WorldWideScience

Sample records for 3-d image diagnosis

  1. Development of 2D, pseudo 3D and 3D x-ray imaging for early diagnosis of breast cancer and rheumatoid arthritis

    By using plane-wave x-rays with synchrotron radiation refraction-based x-ray medical imaging can be used to visualize soft tissue, as reported in this paper. This method comprises two-dimensional (2D) x-ray dark-field imaging (XDFI), the tomosynthesis of pseudo 3D (sliced) x-ray imaging by the adoption of XDFI and 3D x-ray imaging by utilizing a newly devised algorithm. We aim to make contribution to the early diagnosis of breast cancer, which is a major cancer among women, and rheumatoid arthritises which cannot be detected in its early stages. (author)

  2. Automated 3D ultrasound image segmentation for assistant diagnosis of breast cancer

    Wang, Yuxin; Gu, Peng; Lee, Won-Mean; Roubidoux, Marilyn A.; Du, Sidan; Yuan, Jie; Wang, Xueding; Carson, Paul L.

    2016-04-01

    Segmentation of an ultrasound image into functional tissues is of great importance to clinical diagnosis of breast cancer. However, many studies are found to segment only the mass of interest and not all major tissues. Differences and inconsistencies in ultrasound interpretation call for an automated segmentation method to make results operator-independent. Furthermore, manual segmentation of entire three-dimensional (3D) ultrasound volumes is time-consuming, resource-intensive, and clinically impractical. Here, we propose an automated algorithm to segment 3D ultrasound volumes into three major tissue types: cyst/mass, fatty tissue, and fibro-glandular tissue. To test its efficacy and consistency, the proposed automated method was employed on a database of 21 cases of whole breast ultrasound. Experimental results show that our proposed method not only distinguishes fat and non-fat tissues correctly, but performs well in classifying cyst/mass. Comparison of density assessment between the automated method and manual segmentation demonstrates good consistency with an accuracy of 85.7%. Quantitative comparison of corresponding tissue volumes, which uses overlap ratio, gives an average similarity of 74.54%, consistent with values seen in MRI brain segmentations. Thus, our proposed method exhibits great potential as an automated approach to segment 3D whole breast ultrasound volumes into functionally distinct tissues that may help to correct ultrasound speed of sound aberrations and assist in density based prognosis of breast cancer.

  3. Craniosynostosis: prenatal diagnosis by 2D/3D ultrasound, magnetic resonance imaging and computed tomography.

    Helfer, Talita Micheletti; Peixoto, Alberto Borges; Tonni, Gabriele; Araujo Júnior, Edward

    2016-09-01

    Craniosynostosis is defined as the process of premature fusion of one or more of the cranial sutures. It is a common condition that occurs in about 1 to 2,000 live births. Craniosynostosis may be classified in primary or secondary. It is also classified as nonsyndromic or syndromic. According to suture commitment, craniosynostosis may affect a single suture or multiple sutures. There is a wide range of syndromes involving craniosynostosis and the most common are Apert, Pffeifer, Crouzon, Shaethre-Chotzen and Muenke syndromes. The underlying etiology of nonsyndromic craniosynostosis is unknown. Mutations in the fibroblast growth factor (FGF) signalling pathway play a crucial role in the etiology of craniosynostosis syndromes. Prenatal ultrasound`s detection rate of craniosynostosis is low. Nowadays, different methods can be applied for prenatal diagnosis of craniosynostosis, such as two-dimensional (2D) and three-dimensional (3D) ultrasound, magnetic resonance imaging (MRI), computed tomography (CT) scan and, finally, molecular diagnosis. The presence of craniosynostosis may affect the birthing process. Fetuses with craniosynostosis also have higher rates of perinatal complications. In order to avoid the risks of untreated craniosynostosis, children are usually treated surgically soon after postnatal diagnosis. PMID:27622416

  4. A new approach of building 3D visualization framework for multimodal medical images display and computed assisted diagnosis

    Li, Zhenwei; Sun, Jianyong; Zhang, Jianguo

    2012-02-01

    As more and more CT/MR studies are scanning with larger volume of data sets, more and more radiologists and clinician would like using PACS WS to display and manipulate these larger data sets of images with 3D rendering features. In this paper, we proposed a design method and implantation strategy to develop 3D image display component not only with normal 3D display functions but also with multi-modal medical image fusion as well as compute-assisted diagnosis of coronary heart diseases. The 3D component has been integrated into the PACS display workstation of Shanghai Huadong Hospital, and the clinical practice showed that it is easy for radiologists and physicians to use these 3D functions such as multi-modalities' (e.g. CT, MRI, PET, SPECT) visualization, registration and fusion, and the lesion quantitative measurements. The users were satisfying with the rendering speeds and quality of 3D reconstruction. The advantages of the component include low requirements for computer hardware, easy integration, reliable performance and comfortable application experience. With this system, the radiologists and the clinicians can manipulate with 3D images easily, and use the advanced visualization tools to facilitate their work with a PACS display workstation at any time.

  5. 2D and 3D Refraction Based X-ray Imaging Suitable for Clinical and Pathological Diagnosis

    Ando, Masami; Bando, Hiroko; Chen, Zhihua; Chikaura, Yoshinori; Choi, Chang-Hyuk; Endo, Tokiko; Esumi, Hiroyasu; Gang, Li; Hashimoto, Eiko; Hirano, Keiichi; Hyodo, Kazuyuki; Ichihara, Shu; Jheon, SangHoon; Kim, HongTae; Kim, JongKi; Kimura, Tatsuro; Lee, ChangHyun; Maksimenko, Anton; Ohbayashi, Chiho; Park, SungHwan; Shimao, Daisuke; Sugiyama, Hiroshi; Tang, Jintian; Ueno, Ei; Yamasaki, Katsuhito; Yuasa, Tetsuya

    2007-01-01

    The first observation of micro papillary (MP) breast cancer by x-ray dark-field imaging (XDFI) and the first observation of the 3D x-ray internal structure of another breast cancer, ductal carcinoma in-situ (DCIS), are reported. The specimen size for the sheet-shaped MP was 26 mm × 22 mm × 2.8 mm, and that for the rod-shaped DCIS was 3.6 mm in diameter and 4.7 mm in height. The experiment was performed at the Photon Factory, KEK: High Energy Accelerator Research Organization. We achieved a high-contrast x-ray image by adopting a thickness-controlled transmission-type angular analyzer that allows only refraction components from the object for 2D imaging. This provides a high-contrast image of cancer-cell nests, cancer cells and stroma. For x-ray 3D imaging, a new algorithm due to the refraction for x-ray CT was created. The angular information was acquired by x-ray optics diffraction-enhanced imaging (DEI). The number of data was 900 for each reconstruction. A reconstructed CT image may include ductus lactiferi, micro calcification and the breast gland. This modality has the possibility to open up a new clinical and pathological diagnosis using x-ray, offering more precise inspection and detection of early signs of breast cancer.

  6. 2D and 3D Refraction Based X-ray Imaging Suitable for Clinical and Pathological Diagnosis

    The first observation of micro papillary (MP) breast cancer by x-ray dark-field imaging (XDFI) and the first observation of the 3D x-ray internal structure of another breast cancer, ductal carcinoma in-situ (DCIS), are reported. The specimen size for the sheet-shaped MP was 26 mm x 22 mm x 2.8 mm, and that for the rod-shaped DCIS was 3.6 mm in diameter and 4.7 mm in height. The experiment was performed at the Photon Factory, KEK: High Energy Accelerator Research Organization. We achieved a high-contrast x-ray image by adopting a thickness-controlled transmission-type angular analyzer that allows only refraction components from the object for 2D imaging. This provides a high-contrast image of cancer-cell nests, cancer cells and stroma. For x-ray 3D imaging, a new algorithm due to the refraction for x-ray CT was created. The angular information was acquired by x-ray optics diffraction-enhanced imaging (DEI). The number of data was 900 for each reconstruction. A reconstructed CT image may include ductus lactiferi, micro calcification and the breast gland. This modality has the possibility to open up a new clinical and pathological diagnosis using x-ray, offering more precise inspection and detection of early signs of breast cancer

  7. Volume-Rendering-Based Interactive 3D Measurement for Quantitative Analysis of 3D Medical Images

    Yakang Dai; Jian Zheng; Yuetao Yang; Duojie Kuai; Xiaodong Yang

    2013-01-01

    3D medical images are widely used to assist diagnosis and surgical planning in clinical applications, where quantitative measurement of interesting objects in the image is of great importance. Volume rendering is widely used for qualitative visualization of 3D medical images. In this paper, we introduce a volume-rendering-based interactive 3D measurement framework for quantitative analysis of 3D medical images. In the framework, 3D widgets and volume clipping are integrated with volume render...

  8. Estimation of vocal fold plane in 3D CT images for diagnosis of vocal fold abnormalities.

    Hewavitharanage, Sajini; Gubbi, Jayavardhana; Thyagarajan, Dominic; Lau, Ken; Palaniswami, Marimuthu

    2015-01-01

    Vocal folds are the key body structures that are responsible for phonation and regulating air movement into and out of lungs. Various vocal fold disorders may seriously impact the quality of life. When diagnosing vocal fold disorders, CT of the neck is the commonly used imaging method. However, vocal folds do not align with the normal axial plane of a neck and the plane containing vocal cords and arytenoids does vary during phonation. It is therefore important to generate an algorithm for detecting the actual plane containing vocal folds. In this paper, we propose a method to automatically estimate the vocal fold plane using vertebral column and anterior commissure localization. Gray-level thresholding, connected component analysis, rule based segmentation and unsupervised k-means clustering were used in the proposed algorithm. The anterior commissure segmentation method achieved an accuracy of 85%, a good estimate of the expert assessment. PMID:26736949

  9. 3D reconstruction of the optic nerve head using stereo fundus images for computer-aided diagnosis of glaucoma

    Tang, Li; Kwon, Young H.; Alward, Wallace L. M.; Greenlee, Emily C.; Lee, Kyungmoo; Garvin, Mona K.; Abràmoff, Michael D.

    2010-03-01

    The shape of the optic nerve head (ONH) is reconstructed automatically using stereo fundus color images by a robust stereo matching algorithm, which is needed for a quantitative estimate of the amount of nerve fiber loss for patients with glaucoma. Compared to natural scene stereo, fundus images are noisy because of the limits on illumination conditions and imperfections of the optics of the eye, posing challenges to conventional stereo matching approaches. In this paper, multi scale pixel feature vectors which are robust to noise are formulated using a combination of both pixel intensity and gradient features in scale space. Feature vectors associated with potential correspondences are compared with a disparity based matching score. The deep structures of the optic disc are reconstructed with a stack of disparity estimates in scale space. Optical coherence tomography (OCT) data was collected at the same time, and depth information from 3D segmentation was registered with the stereo fundus images to provide the ground truth for performance evaluation. In experiments, the proposed algorithm produces estimates for the shape of the ONH that are close to the OCT based shape, and it shows great potential to help computer-aided diagnosis of glaucoma and other related retinal diseases.

  10. Heterodyne 3D ghost imaging

    Yang, Xu; Zhang, Yong; Yang, Chenghua; Xu, Lu; Wang, Qiang; Zhao, Yuan

    2016-06-01

    Conventional three dimensional (3D) ghost imaging measures range of target based on pulse fight time measurement method. Due to the limit of data acquisition system sampling rate, range resolution of the conventional 3D ghost imaging is usually low. In order to take off the effect of sampling rate to range resolution of 3D ghost imaging, a heterodyne 3D ghost imaging (HGI) system is presented in this study. The source of HGI is a continuous wave laser instead of pulse laser. Temporal correlation and spatial correlation of light are both utilized to obtain the range image of target. Through theory analysis and numerical simulations, it is demonstrated that HGI can obtain high range resolution image with low sampling rate.

  11. 3D Imager and Method for 3D imaging

    Kumar, P.; Staszewski, R.; Charbon, E.

    2013-01-01

    3D imager comprising at least one pixel, each pixel comprising a photodetectorfor detecting photon incidence and a time-to-digital converter system configured for referencing said photon incidence to a reference clock, and further comprising a reference clock generator provided for generating the re

  12. 3D vector flow imaging

    Pihl, Michael Johannes

    The main purpose of this PhD project is to develop an ultrasonic method for 3D vector flow imaging. The motivation is to advance the field of velocity estimation in ultrasound, which plays an important role in the clinic. The velocity of blood has components in all three spatial dimensions, yet...... conventional methods can estimate only the axial component. Several approaches for 3D vector velocity estimation have been suggested, but none of these methods have so far produced convincing in vivo results nor have they been adopted by commercial manufacturers. The basis for this project is the Transverse...... on the TO fields are suggested. They can be used to optimize the TO method. In the third part, a TO method for 3D vector velocity estimation is proposed. It employs a 2D phased array transducer and decouples the velocity estimation into three velocity components, which are estimated simultaneously based on 5...

  13. Diagnosis of breast cancer extent and enhancement patterns using 3D-dynamic MR imaging. Correlation with intraductal component

    The usefulness of 3D-dynamic MR imaging with fat suppression and magnetization transfer contrast for assessing breast cancer extent and tumor profile was evaluated in 74 breasts with 67 malignant and 7 benign lesions. We classified breast cancer by the intraductal component of the main tumor. Five histological types were assigned: type 1 (DS 0) invasive carcinoma without intraductal component, type 2 (DS 1): intraductal component is less than 50% of whole tumor, type 3 (DS 2): intraductal component is nearly equal to 50%, type 4 (DS 3): intraductal component is more than 50%, type 5 (DS 4): pure DSIC or DCIS associated with microinvasive foci. Histologic results and preoperative MR imaging were analyzed regarding tumor size and enhancement pattern for the various tumor types (DS 0, 1, 2, 3 and 4). The three tumors occult to MR imaging were two DCIS and one Paget's disease. The other 64 breast cancers were detected on MR imaging. Tumor size measured with MR imaging correlated closely with histologic measurement in DS 0, 1 and 2, whereas less accuracy was noted in DS 3 and 4. Rapid enhancement was frequently seen in DS 0, 1, 2 and 3. Peripheral enhancement was highly specific for breast cancer. However, peripheral enhancement was not found in all cases of DS 4. Linear and nodular enhancement was frequently seen in DS 3 and 4. MR imaging was useful in predicting the intraductal component. (author)

  14. Advanced 3-D Ultrasound Imaging

    Rasmussen, Morten Fischer

    been completed. This allows for precise measurements of organs dimensions and makes the scan more operator independent. Real-time 3-D ultrasound imaging is still not as widespread in use in the clinics as 2-D imaging. A limiting factor has traditionally been the low image quality achievable using...... and removes the need to integrate custom made electronics into the probe. A downside of row-column addressing 2-D arrays is the creation of secondary temporal lobes, or ghost echoes, in the point spread function. In the second part of the scientific contributions, row-column addressing of 2-D arrays...... was investigated. An analysis of how the ghost echoes can be attenuated was presented.Attenuating the ghost echoes were shown to be achieved by minimizing the first derivative of the apodization function. In the literature, a circular symmetric apodization function was proposed. A new apodization layout...

  15. 3D Chaotic Functions for Image Encryption

    Pawan N. Khade

    2012-05-01

    Full Text Available This paper proposes the chaotic encryption algorithm based on 3D logistic map, 3D Chebyshev map, and 3D, 2D Arnolds cat map for color image encryption. Here the 2D Arnolds cat map is used for image pixel scrambling and 3D Arnolds cat map is used for R, G, and B component substitution. 3D Chebyshev map is used for key generation and 3D logistic map is used for image scrambling. The use of 3D chaotic functions in the encryption algorithm provide more security by using the, shuffling and substitution to the encrypted image. The Chebyshev map is used for public key encryption and distribution of generated private keys.

  16. Magnetic resonance imaging-targeted, 3D transrectal ultrasound-guided fusion biopsy for prostate cancer: Quantifying the impact of needle delivery error on diagnosis

    Purpose: Magnetic resonance imaging (MRI)-targeted, 3D transrectal ultrasound (TRUS)-guided “fusion” prostate biopsy intends to reduce the ∼23% false negative rate of clinical two-dimensional TRUS-guided sextant biopsy. Although it has been reported to double the positive yield, MRI-targeted biopsies continue to yield false negatives. Therefore, the authors propose to investigate how biopsy system needle delivery error affects the probability of sampling each tumor, by accounting for uncertainties due to guidance system error, image registration error, and irregular tumor shapes. Methods: T2-weighted, dynamic contrast-enhanced T1-weighted, and diffusion-weighted prostate MRI and 3D TRUS images were obtained from 49 patients. A radiologist and radiology resident contoured 81 suspicious regions, yielding 3D tumor surfaces that were registered to the 3D TRUS images using an iterative closest point prostate surface-based method to yield 3D binary images of the suspicious regions in the TRUS context. The probabilityP of obtaining a sample of tumor tissue in one biopsy core was calculated by integrating a 3D Gaussian distribution over each suspicious region domain. Next, the authors performed an exhaustive search to determine the maximum root mean squared error (RMSE, in mm) of a biopsy system that gives P ≥ 95% for each tumor sample, and then repeated this procedure for equal-volume spheres corresponding to each tumor sample. Finally, the authors investigated the effect of probe-axis-direction error on measured tumor burden by studying the relationship between the error and estimated percentage of core involvement. Results: Given a 3.5 mm RMSE for contemporary fusion biopsy systems,P ≥ 95% for 21 out of 81 tumors. The authors determined that for a biopsy system with 3.5 mm RMSE, one cannot expect to sample tumors of approximately 1 cm3 or smaller with 95% probability with only one biopsy core. The predicted maximum RMSE giving P ≥ 95% for each tumor was

  17. Magnetic resonance imaging-targeted, 3D transrectal ultrasound-guided fusion biopsy for prostate cancer: Quantifying the impact of needle delivery error on diagnosis

    Martin, Peter R., E-mail: pmarti46@uwo.ca [Department of Medical Biophysics, The University of Western Ontario, London, Ontario N6A 3K7 (Canada); Cool, Derek W. [Department of Medical Imaging, The University of Western Ontario, London, Ontario N6A 3K7, Canada and Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 3K7 (Canada); Romagnoli, Cesare [Department of Medical Imaging, The University of Western Ontario, London, Ontario N6A 3K7 (Canada); Fenster, Aaron [Department of Medical Biophysics, The University of Western Ontario, London, Ontario N6A 3K7 (Canada); Department of Medical Imaging, The University of Western Ontario, London, Ontario N6A 3K7 (Canada); Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 3K7 (Canada); Ward, Aaron D. [Department of Medical Biophysics, The University of Western Ontario, London, Ontario N6A 3K7 (Canada); Department of Oncology, The University of Western Ontario, London, Ontario N6A 3K7 (Canada)

    2014-07-15

    Purpose: Magnetic resonance imaging (MRI)-targeted, 3D transrectal ultrasound (TRUS)-guided “fusion” prostate biopsy intends to reduce the ∼23% false negative rate of clinical two-dimensional TRUS-guided sextant biopsy. Although it has been reported to double the positive yield, MRI-targeted biopsies continue to yield false negatives. Therefore, the authors propose to investigate how biopsy system needle delivery error affects the probability of sampling each tumor, by accounting for uncertainties due to guidance system error, image registration error, and irregular tumor shapes. Methods: T2-weighted, dynamic contrast-enhanced T1-weighted, and diffusion-weighted prostate MRI and 3D TRUS images were obtained from 49 patients. A radiologist and radiology resident contoured 81 suspicious regions, yielding 3D tumor surfaces that were registered to the 3D TRUS images using an iterative closest point prostate surface-based method to yield 3D binary images of the suspicious regions in the TRUS context. The probabilityP of obtaining a sample of tumor tissue in one biopsy core was calculated by integrating a 3D Gaussian distribution over each suspicious region domain. Next, the authors performed an exhaustive search to determine the maximum root mean squared error (RMSE, in mm) of a biopsy system that gives P ≥ 95% for each tumor sample, and then repeated this procedure for equal-volume spheres corresponding to each tumor sample. Finally, the authors investigated the effect of probe-axis-direction error on measured tumor burden by studying the relationship between the error and estimated percentage of core involvement. Results: Given a 3.5 mm RMSE for contemporary fusion biopsy systems,P ≥ 95% for 21 out of 81 tumors. The authors determined that for a biopsy system with 3.5 mm RMSE, one cannot expect to sample tumors of approximately 1 cm{sup 3} or smaller with 95% probability with only one biopsy core. The predicted maximum RMSE giving P ≥ 95% for each

  18. 3D Reconstruction of NMR Images

    Peter Izak; Milan Smetana; Libor Hargas; Miroslav Hrianka; Pavol Spanik

    2007-01-01

    This paper introduces experiment of 3D reconstruction NMR images scanned from magnetic resonance device. There are described methods which can be used for 3D reconstruction magnetic resonance images in biomedical application. The main idea is based on marching cubes algorithm. For this task was chosen sophistication method by program Vision Assistant, which is a part of program LabVIEW.

  19. 3D ultrafast ultrasound imaging in vivo

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra—and inter-observer variability. (fast track communication)

  20. QUANTOM - improved tumor diagnosis by quantitative evaluation of tomography data using digital 3D image processing. Final report

    Nonlinear techniques are applied to tasks in medical image processing. Using the so-called scaling index method and scaling vector method segmentation and detection algorithms are developed in order to recognise and measure tumors in three-dimensional tomographic data sets. It is shown that pulmonary nodules can well be detected in the lung only by analysing their morphological structure. Especially the nodules can be discriminated from the bronchovascular structures, which have the same intensity in the data sets. Newly developed segmentation algorithms, with which an exact volumetric assessment of tumors is made possible, are presented. It turns out that an algorithm, which combines elements from the watershed-transformation and from region growing techniques, yields the best results in terms of accuracy, transparency and reproducibility. The clinical valence of the volumetry is illustrated with studies concerning the response evaluation of tumors of the gastrointestinal tract during (chemo-)therapy. It turns out that the results obtained with an exact three-dimensional volume determination are in much better agreement with the histological gold standard than those obtained with simple conventional, planimetric measurements. Furthermore the specificity of the prediction for the response to a chosen therapy can be significantly increased using CT-volumetry and PET-measurements. Therefore, the number of therapeutically questionable operations can be reduced. Further possible fields of application for the newly developed methods are presented. (orig.)

  1. Prenatal diagnosis of fetal skeletal dysplasia with 3D CT

    Miyazaki, Osamu; Horiuchi, Tetsuya [National Center for Child Health and Development, Department of Radiology, Seatagaya-ku, Tokyo (Japan); Nishimura, Gen [Tokyo Metropolitan Children' s Medical Center, Department of Pediatric Imaging, Fuchu-shi, Tokyo (Japan); Sago, Haruhiko; Hayashi, Satoshi [National Center for Child Health and Development, Department of Perinatal Medicine and Maternal Care, Seatagaya-ku, Tokyo (Japan); Kosaki, Rika [National Center for Child Health and Development, Department of Strategic Medicine, Division of Clinical Genetics and Molecular Medicine, Seatagaya-ku, Tokyo (Japan)

    2012-07-15

    Clinical use of 3D CT for fetal skeletal malformations is controversial. The purpose of this study was to evaluate the efficacy of fetal 3D CT using three protocols with different radiation doses and through comparing findings between fetal CT and conventional postnatal radiographic skeletal survey. Seventeen fetuses underwent CT for suspected skeletal dysplasia. A relay of three CT protocols with stepwise dose-reduction were used over the study period. The concordance between the CT diagnosis and the final diagnosis was assessed. Ninety-three radiological findings identifiable on radiographs were compared with CT. Fetal CT provided the correct diagnosis in all 17 fetuses, the detectability rate of cardinal findings was 93.5 %. In 59 % of the fetuses an US-based diagnosis was changed prenatally due to CT findings. The estimated fetal radiation dose in the final protocol was 3.4 mSv (50 %) of the initial protocol, and this dose reduction did not result in degraded image quality. The capability of fetal CT to delineate the skeleton was almost the same as that of postnatal skeletal survey. The perinatal management was altered due to these more specific CT findings, which aided in counseling and in the management of the pregnancy. (orig.)

  2. 3D Reconstruction of NMR Images

    Peter Izak

    2007-01-01

    Full Text Available This paper introduces experiment of 3D reconstruction NMR images scanned from magnetic resonance device. There are described methods which can be used for 3D reconstruction magnetic resonance images in biomedical application. The main idea is based on marching cubes algorithm. For this task was chosen sophistication method by program Vision Assistant, which is a part of program LabVIEW.

  3. Multiplane 3D superresolution optical fluctuation imaging

    Geissbuehler, Stefan; Godinat, Aurélien; Bocchio, Noelia L; Dubikovskaya, Elena A; Lasser, Theo; Leutenegger, Marcel

    2013-01-01

    By switching fluorophores on and off in either a deterministic or a stochastic manner, superresolution microscopy has enabled the imaging of biological structures at resolutions well beyond the diffraction limit. Superresolution optical fluctuation imaging (SOFI) provides an elegant way of overcoming the diffraction limit in all three spatial dimensions by computing higher-order cumulants of image sequences of blinking fluorophores acquired with a conventional widefield microscope. So far, three-dimensional (3D) SOFI has only been demonstrated by sequential imaging of multiple depth positions. Here we introduce a versatile imaging scheme which allows for the simultaneous acquisition of multiple focal planes. Using 3D cross-cumulants, we show that the depth sampling can be increased. Consequently, the simultaneous acquisition of multiple focal planes reduces the acquisition time and hence the photo-bleaching of fluorescent markers. We demonstrate multiplane 3D SOFI by imaging the mitochondria network in fixed ...

  4. Nonlaser-based 3D surface imaging

    Lu, Shin-yee; Johnson, R.K.; Sherwood, R.J. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    3D surface imaging refers to methods that generate a 3D surface representation of objects of a scene under viewing. Laser-based 3D surface imaging systems are commonly used in manufacturing, robotics and biomedical research. Although laser-based systems provide satisfactory solutions for most applications, there are situations where non laser-based approaches are preferred. The issues that make alternative methods sometimes more attractive are: (1) real-time data capturing, (2) eye-safety, (3) portability, and (4) work distance. The focus of this presentation is on generating a 3D surface from multiple 2D projected images using CCD cameras, without a laser light source. Two methods are presented: stereo vision and depth-from-focus. Their applications are described.

  5. Miniaturized 3D microscope imaging system

    Lan, Yung-Sung; Chang, Chir-Weei; Sung, Hsin-Yueh; Wang, Yen-Chang; Chang, Cheng-Yi

    2015-05-01

    We designed and assembled a portable 3-D miniature microscopic image system with the size of 35x35x105 mm3 . By integrating a microlens array (MLA) into the optical train of a handheld microscope, the biological specimen's image will be captured for ease of use in a single shot. With the light field raw data and program, the focal plane can be changed digitally and the 3-D image can be reconstructed after the image was taken. To localize an object in a 3-D volume, an automated data analysis algorithm to precisely distinguish profundity position is needed. The ability to create focal stacks from a single image allows moving or specimens to be recorded. Applying light field microscope algorithm to these focal stacks, a set of cross sections will be produced, which can be visualized using 3-D rendering. Furthermore, we have developed a series of design rules in order to enhance the pixel using efficiency and reduce the crosstalk between each microlens for obtain good image quality. In this paper, we demonstrate a handheld light field microscope (HLFM) to distinguish two different color fluorescence particles separated by a cover glass in a 600um range, show its focal stacks, and 3-D position.

  6. ICER-3D Hyperspectral Image Compression Software

    Xie, Hua; Kiely, Aaron; Klimesh, matthew; Aranki, Nazeeh

    2010-01-01

    Software has been developed to implement the ICER-3D algorithm. ICER-3D effects progressive, three-dimensional (3D), wavelet-based compression of hyperspectral images. If a compressed data stream is truncated, the progressive nature of the algorithm enables reconstruction of hyperspectral data at fidelity commensurate with the given data volume. The ICER-3D software is capable of providing either lossless or lossy compression, and incorporates an error-containment scheme to limit the effects of data loss during transmission. The compression algorithm, which was derived from the ICER image compression algorithm, includes wavelet-transform, context-modeling, and entropy coding subalgorithms. The 3D wavelet decomposition structure used by ICER-3D exploits correlations in all three dimensions of sets of hyperspectral image data, while facilitating elimination of spectral ringing artifacts, using a technique summarized in "Improving 3D Wavelet-Based Compression of Spectral Images" (NPO-41381), NASA Tech Briefs, Vol. 33, No. 3 (March 2009), page 7a. Correlation is further exploited by a context-modeling subalgorithm, which exploits spectral dependencies in the wavelet-transformed hyperspectral data, using an algorithm that is summarized in "Context Modeler for Wavelet Compression of Hyperspectral Images" (NPO-43239), which follows this article. An important feature of ICER-3D is a scheme for limiting the adverse effects of loss of data during transmission. In this scheme, as in the similar scheme used by ICER, the spatial-frequency domain is partitioned into rectangular error-containment regions. In ICER-3D, the partitions extend through all the wavelength bands. The data in each partition are compressed independently of those in the other partitions, so that loss or corruption of data from any partition does not affect the other partitions. Furthermore, because compression is progressive within each partition, when data are lost, any data from that partition received

  7. Acquisition and applications of 3D images

    Sterian, Paul; Mocanu, Elena

    2007-08-01

    The moiré fringes method and their analysis up to medical and entertainment applications are discussed in this paper. We describe the procedure of capturing 3D images with an Inspeck Camera that is a real-time 3D shape acquisition system based on structured light techniques. The method is a high-resolution one. After processing the images, using computer, we can use the data for creating laser fashionable objects by engraving them with a Q-switched Nd:YAG. In medical field we mention the plastic surgery and the replacement of X-Ray especially in pediatric use.

  8. 3D camera tracking from disparity images

    Kim, Kiyoung; Woo, Woontack

    2005-07-01

    In this paper, we propose a robust camera tracking method that uses disparity images computed from known parameters of 3D camera and multiple epipolar constraints. We assume that baselines between lenses in 3D camera and intrinsic parameters are known. The proposed method reduces camera motion uncertainty encountered during camera tracking. Specifically, we first obtain corresponding feature points between initial lenses using normalized correlation method. In conjunction with matching features, we get disparity images. When the camera moves, the corresponding feature points, obtained from each lens of 3D camera, are robustly tracked via Kanade-Lukas-Tomasi (KLT) tracking algorithm. Secondly, relative pose parameters of each lens are calculated via Essential matrices. Essential matrices are computed from Fundamental matrix calculated using normalized 8-point algorithm with RANSAC scheme. Then, we determine scale factor of translation matrix by d-motion. This is required because the camera motion obtained from Essential matrix is up to scale. Finally, we optimize camera motion using multiple epipolar constraints between lenses and d-motion constraints computed from disparity images. The proposed method can be widely adopted in Augmented Reality (AR) applications, 3D reconstruction using 3D camera, and fine surveillance systems which not only need depth information, but also camera motion parameters in real-time.

  9. Heat Equation to 3D Image Segmentation

    Nikolay Sirakov

    2006-04-01

    Full Text Available This paper presents a new approach, capable of 3D image segmentation and objects' surface reconstruction. The main advantages of the method are: large capture range; quick segmentation of a 3D scene/image to regions; multiple 3D objects reconstruction. The method uses centripetal force and penalty function to segment the entire 3D scene/image to regions containing a single 3D object. Each region is inscribed in a convex, smooth closed surface, which defines a centripetal force. Then the surface is evolved by the geometric heat differential equation toward the force's direction. The penalty function is defined to stop evolvement of those surface patches, whose normal vectors encountered object's surface. On the base of the theoretical model Forward Difference Algorithm was developed and coded by Mathematica. Stability convergence condition, truncation error and calculation complexity of the algorithm are determined. The obtained results, advantages and disadvantages of the method are discussed at the end of this paper.

  10. 3D Reconstruction in Magnetic Resonance Imaging

    Mikulka, J.; Bartušek, Karel

    Cambridge : The Electromagnetics Academy, 2010, s. 1043-1046. ISBN 978-1-934142-14-1. [PIERS 2010 Cambridge. Cambridge (US), 05.07.2010-08.07.2010] R&D Projects: GA ČR GA102/09/0314 Institutional research plan: CEZ:AV0Z20650511 Keywords : 3D reconstruction * magnetic resonance imaging Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  11. Feasibility of 3D harmonic contrast imaging

    Voormolen, M.M.; Bouakaz, A.; Krenning, B.J.; Lancée, C.; Cate, ten F.; Jong, de N.

    2004-01-01

    Improved endocardial border delineation with the application of contrast agents should allow for less complex and faster tracing algorithms for left ventricular volume analysis. We developed a fast rotating phased array transducer for 3D imaging of the heart with harmonic capabilities making it suit

  12. 3D Membrane Imaging and Porosity Visualization

    Sundaramoorthi, Ganesh

    2016-03-03

    Ultrafiltration asymmetric porous membranes were imaged by two microscopy methods, which allow 3D reconstruction: Focused Ion Beam and Serial Block Face Scanning Electron Microscopy. A new algorithm was proposed to evaluate porosity and average pore size in different layers orthogonal and parallel to the membrane surface. The 3D-reconstruction enabled additionally the visualization of pore interconnectivity in different parts of the membrane. The method was demonstrated for a block copolymer porous membrane and can be extended to other membranes with application in ultrafiltration, supports for forward osmosis, etc, offering a complete view of the transport paths in the membrane.

  13. 3-D Reconstruction From Satellite Images

    Denver, Troelz

    1999-01-01

    The aim of this project has been to implement a software system, that is able to create a 3-D reconstruction from two or more 2-D photographic images made from different positions. The height is determined from the disparity difference of the images. The general purpose of the system is mapping of......, where various methods have been tested in order to optimize the performance. The match results are used in the reconstruction part to establish a 3-D digital representation and finally, different presentation forms are discussed....... treated individually. A detailed treatment of various lens distortions is required, in order to correct for these problems. This subject is included in the acquisition part. In the calibration part, the perspective distortion is removed from the images. Most attention has been paid to the matching problem...

  14. Backhoe 3D "gold standard" image

    Gorham, LeRoy; Naidu, Kiranmai D.; Majumder, Uttam; Minardi, Michael A.

    2005-05-01

    ViSUAl-D (VIsual Sar Using ALl Dimensions), a 2004 DARPA/IXO seedling effort, is developing a capability for reliable high confidence ID from standoff ranges. Recent conflicts have demonstrated that the warfighter would greatly benefit from the ability to ID targets beyond visual and electro-optical ranges[1]. Forming optical-quality SAR images while exploiting full polarization, wide angles, and large bandwidth would be key evidence such a capability is achievable. Using data generated by the Xpatch EM scattering code, ViSUAl-D investigates all degrees of freedom available to the radar designer, including 6 GHz bandwidth, full polarization and angle sampling over 2π steradians (upper hemisphere), in order to produce a "literal" image or representation of the target. This effort includes the generation of a "Gold Standard" image that can be produced at X-band utilizing all available target data. This "Gold Standard" image of the backhoe will serve as a test bed for future more relevant military targets and their image development. The seedling team produced a public release data which was released at the 2004 SPIE conference, as well as a 3D "Gold Standard" backhoe image using a 3D image formation algorithm. This paper describes the full backhoe data set, the image formation algorithm, the visualization process and the resulting image.

  15. Metrological characterization of 3D imaging devices

    Guidi, G.

    2013-04-01

    Manufacturers often express the performance of a 3D imaging device in various non-uniform ways for the lack of internationally recognized standard requirements for metrological parameters able to identify the capability of capturing a real scene. For this reason several national and international organizations in the last ten years have been developing protocols for verifying such performance. Ranging from VDI/VDE 2634, published by the Association of German Engineers and oriented to the world of mechanical 3D measurements (triangulation-based devices), to the ASTM technical committee E57, working also on laser systems based on direct range detection (TOF, Phase Shift, FM-CW, flash LADAR), this paper shows the state of the art about the characterization of active range devices, with special emphasis on measurement uncertainty, accuracy and resolution. Most of these protocols are based on special objects whose shape and size are certified with a known level of accuracy. By capturing the 3D shape of such objects with a range device, a comparison between the measured points and the theoretical shape they should represent is possible. The actual deviations can be directly analyzed or some derived parameters can be obtained (e.g. angles between planes, distances between barycenters of spheres rigidly connected, frequency domain parameters, etc.). This paper shows theoretical aspects and experimental results of some novel characterization methods applied to different categories of active 3D imaging devices based on both principles of triangulation and direct range detection.

  16. 3D IMAGING USING COHERENT SYNCHROTRON RADIATION

    Peter Cloetens

    2011-05-01

    Full Text Available Three dimensional imaging is becoming a standard tool for medical, scientific and industrial applications. The use of modem synchrotron radiation sources for monochromatic beam micro-tomography provides several new features. Along with enhanced signal-to-noise ratio and improved spatial resolution, these include the possibility of quantitative measurements, the easy incorporation of special sample environment devices for in-situ experiments, and a simple implementation of phase imaging. These 3D approaches overcome some of the limitations of 2D measurements. They require new tools for image analysis.

  17. 3D Model Assisted Image Segmentation

    Jayawardena, Srimal; Hutter, Marcus

    2012-01-01

    The problem of segmenting a given image into coherent regions is important in Computer Vision and many industrial applications require segmenting a known object into its components. Examples include identifying individual parts of a component for process control work in a manufacturing plant and identifying parts of a car from a photo for automatic damage detection. Unfortunately most of an object's parts of interest in such applications share the same pixel characteristics, having similar colour and texture. This makes segmenting the object into its components a non-trivial task for conventional image segmentation algorithms. In this paper, we propose a "Model Assisted Segmentation" method to tackle this problem. A 3D model of the object is registered over the given image by optimising a novel gradient based loss function. This registration obtains the full 3D pose from an image of the object. The image can have an arbitrary view of the object and is not limited to a particular set of views. The segmentation...

  18. Micromachined Ultrasonic Transducers for 3-D Imaging

    Christiansen, Thomas Lehrmann

    Real-time ultrasound imaging is a widely used technique in medical diagnostics. Recently, ultrasound systems offering real-time imaging in 3-D has emerged. However, the high complexity of the transducer probes and the considerable increase in data to be processed compared to conventional 2-D...... ultrasound imaging results in expensive systems, which limits the more wide-spread use and clinical development of volumetric ultrasound. The main goal of this thesis is to demonstrate new transducer technologies that can achieve real-time volumetric ultrasound imaging without the complexity and cost...... capable of producing 62+62-element row-column addressed CMUT arrays with negligible charging issues. The arrays include an integrated apodization, which reduces the ghost echoes produced by the edge waves in such arrays by 15:8 dB. The acoustical cross-talk is measured on fabricated arrays, showing a 24 d...

  19. 3D neuromelanin-sensitive magnetic resonance imaging with semi-automated volume measurement of the substantia nigra pars compacta for diagnosis of Parkinson's disease

    Ogisu, Kimihiro; Shirato, Hiroki [Hokkaido University Graduate School of Medicine, Department of Radiology, Hokkaido (Japan); Kudo, Kohsuke; Sasaki, Makoto [Iwate Medical University, Division of Ultrahigh Field MRI, Iwate (Japan); Sakushima, Ken; Yabe, Ichiro; Sasaki, Hidenao [Hokkaido University Hospital, Department of Neurology, Hokkaido (Japan); Terae, Satoshi; Nakanishi, Mitsuhiro [Hokkaido University Hospital, Department of Radiology, Hokkaido (Japan)

    2013-06-15

    Neuromelanin-sensitive MRI has been reported to be used in the diagnosis of Parkinson's disease (PD), which results from loss of dopamine-producing cells in the substantia nigra pars compacta (SNc). In this study, we aimed to apply a 3D turbo field echo (TFE) sequence for neuromelanin-sensitive MRI and to evaluate the diagnostic performance of semi-automated method for measurement of SNc volume in patients with PD. We examined 18 PD patients and 27 healthy volunteers (control subjects). A 3D TFE technique with off-resonance magnetization transfer pulse was used for neuromelanin-sensitive MRI on a 3T scanner. The SNc volume was semi-automatically measured using a region-growing technique at various thresholds (ranging from 1.66 to 2.48), with the signals measured relative to that for the superior cerebellar peduncle. Receiver operating characteristic (ROC) analysis was performed at all thresholds. Intra-rater reproducibility was evaluated by intraclass correlation coefficient (ICC). The average SNc volume in the PD group was significantly smaller than that in the control group at all the thresholds (P < 0.01, student t test). At higher thresholds (>2.0), the area under the curve of ROC (Az) increased (0.88). In addition, we observed balanced sensitivity and specificity (0.83 and 0.85, respectively). At lower thresholds, sensitivity tended to increase but specificity reduced in comparison with that at higher thresholds. ICC was larger than 0.9 when the threshold was over 1.86. Our method can distinguish the PD group from the control group with high sensitivity and specificity, especially for early stage of PD. (orig.)

  20. Using Stereoscopic 3D Technologies for the Diagnosis and Treatment of Amblyopia in Children

    Gargantini, Angelo

    2011-01-01

    The 3D4Amb project aims at developing a system based on the stereoscopic 3D techonlogy, like the NVIDIA 3D Vision, for the diagnosis and treatment of amblyopia in young children. It exploits the active shutter technology to provide binocular vision, i.e. to show different images to the amblyotic (or lazy) and the normal eye. It would allow easy diagnosis of amblyopia and its treatment by means of interactive games or other entertainment activities. It should not suffer from the compliance problems of the classical treatment, it is suitable to domestic use, and it could at least partially substitute occlusion or patching of the normal eye.

  1. 3-D SAR image formation from sparse aperture data using 3-D target grids

    Bhalla, Rajan; Li, Junfei; Ling, Hao

    2005-05-01

    The performance of ATR systems can potentially be improved by using three-dimensional (3-D) SAR images instead of the traditional two-dimensional SAR images or one-dimensional range profiles. 3-D SAR image formation of targets from radar backscattered data collected on wide angle, sparse apertures has been identified by AFRL as fundamental to building an object detection and recognition capability. A set of data has been released as a challenge problem. This paper describes a technique based on the concept of 3-D target grids aimed at the formation of 3-D SAR images of targets from sparse aperture data. The 3-D target grids capture the 3-D spatial and angular scattering properties of the target and serve as matched filters for SAR formation. The results of 3-D SAR formation using the backhoe public release data are presented.

  2. 3D Buildings Extraction from Aerial Images

    Melnikova, O.; Prandi, F.

    2011-09-01

    This paper introduces a semi-automatic method for buildings extraction through multiple-view aerial image analysis. The advantage of the used semi-automatic approach is that it allows processing of each building individually finding the parameters of buildings features extraction more precisely for each area. On the early stage the presented technique uses an extraction of line segments that is done only inside of areas specified manually. The rooftop hypothesis is used further to determine a subset of quadrangles, which could form building roofs from a set of extracted lines and corners obtained on the previous stage. After collecting of all potential roof shapes in all images overlaps, the epipolar geometry is applied to find matching between images. This allows to make an accurate selection of building roofs removing false-positive ones and to identify their global 3D coordinates given camera internal parameters and coordinates. The last step of the image matching is based on geometrical constraints in contrast to traditional correlation. The correlation is applied only in some highly restricted areas in order to find coordinates more precisely, in such a way significantly reducing processing time of the algorithm. The algorithm has been tested on a set of Milan's aerial images and shows highly accurate results.

  3. 3-D Reconstruction From 2-D Radiographic Images and Its Application to Clinical Veterinary Medicine

    Hamamoto, Kazuhiko; Sato, Motoyoshi

    3D imaging technique is very important and indispensable in diagnosis. The main stream of the technique is one in which 3D image is reconstructed from a set of slice images, such as X-ray CT and MRI. However, these systems require large space and high costs. On the other hand, a low cost and small size 3D imaging system is needed in clinical veterinary medicine, for example, in the case of diagnosis in X-ray car or pasture area. We propose a novel 3D imaging technique using 2-D X-ray radiographic images. This system can be realized by cheaper system than X-ray CT and enables to get 3D image in X-ray car or portable X-ray equipment. In this paper, a 3D visualization technique from 2-D radiographic images is proposed and several reconstructions are shown. These reconstructions are evaluated by veterinarians.

  4. Photogrammetric 3D reconstruction using mobile imaging

    Fritsch, Dieter; Syll, Miguel

    2015-03-01

    In our paper we demonstrate the development of an Android Application (AndroidSfM) for photogrammetric 3D reconstruction that works on smartphones and tablets likewise. The photos are taken with mobile devices, and can thereafter directly be calibrated using standard calibration algorithms of photogrammetry and computer vision, on that device. Due to still limited computing resources on mobile devices, a client-server handshake using Dropbox transfers the photos to the sever to run AndroidSfM for the pose estimation of all photos by Structure-from-Motion and, thereafter, uses the oriented bunch of photos for dense point cloud estimation by dense image matching algorithms. The result is transferred back to the mobile device for visualization and ad-hoc on-screen measurements.

  5. 3D object-oriented image analysis in 3D geophysical modelling

    Fadel, I.; van der Meijde, M.; Kerle, N.;

    2015-01-01

    Non-uniqueness of satellite gravity interpretation has traditionally been reduced by using a priori information from seismic tomography models. This reduction in the non-uniqueness has been based on velocity-density conversion formulas or user interpretation of the 3D subsurface structures (objects......) based on the seismic tomography models and then forward modelling these objects. However, this form of object-based approach has been done without a standardized methodology on how to extract the subsurface structures from the 3D models. In this research, a 3D object-oriented image analysis (3D OOA......) approach was implemented to extract the 3D subsurface structures from geophysical data. The approach was applied on a 3D shear wave seismic tomography model of the central part of the East African Rift System. Subsequently, the extracted 3D objects from the tomography model were reconstructed in the 3D...

  6. 3D freehand ultrasound for medical assistance in diagnosis and treatment of breast cancer: preliminary results

    Torres, Fabian; Fanti, Zian; Arambula Cosío, F.

    2013-11-01

    Image-guided interventions allow the physician to have a better planning and visualization of a procedure. 3D freehand ultrasound is a non-invasive and low-cost imaging tool that can be used to assist medical procedures. This tool can be used in the diagnosis and treatment of breast cancer. There are common medical practices that involve large needles to obtain an accurate diagnosis and treatment of breast cancer. In this study we propose the use of 3D freehand ultrasound for planning and guiding such procedures as core needle biopsy and radiofrequency ablation. The proposed system will help the physician to identify the lesion area, using image-processing techniques in the 3D freehand ultrasound images, and guide the needle to this area using the information of position and orientation of the surgical tools. We think that this system can upgrade the accuracy and efficiency of these procedures.

  7. Handbook of 3D machine vision optical metrology and imaging

    Zhang, Song

    2013-01-01

    With the ongoing release of 3D movies and the emergence of 3D TVs, 3D imaging technologies have penetrated our daily lives. Yet choosing from the numerous 3D vision methods available can be frustrating for scientists and engineers, especially without a comprehensive resource to consult. Filling this gap, Handbook of 3D Machine Vision: Optical Metrology and Imaging gives an extensive, in-depth look at the most popular 3D imaging techniques. It focuses on noninvasive, noncontact optical methods (optical metrology and imaging). The handbook begins with the well-studied method of stereo vision and

  8. Progress in 3D imaging and display by integral imaging

    Martinez-Cuenca, R.; Saavedra, G.; Martinez-Corral, M.; Pons, A.; Javidi, B.

    2009-05-01

    Three-dimensionality is currently considered an important added value in imaging devices, and therefore the search for an optimum 3D imaging and display technique is a hot topic that is attracting important research efforts. As main value, 3D monitors should provide the observers with different perspectives of a 3D scene by simply varying the head position. Three-dimensional imaging techniques have the potential to establish a future mass-market in the fields of entertainment and communications. Integral imaging (InI), which can capture true 3D color images, has been seen as the right technology to 3D viewing to audiences of more than one person. Due to the advanced degree of development, InI technology could be ready for commercialization in the coming years. This development is the result of a strong research effort performed along the past few years by many groups. Since Integral Imaging is still an emerging technology, the first aim of the "3D Imaging and Display Laboratory" at the University of Valencia, has been the realization of a thorough study of the principles that govern its operation. Is remarkable that some of these principles have been recognized and characterized by our group. Other contributions of our research have been addressed to overcome some of the classical limitations of InI systems, like the limited depth of field (in pickup and in display), the poor axial and lateral resolution, the pseudoscopic-to-orthoscopic conversion, the production of 3D images with continuous relief, or the limited range of viewing angles of InI monitors.

  9. Perception of detail in 3D images

    Heyndrickx, I.; Kaptein, R.

    2009-01-01

    A lot of current 3D displays suffer from the fact that their spatial resolution is lower compared to their 2D counterparts. One reason for this is that the multiple views needed to generate 3D are often spatially multiplexed. Besides this, imperfect separation of the left- and right-eye view leads t

  10. Clinical application of 3D Ce MRA in diagnosis of peripheral artery occlusive diseases

    Objective: To probe the value of clinical application of three dimensional contrast enhanced magnetic resonance angiography (3D CE MRA) for diagnosis of peripheral artery occlusive diseases (PAOD) and to assess its accuracy. Methods: One hundred and three cases of PAOD received 3D CE MRA before operation. And 579 vascular segments were displayed. The diagnosis of 3D CE MRA before operation were compared with the results of vascular reconstruction surgeries of lower extremities. The image quality and how 3D CE MRA revealed the abnormal blood vessels were evaluated. Results: Satisfactory images of the main arteries of the lower extremities were achieved by 3D CE MRA. In 579 vascular segments of 103 patients with PAOD, the sensitivity and specificity for detection of severe stenosis and occlusions were 97.6% and 95.4%, respectively. In 206 vascular segments of tibiofibula artery, the sensitivity was 100%. In 196 vascular segments of femoral artery, the specificity was 97%. Conclusion: 3D CE MRA is accurate and reliable for determination of the degree of peripheral artery stenosis. The results of 3D CE MRA are concordant with that of operation. (authors)

  11. 3D SPIRAL COMPUTED TOMOGRAPHY FOR THE DIAGNOSIS OF AN ABDOMINAL TUMOUR

    R.C. Tiutiuca; Iuliana Eva

    2006-01-01

    Patients with digestive illnesses requires a full exploration, cases where imagistic assets support (echographic examination, radiological data, computed tomography, magnetic resonance) are very usefully. Computed tomography, in this process, has a special value. The results from axial images are sustained by the informations supplied from three-dimensional reconstruction processes (3D reconstruction) with relevant importance in establishment of diagnosis and therapeutic plan.

  12. 3D Image Synthesis for B—Reps Objects

    黄正东; 彭群生; 等

    1991-01-01

    This paper presents a new algorithm for generating 3D images of B-reps objects with trimmed surface boundaries.The 3D image is a discrete voxel-map representation within a Cubic Frame Buffer (CFB).The definition of 3D images for curve,surface and solid object are introduced which imply the connectivity and fidelity requirements.Adaptive Forward Differencing matrix (AFD-matrix) for 1D-3D manifolds in 3D space is developed.By setting rules to update the AFD-matrix,the forward difference direction and stepwise can be adjusted.Finally,an efficient algorithm is presented based on the AFD-matrix concept for converting the object in 3D space to 3D image in 3D discrete space.

  13. 3D spatial resolution and spectral resolution of interferometric 3D imaging spectrometry.

    Obara, Masaki; Yoshimori, Kyu

    2016-04-01

    Recently developed interferometric 3D imaging spectrometry (J. Opt. Soc. Am A18, 765 [2001]1084-7529JOAOD610.1364/JOSAA.18.000765) enables obtainment of the spectral information and 3D spatial information for incoherently illuminated or self-luminous object simultaneously. Using this method, we can obtain multispectral components of complex holograms, which correspond directly to the phase distribution of the wavefronts propagated from the polychromatic object. This paper focuses on the analysis of spectral resolution and 3D spatial resolution in interferometric 3D imaging spectrometry. Our analysis is based on a novel analytical impulse response function defined over four-dimensional space. We found that the experimental results agree well with the theoretical prediction. This work also suggests a new criterion and estimate method regarding 3D spatial resolution of digital holography. PMID:27139648

  14. Automatic 2D-to-3D image conversion using 3D examples from the internet

    Konrad, J.; Brown, G.; Wang, M.; Ishwar, P.; Wu, C.; Mukherjee, D.

    2012-03-01

    The availability of 3D hardware has so far outpaced the production of 3D content. Although to date many methods have been proposed to convert 2D images to 3D stereopairs, the most successful ones involve human operators and, therefore, are time-consuming and costly, while the fully-automatic ones have not yet achieved the same level of quality. This subpar performance is due to the fact that automatic methods usually rely on assumptions about the captured 3D scene that are often violated in practice. In this paper, we explore a radically different approach inspired by our work on saliency detection in images. Instead of relying on a deterministic scene model for the input 2D image, we propose to "learn" the model from a large dictionary of stereopairs, such as YouTube 3D. Our new approach is built upon a key observation and an assumption. The key observation is that among millions of stereopairs available on-line, there likely exist many stereopairs whose 3D content matches that of the 2D input (query). We assume that two stereopairs whose left images are photometrically similar are likely to have similar disparity fields. Our approach first finds a number of on-line stereopairs whose left image is a close photometric match to the 2D query and then extracts depth information from these stereopairs. Since disparities for the selected stereopairs differ due to differences in underlying image content, level of noise, distortions, etc., we combine them by using the median. We apply the resulting median disparity field to the 2D query to obtain the corresponding right image, while handling occlusions and newly-exposed areas in the usual way. We have applied our method in two scenarios. First, we used YouTube 3D videos in search of the most similar frames. Then, we repeated the experiments on a small, but carefully-selected, dictionary of stereopairs closely matching the query. This, to a degree, emulates the results one would expect from the use of an extremely large 3D

  15. Image Reconstruction from 2D stack of MRI/CT to 3D using Shapelets

    Arathi T

    2014-12-01

    Full Text Available Image reconstruction is an active research field, due to the increasing need for geometric 3D models in movie industry, games, virtual environments and in medical fields. 3D image reconstruction aims to arrive at the 3D model of an object, from its 2D images taken at different viewing angles. Medical images are multimodal, which includes MRI, CT scan image, PET and SPECT images. Of these, MRI and CT scan images of an organ when taken, is available as a stack of 2D images, taken at different angles. This 2D stack of images is used to get a 3D view of the organ of interest, to aid doctors in easier diagnosis. Existing 3D reconstruction techniques are voxel based techniques, which tries to reconstruct the 3D view based on the intensity value stored at each voxel location. These techniques don’t make use of the shape/depth information available in the 2D image stack. In this work, a 3D reconstruction technique for MRI/CT 2D image stack, based on Shapelets has been proposed. Here, the shape/depth information available in each 2D image in the image stack is manipulated to get a 3D reconstruction, which gives a more accurate 3D view of the organ of interest. Experimental results exhibit the efficiency of this proposed technique.

  16. Automatic extraction of abnormal signals from diffusion-weighted images using 3D-ACTIT

    Recent developments in medical imaging equipment have made it possible to acquire large amounts of image data and to perform detailed diagnosis. However, it is difficult for physicians to evaluate all of the image data obtained. To address this problem, computer-aided detection (CAD) and expert systems have been investigated. In these investigations, as the types of images used for diagnosis has expanded, the requirements for image processing have become more complex. We therefore propose a new method which we call Automatic Construction of Tree-structural Image Transformation (3D-ACTIT) to perform various 3D image processing procedures automatically using instance-based learning. We have conducted research on diffusion-weighted image (DWI) data and its processing. In this report, we describe how 3D-ACTIT performs processing to extract only abnormal signal regions from 3D-DWI data. (author)

  17. 3D ultrasound imaging for prosthesis fabrication and diagnostic imaging

    Morimoto, A.K.; Bow, W.J.; Strong, D.S. [and others

    1995-06-01

    The fabrication of a prosthetic socket for a below-the-knee amputee requires knowledge of the underlying bone structure in order to provide pressure relief for sensitive areas and support for load bearing areas. The goal is to enable the residual limb to bear pressure with greater ease and utility. Conventional methods of prosthesis fabrication are based on limited knowledge about the patient`s underlying bone structure. A 3D ultrasound imaging system was developed at Sandia National Laboratories. The imaging system provides information about the location of the bones in the residual limb along with the shape of the skin surface. Computer assisted design (CAD) software can use this data to design prosthetic sockets for amputees. Ultrasound was selected as the imaging modality. A computer model was developed to analyze the effect of the various scanning parameters and to assist in the design of the overall system. The 3D ultrasound imaging system combines off-the-shelf technology for image capturing, custom hardware, and control and image processing software to generate two types of image data -- volumetric and planar. Both volumetric and planar images reveal definition of skin and bone geometry with planar images providing details on muscle fascial planes, muscle/fat interfaces, and blood vessel definition. The 3D ultrasound imaging system was tested on 9 unilateral below-the- knee amputees. Image data was acquired from both the sound limb and the residual limb. The imaging system was operated in both volumetric and planar formats. An x-ray CT (Computed Tomography) scan was performed on each amputee for comparison. Results of the test indicate beneficial use of ultrasound to generate databases for fabrication of prostheses at a lower cost and with better initial fit as compared to manually fabricated prostheses.

  18. A 3D image analysis tool for SPECT imaging

    Kontos, Despina; Wang, Qiang; Megalooikonomou, Vasileios; Maurer, Alan H.; Knight, Linda C.; Kantor, Steve; Fisher, Robert S.; Simonian, Hrair P.; Parkman, Henry P.

    2005-04-01

    We have developed semi-automated and fully-automated tools for the analysis of 3D single-photon emission computed tomography (SPECT) images. The focus is on the efficient boundary delineation of complex 3D structures that enables accurate measurement of their structural and physiologic properties. We employ intensity based thresholding algorithms for interactive and semi-automated analysis. We also explore fuzzy-connectedness concepts for fully automating the segmentation process. We apply the proposed tools to SPECT image data capturing variation of gastric accommodation and emptying. These image analysis tools were developed within the framework of a noninvasive scintigraphic test to measure simultaneously both gastric emptying and gastric volume after ingestion of a solid or a liquid meal. The clinical focus of the particular analysis was to probe associations between gastric accommodation/emptying and functional dyspepsia. Employing the proposed tools, we outline effectively the complex three dimensional gastric boundaries shown in the 3D SPECT images. We also perform accurate volume calculations in order to quantitatively assess the gastric mass variation. This analysis was performed both with the semi-automated and fully-automated tools. The results were validated against manual segmentation performed by a human expert. We believe that the development of an automated segmentation tool for SPECT imaging of the gastric volume variability will allow for other new applications of SPECT imaging where there is a need to evaluate complex organ function or tumor masses.

  19. Light field display and 3D image reconstruction

    Iwane, Toru

    2016-06-01

    Light field optics and its applications become rather popular in these days. With light field optics or light field thesis, real 3D space can be described in 2D plane as 4D data, which we call as light field data. This process can be divided in two procedures. First, real3D scene is optically reduced with imaging lens. Second, this optically reduced 3D image is encoded into light field data. In later procedure we can say that 3D information is encoded onto a plane as 2D data by lens array plate. This transformation is reversible and acquired light field data can be decoded again into 3D image with the arrayed lens plate. "Refocusing" (focusing image on your favorite point after taking a picture), light-field camera's most popular function, is some kind of sectioning process from encoded 3D data (light field data) to 2D image. In this paper at first I show our actual light field camera and our 3D display using acquired and computer-simulated light field data, on which real 3D image is reconstructed. In second I explain our data processing method whose arithmetic operation is performed not in Fourier domain but in real domain. Then our 3D display system is characterized by a few features; reconstructed image is of finer resolutions than density of arrayed lenses and it is not necessary to adjust lens array plate to flat display on which light field data is displayed.

  20. 3D-CT imaging processing for qualitative and quantitative analysis of maxillofacial cysts and tumors

    The objective of this study was to evaluate spiral-computed tomography (3D-CT) images of 20 patients presenting with cysts and tumors in the maxillofacial complex, in order to compare the surface and volume techniques of image rendering. The qualitative and quantitative appraisal indicated that the volume technique allowed a more precise and accurate observation than the surface method. On the average, the measurements obtained by means of the 3D volume-rendering technique were 6.28% higher than those obtained by means of the surface method. The sensitivity of the 3D surface technique was lower than that of the 3D volume technique for all conditions stipulated in the diagnosis and evaluation of lesions. We concluded that the 3D-CT volume rendering technique was more reproducible and sensitive than the 3D-CT surface method, in the diagnosis, treatment planning and evaluation of maxillofacial lesions, especially those with intra-osseous involvement. (author)

  1. 3D Imaging with Structured Illumination for Advanced Security Applications

    Birch, Gabriel Carisle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dagel, Amber Lynn [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kast, Brian A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Smith, Collin S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Three-dimensional (3D) information in a physical security system is a highly useful dis- criminator. The two-dimensional data from an imaging systems fails to provide target dis- tance and three-dimensional motion vector, which can be used to reduce nuisance alarm rates and increase system effectiveness. However, 3D imaging devices designed primarily for use in physical security systems are uncommon. This report discusses an architecture favorable to physical security systems; an inexpensive snapshot 3D imaging system utilizing a simple illumination system. The method of acquiring 3D data, tests to understand illumination de- sign, and software modifications possible to maximize information gathering capability are discussed.

  2. Fully Automatic 3D Reconstruction of Histological Images

    Bagci, Ulas; Bai, Li

    2009-01-01

    In this paper, we propose a computational framework for 3D volume reconstruction from 2D histological slices using registration algorithms in feature space. To improve the quality of reconstructed 3D volume, first, intensity variations in images are corrected by an intensity standardization process which maps image intensity scale to a standard scale where similar intensities correspond to similar tissues. Second, a subvolume approach is proposed for 3D reconstruction by dividing standardized...

  3. 3D augmented reality with integral imaging display

    Shen, Xin; Hua, Hong; Javidi, Bahram

    2016-06-01

    In this paper, a three-dimensional (3D) integral imaging display for augmented reality is presented. By implementing the pseudoscopic-to-orthoscopic conversion method, elemental image arrays with different capturing parameters can be transferred into the identical format for 3D display. With the proposed merging algorithm, a new set of elemental images for augmented reality display is generated. The newly generated elemental images contain both the virtual objects and real world scene with desired depth information and transparency parameters. The experimental results indicate the feasibility of the proposed 3D augmented reality with integral imaging.

  4. Comparison of optimized 3D-SPACE and 3D-TSE sequences at 1.5T MRCP in the diagnosis of choledocholithiasis

    The aim of the study was to evaluate whether or not MRCP using a 3D-SPACE sequence allows for better image quality and a higher level of diagnostic confidence than a conventional 3D-TSE sequence at 1.5T regarding the diagnosis of choledocholithiasis in a routine clinical setting. 3D-SPACE and 3D-TSE sequences were performed in 42 consecutive patients with suspected choledocholithiasis undergoing MRCP. Evaluation of image quality and diagnostic confidence was done on the pancreaticobiliary tree which was subdivided into 10 segments. They were scored and statistically evaluated separately for visibility and diagnostic certainty by three radiologists with differing levels of experience on a five-point scale of 1 to 5 and -2 to 2, respectively. Student t-test was performed, and the interobserver agreement was also calculated. Image quality for each segment was significantly better for the 3D-SPACE sequence compared to the 3D-TSE sequence (4.48±0.94 vs. 3.98±1.20; 5-point scale p<0.01). Diagnostic confidence for the reporting radiologist was also significantly better for 3D-SPACE than for 3D-TSE (1.68±0.56 vs. 1.46±0.70; 3-point scale; p<0.01). The interobserver agreement was high in both sequences, 0.62-0.83 and 0.64-0.82, respectively. The optimized 3D-SPACE sequence allows for better image quality in 1.5T MRCP examinations and leads to a higher diagnostic confidence for choledocholithiasis compared to the conventional 3D-TSE sequence.

  5. Comparison of optimized 3D-SPACE and 3D-TSE sequences at 1.5T MRCP in the diagnosis of choledocholithiasis

    Sudholt, P. [University Hospital Marburg (Germany). Dept. of Diagnostic and Interventional Radiology; Zaehringer, C.; Tyndall, A.; Bongartz, G.; Hohmann, J. [University Hospital Basel (Switzerland). Clinic for Radiology and Nuclear Medicine; Urigo, C. [Ars Medica Clinic, Gravesano-Lugano (Switzerland). Radiology

    2015-06-15

    The aim of the study was to evaluate whether or not MRCP using a 3D-SPACE sequence allows for better image quality and a higher level of diagnostic confidence than a conventional 3D-TSE sequence at 1.5T regarding the diagnosis of choledocholithiasis in a routine clinical setting. 3D-SPACE and 3D-TSE sequences were performed in 42 consecutive patients with suspected choledocholithiasis undergoing MRCP. Evaluation of image quality and diagnostic confidence was done on the pancreaticobiliary tree which was subdivided into 10 segments. They were scored and statistically evaluated separately for visibility and diagnostic certainty by three radiologists with differing levels of experience on a five-point scale of 1 to 5 and -2 to 2, respectively. Student t-test was performed, and the interobserver agreement was also calculated. Image quality for each segment was significantly better for the 3D-SPACE sequence compared to the 3D-TSE sequence (4.48±0.94 vs. 3.98±1.20; 5-point scale p<0.01). Diagnostic confidence for the reporting radiologist was also significantly better for 3D-SPACE than for 3D-TSE (1.68±0.56 vs. 1.46±0.70; 3-point scale; p<0.01). The interobserver agreement was high in both sequences, 0.62-0.83 and 0.64-0.82, respectively. The optimized 3D-SPACE sequence allows for better image quality in 1.5T MRCP examinations and leads to a higher diagnostic confidence for choledocholithiasis compared to the conventional 3D-TSE sequence.

  6. 动态三维MRI臂丛成像在臂丛根性损伤的临床应用%Clinical application of dynamic 3d-MRI brachial plexus imaging in the diagnosis of brachial plexus root injuries

    王美豪; 张勇; 程敬亮; 王健; 汪娟; 滕红林; 杨运俊; 王溯源; 王维卓; 刘会茹

    2013-01-01

    Objective To investigate radiological findings and clinical application of the dynamic 3d-MRI in the diagnosis of brachial plexus root injuries. Methods 10 cases of brachial plexus root injury patients underwent dynamic three dimensional MRI (3d-MRI) with short TI inversion recovery sequence (STIR). All cases were confirmed having brachial plexus root injuries by intraopcrativc exploration. Results No characteristic signs of brachial plexus root injuries were found in the early 3d-MRI scanning within one and three days after injuric. At 10-15 days(avcragc 10 days)aftcr injury. Characteristic signs of brachial plexus root injuries were found in the second 3d-MRI scanning, including absence and abnormal conduction of the nerve roots, traumatic spinal mcningocclc, displacement of the spinal cord, etc. Conclusion Brachial plexus nerve anatomical structure could be displayed well in 3d-MRI,thc change in short time and the characteristic radiological findings of brachial plexus root injuries could be found in dynamic 3d-MRI. Dynamic 3d-MRI is a noninvasivc and effective imaging method for the diagnosis of brachial plexus root injuries,which could show the accurate location of the injured brachial plexus root nerve, has significant value in clinical application.%目的 探讨动态三维MRI臂丛成像技术在诊断臂丛神经根性损伤的影像学表现与临床应用.方法 采用短时反转恢复序列(STIR)技术对10例臂丛神经根性损伤患者行动态三维MRI臂丛成像,所有10例患者均手术证实为臂丛根性损伤.结果 本组患者在伤后早期(1~3天)内行三维MRI臂丛成像均未见明显臂丛根性损伤的特征性MRI表现;伤后10~15天(平均10天)后,再次行三维MRI臂丛成像,出现典型的臂丛根性损伤MRI表现:神经根消失或离断、创伤性脊膜囊肿、脊髓偏移等.结论 三维MRI臂丛成像可以很好地地显示臂丛神经的解剖结构,通过动态成像可以显示臂丛根性神经损伤短

  7. 3D Interpolation Method for CT Images of the Lung

    Noriaki Asada

    2003-06-01

    Full Text Available A 3-D image can be reconstructed from numerous CT images of the lung. The procedure reconstructs a solid from multiple cross section images, which are collected during pulsation of the heart. Thus the motion of the heart is a special factor that must be taken into consideration during reconstruction. The lung exhibits a repeating transformation synchronized to the beating of the heart as an elastic body. There are discontinuities among neighboring CT images due to the beating of the heart, if no special techniques are used in taking CT images. The 3-D heart image is reconstructed from numerous CT images in which both the heart and the lung are taken. Although the outline shape of the reconstructed 3-D heart is quite unnatural, the envelope of the 3-D unnatural heart is fit to the shape of the standard heart. The envelopes of the lung in the CT images are calculated after the section images of the best fitting standard heart are located at the same positions of the CT images. Thus the CT images are geometrically transformed to the optimal CT images fitting best to the standard heart. Since correct transformation of images is required, an Area oriented interpolation method proposed by us is used for interpolation of transformed images. An attempt to reconstruct a 3-D lung image by a series of such operations without discontinuity is shown. Additionally, the same geometrical transformation method to the original projection images is proposed as a more advanced method.

  8. 3-D MR imaging of ectopia vasa deferentia

    Goenka, Ajit Harishkumar; Parihar, Mohan; Sharma, Raju; Gupta, Arun Kumar [All India Institute of Medical Sciences (AIIMS), Department of Radiology, New Delhi (India); Bhatnagar, Veereshwar [All India Institute of Medical Sciences (AIIMS), Department of Paediatric Surgery, New Delhi (India)

    2009-11-15

    Ectopia vasa deferentia is a complex anomaly characterized by abnormal termination of the urethral end of the vas deferens into the urinary tract due to an incompletely understood developmental error of the distal Wolffian duct. Associated anomalies of the lower gastrointestinal tract and upper urinary tract are also commonly present due to closely related embryological development. Although around 32 cases have been reported in the literature, the MR appearance of this condition has not been previously described. We report a child with high anorectal malformation who was found to have ectopia vasa deferentia, crossed fused renal ectopia and type II caudal regression syndrome on MR examination. In addition to the salient features of this entity on reconstructed MR images, the important role of 3-D MRI in establishing an unequivocal diagnosis and its potential in facilitating individually tailored management is also highlighted. (orig.)

  9. Preliminary comparison of 3D synthetic aperture imaging with Explososcan

    Rasmussen, Morten Fischer; Hansen, Jens Munk; Ferin, Guillaume; Dufait, Remi; Jensen, Jørgen Arendt

    2012-01-01

    Explososcan is the 'gold standard' for real-time 3D medical ultrasound imaging. In this paper, 3D synthetic aperture imaging is compared to Explososcan by simulation of 3D point spread functions. The simulations mimic a 32x32 element prototype transducer. The transducer mimicked is a dense matrix phased array with a pitch of 300 μm, made by Vermon. For both imaging techniques, 289 emissions are used to image a volume spanning 60 in both the azimuth and elevation direction and 150mm in depth. ...

  10. Preliminary examples of 3D vector flow imaging

    Pihl, Michael Johannes; Stuart, Matthias Bo; Tomov, Borislav Gueorguiev;

    2013-01-01

    This paper presents 3D vector flow images obtained using the 3D Transverse Oscillation (TO) method. The method employs a 2D transducer and estimates the three velocity components simultaneously, which is important for visualizing complex flow patterns. Data are acquired using the experimental...... ultrasound scanner SARUS on a flow rig system with steady flow. The vessel of the flow-rig is centered at a depth of 30 mm, and the flow has an expected 2D circular-symmetric parabolic prole with a peak velocity of 1 m/s. Ten frames of 3D vector flow images are acquired in a cross-sectional plane orthogonal...... acquisition as opposed to magnetic resonance imaging (MRI). The results demonstrate that the 3D TO method is capable of performing 3D vector flow imaging....

  11. Highway 3D model from image and lidar data

    Chen, Jinfeng; Chu, Henry; Sun, Xiaoduan

    2014-05-01

    We present a new method of highway 3-D model construction developed based on feature extraction in highway images and LIDAR data. We describe the processing road coordinate data that connect the image frames to the coordinates of the elevation data. Image processing methods are used to extract sky, road, and ground regions as well as significant objects (such as signs and building fronts) in the roadside for the 3D model. LIDAR data are interpolated and processed to extract the road lanes as well as other features such as trees, ditches, and elevated objects to form the 3D model. 3D geometry reasoning is used to match the image features to the 3D model. Results from successive frames are integrated to improve the final model.

  12. Diffractive optical element for creating visual 3D images.

    Goncharsky, Alexander; Goncharsky, Anton; Durlevich, Svyatoslav

    2016-05-01

    A method is proposed to compute and synthesize the microrelief of a diffractive optical element to produce a new visual security feature - the vertical 3D/3D switch effect. The security feature consists in the alternation of two 3D color images when the diffractive element is tilted up/down. Optical security elements that produce the new security feature are synthesized using electron-beam technology. Sample optical security elements are manufactured that produce 3D to 3D visual switch effect when illuminated by white light. Photos and video records of the vertical 3D/3D switch effect of real optical elements are presented. The optical elements developed can be replicated using standard equipment employed for manufacturing security holograms. The new optical security feature is easy to control visually, safely protected against counterfeit, and designed to protect banknotes, documents, ID cards, etc. PMID:27137530

  13. 3-D capacitance density imaging system

    Fasching, G.E.

    1988-03-18

    A three-dimensional capacitance density imaging of a gasified bed or the like in a containment vessel is achieved using a plurality of electrodes provided circumferentially about the bed in levels and along the bed in channels. The electrodes are individually and selectively excited electrically at each level to produce a plurality of current flux field patterns generated in the bed at each level. The current flux field patterns are suitably sensed and a density pattern of the bed at each level determined. By combining the determined density patterns at each level, a three-dimensional density image of the bed is achieved. 7 figs.

  14. Phase Sensitive Cueing for 3D Objects in Overhead Images

    Paglieroni, D

    2005-02-04

    Locating specific 3D objects in overhead images is an important problem in many remote sensing applications. 3D objects may contain either one connected component or multiple disconnected components. Solutions must accommodate images acquired with diverse sensors at various times of the day, in various seasons of the year, or under various weather conditions. Moreover, the physical manifestation of a 3D object with fixed physical dimensions in an overhead image is highly dependent on object physical dimensions, object position/orientation, image spatial resolution, and imaging geometry (e.g., obliqueness). This paper describes a two-stage computer-assisted approach for locating 3D objects in overhead images. In the matching stage, the computer matches models of 3D objects to overhead images. The strongest degree of match over all object orientations is computed at each pixel. Unambiguous local maxima in the degree of match as a function of pixel location are then found. In the cueing stage, the computer sorts image thumbnails in descending order of figure-of-merit and presents them to human analysts for visual inspection and interpretation. The figure-of-merit associated with an image thumbnail is computed from the degrees of match to a 3D object model associated with unambiguous local maxima that lie within the thumbnail. This form of computer assistance is invaluable when most of the relevant thumbnails are highly ranked, and the amount of inspection time needed is much less for the highly ranked thumbnails than for images as a whole.

  15. 3D-LSI technology for image sensor

    Recently, the development of three-dimensional large-scale integration (3D-LSI) technologies has accelerated and has advanced from the research level or the limited production level to the investigation level, which might lead to mass production. By separating 3D-LSI technology into elementary technologies such as (1) through silicon via (TSV) formation, (2) bump formation, (3) wafer thinning, (4) chip/wafer alignment, and (5) chip/wafer stacking and reconstructing the entire process and structure, many methods to realize 3D-LSI devices can be developed. However, by considering a specific application, the supply chain of base wafers, and the purpose of 3D integration, a few suitable combinations can be identified. In this paper, we focus on the application of 3D-LSI technologies to image sensors. We describe the process and structure of the chip size package (CSP), developed on the basis of current and advanced 3D-LSI technologies, to be used in CMOS image sensors. Using the current LSI technologies, CSPs for 1.3 M, 2 M, and 5 M pixel CMOS image sensors were successfully fabricated without any performance degradation. 3D-LSI devices can be potentially employed in high-performance focal-plane-array image sensors. We propose a high-speed image sensor with an optical fill factor of 100% to be developed using next-generation 3D-LSI technology and fabricated using micro(μ)-bumps and micro(μ)-TSVs.

  16. 3D Reconstruction in Magnetic Resonance Imaging

    Mikulka, J.; Bartušek, Karel

    2010-01-01

    Roč. 6, č. 7 (2010), s. 617-620. ISSN 1931-7360 R&D Projects: GA ČR GA102/09/0314 Institutional research plan: CEZ:AV0Z20650511 Keywords : reconstruction methods * magnetic resonance imaging Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  17. 3D/3D registration of coronary CTA and biplane XA reconstructions for improved image guidance

    Dibildox, Gerardo, E-mail: g.dibildox@erasmusmc.nl; Baka, Nora; Walsum, Theo van [Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus Medical Center, 3015 GE Rotterdam (Netherlands); Punt, Mark; Aben, Jean-Paul [Pie Medical Imaging, 6227 AJ Maastricht (Netherlands); Schultz, Carl [Department of Cardiology, Erasmus Medical Center, 3015 GE Rotterdam (Netherlands); Niessen, Wiro [Quantitative Imaging Group, Faculty of Applied Sciences, Delft University of Technology, 2628 CJ Delft, The Netherlands and Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus Medical Center, 3015 GE Rotterdam (Netherlands)

    2014-09-15

    Purpose: The authors aim to improve image guidance during percutaneous coronary interventions of chronic total occlusions (CTO) by providing information obtained from computed tomography angiography (CTA) to the cardiac interventionist. To this end, the authors investigate a method to register a 3D CTA model to biplane reconstructions. Methods: The authors developed a method for registering preoperative coronary CTA with intraoperative biplane x-ray angiography (XA) images via 3D models of the coronary arteries. The models are extracted from the CTA and biplane XA images, and are temporally aligned based on CTA reconstruction phase and XA ECG signals. Rigid spatial alignment is achieved with a robust probabilistic point set registration approach using Gaussian mixture models (GMMs). This approach is extended by including orientation in the Gaussian mixtures and by weighting bifurcation points. The method is evaluated on retrospectively acquired coronary CTA datasets of 23 CTO patients for which biplane XA images are available. Results: The Gaussian mixture model approach achieved a median registration accuracy of 1.7 mm. The extended GMM approach including orientation was not significantly different (P > 0.1) but did improve robustness with regards to the initialization of the 3D models. Conclusions: The authors demonstrated that the GMM approach can effectively be applied to register CTA to biplane XA images for the purpose of improving image guidance in percutaneous coronary interventions.

  18. Acoustic 3D imaging of dental structures

    Lewis, D.K. [Lawrence Livermore National Lab., CA (United States); Hume, W.R. [California Univ., Los Angeles, CA (United States); Douglass, G.D. [California Univ., San Francisco, CA (United States)

    1997-02-01

    Our goals for the first year of this three dimensional electodynamic imaging project was to determine how to combine flexible, individual addressable; preprocessing of array source signals; spectral extrapolation or received signals; acoustic tomography codes; and acoustic propagation modeling code. We investigated flexible, individually addressable acoustic array material to find the best match in power, sensitivity and cost and settled on PVDF sheet arrays and 3-1 composite material.

  19. Reconstruction of High Resolution 3D Objects from Incomplete Images and 3D Information

    Alexander Pacheco

    2014-05-01

    Full Text Available To this day, digital object reconstruction is a quite complex area that requires many techniques and novel approaches, in which high-resolution 3D objects present one of the biggest challenges. There are mainly two different methods that can be used to reconstruct high resolution objects and images: passive methods and active methods. This methods depend on the type of information available as input for modeling 3D objects. The passive methods use information contained in the images and the active methods make use of controlled light sources, such as lasers. The reconstruction of 3D objects is quite complex and there is no unique solution- The use of specific methodologies for the reconstruction of certain objects it’s also very common, such as human faces, molecular structures, etc. This paper proposes a novel hybrid methodology, composed by 10 phases that combine active and passive methods, using images and a laser in order to supplement the missing information and obtain better results in the 3D object reconstruction. Finally, the proposed methodology proved its efficiency in two complex topological complex objects.

  20. A 3D Model Reconstruction Method Using Slice Images

    LI Hong-an; KANG Bao-sheng

    2013-01-01

    Aiming at achieving the high accuracy 3D model from slice images, a new model reconstruction method using slice im-ages is proposed. Wanting to extract the outermost contours from slice images, the method of the improved GVF-Snake model with optimized force field and ray method is employed. And then, the 3D model is reconstructed by contour connection using the im-proved shortest diagonal method and judgment function of contour fracture. The results show that the accuracy of reconstruction 3D model is improved.

  1. 3D Motion Parameters Determination Based on Binocular Sequence Images

    2006-01-01

    Exactly capturing three dimensional (3D) motion information of an object is an essential and important task in computer vision, and is also one of the most difficult problems. In this paper, a binocular vision system and a method for determining 3D motion parameters of an object from binocular sequence images are introduced. The main steps include camera calibration, the matching of motion and stereo images, 3D feature point correspondences and resolving the motion parameters. Finally, the experimental results of acquiring the motion parameters of the objects with uniform velocity and acceleration in the straight line based on the real binocular sequence images by the mentioned method are presented.

  2. Morphometrics, 3D Imaging, and Craniofacial Development.

    Hallgrimsson, Benedikt; Percival, Christopher J; Green, Rebecca; Young, Nathan M; Mio, Washington; Marcucio, Ralph

    2015-01-01

    Recent studies have shown how volumetric imaging and morphometrics can add significantly to our understanding of morphogenesis, the developmental basis for variation, and the etiology of structural birth defects. On the other hand, the complex questions and diverse imaging data in developmental biology present morphometrics with more complex challenges than applications in virtually any other field. Meeting these challenges is necessary in order to understand the mechanistic basis for variation in complex morphologies. This chapter reviews the methods and theory that enable the application of modern landmark-based morphometrics to developmental biology and craniofacial development, in particular. We discuss the theoretical foundations of morphometrics as applied to development and review the basic approaches to the quantification of morphology. Focusing on geometric morphometrics, we discuss the principal statistical methods for quantifying and comparing morphological variation and covariation structure within and among groups. Finally, we discuss the future directions for morphometrics in developmental biology that will be required for approaches that enable quantitative integration across the genotype-phenotype map. PMID:26589938

  3. 3-D diagnosis-assisted management of anomalous mandibular molar

    Neelam Mittal

    2012-01-01

    Full Text Available This case report describes the successful non-surgical endodontic management of carious exposed three-rooted mandibular molar with four root canals detected on the pre-operative radiograph taken with 20 degrees mesial angulation and confirmed with a 64-slice helical computed tomography scan-assisted 3-D-reconstructed images. Access cavity shape was modified to locate the extra canal with respect to the distolingual root in the left mandibular first molar. Copious irrigation was accomplished with 5.25% sodium hypochlorite and 17% EDTA. Biomechanical preparation was done using protapers. Calcium hydroxide dressing was done for 1 week. The tooth was obturated using gutta percha and AH 26 root canal sealer, and it was permanently restored with composite. Clinical examination on follow-up visits revealed no sensitivity to percussion and palpation in the left mandibular first molar. Thorough knowledge of root canal variations and use of advanced diagnostic modalities lead to successful non-surgical management of the complex cases.

  4. Software for 3D diagnostic image reconstruction and analysis

    Recent advances in computer technologies have opened new frontiers in medical diagnostics. Interesting possibilities are the use of three-dimensional (3D) imaging and the combination of images from different modalities. Software prepared in our laboratories devoted to 3D image reconstruction and analysis from computed tomography and ultrasonography is presented. In developing our software it was assumed that it should be applicable in standard medical practice, i.e. it should work effectively with a PC. An additional feature is the possibility of combining 3D images from different modalities. The reconstruction and data processing can be conducted using a standard PC, so low investment costs result in the introduction of advanced and useful diagnostic possibilities. The program was tested on a PC using DICOM data from computed tomography and TIFF files obtained from a 3D ultrasound system. The results of the anthropomorphic phantom and patient data were taken into consideration. A new approach was used to achieve spatial correlation of two independently obtained 3D images. The method relies on the use of four pairs of markers within the regions under consideration. The user selects the markers manually and the computer calculates the transformations necessary for coupling the images. The main software feature is the possibility of 3D image reconstruction from a series of two-dimensional (2D) images. The reconstructed 3D image can be: (1) viewed with the most popular methods of 3D image viewing, (2) filtered and processed to improve image quality, (3) analyzed quantitatively (geometrical measurements), and (4) coupled with another, independently acquired 3D image. The reconstructed and processed 3D image can be stored at every stage of image processing. The overall software performance was good considering the relatively low costs of the hardware used and the huge data sets processed. The program can be freely used and tested (source code and program available at

  5. BM3D Frames and Variational Image Deblurring

    Danielyan, Aram; Egiazarian, Karen

    2011-01-01

    A family of the Block Matching 3-D (BM3D) algorithms for various imaging problems has been recently proposed within the framework of nonlocal patch-wise image modeling [1], [2]. In this paper we construct analysis and synthesis frames, formalizing the BM3D image modeling and use these frames to develop novel iterative deblurring algorithms. We consider two different formulations of the deblurring problem: one given by minimization of the single objective function and another based on the Nash equilibrium balance of two objective functions. The latter results in an algorithm where the denoising and deblurring operations are decoupled. The convergence of the developed algorithms is proved. Simulation experiments show that the decoupled algorithm derived from the Nash equilibrium formulation demonstrates the best numerical and visual results and shows superiority with respect to the state of the art in the field, confirming a valuable potential of BM3D-frames as an advanced image modeling tool.

  6. Image based 3D city modeling : Comparative study

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2014-06-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing rapidly for various engineering and non-engineering applications. Generally four main image based approaches were used for virtual 3D city models generation. In first approach, researchers were used Sketch based modeling, second method is Procedural grammar based modeling, third approach is Close range photogrammetry based modeling and fourth approach is mainly based on Computer Vision techniques. SketchUp, CityEngine, Photomodeler and Agisoft Photoscan are the main softwares to represent these approaches respectively. These softwares have different approaches & methods suitable for image based 3D city modeling. Literature study shows that till date, there is no complete such type of comparative study available to create complete 3D city model by using images. This paper gives a comparative assessment of these four image based 3D modeling approaches. This comparative study is mainly based on data acquisition methods, data processing techniques and output 3D model products. For this research work, study area is the campus of civil engineering department, Indian Institute of Technology, Roorkee (India). This 3D campus acts as a prototype for city. This study also explains various governing parameters, factors and work experiences. This research work also gives a brief introduction, strengths and weakness of these four image based techniques. Some personal comment is also given as what can do or what can't do from these softwares. At the last, this study shows; it concluded that, each and every software has some advantages and limitations. Choice of software depends on user requirements of 3D project. For normal visualization project, SketchUp software is a good option. For 3D documentation record, Photomodeler gives good result. For Large city

  7. 3D imaging of aortic aneurysma using spiral CT

    The use of 3D reconstructions (3D display technique and maximum intensity projection) in spiral CT for diagnostic evaluation of aortic aneurysma is explained. The data available showing 12 aneurysma of the abdominal and thoracic aorta (10 cases of aneurysma verum, 2 cases of aneurysma dissecans) were selected for verification of the value of 3D images in comparison to transversal displays of the CT. The 3D reconstructions of the spiral CT, other than the projection angiography, give insight into the vessel from various points of view. Such information is helpful for quickly gathering a picture of the volume and contours of a pathological process in the vessel. 3D post-processing of data is advisable if the comparison of tomograms and projection images produces findings of nuclear definition which need clarification prior to surgery. (orig.)

  8. 3D Image Modelling and Specific Treatments in Orthodontics Domain

    Dionysis Goularas

    2007-01-01

    Full Text Available In this article, we present a 3D specific dental plaster treatment system for orthodontics. From computer tomography scanner images, we propose first a 3D image modelling and reconstruction method of the Mandible and Maxillary based on an adaptive triangulation allowing management of contours meant for the complex topologies. Secondly, we present two specific treatment methods directly achieved on obtained 3D model allowing the automatic correction for the setting in occlusion of the Mandible and the Maxillary, and the teeth segmentation allowing more specific dental examinations. Finally, these specific treatments are presented via a client/server application with the aim of allowing a telediagnosis and treatment.

  9. Optical 3D watermark based digital image watermarking for telemedicine

    Li, Xiao Wei; Kim, Seok Tae

    2013-12-01

    Region of interest (ROI) of a medical image is an area including important diagnostic information and must be stored without any distortion. This algorithm for application of watermarking technique for non-ROI of the medical image preserving ROI. The paper presents a 3D watermark based medical image watermarking scheme. In this paper, a 3D watermark object is first decomposed into 2D elemental image array (EIA) by a lenslet array, and then the 2D elemental image array data is embedded into the host image. The watermark extraction process is an inverse process of embedding. The extracted EIA through the computational integral imaging reconstruction (CIIR) technique, the 3D watermark can be reconstructed. Because the EIA is composed of a number of elemental images possesses their own perspectives of a 3D watermark object. Even though the embedded watermark data badly damaged, the 3D virtual watermark can be successfully reconstructed. Furthermore, using CAT with various rule number parameters, it is possible to get many channels for embedding. So our method can recover the weak point having only one transform plane in traditional watermarking methods. The effectiveness of the proposed watermarking scheme is demonstrated with the aid of experimental results.

  10. Fully Automatic 3D Reconstruction of Histological Images

    Bagci, Ulas

    2009-01-01

    In this paper, we propose a computational framework for 3D volume reconstruction from 2D histological slices using registration algorithms in feature space. To improve the quality of reconstructed 3D volume, first, intensity variations in images are corrected by an intensity standardization process which maps image intensity scale to a standard scale where similar intensities correspond to similar tissues. Second, a subvolume approach is proposed for 3D reconstruction by dividing standardized slices into groups. Third, in order to improve the quality of the reconstruction process, an automatic best reference slice selection algorithm is developed based on an iterative assessment of image entropy and mean square error of the registration process. Finally, we demonstrate that the choice of the reference slice has a significant impact on registration quality and subsequent 3D reconstruction.

  11. Preliminary comparison of 3D synthetic aperture imaging with Explososcan

    Rasmussen, Morten Fischer; Hansen, Jens Munk; Ferin, Guillaume;

    2012-01-01

    Explososcan is the 'gold standard' for real-time 3D medical ultrasound imaging. In this paper, 3D synthetic aperture imaging is compared to Explososcan by simulation of 3D point spread functions. The simulations mimic a 32x32 element prototype transducer. The transducer mimicked is a dense matrix...... phased array with a pitch of 300 μm, made by Vermon. For both imaging techniques, 289 emissions are used to image a volume spanning 60 in both the azimuth and elevation direction and 150mm in depth. This results for both techniques in a frame rate of 18 Hz. The implemented synthetic aperture technique...... cystic resolution, which expresses the ability to detect anechoic cysts in a uniform scattering media, at all depths except at Explososcan's focus point. Synthetic aperture reduced the cyst radius, R20dB, at 90mm depth by 48%. Synthetic aperture imaging was shown to reduce the number of transmit channels...

  12. Advanced 3-D Ultrasound Imaging.:3-D Synthetic Aperture Imaging and Row-column Addressing of 2-D Transducer Arrays

    Rasmussen, Morten Fischer; Jensen, Jørgen Arendt

    2014-01-01

    The main purpose of the PhD project was to develop methods that increase the 3-D ultrasound imaging quality available for the medical personnel in the clinic. Acquiring a 3-D volume gives the medical doctor the freedom to investigate the measured anatomy in any slice desirable after the scan has been completed. This allows for precise measurements of organs dimensions and makes the scan more operator independent. Real-time 3-D ultrasound imaging is still not as widespread in use in the clinic...

  13. Recovering 3D human pose from monocular images

    Agarwal, Ankur; Triggs, Bill

    2006-01-01

    We describe a learning-based method for recovering 3D human body pose from single images and monocular image sequences. Our approach requires neither an explicit body model nor prior labeling of body parts in the image. Instead, it recovers pose by direct nonlinear regression against shape descriptor vectors extracted automatically from image silhouettes. For robustness against local silhouette segmentation errors, silhouette shape is encoded by histogram-of-shape-contexts descriptors. We eva...

  14. Automated Algorithm for Carotid Lumen Segmentation and 3D Reconstruction in B-mode images

    Jorge M. S. Pereira; João Manuel R. S. Tavares

    2011-01-01

    The B-mode image system is one of the most popular systems used in the medical area; however it imposes several difficulties in the image segmentation process due to low contrast and noise. Although these difficulties, this image mode is often used in the study and diagnosis of the carotid artery diseases.In this paper, it is described the a novel automated algorithm for carotid lumen segmentation and 3-D reconstruction in B- mode images.

  15. 3D Medical Image Segmentation Based on Rough Set Theory

    CHEN Shi-hao; TIAN Yun; WANG Yi; HAO Chong-yang

    2007-01-01

    This paper presents a method which uses multiple types of expert knowledge together in 3D medical image segmentation based on rough set theory. The focus of this paper is how to approximate a ROI (region of interest) when there are multiple types of expert knowledge. Based on rough set theory, the image can be split into three regions:positive regions; negative regions; boundary regions. With multiple knowledge we refine ROI as an intersection of all of the expected shapes with single knowledge. At last we show the results of implementing a rough 3D image segmentation and visualization system.

  16. 3D Image Display Courses for Information Media Students.

    Yanaka, Kazuhisa; Yamanouchi, Toshiaki

    2016-01-01

    Three-dimensional displays are used extensively in movies and games. These displays are also essential in mixed reality, where virtual and real spaces overlap. Therefore, engineers and creators should be trained to master 3D display technologies. For this reason, the Department of Information Media at the Kanagawa Institute of Technology has launched two 3D image display courses specifically designed for students who aim to become information media engineers and creators. PMID:26960028

  17. A near field 3D radar imaging technique

    Broquetas Ibars, Antoni

    1993-01-01

    The paper presents an algorithm which recovers a 3D reflectivity image of a target from near-field scattering measurements. Spherical wave nearfield illumination is used, in order to avoid a costly compact range installation to produce a plane wave illumination. The system is described and some simulated 3D reconstructions are included. The paper also presents a first experimental validation of this technique. Peer Reviewed

  18. Hybrid segmentation framework for 3D medical image analysis

    Chen, Ting; Metaxas, Dimitri N.

    2003-05-01

    Medical image segmentation is the process that defines the region of interest in the image volume. Classical segmentation methods such as region-based methods and boundary-based methods cannot make full use of the information provided by the image. In this paper we proposed a general hybrid framework for 3D medical image segmentation purposes. In our approach we combine the Gibbs Prior model, and the deformable model. First, Gibbs Prior models are applied onto each slice in a 3D medical image volume and the segmentation results are combined to a 3D binary masks of the object. Then we create a deformable mesh based on this 3D binary mask. The deformable model will be lead to the edge features in the volume with the help of image derived external forces. The deformable model segmentation result can be used to update the parameters for Gibbs Prior models. These methods will then work recursively to reach a global segmentation solution. The hybrid segmentation framework has been applied to images with the objective of lung, heart, colon, jaw, tumor, and brain. The experimental data includes MRI (T1, T2, PD), CT, X-ray, Ultra-Sound images. High quality results are achieved with relatively efficient time cost. We also did validation work using expert manual segmentation as the ground truth. The result shows that the hybrid segmentation may have further clinical use.

  19. Investigation of the feasability for 3D synthetic aperture imaging

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2003-01-01

    This paper investigates the feasibility of implementing real-time synthetic aperture 3D imaging on the experimental system developed at the Center for Fast Ultrasound Imaging using a 2D transducer array. The target array is a fully populated 32 × 32 3 MHz array with a half wavelength pitch. The...

  20. DATA PROCESSING TECHNOLOGY OF AIRBORNE 3D IMAGE

    2001-01-01

    Airborne 3D image which integrates GPS,attitude measurement unit (AMU),sca nning laser rangefinder (SLR) and spectral scanner has been developed successful ly.The spectral scanner and SLR use the same optical system which ensures laser point to match pixel seamlessly.The distinctive advantage of 3D image is that it can produce geo_referenced images and DSM (digital surface models) images wi thout any ground control points (GCPs).It is no longer necessary to sur vey GCPs and with some softwares the data can be processed and produce digital s urface models (DSM) and geo_referenced images in quasi_real_time,therefore,the efficiency of 3 D image is 10~100 times higher than that of traditional approaches.The process ing procedure involves decomposing and checking the raw data,processing GPS dat a,calculating the positions of laser sample points,producing geo_referenced im age,producing DSM and mosaicing strips.  The principle of 3D image is first introduced in this paper,and then we focus on the fast processing technique and algorithm.The flight tests and processed r esults show that the processing technique is feasible and can meet the requireme nt of quasi_real_time applications.

  1. 3D Tongue Motion from Tagged and Cine MR Images

    Xing, Fangxu; Woo, Jonghye; Murano, Emi Z.; Lee, Junghoon; Stone, Maureen; Prince, Jerry L.

    2013-01-01

    Understanding the deformation of the tongue during human speech is important for head and neck surgeons and speech and language scientists. Tagged magnetic resonance (MR) imaging can be used to image 2D motion, and data from multiple image planes can be combined via post-processing to yield estimates of 3D motion. However, lacking boundary information, this approach su ers from inaccurate estimates near the tongue surface. This paper describes a method that combines two sources of information...

  2. The value of 3D contrasted-enhanced MR angiography in diagnosis of aortic dissection

    Objective: To assess the value of three-dimensional contrast-enhanced MR angiography (3D CE-MRA) and its reconstruction in diagnosis of aortic dissection (AD). Methods: One hundred and thirty-six patients with AD underwent 3D CE-MRA with a 3D FLASH sequence after injection of 0.2 mmol Gd-DTPA per kg b. w. The source images were subtracted from mask images and transferred to computer workstation subsequently post-processed using volume rendering (VR), maximum intensity projection (MIP), multiplaner reformation (MPR) and virtual endoscopy (VE). Results: (1) Double lumen and intimal flap could be shown in all of 136 patients. There were 27 DeBakey type I dissections, 2 type II dissections and 107 type III dissections. Twenty-one cases were confirmed by surgery, and 32 cases, by DSA with endovascular graft exclusion. (2) Initial entry sites were defined in 105 cases. Compared with DSA, the depiction of 3D CE-MRA was 100% for initial entry sites and 91.4% for multi entry sites. Depiction of the initial entry sites was significantly better with VR and MPR, especially VR images. The shape, size and the relationship between the arterial orifice and the initial entry sites were clearly demonstrated with three-dimension on VR images, which was very helpful for surgery and endovascular graft exclusion. (3) The orifice of anonymous artery involved in type I dissections was 10 (10/27) , and the orifice of left subclavian artery involved in type III dissections, 10.3 percent. In 134 patients with type I and type III dissections, the kidney arterial orifice was involved in 32.1 percent; the celiac arterial orifice, 14.9 percent; the super mesenteric arterial orifice, 4.5 percent. Single artery involved was about 40.3 percent, and multi arteries, 12.7 percent

  3. AUTOMATIC 3D MAPPING USING MULTIPLE UNCALIBRATED CLOSE RANGE IMAGES

    M. Rafiei

    2013-09-01

    Full Text Available Automatic three-dimensions modeling of the real world is an important research topic in the geomatics and computer vision fields for many years. By development of commercial digital cameras and modern image processing techniques, close range photogrammetry is vastly utilized in many fields such as structure measurements, topographic surveying, architectural and archeological surveying, etc. A non-contact photogrammetry provides methods to determine 3D locations of objects from two-dimensional (2D images. Problem of estimating the locations of 3D points from multiple images, often involves simultaneously estimating both 3D geometry (structure and camera pose (motion, it is commonly known as structure from motion (SfM. In this research a step by step approach to generate the 3D point cloud of a scene is considered. After taking images with a camera, we should detect corresponding points in each two views. Here an efficient SIFT method is used for image matching for large baselines. After that, we must retrieve the camera motion and 3D position of the matched feature points up to a projective transformation (projective reconstruction. Lacking additional information on the camera or the scene makes the parallel lines to be unparalleled. The results of SfM computation are much more useful if a metric reconstruction is obtained. Therefor multiple views Euclidean reconstruction applied and discussed. To refine and achieve the precise 3D points we use more general and useful approach, namely bundle adjustment. At the end two real cases have been considered to reconstruct (an excavation and a tower.

  4. Towards 3D ultrasound image based soft tissue tracking: a transrectal ultrasound prostate image alignment system

    Baumann, Michael; Daanen, Vincent; Troccaz, Jocelyne

    2007-01-01

    The emergence of real-time 3D ultrasound (US) makes it possible to consider image-based tracking of subcutaneous soft tissue targets for computer guided diagnosis and therapy. We propose a 3D transrectal US based tracking system for precise prostate biopsy sample localisation. The aim is to improve sample distribution, to enable targeting of unsampled regions for repeated biopsies, and to make post-interventional quality controls possible. Since the patient is not immobilized, since the prostate is mobile and due to the fact that probe movements are only constrained by the rectum during biopsy acquisition, the tracking system must be able to estimate rigid transformations that are beyond the capture range of common image similarity measures. We propose a fast and robust multi-resolution attribute-vector registration approach that combines global and local optimization methods to solve this problem. Global optimization is performed on a probe movement model that reduces the dimensionality of the search space a...

  5. 3D interfractional patient position verification using 2D-3D registration of orthogonal images

    Reproducible positioning of the patient during fractionated external beam radiation therapy is imperative to ensure that the delivered dose distribution matches the planned one. In this paper, we expand on a 2D-3D image registration method to verify a patient's setup in three dimensions (rotations and translations) using orthogonal portal images and megavoltage digitally reconstructed radiographs (MDRRs) derived from CT data. The accuracy of 2D-3D registration was improved by employing additional image preprocessing steps and a parabolic fit to interpolate the parameter space of the cost function utilized for registration. Using a humanoid phantom, precision for registration of three-dimensional translations was found to be better than 0.5 mm (1 s.d.) for any axis when no rotations were present. Three-dimensional rotations about any axis were registered with a precision of better than 0.2 deg. (1 s.d.) when no translations were present. Combined rotations and translations of up to 4 deg. and 15 mm were registered with 0.4 deg. and 0.7 mm accuracy for each axis. The influence of setup translations on registration of rotations and vice versa was also investigated and mostly agrees with a simple geometric model. Additionally, the dependence of registration accuracy on three cost functions, angular spacing between MDRRs, pixel size, and field-of-view, was examined. Best results were achieved by mutual information using 0.5 deg. angular spacing and a 10x10 cm2 field-of-view with 140x140 pixels. Approximating patient motion as rigid transformation, the registration method is applied to two treatment plans and the patients' setup errors are determined. Their magnitude was found to be ≤6.1 mm and ≤2.7 deg. for any axis in all of the six fractions measured for each treatment plan

  6. Automated curved planar reformation of 3D spine images

    Traditional techniques for visualizing anatomical structures are based on planar cross-sections from volume images, such as images obtained by computed tomography (CT) or magnetic resonance imaging (MRI). However, planar cross-sections taken in the coordinate system of the 3D image often do not provide sufficient or qualitative enough diagnostic information, because planar cross-sections cannot follow curved anatomical structures (e.g. arteries, colon, spine, etc). Therefore, not all of the important details can be shown simultaneously in any planar cross-section. To overcome this problem, reformatted images in the coordinate system of the inspected structure must be created. This operation is usually referred to as curved planar reformation (CPR). In this paper we propose an automated method for CPR of 3D spine images, which is based on the image transformation from the standard image-based to a novel spine-based coordinate system. The axes of the proposed spine-based coordinate system are determined on the curve that represents the vertebral column, and the rotation of the vertebrae around the spine curve, both of which are described by polynomial models. The optimal polynomial parameters are obtained in an image analysis based optimization framework. The proposed method was qualitatively and quantitatively evaluated on five CT spine images. The method performed well on both normal and pathological cases and was consistent with manually obtained ground truth data. The proposed spine-based CPR benefits from reduced structural complexity in favour of improved feature perception of the spine. The reformatted images are diagnostically valuable and enable easier navigation, manipulation and orientation in 3D space. Moreover, reformatted images may prove useful for segmentation and other image analysis tasks

  7. DICOM for quantitative imaging research in 3D Slicer

    Fedorov, Andrey; Kikinis, Ron

    2014-01-01

    These are the slides presented by Andrey Fedorov at the 3D Slicer workshop and meeting of the Quantitative Image Informatics for Cancer Research (QIICR) project that took place November 18-19, 2014, at the University of Iowa.

  8. Practical pseudo-3D registration for large tomographic images

    Liu, Xuan; Laperre, Kjell; Sasov, Alexander

    2014-09-01

    Image registration is a powerful tool in various tomographic applications. Our main focus is on microCT applications in which samples/animals can be scanned multiple times under different conditions or at different time points. For this purpose, a registration tool capable of handling fairly large volumes has been developed, using a novel pseudo-3D method to achieve fast and interactive registration with simultaneous 3D visualization. To reduce computation complexity in 3D registration, we decompose it into several 2D registrations, which are applied to the orthogonal views (transaxial, sagittal and coronal) sequentially and iteratively. After registration in each view, the next view is retrieved with the new transformation matrix for registration. This reduces the computation complexity significantly. For rigid transform, we only need to search for 3 parameters (2 shifts, 1 rotation) in each of the 3 orthogonal views instead of 6 (3 shifts, 3 rotations) for full 3D volume. In addition, the amount of voxels involved is also significantly reduced. For the proposed pseudo-3D method, image-based registration is employed, with Sum of Square Difference (SSD) as the similarity measure. The searching engine is Powell's conjugate direction method. In this paper, only rigid transform is used. However, it can be extended to affine transform by adding scaling and possibly shearing to the transform model. We have noticed that more information can be used in the 2D registration if Maximum Intensity Projections (MIP) or Parallel Projections (PP) is used instead of the orthogonal views. Also, other similarity measures, such as covariance or mutual information, can be easily incorporated. The initial evaluation on microCT data shows very promising results. Two application examples are shown: dental samples before and after treatment and structural changes in materials before and after compression. Evaluation on registration accuracy between pseudo-3D method and true 3D method has

  9. 3D wavefront image formation for NIITEK GPR

    Soumekh, Mehrdad; Ton, Tuan; Howard, Pete

    2009-05-01

    The U.S. Department of Defense Humanitarian Demining (HD) Research and Development Program focuses on developing, testing, demonstrating, and validating new technology for immediate use in humanitarian demining operations around the globe. Beginning in the late 1990's, the U.S. Army Countermine Division funded the development of the NIITEK ground penetrating radar (GPR) for detection of anti-tank (AT) landmines. This work is concerned with signal processing algorithms to suppress sources of artifacts in the NIITEK GPR, and formation of three-dimensional (3D) imagery from the resultant data. We first show that the NIITEK GPR data correspond to a 3D Synthetic Aperture Radar (SAR) database. An adaptive filtering method is utilized to suppress ground return and self-induced resonance (SIR) signals that are generated by the interaction of the radar-carrying platform and the transmitted radar signal. We examine signal processing methods to improve the fidelity of imagery for this 3D SAR system using pre-processing methods that suppress Doppler aliasing as well as other side lobe leakage artifacts that are introduced by the radar radiation pattern. The algorithm, known as digital spotlighting, imposes a filtering scheme on the azimuth-compressed SAR data, and manipulates the resultant spectral data to achieve a higher PRF to suppress the Doppler aliasing. We also present the 3D version of the Fourier-based wavefront reconstruction, a computationally-efficient and approximation-free SAR imaging method, for image formation with the NIITEK 3D SAR database.

  10. Extracting 3D Layout From a Single Image Using Global Image Structures

    Z. Lou; T. Gevers; N. Hu

    2015-01-01

    Extracting the pixel-level 3D layout from a single image is important for different applications, such as object localization, image, and video categorization. Traditionally, the 3D layout is derived by solving a pixel-level classification problem. However, the image-level 3D structure can be very b

  11. Holoscopic 3D image depth estimation and segmentation techniques

    Alazawi, Eman

    2015-01-01

    This thesis was submitted for the award of Doctor of Philosophy and was awarded by Brunel University London Today’s 3D imaging techniques offer significant benefits over conventional 2D imaging techniques. The presence of natural depth information in the scene affords the observer an overall improved sense of reality and naturalness. A variety of systems attempting to reach this goal have been designed by many independent research groups, such as stereoscopic and auto-stereoscopic systems....

  12. Efficient reconfigurable architectures for 3D medical image compression

    Afandi, Ahmad

    2010-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. Recently, the more widespread use of three-dimensional (3-D) imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), and ultrasound (US) have generated a massive amount of volumetric data. These have provided an impetus to the development of other applications, in particular telemedicine and teleradiology. In thes...

  13. An automated 3D reconstruction method of UAV images

    Liu, Jun; Wang, He; Liu, Xiaoyang; Li, Feng; Sun, Guangtong; Song, Ping

    2015-10-01

    In this paper a novel fully automated 3D reconstruction approach based on low-altitude unmanned aerial vehicle system (UAVs) images will be presented, which does not require previous camera calibration or any other external prior knowledge. Dense 3D point clouds are generated by integrating orderly feature extraction, image matching, structure from motion (SfM) and multi-view stereo (MVS) algorithms, overcoming many of the cost, time limitations of rigorous photogrammetry techniques. An image topology analysis strategy is introduced to speed up large scene reconstruction by taking advantage of the flight-control data acquired by UAV. Image topology map can significantly reduce the running time of feature matching by limiting the combination of images. A high-resolution digital surface model of the study area is produced base on UAV point clouds by constructing the triangular irregular network. Experimental results show that the proposed approach is robust and feasible for automatic 3D reconstruction of low-altitude UAV images, and has great potential for the acquisition of spatial information at large scales mapping, especially suitable for rapid response and precise modelling in disaster emergency.

  14. Projective 3D-reconstruction of Uncalibrated Endoscopic Images

    P. Faltin

    2010-01-01

    Full Text Available The most common medical diagnostic method for urinary bladder cancer is cystoscopy. This inspection of the bladder is performed by a rigid endoscope, which is usually guided close to the bladder wall. This causes a very limited field of view; difficulty of navigation is aggravated by the usage of angled endoscopes. These factors cause difficulties in orientation and visual control. To overcome this problem, the paper presents a method for extracting 3D information from uncalibrated endoscopic image sequences and for reconstructing the scene content. The method uses the SURF-algorithm to extract features from the images and relates the images by advanced matching. To stabilize the matching, the epipolar geometry is extracted for each image pair using a modified RANSAC-algorithm. Afterwards these matched point pairs are used to generate point triplets over three images and to describe the trifocal geometry. The 3D scene points are determined by applying triangulation to the matched image points. Thus, these points are used to generate a projective 3D reconstruction of the scene, and provide the first step for further metric reconstructions.

  15. Detection of Connective Tissue Disorders from 3D Aortic MR Images Using Independent Component Analysis

    Hansen, Michael Sass; Zhao, Fei; Zhang, Honghai;

    2006-01-01

    A computer-aided diagnosis (CAD) method is reported that allows the objective identification of subjects with connective tissue disorders from 3D aortic MR images using segmentation and independent component analysis (ICA). The first step to extend the model to 4D (3D + time) has also been taken....... ICA is an effective tool for connective tissue disease detection in the presence of sparse data using prior knowledge to order the components, and the components can be inspected visually. 3D+time MR image data sets acquired from 31 normal and connective tissue disorder subjects at end-diastole (R......-wave peak) and at 45\\$\\backslash\\$% of the R-R interval were used to evaluate the performance of our method. The automated 3D segmentation result produced accurate aortic surfaces covering the aorta. The CAD method distinguished between normal and connective tissue disorder subjects with a classification...

  16. 1024 pixels single photon imaging array for 3D ranging

    Bellisai, S.; Guerrieri, F.; Tisa, S.; Zappa, F.; Tosi, A.; Giudice, A.

    2011-01-01

    Three dimensions (3D) acquisition systems are driving applications in many research field. Nowadays 3D acquiring systems are used in a lot of applications, such as cinema industry or in automotive (for active security systems). Depending on the application, systems present different features, for example color sensitivity, bi-dimensional image resolution, distance measurement accuracy and acquisition frame rate. The system we developed acquires 3D movie using indirect Time of Flight (iTOF), starting from phase delay measurement of a sinusoidally modulated light. The system acquires live movie with a frame rate up to 50frame/s in a range distance between 10 cm up to 7.5 m.

  17. 3D Medical Image Interpolation Based on Parametric Cubic Convolution

    2007-01-01

    In the process of display, manipulation and analysis of biomedical image data, they usually need to be converted to data of isotropic discretization through the process of interpolation, while the cubic convolution interpolation is widely used due to its good tradeoff between computational cost and accuracy. In this paper, we present a whole concept for the 3D medical image interpolation based on cubic convolution, and the six methods, with the different sharp control parameter, which are formulated in details. Furthermore, we also give an objective comparison for these methods using data sets with the different slice spacing. Each slice in these data sets is estimated by each interpolation method and compared with the original slice using three measures: mean-squared difference, number of sites of disagreement, and largest difference. According to the experimental results, we present a recommendation for 3D medical images under the different situations in the end.

  18. Helical CT scanner - 3D imaging and CT fluoroscopy

    It has been over twenty years since the introduction of X-ray CT. In recent years, the topic of helical scanning has dominated the area of technical development. With helical scanning now being used routinely, the traditional concept of the X-ray CT as a device for obtaining axial images of the body in slices has given way to that of one for obtaining images in volumes. For instance, the ability of helical scanning to acquire sequential images in the direction of the body axis makes it ideal for creating three dimensional (3-D) images, and has in fact led to the use of 3-D images in clinical practice. In addition, with helical scanning, imaging of organs such as the liver or lung can be performed in several tens of seconds, as opposed to a few minutes that it used to take. This has resulted not only in reduced time for the patient to spend under constraint for imaging but also to changes in diagnostic methods. The question, 'Would it be possible to perform reconstruction while scanning and to see resulting images in real time ?' is another issue which has been taken up, and it has been answered by CT Fluoroscopy. It makes it possible to see CT images in real time during sequential scanning, and from this development, applications such as CT-guided biopsy and CT-navigated surgery has been investigated and have been realized. Other possibilities to create a whole new series of diagnostic methods and results. (author)

  19. 3D acoustic imaging applied to the Baikal neutrino telescope

    Kebkal, K.G. [EvoLogics GmbH, Blumenstrasse 49, 10243 Berlin (Germany)], E-mail: kebkal@evologics.de; Bannasch, R.; Kebkal, O.G. [EvoLogics GmbH, Blumenstrasse 49, 10243 Berlin (Germany); Panfilov, A.I. [Institute for Nuclear Research, 60th October Anniversary pr. 7a, Moscow 117312 (Russian Federation); Wischnewski, R. [DESY, Platanenallee 6, 15735 Zeuthen (Germany)

    2009-04-11

    A hydro-acoustic imaging system was tested in a pilot study on distant localization of elements of the Baikal underwater neutrino telescope. For this innovative approach, based on broad band acoustic echo signals and strictly avoiding any active acoustic elements on the telescope, the imaging system was temporarily installed just below the ice surface, while the telescope stayed in its standard position at 1100 m depth. The system comprised an antenna with four acoustic projectors positioned at the corners of a 50 m square; acoustic pulses were 'linear sweep-spread signals'-multiple-modulated wide-band signals (10{yields}22 kHz) of 51.2 s duration. Three large objects (two string buoys and the central electronics module) were localized by the 3D acoustic imaging, with an accuracy of {approx}0.2 m (along the beam) and {approx}1.0 m (transverse). We discuss signal forms and parameters necessary for improved 3D acoustic imaging of the telescope, and suggest a layout of a possible stationary bottom based 3D imaging setup. The presented technique may be of interest for neutrino telescopes of km{sup 3}-scale and beyond, as a flexible temporary or as a stationary tool to localize basic telescope elements, while these are completely passive.

  20. 3D acoustic imaging applied to the Baikal neutrino telescope

    A hydro-acoustic imaging system was tested in a pilot study on distant localization of elements of the Baikal underwater neutrino telescope. For this innovative approach, based on broad band acoustic echo signals and strictly avoiding any active acoustic elements on the telescope, the imaging system was temporarily installed just below the ice surface, while the telescope stayed in its standard position at 1100 m depth. The system comprised an antenna with four acoustic projectors positioned at the corners of a 50 m square; acoustic pulses were 'linear sweep-spread signals'-multiple-modulated wide-band signals (10→22 kHz) of 51.2 s duration. Three large objects (two string buoys and the central electronics module) were localized by the 3D acoustic imaging, with an accuracy of ∼0.2 m (along the beam) and ∼1.0 m (transverse). We discuss signal forms and parameters necessary for improved 3D acoustic imaging of the telescope, and suggest a layout of a possible stationary bottom based 3D imaging setup. The presented technique may be of interest for neutrino telescopes of km3-scale and beyond, as a flexible temporary or as a stationary tool to localize basic telescope elements, while these are completely passive.

  1. Quantitative 3-D imaging topogrammetry for telemedicine applications

    Altschuler, Bruce R.

    1994-01-01

    The technology to reliably transmit high-resolution visual imagery over short to medium distances in real time has led to the serious considerations of the use of telemedicine, telepresence, and telerobotics in the delivery of health care. These concepts may involve, and evolve toward: consultation from remote expert teaching centers; diagnosis; triage; real-time remote advice to the surgeon; and real-time remote surgical instrument manipulation (telerobotics with virtual reality). Further extrapolation leads to teledesign and telereplication of spare surgical parts through quantitative teleimaging of 3-D surfaces tied to CAD/CAM devices and an artificially intelligent archival data base of 'normal' shapes. The ability to generate 'topogrames' or 3-D surface numerical tables of coordinate values capable of creating computer-generated virtual holographic-like displays, machine part replication, and statistical diagnostic shape assessment is critical to the progression of telemedicine. Any virtual reality simulation will remain in 'video-game' realm until realistic dimensional and spatial relational inputs from real measurements in vivo during surgeries are added to an ever-growing statistical data archive. The challenges of managing and interpreting this 3-D data base, which would include radiographic and surface quantitative data, are considerable. As technology drives toward dynamic and continuous 3-D surface measurements, presenting millions of X, Y, Z data points per second of flexing, stretching, moving human organs, the knowledge base and interpretive capabilities of 'brilliant robots' to work as a surgeon's tireless assistants becomes imaginable. The brilliant robot would 'see' what the surgeon sees--and more, for the robot could quantify its 3-D sensing and would 'see' in a wider spectral range than humans, and could zoom its 'eyes' from the macro world to long-distance microscopy. Unerring robot hands could rapidly perform machine-aided suturing with

  2. Large distance 3D imaging of hidden objects

    Rozban, Daniel; Aharon Akram, Avihai; Kopeika, N. S.; Abramovich, A.; Levanon, Assaf

    2014-06-01

    Imaging systems in millimeter waves are required for applications in medicine, communications, homeland security, and space technology. This is because there is no known ionization hazard for biological tissue, and atmospheric attenuation in this range of the spectrum is low compared to that of infrared and optical rays. The lack of an inexpensive room temperature detector makes it difficult to give a suitable real time implement for the above applications. A 3D MMW imaging system based on chirp radar was studied previously using a scanning imaging system of a single detector. The system presented here proposes to employ a chirp radar method with Glow Discharge Detector (GDD) Focal Plane Array (FPA of plasma based detectors) using heterodyne detection. The intensity at each pixel in the GDD FPA yields the usual 2D image. The value of the I-F frequency yields the range information at each pixel. This will enable 3D MMW imaging. In this work we experimentally demonstrate the feasibility of implementing an imaging system based on radar principles and FPA of inexpensive detectors. This imaging system is shown to be capable of imaging objects from distances of at least 10 meters.

  3. 3D Image Reconstruction from Compton camera data

    Kuchment, Peter

    2016-01-01

    In this paper, we address analytically and numerically the inversion of the integral transform (\\emph{cone} or \\emph{Compton} transform) that maps a function on $\\mathbb{R}^3$ to its integrals over conical surfaces. It arises in a variety of imaging techniques, e.g. in astronomy, optical imaging, and homeland security imaging, especially when the so called Compton cameras are involved. Several inversion formulas are developed and implemented numerically in $3D$ (the much simpler $2D$ case was considered in a previous publication).

  4. 3D CT Imaging Method for Measuring Temporal Bone Aeration

    Objective: 3D volume reconstruction of CT images can be used to measure temporal bene aeration. This study evaluates the technique with respect to reproducibility and acquisition parameters. Material and methods: Helical CT images acquired from patients with radiographically normal temporal bones using standard clinical protocols were retrospectively analyzed. 3D image reconstruction was performed to measure the volume of air within the temporal bone. The appropriate threshold values for air were determined from reconstruction of a phantom with a known air volume imaged using the same clinical protocols. The appropriate air threshold values were applied to the clinical material. Results: Air volume was measured according to an acquisition algorithm. The average volume in the temporal bone CT group was 5.56 ml, compared to 5.19 ml in the head CT group (p = 0.59). The correlation coefficient between examiners was > 0.92. There was a wide range of aeration volumes among individual ears (0.76-18.84 ml); however, paired temporal bones differed by an average of just 1.11 ml. Conclusions: The method of volume measurement from 3D reconstruction reported here is widely available, easy to perform and produces consistent results among examiners. Application of the technique to archival CT data is possible using corrections for air segmentation thresholds according to acquisition parameters

  5. Combining different modalities for 3D imaging of biological objects

    A resolution enhanced NaI(Tl)-scintillator micro-SPECT device using pinhole collimator geometry has been built and tested with small animals. This device was constructed based on a depth-of-interaction measurement using a thick scintillator crystal and a position sensitive PMT to measure depth-dependent scintillator light profiles. Such a measurement eliminates the parallax error that degrades the high spatial resolution required for small animal imaging. This novel technique for 3D gamma-ray detection was incorporated into the micro-SPECT device and tested with a 57Co source and 98mTc-MDP injected in mice body. To further enhance the investigating power of the tomographic imaging different imaging modalities can be combined. In particular, as proposed and shown, the optical imaging permits a 3D reconstruction of the animal's skin surface thus improving visualization and making possible depth-dependent corrections, necessary for bioluminescence 3D reconstruction in biological objects. This structural information can provide even more detail if the x-ray tomography is used as presented in the paper

  6. Combining Different Modalities for 3D Imaging of Biological Objects

    Tsyganov, E; Kulkarni, P; Mason, R; Parkey, R; Seliuonine, S; Shay, J; Soesbe, T; Zhezher, V; Zinchenko, A I

    2005-01-01

    A resolution enhanced NaI(Tl)-scintillator micro-SPECT device using pinhole collimator geometry has been built and tested with small animals. This device was constructed based on a depth-of-interaction measurement using a thick scintillator crystal and a position sensitive PMT to measure depth-dependent scintillator light profiles. Such a measurement eliminates the parallax error that degrades the high spatial resolution required for small animal imaging. This novel technique for 3D gamma-ray detection was incorporated into the micro-SPECT device and tested with a $^{57}$Co source and $^{98m}$Tc-MDP injected in mice body. To further enhance the investigating power of the tomographic imaging different imaging modalities can be combined. In particular, as proposed and shown in this paper, the optical imaging permits a 3D reconstruction of the animal's skin surface thus improving visualization and making possible depth-dependent corrections, necessary for bioluminescence 3D reconstruction in biological objects. ...

  7. The diagnostic value of 3D spiral CT imaging of cholangiopancreatic ducts on obstructive jaundice

    Linquan Wu; Xiangbao Yin; Qingshan Wang; Bohua Wu; Xiao Li; Huaqun Fu

    2011-01-01

    Objective: Computerized tomography (CT) plays an important role in the diagnosis of diseases of biliary tract. Recently, three dimensions (3D) spiral CT imaging has been used in surgical diseases gradually. This study was designed to evaluate the diagnostic value of 3D spiral CT imaging of cholangiopancreatic ducts on obstructive jaundice. Methods: Thirty patients with obstructive jaundice had received B-mode ultrasonography, CT, percutaneous transhepatic cholangiography (PTC) or endoscopic retrograde cholangiopancreatography (ERCP), and 3D spiral CT imaging of cholangiopancreatic ducts preoperatively. Then the diagnose accordance rate of these examinational methods were compared after operations. Results: The diagnose accordance rate of 3D spiral CT imaging of cholangiopancreatic ducts was higher than those of B-mode ultraso-nography, CT, or single PTC or ERCP, which showed clear images of bile duct tree and pathological changes. As to malignant obstructive jaundice, this examinational technique could clearly display the adjacent relationship between tumor and liver tissue, biliary ducts, blood vessels, and intrahepatic metastases. Conclusion: 3D spiral CT imaging of cholangiopancreatic ducts has significant value for obstructive diseases of biliary ducts, which provides effective evidence for the feasibility of tumor-resection and surgical options.

  8. Method for 3D Rendering Based on Intersection Image Display Which Allows Representation of Internal Structure of 3D objects

    Kohei Arai

    2013-01-01

    Method for 3D rendering based on intersection image display which allows representation of internal structure is proposed. The proposed method is essentially different from the conventional volume rendering based on solid model which allows representation of just surface of the 3D objects. By using afterimage, internal structure can be displayed through exchanging the intersection images with internal structure for the proposed method. Through experiments with CT scan images, the proposed met...

  9. 3D Imaging of a Cavity Vacuum under Dissipation

    Lee, Moonjoo; Seo, Wontaek; Hong, Hyun-Gue; Song, Younghoon; Dasari, Ramachandra R; An, Kyungwon

    2013-01-01

    P. A. M. Dirac first introduced zero-point electromagnetic fields in order to explain the origin of atomic spontaneous emission. Since then, it has long been debated how the zero-point vacuum field is affected by dissipation. Here we report 3D imaging of vacuum fluctuations in a high-Q cavity and rms amplitude measurements of the vacuum field. The 3D imaging was done by the position-dependent emission of single atoms, resulting in dissipation-free rms amplitude of 0.97 +- 0.03 V/cm. The actual rms amplitude of the vacuum field at the antinode was independently determined from the onset of single-atom lasing at 0.86 +- 0.08 V/cm. Within our experimental accuracy and precision, the difference was noticeable, but it is not significant enough to disprove zero-point energy conservation.

  10. Automated Recognition of 3D Features in GPIR Images

    Park, Han; Stough, Timothy; Fijany, Amir

    2007-01-01

    A method of automated recognition of three-dimensional (3D) features in images generated by ground-penetrating imaging radar (GPIR) is undergoing development. GPIR 3D images can be analyzed to detect and identify such subsurface features as pipes and other utility conduits. Until now, much of the analysis of GPIR images has been performed manually by expert operators who must visually identify and track each feature. The present method is intended to satisfy a need for more efficient and accurate analysis by means of algorithms that can automatically identify and track subsurface features, with minimal supervision by human operators. In this method, data from multiple sources (for example, data on different features extracted by different algorithms) are fused together for identifying subsurface objects. The algorithms of this method can be classified in several different ways. In one classification, the algorithms fall into three classes: (1) image-processing algorithms, (2) feature- extraction algorithms, and (3) a multiaxis data-fusion/pattern-recognition algorithm that includes a combination of machine-learning, pattern-recognition, and object-linking algorithms. The image-processing class includes preprocessing algorithms for reducing noise and enhancing target features for pattern recognition. The feature-extraction algorithms operate on preprocessed data to extract such specific features in images as two-dimensional (2D) slices of a pipe. Then the multiaxis data-fusion/ pattern-recognition algorithm identifies, classifies, and reconstructs 3D objects from the extracted features. In this process, multiple 2D features extracted by use of different algorithms and representing views along different directions are used to identify and reconstruct 3D objects. In object linking, which is an essential part of this process, features identified in successive 2D slices and located within a threshold radius of identical features in adjacent slices are linked in a

  11. Improvements in quality and quantification of 3D PET images

    Rapisarda,

    2012-01-01

    The spatial resolution of Positron Emission Tomography is conditioned by several physical factors, which can be taken into account by using a global Point Spread Function (PSF). In this thesis a spatially variant (radially asymmetric) PSF implementation in the image space of a 3D Ordered Subsets Expectation Maximization (OSEM) algorithm is proposed. Two different scanners were considered, without and with Time Of Flight (TOF) capability. The PSF was derived by fitting some experimental...

  12. 3D imaging of semiconductor components by discrete laminography

    Batenburg, Joost; Palenstijn, W.J.; Sijbers, J.

    2014-01-01

    X-ray laminography is a powerful technique for quality control of semiconductor components. Despite the advantages of nondestructive 3D imaging over 2D techniques based on sectioning, the acquisition time is still a major obstacle for practical use of the technique. In this paper, we consider the application of Discrete Tomography to laminography data, which can potentially reduce the scanning time while still maintaining a high reconstruction quality. By incorporating prior knowledge in the ...

  13. 3D VSP imaging in the Deepwater GOM

    Hornby, B. E.

    2005-05-01

    Seismic imaging challenges in the Deepwater GOM include surface and sediment related multiples and issues arising from complicated salt bodies. Frequently, wells encounter geologic complexity not resolved on conventional surface seismic section. To help address these challenges BP has been acquiring 3D VSP (Vertical Seismic Profile) surveys in the Deepwater GOM. The procedure involves placing an array of seismic sensors in the borehole and acquiring a 3D seismic dataset with a surface seismic gunboat that fires airguns in a spiral pattern around the wellbore. Placing the seismic geophones in the borehole provides a higher resolution and more accurate image near the borehole, as well as other advantages relating to the unique position of the sensors relative to complex structures. Technical objectives are to complement surface seismic with improved resolution (~2X seismic), better high dip structure definition (e.g. salt flanks) and to fill in "imaging holes" in complex sub-salt plays where surface seismic is blind. Business drivers for this effort are to reduce risk in well placement, improved reserve calculation and understanding compartmentalization and stratigraphic variation. To date, BP has acquired 3D VSP surveys in ten wells in the DW GOM. The initial results are encouraging and show both improved resolution and structural images in complex sub-salt plays where the surface seismic is blind. In conjunction with this effort BP has influenced both contractor borehole seismic tool design and developed methods to enable the 3D VSP surveys to be conducted offline thereby avoiding the high daily rig costs associated with a Deepwater drilling rig.

  14. Super pipe lining system for 3-D CT imaging

    A new idea for 3-D CT image reconstruction system is introduced. For the network has very important improvement in recently years, it realizes that network computing replace the traditional serial system processing. CT system's works are carried in a multi-level fashion, it will make the tedious works processed by many computers linked by local network in the same time. So greatly improve the reconstruction speed

  15. Discrete Method of Images for 3D Radio Propagation Modeling

    Novak, Roman

    2016-09-01

    Discretization by rasterization is introduced into the method of images (MI) in the context of 3D deterministic radio propagation modeling as a way to exploit spatial coherence of electromagnetic propagation for fine-grained parallelism. Traditional algebraic treatment of bounding regions and surfaces is replaced by computer graphics rendering of 3D reflections and double refractions while building the image tree. The visibility of reception points and surfaces is also resolved by shader programs. The proposed rasterization is shown to be of comparable run time to that of the fundamentally parallel shooting and bouncing rays. The rasterization does not affect the signal evaluation backtracking step, thus preserving its advantage over the brute force ray-tracing methods in terms of accuracy. Moreover, the rendering resolution may be scaled back for a given level of scenario detail with only marginal impact on the image tree size. This allows selection of scene optimized execution parameters for faster execution, giving the method a competitive edge. The proposed variant of MI can be run on any GPU that supports real-time 3D graphics.

  16. 3D tongue motion from tagged and cine MR images.

    Xing, Fangxu; Woo, Jonghye; Murano, Emi Z; Lee, Junghoon; Stone, Maureen; Prince, Jerry L

    2013-01-01

    Understanding the deformation of the tongue during human speech is important for head and neck surgeons and speech and language scientists. Tagged magnetic resonance (MR) imaging can be used to image 2D motion, and data from multiple image planes can be combined via post-processing to yield estimates of 3D motion. However, lacking boundary information, this approach suffers from inaccurate estimates near the tongue surface. This paper describes a method that combines two sources of information to yield improved estimation of 3D tongue motion. The method uses the harmonic phase (HARP) algorithm to extract motion from tags and diffeomorphic demons to provide surface deformation. It then uses an incompressible deformation estimation algorithm to incorporate both sources of displacement information to form an estimate of the 3D whole tongue motion. Experimental results show that use of combined information improves motion estimation near the tongue surface, a problem that has previously been reported as problematic in HARP analysis, while preserving accurate internal motion estimates. Results on both normal and abnormal tongue motions are shown. PMID:24505742

  17. 3D reconstruction of multiple stained histology images

    Yi Song

    2013-01-01

    Full Text Available Context: Three dimensional (3D tissue reconstructions from the histology images with different stains allows the spatial alignment of structural and functional elements highlighted by different stains for quantitative study of many physiological and pathological phenomena. This has significant potential to improve the understanding of the growth patterns and the spatial arrangement of diseased cells, and enhance the study of biomechanical behavior of the tissue structures towards better treatments (e.g. tissue-engineering applications. Methods: This paper evaluates three strategies for 3D reconstruction from sets of two dimensional (2D histological sections with different stains, by combining methods of 2D multi-stain registration and 3D volumetric reconstruction from same stain sections. Setting and Design: The different strategies have been evaluated on two liver specimens (80 sections in total stained with Hematoxylin and Eosin (H and E, Sirius Red, and Cytokeratin (CK 7. Results and Conclusion: A strategy of using multi-stain registration to align images of a second stain to a volume reconstructed by same-stain registration results in the lowest overall error, although an interlaced image registration approach may be more robust to poor section quality.

  18. Comparison of radiation dose and image quality of Siremobil-IsoC3D with a 16-slice spiral CT for diagnosis and intervention in the human pelvic bone

    Purpose: to compare the image quality of 16-slice computed tomography with the image quality of Siremobil-IsoC3D of the pelvic region and to measure simultaneously the radiation dose before and after implantation of a sacroiliac screw (SI-screw) Materials and methods: the pelvic region of 8 human cadavers was examined in the Siremobil-IsoC3D at five different levels. We used a standard protocol for the 16-slice CT of the complete pelvic region before and after insertion of a pelvic screw, followed by stepwise reduction of the tube current to find the tube current that equalizes the image quality of both modalities. We controlled the image quality by judging important structures such as neuroforamen, nerves, sacroiliacal joint space, intervertebral space, osteophytes, iliopsoas muscle, acetabular surface, fovea centralis, hip joint and os pubis. The image quality was judged by three radiologists and three trauma surgeons using a ranking from 1 to 5. The dose was measured with an endorectally placed NOMEX Dosimeter, to obtain the gonadal dose. Results: the medium score for all viewers of the Siremobil-IsoC3D examinations was between 3 and 4.3. The medium score for all CT-examinations with a tube current of 250 mA was between 1.3 and 2.2. The reduction of tube current down to 80 mA hardly influenced the marks for the analyzed structures. Under 80 mA, bony structures, even after implantation of a SI-screw, were still marked as good, but soft tissue differentiation was getting worse. For the examination of the pelvis, the average dose-length product for the IsoC3D was 41.2 mGy x cm. The medium dose-length product for CT was 389 mGy x cm for 250 mA, 125 mGy x cm for 80 mA and 82 mGy x cm for 60 mA. (orig.)

  19. 3-D MRI/CT fusion imaging of the lumbar spine

    The objective was to demonstrate the feasibility of MRI/CT fusion in demonstrating lumbar nerve root compromise. We combined 3-dimensional (3-D) computed tomography (CT) imaging of bone with 3-D magnetic resonance imaging (MRI) of neural architecture (cauda equina and nerve roots) for two patients using VirtualPlace software. Although the pathological condition of nerve roots could not be assessed using MRI, myelography or CT myelography, 3-D MRI/CT fusion imaging enabled unambiguous, 3-D confirmation of the pathological state and courses of nerve roots, both inside and outside the foraminal arch, as well as thickening of the ligamentum flavum and the locations, forms and numbers of dorsal root ganglia. Positional relationships between intervertebral discs or bony spurs and nerve roots could also be depicted. Use of 3-D MRI/CT fusion imaging for the lumbar vertebral region successfully revealed the relationship between bone construction (bones, intervertebral joints, and intervertebral disks) and neural architecture (cauda equina and nerve roots) on a single film, three-dimensionally and in color. Such images may be useful in elucidating complex neurological conditions such as degenerative lumbar scoliosis(DLS), as well as in diagnosis and the planning of minimally invasive surgery. (orig.)

  20. Automatic structural matching of 3D image data

    Ponomarev, Svjatoslav; Lutsiv, Vadim; Malyshev, Igor

    2015-10-01

    A new image matching technique is described. It is implemented as an object-independent hierarchical structural juxtaposition algorithm based on an alphabet of simple object-independent contour structural elements. The structural matching applied implements an optimized method of walking through a truncated tree of all possible juxtapositions of two sets of structural elements. The algorithm was initially developed for dealing with 2D images such as the aerospace photographs, and it turned out to be sufficiently robust and reliable for matching successfully the pictures of natural landscapes taken in differing seasons from differing aspect angles by differing sensors (the visible optical, IR, and SAR pictures, as well as the depth maps and geographical vector-type maps). At present (in the reported version), the algorithm is enhanced based on additional use of information on third spatial coordinates of observed points of object surfaces. Thus, it is now capable of matching the images of 3D scenes in the tasks of automatic navigation of extremely low flying unmanned vehicles or autonomous terrestrial robots. The basic principles of 3D structural description and matching of images are described, and the examples of image matching are presented.

  1. Underwater 3d Modeling: Image Enhancement and Point Cloud Filtering

    Sarakinou, I.; Papadimitriou, K.; Georgoula, O.; Patias, P.

    2016-06-01

    This paper examines the results of image enhancement and point cloud filtering on the visual and geometric quality of 3D models for the representation of underwater features. Specifically it evaluates the combination of effects from the manual editing of images' radiometry (captured at shallow depths) and the selection of parameters for point cloud definition and mesh building (processed in 3D modeling software). Such datasets, are usually collected by divers, handled by scientists and used for geovisualization purposes. In the presented study, have been created 3D models from three sets of images (seafloor, part of a wreck and a small boat's wreck) captured at three different depths (3.5m, 10m and 14m respectively). Four models have been created from the first dataset (seafloor) in order to evaluate the results from the application of image enhancement techniques and point cloud filtering. The main process for this preliminary study included a) the definition of parameters for the point cloud filtering and the creation of a reference model, b) the radiometric editing of images, followed by the creation of three improved models and c) the assessment of results by comparing the visual and the geometric quality of improved models versus the reference one. Finally, the selected technique is tested on two other data sets in order to examine its appropriateness for different depths (at 10m and 14m) and different objects (part of a wreck and a small boat's wreck) in the context of an ongoing research in the Laboratory of Photogrammetry and Remote Sensing.

  2. Towards magnetic 3D x-ray imaging

    Fischer, Peter; Streubel, R.; Im, M.-Y.; Parkinson, D.; Hong, J.-I.; Schmidt, O. G.; Makarov, D.

    2014-03-01

    Mesoscale phenomena in magnetism will add essential parameters to improve speed, size and energy efficiency of spin driven devices. Multidimensional visualization techniques will be crucial to achieve mesoscience goals. Magnetic tomography is of large interest to understand e.g. interfaces in magnetic multilayers, the inner structure of magnetic nanocrystals, nanowires or the functionality of artificial 3D magnetic nanostructures. We have developed tomographic capabilities with magnetic full-field soft X-ray microscopy combining X-MCD as element specific magnetic contrast mechanism, high spatial and temporal resolution due to the Fresnel zone plate optics. At beamline 6.1.2 at the ALS (Berkeley CA) a new rotation stage allows recording an angular series (up to 360 deg) of high precision 2D projection images. Applying state-of-the-art reconstruction algorithms it is possible to retrieve the full 3D structure. We will present results on prototypic rolled-up Ni and Co/Pt tubes and glass capillaries coated with magnetic films and compare to other 3D imaging approaches e.g. in electron microscopy. Supported by BES MSD DOE Contract No. DE-AC02-05-CH11231 and ERC under the EU FP7 program (grant agreement No. 306277).

  3. Large Scale 3D Image Reconstruction in Optical Interferometry

    Schutz, Antony; Mary, David; Thiébaut, Eric; Soulez, Ferréol

    2015-01-01

    Astronomical optical interferometers (OI) sample the Fourier transform of the intensity distribution of a source at the observation wavelength. Because of rapid atmospheric perturbations, the phases of the complex Fourier samples (visibilities) cannot be directly exploited , and instead linear relationships between the phases are used (phase closures and differential phases). Consequently, specific image reconstruction methods have been devised in the last few decades. Modern polychromatic OI instruments are now paving the way to multiwavelength imaging. This paper presents the derivation of a spatio-spectral ("3D") image reconstruction algorithm called PAINTER (Polychromatic opticAl INTErferometric Reconstruction software). The algorithm is able to solve large scale problems. It relies on an iterative process, which alternates estimation of polychromatic images and of complex visibilities. The complex visibilities are not only estimated from squared moduli and closure phases, but also from differential phase...

  4. Phase Sensitive Cueing for 3D Objects in Overhead Images

    Paglieroni, D W; Eppler, W G; Poland, D N

    2005-02-18

    A 3D solid model-aided object cueing method that matches phase angles of directional derivative vectors at image pixels to phase angles of vectors normal to projected model edges is described. It is intended for finding specific types of objects at arbitrary position and orientation in overhead images, independent of spatial resolution, obliqueness, acquisition conditions, and type of imaging sensor. It is shown that the phase similarity measure can be efficiently evaluated over all combinations of model position and orientation using the FFT. The highest degree of similarity over all model orientations is captured in a match surface of similarity values vs. model position. Unambiguous peaks in this surface are sorted in descending order of similarity value, and the small image thumbnails that contain them are presented to human analysts for inspection in sorted order.

  5. Autonomous Planetary 3-D Reconstruction From Satellite Images

    Denver, Troelz

    1999-01-01

    A common task for many deep space missions is autonomous generation of 3-D representations of planetary surfaces onboard unmanned spacecrafts. The basic problem for this class of missions is, that the closed loop time is far too long. The closed loop time is defined as the time from when a human...... of seconds to a few minutes, the closed loop time effectively precludes active human control.The only way to circumvent this problem is to build an artificial feature extractor operating autonomously onboard the spacecraft.Different artificial feature extractors are presented and their efficiency...... is discussed.Based on such features, 3-D representations may be compiled from two or more 2-D satellite images. The main purposes of such a mapping system are extraction of landing sites, objects of scientific interest and general planetary surveying. All data processing is performed autonomously onboard...

  6. Multislice computed tomography angiography in the diagnosis of cardiovascular disease: 3D visualizations

    Zhonghua Sun

    2011-01-01

    Multislice computed tomography (CT) has been widely used in clinical practice for the diagnosis of cardiovascular disease due to its reduced invasiveness and high spatial and temporal resolution.As a reliable alternative to conventional angiography,multislice CT angiography has been recognized as the method of choice for detecting and diagnosing head and neck vascular disease,abdominal aortic aneurysm,aortic dissection,and pulmonary embolism.In patients with suspected coronary artery disease,although invasive coronary angiography still remains as the gold standard technique,multislice CT angiography demonstrates high diagnostic accuracy; in selected patients,it is considered as the first-line technique.The imaging diagnosis of cardiovascular disease is based on a combination of two-dimensional (2D) and three-dimensional (3D) visualization tools to enhance the diagnostic value.This is facilitated by reconstructed visualizations which provide additional information about the extent of the disease,an accurate assessment of the spatial relationship between normal structures and pathological changes,and pre-operative planning and post-procedure follow-up.The aim of the present article is to present an overview of the diagnostic performance of various 2D and 3D CT visualizations in cardiovascular disease,including multiplanar reformation,maximum intensity projection,volume rendering,and virtual intravascular endoscopy.The recognition of the potential value of these visualizations will assist clinicians in efficiently using the muitislice CT imaging modality for the diagnostic management of patients with cardiovascular disease.

  7. 3D-imaging using micro-PIXE

    Ishii, K.; Matsuyama, S.; Watanabe, Y.; Kawamura, Y.; Yamaguchi, T.; Oyama, R.; Momose, G.; Ishizaki, A.; Yamazaki, H.; Kikuchi, Y.

    2007-02-01

    We have developed a 3D-imaging system using characteristic X-rays produced by proton micro-beam bombardment. The 3D-imaging system consists of a micro-beam and an X-ray CCD camera of 1 mega pixels (Hamamatsu photonics C8800X), and has a spatial resolution of 4 μm by using characteristic Ti-K-X-rays (4.558 keV) produced by 3 MeV protons of beam spot size of ˜1 μm. We applied this system, namely, a micron-CT to observe the inside of a living small ant's head of ˜1 mm diameter. An ant was inserted into a small polyimide tube the inside diameter and the wall thickness of which are 1000 and 25 μm, respectively, and scanned by the micron-CT. Three dimensional images of the ant's heads were obtained with a spatial resolution of 4 μm. It was found that, in accordance with the strong dependence on atomic number of photo ionization cross-sections, the mandibular gland of ant contains heavier elements, and moreover, the CT-image of living ant anaesthetized by chloroform is quite different from that of a dead ant dipped in formalin.

  8. Fully automatic plaque segmentation in 3-D carotid ultrasound images.

    Cheng, Jieyu; Li, He; Xiao, Feng; Fenster, Aaron; Zhang, Xuming; He, Xiaoling; Li, Ling; Ding, Mingyue

    2013-12-01

    Automatic segmentation of the carotid plaques from ultrasound images has been shown to be an important task for monitoring progression and regression of carotid atherosclerosis. Considering the complex structure and heterogeneity of plaques, a fully automatic segmentation method based on media-adventitia and lumen-intima boundary priors is proposed. This method combines image intensity with structure information in both initialization and a level-set evolution process. Algorithm accuracy was examined on the common carotid artery part of 26 3-D carotid ultrasound images (34 plaques ranging in volume from 2.5 to 456 mm(3)) by comparing the results of our algorithm with manual segmentations of two experts. Evaluation results indicated that the algorithm yielded total plaque volume (TPV) differences of -5.3 ± 12.7 and -8.5 ± 13.8 mm(3) and absolute TPV differences of 9.9 ± 9.5 and 11.8 ± 11.1 mm(3). Moreover, high correlation coefficients in generating TPV (0.993 and 0.992) between algorithm results and both sets of manual results were obtained. The automatic method provides a reliable way to segment carotid plaque in 3-D ultrasound images and can be used in clinical practice to estimate plaque measurements for management of carotid atherosclerosis. PMID:24063959

  9. Lymph node imaging by ultrarapid 3D angiography

    Purpose: A report on observations of lymph node images obtained by gadolinium-enhanced 3D MR angiography (MRA). Methods: Ultrarapid MRA (TR, TE, FA - 5 or 6.4 ms, 1.9 or 2.8 ms, 30-40 degrees) with 0.2 mmol/kg BW Gd-DTPA and 20 ml physiological saline. Start after completion of injection. Single series of the pelvis-thigh as well as head-neck regions by use of a phased array coil with a 1.5 T Magnetom Vision or a 1.0 T Magnetom Harmony (Siemens, Erlangen). We report on lymph node imaging in 4 patients, 2 of whom exhibited benign changes and 2 further metastases. In 1 patient with extensive lymph node metastases of a malignant melanoma, color-Doppler sonography as color-flow angiography (CFA) was used as a comparative method. Results: Lymph node imaging by contrast medium-enhanced ultrarapid 3D MRA apparently resulted from their vessels. Thus, arterially-supplied metastases and inflammatory enlarged lymph nodes were well visualized while those with a.v. shunts or poor vascular supply in tumor necroses were poorly imaged. Conclusions: Further investigations are required with regard to the visualization of lymph nodes in other parts of the body as well as a possible differentiation between benign and malignant lesions. (orig.)

  10. Ice shelf melt rates and 3D imaging

    Lewis, Cameron Scott

    Ice shelves are sensitive indicators of climate change and play a critical role in the stability of ice sheets and oceanic currents. Basal melting of ice shelves plays an important role in both the mass balance of the ice sheet and the global climate system. Airborne- and satellite based remote sensing systems can perform thickness measurements of ice shelves. Time separated repeat flight tracks over ice shelves of interest generate data sets that can be used to derive basal melt rates using traditional glaciological techniques. Many previous melt rate studies have relied on surface elevation data gathered by airborne- and satellite based altimeters. These systems infer melt rates by assuming hydrostatic equilibrium, an assumption that may not be accurate, especially near an ice shelf's grounding line. Moderate bandwidth, VHF, ice penetrating radar has been used to measure ice shelf profiles with relatively coarse resolution. This study presents the application of an ultra wide bandwidth (UWB), UHF, ice penetrating radar to obtain finer resolution data on the ice shelves. These data reveal significant details about the basal interface, including the locations and depth of bottom crevasses and deviations from hydrostatic equilibrium. While our single channel radar provides new insight into ice shelf structure, it only images a small swatch of the shelf, which is assumed to be an average of the total shelf behavior. This study takes an additional step by investigating the application of a 3D imaging technique to a data set collected using a ground based multi channel version of the UWB radar. The intent is to show that the UWB radar could be capable of providing a wider swath 3D image of an ice shelf. The 3D images can then be used to obtain a more complete estimate of the bottom melt rates of ice shelves.

  11. Improving 3D Wavelet-Based Compression of Hyperspectral Images

    Klimesh, Matthew; Kiely, Aaron; Xie, Hua; Aranki, Nazeeh

    2009-01-01

    Two methods of increasing the effectiveness of three-dimensional (3D) wavelet-based compression of hyperspectral images have been developed. (As used here, images signifies both images and digital data representing images.) The methods are oriented toward reducing or eliminating detrimental effects of a phenomenon, referred to as spectral ringing, that is described below. In 3D wavelet-based compression, an image is represented by a multiresolution wavelet decomposition consisting of several subbands obtained by applying wavelet transforms in the two spatial dimensions corresponding to the two spatial coordinate axes of the image plane, and by applying wavelet transforms in the spectral dimension. Spectral ringing is named after the more familiar spatial ringing (spurious spatial oscillations) that can be seen parallel to and near edges in ordinary images reconstructed from compressed data. These ringing phenomena are attributable to effects of quantization. In hyperspectral data, the individual spectral bands play the role of edges, causing spurious oscillations to occur in the spectral dimension. In the absence of such corrective measures as the present two methods, spectral ringing can manifest itself as systematic biases in some reconstructed spectral bands and can reduce the effectiveness of compression of spatially-low-pass subbands. One of the two methods is denoted mean subtraction. The basic idea of this method is to subtract mean values from spatial planes of spatially low-pass subbands prior to encoding, because (a) such spatial planes often have mean values that are far from zero and (b) zero-mean data are better suited for compression by methods that are effective for subbands of two-dimensional (2D) images. In this method, after the 3D wavelet decomposition is performed, mean values are computed for and subtracted from each spatial plane of each spatially-low-pass subband. The resulting data are converted to sign-magnitude form and compressed in a

  12. Utilization of multiple frequencies in 3D nonlinear microwave imaging

    Jensen, Peter Damsgaard; Rubæk, Tonny; Mohr, Johan Jacob

    2012-01-01

    The use of multiple frequencies in a nonlinear microwave algorithm is considered. Using multiple frequencies allows for obtaining the improved resolution available at the higher frequencies while retaining the regularizing effects of the lower frequencies. However, a number of different challenge...... at lower frequencies are used as starting guesses for reconstructions at higher frequencies. The performance is illustrated using simulated 2-D data and data obtained with the 3-D DTU microwave imaging system....... arise when using data from multiple frequencies for imaging of biological targets. In this paper, the performance of a multi-frequency algorithm, in which measurement data from several different frequencies are used at once, is compared with a stepped-frequency algorithm, in which images reconstructed...

  13. Development of 3D microwave imaging reflectometry in LHD (invited).

    Nagayama, Y; Kuwahara, D; Yoshinaga, T; Hamada, Y; Kogi, Y; Mase, A; Tsuchiya, H; Tsuji-Iio, S; Yamaguchi, S

    2012-10-01

    Three-dimensional (3D) microwave imaging reflectometry has been developed in the large helical device to visualize fluctuating reflection surface which is caused by the density fluctuations. The plasma is illuminated by the probe wave with four frequencies, which correspond to four radial positions. The imaging optics makes the image of cut-off surface onto the 2D (7 × 7 channels) horn antenna mixer arrays. Multi-channel receivers have been also developed using micro-strip-line technology to handle many channels at reasonable cost. This system is first applied to observe the edge harmonic oscillation (EHO), which is an MHD mode with many harmonics that appears in the edge plasma. A narrow structure along field lines is observed during EHO. PMID:23126965

  14. 3D IMAGING OF INDIVIDUAL PARTICLES: A REVIEW

    Eric Pirard

    2012-06-01

    Full Text Available In recent years, impressive progress has been made in digital imaging and in particular in three dimensional visualisation and analysis of objects. This paper reviews the most recent literature on three dimensional imaging with a special attention to particulate systems analysis. After an introduction recalling some important concepts in spatial sampling and digital imaging, the paper reviews a series of techniques with a clear distinction between the surfometric and volumetric principles. The literature review is as broad as possible covering materials science as well as biology while keeping an eye on emerging technologies in optics and physics. The paper should be of interest to any scientist trying to picture particles in 3D with the best possible resolution for accurate size and shape estimation. Though techniques are adequate for nanoscopic and microscopic particles, no special size limit has been considered while compiling the review.

  15. Effective classification of 3D image data using partitioning methods

    Megalooikonomou, Vasileios; Pokrajac, Dragoljub; Lazarevic, Aleksandar; Obradovic, Zoran

    2002-03-01

    We propose partitioning-based methods to facilitate the classification of 3-D binary image data sets of regions of interest (ROIs) with highly non-uniform distributions. The first method is based on recursive dynamic partitioning of a 3-D volume into a number of 3-D hyper-rectangles. For each hyper-rectangle, we consider, as a potential attribute, the number of voxels (volume elements) that belong to ROIs. A hyper-rectangle is partitioned only if the corresponding attribute does not have high discriminative power, determined by statistical tests, but it is still sufficiently large for further splitting. The final discriminative hyper-rectangles form new attributes that are further employed in neural network classification models. The second method is based on maximum likelihood employing non-spatial (k-means) and spatial DBSCAN clustering algorithms to estimate the parameters of the underlying distributions. The proposed methods were experimentally evaluated on mixtures of Gaussian distributions, on realistic lesion-deficit data generated by a simulator conforming to a clinical study, and on synthetic fractal data. Both proposed methods have provided good classification on Gaussian mixtures and on realistic data. However, the experimental results on fractal data indicated that the clustering-based methods were only slightly better than random guess, while the recursive partitioning provided significantly better classification accuracy.

  16. Quantitative analysis of two-phase 3D+time aortic MR images

    Zhao, Fei; Zhang, Honghai; Walker, Nicholas E.; Yang, Fuxing; Olszewski, Mark E.; Wahle, Andreas; Scholz, Thomas; Sonka, Milan

    2006-03-01

    Automated and accurate segmentation of the aorta in 3D+time MR image data is important for early detection of connective tissue disorders leading to aortic aneurysms and dissections. A computer-aided diagnosis method is reported that allows the objective identification of subjects with connective tissue disorders from two-phase 3D+time aortic MR images. Our automated segmentation method combines level-set and optimal border detection. The resulting aortic lumen surface was registered with an aortic model followed by calculation of modal indices of aortic shape and motion. The modal indices reflect the differences of any individual aortic shape and motion from an average aortic behavior. The indices were input to a Support Vector Machine (SVM) classifier and a discrimination model was constructed. 3D+time MR image data sets acquired from 22 normal and connective tissue disorder subjects at end-diastole (R-wave peak) and at 45% of the R-R interval were used to evaluate the performance of our method. The automated 3D segmentation result produced accurate aortic surfaces covering the aorta from the left-ventricular outflow tract to the diaphragm and yielded subvoxel accuracy with signed surface positioning errors of -0.09+/-1.21 voxel (-0.15+/-2.11 mm). The computer aided diagnosis method distinguished between normal and connective tissue disorder subjects with a classification correctness of 90.1 %.

  17. Ultra-realistic 3-D imaging based on colour holography

    Bjelkhagen, H. I.

    2013-02-01

    A review of recent progress in colour holography is provided with new applications. Colour holography recording techniques in silver-halide emulsions are discussed. Both analogue, mainly Denisyuk colour holograms, and digitally-printed colour holograms are described and their recent improvements. An alternative to silver-halide materials are the panchromatic photopolymer materials such as the DuPont and Bayer photopolymers which are covered. The light sources used to illuminate the recorded holograms are very important to obtain ultra-realistic 3-D images. In particular the new light sources based on RGB LEDs are described. They show improved image quality over today's commonly used halogen lights. Recent work in colour holography by holographers and companies in different countries around the world are included. To record and display ultra-realistic 3-D images with perfect colour rendering are highly dependent on the correct recording technique using the optimal recording laser wavelengths, the availability of improved panchromatic recording materials and combined with new display light sources.

  18. Image-Based 3D Face Modeling System

    Vladimir Vezhnevets

    2005-08-01

    Full Text Available This paper describes an automatic system for 3D face modeling using frontal and profile images taken by an ordinary digital camera. The system consists of four subsystems including frontal feature detection, profile feature detection, shape deformation, and texture generation modules. The frontal and profile feature detection modules automatically extract the facial parts such as the eye, nose, mouth, and ear. The shape deformation module utilizes the detected features to deform the generic head mesh model such that the deformed model coincides with the detected features. A texture is created by combining the facial textures augmented from the input images and the synthesized texture and mapped onto the deformed generic head model. This paper provides a practical system for 3D face modeling, which is highly automated by aggregating, customizing, and optimizing a bunch of individual computer vision algorithms. The experimental results show a highly automated process of modeling, which is sufficiently robust to various imaging conditions. The whole model creation including all the optional manual corrections takes only 2∼3 minutes.

  19. Extracting 3D layout from a single image using global image structures.

    Lou, Zhongyu; Gevers, Theo; Hu, Ninghang

    2015-10-01

    Extracting the pixel-level 3D layout from a single image is important for different applications, such as object localization, image, and video categorization. Traditionally, the 3D layout is derived by solving a pixel-level classification problem. However, the image-level 3D structure can be very beneficial for extracting pixel-level 3D layout since it implies the way how pixels in the image are organized. In this paper, we propose an approach that first predicts the global image structure, and then we use the global structure for fine-grained pixel-level 3D layout extraction. In particular, image features are extracted based on multiple layout templates. We then learn a discriminative model for classifying the global layout at the image-level. Using latent variables, we implicitly model the sublevel semantics of the image, which enrich the expressiveness of our model. After the image-level structure is obtained, it is used as the prior knowledge to infer pixel-wise 3D layout. Experiments show that the results of our model outperform the state-of-the-art methods by 11.7% for 3D structure classification. Moreover, we show that employing the 3D structure prior information yields accurate 3D scene layout segmentation. PMID:25966478

  20. 3D imaging of neutron tracks using confocal microscopy

    Gillmore, Gavin; Wertheim, David; Flowers, Alan

    2016-04-01

    Neutron detection and neutron flux assessment are important aspects in monitoring nuclear energy production. Neutron flux measurements can also provide information on potential biological damage from exposure. In addition to the applications for neutron measurement in nuclear energy, neutron detection has been proposed as a method of enhancing neutrino detectors and cosmic ray flux has also been assessed using ground-level neutron detectors. Solid State Nuclear Track Detectors (or SSNTDs) have been used extensively to examine cosmic rays, long-lived radioactive elements, radon concentrations in buildings and the age of geological samples. Passive SSNTDs consisting of a CR-39 plastic are commonly used to measure radon because they respond to incident charged particles such as alpha particles from radon gas in air. They have a large dynamic range and a linear flux response. We have previously applied confocal microscopy to obtain 3D images of alpha particle tracks in SSNTDs from radon track monitoring (1). As a charged particle traverses through the polymer it creates an ionisation trail along its path. The trail or track is normally enhanced by chemical etching to better expose radiation damage, as the damaged area is more sensitive to the etchant than the bulk material. Particle tracks in CR-39 are usually assessed using 2D optical microscopy. In this study 6 detectors were examined using an Olympus OLS4100 LEXT 3D laser scanning confocal microscope (Olympus Corporation, Japan). The detectors had been etched for 2 hours 50 minutes at 85 °C in 6.25M NaOH. Post etch the plastics had been treated with a 10 minute immersion in a 2% acetic acid stop bath, followed by rinsing in deionised water. The detectors examined had been irradiated with a 2mSv neutron dose from an Am(Be) neutron source (producing roughly 20 tracks per mm2). We were able to successfully acquire 3D images of neutron tracks in the detectors studied. The range of track diameter observed was between 4

  1. Quantitative 3D Optical Imaging: Applications in Dosimetry and Biophysics

    Thomas, Andrew Stephen

    Optical-CT has been shown to be a potentially useful imaging tool for the two very different spheres of biologists and radiation therapy physicists, but it has yet to live up to that potential. In radiation therapy, researchers have used optical-CT for the readout of 3D dosimeters, but it is yet to be a clinically relevant tool as the technology is too slow to be considered practical. Biologists have used the technique for structural imaging, but have struggled with emission tomography as the reality of photon attenuation for both excitation and emission have made the images quantitatively irrelevant. Dosimetry. The DLOS (Duke Large field of view Optical-CT Scanner) was designed and constructed to make 3D dosimetry utilizing optical-CT a fast and practical tool while maintaining the accuracy of readout of the previous, slower readout technologies. Upon construction/optimization/implementation of several components including a diffuser, band pass filter, registration mount & fluid filtration system the dosimetry system provides high quality data comparable to or exceeding that of commercial products. In addition, a stray light correction algorithm was tested and implemented. The DLOS in combination with the 3D dosimeter it was designed for, PREAGETM, then underwent rigorous commissioning and benchmarking tests validating its performance against gold standard data including a set of 6 irradiations. DLOS commissioning tests resulted in sub-mm isotropic spatial resolution (MTF >0.5 for frequencies of 1.5lp/mm) and a dynamic range of ˜60dB. Flood field uniformity was 10% and stable after 45minutes. Stray light proved to be small, due to telecentricity, but even the residual can be removed through deconvolution. Benchmarking tests showed the mean 3D passing gamma rate (3%, 3mm, 5% dose threshold) over the 6 benchmark data sets was 97.3% +/- 0.6% (range 96%-98%) scans totaling ˜10 minutes, indicating excellent ability to perform 3D dosimetry while improving the speed of

  2. Quantification and visualization of alveolar bone resorption from 3D dental CT images

    Nagao, Jiro; Mori, Kensaku; Kitasaka, Takayuki; Suenaga, Yasuhito [Nagoya University, Graduate School of Information Science, Nagoya (Japan); Yamada, Shohzoh; Naitoh, Munetaka [Aichi-Gakuin University, School of Dentistry, Nagoya (Japan)

    2007-06-15

    Purpose A computer aided diagnosis (CAD) system for quantifying and visualizing alveolar bone resorption caused by periodontitis was developed based on three-dimensional (3D) image processing of dental CT images. Methods The proposed system enables visualization and quantification of resorption of alveolar bone surrounding and between the roots of teeth. It has the following functions: (1) vertical measurement of the depth of resorption surrounding the tooth in 3D images, avoiding physical obstruction; (2) quantification of the amount of resorption in the furcation area; and (3) visualization of quantification results by pseudo-color maps, graphs, and motion pictures. The resorption measurement accuracy in the area surrounding teeth was evaluated by comparing with dentist's recognition on five real patient CT images, giving average absolute difference of 0.87 mm. An artificial image with mathematical truth was also used for measurement evaluation. Results The average absolute difference was 0.36 and 0.10 mm for surrounding and furcation areas, respectively. The system provides an intuitive presentation of the measurement results. Conclusion Computer aided diagnosis of 3D dental CT scans is feasible and the technique is a promising new tool for the quantitative evaluation of periodontal bone loss. (orig.)

  3. 2D and 3D visualization methods of endoscopic panoramic bladder images

    Behrens, Alexander; Heisterklaus, Iris; Müller, Yannick; Stehle, Thomas; Gross, Sebastian; Aach, Til

    2011-03-01

    While several mosaicking algorithms have been developed to compose endoscopic images of the internal urinary bladder wall into panoramic images, the quantitative evaluation of these output images in terms of geometrical distortions have often not been discussed. However, the visualization of the distortion level is highly desired for an objective image-based medical diagnosis. Thus, we present in this paper a method to create quality maps from the characteristics of transformation parameters, which were applied to the endoscopic images during the registration process of the mosaicking algorithm. For a global first view impression, the quality maps are laid over the panoramic image and highlight image regions in pseudo-colors according to their local distortions. This illustration supports then surgeons to identify geometrically distorted structures easily in the panoramic image, which allow more objective medical interpretations of tumor tissue in shape and size. Aside from introducing quality maps in 2-D, we also discuss a visualization method to map panoramic images onto a 3-D spherical bladder model. Reference points are manually selected by the surgeon in the panoramic image and the 3-D model. Then the panoramic image is mapped by the Hammer-Aitoff equal-area projection onto the 3-D surface using texture mapping. Finally the textured bladder model can be freely moved in a virtual environment for inspection. Using a two-hemisphere bladder representation, references between panoramic image regions and their corresponding space coordinates within the bladder model are reconstructed. This additional spatial 3-D information thus assists the surgeon in navigation, documentation, as well as surgical planning.

  4. Recent progress in 3-D imaging of sea freight containers

    Fuchs, Theobald; Schön, Tobias; Dittmann, Jonas; Sukowski, Frank; Hanke, Randolf

    2015-03-01

    The inspection of very large objects like sea freight containers with X-ray Computed Tomography (CT) is an emerging technology. A complete 3-D CT scan of a see-freight container takes several hours. Of course, this is too slow to apply it to a large number of containers. However, the benefits of a 3-D CT for sealed freight are obvious: detection of potential threats or illicit cargo without being confronted with legal complications or high time consumption and risks for the security personnel during a manual inspection. Recently distinct progress was made in the field of reconstruction of projections with only a relatively low number of angular positions. Instead of today's 500 to 1000 rotational steps, as needed for conventional CT reconstruction techniques, this new class of algorithms provides the potential to reduce the number of projection angles approximately by a factor of 10. The main drawback of these advanced iterative methods is the high consumption for numerical processing. But as computational power is getting steadily cheaper, there will be practical applications of these complex algorithms in a foreseeable future. In this paper, we discuss the properties of iterative image reconstruction algorithms and show results of their application to CT of extremely large objects scanning a sea-freight container. A specific test specimen is used to quantitatively evaluate the image quality in terms of spatial and contrast resolution and depending on different number of projections.

  5. Recent progress in 3-D imaging of sea freight containers

    Fuchs, Theobald, E-mail: theobold.fuchs@iis.fraunhofer.de; Schön, Tobias, E-mail: theobold.fuchs@iis.fraunhofer.de; Sukowski, Frank [Fraunhofer Development Center X-ray Technology EZRT, Flugplatzstr. 75, 90768 Fürth (Germany); Dittmann, Jonas; Hanke, Randolf [Chair of X-ray Microscopy, Institute of Physics and Astronomy, Julius-Maximilian-University Würzburg, Josef-Martin-Weg 63, 97074 Würzburg (Germany)

    2015-03-31

    The inspection of very large objects like sea freight containers with X-ray Computed Tomography (CT) is an emerging technology. A complete 3-D CT scan of a see-freight container takes several hours. Of course, this is too slow to apply it to a large number of containers. However, the benefits of a 3-D CT for sealed freight are obvious: detection of potential threats or illicit cargo without being confronted with legal complications or high time consumption and risks for the security personnel during a manual inspection. Recently distinct progress was made in the field of reconstruction of projections with only a relatively low number of angular positions. Instead of today’s 500 to 1000 rotational steps, as needed for conventional CT reconstruction techniques, this new class of algorithms provides the potential to reduce the number of projection angles approximately by a factor of 10. The main drawback of these advanced iterative methods is the high consumption for numerical processing. But as computational power is getting steadily cheaper, there will be practical applications of these complex algorithms in a foreseeable future. In this paper, we discuss the properties of iterative image reconstruction algorithms and show results of their application to CT of extremely large objects scanning a sea-freight container. A specific test specimen is used to quantitatively evaluate the image quality in terms of spatial and contrast resolution and depending on different number of projections.

  6. 3D Reconstruction of virtual colon structures from colonoscopy images.

    Hong, DongHo; Tavanapong, Wallapak; Wong, Johnny; Oh, JungHwan; de Groen, Piet C

    2014-01-01

    This paper presents the first fully automated reconstruction technique of 3D virtual colon segments from individual colonoscopy images. It is the basis of new software applications that may offer great benefits for improving quality of care for colonoscopy patients. For example, a 3D map of the areas inspected and uninspected during colonoscopy can be shown on request of the endoscopist during the procedure. The endoscopist may revisit the suggested uninspected areas to reduce the chance of missing polyps that reside in these areas. The percentage of the colon surface seen by the endoscopist can be used as a coarse objective indicator of the quality of the procedure. The derived virtual colon models can be stored for post-procedure training of new endoscopists to teach navigation techniques that result in a higher level of procedure quality. Our technique does not require a prior CT scan of the colon or any global positioning device. Our experiments on endoscopy images of an Olympus synthetic colon model reveal encouraging results with small average reconstruction errors (4.1 mm for the fold depths and 12.1 mm for the fold circumferences). PMID:24225230

  7. Diagnosis of vascular rings and slings using an interleaved 3D double-slab FISP MR angiography technique

    Congenital upper airway obstruction and dysphagia may be caused by vascular rings and slings. Often, invasive and radiation-dependent diagnostic procedures are needed to clarify the diagnosis. To evaluate the diagnostic utility of high-resolution, free-breathing three-dimensional double-slab fast imaging with steady precession magnetic resonance angiography (3D FISP MRA) in infants and children with respiratory upper airway obstruction and/or dysphagia for detection or exclusion of vascular rings and slings. Eleven patients (median age 1.3 years; range 5.1 months to 15.8 years) were investigated prospectively with 3D FISP MRA and spin-echo techniques. Additional diagnostic data were available from surgery (n=7), cardiac catheterization (n=5), CT (n=2), barium swallow (n=3) and bronchoscopy/oesophagoscopy (n=4). In one case, diagnosis was missed with low-resolution spin-echo sequences, but high-resolution 3D FISP MRA revealed a double aortic arch. 3D FISP MRA accurately found (n=8) or excluded (n=3) vascular rings or slings in all patients. Using a five-level grading system for 3D FISP MRA image quality (1=non-diagnostic; 5=excellent), the mean grade was 4.3±0.7 with no significant grade difference between two independent observers (P=0.81). High-resolution 3D FISP MRA accurately defined or excluded vascular rings and slings in patients with respiratory symptoms and/or dysphagia. This technique may provide a non-invasive, radiation-free alternative without contrast agents for diagnosis of vascular rings and slings in free-breathing infants and children. (orig.)

  8. 3D electrical tomographic imaging using vertical arrays of electrodes

    Murphy, S. C.; Stanley, S. J.; Rhodes, D.; York, T. A.

    2006-11-01

    Linear arrays of electrodes in conjunction with electrical impedance tomography have been used to spatially interrogate industrial processes that have only limited access for sensor placement. This paper explores the compromises that are to be expected when using a small number of vertically positioned linear arrays to facilitate 3D imaging using electrical tomography. A configuration with three arrays is found to give reasonable results when compared with a 'conventional' arrangement of circumferential electrodes. A single array yields highly localized sensitivity that struggles to image the whole space. Strategies have been tested on a small-scale version of a sludge settling application that is of relevance to the industrial sponsor. A new electrode excitation strategy, referred to here as 'planar cross drive', is found to give superior results to an extended version of the adjacent electrodes technique due to the improved uniformity of the sensitivity across the domain. Recommendations are suggested for parameters to inform the scale-up to industrial vessels.

  9. Mono- and multistatic polarimetric sparse aperture 3D SAR imaging

    DeGraaf, Stuart; Twigg, Charles; Phillips, Louis

    2008-04-01

    SAR imaging at low center frequencies (UHF and L-band) offers advantages over imaging at more conventional (X-band) frequencies, including foliage penetration for target detection and scene segmentation based on polarimetric coherency. However, bandwidths typically available at these center frequencies are small, affording poor resolution. By exploiting extreme spatial diversity (partial hemispheric k-space coverage) and nonlinear bandwidth extrapolation/interpolation methods such as Least-Squares SuperResolution (LSSR) and Least-Squares CLEAN (LSCLEAN), one can achieve resolutions that are commensurate with the carrier frequency (λ/4) rather than the bandwidth (c/2B). Furthermore, extreme angle diversity affords complete coverage of a target's backscatter, and a correspondingly more literal image. To realize these benefits, however, one must image the scene in 3-D; otherwise layover-induced misregistration compromises the coherent summation that yields improved resolution. Practically, one is limited to very sparse elevation apertures, i.e. a small number of circular passes. Here we demonstrate that both LSSR and LSCLEAN can reduce considerably the sidelobe and alias artifacts caused by these sparse elevation apertures. Further, we illustrate how a hypothetical multi-static geometry consisting of six vertical real-aperture receive apertures, combined with a single circular transmit aperture provide effective, though sparse and unusual, 3-D k-space support. Forward scattering captured by this geometry reveals horizontal scattering surfaces that are missed in monostatic backscattering geometries. This paper illustrates results based on LucernHammer UHF and L-band mono- and multi-static simulations of a backhoe.

  10. Applications of 3-D reconstruction and 3-D image analysis using computer graphics in surgery of the oral and maxillofacial regions

    Using the 2-D data provided by CT-Tomography and MRI-tomography of oral and maxillofacial diseases (cyst, benign tumor, primary tumor and regional lymphnodes of malignant tumor), 3-D images were reconstructed and spatial analysis was attempted. We report the general concepts. The hardware used consisted of the Hewlett-Packard HP-9000/300, which utilizes a 16-bit CPU. A digitizer was used to construct 3-D images from serial CT-tomography and MRI-tomography images. Output was displayed on a color monitor and photographs. The 3 cases on which we used this technique included a 19-year-old male with plunging ranula, a 50-year-old male with maxillary pleomorphic adenoma, and a 58-year-old male with squamous cell carcinoma of the maxillary sinus (T3N3M0). As 3-D reconstruction can be done in any arbitrary direction or cross section, it is possible to spatially determine the position of the disease inside the body, its progression, and its relationship with adjacent organs. Through image analysis, it is possible to better understand the volume and surface area of the disease. 3-D image reconstruction is an effective tool in the determination of diagnosis, therapeutic guidelines, and surgical indications, as well as effectiveness of treatment. (author)

  11. Markerless 3D Head Tracking for Motion Correction in High Resolution PET Brain Imaging

    Olesen, Oline Vinter

    This thesis concerns application specific 3D head tracking. The purpose is to improve motion correction in position emission tomography (PET) brain imaging through development of markerless tracking. Currently, motion correction strategies are based on either the PET data itself or tracking devices...... images. Incorrect motion correction can in the worst cases result in wrong diagnosis or treatment. The evolution of a markerless custom-made structured light 3D surface tracking system is presented. The system is targeted at state-of-the-art high resolution dedicated brain PET scanners with a resolution...... of a few millimeters. Stateof- the-art hardware and software solutions are integrated into an operational device. This novel system is tested against a commercial tracking system popular in PET brain imaging. Testing and demonstrations are carried out in clinical settings. A compact markerless...

  12. Improving Low-dose Cardiac CT Images based on 3D Sparse Representation

    Shi, Luyao; Hu, Yining; Chen, Yang; Yin, Xindao; Shu, Huazhong; Luo, Limin; Coatrieux, Jean-Louis

    2016-03-01

    Cardiac computed tomography (CCT) is a reliable and accurate tool for diagnosis of coronary artery diseases and is also frequently used in surgery guidance. Low-dose scans should be considered in order to alleviate the harm to patients caused by X-ray radiation. However, low dose CT (LDCT) images tend to be degraded by quantum noise and streak artifacts. In order to improve the cardiac LDCT image quality, a 3D sparse representation-based processing (3D SR) is proposed by exploiting the sparsity and regularity of 3D anatomical features in CCT. The proposed method was evaluated by a clinical study of 14 patients. The performance of the proposed method was compared to the 2D spares representation-based processing (2D SR) and the state-of-the-art noise reduction algorithm BM4D. The visual assessment, quantitative assessment and qualitative assessment results show that the proposed approach can lead to effective noise/artifact suppression and detail preservation. Compared to the other two tested methods, 3D SR method can obtain results with image quality most close to the reference standard dose CT (SDCT) images.

  13. 3D automatic liver segmentation using feature-constrained Mahalanobis distance in CT images.

    Salman Al-Shaikhli, Saif Dawood; Yang, Michael Ying; Rosenhahn, Bodo

    2016-08-01

    Automatic 3D liver segmentation is a fundamental step in the liver disease diagnosis and surgery planning. This paper presents a novel fully automatic algorithm for 3D liver segmentation in clinical 3D computed tomography (CT) images. Based on image features, we propose a new Mahalanobis distance cost function using an active shape model (ASM). We call our method MD-ASM. Unlike the standard active shape model (ST-ASM), the proposed method introduces a new feature-constrained Mahalanobis distance cost function to measure the distance between the generated shape during the iterative step and the mean shape model. The proposed Mahalanobis distance function is learned from a public database of liver segmentation challenge (MICCAI-SLiver07). As a refinement step, we propose the use of a 3D graph-cut segmentation. Foreground and background labels are automatically selected using texture features of the learned Mahalanobis distance. Quantitatively, the proposed method is evaluated using two clinical 3D CT scan databases (MICCAI-SLiver07 and MIDAS). The evaluation of the MICCAI-SLiver07 database is obtained by the challenge organizers using five different metric scores. The experimental results demonstrate the availability of the proposed method by achieving an accurate liver segmentation compared to the state-of-the-art methods. PMID:26501155

  14. Integral Imaging Based 3-D Image Encryption Algorithm Combined with Cellular Automata

    Li, X. W.; Kim, D. H.; Cho, S. J.; Kim, S. T.

    2013-01-01

    A novel optical encryption method is proposed in this paper to achieve 3-D image encryption. This proposed encryption algorithm combines the use of computational integral imaging (CII) and linear-complemented maximum- length cellular automata (LC-MLCA) to encrypt a 3D image. In the encryption process, the 2-D elemental image array (EIA) recorded by light rays of the 3-D image are mapped inversely through the lenslet array according the ray tracing theory. Next, the 2-D EIA is encrypted by LC-...

  15. Filters in 2D and 3D Cardiac SPECT Image Processing

    Maria Lyra

    2014-01-01

    Full Text Available Nuclear cardiac imaging is a noninvasive, sensitive method providing information on cardiac structure and physiology. Single photon emission tomography (SPECT evaluates myocardial perfusion, viability, and function and is widely used in clinical routine. The quality of the tomographic image is a key for accurate diagnosis. Image filtering, a mathematical processing, compensates for loss of detail in an image while reducing image noise, and it can improve the image resolution and limit the degradation of the image. SPECT images are then reconstructed, either by filter back projection (FBP analytical technique or iteratively, by algebraic methods. The aim of this study is to review filters in cardiac 2D, 3D, and 4D SPECT applications and how these affect the image quality mirroring the diagnostic accuracy of SPECT images. Several filters, including the Hanning, Butterworth, and Parzen filters, were evaluated in combination with the two reconstruction methods as well as with a specified MatLab program. Results showed that for both 3D and 4D cardiac SPECT the Butterworth filter, for different critical frequencies and orders, produced the best results. Between the two reconstruction methods, the iterative one might be more appropriate for cardiac SPECT, since it improves lesion detectability due to the significant improvement of image contrast.

  16. Fast 3-d tomographic microwave imaging for breast cancer detection.

    Grzegorczyk, Tomasz M; Meaney, Paul M; Kaufman, Peter A; diFlorio-Alexander, Roberta M; Paulsen, Keith D

    2012-08-01

    Microwave breast imaging (using electromagnetic waves of frequencies around 1 GHz) has mostly remained at the research level for the past decade, gaining little clinical acceptance. The major hurdles limiting patient use are both at the hardware level (challenges in collecting accurate and noncorrupted data) and software level (often plagued by unrealistic reconstruction times in the tens of hours). In this paper we report improvements that address both issues. First, the hardware is able to measure signals down to levels compatible with sub-centimeter image resolution while keeping an exam time under 2 min. Second, the software overcomes the enormous time burden and produces similarly accurate images in less than 20 min. The combination of the new hardware and software allows us to produce and report here the first clinical 3-D microwave tomographic images of the breast. Two clinical examples are selected out of 400+ exams conducted at the Dartmouth Hitchcock Medical Center (Lebanon, NH). The first example demonstrates the potential usefulness of our system for breast cancer screening while the second example focuses on therapy monitoring. PMID:22562726

  17. Fast 3D subsurface imaging with stepped-frequency GPR

    Masarik, Matthew P.; Burns, Joseph; Thelen, Brian T.; Sutter, Lena

    2015-05-01

    This paper investigates an algorithm for forming 3D images of the subsurface using stepped-frequency GPR data. The algorithm is specifically designed for a handheld GPR and therefore accounts for the irregular sampling pattern in the data and the spatially-variant air-ground interface by estimating an effective "ground-plane" and then registering the data to the plane. The algorithm efficiently solves the 4th-order polynomial for the Snell reflection points using a fully vectorized iterative scheme. The forward operator is implemented efficiently using an accelerated nonuniform FFT (Greengard and Lee, 2004); the adjoint operator is implemented efficiently using an interpolation step coupled with an upsampled FFT. The imaging is done as a linearized version of the full inverse problem, which is regularized using a sparsity constraint to reduce sidelobes and therefore improve image localization. Applying an appropriate sparsity constraint, the algorithm is able to eliminate most the surrounding clutter and sidelobes, while still rendering valuable image properties such as shape and size. The algorithm is applied to simulated data, controlled experimental data (made available by Dr. Waymond Scott, Georgia Institute of Technology), and government-provided data with irregular sampling and air-ground interface.

  18. Method for 3D Rendering Based on Intersection Image Display Which Allows Representation of Internal Structure of 3D objects

    Kohei Arai

    2013-06-01

    Full Text Available Method for 3D rendering based on intersection image display which allows representation of internal structure is proposed. The proposed method is essentially different from the conventional volume rendering based on solid model which allows representation of just surface of the 3D objects. By using afterimage, internal structure can be displayed through exchanging the intersection images with internal structure for the proposed method. Through experiments with CT scan images, the proposed method is validated. Also one of other applicable areas of the proposed for design of 3D pattern of Large Scale Integrated Circuit: LSI is introduced. Layered patterns of LSI can be displayed and switched by using human eyes only. It is confirmed that the time required for displaying layer pattern and switching the pattern to the other layer by using human eyes only is much faster than that using hands and fingers.

  19. 3D Chemical and Elemental Imaging by STXM Spectrotomography

    Spectrotomography based on the scanning transmission x-ray microscope (STXM) at the 10ID-1 spectromicroscopy beamline of the Canadian Light Source was used to study two selected unicellular microorganisms. Spatial distributions of sulphur globules, calcium, protein, and polysaccharide in sulphur-metabolizing bacteria (Allochromatium vinosum) were determined at the S 2p, C 1s, and Ca 2p edges. 3D chemical mapping showed that the sulphur globules are located inside the bacteria with a strong spatial correlation with calcium ions (it is most probably calcium carbonate from the medium; however, with STXM the distribution and localization in the cell can be made visible, which is very interesting for a biologist) and polysaccharide-rich polymers, suggesting an influence of the organic components on the formation of the sulphur and calcium deposits. A second study investigated copper accumulating in yeast cells (Saccharomyces cerevisiae) treated with copper sulphate. 3D elemental imaging at the Cu 2p edge showed that Cu(II) is reduced to Cu(I) on the yeast cell wall. A novel needle-like wet cell sample holder for STXM spectrotomography studies of fully hydrated samples is discussed.

  20. 3D imaging of semiconductor components by discrete laminography

    X-ray laminography is a powerful technique for quality control of semiconductor components. Despite the advantages of nondestructive 3D imaging over 2D techniques based on sectioning, the acquisition time is still a major obstacle for practical use of the technique. In this paper, we consider the application of Discrete Tomography to laminography data, which can potentially reduce the scanning time while still maintaining a high reconstruction quality. By incorporating prior knowledge in the reconstruction algorithm about the materials present in the scanned object, far more accurate reconstructions can be obtained from the same measured data compared to classical reconstruction methods. We present a series of simulation experiments that illustrate the potential of the approach

  1. 3D imaging of semiconductor components by discrete laminography

    Batenburg, K. J.; Palenstijn, W. J.; Sijbers, J.

    2014-06-01

    X-ray laminography is a powerful technique for quality control of semiconductor components. Despite the advantages of nondestructive 3D imaging over 2D techniques based on sectioning, the acquisition time is still a major obstacle for practical use of the technique. In this paper, we consider the application of Discrete Tomography to laminography data, which can potentially reduce the scanning time while still maintaining a high reconstruction quality. By incorporating prior knowledge in the reconstruction algorithm about the materials present in the scanned object, far more accurate reconstructions can be obtained from the same measured data compared to classical reconstruction methods. We present a series of simulation experiments that illustrate the potential of the approach.

  2. 3D imaging of semiconductor components by discrete laminography

    Batenburg, K. J. [Centrum Wiskunde and Informatica, P.O. Box 94079, NL-1090 GB Amsterdam, The Netherlands and iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium); Palenstijn, W. J.; Sijbers, J. [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium)

    2014-06-19

    X-ray laminography is a powerful technique for quality control of semiconductor components. Despite the advantages of nondestructive 3D imaging over 2D techniques based on sectioning, the acquisition time is still a major obstacle for practical use of the technique. In this paper, we consider the application of Discrete Tomography to laminography data, which can potentially reduce the scanning time while still maintaining a high reconstruction quality. By incorporating prior knowledge in the reconstruction algorithm about the materials present in the scanned object, far more accurate reconstructions can be obtained from the same measured data compared to classical reconstruction methods. We present a series of simulation experiments that illustrate the potential of the approach.

  3. Computer-aided diagnosis of pulmonary nodules on CT scans: Segmentation and classification using 3D active contours

    We are developing a computer-aided diagnosis (CAD) system to classify malignant and benign lung nodules found on CT scans. A fully automated system was designed to segment the nodule from its surrounding structured background in a local volume of interest (VOI) and to extract image features for classification. Image segmentation was performed with a three-dimensional (3D) active contour (AC) method. A data set of 96 lung nodules (44 malignant, 52 benign) from 58 patients was used in this study. The 3D AC model is based on two-dimensional AC with the addition of three new energy components to take advantage of 3D information: (1) 3D gradient, which guides the active contour to seek the object surface (2) 3D curvature, which imposes a smoothness constraint in the z direction, and (3) mask energy, which penalizes contours that grow beyond the pleura or thoracic wall. The search for the best energy weights in the 3D AC model was guided by a simplex optimization method. Morphological and gray-level features were extracted from the segmented nodule. The rubber band straightening transform (RBST) was applied to the shell of voxels surrounding the nodule. Texture features based on run-length statistics were extracted from the RBST image. A linear discriminant analysis classifier with stepwise feature selection was designed using a second simplex optimization to select the most effective features. Leave-one-case-out resampling was used to train and test the CAD system. The system achieved a test area under the receiver operating characteristic curve (Az) of 0.83±0.04. Our preliminary results indicate that use of the 3D AC model and the 3D texture features surrounding the nodule is a promising approach to the segmentation and classification of lung nodules with CAD. The segmentation performance of the 3D AC model trained with our data set was evaluated with 23 nodules available in the Lung Image Database Consortium (LIDC). The lung nodule volumes segmented by the 3D AC

  4. GPU-accelerated denoising of 3D magnetic resonance images

    Howison, Mark; Wes Bethel, E.

    2014-05-29

    The raw computational power of GPU accelerators enables fast denoising of 3D MR images using bilateral filtering, anisotropic diffusion, and non-local means. In practice, applying these filtering operations requires setting multiple parameters. This study was designed to provide better guidance to practitioners for choosing the most appropriate parameters by answering two questions: what parameters yield the best denoising results in practice? And what tuning is necessary to achieve optimal performance on a modern GPU? To answer the first question, we use two different metrics, mean squared error (MSE) and mean structural similarity (MSSIM), to compare denoising quality against a reference image. Surprisingly, the best improvement in structural similarity with the bilateral filter is achieved with a small stencil size that lies within the range of real-time execution on an NVIDIA Tesla M2050 GPU. Moreover, inappropriate choices for parameters, especially scaling parameters, can yield very poor denoising performance. To answer the second question, we perform an autotuning study to empirically determine optimal memory tiling on the GPU. The variation in these results suggests that such tuning is an essential step in achieving real-time performance. These results have important implications for the real-time application of denoising to MR images in clinical settings that require fast turn-around times.

  5. Spectral ladar: towards active 3D multispectral imaging

    Powers, Michael A.; Davis, Christopher C.

    2010-04-01

    In this paper we present our Spectral LADAR concept, an augmented implementation of traditional LADAR. This sensor uses a polychromatic source to obtain range-resolved 3D spectral images which are used to identify objects based on combined spatial and spectral features, resolving positions in three dimensions and up to hundreds of meters in distance. We report on a proof-of-concept Spectral LADAR demonstrator that generates spectral point clouds from static scenes. The demonstrator transmits nanosecond supercontinuum pulses generated in a photonic crystal fiber. Currently we use a rapidly tuned receiver with a high-speed InGaAs APD for 25 spectral bands with the future expectation of implementing a linear APD array spectrograph. Each spectral band is independently range resolved with multiple return pulse recognition. This is a critical feature, enabling simultaneous spectral and spatial unmixing of partially obscured objects when not achievable using image fusion of monochromatic LADAR and passive spectral imagers. This enables higher identification confidence in highly cluttered environments such as forested or urban areas (e.g. vehicles behind camouflage or foliage). These environments present challenges for situational awareness and robotic perception which can benefit from the unique attributes of Spectral LADAR. Results from this demonstrator unit are presented for scenes typical of military operations and characterize the operation of the device. The results are discussed here in the context of autonomous vehicle navigation and target recognition.

  6. Integral Imaging Based 3-D Image Encryption Algorithm Combined with Cellular Automata

    X. W. Li

    2013-08-01

    Full Text Available A novel optical encryption method is proposed in this paper to achieve 3-D image encryption. This proposed encryption algorithm combines the use of computational integral imaging (CII and linear-complemented maximum- length cellular automata (LC-MLCA to encrypt a 3D image. In the encryption process, the 2-D elemental image array (EIA recorded by light rays of the 3-D image are mapped inversely through the lenslet array according the ray tracing theory. Next, the 2-D EIA is encrypted by LC-MLCA algorithm. When decrypting the encrypted image, the 2-D EIA is recovered by the LC-MLCA. Using the computational integral imaging reconstruction (CIIR technique and a 3-D object is subsequently reconstructed on the output plane from the 2-D recovered EIA. Because the 2-D EIA is composed of a number of elemental images having their own perspectives of a 3-D image, even if the encrypted image is seriously harmed, the 3-D image can be successfully reconstructed only with partial data. To verify the usefulness of the proposed algorithm, we perform computational experiments and present the experimental results for various attacks. The experiments demonstrate that the proposed encryption method is valid and exhibits strong robustness and security.

  7. Performance assessment of 3D surface imaging technique for medical imaging applications

    Li, Tuotuo; Geng, Jason; Li, Shidong

    2013-03-01

    Recent development in optical 3D surface imaging technologies provide better ways to digitalize the 3D surface and its motion in real-time. The non-invasive 3D surface imaging approach has great potential for many medical imaging applications, such as motion monitoring of radiotherapy, pre/post evaluation of plastic surgery and dermatology, to name a few. Various commercial 3D surface imaging systems have appeared on the market with different dimension, speed and accuracy. For clinical applications, the accuracy, reproducibility and robustness across the widely heterogeneous skin color, tone, texture, shape properties, and ambient lighting is very crucial. Till now, a systematic approach for evaluating the performance of different 3D surface imaging systems still yet exist. In this paper, we present a systematic performance assessment approach to 3D surface imaging system assessment for medical applications. We use this assessment approach to exam a new real-time surface imaging system we developed, dubbed "Neo3D Camera", for image-guided radiotherapy (IGRT). The assessments include accuracy, field of view, coverage, repeatability, speed and sensitivity to environment, texture and color.

  8. Development and evaluation of a semiautomatic 3D segmentation technique of the carotid arteries from 3D ultrasound images

    Gill, Jeremy D.; Ladak, Hanif M.; Steinman, David A.; Fenster, Aaron

    1999-05-01

    In this paper, we report on a semi-automatic approach to segmentation of carotid arteries from 3D ultrasound (US) images. Our method uses a deformable model which first is rapidly inflated to approximately find the boundary of the artery, then is further deformed using image-based forces to better localize the boundary. An operator is required to initialize the model by selecting a position in the 3D US image, which is within the carotid vessel. Since the choice of position is user-defined, and therefore arbitrary, there is an inherent variability in the position and shape of the final segmented boundary. We have assessed the performance of our segmentation method by examining the local variability in boundary shape as the initial selected position is varied in a freehand 3D US image of a human carotid bifurcation. Our results indicate that high variability in boundary position occurs in regions where either the segmented boundary is highly curved, or the 3D US image has poorly defined vessel edges.

  9. High resolution 3D imaging of synchrotron generated microbeams

    Gagliardi, Frank M., E-mail: frank.gagliardi@wbrc.org.au [Alfred Health Radiation Oncology, The Alfred, Melbourne, Victoria 3004, Australia and School of Medical Sciences, RMIT University, Bundoora, Victoria 3083 (Australia); Cornelius, Iwan [Imaging and Medical Beamline, Australian Synchrotron, Clayton, Victoria 3168, Australia and Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales 2500 (Australia); Blencowe, Anton [Division of Health Sciences, School of Pharmacy and Medical Sciences, The University of South Australia, Adelaide, South Australia 5000, Australia and Division of Information Technology, Engineering and the Environment, Mawson Institute, University of South Australia, Mawson Lakes, South Australia 5095 (Australia); Franich, Rick D. [School of Applied Sciences and Health Innovations Research Institute, RMIT University, Melbourne, Victoria 3000 (Australia); Geso, Moshi [School of Medical Sciences, RMIT University, Bundoora, Victoria 3083 (Australia)

    2015-12-15

    Purpose: Microbeam radiation therapy (MRT) techniques are under investigation at synchrotrons worldwide. Favourable outcomes from animal and cell culture studies have proven the efficacy of MRT. The aim of MRT researchers currently is to progress to human clinical trials in the near future. The purpose of this study was to demonstrate the high resolution and 3D imaging of synchrotron generated microbeams in PRESAGE® dosimeters using laser fluorescence confocal microscopy. Methods: Water equivalent PRESAGE® dosimeters were fabricated and irradiated with microbeams on the Imaging and Medical Beamline at the Australian Synchrotron. Microbeam arrays comprised of microbeams 25–50 μm wide with 200 or 400 μm peak-to-peak spacing were delivered as single, cross-fire, multidirectional, and interspersed arrays. Imaging of the dosimeters was performed using a NIKON A1 laser fluorescence confocal microscope. Results: The spatial fractionation of the MRT beams was clearly visible in 2D and up to 9 mm in depth. Individual microbeams were easily resolved with the full width at half maximum of microbeams measured on images with resolutions of as low as 0.09 μm/pixel. Profiles obtained demonstrated the change of the peak-to-valley dose ratio for interspersed MRT microbeam arrays and subtle variations in the sample positioning by the sample stage goniometer were measured. Conclusions: Laser fluorescence confocal microscopy of MRT irradiated PRESAGE® dosimeters has been validated in this study as a high resolution imaging tool for the independent spatial and geometrical verification of MRT beam delivery.

  10. High resolution 3D imaging of synchrotron generated microbeams

    Purpose: Microbeam radiation therapy (MRT) techniques are under investigation at synchrotrons worldwide. Favourable outcomes from animal and cell culture studies have proven the efficacy of MRT. The aim of MRT researchers currently is to progress to human clinical trials in the near future. The purpose of this study was to demonstrate the high resolution and 3D imaging of synchrotron generated microbeams in PRESAGE® dosimeters using laser fluorescence confocal microscopy. Methods: Water equivalent PRESAGE® dosimeters were fabricated and irradiated with microbeams on the Imaging and Medical Beamline at the Australian Synchrotron. Microbeam arrays comprised of microbeams 25–50 μm wide with 200 or 400 μm peak-to-peak spacing were delivered as single, cross-fire, multidirectional, and interspersed arrays. Imaging of the dosimeters was performed using a NIKON A1 laser fluorescence confocal microscope. Results: The spatial fractionation of the MRT beams was clearly visible in 2D and up to 9 mm in depth. Individual microbeams were easily resolved with the full width at half maximum of microbeams measured on images with resolutions of as low as 0.09 μm/pixel. Profiles obtained demonstrated the change of the peak-to-valley dose ratio for interspersed MRT microbeam arrays and subtle variations in the sample positioning by the sample stage goniometer were measured. Conclusions: Laser fluorescence confocal microscopy of MRT irradiated PRESAGE® dosimeters has been validated in this study as a high resolution imaging tool for the independent spatial and geometrical verification of MRT beam delivery

  11. 3D Slicer as an image computing platform for the Quantitative Imaging Network.

    Fedorov, Andriy; Beichel, Reinhard; Kalpathy-Cramer, Jayashree; Finet, Julien; Fillion-Robin, Jean-Christophe; Pujol, Sonia; Bauer, Christian; Jennings, Dominique; Fennessy, Fiona; Sonka, Milan; Buatti, John; Aylward, Stephen; Miller, James V; Pieper, Steve; Kikinis, Ron

    2012-11-01

    Quantitative analysis has tremendous but mostly unrealized potential in healthcare to support objective and accurate interpretation of the clinical imaging. In 2008, the National Cancer Institute began building the Quantitative Imaging Network (QIN) initiative with the goal of advancing quantitative imaging in the context of personalized therapy and evaluation of treatment response. Computerized analysis is an important component contributing to reproducibility and efficiency of the quantitative imaging techniques. The success of quantitative imaging is contingent on robust analysis methods and software tools to bring these methods from bench to bedside. 3D Slicer is a free open-source software application for medical image computing. As a clinical research tool, 3D Slicer is similar to a radiology workstation that supports versatile visualizations but also provides advanced functionality such as automated segmentation and registration for a variety of application domains. Unlike a typical radiology workstation, 3D Slicer is free and is not tied to specific hardware. As a programming platform, 3D Slicer facilitates translation and evaluation of the new quantitative methods by allowing the biomedical researcher to focus on the implementation of the algorithm and providing abstractions for the common tasks of data communication, visualization and user interface development. Compared to other tools that provide aspects of this functionality, 3D Slicer is fully open source and can be readily extended and redistributed. In addition, 3D Slicer is designed to facilitate the development of new functionality in the form of 3D Slicer extensions. In this paper, we present an overview of 3D Slicer as a platform for prototyping, development and evaluation of image analysis tools for clinical research applications. To illustrate the utility of the platform in the scope of QIN, we discuss several use cases of 3D Slicer by the existing QIN teams, and we elaborate on the future

  12. 3D visualisation of the middle ear and adjacent structures using reconstructed multi-slice CT datasets, correlating 3D images and virtual endoscopy to the 2D cross-sectional images

    The 3D imaging of the middle ear facilitates better understanding of the patient's anatomy. Cross-sectional slices, however, often allow a more accurate evaluation of anatomical structures, as some detail may be lost through post-processing. In order to demonstrate the advantages of combining both approaches, we performed computed tomography (CT) imaging in two normal and 15 different pathological cases, and the 3D models were correlated to the cross-sectional CT slices. Reconstructed CT datasets were acquired by multi-slice CT. Post-processing was performed using the in-house software ''3D Slicer'', applying thresholding and manual segmentation. 3D models of the individual anatomical structures were generated and displayed in different colours. The display of relevant anatomical and pathological structures was evaluated in the greyscale 2D slices, 3D images, and the 2D slices showing the segmented 2D anatomy in different colours for each structure. Correlating 2D slices to the 3D models and virtual endoscopy helps to combine the advantages of each method. As generating 3D models can be extremely time-consuming, this approach can be a clinically applicable way of gaining a 3D understanding of the patient's anatomy by using models as a reference. Furthermore, it can help radiologists and otolaryngologists evaluating the 2D slices by adding the correct 3D information that would otherwise have to be mentally integrated. The method can be applied to radiological diagnosis, surgical planning, and especially, to teaching. (orig.)

  13. Preparing diagnostic 3D images for image registration with planning CT images

    Purpose: Pre-radiotherapy (pre-RT) tomographic images acquired for diagnostic purposes often contain important tumor and/or normal tissue information which is poorly defined or absent in planning CT images. Our two years of clinical experience has shown that computer-assisted 3D registration of pre-RT images with planning CT images often plays an indispensable role in accurate treatment volume definition. Often the only available format of the diagnostic images is film from which the original 3D digital data must be reconstructed. In addition, any digital data, whether reconstructed or not, must be put into a form suitable for incorporation into the treatment planning system. The purpose of this investigation was to identify all problems that must be overcome before this data is suitable for clinical use. Materials and Methods: In the past two years we have 3D-reconstructed 300 diagnostic images from film and digital sources. As a problem was discovered we built a software tool to correct it. In time we collected a large set of such tools and found that they must be applied in a specific order to achieve the correct reconstruction. Finally, a toolkit (ediScan) was built that made all these tools available in the proper manner via a pleasant yet efficient mouse-based user interface. Results: Problems we discovered included different magnifications, shifted display centers, non-parallel image planes, image planes not perpendicular to the long axis of the table-top (shearing), irregularly spaced scans, non contiguous scan volumes, multiple slices per film, different orientations for slice axes (e.g. left-right reversal), slices printed at window settings corresponding to tissues of interest for diagnostic purposes, and printing artifacts. We have learned that the specific steps to correct these problems, in order of application, are: Also, we found that fast feedback and large image capacity (at least 2000 x 2000 12-bit pixels) are essential for practical application

  14. Real-time 3D digital image correlation method and its application in human pulse monitoring.

    Shao, Xinxing; Dai, Xiangjun; Chen, Zhenning; He, Xiaoyuan

    2016-02-01

    In industrial measurements and online monitoring, full-field and high-efficiency deformation analysis has been increasingly important and highly demanded in recent years. In this paper, a fast three-dimensional digital image correlation (3D-DIC) method was proposed to implement real-time measurement. Two improvements were suggested to accelerate the computation speed without sacrificing the accuracy. First, an efficient inverse compositional Gauss-Newton (IC-GN) algorithm was developed to avoid redundant computation. Moreover, a seed point-based parallel method was extended for 3D-DIC to achieve parallel computation and faster convergence speed. The detailed process of the real-time measurement using the proposed method was also introduced. Benefiting from the efficient IC-GN algorithm and parallel processing software we developed, full-field, real-time 3D deformation monitoring was realized at a frame rate of 10 frames/s with resolution of 5000 points per frame. For validation, the displacement field of a four-point bending beam was determined by the real-time 3D-DIC. As an application, the real-time human pulse diagnosis was also performed based on the presented technique. Experimental results verify that the proposed real-time 3D-DIC is practicable and effective for traditional Chinese medicine. PMID:26836070

  15. 3D RECONSTRUCTION FROM MULTI-VIEW MEDICAL X-RAY IMAGES – REVIEW AND EVALUATION OF EXISTING METHODS

    S. Hosseinian

    2015-12-01

    Full Text Available The 3D concept is extremely important in clinical studies of human body. Accurate 3D models of bony structures are currently required in clinical routine for diagnosis, patient follow-up, surgical planning, computer assisted surgery and biomechanical applications. However, 3D conventional medical imaging techniques such as computed tomography (CT scan and magnetic resonance imaging (MRI have serious limitations such as using in non-weight-bearing positions, costs and high radiation dose(for CT. Therefore, 3D reconstruction methods from biplanar X-ray images have been taken into consideration as reliable alternative methods in order to achieve accurate 3D models with low dose radiation in weight-bearing positions. Different methods have been offered for 3D reconstruction from X-ray images using photogrammetry which should be assessed. In this paper, after demonstrating the principles of 3D reconstruction from X-ray images, different existing methods of 3D reconstruction of bony structures from radiographs are classified and evaluated with various metrics and their advantages and disadvantages are mentioned. Finally, a comparison has been done on the presented methods with respect to several metrics such as accuracy, reconstruction time and their applications. With regards to the research, each method has several advantages and disadvantages which should be considered for a specific application.

  16. ROIC for gated 3D imaging LADAR receiver

    Chen, Guoqiang; Zhang, Junling; Wang, Pan; Zhou, Jie; Gao, Lei; Ding, Ruijun

    2013-09-01

    Time of flight laser range finding, deep space communications and scanning video imaging are three applications requiring very low noise optical receivers to achieve detection of fast and weak optical signal. HgCdTe electrons initiated avalanche photodiodes (e-APDs) in linear multiplication mode is the detector of choice thanks to its high quantum efficiency, high gain at low bias, high bandwidth and low noise factor. In this project, a readout integrated circuit of hybrid e-APD focal plane array (FPA) with 100um pitch for 3D-LADAR was designed for gated optical receiver. The ROIC works at 77K, including unit cell circuit, column-level circuit, timing control, bias circuit and output driver. The unit cell circuit is a key component, which consists of preamplifier, correlated double Sampling (CDS), bias circuit and timing control module. Specially, the preamplifier used the capacitor feedback transimpedance amplifier (CTIA) structure which has two capacitors to offer switchable capacitance for passive/active dual mode imaging. The main circuit of column-level circuit is a precision Multiply-by-Two circuit which is implemented by switched-capacitor circuit. Switched-capacitor circuit is quite suitable for the signal processing of readout integrated circuit (ROIC) due to the working characteristics. The output driver uses a simply unity-gain buffer. Because the signal is amplified in column-level circuit, the amplifier in unity-gain buffer uses a rail-rail amplifier. In active imaging mode, the integration time is 80ns. Integrating current from 200nA to 4uA, this circuit shows the nonlinearity is less than 1%. In passive imaging mode, the integration time is 150ns. Integrating current from 1nA to 20nA shows the nonlinearity less than 1%.

  17. Enhanced 3D fluorescence live cell imaging on nanoplasmonic substrate

    Gartia, Manas Ranjan [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois, Urbana, IL 61801 (United States); Hsiao, Austin; Logan Liu, G [Department of Bioengineering, University of Illinois, Urbana, IL 61801 (United States); Sivaguru, Mayandi [Institute for Genomic Biology, University of Illinois, Urbana, IL 61801 (United States); Chen Yi, E-mail: loganliu@illinois.edu [Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801 (United States)

    2011-09-07

    We have created a randomly distributed nanocone substrate on silicon coated with silver for surface-plasmon-enhanced fluorescence detection and 3D cell imaging. Optical characterization of the nanocone substrate showed it can support several plasmonic modes (in the 300-800 nm wavelength range) that can be coupled to a fluorophore on the surface of the substrate, which gives rise to the enhanced fluorescence. Spectral analysis suggests that a nanocone substrate can create more excitons and shorter lifetime in the model fluorophore Rhodamine 6G (R6G) due to plasmon resonance energy transfer from the nanocone substrate to the nearby fluorophore. We observed three-dimensional fluorescence enhancement on our substrate shown from the confocal fluorescence imaging of chinese hamster ovary (CHO) cells grown on the substrate. The fluorescence intensity from the fluorophores bound on the cell membrane was amplified more than 100-fold as compared to that on a glass substrate. We believe that strong scattering within the nanostructured area coupled with random scattering inside the cell resulted in the observed three-dimensional enhancement in fluorescence with higher photostability on the substrate surface.

  18. Time-resolved multiphasic 3D MR angiography in the diagnosis of the pulmonary vascular system in children

    Purpose: To evaluate time-resolved, multiphasic 3D MR angiography (MRA) for the non-invasive assessment of the pulmonary vascular system in children. Materials and methods: 10 children aged 6 to 15 years (mean age 10 years) ware examined on a 1.5 T whole body MR system with time-resolved, multiphasic 3D MRA after injection of 0.2 mmol/kg body weight of Gd-DTPA. With the use of an ultrafast gradient echo pulse sequence with asymmetric k-space filling and very short echo and repetition times, a nominal spatial resolution of 1.4 x 1.4 x 2.0 mm3 could be achieved with a scan time of 5.6 and 6.2 seconds for a single 3D data set. Two radiologists, who were blinded to the clinical diagnosis, analyzed the image data in consensus. The image analysis included the assessment of the image contrast and artifacts as well as a quantitative analysis of the signal-to-noise (SNR) and contrast-to-noise ratios (CNR) for central and peripheral lung vessel segments. Results: The children tolerated all examinations without any side effects. The referral diagnosis, which was based on echocardiography, catheter angiography and surgery, was confirmed by MRA in all cases. The image contrast was rated at least satisfactory in all but one case (19 or 20) and no artifacts were observed. The quantitative analysis of the SNR and CNR in the pulmonary arteries and veins confirmed the reader analysis of a high and uniform contrast throughout the entire pulmonary circulation. Conclusion: Time-resolved multiphasic 3D MRA allows a non-invasive diagnostic evaluation of the pulmonary circulation in children. In view of the excellent image quality, MRA may replace conventional diagnostic catheter angiography in the near future. (orig.)

  19. Fast 3D T1-weighted brain imaging at 3 Tesla with modified 3D FLASH sequence

    Longitudinal relaxation times (T1) of white and gray matter become close at high magnetic field. Therefore, classical T1 sensitive methods, like spoiled FLASH fail to give a sufficient contrast in human brain imaging at 3 Tesla. An excellent T1 contrast can be achieved at high field by gradient echo imaging with a preparatory inversion pulse. The inversion recovery (IR) preparation can be combined with a fast 2D gradient echo scans. In this paper we present an application of this technique to rapid 3-dimensional imaging. New technique called 3D SIR FLASH was implemented on Burker MSLX system equipped with a 3T, 90 cm horizontal bore magnet working in Centre Hospitalier in Rouffach, France. The new technique was used for comparison of MRI images of healthy volunteers obtained with a traditional 3D imaging. White and gray matter are clearly distinguishable when 3D SIR FLASH is used. The total acquisition time for 128x128x128 image was 5 minutes. Three dimensional visualization with facet representation of surfaces and oblique sections was done off-line on the INDIGO Extreme workstation. New technique is widely used in FORENAP, Centre Hospitalier in Reuffach, Alsace. (author)

  20. 3D-imaging of the knee with an optimized 3D-FSE-sequence and a 15-channel knee-coil

    Notohamiprodjo, Mike, E-mail: mike.notohamiprodjo@med.uni-muenchen.de [Department of Clinical Radiology, University Hospitals Munich, Marchioninistrasse 15, 81377 Munich (Germany); Department of Radiology, Langone Medical Center, Bernard and Irene Schwartz Center for Biomedical Imaging New York University, 660 First Avenue, 4th Floor, New York, NY 10016 (United States); Horng, Annie; Kuschel, Bernhard [Department of Clinical Radiology, University Hospitals Munich, Marchioninistrasse 15, 81377 Munich (Germany); Paul, Dominik [Siemens Healthcare, Erlangen, Henkestr. 127, 91054 Erlangen (Germany); Li, Guobin [Siemens Mindit Magnetic Resonance Ltd., Shenzhen, Guang Dong (China); Raya, Jose G. [Department of Radiology, Langone Medical Center, Bernard and Irene Schwartz Center for Biomedical Imaging New York University, 660 First Avenue, 4th Floor, New York, NY 10016 (United States); Reiser, Maximilian F. [Department of Clinical Radiology, University Hospitals Munich, Marchioninistrasse 15, 81377 Munich (Germany); Glaser, Christian [Department of Clinical Radiology, University Hospitals Munich, Marchioninistrasse 15, 81377 Munich (Germany); Department of Radiology, Langone Medical Center, Bernard and Irene Schwartz Center for Biomedical Imaging New York University, 660 First Avenue, 4th Floor, New York, NY 10016 (United States)

    2012-11-15

    Objectives: To evaluate the clinical usefulness of an optimized 3D-Fast-Spin-Echo-sequence (3D-SPACE) in combination with a 15-channel knee-coil for 3D-imaging of the knee at 3 T. Methods: 15 volunteers and 50 consecutive patients were examined at 3 T with fat-saturated moderately T2-weighted 3D-SPACE (Voxel-size (VS): 0.6 mm Multiplication-Sign 0.5 mm Multiplication-Sign 0.5 mm/acquisition-time (AT) 10:44 min) using a 15-channel knee-coil. Flip angle optimization and radial k-space reordering were applied. Signal- and contrast-to-noise-ratios (SNR, CNR) were compared to non-optimized 3D-SPACE (8-channel knee-coil) and conventional 2D-FSE (VS: 0.4 mm Multiplication-Sign 0.4 mm Multiplication-Sign 3 mm/total AT: 12 min). Two radiologists independently rated depiction of internal knee structures and assessed detection and depiction of cartilage and meniscus abnormalities compared to conventional 2D-FSE-sequences. Sensitivity and specificity were calculated for a subgroup with arthroscopy as reference standard. Statistical analysis was performed with paired t-tests, confidence intervals and weighted-{kappa}-coefficients. Results: SNR and CNR particularly of fluid/cartilage of optimized 3D-SPACE were significantly higher (p < 0.05) than of the non-optimized 3D-sequence and conventional 2D-sequence. Blurring and image inhomogeneity were reduced in the optimized sequence. The thin slice-thickness was beneficial for depiction of problematical anatomical structures such as meniscal roots. 3D-SPACE showed significantly higher diagnostic confidence (p < 0.05) for diagnosis of cartilage lesions of the femoral trochlea. Overall sensitivity and specificity of 3D-SPACE and 2D-FSE for cartilage lesions was 82.3%/80.2% and 79.4%/84.2% and 100%/86.4% and 92.3%/81.8% for meniscus lesions. Conclusions: Optimized 3D-SPACE provides significantly higher signal and contrast compared to conventional 2D-FSE, particularly for fluid and cartilage, leading to improved diagnostic confidence

  1. 3D-imaging of the knee with an optimized 3D-FSE-sequence and a 15-channel knee-coil

    Objectives: To evaluate the clinical usefulness of an optimized 3D-Fast-Spin-Echo-sequence (3D-SPACE) in combination with a 15-channel knee-coil for 3D-imaging of the knee at 3 T. Methods: 15 volunteers and 50 consecutive patients were examined at 3 T with fat-saturated moderately T2-weighted 3D-SPACE (Voxel-size (VS): 0.6 mm × 0.5 mm × 0.5 mm/acquisition-time (AT) 10:44 min) using a 15-channel knee-coil. Flip angle optimization and radial k-space reordering were applied. Signal- and contrast-to-noise-ratios (SNR, CNR) were compared to non-optimized 3D-SPACE (8-channel knee-coil) and conventional 2D-FSE (VS: 0.4 mm × 0.4 mm × 3 mm/total AT: 12 min). Two radiologists independently rated depiction of internal knee structures and assessed detection and depiction of cartilage and meniscus abnormalities compared to conventional 2D-FSE-sequences. Sensitivity and specificity were calculated for a subgroup with arthroscopy as reference standard. Statistical analysis was performed with paired t-tests, confidence intervals and weighted-κ-coefficients. Results: SNR and CNR particularly of fluid/cartilage of optimized 3D-SPACE were significantly higher (p < 0.05) than of the non-optimized 3D-sequence and conventional 2D-sequence. Blurring and image inhomogeneity were reduced in the optimized sequence. The thin slice-thickness was beneficial for depiction of problematical anatomical structures such as meniscal roots. 3D-SPACE showed significantly higher diagnostic confidence (p < 0.05) for diagnosis of cartilage lesions of the femoral trochlea. Overall sensitivity and specificity of 3D-SPACE and 2D-FSE for cartilage lesions was 82.3%/80.2% and 79.4%/84.2% and 100%/86.4% and 92.3%/81.8% for meniscus lesions. Conclusions: Optimized 3D-SPACE provides significantly higher signal and contrast compared to conventional 2D-FSE, particularly for fluid and cartilage, leading to improved diagnostic confidence, particularly in problematic areas, such as the femoral trochlea.

  2. Multimodal Registration and Fusion for 3D Thermal Imaging

    Moulay A. Akhloufi; Benjamin Verney

    2015-01-01

    3D vision is an area of computer vision that has attracted a lot of research interest and has been widely studied. In recent years we witness an increasing interest from the industrial community. This interest is driven by the recent advances in 3D technologies, which enable high precision measurements at an affordable cost. With 3D vision techniques we can conduct advanced manufactured parts inspections and metrology analysis. However, we are not able to detect subsurface defects. This kind ...

  3. Optimized 3D Street Scene Reconstruction from Driving Recorder Images

    Yongjun Zhang

    2015-07-01

    Full Text Available The paper presents an automatic region detection based method to reconstruct street scenes from driving recorder images. The driving recorder in this paper is a dashboard camera that collects images while the motor vehicle is moving. An enormous number of moving vehicles are included in the collected data because the typical recorders are often mounted in the front of moving vehicles and face the forward direction, which can make matching points on vehicles and guardrails unreliable. Believing that utilizing these image data can reduce street scene reconstruction and updating costs because of their low price, wide use, and extensive shooting coverage, we therefore proposed a new method, which is called the Mask automatic detecting method, to improve the structure results from the motion reconstruction. Note that we define vehicle and guardrail regions as “mask” in this paper since the features on them should be masked out to avoid poor matches. After removing the feature points in our new method, the camera poses and sparse 3D points that are reconstructed with the remaining matches. Our contrast experiments with the typical pipeline of structure from motion (SfM reconstruction methods, such as Photosynth and VisualSFM, demonstrated that the Mask decreased the root-mean-square error (RMSE of the pairwise matching results, which led to more accurate recovering results from the camera-relative poses. Removing features from the Mask also increased the accuracy of point clouds by nearly 30%–40% and corrected the problems of the typical methods on repeatedly reconstructing several buildings when there was only one target building.

  4. Diagnosis of ruptured and unruptured cerebral aneurysms with three-dimensional CT angiography (3D-CTA)

    This study compared the diagnostic value of three-dimensional CT angiography (3D-CTA) for ruptured and unruptured cerebral aneurysms with that of MR angiography (MRA) and DSA. Forty-one cases of 11 ruptured and 30 unruptured aneurysms were included in this study. 3D-CTA was performed with a bolus injection of nonionic contrast medium on the SOMATOM PLUS-S scanner and the ProSeed Accell scanner. Three-dimensional images were obtained by both shaded surface reconstruction (SSR) method and maximum intensity projection (MIP) method. The CT values of cisternal clot in cases of ruptured cerebral aneurysms did not exceed 90HU in any cases. The effect of SAH was, therefore, eliminated in the SSR images through a threshold level processing of a CT value of 150HU. All the cerebral aneurysms were visualized by this process. With regard to the detectability of cerebral aneurysms, 3D-CTA was able to demonstrate cerebral aneurysms with diameters of larger than 1 mm as well as giant aneurysms which MRA would sometimes fail to reveal. 3D-CTA was superior to MRA and DSA in making diagnosis of small aneurysms such as those with diameters of less than 3 mm. There was no difference between 3D-CTA and DSA in diagnostic ability for medium-sized aneurysms. With regard to large aneurysms of more than 12 mm in diameter, 3D-CTA was considered to be more useful than MRA and DSA, particularly for planning of operations by its feasibility for marking a simulation. For the operation, three-dimensional images of 3D-CTA provided useful information concerning the shape and anatomical features relating to the aneurysm, particularly the parent arteries and bony structures. The aneurysms located in the vicinity of the cavernous sinus were able to be visualized by 3D image reconstruction with elevation of the threshold level to 250HU. In addition, MIP image was able to visualize the calcification of an arterial wall, which provided useful information for applying clips for aneurysms. (J.P.N.)

  5. 3D-image-guided high-dose-rate intracavitary brachytherapy for salvage treatment of locally persistent nasopharyngeal carcinoma

    To evaluate the therapeutic benefit of 3D-image-guided high-dose-rate intracavitary brachytherapy (3D-image-guided HDR-BT) used as a salvage treatment of intensity modulated radiation therapy (IMRT) in patients with locally persistent nasopharyngeal carcinoma (NPC). Thirty-two patients with locally persistent NPC after full dose of IMRT were evaluated retrospectively. 3D-image-guided HDR-BT treatment plan was performed on a 3D treatment planning system (PLATO BPS 14.2). The median dose of 16 Gy was delivered to the 100% isodose line of the Gross Tumor Volume. The whole procedure was well tolerated under local anesthesia. The actuarial 5-y local control rate for 3D-image-guided HDR-BT was 93.8%, patients with early-T stage at initial diagnosis had 100% local control rate. The 5-y actuarial progression-free survival and distant metastasis-free survival rate were 78.1%, 87.5%. One patient developed and died of lung metastases. The 5-y actuarial overall survival rate was 96.9%. Our results showed that 3D-image-guided HDR-BT would provide excellent local control as a salvage therapeutic modality to IMRT for patients with locally persistent disease at initial diagnosis of early-T stage NPC

  6. Computational ghost imaging versus imaging laser radar for 3D imaging

    Hardy, Nicholas D

    2012-01-01

    Ghost imaging has been receiving increasing interest for possible use as a remote-sensing system. There has been little comparison, however, between ghost imaging and the imaging laser radars with which it would be competing. Toward that end, this paper presents a performance comparison between a pulsed, computational ghost imager and a pulsed, floodlight-illumination imaging laser radar. Both are considered for range-resolving (3D) imaging of a collection of rough-surfaced objects at standoff ranges in the presence of atmospheric turbulence. Their spatial resolutions and signal-to-noise ratios are evaluated as functions of the system parameters, and these results are used to assess each system's performance trade-offs. Scenarios in which a reflective ghost-imaging system has advantages over a laser radar are identified.

  7. Post-processing methods of rendering and visualizing 3-D reconstructed tomographic images

    The purpose of this presentation is to discuss the computer processing techniques of tomographic images, after they have been generated by imaging scanners, for volume visualization. Volume visualization is concerned with the representation, manipulation, and rendering of volumetric data. Since the first digital images were produced from computed tomography (CT) scanners in the mid 1970s, applications of visualization in medicine have expanded dramatically. Today, three-dimensional (3D) medical visualization has expanded from using CT data, the first inherently digital source of 3D medical data, to using data from various medical imaging modalities, including magnetic resonance scanners, positron emission scanners, digital ultrasound, electronic and confocal microscopy, and other medical imaging modalities. We have advanced from rendering anatomy to aid diagnosis and visualize complex anatomic structures to planning and assisting surgery and radiation treatment. New, more accurate and cost-effective procedures for clinical services and biomedical research have become possible by integrating computer graphics technology with medical images. This trend is particularly noticeable in current market-driven health care environment. For example, interventional imaging, image-guided surgery, and stereotactic and visualization techniques are now stemming into surgical practice. In this presentation, we discuss only computer-display-based approaches of volumetric medical visualization. That is, we assume that the display device available is two-dimensional (2D) in nature and all analysis of multidimensional image data is to be carried out via the 2D screen of the device. There are technologies such as holography and virtual reality that do provide a open-quotes true 3D screenclose quotes. To confine the scope, this presentation will not discuss such approaches

  8. Post-processing methods of rendering and visualizing 3-D reconstructed tomographic images

    Wong, S.T.C. [Univ. of California, San Francisco, CA (United States)

    1997-02-01

    The purpose of this presentation is to discuss the computer processing techniques of tomographic images, after they have been generated by imaging scanners, for volume visualization. Volume visualization is concerned with the representation, manipulation, and rendering of volumetric data. Since the first digital images were produced from computed tomography (CT) scanners in the mid 1970s, applications of visualization in medicine have expanded dramatically. Today, three-dimensional (3D) medical visualization has expanded from using CT data, the first inherently digital source of 3D medical data, to using data from various medical imaging modalities, including magnetic resonance scanners, positron emission scanners, digital ultrasound, electronic and confocal microscopy, and other medical imaging modalities. We have advanced from rendering anatomy to aid diagnosis and visualize complex anatomic structures to planning and assisting surgery and radiation treatment. New, more accurate and cost-effective procedures for clinical services and biomedical research have become possible by integrating computer graphics technology with medical images. This trend is particularly noticeable in current market-driven health care environment. For example, interventional imaging, image-guided surgery, and stereotactic and visualization techniques are now stemming into surgical practice. In this presentation, we discuss only computer-display-based approaches of volumetric medical visualization. That is, we assume that the display device available is two-dimensional (2D) in nature and all analysis of multidimensional image data is to be carried out via the 2D screen of the device. There are technologies such as holography and virtual reality that do provide a {open_quotes}true 3D screen{close_quotes}. To confine the scope, this presentation will not discuss such approaches.

  9. 3D imaging of nanomaterials by discrete tomography

    The field of discrete tomography focuses on the reconstruction of samples that consist of only a few different materials. Ideally, a three-dimensional (3D) reconstruction of such a sample should contain only one grey level for each of the compositions in the sample. By exploiting this property in the reconstruction algorithm, either the quality of the reconstruction can be improved significantly, or the number of required projection images can be reduced. The discrete reconstruction typically contains fewer artifacts and does not have to be segmented, as it already contains one grey level for each composition. Recently, a new algorithm, called discrete algebraic reconstruction technique (DART), has been proposed that can be used effectively on experimental electron tomography datasets. In this paper, we propose discrete tomography as a general reconstruction method for electron tomography in materials science. We describe the basic principles of DART and show that it can be applied successfully to three different types of samples, consisting of embedded ErSi2 nanocrystals, a carbon nanotube grown from a catalyst particle and a single gold nanoparticle, respectively.

  10. Orthodontic treatment plan changed by 3D images

    Clinical application of CBCT is most often enforced in dental phenomenon of impacted teeth, hyperodontia, transposition, ankyloses or root resorption and other pathologies in the maxillofacial area. The goal, we put ourselves, is to show how the information from 3D images changes the protocol of the orthodontic treatment. The material, we presented six our clinical cases and the change in the plan of the treatment, which has used after analyzing the information carried on the three planes of CBCT. These cases are casuistic in the orthodontic practice and require individual approach to each of them during their analysis and decision taken. The discussion made by us is in line with reveal of the impacted teeth, where we need to evaluate their vertical depth and mediodistal ratios with the bond structures. At patients with hyperodontia, the assessment is of outmost importance to decide which of the teeth to be extracted and which one to be arranged into the dental arch. The conclusion we make is that diagnostic information is essential for decisions about treatment plan. The exact graphs will lead to better treatment plan and more predictable results. (authors) Key words: CBCT. IMPACTED CANINES. HYPERODONTIA. TRANSPOSITION

  11. Comparison of 3D and 2D FSE T2-weighted MRI in the diagnosis of deep pelvic endometriosis: Preliminary results

    Aim: To evaluate image quality and diagnostic accuracy of two- (2D) and three-dimensional (3D) T2-weighted magnetic resonance imaging (MRI) for the evaluation of deep infiltrating endometriosis (DIE). Materials and methods: One hundred and ten consecutive patients with suspicion of endometriosis were recruited at two institutions over a 5-month period. Twenty-three women underwent surgery, 18 had DIE at histology. Two readers independently evaluated 3D and 2D MRI for image quality and diagnosis of DIE. Descriptive analysis, chi-square test for categorical or nominal variables, McNemar test for comparison between 3D and 2D T2-weighted MRI, and weighted “statistics” for intra- and interobserver agreement were used for statistical analysis. Results: Both readers found that 3D yielded significantly lower image quality than 2D MRI (p < 0.0001). Acquisition time for 3D was significantly shorter than 2D MRI (p < 0.01). 3D offered similar accuracy to diagnose DIE compared to 2D MRI. For all locations of endometriosis, a high or variable intra-observer agreement was observed for reader 1 and 2, respectively. Conclusions: Despite a lower overall image quality, 3D provides significant time saving and similar accuracy than multiplanar 2D MRI in the diagnosis of specific DIE locations.

  12. A software tool for automatic classification and segmentation of 2D/3D medical images

    Modern medical diagnosis utilizes techniques of visualization of human internal organs (CT, MRI) or of its metabolism (PET). However, evaluation of acquired images made by human experts is usually subjective and qualitative only. Quantitative analysis of MR data, including tissue classification and segmentation, is necessary to perform e.g. attenuation compensation, motion detection, and correction of partial volume effect in PET images, acquired with PET/MR scanners. This article presents briefly a MaZda software package, which supports 2D and 3D medical image analysis aiming at quantification of image texture. MaZda implements procedures for evaluation, selection and extraction of highly discriminative texture attributes combined with various classification, visualization and segmentation tools. Examples of MaZda application in medical studies are also provided

  13. Processing of MRI images weighted in TOF for blood vessels analysis: 3-D reconstruction

    Hernandez D, J.; Cordova F, T. [Universidad de Guanajuato, Campus Leon, Departamento de Ingenieria Fisica, Loma del Bosque No. 103, Lomas del Campestre, 37150 Leon, Guanajuato (Mexico); Cruz A, I., E-mail: hernandezdj.gto@gmail.com [CONACYT, Centro de Investigacion en Matematicas, A. C., Jalisco s/n, Col. Valenciana, 36000 Guanajuato, Gto. (Mexico)

    2015-10-15

    This paper presents a novel presents an approach based on differences of intensities for the identification of vascular structures in medical images from MRI studies of type time of flight method (TOF). The plating method hypothesis gave high intensities belonging to the vascular system image type TOF can be segmented by thresholding of the histogram. The enhanced vascular structures is performed using the filter Vesselness, upon completion of a decision based on fuzzy thresholding minimizes error in the selection of vascular structures. It will give a brief introduction to the vascular system problems and how the images have helped diagnosis, is summarized the physical history of the different imaging modalities and the evolution of digital images with computers. Segmentation and 3-D reconstruction became image type time of flight; these images are typically used in medical diagnosis of cerebrovascular diseases. The proposed method has less error in segmentation and reconstruction of volumes related to the vascular system, clear images and less noise compared with edge detection methods. (Author)

  14. Processing of MRI images weighted in TOF for blood vessels analysis: 3-D reconstruction

    This paper presents a novel presents an approach based on differences of intensities for the identification of vascular structures in medical images from MRI studies of type time of flight method (TOF). The plating method hypothesis gave high intensities belonging to the vascular system image type TOF can be segmented by thresholding of the histogram. The enhanced vascular structures is performed using the filter Vesselness, upon completion of a decision based on fuzzy thresholding minimizes error in the selection of vascular structures. It will give a brief introduction to the vascular system problems and how the images have helped diagnosis, is summarized the physical history of the different imaging modalities and the evolution of digital images with computers. Segmentation and 3-D reconstruction became image type time of flight; these images are typically used in medical diagnosis of cerebrovascular diseases. The proposed method has less error in segmentation and reconstruction of volumes related to the vascular system, clear images and less noise compared with edge detection methods. (Author)

  15. A Method for Interactive 3D Reconstruction of Piecewise Planar Objects from Single Images

    Sturm, Peter; Maybank, Steve

    1999-01-01

    We present an approach for 3D reconstruction of objects from a single image. Obviously, constraints on the 3D structure are needed to perform this task. Our approach is based on user-provided coplanarity, perpendicularity and parallelism constraints. These are used to calibrate the image and perform 3D reconstruction. The method is described in detail and results are provided.

  16. Medical image analysis of 3D CT images based on extensions of Haralick texture features

    Tesař, Ludvík; Shimizu, A.; Smutek, D.; Kobatake, H.; Nawano, S.

    2008-01-01

    Roč. 32, č. 6 (2008), s. 513-520. ISSN 0895-6111 R&D Projects: GA AV ČR 1ET101050403; GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : image segmentation * Gaussian mixture model * 3D image analysis Subject RIV: IN - Informatics, Computer Science Impact factor: 1.192, year: 2008 http://library.utia.cas.cz/separaty/2008/AS/tesar-medical image analysis of 3d ct image s based on extensions of haralick texture features.pdf

  17. Assessing 3D tunnel position in ACL reconstruction using a novel single image 3D-2D registration

    Kang, X.; Yau, W. P.; Otake, Y.; Cheung, P. Y. S.; Hu, Y.; Taylor, R. H.

    2012-02-01

    The routinely used procedure for evaluating tunnel positions following anterior cruciate ligament (ACL) reconstructions based on standard X-ray images is known to pose difficulties in terms of obtaining accurate measures, especially in providing three-dimensional tunnel positions. This is largely due to the variability in individual knee joint pose relative to X-ray plates. Accurate results were reported using postoperative CT. However, its extensive usage in clinical routine is hampered by its major requirement of having CT scans of individual patients, which is not available for most ACL reconstructions. These difficulties are addressed through the proposed method, which aligns a knee model to X-ray images using our novel single-image 3D-2D registration method and then estimates the 3D tunnel position. In the proposed method, the alignment is achieved by using a novel contour-based 3D-2D registration method wherein image contours are treated as a set of oriented points. However, instead of using some form of orientation weighting function and multiplying it with a distance function, we formulate the 3D-2D registration as a probability density estimation using a mixture of von Mises-Fisher-Gaussian (vMFG) distributions and solve it through an expectation maximization (EM) algorithm. Compared with the ground-truth established from postoperative CT, our registration method in an experiment using a plastic phantom showed accurate results with errors of (-0.43°+/-1.19°, 0.45°+/-2.17°, 0.23°+/-1.05°) and (0.03+/-0.55, -0.03+/-0.54, -2.73+/-1.64) mm. As for the entry point of the ACL tunnel, one of the key measurements, it was obtained with high accuracy of 0.53+/-0.30 mm distance errors.

  18. 3-D Adaptive Sparsity Based Image Compression With Applications to Optical Coherence Tomography.

    Fang, Leyuan; Li, Shutao; Kang, Xudong; Izatt, Joseph A; Farsiu, Sina

    2015-06-01

    We present a novel general-purpose compression method for tomographic images, termed 3D adaptive sparse representation based compression (3D-ASRC). In this paper, we focus on applications of 3D-ASRC for the compression of ophthalmic 3D optical coherence tomography (OCT) images. The 3D-ASRC algorithm exploits correlations among adjacent OCT images to improve compression performance, yet is sensitive to preserving their differences. Due to the inherent denoising mechanism of the sparsity based 3D-ASRC, the quality of the compressed images are often better than the raw images they are based on. Experiments on clinical-grade retinal OCT images demonstrate the superiority of the proposed 3D-ASRC over other well-known compression methods. PMID:25561591

  19. 3-D Reconstruction of Medical Image Using Wavelet Transform and Snake Model

    Jinyong Cheng

    2009-12-01

    Full Text Available Medical image segmentation is an important step in 3-D reconstruction, and 3-D reconstruction from medical images is an important application of computer graphics and biomedicine image processing. An improved image segmentation method which is suitable for 3-D reconstruction is presented in this paper. A 3-D reconstruction algorithm is used to reconstruct the 3-D model from medical images. Rough edge is obtained by multi-scale wavelet transform at first. With the rough edge, improved gradient vector flow snake model is used and the object contour in the image is found. In the experiments, we reconstruct 3-D models of kidney, liver and brain putamen. The performances of the experiments indicate that the new algorithm can produce accurate 3-D reconstruction.

  20. GammaModeler 3-D gamma-ray imaging technology

    The 3-D GammaModelertrademark system was used to survey a portion of the facility and provide 3-D visual and radiation representation of contaminated equipment located within the facility. The 3-D GammaModelertrademark system software was used to deconvolve extended sources into a series of point sources, locate the positions of these sources in space and calculate the 30 cm. dose rates for each of these sources. Localization of the sources in three dimensions provides information on source locations interior to the visual objects and provides a better estimate of the source intensities. The three dimensional representation of the objects can be made transparent in order to visualize sources located within the objects. Positional knowledge of all the sources can be used to calculate a map of the radiation in the canyon. The use of 3-D visual and gamma ray information supports improved planning decision-making, and aids in communications with regulators and stakeholders

  1. Terahertz Quantum Cascade Laser Based 3D Imaging Project

    National Aeronautics and Space Administration — LongWave Photonics proposes a terahertz quantum-cascade laser based swept-source optical coherence tomography (THz SS-OCT) system for single-sided, 3D,...

  2. Holographic Image Plane Projection Integral 3D Display

    National Aeronautics and Space Administration — In response to NASA's need for a 3D virtual reality environment providing scientific data visualization without special user devices, Physical Optics Corporation...

  3. Superimposing of virtual graphics and real image based on 3D CAD information

    2000-01-01

    Proposes methods of transforming 3D CAD models into 2D graphics and recognizing 3D objects by features and superimposing VE built in computer onto real image taken by a CCD camera, and presents computer simulation results.

  4. 3-D Imaging Systems for Agricultural Applications—A Review

    Manuel Vázquez-Arellano

    2016-04-01

    Full Text Available Efficiency increase of resources through automation of agriculture requires more information about the production process, as well as process and machinery status. Sensors are necessary for monitoring the status and condition of production by recognizing the surrounding structures such as objects, field structures, natural or artificial markers, and obstacles. Currently, three dimensional (3-D sensors are economically affordable and technologically advanced to a great extent, so a breakthrough is already possible if enough research projects are commercialized. The aim of this review paper is to investigate the state-of-the-art of 3-D vision systems in agriculture, and the role and value that only 3-D data can have to provide information about environmental structures based on the recent progress in optical 3-D sensors. The structure of this research consists of an overview of the different optical 3-D vision techniques, based on the basic principles. Afterwards, their application in agriculture are reviewed. The main focus lays on vehicle navigation, and crop and animal husbandry. The depth dimension brought by 3-D sensors provides key information that greatly facilitates the implementation of automation and robotics in agriculture.

  5. 3-D Imaging Systems for Agricultural Applications-A Review.

    Vázquez-Arellano, Manuel; Griepentrog, Hans W; Reiser, David; Paraforos, Dimitris S

    2016-01-01

    Efficiency increase of resources through automation of agriculture requires more information about the production process, as well as process and machinery status. Sensors are necessary for monitoring the status and condition of production by recognizing the surrounding structures such as objects, field structures, natural or artificial markers, and obstacles. Currently, three dimensional (3-D) sensors are economically affordable and technologically advanced to a great extent, so a breakthrough is already possible if enough research projects are commercialized. The aim of this review paper is to investigate the state-of-the-art of 3-D vision systems in agriculture, and the role and value that only 3-D data can have to provide information about environmental structures based on the recent progress in optical 3-D sensors. The structure of this research consists of an overview of the different optical 3-D vision techniques, based on the basic principles. Afterwards, their application in agriculture are reviewed. The main focus lays on vehicle navigation, and crop and animal husbandry. The depth dimension brought by 3-D sensors provides key information that greatly facilitates the implementation of automation and robotics in agriculture. PMID:27136560

  6. 3-D Imaging Systems for Agricultural Applications—A Review

    Vázquez-Arellano, Manuel; Griepentrog, Hans W.; Reiser, David; Paraforos, Dimitris S.

    2016-01-01

    Efficiency increase of resources through automation of agriculture requires more information about the production process, as well as process and machinery status. Sensors are necessary for monitoring the status and condition of production by recognizing the surrounding structures such as objects, field structures, natural or artificial markers, and obstacles. Currently, three dimensional (3-D) sensors are economically affordable and technologically advanced to a great extent, so a breakthrough is already possible if enough research projects are commercialized. The aim of this review paper is to investigate the state-of-the-art of 3-D vision systems in agriculture, and the role and value that only 3-D data can have to provide information about environmental structures based on the recent progress in optical 3-D sensors. The structure of this research consists of an overview of the different optical 3-D vision techniques, based on the basic principles. Afterwards, their application in agriculture are reviewed. The main focus lays on vehicle navigation, and crop and animal husbandry. The depth dimension brought by 3-D sensors provides key information that greatly facilitates the implementation of automation and robotics in agriculture. PMID:27136560

  7. 3D-CTA、DSA对颅内动脉瘤诊疗价值的对比%Comparative study of 3D-CTA and DSA in the diagnosis and treatment of intracranial aneurysms

    李祥; 于如同; 范月超; 郭克勤

    2009-01-01

    Objective To compare the clinical value of three-dimensional digital subtraction angiography(3D-DSA), three-dimensional computed tomographic angiography (3D-CTA) and conventional DSA(2D-DSA) in the diagnosis and treatment of Intracranial aneurysms. Methods The data of 3D-DSA, 3D-CTA, 2D-DSA and operation of 32 patients with Intracranial aneurysms were reviewed, retrospectively. Results 35 aneurysms were detected by 3D-DSA and correlated well with microsurgical findings. The shape of the aneurysms, their neck size and their relationships to the parent vessels and other branches were depicted clearly, especially compared with images obtained by 3D-CTA and 2D-DSA. 33 aneurysms were detected by 3D-CTA. 32 aneurysms were detected by 2D-DSA. Aneurysms' body, neck, parent artery and the relationship between the aneurysms and surrounding structures (bone) were clearly and surely displayed by 3D-CTA. Conclusion 3D-CTA is a sensitivity and rapid and noninvasive method for detecting aneurysms. 3D-CTA can be the first choice for diagnosing Intracranial aneurysms without performing 2D-DSA. During CT for ruptured aneurysms, a negative 3D-CTA should be investigated further by 3D-DSA. 3D-DSA should be performed in cases of multiple intracranial aneurysms with complex shapes or very small size. 3D-DSA should be the "gold standard" for detecting intracranial aneurysms.%目的 评价3D-DSA、3D-CTA、2D-DSA在颅内动脉瘤诊疗中的作用.方法 回顾性分析32例动脉瘤患者3D-DSA、3D-CTA、2D-DSA和手术资料.结果 32例患者共35个动脉瘤(有3例患者为多发动脉瘤).3D-DSA能清楚显示所有动脉瘤的形态,准确判断3例多发动脉瘤中破裂的动脉瘤且手术顺利夹闭;3D-CTA检出33个,遗漏1个前交通动脉瘤及1个颈内动脉瘤;2D-DSA检出32个,遗漏2个前交通动脉瘤和1个大脑中动脉瘤.3D-DSA及3D-CTA在显示瘤颈上明显优于2D-DSA,3D-CTA可准确显示动脉瘤与相邻骨质结构关系.结论 3D~CTA是检查颅

  8. Dense 3d Point Cloud Generation from Uav Images from Image Matching and Global Optimazation

    Rhee, S.; Kim, T.

    2016-06-01

    3D spatial information from unmanned aerial vehicles (UAV) images is usually provided in the form of 3D point clouds. For various UAV applications, it is important to generate dense 3D point clouds automatically from over the entire extent of UAV images. In this paper, we aim to apply image matching for generation of local point clouds over a pair or group of images and global optimization to combine local point clouds over the whole region of interest. We tried to apply two types of image matching, an object space-based matching technique and an image space-based matching technique, and to compare the performance of the two techniques. The object space-based matching used here sets a list of candidate height values for a fixed horizontal position in the object space. For each height, its corresponding image point is calculated and similarity is measured by grey-level correlation. The image space-based matching used here is a modified relaxation matching. We devised a global optimization scheme for finding optimal pairs (or groups) to apply image matching, defining local match region in image- or object- space, and merging local point clouds into a global one. For optimal pair selection, tiepoints among images were extracted and stereo coverage network was defined by forming a maximum spanning tree using the tiepoints. From experiments, we confirmed that through image matching and global optimization, 3D point clouds were generated successfully. However, results also revealed some limitations. In case of image-based matching results, we observed some blanks in 3D point clouds. In case of object space-based matching results, we observed more blunders than image-based matching ones and noisy local height variations. We suspect these might be due to inaccurate orientation parameters. The work in this paper is still ongoing. We will further test our approach with more precise orientation parameters.

  9. Segmented images and 3D images for studying the anatomical structures in MRIs

    Lee, Yong Sook; Chung, Min Suk; Cho, Jae Hyun

    2004-05-01

    For identifying the pathological findings in MRIs, the anatomical structures in MRIs should be identified in advance. For studying the anatomical structures in MRIs, an education al tool that includes the horizontal, coronal, sagittal MRIs of entire body, corresponding segmented images, 3D images, and browsing software is necessary. Such an educational tool, however, is hard to obtain. Therefore, in this research, such an educational tool which helps medical students and doctors study the anatomical structures in MRIs was made as follows. A healthy, young Korean male adult with standard body shape was selected. Six hundred thirteen horizontal MRIs of the entire body were scanned and inputted to the personal computer. Sixty anatomical structures in the horizontal MRIs were segmented to make horizontal segmented images. Coronal, sagittal MRIs and coronal, sagittal segmented images were made. 3D images of anatomical structures in the segmented images were reconstructed by surface rendering method. Browsing software of the MRIs, segmented images, and 3D images was composed. This educational tool that includes horizontal, coronal, sagittal MRIs of entire body, corresponding segmented images, 3D images, and browsing software is expected to help medical students and doctors study anatomical structures in MRIs.

  10. 3D MODELLING FROM UN CALIBRATED IMAGES – A COMPARATIVE STUDY

    Limi V L

    2014-03-01

    Full Text Available 3D modeling is a demanding area of research. Creating a 3D world from sequence of images captured using different mobile cameras pose additional challenge in this field. We plan to explore this area of computer vision to model a 3D world of Indian heritage sites for virtual tourism. In this paper a comparative study of the existing methods used for 3D reconstruction of un-calibrated image sequences was done. The study shows different scenario of modeling 3D objects from un-calibrated images which include community photo collection, images taken from unknown camera, 3D modeling using two un-calibrated images, etc. Hence the different methods available were studied and an overall view of the techniques used in each step of 3D reconstruction was explored. The merits and demerits of each method were also compared.

  11. CBCT-based 3D MRA and angiographic image fusion and MRA image navigation for neuro interventions.

    Zhang, Qiang; Zhang, Zhiqiang; Yang, Jiakang; Sun, Qi; Luo, Yongchun; Shan, Tonghui; Zhang, Hao; Han, Jingfeng; Liang, Chunyang; Pan, Wenlong; Gu, Chuanqi; Mao, Gengsheng; Xu, Ruxiang

    2016-08-01

    Digital subtracted angiography (DSA) remains the gold standard for diagnosis of cerebral vascular diseases and provides intraprocedural guidance. This practice involves extensive usage of x-ray and iodinated contrast medium, which can induce side effects. In this study, we examined the accuracy of 3-dimensional (3D) registration of magnetic resonance angiography (MRA) and DSA imaging for cerebral vessels, and tested the feasibility of using preprocedural MRA for real-time guidance during endovascular procedures.Twenty-three patients with suspected intracranial arterial lesions were enrolled. The contrast medium-enhanced 3D DSA of target vessels were acquired in 19 patients during endovascular procedures, and the images were registered with preprocedural MRA for fusion accuracy evaluation. Low-dose noncontrasted 3D angiography of the skull was performed in the other 4 patients, and registered with the MRA. The MRA was overlaid afterwards with 2D live fluoroscopy to guide endovascular procedures.The 3D registration of the MRA and angiography demonstrated a high accuracy for vessel lesion visualization in all 19 patients examined. Moreover, MRA of the intracranial vessels, registered to the noncontrasted 3D angiography in the 4 patients, provided real-time 3D roadmap to successfully guide the endovascular procedures. Radiation dose to patients and contrast medium usage were shown to be significantly reduced.Three-dimensional MRA and angiography fusion can accurately generate cerebral vasculature images to guide endovascular procedures. The use of the fusion technology could enhance clinical workflow while minimizing contrast medium usage and radiation dose, and hence lowering procedure risks and increasing treatment safety. PMID:27512846

  12. Four-view stereoscopic imaging and display system for web-based 3D image communication

    Kim, Seung-Cheol; Park, Young-Gyoo; Kim, Eun-Soo

    2004-10-01

    In this paper, a new software-oriented autostereoscopic 4-view imaging & display system for web-based 3D image communication is implemented by using 4 digital cameras, Intel Xeon server computer system, graphic card having four outputs, projection-type 4-view 3D display system and Microsoft' DirectShow programming library. And its performance is also analyzed in terms of image-grabbing frame rates, displayed image resolution, possible color depth and number of views. From some experimental results, it is found that the proposed system can display 4-view VGA images with a full color of 16bits and a frame rate of 15fps in real-time. But the image resolution, color depth, frame rate and number of views are mutually interrelated and can be easily controlled in the proposed system by using the developed software program so that, a lot of flexibility in design and implementation of the proposed multiview 3D imaging and display system are expected in the practical application of web-based 3D image communication.

  13. Imaging 3D strain field monitoring during hydraulic fracturing processes

    Chen, Rongzhang; Zaghloul, Mohamed A. S.; Yan, Aidong; Li, Shuo; Lu, Guanyi; Ames, Brandon C.; Zolfaghari, Navid; Bunger, Andrew P.; Li, Ming-Jun; Chen, Kevin P.

    2016-05-01

    In this paper, we present a distributed fiber optic sensing scheme to study 3D strain fields inside concrete cubes during hydraulic fracturing process. Optical fibers embedded in concrete were used to monitor 3D strain field build-up with external hydraulic pressures. High spatial resolution strain fields were interrogated by the in-fiber Rayleigh backscattering with 1-cm spatial resolution using optical frequency domain reflectometry. The fiber optics sensor scheme presented in this paper provides scientists and engineers a unique laboratory tool to understand the hydraulic fracturing processes in various rock formations and its impacts to environments.

  14. Image Reconstruction from 2D stack of MRI/CT to 3D using Shapelets

    Arathi T; Latha Parameswaran

    2014-01-01

    Image reconstruction is an active research field, due to the increasing need for geometric 3D models in movie industry, games, virtual environments and in medical fields. 3D image reconstruction aims to arrive at the 3D model of an object, from its 2D images taken at different viewing angles. Medical images are multimodal, which includes MRI, CT scan image, PET and SPECT images. Of these, MRI and CT scan images of an organ when taken, is available as a stack of 2D images, taken at different a...

  15. Statistical skull models from 3D X-ray images

    Berar, M; Bailly, G; Payan, Y; Berar, Maxime; Desvignes, Michel; Payan, Yohan

    2006-01-01

    We present 2 statistical models of the skull and mandible built upon an elastic registration method of 3D meshes. The aim of this work is to relate degrees of freedom of skull anatomy, as static relations are of main interest for anthropology and legal medicine. Statistical models can effectively provide reconstructions together with statistical precision. In our applications, patient-specific meshes of the skull and the mandible are high-density meshes, extracted from 3D CT scans. All our patient-specific meshes are registrated in a subject-shared reference system using our 3D-to-3D elastic matching algorithm. Registration is based upon the minimization of a distance between the high density mesh and a shared low density mesh, defined on the vertexes, in a multi resolution approach. A Principal Component analysis is performed on the normalised registrated data to build a statistical linear model of the skull and mandible shape variation. The accuracy of the reconstruction is under the millimetre in the shape...

  16. Modeling tumor/polyp/lesion structure in 3D for computer-aided diagnosis in colonoscopy

    Chen, Chao-I.; Sargent, Dusty; Wang, Yuan-Fang

    2010-02-01

    We describe a software system for building three-dimensional (3D) models from colonoscopic videos. The system is end-to-end in the sense that it takes as input raw image frames-shot during a colon exam-and produces the 3D structure of objects of interest (OOI), such as tumors, polyps, and lesions. We use the structure-from-motion (SfM) approach in computer vision which analyzes an image sequence in which camera's position and aim vary relative to the OOI. The varying pose of the camera relative to the OOI induces the motion-parallax effect which allows 3D depth of the OOI to be inferred. Unlike the traditional SfM system pipeline, our software system contains many check-and-balance mechanisms to ensure robustness, and the analysis from earlier stages of the pipeline is used to guide the later processing stages to better handle challenging medical data. The constructed 3D models allow the pathology (growth and change in both structure and appearance) to be monitored over time.

  17. Wearable 3-D Photoacoustic Tomography for Functional Brain Imaging in Behaving Rats

    Tang, Jianbo; Jason E. Coleman; DAI, XIANJIN; Jiang, Huabei

    2016-01-01

    Understanding the relationship between brain function and behavior remains a major challenge in neuroscience. Photoacoustic tomography (PAT) is an emerging technique that allows for noninvasive in vivo brain imaging at micrometer-millisecond spatiotemporal resolution. In this article, a novel, miniaturized 3D wearable PAT (3D-wPAT) technique is described for brain imaging in behaving rats. 3D-wPAT has three layers of fully functional acoustic transducer arrays. Phantom imaging experiments rev...

  18. Segmentation of the common carotid artery with active shape models from 3D ultrasound images

    Yang, Xin; Jin, Jiaoying; He, Wanji; Yuchi, Ming; Ding, Mingyue

    2012-03-01

    Carotid atherosclerosis is a major cause of stroke, a leading cause of death and disability. In this paper, we develop and evaluate a new segmentation method for outlining both lumen and adventitia (inner and outer walls) of common carotid artery (CCA) from three-dimensional ultrasound (3D US) images for carotid atherosclerosis diagnosis and evaluation. The data set consists of sixty-eight, 17× 2× 2, 3D US volume data acquired from the left and right carotid arteries of seventeen patients (eight treated with 80mg atorvastain and nine with placebo), who had carotid stenosis of 60% or more, at baseline and after three months of treatment. We investigate the use of Active Shape Models (ASMs) to segment CCA inner and outer walls after statin therapy. The proposed method was evaluated with respect to expert manually outlined boundaries as a surrogate for ground truth. For the lumen and adventitia segmentations, respectively, the algorithm yielded Dice Similarity Coefficient (DSC) of 93.6%+/- 2.6%, 91.8%+/- 3.5%, mean absolute distances (MAD) of 0.28+/- 0.17mm and 0.34 +/- 0.19mm, maximum absolute distances (MAXD) of 0.87 +/- 0.37mm and 0.74 +/- 0.49mm. The proposed algorithm took 4.4 +/- 0.6min to segment a single 3D US images, compared to 11.7+/-1.2min for manual segmentation. Therefore, the method would promote the translation of carotid 3D US to clinical care for the fast, safety and economical monitoring of the atherosclerotic disease progression and regression during therapy.

  19. Performance Evaluating of some Methods in 3D Depth Reconstruction from a Single Image

    Wen, Wei

    2009-01-01

    We studied the problem of 3D reconstruction from a single image. The 3D reconstruction is one of the basic problems in Computer Vision. The 3D reconstruction is usually achieved by using two or multiple images of a scene. However recent researches in Computer Vision field have enabled us to recover the 3D information even from only one single image. The methods used in such reconstructions are based on depth information, projection geometry, image content, human psychology and so on. Each met...

  20. A newly developed removable dental device for fused 3-D MRI/Meg imaging

    Kuboki, Takuo [Okayama Univ. (Japan). Dental School; Clark, G.T.; Akhtari, M.; Sutherling, W.W.

    1999-06-01

    Recently 3-D imaging techniques have been used to shed light on the role of abnormal brain functions in such conditions as nocturnal bruxism and orofacial pain. In order to achieve precise 3-D image fusion between magnetic resonance images (MRI) and magnetoencephalography (MEG) data, we developed a removable dental device which attaches rigidly to the teeth. Using this device, correlation of MEG and MRI data points was achieved by the co-registration of 3 or more fiducial points. Using a Polhemus 3-space digitizer the locations of the points were registered on MEG and then a small amount of high-water-content material was placed at each point for registering these same points on MRI. The mean reproducibility of interpoint distances, determined for 2 subjects, was between 0.59 and 0.82 mm. Using a Monte Carlo statistical analysis we determined that the accuracy of a posterior projection from the fiducial points to any point within the strata of the brain is {+-}3.3 mm. The value of this device is that it permits reasonably precise and repeatable co-registration of these points and yet it is easily removed and replaced by the patient. Obviously such a device could also be adapted for use in diagnosis and analysis of brain functions related with other various sensory and motor functions (e.g., taste, pain, clenching) in maxillofacial region using MRI and MEG. (author)

  1. A newly developed removable dental device for fused 3-D MRI/Meg imaging

    Recently 3-D imaging techniques have been used to shed light on the role of abnormal brain functions in such conditions as nocturnal bruxism and orofacial pain. In order to achieve precise 3-D image fusion between magnetic resonance images (MRI) and magnetoencephalography (MEG) data, we developed a removable dental device which attaches rigidly to the teeth. Using this device, correlation of MEG and MRI data points was achieved by the co-registration of 3 or more fiducial points. Using a Polhemus 3-space digitizer the locations of the points were registered on MEG and then a small amount of high-water-content material was placed at each point for registering these same points on MRI. The mean reproducibility of interpoint distances, determined for 2 subjects, was between 0.59 and 0.82 mm. Using a Monte Carlo statistical analysis we determined that the accuracy of a posterior projection from the fiducial points to any point within the strata of the brain is ±3.3 mm. The value of this device is that it permits reasonably precise and repeatable co-registration of these points and yet it is easily removed and replaced by the patient. Obviously such a device could also be adapted for use in diagnosis and analysis of brain functions related with other various sensory and motor functions (e.g., taste, pain, clenching) in maxillofacial region using MRI and MEG. (author)

  2. Automatic extraction of soft tissues from 3D MRI head images using model driven analysis

    This paper presents an automatic extraction system (called TOPS-3D : Top Down Parallel Pattern Recognition System for 3D Images) of soft tissues from 3D MRI head images by using model driven analysis algorithm. As the construction of system TOPS we developed, two concepts have been considered in the design of system TOPS-3D. One is the system having a hierarchical structure of reasoning using model information in higher level, and the other is a parallel image processing structure used to extract plural candidate regions for a destination entity. The new points of system TOPS-3D are as follows. (1) The TOPS-3D is a three-dimensional image analysis system including 3D model construction and 3D image processing techniques. (2) A technique is proposed to increase connectivity between knowledge processing in higher level and image processing in lower level. The technique is realized by applying opening operation of mathematical morphology, in which a structural model function defined in higher level by knowledge representation is immediately used to the filter function of opening operation as image processing in lower level. The system TOPS-3D applied to 3D MRI head images consists of three levels. First and second levels are reasoning part, and third level is image processing part. In experiments, we applied 5 samples of 3D MRI head images with size 128 x 128 x 128 pixels to the system TOPS-3D to extract the regions of soft tissues such as cerebrum, cerebellum and brain stem. From the experimental results, the system is robust for variation of input data by using model information, and the position and shape of soft tissues are extracted corresponding to anatomical structure. (author)

  3. Finding 3D Teeth Positions by Using 2D Uncalibrated Dental X-ray Images

    Sridhar, Bitra; Prasad, Dandey Venkata

    2010-01-01

    In Dental Radiology very often several radiographs (uncalibrated in position) are taken from the same person. The radiographs do not provide the depth details, and there is often requirement of three dimensional (3D) data to achieve better diagnosis by radiologist. The purpose of this project is a step forward to solve needs of dentists for evaluating the degree of severity of teeth cavities by 3D reconstruction implementing the uncalibrated radiographs. The 3D information retrieval from two ...

  4. Imaging system for creating 3D block-face cryo-images of whole mice

    Roy, Debashish; Breen, Michael; Salvado, Olivier; Heinzel, Meredith; McKinley, Eliot; Wilson, David

    2006-03-01

    We developed a cryomicrotome/imaging system that provides high resolution, high sensitivity block-face images of whole mice or excised organs, and applied it to a variety of biological applications. With this cryo-imaging system, we sectioned cryo-preserved tissues at 2-40 μm thickness and acquired high resolution brightfield and fluorescence images with microscopic in-plane resolution (as good as 1.2 μm). Brightfield images of normal and pathological anatomy show exquisite detail, especially in the abdominal cavity. Multi-planar reformatting and 3D renderings allow one to interrogate 3D structures. In this report, we present brightfield images of mouse anatomy, as well as 3D renderings of organs. For BPK mice model of polycystic kidney disease, we compared brightfield cryo-images and kidney volumes to MRI. The color images provided greater contrast and resolution of cysts as compared to in vivo MRI. We note that color cryo-images are closer to what a researcher sees in dissection, making it easier for them to interpret image data. The combination of field of view, depth of field, ultra high resolution and color/fluorescence contrast enables cryo-image volumes to provide details that cannot be found through in vivo imaging or other ex vivo optical imaging approaches. We believe that this novel imaging system will have applications that include identification of mouse phenotypes, characterization of diseases like blood vessel disease, kidney disease, and cancer, assessment of drug and gene therapy delivery and efficacy and validation of other imaging modalities.

  5. Is 3D-CT reformation using free software applicable to diagnosis of bone changes in mandibular condyles?

    Marília Gerhardt de Oliveira

    2009-06-01

    Full Text Available OBJECTIVES: This study evaluated the agreement of computed tomography (CT imaging using 3D reformations (3DR with shaded surface display (SSD and maximum intensity projection (MIP in the diagnosis of bone changes in mandibular condyles of patients with rheumatoid arthritis (RA, and compared findings with multiplanar reformation (MPR images, used as the criterion standard. MATERIAL AND METHODS: Axial CT images of 44 temporomandibular joints (TMJs of 22 patients with RA were used. Images were recorded in DICOM format and assessed using free software (ImageJ. Each sample had its 3DR-SSD and 3DR-MIP results compared in pairs with the MPR results. RESULTS: Slight agreement (k = 0.0374 was found in almost all comparisons. The level of agreement showed that 3DR-SSD and 3DR-MIP yielded a number of false-negative results that was statistically significant when compared with MPR. CONCLUSIONS: 3DR-SSD or 3DR-MIP should only be used as adjuvant techniques to MPR in the diagnosis of bone changes in mandibular condyles.

  6. A Pipeline for 3D Multimodality Image Integration and Computer-assisted Planning in Epilepsy Surgery

    Nowell, Mark; Rodionov, Roman; Zombori, Gergely; Sparks, Rachel; Rizzi, Michele; Ourselin, Sebastien; Miserocchi, Anna; McEvoy, Andrew; Duncan, John

    2016-01-01

    Epilepsy surgery is challenging and the use of 3D multimodality image integration (3DMMI) to aid presurgical planning is well-established. Multimodality image integration can be technically demanding, and is underutilised in clinical practice. We have developed a single software platform for image integration, 3D visualization and surgical planning. Here, our pipeline is described in step-by-step fashion, starting with image acquisition, proceeding through image co-registration, manual segmen...

  7. D3D augmented reality imaging system: proof of concept in mammography

    Douglas, David B; Petricoin, Emanuel F; Liotta, Lance; Wilson, Eugene

    2016-01-01

    Purpose The purpose of this article is to present images from simulated breast microcalcifications and assess the pattern of the microcalcifications with a technical development called “depth 3-dimensional (D3D) augmented reality”. Materials and methods A computer, head display unit, joystick, D3D augmented reality software, and an in-house script of simulated data of breast microcalcifications in a ductal distribution were used. No patient data was used and no statistical analysis was performed. Results The D3D augmented reality system demonstrated stereoscopic depth perception by presenting a unique image to each eye, focal point convergence, head position tracking, 3D cursor, and joystick fly-through. Conclusion The D3D augmented reality imaging system offers image viewing with depth perception and focal point convergence. The D3D augmented reality system should be tested to determine its utility in clinical practice. PMID:27563261

  8. Fast fully 3-D image reconstruction in PET using planograms.

    Brasse, D; Kinahan, P E; Clackdoyle, R; Defrise, M; Comtat, C; Townsend, D W

    2004-04-01

    We present a method of performing fast and accurate three-dimensional (3-D) backprojection using only Fourier transform operations for line-integral data acquired by planar detector arrays in positron emission tomography. This approach is a 3-D extension of the two-dimensional (2-D) linogram technique of Edholm. By using a special choice of parameters to index a line of response (LOR) for a pair of planar detectors, rather than the conventional parameters used to index a LOR for a circular tomograph, all the LORs passing through a point in the field of view (FOV) lie on a 2-D plane in the four-dimensional (4-D) data space. Thus, backprojection of all the LORs passing through a point in the FOV corresponds to integration of a 2-D plane through the 4-D "planogram." The key step is that the integration along a set of parallel 2-D planes through the planogram, that is, backprojection of a plane of points, can be replaced by a 2-D section through the origin of the 4-D Fourier transform of the data. Backprojection can be performed as a sequence of Fourier transform operations, for faster implementation. In addition, we derive the central-section theorem for planogram format data, and also derive a reconstruction filter for both backprojection-filtering and filtered-backprojection reconstruction algorithms. With software-based Fourier transform calculations we provide preliminary comparisons of planogram backprojection to standard 3-D backprojection and demonstrate a reduction in computation time by a factor of approximately 15. PMID:15084067

  9. Weighted 3D GS Algorithm for Image-Qquality Improvement of Multi-Plane Holographic Display

    李芳; 毕勇; 王皓; 孙敏远; 孔新新

    2012-01-01

    Theoretically,three-dimensional (3D) GS algorithm can realize 3D displays; however,correlation of the output image is restricted because of the interaction among multiple planes,thus failing to meet the image-quality requirements in practical applications.We introduce the weight factors and propose the weighted 3D GS algorithm,which can realize selective control of the correlation of multi-plane display based on the traditional 3D GS algorithm.Improvement in image quality is accomplished by the selection of appropriate weight factors.

  10. Flash trajectory imaging of target 3D motion

    Wang, Xinwei; Zhou, Yan; Fan, Songtao; He, Jun; Liu, Yuliang

    2011-03-01

    We present a flash trajectory imaging technique which can directly obtain target trajectory and realize non-contact measurement of motion parameters by range-gated imaging and time delay integration. Range-gated imaging gives the range of targets and realizes silhouette detection which can directly extract targets from complex background and decrease the complexity of moving target image processing. Time delay integration increases information of one single frame of image so that one can directly gain the moving trajectory. In this paper, we have studied the algorithm about flash trajectory imaging and performed initial experiments which successfully obtained the trajectory of a falling badminton. Our research demonstrates that flash trajectory imaging is an effective approach to imaging target trajectory and can give motion parameters of moving targets.