender group posits a non-invariance latent mean model. Study backgrounds group reveals a non-invariance result for the structural model. These findings allowed us to understand the 3DPAMs validity in the e-retail context. Managerial implications are explained.

  13. An Interactive Tool for Analysis and Optimization of Texture Parameters in Photorealistic Virtual 3d Models

    Sima, A. A.; Buckley, S. J.; Viola, I.

    2012-07-01

    Texture mapping is a common method for combining surface geometry with image data, with the resulting photorealistic 3D models being suitable not only for visualization purposes but also for interpretation and spatiameasurement, in many application fields, such as cultural heritage and the earth sciences. When acquiring images for creation of photorealistic models, it is usual to collect more data than is finally necessary for the texturing process. Images may be collected from multiple locations, sometimes with different cameras or lens configurations and large amounts of overlap may exist. Consequently, much redundancy may be present, requiring sorting to choose the most suitable images to texture the model triangles. This paper presents a framework for visualization and analysis of the geometric relations between triangles of the terrain model and covering image sets. The application provides decision support for selection of an image subset optimized for 3D model texturing purposes, for non-specialists. It aims to improve the communication of geometrical dependencies between model triangles and the available digital images, through the use of static and interactive information visualization methods. The tool was used for computer-aided selection of image subsets optimized for texturing of 3D geological outcrop models. The resulting textured models were of high quality and with a minimum of missing texture, and the time spent in time-consuming reprocessing was reduced. Anecdotal evidence indicated that an increased user confidence in the final textured model quality and completeness makes the framework highly beneficial.

  14. Dynamic analysis of radial force density in brushless DC motor using 3-D equivalent magnetic circuit network method

    Hur, J.; Chun, Y.D.; Lee, J.; Hyun, D.S. [Hanyang Univ., Seoul (Korea, Republic of). Dept. of Electrical Engineering

    1998-09-01

    The distribution of radial force density in brushless permanent magnet DC motor is not uniform in axial direction. The analysis of radial force density has to consider the 3-D shape of teeth and overhand, because the radial force density causes vibration and acts on the surface of teeth inconstantly. For the analysis, a new 3-D equivalent magnetic circuit network method is used to account the rotor movement without remesh. The radial force density is calculated and analyzed by Maxwell stress tensor and discrete Fourier transform (DFT) respectively. The results of 3-D equivalent magnetic circuit method have been compared with the results of 3-D FEM.

  15. LEWICE3D/GlennHT Particle Analysis of the Honeywell Al502 Low Pressure Compressor

    Bidwell, Colin S.; Rigby, David L.

    2015-01-01

    A flow and ice particle trajectory analysis was performed for the booster of the Honeywell AL502 engine. The analysis focused on two closely related conditions one of which produced a rollback and another which did not rollback during testing in the Propulsion Systems Lab at NASA Glenn Research Center. The flow analysis was generated using the NASA Glenn GlennHT flow solver and the particle analysis was generated using the NASA Glenn LEWICE3D v3.56 ice accretion software. The flow and particle analysis used a 3D steady flow, mixing plane approach to model the transport of flow and particles through the engine. The inflow conditions for the rollback case were: airspeed, 145 ms; static pressure, 33,373 Pa; static temperature, 253.3 K. The inflow conditions for the non-roll-back case were: airspeed, 153 ms; static pressure, 34,252 Pa; static temperature, 260.1 K. Both cases were subjected to an ice particle cloud with a median volume diameter of 24 microns, an ice water content of 2.0 gm3 and a relative humidity of 100 percent. The most significant difference between the rollback and non-rollback conditions was the inflow static temperature which was 6.8 K higher for the non-rollback case.

  16. Study on Human Slip and Fall Gaits Based on 3D Gait Analysis System

    Junxia Zhang

    2014-03-01

    Full Text Available Slip and fall is a serious problem which affects the health and safety of people, and it has become a hot topic in the ergonomics and biomedicine fields in recent years. The causes of slip and fall accidents including external causes and internal causes. And it is the body response coordination ability under the condition of instability that is one of the important internal causes and plays a key role in causing slip and fall accidents. On the sports psychology, total time (TT is defined as the sum of reaction time and movement time and it can be used to measure the body response coordination ability. Slip and fall probability (FP is the frequency of occurrence of slip and fall accidents. When external conditions are consistent, to a certain extent, different FP reflects the difference of body response coordination ability. Theoretically, TT and FP should have a certain relationship, but the detail is unknown. With the development of computer technology, the 3D gaits analysis system has appeared and the study of slip and fall accidents was promoted depending on its powerful functions. Based on the 3D gaits analysis system, this paper innovatively listed the topic as study content and got the study result: the relationship between TT and FP is significant correlation under the 0.01 level. By using the datum, images and videos exported from the system, this paper conducted the gait analysis and verified the reliability of the correlation: different TT lead to different foot-ground contact force, thus lead to different body response coordination ability, namely FP. Therefore, it is very effective to use the 3D gait analysis system to study the slip and fall accidents

  17. 3-D fracture analysis using a partial-reduced integration scheme

    This paper presents details of 3-D elastic-plastic analyses of axially orientated external surface flaw in an internally pressurized thin-walled cylinder and discusses the variation of the J-integral values around the crack tip. A partial-reduced-integration-penalty method is introduced to minimize this variation of the J-integral near the crack tip. Utilizing 3-D symmetry, an eighth segment of a tube containing an elliptically shaped external surface flaw is modelled using 20-noded isoparametric elements. The crack-tip elements are collapsed to form a 1/r stress singularity about the curved crack front. The finite element model is subjected to internal pressure and axial pressure-generated loads. The virtual crack extension method is used to determine linear elastic stress intensity factors from the J-integral results at various points around the crack front. Despite the different material constants and the thinner wall thickness in this analysis, the elastic results compare favourably with those obtained by other researchers. The nonlinear stress-strain behaviour of the tube material is modelled using an incremental theory of plasticity. Variations of the J-integral values around the curved crack front of the 3-D flaw were seen. These variations could not be resolved by neglecting the immediate crack-tip elements J-integral results in favour of the more remote contour paths or else smoothed out when all the path results are averaged. Numerical incompatabilities in the 20-noded 3-D finite elements used to model the surface flaw were found. A partial-reduced integration scheme, using a combination of full and reduced integration elements, is proposed to determine J-integral results for 3-D fracture analyses. This procedure is applied to the analysis of an external semicircular surface flaw projecting halfway into the tube wall thickness. Examples of the J-integral values, before and after the partial-reduced integration method is employed, are given around the

  18. Application of Incoherent Inelastic Neutron Scattering in Pharmaceutical Analysis

    Bordallo, Heloisa N.; A. Zakharov, Boris; Boidyreva, E.V.;

    2012-01-01

    This study centers on the use of inelastic neutron scattering as an alternative tool for physical characterization of solid pharmaceutical drugs. On the basis of such approach, relaxation processes in the pharmaceutical compound phenacetin (p-ethoxyacetanilide, C(10)H(13)NO(2)) were evidenced on ...

  19. Brain SPECT analysis by 3D-SSP and clinical features of Parkinson's disease

    The aim of the present study is to investigate the association of symptoms in Parkinson's disease (PD) with cerebral perfusion on single photon emission computed tomography (SPECT). The clinical features of PD were compared with SPECT images of the brain obtained by three-dimensional stereotactic surface projection (3D-SSP) analysis. Thirty-eight patients who had PD without dementia (17 men and 21 women with a mean age of 68.6±4.7 years) were enrolled in this study. Their symptoms were rated using the unified parkinson's disease rating scale (UPDRS). Within a week, all patients were examined by SPECT with I-123, and reconstructed images were analyzed with 3D-SSP using an image-analysis software, iSSP ver. 3.5. Data on brain surface perfusion extracted by 3D-SSP analysis were compared between the PD patients and the normal control group. The same comparisons were made for subgroups of PD patients with severe symptoms, such as tremor, gait disturbance, bradykinesia, and the UPDRS motor score. Cerebral perfusion was decreased at the anterior cingulate cortex and occipital lobe of the PD patients compared with the normal controls. In the subgroups with severe gait disturbance and severe bradykinesia, additional hypoperfusion was seen at the lateral frontal association and lateral temporal association and the medial frontal gyrus, and by the pixel-by-pixel comparison, perfusion was significantly decreased (p<0.05) at the medial frontal gyrus and anterior cingulate cortex compared with the normal control group. In PD patients, severe gait disturbance and bradykinesia may be correlated with hypoperfusion of the medial aspect of the frontal lobe. This suggests that functional disturbance of the supplementary motor area and other parts of the frontal lobe are involved in the development of gait disturbance and bradykinesia in PD. (author)

  20. Analysis of the Possibilities of Using Low-Cost Scanning System in 3d Modeling

    Kedzierski, M.; Wierzbickia, D.; Fryskowska, A.; Chlebowska, B.

    2016-06-01

    The laser scanning technique is still a very popular and fast growing method of obtaining information on modeling 3D objects. The use of low-cost miniature scanners creates new opportunities for small objects of 3D modeling based on point clouds acquired from the scan. The same, the development of accuracy and methods of automatic processing of this data type is noticeable. The article presents methods of collecting raw datasets in the form of a point-cloud using a low-cost ground-based laser scanner FabScan. As part of the research work 3D scanner from an open source FabLab project was constructed. In addition, the results for the analysis of the geometry of the point clouds obtained by using a low-cost laser scanner were presented. Also, some analysis of collecting data of different structures (made of various materials such as: glass, wood, paper, gum, plastic, plaster, ceramics, stoneware clay etc. and of different shapes: oval and similar to oval and prism shaped) have been done. The article presents two methods used for analysis: the first one - visual (general comparison between the 3D model and the real object) and the second one - comparative method (comparison between measurements on models and scanned objects using the mean error of a single sample of observations). The analysis showed, that the low-budget ground-based laser scanner FabScan has difficulties with collecting data of non-oval objects. Items built of glass painted black also caused problems for the scanner. In addition, the more details scanned object contains, the lower the accuracy of the collected point-cloud is. Nevertheless, the accuracy of collected data (using oval-straight shaped objects) is satisfactory. The accuracy, in this case, fluctuates between ± 0,4 mm and ± 1,0 mm whereas when using more detailed objects or a rectangular shaped prism the accuracy is much more lower, between 2,9 mm and ± 9,0 mm. Finally, the publication presents the possibility (for the future expansion of

  1. General beam cross-section analysis using a 3D finite element slice

    Couturier, Philippe; Krenk, Steen

    2014-01-01

    analytical solution is available. The paper also shows an application to wind turbine blade cross-sections and discusses the effect of the finite element discretization on the cross-section properties such as stiffness parameters and the location of the elastic and shear centers.......A formulation for analysis of general cross-section properties has been developed. This formulation is based on the stress-strain states in the classic six equilibrium modes of a beam by considering a finite thickness slice modelled by a single layer of 3D finite elements. The displacement...

  2. World's first ABWR start-up test analysis with 3-D transient computational code

    The Kashiwazaki-Kariwa Nuclear Power Station Unit 6, the world's first Advanced BWR (ABWR), began commercial operation from November 1996 following one year of start-up tests. A large number of variables which may be used to validate the advanced design features were obtained from transient tests. These test data are now being used for the qualification of TRACG, a BWR 3-D transient analysis code. Calculated results show that TRACG is fully capable of accurately predicting ABWR transient response and will be useful for application to future plant designs

  3. Object data mining and analysis on 3D images of high precision industrial CT

    There are some areas of interest on 3D images of the high precision industrial CT, such as defects caused during the production process. In order to take a close analysis of these areas, the image processing software Amira was used on the data of a particular work piece sample to do defects segmentation and display, defects measurement. evaluation and documentation. A data set obtained by scanning a vise sample using the lab CT system was analyzed and the results turn out to be fairly good. (authors)

  4. 3D Extension of Haralick Texture Features for Medical Image Analysis

    Tesař, Ludvík; Smutek, D.; Shimizu, A.; Kobatake, H.

    Zurich : ACTA Press, 2007, s. 350-355. ISBN 978-0-88986-646-1. [IASTED International Conference on Signal Processing, Pattern Recognition, and Applications 2007 /4./. Innsbruck (AT), 14.02.2007-16.02.2007] R&D Projects: GA AV ČR 1ET101050403; GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : Haralick texture features * 3D image analysis * image segmentation * CT image s * Gaussian mixture * model-based decision-making * EM algorithm Subject RIV: IN - Informatics, Computer Science

  5. Correction of magnetotelluric static shift by analysis of 3D forward modelling and measured test data

    Zhang, Kun; Wei, Wenbo; Lu, Qingtian; Wang, Huafeng; Zhang, Yawei

    2016-06-01

    To solve the problem of correction of magnetotelluric (MT) static shift, we quantise factors that influence geological environments and observation conditions and study MT static shift according to 3D MT numerical forward modelling and field tests with real data collection. We find that static shift distortions affect both the apparent resistivity and the impedance phase. The distortion results are also related to the frequency. On the basis of synthetic and real data analysis, we propose the concept of generalised static shift resistivity (GSSR) and a new method for correcting MT static shift. The approach is verified by studying 2D inversion models using synthetic and real data.

  6. 3-D in vivo brain tumor geometry study by scaling analysis

    Torres Hoyos, F.; Martín-Landrove, M.

    2012-02-01

    A new method, based on scaling analysis, is used to calculate fractal dimension and local roughness exponents to characterize in vivo 3-D tumor growth in the brain. Image acquisition was made according to the standard protocol used for brain radiotherapy and radiosurgery, i.e., axial, coronal and sagittal magnetic resonance T1-weighted images, and comprising the brain volume for image registration. Image segmentation was performed by the application of the k-means procedure upon contrasted images. We analyzed glioblastomas, astrocytomas, metastases and benign brain tumors. The results show significant variations of the parameters depending on the tumor stage and histological origin.

  7. In-chip fabrication of free-form 3D constructs for directed cell migration analysis

    Olsen, Mark Holm; Hjortø, Gertrud Malene; Hansen, Morten;

    2013-01-01

    Free-form constructs with three-dimensional (3D) microporosity were fabricated by two-photon polymerization inside the closed microchannel of an injection-molded, commercially available polymer chip for analysis of directed cell migration. Acrylate constructs were produced as woodpile topologies...... with a range of pore sizes from 5 × 5 μm to 15 × 15 μm and prefilled with fibrillar collagen. Dendritic cells seeded into the polymer chip in a concentration gradient of the chemoattractant CCL21 efficiently negotiated the microporous maze structure for pore sizes of 8 × 8 μm or larger. The cells...

  8. Stiffness Analysis of 3-d.o.f. Overconstrained Translational Parallel Manipulators

    Pashkevich, Anatoly; Wenger, Philippe

    2008-01-01

    The paper presents a new stiffness modelling method for overconstrained parallel manipulators, which is applied to 3-d.o.f. translational mechanisms. It is based on a multidimensional lumped-parameter model that replaces the link flexibility by localized 6-d.o.f. virtual springs. In contrast to other works, the method includes a FEA-based link stiffness evaluation and employs a new solution strategy of the kinetostatic equations, which allows computing the stiffness matrix for the overconstrained architectures and for the singular manipulator postures. The advantages of the developed technique are confirmed by application examples, which deal with comparative stiffness analysis of two translational parallel manipulators.

  9. Developments in the analysis of 3D piping and shells by means of PAULA code

    Non linear analyses of three dimensional piping and shells are becoming more and more common, in the safety analysis of nuclear power plants. The pipe whip accident, the Hypothetic core Distruptive Accident (HCDA) for LMFBR represent, two significative examples, where non linear analyses of the pressure boundary have been used with considerable success. Seismic analysis and other extreme loading of conditions are other cases, where non linear analyses have been used even if not extensively due to cost reasons. The authors have presented a code, named PAULA to deal with the 3D non linear analysis of piping; it is the aim of this paper to briefly describe the basic library of PAULA and to describe the new shell elements in some more detail. (orig./GL)

  10. Linearized FUN3D for Rapid Aeroelastic and Aeroservoelastic Design and Analysis Project

    National Aeronautics and Space Administration — The overall objective of this Phase I project is to develop a hybrid approach in FUN3D, referred herein to as the Linearized FUN3D, for rapid aeroelastic and...

  11. Improvements of 3D finite element method for eddy current analysis and its application to fusion technology

    The 3D finite element method is improved so that both the computer storage and the CPU time can be reduced by examining the boundary conditions. The improved method is applied to the analysis of the Fusion Electromagnetic Induction Experiment (FELIX) facilities, and the characteristics of 3-D eddy current distributions are investigated. (orig.)

  12. A 3D endoscopy reconstruction as a saliency map for analysis of polyp shapes

    Ruano, Josue; Martínez, Fabio; Gómez, Martín.; Romero, Eduardo

    2015-01-01

    A first diagnosis of colorectal cancer is performed by examination of polyp shape and appearance during an endoscopy routine procedure. However, the video-endoscopy is highly noisy because exacerbated physiological conditions like increased motility or secretion may limit the visual analysis of lesions. In this work a 3D reconstruction of the digestive tract is proposed, facilitating the polyp shape evaluation by highlighting its surface geometry and allowing an analysis from different perspectives. The method starts by a spatio-temporal map, constructed to group the different regions of the tract by their similar dynamic patterns during the sequence. Then, such map was convolved with a second derivative of a Gaussian kernel that emulates the camera distortion and allows to highlight the polyp surface. The position initialization in each frame of the kernel was computed from expert manual delineation and propagated along the sequence based on. Results show reliable reconstructions, with a salient 3D polyp structure that can then be better observed.

  13. Segmentation, Reconstruction, and Analysis of Blood Thrombus Formation in 3D 2-Photon Microscopy Images

    Xu Zhiliang

    2010-01-01

    Full Text Available We study the problem of segmenting, reconstructing, and analyzing the structure growth of thrombi (clots in blood vessels in vivo based on 2-photon microscopic image data. First, we develop an algorithm for segmenting clots in 3D microscopic images based on density-based clustering and methods for dealing with imaging artifacts. Next, we apply the union-of-balls (or alpha-shape algorithm to reconstruct the boundary of clots in 3D. Finally, we perform experimental studies and analysis on the reconstructed clots and obtain quantitative data of thrombus growth and structures. We conduct experiments on laser-induced injuries in vessels of two types of mice (the wild type and the type with low levels of coagulation factor VII and analyze and compare the developing clot structures based on their reconstructed clots from image data. The results we obtain are of biomedical significance. Our quantitative analysis of the clot composition leads to better understanding of the thrombus development, and is valuable to the modeling and verification of computational simulation of thrombogenesis.

  14. 3-D analysis of semiconductor dopant distributions in a patterned structure using LEAP

    Moore, J.S. [Department of Materials Science and Engineering, University of Florida, P.O. Box 116130, 525 Engineering Builing, Gainesville, FL 32611 (United States)], E-mail: jsm200@ufl.edu; Jones, K.S. [Department of Materials Science and Engineering, University of Florida, P.O. Box 116130, 525 Engineering Builing, Gainesville, FL 32611 (United States); Kennel, H.; Corcoran, S. [Intel Corporation, Hillsboro, OR (United States)

    2008-05-15

    This work presents the first 3-D analysis of lateral dopant diffusion in a patterned structure using a pulsed laser-assisted local electrode atom probe (LEAP). A structure similar to a device channel was created for this work by performing a 3 keV, 1x10{sup 15} cm{sup -2} As{sup +} implant on a poly-Si line patterned wafer with 70 nm line width and 200 nm line pitch. The wafer was subsequently annealed at 950 deg. C for 1 s. LEAP samples were made using a site-selective in-situ focused ion beam (FIB) process. The results from LEAP analysis were then compared with high-resolution transmission electron microscopy (HRTEM) and Florida object-oriented process simulator (FLOOPS) results. Good structural agreement was found between the LEAP and HRTEM results. Several 1-D As concentration profiles extracted from the LEAP data were also found to be in good agreement with FLOOPS process simulation results. These profiles also represent for the first time that results from a 3-D process simulator have been able to be confirmed experimentally using a single sample.

  15. Shape Analysis of 3D Head Scan Data for U.S. Respirator Users

    Zhuang, Ziqing; Slice, DennisE; Benson, Stacey; Lynch, Stephanie; Viscusi, DennisJ

    2010-12-01

    In 2003, the National Institute for Occupational Safety and Health (NIOSH) conducted a head-and-face anthropometric survey of diverse, civilian respirator users. Of the 3,997 subjects measured using traditional anthropometric techniques, surface scans and 26 three-dimensional (3D) landmark locations were collected for 947 subjects. The objective of this study was to report the size and shape variation of the survey participants using the 3D data. Generalized Procrustes Analysis (GPA) was conducted to standardize configurations of landmarks associated with individuals into a common coordinate system. The superimposed coordinates for each individual were used as commensurate variables that describe individual shape and were analyzed using Principal Component Analysis (PCA) to identify population variation. The first four principal components (PC) account for 49% of the total sample variation. The first PC indicates that overall size is an important component of facial variability. The second PC accounts for long and narrow or short and wide faces. Longer narrow orbits versus shorter wider orbits can be described by PC3, and PC4 represents variation in the degree of ortho/prognathism. Geometric Morphometrics provides a detailed and interpretable assessment of morphological variation that may be useful in assessing respirators and devising new test and certification standards.

  16. Quantitative analysis of 3D mitral complex geometry using support vector machines

    Quantitative analysis of 3D mitral complex geometry is crucial for a better understanding of its dysfunction. This work aims to characterize the geometry of the mitral complex and utilize a support-vector-machine-based classifier from geometric parameters to support the diagnosis of congenital mitral regurgitation (MR). The method has the following steps: (1) description of the 3D geometry of the mitral complex and establishment of its local reference coordinate system, (2) calculation of geometric parameters and (3) analysis and classification of these parameters. With a control group of 20 normal young children (11 boys, 9 girls, mean age 5.96 ± 3.12 years) and with the normal structure of mitral apparatus, 20 patients (9 boys, 11 girls, mean age 5.59 ± 3.30 years) suffering from severe congenital MR are studied in this study. The average classification accuracy is up to 90.0% of the present population, with the possibility of exploring quantitative association between the mitral complex geometry and the mechanism of congenital MR. (paper)

  17. Finite element analysis of the impact response of reinforced concrete structures using DYNA3D

    Reinforced concrete structures in nuclear installations are potentially subject to accidental impact from external or internally generated hazards. These include: soft impacts such as aircraft crash on containment structures; and hard impacts such as heavy dropped loads on pond floors, or plant-generated fragments on structural and protective walls. The explicit finite element code DYNA3D has been used extensively for analysis of the response of structures to dynamic loadings, and a constitutive material model for reinforced concrete has been developed within DYNA3D to represent local cracking and crushing due to impact loads, as well as treating the elastic and plastic global response modes of the structure. This model has been extensively validated against impact tests for simulated aircraft impact on containment structures, but more recent interest has concentrated on analysis of hard impacts on floors and walls. Whilst a simplified constitutive model is adequate for the response to soft impacts, in which the dominant response mode is flexural, the local damage and high rates experienced in hard impacts have required further development of the material model. This paper describes the main features of the constitutive model, and presents the results of a validation case of a heavy dropped load on a reinforced concrete floor. (author)

  18. Shape Analysis of 3D Head Scan Data for U.S. Respirator Users

    Slice DennisE

    2010-01-01

    Full Text Available In 2003, the National Institute for Occupational Safety and Health (NIOSH conducted a head-and-face anthropometric survey of diverse, civilian respirator users. Of the 3,997 subjects measured using traditional anthropometric techniques, surface scans and 26 three-dimensional (3D landmark locations were collected for 947 subjects. The objective of this study was to report the size and shape variation of the survey participants using the 3D data. Generalized Procrustes Analysis (GPA was conducted to standardize configurations of landmarks associated with individuals into a common coordinate system. The superimposed coordinates for each individual were used as commensurate variables that describe individual shape and were analyzed using Principal Component Analysis (PCA to identify population variation. The first four principal components (PC account for 49% of the total sample variation. The first PC indicates that overall size is an important component of facial variability. The second PC accounts for long and narrow or short and wide faces. Longer narrow orbits versus shorter wider orbits can be described by PC3, and PC4 represents variation in the degree of ortho/prognathism. Geometric Morphometrics provides a detailed and interpretable assessment of morphological variation that may be useful in assessing respirators and devising new test and certification standards.

  19. Analysis of Impact of 3D Printing Technology on Traditional Manufacturing Technology

    Wu, Niyan; Chen, Qi; Liao, Linzhi; Wang, Xin

    With quiet rise of 3D printing technology in automobile, aerospace, industry, medical treatment and other fields, many insiders hold different opinions on its development. This paper objectively analyzes impact of 3D printing technology on mold making technology and puts forward the idea of fusion and complementation of 3D printing technology and mold making technology through comparing advantages and disadvantages of 3D printing mold and traditional mold making technology.

  20. Scaling analysis of the optimized effective potentials for the multiplet states of multivalent 3d ions

    We apply the optimized effective potential method (OPM) to the multivalent 3dn (n = 2, ..., 8) ions; Mν+ (ν = 2, ..., 8). The total energy functional is approximated by the single-configuration Hartree-Fock. The exchange potential for the average energy configuration is decomposed into the potentials derived from F2(3d, 3d) and F4(3d, 3d) Slater integrals. To investigate properties of the density-functional potential, we have checked the scaling properties of several physical quantities such as the density, the 3d orbital and these potentials. We find that the potentials of the Slater integrals do not have the scaling property. Instead, the weighted potential Vi(r) of an ion i, which is the potential of the Slater integrals times the 3d-orbital density, satisfies the scaling property q3diVi(r) ∼ q3djλ4Vj(λr) where qi3d is the occupation number of the 3d-orbital R3d(r) for ion i. Furthermore, the weighted potential can be approximated by the ion-independent functional of the 3d-orbital density ckR8/33d(r)/q3d where c2 = 0.366 and c4 0.223. This suggests that the weighted potential can be expressed as a functional of the 3d-orbital density

  1. 3-D seismic facies analysis of a reefal buildup, offshore North Sumatra

    Alexander, W.L.; Nellia, M.R. (Mobil Oil Indonesia, Jakarta (Indonesia))

    1994-07-01

    The [open quotes]A[close quotes] field is located on the Sunda shelf, offshore north Sumatra. The A-1 discovery well, drilled in 1972, found hydrocarbon gas in middle Miocene carbonate rocks of reefal origin. Six appraisal wells were subsequently drilled, the most recent in late 1990. Because of drilling problems, mainly lost circulation in the carbonate reservoir, the well data obtained from the appraisal program was generally disappointing. Prior to development of the offshore area, an extensive 3-D seismic survey was shot, a portion of which covered the [open quotes]A[close quotes] field. Interpretation of the 3-D data over the [open quotes]A[close quotes] field identified different seismic facies within the carbonate reservoir. These seismic facies have been integrated with the geological data in order to construct a depositional model for the field. The seismic facies analysis was critical for developing the model because of the inadequate geological data obtained from the wells. Three distinct facies could be identified on the 3-D seismic data and correlated with the well data: reef, near-reef and inter-reef. The main concerns this facies mapping addressed were reserve determination, areas of severe lost circulation, and the distribution of dolomite. The near-reef and inter-reef areas were found to have better reservoir properties than the reef core, thereby impacting reserve calculations. In addition, the reef facies, with zones of vuggy to near cavernous type porosity, was correlatable to wells that had experienced severe lost circulation. Finally, dolomite was found to occur only within the reef facies, enabling its distribution to be predicted.

  2. Analysis of bite marks in foodstuffs by computer tomography (cone beam CT)--3D reconstruction.

    Marques, Jeidson; Musse, Jamilly; Caetano, Catarina; Corte-Real, Francisco; Corte-Real, Ana Teresa

    2013-12-01

    The use of three-dimensional (3D) analysis of forensic evidence is highlighted in comparison with traditional methods. This three-dimensional analysis is based on the registration of the surface from a bitten object. The authors propose to use Cone Beam Computed Tomography (CBCT), which is used in dental practice, in order to study the surface and interior of bitten objects and dental casts of suspects. In this study, CBCT is applied to the analysis of bite marks in foodstuffs, which may be found in a forensic case scenario. 6 different types of foodstuffs were used: chocolate, cheese, apple, chewing gum, pizza and tart (flaky pastry and custard). The food was bitten into and dental casts of the possible suspects were made. The dental casts and bitten objects were registered using an x-ray source and the CBCT equipment iCAT® (Pennsylvania, EUA). The software InVivo5® (Anatomage Inc, EUA) was used to visualize and analyze the tomographic slices and 3D reconstructions of the objects. For each material an estimate of its density was assessed by two methods: HU values and specific gravity. All the used materials were successfully reconstructed as good quality 3D images. The relative densities of the materials in study were compared. Amongst the foodstuffs, the chocolate had the highest density (median value 100.5 HU and 1,36 g/cm(3)), while the pizza showed to have the lowest (median value -775 HU and 0,39 g/cm(3)), on both scales. Through tomographic slices and three-dimensional reconstructions it was possible to perform the metric analysis of the bite marks in all the foodstuffs, except for the pizza. These measurements could also be obtained from the dental casts. The depth of the bite mark was also successfully determined in all the foodstuffs except for the pizza. Cone Beam Computed Tomography has the potential to become an important tool for forensic sciences, namely for the registration and analysis of bite marks in foodstuffs that may be found in a crime

  3. International training program in support of safety analysis. 3D S.UN.COP-scaling uncertainty and 3D thermal-hydraulics/neutron-kinetics coupled codes seminars

    Thermal-hydraulic system computer codes are extensively used worldwide for analysis of nuclear facilities by utilities, regulatory bodies, nuclear power plant designers and vendors, nuclear fuel companies, research organizations, consulting companies, and technical support organizations. The computer code user represents a source of uncertainty that can influence the results of system code calculations. This influence is commonly known as the user effect' and stems from the limitations embedded in the codes as well as from the limited capability of the analysis to use the codes. Code user training and qualification is an effective means for reducing the variation of results caused by the application of the codes by different users. This paper describes a systematic approach to training code users who, upon completion of the training, should be able to perform calculations making the best possible use of the capabilities of best estimate codes. In other words, the program aims at contributing towards solving the problem of user effect. The 3D S.UN.COP (Scaling, Uncertainty and 3D COuPled code calculations) seminars have been organized as follow-up of the proposal to IAEA for the Permanent Training Course for System Code Users. Six seminars have been held at University of Pisa (2003, 2004), at The Pennsylvania State University (2004), at University of Zagreb (2005), at the School of Industrial Engineering of Barcelona (January-February 2006) and in Buenos Aires, Argentina (October 2006), being this last one requested by ARN (Autoridad Regulatoria Nuclear), NA-SA (Nucleoelectrica Argentina S.A) and CNEA (Comision Nacional de Energia Atomica). It was recognized that such courses represented both a source of continuing education for current code users and a mean for current code users to enter the formal training structure of a proposed 'permanent' stepwise approach to user training. The 3D S.UN.COP 2006 in Barcelona was successfully held with the attendance of 33

  4. Trend Analysis for the Market and Application Development of 3D Printing

    Chin-Ching Yeh

    2014-01-01

    In 2011, the Economist newspaper declared the advent of 3D printing, also known as Additive Manufacturing (AM), to herald the start of the Third Industrial Revolution. Chris Anderson, originator of the “long-tail theory”, not only authored Makers, a book on3D printing, but also co-founded 3D Robotics to realize his vision for the potential of 3D printing by applying his perspectives embedded in his book. Nevertheless, opposing viewpoints suggest that 3D printing may not be the game changer it...

  5. 3D-QSAR studies on glycogen phosphorylase inhibitors by flexible comparative molecular field analysis

    2007-01-01

    Canceling grids accommodating probes in comparative molecular field analysis (CoMFA), the idea of flexibleness is introduced into the CoMFA, and in combination with swarm intelligent algorithm which attempts to optimize distributions of diverse probes around drug molecules, a new 3D-QSAR method is proposed in this context as flexible comparative molecular field analysis (FCoMFA). In preliminary at-tempts to performing QSAR studies on 47 glycogen phosphorylase inhibitors, FCoMFA is employed and confirmed to be potent to exploring ligand-receptor interaction manners at active positions and thus to generating stable and predictable models. Simultaneously by an intuitive graphics regarding probe distribution patterns, impacts of different substituted groups on activities is also given an insight into.

  6. 3-D geometrical analysis tool for meteoroids/debris impact risk assessment

    Borde, J.; Drolshagen, G.

    1991-01-01

    It is widely appreciated that meteoroids and space debris are critical factors in the safety and reliability of future missions, especially long-term mission such as the Space Station Freedom. In this paper, enhanced a 3-D numerical analysis tool for meteoroids/debris risk evaluation is presented. It is based on presently available environment and particle/wall interaction models together with spacecraft shielding design. This provides impact probabilities and resulting damaging effects using realistic geometrical treatments. The shielding by other parts of the spacecraft is considered. It accounts for directional and geometrical effects both in the environment and in the damage evaluation. It includes the latest environment and design models and allows an easy updating of these data as they are improved upon. This tool is a new application of the ESABASE framework, a geometrical system level analysis and engineering tool developed by MATRA ESPACE for ESA/ESTEC.

  7. Analysis of the SL-1 Accident Using RELAPS5-3D

    On January 3, 1961, at the National Reactor Testing Station, in Idaho Falls, Idaho, the Stationary Low Power Reactor No. 1 (SL-1) experienced a major nuclear excursion, killing three people, and destroying the reactor core. The SL-1 reactor, a 3 MWt boiling water reactor, was shut down and undergoing routine maintenance work at the time. This paper presents an analysis of the SL-1 reactor excursion using the RELAP5-3D thermal-hydraulic and nuclear analysis code, with the intent of simulating the accident from the point of reactivity insertion to destruction and vaporization of the fuel. Results are presented, along with a discussion of sensitivity to some reactor and transient parameters (many of the details are only known with a high level of uncertainty)

  8. Analysis of the SL-1 Accident Using RELAPS5-3D

    Francisco, A.D. and Tomlinson, E. T.

    2007-11-08

    On January 3, 1961, at the National Reactor Testing Station, in Idaho Falls, Idaho, the Stationary Low Power Reactor No. 1 (SL-1) experienced a major nuclear excursion, killing three people, and destroying the reactor core. The SL-1 reactor, a 3 MW{sub t} boiling water reactor, was shut down and undergoing routine maintenance work at the time. This paper presents an analysis of the SL-1 reactor excursion using the RELAP5-3D thermal-hydraulic and nuclear analysis code, with the intent of simulating the accident from the point of reactivity insertion to destruction and vaporization of the fuel. Results are presented, along with a discussion of sensitivity to some reactor and transient parameters (many of the details are only known with a high level of uncertainty).

  9. 3D-QSAR Investigation of Synthetic Antioxidant Chromone Derivatives by Molecular Field Analysis

    Jiraporn Ungwitayatorn

    2008-02-01

    Full Text Available A series of 7-hydroxy, 8-hydroxy and 7,8-dihydroxy synthetic chromone derivatives was evaluated for their DPPH free radical scavenging activities. A training set of 30 synthetic chromone derivatives was subject to three-dimensional quantitative structure-activity relationship (3D-QSAR studies using molecular field analysis (MFA. The substitutional requirements for favorable antioxidant activity were investigated and a predictive model that could be used for the design of novel antioxidants was derived. Regression analysis was carried out using genetic partial least squares (G/PLS method. A highly predictive and statistically significant model was generated. The predictive ability of the developed model was assessed using a test set of 5 compounds (r2pred = 0.924. The analyzed MFA model demonstrated a good fit, having r2 value of 0.868 and crossvalidated coefficient r2cv value of 0.771.

  10. CAD, 3D modeling, engineering analysis, and prototype experimentation industrial and research applications

    Zheng Li, Jeremy

    2015-01-01

    This succinct book focuses on computer aided design (CAD), 3-D modeling, and engineering analysis and the ways they can be applied effectively in research and industrial sectors including aerospace, defense, automotive, and consumer products. These efficient tools, deployed for R&D in the laboratory and the field, perform efficiently three-dimensional modeling of finished products, render complex geometrical product designs, facilitate structural analysis and optimal product design, produce graphic and engineering drawings, and generate production documentation. Written with an eye toward green energy installations and novel manufacturing facilities, this concise volume enables scientific researchers and engineering professionals to learn design techniques, control existing and complex issues, proficiently use CAD tools, visualize technical fundamentals, and gain analytic and technical skills. This book also: ·       Equips practitioners and researchers to handle powerful tools for engineering desi...

  11. Analysis of the spectrum six times ionized zinc (Zn VII): the 3d6-3d54p transition array

    The spectrum of zinc was photographed in the 100-300 A region on a 10.7 m grazing incidence spectrograph using a triggered spark light source. 335 lines were classified in the Zn VII 3d6-3d54p transition array, resulting in the establishment of 30 of the 34 levels of the 3d6 configuration and 103 of the 214 levels of the 3d54p. The ground configuration 3d6 was described by a generalized least-squares fit (GLSF) involving orthogonal operators to a set of 3dN configurations. This yielded a mean error of 3 cm-1 for its level values. The excited configruation was described by the conventional Slater Condon parameter set, giving a mean error of 105 cm-1. (orig.)

  12. Automated extraction and analysis of rock discontinuity characteristics from 3D point clouds

    Bianchetti, Matteo; Villa, Alberto; Agliardi, Federico; Crosta, Giovanni B.

    2016-04-01

    A reliable characterization of fractured rock masses requires an exhaustive geometrical description of discontinuities, including orientation, spacing, and size. These are required to describe discontinuum rock mass structure, perform Discrete Fracture Network and DEM modelling, or provide input for rock mass classification or equivalent continuum estimate of rock mass properties. Although several advanced methodologies have been developed in the last decades, a complete characterization of discontinuity geometry in practice is still challenging, due to scale-dependent variability of fracture patterns and difficult accessibility to large outcrops. Recent advances in remote survey techniques, such as terrestrial laser scanning and digital photogrammetry, allow a fast and accurate acquisition of dense 3D point clouds, which promoted the development of several semi-automatic approaches to extract discontinuity features. Nevertheless, these often need user supervision on algorithm parameters which can be difficult to assess. To overcome this problem, we developed an original Matlab tool, allowing fast, fully automatic extraction and analysis of discontinuity features with no requirements on point cloud accuracy, density and homogeneity. The tool consists of a set of algorithms which: (i) process raw 3D point clouds, (ii) automatically characterize discontinuity sets, (iii) identify individual discontinuity surfaces, and (iv) analyse their spacing and persistence. The tool operates in either a supervised or unsupervised mode, starting from an automatic preliminary exploration data analysis. The identification and geometrical characterization of discontinuity features is divided in steps. First, coplanar surfaces are identified in the whole point cloud using K-Nearest Neighbor and Principal Component Analysis algorithms optimized on point cloud accuracy and specified typical facet size. Then, discontinuity set orientation is calculated using Kernel Density Estimation and

  13. Web-based visualisation and analysis of 3D electron-microscopy data from EMDB and PDB ☆

    Lagerstedt, Ingvar; Moore, William J.; Patwardhan, Ardan; Sanz-García, Eduardo; Best, Christoph; Swedlow, Jason R.; Kleywegt, Gerard J

    2013-01-01

    The Protein Data Bank in Europe (PDBe) has developed web-based tools for the visualisation and analysis of 3D electron microscopy (3DEM) structures in the Electron Microscopy Data Bank (EMDB) and Protein Data Bank (PDB). The tools include: (1) a volume viewer for 3D visualisation of maps, tomograms and models, (2) a slice viewer for inspecting 2D slices of tomographic reconstructions, and (3) visual analysis pages to facilitate analysis and validation of maps, tomograms and models. These tool...

  14. The advanced 3D method for activation analysis of fusion reactor materials

    The method allows analyzing the complex objects activated by neutrons (e.g. fusion reactors) combining advantages of the 3D radiation transport by MCNP program with calculations of multiple activation and radioactive decay chains by FISPACT program. The problem of preparing the gamma-ray sources in cells of 3D geometry was solved by creation of an interface between the MCNP and FISPACT programs. The interface allows optimizing the process of activation analysis by revealing dominant sources of radiation. The developed interface essentially reduces the time needed for calculations. The main advantage of the method is realization of so-called 'multibox' procedure for decay gamma source sampling during decay gamma transport in very large and complex fusion reactor models. Shutdown dose rate calculations are faster (up to 600 times in ITER cryostat) in comparison with applied MCNP standard source definition by using an external user-supplied source subroutine of the 'multibox' procedure. The offered method is intended for solution of the activation tasks with deep penetration of radiation. The method was used in the engineering design of ITER-FEAT and RF DEMO-S

  15. SAFE-3D analysis of a piezoelectric transducer to excite guided waves in a rail web

    Ramatlo, Dineo A.; Long, Craig S.; Loveday, Philip W.; Wilke, Daniel N.

    2016-02-01

    Our existing Ultrasonic Broken Rail Detection system detects complete breaks and primarily uses a propagating mode with energy concentrated in the head of the rail. Previous experimental studies have demonstrated that a mode with energy concentrated in the head of the rail, is capable of detecting weld reflections at long distances. Exploiting a mode with energy concentrated in the web of the rail would allow us to effectively detect defects in the web of the rail and could also help to distinguish between reflections from welds and cracks. In this paper, we will demonstrate the analysis of a piezoelectric transducer attached to the rail web. The forced response at different frequencies is computed by the Semi-Analytical Finite Element (SAFE) method and compared to a full three-dimensional finite element method using ABAQUS. The SAFE method only requires the rail track cross-section to be meshed using two-dimensional elements. The ABAQUS model in turn requires a full three-dimensional discretisation of the rail track. The SAFE approach can yield poor predictions at cut-on frequencies associated with other modes in the rail. Problematic frequencies are identified and a suitable frequency range identified for transducer design. The forced response results of the two methods were found to be in good agreement with each other. We then use a previously developed SAFE-3D method to analyse a practical transducer over the selected frequency range. The results obtained from the SAFE-3D method are in good agreement with experimental measurements.

  16. VAP3D: a software for dosimetric analysis and visualization of phantons

    The anthropomorphic models used in computational dosimetry of the ionizing radiation, usually called voxel phantom, are produced from image stacks CT (Computed Tomography) or MRI (Magnetic Resonance Imaging) obtained from patient or volunteer scanning. These phantoms are the geometry to be radiated in the computing arrangements of exposure, using a Monte Carlo code, allowing the estimation of the energy deposited in each voxel of the virtual body. From these data collected in the simulation, it is possible to evaluate the average absorbed dose in various organs and tissues radiosensitive cataloged by the International Commission on Radiological Protection (ICRP). Therefore, a computational model of the exhibition is constituted primarily by the Monte Carlo code to simulate the transport, deposition and interaction of radiation and the phantom being irradiated. The construction of voxel phantoms requires computer skills like a transformation format of images, compression of 2D images for 3D image construction, quantization, resampling and image segmentation, among others. Hardly the computational dosimetry researcher finds all these skills into a single software and often this results in a decrease in the pace of their research or the use, sometimes inadequate, the alternative tools. This paper presents the VAP3D (Visualization and Analysis of Phantoms), a software developed with Qt/VTK with C++, in order to operationalize some of the tasks mentioned above. The current version has been based on DIP software (Digital Imaging Processing), containing the File menu, Conversions and tools, where the user interacts with the software. (author)

  17. In vivo analysis of physiological 3D blood flow of cerebral veins

    Schuchardt, Florian; Schroeder, Laure; Baeuerle, Jochen; Harloff, Andreas [University Medical Centre, Department of Neurology, Freiburg (Germany); Anastasopoulos, Constantin [University Medical Center, Department of Neuropaediatrics and Muscle Disorders, Freiburg (Germany); University Medical Centre, Department of Neuroradiology, Freiburg (Germany); Markl, Michael [Northwestern University, Department of Radiology, Feinberg School of Medicine and McCormick School of Engineering, Chicago, IL (United States); Hennemuth, Anja; Drexl, Johann [Fraunhofer MEVIS, Bremen (Germany); Valdueza, Jose M. [Neurological Center, Segeberger Kliniken, Bad Segeberg (Germany); Mader, Irina [University Medical Centre, Department of Neuroradiology, Freiburg (Germany)

    2015-08-15

    To visualize and quantify physiological blood flow of intracranial veins in vivo using time-resolved, 3D phase-contrast MRI (4D flow MRI), and to test measurement accuracy. Fifteen healthy volunteers underwent repeated ECG-triggered 4D flow MRI (3 Tesla, 32-channel head coil). Intracranial venous blood flow was analysed using dedicated software allowing for blood flow visualization and quantification in analysis planes at the superior sagittal, straight, and transverse sinuses. MRI was evaluated for intra- and inter-observer agreement and scan-rescan reproducibility. Measurements of the transverse sinuses were compared with transcranial two-dimensional duplex ultrasound. Visualization of 3D blood flow within cerebral sinuses was feasible in 100 % and within at least one deep cerebral vein in 87 % of the volunteers. Blood flow velocity/volume increased along the superior sagittal sinus and was lower in the left compared to the right transverse sinus. Intra- and inter-observer reliability and reproducibility of blood flow velocity (mean difference 0.01/0.02/0.02 m/s) and volume (mean difference 0.0002/-0.0003/0.00003 l/s) were good to excellent. High/low velocities were more pronounced (8 % overestimation/9 % underestimation) in MRI compared to ultrasound. Four-dimensional flow MRI reliably visualizes and quantifies three-dimensional cerebral venous blood flow in vivo and is promising for studies in patients with sinus thrombosis and related diseases. (orig.)

  18. Advanced 2D and 3D Electron Microscopy Analysis of Clay/PP Nanocomposites

    Mosca, Alessandra; Roberts, Ashley; Daviðsdóttir, Svava;

    2011-01-01

    the improved macroscopic properties of nanocomposites. In this work, a clay/PP nanocomposite is studied by 2D bright field transmission electron microscopy (TEM) and 3D focussed ion beam – field emission gun scanning electron microscopy (FIB/FEG SEM). Materials and Methods A clay/polymer nanocomposite...... consisting of 3 wt% modified clay in a PP matrix was studied. Prior to microscopy analyses, SEM or TEM samples were cryo-microtomed to a flat surface or thin sections (70 nm), respectively. An FEI Titan T20 TEM microscope operating at 200 kV was used for 2D imaging. An FEI Helios focussed ion beam (FIB......) equipped with field emission gun (FEG) and through lens detector (TLD) was used for high resolution 3D imaging of the material via slice-and-view technique [2]. Image analysis was performed using Matlab. Results and Discussion Figure 1 (a) shows a TEM micrograph of a clay/PP nanocomposite, where the clay...

  19. Welding distortion analysis of multipass joint combination with different sequences using 3D FEM and experiment

    This paper presents an investigation of the welding sequence effect on induced angular distortion using FEM and experiments. The specimen of a combined joint geometry was modeled and simulated using Multipass Welding Advisor (MWA) in SYSWELD 2010 based on the thermal-elastic-plastic approach with low manganese carbon steel S3355J2G3 as specimen material and Goldak's double ellipsoid as heat source model. To validate the simulation results, a series of experiments was conducted with two different welding sequences using automated welding process, low carbon steel as parent metal, digital GMAW power source with premixed shielding gas and both-sided clamping technique. Based on the results, it was established that the thermo-elastic-plastic 3D FEM analysis shows good agreement with experimental results and the welding sequence “from outside to inside” induced less angular distortion compared to “from inside to outside”. -- Highlights: • 3D FEM was used to analyze the welding distortion on two different sequences. • Simulation results were validated with experiments using automated welding system. • Simulation results and experiments showed acceptable accuracy. • Welding sequence “outside–inside” showed less distortion than “inside–outside”

  20. 3D Finite Element Analysis of PWA-Oil Sand Terrain System Interaction

    Y. Li

    2012-01-01

    Full Text Available A simulator for analyzing the interaction between the oil sand terrain and a pipe wagon articulating (PWA system has been developed in this paper. An elastic-plastic oil sand model was built based on the finite element analysis (FEA method and von Mises yield criterion using the Algor mechanical event simulation (MES software. The three-dimensional (3D distribution of the stress, strain, nodal displacement, and deformed shape of the oil sands was animated at an environmental temperature of 25°C. The 3D behavior of the oil sand terrain was investigated with different loading conditions. The effect of the load and contact area on the stress and nodal displacement was analyzed, respectively. The results indicate that both the max stress and max nodal displacement increase with the load varying from 0 to 3.6+7 N and decrease with the contact area varying from 2 to 10 m2. The method presented in this paper forms the basis for evaluating the bearing capacity of oil sand ground.

  1. Shape, size, and atomic composition analysis of nanostructures in 3D by Rutherford backscattering spectrometry

    Zolnai, Zsolt, E-mail: zolnai.zsolt@ttk.mta.hu

    2013-09-15

    The emergence of novel micro- and nanofabrication tools lead to the targeted research of highly ordered three-dimensional nanosystems, constructed from regular building blocks like spheres, cylinders, bricks, pyramids, which can be used in a wide range of applications. As a consequence, the exploration of the potential and limits of efficient analytical techniques to characterize structured nanosystems became a significant task. In this work the scope of conventional Rutherford backscattering spectrometry (RBS) analysis is extended to investigate highly ordered periodic nanostructures in three dimensions. Hexagonally arranged spherical and ellipsoidal silica particles, rectangular gold nano-arrays, and embedded structures in Si substrates and silica particles are analyzed. It is shown that the shape of the measured spectra can be correlated with the shape of individual nano-objects through geometrical considerations. The evaluation of the recorded data for different sample tilt angles can be carried out with the Monte-Carlo type 3D simulation model cell concept considering the details of the applied measurement geometry. It is demonstrated that macrobeam 3D-RBS can provide valuable information on the shape, size, spacing, and atomic composition of nanostructured samples as well as on nanoscale atomic transport processes and consequently, it can be utilized as a highly precise, non-destructive characterization tool for nanotechnology.

  2. 3D FE Analysis of RC Beams Externally Strengthened with SRG/SRP Systems

    Francesco Bencardino

    2016-05-01

    Full Text Available The purpose of this study is to evaluate, through a nonlinear Finite Element (FE analysis, the structural behavior of Reinforced Concrete (RC beams externally strengthened by using Steel Reinforced Grout (SRG and Steel Reinforced Polymer (SRP systems. The parameters taken into account were the external strengthening configuration, with or without U-wrap end anchorages, as well as the strengthening materials. The numerical simulations were carried out by using a three-dimensional (3D FE model. The linear and nonlinear behavior of all materials was modeled by appropriate constitutive laws and the connection between concrete substrate and external reinforcing layer was simulated by means of cohesive surfaces with appropriate bond-slip laws. In order to overcome convergence difficulties, to simulate the quasi-static response of the strengthened RC beams, a dynamic approach was adopted. The numerical results in terms of load-displacement curves, failure modes, and load and strain values at critical stages were validated against some experimental data. As a result, the proposed 3D FE model can be used to predict the structural behavior up to ultimate stage of similar strengthened beams without carrying out experimental tests.

  3. A 3D finite element model for the vibration analysis of asymmetric rotating machines

    This paper suggests a 3D finite element method based on the modal theory in order to analyse linear periodically time-varying systems. Presentation of the method is given through the particular case of asymmetric rotating machines. First, Hill governing equations of asymmetric rotating oscillators with two degrees of freedom are investigated. These differential equations with periodic coefficients are solved with classic Floquet theory leading to parametric quasi-modes. These mathematical entities are found to have the same fundamental properties as classic Eigenmodes, but contain several harmonics possibly responsible for parametric instabilities. Extension to the vibration analysis (stability, frequency spectrum) of asymmetric rotating machines with multiple degrees of freedom is achieved with a fully 3D finite element model including stator and rotor coupling. Due to Hill expansion, the usual degrees of freedom are duplicated and associated with the relevant harmonic of the Floquet solutions in the frequency domain. Parametric quasi-modes as well as steady-state response of the whole system are ingeniously computed with a component-mode synthesis method. Finally, experimental investigations are performed on a test rig composed of an asymmetric rotor running on non-isotropic supports. Numerical and experimental results are compared to highlight the potential of the numerical method. (authors)

  4. Trend Analysis for the Market and Application Development of 3D Printing

    Chin-Ching Yeh

    2014-02-01

    Full Text Available In 2011, the Economist newspaper declared the advent of 3D printing, also known as Additive Manufacturing (AM, to herald the start of the Third Industrial Revolution. Chris Anderson, originator of the “long-tail theory”, not only authored Makers, a book on3D printing, but also co-founded 3D Robotics to realize his vision for the potential of 3D printing by applying his perspectives embedded in his book. Nevertheless, opposing viewpoints suggest that 3D printing may not be the game changer its proponents claim. The article explores the technical classification and market growth potential of 3D printing, and analyzes the main markets and countries as well as the application scope of 3D printing.

  5. TORT-TD/ATTICA3D: a coupled neutron transport and thermal hydraulics code system for 3-D transient analysis of gas cooled high temperature reactors

    Comprehensive safety studies of high temperature gas cooled reactors (HTR) require full three dimensional coupled treatments of both neutron kinetics and thermal-hydraulics. In a common effort, GRS and IKE developed the coupled code system TORT-TD/ATTICA3D for pebble bed type HTR that connects the 3-D transient discrete-ordinates transport code TORT-TD with the 3-D porous medium thermal-hydraulics code ATTICA3D. In this paper, the physical models and calculation capabilities of TORT-TD and ATTICA3D are presented, focusing on model improvements in ATTICA3D and extensions made in TORT-TD related to HTR application. For first applications, the OECD/NEA/NSC PBMR-400 benchmark has been chosen. Results obtained with TORT-TD/ATTICA3D will be shown for transient exercises, e.g. control rod withdrawal and a control rod ejection. Results are compared to other benchmark participants' solutions with special focus on fuel temperature modelling features of ATTICA3D. The provided “grey-curtain” nuclear cross section libraries have been used. First results on 3-D effects during a control rod withdrawal transient will be presented. (author)

  6. Experience with conventional inelastic analysis procedures in very high temperature applications

    Conventional incremental plasticity and creep analysis procedures for inelastic analysis are applied to hot flue gas cleanup system components. These flue gas systems operate at temperatures where plasticity and creep are very much intertwined while the two phenomena are treated separately in the conventional inelastic analysis procedure. Data for RA333 material are represented in forms appropriate for the conventional inelastic analysis procedures. Behavior is predicted for typical operating cycles. Creep-fatigue damage is estimated based upon usage fractions. Excessive creep damage is predicted; the major contributions occur during high stress short term intervals caused by rapid temperature changes. In this paper these results are presented for discussion of the results and their interpretation in terms of creep-fatigue damage for very high temperature applications

  7. Incentives for use of inelastic analysis in RAM transport container design

    The use of inelastic analysis methods instead of the traditional elastic analysis methods in the design of radioactive material (RAM) transport packagings leads to a better understanding of the response ofthe package to mechanical loadings. Thus, better assessment of the containment, thermal protection, and shielding integrity of the package after a structural accident event can be made. A more accurate prediction of the package response can lead to enhanced safety and also allow for a more efficient use of materials, possibly leading to a package with higher capacity and/or lower weight. This paper discusses the incentives for using inelastic analysis in the design of RAM shipping packages. Inelastic analysis provides an improved knowledge of the package behavior. It must be demonstrated that the use of inelastic analysis provides a better design to overcome the difficulties associated with this type of analysis. In this paper, comparisons between elastic and inelastic analyses are made to illustrate the differences in the two analysis techniques for two different types of packages. One is a package to transport a large quantity of RAM by rail with lead gamma shielding,and the other is a package to transport RAM by truck with depleteduranium gamma shielding. Analyses of the center-of-gravity-over-corner impacts will be compared for each package. The comparisons indicate thata package designed to just meet the elastic design criteria will actually undergo some yielding in the locations of highest stress. This results in two consequences in the predicted behavior of the cask. First,the overprediction of the stiffness of these yielded regions by theelastic analysis technique results in an underestimation of the stresses in other portions of the structure. Secondly, in an inelastic analysis, the yielding of a portion of a structure causes the force in thatregion to rise less rapidly than forces in adjacent regions

  8. International Training Program in Support of Safety Analysis: 3D S.UN.COP-Scaling, Uncertainty and 3D Thermal-Hydraulics/Neutron-Kinetics Coupled Codes Seminars

    Thermal-hydraulic system computer codes are extensively used worldwide for analysis of nuclear facilities by utilities, regulatory bodies, nuclear power plant designers and vendors, nuclear fuel companies, research organizations, consulting companies, and technical support organizations. The computer code user represents a source of uncertainty that can influence the results of system code calculations. This influence is commonly known as the 'user effect' and stems from the limitations embedded in the codes as well as from the limited capability of the analysts to use the codes. Code user training and qualification is an effective means for reducing the variation of results caused by the application of the codes by different users. This paper describes a systematic approach to training code users who, upon completion of the training, should be able to perform calculations making the best possible use of the capabilities of best estimate codes. In other words, the program aims at contributing towards solving the problem of user effect. The 3D S.UN.COP (Scaling, Uncertainty and 3D COuPled code calculations) seminars have been organized as follow-up of the proposal to IAEA for the Permanent Training Course for System Code Users [1]. Five seminars have been held at University of Pisa (2003, 2004), at The Pennsylvania State University (2004), at University of Zagreb (2005) and at the School of Industrial Engineering of Barcelona (2006). It was recognized that such courses represented both a source of continuing education for current code users and a mean for current code users to enter the formal training structure of a proposed 'permanent' stepwise approach to user training. The 3D S.UN.COP 2006 was successfully held with the attendance of 33 participants coming from 18 countries and 28 different institutions (universities, vendors, national laboratories and regulatory bodies). More than 30 scientists (coming from 13 countries and 23 different institutions) were

  9. 3D texture analysis of solitary pulmonary nodules using co-occurrence matrix from volumetric lung CT images

    Dhara, Ashis Kumar; Mukhopadhyay, Sudipta; Khandelwal, Niranjan

    2013-02-01

    In this paper we have investigated a new approach for texture features extraction using co-occurrence matrix from volumetric lung CT image. Traditionally texture analysis is performed in 2D and is suitable for images collected from 2D imaging modality. The use of 3D imaging modalities provide the scope of texture analysis from 3D object and 3D texture feature are more realistic to represent 3D object. In this work, Haralick's texture features are extended in 3D and computed from volumetric data considering 26 neighbors. The optimal texture features to characterize the internal structure of Solitary Pulmonary Nodules (SPN) are selected based on area under curve (AUC) values of ROC curve and p values from 2-tailed Student's t-test. The selected texture feature in 3D to represent SPN can be used in efficient Computer Aided Diagnostic (CAD) design plays an important role in fast and accurate lung cancer screening. The reduced number of input features to the CAD system will decrease the computational time and classification errors caused by irrelevant features. In the present work, SPN are classified from Ground Glass Nodule (GGN) using Artificial Neural Network (ANN) classifier considering top five 3D texture features and top five 2D texture features separately. The classification is performed on 92 SPN and 25 GGN from Imaging Database Resources Initiative (IDRI) public database and classification accuracy using 3D texture features and 2D texture features provide 97.17% and 89.1% respectively.

  10. 3D GeoWall Analysis System for Shuttle External Tank Foreign Object Debris Events

    Brown, Richard; Navard, Andrew; Spruce, Joseph

    2010-01-01

    An analytical, advanced imaging method has been developed for the initial monitoring and identification of foam debris and similar anomalies that occur post-launch in reference to the space shuttle s external tank (ET). Remote sensing technologies have been used to perform image enhancement and analysis on high-resolution, true-color images collected with the DCS 760 Kodak digital camera located in the right umbilical well of the space shuttle. Improvements to the camera, using filters, have added sharpness/definition to the image sets; however, image review/analysis of the ET has been limited by the fact that the images acquired by umbilical cameras during launch are two-dimensional, and are usually nonreferenceable between frames due to rotation translation of the ET as it falls away from the space shuttle. Use of stereo pairs of these images can enable strong visual indicators that can immediately portray depth perception of damaged areas or movement of fragments between frames is not perceivable in two-dimensional images. A stereoscopic image visualization system has been developed to allow 3D depth perception of stereo-aligned image pairs taken from in-flight umbilical and handheld digital shuttle cameras. This new system has been developed to augment and optimize existing 2D monitoring capabilities. Using this system, candidate sequential image pairs are identified for transformation into stereo viewing pairs. Image orientation is corrected using control points (similar points) between frames to place the two images in proper X-Y viewing perspective. The images are then imported into the WallView stereo viewing software package. The collected control points are used to generate a transformation equation that is used to re-project one image and effectively co-register it to the other image. The co-registered, oriented image pairs are imported into a WallView image set and are used as a 3D stereo analysis slide show. Multiple sequential image pairs can be used