WorldWideScience

Sample records for 2p core-level photoemission

  1. Theory of photoemission from the Ni 2p core level

    Photoemission spectra are calculated for the Ni 2p core level within a small-cluster many-body scheme. The interplay between Coulomb, exchange, and spin-orbit interactions is discussed, as well as the role of extra-atomic screening. The spin-dependent transfer of spectral weight, both within and across the levels, is considered. Effects due to circular, linear, and unpolarized excitation are also examined. Local final-state configurations are reported, and a physical interpretation of the various spectral features is given. copyright 1997 The American Physical Society

  2. Detection of subsurface core-level shifts in Si 2p core-level photoemission from Si(111)-(1x1):As

    Paggel, J.J. [Philipps-Universitaet Marburg (Germany); Hasselblatt, M.; Horn, K. [Fritz-Haber Institut der Max-Planck-Gesellschraft, Berlin (Germany)] [and others

    1997-04-01

    The (7 x 7) reconstruction of the Si(111) surface arises from a lowering energy through the reduction of the number of dangling bonds. This reconstruction can be removed by the adsorption of atoms such as hydrogen which saturate the dangling bonds, or by the incorporation of atoms, such as arsenic which, because of the additional electron it possesses, can form three bonds and a nonreactive lone pair orbital from the remaining two electrons. Core and valence level photoemission and ion scattering data have shown that the As atoms replace the top silicon atoms. Previous core level spectra were interpreted in terms of a bulk and a single surface doublet. The authors present results demonstrate that the core level spectrum contains two more lines. The authors assign these to subsurface silicon layers which also experience changes in the charge distribution when a silicon atom is replaced by an arsenic atom. Subsurface core level shifts are not unexpected since the modifications of the electronic structure and/or of photohole screening are likely to decay into the bulk and not just to affect the top-most substrate atoms. The detection of subsurface components suggests that the adsorption of arsenic leads to charge flow also in the second double layer of the Si(111) surface. In view of the difference in atomic radius between As and Si, it was suggested that the (1 x 1): As surface is strained. The presence of charge rearrangement up to the second double layer implies that the atomic coordinates also exhibit deviations from their ideal Si(111) counterparts, which might be detected through a LEED I/V or photoelectron diffraction analysis.

  3. Hidden relationship between the electrical conductivity and the Mn 2p core-level photoemission spectra in La{sub 1-x}Sr{sub x}MnO{sub 3}

    Hishida, T.; Ohbayashi, K. [NGK SPARK PLUG CO., LTD., 2808 Iwasaki, Komaki, Aichi 485-8510 (Japan); Saitoh, T. [Department of Applied Physics, Tokyo University of Science, Shinjuku, Tokyo 162-8601 (Japan)

    2013-01-28

    Core-level electronic structure of La{sub 1-x}Sr{sub x}MnO{sub 3} has been studied by x-ray photoemission spectroscopy (XPS). We first report, by the conventional XPS, the well-screened shoulder structure in Mn 2p{sub 3/2} peak, which had been observed only by hard x-ray photoemission spectroscopy so far. Multiple-peak analysis revealed that the Mn{sup 4+} spectral weight was not proportional to the nominal hole concentration x, indicating that a simple Mn{sup 3+}/Mn{sup 4+} intensity ratio analysis may result in a wrong quantitative elemental analysis. Considerable weight of the shoulder at x = 0.0 and the fact that the shoulder weight was even slightly going down from x = 0.2 to 0.4 were not compatible with the idea that this weight simply represents the metallic behavior. Further analysis found that the whole Mn 2p{sub 3/2} peak can be decomposed into four portions, the Mn{sup 4+}, the (nominal) Mn{sup 3+}, the shoulder, and the other spectral weight located almost at the Mn{sup 3+} location. We concluded that this weight represents the well-screened final state at Mn{sup 4+} sites, whereas the shoulder is known as that of the Mn{sup 3+} states. We found that the sum of these two spectral weight has an empirical relationship to the conductivity evolution with x.

  4. Spin polarization and magnetic dichroism in core-level photoemission from ferromagnets

    Menchero, J G [Univ. of California, Berkeley, CA (United States). Dept. of Physics

    1997-05-01

    In this thesis we present a theoretical investigation of angle- and spin-resolved core-level photoemission from ferromagnetic Fe and Ni. We also consider magneto-dichroic effects due to reversal of the photon helicity or reversal of the sample magnetization direction. In chapter 1, we provide a brief outline of the history of photoemission, and show how it has played an important role in the development of modern physics. We then review the basic elements of the theory of core-level photoemission, and discuss the validity of the some of the commonly-used approximations. In chapter 2, we present a one-electron theory to calculate spin- and angle-resolved photoemission spectra for an arbitrary photon polarization. The Hamiltonian includes both spin-orbit and exchange interactions. As test cases for the theory, we calculate the spin polarization and magnetic dichroism for the Fe 2p core level, and find that agreement with experiment is very good.

  5. Alkaline Earth Core Level Photoemission Spectroscopy of High-Temperature Superconductors

    Vasquez, R.

    1993-01-01

    This paper examines photoemission measurements of the alkaline Earth core levels of high-temperature superconductors and related materials, models that seek to explain the large negative shifts observed relative to the corresponding alkaline Earth metals, and the effect of lattice site disorder on the core level spectra and the presence or absence of intrinsic surface peaks.

  6. Quantification of plasmon excitations in core-level photoemission

    Calculation of photoelectron spectra (PES) based on our previous dielectric response model [A. C. Simonsen et al. Phys. Rev. B 56, 1612 (1997)] for electronic excitations in PES are compared with recently reported experimental data. It is found that the dielectric description of electron energy losses in photoemission reproduces quantitatively the angular dependence of the surface and bulk electron losses observed experimentally for the Al2s photoemission spectra of Al(111), excited with MgKα radiation. The model also allows to calculate the separate intrinsic and extrinsic effects in photoemission. Thus, the extrinsic losses account for more than 95% of the total surface excitations. Regarding the bulk excitations, both extrinsic and intrinsic contributions vary significantly with emission angle. The intrinsic contribution represents ∼35% of the intensity at the bulk plasmon position at normal emission while only 18% at 80 deg. glancing emission. The calculations presented here can easily be used to interpret PES spectra of other materials in terms of intrinsic and extrinsic effects, if their dielectric properties are known

  7. Core-level and valence-band photoemission study of granular platinum films

    Photoemission and resistivity measurements have been made on Pt clusters imbedded in an amorphous silicon dioxide matrix. No significant changes in the Pt 4f/sub 7/2/ or 5d/sub 5/2/ core-level shifts or in the density of states per Pt atom at the Fermi level are seen at the percolation threshold. Most of the Pt 4f/sub 7/2/ core-level shift can be explained as a Coulomb effect due to finite cluster size. We speculate that because of the unusually large core-level shifts there may also be charge transfer from the Pt clusters to the silica matrix

  8. Evidence of the nature of core-level photoemission satellites using angle-resolved photoemission extended fine structure

    Moler, E.J.; Kellar, S.A.; Huff, W.R.A. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    The authors present a unique method of experimentally determining the angular momentum and intrinsic/extrinsic origin of core-level photoemission satellites by examining the satellite diffraction pattern in the Angle Resolved Photoemission Extended Fine Structure (ARPEFS) mode. They show for the first time that satellite peaks not associated with chemically differentiated atomic species display an ARPEFS intensity oscillation. They present ARPEFS data for the carbon 1s from ({radical}3x{radical}3)R30 CO/Cu(111) and p2mg(2xl)CO/Ni(110), nitrogen 1s from c(2x2) N{sub 2}/Ni(100), cobalt 1s from p(1x1)Co/Cu(100), and nickel 3p from clean nickel (111). The satellite peaks and tails of the Doniach-Sunjic line shapes in all cases exhibit ARPEFS curves which indicate an angular momentum identical to the main peak and are of an intrinsic nature.

  9. Direct evidence for the nature of core-level photoemission satellites using angle-resolved photoemission extended fine structure

    Photoemission satellites from several systems have been found to exhibit exactly the same angle-resolved photoemission extended fine structure (ARPEFS) as found in the main peaks, when referred to the equivalent photoelectron wave number k for their own photoelectrons. This provides a direct and powerful method for experimentally determining the angular momentum parameters and the intrinsic/extrinsic nature of core-level photoemission satellites. We present ARPEFS satellite data for nitrogen 1s line in c(2x2)N2/Ni(100), the nickel 3p line in clean nickel (111), the carbon 1s lines in (√(3)x√(3))R30 CO/Cu(111) and p2mg(2x1)CO/Ni(110), and the cobalt 1s line in p(1x1) Co/Cu(100). For the last two cases the open-quotes satelliteclose quotes structure is actually the low-energy tail of a Doniach-Sunjic line shape. The satellite peaks and the tails of the Doniach-Sunjic line shapes exhibit ARPEFS curves that in all cases except one indicate angular-momentum parameters identical to the main peak and an intrinsic nature. copyright 1997 The American Physical Society

  10. Young's double-slit experiment using two-center core-level photoemission: Photoelectron recoil effects

    Core-level photoemission from N2 can be considered an analogue of Young's double-slit experiment (YDSE) in which the double-slit is replaced by a pair of N 1s orbitals. The measured ratio between the 1σg and 1σu photoionization cross-sections oscillates as a function of photoelectron momentum, due to two-center YDSE interference, exhibiting a remarkable dependence on the vibrational sub-levels of the core ionized state. We theoretically demonstrate that the recoil of the photoelectron given to the ionized N atom strongly influences this interference pattern. The reason for this is that the momentum transfer affects the phases of the photoionization amplitudes

  11. Can circular dichroism in core-level photoemission provide a spectral fingerprint of adsorbed chiral molecules?

    Allegretti, F [Physics Department, University of Warwick, Coventry CV4 7AL (United Kingdom); Polcik, M [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D 14195 Berlin (Germany); Sayago, D I [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D 14195 Berlin (Germany); Demirors, F [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D 14195 Berlin (Germany); O' Brien, S [Physics Department, University of Warwick, Coventry CV4 7AL (United Kingdom); Nisbet, G [Centre for Applied Catalysis, Department of Chemical and Biological Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH (United Kingdom); Lamont, C L A [Centre for Applied Catalysis, Department of Chemical and Biological Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH (United Kingdom); Woodruff, D P [Physics Department, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2005-04-01

    The results of experimental measurements and theoretical simulations of circular dichroism in the angular distribution (CDAD) of photoemission from atomic core levels of each of the enantiomers of a chiral molecule, alanine, adsorbed on Cu(1 1 0) are presented. Measurements in, and out of, substrate mirror planes allow one to distinguish the CDAD due to the chirality of the sample from that due to a chiral experimental geometry. For these studies of oriented chiral molecules, the CDAD is seen not only in photoemission from the molecular chiral centre, but also from other atoms which have chiral geometries as a result of the adsorption. The magnitude of the CDAD due to the sample chirality differs for different adsorption phases of alanine, and for different emission angles and energies, but is generally small compared with CDAD out of the substrate mirror planes which is largely unrelated to the molecular chirality. While similar measurements of other molecules may reveal larger CDAD due to molecular chirality, the fact that the results for one chiral molecule show weak effects means that such CDAD is unlikely to provide a simple and routine general spectral fingerprint of adsorbed molecular chirality.

  12. Magnetism and electronic properties of Mn:Ge(111) interfaces probed by core level photoemission spectroscopy

    The electronic and magnetic properties of Mn:Ge(111) interfaces have been investigated by photoelectron spectroscopy and SQUID magnetometry. An ordered, metallic and ferromagnetic, Mn:Ge(111) interface and a disordered, semiconducting and paramagnetic, MnxGe1-x surface alloy have been considered. An analysis of the Mn 2p X-ray photoemission core line shows that the former interface can be described by a single-configuration Mn 3d6 initial state, while the latter presents satellite features typical of Mn-based diluted magnetic semiconductors, characterized by relevant ligand-to-metal charge transfer effects.

  13. Structural origin of Si-2p core-level shifts from Si(100)-c[4x2] surface: A spectral x-ray photoelectron diffraction study

    Chen, X.; Tonner, B.P. [Univ. of Wisconsin, Milwaukee, WI (United States); Denlinger, J. [Univ. of Wisconsin, Milwaukee, WI (United States)][Ernest Orlando Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    The authors have performed angle-resolved x-ray photoelectron diffraction (XPD) from a Si(100)-c(4x2) surface to study the structural origin of Si-2p core-level shifts. In the experiment, the highly resolved surface Si-2p core-level spectra were measured as a fine grid of hemisphere and photon energies, using the SpectroMicroscopy Facility {open_quotes}ultraESCA{close_quotes} instrument. By carefully decomposing the spectra into several surface peaks, the authors are able to obtain surface-atom resolved XPD patterns. Using a multiple scattering analysis, they derived a detailed atomic model for the Si(100)-c(4x2) surface. In this model, the asymmetric dimers were found tilted by 11.5 plus/minus 2.0 degrees with bond length of 2.32 plus/minus 0.05{angstrom}. By matching model XPD patterns to experiment, the authors can identify which atoms in the reconstructed surface are responsible for specific photoemission lines in the 2p spectrum.

  14. Photoemission with high-order harmonics: A tool for time-resolved core-level spectroscopy

    Christensen, Bjarke Holl; Raarup, Merete Krog; Balling, Peter

    2010-01-01

    A setup for femtosecond time-resolved photoelectron spectroscopy of solid surfaces is presented. The photon energies for core-level spectroscopy experiments are created by high-order harmonic generation from infrared 120-femtosecond laser pulses focused in a Ne gas jet. The present experimental r...... from the sample are collected by a large-solid-angle time-of-flight electron spectrometer based on a parabolic-grid reflector. Results from experiments probing the Bi 5d core-levels are presented, and the results of preliminary pump-probe experiments are described....

  15. Theory of valence-band and core-level photoemission from plutonium dioxide

    Kolorenč, Jindřich; Kozub, Agnieszka L.; Shick, Alexander

    Bristol: IOP Publishing Ltd,, 2015, 012054. ISSN 1742-6588. [International Conference on Strongly Correlated Electron Systems 2014 (SCES2014). Grenoble (FR), 07.07.2014-14.07.2014] R&D Projects: GA ČR(CZ) GAP204/10/0330 Institutional support: RVO:68378271 Keywords : electronic-structure calculations * dynamical mean-field theory * Mott insulators * actinides * oxides * photoemission Subject RIV: BM - Solid Matter Physics ; Magnetism

  16. Graphene on Au-coated SiOx substrate: Its visibility and intrinsic core-level photoemission

    Wu, Chung-Lin; Chen, Jhih-Wei; Wang, Chiang-Lun; Chen, Chia-Hao; Chen, Yi-Chun

    2012-02-01

    With the motivation of precisely and intrinsically characterizing a exfoliate graphene using photoelectron spectroscopy, a conducting substrate having high optical contrast is greatly desired. Here, we demonstrate that exfoliated graphene can be optically visible on a thin 9-nm Au-coated SiOx substrate, and can be easily conducted into scanning photoelectron microscopy/spectroscopy (SPEM/S) studies. Because of the elimination of charging effect, precisely core-level characterization of exfoliated graphene is presented with different numbers of layers. Consequently, the usage of Au-coated SiOx substrate serves a simple but effective method to study pristine graphene by photoelectron spectroscopy and other electron-detection techniques.

  17. Angle-resolved and core-level photoemission study of interfacing the topological insulator Bi1.5Sb0.5Te1.7Se1.3 with Ag, Nb, and Fe

    N. de Jong; E. Frantzeskakis; B. Zwartsenberg; Y.K. Huang; D. Wu; P. Hlawenka; J. Sanchez-Barriga; A. Varykhalov; E. van Heumen; M.S. Golden

    2015-01-01

    Interfaces between a bulk-insulating topological insulator (TI) and metallic adatoms have been studied using high-resolution, angle-resolved, and core-level photoemission. Fe, Nb, and Ag were evaporated onto Bi1.5Sb0.5Te1.7Se1.3 (BSTS) surfaces both at room temperature and 38 K. The coverage and tem

  18. A study of angle-resolved photoemission extended fine structure as applied to the Ni 3p, Cu 3s, and Cu 3p core levels of the respective clean (111) surfaces

    Huff, W.R.A.; Moler, E.J.; Kellar, S.A. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    The first non-s initial state angle-resolved photoemission extended fine structure (ARPEFS) study of clean surfaces for the purpose of further understanding the technique is reported. The surface structure sensitivity of ARPEFS applied to clean surfaces and to arbitrary initial states is studied using normal photoemission data taken from the Ni 3p core levels of a Ni(111) single crystal and the Cu 3s and the Cu 3p core-levels of a Cu(111) single crystal. The Fourier transforms of these clean surface data are dominated by backscattering. Unlike the s initial state data, the p initial state data show a peak in the Fourier transform corresponding to in-plane scattering from the six nearest-neighbors to the emitter. Evidence was seen for single-scattering events from in the same plane as the emitters and double-scattering events. Using a newly developed, multiple-scattering calculation program, ARPEFS data from clean surfaces and from p initial states can be modeled to high precision. Although there are many layers of emitters when measuring photoemission from a clean surface, test calculations show that the ARPEFS signal is dominated by photoemission from atoms in the first two crystal layers. Thus, ARPEFS applied to clean surfaces is sensitive to surface reconstruction. The known contraction of the first two Cu(111) layers is confirmed. The best-fit calculation for clean Ni(111) indicates an expansion of the first two layers. To better understand the ARPEFS technique, the authors studied s and non-s initial state photoemission from clean metal surfaces.

  19. A study of angle-resolved photoemission extended fine structure as applied to the Ni 3p, Cu 3s, and Cu 3p core levels of the respective clean (111) surfaces

    The first non-s initial state angle-resolved photoemission extended fine structure (ARPEFS) study of clean surfaces for the purpose of further understanding the technique is reported. The surface structure sensitivity of ARPEFS applied to clean surfaces and to arbitrary initial states is studied using normal photoemission data taken from the Ni 3p core levels of a Ni(111) single crystal and the Cu 3s and the Cu 3p core-levels of a Cu(111) single crystal. The Fourier transforms of these clean surface data are dominated by backscattering. Unlike the s initial state data, the p initial state data show a peak in the Fourier transform corresponding to in-plane scattering from the six nearest-neighbors to the emitter. Evidence was seen for single-scattering events from in the same plane as the emitters and double-scattering events. Using a newly developed, multiple-scattering calculation program, ARPEFS data from clean surfaces and from p initial states can be modeled to high precision. Although there are many layers of emitters when measuring photoemission from a clean surface, test calculations show that the ARPEFS signal is dominated by photoemission from atoms in the first two crystal layers. Thus, ARPEFS applied to clean surfaces is sensitive to surface reconstruction. The known contraction of the first two Cu(111) layers is confirmed. The best-fit calculation for clean Ni(111) indicates an expansion of the first two layers. To better understand the ARPEFS technique, the authors studied s and non-s initial state photoemission from clean metal surfaces

  20. Photoelectron spectroscopy at a free-electron laser. Investigation of space-charge effects in angle-resolved and core-level spectroscopy and realizaton of a time-resolved core-level photoemission experiment

    The free-electron laser (FEL) in Hamburg (FLASH) is a very interesting light source with which to perform photoelectron spectroscopy (PES) experiments. Its special characteristics include highly intense photon pulses (up to 100 J/pulse), a photon energy range of 30 eV to 1500 eV, transverse coherence as well as pulse durations of some ten femtoseconds. Especially in terms of time-resolved PES (TRPES), the deeper lying core levels can be reached with photon energies up to 1500 eV with acceptable intensity now and, therefore, element-specific, time-resolved core-level PES (XPS) is feasible at FLASH. During the work of this thesis various experimental setups were constructed in order to realize angle-resolved (ARPES), core-level (XPS) as well as time-resolved PES experiments at the plane grating monochromator beamline PG2 at FLASH. Existing as well as newly developed systems for online monitoring of FEL pulse intensities and generating spatial and temporal overlap of FEL and optical laser pulses for time-resolved experiments are successfully integrated into the experimental setup for PES. In order to understand space-charge effects (SCEs) in PES and, therefore, being able to handle those effects in future experiments using highly intense and pulsed photon sources, the origin of energetic broadenings and shifts in photoelectron spectra are studied by means of a molecular dynamic N-body simulation using a modified Treecode Algorithm for sufficiently fast and accurate calculations. It turned out that the most influencing parameter is the ''linear electron density'' - the ratio of the number of photoelectrons to the diameter of the illuminated spot on the sample. Furthermore, the simulations could reproduce the observations described in the literature fairly well. Some rules of thumb for XPS and ARPES measurements could be deduced from the simulations. Experimentally, SCEs are investigated by means of ARPES as well as XPS measurements as a function of FEL pulse

  1. Photoelectron spectroscopy at a free-electron laser. Investigation of space-charge effects in angle-resolved and core-level spectroscopy and realizaton of a time-resolved core-level photoemission experiment

    Marczynski-Buehlow, Martin

    2012-01-30

    The free-electron laser (FEL) in Hamburg (FLASH) is a very interesting light source with which to perform photoelectron spectroscopy (PES) experiments. Its special characteristics include highly intense photon pulses (up to 100 J/pulse), a photon energy range of 30 eV to 1500 eV, transverse coherence as well as pulse durations of some ten femtoseconds. Especially in terms of time-resolved PES (TRPES), the deeper lying core levels can be reached with photon energies up to 1500 eV with acceptable intensity now and, therefore, element-specific, time-resolved core-level PES (XPS) is feasible at FLASH. During the work of this thesis various experimental setups were constructed in order to realize angle-resolved (ARPES), core-level (XPS) as well as time-resolved PES experiments at the plane grating monochromator beamline PG2 at FLASH. Existing as well as newly developed systems for online monitoring of FEL pulse intensities and generating spatial and temporal overlap of FEL and optical laser pulses for time-resolved experiments are successfully integrated into the experimental setup for PES. In order to understand space-charge effects (SCEs) in PES and, therefore, being able to handle those effects in future experiments using highly intense and pulsed photon sources, the origin of energetic broadenings and shifts in photoelectron spectra are studied by means of a molecular dynamic N-body simulation using a modified Treecode Algorithm for sufficiently fast and accurate calculations. It turned out that the most influencing parameter is the ''linear electron density'' - the ratio of the number of photoelectrons to the diameter of the illuminated spot on the sample. Furthermore, the simulations could reproduce the observations described in the literature fairly well. Some rules of thumb for XPS and ARPES measurements could be deduced from the simulations. Experimentally, SCEs are investigated by means of ARPES as well as XPS measurements as a function of

  2. High temperature thermal stability of the HfO2/Ge (100) interface as a function of surface preparation studied by synchrotron radiation core level photoemission

    High resolution soft x-ray photoemission spectroscopy (SXPS) have been used to study the high temperature thermal stability of ultra-thin atomic layer deposited (ALD) HfO2 layers (∼1 nm) on sulphur passivated and hydrofluoric acid (HF) treated germanium surfaces. The interfacial oxides which are detected for both surface preparations following HfO2 deposition can be effectively removed by annealing upto 700 °C without any evidence of chemical interaction at the HfO2/Ge interface. The estimated valence and conduction band offsets for the HfO2/Ge abrupt interface indicated that effective barriers exist to inhibit carrier injection.

  3. Core level photoemission spectroscopy and chemical bonding in Sr2Ta2O7

    Atuchin, V. V.; Grivel, Jean-Claude; Zhang, Z. M.

    2009-01-01

    -O bonds was characterized by the binding energy differences between the O 1s and cation core levels, Delta(O-Sr) = BE(O 1s) - BE(Sr 3d(5/2)) and Delta(O-Ta) = BE(O 1s) - BE(Ta 4f(7/2)). The chemical bonding effects were considered on the basis of our XPS results for Sr2Ta2O7 and earlier published...... structural and XPS data for other Sr- and Ta-containing oxide compounds. The new data point for Sr2Ta2O7 is consistent with the previously derived relationship for a set of Sr-bearing oxides. The binding energy difference Delta(O-Sr) was found to decrease with increasing bond distance L(Sr-O)....

  4. Line shape and composition of the In 3d5/2 core-level photoemission for the interface analysis of In-containing III–V semiconductors

    Highlights: • Photoelectron study of the controversial In 3d line shape of III–V semiconductors. • The spectral envelope is found to be fit well by a combination of symmetric peaks. • The energy band gap has no effect on the spectral features of In 3d peak. • In 3d emissions are described well with reconstruction-induced core-level shifts. • The results are important to photoelectron studies of the III–V device materials. - Abstract: The In 3d5/2 photoelectron spectroscopy peak has been widely used to determine the interface structures of In-containing III–V device materials (e.g., oxidation states). However, an unclear parameter affecting the determination of the energy shifts and number of the core-level components, and therefore, the interpreted interface structure and composition, is still the intrinsic In 3d5/2 peak line shape. It is undecided whether the line shape is naturally symmetric or asymmetric for pure In-containing III–V compounds. By using high-resolution photoelectron spectroscopy, we show that the In 3d5/2 asymmetry arising from the emission at high binding-energy tail is not an intrinsic property of InAs, InP, InSb and InGaAs. Furthermore, it is shown that asymmetry of In 3d5/2 peaks of pure III–V's originates from the natural surface reconstructions which cause the coexistence of slightly shifted In 3d5/2 components with the symmetric peak shape and dominant Lorentzian broadening

  5. Core-level and valence band photoemission study of La1-xSrxMnO3 perovskite oxide powders synthesized by mechanically and thermally activated solid-state reaction

    High-resolution core-level and valence band x-ray photoemission spectroscopy measurements were performed on La1-xSrxMnO3 perovskite oxide powders synthesized for applications in solid-oxide fuel cells by high-temperature solid-state reaction (x = 0.3 and 0.19) and by room-temperature mechanical activation of the precursors (x = 0.3). A structure in the valence band at about 1 eV below the Fermi level was clearly observed and assigned to the emission from the Mn 3d-derived eg1↑ states, thereby allowing the extraction of information about correlation effects in this type of material. Both the core-level and valence band spectral features were found to be independent of the choice of synthesis route. This finding indicates that mechanical activation, due to its lower synthesis temperature, can represent a valid alternative method of synthesis allowing a better control of the microstructure. (author)

  6. Young's double-slit experiment using core-level photoemission from N2: revisiting Cohen-Fano's two-centre interference phenomenon

    The core-level photoelectron spectra of N2 molecules are observed at high energy resolution, resolving the 1σg and 1σu components as well as the vibrational components in the extended energy region from the threshold up to 1 keV. The σg/σu cross section ratios display modulation as a function of photoelectron momentum due to the two-centre interference, analogous to the classical Young's double-slit experiment, as predicted by Cohen and Fano a long time ago. The Cohen-Fano interference modulations display different phases depending on the vibrational excitations in the core-ionized state. Extensive ab initio calculations have been performed within the Hartree-Fock and random phase approximations in prolate spheroidal coordinates. The dependence of photoionization amplitudes on the vibrational states was taken into account using the Born-Oppenheimer approximation. The ab initio results are in reasonable agreement with the experimental data. The theoretical analysis allows the modulation to be connected with the onset of transitions to the states of increasing orbital angular momentum which occurs at increasing photon energies. Deviation from the Cohen-Fano formula is found for both the experimental and the ab initio results and is attributed to electron scattering by the neighbouring atom. A new formula for the interference modulation is derived within the framework of the multiple scattering technique. It differs from the classical Cohen-Fano formula by the addition of twice the scattering phase of the photoelectron by the neighbouring atom. We demonstrate that one can measure directly the scattering phase by fitting our formula to the experimental results

  7. Inverse photoemission and photoemission spectroscopic studies on sputter-annealed Ni–Mn–Sn and Ni–Mn–In surfaces

    Maniraj, M., E-mail: mr.maniraj@gmail.com [UGC-DAE Consortium for Scientific Research, Khandwa Road, Indore 452001, Madhya Pradesh (India); D' Souza, S.W. [UGC-DAE Consortium for Scientific Research, Khandwa Road, Indore 452001, Madhya Pradesh (India); Singh, Sandeep; Biswas, C. [Department of Condensed Matter Physics and Materials Science, SN Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700098, West Bengal (India); Majumdar, S. [Indian Association for the Cultivation of Science, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal (India); Barman, S.R. [UGC-DAE Consortium for Scientific Research, Khandwa Road, Indore 452001, Madhya Pradesh (India)

    2014-12-15

    Highlights: • Inverse photoemission spectra dominated by Mn 3d-like states. • Photoemission spectra show change in Ni 3d-Mn 3d hybridization with composition. • Rigid band shift is observed between Ni{sub 2}MnIn and Ni{sub 2}MnSn. • Mn 2p and 3s core-level spectra exhibit existence of exchange splitting. - Abstract: The electronic structure of nearly stoichiometric Ni–Mn–Sn and Ni–Mn–In surface is investigated by inverse photoemission and photoemission spectroscopy. Comparison of the experimental and calculated inverse photoemission spectra shows that the dominant feature is related to Mn 3d-like states. The overall shape and peak position of the theoretically obtained spectra show good agreement with the experimental ultraviolet photoemission valence band spectra. The changes in the composition dependent ultraviolet photoemission spectra reveal the change in degree of Ni 3d and Mn 3d band hybridization. Both inverse photoemission and ultraviolet photoemission study show a rigid band shift between Ni{sub 2}MnIn and Ni{sub 2}MnSn because of band filling, due to increase in the number of 5p electrons from In to Sn. Mn 2p and 3s core-level reveal unambiguous existence of exchange splitting in both the materials.

  8. Observation of the two-hole satellite in Cr and Fe metal by resonant photoemission at the 2p absorption energy

    Valence-band spectra of Cr and Fe metal were measured with photon energies around their respective 2p energies. An Auger signal is found to be superimposed on the valence-band photoemission signal for photon energies at and above the 2p absorption energy, but also for excitation energies down to ∼4 eV below the 2p absorption energy. This is the radiationless resonance Raman (resonant Raman Auger) regime and gives rise to a signal that is equivalent, in terms of the final state, to the 6 eV satellite in Ni with energies at 3.5 eV below EF in Cr and 3.2 eV below EF in Fe. (c) 2000 The American Physical Society

  9. Theory of spin-state selective nonlocal screening in Co 2p X-ray photoemission spectrum of LaCoO3

    The Co 2p X-ray photoemission spectrum (XPS) of LaCoO3 is investigated using a dp model simulating Co 3d and O 2p orbitals by means of a dynamical mean-field approach under the perovskite crystal structure. Across the spin-state transition from the low-spin to the high-spin state, the Co 2p3/2 main-line structure is substantially changed beyond expectation of a CoO6 cluster model calculation. In addition to the Coulombic multiplet effect, the origin of the spectral change is attributed to the nonlocal screening (NLS) from the correlated 3d band located on the top of the valence band to the core-excited Co site in the final state, where the NLS is practically active only for the high-spin state. The spin-state selectivity of the NLS is closely related to not only the spin state of the core-excited Co ion but also the spin and orbital character of the occupied Co 3d band in crystals. We emphasize that the Co 2p XPS can be an informative probe to investigate the spin state of Co ions in Co oxides, such as LaCoO3. (author)

  10. Photoemission Electronic States and Correlation Energies of Magnetite Based Compounds

    The photoemission spectra (XPS/UPS) for iron oxides, stoichiometric magnetite and for selected Ti and Zn doped magnetite single crystals are presented. From the Fe-3s split lines the exchange energies for FeO, Fe2O3 and magnetite based samples were estimated. It was shown that Ti and Zn ions are of 4+ and 2+ valency, respectively. The correlation energies were estimated from the Fe2p3/2 core-level spectra and from the L3- M4,5, M4,5 Auger lines. The type of insulating gap in these compounds was discussed. (author)

  11. Soft X-ray Absorption and Photoemission Studies of Ferromagnetic Mn-Implanted 3$C$-SiC

    Song, Gyong Sok; Kataoka, Takashi; Kobayashi, Masaki; Hwang, Jong Il; Takizawa, Masaru; Fujimori, Atsushi; Ohkochi, Takuo; Takeda, Yukiharu; Okane, Tetsuo; Saitoh, Yuji; Yamagami, Hiroshi; Takano, Fumiyoshi; Akinaga, Hiro

    2008-01-01

    We have performed x-ray photoemission spectroscopy (XPS), x-ray absorption spectroscopy (XAS), and resonant photoemission spectroscopy (RPES) measurements of Mn-implanted 3$C$-SiC (3$C$-SiC:Mn) and carbon-incorporated Mn$_{5}$Si$_{2}$ (Mn$_{5}$Si$_{2}$:C). The Mn 2$p$ core-level XPS and XAS spectra of 3$C$-SiC:Mn and Mn$_{5}$Si$_{2}$:C were similar to each other and showed "intermediate" behaviors between the localized and itinerant Mn 3$d$ states. The intensity at the Fermi level was found t...

  12. Determination of shallow core level spectra in selected compound semiconductors

    Core level spectra of the M shells of Ga, Ge, As, and Se and of the L shell of S have been obtained from X-ray photoemission measurements on GaAs, GeSe, and GeS. Broadening contributions from the achromatic source, the analyzer momentum window, and the extrinsic losses experienced by the photoemitted electrons in traversing the solid, as well as satellite lines due to Kα3sub(,)4 emission, are removed by deconvolution of the data with a measured electron backscatter spectrum convoluted with a source function. The results are compared with theory where available. (orig.)

  13. Angle-integrated photoemission studies of ruthocuprate Eu_2-xCe_xRuSr_2Cu_2O_10, Gd_2RuSr_2Cu_2O_10 and Eu_1.5Nb_1-xRu_xCu_2O_10 systems

    Frazer, B.; Hirai, Y.; Rast, Simon; Felner, I.; Asaf, U.; Onellion, M.

    2000-03-01

    We report on both resonant photoemission and fixed photon energy studies of the conduction band and core levels for several ruthocuprate systems. The pure Ru-containing compounds exhibit ferromagnetic order, with metallic behavior and superconductivity depending on the rare earth and oxygen content. We report on as-prepared, hydrogen loaded, and oxygen-annealed polycrystalline samples. The Nb-Ru series changes from purely superconducting to both ferromagnetic and superconducting (Ru). The resonant photoemission measurements of the conduction band across the Ru4p, Cu3p, and Eu4d core levels allow us to determine the location and contribution of Ru, Cu and rare earth related states in the conduction band. The O1s, Cu2p, Ru3p, Ce4d, and Gd4d and several Nb core levels allow us to determine the valence of Ru and Nb, and the metallicity of the Ru/Nb, rare earth, and CuO2 planes.

  14. Surface core-level shifts for Ge(100)-(2 x 1)

    Miller, T.; Rosenwinkel, E.; Chiang, T.C.

    1983-01-01

    Using surface-sensitive photoemission techniques, Ge 3d core-level binding energies for surface atoms of Ge(100)-(2 x 1) are found to be smaller than the bulk values by 0.41 eV. The surface atoms with shifted core-level binding energies correspond to one full (100) atomic layer. A surface core-exciton resonance is observed in the partial-yield measurements. The empty surface state involved in this excitonic transition, without binding-energy correction, is located at the valence-band maximum. 14 references, 2 figures, 1 table.

  15. Surface core-level shifts for Ge(100)-(2 x 1)

    Miller, T.; Rosenwinkel, E.; Chiang, T.C.

    1983-01-01

    Using surface-sensitive photoemission techniques, Ge 3d core-level binding energies for surface atoms of Ge(100)-(2 x 1) are found to be smaller than the bulk values by 0.41 eV. The surface atoms with shifted core-level binding energies correspond to one full (100) atomic layer. A surface core-exciton resonance is observed in the partial-yield measurements. The empty surface state involved in this excitonic transition, without binding-energy correction, is located at the valence-band maximum.

  16. An implementation of core level spectroscopies in a real space Projector Augmented Wave density functional theory code

    Ljungberg, M.P.; Mortensen, Jens Jørgen; Pettersson, L.G.M.

    2011-01-01

    We describe the implementation of K-shell core level spectroscopies (X-ray absorption (XAS), X-ray emission (XES), and X-ray photoemission (XPS)) in the real-space-grid-based Projector Augmented Wave (PAW) GPAW code. The implementation for XAS is based on the Haydock recursion method avoiding...

  17. Inverse photoemission and resonant photoemission characterization of semimagnetic semiconductors

    The new magnetotransport and magneto-optical properties of the semimagnetic Cd/sub 1-//sub x/Mn/sub x/Te semiconductor alloy series depend critically on the nature of the Mn-derived d states. We examine here the electronic structure of these alloys with a combination of inverse photoemission spectroscopy, core-level photoemission line-shape analysis, valence-band resonant photoemission, and local density pseudofunction theory. The spectroscopic data reflect the local Mn--Te coordination and are in remarkable agreement with our one-electron calculations. We see no evidence of Mn-derived d states in the gap, and observe an experimental dup-arrow--darrow-down exchange splitting of 8.4 +- 0.4 eV, i.e., almost twice as large as expected from earlier theoretical estimates. The ground-state configuration of Mn in the solid is primarily (dup-arrow)(sup-arrow)(pup-arrow), and the super-exchange interaction has an important role in determining the stability of such a configuration relative to (dup-arrow)5s2

  18. Angle-resolved photoemission extended fine structure: Multiple layers of emitters and multiple initial states

    Huff, W.R.A.; Kellar, S.A.; Moler, E.J. [Lawrence Berkeley Lab., CA (US)]|[California Univ., Berkeley, CA (US). Dept. of Chemistry; Chen, Y.; Wu, H.; Shirley, D.A. [Pennsylvania State Univ., University Park, PA (US). Dept. of Chemistry and Physics; Hussain, Z. [California Univ., Berkeley, CA (US). Dept. of Chemistry

    1995-08-01

    Recently, angle-resolved photoemission extended fine structure (ARPEFS) has been applied to experimental systems involving multiple layers of emitters and non-s core-level photoemission in an effort to broaden the utility of the technique. Most of the previous systems have been comprised of atomic or molecular overlayers adsorbed onto a single-crystal, metal surface and the photoemission data were taken from an s atomic core-level in the overlayer. For such a system, the acquired ARPEFS data is dominated by the p{sub o} final state wave backscattering from the substrate atoms and is well understood. In this study, we investigate ARPEFS as a surface-region structure determination technique when applied to experimental systems comprised of multiple layers of photoemitters and arbitrary initial state core-level photoemission. Understanding the data acquired from multiple layers of photoemitters is useful for studying multilayer interfaces, ''buried'' surfaces, and clean crystals in ultra- high vacuum. The ability to apply ARPEFS to arbitrary initial state core-level photoemission obviously opens up many systems to analysis. Efforts have been ongoing to understand such data in depth. We present clean Cu(111) 3s, 3p, and 3d core-level, normal photoemission data taken on a high resolution soft x-ray beamline 9.3.2 at the Advanced Light Source in Berkeley, California and clean Ni(111) 3p normal photoemission data taken at the National Synchrotron Light Source in Upton, New York, USA.

  19. Angle-resolved photoemission extended fine structure: Multiple layers of emitters and multiple initial states

    Recently, angle-resolved photoemission extended fine structure (ARPEFS) has been applied to experimental systems involving multiple layers of emitters and non-s core-level photoemission in an effort to broaden the utility of the technique. Most of the previous systems have been comprised of atomic or molecular overlayers adsorbed onto a single-crystal, metal surface and the photoemission data were taken from an s atomic core-level in the overlayer. For such a system, the acquired ARPEFS data is dominated by the po final state wave backscattering from the substrate atoms and is well understood. In this study, we investigate ARPEFS as a surface-region structure determination technique when applied to experimental systems comprised of multiple layers of photoemitters and arbitrary initial state core-level photoemission. Understanding the data acquired from multiple layers of photoemitters is useful for studying multilayer interfaces, ''buried'' surfaces, and clean crystals in ultra- high vacuum. The ability to apply ARPEFS to arbitrary initial state core-level photoemission obviously opens up many systems to analysis. Efforts have been ongoing to understand such data in depth. We present clean Cu(111) 3s, 3p, and 3d core-level, normal photoemission data taken on a high resolution soft x-ray beamline 9.3.2 at the Advanced Light Source in Berkeley, California and clean Ni(111) 3p normal photoemission data taken at the National Synchrotron Light Source in Upton, New York, USA

  20. Photoemission spectroscopy of composition and doping of high-temperature superconductors

    The authors present a systematic study of compositional and doping effects in Bi2Sr2CaCu2Oy high-Tc superconductors performed with photoemission spectroscopy. The study has been extended to Y-doping and I-intercalation of Bi-2212 high quality single crystals. The main results is that each type of dopant affects the crystal composition in its own way. Yttrium affects the Ca and Sr planes, producing a charge transfer into the CuO planes. For I-doping, they find that the main effect is a change in the interplanar distance, but X-ray Photoemission Spectroscopy (XPS) allows to see that the decrease of the critical temperature is not caused only by a structure parameter, but by a over-doping of copper planes (hole doping). They performed also a comparative study by Angle Resolved Ultraviolet Photoemission Spectroscopy [ARUPS] between this sample and an oxygen annealed specimen. XPS Cu2p core level data establish that the hole concentration in the CuO2 planes is essentially the same for these two kinds of samples. ARUPS measurements show that electronic structure of the normal states near the Fermi level has been strongly affected by iodine intercalation

  1. Core level spectroscopy in YBa2Cu3O7-δ

    The characterization of the surface electronic structure as a function of the oxygen content by means of photoemission is presented for sintered powders, films and single crystals of YBa2Cu3O7-δ. Core levels lineshapes of O, Ba and Cu are strongly influenced by the oxygen stoichiometry that is varied by heating cycles in vacuo and in O2 atmosphere. The evolution of the core levels following oxygen in- and out-diffusion was followed by X-ray diffraction measurements. The results included in this paper indicate that the observed spectral changes are related to the oxygen deficiency in the chains more than to extrinsic contamination of the surface and point to the importance of charge redistribution and oxygen ordering in the basal plane

  2. X-ray photoelectron spectrometry and binding energies of Be 1s and O 1s core levels in clinobarylite, BaBe2Si2O7, from Khibiny massif, Kola peninsula

    The electronic structure of BaBe2Si2O7, clinobarylite, has been investigated by means of X-ray photoelectron spectroscopy (XPS). The valence band of the crystal is mainly formed by Ba 5p, Ba 3s and O 2s states. At higher binding energies the emission lines related to the Si 2p, Be 1s, Si 2s, O 1s and numerous Ba-related states were analyzed in the photoemission spectrum. The Si KLL Auger line has been measured under excitation by the bremsstrahlung X-rays from the Al anode. Chemical bonding effects for Be 1s core level have been considered by comparison with electronic parameters measured for other beryllium containing oxides

  3. Coherent and incoherent processes in resonant photoemission

    Magnuson, M.; Karis, O.; Weinelt, M. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    In this contribution the authors present the distinction between coherent and incoherent processes in resonant photoemission. As a first step they determine whether an autoionization process is photoemission-like or Auger-like. The discussion is based on measurements for a weakly bonded adsorption system, Ar/Pt(111). This type of system is well adapted to investigate these effects since it yields distinctly shifted spectral features depending on the nature of the process. After this, the question of resonance photoemission in metallic systems is addressed. This is done in connection with measurements at the 2p edges for Ni metal. Ni has been one of the prototype systems for resonant photoemission. The resonances have been discussed in connection with the strong correlation and d-band localization effects in this system. Based on the results some general comments about the appearance of resonant effects in metallic systems are made.

  4. Ba 4d core-level spectroscopy in the YBa2Cu3O6.9 high-Tc superconductor: Existence of a surface-shifted component

    Two sets of spin-orbit split Ba 4d core-level photoemission peaks were observed in a crystal of YBa2Cu3O6.9. From constant final-state measurements taken as a function of kinetic energy, the low-binding-energy doublet is identified as a surface component. Possible origins of the surface shift are discussed

  5. Angle-resolved photoemission extended fine structure

    Measurements of the Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) from the S(1s) core level of a c(2 x 2)S/Ni(001) are analyzed to determine the spacing between the S overlayer and the first and second Ni layers. ARPEFS is a type of photoelectron diffraction measurement in which the photoelectron kinetic energy is swept typically from 100 to 600 eV. By using this wide range of intermediate energies we add high precision and theoretical simplification to the advantages of the photoelectron diffraction technique for determining surface structures. We report developments in the theory of photoelectron scattering in the intermediate energy range, measurement of the experimental photoemission spectra, their reduction to ARPEFS, and the surface structure determination from the ARPEFS by combined Fourier and multiple-scattering analyses. 202 refs., 67 figs., 2 tabs

  6. In-situ X-ray Photoemission Spectroscopy Study of Atomic Layer Deposition of TiO2 on Silicon Substrate

    Youb Lee, Seung; Jeon, Cheolho; Kim, Seok Hwan; Kim, Yooseok; Jung, Woosung; An, Ki-Seok; Park, Chong-Yun

    2012-03-01

    In-situ X-ray photoemission spectroscopy (XPS) has been used to investigate the initial stages of TiO2 growth on a Si(001) substrate by atomic layer deposition (ALD). The core level spectra of Si 2p, C 1s, O 1s, and Ti 2p were measured at every half reaction in the titanium tetra-isopropoxide (TTIP)-H2O ALD process. The ligand exchange reactions were verified using the periodic oscillation of the C 1s concentration, as well as changes in the hydroxyl concentration. XPS analysis revealed that Ti2O3 and Si oxide were formed at the initial stages of TiO2 growth. A stoichiometric TiO2 layer was dominantly formed after two cycles and was chemically saturated after four cycles.

  7. Quanty for core level spectroscopy - excitons, resonances and band excitations in time and frequency domain

    Haverkort, Maurits W.

    2016-05-01

    Depending on the material and edge under consideration, core level spectra manifest themselves as local excitons with multiplets, edge singularities, resonances, or the local projected density of states. Both extremes, i.e., local excitons and non-interacting delocalized excitations are theoretically well under control. Describing the intermediate regime, where local many body interactions and band-formation are equally important is a challenge. Here we discuss how Quanty, a versatile quantum many body script language, can be used to calculate a variety of different core level spectroscopy types on solids and molecules, both in the frequency as well as the time domain. The flexible nature of Quanty allows one to choose different approximations for different edges and materials. For example, using a newly developed method merging ideas from density renormalization group and quantum chemistry [1-3], Quanty can calculate excitons, resonances and band-excitations in x-ray absorption, photoemission, x-ray emission, fluorescence yield, non-resonant inelastic x-ray scattering, resonant inelastic x-ray scattering and many more spectroscopy types. Quanty can be obtained from: http://www.quanty.org.

  8. Gas-phase photoemission with soft x-rays: cross sections and angular distributions

    Shirley, D.A.; Kobrin, P.H.; Truesdale, C.M.; Lindle, D.W.; Ferrett, T.A.; Heimann, P.A.; Becker, U.; Kerkhoff, H.G.; Southworth, S.H.

    1983-09-01

    A summary is presented of typical gas-phase photoemission studies based on synchrotron radiation in the 50-5000 eV range, using beam lines at the Stanford Synchrotron Radiation Laboratory. Three topics are addressed: atomic inner-shell photoelectron cross sections and asymmetries, correlation peaks in rare gases, and core-level shape resonances in molecules.

  9. Photoemission and ferromagnetism

    Photoemission is a well established technique for the study of the electronic structure of atoms and solids. In particular, angle-resolved photoemission has been used extensively to map the band structure of clean and adsorbate covered surfaces, both metal and semiconductor. Extending the technique by measuring the spin of the photoemitted electrons allows the possibility of examining the exchange split band structures characterizing ferromagnetic systems. Here the technique becomes particularly useful in the study of the magnetic properties of surfaces, thin films and associated interfaces

  10. Fourier transform photoemission spectroscopy

    Meinders, M.B J; Drabe, K.E.; Jonkman, H.T.; Sawatzky, G.A

    1996-01-01

    It is shown that photoemission spectra can be obtained by exciting the electrons with two phase-correlated wave trains. The phase-correlated wave trains are obtained by sending broad-band ultra-violet light, coming from a deuterium lamp, through a Michelson interferometer. It is possible to stabiliz

  11. Core level excitations—A fingerprint of structural and electronic properties of epitaxial silicene

    Friedlein, R., E-mail: friedl@jaist.ac.jp; Fleurence, A.; Aoyagi, K.; Yamada-Takamura, Y. [School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1, Asahidai, Nomi, Ishikawa 923-1292 (Japan); Jong, M. P. de; Van Bui, H.; Wiggers, F. B. [MESA Institute for Nanotechnology, University of Twente, 7500 AE Enschede (Netherlands); Yoshimoto, S.; Koitaya, T.; Shimizu, S.; Noritake, H.; Mukai, K.; Yoshinobu, J. [The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan)

    2014-05-14

    From the analysis of high-resolution Si 2p photoelectron and near-edge x-ray absorption fine structure (NEXAFS) spectra, we show that core level excitations of epitaxial silicene on ZrB{sub 2}(0001) thin films are characteristically different from those of sp{sup 3}-hybridized silicon. In particular, it is revealed that the lower Si 2p binding energies and the low onset in the NEXAFS spectra as well as the occurrence of satellite features in the core level spectra are attributed to the screening by low-energy valence electrons and interband transitions between π bands, respectively. The analysis of observed Si 2p intensities related to chemically distinct Si atoms indicates the presence of at least one previously unidentified component. The presence of this component suggests that the observation of stress-related stripe domains in scanning tunnelling microscopy images is intrinsically linked to the relaxation of Si atoms away from energetically unfavourable positions.

  12. Photoemission, Correlation and Superconductivity:

    Abrecht, M.; Ariosa, D.; Cloëtta, D.; Pavuna, D.; Perfetti, L.; Grioni, M.; Margaritondo, G.

    We review some of the problems still affecting photoemission as a probe of high-temperature superconductivity, as well as important recent results concerning their solution. We show, in particular, some of the first important results on thin epitaxial films grown by laser ablation, which break the monopoly of cleaved BCSCO in this type of experiments. Such results, obtained on thin LSCO, may have general implications on the theory of high-temperature superconductivity.

  13. Angle-resolved photoemission spectroscopy observation of anomalous electronic states in EuFe2As2−xPx

    We used angle-resolved photoemission spectroscopy to investigate the electronic structure and the Fermi surface of EuFe2As2, EuFe2As1.4P0.6 and EuFe2P2. We observed doubled core level peaks associated with the pnictide atoms. Using K atoms evaporated at the surface to affect the surface quality, we show that one component of these doubled peaks is related to a surface state. Nevertheless, strong electronic dispersion along the c-axis, especially pronounced in EuFe2P2, is observed for at least one band, thus indicating that the Fe states, albeit probably affected at the surface, do not form pure two-dimensional surface states. We determine the evolution of the Fermi surface as a function of the P content and reveal that the hole Fermi surface pockets enlarge with increasing P content. We also show that the spectral weight near the Fermi level of EuFe2P2 is reduced as compared to that of EuFe2As2 and EuFe2As1.4P0.6. Finally, we identify the electronic states associated with the Eu2+ f states and show an anomalous jump in EuFe2P2. (paper)

  14. Core-level XPS spectra of fullerene, highly oriented pyrolitic graphite, and glassy carbon

    Leiro, J A; Laiho, T; Batirev, I G

    2003-01-01

    The C 1s spectra of fullerene C sub 6 sub 0 , highly oriented pyrolitic graphite (HOPG) and amorphous carbon (a-C) have been measured using X-ray photoemission. The assumed background due to the inelastic scattering of electrons of these spectra has been subtracted by the Tougaard's method. The relative intensities and the energy positions for the core-level satellites have been determined. For C sub 6 sub 0 , a comparison of the low energy pi type shake-up satellites gives good agreement between theory and experiment. Also, the energies of these features for fullerene and glassy carbon are very similar, whereas the corresponding energies for HOPG are somewhat larger, presumably, because of the higher density of the latter. Moreover, the atomic force microscopy (AFM) study indicates that the C sub 6 sub 0 samples consist of a thick layer of large clusters on the Si(111) surface, which is in line with the molecular character of the XPS spectrum. Furthermore, the broad high energy satellite does not consist of ...

  15. Surface core-level shifts for simple metals

    Aldén, Magnus; Skriver, Hans Lomholt; Johansson, Börje

    1994-01-01

    We have performed an ab initio study of the surface core-level binding energy shift (SCLS) for 11 of the simple metals by means of a Green’s-function technique within the tight-binding linear-muffin-tin-orbitals method. Initial- and final-state effects are included within the concept of complete...... screening, whereby a SCLS becomes equivalent to the surface segregation energy of a core-ionized atom, a quantity we obtain by separate bulk and surface impurity calculations. The results are in good agreement with experiment in most of those cases where the data originates from single-crystal measurements....... We discuss the surface shifts of the electrostatic potentials and the band centers in order to trace the microscopic origin of the SCLS in the simple metals and find that the anomalous subsurface core-level shifts in beryllium are caused by charge dipoles, which persist several layers into the bulk...

  16. Titanium core-level spectra in titanium tetrahalide molecules

    Molecular-orbital calculations of TiF4, TiCl4, TiBr4, and TiI4 molecules have been made with use of self-consistent local-density theory with the discrete variational (DV-Xα) method. Core-level excitation energies corresponding to x-ray photoelectron spectroscopy (XPS) measurements are calculated. Spectral peaks associated with metastable final states of the core ionized atom that include relaxation and charge transfer processes are calculated. XPS spectra of Ti core levels in these compounds show that binding energies of both main lines and satellites clearly depend on the ligated anion. The observed systematic behavior of ionization potentials and satellite separation energies for the halide series is calculated with reasonable accuracy. With use of the single-determinant formalism, contributions to the intensity of the main line and satellites are examined

  17. Measurement of the background in Auger-photoemission coincidence spectra (APECS) associated with inelastic or multi-electron valence band photoemission processes

    Satyal, S.; Joglekar, P. V.; Shastry, K.; Kalaskar, S.; Dong, Q.; Hulbert, S. L.; Bartynksi, R. A.; Weiss, A. H.

    2014-01-01

    Auger Photoelectron Coincidence Spectroscopy (APECS), in which the Auger spectra is measured in coincidence with the core level photoelectron, is capable of pulling difficult to observe low energy Auger peaks out of a large background due mostly to inelastically scattered valence band (VB) photoelectrons. However the APECS method alone cannot eliminate the background due to valence band photoemission processes in which the initial photon energy is shared by two or more electrons and one of th...

  18. Photoemission study of the IBr graphite intercalation compound using the synchrotron radiation light source

    Negishi, Saiko; Negishi, H.; Nakatake, Masashi; Yamazaki, K; Sato, Hitoshi; Shimada, Kenya; Namatame, Hirofumi; Taniguchi, Masaki; Kobayashi, K.; Sugihara, K; Oshima, H

    2006-01-01

    We measured the photoemission spectra of the IBr graphite intercalation compounds (IBr-GIC) with stage-2 and stage-4 structures at 16 K with incident photon energies hν=40-200 eV. The peak positions of the I 4d and Br 3d core-levels are unchanged for the stage-2 and stage-4 IBr-GICs. Partial density-of-states of the I 5p and Br 4p states in the valence bands have been evaluated by resonant photoemission spectroscopy. These spectra indicate a significant hybridization between the host and the ...

  19. High-resolution core-level photoemission measurements on the pentacene single crystal surface assisted by photoconduction.

    Nakayama, Yasuo; Uragami, Yuki; Yamamoto, Masayuki; Yonezawa, Keiichirou; Mase, Kazuhiko; Kera, Satoshi; Ishii, Hisao; Ueno, Nobuo

    2016-03-01

    Upon charge carrier transport behaviors of high-mobility organic field effect transistors of pentacene single crystal, effects of ambient gases and resultant probable 'impurities' at the crystal surface have been controversial. Definite knowledge on the surface stoichiometry and chemical composites is indispensable to solve this question. In the present study, high-resolution x-ray photoelectron spectroscopy (XPS) measurements on the pentacene single crystal samples successfully demonstrated a presence of a few atomic-percent of (photo-)oxidized species at the first molecular layer of the crystal surface through accurate analyses of the excitation energy (i.e. probing depth) dependence of the C1s peak profiles. Particular methodologies to conduct XPS on organic single crystal samples, without any charging nor damage of the sample in spite of its electric insulating character and fragility against x-ray irradiation, is also described in detail. PMID:26871646

  20. Origin of metallic surface core-level shifts

    Aldén, Magnus; Skriver, Hans Lomholt; Abrikosov, I. A.;

    1995-01-01

    The unique property of the open 4f energy shell in the lanthanide metals is used to show that the initial-state energy shift gives an insufficient description of surface core-level shifts. Instead a treatment, which fully includes the final-state screening, account for the experimentally observed...... surface shifts of the occupied as well as the unoccupied 4f states. The surface energy shift of the initial state corresponds approximately to the average of the shifts for the occupied and unoccupied 4f levels....

  1. A medium-energy photoemission and ab-initio investigation of cubic yttria-stabilised zirconia

    Cousland, G. P. [School of Physics, The University of Sydney, New South Wales 2006 (Australia); Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234 (Australia); Cui, X. Y. [School of Physics, The University of Sydney, New South Wales 2006 (Australia); Australian Centre for Microscopy and Microanalysis, The University of Sydney, New South Wales 2006 (Australia); Smith, A. E. [School of Physics, Monash University, Clayton, Victoria 3800 (Australia); Stampfl, C. M. [School of Physics, The University of Sydney, New South Wales 2006 (Australia); School of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Wong, L.; Tayebjee, M.; Yu, D.; Triani, G.; Evans, P. J. [Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234 (Australia); Ruppender, H.-J. [OmniVac GmbH, Espensteigstrasse 16, 67661 Kaiserslautern (Germany); Jang, L.-Y. [National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Stampfl, A. P. J. [Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234 (Australia); School of Chemistry, The University of Sydney, New South Wales 2006 (Australia)

    2014-04-14

    Experimental and theoretical investigations into the electronic properties and structure of cubic yttria-stabilized zirconia are presented. Medium-energy x-ray photoemission spectroscopy measurements have been carried out for material with a concentration of 8-9 mol. % yttria. Resonant photoemission spectra are obtained for a range of photon energies that traverse the L2 absorption edge for both zirconium and yttrium. Through correlation with results from density-functional theory (DFT) calculations, based on structural models proposed in the literature, we assign photoemission peaks appearing in the spectra to core lines and Auger transitions. An analysis of the core level features enables the identification of shifts in the core level energies due to different local chemical environments of the constituent atoms. In general, each core line feature can be decomposed into three contributions, with associated energy shifts. Their identification with results of DFT calculations carried out for proposed atomic structures, lends support to these structural models. The experimental results indicate a multi-atom resonant photoemission effect between nearest-neighbour oxygen and yttrium atoms. Near-edge x-ray absorption fine structure spectra for zirconium and yttrium are also presented, which correlate well with calculated Zr- and Y-4d electron partial density-of-states and with Auger electron peak area versus photon energy curve.

  2. A medium-energy photoemission and ab-initio investigation of cubic yttria-stabilised zirconia

    Experimental and theoretical investigations into the electronic properties and structure of cubic yttria-stabilized zirconia are presented. Medium-energy x-ray photoemission spectroscopy measurements have been carried out for material with a concentration of 8-9 mol. % yttria. Resonant photoemission spectra are obtained for a range of photon energies that traverse the L2 absorption edge for both zirconium and yttrium. Through correlation with results from density-functional theory (DFT) calculations, based on structural models proposed in the literature, we assign photoemission peaks appearing in the spectra to core lines and Auger transitions. An analysis of the core level features enables the identification of shifts in the core level energies due to different local chemical environments of the constituent atoms. In general, each core line feature can be decomposed into three contributions, with associated energy shifts. Their identification with results of DFT calculations carried out for proposed atomic structures, lends support to these structural models. The experimental results indicate a multi-atom resonant photoemission effect between nearest-neighbour oxygen and yttrium atoms. Near-edge x-ray absorption fine structure spectra for zirconium and yttrium are also presented, which correlate well with calculated Zr- and Y-4d electron partial density-of-states and with Auger electron peak area versus photon energy curve

  3. Plasmon Enhanced Photoemission

    Polyakov, Aleksandr [Univ. of California, Berkeley, CA (United States)

    2012-05-08

    Next generation ultrabright light sources will operate at megahertz repetition rates with temporal resolution in the attosecond regime. For an X-Ray Free Electron Laser (FEL) to operate at such repetition rate requires a high quantum efficiency (QE) cathode to produce electron bunches of 300 pC per 1.5 μJ incident laser pulse. Semiconductor photocathodes have sufficient QE in the ultraviolet (UV) and the visible spectrum, however, they produce picosecond electron pulses due to the electron-phonon scattering. On the other hand, metals have two orders of magnitude less QE, but can produce femtosecond pulses, that are required to form the optimum electron distribution for high efficiency FEL operation. In this work, a novel metallic photocathode design is presented, where a set of nano-cavities is introduced on the metal surface to increase its QE to meet the FEL requirements, while maintaining the fast time response. Photoemission can be broken up into three steps: (1) photon absorption, (2) electron transport to the surface, and (3) crossing the metal-vacuum barrier. The first two steps can be improved by making the metal completely absorbing and by localizing the fields closer to the metal surface, thereby reducing the electron travel distance. Both of these effects can be achieved by coupling the incident light to an electron density wave on the metal surface, represented by a quasi-particle, the Surface Plasmon Polariton (SPP). The photoemission then becomes a process where the photon energy is transferred to an SPP and then to an electron. The dispersion relation for the SPP defines the region of energies where such process can occur. For example, for gold, the maximum SPP energy is 2.4 eV, however, the work function is 5.6 eV, therefore, only a fourth order photoemission process is possible. In such process, four photons excite four plasmons that together excite only one electron. The yield of such non-linear process depends strongly on the light intensity. In

  4. Development of a high-resolution soft x-ray (30--1500 eV) beamline at the Advanced Light Source and its use for the study of angle-resolved photoemission extended fine structure

    ALS Bending magnet beamline 9.3.2 is for high resolution spectroscopy, with circularly polarized light. Fixed included-angle SGM uses three gratings for 30--1500 eV photons; circular polarization is produced by an aperture for selecting the beam above or below the horizontal plane. Photocurrent from upper and lower jaws of entrance slit sets a piezoelectric drive feedback loop on the vertically deflecting mirror for stable beam. End station has a movable platform. With photomeission data from Stanford, structure of c(2x2)P/Fe(100) was determined using angle-resolved photoemission extended fine structure (ARPEFS). Multiple-scattering spherical-wave (MSSW) calculations indicate that P atoms adsorb in fourfold hollow sites 1.02A above the first Fe layer. Self-consistent-field Xα scattered wave calculation confirm that the Fe1-Fe2 space is contracted for S/Fe but not for P/Fe; comparison is made to atomic N and O on Fe(100). Final-state effects on ARPEFS curves used literature data from the S 1s and 2p core levels of c(2x2)S/Ni(001); a generalized Ramsauer-Townsend splitting is present in the 1s but not 2p data. An approximate method for analyzing ARPEFS data from a non-s initial state using only the higher-ell partial wave was tested successfully. ARPEFS data from clean surfaces were collected normal to Ni(111) (3p core levels) and 5 degree off-normal from Cu(111)(3s, 3p). Fourier transforms (FT) resemble adsorbate systems, showing backscattering signals from atoms up to 4 layers below emitters. 3p FTs show scattering from 6 nearest neighbors in the same crystal layer as the emitters. MSSW calulation indicate that Cu 3p photoemission is mostly d-wave. FTs also indicate double-scattering and single-scattering from laterally distant atoms; calculations indicate that the signal is dominated by photoemission from the first 2 crystal layers

  5. Photoemission study of Ca-intercalated graphite superconductor CaC6

    In this work, we have performed resonant photoemission studies of Ca-intercalated graphite superconductor CaC6. Using photon energy of the Ca 2p-3d threshold, the photoemission intensity of the peak at Fermi energy (EF) is resonantly enhanced. This result provides spectroscopic evidence for the existence of Ca 3d states at EF, and strongly supports that Ca 3d state plays a crucial role for the superconductivity of this material with relatively high Tc.

  6. P2P financovanie

    Dobiasová, Dana

    2015-01-01

    The aim of this bachelors thesis is to determine the effect of P2P lending on the economic indicators and the status of small and medium enterprises in the United States, specifically for the period form 2011 to 2015. To better understand the practical part, two first chapters will be focused on defining the concept of P2P lending and analysing the current situation in the United States. Besides that, it is also an emphasis on regulatory requirements which are newly starting to appear. This k...

  7. Saperi P2P

    Salvatore Iaconesi

    2009-10-01

    Full Text Available Il paper presenta l'architettura filosofica e logica di un progetto ongoing per la creazione di un'infrastruttura peer to peer per la diffusione dei saperi. Tale infrastruttura p2p vuole essere la base per costruire un framework aperto e orizzontale, che ospiti pratiche innovative di creazione, condivisione e disseminazione di informazioni e conoscenza.

  8. Lattice charge models and core level shifts in disordered alloys

    Underwood, T. L.; Cole, R. J.

    2013-10-01

    Differences in core level binding energies between atoms belonging to the same chemical species can be related to differences in their intra- and extra-atomic charge distributions, and differences in how their core holes are screened. With this in mind, we consider the charge-excess functional model (CEFM) for net atomic charges in alloys (Bruno et al 2003 Phys. Rev. Lett. 91 166401). We begin by deriving the CEFM energy function in order to elucidate the approximations which underpin this model. We thereafter consider the particular case of the CEFM in which the strengths of the ‘local interactions’ within all atoms are the same. We show that for binary alloys the ground state charges of this model can be expressed in terms of charge transfer between all pairs of unlike atoms analogously to the linear charge model (Magri et al 1990 Phys. Rev. B 42 11388). Hence, the model considered is a generalization of the linear charge model for alloys containing more than two chemical species. We then determine the model’s unknown ‘geometric factors’ over a wide range of parameter space. These quantities are linked to the nature of charge screening in the model, and we illustrate that the screening becomes increasingly universal as the strength of the local interactions is increased. We then use the model to derive analytical expressions for various physical quantities, including the Madelung energy and the disorder broadening in the core level binding energies. These expressions are applied to ternary random alloys, for which it is shown that the Madelung energy and magnitude of disorder broadening are maximized at the composition at which the two species with the largest ‘electronegativity difference’ are equal, while the remaining species have a vanishing concentration. This result is somewhat counterintuitive with regards to the disorder broadening since it does not correspond to the composition with the highest entropy. Finally, the model is applied to Cu

  9. Probing core-electron orbitals by scanning transmission electron microscopy and measuring the delocalization of core-level excitations

    Jeong, Jong Seok; Odlyzko, Michael L.; Xu, Peng; Jalan, Bharat; Mkhoyan, K. Andre

    2016-04-01

    By recording low-noise energy-dispersive x-ray spectroscopy maps from crystalline specimens using aberration-corrected scanning transmission electron microscopy, it is possible to probe core-level electron orbitals in real space. Both the 1 s and 2 p orbitals of Sr and Ti atoms in SrTi O3 are probed, and their projected excitation potentials are determined. This paper also demonstrates experimental measurement of the electronic excitation impact parameter and the delocalization of an excitation due to Coulombic beam-orbital interaction.

  10. Observation of core-level binding energy shifts between (100) surface and bulk atoms of epitaxial CuInSe2

    Core-level and valence band photoemission from semiconductors has been shown to exhibit binding energy differences between surface atoms and bulk atoms, thus allowing one to unambiguously distinguish between the two atomic positions. Quite clearly, surface atoms experience a potential different from the bulk due to the lower coordination number - a characteristic feature of any surface is the incomplete atomic coordination. Theoretical accounts of this phenomena are well documented in the literature for III-V and II-VI semiconductors. However, surface state energies corresponding to the equilibrium geometry of (100) and (111) surfaces of Cu-based ternary chalcopyrite semiconductors have not been calculated or experimental determined. These compounds are generating great interest for optoelectronic and photovoltaic applications, and are an isoelectronic analog of the II-VI binary compound semiconductors. Surface core-level binding energy shifts depend on the surface cohesive energies, and surface cohesive energies are related to surface structure. For ternary compound semiconductor surfaces, such as CuInSe2, one has the possibility of variations in surface stoichiometry. Applying standard thermodynamical calculations which consider the number of individual surface atoms and their respective chemical potentials should allow one to qualitatively determine the magnitude of surface core-level shifts and, consequently, surface state energies

  11. Observation of core-level binding energy shifts between (100) surface and bulk atoms of epitaxial CuInSe{sub 2}

    Nelson, A.J. [Colorado School of Mines, Golden, CO (United States); Berry, G.; Rockett, A. [Univ. of Illinois, Urbana-Champaign, IL (United States)] [and others

    1997-04-01

    Core-level and valence band photoemission from semiconductors has been shown to exhibit binding energy differences between surface atoms and bulk atoms, thus allowing one to unambiguously distinguish between the two atomic positions. Quite clearly, surface atoms experience a potential different from the bulk due to the lower coordination number - a characteristic feature of any surface is the incomplete atomic coordination. Theoretical accounts of this phenomena are well documented in the literature for III-V and II-VI semiconductors. However, surface state energies corresponding to the equilibrium geometry of (100) and (111) surfaces of Cu-based ternary chalcopyrite semiconductors have not been calculated or experimental determined. These compounds are generating great interest for optoelectronic and photovoltaic applications, and are an isoelectronic analog of the II-VI binary compound semiconductors. Surface core-level binding energy shifts depend on the surface cohesive energies, and surface cohesive energies are related to surface structure. For ternary compound semiconductor surfaces, such as CuInSe{sub 2}, one has the possibility of variations in surface stoichiometry. Applying standard thermodynamical calculations which consider the number of individual surface atoms and their respective chemical potentials should allow one to qualitatively determine the magnitude of surface core-level shifts and, consequently, surface state energies.

  12. Pulsed laser deposition for in-situ photoemission studies on YBa2Cu3O7-δ and related oxide films

    Schmauder, T.; Frazer, B.; Gatt, R.; Xi, Xiaoxing; Onellion, Marshall; Ariosa, Daniel; Grioni, M.; Margaritondo, Giorgio; Pavuna, Davor

    1998-12-01

    We describe a new pled laser deposition (PLD) system that is linked to an angle-resolved photoemission (ARPES) chamber at the Synchrotron Radiation Center (SRC) in Wisconsin, USA. We also discuss our first results on epitaxially grown YBa2Cu3O7-(delta ) (YBCO) films. The core level photoemission data indicate that a Ba-oxide layer is the dominant surface layer. We were not able to reproducibly detect a sharp fermi edge in the photoemission spectra and thus conclude that the surface layer is non-metallic, probably due to oxygen loss at the surface. The absence of screening of the Y and Ba core levels is a further argument for this conclusion. Further experiments with ozone treated film surfaces are currently under way.

  13. X-ray photoemission study of MgB2

    A c-axis oriented thin film and a high-density sintered pellet of MgB2 have been studied by x-ray photoemission spectroscopy, and compared to measurements from MgO and MgF2 single crystals. The as-grown surface has a layer which is Mg-rich and oxidized, which is effectively removed by a nonaqueous etchant. The subsurface region of the pellet is Mg deficient. This nonideal near-surface region may explain varied scanning tunneling spectroscopy results. The MgB2 core level and Auger signals are similar to measurements from metallic Mg and transition-metal diborides, and the measured valence band is consistent with the calculated density of states

  14. X-ray photoemission spectroscopy study of zirconium hydride

    X-ray photoemission spectroscopy (XPS) measurements are reported for ZrH/sub 1.65/ and Zr metal. The valence-band measurements are compared with available band-theory density-of-states calculations for the metal and hydride. The hydride spectrum differs significantly from the metal spectrum. Most important, a strong peak associated with hydrogen s electrons appears approximately 7 eV below the Fermi level. XPS measurements of Zr 4p core levels show a binding-energy shift of 1 eV between Zr metal and ZrH/sub 1.65/. It is argued that this shift results from charge readjustment in the vicinity of the Zr site. With the addition of hydrogen, net charge must be transferred from the Zr site to the hydrogen site. A charge-density analysis based on simplified cluster calculations is presented

  15. ANTARES, a scanning photoemission microscopy beamline at SOLEIL

    Avila, Jose; Lorcy, Stehane; Lagarde, Bruno; Giorgetta, Jean-Luc; Polack, François; Asensio, Maria C

    2013-01-01

    As one of the latest beamline built at the SOLEIL synchrotron source, ANTARES beamline offers a spectroscopic non-destructive nano-probe to study advanced materials. This innovative scanning photoemission microscopy combines linear and angle sweeps to perform precise electronic band structure determination by Nano Angle Resolved Photoelectron Spectroscopy (nanoARPES) and chemical imaging by core level detection. The beamline integrates effectively insertion devices and a high transmission beamline optics. This photon source has been combined with an advanced microscope, which has precise sample handling abilities. Moreover, it is fully compatible with a high resolution R4000 Scienta hemispherical analyzer and a set of Fresnel Zone Plates (FZP) able to focalize the beam spot up to a few tenths of nanometers, depending on the spatial resolution of the selected FZP. We present here the main conceptual design of the beamline and endstation, together with some of the firsts commissioning results.

  16. Ultrathin Pb film growth on Cu(111) studied by photoemission

    M.C.Xu; H.J.Qian; F.Q.Liu; K.Ibrahim; W.Y.Lai; S.C.Wu

    2001-01-01

    The valence bands and the Pb 5d,Cu 3p core levels of Pb films evaporated on Cu(111) were measured by synchrotron radiation photoemission and characterized by low-energy electron diffraction(LEED) and Auger electron spectroscopy(AES).The variation of the surafce state at the center of the surface Brillouin zone (SBZ) of Cu(111) with Pb coverage shows that the submonolayer Pb grows on Cu(111) at room temperature(RT) as two-dimensional(2D) islands.With the Pb coverage increasing,the Pb 5d5/2 core level shifts to higher binding energy monotonically.While the Cu 3p3/2 core level is shifted toward higher binding energy by about 120 meV due to the deposition of 1.0ML Pb.At low Ph coverage,subsequent annealing at 200℃ gives rise to Pb-Cu surface alloy formation in the first layer of Cu(111).The Pb 5d core level is shifted toward Fermi level by 20-30 meV due to the surface alloying.An assumption about electron charge transfer from Cu to Pb was adopted to interpret the observed cored level shifts.2001 Published by Elsevier Science Ltd.

  17. Electronic properties of atomic layer deposition films, anatase and rutile TiO2 studied by resonant photoemission spectroscopy

    Das, C.; Richter, M.; Tallarida, M.; Schmeisser, D.

    2016-07-01

    The TiO2 films are prepared by atomic layer deposition (ALD) method using titanium isopropoxide precursors at 250 °C and analyzed using resonant photoemission spectroscopy (resPES). We report on the Ti2p and O1s core levels, on the valence band (VB) spectra and x-ray absorption spectroscopy (XAS) data, and on the resonant photoelectron spectroscopy (resPES) profiles at the O1s and the Ti3p absorption edges. We determine the elemental abundance, the position of the VB maxima, the partial density of states (PDOS) in the VB and in the conduction band (CB) and collect these data in a band scheme. In addition, we analyze the band-gap states as well as the intrinsic states due to polarons and charge-transfer excitations. These states are found to cause multiple Auger decay processes upon resonant excitation. We identify several of these processes and determine their relative contribution to the Auger signal quantitatively. As our resPES data allow a quantitative analysis of these defect states, we determine the relative abundance of the PDOS in the VB and in CB and also the charge neutrality level. The anatase and rutile polymorphs of TiO2 are analyzed in the same way as the TiO2 ALD layer. The electronic properties of the TiO2 ALD layer are compared with the anatase and rutile polymorphs of TiO2. In our comparative study, we find that ALD has its own characteristic electronic structure that is distinct from that of anatase and rutile. However, many details of the electronic structure are comparable and we benefit from our spectroscopic data and our careful analysis to find these differences. These can be attributed to a stronger hybridization of the O2p and Ti3d4s states for the ALD films when compared to the anatase and rutile polymorphs.

  18. Evaluation of the fluorinated antisticking layer by using photoemission and NEXAFS spectroscopies

    Haruyama, Yuichi; Nakai, Yasuki; Matsui, Shinji [University of Hyogo, Graduate School of Science, Laboratory of Advanced Science and Technology for Industry, Ako, Hyogo (Japan)

    2015-11-15

    The electronic structures of four kinds of fluorinated self-assembled monolayers (F-SAMs) with different chain length, which were used for an antisticking layer, were investigated by the photoemission and the near-edge X-ray absorption fine structure (NEXAFS) spectroscopies. From the photoemission spectra in the wide and in the C 1s core-level regions, chemical compositions and components of the F-SAMs with different chain length were evaluated. By using the curve fitting analysis of the photoemission spectra in C 1s core-level region, it was found that the CF{sub 3} site is located at the top of the surface in the C sites of the F-SAM. From the C K-edge NEXAFS spectra of the F-SAMs as a function of the incidence angle of the excitation photon, it was shown that the σ*(C-F) and σ*(C-C) orbitals in the F-SAMs are parallel and perpendicular to the surface, respectively. This indicates that the C-C chain in (CF{sub 2}){sub n} part of the F-SAMs is perpendicular to the surface. Based on these results, the electronic structures of the F-SAMs are discussed. (orig.)

  19. Doping and dimensionality effects on the core-level spectra of layered ruthenates

    Guo, Haizhong; Li, Yi; Urbina, Darwin; Hu, Biao; Jin, Rongying; Liu, Tijiang; Fobes, David; Mao, Zhiqiang; Plummer, E. W.; Zhang, Jiandi

    2010-01-01

    Core-level spectra of the Mn-doped Sr3Ru2O7 and Srn+1RunO3n+1 (n = 1, 2 and 3) crystals are investigated with X-ray photoelectron spectroscopy. Doping of Mn to Sr3Ru2O7 considerably affects the distribution of core-level spectral weight. The satellite of Ru 3d core levels exhibits a substantial change with doping, indicating an enhanced electron localization across the doping- induced metal-insulator transition. However, the Ru 3p core levels remain identical with Mn-doping, thus showing no s...

  20. First principle calculations of core-level binding energy and Auger kinetic energy shifts in metallic solids

    Olovsson, Weine, E-mail: weine.olovsson@gmail.co [Department of Materials Science and Engineering, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan); Marten, Tobias [Department of Physics, Chemistry and Biology (IFM), Linkoeping University, SE-581 83 Linkoeping (Sweden); Holmstroem, Erik [Instituto de Fisica, Universidad Austral de Chile, Valdivia (Chile); Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Johansson, Boerje [Department of Physics and Materials Science, Uppsala University, P.O. Box 530, SE-751 21 Uppsala (Sweden); Applied Materials Physics, Department of Materials and Engineering, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden); Abrikosov, Igor A. [Department of Physics, Chemistry and Biology (IFM), Linkoeping University, SE-581 83 Linkoeping (Sweden)

    2010-05-15

    We present a brief overview of recent theoretical studies of the core-level binding energy shift (CLS) in solid metallic materials. The focus is on first principles calculations using the complete screening picture, which incorporates the initial (ground state) and final (core-ionized) state contributions of the electron photoemission process in X-ray photoelectron spectroscopy (XPS), all within density functional theory (DFT). Considering substitutionally disordered binary alloys, we demonstrate that on the one hand CLS depend on average conditions, such as volume and overall composition, while on the other hand they are sensitive to the specific local atomic environment. The possibility of employing layer resolved shifts as a tool for characterizing interface quality in fully embedded thin films is also discussed, with examples for CuNi systems. An extension of the complete screening picture to core-core-core Auger transitions is given, and new results for the influence of local environment effects on Auger kinetic energy shifts in fcc AgPd are presented.

  1. Photoemission Spectroscopy Characterization of Attempts to Deposit MoO2 Thin Film

    Irfan

    2011-01-01

    Full Text Available Attempts to deposit molybdenum dioxide (MoO2 thin films have been described. Electronic structure of films, deposited by thermal evaporation of MoO2 powder, had been investigated with ultraviolet photoemission and X-ray photoemission spectroscopy (UPS and XPS. The thermally evaporated films were found to be similar to the thermally evaporated MoO3 films at the early deposition stage. XPS analysis of MoO2 powder reveals presence of +5 and +6 oxidation states in Mo 3d core level along with +4 state. The residue of MoO2 powder indicates substantial reduction in higher oxidation states while keeping +4 oxidation state almost intact. Interface formation between chloroaluminum phthalocyanine (AlPc-Cl and the thermally evaporated film was also investigated.

  2. Electronic Structures of Purple Bronze KMo6O17 Studied by X-Ray Photoemission Spectra

    Qin, Xiaokui; Wei, Junyin; Shi, Jing; Tian, Mingliang; Chen, Hong; Tian, Decheng

    X-ray photoemission spectroscopy study has been performed for the purple bronze KMo6O17. The structures of conduction band and valence band are analogous to the results of ultraviolet photoemission spectra and are also consistent with the model of Travaglini et al., but the gap between conduction and valence band is insignificant. The shape of asymmetric and broadening line of O-1s is due to unresolved contributions from the many inequivalent oxygen sites in this crystal structure. Mo 3d core-level spectrum reveals that there are two kinds of valence states of Molybdenum (Mo+5 and Mo+6). The calculated average valence state is about +5.6, which is consistent with the expectation value from the composition of this material. The tail of Mo-3d spectrum toward higher binding energy is the consequence of the excitation of electron-hole pairs with singularity index of 0.21.

  3. Photocathode device that replenishes photoemissive coating

    Moody, Nathan A.; Lizon, David C.

    2016-06-14

    A photocathode device may replenish its photoemissive coating to replace coating material that desorbs/evaporates during photoemission. A linear actuator system may regulate the release of a replenishment material vapor, such as an alkali metal, from a chamber inside the photocathode device to a porous cathode substrate. The replenishment material deposits on the inner surface of a porous membrane and effuses through the membrane to the outer surface, where it replenishes the photoemissive coating. The rate of replenishment of the photoemissive coating may be adjusted using the linear actuator system to regulate performance of the photocathode device during photoemission. Alternatively, the linear actuator system may adjust a plasma discharge gap between a cartridge containing replenishment material and a metal grid. A potential is applied between the cartridge and the grid, resulting in ejection of metal ions from the cartridge that similarly replenish the photoemissive coating.

  4. Multi-atom resonant photoemission and the development of next-generation software and high-speed detectors for electron spectroscopy

    Kay, Alexander William

    2000-09-01

    This dissertation has involved the exploration of a new effect in photoelectron emission, multi-atom resonant photoemission (MARPE), as well as the development of new software, data analysis techniques, and detectors of general use in such research. We present experimental and theoretical results related to MARPE, in which the photoelectron intensity from a core level on one atom is influenced by a core-level absorption resonance on another. We point out that some of our and others prior experimental data has been strongly influenced by detector non-linearity and that the effects seen in new corrected data are smaller and of different form. Corrected data for the MnO(001) system with resonance between the O 1s and Mn 2p energy levels are found to be well described by an extension of well-known intraatomic resonant photoemission theory to the interatomic case, provided that interactions beyond the usual second-order Kramers-Heisenberg treatment are included. This theory is also found to simplify under certain conditions so as to yield results equivalent to a classical x-ray optical approach, with the latter providing an accurate and alternative, although less detailed and general, physical picture of these effects. Possible future applications of MARPE as a new probe of near-neighbor identities and bonding and its relationship to other known effects are also discussed. We also consider in detail specially written data acquisition software that has been used for most of the measurements reported here. This software has been used with an existing experimental system to develop the method of detector characterization and then data correction required for the work described above. The development of a next generation one-dimensional, high-speed, electron detector is also discussed. Our goal has been to design, build and test a prototype high-performance, one-dimensional pulse-counting detector that represents a significant advancement in detector technology and is well

  5. Multi-atom resonant photoemission and the development of next-generation software and high-speed detectors for electron spectroscopy

    This dissertation has involved the exploration of a new effect in photoelectron emission, multi-atom resonant photoemission (MARPE), as well as the development of new software, data analysis techniques, and detectors of general use in such research. We present experimental and theoretical results related to MARPE, in which the photoelectron intensity from a core level on one atom is influenced by a core-level absorption resonance on another. We point out that some of our and others prior experimental data has been strongly influenced by detector non-linearity and that the effects seen in new corrected data are smaller and of different form. Corrected data for the MnO(001) system with resonance between the O 1s and Mn 2p energy levels are found to be well described by an extension of well-known intraatomic resonant photoemission theory to the interatomic case, provided that interactions beyond the usual second-order Kramers-Heisenberg treatment are included. This theory is also found to simplify under certain conditions so as to yield results equivalent to a classical x-ray optical approach, with the latter providing an accurate and alternative, although less detailed and general, physical picture of these effects. Possible future applications of MARPE as a new probe of near-neighbor identities and bonding and its relationship to other known effects are also discussed. We also consider in detail specially written data acquisition software that has been used for most of the measurements reported here. This software has been used with an existing experimental system to develop the method of detector characterization and then data correction required for the work described above. The development of a next generation one-dimensional, high-speed, electron detector is also discussed. Our goal has been to design, build and test a prototype high-performance, one-dimensional pulse-counting detector that represents a significant advancement in detector technology and is well

  6. Chemical potential landscape in band filling and bandwidth-control of manganites: Photoemission spectroscopy measurements

    Ebata, K.; Takizawa, M.; A. Fujimori; Kuwahara, H; Tomioka, Y.; Y. Tokura

    2008-01-01

    We have studied the effects of band filling and bandwidth control on the chemical potential in perovskite manganites $R_{1-x}A_x$MnO$_3$ ($R$ : rare earth, $A$ : alkaline earth) by measurements of core-level photoemission spectra. A suppression of the doping-dependent chemical potential shift was observed in and around the CE-type charge-ordered composition range, indicating that there is charge self-organization such as stripe formation or its fluctuations. As a function of bandwidth, we obs...

  7. Hot Electron Photoemission from Plasmonic Nanostructures: The Role of Surface Photoemission and Transition Absorption

    Babicheva, Viktoriia; Zhukovsky, Sergei; Ikhsanov, Renat Sh;

    2015-01-01

    enhancement of photoemission in the surface scenario. We calculate the ratio of photoemission cross-section for a gold nanosphere embedded in different materials such as silicon, zinc oxide, and titanium dioxide. For the calculations, we include both surface and bulk mechanisms of photoemission, using quantum...

  8. Resonant photoemission and magnetic x-ray circular dichroism in the M shell of ultrathin films of Fe

    Using magnetic ultra thin films (2--4 ml) of Fe on Cu(001) and bulk-like Fe, the Fe3p and Fe3s core states have been investigated with resonant photoemission and core-level photoemission, including, magnetic x-ray circular dichroism (MXCD) experiments. The resonant photoemission experiment has been done in fine steps over a wide photon energy range (hν = 695 eV - 715 eV), to probe the parentage of various spectral structures. The onset of secondary channels at the L3(hν = 707 eV) and L2(hν = 72O eV) edges will be analyzed in light of results from bulk Ni. The MXCD photoelectron spectroscopy of the Fe3p exhibits a 0.2 eV shift with circular polarization variation. The previously observed split peak structure in the Fe3s will be discussed with regard to the new resonant photoemission results. The resonant photoemission results will also be put into the context of our MXCD absorption results for monolayer and multilayers of Fe

  9. Theory on photoemission and inverse photoemission spectra in VO2

    The photoemission (PES) and inverse photoemission (IPES) spectra in VO2 at temperatures above and below the metal-insulator transition (MIT) are discussed with a two-band Hubbard model. An abrupt change in the valence top character of the theoretical PES spectra at the MIT caused by a switching in the t2g orbital occupation in the ground state is found. In the insulating phase, the structure of the valence top is well described within a single-band Hubbard model, where only the d|| band participates. Since the ratio t/U∼0.2 is small, the structure of the spectrum extends to ∼1.5eV below the Fermi level. On the other hand, in the metallic phase, both the dparallel and π* bands are involved and the spectral weight is concentrated in the vicinity of the Fermi level within a range ∼0.5eV. Such a large spectral weight transfer is consistent with experiments. For the IPES spectra, a structure corresponding to the upper Hubbard band of the single-band Hubbard model is appeared at ∼1.5eV above the Fermi level in the insulating phase. However the structure is absent in the metallic phase

  10. Non linear photoemission from silicon

    Bensoussan, M.; Moison, J. M.

    1983-03-01

    Two well-defined photoemission regimes are observed from clean (111) Si surfaces under various laser irradiation conditions and photon energies. At low fluences and at photon energies above half the work function two and three quantum process are the outstanding emission mechanisms. Density of state effects of initial and intermediate states appear as the dominant spectral features. At higher fluences or at low photon energies the prevailing emission is thermoemission characterized by a Maxwellian distribution revailing a temperature quite different from the lattice one during the excitation pulse.

  11. A first-principles core-level XPS study on the boron impurities in germanium crystal

    Yamauchi, Jun [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522 (Japan); Yoshimoto, Yoshihide [Department of Applied Mathematics and Physics, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552 (Japan); Suwa, Yuji [Central Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-0395 (Japan)

    2013-12-04

    We systematically investigated the x-ray photoelectron spectroscopy (XPS) core-level shifts and formation energies of boron defects in germanium crystals and compared the results to those in silicon crystals. Both for XPS core-level shifts and formation energies, relationship between defects in Si and Ge is roughly linear. From the similarity in the formation energy, it is expected that the exotic clusters like icosahedral B12 exist in Ge as well as in Si.

  12. High resolution photoemission spectroscopy: Evidence for strong chemical interaction between Mg and 3,4,9,10-perylene-tetracarboxylic dianhydride

    The interface formation between Mg and 3,4,9,10-perylene-tetracarboxylic dianhydride (PTCDA) was investigated by high resolution soft x-ray photoemission spectroscopy. The interface chemistry was obtained after fitting the core level spectra as a function of Mg thickness. At the initial stage of deposition, a strong chemical interaction between Mg and the single bonded oxygen atoms of PTCDA is observed leading to the formation of MgO and a modified organic molecule. Based on the experimental evidence, the molecular structure of the modified molecule is proposed. Moreover, the changes observed in the measured C1s core level spectra are supported by density functional theory calculations

  13. Instrument developments for inverse photoemission

    Experimental developments principally concerning electron sources for inverse photoemission are presented. The specifications of the electron beam are derived from experiment requirements, taking into account the limitations encountered (space charge divergence). For a wave vector resolution of 0.2 A-1, the maximum current is 25 microA at 20 eV. The design of a gun providing such a beam in the range 5 to 50 eV is presented. Angle-resolved inverse photoemission experiments show angular effects at 30 eV. For an energy of 10 eV, angular effects should be stronger, but the low efficiency of the spectrometer in this range makes the experiments difficult. The total energy resolution of 0.3 eV is the result mainly of electron energy spread, as expected. The electron sources are based on field effect electron emission from a cathode consisting of a large number of microtips. The emission arises from a few atomic cells for each tip. The ultimate theoretical energy spread is 0.1 eV. This value is not attained because of an interface resistance problem. A partial solution of this problem allows measurement of an energy spread of 0.9 eV for a current of 100 microA emitted at 60 eV. These cathodes have a further advantage in that emission can occur at a low temperature

  14. In-adlayers on non-polar and polar InN surfaces: Ion scattering and photoemission studies

    The surface structure of In-polarity c-plane InN has been investigated by low energy ion scattering spectroscopy. Comparison of ion scattering spectra recorded along the [1 0 0 0] azimuth with model calculations indicates that the clean In-polarity c-plane InN surface is terminated by In-adlayers with a laterally contracted topmost In layer. This is consistent with previous X-ray photoemission and electron diffraction results. Additionally, the surface properties of a-plane InN have been investigated using core-level and valence band X-ray photoemission spectroscopy (XPS). From the ratio of the In and N core-level XPS signal intensities, the clean a-plane InN surface has also been found to be terminated by In-adlayers. Photoemission measurements of the valence band maximum to surface Fermi level separation for a-plane InN indicate the existence of an electron accumulation layer at the surface. This observation of electron accumulation at non-polar InN surfaces in the presence of In-adlayers is in agreement with the predictions of previous first-principles calculations

  15. Photoemission Study of the Rare Earth Intermetallic Compounds: RNi2Ge2 (R=Eu, Gd)

    EuNi2Ge2 and GdNi2Ge2 are two members of the RT2X2 (R = rare earth, T = transition metal and X = Si, Ge) family of intermetallic compounds, which has been studied since the early 1980s. These ternary rare-earth intermetallic compounds with the tetragonal ThCr2Si2 structure are known for their wide variety of magnetic properties, Extensive studies of the RT2X2 series can be found in Refs [ 1,2,3]. The magnetic properties of the rare-earth nickel germanides RNi2Ge2 were recently studied in more detail [4]. The purpose of this dissertation is to investigate the electronic structure (both valence band and shallow core levels) of single crystals of EuNi2Ge2 and GdNi2Ge2 and to check the assumptions that the f electrons are non-interacting and, consequently, the rigid-band model for these crystals would work [11], using synchrotron radiation because, to the best of our knowledge, no photoemission measurements on those have been reported. Photoemission spectroscopy has been widely used to study the detailed electronic structure of metals and alloys, and especially angle-resolved photoemission spectroscopy (ARPES) has proven to be a powerful technique for investigating Fermi surfaces (FSs) of single-crystal compounds

  16. On sulfur core level binding energies in thiol self-assembly and alternative adsorption sites: An experimental and theoretical study

    Jia, Juanjuan [Institut des Sciences Moléculaires d’Orsay, Université-Paris Sud, 91405 Orsay (France); CNRS, UMR 8214, Institut des Sciences Moléculaires d’Orsay, Orsay ISMO, Bâtiment 351, Université Paris Sud, 91405 Orsay (France); Kara, Abdelkader, E-mail: abdelkader.kara@ucf.edu, E-mail: vladimir.esaulov@u-psud.fr [Department of Physics, University of Central Florida, Orlando, Florida 32816 (United States); Pasquali, Luca [Dipartimento di Ingegneria “E. Ferrari,” Università di Modena e Reggio Emilia, Via Vignolese 905, 41125 Modena (Italy); IOM-CNR, s.s. 14, Km. 163.5 in AREA Science Park, 34149 Basovizza, Trieste (Italy); Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park 2006 (South Africa); Bendounan, Azzedine; Sirotti, Fausto [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex (France); Esaulov, Vladimir A., E-mail: abdelkader.kara@ucf.edu, E-mail: vladimir.esaulov@u-psud.fr [Institut des Sciences Moléculaires d’Orsay, Université-Paris Sud, 91405 Orsay (France); CNRS, UMR 8214, Institut des Sciences Moléculaires d’Orsay, Orsay ISMO, Bâtiment 351, Université Paris Sud, 91405 Orsay (France); IOM-CNR, s.s. 14, Km. 163.5 in AREA Science Park, 34149 Basovizza, Trieste (Italy)

    2015-09-14

    Characteristic core level binding energies (CLBEs) are regularly used to infer the modes of molecular adsorption: orientation, organization, and dissociation processes. Here, we focus on a largely debated situation regarding CLBEs in the case of chalcogen atom bearing molecules. For a thiol, this concerns the case when the CLBE of a thiolate sulfur at an adsorption site can be interpreted alternatively as due to atomic adsorption of a S atom, resulting from dissociation. Results of an investigation of the characteristics of thiol self-assembled monolayers (SAMs) obtained by vacuum evaporative adsorption are presented along with core level binding energy calculations. Thiol ended SAMs of 1,4-benzenedimethanethiol (BDMT) obtained by evaporation on Au display an unconventional CLBE structure at about 161.25 eV, which is close to a known CLBE of a S atom on Au. Adsorption and CLBE calculations for sulfur atoms and BDMT molecules are reported and allow delineating trends as a function of chemisorption on hollow, bridge, and atop sites and including the presence of adatoms. These calculations suggest that the 161.25 eV peak is due to an alternative adsorption site, which could be associated to an atop configuration. Therefore, this may be an alternative interpretation, different from the one involving the adsorption of atomic sulfur resulting from the dissociation process of the S–C bond. Calculated differences in S(2p) CLBEs for free BDMT molecules, SH group sulfur on top of the SAM, and disulfide are also reported to clarify possible errors in assignments.

  17. On sulfur core level binding energies in thiol self-assembly and alternative adsorption sites: An experimental and theoretical study

    Characteristic core level binding energies (CLBEs) are regularly used to infer the modes of molecular adsorption: orientation, organization, and dissociation processes. Here, we focus on a largely debated situation regarding CLBEs in the case of chalcogen atom bearing molecules. For a thiol, this concerns the case when the CLBE of a thiolate sulfur at an adsorption site can be interpreted alternatively as due to atomic adsorption of a S atom, resulting from dissociation. Results of an investigation of the characteristics of thiol self-assembled monolayers (SAMs) obtained by vacuum evaporative adsorption are presented along with core level binding energy calculations. Thiol ended SAMs of 1,4-benzenedimethanethiol (BDMT) obtained by evaporation on Au display an unconventional CLBE structure at about 161.25 eV, which is close to a known CLBE of a S atom on Au. Adsorption and CLBE calculations for sulfur atoms and BDMT molecules are reported and allow delineating trends as a function of chemisorption on hollow, bridge, and atop sites and including the presence of adatoms. These calculations suggest that the 161.25 eV peak is due to an alternative adsorption site, which could be associated to an atop configuration. Therefore, this may be an alternative interpretation, different from the one involving the adsorption of atomic sulfur resulting from the dissociation process of the S–C bond. Calculated differences in S(2p) CLBEs for free BDMT molecules, SH group sulfur on top of the SAM, and disulfide are also reported to clarify possible errors in assignments

  18. Femtomagnetism in graphene induced by core level excitation of organic adsorbates

    Ravikumar, Abhilash; Baby, Anu; Lin, He; Brivio, Gian Paolo; Fratesi, Guido

    2016-01-01

    We predict the induction or suppression of magnetism in the valence shell of physisorbed and chemisorbed organic molecules on graphene occurring on the femtosecond time scale as a result of core level excitations. For physisorbed molecules, where the interaction with graphene is dominated by van der Waals forces and the system is non-magnetic in the ground state, numerical simulations based on density functional theory show that the valence electrons relax towards a spin polarized configuration upon excitation of a core-level electron. The magnetism depends on efficient electron transfer from graphene on the femtosecond time scale. On the other hand, when graphene is covalently functionalized, the system is magnetic in the ground state showing two spin dependent mid gap states localized around the adsorption site. At variance with the physisorbed case upon core-level excitation, the LUMO of the molecule and the mid gap states of graphene hybridize and the relaxed valence shell is not magnetic anymore. PMID:27089847

  19. High resolution core level spectroscopy of hydrogen-terminated (1 0 0) diamond.

    Schenk, A K; Rietwyk, K J; Tadich, A; Stacey, A; Ley, L; Pakes, C I

    2016-08-01

    Synchrotron-based photoelectron spectroscopy experiments are presented that address a long standing inconsistency in the treatment of the C1s core level of hydrogen terminated (1 0 0) diamond. Through a comparison of surface and bulk sensitive measurements we show that there is a surface related core level component to lower binding energy of the bulk diamond component; this component has a chemical shift of [Formula: see text] eV which has been attributed to carbon atoms which are part of the hydrogen termination. Additionally, our results indicate that the asymmetry of the hydrogen terminated (1 0 0) diamond C1s core level is an intrinsic aspect of the bulk diamond peak which we have attributed to sub-surface carbon layers. PMID:27299369

  20. Photoemission studies of mixed valent systems

    Photoemission spectroscopy has been used to study a number of aspects of the mixed valent state (corresponding to non-integral 4f occupation) in rare earth systems. Deep core photoemission (e.g., from 3d or 4d levels) allows the measurement of the 4f occupancy and surface valence shifts, and, as well, the indirect measurement of the effect of solid state environment on the energy of hybridization between 4f electrons and conduction electrons. 4f-Derived photoemission has been used to study surface valance and chemical shifts and to infer the nature of the mixed valent ground state. A combination of 4f-derived photoemission and add-electron spectroscopy provides a measurement of the rf Coulomb correlation energy, an important parameter in the mixed valent problem. A review of these approaches will be presented, with emphasis on Ce-based systems, whose behavior falls outside the usual description of 4f-unstable systems

  1. Nondipole Photoemission from Chiral Enantiomers of Camphor

    Bowen, K. P.; Stolte, W. C.; Young, J. A.; Demchenko, I. N.; Guillemin, R.; Hemmers, O.; Piancastelli, M. N.; Lindle, D. W.

    2010-03-01

    K-shell photoemission from the carbonyl carbon in the chiral molecule camphor has been studied in the region just above the core-shell ionization threshold. Differences between angular distributions of emitted photoelectrons from the two enantiomers are attributed to the influence of chirality combined with nondipole effects in the photoemission process, despite the fact the measurements were taken using linearly polarized x-rays. The results suggest the possibility of a new form of linear dichroism.

  2. Core-resonant double photoemission from palladium films

    Kostanovskiy, I.; Schumann, F. O.; Aliaev, Y.; Wei, Z.; Kirschner, J.

    2016-01-01

    We studied the core-resonant double photoemission process from palladium films with linearly polarized synchrotron radiation. We excited either the 3d or 4p core level and focused on the Auger transitions which leave two holes in the valence band. We find that the two-dimensional energy distributions are markedly different for the 3d and 4p decay. The 3d decay can be understood by a sequential emission of the two electrons while the 4p decay proceeds in a single step. Despite the large differences in the two-dimensional energy spectra we find the shape of the energy sum spectra rather similar. For the description of the 4p decay we propose a model which uses available single electron spectra, but suggest an alternative interpretation of these data. With this we are able to explain the range over which the available energy is shared. Key assumptions of the model are verified by our experiments on the 3d decay.

  3. Direct surface magnetometry with photoemission magnetic x-ray dichroism

    Tobin, J.G.; Goodman, K.W. [Lawrence Berkeley National Lab., CA (United States); Schumann, F.O. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1997-04-01

    Element specific surface magnetometry remains a central goal of synchrotron radiation based studies of nanomagnetic structures. One appealing possibility is the combination of x-ray absorption dichroism measurements and the theoretical framework provided by the {open_quotes}sum rules.{close_quotes} Unfortunately, sum rule analysis are hampered by several limitations including delocalization of the final state, multi-electronic phenomena and the presence of surface dipoles. An alternative experiment, Magnetic X-Ray Dichroism in Photoelectron Spectroscopy, holds out promise based upon its elemental specificity, surface sensitivity and high resolution. Computational simulations by Tamura et al. demonstrated the relationship between exchange and spin orbit splittings and experimental data of linear and circular dichroisms. Now the authors have developed an analytical framework which allows for the direct extraction of core level exchange splittings from circular and linear dichroic photoemission data. By extending a model initially proposed by Venus, it is possible to show a linear relation between normalized dichroism peaks in the experimental data and the underlying exchange splitting. Since it is reasonable to expect that exchange splittings and magnetic moments track together, this measurement thus becomes a powerful new tool for direct surface magnetometry, without recourse to time consuming and difficult spectral simulations. The theoretical derivation will be supported by high resolution linear and circular dichroism data collected at the Spectromicroscopy Facility of the Advanced Light Source.

  4. Core-resonant double photoemission from palladium films

    We studied the core-resonant double photoemission process from palladium films with linearly polarized synchrotron radiation. We excited either the 3d or 4p core level and focused on the Auger transitions which leave two holes in the valence band. We find that the two-dimensional energy distributions are markedly different for the 3d and 4p decay. The 3d decay can be understood by a sequential emission of the two electrons while the 4p decay proceeds in a single step. Despite the large differences in the two-dimensional energy spectra we find the shape of the energy sum spectra rather similar. For the description of the 4p decay we propose a model which uses available single electron spectra, but suggest an alternative interpretation of these data. With this we are able to explain the range over which the available energy is shared. Key assumptions of the model are verified by our experiments on the 3d decay. (paper)

  5. Photoemission studies of f-electron systems: Many-body effects: Final report, March 1, 1985--March 31, 1988

    Both initial and final state effects contribute to many-body features in photoemission on solids. The former reflect the ground state properties of the system, while the latter are due to the reaction of the solid state environment to the creation of a photoelectron hole. In f-electron systems both effects are expected to contribute to the photoemission spectra and one objective of this project was to separate final state effects from ground state properties. Final state effects provide valuable information about the interaction of f electrons with conduction electrons. The degree of f-electron localization and the strength of f-conduction electron hybridization for Ce- and U-based systems can be extracted from these measurements. The energy dependence of the photoemission cross section, which shows pronounced maxima in rare earth and uranium systems, also proved to be sensitive to the exact electronic state of the Ce ion. Core level photoemission spectroscopy was used as a species-specific probe to determine the electronic state of the f-shell ions and their ligands in scientific interesting systems. Application to high temperature superconducting compounds helped to determine the electronic properties necessary for superconductivity

  6. Ab initio surface core-level shifts and surface segregation energies

    Aldén, Magnus; Skriver, Hans Lomholt; Johansson, Börje

    1993-01-01

    We have calculated the surface core-level energy shifts of the 4d and 5d transition metals by means of local-density theory and a Green’s-function technique based on the linear muffin-tin orbitals method. Final-state effects are included by treating the core-ionized atom as an impurity located in...

  7. Deep layer-resolved core-level shifts in the beryllium surface

    Aldén, Magnus; Skriver, Hans Lomholt; Johansson, Börje

    1993-01-01

    Core-level energy shifts for the beryllium surface region are calculated by means of a Green’s function technique within the tight-binding linear muffin-tin orbitals method. Both initial- and final-state effects in the core-ionization process are fully accounted for. Anomalously large energy shifts...

  8. Modeling Shallow Core-Level Transitions in the Reflectance Spectra of Gallium-Containing Semiconductors

    Stoute, Nicholas; Aspnes, David

    2012-02-01

    The electronic structure of covalent materials is typically approached by band theory. However, shallow core level transitions may be better modeled by an atomic-scale approach. We investigate shallow d-core level reflectance spectra in terms of a local atomic-multiplet theory, a novel application of a theory typically used for higher-energy transitions on more ionic type material systems. We examine specifically structure in reflectance spectra of GaP, GaAs, GaSb, GaSe, and GaAs1-xPx due to transitions that originate from Ga3d core levels and occur in the 20 to 25 eV range. We model these spectra as a Ga^+3 closed-shell ion whose transitions are influenced by perturbations on 3d hole-4p electron final states. These are specifically spin-orbit effects on the hole and electron, and a crystal-field effect on the hole, attributed to surrounding bond charges and positive ligand anions. Empirical radial-strength parameters were obtained by least-squares fitting. General trends with respect to anion electronegativity are consistent with expectations. In addition to the spin-orbit interaction, crystal-field effects play a significant role in breaking the degeneracy of the d levels, and consequently are necessary to understand shallow 3d core level spectra.

  9. Core level shifts in Cu-Pd alloys as a function of bulk composition and structure

    Boes, Jacob R.; Kondratyuk, Peter; Yin, Chunrong; Miller, James B.; Gellman, Andrew J.; Kitchin, John R.

    2015-10-01

    CuPd alloys are important materials in hydrogen purification, where they are used as dense Pd-based separation membranes. Cu is added to impart sulfur tolerance and improved mechanical properties. At intermediate compositions and T < 873 K, a BCC alloy (B2) phase occurs, which has superior separation characteristics to those of the FCC phases that form at high Cu and high Pd compositions. Identifying the composition and temperature window where the B2 phase forms is a critical need to enable the design of improved alloys. A composition spread alloy film of Cu and Pd was synthesized. The film was characterized by electron back scatter diffraction and X-ray photoelectron spectroscopy, providing the core level shifts as a function of bulk composition and bulk structure. An anomalous deviation in the Cu core level shift was observed in the composition range 0.33 < xPd < 0.55 over which the B2 phase occurs. Density functional theory calculations were used to simulate core level shifts in the FCC and B2 alloy structures. They suggest that the anomalous deviation in core level shift is due to formation of the ordered B2 phase in this composition range.

  10. Vacuum space charge effects in sub-picosecond soft X-ray photoemission on a molecular adsorbate layer

    Vacuum space charge-induced kinetic energy shifts of O 1s and Ru 3d core levels in femtosecond soft X-ray photoemission spectra (PES) have been studied at a free electron laser (FEL) for an oxygen layer on Ru(0001). We fully reproduced the measurements by simulating the in-vacuum expansion of the photoelectrons and demonstrate the space charge contribution of the high-order harmonics in the FEL beam. Employing the same analysis for 400 nm pump-X-ray probe PES, we can disentangle the delay dependent Ru 3d energy shifts into effects induced by space charge and by lattice heating from the femtosecond pump pulse

  11. Angle-dependent hard X-ray photoemission study of Nb hydride formation in high-pressure supercritical water

    Soda, Kazuo, E-mail: j45880a@cc.nagoya-u.ac.jp [Department of Quantum Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Kondo, Hiroki; Yamaguchi, Kanta; Kato, Masahiko [Department of Quantum Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Shiraki, Tatsuhito; Niwa, Ken; Kusaba, Keiji; Hasegawa, Masashi [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Xeniya, Kozina; Ikenaga, Eiji [Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan)

    2015-09-15

    Highlights: • Nb hydrides in 10-GPa supercritical water are studied by photoelectron spectroscopy. • The hydride components of the Nb 3d core-level spectra are increased with the depth. • The bulk valence-band spectrum shows a split band due to the Nb–H bond formation. • The hydrides are formed in the bulk and their surfaces are covered with Nb oxides. - Abstract: Nb hydrides formation in 10-GPa supercritical water has been investigated by angle-dependent micro-beam hard X-ray photoemission spectroscopy. In the Nb 3d core-level spectra, Nb hydride components are found in the slightly high binding energy side of the metallic components, and the oxide ones are observed even though little oxides are recognized in X-ray diffraction patterns. Obtained emission-angle dependence of the Nb 3d core-level spectra of Nb hydride specimens shows that the Nb hydride components increase with the emission angle decreased i.e. the sampling depth increased, while the oxide ones decrease. The bulk valence-band spectrum is obtained by decomposing the measured valence-band spectra into a bulk and surface components with use of the emission-angle dependence of the core-level and valence-band spectra; it consists of two bands. This implies the Nb–H chemical bond formation and Nb in an oxidation state, consistent with reported band structure calculations and the observed core-level chemical shifts. Thus it is confirmed by valence-band and core-level photoelectron spectroscopy that the Nb hydrides are formed inside the specimen, irrespective to the well-known high oxidation ability of supercritical water.

  12. A revisit to ultrathin NiO(0 0 1) film: LEED and valence band photoemission studies

    Das, Jayanta, E-mail: jayanta.sinp@gmail.com; Menon, Krishnakumar S.R.

    2015-08-15

    LEED and photoemission measurements have been performed on ultrathin NiO films to reinvestigate its surface quality and valence electronic structures, respectively. On Ag(0 0 1) substrate, the best epitaxial order was observed for high temperature deposition with sufficient oxygen flux associated with a post-deposition oxygen annealing. The effect of the substrate vicinity on valence band electronic structure, in case of interfacial NiO layers, has been explained. The variation of Ni 3d to O 2p photoemission cross-section with photon energy (hν) has been demonstrated in this work.

  13. A revisit to ultrathin NiO(0 0 1) film: LEED and valence band photoemission studies

    LEED and photoemission measurements have been performed on ultrathin NiO films to reinvestigate its surface quality and valence electronic structures, respectively. On Ag(0 0 1) substrate, the best epitaxial order was observed for high temperature deposition with sufficient oxygen flux associated with a post-deposition oxygen annealing. The effect of the substrate vicinity on valence band electronic structure, in case of interfacial NiO layers, has been explained. The variation of Ni 3d to O 2p photoemission cross-section with photon energy (hν) has been demonstrated in this work

  14. Photoemission spectroscopy study of the hole-doped Haldane chain Y2-xSrxBaNiO5

    In this paper, we present photoemission experiments on the hole-doped Haldane chain compound Y2-xSrxBaNiO5. By using the photon energy dependence of the photoemission cross section, we identified the symmetry of the first ionisation states (d type). Hole doping in this system leads to a significant increase in the spectral weight at the top of the valence band without any change in the vicinity of the Fermi energy. This behavior, never observed in other charge transfer oxides, could result from the Ni3d-O2p hybridization enhancement due to the shortening of the relevant Ni-O distance with doping

  15. A core level spectroscopic study on RNi2B2C (R=Y,Er) borocarbides

    Polycrystalline samples of YNi2B2C and magnetic ErNi2B2C were prepared by arc-melting technique with a Tc ∼ 15 K. Core level spectroscopic studies have been performed in order to see the valence of Y, Er and Ni. The results show that Ni and Er exists in 2+ valence state and Y exists in 3+ valence state. (author)

  16. New determination of the core-level life-time broadenings in mercury

    Martensson, Nils, E-mail: nils.martensson@fysik.uu.se; Svensson, Svante

    2015-07-15

    Highlights: • We report core-level life-time widths for mercury in the gas phase. • Photoelectron spectra for the 4p, 4d, 4f and 5p levels are analyzed. • A Coster–Kronig like CI effect is observed for the 4d{sub 3/2} level. - Abstract: Previously recorded and published photoelectron spectroscopic data for mercury in the gas phase has been reanalyzed. The life-time broadenings have been determined for a large number of core levels. It is then seen that a recent detailed derivation of core-level line-widths based on X-ray emission spectroscopy give life-time widths that are generally too large. The 4d{sub 3/2}4d{sub 5/2}nd Coster–Kronig (CK) transition is also discussed. We find that the additional broadening of the 4d{sub 3/2} level for mercury metal is indeed due to a CK decay, in contrast to recent claims. In atomic mercury, however, the CK process in energetically forbidden. In spite of this we find that the 4d{sub 3/2} level is broadened also in this case. We propose that this is due to a mixing between the 4d{sub 3/2} hole state and discrete 4d{sub 5/2}nd states.

  17. New determination of the core-level life-time broadenings in mercury

    Highlights: • We report core-level life-time widths for mercury in the gas phase. • Photoelectron spectra for the 4p, 4d, 4f and 5p levels are analyzed. • A Coster–Kronig like CI effect is observed for the 4d3/2 level. - Abstract: Previously recorded and published photoelectron spectroscopic data for mercury in the gas phase has been reanalyzed. The life-time broadenings have been determined for a large number of core levels. It is then seen that a recent detailed derivation of core-level line-widths based on X-ray emission spectroscopy give life-time widths that are generally too large. The 4d3/24d5/2nd Coster–Kronig (CK) transition is also discussed. We find that the additional broadening of the 4d3/2 level for mercury metal is indeed due to a CK decay, in contrast to recent claims. In atomic mercury, however, the CK process in energetically forbidden. In spite of this we find that the 4d3/2 level is broadened also in this case. We propose that this is due to a mixing between the 4d3/2 hole state and discrete 4d5/2nd states

  18. Magnetic x-ray linear dichroism in resonant and non-resonant Gd 4f photoemission

    Mishra, S.; Gammon, W.J.; Pappas, D.P. [Virginia Commonwealth Univ., Richmond, VA (United States)] [and others

    1997-04-01

    The enhancement of the magnetic linear dichroism in resonant 4f photoemission (MLDRPE) is studied from a 50 monolayer film of Gd/Y(0001). The ALS at beamline 7.0.1 provided the source of linearly polarized x-rays used in this study. The polarized light was incident at an angle of 30 degrees relative to the film plane, and the sample magnetization was perpendicular to the photon polarization. The linear dichroism of the 4f core levels is measured as the photon energy is tuned through the 4d-4f resonance. The authors find that the MLDRPE asymmetry is strongest at the resonance. Near the threshold the asymmetry has several features which are out of phase with the fine structure of the total yield.

  19. Gas-Phase Photoemission With Soft X-Rays: Cross Sections And Angular Distributions

    Shirley, D. A.; Kobrin, P. H.; Truesdale, C. M.; Lindle, D. W.; F errett, T. A.; Heimann, P. A.; Becker, U.; Kerkhoff, H. G.; Southworth, S. H.

    1984-03-01

    A summary is presented of typical gas-phase photoemission studies based on synchrotron radiation in the 50-5000 eV range, using beam lines at the Stanford Synchrotron Radiation Laboratory. Three topics are addressed: atomic inner-shell photoelectron cross sections and asymmetries, correlation peaks in rare gases, and core-level shape resonances in molecules. Photoelectron cross-section a(nZ) and asymmetry-parameter a(n0 studies in mercury vapor at photon energies up to 270 eV (up to 600 eV for a4f) extend coverage of these parameters to nSF6 and OCS) through C is in CO, CO2 and CF4, N ls in N2 and NO, and 0 is in CO and CO2 to 2490 eV (S ls in SF6). Several conclusions can be drawn about the photoelectron and Auger cross sections and asymmetry parameters.

  20. Na and Cs intercalation of 2H-TaSe2 studied by photoemission

    The electronic structure of the layered compound 2H-TaSe2 has been studied using angle-resolved photoemission before and after in situ intercalation with Na and Cs. Core level spectra verified that Na and Cs both intercalate easily at room temperature, with only small amounts remaining on the surface. Valence band spectra revealed changes in the electronic band structure which were much more extensive than predicted by the rigid band model, but which were in reasonable agreement with theoretical bands calculated by the LAPW method. Some discrepancies between the experimental and calculated results are probably due to intercalation induced changes in the stacking of host layers. A general similarity with results from transition metal dichalcogenides with 1T structure indicates that the intercalation properties are not critically dependent on the internal structure of the host layers. (author)

  1. A New Spin on Photoemission Spectroscopy

    Jozwiak, Chris [Univ. of California, Berkeley, CA (United States)

    2008-12-01

    The electronic spin degree of freedom is of general fundamental importance to all matter. Understanding its complex roles and behavior in the solid state, particularly in highly correlated and magnetic materials, has grown increasingly desirable as technology demands advanced devices and materials based on ever stricter comprehension and control of the electron spin. However, direct and efficient spin dependent probes of electronic structure are currently lacking. Angle Resolved Photoemission Spectroscopy (ARPES) has become one of the most successful experimental tools for elucidating solid state electronic structures, bolstered by-continual breakthroughs in efficient instrumentation. In contrast, spin-resolved photoemission spectroscopy has lagged behind due to a lack of similar instrumental advances. The power of photoemission spectroscopy and the pertinence of electronic spin in the current research climate combine to make breakthroughs in Spin and Angle Resolved Photoemission Spectroscopy (SARPES) a high priority . This thesis details the development of a unique instrument for efficient SARPES and represents a radical departure from conventional methods. A custom designed spin polarimeter based on low energy exchange scattering is developed, with projected efficiency gains of two orders of magnitude over current state-of-the-art polarimeters. For energy analysis, the popular hemispherical analyzer is eschewed for a custom Time-of-Flight (TOF) analyzer offering an additional order of magnitude gain in efficiency. The combined instrument signifies the breakthrough needed to perform the high resolution SARPES experiments necessary for untangling the complex spin-dependent electronic structures central to today's condensed matter physics.

  2. Inverse photoemission in strongly correlated electron systems

    Eder, R; Ohta, Y.

    1996-01-01

    Based on exact results for small clusters of t-J models, we point out the existence of several distinct channels in the inverse photoemission (IPSE) spectrum. Holelike quasiparticles can either be annihilated completely or leave behind a variable number of spin excitations, which formed the dressing

  3. Photoemission from optoelectronic materials and their nanostructures

    Ghatak, Kamakhya Prasad; Bhattacharya, Sitangshu

    2009-01-01

    This monograph investigates photoemission from optoelectronic materials and their nanostructures. It contains open-ended research problems which form an integral part of the text and are useful for graduate courses as well as aspiring Ph.D.'s and researchers..

  4. On the core level shifts in semiconductors: A study of the electrostatic model

    A different electrostatic model is proposed for core level shift calculation in semiconductors on the basis of a critical analysis of so-called bond charge model by Bechstedt et al. The population of valence charge on anion and on cation is no longer a linear function of Phillips' ionicity, fsub(i), and a set of additive covalent radii is used instead of a non-additive one. A phenomenological expression is given for bond charge which decreases as ionicity, fsub(i), increases. The results are in agreement with experiments, and the reasons for errors are explained. (author)

  5. Surface and bulk 4f-photoemission spectra of CeIn3 and CeSn3

    Resonant photoemission spectroscopy was performed on CeIn3 and CeSn3 at the 4d-4f and 3d-4f core thresholds. Using the different surface sensitivity between the two photon energies, surface and bulk 4f-photoemission spectra were derived for both compounds. With the noncrossing approximation of the Anderson impurity model, the 4d-4f resonant spectra together with the surface and bulk spectra were self-consistently analyzed to obtain the microscopic parameters such as the 4f-electron energy and the hybridization strength with conduction electrons. The result shows a substantial difference in these parameters between the surface and the bulk, indicating that it is important to take into account the surface effect in analyzing photoemission spectra of Ce compounds. It is also found that the 4f surface core-level shift is different between CeIn3 and CeSn3. copyright 1997 The American Physical Society

  6. Raman scattering and photoemission from Bi clusters

    This paper reports on Raman scattering measurements of Bi clusters which formed on disordered C films at 110K exhibit a phase transformation from nanocrystalline rhombohedral structure to a suggested disordered phase. XPS measurements on this phase indicate core level shifts attributed to intrinsic, initial state effects on cluster electronic states

  7. UNITS IN $F_2D_{2p}$

    Kaur, Kuldeep; Khan, Manju

    2012-01-01

    Let $p$ be an odd prime, $D_{2p}$ be the dihedral group of order 2p, and $F_{2}$ be the finite field with two elements. If * denotes the canonical involution of the group algebra $F_2D_{2p}$, then bicyclic units are unitary units. In this note, we investigate the structure of the group $\\mathcal{B}(F_2D_{2p})$, generated by the bicyclic units of the group algebra $F_2D_{2p}$. Further, we obtain the structure of the unit group $\\mathcal{U}(F_2D_{2p})$ and the unitary subgroup $\\mathcal{U}_*(F_...

  8. Raising Photoemission Efficiency with Surface Acoustic Waves

    A. Afanasev, F. Hassani, C.E. Korman, V.G. Dudnikov, R.P. Johnson, M. Poelker, K.E.L. Surles-Law

    2012-07-01

    We are developing a novel technique that may help increase the efficiency and reduce costs of photoelectron sources used at electron accelerators. The technique is based on the use of Surface Acoustic Waves (SAW) in piezoelectric materials, such as GaAs, that are commonly used as photocathodes. Piezoelectric fields produced by the traveling SAW spatially separate electrons and holes, reducing their probability of recombination, thereby enhancing the photoemission quantum efficiency of the photocathode. Additional advantages could be increased polarization provided by the enhanced mobility of charge carriers that can be controlled by the SAW and the ionization of optically-generated excitons resulting in the creation of additional electron-hole pairs. It is expected that these novel features will reduce the cost of accelerator operation. A theoretical model for photoemission in the presence of SAW has been developed, and experimental tests of the technique are underway.

  9. Dimensionality of the electronic states in Nd0.45Sr0.55MnO3 studied by soft X-ray photoemission

    The electronic states of Nd0.45Sr0.55MnO3 in the two-dimensional metal phase have been revealed by the high-resolution Mn 2p-3d resonant photoemission. The vanishingly weak intensity at EF indicates an anomalous metal due to the two-dimensionality of the electronic states

  10. Soft X-ray photoemission spectroscopy

    The main motivation behind this thesis has been to determine both the advantages and the disadvantages of the soft X-ray application of angle-resolved photoemission spectroscopy. The investigation of a well known system, Ag(001), enables us to discuss several questions such as the role of the photon momentum, the applicability of the free-electron-like final state approximation and the role of phonons. The polarisation of the incoming light has also been exploited. The choice of such a system also comes from our desire to compare the results with calculations of angle-resolved photoemission spectra in this energy range. The anomalous low temperature properties of Ce-based compounds are generally related to the Kondo effect. Original results have been obtained by investigating the valence band of three iso-structural single crystalline Ce compounds, CeCu2Ge2, CeNi2Ge2 and CeCo2Ge2. The location of the Ce M5 absorption edge within the soft X-ray energy range is exploited in order to isolate the 4f contribution to the spectra. Added to this, the use of relatively high incoming photon energies allows minimising the surface contribution. Temperature dependent, resonant, angle-resolved and angle-integrated photoemission measurements have been performed. The former are in qualitative agreement with the single impurity Anderson model, whereas the latter suggest the importance of taking the lattice into account. (author)

  11. Surface atoms core-level shifts in single crystal GaAs surfaces: Interactions with trimethylaluminum and water prepared by atomic layer deposition

    The surface As/Ga atoms 3d core-level spectra of the atomically clean GaAs(1 1 1)A-2 × 2, GaAs(0 0 1)-2 × 4, and GaAs(0 0 1)-4 × 6 surfaces were firstly presented using high-resolution synchrotron radiation photoemission as a probe. The technique clearly explicates behaviors of the As atoms in different surface reconstruction. For GaAs(1 1 1)A-2 × 2, the surface As sits in the same plane as the Ga atoms. As to the GaAs(0 0 1)-2 × 4 surface, the As–As dimers dominate the surface layer, while for GaAs(001)-4 × 6, the As existed in two forms, the As in the As–Ga dimer and the 3-fold coordinated As. Next, we present a microscopic view of in situ atomic layer deposition (ALD) of Al2O3 on GaAs taking the two (0 0 1) surfaces as examples. The precursors were trimethylaluminum (TMA) and water. TMA could exist in either a chemisorbed or physisorbed form, depending on the charge environment of the associated surface atoms. The subsequent water purge resulted in both adsorbed forms being etched off or transformed the physisorbed TMA into the As-O-Al(CH3)2 configuration. We found that the ALD process rendered the precursors partially and selectively in forming bonds with the surface atoms without disturbing the atoms in the subsurface layer. Upon annealing, the interfacial bonding was dominated with the As-Al as well as Ga-O bonds.

  12. Solvothermal synthesis and magnetic properties of β-Co2P nanorods

    Li Tian; Liao Jun Peng; Wang Ying Feng

    2015-01-01

    Hexagonal high temperature phase β-Co2P nanorods with a diameter of around 50 nm were synthesized via a mild solvothermal route. The reaction was carried out at 180 °C using cobalt chloride hexahydrate (CoCl2 · 6H2O) as Co source and yellow phosphorous as P source. The composition, structure as well as morphology were characterized by X-ray diffraction (XRD), X-ray photoemission spectroscopy (XPS) and transmission electron microscopy (TEM). The magnetic susceptibility curve indicates that the...

  13. Optimized surface-slab excited-state muffin-tin potential and surface core level shifts

    An optimized muffin-tin (MT) potential for surface slabs with preassigned surface core-level shifts (SCLS's) is presented. By using the MT radii as adjustable parameters the model is able to conserve the definition of the SCLS with respect to the bulk and concurrently to generate a potential that is continuous at the MT radii. The model is conceived for elastic electron scattering in a surface slab with exchange-correlation interaction described by the local density approximation. The model employs two data bases for the self-energy of the signal electron (after Hedin and Lundqvist or Sernelius). The potential model is discussed in detail with two surface structures Be(101-bar0), for which SCLS's are available, and Cu(111)p(2x2)Cs, in which the close-packed radii of the atoms are extremely different. It is considered plausible that tensor LEED based on an optimized MT potential can be used for determining SCLS's

  14. Bulk electronic structure of FeRh undergoing metamagnetic transition via hard x-ray photoemission

    Gray, Alexander; Cooke, David; Kruger, Peter; Bordel, Catherine; Fullerton, Eric; Ueda, Shigenori; Kobayashi, Keisuke; Hellman, Frances; Fadley, Charles

    2012-02-01

    In this study changes in the electronic structure accompanying a temperature-induced metamagnetic transition from anti-ferromagnetic to ferromagnetic order are investigated in strained epitaxial FeRh thin films via valence-band and core-level hard x-ray photoelectron spectroscopy with a photon energy of 6 keV. At such high photon energy, the resulting inelastic mean-free paths of the photoemitted electrons and therefore the average probing depths are on the order of 60 å, corresponding to about 20 unit cells and ensuring truly bulk-sensitive measurement. Clear differences between the AFM and FM states are observed across the entire valence-band spectrum and these are well reproduced using density functional theory. Changes in the Fe 2p core-levels of Fe are also observed and interpreted using Anderson impurity model calculations. These results suggest that significant electronic structure changes are involved in this AFM-FM transition.

  15. Towards P2P XML Database Technology

    Zhang, Y.

    2007-01-01

    To ease the development of data-intensive P2P applications, we envision a P2P XML Database Management System (P2P XDBMS) that acts as a database middle-ware, providing a uniform database abstraction on top of a dynamic set of distributed data sources. In this PhD work, we research which features suc

  16. Highly resolved spatial and temporal photoemission analysis of integrated circuits

    We develop an optical system for highly resolved photoemission analysis of integrated circuits. Photons emitted by switching transistors allow the operation of an integrated circuit to be observed by recording the individual photoemission acts. The ongoing feature size reduction makes the space–time-resolved detection of these extremely weak photoemissions challenging. We combine different optical and photonic solutions to achieve both a high spatial and temporal resolution in a compact analysis system. Imaging and detection modules capture photons through the substrate during normal chip operation and perform highly resolved optical analysis. We demonstrate the system capability by photoemission records of a real-world IC device. (paper)

  17. Photoemission on Co and Cu quantum wires

    The coverage dependent electronic structure of Cu and Co on vicinal W(110) surfaces has been investigated with angle resolved photoelectron spectroscopy. To prepare the quasi-one-dimensional Cu and Co systems the method of step edge decoration of the vicinal W(110) surfaces has been used. The vicinal surfaces with step edges in (110), (100) and (111) direction has been investigated using LEED. From the characteristic spot splitting a terrace width of 11 atom rows was determined. The band structures of the flat and the vicinal surfaces have indicated that the step edges have no bearing on the bulk band structure at k parallel =0. But the surface band structure shows a different dispersion and different energy positions of surface states. An analysis of the W 4fτ/2 core level spectra has resulted in an additional contribution of the step edges in the spectra of the vicinal surfaces with a surface core level shift between 120 and 150 meV. A Cu and Co coverage dependent investigation of the core levels shows that there is no Co induced surface reconstruction and up to 0.15 monolayer no Cu induced surface reconstruction. In the range of 0.15 and 0.3 monolayer Cu the surface peak shifts to higher binding energies. This is probably a result of a surface reconstruction of the W substrate In the core level spectra with Co coverage the intensity of the surface peak decreases linear with Co coverage and the intensity of a new contribution, the interface structure, increases with Co coverage. With Co respectively Cu coverage the contribution of the step edge shifts to lower respectively higher binding energies. This can be attributed to a charge transfer between the adsorbat and the substrate in different directions. (orig.)

  18. Photoemission Fingerprints for Structural Identification of Titanium Dioxide Surfaces.

    Borghetti, Patrizia; Meriggio, Elisa; Rousse, Gwenaëlle; Cabailh, Gregory; Lazzari, Rémi; Jupille, Jacques

    2016-08-18

    The wealth of properties of titanium dioxide relies on its various polymorphs and on their mixtures coupled with a sensitivity to crystallographic orientations. It is therefore pivotal to set out methods that allow surface structural identification. We demonstrate herein the ability of photoemission spectroscopy to provide Ti LMV (V = valence) Auger templates to quantitatively analyze TiO2 polymorphs. The Ti LMV decay reflects Ti 4sp-O 2p hybridizations that are intrinsic properties of TiO2 phases and orientations. Ti LMV templates collected on rutile (110), anatase (101), and (100) single crystals allow for the quantitative analysis of mixed nanosized powders, which bridges the gap between surfaces of reference and complex materials. As a test bed, the anatase/rutile P25 is studied both as received and during the anatase-to-rutile transformation upon annealing. The agreement with X-ray diffraction measurements proves the reliability of the Auger analysis and highlights its ability to detect surface orientations. PMID:27453254

  19. Electronic structure and photoemission in plutonium chalcogenides

    Shick, Alexander; Havela, L.; Gouder, T.

    Warrendale, PA : Materials Research Society, 2008 - (Shuh, D.; Chung, B.; Albrecht-Schmitt, T.; Gouder, T.; Thompson, J.), s. 53-58 ISBN 978-1-60511-074-5. - (Materials Research Society Symposium Proceedings. NN. 1104). [Actinides 2008-Basic Science, Applications, and Technology. San Francisco (US), 24.03.2008-28.03.2008] R&D Projects: GA MŠk OC 144; GA ČR GA202/07/0644 Institutional research plan: CEZ:AV0Z10100520 Keywords : electronic sructure * photoemission * magnetism * strong electron correlations Subject RIV: BM - Solid Matter Physics ; Magnetism

  20. Towards P2P XML Database Technology

    Ying ZHANG

    2007-01-01

    To ease the development of data-intensive P2P applications, we envision a P2P XML Database Management System (P2P XDBMS) that acts as a database middle-ware, providing a uniform database abstraction on top of a dynamic set of distributed data sources. In this PhD work, we research which features such a database abstraction should offer and how it can be realised efficiently by extending and combining existing XML databases with P2P technologies. The first step in this research is a distribute...

  1. Core-Level Modeling and Frequency Prediction for DSP Applications on FPGAs

    Gongyu Wang

    2015-01-01

    Full Text Available Field-programmable gate arrays (FPGAs provide a promising technology that can improve performance of many high-performance computing and embedded applications. However, unlike software design tools, the relatively immature state of FPGA tools significantly limits productivity and consequently prevents widespread adoption of the technology. For example, the lengthy design-translate-execute (DTE process often must be iterated to meet the application requirements. Previous works have enabled model-based, design-space exploration to reduce DTE iterations but are limited by a lack of accurate model-based prediction of key design parameters, the most important of which is clock frequency. In this paper, we present a core-level modeling and design (CMD methodology that enables modeling of FPGA applications at an abstract level and yet produces accurate predictions of parameters such as clock frequency, resource utilization (i.e., area, and latency. We evaluate CMD’s prediction methods using several high-performance DSP applications on various families of FPGAs and show an average clock-frequency prediction error of 3.6%, with a worst-case error of 20.4%, compared to the best of existing high-level prediction methods, 13.9% average error with 48.2% worst-case error. We also demonstrate how such prediction enables accurate design-space exploration without coding in a hardware-description language (HDL, significantly reducing the total design time.

  2. Electronic structure and core-level spectra of light actinide dioxides in the dynamical mean-field theory

    Kolorenč, Jindřich; Shick, Alexander; Lichtenstein, A.I.

    2015-01-01

    Roč. 92, č. 8 (2015), "085125-1"-"085125-10". ISSN 1098-0121 R&D Projects: GA ČR GC15-05872J Institutional support: RVO:68378271 Keywords : electronic-structure calculations * dynamical mean-field theory * Mott insulators * actinides * oxides * photoemission Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  3. Li induced effects in the core level and π-band electronic structure of graphene grown on C-face SiC

    Johansson, Leif I., E-mail: lij@ifm.liu.se; Xia, Chao; Virojanadara, Chariya [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden)

    2015-11-15

    Studies of the effects induced in the electronic structure after Li deposition, and subsequent heating, on graphene samples prepared on C-face SiC are reported. The as prepared graphene samples are essentially undoped, but after Li deposition, the Dirac point shifts down to 1.2 eV below the Fermi level due to electron doping. The shape of the C 1s level also indicates a doping concentration of around 10{sup 14 }cm{sup −2} after Li deposition, when compared with recent calculated results of core level spectra of graphene. The C 1s, Si 2p, and Li 1s core level results show little intercalation directly after deposition but that most of the Li has intercalated after heating at 280 °C. Heating at higher temperatures leads to desorption of Li from the sample, and at 1030 °C, Li can no longer be detected on the sample. The single π-band observable from multilayer C-face graphene samples in conventional angle resolved photoelectron spectroscopy is reasonably sharp both on the initially prepared sample and after Li deposition. After heating at 280 °C, the π-band appears more diffuse and possibly split. The Dirac point becomes located at 0.4 eV below the Fermi level, which indicates occurrence of a significant reduction in the electron doping concentration. Constant energy photoelectron distribution patterns extracted from the as prepared graphene C-face sample and also after Li deposition and heating at 280 °C look very similar to earlier calculated distribution patterns for monolayer graphene.

  4. Li induced effects in the core level and π-band electronic structure of graphene grown on C-face SiC

    Studies of the effects induced in the electronic structure after Li deposition, and subsequent heating, on graphene samples prepared on C-face SiC are reported. The as prepared graphene samples are essentially undoped, but after Li deposition, the Dirac point shifts down to 1.2 eV below the Fermi level due to electron doping. The shape of the C 1s level also indicates a doping concentration of around 1014 cm−2 after Li deposition, when compared with recent calculated results of core level spectra of graphene. The C 1s, Si 2p, and Li 1s core level results show little intercalation directly after deposition but that most of the Li has intercalated after heating at 280 °C. Heating at higher temperatures leads to desorption of Li from the sample, and at 1030 °C, Li can no longer be detected on the sample. The single π-band observable from multilayer C-face graphene samples in conventional angle resolved photoelectron spectroscopy is reasonably sharp both on the initially prepared sample and after Li deposition. After heating at 280 °C, the π-band appears more diffuse and possibly split. The Dirac point becomes located at 0.4 eV below the Fermi level, which indicates occurrence of a significant reduction in the electron doping concentration. Constant energy photoelectron distribution patterns extracted from the as prepared graphene C-face sample and also after Li deposition and heating at 280 °C look very similar to earlier calculated distribution patterns for monolayer graphene

  5. Interaction between adsorbed hydrogen and potassium on a carbon nanocone containing material as studied by photoemission

    Hydrogen adsorption on a potassium doped carbon nanocone containing material was studied by photoelectron spectroscopy and work function measurement. The valence band spectra indicate that there is charge transfer from potassium to carbon. Upon deposition on carbon potassium is in its ionic state for lower doping and shows both ionic and metallic behavior at higher doping. Adsorption of hydrogen facilitates diffusion of potassium on the carbon material as seen by changes in the K2p core level spectrum. Variations in the measured sample work function indicate that hydrogen initially adsorb on the K dopants and subsequently adsorb on the carbon cone containing material

  6. Interaction between adsorbed hydrogen and potassium on a carbon nanocone containing material as studied by photoemission

    Yu, Xiaofeng [Nesna University College, 8700 Nesna (Norway); Raaen, Steinar, E-mail: sraaen@ntnu.no [Physics Department, Norwegian University of Science and Technology, 7491 Trondheim (Norway)

    2015-09-14

    Hydrogen adsorption on a potassium doped carbon nanocone containing material was studied by photoelectron spectroscopy and work function measurement. The valence band spectra indicate that there is charge transfer from potassium to carbon. Upon deposition on carbon potassium is in its ionic state for lower doping and shows both ionic and metallic behavior at higher doping. Adsorption of hydrogen facilitates diffusion of potassium on the carbon material as seen by changes in the K{sub 2p} core level spectrum. Variations in the measured sample work function indicate that hydrogen initially adsorb on the K dopants and subsequently adsorb on the carbon cone containing material.

  7. Photoemission from glass dust grains: First measurements

    Nouzak, Libor; Pechal, Radim; Pavlu, Jiri; Safrankova, Jana; Nemecek, Zdenek

    2014-05-01

    Dust grains are present in the interstellar space and also on surfaces of space objects like the Moon. The grains are charged by photoemission caused by solar UV radiation and by charged particles from the ambient plasma (solar wind, planetary magnetospheres). A balance of different charging processes on both sunlit and night sides of the Moon causes interesting phenomena as dust horizon glow, dust fountains, and dust levitation. To contribute to a better understanding of these processes, we present laboratory investigations that use a single SiO2 grain of micron size (an archetype of the lunar dust) caught in the electrodynamic trap. We irradiate it by HeI (21.2 eV) photons and electrons and discuss a contribution of these two processes to the grain charge. The grain specific charge is evaluated by an analysis of its motion and position in the trap. We compare equilibrium charge-to-mass ratios given by the electron emissions induced by electrons and by the UV photons from the HeI lamp. First measurements indicate that the resulting charge is about twice larger for photoemission than that caused by an electron impact.

  8. Vacuum space charge effects in sub-picosecond soft X-ray photoemission on a molecular adsorbate layer

    M. Dell'Angela

    2015-03-01

    Full Text Available Vacuum space charge induced kinetic energy shifts of O 1s and Ru 3d core levels in femtosecond soft X-ray photoemission spectra (PES have been studied at a free electron laser (FEL for an oxygen layer on Ru(0001. We fully reproduced the measurements by simulating the in-vacuum expansion of the photoelectrons and demonstrate the space charge contribution of the high-order harmonics in the FEL beam. Employing the same analysis for 400 nm pump-X-ray probe PES, we can disentangle the delay dependent Ru 3d energy shifts into effects induced by space charge and by lattice heating from the femtosecond pump pulse.

  9. X-ray photoemission spectrum, electronic structure, and magnetism of UCu{sub x}Sb{sub 2}

    Samsel-Czekała, M., E-mail: M.Samsel@int.pan.wroc.pl [W. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2 (Poland); Talik, E. [A. Chełkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Winiarski, M.J.; Troć, R. [W. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2 (Poland)

    2015-07-25

    Highlights: • Electronic structure of UCu{sub x}Sb{sub 2} probed by X-ray photoemission (XPS) and ab initio. • Good agreement between experimental and calculated (x = 0.75) XPS valence spectra. • Good accord between experimental and calculated ferromagnetic moments on U atoms. • Complex experimental core-level XPS spectrum with three: 1-, 3- and 7-eV satellites. • Concluded dual and mixed-valence configuration of U 5f states in UCu{sub 0.83}Sb{sub 2}. - Abstract: The room temperature valence and core-level X-ray photoemission spectra of an UCu{sub 0.83}Sb{sub 2} single crystal were measured using the Al Kα source. The related theoretical valence spectra were determined from densities of states for UCu{sub x}Sb{sub 2} systems obtained from our band structure calculations using the FLAPW method in the LDA + U approximation, as implemented in the Wien2k code, and the supercell approach to simulate a deficit of the Cu atoms. The calculated spectrum of the Cu-deficit UCu{sub 0.75}Sb{sub 2} is in good accord with the experimental one, revealing a complete localization of the Cu 3d electrons and a dual (both localized and itinerant) behavior as well as unusual spin-up polarization of the U 5f states near the Fermi level. Our calculated total magnetic moments on the uranium atom are in reasonable agreement with the experimental value of magnetization. Some localization and valence-mixing of the 5f-electrons are reflected by the triple-satellite (sats. 1-eV, 3-eV and 7-eV) structure, visible in the spectrum of the U 4f core-lines. Also the calculated Fermi surface of the stoichiometric system is complex, containing five spin-polarized sheets of different dimensionality with some nesting features.

  10. Photoemission resonance study of sintered and single-crystal Bi4Ca3Sr3Cu4O16+x

    Tang, Ming; Chang, Y.; Zanoni, R.; Onellion, M.; Joynt, Robert; Huber, D. L.; Margaritondo, G.; Morris, P. A.; Bonner, W. A.; Tarascon, J. M.; Stoffel, N. G.

    1989-02-01

    We present soft x-ray photoemission spectra that probe the valence and core electronic structure of the high-Tc superconductor Bi4Ca3Sr3Cu4O16+x. The identification of spectral features was helped by the observation of the resonant behavior of a Cu-related satellite feature. The resonance occurs at photon energies near the Cu3p optical absorption edge, and affects a peak 12.5 eV below the Fermi edge. We identified this feature as a correlation satellite characteristic of Cu in the 2+ valence state. Other features observed in the spectra more than 7 eV below the Fermi edge are due to several different core levels. In particular, we observed a strong Bi5d doublet. Other core level peaks are due to the Sr4p and Ca3p orbitals, and to Bi, Sr and Ca s-orbitals. Within 7 eV of the Fermi edge, the spectra are dominated by valence states. The most important feature is the Bi4Ca3Sr3Cu4O16+x Fermi edge itself, which we observed for the first time on this, and whose existence was subsequently confirmed by several other groups. On the contrary, no edge was observed in the photoemission spectra of materials in the YBa2Cu3O7-x family. The observation of the Fermi edge has important implications for the theoretical interpretation of high-Tc superconductivity. Furthermore, it enabled us to see near-edge changes associated with the superconducting transition.

  11. Angle-resolved photoemission studies of lattice polaron formation in the cuprate Ca2CuO2Cl2

    Shen, K.M.

    2010-05-03

    To elucidate the nature of the single-particle excitations in the undoped parent cuprates, we have performed a detailed study of Ca{sub 2}CuO{sub 2}Cl{sub 2} using photoemission spectroscopy. The photoemission lineshapes of the lower Hubbard band are found to be well-described by a polaron model. By comparing the lineshape and temperature dependence of the lower Hubbard band with additional O 2p and Ca 3p states, we conclude that the dominant broadening mechanism arises from the interaction between the photohole and the lattice. The strength of this interaction was observed to be strongly anisotropic and may have important implications for the momentum dependence of the first doped hole states.

  12. Propiedad Intelectual y Redes P2P

    ALCAINE SÁNCHEZ, JUAN FRANCISCO

    2015-01-01

    La meta de este documento no es otra que la de presentar al lector información acerca de la legislación sobre propiedad intelectual y distintos protocolos y software P2P. Primero se mostrará información sobre las principales leyes españolas en materia de propiedad intelectual. Posteriormente se presentará información acerca de los principales protocolos P2P sus clientes a lo largo de la historia de las redes P2P. Por último, se mostrarán las alternativas de pago a la descarga no lega...

  13. Signature of quantum criticality in photoemission spectroscopy.

    Klein, M; Nuber, A; Reinert, F; Kroha, J; Stockert, O; van Löhneysen, H

    2008-12-31

    A quantum phase transition in a heavy-fermion compound may destroy the Fermi-liquid ground state. However, the conditions for this breakdown have remained obscure. We report the first direct investigation of heavy quasiparticle formation and breakdown in the canonical system CeCu(6-x)Au(x) by ultraviolet photoemission spectroscopy at elevated temperatures without the complications of lattice coherence. Surprisingly, the single-ion Kondo energy scale T(K) exhibits an abrupt step near the quantum critical Au concentration of x(c) = 0.1. We show theoretically that this step is expected from a highly nonlinear renormalization of the local spin coupling at each Ce site, induced by spin fluctuations on neighboring sites. It provides a general high-temperature indicator for heavy-fermion quasiparticle breakdown at a quantum phase transition. PMID:19437657

  14. Short pulse photoemission from a dispenser cathode

    Bergeret, H.; Boussoukaya, M.; Chehab, R.; Leblond, B.; Le Duff, J.

    1991-03-01

    Pulsed photoemission in the picosecond regime has been obtained from a standard thermionic dispenser cathode (WBaCa) at temperatures below the measurable thermoemission threshold. A picosecond Nd : YAG mode locked laser has been used at both green and UV light. Micropulse charges up to 0.5 nC have been measured on a wideband coaxial pickup located behind the anode. They correspond to an electron saturation limit from an approximately 20 mm 2 illuminated cathode area with a surface field of 3 MV/m. The effective cathode efficiency at small laser energies, defined as the number of electrons impinging on the coaxial pickup divided by the number of photons impinging on the cathode, is about 2 × 10 -5.

  15. Time-resolved photoemission using attosecond streaking

    Nagele, Stefan; Wais, Michael; Wachter, Georg; Burgdörfer, Joachim

    2014-01-01

    We theoretically study time-resolved photoemission in atoms as probed by attosecond streaking. We review recent advances in the study of the photoelectric effect in the time domain and show that the experimentally accessible time shifts can be decomposed into distinct contributions that stem from the field-free photoionization process itself and from probe-field induced corrections. We perform accurate quantum-mechanical as well as classical simulations of attosecond streaking for effective one-electron systems and determine all relevant contributions to the time delay with attosecond precision. In particular, we investigate the properties and limitations of attosecond streaking for the transition from short-ranged potentials (photodetachment) to long-ranged Coulomb potentials (photoionization). As an example for a more complex system, we study time-resolved photoionization for endohedral fullerenes $A$@$\\text{C}_{60}$ and discuss how streaking time shifts are modified due to the interaction of the $\\text{C}_...

  16. Resonant photoemission from SmS(100)

    A strong, sharp resonance enhancement of 4f photoemission has been observed on SmS(100) surfaces for photon energies in the region of the 4d-4f transitions at about 126 eV. The discrete final state reached via the excitation hν + 4d104f6 → 4d94f7 autoionizes primarily via a super Coster-Kronig transition of the type 4d94f7 → 4d104f5 + unbound electron. Other decay channels, e.g. Sm 5p emission, as well as a surface induce binding energy shift in the Sm3+ final state are identified and discussed. (author)

  17. Short pulse photoemission from a dispenser cathode

    Pulsed photoemission in picosecond regime has been obtained from a standard thermionic dispenser cathode (W - Ba - Ca) at temperatures below measurable thermoemission threshold. A picosecond Nd: YAG mode locked laser has been used at both green and U.V. light. Micro-pulse charges up to 0.5 nC have been measured on a wideband coaxial pick up located behind the anode. They correspond to an electron saturation limit from an approximately 20 mm2 illuminated cathode area with a surface field of 3 MV/m. The effective cathode efficiency at small laser energies, defined as the number of electron impinging the coaxial pick up divided by the number of photons impinging the cathode, is about 2.10-5

  18. Efficient photoemission from robust ferroelectric ceramics

    Boscolo, I. [Milan Univ., Milan (Italy); Istituto Nazionale di Fisica Nucleare, Milan, (Italy); Castellano, M.; Catani, L.; Ferrario, M.; Tazzioli, F. [Istituto Nazionale di Fisica Nucleare, Frascati, RM (Italy); Giannessi, L. [ENEA, Frascati, Rome (Italy). Centro Ricerche Elettronica

    1999-07-01

    Experimental results on photoemission by ferroelectric ceramic disks, with a possible interpretation, are presented. Two types of lead zirconate titanate lanthanum doped, PLZT, ceramics have been used for tests. 25 ps light pulses of 532 and 355 nm were used for excitation. The intensity ranged within the interval 0.1-3 GW/cm{sup 2}. The upper limit of the intensity was established by the damage threshold tested by the onset of ion emission. At low value of the intensity the yield was comparable at the two wavelengths. At the highest intensity of green light the emitted charge was 1 nC per 10 mm{sup 2}, but it was limited by the space charge effect. In fact, the applied field was only 20 kV/cm, allowed both by the mechanical design of the apparatus and the poor vacuum, 10{sup -4} mbar. No surface processing was required. The measurement of the electron pulse length under way.

  19. Time delays in correlated photoemission processes

    Pazourek, R.; Nagele, S.; Burgdörfer, J.

    2015-09-01

    We theoretically study time-resolved two-photon double ionization (TPDI) of helium as probed by attosecond streaking. We review recent advances in the understanding of the photoelectric effect in the time domain and discuss the differences between one- and two-photon ionization, as well as one- and two-electron emission. We perform exact ab-initio simulations for attosecond streaking experiments in the sequential TPDI regime and compare the results to the two-electron Eisenbud-Wigner-Smith delay for the process. Our calculations directly show that the timing of the emission process sensitively depends on the energy sharing between the two outgoing electrons. In particular, we identify Fano-like interferences in the relative time delay of the two emitted electrons when the sequential ionization channel occurs via intermediate excited ionic (shake-up) states. Furthermore, we find that the photoemission time delays are only weakly dependent on the relative emission angle of the ejected electrons.

  20. High- Tc superconductivity: new issues from photoemission data

    Margaritondo, G.; Grioni, M.; Vobornik, I.; Pavuna, D.

    2001-11-01

    Recent high-resolution photoemission results on high- Tc superconductors and other low-dimensional systems solve some critical issues but also open new fundamental questions. A recent breakthrough enabled us to clarify the interplay of conflicting periodicities in photoemission data, thus legitimizing the photoemission analysis of crystals with super-periodicities. On the other hand, results on the role of doping and of intentional disorder in Bi 2Sr 2CaCu 2O 8+ x single crystals raise questions about the origin of the pseudogap.

  1. Surface Optimization of RBa2Cu3O7-δ (R=Y, Nd) Epitaxial High Tc Films for In Situ Photoemission Studies

    Abrecht, M.; Schmauder, T.; Ariosa, D.; Touzelet, O.; Rast, S.; Onellion, M.; Pavuna, D.

    One of the intrinsic difficulties for in situ photoemission studies of high Tc oxide films is the surface volatility, especially the oxygen loss. In order to solve this problem, we have constructed a dedicated system for high Tc film surface studies, in particular for ARPES measurements. Here we briefly describe our pulsed laser deposition (PLD) system that is linked to the photoemission chamber at the Synchrotron Radiation Center (SRC) in Wisconsin, and discuss crystallographic and electronic properties measured on epitaxial YBa2Cu3O7-δ (YBCO) and NdBa2Cu3O7-δ (NBCO) films. Resistivity and XRD studies show that the best c axis epitaxial films, with Tc (onset)=92 K (Tc0=90.5 K), are monophase and single crystalline with crystal coherence up to almost 1 µm. Initial core level photoemission study indicates that, for YBCO on SrTiO3 (without any buffer layer), the Ba oxide layer tends to be the dominant surface layer. Further experiments are underway to reproducibly detect sharp Fermi edge and perform ARPES study on optimally doped film surfaces.

  2. Photoemission and inverse photoemission study of the electronic structure of C60 fullerenes encapsulated in single-walled carbon nanotubes

    Shiozawa, Hidetsugu; Ishii, Hiroyoshi; Kihara, Hideo; Sasaki, Naoya; Nakamura, Satoshi; Yoshida, Tetsuo; Takayama, Yasuhiro; Miyahara, Tsuneaki; Suzuki, Shinzo; Achiba, Yohji; Kodama, Takeshi; Higashiguchi, Mitsuharu; Chi, Xiaoyu; Nakatake, Masashi; Shimada, Kenya

    2006-01-01

    We have measured the valence-band photoemission and inverse photoemission spectra of single-walled carbon nanotubes (SWNTs) with mean radii of 0.7 and 0.64 nm encapsulating C60 fullerenes (peas), so-called "peapods." The photoemission spectrum of the C60 peas in the SWNTs is obtained by subtracting the spectrum of empty SWNTs from the spectrum of the peapod. The structures in the C60 pea spectra correspond well to those in the spectrum of a C60 face-centered-cubic solid. No structure is obser...

  3. Photoemission measurements for low energy x-ray detector applications

    Photoemission has been studied for nearly 100 years as both a means of investigating quantum physics, and as a practical technique for transducing optical/x-ray photons into electrical currents. Numerous x-ray detection schemes, such as streak cameras and x-ray sensitive diodes, exploit this process because of its simplicity, adaptability, and speed. Recent emphasis on diagnostics for low temperature, high density, and short-lived, plasmas for inertial confinement fusion has stimulated interest in x-ray photoemission in the sub-kilovolt regime. In this paper, a review of x-ray photoemission measurements in the 50 eV to 10 keV x-ray region is given and the experimental techniques are reviewed. A semiempirical model of x-ray photoemission is discussed and compared to experimental measurements. Finally, examples of absolutely calibrated instruments are shown

  4. Uncertainties of the neutronic calculations at core level determined by the KARATE code system and the KIKO3D code

    Panka, Istvan; Kereszturi, Andras [Hungarian Academy of Sciences, Budapest (Hungary). Reactor Analysis Dept.

    2013-09-15

    In this paper the uncertainties of the neutronic calculations at core level - originating from the uncertainties of the basic nuclear data - are presented. The investigations have been made for a VVER-1000 core (Kozloduy-6) defined in the frame of the OECD NEA UAM benchmark. In the first part of the paper, the uncertainties of the effective multiplication factor, the assembly-wise radial power distribution, the axial power distribution and the rod worth are shown. After that the preliminary evaluation of the uncertainties of the neutron kinetic calculations are presented for a rod movement transient at HZP (Hot Zero Power) state, where the uncertainties of the time dependent core and assembly powers and the dynamic reactivity were evaluated. In both cases, we will see that the most important quantities - at core level and at HZP state - have a considerable uncertainty which is originating from the uncertainties of the basic cross section library in these investigations. (orig.)

  5. Theoretical predictions of the impact of nuclear dynamics and environment on core-level spectra of organic molecules

    Prendergast, David; Schwartz, Craig; Uejio, Janel; Saykally, Richard

    2009-03-01

    Core-level spectroscopy provides an element-specific probe of local electronic structure and bonding, but linking details of atomic structure to measured spectra relies heavily on accurate theoretical interpretation. We present first principles simulations of the x-ray absorption of a range of organic molecules both in isolation and aqueous solvation, highlighting the spectral impact of internal nuclear motion as well as solvent interactions. Our approach uses density functional theory with explicit inclusion of the core-level excited state within a plane-wave supercell framework. Nuclear degrees of freedom are sampled using various molecular dynamics techniques. We indicate specific cases for molecules in their vibrational ground state at experimental conditions, where nuclear quantum effects must be included. Prepared by LBNL under Contract DE-AC02-05CH11231.

  6. Uncertainties of the neutronic calculations at core level determined by the KARATE code system and the KIKO3D code

    In this paper the uncertainties of the neutronic calculations at core level - originating from the uncertainties of the basic nuclear data - are presented. The investigations have been made for a VVER-1000 core (Kozloduy-6) defined in the frame of the OECD NEA UAM benchmark. In the first part of the paper, the uncertainties of the effective multiplication factor, the assembly-wise radial power distribution, the axial power distribution and the rod worth are shown. After that the preliminary evaluation of the uncertainties of the neutron kinetic calculations are presented for a rod movement transient at HZP (Hot Zero Power) state, where the uncertainties of the time dependent core and assembly powers and the dynamic reactivity were evaluated. In both cases, we will see that the most important quantities - at core level and at HZP state - have a considerable uncertainty which is originating from the uncertainties of the basic cross section library in these investigations. (orig.)

  7. Effects of non-local exchange on core level shifts for gas-phase and adsorbed molecules

    Density functional theory calculations are often used to interpret experimental shifts in core level binding energies. Calculations based on gradient-corrected (GC) exchange-correlation functionals are known to reproduce measured core level shifts (CLS) of isolated molecules and metal surfaces with reasonable accuracy. In the present study, we discuss a series of examples where the shifts calculated within a GC-functional significantly deviate from the experimental values, namely the CLS of C 1s in ethyl trifluoroacetate, Pd 3d in PdO and the O 1s shift for CO adsorbed on PdO(101). The deviations are traced to effects of the electronic self-interaction error with GC-functionals and substantially better agreements between calculated and measured CLS are obtained when a fraction of exact exchange is used in the exchange-correlation functional

  8. P2P Live Video Streaming

    Chatzidrossos, Ilias

    2010-01-01

    The ever increasing demand for video content directed the focus of researchfrom traditional server-based schemes to peer-to-peer systems for videodelivery. In such systems, video data is delivered to the users by utilizing theresources of the users themselves, leading to a potentially scalable solution.Users connect to each other, forming a p2p overlay network on top of theInternet and exchange the video segments among themselves. The performanceof a p2p system is characterized by its capabil...

  9. P2P Techniques for Decentralized Applications

    Pacitti, Esther

    2012-01-01

    As an alternative to traditional client-server systems, Peer-to-Peer (P2P) systems provide major advantages in terms of scalability, autonomy and dynamic behavior of peers, and decentralization of control. Thus, they are well suited for large-scale data sharing in distributed environments. Most of the existing P2P approaches for data sharing rely on either structured networks (e.g., DHTs) for efficient indexing, or unstructured networks for ease of deployment, or some combination. However, these approaches have some limitations, such as lack of freedom for data placement in DHTs, and high late

  10. Internal Photoemission Spectroscopy of 2-D Materials

    Nguyen, Nhan; Li, Mingda; Vishwanath, Suresh; Yan, Rusen; Xiao, Shudong; Xing, Huili; Cheng, Guangjun; Hight Walker, Angela; Zhang, Qin

    Recent research has shown the great benefits of using 2-D materials in the tunnel field-effect transistor (TFET), which is considered a promising candidate for the beyond-CMOS technology. The on-state current of TFET can be enhanced by engineering the band alignment of different 2D-2D or 2D-3D heterostructures. Here we present the internal photoemission spectroscopy (IPE) approach to determine the band alignments of various 2-D materials, in particular SnSe2 and WSe2, which have been proposed for new TFET designs. The metal-oxide-2-D semiconductor test structures are fabricated and characterized by IPE, where the band offsets from the 2-D semiconductor to the oxide conduction band minimum are determined by the threshold of the cube root of IPE yields as a function of photon energy. In particular, we find that SnSe2 has a larger electron affinity than most semiconductors and can be combined with other semiconductors to form near broken-gap heterojunctions with low barrier heights which can produce a higher on-state current. The details of data analysis of IPE and the results from Raman spectroscopy and spectroscopic ellipsometry measurements will also be presented and discussed.

  11. Recoil and related effects in molecular photoemission

    Highlights: ► We present a overview of recoil-related effects for general audience of experimentalists working in the field of photoelectron spectroscopy. ► Photoelectron recoil is shown to alter vibrational structure. ► Photoelectron rotational recoil is shown to induce line shifts and broadenings. ► Interference and scattering of the outgoing photoelectron wave(s) are shown to introduce oscillations of branching ratios in molecular photoelectron spectra. -- Abstract: Photoemission from free molecules in the gas phase results in a complex spectral structure of electronic, vibrational and rotational transitions. In this review, the effects that can alter this structure and particularly the branching ratios in photoelectron spectra at the kinetic energies well above the ionization thresholds are considered. Simplified models that have nevertheless been found to describe the observations well are presented for photoelectron vibrational and rotational recoil, rotational Doppler broadening, photoelectron scattering and Cohen–Fano type interference phenomena. Experimental examples are shown together with the models. Some future developments and applications of the recoil-related phenomena are briefly considered.

  12. Recoil and related effects in molecular photoemission

    Kukk, E., E-mail: edwin.kukk@utu.fi [Dept. of Physics and Astronomy, University of Turku, FIN-20014 Turku (Finland); Ueda, K. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Miron, C. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint-Aubin, BP 48, FR-91192 Gif-sur-Yvette Cedex (France)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer We present a overview of recoil-related effects for general audience of experimentalists working in the field of photoelectron spectroscopy. Black-Right-Pointing-Pointer Photoelectron recoil is shown to alter vibrational structure. Black-Right-Pointing-Pointer Photoelectron rotational recoil is shown to induce line shifts and broadenings. Black-Right-Pointing-Pointer Interference and scattering of the outgoing photoelectron wave(s) are shown to introduce oscillations of branching ratios in molecular photoelectron spectra. -- Abstract: Photoemission from free molecules in the gas phase results in a complex spectral structure of electronic, vibrational and rotational transitions. In this review, the effects that can alter this structure and particularly the branching ratios in photoelectron spectra at the kinetic energies well above the ionization thresholds are considered. Simplified models that have nevertheless been found to describe the observations well are presented for photoelectron vibrational and rotational recoil, rotational Doppler broadening, photoelectron scattering and Cohen-Fano type interference phenomena. Experimental examples are shown together with the models. Some future developments and applications of the recoil-related phenomena are briefly considered.

  13. 5-Pentadecyl-2-((p-tolyliminomethylphenol

    Amorn Petsom

    2013-07-01

    Full Text Available 5-Pentadecyl-2-((p-tolyliminomethylphenol has been synthesized by reaction of 2-hydroxy-4-pentadecylbenzaldehyde with 4-amino-1-methyl-aniline in 1,4-dioxane under reflux. The structure of the synthesized compound was assigned on the basis of elemental analysis, UV, IR, 1H-NMR, 13C-NMR and mass spectral data.

  14. Electronic Structure Changes across the Metamagnetic Transition in FeRh via Hard X-Ray Photoemission

    Gray, A. X.; Cooke, D. W.; Krüger, P.; Bordel, C.; Kaiser, A. M.; Moyerman, S.; Fullerton, E. E.; Ueda, S.; Yamashita, Y.; Gloskovskii, A.; Schneider, C. M.; Drube, W.; Kobayashi, K.; Hellman, F.; Fadley, C. S.

    2012-06-01

    Stoichiometric FeRh undergoes a temperature-induced antiferromagnetic (AFM) to ferromagnetic (FM) transition at ˜350K. In this Letter, changes in the electronic structure accompanying this transition are investigated in epitaxial FeRh thin films via bulk-sensitive valence-band and core-level hard x-ray photoelectron spectroscopy with a photon energy of 5.95 keV. Clear differences between the AFM and FM states are observed across the entire valence-band spectrum and these are well reproduced using density-functional theory. Changes in the 2p core levels of Fe are also observed and interpreted using Anderson impurity model calculations. These results indicate that significant electronic structure changes over the entire valence-band region are involved in this AFM-FM transition.

  15. Superconductivity and x-ray photoemission study of MgB2 thin films

    王淑芳; 周岳亮; 朱亚彬; 张芹; 谢侃; 陈正豪; 吕惠宾; 杨国桢

    2002-01-01

    Highly c-axis oriented MgB2 thin films with Tconset of 39.6K were fabricated by magnesium diffusing into pulsed-laser-deposited boron precursors. The estimation of critical current density Jc, using hysteresis loops and the Bean model, has given the value of 107A/cm2 (15K, 0T), which is one of the highest values ever reported. The x-ray photoemission study of the MgB2 thin films has revealed that the binding energies of Mg 2p and B 1s are at 49.4eV and 186.9eV, which are close to those of metallic Mg and transition-metal diborides, respectively.

  16. Mobile P2P Fast Similarity Search

    Bocek, T; Hecht, F. V.; Hausheer, D; Hunt, E; Stiller, B.

    2009-01-01

    In informal data sharing environments, misspellings cause problems for data indexing and retrieval. This is even more pronounced in mobile environments, in which devices with limited input devices are used. In a mobile environment, similarity search algorithms for finding misspelled data need to account for limited CPU and bandwidth. This demo shows P2P fast similarity search (P2PFastSS) running on mobile phones and laptops that is tailored to uncertain data entry and use...

  17. Spectroscopic imaging, diffraction, and holography with x-ray photoemission

    X-ray probes are capable of determining the spatial structure of an atom in a specific chemical state, over length scales from about a micron all the way down to atomic resolution. Examples of these probes include photoemission microscopy, energy-dependent photoemission diffraction, photoelectron holography, and X-ray absorption microspectroscopy. Although the method of image formation, chemical-state sensitivity, and length scales can be very different, these X-ray techniques share a common goal of combining a capability for structure determination with chemical-state specificity. This workshop will address recent advances in holographic, diffraction, and direct imaging techniques using X-ray photoemission on both theoretical and experimental fronts. A particular emphasis will be on novel structure determinations with atomic resolution using photoelectrons

  18. Continuous-time core-level photon-stimulated desorption spectroscopy for monitoring soft x-ray-induced reactions of molecules adsorbed on a single-crystal surface

    Continuous-time core-level photon-stimulated desorption (PSD) spectroscopy was proposed for monitoring the soft x-ray-induced reactions of molecules adsorbed on a single-crystal surface. Monochromatic synchrotron radiation was used as a soft x-ray light source in the photon-induced reactions of CF3Cl adsorbed on a Si(111)-7x7 surface at 30 K and also as a probe for studying the produced fluorination states of the bonding surface Si atom in the positive-ion PSD spectroscopy. The F+ PSD spectrum was obtained by monitoring the F+ signal as a function of incident photon energy near the Si(2p) edge (98-110 eV). Sequential F+ PSD spectra were measured as a function of photon exposure at four adsorbate coverages (the first dose=0.3x1015 molecules/cm2, the second dose=0.8x1015 molecules/cm2, the third dose=2.2x1015 molecules/cm2, and the fourth dose=3.2x1015 molecules/cm2). For the first and second CF3Cl-dosed surfaces, the sequential F+ PSD spectra show the variation of their shapes with photon exposure and indicate the formation of surface SiF species. The sequential F+ PSD spectra for the third and fourth CF3Cl-dosed surfaces also show the variation of their shapes with photon exposure and depict the production of surface SiF and SiF3 species

  19. Phonon effects on X-ray absorption and X-ray photoemission spectra

    Highlights: • Some important phonon effects observed in X-ray absorption and X-ray photoemission spectra are discussed on the basis of nonequilibrium Green's function theory. • For the pre-edge structures, the intensity associated with forbidden electric dipole transition is sensitive to temperature compared with allowed electric quadrupole transition. • We also discuss the FC and their interference, which have negligible contribution to pre-edge intensity and energy shift. • The quasi-particle energy is also influenced by the core displacement which can be responsible for the peak shift of the pre-edges. • We also discuss the photoelectron angular distribution caused by the thermal atomic vibration. - Abstract: Some important phonon effects observed in X-ray absorption and X-ray photoemission spectra are discussed on the basis of nonequilibrium Green's function theory. This theoretical framework allows us to incorporate phonon effects, such as Debye–Waller (DW) factors, Franck–Condon (FC) factors and electron–phonon interactions in a natural way. In the case of core level excitations, we can take into account the core–hole effects in lesser Green's function g< and photoelectron propagation in greater Green's function g>. For the core–hole propagation we derive some formulas to describe the thermally displaced core functions: we have p components even for deep core s orbital due to the thermal motion. We should notice that the thermal fluctuation is quite small but it is already in the order of the spread of the core functions. Applying Mermin's theorem, we can calculate the thermal average of the hole propagator g<: here an important ingredient is the Debye–Waller factor used in X-ray and neutron diffraction. For the pre-edge structures, the intensity associated with forbidden electric dipole transition is sensitive to the temperature compared with allowed electric quadrupole transition. We also discuss the FC and

  20. MINERVA: Collaborative P2P Search (Demo)

    Bender, Matthias; Michel, Sebastian; Triantafillou, Peter; Weikum, Gerhard; Zimmer, Christian; Böhm, Klemens; Jensen, Christian S.; Haas, Laura M.; Kersten, Martin L.; Larson, Per-Ake; Ooi, Beng Chin

    2005-01-01

    This paper proposes the live demonstration of a prototype of MINERVA, a novel P2P Web search engine. The search engine is layered on top of a DHT-based overlay network that connects an a-priori unlimited number of peers, each of which maintains a personal local database and a local search facility. Each peer posts a small amount of metadata to a physically distributed directory that is used to efficiently select promising peers from across the peer population that ca...

  1. Electronic states of BP, BP +, BP -, B 2P 2, B2P2- and B2P2+

    Linguerri, Roberto; Komiha, Najia; Oswald, Rainer; Mitrushchenkov, Alexander; Rosmus, Pavel

    2008-05-01

    Using augmented sextuple zeta basis sets and internally contracted multireference configuration interaction (MRCI) wavefunctions, potential energy, electric dipole and transition moments have been computed for the X 3Π, a 1Σ +, b 1Π and A 3Σ - states of BP, X 2Σ + and A 2Π states of BP - and X 4Σ - and A 4Π states of BP +. From these data spectroscopic constants, radiative transition probabilities and photoelectron spectra of BP - and BP have been evaluated. The non-vanishing spin-orbit coupling elements between the four low lying triplet and singlet states of the neutral BP have also been calculated from MRCI wavefunctions. The treatment of the corresponding perturbations in the manifold of dense rovibrational states in the three lowest states would require a precise knowledge of the electronic excitation energies. Our best singlet-triplet separations (X-a) are calculated to be 2412 cm -1 (MRCI) and 2482 cm -1 (restricted coupled cluster with perturbative triples (RCCSD(T))) with an estimated error bound of about ±200 cm -1. All three states have long radiative lifetimes with cascading among the rovibrational levels of different states. The ionization energy IE e of BP is calculated to be 9.22 eV (MRCI) and 9.48 eV (RCCSD(T)), the electron affinity EA e 2.51 eV (MRCI) and 2.74 eV (RCCSD(T)). The photoelectron spectra of BP and BP - have been obtained from the Franck-Condon factors of the MRCI potentials. For the UV spectroscopy the dipole allowed radiative transition probabilities are given for A 3Σ - ↔ X 3Π, b 1Π ↔ a 1Σ + of BP, A 2Π ↔ X 2Σ + of BP - and A 4Π ↔ X 4Σ - of BP +. The ionization energy IE e of B 2P 2 of 8.71 eV and the electron affinity EA e of 2.34 eV have been calculated by the RCCSD(T)/aVQZ approach. Also the harmonic vibrational wavenumbers for the electronic ground states of the ions B2P2+ and B2P2- are given.

  2. Fullerene photoemission time delay explores molecular cavity in attoseconds

    Magrakvelidze, Maia; Dixit, Gopal; Madjet, Mohamed El-Amine; Chakraborty, Himadri S

    2014-01-01

    Time-resolved photoelectron spectroscopy can probe interference oscillations in C60 valence emissions that produce series of minima whose energy separation depends on the molecular size. We show that the quantum phase associated with these minima exhibits rapid variations due to electron correlations, causing rich structures in the photoemission time delay. These findings provide a way to utilize temporal information to access the fullerene cavity size, that is making the time to "see" the space, and can be generalized to photoemissions from clusters and nanostructures.

  3. Electronic band structure and photoemission: A review and projection

    A brief review of electronic-structure calculations in solids, as a means of interpreting photoemission spectra, is presented. The calculations are, in general, of three types: ordinary one-electron-like band structures, which apply to bulk solids and are the basis of all other calculations; surface modified calculations, which take into account, self-consistently if at all possible, the presence of a vacuum-solid interface and of the electronic modifications caused thereby; and many-body calculations, which go beyond average-field approximations and consider dynamic rearrangement effects caused by electron-electron correlations during the photoemission process. 44 refs

  4. Einstein's Photoemission from Quantum Confined Superlattices.

    Debbarma, S; Ghatak, K P

    2016-01-01

    This paper is dedicated to the 83th Birthday of Late Professor B. R. Nag, D.Sc., formerly Head of the Departments of Radio Physics and Electronics and Electronic Science of the University of Calcutta, a firm believer of the concept of theoretical minimum of Landau and an internationally well known semiconductor physicist, to whom the second author remains ever grateful as a student and research worker from 1974-2004. In this paper, an attempt is made to study, the Einstein's photoemission (EP) from III-V, II-VI, IV-VI, HgTe/CdTe and strained layer quantum well heavily doped superlattices (QWHDSLs) with graded interfaces in the presence of quantizing magnetic field on the basis of newly formulated electron dispersion relations within the frame work of k · p formalism. The EP from III-V, II-VI, IV-VI, HgTe/CdTe and strained layer quantum wells of heavily doped effective mass superlattices respectively has been presented under magnetic quantization. Besides the said emissions, from the quantum dots of the aforementioned heavily doped SLs have further investigated for the purpose of comparison and complete investigation in the context of EP from quantum confined superlattices. Using appropriate SLs, it appears that the EP increases with increasing surface electron concentration and decreasing film thickness in spiky manners, which are the characteristic features of such quantized hetero structures. Under magnetic quantization, the EP oscillates with inverse quantizing magnetic field due to Shuvnikov-de Haas effect. The EP increases with increasing photo energy in a step-like manner and the numerical values of EP with all the physical variables are totally band structure dependent for all the cases. The most striking features are that the presence of poles in the dispersion relation of the materials in the absence of band tails create the complex energy spectra in the corresponding HD constituent materials of such quantum confined superlattices and effective electron

  5. Exploring the Electronic Structure and Chemical Homogeneity of Individual Bi2Te3 Nanowires by Nano-Angle-Resolved Photoemission Spectroscopy.

    Krieg, Janina; Chen, Chaoyu; Avila, José; Zhang, Zeying; Sigle, Wilfried; Zhang, Hongbin; Trautmann, Christina; Asensio, Maria Carmen; Toimil-Molares, Maria Eugenia

    2016-07-13

    Due to their high surface-to-volume ratio, cylindrical Bi2Te3 nanowires are employed as model systems to investigate the chemistry and the unique conductive surface states of topological insulator nanomaterials. We report on nanoangle-resolved photoemission spectroscopy (nano-ARPES) characterization of individual cylindrical Bi2Te3 nanowires with a diameter of 100 nm. The nanowires are synthesized by electrochemical deposition inside channels of ion-track etched polymer membranes. Core level spectra recorded with submicron resolution indicate a homogeneous chemical composition along individual nanowires, while nano-ARPES intensity maps reveal the valence band structure at the single nanowire level. First-principles electronic structure calculations for chosen crystallographic orientations are in good agreement with those revealed by nano-ARPES. The successful application of nano-ARPES on single one-dimensional nanostructures constitutes a new avenue to achieve a better understanding of the electronic structure of topological insulator nanomaterials. PMID:27311702

  6. Electronic structure of elemental curium studied by photoemission

    Gouder, T.; van der Laan, G.; Shick, Alexander; Haire, R.G.; Caciuffo, R.

    2011-01-01

    Roč. 83, č. 12 (2011), "125111-1"-"125111-6". ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP204/10/0330 Institutional research plan: CEZ:AV0Z10100520 Keywords : photoemission * actinides Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.691, year: 2011

  7. Relativistic calculations of angular dependent photoemission time delay

    Kheifets, A S; Deshmukh, P C; Dolmatov, V K; Manson, S T

    2016-01-01

    Angular dependence of photoemission time delay for the valence $np_{3/2}$ and $np_{1/2}$ subshells of Ar, Kr and Xe is studied in the dipole relativistic random phase approximation. Strong angular anisotropy of the time delay is reproduced near respective Cooper minima while the spin-orbit splitting affects the time delay near threshold.

  8. Practical Photoemission Characterization Of Molecular Films And Related Interfaces

    Even though the term ‘organic electronics’ evokes rather organic devices, a significant part of its scope deals with physical properties of ‘active elements’ such as organic films and interfaces. Examination of the film growth and the evolution of the interface formation are particularly needful for the understanding a mechanism controlling their final properties. Performing such experiments in an ultra-high vacuum allows both to ‘stretch’ the time scale for pseudo real-time observations and to control properties of the probed systems on the atomic level. Photoemission technique probes directly electronic and chemical structure and it has thereby established among major tools employed in the field.This review primarily focuses to electronic properties of oligomeric molecular films and their interfaces examined by photoemission. Yet, it does not aspire after a complete overview on the topic; it rather aims to otherwise standard issues encountered at the photoemission characterization and analysis of the organic materials, though requiring to consider particularities of molecular films in terms of the growth, electronic properties, and their characterization and analysis. In particular, the fundamental electronic parameters of molecular films such as the work function, the ionization energy, and the interfacial energy level alignment, and their interplay, will be pursued with considering often neglected influence of the molecular orientation. Further, the implication on the band bending in molecular films based on photoemission characterization, and a model on the driving mechanism for the interfacial energy level alignment will be addressed. (author)

  9. Investigating crystalline-polarity-dependent electronic structures of GaN by hard x-ray photoemission and ab-initio calculations

    Ohsawa, Takeo; Ueda, Shigenori; Suzuki, Motohiro; Tateyama, Yoshitaka; Williams, Jesse R.; Ohashi, Naoki

    2015-10-01

    Crystalline-polarity-dependent electronic structures of gallium nitride (GaN) were studied by photoemission spectroscopy (PES) using soft and hard x-rays with different linear polarizations. A peak located near the valence band (VB) maximum was enhanced for a (0001) surface compared with that for a ( 000 1 ¯ ) surface regardless of photon energy. Comparison of the VB density of states obtained by ab-initio calculations with the observed VB-PES spectra indicates that the crystalline-polarity dependence is associated with the Ga 4p and N 2p states. The most plausible origin of the crystalline-polarity-dependent VB feature is based on the photoemission phenomena of electrons in the pz-orbitals due to spontaneous electric polarization along the c-axis of GaN.

  10. Real-time TDDFT simulations of time-resolved core-level spectroscopies in solid state systems

    Pemmaraju, Sri Chaitanya Das; Prendergast, David; Theory of Nanostructured Materials Facility Team

    The advent of sub-femtosecond time-resolved core-level spectroscopies based on high harmonic generated XUV pulses has enabled the study of electron dyanamics on characteristic femtosecond time-scales. Unambiguous interpretation of these powerful yet complex spectroscopies however requires the development of theoretical algorithms capable of modeling light-matter interaction across a wide energy range spanning both valence and core orbitals. In this context we present a recent implementation of the velocity-gauge formalism of real-time TDDFT within a linear combination of atomic orbital (LCAO) framework, which facilitates efficient numerical treatment of localized semi-core orbitals. Dynamics and spectra obtained from LCAO based simulations are compared to those from a real-space grid implementation. Potential applications are also illustrated by applying the method towards interpreting recent atto-second time-resolved IR-pump XUV-probe spectroscopies investigating sub-cycle excitation dynamics in bulk silicon.

  11. Magnetic dichroism in angle-resolved hard x-ray photoemission from buried layers

    Kozina, Xeniya; Fecher, Gerhard H.; Stryganyuk, Gregory; Ouardi, Siham; Balke, Benjamin; Felser, Claudia; Schönhense, Gerd; Ikenaga, Eiji; Sugiyama, Takeharu; Kawamura, Naomi; Suzuki, Motohiro; Taira, Tomoyuki; Uemura, Tetsuya; Yamamoto, Masafumi; Sukegawa, Hiroaki; Wang, Wenhong; Inomata, Koichiro; Kobayashi, Keisuke

    2011-08-01

    This work reports the measurement of magnetic dichroism in angular-resolved photoemission from in-plane magnetized buried thin films. The high bulk sensitivity of hard x-ray photoelectron spectroscopy (HAXPES) in combination with circularly polarized radiation enables the investigation of the magnetic properties of buried layers. HAXPES experiments with an excitation energy of 8 keV were performed on exchange-biased magnetic layers covered by thin oxide films. Two types of structures were investigated with the IrMn exchange-biasing layer either above or below the ferromagnetic layer: one with a CoFe layer on top and another with a Co2FeAl layer buried beneath the IrMn layer. A pronounced magnetic dichroism is found in the Co and Fe 2p states of both materials. The localization of the magnetic moments at the Fe site conditioning the peculiar characteristics of the Co2FeAl Heusler compound, predicted to be a half-metallic ferromagnet, is revealed from the magnetic dichroism detected in the Fe 2p states.

  12. STM of photoemission studies of Au and Pd on TiO2

    This thesis presents the first scanning tunnelling microscopy (STM) images of metals dispersed on metal oxide supports recorded at high temperatures. Thermal deposition in ultra-high vacuum (UHV) of a sub-monolayer quantity of metal onto single crystal rutile titanium dioxide produces metal nanoparticles on the surface, which are known to be an effective laboratory model of metal/TiO2 powdered commercial catalysts. By acquiring real space nanoscale images of the surface in real time at elevated temperature, we gain direct insight into the mechanism of thermal sintering of these catalysts. Chapter 1 introduces the necessary background to this work, whilst the principles and implementations of the experimental techniques are discussed in the second chapter. In chapter 3 we describe experiments where valence level and shallow core states of gold nanoclusters on TiO2(110) have been studied by synchrotron excited photoemission. The shift to high binding energy and broadening of the Au 4f peaks with decreasing Au surface coverage can be understood in terms of decreasing cluster size and the associated effects of charge on the cluster in the final state. Shifts in the photoemission onset are much more pronounced than the core level shifts and show a strong dependence on the degree of reduction of the TiO2(110) substrate. These observations suggest that the photoemission onset is influenced by an initial state effect involving charge transfer from defect states into cluster states. In chapter 4 STM is used to demonstrate that deposition of Au on TiO2(110) at room temperature leads to nucleation of Au nanoparticles whose initial mean diameter varies between about 20A and 50A depending on the surface coverage. Studying the behaviour of these clusters at elevated temperatures with STM, it is found that at 750K there is growth of the larger clusters, but above 873K evaporation of gold from the surface competes with this ripening process. At 750K the Au coverage remains

  13. Investigation of the potassium fluoride post deposition treatment on the CIGSe/CdS interface using hard X-ray photoemission spectroscopy - a comparative study.

    Ümsür, Bünyamin; Calvet, Wolfram; Steigert, Alexander; Lauermann, Iver; Gorgoi, Mihaela; Prietzel, Karsten; Greiner, Dieter; Kaufmann, Christian A; Unold, Thomas; Lux-Steiner, Martha Ch

    2016-05-18

    The impact of the potassium fluoride post deposition treatment on CIGSe chalcopyrite absorbers is investigated by means of depth resolved hard X-ray photoemission spectroscopy of the near surface region. Two similar, slightly Cu-poor CIGSe absorbers were used with one being treated by potassium fluoride prior to the chemical bath deposition of an ultrathin CdS layer. The thickness of the CdS layer was chosen to be in the range of about 10 nm in order to allow the investigation of the CIGSe/CdS interface by the application of hard X-rays, increasing the information depth up to 30 nm. Besides strong intermixing on both samples, an increased Cu depletion of the KF treated absorber was observed in combination with an increased accumulation of Cd and S. In addition, a general shift of about 0.15 eV to higher binding energies of the CIGSe valence band at the absorber surface as well as the CIGSe and CdS related core levels was measured on the KF treated sample. This phenomenon is attributed to the impact of additional cadmium which acts as donor and releases further electrons into the conduction band of the absorber. Finally, the electrons accumulate at the CdS surface after having passed the interface region. This additional surface charge leads to a pronounced shift in the photoemission spectra as observed on the KF treated CIGSe absorber compared to the non-treated absorber. PMID:27160389

  14. Photoemission study of copper phthalocyanine growth on hydrogen-terminated surface: Si(100)2 × 1–H

    Ben Hamada, B.; Souissi, A.; Menzli, S.; Arbi, I.; Akremi, A.; Chefi, C. [Université de Carthage, Laboratoire de Physique des Matériaux, Unité de Service Commun Spectromètre de Surfaces, Faculté des Sciences de Bizerte, 7021 Jarzouna, Bizerte (Tunisia); Derivaz, M. [Institut de Science des Matériaux de Mulhouse (IS2M), UMR 7361 CNRS–UHA, Université de Haute Alsace, 3bis rue Alfred Werner, 68093 Mulhouse (France)

    2014-09-30

    Copper phthalocyanine molecules have grown at room temperature under ultra high vacuum on hydrogen-terminated surface Si(100)2 × 1–H. Chemical and electronic properties of the interface were investigated by ultraviolet and X-ray photoemission spectroscopy (UPS, XPS). Results: Results indicated the existence of an interfacial dipole of 0.36 ± 0.05 eV and a band bending of 0.40 ± 0.05 eV. These were evidenced by shifts of XPS core levels and change of the vacuum level position. During the growth, the work function was found to decrease from 4.5 eV for the substrate to 3.74 eV for the highest coverage (40 monolayers). This band bending was also due to the shift of the highest occupied molecular orbital. The interfacial dipole was correlated to a rearrangement of molecules on the surface. An energy level diagram of the interface was deduced from a combination of the XPS and UPS results. - Highlights: • Ultra thin films of cooper phthalocyanine were grown on Si(100)2 × 1–H surface. • Investigation was in situ by UPS, XPS and LEED. • Results indicated the existence of an interfacial dipole and a band bending. • The interfacial dipole was correlated to a rearrangement of molecules on the surface. • An energy level diagram of the interface was deduced.

  15. Orbital tomography: Deconvoluting photoemission spectra of organic molecules

    Puschnig, Peter; Reinisch, Eva-Maria; Ules, Thomas; Koller, Georg; Soubatch, Sergey; Ostler, Markus; Romaner, Lorenz; Tautz, F. Stefan; Ambrosch-Draxl, Claudia; Ramsey, Michael G.

    2012-02-01

    We study the interface of an organic monolayer with a metallic surface, i. e., PTCDA (3,4,9,10-perylene-tetracarboxylic-dianhydride) on Ag(110), by means of angle-resolved photoemission spectroscopy (ARPES) and ab initio electronic structure calculations. We present a tomographic method which uses the energy and momentum dependence of ARPES data to deconvolute spectra into individual orbital contributions beyond the limits of energy resolution. This provides an orbital-by-orbital characterization of large adsorbate systems without the need to invoke sophisticated theory of photoemission, allowing us to directly estimate the effects of bonding on individual orbitals. Moreover, this experimental data serves as a most stringent test necessary for the further development of ab initio electronic structure theory.

  16. Thermal and Field Enhanced Photoemission Comparison of Theory to Experiment

    Lynn-Jensen, Kevin

    2004-01-01

    Photocathodes are a critical component of high-gain FEL’s and the analysis of their emission is complex. Relating their performance under laboratory conditions to conditions of an rf photoinjector is difficult. Useful models must account for cathode surface conditions and material properties, as well as drive laser parameters. We have developed a time-dependent model accounting for the effects of laser heating and thermal propagation on photoemission. It accounts for surface conditions (coating, field enhancement, reflectivity), laser parameters (duration, intensity, wavelength), and material characteristics (reflectivity, laser penetration depth, scattering rates) to predict current distribution and quantum efficiency. The applicatIon will focus on photoemission from metals and, in particular, dispenser photocathodes: the later introduces complications such as coverage non-uniformity and field enhancement. The performance of experimentally characterized photocathodes will be extrapolated to 0.1 - 1 nC bunch...

  17. Generalized Franck-Condon principle for resonant photoemission

    Sałek, Paweł; Gel'mukhanov, Faris; Ågren, Hans; Björneholm, Olle; Svensson, Svante

    1999-10-01

    A generalized Franck-Condon (GFC) principle for resonant x-ray Raman scattering and for resonant photoemission in particular is derived and numerically investigated. The GFC amplitudes differ from ordinary FC amplitudes by the presence of photon and photoelectron phase factors which describe the coupling-or interference-of the x-ray photons or Auger electrons with the nuclear motion. With the GFC amplitudes, a Kramers-Heisenberg relation is obtained for vibronic transitions that corrects the so-called lifetime-vibrational interference formula. For resonant photoemission in the soft-x-ray region involving typical bound potential surfaces, the generalization gives a contribution to the FC factors that can amount to 20%. For core excitation above the dissociation threshold, the GFC principle relates to Doppler effects on the ejected photoelectron both for the so-called ``molecular'' and ``atomic'' bands. The role of the GFC principle in direct photoionization is briefly discussed.

  18. P2P IPTV Measurement: A Comparison Study

    Silverston, Thomas; Fourmaux, Olivier

    2006-01-01

    With the success of P2P file sharing, new emerging P2P applications arise on the Internet for streaming content like voice (VoIP) or live video (IPTV). Nowadays, there are lots of works measuring P2P file sharing or P2P telephony systems, but there is still no comprehensive study about P2P IPTV, whereas it should be massively used in the future. During the last FIFA world cup, we measured network traffic generated by P2P IPTV applications like PPlive, PPstream, TVants and Sopcast. In this pap...

  19. THE ORGANIC LED SURFACE: A SYNCHROTRON RADIATION PHOTOEMISSION STUDY

    TUN-WEN PI; T. C. YU

    2007-01-01

    Tris(8-hydroxyquinolato) aluminum (Alq3), a prototypical molecule for organic light-emitting devices, has been studied via synchrotron radiation photoemission to investigate (1) the surface electronic structure of the molecules at room temperature and at elevated temperatures, (2) adsorption onto the inorganic Si(001)-2×1 surface, and (3) doping with the alkaline metal Mg. For case (1), three chemical environments of carbon are resolved. Moreover, the shake-up satellite structures are detecte...

  20. Analysis on photoemission spectrum of superconducting FeSe

    In this paper, we present the result of soft X-ray photoemission spectroscopy and its comparison with the density functional calculation. Although local density approximation seems to be a good starting point for describing the electronic structure of FeSe, the simulated spectrum poorly reproduced the structure around EB=2eV. This result suggests the necessity of theoretical treatment beyond local density approximation.

  1. O- and H-induced surface core level shifts on Ru(0001): prevalence of the additivity rule

    In previous work on adsorbate-induced surface core level shifts (SCLSs), the effects caused by O atom adsorption on Rh(111) and Ru(0001) were found to be additive: the measured shifts for first-layer Ru atoms depended linearly on the number of directly coordinated O atoms. Density-functional theory calculations quantitatively reproduced this effect, allowed separation of initial- and final-state contributions, and provided an explanation in terms of a roughly constant charge transfer per O atom. We have now conducted similar measurements and calculations for three well-defined adsorbate and coadsorbate layers containing O and H atoms: (1 x 1)-H, (2 x 2)-(O+H) and (2 x 2)-(O+3H) on Ru(0001). As H is stabilized in fcc sites in the prior two structures and in hcp sites in the latter, this enables us to not only study coverage and coadsorption effects on the adsorbate-induced SCLSs, but also the sensitivity to similar adsorption sites. Remarkably good agreement is obtained between experiment and calculations for the energies and geometries of the layers, as well as for all aspects of the SCLS values. The additivity of the next-neighbor adsorbate-induced SCLSs is found to prevail even for the coadsorbate structures. While this confirms the suggested use of SCLSs as fingerprints of the adsorbate configuration, their sensitivity is further demonstrated by the slightly different shifts unambiguously determined for H adsorption in either fcc or hcp hollow sites.

  2. Core-level photoelectron study of Si(1 1 1) sq root 7x sq root 3-(Pb, Sn) surface

    Soda, K; Takada, T; Yoshimoto, O; Kato, M; Yagi, S; Morita, K; Kamada, M

    2003-01-01

    The Sn 4d and Pb 5d core-level photoelectron spectra have been studied in order to clarify their bonding properties and atomic arrangement on a Si(1 1 1) sq root 7x sq root 3-(Pb, Sn) surface, which is formed by the coadsorption of 0.4 ML Pb and 0.4 ML Sn and shows two kinds of bright spots in the scanning tunneling microscopic (STM) images: (A) those aligned zigzag on the T sub 1 site and (B) those on the T sub 1 and H sub 3 sites along the [1 1 -2] direction. The Pb 5d spectrum shows a single spin-orbit-split feature with weak tailing towards the high binding energy side, while the Sn 4d spectrum exhibits shoulder structures at the high binding energy side of the main peaks. This definitely indicates at least two different Sn-Si bonds or inequivalent Sn adsorbing sites and single bond or site for Pb. Thus the spots A at the T sub 1 site and those B at the T sub 1 and H sub 3 sites in the STM images are ascribed to Pb and Sn adatoms, respectively. The formation process of this surface will be also discussed ...

  3. Main: 1M2P [RPSD[Archive

    Full Text Available 1M2P トウモロコシ Corn Zea mays L. Casein Kinase Ii, Alpha Chain Name=Ack2; Zea Mays Mole...LVGRHSRKPWLKFMNADNQHLVSPEAIDFLDKLLRYDHQERLTALEAMTHPYFQQVRAAENSRTRA corn_1M2P.jpg ...

  4. Multiconfiguration Hartree-Fock Breit-Pauli results for the 2p 2P/sub 1/2/ - 2p 2P/sub 3/2/ E2 and M1 transitions

    Some forbidden transitions become possible through the fine structure splitting of an LS term into a series of J levels. Examples are the E2 and M1 transition between the 2p 2P/sub 1/2/ and 2p 2P/sub 3/2/ levels in the boron sequence. In the non-relativistic approximation, these levels are degenerate and there is a strong interaction between the 2s22p and 2p32P configurations, indicating important correlation efforts. Thus the theoretical determination of the fine structure splitting provides a sensitive test for a computational method. The MCHF method has been extended to include the relativistic corrections in the Breit-Pauli approximation. An MCHF-BP calculation proceeds in two stages. In the first, a non-relativistic MCHF calculation is performed to determine an orbital basis, whereas in the second the Breit-Pauli interaction matrix is diagonalized. At present the orbit-orbit interactions are neglected. Calculations have been performed with this method for 2p 2P/sub 1/2/ - 2p 2P/sub 3/2/ E2 and M1 transitions of the boron sequence. In order to study the effect of correlation outside the n = 2 complex, two sets of calculations were performed. In the first, the radial orbitals were determined for an MCHF calculation for (2s22p, 2p3) 2P and the Breit-Pauli diagonalization was over the set of four configuration states, (2s22p, 2p32P, 2p32D and 2p34S). In the second, the MCHF calculation was for [2s22p, 2p3, 2p2(1S)3p, 2s24p, 2s2p(1,3P) 3d, 2s3s(3S) 2p] 2P and the Breit-Pauli diagonalization included twenty 2P configuration states, as well as 2p32D and 2p34S, for a total of twenty-two configuration states

  5. Electronic structure of C and N co-doped TiO2: A combined hard x-ray photoemission spectroscopy and density functional theory study

    We have studied the electronic structure of C and N co-doped TiO2 using hard x-ray photoelectron spectroscopy and first-principles density functional theory calculations. Our results reveal overlap of the 2p states of O, N, and C in the system which shifts the valence band maximum towards the Fermi level. Combined with optical data we show that co-doping is an effective route for band gap reduction in TiO2. Comparison of the measured valence band with theoretical photoemission density of states reveals the possibility of C on Ti and N on O site

  6. Structure of Tl2Mo2P2O11

    Dimolybdenum dithallium diphosphate, Tl2Mo2P2O11, is isotypic with K2Mo2P2O11. Its framework is built from the original Mo2P2O15 unit, formed by one Mo2O11 group sharing four of its corners with two PO4 tetrahedra, leading to [Mo2P2O13]∞ chains running along c. The [Mo2P2O11]∞ framework forms two different intersecting tunnels running along c and left angle 110 right angle , where the TI+ ions are located. (orig.)

  7. Optimization of Extreme Ultraviolet Light Source from High Harmonic Generation for Condensed-Phase Core-Level Spectroscopy

    Lin, Ming-Fu; Verkamp, Max A.; Ryland, Elizabeth S.; Benke, Kristin; Zhang, Kaili; Carlson, Michaela; Vura-Weis, Josh

    2015-06-01

    Extreme ultraviolet (XUV) light source from high-order harmonic generation has been shown to be a powerful tool for core-level spectroscopy. In addition, this light source provides very high temporal resolution (10-18 s to 10-15 s) for time-resolved transient absorption spectroscopy. Most applications of the light source have been limited to the studies of atomic and molecular systems, with technique development focused on optimizing for shorter pulses (i.e. tens of attoseconds) or higher XUV energy (i.e. ~keV range). For the application to general molecular systems in solid and liquid forms, however, the XUV photon flux and stability are highly demanded due to the strong absorption by substrates and solvents. In this case, the main limitation is due to the stability of the high order generation process and the limited bandwidth of the XUV source that gives only discrete even/odd order peaks. Consequently, this results in harmonic artifact noise that overlaps with the resonant signal. In our current study, we utilize a semi-infinite cell for high harmonic generation from two quantum trajectories (i.e. short and long) at over-driven NIR power. This condition, produces broad XUV spectrum without using complicated optics (e.g. hollow-core fibers and double optical gating). This light source allows us to measure the static absorption spectrum of the iron M-edge from a Fe(acac)3 molecular solid film, which shows a resonant feature of 0.01 OD (~2.3% absorption). Moreover, we also investigate how sample roughness affects the static absorption spectrum. We are able to make smooth solar cell precursor materials (i.e. PbI2 and PbBr2) by spin casting and observe iodine (50 eV) and bromine (70 eV) absorption edges in the order of 0.05 OD with minimal harmonic artifact noise.

  8. Time-resolved photoemission by attosecond streaking: extraction of time information

    Nagele, Stefan; Feist, Johannes; Doblhoff-Dier, Katharina; Lemell, Christoph; T\\Hokési, Karoly; Burgdörfer, Joachim

    2011-01-01

    Attosecond streaking of atomic photoemission holds the promise to provide unprecedented information on the release time of the photoelectron. We show that attosecond streaking phase shifts indeed contain timing (or spectral phase) information associated with the Eisenbud-Wigner-Smith time delay matrix of quantum scattering. However, this is only accessible if the influence of the streaking infrared (IR) field on the emission process is properly accounted for. The IR probe field can strongly modify the observed streaking phase shift. We show that the part of the phase shift ("time shift") due to the interaction between the outgoing electron and the combined Coulomb and IR laser fields can be described classically. By contrast, the strong initial-state dependence of the streaking phase shift is only revealed through the solution of the time-dependent Schr\\"odinger equation in its full dimensionality. We find a time delay between the hydrogenic 2s and 2p initial states in He+ exceeding 20as for a wide range of I...

  9. Time-resolved photoemission by attosecond streaking: extraction of time information

    Attosecond streaking of atomic photoemission holds the promise to provide unprecedented information on the release time of the photoelectron. We show that attosecond streaking phase shifts indeed contain timing (or spectral phase) information associated with the Eisenbud-Wigner-Smith time delay matrix of quantum scattering. However, this is only accessible if the influence of the streaking infrared (IR) field on the emission process is properly accounted for. The IR probe field can strongly modify the observed streaking phase shift. We show that the part of the phase shift ('time shift') due to the interaction between the outgoing electron and the combined Coulomb and IR laser fields can be described classically. By contrast, the strong initial-state dependence of the streaking phase shift is only revealed through the solution of the time-dependent Schroedinger equation in its full dimensionality. We find a time delay between the hydrogenic 2s and 2p initial states in He+ exceeding 20 as for a wide range of IR intensities and XUV energies. (fast track communication)

  10. Time-resolved photoemission by attosecond streaking: extraction of time information

    Nagele, S; Pazourek, R; Doblhoff-Dier, K; Lemell, C; Burgdoerfer, J [Institute for Theoretical Physics, Vienna University of Technology, 1040 Vienna (Austria); Feist, J [ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Tokesi, K, E-mail: stefan.nagele@tuwien.ac.at, E-mail: renate.pazourek@tuwien.ac.at [Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), 4001 Debrecen (Hungary)

    2011-04-28

    Attosecond streaking of atomic photoemission holds the promise to provide unprecedented information on the release time of the photoelectron. We show that attosecond streaking phase shifts indeed contain timing (or spectral phase) information associated with the Eisenbud-Wigner-Smith time delay matrix of quantum scattering. However, this is only accessible if the influence of the streaking infrared (IR) field on the emission process is properly accounted for. The IR probe field can strongly modify the observed streaking phase shift. We show that the part of the phase shift ('time shift') due to the interaction between the outgoing electron and the combined Coulomb and IR laser fields can be described classically. By contrast, the strong initial-state dependence of the streaking phase shift is only revealed through the solution of the time-dependent Schroedinger equation in its full dimensionality. We find a time delay between the hydrogenic 2s and 2p initial states in He{sup +} exceeding 20 as for a wide range of IR intensities and XUV energies. (fast track communication)

  11. X-ray-photoemission-spectroscopy evidence for anomalous oxidation states of silicon after exposure of hydrogen-terminated single-crystalline (100) silicon to a diluted N2:N2O atmosphere

    The early oxidation stages of hydrogen-terminated single-crystalline (100) silicon exposed to a diluted N2 : N2O atmosphere at 8500C for different durations have been studied by x-ray photoemission spectroscopy, following the evolution of the Si 2p signal. Evidence is given that the usual analysis, in terms of five pairs of peaks attributed to silicon in the oxidation states from 0 to +4, does not account for the observed Si 2p signal. An explanation for silicon in unusual oxidation states is proposed. (author)

  12. Polarized resonance photoemission for Nd2CuO4

    We present calculations of resonance photoemission spectra for Nd2CuO4. The calculations use a model Hamiltonian for which all parameters for the valence electrons are obtained from ab initio calculations or atomic data. Most features of the calculated sp agree well with experiment where comparison is possible. A substantial dependence on the polarization of the light is predicted for the occurrence of resonance behavior, and for the off-resonance intensity of the local singlet and one of the satellites

  13. Understanding photoemission spectra in uranium based heavy fermion systems

    In 4f compounds, there is a two-peaked structure associated with 4f photoemission spectroscopy, while most 5f compounds yield a single broad triangular-shaped 5f intensity. Evidence is presented from measurements on ternary alloys that show that at least part of the extra-5f intensity is due to the hitherto missing main peak (or d-screened f-hole peak) just as in the 4f systems. The remaining intensity is consistent with a band structure DOS. (The compounds used were URh3B/sub x/, UPd/sub x/Rh/sub 3-x/, ThBe13, UIr3, and UBe13.)

  14. Operating experience with a GaAs photoemission electron source

    Tang, F.C.; Lubell, M.S.; Rubin, K.; Vasilakis, A.; Eminyan, M.; Slevin, J.

    1986-12-01

    We report on the development of several operating procedures that promise to make GaAs photoemission electron sources easier to construct, more reliable to operate, and more amenable to use in dynamic vacuum systems. We describe in particular a method for ''ohmically'' heating a <100> crystal of GaAs under vacuum to approximately 600 /sup 0/C. We also discuss our observations of the role of oxygen in the activation of the crystal surface, the use of continuous cesiation, and of the performance of the crystal under varying vacuum conditions.

  15. Operating experience with a GaAs photoemission electron source

    We report on the development of several operating procedures that promise to make GaAs photoemission electron sources easier to construct, more reliable to operate, and more amenable to use in dynamic vacuum systems. We describe in particular a method for ''ohmically'' heating a crystal of GaAs under vacuum to approximately 600 0C. We also discuss our observations of the role of oxygen in the activation of the crystal surface, the use of continuous cesiation, and of the performance of the crystal under varying vacuum conditions

  16. Measurements of relative photoemission time delays in noble gas atoms

    We determine relative photoemission time delays between valence electrons in different noble gas atoms (Ar, Ne and He) in an energy range between 31 and 37 eV. The atoms are ionized by an attosecond pulse train synchronized with an infrared laser field and the delays are measured using an interferometric technique. We compare our results with calculations using the random phase approximation with exchange and multi-configurational Hartree–Fock. We also investigate the influence of the different ionization angular channels. (paper)

  17. Photoemission study of TiO2/VO2 interfaces

    Maekawa, K; Takizawa, M.; Wadati, H.; Yoshida, T.; Fujimori, A.; Kumigashira, H.; Oshima, M.; Muraoka, Y.; Nagao, Y.; Hiroi, Z.

    2006-01-01

    We have measured photoemission spectra of two kinds of TiO$_2$-capped VO$_2$ thin films, namely, that with rutile-type TiO$_2$ (r-TiO$_2$/VO$_2$) and that with amorphous TiO$_2$ (a-TiO$_2$/VO$_2$) capping layers. Below the Metal-insulator transition temperature of the VO$_2$ thin films, $\\sim 300$ K, metallic states were not observed for the interfaces with TiO$_2$, in contrast with the interfaces between the band insulator SrTiO$_3$ and the Mott insulator LaTiO$_3$ in spite of the fact that ...

  18. Modeling Load Balancing in Heterogeneous Unstructured P2P Systems

    Zhi J. Li

    2005-01-01

    Full Text Available Load balancing is a generally concerned problem in peer-to-peer (P2P systems. Many researches on load balancing in the structured P2P systems have been launched currently, such as Chord or other DHTs. Although the researches on load balancing in unstructured P2P systems are emerged nowadays, the simple mechanisms achieved can only perform effectively in uniform environment. In this study, the influence on load balancing of the heterogeneity existed universally in unstructured P2P systems are analyzed, the unstructured P2P systems and their load balancing and the heterogeneity are modeled. Based on the formal model, the load balancing is analyzed quantitatively under static and dynamic environment and the typical load balancing algorithms are also analyzed. Some important conclusions are drawn which can be used in new models of load balancing in unstructured P2P systems.

  19. Research and Development of P2P Worms

    Li You; Zhi-Guang Qin

    2011-01-01

    With the development and the application of many popular peer-to-peer (P2P) systems such as eMule and BitTorrent,worms probably employ the features of these P2P networks to put them at risk.Some features,such as the local routing table and the application routing mechanism,are helpful to quickly distribute the P2P worms into the networks.This paper aims to give a comprehensive survey of P2P worms.The definition and the classification of P2P worms are discussed firstly.Then,the research and development of P2P worms, including experimental analysis,propagation modeling,and defensive approaches,are addressed and analyzed in detail.

  20. Supporting Collaboration and Creativity Through Mobile P2P Computing

    Wierzbicki, Adam; Datta, Anwitaman; Żaczek, Łukasz; Rzadca, Krzysztof

    Among many potential applications of mobile P2P systems, collaboration applications are among the most prominent. Examples of applications such as Groove (although not intended for mobile networks), collaboration tools for disaster recovery (the WORKPAD project), and Skype's collaboration extensions, all demonstrate the potential of P2P collaborative applications. Yet, the development of such applications for mobile P2P systems is still difficult because of the lack of middleware.

  1. Valence-band dispersion in angle-resolved resonant photoemission from LaSb

    Angle-resolved photoemission spectra taken on single crystals of LaSb at the La 4d→4f resonance show dispersion of resonantly emitted valence-band electrons. This is the first direct demonstration that the Bloch component of valence states participates in resonant photoemission. copyright 1996 The American Physical Society

  2. Deletion of GOLGA2P3Y but not GOLGA2P2Y is a risk factor for oligozoospermia.

    Sen, Sanjukta; Agarwal, Rupesh; Ambulkar, Prafulla; Hinduja, Indira; Zaveri, Kusum; Gokral, Jyotsna; Pal, Asoke; Modi, Deepak

    2016-02-01

    The AZFc locus on the human Y chromosome harbours several multicopy genes, some of which are required for spermatogenesis. It is believed that deletion of one or more copies of these genes is a cause of infertility in some men. GOLGA2LY is one of the genes in the AZFc locus and it exists in two copies, GOLGA2P2Y and GOLGA2P3Y. The involvement of GOLGA2LY gene copy deletions in male infertility, however, is unknown. This study aimed to investigate the association of deletions of GOLGA2P2Y and GOLGA2P3Y gene copies with male infertility and with sperm concentration and motility. The frequency of GOLGA2P3Y deletion was significantly higher in oligozoospermic men compared with normozoospermic men (7.7% versus 1.2%; P = 0.0001), whereas the frequency of GOLGA2P2Y deletion was comparable between oligozoospermic and normozoospermic men (10.3% versus 11.3%). The deletion of GOLGA2P3Y but not GOLGA2P2Y was significantly higher (P = 0.03) in men with gr/gr rearrangements, indicating that GOLGA2P3Y deletions increase the susceptibility of men with gr/gr rearrangements to oligozoospermia. Furthermore, men with GOLGA2P3Y deletion had reduced sperm concentration and motility compared with men without deletion or with deletion of GOLGA2P2Y. These findings indicate GOLGA2P3Y gene copy may be candidate AZFc gene for male infertility. PMID:26655651

  3. Search by shortcuts in P2P scientific collaboration system

    2005-01-01

    A P2P scientific collaboration is a P2P network whose members can share documents, co-compile papers and codes, and communicate with each other instantly. From the simulation experiment we found that P2P collaboration system is a power-law network with a tail between -2 and -3.We utilized the algorithm that searches by high-degree shortcuts to improve the scalability of p2p collaboration system. The experimental result shows that the algorithm works better than random walk algorithm.

  4. Transition probabilities for NII 2p4f-2p3d and 2s2p23d-2s2p23p obtained by a semiclassical method

    2007-01-01

    Based on NII spectra, some transition probabilities for 2p4f-2p3d and 2s2p23d-2s2p23p are obtained by a semiclassical method. The results are in good agreement with other measurements and the data reported by the National Institute of Standards and Technology. The transition probability for a line of 424.18nm is reported for the first time. Meanwhile, a feasible method of calculating transition parameters related to special excited configurations or highly excited states is provided.

  5. Characterization of P2P IPTV Traffic: Scaling Analysis

    Silverston, Thomas; Fourmaux, Olivier; Salamatian, Kave

    2007-01-01

    P2P IPTV applications arise on the Internet and will be massively used in the future. It is expected that P2P IPTV will contribute to increase the overall Internet traffic. In this context, it is important to measure the impact of P2P IPTV on the networks and to characterize this traffic. Dur- ing the 2006 FIFA World Cup, we performed an extensive measurement campaign. We measured network traffic generated by broadcasting soc- cer games by the most popular P2P IPTV applications, namely PPLive...

  6. Photoemission from stepped W(110): Umklapp or superlattice effect?

    Full text: Vicinal W(110) is an important substrate for the growth of metallic and magnetic nanostructures. In order to explore its potential to support nanostructures that lead to quantization of electronic states, the behavior of electrons on the pure stepped W(110) is studied. Using angle-resolved photoemission, we compare the electronic structure of the (110)-oriented terraces of stepped W(331) and W(551). We discover a surface-localized state which leads in [110]-terrace-normal emission to a large energy shift (∼0.8 eV) between W(110) and W(331). Away from normal emission it develops in the direction perpendicular to the steps into a repeated band dispersion. The measured periodicity agrees well with the step widths of W(331) and W(551), respectively, and is, principally, in agreement with both an initial-state superlattice effect and a final-state umklapp process. We discuss the role of the W bulk band gap and use the energy dependence in angle-resolved photoemission and low-energy electron diffraction to show that the observed behavior is due to a final-state umklapp effect at the step superlattice, as has recently been observed for carbon nanostripes on stepped Ni(771)[3] and independently on vicinal Au(111)

  7. Aberration Corrected Photoemission Electron Microscopy with Photonics Applications

    Fitzgerald, Joseph P. S.

    Photoemission electron microscopy (PEEM) uses photoelectrons excited from material surfaces by incident photons to probe the interaction of light with surfaces with nanometer-scale resolution. The point resolution of PEEM images is strongly limited by spherical and chromatic aberration. Image aberrations primarily originate from the acceleration of photoelectrons and imaging with the objective lens and vary strongly in magnitude with specimen emission characteristics. Spherical and chromatic aberration can be corrected with an electrostatic mirror, and here I develop a triode mirror with hyperbolic geometry that has two adjacent, field-adjustable regions. I present analytic and numerical models of the mirror and show that the optical properties agree to within a few percent. When this mirror is coupled with an electron lens, it can provide a large dynamic range of correction and the coefficients of spherical and chromatic aberration can be varied independently. I report on efforts to realize a triode mirror corrector, including design, characterization, and alignment in our microscope at Portland State University (PSU). PEEM may be used to investigate optically active nanostructures, and we show that photoelectron emission yields can be identified with diffraction, surface plasmons, and dielectric waveguiding. Furthermore, we find that photoelectron micrographs of nanostructured metal and dielectric structures correlate with electromagnetic field calculations. We conclude that photoemission is highly spatially sensitive to the electromagnetic field intensity, allowing the direct visualization of the interaction of light with material surfaces at nanometer scales and over a wide range of incident light frequencies.

  8. Binding energy shift in photoemission spectroscopy study of Ni clusters deposited on rutile TiO2 surfaces

    Cluster-size-dependent binding energy (BE) shifts of Ni 2p3/2 spectra in Ni clusters with respect to bulk Ni metal have been studied as a function of Ni coverage on clean rutile TiO2(0 0 1) surfaces at room temperature. Auger parameter (AP) analysis of photoelectron spectra has been employed and revealed an obvious initial state contribution at the coverage of 0.5 monolayers (ML). The initial state effect was demonstrated to be strongly affected by the substrate and was assigned to a combination of eigenvalue shift in surface core-level shift (SCLS) and charge transfer between the metal clusters and substrates. The TiO2(0 0 1) surface stoichiometry was found to introduce different charge transfer behaviors. Our results experimentally present that the Ni clusters are charged positively on stoichiomtric TiO2 surface and less positively or even negatively on various reduced surfaces.

  9. ZrCu2P2 and HfCu2P2 phosphides and their crystal structure

    Isostructural ZrCu2P2 and HfCu2P2 compounds are prepared for the first time. X-ray diffraction analysis (of powder, DRON-2.0 diffractometer, FeKsub(α) radiation) was used to study crystal structure of HfCu2P2 phosphide belonging to the CaAl2Si2 structural type (sp. group P anti 3 m 1, R=0.095). Lattice parameters the compounds are as follows: for ZrCu2P2 a=0.3810(1), c=0.6184(5); for HfCu2P2 a=0.3799(1), c=0.6160(2) (nm). Atomic parameters in the HfCu2P2 structure and interatomic distances are determined

  10. High-kinetic-energy photoemission spectroscopy of Ni at 1s : 6-eV satellite at 4 eV

    Karis, O.; Svensson, S.; Rusz, J.; Oppeneer, P. M.; Gorgoi, M.; Schäfers, F.; Braun, W.; Eberhardt, W.; Mårtensson, N.

    2008-12-01

    Electron correlations are responsible for many profound phenomena in solid-state physics. A classical example is the 6-eV satellite in the photoelectron spectrum of Ni. Until now the satellite structure has only been investigated at the L shell and more shallow levels. Here we report a high-kinetic-energy photoemission spectroscopy (HIKE) investigation of Ni metal. We present 1s and 2p photoelectron spectra, obtained using excitation energies up to 12.6 keV. Our investigation demonstrates that the energy position of the satellite relative to the main line is different for the 1s and the 2p levels. In combination with electronic structure calculations, we show that this energy shift is attributed to unique differences in the core-valence coupling for the K and L2,3 shells in 3d transition metals, resulting in different screening of the core holes.

  11. Comparison of the electronic structure of anatase and rutile TiO2 single-crystal surfaces using resonant photoemission and x-ray absorption spectroscopy

    Thomas, A. G.; Flavell, W. R.; Mallick, A. K.; Kumarasinghe, A. R.; Tsoutsou, D.; Khan, N.; Chatwin, C.; Rayner, S.; Smith, G. C.; Stockbauer, R. L.; Warren, S.; Johal, T. K.; Patel, S.; Holland, D.; Taleb, A.; Wiame, F.

    2007-01-01

    A comparison of the electronic structure of rutile (110), anatase (101), and anatase (001) single-crystal surfaces has been made using resonant photoemission and x-ray absorption spectroscopy. Under identical preparative conditions, the anatase (101) surface shows the lowest Ti3d and 4sp hybridization in the states close to the valence-band maximum of the three surfaces. It also shows the highest concentration of surface-oxygen vacancies. The effect on the electronic structure of modifying the surface preparative route and thus the concentration of surface-oxygen vacancies is examined. The σ -antibonding Ti3deg/O2p hybridization (probed by XAS) is reduced by the removal of surface-oxygen. Photoemission shows that as the number of surface-defects is increased, the O2p-Ti3dt2gπ -bonding interaction is disrupted. For the anatase (101) surface it is found that as the number of surface-oxygen vacancies is increased, the Ti3d and 4sp contributions at the valence-band maximum are reduced. We discuss the correlation between electronic structure and photocatalytic activity of the different polymorphs of TiO2 .

  12. Research of P2P SIP technology%P2P SIP技术的研究

    隋晋光; 鲁士文

    2007-01-01

    在阐述P2P和SIP技术的基础上,引出了一种二者融合的新技术--P2P SIP,提出了采用P2P SIP技术系统的体系结构、工作方式,并且对P2P SIP技术的安全性问题进行了分析.

  13. Isotope shifts of the 2$p_{3/2}$-2$p_{1/2}$ transition in B-like ions

    Zubova, N A; Tupitsyn, I I; Shabaev, V M; Kozhedub, Y S; Plunien, G; Brandau, C; Stohlker, Th

    2016-01-01

    Isotope shifts of the 2$p_{3/2}$-2$p_{1/2}$ transition in B-like ions are evaluated for a wide range of the nuclear charge number: Z=8-92. The calculations of the relativistic nuclear recoil and nuclear size effects are performed using a large scale configuration-interaction Dirac-Fock-Sturm method. The corresponding QED corrections are also taken into account. The results of the calculations are compared with the theoretical values obtained with other methods. The accuracy of the isotope shifts of the 2$p_{3/2}$-2$p_{1/2}$ transition in B-like ions is significantly improved.

  14. Isotope shifts of the 2 p3 /2-2 p1 /2 transition in B-like ions

    Zubova, N. A.; Malyshev, A. V.; Tupitsyn, I. I.; Shabaev, V. M.; Kozhedub, Y. S.; Plunien, G.; Brandau, C.; Stöhlker, Th.

    2016-05-01

    Isotope shifts of the 2 p3 /2-2 p1 /2 transition in B-like ions are evaluated for a wide range of the nuclear charge number: Z =8 -92 . The calculations of the relativistic nuclear recoil and nuclear size effects are performed using a large-scale configuration-interaction Dirac-Fock-Sturm method. The corresponding QED corrections are also taken into account. The results of the calculations are compared with the theoretical values obtained with other methods. The accuracy of the isotope shifts of the 2 p3 /2-2 p1 /2 transition in B-like ions is significantly improved.

  15. AlvisP2P: Scalable Peer-to-Peer Text Retrieval in a Structured P2P Network

    Luu, Toan; Skobeltsyn, Gleb; Klemm, Fabius; Puh, Maroje; Podnar Zarko, Ivana; Rajman, Martin; Aberer, Karl

    2008-01-01

    In this paper we present the AlvisP2P IR engine, which enables efficient retrieval with multi-keyword queries from a global document collection available in a P2P network. In such a network, each peer publishes its local index and invests a part of its local computing resources (storage, CPU, bandwidth) to maintain a fraction of a global P2P index. This investment is rewarded by the network-wide accessibility of the local documents via the global search facility. The AlvisP2P engine uses an o...

  16. Observation of strontium segregation in LaAlO{sub 3}/SrTiO{sub 3} and NdGaO{sub 3}/SrTiO{sub 3} oxide heterostructures by X-ray photoemission spectroscopy

    Treske, Uwe; Heming, Nadine; Knupfer, Martin; Büchner, Bernd; Koitzsch, Andreas, E-mail: a.koitzsch@ifw-dresden.de [Institute for Solid State Research, IFW-Dresden, P.O. Box 270116, DE-01171 Dresden (Germany); Di Gennaro, Emiliano; Scotti di Uccio, Umberto; Miletto Granozio, Fabio [CNR-SPIN and Dipartimento di Fisica, Complesso Universitario di Monte S. Angelo, Via Cintia, 80126 Naples (Italy); Krause, Stefan [Helmholtz-Zentrum Berlin, BESSY, Albert-Einstein-Str. 15, 12489 Berlin (Germany)

    2014-01-01

    LaAlO{sub 3} and NdGaO{sub 3} thin films of different thicknesses have been grown by pulsed laser deposition on TiO{sub 2}-terminated SrTiO{sub 3} single crystals and investigated by soft X-ray photoemission spectroscopy. The surface sensitivity of the measurements has been tuned by varying photon energy hν and emission angle Θ. In contrast to the core levels of the other elements, the Sr 3d line shows an unexpected splitting for higher surface sensitivity, signaling the presence of a second strontium component. From our quantitative analysis we conclude that during the growth process Sr atoms diffuse away from the substrate and segregate at the surface of the heterostructure, possibly forming strontium oxide.

  17. Observation of strontium segregation in LaAlO3/SrTiO3 and NdGaO3/SrTiO3 oxide heterostructures by X-ray photoemission spectroscopy

    Treske, Uwe; Heming, Nadine; Knupfer, Martin; Büchner, Bernd; Koitzsch, Andreas; Di Gennaro, Emiliano; Scotti di Uccio, Umberto; Miletto Granozio, Fabio; Krause, Stefan

    2014-01-01

    LaAlO3 and NdGaO3 thin films of different thicknesses have been grown by pulsed laser deposition on TiO2-terminated SrTiO3 single crystals and investigated by soft X-ray photoemission spectroscopy. The surface sensitivity of the measurements has been tuned by varying photon energy hν and emission angle Θ. In contrast to the core levels of the other elements, the Sr 3d line shows an unexpected splitting for higher surface sensitivity, signaling the presence of a second strontium component. From our quantitative analysis we conclude that during the growth process Sr atoms diffuse away from the substrate and segregate at the surface of the heterostructure, possibly forming strontium oxide.

  18. Observation of strontium segregation in LaAlO3/SrTiO3 and NdGaO3/SrTiO3 oxide heterostructures by X-ray photoemission spectroscopy

    Uwe Treske

    2014-01-01

    Full Text Available LaAlO3 and NdGaO3 thin films of different thicknesses have been grown by pulsed laser deposition on TiO2-terminated SrTiO3 single crystals and investigated by soft X-ray photoemission spectroscopy. The surface sensitivity of the measurements has been tuned by varying photon energy hν and emission angle Θ. In contrast to the core levels of the other elements, the Sr 3d line shows an unexpected splitting for higher surface sensitivity, signaling the presence of a second strontium component. From our quantitative analysis we conclude that during the growth process Sr atoms diffuse away from the substrate and segregate at the surface of the heterostructure, possibly forming strontium oxide.

  19. Observation of strontium segregation in LaAlO3/SrTiO3 and NdGaO3/SrTiO3 oxide heterostructures by X-ray photoemission spectroscopy

    LaAlO3 and NdGaO3 thin films of different thicknesses have been grown by pulsed laser deposition on TiO2-terminated SrTiO3 single crystals and investigated by soft X-ray photoemission spectroscopy. The surface sensitivity of the measurements has been tuned by varying photon energy hν and emission angle Θ. In contrast to the core levels of the other elements, the Sr 3d line shows an unexpected splitting for higher surface sensitivity, signaling the presence of a second strontium component. From our quantitative analysis we conclude that during the growth process Sr atoms diffuse away from the substrate and segregate at the surface of the heterostructure, possibly forming strontium oxide

  20. Revisiting Photoemission and Inverse Photoemission Spectra of Nickel Oxide from First Principles: Implications for Solar Energy Conversion

    Alidoust, Nima; Toroker, Maytal; Carter, Emily A.

    2014-07-17

    We use two different ab initio quantum mechanics methods, complete active space self-consistent field theory applied to electrostatically embedded clusters and periodic many-body G₀W₀ calculations, to reanalyze the states formed in nickel(II) oxide upon electron addition and ionization. In agreement with interpretations of earlier measurements, we find that the valence and conduction band edges consist of oxygen and nickel states, respectively. However, contrary to conventional wisdom, we find that the oxygen states of the valence band edge are localized whereas the nickel states at the conduction band edge are delocalized. We argue that these characteristics may lead to low electron-hole recombination and relatively efficient electron transport, which, coupled with band gap engineering, could produce higher solar energy conversion efficiency compared to that of other transition-metal oxides. Both methods find a photoemission/inverse-photoemission gap of 3.6-3.9 eV, in good agreement with the experimental range, lending credence to our analysis of the electronic structure of NiO.

  1. Crystal structure and X-ray photoemission spectroscopic study of A{sub 2}LaMO{sub 6} [A=Ba, Ca; M=Nb, Ta

    Dutta, Alo, E-mail: alo_dutta@yahoo.com [Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700098 (India); Saha, Sujoy [Department of Physics, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009 (India); Kumari, Premlata [Department of Chemistry, Government P.G. College, Lansdowne, Pauri-Garhwal 246139 (India); Sinha, T.P. [Department of Physics, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009 (India); Shannigrahi, Santiranjan [Institute of Materials Research and Engineering, Agency for Science Technology and Research, 3 Research Link, Singapore 117602 (Singapore)

    2015-09-15

    The X-ray photoemission spectroscopic (XPS) study of the double perovskite oxides A{sub 2}LaMO{sub 6} [A=Ba, Ca; M=Nb, Ta] synthesized by the solid-state reaction technique has been carried out to investigate the nature of the chemical state of the constituent ions and the bonding between them. The Rietveld refinement of the X-ray diffraction patterns suggests the monoclinic crystal structure of all the materials at room temperature. The negative and positive chemical shifts of the core level XPS spectrum of O-1s and Nb-3d{sub 3/2}/Ta-4f{sub 5/2} respectively suggest the covalent bonding between Nb/Ta cations and O ion. The change of the bonding strength between the anion and the cations from one material to another has been analyzed. The vibrational property of the materials is investigated using the room temperature Raman spectra. A large covalency of Ta-based compound than Nb compound is confirmed from the relative shifting of the Raman modes of the materials. - Graphical abstract: Crystal structure of two perovskite oxides CLN and CLT is investigated. XPS study confirms the two different co-ordination environments of Ca and covalent bonding between B-site cations and O-ion. - Highlights: • Ordered perovskite structure obtained by Rietveld refinement of XRD patterns. • Study of nature of chemical bonding by X-ray photoemission spectroscopy. • Opposite chemical shift of d-states of Nb/Ta with respect to O. • Covalent bonding between d-states of Nb/Ta and O. • Relative Raman shifts of CLN and CLT substantiate the more covalent character of Ta than Nb.

  2. Crystal structure and X-ray photoemission spectroscopic study of A2LaMO6 [A=Ba, Ca; M=Nb, Ta

    The X-ray photoemission spectroscopic (XPS) study of the double perovskite oxides A2LaMO6 [A=Ba, Ca; M=Nb, Ta] synthesized by the solid-state reaction technique has been carried out to investigate the nature of the chemical state of the constituent ions and the bonding between them. The Rietveld refinement of the X-ray diffraction patterns suggests the monoclinic crystal structure of all the materials at room temperature. The negative and positive chemical shifts of the core level XPS spectrum of O-1s and Nb-3d3/2/Ta-4f5/2 respectively suggest the covalent bonding between Nb/Ta cations and O ion. The change of the bonding strength between the anion and the cations from one material to another has been analyzed. The vibrational property of the materials is investigated using the room temperature Raman spectra. A large covalency of Ta-based compound than Nb compound is confirmed from the relative shifting of the Raman modes of the materials. - Graphical abstract: Crystal structure of two perovskite oxides CLN and CLT is investigated. XPS study confirms the two different co-ordination environments of Ca and covalent bonding between B-site cations and O-ion. - Highlights: • Ordered perovskite structure obtained by Rietveld refinement of XRD patterns. • Study of nature of chemical bonding by X-ray photoemission spectroscopy. • Opposite chemical shift of d-states of Nb/Ta with respect to O. • Covalent bonding between d-states of Nb/Ta and O. • Relative Raman shifts of CLN and CLT substantiate the more covalent character of Ta than Nb

  3. Evidence for replicate 5p core levels in photoelectron spectra of Eu metal due to nonconstant kinetic-energy resonant Auger decay

    Satellites on the low-binding-energy side of core-level photoelectron emission due to extra 4f screening are a well-known feature in the x-ray photoelectron spectra of valence fluctuation materials and rare-earth metals. A notable exception is Eu metal, where up to now no low-binding-energy satellite has been observed. In this paper we show that in Eu metal the 4d-4f resonance can decay via a resonant Auger decay, which is not a constant kinetic-energy feature due to a rapid change of the strength of 4f screening with excitation energy, establishing a low-binding-energy replica of the 5p core-level photoelectron emission. (c) 1999 The American Physical Society

  4. Surface Carrier Dynamics on Semiconductor Studied with Femtosecond Core-Level Photoelectron Spectroscopy Using Extreme Ultraviolet High-Order Harmonic Source

    Sogawa T.

    2013-03-01

    Full Text Available We have used a femtosecond time-resolved core-level surface PES system based on the 92-eV harmonic source to study the surface carrier dynamics that induces the transient SPV on semiconductor surfaces. We clarified the temporal evolution of the transient SPV characterized by the time of the photo-generated carrier separation and recombination. This result demonstrates the potential of this technique for clarifying the initial stage of the surface carrier dynamics after photoexcitation.

  5. Surface Carrier Dynamics on Semiconductor Studied with Femtosecond Core-Level Photoelectron Spectroscopy Using Extreme Ultraviolet High-Order Harmonic Source

    Oguri, K.; Tsunoi, T.; Kato, K.; Nakano, H.; Nishikawa, T.; Gotoh, H.; Tateno, K.; Sogawa, T.

    2013-03-01

    We have used a femtosecond time-resolved core-level surface PES system based on the 92-eV harmonic source to study the surface carrier dynamics that induces the transient SPV on semiconductor surfaces. We clarified the temporal evolution of the transient SPV characterized by the time of the photo-generated carrier separation and recombination. This result demonstrates the potential of this technique for clarifying the initial stage of the surface carrier dynamics after photoexcitation.

  6. Time dependence of FEL-induced surface photovoltage on semiconductor interfaces measured with synchroton radiation photoemission spectroscopy

    During the last year, the first surface science experiments simultaneously using a Free Electron Laser (FEL) and Synchrotron Radiation (SR) have been performed on SuperACO at LURE (Orsay, France). These open-quotes two colorclose quotes experiments studied the surface photovoltage (SPV) induced on semiconductor surfaces and interfaces by the SuperACO FEL, a storage ring FEL delivering 350 nm photons which am naturally synchronized with the SR; the SPV was measured by synchrotron radiation core-level photoemission spectroscopy on the high-resolution SU3 undulator beamline. We will describe the experimental setup, which allowed us to convey the FEL light onto the samples sitting in the SU3 experimental station by means of a series of mirrors, and show the results we obtained for prototypical systems such as Ag/GaAs(110) and Si(111) 2 x 1. The dependence of the SPV was studied in function of various parameters, changing sample doping and photon flux; but our efforts were mainly devoted to studying its dependence on the time delay between the FEL pump and the SR probe. On SuperACO, such delay can be varied between 1 and 120 ns, the limits being given by the time duration of a SR pulse and by the interval between two consecutive positron bunches, respectively. The results show a clear temporal dependence of the amount of SPV on cleaved Si surfaces, where as the Ag/GaAs(110) does not show any difference on the ns time scale. We will discuss these results in terms of the role of surface recombination in the dynamics of the photoinduced electron-hole pairs. These studies follow the evolution of the density of electrostatic charge at surfaces and interfaces on a nanosecond time scale, and might pave the way for a new series of experiments: for example, one might explore what are the physical mechanisms limiting the time response of Schottky diodes

  7. Thermodynamics, core-level spectroscopy, morphology, and work function study of different TiCl3 crystalline phases: A theoretical approach

    Highlights: • Three TiCl3 polymorphs materials were systematically investigated. • Structural results agree well with experimental and available theoretical data. • Morphological and thermodynamic properties were computed and analyzed. • Core-level spectroscopy and work function were obtained. - Abstract: Computer simulation has been widely applied in many research fields owing to its superiority in revealing an insight understanding of the phenomena. In this work, the thermodynamics, core-level spectroscopy, morphology, and work function of TiCl3 with three different crystalline phases (α, β, and γ) have been comprehensively computed employing the Materials Studio package. Our computational DFT-D approach gives a structural description of the TiCl3 phases in good agreement with experiment. The core-level spectroscopy confirmed that α, β, and γ modifications for TiCl3 have lightly affected on the valences of the constitutional elements. A series of possible growth faces (h k l) were deduced using the classic Bravais–Friedel–Donnay–Harker (BFDH) model. We conclude that the sequence of work function for (0 0 1) surface was α > β ≈ γ

  8. Thermodynamics, core-level spectroscopy, morphology, and work function study of different TiCl{sub 3} crystalline phases: A theoretical approach

    Guo, Lei [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Li, Wenpo, E-mail: cqliwp@163.com [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Feng, Wenjiang [College of Physics Science and Technology, Shenyang Normal University, Shenyang 110034 (China); Zhang, Zhipeng [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Zhang, Shengtao [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China)

    2014-07-25

    Highlights: • Three TiCl{sub 3} polymorphs materials were systematically investigated. • Structural results agree well with experimental and available theoretical data. • Morphological and thermodynamic properties were computed and analyzed. • Core-level spectroscopy and work function were obtained. - Abstract: Computer simulation has been widely applied in many research fields owing to its superiority in revealing an insight understanding of the phenomena. In this work, the thermodynamics, core-level spectroscopy, morphology, and work function of TiCl{sub 3} with three different crystalline phases (α, β, and γ) have been comprehensively computed employing the Materials Studio package. Our computational DFT-D approach gives a structural description of the TiCl{sub 3} phases in good agreement with experiment. The core-level spectroscopy confirmed that α, β, and γ modifications for TiCl{sub 3} have lightly affected on the valences of the constitutional elements. A series of possible growth faces (h k l) were deduced using the classic Bravais–Friedel–Donnay–Harker (BFDH) model. We conclude that the sequence of work function for (0 0 1) surface was α > β ≈ γ.

  9. Queries mining for efficient routing in P2P communities

    Ismail, Anis; Durand, Nicolas; Nachouki, Gilles; Hajjar, Mohammad

    2011-01-01

    Peer-to-peer (P2P) computing is currently attracting enormous attention. In P2P systems a very large number of autonomous computing nodes (the peers) pool together their resources and rely on each other for data and services. Peer-to-peer (P2P) Data-sharing systems now generate a significant portion of Internet traffic. Examples include P2P systems for network storage, web caching, searching and indexing of relevant documents and distributed network-threat analysis. Requirements for widely distributed information systems supporting virtual organizations have given rise to a new category of P2P systems called schema-based. In such systems each peer exposes its own schema and the main objective is the efficient search across the P2P network by processing each incoming query without overly consuming bandwidth. The usability of these systems depends on effective techniques to find and retrieve data; however, efficient and effective routing of content-based queries is a challenging problem in P2P networks. This wo...

  10. Measurement and Analysis of P2P IPTV Program Resource

    Wenxian Wang; Xingshu Chen; Haizhou Wang; Qi Zhang; Cheng Wang

    2014-01-01

    With the rapid development of P2P technology, P2P IPTV applications have received more and more attention. And program resource distribution is very important to P2P IPTV applications. In order to collect IPTV program resources, a distributed multi-protocol crawler is proposed. And the crawler has collected more than 13 million pieces of information of IPTV programs from 2009 to 2012. In addition, the distribution of IPTV programs is independent and incompact, resulting in chaos of program na...