WorldWideScience

Sample records for 2mw triga mark

  1. Evaluation Of Reactor Coolant System Of Design Of Bandung TRIGA Mark II 2 MW Reactor

    An evaluation of reactor coolant system of Bandung TRIGA Mark II has been carried out. The evaluation is conducted for primary and secondary system, both for steady state and transient conditions. The evaluation is based on the analysis results done by the operator. In the steady state (i.e. normal operation), the maximum temperature of fuel element is 569.7C. A series of analysis covering various accident scenarios of LOPA and LOCA shows that the coolant system and ECCS able to maintain the fuel temperature less then 970C, then the fuel integrity is kept safe. However, the detail analysis using validated codes is still needed to support the actual safety analysis

  2. Tank Design Evaluation Of TRIGA Mark II Reactor For 2 MW Power

    . Design calculation, safety factor choosing, and welding procedure on tank design of Bandung nuclear reactor for 2 MW power have been evaluated. For design calculation, the evaluation has especially done based on material strength input which was used on tank thickness calculation. Evaluation on safety factor choosing has been done by comparing the result of final calculation after inputting the value of safety factor to the physics condition will be occurred. On welding procedure, the evaluation has been carried to see the chance will be occurred if the excising design followed. From this evaluation, it can be concluded that the calculation just done to meet the result of the calculation to the thickness of material has been excised so it can be assumed as proper material of tank reactor

  3. Benchmark analysis of the 2MW TRIGA MARK II Moroccan research reactor using the MCNP code and the latest nuclear data libraries

    This study deals with the neutronic analysis of the 2MW TRIGA MARK II Moroccan research reactor. The reactor was commissioned at Centre des Etudes Nucleaires de la Maamora (CENM) and it went critical on May 2, 2007. The 3-D continuous energy Monte Carlo code MCNP5 was used to develop a full model of the TRIGA reactor, using the maximum details allowed by the constructor General Atomics of USA. Continuous energy cross section data from the more recent nuclear data evaluations (ENDF/B-VI.8, ENDF/B-VII.0, JEFF-3.1, and JENDL-3.3) as well as S(α, β) thermal neutron scattering functions distributed with the MCNP code were used. The cross section libraries were generated by using the NJOY99 system updated to its more recent patch file 'up259'. The consistency and accuracy of both Monte Carlo simulation and neutron transport physics were established by benchmarking the TRIGA experiments. (author)

  4. The study of time-dependent neutronics parameters of the 2MW TRIGA Mark II Moroccan research reactor using BUCAL1 computer code

    The 2-MW TRIGA MARK II research reactor at Centre National de l'Energie, des Sciences et des Techniques Nucleaires (CNESTEN) achieved initial criticality on May 2, 2007 with 71 fuel elements. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower and training and production of radioisotopes for their use in agriculture, industry and medicine. This work aims to study the time-dependent neutronics parameters of the TRIGA reactor for elaborating and planning of an in-core fuel management strategy to maximize the utilization of the TRIGA fluxes, using a new elaborated burnup computer code called 'BUCAL1'. The code can be used to aid in analysis, prediction, and optimization of fuel burnup performance in a nuclear reactor. It was developed to incorporate the neutron absorption tally/reaction information generated directly by MCNP5 code in the calculation of fissioned or neutron-transmuted isotopes for multi-fueled regions. The use of Monte Carlo method and punctual cross section data characterizing the MCNP code allows an accurate simulation of neutron life cycle in the reactor, and the integration of data on the entire energy spectrum, thus a more accurate estimation of results than deterministic code can do. Also, for the purpose of this study, a full-model of the TRIGA reactor was developed using the MCNP5 code. The validation of the MCNP model of the TRIGA reactor was made by benchmarking the reactivity experiments. (author)

  5. TRIGA Mark II benchmark experiment

    Experimental results of pulse parameters and control rod worth measurements at TRIGA Mark 2 reactor in Ljubljana are presented. The measurements were performed with a completely fresh, uniform, and compact core. Only standard fuel elements with 12 wt% uranium were used. Special efforts were made to get reliable and accurate results at well-defined experimental conditions, and it is proposed to use the results as a benchmark test case for TRIGA reactors

  6. TRIGA Mark II benchmark experiment

    The experimental results of startup tests after reconstruction and modification of the TRIGA Mark II reactor in Ljubljana are presented. The experiments were performed with a completely fresh, compact, and uniform core. The operating conditions were well defined and controlled, so that the results can be used as a benchmark test case for TRIGA reactor calculations. Both steady-state and pulse mode operation were tested. In this paper, the following steady-state experiments are treated: critical core and excess reactivity, control rod worths, fuel element reactivity worth distribution, fuel temperature distribution, and fuel temperature reactivity coefficient

  7. The Neutronic And Power Distribution Calculations For Triga 2 MW Reactor Using WIMS-D/4 And Citation Codes

    . The neutronic calculation has been carried out for TRIGA 2 MW reactor. These included criticality flux and power distributions. Computer code Citation which solves 7-groups, 3-dimensional hexagonal geometry has been used. The multi groups-cross-section is generated by the WIMS-D/4 code.This 7-group-39x39x38-mesh-points problem takes about 90 minutes on the Pentium-133 MHz PC. The calculation of the initial core of TRIGA 2 MW reactor shows that the excess reactivity of the core is 7,8% and the thermal fluxes in the irradiation positions are between 1.0-2.9*1013n cm-2s-1. The results are about 10% deviate from those calculated by General Atomics. In the initial core, the highest power is produced in the C-9 position. The fuel element in this position produces 30.7 k W thermal power

  8. TRIGA Mark-II, III reactor operation

    TRIGA Mark-II reactor has been primarily utilized as usual for the fundamental reactor experiments for university students. The annual operating time is 1,100 hours and the gross thermal output is 17,159 KWH, having consumed 0.88g of U-235. The reconstuction work for the control console of this reactor is now in progress and will be completed in early part of 1982. TRIGA Mark-III reactor has been operated mainly for radioisotope production, test pin irradiation and activation analysis, etc., as well as solid state physics experiments using the beamports. The annual operatino. time is amounted to 3,530 hours being the longest since the beginning of its criticality, and the gross thermal output is 4,113,013 KWH, whereas the U-235 consumption is estimated at 212.82 g. 462 samples were irradiated to produce 9 kinds of radioisotopes. In order to carry out the test pin irradiation experiment, the core configuration of TRIGA Mark-III was changed by loadinq 6 fresh fuels at G-ring as of July 1981 and a new irradiation facility consisting of 14 tubes was manufactured in place of Rotary Specimen Rack. Then 7 kinds of physics experiments were performed over a two week period to scrutinize the chanaed core characteristics. In addition, the present TRIGA Mark-III reactor fuel storage tank was enlarged and the distilled water production facility was renewed to improve its production efficiency. (Author)

  9. Utilization of Slovenian TRIGA Mark II reactor

    TRIGA Mark II research reactor at the Jozef Stefan Institute [JSI] is extensively used for various applications, such as: irradiation of various samples, training and education, verification and validation of nuclear data and computer codes, testing and development of experimental equipment used for core physics tests at a nuclear power plant. The paper briefly describes the aforementioned activities and shows that even such small reactors are still indispensable in nuclear science and technology. (author)

  10. Decontamination of TRIGA Mark II reactor, Indonesia

    The TRIGA Mark II Reactor in the Centre for Research and Development Nuclear Technique Bandung has been partially decommissioned as part of an upgrading project. The upgrading project was carried out from 1995 to 2000 and is being commissioned in 2001. The decommissioning portion of the project included disassembly of some components of the reactor core, producing contaminated material. This contaminated material (grid plate, reflector, thermal column, heat exchanger and pipe) will be sent to the Decontamination Facility at the Radioactive Waste Management Development Centre. (author)

  11. Triga Mark III Reactor in paleotemperatures determination

    The Triga Mark III reactor produces neutron fluxes which are used to irradiate geologic specimens with age estimation purposes. Irradiation produces radioactive nucleus in the sample as well as: 39 Ar used in the age estimation 40 Ar/39 Ar ratio, and fission fragments for the age estimation by fission tracks detection. This document presents the basis for both methods, as well as the attained results, and has the purpose to perform joint experimentation in order to extend the usefulness of the method to paleotemperature determination. A brief comment about the associated problematic of the sample irradiation is made

  12. Decommissioning of TRIGA Mark II type reactor

    The first research reactor in Korea, KRR 1, is a TRIGA Mark II type with open pool and fixed core. Its power was 100 kWth at its construction and it was upgraded to 250 kWth. Its construction was started in 1957. The first criticality was reached in 1962 and it had been operated for 36,000 hours. The second reactor, KRR 2, is a TRIGA Mark III type with open pool and movable core. These reactors were shut down in 1995, and the decision was made to decommission both reactors. The aim of the decommissioning activities is to decommission the KRR 2 reactor and decontaminate the residual building structures and site, and to release them as unrestricted areas. The KRR 1 reactor was decided to be preserve as a historical monument. A project was launched for the decommissioning of these reactors in 1997, and approved by the regulatory body in 2000. A total budget for the project was 20.0 million US dollars. It was anticipated that this project would be completed and the site turned over to KEPCO by 2010. However, it was discovered that the pool water of the KRR 1 reactor was leaked into the environment in 2009. As a result, preservation of the KRR 1 reactor as a monument had to be reviewed, and it was decided to fully decommission the KRR 1 reactor. Dismantling of the KRR 1 reactor takes place from 2011 to 2014 with a budget of 3.25 million US dollars. The scope of the work includes licensing of the decommissioning plan change, removal of pool internals including the reactor core, removal of the thermal and thermalizing columns, removal of beam port tubes and the aluminum liner in the reactor tank, removal of the radioactive concrete (the entire concrete structure will not be demolished), sorting the radioactive waste (concrete and soil) and conditioning the radioactive waste for final disposal, and final statuses of the survey and free release of the site and building, and turning over the site to KEPCO. In this paper, the current status of the TRIGA Mark-II type reactor

  13. Decommissioning of TRIGA Mark II type reactor

    Hwang, Dooseong; Jeong, Gyeonghwan; Moon, Jeikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    The first research reactor in Korea, KRR 1, is a TRIGA Mark II type with open pool and fixed core. Its power was 100 kWth at its construction and it was upgraded to 250 kWth. Its construction was started in 1957. The first criticality was reached in 1962 and it had been operated for 36,000 hours. The second reactor, KRR 2, is a TRIGA Mark III type with open pool and movable core. These reactors were shut down in 1995, and the decision was made to decommission both reactors. The aim of the decommissioning activities is to decommission the KRR 2 reactor and decontaminate the residual building structures and site, and to release them as unrestricted areas. The KRR 1 reactor was decided to be preserve as a historical monument. A project was launched for the decommissioning of these reactors in 1997, and approved by the regulatory body in 2000. A total budget for the project was 20.0 million US dollars. It was anticipated that this project would be completed and the site turned over to KEPCO by 2010. However, it was discovered that the pool water of the KRR 1 reactor was leaked into the environment in 2009. As a result, preservation of the KRR 1 reactor as a monument had to be reviewed, and it was decided to fully decommission the KRR 1 reactor. Dismantling of the KRR 1 reactor takes place from 2011 to 2014 with a budget of 3.25 million US dollars. The scope of the work includes licensing of the decommissioning plan change, removal of pool internals including the reactor core, removal of the thermal and thermalizing columns, removal of beam port tubes and the aluminum liner in the reactor tank, removal of the radioactive concrete (the entire concrete structure will not be demolished), sorting the radioactive waste (concrete and soil) and conditioning the radioactive waste for final disposal, and final statuses of the survey and free release of the site and building, and turning over the site to KEPCO. In this paper, the current status of the TRIGA Mark-II type reactor

  14. Decommissioning plan for the TRIGA mark-3

    TRIGA Mark-III (KRR-2) is the second research reactor in Korea. Construction of KRR-2 was started in 1969 and first criticality was achieved in 1972. After 24 years operation, KRR-2 has stopped its operation at the end of 1995 due to normal operation of HANARO. KRR-2 was then decided to decommission in 1996 by government. Decontamination and decommissioning (D and D) will be conducted in accordance with domestic laws and international regulations. Selected method of D and D will be devoted to protect workers and environment and to minimize radioactive wastes produced. The major D and D work will be conducted safely by using conventional industrial equipment because of relatively low radioactivity and contamination in the facility. When removing activated concrete from reactor pool, it will be installed a temporary containment and ventilation system. In this paper, structure of KRR-2 and method of D and D in each step are presented and discussed

  15. Decommissioning plan for TRIGA Mark-2

    Park, Seung Kook; Lee, B.J.

    1999-04-01

    Korea Research Reactor 1(KRR 1; TRIGA Mark-2) is the first reactor in Korea, but its decommissioning is underway due to its life. In this paper, presenting the reason and object of decommissioning KRR 1, then describing reactor structure and survey result of the facility, activation and contamination status around reactor and nearby equipment and vicinity. Estimating dose rate was evaluated for every work stage. Those of survey, evaluation and radiological status were considered to determine the safe and reasonable decommissioning methods. The order of decommissioning works are divided by section to minimize possible hazard. Proposed decommissioning plan is based on hazard and operability study to protect workers and residents from radiation expose. (author). 12 refs., 5 tabs., 6 figs.

  16. Decommissioning plan for TRIGA Mark-2

    Korea Research Reactor 1(KRR 1; TRIGA Mark-2) is the first reactor in Korea, but its decommissioning is underway due to its life. In this paper, presenting the reason and object of decommissioning KRR 1, then describing reactor structure and survey result of the facility, activation and contamination status around reactor and nearby equipment and vicinity. Estimating dose rate was evaluated for every work stage. Those of survey, evaluation and radiological status were considered to determine the safe and reasonable decommissioning methods. The order of decommissioning works are divided by section to minimize possible hazard. Proposed decommissioning plan is based on hazard and operability study to protect workers and residents from radiation expose. (author). 12 refs., 5 tabs., 6 figs

  17. TRIGA Mark-III reactor dismantling program

    The activation assessment of the main parts of the TRIGA Mark-III (KRR-2) was estimated to effectively dismantle the activated and contaminated areas. All of the method and the order for decommissioning the KRR-2 have been chosen as a result of the examination of the physical structure and radiological conditions of the reactor component. These decommissioning methods and orders were reviewed as part of the Hazard and Operability (HAZOP) studies for the project. Radiological assessment is also done to protect the workers and the environment from the dismantling work. License documents were submitted to the Ministry of Science and Technology (MOST) at the end of 1998. Practical work of the D and D will start at the end of 1999 once the government issues the license. Radiation protection plan was also set up to control the workers and environment. This paper summarized the main lines of those studies. (author)

  18. Planned Scientific programs around the Triga Mark 2 Reactor

    Full text: Nuclear techniques have been introduced to Morocco since the sixties. After the energy crisis of 1973, Morocco decides to create the National Center for Energy Sciences and Nuclear Techniques (CNESTEN) under the supervision of the Ministry of high Education and Research, with a research commercial and support vocation. CNESTEN is in charge of promoting nuclear application, to act as technical support for the authorities and to prepare the technological basis for nuclear power option. In 1998, CNESTEN started the construction of Nuclear Research Centre. The on going activities cover many sectors : earth and environmental sciences, high energy physics, safety and security, waste management. In 2001, CNESTEN started the construction of a 2MW TRiga Mark 2 Reactor, with the possibility to increase the power to 3 MW. The construction was achieved in January 2007. The operation of the reactor is expected for April 2007. The program of the utilization of the reactor was established with th contribution of the university and with the assistance of IAEA. Some of the experimental set-up installed around the reactor have been designed. CNESTEN has developed cooperation with Nuclear research centres from other countries and is receiving visitors and trainees mainly through the IAEA

  19. Results of MCNP analysis for Moroccan TRIGA Mark-II Reactor

    The construction work on the Moroccan Triga Mark II research reactor has already started and the first criticality is planned for the near future. The main objective of this study is to ensure that the calculations tools available at CNESTEN as the operator of this reactor are sufficiently adequate for the prediction of the neutronic and the operating characteristics of the first Moroccan research reactor. In this work, we have analyzed the 2 MW Triga Mark II reactor using the Monte Carlo code MCNP. In order to reduce possible errors due to inexact core geometry specification, a complete and exact 3D model of this reactor was developed. The parameters of interest in this study are the core excess reactivity, the critical size of the cold and clean core, the total reactivity worth of the control rods and the verification of the shutdown margin. (author)

  20. Reconditioning of the TRIGA Mark III reactor

    The paper describes the activities carried out to recondition the TRIGA Mark III reactor at the Mexican Nuclear Centre, namely repair of its containment system, maintenance of its operational systems, and the obtaining of a licence for the facility and its operating staff. The process of initially obtaining the operating licence from the regulatory authority was affected by the existence of water leaks in the pool which were detected in March 1985 and were caused by corrosion in the reactor containment system. Reconditioning began with a series of activities aimed at locating, delimiting and repairing the areas damaged by corrosion and involved establishing criteria for selecting the most appropriate inspection, testing and repair methods. In order to obtain the operating licence, it was necessary to comply with various requirements laid down by the regulatory body. The most important requirements included: (a) repair of the reactor pool; (b) maintenance of its operational systems; (c) preparation and implementation of the Quality Control Programme; (d) updating of the Safety Report; (e) updating and preparation of operating, repair, radiation safety, emergency and administrative procedures; and (f) training of operating staff. In addition, the paper describes the work carried out at this reactor to widen its field of research and range of utilization. This work includes the reconditioning of a neutron diffractometer, the design and construction of a neutron diffractometer to determine the textures of materials, and the analysis of a new mixed core configuration based on fuels with 20% and 70% 235U enrichment. (author). 7 refs

  1. Decommissioning plan for TRIGA Mark-3

    Park, Seung Kook; Jung, Ki Jung

    1999-04-01

    TRIGA Mark-3(KRR-2) is the second research reactor in Korea. Construction of KRR-2 was started in 1969 and first criticality was achieved in 1972. After 24 years operation, KRR-2 has stopped its operation at the end of 1995 due to normal operation of HANARO. KRR-2 was then decided to decommission in 1996 by government. Decontamination and decommissioning(D and D) will be conducted in accordance with domestic laws and international regulations. Selected method of D and D will be devoted to protect workers and environment and to minimize radioactive wastes produced. The major D and D work will be conducted safely by using conventional industrial equipment because of relatively low radioactivity and contamination in the facility. When removing activated concrete from reactor pool, it will be installed a temporary containment and ventilation system. In this paper, structure of KRR-2 and method of D and D in each step are presented and discussed. (author). 12 refs., 8 tabs., 12 figs.

  2. Analysis of safety limits of the Moroccan TRIGA MARK II research reactor

    Erradi, L.; Essadki, H.

    2001-06-01

    The main objective of this study is to check the ability of the Moroccan TRIGA MARK II research reactor, designed to use natural convection cooling, to operate at its nominal power (2 MW) with sufficient safety margins. The neutronic analysis of the core has been performed using Leopard and Mcrac codes and the parameters of interest were the power distributions, the power peaking factors and the core excess reactivity. The thermal hydraulic analysis of the TRIGA core was performed using the French code FLICA designed for transient and study state situations. The main safety related parameters of the core have been evaluated with special emphasises on the following: maximum fuel temperature, minimum DNBR and maximum void fraction. The obtained results confirm the designer predictions except for the void fraction.

  3. Analysis of safety limits of the Moroccan TRIGA MARK II research reactor

    The main objective of this study is to check the ability of the Moroccan TRIGA MARK II research reactor, designed to use natural convection cooling, to operate at its nominal power (2 MW) with sufficient safety margins. The neutronic analysis of the core has been performed using Leopard and Mcrac codes and the parameters of interest were the power distributions, the power peaking factors and the core excess reactivity. The thermal hydraulic analysis of the TRIGA core was performed using the French code FLICA designed for transient and study state situations. The main safety related parameters of the core have been evaluated with special emphasises on the following: maximum fuel temperature, minimum DNBR and maximum void fraction. The obtained results confirm the designer predictions except for the void fraction.

  4. Evaluation of TRIGA Mark II reactor in Turkey

    There are two research reactors in Turkey and one of them is the university Triga Mark II reactor which was in service since 1979 both for education and industrial application purposes. The main aim of this paper is to evaluate the spectrum of the services carried by Turkish Triga Mark II reactor. In this work, statistical distribution of the graduate works and applications, by using Triga Mark II reactor is examined and evaluated. In addition to this, technical and scientific uses of this above mentioned reactor are also investigated. It was already showed that the uses and benefits of this reactor can not be limited. If the sufficient work and service is given, NDT and industrial applications can also be carried economically. (orig.)

  5. TRIGA Mark II Ljubljana - spent fuel transportation

    The most important activity in 1999 was shipment of the spent fuel elements back to the United States for final disposal. This activity started already in 1998 with some governmental support. In July 1999 all spent fuel elements (219 pieces) from the TRIGA research reactor in Ljubljana were shipped back to the United Stated by the ship from the port Koper in Slovenia. At the same time shipment of the spent fuel from the research reactor in Pitesti, Romania, and the research reactor in Rome, Italy, was conducted. During the loading the radiation exposure to the workers was rather low. The loading and shipment of the spent nuclear fuel went very smoothly and according the accepted time table. During the last two years the TRIGA research reactor in Ljubljana has been in operation about 1100 hours per year and without any undesired shut-down. (authors)

  6. Preliminary feasibility study on TRIGA Mark-III upgrading

    The operation of a research and material testing reactor is required to meet rapidly increasing demands for radioisotopes to cope with domestic industrial growth and to respond to the material testing requirements for the localization of the nuclear power plant components. Therefore, the preliminary feasibility study on TRIGA Mark-III upgrading has been performed in regard to its technological and economic aspects. In this study, assumption is made in such a way that a 14 MW core is installed in the present TRIGA Mark-III pool. The nuclear analysis for this core shows that the average thermal neutron flux in the central experiment region is 1.8 x 1014n/cm2-sec, which meets the requirements of the large research and test reactor. Conceptural modification for the cooling system and radiation shielding structure has been suggested, and it shows that the TRIGA Mark-III can be upgraded to 14MW with a little change in the present structure. Our preliminary economic analysis shows that the TRIGA Mark-III upgrading would cost about half compared with the case of purchasing and installing a new research reactor on a new site. (author)

  7. Fast neutron flux determination of the STIF triga mark 2

    A Standard Triga Irradiation Facility (STIF) has been installed at Triga Mark 2 Reactor in Bandung. This facility is mainly used for experiment in the field of radiobiology. Using nickel as threshold detector, the measurement of fast flux has been carried out. The reaction is 58Ni(n,p)58Co. This detector has been chosen on account of its advantages, which are : long half life of Co-58, the absence of radioactivities obscuring the Co-58, easy measurement of 0,810 MeV gamma. The result of the measurement is 6,87 x 109 n/cm2 sec at 1000Kw power. (author)

  8. Thermal spectra of the TRIGA Mark III reactor; El espectro termico del reactor TRIGA Mark III

    Macias B, L.R.; Palacios G, J. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1998-07-01

    The diffraction phenomenon is gave in observance of the well known Bragg law in crystalline materials and this can be performance by mean of X-rays, electrons and neutrons among others, which allows to do inside the field of each one of these techniques the obtaining of measurements focussed at each one of them. For the present work, it will be mentioned only the referring to X-ray and neutron techniques. The X-ray diffraction due to its properties just it does measurements which are known in general as superficial measurements of the sample material but for the properties of the neutrons, this diffraction it explores in volumetric form the sample material. Since the neutron diffraction process depends lots of its intensity, then it is important to know the neutron source spectra that in this case is supplied by the TRIGA Mark III reactor. Within of diffraction techniques a great number of them can be found, however some of the traditional will be mentioned such as the identification of crystalline samples, phases identification and the textures measurement. At present this last technique is founded on the dot of a minimum error and the technique of phases identification performs but not compete with that which is obtained by mean of X-rays due to this last one has a major resolution. (Author)

  9. Safety analysis and optimization of the core fuel reloading for the Moroccan TRIGA Mark-II reactor

    Highlights: • Additional fresh fuel elements must be added to the reactor core. • TRIGA reactor could safely operate around 2 MW power with 12% fuel elements. • Thermal–hydraulic parameters were calculated and the safety margins are respected. • The 12% fuel elements will have no influence on the safety of the reactor. - Abstract: The Moroccan TRIGA MARK II reactor core is loaded with 8.5% in weight of uranium standard fuel elements. Additional fresh fuel elements must periodically be added to the core in order to remedy the observed low power and to return to the initial reactivity excess at the End Of Cycle. 12%-uranium fuel elements are available to relatively improve the short fuel lifetime associated with standard TRIGA elements. These elements have the same dimensions as standards elements, but with different uranium weight. The objective in this study is to demonstrate that the Moroccan TRIGA reactor could safely operate, around 2 MW power, with new configurations containing these 12% fuel elements. For this purpose, different safety related thermal–hydraulic parameters have been calculated in order to ensure that the safety margins are largely respected. Therefore, the PARET model for this TRIGA reactor that was previously developed and combined with the MCNP transport code in order to calculate the 3-D temperature distribution in the core and all the most important parameters like the axial distribution of DNBR (Departure from Nucleate Boiling Ratio) across the hottest channel. The most important conclusion is that the 12% fuel elements utilization will have no influence on the safety of the reactor while working around 2 MW power especially for configurations based on insertions in C and D-rings

  10. TRIGA MARK-II source term

    Usang, M. D., E-mail: mark-dennis@nuclearmalaysia.gov.my; Hamzah, N. S., E-mail: mark-dennis@nuclearmalaysia.gov.my; Abi, M. J. B., E-mail: mark-dennis@nuclearmalaysia.gov.my; Rawi, M. Z. M. Rawi, E-mail: mark-dennis@nuclearmalaysia.gov.my; Abu, M. P., E-mail: mark-dennis@nuclearmalaysia.gov.my [Bahagian Teknologi Reaktor, Agensi Nuklear Malaysia, 43000 Kajang (Malaysia)

    2014-02-12

    ORIGEN 2.2 are employed to obtain data regarding γ source term and the radio-activity of irradiated TRIGA fuel. The fuel composition are specified in grams for use as input data. Three types of fuel are irradiated in the reactor, each differs from the other in terms of the amount of Uranium compared to the total weight. Each fuel are irradiated for 365 days with 50 days time step. We obtain results on the total radioactivity of the fuel, the composition of activated materials, composition of fission products and the photon spectrum of the burned fuel. We investigate the differences of results using BWR and PWR library for ORIGEN. Finally, we compare the composition of major nuclides after 1 year irradiation of both ORIGEN library with results from WIMS. We found only minor disagreements between the yields of PWR and BWR libraries. In comparison with WIMS, the errors are a little bit more pronounced. To overcome this errors, the irradiation power used in ORIGEN could be increased a little, so that the differences in the yield of ORIGEN and WIMS could be reduced. A more permanent solution is to use a different code altogether to simulate burnup such as DRAGON and ORIGEN-S. The result of this study are essential for the design of radiation shielding from the fuel.

  11. TRIGA MARK-II source term

    Usang, M. D.; Hamzah, N. S.; J. B., Abi M.; M. Z., M. Rawi; Abu, M. P.

    2014-02-01

    ORIGEN 2.2 are employed to obtain data regarding γ source term and the radio-activity of irradiated TRIGA fuel. The fuel composition are specified in grams for use as input data. Three types of fuel are irradiated in the reactor, each differs from the other in terms of the amount of Uranium compared to the total weight. Each fuel are irradiated for 365 days with 50 days time step. We obtain results on the total radioactivity of the fuel, the composition of activated materials, composition of fission products and the photon spectrum of the burned fuel. We investigate the differences of results using BWR and PWR library for ORIGEN. Finally, we compare the composition of major nuclides after 1 year irradiation of both ORIGEN library with results from WIMS. We found only minor disagreements between the yields of PWR and BWR libraries. In comparison with WIMS, the errors are a little bit more pronounced. To overcome this errors, the irradiation power used in ORIGEN could be increased a little, so that the differences in the yield of ORIGEN and WIMS could be reduced. A more permanent solution is to use a different code altogether to simulate burnup such as DRAGON and ORIGEN-S. The result of this study are essential for the design of radiation shielding from the fuel.

  12. TRIGA MARK-II source term

    Full-text: ORIGEN 2.2 are employed to obtain data regarding g source term and the radio-activity of irradiated TRIGA fuel. The fuel composition are specified in grams for use as input data. Three types of fuel are irradiated in the reactor, each differs from the other in terms of the amount of Uranium compared to the total weight. Each fuel are irradiated for 365 days with 50 days time step. We obtain results on the total radioactivity of the fuel, the composition of activated materials, composition of fission products and the photon spectrum of the burned fuel. We investigate the differences of results using BWR and PWR library for ORIGEN. Finally, we compare the composition of major nuclides after 1 year irradiation of both ORIGEN library with results from WIMS. We found only minor disagreements between the yields of PWR and BWR libraries. In comparison with WIMS, the errors are a little bit more pronounced. To overcome this errors, the irradiation power used in ORIGEN could be increased a little, so that the differences in the yield of ORIGEN and WIMS could be reduced. A more permanent solution is to use a different code altogether to simulate burnup such as DRAGON and ORIGEN-S. The result of this study are essential for the design of radiation shielding from the fuel. (author)

  13. TRIGA MARK-II source term

    ORIGEN 2.2 are employed to obtain data regarding γ source term and the radio-activity of irradiated TRIGA fuel. The fuel composition are specified in grams for use as input data. Three types of fuel are irradiated in the reactor, each differs from the other in terms of the amount of Uranium compared to the total weight. Each fuel are irradiated for 365 days with 50 days time step. We obtain results on the total radioactivity of the fuel, the composition of activated materials, composition of fission products and the photon spectrum of the burned fuel. We investigate the differences of results using BWR and PWR library for ORIGEN. Finally, we compare the composition of major nuclides after 1 year irradiation of both ORIGEN library with results from WIMS. We found only minor disagreements between the yields of PWR and BWR libraries. In comparison with WIMS, the errors are a little bit more pronounced. To overcome this errors, the irradiation power used in ORIGEN could be increased a little, so that the differences in the yield of ORIGEN and WIMS could be reduced. A more permanent solution is to use a different code altogether to simulate burnup such as DRAGON and ORIGEN-S. The result of this study are essential for the design of radiation shielding from the fuel

  14. Component and operation experience of reactor TRIGA MARK II

    Reactor TRIGA MARK II is Jozef Stefan Institute's research reactor. It has been operating since 1966. A probabilistic approach of reactor safety estimation was used first in 1989 when a Probabilistic Safety Analysis (PSA) of the reactor was performed. A lack of reactor component data was found as the major problem in probabilistic assessment. It was decided to continue the work with specific data base development. The project has been divided in two phases. In the first phase specific data from year 1985 to 1990 were collected. In the second phase the collected data were treated. The comparison of generic and specific data showed significant difference between the generic and specific data and leads to a conclusion that a generic data based PSA has a limited credibility indicating that there is a need to build a specific data base for research reactors. The TRIGA MARK II research reactor has three major purposes: operator training, research involving neutrons and isotope production. The paper represents specific data base formation for TRIGA MARK II research reactor in Podgorica. Specific data on reactor scrams, components operation and human errors were collected. The data of fifteen components were estimated by classical and Bayesian method. The results of both methods are very different. Because of good specific data the results of classical methods were preferred. The comparison of specific and generic data showed that there is a great need to build a specific data base for research reactors. It is expected to use the specific data for existing PSA of TRIGA MARK II reactor reevaluation and optimisation of its operation. (authors)

  15. Power stabilization in CREN-K TRIGA Mark II reactor

    In order to eliminate power oscillations in the TRIGA MARK II reactor at the 'Centre Regional d'Etudes Nucleaires de Kinshasa' (CREN-K), Zaire, specially made adapters were put around the control rods in the top grid plate. The paper briefly describes how investigations were made to find out the basic reason of the power oscillations and the way these adapters were conceived and installed. (author)

  16. EVALUATION OF COOLING INSTRUMENTATION SYSTEM OF TRIGA MARK II REACTOR OF BANDUNG

    Evaluation of cooling instrumentation system of Triga Mark II reactor has been done. The reactor has been upgraded from 1 MW to 2 MW. The increasing of power is performed by changing the reactor components and systems. The reactor cooling system has important role in reactor operation, the system transfers heat produced in the core. The operation of the cooling system needed to be back up with qualified instrumentation. Evaluation has been done by doing analysis and observing the equipment design, type and clarification, performance study of instrumentation and system related to cooling system. It is known that the performance and system of Triga mark II reactor included the cooling system. It is also obtained the characteristic data of primary and secondary cooling system, piping diagram and instrumentation, emergency core cooling system. The cooling system has 4 measurement, i.e. flow rate, input and output temperature to heat exchanger, and electricity conductivity of water. The measurement can be observed from the reactor console. From this evaluation it is concluded that cooling system instrumentation followed the required criteria

  17. Accident scenarios of the TRIGA Mark II reactor in Vienna

    The safety report of the TRIGA Mark II reactor in Vienna includes three accident scenarios and their deterministic dose consequences to the environment. The destruction of the cladding of the most activated fuel element, the destruction of all fuel elements and a plane crash were considered scenarios in that report. The calculations were made in 1978 with the software program named STRISK. In this paper, the program package PC Cosyma was applied on the TRIGA Mark II reactor in Vienna and the deterministic consequences of the scenarios to the environment were updated. The fission product inventories of all fuel elements were calculated with ORIGEN2. To get meteorological data of the atmospheric condition around the release area, a weather station was installed. The release parameters were taken from the safety report or were replaced by worst case parameters. This paper focuses on two accident scenarios: the destruction of the cladding of the fuel element with the highest activity content and the case of a large plane crash. The current accident scenarios show good agreement with the calculations from 1978, hence no technical modifications in the safety report of the TRIGA reactor Vienna were necessary. Even in the very worst case scenario - complete destruction of all fuel elements in a large plane crash - the expected doses in the Atominstitut's neighborhood remain moderate.

  18. Accident scenarios of the TRIGA Mark II reactor in Vienna

    Villa, Mario, E-mail: mvilla@ati.ac.a [Vienna University of Technology, Atominstitut, Stadionallee 2, 1020 Wien (Austria); Haydn, Markus [Vienna University of Technology, Atominstitut, Stadionallee 2, 1020 Wien (Austria); Steinhauser, Georg, E-mail: georg.steinhauser@ati.ac.a [Vienna University of Technology, Atominstitut, Stadionallee 2, 1020 Wien (Austria); Boeck, Helmuth [Vienna University of Technology, Atominstitut, Stadionallee 2, 1020 Wien (Austria)

    2010-12-15

    The safety report of the TRIGA Mark II reactor in Vienna includes three accident scenarios and their deterministic dose consequences to the environment. The destruction of the cladding of the most activated fuel element, the destruction of all fuel elements and a plane crash were considered scenarios in that report. The calculations were made in 1978 with the software program named STRISK. In this paper, the program package PC Cosyma was applied on the TRIGA Mark II reactor in Vienna and the deterministic consequences of the scenarios to the environment were updated. The fission product inventories of all fuel elements were calculated with ORIGEN2. To get meteorological data of the atmospheric condition around the release area, a weather station was installed. The release parameters were taken from the safety report or were replaced by worst case parameters. This paper focuses on two accident scenarios: the destruction of the cladding of the fuel element with the highest activity content and the case of a large plane crash. The current accident scenarios show good agreement with the calculations from 1978, hence no technical modifications in the safety report of the TRIGA reactor Vienna were necessary. Even in the very worst case scenario - complete destruction of all fuel elements in a large plane crash - the expected doses in the Atominstitut's neighborhood remain moderate.

  19. Ljubljana TRIGA Mark II, 40 years of successful operation

    The research reactor TRIGA Mark II at the 'Jozef Stefan' Institute is located in the vicinity of Ljubljana. It was designed by General Atomics. It was commissioned in 1966 and reconstructed and equipped for pulse mode operation in 1991. It is a 250 kW light water pool type reactor cooled by natural convection and designed for training, research with neutrons and isotope production. The reactor has accumulated 40 years of continuous operation without any failure of major equipment or any event violating safety limits. After reconstruction, the reactor was loaded with fresh, low enriched fuel elements. All spent fuel elements were shipped back to the USA in 1999. Ten fresh fuel elements were exported to France in July 2007. The questions related to nuclear safety are treated in detail in a TRIGA Mark II Safety Analysis Report. The enforcement is provided by national and international bodies. New regulations for research reactors are currently under preparation in Slovenia. The requirement for a research reactor periodic safety review will be included in new regulations. The graded approach to safety is taken into account. Application of the IAEA 'Code of Conduct on the Safety of Research Reactors' will be accomplished through the new regulations pertaining to all stages in the life of the reactor. TRIGA has been playing an important role in developing nuclear technology and safety culture in Slovenia. At present it is planned that the reactor will operate at least until 2016. (author)

  20. Preliminary neutronic design of TRIGA Mark II Reactor

    It is very important to analyse the behaviour of the research reactors, since, they play a key role in developing the power reactor technology and radiation applications such as isotope generation for medical treatments. In this study, the neutronic behaviour of the TRIGA MARK II reactor, owned and operated by Istanbul Technical University is analysed by using the SCALE code system. In the analysis, in order to overcome the disadvantages of special TRIGA codes, such as TRIGAP, the SCALE code system is chosen to perform the calculations. TRIGAP and similar codes have limited geometrical (one-dimensional geometry) and cross sectional options (two-group calculations), however, SCALE has the capability of wider range of geometrical modelling capability (three-dimensional modelling is possible) and multi-group calculations are possible

  1. Analysis of safety limits of the Moroccan TRIGA MARK II research reactor

    A 2 MW TRIGA MARK II research reactor has been designed by General Atomics (GA) for the National Centre for Energy and Nuclear Sciences and Techniques (CNESTEN) in Morocco. This TRIGA reactor has the particularity of being the only TRIGA reactor designed to operate at the power level of 2 MW with the use of natural convection cooling. The main objective of this study is to check the ability of the reactor to operate at its nominal power with sufficient safety margins. The analysis of the reactor core starts from the basic reactor cells calculations which were performed for all the reactor cells using the LEOPARD code. The zone averaged group constants provided by cell calculations are used to compute the multiplication factor keff of the cold and clean core using the diffusion theory code Mcrac which is a recent version of the earlier code EXTERMINATOR-2. The main objective of the core calculations is to predict the core excess reactivity in cold zero power conditions and the power peaking factors which are very important data for the thermal hydraulic analysis of the core. For the maximum power peaking factors, our results agree with the values given by the reactor designer. Concerning the core excess reactivity, our results from both XY and RZ core calculations models lead to higher values than the results given by GA (about +2000 pcm). However, we should mention that GA results correspond probably to the minimum core excess reactivity which is guaranteed. The thermal hydraulic analysis of the TRIGA core was performed using the French code FLICA developed in CEA/Saclay for transient and study state thermal hydraulic analysis of a large variety of reactor cores. The objective of this analysis is to evaluate the main safety related parameters of the core and to ensure that they are within the safety limits in any operating conditions. The parameters considered in our study are: maximum fuel temperature, minimum DNBR and maximum void fraction. The obtained results

  2. Temperature feedback of TRIGA MARK-II fuel

    Usang, M. D., E-mail: mark-dennis@nuclearmalaysia.gov.my; Minhat, M. S.; Rabir, M. H.; Rawi, M. Z. M. [Malaysia Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2016-01-22

    We study the amount of temperature feedback on reactivity for the three types of TRIGA fuel i.. ST8, ST12 and LEU fuel, are used in the TRIGA MARK II reactor in Malaysia Nuclear Agency. We employ WIMSD-5B for the calculation of kin f for a single TRIGA fuel surrounded by water. Typical calculations of TRIGA fuel reactivity are usually limited to ST8 fuel, but in this paper our investigation extends to ST12 and LEU fuel. We look at the kin f of our model at various fuel temperatures and calculate the amount reactivity removed. In one instance, the water temperature is kept at room temperature of 300K to simulate sudden reactivity increase from startup. In another instance, we simulate the sudden temperature increase during normal operation where the water temperature is approximately 320K while observing the kin f at various fuel temperatures. For accidents, two cases are simulated. The first case is for water temperature at 370K and the other is without any water. We observe that the higher Uranium content fuel such as the ST12 and LEU have much smaller contribution to the reactivity in comparison to the often studied ST8 fuel. In fact the negative reactivity coefficient for LEU fuel at high temperature in water is only slightly larger to the negative reactivity coefficient for ST8 fuel in void. The performance of ST8 fuel in terms of negative reactivity coefficient is cut almost by half when it is in void. These results are essential in the safety evaluation of the reactor and should be carefully considered when choices of fuel for core reconfiguration are made.

  3. Temperature feedback of TRIGA MARK-II fuel

    Usang, M. D.; Minhat, M. S.; Rabir, M. H.; M. Rawi M., Z.

    2016-01-01

    We study the amount of temperature feedback on reactivity for the three types of TRIGA fuel i.. ST8, ST12 and LEU fuel, are used in the TRIGA MARK II reactor in Malaysia Nuclear Agency. We employ WIMSD-5B for the calculation of kin f for a single TRIGA fuel surrounded by water. Typical calculations of TRIGA fuel reactivity are usually limited to ST8 fuel, but in this paper our investigation extends to ST12 and LEU fuel. We look at the kin f of our model at various fuel temperatures and calculate the amount reactivity removed. In one instance, the water temperature is kept at room temperature of 300K to simulate sudden reactivity increase from startup. In another instance, we simulate the sudden temperature increase during normal operation where the water temperature is approximately 320K while observing the kin f at various fuel temperatures. For accidents, two cases are simulated. The first case is for water temperature at 370K and the other is without any water. We observe that the higher Uranium content fuel such as the ST12 and LEU have much smaller contribution to the reactivity in comparison to the often studied ST8 fuel. In fact the negative reactivity coefficient for LEU fuel at high temperature in water is only slightly larger to the negative reactivity coefficient for ST8 fuel in void. The performance of ST8 fuel in terms of negative reactivity coefficient is cut almost by half when it is in void. These results are essential in the safety evaluation of the reactor and should be carefully considered when choices of fuel for core reconfiguration are made.

  4. Temperature feedback of TRIGA MARK-II fuel

    We study the amount of temperature feedback on reactivity for the three types of TRIGA fuel i.. ST8, ST12 and LEU fuel, are used in the TRIGA MARK II reactor in Malaysia Nuclear Agency. We employ WIMSD-5B for the calculation of kin f for a single TRIGA fuel surrounded by water. Typical calculations of TRIGA fuel reactivity are usually limited to ST8 fuel, but in this paper our investigation extends to ST12 and LEU fuel. We look at the kin f of our model at various fuel temperatures and calculate the amount reactivity removed. In one instance, the water temperature is kept at room temperature of 300K to simulate sudden reactivity increase from startup. In another instance, we simulate the sudden temperature increase during normal operation where the water temperature is approximately 320K while observing the kin f at various fuel temperatures. For accidents, two cases are simulated. The first case is for water temperature at 370K and the other is without any water. We observe that the higher Uranium content fuel such as the ST12 and LEU have much smaller contribution to the reactivity in comparison to the often studied ST8 fuel. In fact the negative reactivity coefficient for LEU fuel at high temperature in water is only slightly larger to the negative reactivity coefficient for ST8 fuel in void. The performance of ST8 fuel in terms of negative reactivity coefficient is cut almost by half when it is in void. These results are essential in the safety evaluation of the reactor and should be carefully considered when choices of fuel for core reconfiguration are made

  5. The current status of Bandung Triga Mark II reactor, Indonesia

    Full text: The Bandung TRIGA Mark II Reactor - Indonesia was started-up on October 10, 1964 and it has been operated at power level of 250 kw. The facility has been, operated for research, production of radioisotopes and training. In 1971, the reactor has been upgraded from 250 kw to 1000 kw. Since that time the facility has been safely operating at various power levels of a maximum 1000 kw until February 1996, even though the reactor tank is kept unchanged. For a highly reliable reactor that can back-up the Ga Siwabessy Multipurpose Reactor - Jakarta, Indonesia, in producing sufficient radioisotopes, a higher power reactor is needed. This can be accomplished by increasing the thermal power of current TRIGA Mark II Bandung Reactor to 2000 kw as well as by enhancing the inherent and engineered safety features of the current reactor. The upgrading of reactor power shall ensure the increasing of neutron flux in the beam ports; hence the experiments such as neutron radiography, time of flight spectrometry and other nuclear physic experiments can be conducted better. For that the reactor tank, the number and configuration of fuel element, instrumentation and control rod, primary cooling system, secondary cooling system, water treatment system, shielding, etc. have been changed, and an Emergency Core Cooling System (ECCS) was added. One additional control rod, core configuration modification and enhancement of reactor shielding, shall increase the safety margin so that the reactor could be operated at a maximum power of 2000 kw. At the middle of May 2000 cold test (non-nuclear commissioning) was done, and continued to hot test (nuclear commissioning). Since June 24, 2000 the TRIGA Mark II Bandung has been operated at 2000 kw

  6. Operational experience data base of TRIGA Mark II reactor

    Two kinds of operational data available from operator logs: component failure-event data and abnormal event scenario information can be effectively used in PSA. Most operating data collection systems are aimed at improving the safety and availability of research reactors or commercial plants. This paper describes our failure-event data collection scheme, suitable for reliability and safety evaluations. Following the proposed data collection scheme the last five years operational experience was analysed and computerized data base for Triga Mark II reactor was developed. (orig.)

  7. Thermal - hydraulic analysis of the ITU TRIGA Mark - II reactor

    Experimental and analytical studies have been performed to find out the temperature distribution, as a function of reactor power, in the TRIGA Mark-II reactor at Istanbul Technical University. A two-dimensional computer code was written in FORTRAN-77 language numerically solves heat conduction equation using finite difference method at the steady state. The calculated results for fuel temperature and coolant temperature distribution in the reactor core for different reactor power were compared with the experimental data. Agreements between experiment and results from the computer program are fairly good

  8. Neutron Imaging Using Neutrons From TRIGA MARK II PUSPATI Reactor

    This article reports about the implementation of neutron imaging work utilizing neutron beam from TRIGA MARK II PUSPATI collimation channels. Two methods have been implemented namely radiography and tomography. Advantage of these methods is the fact that, radiograms are obtained from normal radiographic imaging methodology and they are the projections used for tomographic image reconstruction. Therefore, both radiogram and tomogram are obtained consecutively. The method has been implemented on the round robin test sample for contrast and resolution measurement and also to some archaeological objects. (author)

  9. Accident scenarios of the TRIGA Mark II reactor in Vienna

    The safety report of the TRIGA Mark II reactor in Vienna includes three accident scenarios and their deterministic dose consequence to the environment. The destruction of the most activated fuel element, the destruction of all fuel elements and a plane crash were treated scenarios in that report. The calculations were made in 1978 with the computer program STRISK. In this work, the program package PC COSYMA was applied on the TRIGA Mark II reactor in Vienna and the deterministic consequences of the scenarios to the environment were updated. The fission product inventories of all fuel elements were taken from a calculation with ORIGEN2. To get meteorological data of the atmospheric condition around the release area, a weather station was installed. The release parameters were taken from the safety report or were replaced by worst case parameters. Further on, a fourth scenario for the case of a small plane crash was added. For the sake of completeness all scenarios were calculated with different atmospheric conditions. In this paper only two accident scenarios are presented, the destruction of the fuel element with the highest activity content and the case of a large plane crash, which means a totally destruction of the reactor hall. (author)

  10. The optimal control of ITU TRIGA Mark II Reactor

    In this study, optimal control of ITU TRIGA Mark-II Reactor is discussed. A new controller has been designed for ITU TRIGA Mark-II Reactor. The controller consists of main and auxiliary controllers. The form is based on Pontragyn's Maximum Principle and the latter is based on PID approach. For the desired power program, a cubic function is chosen. Integral Performance Index includes the mean square of error function and the effect of selected period on the power variation. YAVCAN2 Neutronic - Thermal -Hydraulic code is used to solve the equations, namely 11 equations, dealing with neutronic - thermal - hydraulic behavior of the reactor. For the controller design, a new code, KONTCAN, is written. In the application of the code, it is seen that the controller controls the reactor power to follow the desired power program. The overshoot value alters between 100 W and 500 W depending on the selected period. There is no undershoot. The controller rapidly increases reactivity, then decreases, after that increases it until the effect of temperature feedback is compensated. Error function varies between 0-1 kW. (author)

  11. Ljubljana TRIGA Mark II, 40 years of successful operation

    The research reactor TRIGA Mark II is part of the Jozef Stefan Institute, located near Ljubljana. It was built by General Atomics. The research reactor was commissioned in 1966 and in 1991 it was reconstructed and equipped for pulse mode operation. The reactor TRIGA Mark II is a typical 250 kW light water reactor cooled by natural convection. It is designed for training in reactor operation and technology, research with neutrons and isotope production. It has been used for experiments in the following fields: solid state physics, neutron radiography, reactor physics including burn up measurements and calculations, boron neutron capture therapy, environmental studies and researches of advanced materials. The reactor has accumulated 40 years of continuous operation without any failure of major equipment or any event violating safety standards. There has been no release of radioactivity into the environment exceeding limiting values prescribed by the regulatory requirements. Major refurbishment included installation of a pulse rod, reconstruction of control mechanisms and control units, replacement of the primary coolant pumps with new ones, modification of a spent fuel storage pool and installation of new pneumatic mail. The United States nuclear non-proliferation policy provided Slovenia with the opportunity to return the spent fuel from the research reactor TRIGA Mark II back to the USA. After reconstruction, the reactor was loaded with fresh low enrichment fuel elements and all spent fuel elements were shipped back to the USA in July 1999. At present there are 94 fuel elements with 20% enriched uranium on site. All questions related to nuclear safety are treated in detail in a Safety Analysis Report. Its operation is regulated by several national and international nuclear laws, regulations and standards. The enforcement is provided by national and international bodies: Slovenian Nuclear Safety Administration (SNSA), Health Inspectorate of the Republic of Slovenia

  12. Monte Carlo simulation of the TRIGA mark 2 criticality experiment

    The criticality analysis of the TRIGA-2 bench-mark experiment at the Musashi Institute of Technology Research Reactor (MuITR, 100 kW) was performed by the three-dimensional continuous-energy Monte Carlo code (MCNP4A). To minimize errors due to an inexact geometry model, all fresh fuel and control rods as well as vicinity of the core were precisely modeled. Core multiplication factors (Keff) in the initial core critical experiment and in the excess reactivity adjustment for the several fuel-loading patterns as well as the fuel element reactivity worth distributions were used in the validation process of the physical model and neutron cross section data from the ENDF/B-V evaluation. The calculated Keff overestimated the experimental data by 1.0% for both the initial core and the several fuel-loading arrangements (fuel or graphite element was added only to the outer-ring), but the discrepancy increased to 1.8% for the some fuel-loading patterns (graphite element was positioned in the inner-ring). The comparison result of the fuel element worth distribution showed above tendency. Al in all, the agreement between the MCNP predictions and the experimentally determined values is good, which indicates that the Monte Carlo model is enough to simulate criticality of the TRIGA-2 reactor. (author)

  13. Decommissioning of the ICI TRIGA Mark I reactor

    Parry, D.R.; England, M.R.; Ward, A. [BNFL, Sellafield (United Kingdom); Green, D. [ICI Chemical Polymers Ltd, Billingham (United Kingdom)

    2000-07-01

    This paper considers the fuel removal, transportation and subsequent decommissioning of the ICI TRIGA Mark I Reactor at Billingham, UK. BNFL Waste Management and Decommissioning carried out this work on behalf of ICI. The decommissioning methodology was considered in the four stages to be described, namely Preparatory Works, Reactor Defueling, Intermediate Level Waste Removal and Low Level Waste Removal. This paper describes the principal methodologies involved in the defueling of the reactor and subsequent decommissioning operations, highlighting in particular the design and safety case methodologies used in order to achieve a solution which was completed without incident or accident and resulted in a cumulative radiation dose to personnel of only 1.57 mSv. (author)

  14. Testing Of Secondary Cooling Component Of TRIGA Mark Reactor

    The aim of this activity is to improve the knowledge of the mechanical testing technology of the research reactor cooling pipe material. The way which was chosen is through a series of testing to know the mechanical properties of carbon steel pipe used in TRIGA-MARK II secondary cooling pipe. Scopes of these testing activities are tensile testing, hardness testing, chemical composition analysis, and metallography analysis. Visual examination shows that thickness of the pipe was reduced over the range 0.31-1.76 mm and there was scales inside the pipe about 7.1-9.1 mm. Result of the mechanical testing shows that ultimate tensile strength, yield strength, elongation and. hardness of that material are 39 kg mm2, 34 kg/mm2, 38 %, and HV161, respectively. That yield strength value is on the design range

  15. Decommissioning of the ICI TRIGA Mark I reactor

    This paper considers the fuel removal, transportation and subsequent decommissioning of the ICI TRIGA Mark I Reactor at Billingham, UK. BNFL Waste Management and Decommissioning carried out this work on behalf of ICI. The decommissioning methodology was considered in the four stages to be described, namely Preparatory Works, Reactor Defueling, Intermediate Level Waste Removal and Low Level Waste Removal. This paper describes the principal methodologies involved in the defueling of the reactor and subsequent decommissioning operations, highlighting in particular the design and safety case methodologies used in order to achieve a solution which was completed without incident or accident and resulted in a cumulative radiation dose to personnel of only 1.57 mSv. (author)

  16. MCNP simulation of the TRIGA Mark II benchmark experiment

    The complete 3D MCNP model of the TRIGA Mark II reactor is presented. It enables precise calculations of some quantities of interest in a steady-state mode of operation. Calculational results are compared to the experimental results gathered during reactor reconstruction in 1992. Since the operating conditions were well defined at that time, the experimental results can be used as a benchmark. It may be noted that this benchmark is one of very few high enrichment benchmarks available. In our simulations experimental conditions were thoroughly simulated: fuel elements and control rods were precisely modeled as well as entire core configuration and the vicinity of the core. ENDF/B-VI and ENDF/B-V libraries were used. Partial results of benchmark calculations are presented. Excellent agreement of core criticality, excess reactivity and control rod worths can be observed. (author)

  17. The reactor noise analysis for a TRIGA Mark-II

    For the purpose of measurement of reactor kinetic parameter, rossi-α experiment in TRIGA Mark-II reactor are performed. The past neutron noise measurement which is using HARDWARE have had defects of inaccuracy. In this study, I developed SOFTWARE to betterment of these defects and using it investigated α which is reciprocal of prompt period. To collect neutron pulses, developed data acquisition system using 16 bit personal computer (IBM-AT) and developed pascal language program to analysis neutron pulses. As a result of experiment, α is 103, 5, 155.6, 172.7, 238.7, 266.5 (1/sec) at -1, -20, -40, -60, -80, (cent) respectively, and compare it with other experiment data convinced accurate, know S/B ratio must be larger then 10% and in case of thermal reactor, low power reactor such as AGN-201 is needed to neutron noise analysis. (Author)

  18. Control System Dynamics Analysis Of TRIGA Mark II Bandung

    The root locus analysis of TRIGA MARK II reactor was performed. The parameters were calculated based from the experimental data. The experiment was performed between 100 kW to 1 MW of power, average fuel temperature was 189oC and water average temperature was 37.3oC to measure temperature and xenon poisoning feedback. On the design analysis of PID system the characteristic of the controller are gain K=2.72, tp=13.65 seconds, Mp=0.0075%, Ti=4.1 seconds and Td=0.24 seconds. The controller transient time is less than 30 seconds and the settling time is less than 2% as well

  19. Ageing Management in the CENM Triga Mark II Research Reactor

    Physical ageing is one of the most important factors that may reduce the safety margins calculated in the design of safety system components of a research reactor. In this context, special efforts are necessary for ensuring the safety of research reactors through appropriate ageing management actions. The paper deals with the overall aspects of the ageing management system of the Moroccan TRIGA Mark II research reactor. The management system covers among others, management of structures, critical components inspections, the control command system and nuclear instrumentation verification. The paper presents also how maintenance and periodic testing are organized and managed in the reactor module. Practical examples of ageing management actions of some systems and components during recent years are presented. (author)

  20. Operating experience at the Reed College TRIGA Mark I facility

    Full text: Reed College is unique among small liberal arts colleges in that it operates a TRIGA Mark I reactor (250 kw - steady stage). There is no full time staff and all operators are undergraduate students in physics and chemistry. Training of new operators is done through a weekly seminar run throughout the school year with intensive work during January or summer vacation periods. 16 of 21 students who have taken the licensing exams have received their license. The Reactor has logged about 165 MW hrs of operation, which is equivalent to an average of 4 hours at full power per week. Most of this time has been used for sample activation, primarily neutron activation analysis with reactor training and testing operations next. Significant amounts of time have also been spent for demonstration operations for high school groups and the general public (800-1000 visitors annually) and neutron radiography. A consortium of seven local colleges has been organized to increase facility utilization. This consortium is now being funded by two local electric power companies who are planning to build nuclear power plants. Some major problems that have arisen in 3 1/2 years of operation are: 1. Slave system 2. Rotary specimen rack locking pin 3. Rapid wear of primary water system pressure gauges 4. Count rate channel preamp and bistable circuit 5. Fishing pole 6. Reg rod drive motor failure 7. % power channel UIC short and sticking scam relay. These problems have not caused a significant amount of down time and generally we have been able to run experiments on schedule. However, with the limited staff we have available, any problem is time-consuming. Finally, I would like to suggest that Gulf Energy and Environmental Systems stock the more expensive items of a TRIGA reactor (e.g., control rod drive motors, ion chambers, etc.) so that they can be readily replaced in the event of failure. (author)

  1. Computational analysis of neutronic parameters of CENM TRIGA Mark II research reactor

    The CENM TRIGA MARK II reactor is part of the National Center for Energy, Sciences and Nuclear Techniques (CNESTEN). It's a standard design 2MW, natural-convection-cooled reactor with a graphite reflector containing 4 beam tubes and a thermal column. The reactor has several applications in different fields as industry, agriculture, medicine, training and education. In the present work a computational study has been carried out in the framework of neutronic parameters studies of the reactor. A detailed MCNP model that include all elements of the core and surrounding structures has been developed to calculate different parameters of the core (The effective multiplication factor, reactivity experiments comprising control rods worth, excess reactivity and shutdown margin). Further calculations have been carried out to calculate the neutron flux profiles at different locations of the reactor core. The cross sections used are processed from the library provided with MCNP5 and based on the ENDF/B-VII with continuous dependence in energy and special treatment of thermal neutrons in lightweight materials. (author)

  2. Fuel element situation and performance data TRIGA Mark II reactor

    Electronic data acquisition of the position and movement of Triga fuel elements (FE) in the TRIGA II Vienna reactor was the objective of this project. Using one month power data and the Fuel element position in core it is possible to calculate their burnup. Fuel element performance data during 1962 to 2003 are provided. (nevyjel)

  3. 44 years of operation - The successful fuel history of the TRIGA Mark II reactor Vienna

    A review is given on the fuel element situation of the TRIGA Mark II reactor Vienna after 44 years of operation. Since March 7th, 1962, the TRIGA Mark II reactor Vienna operates with an average of 263 MWh per year, which corresponds to a uranium burn-up of 11.5 g per year. Presently we have 82 TRIGA fuel elements in the core, 51 of them are old aluminium clad elements from the initial criticality while the rest are stainless steel clad elements which had been added later to compensate the uranium consumption. (author)

  4. Proposal of LDR Ir-192 Production in the TRIGA Mark II Research Reactor

    Karimzadeh, S.; Khan, R.; Boeck, H., E-mail: Sam.karimzadeh@ati.ac.a, E-mail: Nrustam@ati.ac.a, E-mail: Boeck@ati.ac.a [Institute of Atomic and Subatomic Physics (ATI), Vienna University of Technology (TU-Vienna) Stadionallee 2, 1020-Vienna (Austria)

    2011-07-01

    The TRIGA MARK II research reactor in Vienna provides some irradiation positions with different flux distribution. In this regard, a case study is under investigation to appraise the possibility of medical radioisotope production in Vienna. For this purpose, neutron flux mapping and the axial neutron flux distribution are calculated by MCNP5 for the TRIGA Mark II core. This paper describes the feasibility of Low Dose Rate (LDR) {sup 192}Ir production in the core of the low power research reactor. (author)

  5. Proposal of LDR Ir-192 Production in the TRIGA Mark II Research Reactor

    The TRIGA MARK II research reactor in Vienna provides some irradiation positions with different flux distribution. In this regard, a case study is under investigation to appraise the possibility of medical radioisotope production in Vienna. For this purpose, neutron flux mapping and the axial neutron flux distribution are calculated by MCNP5 for the TRIGA Mark II core. This paper describes the feasibility of Low Dose Rate (LDR) 192Ir production in the core of the low power research reactor. (author)

  6. On Line Measurement of Reactivity Worth of TRIGA Mark-II Research Reactor Control Rods

    Nusrat Jahan; Mamunur M. Rashid; F. Ahmed; M. G. S. Islam; M. Aliuzzaman; Islam, S.M.A

    2011-01-01

    The reactivity worth measurement system for control rods of the TRIGA MARK-II research reactor of Bangladesh has been design and developed. The theory of the kinetic technique of measuring reactivity has been used by this measurement system. The system comprises of indigenous hardware and software for online acquisition of neutron flux signals from reactor console and then computes the reactivity worth accordingly. Here for the TRIGA MARK-II research reactor, the reactivity measurement system...

  7. About the safety analysis of Istanbul TRIGA Mark II reactor

    The accidents potentially related to the operation of TRIGA Mark-II reactor have been analysed in Safety Analysis Report of ITU Research Reactor, with special consideration being given to site characteristics. The maximum credible accident which can take place in a swimming pool type research reactor - accidental dropping of a fuel element into of the critical reactor core - is considered. In the safety analysis of pool type reactors BORAX accident is also included. The following events are abnormal incidents that should be taken into account: 1. Cladding rupture. 2. Reactivity accident. 3. Loss of coolant accident. Fission product release during an accident is analysed. Even though the possibility is believed to be exceedingly remote, the most unfavourable assumptions are made: the rapid insertion of the total excess' reactivity in the reactor operating at a power less then 1 kW; Coincidence of the reactivity insertion and loss of coolant accident; Cladding rupture occurring at one of the highest power density fuel elements as a consequence; Emergency ventilation system failure, leading to a vanishing filter efficiency. It is shown that, even under this most unfavourable condition, the maximum radiation to which the nearby inhabitants will be subjected, is 3.8 x 10-2 mRem per 1/2 hr. Even in the hypothetical case of the coincidence of four abnormal incidents the resulting radiation dose to the population does not exceed much the magnitude of the permissible dose of the ICRP recommendations

  8. Thermal spectra of the TRIGA Mark III reactor

    The diffraction phenomenon is gave in observance of the well known Bragg law in crystalline materials and this can be performance by mean of X-rays, electrons and neutrons among others, which allows to do inside the field of each one of these techniques the obtaining of measurements focussed at each one of them. For the present work, it will be mentioned only the referring to X-ray and neutron techniques. The X-ray diffraction due to its properties just it does measurements which are known in general as superficial measurements of the sample material but for the properties of the neutrons, this diffraction it explores in volumetric form the sample material. Since the neutron diffraction process depends lots of its intensity, then it is important to know the neutron source spectra that in this case is supplied by the TRIGA Mark III reactor. Within of diffraction techniques a great number of them can be found, however some of the traditional will be mentioned such as the identification of crystalline samples, phases identification and the textures measurement. At present this last technique is founded on the dot of a minimum error and the technique of phases identification performs but not compete with that which is obtained by mean of X-rays due to this last one has a major resolution. (Author)

  9. Perturbation analysis of the TRIGA Mark II reactor Vienna

    The safety design of a nuclear reactor needs to maintain the steady state operation at desired power level. The safe and reliable reactor operation demands the complete knowledge of the core multiplication and its changes during the reactor operation. Therefore it is frequently of interest to compute the changes in core multiplication caused by small disturbances in the field of reactor physics. These disturbances can be created either by geometry or composition changes of the core. Fortunately if these changes (or perturbations) are very small, one does not have to repeat the reactivity calculations. This article focuses the study of small perturbations created in the Central Irradiation Channel (CIC) of the TRIGA mark II core to investigate their reactivity influences on the core reactivity. For this purpose, 3 different kinds of perturbations are created by inserting 3 different samples in the CIC. The cylindrical void (air), heavy water (D2O) and Cadmium (Cd) samples are inserted into the CIC separately to determine their neutronics behavior along the length of the core. The Monte Carlo N-Particle radiation transport code (MCNP) is applied to simulate these perturbations in the CIC. The MCNP theoretical predictions are verified by the experiments performed on the current reactor core. The behavior of void in the whole core and its dependence on position and water fraction is also presented in this article. (orig.)

  10. Perturbation analysis of the TRIGA Mark II reactor Vienna

    Khan, R. [Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad (Pakistan); Villa, M.; Stummer, T.; Boeck, H. [Vienna Univ. of Technology (Austria). Atominstitut; Saeedbadshah [International Islamic Univ., Islamabad (Pakistan)

    2013-04-15

    The safety design of a nuclear reactor needs to maintain the steady state operation at desired power level. The safe and reliable reactor operation demands the complete knowledge of the core multiplication and its changes during the reactor operation. Therefore it is frequently of interest to compute the changes in core multiplication caused by small disturbances in the field of reactor physics. These disturbances can be created either by geometry or composition changes of the core. Fortunately if these changes (or perturbations) are very small, one does not have to repeat the reactivity calculations. This article focuses the study of small perturbations created in the Central Irradiation Channel (CIC) of the TRIGA mark II core to investigate their reactivity influences on the core reactivity. For this purpose, 3 different kinds of perturbations are created by inserting 3 different samples in the CIC. The cylindrical void (air), heavy water (D2O) and Cadmium (Cd) samples are inserted into the CIC separately to determine their neutronics behavior along the length of the core. The Monte Carlo N-Particle radiation transport code (MCNP) is applied to simulate these perturbations in the CIC. The MCNP theoretical predictions are verified by the experiments performed on the current reactor core. The behavior of void in the whole core and its dependence on position and water fraction is also presented in this article. (orig.)

  11. TRIGA Mark II Criticality Benchmark Experiment with Burned Fuel

    The experimental results of criticality benchmark experiments performed at the Jozef Stefan Institute TRIGA Mark II reactor are presented. The experiments were performed with partly burned fuel in two compact and uniform core configurations in the same arrangements as were used in the fresh fuel criticality benchmark experiment performed in 1991. In the experiments, both core configurations contained only 12 wt% U-ZrH fuel with 20% enriched uranium. The first experimental core contained 43 fuel elements with average burnup of 1.22 MWd or 2.8% 235U burned. The last experimental core configuration was composed of 48 fuel elements with average burnup of 1.15 MWd or 2.6% 235U burned. The experimental determination of keff for both core configurations, one subcritical and one critical, are presented. Burnup for all fuel elements was calculated in two-dimensional four-group diffusion approximation using the TRIGLAV code. The burnup of several fuel elements was measured also by the reactivity method

  12. Different microprocessor controlled devices for ITU TRIGA Mark II reactor

    In this paper the design of a period meter and multichannel thermometer, which are controlled by a microprocessor, in order to be used at ITU TRIGA Mark-II Reactor is presented. The system works as a simple microcomputer, which includes a CPU, a EPROM, a RAM, a CTC, a PIO, a PIA a keyboard and displays, using the assembly language. The period meter can work either with pulse signal or with analog signal depending on demand of the user. The period is calculated by software and its range is -99,9 sec, to +2.1 sec. When the period drops +3 sec, the system gives alarm illuminating a LED. The multichannel thermometer has eight temperature channels. Temperature channels can manually or automatically be selected. The channel selection time can be adjusted. The thermometer gives alarm illuminating a LED, when the temperature rises to 600 C. Temperature data is stored in the RAM and is shown on a display. This system provides us to use four spare thermocouples in the reactor. (orig.)

  13. Transient behavior during reactivity insertion in the Moroccan TRIGA Mark II reactor using the PARET/ANL code

    Boulaich, Y., E-mail: boulaich@cnesten.org.ma [CEN-Maamora, CNESTEN, Rabat (Morocco); Nacir, B. [CEN-Maamora, CNESTEN, Rabat (Morocco); El Bardouni, T. [Radiations and Nuclear Systems Laboratory, University Abdelmalek Essaadi, Faculty of Sciences of Tetouan (Morocco); CEN-Maamora, CNESTEN, Rabat (Morocco); Boukhal, H. [Radiations and Nuclear Systems Laboratory, University Abdelmalek Essaadi, Faculty of Sciences of Tetouan (Morocco); Chakir, E. [LHESIR, Department of Physics, Faculty of Sciences, Kénitra (Morocco); El Bakkari, B.; El Younoussi, C. [CEN-Maamora, CNESTEN, Rabat (Morocco)

    2015-04-01

    Highlights: • PARET model for the Moroccan TRIGA MARK II reactor has been developed. • Transient behavior under reactivity insertion has been studied based on PARET code. • Power factors required by PARET code have been calculated by using MCNP5 code. • The dependence on time of the main thermal-hydraulic parameters was calculated. • Results are largely far to compromise the thermal design limits. - Abstract: A three dimensional model for the Moroccan 2 MW TRIGA MARK II reactor has been developed for thermal-hydraulic and safety analysis by using the PARET/ANL and MCNP5 codes. This reactor is located at the nuclear studies center of Mâamora (CENM), Morocco. The model has been validated through temperature measurements inside two instrumented fuel elements located near the center of the core, at various power levels, and also through the power and fuel temperature evolution after the reactor shutdown (SCRAM). The axial distributions of power factors required by the PARET code have been calculated in each fuel element rod by using MCNP5 code. Based on this thermal-hydraulic model, a safety analysis under the reactivity insertion phenomenon has been carried out and the dependence on time of the main thermal-hydraulic parameters was calculated. Results were compared to the thermal design limits imposed to maintain the integrity of the clad.

  14. Transient behavior during reactivity insertion in the Moroccan TRIGA Mark II reactor using the PARET/ANL code

    Highlights: • PARET model for the Moroccan TRIGA MARK II reactor has been developed. • Transient behavior under reactivity insertion has been studied based on PARET code. • Power factors required by PARET code have been calculated by using MCNP5 code. • The dependence on time of the main thermal-hydraulic parameters was calculated. • Results are largely far to compromise the thermal design limits. - Abstract: A three dimensional model for the Moroccan 2 MW TRIGA MARK II reactor has been developed for thermal-hydraulic and safety analysis by using the PARET/ANL and MCNP5 codes. This reactor is located at the nuclear studies center of Mâamora (CENM), Morocco. The model has been validated through temperature measurements inside two instrumented fuel elements located near the center of the core, at various power levels, and also through the power and fuel temperature evolution after the reactor shutdown (SCRAM). The axial distributions of power factors required by the PARET code have been calculated in each fuel element rod by using MCNP5 code. Based on this thermal-hydraulic model, a safety analysis under the reactivity insertion phenomenon has been carried out and the dependence on time of the main thermal-hydraulic parameters was calculated. Results were compared to the thermal design limits imposed to maintain the integrity of the clad

  15. Neutronic Analysis of the 3 MW TRIGA MARK II Research Reactor, Part II: Benchmark Analysis of TRIGA Experiments

    The three-dimensional continuous-energy Monte Carlo code MCNP4C was used to develop a versatile and accurate full-core model of the TRIGA MARK II research reactor at AERE, Savar. Thr consistency and accuracy of both the Monte Carlo simulation and neutron transport physics was established by benchmarking the TRIGA experiments. Analysis of neutron flux and reactivity experiments comprising control rod worths, critical rod height, excess reactivity and shutdown margin were used in the validation process. Calculations of fast neutron flux, and fuel and graphite element worths distribution are also presented. Good agreement between the experiments and MCNP calculations indicate that the simulation of TRIGA reactor is treated adequately. (author)

  16. Analysis of JSI TRIGA MARK II reactor physical parameters calculated with TRIPOLI and MCNP

    New computational model of the JSI TRIGA Mark II research reactor was built for TRIPOLI computer code and compared with existing MCNP code model. The same modelling assumptions were used in order to check the differences of the mathematical models of both Monte Carlo codes. Differences between the TRIPOLI and MCNP predictions of keff were up to 100 pcm. Further validation was performed with analyses of the normalized reaction rates and computations of kinetic parameters for various core configurations. - Highlights: • TRIGA Benchmark keff calculated with the TRIPOLI code. • Reaction rate profiles in TRIGA calculated with TRIPOLI code. • TRIPOLI model of the JSI TRIGA was validated. • TRIGA Kinetic parameters were calculated with TRIPOLI code. • All results are in good agreement, largest discrepancies due to nuclear data

  17. Analysis of cocked fuel elements in the AFRRI TRIGA Mark-F reactor

    The Armed Forces Radiobiology Research Institute (AFRRI) TRIGA Mark-F pulsing reactor has experienced eight cocked fuel elements during the period 5 November 1974 through 17 February 1982. Although there are no adverse health and safety consequences associated with their occurrence and there is no credible potential for system damage, cocked TRIGA fuel elements do cause inconvenience to the reactor staff and a temporary delay in operations. This paper presents the history of cocked TRIGA fuel elements at AFRRI, discusses possible mechanisms for their occurrence, and outlines a plan to isolate and ultimately determine their actual cause

  18. Numerical simulation of non-steady state neutron kinetics of the TRIGA Mark II reactor Vienna

    Riede, Julia; Boeck, Helmuth

    2013-01-01

    This paper presents an algorithm for numerical simulations of non-steady states of the TRIGA MARK II reactor in Vienna, Austria. The primary focus of this work has been the development of an algorithm which provides time series of integral neutron flux after reactivity changes introduced by perturbations without the usage of thermal-hydraulic / neutronic numerical code systems for the TRIGA reactor in Vienna, Austria. The algorithm presented takes into account both external reactivity changes...

  19. Twenty years of operation of Ljubljana's TRIGA Mark II reactor

    Twenty years have now passed since the start of the TRIGA Mark II reactor in Ljubljana. The reactor was critical on May 31, 1966. The total energy produced until the end of May 1986 was 14.048 MWh or 585 MWd. For the first 14 years (until 1981) the yearly energy produced was about 600 MWh, since 1981 the yearly energy produced was 1000 MWh when a routine radioactive isotopes production started for medical use as well as other industrial applications, such as doping and irradiation with fast neutrons of silicon monocrystals, production of level indicators (irradiated cobalt wire), production of radioactive iridium for gamma-radiography, leak detection in pipes by sodium, etc. Besides these, applied research around the reactor is being conducted in the following main fields, where- many unique methods have been developed or have found their way into the local industry or hospitals: neutron radiography, neutron induced auto-radiography using solid state nuclear track detectors, nondestructive methods for assessment of nuclear burn-up, neutron dosimetry, calculation of core burn-up for the optimal in-core fuel management strategy. The solvent extraction method was developed for the everyday production of 99mTc, which is the most widely used radionuclide in diagnostic nuclear medicine. The methods were developed for the production of the following isotopes: 18F, 85mKr, 24Na, 82Br, 64Zn, 125I. Neutron activation analysis represents one of the major usages for the TRIGA reactor. Basic research is being conducted in the following main fields: solid state physics (elastic and inelastic scattering of the neutrons), neutron dosimetry, neutron radiography, reactor physics and neutron activation analysis. The reactor is used very extensively as a main instrument in the Reactor Training Centre in Ljubljana where manpower training for our nuclear power plant and other organisations has been performed. Although the reactor was designed very carefully in order to be used for

  20. Steady-state thermal-hydraulic analysis of the Moroccan TRIGA MARK II reactor by using PARET/ANL and COOLOD-N2 codes

    Research highlights: → The COOLOD/N2 and PARET/ANL codes were used for a steady-state thermal-hydraulic and safety analysis of the 2 MW TRIGA MARK II reactor located at the Nuclear Studies Center of Maamora (CENM), Morocco. → The main objective of this study is to ensure the safety margins of different safety related parameters by steady-state calculations at full power level (2 MW). → The most important conclusion is that all obtained values of DNBR, fuel center and surface temperature, cladding surface temperature and coolant temperature across the hottest channel are largely far to compromise safety of the reactor. - Abstract: The COOLOD/N2 and PARET/ANL codes were used for a steady-state thermal-hydraulic and safety analysis of the 2 MW TRIGA MARK II reactor located at the Nuclear Studies Center of Maamora (CENM), Morocco. In order to validate our PARET/ANL and COOLOD-N2 models, the fuel center temperature as function of core power was calculated and compared with the corresponding experimental values. The comparison indicates that the calculated values are in satisfactory agreement with the measurement. The main objective of this study is to ensure the safety margins of different safety related parameters by steady-state calculations at full power level (2 MW). Therefore, we have calculated the departure from nucleate boiling ratio (DNBR), fuel center and surface temperature, cladding surface temperature and coolant temperature profiles across the hottest channel. The most important conclusion is that all obtained values are largely far to compromise safety of the reactor.

  1. Steady-state thermal-hydraulic analysis of the Moroccan TRIGA MARK II reactor by using PARET/ANL and COOLOD-N2 codes

    Boulaich, Y., E-mail: boulaich@cnesten.org.m [CEN-Maamora, CNESTEN, Rabat (Morocco); Radiations and Nuclear Systems Laboratory, University Abdelmalek Essaadi, Faculty of Sciences of Tetuan (Morocco); Nacir, B. [CEN-Maamora, CNESTEN, Rabat (Morocco); El Bardouni, T.; Zoubair, M. [Radiations and Nuclear Systems Laboratory, University Abdelmalek Essaadi, Faculty of Sciences of Tetuan (Morocco); El Bakkari, B. [CEN-Maamora, CNESTEN, Rabat (Morocco); Radiations and Nuclear Systems Laboratory, University Abdelmalek Essaadi, Faculty of Sciences of Tetuan (Morocco); Merroun, O. [Radiations and Nuclear Systems Laboratory, University Abdelmalek Essaadi, Faculty of Sciences of Tetuan (Morocco); El Younoussi, C. [CEN-Maamora, CNESTEN, Rabat (Morocco); Radiations and Nuclear Systems Laboratory, University Abdelmalek Essaadi, Faculty of Sciences of Tetuan (Morocco); Htet, A. [CEN-Maamora, CNESTEN, Rabat (Morocco); Boukhal, H. [Radiations and Nuclear Systems Laboratory, University Abdelmalek Essaadi, Faculty of Sciences of Tetuan (Morocco); Chakir, E. [LRM/EPTN, Department of Physics, Faculty of Sciences, Kenitra (Morocco)

    2011-01-15

    Research highlights: The COOLOD/N2 and PARET/ANL codes were used for a steady-state thermal-hydraulic and safety analysis of the 2 MW TRIGA MARK II reactor located at the Nuclear Studies Center of Maamora (CENM), Morocco. The main objective of this study is to ensure the safety margins of different safety related parameters by steady-state calculations at full power level (2 MW). The most important conclusion is that all obtained values of DNBR, fuel center and surface temperature, cladding surface temperature and coolant temperature across the hottest channel are largely far to compromise safety of the reactor. - Abstract: The COOLOD/N2 and PARET/ANL codes were used for a steady-state thermal-hydraulic and safety analysis of the 2 MW TRIGA MARK II reactor located at the Nuclear Studies Center of Maamora (CENM), Morocco. In order to validate our PARET/ANL and COOLOD-N2 models, the fuel center temperature as function of core power was calculated and compared with the corresponding experimental values. The comparison indicates that the calculated values are in satisfactory agreement with the measurement. The main objective of this study is to ensure the safety margins of different safety related parameters by steady-state calculations at full power level (2 MW). Therefore, we have calculated the departure from nucleate boiling ratio (DNBR), fuel center and surface temperature, cladding surface temperature and coolant temperature profiles across the hottest channel. The most important conclusion is that all obtained values are largely far to compromise safety of the reactor.

  2. Neutronic and thermal-hydraulic analysis of new irradiation channels inside the Moroccan TRIGA Mark II research reactor core.

    Chham, E; El Bardouni, T; Benaalilou, K; Boukhal, H; El Bakkari, B; Boulaich, Y; El Younoussi, C; Nacir, B

    2016-10-01

    This study was conducted to improve the capacity of radioisotope production in the Moroccan TRIGA Mark II research reactor, which is considered as one of the most important applications of research reactors. The aim of this study is to enhance the utilization of TRIGA core in the field of neutron activation and ensure an economic use of the fuel. The main idea was to create an additional irradiation channel (IC) inside the core. For this purpose, three new core configurations are proposed, which differ according to the IC position in the core. Thermal neutron flux distribution and other neutronic safety parameters such as power peaking factors, excess reactivity, and control rods worth reactivity were calculated using the Monte Carlo N-Particle Transport (MCNP) code and neutron cross-section library based on ENDF/B-VII evaluation. The calculated thermal flux in the central thimble (CT) and in the added IC for the reconfigured core is compared with the thermal flux in the CT of the existing core, which is taken as a reference. The results show that all the obtained fluxes in CTs are very close to the reference value, while a remarkable difference is observed between the fluxes in the new ICs and reference. This difference depends on the position of IC in the reactor core. To demonstrate that the Moroccan TRIGA reactor could safely operate at 2MW, with new configurations based on new ICs, different safety-related thermal-hydraulic parameters were investigated. The PARET model was used in this study to verify whether the safety margins are met despite the new modifications of the core. The results show that it is possible to introduce new ICs safely in the reactor core, because the obtained values of the parameters are largely far from compromising the safety of the reactor. PMID:27552124

  3. Transient rod failure in a pulsing TRIGA Mark I reactor

    Full text: On July 7, 1970 the University of Texas at Austin TRIGA Mark I Pulsing Reactor experienced a failure of the transient control rod. Although no danger to personnel or damage to the reactor other than the pulse rod occurred, the failure was promptly reported to the USAEC regional compliance office. The first indication of an abnormal situation was unusual multiplication behavior during the first start-up of the day. As usual for steady state operation, the operator removed the transient rod and began to withdraw the shim and regulating rods. After partial withdrawal, he noticed that the count rate was not increasing as rapidly as was customary. While remaining at the console,the operator had a technician make a visual inspection of the core. The technician observed the transient drive rod was swinging freely in the pool and the poison section was detached. It was concluded, based on the indications of the.reactor instrumentation and visual inspection, that the transient control rod had broken off and remained in position in the core. The regulating and shim rods were inserted and the transient rod was manually cranked to the down position. The manual manipulation of the transient rod, instead of dropping the rod by gravity, was used so that the connecting rod could be reinserted in the control rod guide tube. The reactor core was then partially unloaded so that a critical mass was not present. The transient rod drive and connecting rod were removed from the pool. The poison section was retrieved from its position in the core by welding a tap to a long rod and tapping into the top of the poison section. Visual inspection of the poison section showed that the weld joining the male threads on the poison section to the main body of the control rod had failed. The threads remained screwed in the control rod drive shaft upon separation and the poison section remained fully inserted in the core. A new control rod was fabricated by Gulf General Atomic and shipped

  4. The research reactor TRIGA Mark II of the Johannes Gutenberg-University Mainz

    Hampel, Gabriele; Eberhardt, Klaus [Mainz Univ. (Germany). Inst. of Nuclear Chemistry

    2012-10-15

    The TRIGA Mark II research reactor of the University of Mainz was built in the 1960ies on the initiative of Fritz Strassmann, co-discoverer of the fission, at that time the director of the Institute for Inorganic and Nuclear Chemistry. On August 3{sup rd}, 1965 the TRIGA Mainz reached first criticality with the insertion of the 57{sup th} fuel element in the reactor core. Two years later, in April 1967, the Nobel Prize laureate Otto Hahn initiated the first of now more than 18,000 pulses at the official inauguration. Since then, the TRIGA Mainz has operated without failure about 200 days per year. The TRIGA Mainz can be operated in the steady state mode at power levels ranging up to 100 kW{sub th}, depending on the requirements of the different experiments. Pulse-mode operation is also possible. (orig.)

  5. The research reactor TRIGA Mark II of the Johannes Gutenberg-University Mainz

    The TRIGA Mark II research reactor of the University of Mainz was built in the 1960ies on the initiative of Fritz Strassmann, co-discoverer of the fission, at that time the director of the Institute for Inorganic and Nuclear Chemistry. On August 3rd, 1965 the TRIGA Mainz reached first criticality with the insertion of the 57th fuel element in the reactor core. Two years later, in April 1967, the Nobel Prize laureate Otto Hahn initiated the first of now more than 18,000 pulses at the official inauguration. Since then, the TRIGA Mainz has operated without failure about 200 days per year. The TRIGA Mainz can be operated in the steady state mode at power levels ranging up to 100 kWth, depending on the requirements of the different experiments. Pulse-mode operation is also possible. (orig.)

  6. The Application of Estimator Module for Controlling of TRIGA Mark II Reactor

    The estimator module application for control TRIGA Mark II reactor have been done. This application have purpose to help operator quickly and exactly when they control reactor reactivity. Which this module, if in the reactor will do experiment ( neutron activation, radioisotope production ect.) so the operator not need to calculate probability of reactivity changes. The result of estimator is close to measurements result (< 7 sec.), it is cause estimator can be used as equipment that can be used to help operation of TRIGA Mark II. (author)

  7. TRIGA mark-II,III reactor safety re-evaluation

    For two years of 1990 and 1991, the safety of TRIGA Mk-II and III reactor has been re-evaluated. For this, domestic rules on research reactors has been reviewed, and as it was judged that standards on research reactors in USA is applicable to our ones it was evaluated whether TRIGA Mk-II and III reactors satisfy these standards. The site parameters and the environmental impacts during normal operation and hypothetical accident conditions have been analysed, and those parts for reactor facility and structure have been rewritten to fit SAR standard format based on the review of old SAR and maintenance manuals reflecting changes after the construction. Based on this re-evaluation, SAR, Technical Specifications, Radiation Emergency Plan, Environment Report, various procedures,etc. will be amended by the reactor management project. (Author)

  8. Power calibrations for TRIGA reactors

    The purpose of this paper is to establish a framework for the calorimetric power calibration of TRIGA reactors so that reliable results can be obtained with a precision better than ± 5%. Careful application of the same procedures has produced power calibration results that have been reproducible to ± 1.5%. The procedures are equally applicable to the Mark I, Mark II and Mark III reactors as well as to reactors having much larger reactor tanks and to TRIGA reactors capable of forced cooling up to 3 MW in some cases and 15 MW in another case. In the case of forced cooled TRIGA reactors, the calorimetric power calibration is applicable in the natural convection mode for these reactors using exactly the same procedures as are discussed below for the smaller TRIGA reactors (< 2 MW)

  9. Triga mark-II,III reactor safety re-evaluation

    In order to revise safety analysis report of old TRIGA reactors, safety re-evaluation of these reactor was started for necessary parts. This report contains the first year results of the project scheduled for two years. The guide lines of safety re-evaluation was made by translating that of nuclear power plant from the view point of TRIGA reactor confirming the basic safety philosophy as much as possible. First of all, sections of reactor history and comparison with similar reactors are made, since the actual operation records, changes, any modification of similar reactors constructed after then, etc., are realistic and valuable data from the safety aspect of old reactor. For the effectiveness of nuclear analysis, a PC based analysis system using WIMS-D/4 and VENTURE was established, and a program for the natural convection cooling analysis of TRIGA reactor was developed. As a result of thermal-hydraulic analysis it was confirmed that the operation limit of fuel temperature set at 650 deg C without any logical reason is very close to the DNB limit. (Author)

  10. Decontamination and decommissioning project status of the TRIGA Mark-II and III reactors in Korea

    The decontamination and decommissioning (D and D) project of the TRIGA Mark-II and Mark-III was started in January 1997, after their shutdown in 1995 due to their life and the operation of a new research reactor, HANARO, at the KAERI site in Taejon. Preparation of the decommissioning plan and environmental impact assessment, and setting up of licensing procedure and documentation for the project were performed in 1997. At the end of 1997, Hyundai Engineering Company (HEC) was selected as the main contractor to do design and licensing documentation for the D and D of both reactors. British Nuclear Fuels Plc. (BNFL) was the technical assisting partner to Heck. Licensing documents were submitted to the Ministry of Science and Technology (MOST) at the end of 1998. And the Korea Institute of Nuclear Safety (KINS) is reviewing the documents. Practical work of the D and D will start at the end of 1999 upon the government issues the license. In the meantime, July 1998, all spent fuels from the TRIGA Mark-II and III were safely transported to the US. The foremost part of the D and D work will be the TRIGA Mark-III reactor hall that will be used as a temporary storage of radioactive waste produced during the D and D work, and followed by the TRIGA Mark-II and auxiliary facilities. This paper summarizes the current status and future plans for the D and D work. (author)

  11. Determination of neutronic fluxes in research nuclear reactor of Triga Mark I and WWRS types

    In this paper is presented the determination of the thermal, epithermal and fast neutron fluxes, using neutron activation analysis technique, for two research nuclear reactors of different design: the Triga Mark I reactor was designed by Gulf General Atomic Co in USA and the WWRS reactor was designed in the URSS, both in the 50's years. (Author)

  12. Measuring temperature coefficient of TRIGA MARK I reactor by noise analysis

    The transfer function of TRIGA MARK I Reactor is measured at power zero (5w) and power 118Kw, in the frequency range of 0.02 to 0.5 rd/s. The method of intercorrelation between a pseudostochasticbinary signal is used. A simple dynamic model of the reactor is developed and the coefficient of temperature is estimated

  13. Experience in the operation and maintenance of the Austrian TRIGA Mark II reactor

    The Austrian TRIGA Mark II reactor ia in operation since March 1962. The reactor instrumentation, core design and irradiation facilities and operation are described. Besides steady state power and pulse operation, square wave operation has been installed 1968, allowing power squares up to 750 kW. A Survey of reactor operation and experiments is given

  14. The startup tests for TRIGA Mark II at the Institute for Nuclear Energy

    This paper briefly describes the start-up tests for TRIGA Mark-II at the Institute for Nuclear Energy and some of the problems during the construction. This Report consists of three parts: 1. Shield Construction and Installation of ITU-TRR Components. 2. Start-up Experiments. 3. Experience Gained in Operation and Maintenance

  15. Monte Carlo analysis of Musashi TRIGA mark II reactor core

    Matsumoto, Tetsuo [Atomic Energy Research Laboratory, Musashi Institute of Technology, Kawasaki, Kanagawa (Japan)

    1999-08-01

    The analysis of the TRIGA-II core at the Musashi Institute of Technology Research Reactor (Musashi reactor, 100 kW) was performed by the three-dimensional continuous-energy Monte Carlo code (MCNP4A). Effective multiplication factors (k{sub eff}) for the several fuel-loading patterns including the initial core criticality experiment, the fuel element and control rod reactivity worth as well as the neutron flux measurements were used in the validation process of the physical model and neutron cross section data from the ENDF/B-V evaluation. The calculated k{sub eff} overestimated the experimental data by about 1.0%{delta}k/k for both the initial core and the several fuel-loading arrangements. The calculated reactivity worths of control rod and fuel element agree well the measured ones within the uncertainties. The comparison of neutron flux distribution was consistent with the experimental ones which were measured by activation methods at the sample irradiation tubes. All in all, the agreement between the MCNP predictions and the experimentally determined values is good, which indicated that the Monte Carlo model is enough to simulate the Musashi TRIGA-II reactor core. (author)

  16. Numerical simulation of non-steady state neutron kinetics of the TRIGA Mark II reactor Vienna

    Riede, Julia

    2013-01-01

    This paper presents an algorithm for numerical simulations of non-steady states of the TRIGA MARK II reactor in Vienna, Austria. The primary focus of this work has been the development of an algorithm which provides time series of integral neutron flux after reactivity changes introduced by perturbations without the usage of thermal-hydraulic / neutronic numerical code systems for the TRIGA reactor in Vienna, Austria. The algorithm presented takes into account both external reactivity changes as well as internal reactivity changes caused by feedback mechanisms like effects caused by temperature changes of the fuel and poisoning effects. The resulting time series have been compared to experimental results.

  17. Current research projects at the Austrian TRIGA Mark II. Location of failed fuel elements in Austrian TRIGA Mark II

    The system developed at the Atominstitut monitors the radioactive Krypton- and Xenon nuclides in the primary water circuitry and allows selective control of any fuel element for its fission gas release. A suspected fuel element is enclosed in an underwater capsule attached in the reactor tank. Water is pumped along the fuel element to a vacuum degasser where the gases are separated from the tank water. The degassed water is returned to the reactor pool while the gases are pumped to a very sensitive proportional counter. The fuel elements of the TRIGA core were checked by the described procedure

  18. Research programs carried out at the TRIGA Mark II reactor Vienna

    Research programs carried out at the TRIGA Mark II reactor Vienna are reported in the presentation. Many of the research programs presented at the previous TRIGA Conference in Istambul have been completed and a number of new research programs have been started some of them in cooperation or with support of the International Atomic Energy Agency. The most important project titles are: (1) Development of a laser surveillance system for spent fuel pools, (2) Identification of LWR fuel bundeles by magnetic scanning, and (3) Test of fission chambers in intense gamma fields. A damaged TRIGA fuel rod which was stored for more than 20 years has been cut in October 1983 into several pieces. The U-Zr-H samples are now being used for burn-up calibration as they contain only Cs-137. (orig.)

  19. Activation of TRIGA Mark II research reactor concrete shield

    To determine neutron activation inside the TRIGA research reactor concrete body a special sample-holder for irradiation inside horizontal channel was developed and tested. In the sample-holder various samples can be irradiated at different concrete shielding depths. In this paper the description of the sample-holder, experiment conditions and results of long-lived activation measurements are given. Long-lived neutron-induced gamma-ray-emitting radioactive nuclides in the samples were measured with HPGe detector. The most active long-lived radioactive nuclides in ordinary concrete samples were found to be 60Co and 152Eu and in barytes concrete samples 60Co, 152Eu and 133Ba. Measured activity density of all nuclides was found to decrease almost linearly with depth in logarithmic scale. (author)

  20. Computer code for the thermal-hydraulic analysis of ITU TRIGA Mark-II reactor

    Istanbul Technical University (ITU) TRIGA Mark-II reactor core consists of ninety vertical cylindrical elements located in five rings. Sixty-nine of them are fuel elements. The reactor is operated and cooled with natural convection by pool water, which is also cooled and purified in external coolant circuits by forced convection. This characteristic leads to consider both the natural and forced convection heat transfer in a 'porous-medium analysis'. The safety analysis of the reactor requires a thermal-hydraulic model of the reactor to determine the thermal-hydraulic parameters in each mode of operation. In this study, a computer code cooled TRIGA-PM (TRIGA - Porous Medium) for the thermal-hydraulic analysis of ITU is considered. TRIGA Mark-II reactor code has been developed to obtain velocity, pressure and temperature distributions in the reactor pool as a function of core design parameters and pool configuration. The code is a transient, thermal-hydraulic code and requires geometric and physical modelling parameters. In the model, although the reactor is considered as only porous medium, the other part of the reactor pool is considered partly as continuum and partly as porous medium. COMMIX-1C code is used for the benchmark purpose of TRIGA-PM code. For the normal operating conditions of the reactor, estimations of TRIGA-PM are in good agreement with those of COMMIX-1C. After some more improvements, this code will be employed for the estimation of LOCA scenario, which can not be analyses by COMMIX-1C and the other multi-purpose codes, considering a break at one of the beam tubes of the reactor

  1. Immobilization of ion exchange radioactive resins of the TRIGA Mark III nuclear reactor; Inmovilizacion de resinas de intercambio ionico radiactivas del reactor nuclear Triga Mark III

    Garcia M, H.; Emeterio H, M.; Canizal S, C. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, C.P. 11801 Mexico D.F. (Mexico)

    2000-07-01

    This work has the objective to develop the process and to define the agglutinating material which allows the immobilization of the ion exchange radioactive resins coming from the TRIGA Mark III nuclear reactor contaminated with Ba-133, Co-60, Cs-137, Eu-152, and Mn-54 through the behavior analysis of different immobilization agents such as: bitumens, cement and polyester resin. According to the International Standardization the archetype samples were observed with the following tests: determination of free liquid, leaching, charge resistance, biodegradation, irradiation, thermal cycle, burned resistance. Generally all the tests were satisfactorily achieved, for each agent. Therefore, the polyester resin could be considered as the main immobilizing. (Author)

  2. Using TRIGA Mark II research reactor for irradiation with thermal neutrons

    Kolšek, Aljaž, E-mail: aljaz.kolsek@gmail.com; Radulović, Vladimir, E-mail: vladimir.radulovic@ijs.si; Trkov, Andrej, E-mail: andrej.trkov@ijs.si; Snoj, Luka, E-mail: luka.snoj@ijs.si

    2015-03-15

    Highlights: • Monte Carlo N-Particle Transport Code was used to design and perform calculations. • Characterization of the TRIGA Mark II ex-core irradiation facilities was performed. • The irradiation device was designed in the TRIGA irradiation channel. • The use of the device improves the fraction of thermal neutron flux by 390%. - Abstract: Recently a series of test irradiations was performed at the JSI TRIGA Mark II reactor for the Fission Track-Thermoionization Mass Spectrometry (FT-TIMS) method, which requires a well thermalized neutron spectrum for sample irradiation. For this purpose the Monte Carlo N-Particle Transport Code (MCNP5) was used to computationally support the design of an irradiation device inside the TRIGA model and to support the actual measurements by calculating the neutron fluxes inside the major ex-core irradiation facilities. The irradiation device, filled with heavy water, was designed and optimized inside the Thermal Column and the additional moderation was placed inside the Elevated Piercing Port. The use of the device improves the ratio of thermal neutron flux to the sum of epithermal and fast neutron flux inside the Thermal Column Port by 390% and achieves the desired thermal neutron fluence of 10{sup 15} neutrons/cm{sup 2} in irradiation time of 20 h.

  3. Using TRIGA Mark II research reactor for irradiation with thermal neutrons

    Highlights: • Monte Carlo N-Particle Transport Code was used to design and perform calculations. • Characterization of the TRIGA Mark II ex-core irradiation facilities was performed. • The irradiation device was designed in the TRIGA irradiation channel. • The use of the device improves the fraction of thermal neutron flux by 390%. - Abstract: Recently a series of test irradiations was performed at the JSI TRIGA Mark II reactor for the Fission Track-Thermoionization Mass Spectrometry (FT-TIMS) method, which requires a well thermalized neutron spectrum for sample irradiation. For this purpose the Monte Carlo N-Particle Transport Code (MCNP5) was used to computationally support the design of an irradiation device inside the TRIGA model and to support the actual measurements by calculating the neutron fluxes inside the major ex-core irradiation facilities. The irradiation device, filled with heavy water, was designed and optimized inside the Thermal Column and the additional moderation was placed inside the Elevated Piercing Port. The use of the device improves the ratio of thermal neutron flux to the sum of epithermal and fast neutron flux inside the Thermal Column Port by 390% and achieves the desired thermal neutron fluence of 1015 neutrons/cm2 in irradiation time of 20 h

  4. Decontamination and decommissioning project status of the TRIGA Mark II and III in Korea

    TRIGA Mark-II, the first research reactor in Korea, has operated since 1962, and the second one, TRIGA Mark-III since 1972. Both of them had their operation phased out in 1995 due to their lives and operation of the new research reactor, HANARO (High-flux Advanced Neutron Application Reactor) at the Korea Atomic Energy Institute (KAERI) in Taejon. Decontamination and decommissioning (D and D) project of TRIGA Mark-II and Mark-III was started in January 1997 and will be completed in December 2002. The first year of the project, work was performed in preparation of the decommissioning plan, start of the environmental impact assessment and setup licensing procedure and documentation for the project with cooperation of Korea Institute of Nuclear Safety (KINS). Hyundai Engineering Company (HEC) is the main contractor to do design and licensing documentation for the D and D of both reactors. British Nuclear Fuels plc (BNFL) is the technical assisting partner of HEC. The decommissioning plan document was submitted to the Ministry of Since and Technology (MOST) for the decommissioning license in December 1998, and it expecting to be issued a license in mid 1999. The goal of this project is to release the reactor site and buildings as an unrestricted area. This paper summarizes current status and future plan for the D and D project. (author)

  5. Decontamination and decommissioning project status of the TRIGA Mark II and III in Korea

    Paik, S.T.; Park, S.K.; Chung, K.W.; Chung, U.S.; Jung, K.J. [Nuclear Fuel Cycle Development Group, Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-08-01

    TRIGA Mark-II, the first research reactor in Korea, has operated since 1962, and the second one, TRIGA Mark-III since 1972. Both of them had their operation phased out in 1995 due to their lives and operation of the new research reactor, HANARO (High-flux Advanced Neutron Application Reactor) at the Korea Atomic Energy Institute (KAERI) in Taejon. Decontamination and decommissioning (D and D) project of TRIGA Mark-II and Mark-III was started in January 1997 and will be completed in December 2002. The first year of the project, work was performed in preparation of the decommissioning plan, start of the environmental impact assessment and setup licensing procedure and documentation for the project with cooperation of Korea Institute of Nuclear Safety (KINS). Hyundai Engineering Company (HEC) is the main contractor to do design and licensing documentation for the D and D of both reactors. British Nuclear Fuels plc (BNFL) is the technical assisting partner of HEC. The decommissioning plan document was submitted to the Ministry of Since and Technology (MOST) for the decommissioning license in December 1998, and it expecting to be issued a license in mid 1999. The goal of this project is to release the reactor site and buildings as an unrestricted area. This paper summarizes current status and future plan for the D and D project. (author)

  6. Decontamination and decommissioning project status of the TRIGA mark-2±3 research reactors

    TRIGA Mark-II, the first research reactor in Korea, has operated since 1962, and the second one, TRIGA Mark-III since 1972. Both of them had their operation phased out in 1995 due to their lives and operation of the new research reactor, HANARO at the Korea Atomic Energy Research Institute (KAERI) in Taejeon. Decontamination and decommissioning (D and D) project of the TRIGA Mark-II and Mark-III was started in January 1997 and will be completed in December 2002. In the first year of the project, work was performed in preparation of the decommissioning plan, start of the environmental impact assessment and setup licensing procedure and documentation for the project with cooperation of Korea Institute of Nuclear Safety (KINS). In 1998, Hyundai Engineering Company (HEC) is the main contractor to do design and licensing documentation for the D and D of both reactors. British Nuclear Fuels plc (BNFL) is technical assisting partner of HEC. The decommissioning plan document was submitted to the Ministry of Science and Technology (MOST) for the decommissioning license in December 1998, and it expecting to be issued a license at the end of September 1999. The goal of this project is to release the reactor site and buildings as an unrestricted area. This paper summarizes current status and future plan for the D and D project

  7. New practical exercises at the JSI TRIGA Mark II reactor

    Since the 1990s the Jozef Stefan Institute (JSI) TRIGA reactor has been extensively used for performing training in experimental reactor physics. In 2012 we upgraded some of the existing and introduced some new exercises. The pulse mode operation exercise was upgraded by installation of new data acquisition system. The critical experiment exercise was improved by adding a new detector inside the reactor core and changing the data acquisition system. Now we monitor neutron population with two independent fission chambers on different locations. In the past the void reactivity coefficient exercise was performed by inserting Al tube into various positions in the reactor core and measuring the corresponding reactivity changes. In order to make the exercise more realistic, we installed a pneumatic system for generating air bubbles just below the core. The aim of the exercise is to measure reactivity changes versus flow rate and air bubble position. The second new exercise was measurement of water activation. In this exercise we installed special system which pumps the water through the core at a constant flow rate to the reactor platform, where the water activity is measured. The purpose of the exercise is to measure the 16N and 19O gamma line intensity and dose rate versus reactor power. The third new exercise, named in core flux mapping, was performed by measuring the axial fission rate distribution at various radial positions in the core. We used CEA - developed mini fission chambers and a special home developed system for moving the fission chamber in axial direction and measuring the count rate versus fission chamber position. In the paper the experiments are presented together with results. (author)

  8. The possibility of gamma ray sterilization by using ITU TRIGA Mark II reactor

    Gamma rays are one of the effective method for sterilization which is preferred for a long time. Generally Co-60 radioisotope sources betatrons or accelerators are used for the sterilization. In this work, it was aimed to find the possibilities of the sterilization by gamma rays obtained in ITU TRIGA Mark-II radial tube. Radiation dosages are measured in the radial tube and several medical products are irradiated. Irradiation is arranged according to the desired dosages. Irradiated sterilized goods (mainly medical products) tested and checked at the Governmental Medical Health Center and results compared with literature. It can be seen that this kind of irradiation is a good tool for sterilization. Unfortunately, because of the stability of the radial tube and impracticality of the system it is rather difficult to compete with industrial system using Co-60 and accelerators. Nevertheless, this type of irradiation is also applicable for the purpose of the sterilization by using ITU TRIGA Mark II. (author)

  9. Fuel Management Strategies for a Possible Future LEU Core of a TRIGA Mark II Vienna

    Khan, R.; Villa, M.; Steinhauser, G.; Boeck, H. [Vienna University of Technology-Atominstitut (Austria)

    2011-07-01

    The Vienna University of Technology/Atominstitut (VUT/ATI) operates a TRIGA Mark II research reactor. It is operated with a completely mixed core of three different types of fuel. Due to the US fuel return program, the ATI have to return its High Enriched Uranium (HEU) fuel latest by 2019. As an alternate, the Low Enrich Uranium (LEU) fuel is under consideration. The detailed results of the core conversion study are presented at the RRFM 2011 conference. This paper describes the burn up calculations of the new fuel to predict the future burn up behavior and core life time. It also develops an effective and optimized fuel management strategy for a possible future operation of the TRIGA Mark II with a LEU core. This work is performed by the combination of MCNP5 and diffusion based neutronics code TRIGLAV. (author)

  10. Fuel Management Strategies for a Possible Future LEU Core of a TRIGA Mark II Vienna

    The Vienna University of Technology/Atominstitut (VUT/ATI) operates a TRIGA Mark II research reactor. It is operated with a completely mixed core of three different types of fuel. Due to the US fuel return program, the ATI have to return its High Enriched Uranium (HEU) fuel latest by 2019. As an alternate, the Low Enrich Uranium (LEU) fuel is under consideration. The detailed results of the core conversion study are presented at the RRFM 2011 conference. This paper describes the burn up calculations of the new fuel to predict the future burn up behavior and core life time. It also develops an effective and optimized fuel management strategy for a possible future operation of the TRIGA Mark II with a LEU core. This work is performed by the combination of MCNP5 and diffusion based neutronics code TRIGLAV. (author)

  11. Radioactive waste management plan for TRIGA Mark-II and III deecommissioning activities

    A radioavtive waste management plan was set-up for the decontamination and decommissioning of the TRIGA Mark II and III. They were categorized by the radioactivity and by the physical properties, solid , liquid, gaseous radioactive waste. The gaseous waste will be treated by the existing filtration equipment. The use of temporary containment with a portable ventilation system is planned during the dismantling work where there is the potential to generate particles. Liquid radioactive waste will be concentrated by a natural evaporator and the concentrate will then be solidified by using cement. All of the solid wastes will be packed in a 4 m3 ISO container and stored until a final disposal facility for low- and intermediate-level radioactive waste is operational. This paper covers a general plan of the radioactive waste management during the TRIGA Mark-II and III decontamination and decommissioning activities. (author)

  12. Modification of the radial beam port of ITU TRIGA Mark II research reactor for BNCT applications

    This paper aims to describe the modification of the radial beam port of ITU (İstanbul Technical University) TRIGA Mark II research reactor for BNCT applications. Radial beam port is modified with Polyethylene and Cerrobend collimators. Neutron flux values are measured by neutron activation analysis (Au–Cd foils). Experimental results are verified with Monte Carlo results. The results of neutron/photon spectrum, thermal/epithermal neutron flux, fast group photon fluence and change of the neutron fluxes with the beam port length are presented. - Highlights: • Using MCNP5, radial beam port of ITU TRIGA Mark II research reactor is modified. • Polyethylene and Cerrobend collimators are used to modify the beam port. • Results of two-group neutron/photon flux are presented. • Monte Carlo results are compared with experimental results

  13. Applicable regulations and development of surveillance experiments of criticality approach in the TRIGA III Mark reactor

    In the procedure elaborated to repair the vessel of TRIGA III Mark reactor is required to move toward two tanks of temporal storage the fuel elements which are in operation and the spent fuel elements which are in decay inside the reactor pool. The National Commission of Nuclear Safety and Safeguards (CNSNS) has requested as protection measure that it is carried out a surveillance of the criticality approach of the temporal storages. This work determines the main regulation aspects that entails an experiment of criticality approach, moreover, informing about the results obtained in the developing of this experiments. The regulation aspects are not exclusives for this work in the TRIGA Mark III reactor but they also apply toward any assembling of fissile material. (Author)

  14. Visual examination program of the TRIGA Mark II reactor Vienna with the nuclear underwater telescope

    The visual inspection programm carried out during a three month shut-period at the TRIGA Mark II reactor Vienna is described. Optical inspection of all welds inside the reactor tank was carried out with an underwater telescope developed by the Central Research Institute of Physics, Budapest, Hungary. It is shown that even after 23 years of reactor operation all tank internals were found to be in good condition and minor defects can be easily repaired by remote handling tools. (Author)

  15. Data base formation for important components of reactor TRIGA MARK II

    The paper represents specific data base formation for reactor TRIGA MARK II in Podgorica. Reactor operation data from year 1985 to 1990 were collected. Two groups of collected data were formed. The first group includes components data and the second group covers data of reactor scrams. Time related and demand related models were used for data evaluation. Parameters were estimated by classical method. Similar data bases are useful everywhere where components unavailabilities may have severe drawback. (author)

  16. Analysis of JSI TRIGA MARK II reactor physical parameters calculated with TRIPOLI and MCNP.

    Henry, R; Tiselj, I; Snoj, L

    2015-03-01

    New computational model of the JSI TRIGA Mark II research reactor was built for TRIPOLI computer code and compared with existing MCNP code model. The same modelling assumptions were used in order to check the differences of the mathematical models of both Monte Carlo codes. Differences between the TRIPOLI and MCNP predictions of keff were up to 100pcm. Further validation was performed with analyses of the normalized reaction rates and computations of kinetic parameters for various core configurations. PMID:25576735

  17. Characterization of the TRIGA Mark II reactor full-power steady state

    Cammi, Antonio; Zanetti, Matteo; Chiesa, Davide; Clemenza, Massimiliano; Pozzi, Stefano; Previtali, Ezio; Sisti, Monica; Magrotti, Giovanni; Prata, Michele; Salvini, Andrea

    2015-01-01

    In this work, the characterization of the full-power steady state of the TRIGA Mark II nuclear reactor of the University of Pavia is performed by coupling Monte Carlo (MC) simulation for neutronics with "Multiphysics" model for thermal-hydraulics. Neutronic analyses have been performed starting from a MC model of the entire reactor system, based on the MCNP5 code, that was already validated in fresh fuel and zero-power configuration (in which thermal effects are negligible) using the availabl...

  18. 3-D flux distribution and criticality calculation of TRIGA Mark-II

    In this work, the static calculation of the (I.T.U. TRIGA Mark-II) flux distribution has been made. The three dimensional, r-θ-z, representation of the core has been used. In this representation, for different configuration, the flux distribution has been calculated depending on two group theory. The thermal-hydraulics, the poisoning effects have been ignored. The calculations have been made by using the three dimensional and multigroup code CAN. (author)

  19. Benchmark analysis of the TRIGA MARK II research reactor using Monte Carlo techniques

    This study deals with the neutronic analysis of the current core configuration of a 3-MW TRIGA MARK II research reactor at Atomic Energy Research Establishment (AERE), Savar, Dhaka, Bangladesh and validation of the results by benchmarking with the experimental, operational and available Final Safety Analysis Report (FSAR) values. The 3-D continuous-energy Monte Carlo code MCNP4C was used to develop a versatile and accurate full-core model of the TRIGA core. The model represents in detail all components of the core with literally no physical approximation. All fresh fuel and control elements as well as the vicinity of the core were precisely described. Continuous energy cross-section data from ENDF/B-VI and ENDF/B-V and S(α,β) scattering functions from the ENDF/B-VI library were used. The consistency and accuracy of both the Monte Carlo simulation and neutron transport physics was established by benchmarking the TRIGA experiments. The effective multiplication factor, power distribution and peaking factors, neutron flux distribution, and reactivity experiments comprising control rod worths, critical rod height, excess reactivity and shutdown margin were used in the validation process. The MCNP predictions and the experimentally determined values are found to be in very good agreement, which indicates that the simulation of TRIGA reactor is treated adequately

  20. Use of the TRIGA Mark III as a simulator for the Tokamak Fusion Test Reactor (TFTR)

    The Exposure-Room feature on the TRIGA Mark III reactor offers the possibility for experiments which simulate the expected dose to components produced in pulses from the TFTR fusion reactor. Although the TRIGA pulse is considerably shorter and the TRIGA fast-neutron spectrum is considerably softer, the fast-neutron fluence represents a good match to that expected from TFTR, and the thermal-neutron fluence and gamma-ray dose from the TRIGA constitute a considerable overtest compared to that expected from TFTR. An experiment is underway which involves irradiating a prototype TFTR cyropump in the Exposure-Room facility. The cryopump is pulsed twice, once before and once after deuterium is admitted to the pump. The object is to determine whether the radiation has any desorptive effect on the deuterium in the pump. Care must be taken to prevent conditions under which the deuterium might explode, or under which oxygen condensed in the presence of the liquid nitrogen or liquid helium might constitute a combustion hazard. (author)

  1. Evaluation of nuclear safety measurements in ITU TRIGA Mark-II Reactor

    For the evaluation of the radiation measurements all the records made during over 20 years of operation of ITU TRIGA Mark-II Training and Research Reactor which has 250 kW full power are considered. In addition to the routine measurements, monitoring of the radiation levels in special places in the reactor are evaluated also which can be important for special working conditions. For the evaluation of the personnel monitoring, all the records are investigated for personnel exposed to radiation working at the ITU TRIGA Mark-II Training and Research Reactor. Determinations in air and water samples are tabulated for the reactor. Water samples have been taken from two cooling systems and the cooling tower. Air samples have been taken from the filter of ventilation system. Results of all the radiation measurements are evaluated according to the maximum permissible levels from the point of view of nuclear safety and public safety. One can conclude that ITU TRIGA Mark-II Training and Research Reactor has been operated in safe conditions since the reactor criticality date on 11 March 1979. (authors)

  2. Over Twenty Years Of Experience In ITU TRIGA MARK-II Reactor

    I.T.U. TRIGA MARK-II Training and Research Reactor, rated at 250 kW steady-state and 1200 MW pulsing power is the only research and training reactor owned and operated by a university in Turkey. Reactor has been operating since March 11, 1979; therefore the reactor has been operating successfully for more than twenty years. Over the twenty years of operation: - The tangential beam tube was equipped with a neutron radiography facility, which consists of a divergent collimator and exposure room; - A computerized data acquisition system was designed and installed such that all parameters of the reactor, which are observed from the console, could be monitored both in normal and pulse operations; - An electrical power calibration system was built for the thermal power calibration of the reactor; - Publications related with I.T.U. TRIGA MARK-II Training and Research Reactor are listed in Appendix; - Two majors undesired shutdown occurred; - The I.T.U. TRIGA MARK-II Training and Research Reactor is still in operation at the moment. (authors)

  3. Simulation of TRIGA Mark II Benchmark Experiment using WIMSD4 and CITATION codes; Simulacao com WIMSD4 e CITATION do Triga Mark II benchmark experiment

    Dalle, Hugo Moura [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil); Pereira, Claubia [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear

    2000-07-01

    This paper presents a simulation of the TRIGA Mark II Benchmark Experiment, Part I: Steady-State Operation and is part of the calculation methodology validation developed to the neutronic calculation of the CDTN's TRIGA IPR - R1 reactor. A version of the WIMSD4, obtained in the Centro de Tecnologia Nuclear, in Cuba, was used in the cells calculation. In the core calculations was adopted the diffusion code CITATION. Was adopted a 3D representation of the core and the calculations were carried out at two energy groups. Many of the experiments were simulated, including, K{sub eff}, control rods reactivity worth, fuel elements reactivity worth distribution and the fuel temperature reactivity coefficient. The comparison of the obtained results, with the experimental results, shows differences in the range of the accuracy of the measurements, to the control rods worth and fuel temperature reactivity coefficient, or on an acceptable range, following the literature, to the K{sub eff} and fuel elements reactivity worth distribution and the fuel temperature reactivity coefficient. The comparison of the obtained results, with the experimental. results, shows differences in the range of the accuracy of the measurements, to the control rods worth and fuel temperature reactivity coefficient, or in an acceptable range, following the literature, to the K{sub eff} and fuel elements reactivity worth distribution. (author)

  4. On Line Measurement of Reactivity Worth of TRIGA Mark-II Research Reactor Control Rods

    Nusrat Jahan

    2011-09-01

    Full Text Available The reactivity worth measurement system for control rods of the TRIGA MARK-II research reactor of Bangladesh has been design and developed. The theory of the kinetic technique of measuring reactivity has been used by this measurement system. The system comprises of indigenous hardware and software for online acquisition of neutron flux signals from reactor console and then computes the reactivity worth accordingly. Here for the TRIGA MARK-II research reactor, the reactivity measurement system was implemented with a dedicated circuit assembly and a conventional personal computer. A high-level Visual Basic real-time programming has been developed for data acquisition, reactivity calculation, online display (numerically as well as graphically, saving data, etc. To measure reactivity worth of TRIGA reactor control rods the rod drop experimental technique has been adopted. The results of tests experiments, carried out with the rod drop method for measuring various reactivity worth of control rods have been presented in the paper. A comparison between this results with the results using period method and that of computation method, demonstrated that the response of this reactivity measurement system is fast enough to monitor and measure the safety-related reactivity and power excursions in the reactor.

  5. Experimental power density distribution benchmark in the TRIGA Mark II reactor

    Snoj, L.; Stancar, Z.; Radulovic, V.; Podvratnik, M.; Zerovnik, G.; Trkov, A. [Josef Stefan Inst., Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Barbot, L.; Domergue, C.; Destouches, C. [CEA DEN, DER, Instrumentation Sensors and Dosimetry laboratory Cadarache, F-13108 Saint-Paul-Lez-Durance (France)

    2012-07-01

    In order to improve the power calibration process and to benchmark the existing computational model of the TRIGA Mark II reactor at the Josef Stefan Inst. (JSI), a bilateral project was started as part of the agreement between the French Commissariat a l'energie atomique et aux energies alternatives (CEA) and the Ministry of higher education, science and technology of Slovenia. One of the objectives of the project was to analyze and improve the power calibration process of the JSI TRIGA reactor (procedural improvement and uncertainty reduction) by using absolutely calibrated CEA fission chambers (FCs). This is one of the few available power density distribution benchmarks for testing not only the fission rate distribution but also the absolute values of the fission rates. Our preliminary calculations indicate that the total experimental uncertainty of the measured reaction rate is sufficiently low that the experiments could be considered as benchmark experiments. (authors)

  6. Experience in operation and maintenance of the TRIGA Mark II reactor at the University of Pavia

    Experience in the operation and maintenance of the 250 kW steady state/250 MW pulsed TRIGA Mark II Reactor of the University of Pavia in the past two years is reported. Data for the reactor utilization and of Health Physics activity are also presented. Since the Second European Conference of TRIGA Reactor Users in 1972, reactor operation continued normally. No major troubles occurred during this time except for rotary specimen rack rotation. Maintenance of reactor facilities, including the substitution of the rotary specimen rack with a new one manufactured on-site is described. In June 1974 measurements of fluxes in the thermal column, with most of the graphite elements removed, were carried out in order to install a neutron converter in thermal column. Some results of fluxes and cadmium ratio values are reported. A description of the converter facility set up is given. (U.S.)

  7. The fuel element situation at the TRIGA mark II reactor Vienna

    The fuel history, spent fuel storage situation and recent problems covering the period from 1962 until 1.6.2001 were reviewed. After almost 40 years of TRIGA MARK II reactor Vienna operation, it must be mentioned that the experience with TRIGA fuel elements was and is excellent. During this period only 9 fuel elements had to be permanently be removed from the core and 57 fuel elements from the initial start-up are still used in the core. A careful fuel management and a frequent fuel inspection is of most importance, fuel elements should be moved at least two-times a year from their core position to check free movement and a 180 deg. rotation of the fuel element is also recommended (nevyjel)

  8. Experience with service and maintenance of a TRIGA Mark II reactor after 24 years of operation

    The maintenance work and the inspection program carried out at the TRIGA Mark II reactor Vienna after more than two decades of reactor operation is described. With the help of a special underwater telescope all surfaces inside the reactor tank were inspected visually and two beam tubes were inspected with an endoscope. A new water purification loop was installed in 1985, which was followed by a new primary coolant circuit in 1986. The reactor bridge was dismantled, all control rod drives were serviced and some components replaced. As a result of this program it was observed that a TRIGA reactor can be serviced, improved and backfitted even after 24 years of operation with minor efforts. (author)

  9. Experimental power density distribution benchmark in the TRIGA Mark II reactor

    In order to improve the power calibration process and to benchmark the existing computational model of the TRIGA Mark II reactor at the Josef Stefan Inst. (JSI), a bilateral project was started as part of the agreement between the French Commissariat a l'energie atomique et aux energies alternatives (CEA) and the Ministry of higher education, science and technology of Slovenia. One of the objectives of the project was to analyze and improve the power calibration process of the JSI TRIGA reactor (procedural improvement and uncertainty reduction) by using absolutely calibrated CEA fission chambers (FCs). This is one of the few available power density distribution benchmarks for testing not only the fission rate distribution but also the absolute values of the fission rates. Our preliminary calculations indicate that the total experimental uncertainty of the measured reaction rate is sufficiently low that the experiments could be considered as benchmark experiments. (authors)

  10. A parametric thermal-hydraulic analysis of I.T.U. TRIGA Mark-II reactor

    In this study, a transient, one-dimensional thermal-hydraulic subchannel analysis for I.T.U. TRIGA Mark-II reactor was employed. The cooling of this reactor is based on natural convection; however, mixed convection is considered in modeling in order to enhance the capability of the computer code. After the continuity, conservation of energy, momentum balance equations for coolant in axial direction and heat conduction equation for fuel rod in radial direction had been written, they were discretized by using the control volume approach to obtain a set of algebraic equations. By the aid of discretized continuity and momentum balance equations, a pressure correction equation was derived. Then, a FORTRAN program called TRIGATH (TRIGA Thermal-Hydraulics) has been developed to solve this set of algebraic equations by using SIMPLE algorithm. As a result, the temperature distributions of the coolant and fuel rods as well as the velocity and pressure distributions of the coolant have been estimated. (authors)

  11. Neutron spectra at two beam ports of a TRIGA Mark III reactor loaded with HEU fuel

    The neutron spectra have been measured in two beam ports, one radial and another tangential, of the TRIGA Mark III nuclear reactor from the National Institute of Nuclear Research in Mexico. Measurements were carried out with the reactor core loaded with high enriched uranium fuel. Two reactor powers, 5 and 10 W, were used during neutron spectra measurements using a Bonner sphere spectrometer with a 6LiI(Eu) scintillator and 2, 3, 5, 8, 10 and 12 in.-diameter high-density polyethylene spheres. The neutron spectra were unfolded using the NSDUAZ unfolding code. For each spectrum total flux, mean energy and ambient dose equivalent were determined. Measured spectra show fission, epithermal and thermal neutrons, being harder in the radial beam port. - Highlights: • Neutron spectra of a TRIGA reactor were measured. • The reactor core is loaded with HEU. • The spectra were measured at two reactor beam ports. • Measurements were carried out at 5 and 10 W

  12. Safety analysis calculations for a mixed and full FLIP core in a TRIGA Mark II

    The Oregon State TRIGA Reactor will be reloading with FLIP fuel in August 1976. As we are the first Mark II TRIGA with a circular grid pattern and graphite reflector to utilize FLIP fuel, the safety analysis calculations performed at other facilities using FLIP were only of limited use to us. A multigroup, multiregion, one-dimensional diffusion theory code was used to calculate power densities in six different operational cores - mixed to full FLIP. Pulsing characteristics were obtained from a computer code based on point kinetics, with adiabatic heating of the fuel, linear temperature dependence of the specific heat, and prompt fuel temperature feedback coefficient. The results of all pertinent calculations will be presented. (author)

  13. Optimization of a Potential New Core of the TRIGA Mark II Reactor Vienna

    Khan, R.; Villa, M.; Bock, H.; Abele, H.; Steinhauser, G. [Vienna University of Technology-Atominstitut, Vienna (Austria)

    2011-07-01

    The TRIGA Mark II Vienna is one of the last TRIGA reactors utilizing a mixed core with High Enrich Uranium (HEU) fuel. Due to the US Fuel Return Program, the Vienna University of Technology/Atominstitut (ATI) is obliged to return its HEU fuel by 2019. There is no final decision on any further utilization of the Vienna research reactor beyond that point. However, of all possible scenarios of the future, the conversion of the current core into Low Enriched Uranium (LEU) fuel and the complete replacement of all existing 83 burned FE(s) by new fresh FE(s) are investigated herein. This paper presents detailed reactor design calculations for three different reactor cores. The core 1 employs 104-type, core 2 uses 108-type and core 3 is loaded with mixed TRIGA fuels (i.e. 104 and 108). The combination of the Monte Carlo based neutronics code MCNP5, Oak Ridge Isotope Generation and depletion code ORIGEN2 and diffusion theory based reactor physics program TRIGLAV is used for this study. On the basis of this neutronics study, the amount of fuel required for a possible future reactor operation and its cost minimization is presented in this paper. The criticality, core excess reactivity, length of initial life cycle and thermal flux density distribution is simulated for three different cores. Keeping the utilization of existing fourteen 104-type FE(s) (i.e. six burned and eight fresh FE(s)) in view, the core 3 is found the most economical, enduring and safe option for future of the TRIGA Mark II reactor in Vienna. (author)

  14. TRIGA MARK II first research reactor facility in Kingdom of Morocco

    The research reactor facility is located at Centre d'Etudes Nucleaires de la Maamora(CENM), located approximately 25 kilometers north of the city of Rabat. This facility will enable CNESTEN, as the operating organization, to fulfil its missions for promotion of nuclear technology in Morocco, contribute to the implementation of a national nuclear power program, and assist the state in monitoring nuclear activities for protection of the public and environment. The reactor building include TRIGA Mark II research reactor with an initial power level of 2000kW (t), and equipped for a planned future upgrade to 3,000-kilowatts.The facility is the keystone structure of CENM, and contain in addition to the TRIGA research reactor, extensively equipped laboratories and all associate support systems, structures, and supply facilities with the support of the AIEA, French CEA and LLNL (USA). The CENM with its TRIGA reactor and fully equipped laboratories will give the kingdom of Morocco its first nuclear installation with extensive capabilities. These will include the production of radioisotopes for medical, industrial and environmental uses, metallurgy and chemistry, implementation of nuclear analytical techniques such as neutron activation analysis and non-destructive examination techniques, as well as carrying out basic research programs in solid state and reactor physics. The feedback from the commissioning and the implementation of the safety standards during this phase was very interesting from safety point of view. The TRIGA Mark II research reactor at CENM achieved initial criticality on May 2, 2007 at 13:30 with 71 fuel elements and culminated with the successful completion of the full power endurance testing on 6 September, 2007.

  15. Optimization of a Potential New Core of the TRIGA Mark II Reactor Vienna

    The TRIGA Mark II Vienna is one of the last TRIGA reactors utilizing a mixed core with High Enrich Uranium (HEU) fuel. Due to the US Fuel Return Program, the Vienna University of Technology/Atominstitut (ATI) is obliged to return its HEU fuel by 2019. There is no final decision on any further utilization of the Vienna research reactor beyond that point. However, of all possible scenarios of the future, the conversion of the current core into Low Enriched Uranium (LEU) fuel and the complete replacement of all existing 83 burned FE(s) by new fresh FE(s) are investigated herein. This paper presents detailed reactor design calculations for three different reactor cores. The core 1 employs 104-type, core 2 uses 108-type and core 3 is loaded with mixed TRIGA fuels (i.e. 104 and 108). The combination of the Monte Carlo based neutronics code MCNP5, Oak Ridge Isotope Generation and depletion code ORIGEN2 and diffusion theory based reactor physics program TRIGLAV is used for this study. On the basis of this neutronics study, the amount of fuel required for a possible future reactor operation and its cost minimization is presented in this paper. The criticality, core excess reactivity, length of initial life cycle and thermal flux density distribution is simulated for three different cores. Keeping the utilization of existing fourteen 104-type FE(s) (i.e. six burned and eight fresh FE(s)) in view, the core 3 is found the most economical, enduring and safe option for future of the TRIGA Mark II reactor in Vienna. (author)

  16. Neutron flux characterisation of the Pavia TRIGA Mark II research reactor for radiobiological and microdosimetric applications.

    Alloni, D; Prata, M; Salvini, A; Ottolenghi, A

    2015-09-01

    Nowadays the Pavia TRIGA reactor is available for national and international collaboration in various research fields. The TRIGA Mark II nuclear research reactor of the Pavia University offers different in- and out-core neutron irradiation channels, each characterised by different neutron spectra. In the last two years a campaign of measurements and simulations has been performed in order to guarantee a better characterisation of these different fluxes and to meet the demands of irradiations that require precise information on these spectra in particular for radiobiological and microdosimetric studies. Experimental data on neutron fluxes have been collected analysing and measuring the gamma activity induced in thin target foils of different materials irradiated in different TRIGA experimental channels. The data on the induced gamma activities have been processed with the SAND II deconvolution code and finally compared with the spectra obtained with Monte Carlo simulations. The comparison between simulated and measured spectra showed a good agreement allowing a more precise characterisation of the neutron spectra and a validation of the adopted method. PMID:25958412

  17. Neutronic Analysis of the 3 MW TRIGA MARK II Research Reactor, Part I: Monte Carlo Simulation

    This study deals with the neutronic analysis of the current core configuration of a 3 MW TRIGA MARK II research reactor at Atomic Energy Research Establishment (AERE), Savar, Dhaka, Bangladesh and validation of the results by benchmarking with the experimental, operational and available Final Safety Analysis Report (FSAR) values. The three-dimensional continuous-energy Monte Carlo code MCNP4C was used to develop a versatile and accurate full-core model of the TRIGA core. The model represents in detail all components of the core with literally no physical approximation. All fresh fuel and control elements as well as the vicinity of the core were precisely described. Continuous energy cross-section data from ENDF/B-VI and S(α, β) scattering functions from the ENDF/B-V library were used. The validation of the model against benchmark experimental results is presented. The MCNP predictions and the experimentally determined values are found to be in very good agreement, which indicates that the Monte Carlo model is correctly simulating the TRIGA reactor. (author)

  18. Neutron flux characterisation of the Pavia Triga Mark II research reactor for radiobiological and microdosimetric applications

    Nowadays the Pavia TRIGA reactor is available for national and international collaboration in various research fields. The TRIGA Mark II nuclear research reactor of the Pavia University offers different in- and out-core neutron irradiation channels, each characterised by different neutron spectra. In the last two years a campaign of measurements and simulations has been performed in order to guarantee a better characterisation of these different fluxes and to meet the demands of irradiations that require precise information on these spectra in particular for radiobiological and microdosimetric studies. Experimental data on neutron fluxes have been collected analysing and measuring the gamma activity induced in thin target foils of different materials irradiated in different TRIGA experimental channels. The data on the induced gamma activities have been processed with the SAND II deconvolution code and finally compared with the spectra obtained with Monte Carlo simulations. The comparison between simulated and measured spectra showed a good agreement allowing a more precise characterisation of the neutron spectra and a validation of the adopted method. (authors)

  19. Mechanism design for the control rods conduction of TRIGA Mark III reactor in the NINR

    This work presents in the first chapter a general studio about the reactor and the importance of control rods in the reactor , the mechaniucal design attending to requisitions that are imposed for conditions of operation of the reactor are present in the second chapter, the narrow relation that exists with the new control console and the mechanism is developed in the thired chapter, this relation from a point of view of an assembly of components is presents in fourth chapter, finally reaches and perspectives of mechanism forming part of project of the automation of reactor TRIGA MARK III, are present in the fifth chapter. (Author)

  20. Immobilization of ion exchange radioactive resins of the TRIGA Mark III nuclear reactor

    This work has the objective to develop the process and to define the agglutinating material which allows the immobilization of the ion exchange radioactive resins coming from the TRIGA Mark III nuclear reactor contaminated with Ba-133, Co-60, Cs-137, Eu-152, and Mn-54 through the behavior analysis of different immobilization agents such as: bitumens, cement and polyester resin. According to the International Standardization the archetype samples were observed with the following tests: determination of free liquid, leaching, charge resistance, biodegradation, irradiation, thermal cycle, burned resistance. Generally all the tests were satisfactorily achieved, for each agent. Therefore, the polyester resin could be considered as the main immobilizing. (Author)

  1. Follow-up the commissioning of CENM TRIGA Mark II research reactor on safety level

    The follow-up of the commissioning of the CENM-TRIGA Mark II Reactor has been performed in conformance with national regulation and the IAEA standards. For this purpose, the CNESTEN established a safety committee to review all safety aspects during reactor commissioning and operation. A set of hold points was established in the commissioning program, typically at the end of each stage to ensure that (i) test results have been reviewed by the safety committee and meet acceptance criterion, and (ii) requirements for the performance of the following stage of the commissioning program reviewed and understood by all the parties

  2. Fuel element burn-up calculation in ITU TRIGA Mark-II reactor

    The reactivity defect of fuel elements in ITU TRIGA Mark-II reactor core at 250 kW power have been calculated by considering the reactor operation history. A two-dimensional, four-group diffusion computer code TRIGLAV is used for the calculations. The unit-cell macroscopic cross sections and diffusion coefficients are generated with the WIMS-D/4 code. Two dimensional effects like vicinity of control rods, water gaps, dummy graphite elements, void channels are considered. The calculated reactivity worth of the fuel elements at known burn up are in agreement with experimental values of the fuel elements located in the reactor core without two dimensional effects. (author)

  3. Biological Tests for Boron Neutron Capture Therapy Research at the TRIGA Mark II Reactor in Pavia

    The thermal column of the TRIGA Mark II reactor of the Pavia University is used as an irradiation facility to perform biological tests and irradiations of living systems for Boron Neutron Capture Therapy (BNCT) research. The suitability of the facility has been ensured by studying the neutron flux and the photon background in the irradiation chamber inside the thermal column. This characterization has been realized both by flux and dose measurements as well as by Monte Carlo simulations. The routine irradiations concern in vitro cells cultures and different tumor animal models to test the efficacy of the BNCT treatment. Some results about these experiments will be described. (author)

  4. Time Evolution of Selected Actinides in TRIGA MARK-II Fuel

    Study is made on the evolution of several actinides capable of undergoing fission or breeding available on the Malaysian Nuclear Agency (MNA) TRIGA MARK-II fuel. Population distribution of burned fuel in the MNA reactor is determined with a model developed using WIMS. This model simulates fuel conditions in the hottest position in the reactor, thus the location where most of the burn up occurs. Theoretical basis of these nuclide time evolution are explored and compared with the population obtained from our models. Good agreements are found for the theoretical time evolution and the population of Uranium-235, Uranium-236, Uranium-238 and Plutonium-239. (author)

  5. Biological Tests for Boron Neutron Capture Therapy Research at the TRIGA Mark II Reactor in Pavia

    Protti, N.; Ballarini, F.; Bortolussi, S.; De Bari, A.; Stella, S.; Altieri, S. [Department of Nuclear and Theoretical Physics, University of Pavia, Pavia (Italy); Nuclear Physics National Institute (INFN), Pavia (Italy); Bruschi, P. [Department of Nuclear and Theoretical Physics, University of Pavia, Pavia (Italy); Bakeine, J.G.; Cansolino, L.; Clerici, A.M. [Laboratory of Experimental Surgery, Department of Surgery, University of Pavia, Pavia (Italy)

    2011-07-01

    The thermal column of the TRIGA Mark II reactor of the Pavia University is used as an irradiation facility to perform biological tests and irradiations of living systems for Boron Neutron Capture Therapy (BNCT) research. The suitability of the facility has been ensured by studying the neutron flux and the photon background in the irradiation chamber inside the thermal column. This characterization has been realized both by flux and dose measurements as well as by Monte Carlo simulations. The routine irradiations concern in vitro cells cultures and different tumor animal models to test the efficacy of the BNCT treatment. Some results about these experiments will be described. (author)

  6. Experimental and analytic investigation of the ITU TRIGA Mark-II reactor core

    Experimental and analytical studies have been performed to determine the temperature distribution as a function of reactor power in the TRIGA Mark-II reactor at the Istanbul Technical University (ITU). The lumped parameter model with four governing equations was used in the analytical model. Based on the mathematical model, a computer code has been developed for calculating fuel and coolant temperatures in the reactor core. The calculated results for fuel and coolant temperature in the reactor core for different reactor power levels have been compared with the experimental data. Agreements between experiment and results from the computer code are fairly good. (orig.)

  7. Operation experiences of the Kartini reactor using Bandung Triga Mark II spent fuels

    The operating history and improvements of the Kartini research reactor are presented. The Kartini reactor is operated during office hours: 5 days a week and 6-7 hours a day, except in particular cases. For 15 years since 1979 the Kartini reactor has been operated using spent fuels and used core from the Bandung Triga Mark II. Since 1994, however the Kartini reactor has been operated using the 104 SS type of fuel elements. Several difficulties and anomalies were encountered during its operation. A brief explanation of the maintenance, quality control and quality assurance programme during its operation are also discussed. (orig.)

  8. Fuel burnup analysis of the TRIGA Mark II Reactor at the University of Pavia

    Chiesa, Davide; Clemenza, Massimiliano; Pozzi, Stefano; Previtali, Ezio; Sisti, Monica; Alloni, Daniele; Magrotti, Giovanni; Manera, Sergio; Prata, Michele; Salvini, Andrea; Cammi, Antonio; Zanetti, Matteo; Sartori, Alberto

    2015-01-01

    A time evolution model was developed to study fuel burnup for the TRIGA Mark II reactor at the University of Pavia. The results were used to predict the effects of a complete core reconfiguration and the accuracy of this prediction was tested experimentally. We used the Monte Carlo code MCNP5 to reproduce system neutronics in different operating conditions and to analyse neutron fluxes in the reactor core. The software that took care of time evolution, completely designed in-house, used the n...

  9. Investigations of cracks in the shielding concrete of a TRIGA Mark II reactor

    Cracks in the reactor shielding concrete of the TRIGA Mark II reactor, Vienna, caused an experimental and theoretical program to investigate the crack reason. After the investigation of the mechanical concrete data, the crack motion was measured as a function of various environmental temperatures. The temperature stress in the concrete was calculated analytically and with the finite-elements method and good accordance with the actual crack distribution was found. Finally some possibilities to avoid concrete cracks in future research reactor shielding construction are outlined. (orig.)

  10. Modification of the radial beam port of ITU TRIGA Mark II research reactor for BNCT applications.

    Akan, Zafer; Türkmen, Mehmet; Çakir, Tahir; Reyhancan, İskender A; Çolak, Üner; Okka, Muhittin; Kiziltaş, Sahip

    2015-05-01

    This paper aims to describe the modification of the radial beam port of ITU (İstanbul Technical University) TRIGA Mark II research reactor for BNCT applications. Radial beam port is modified with Polyethylene and Cerrobend collimators. Neutron flux values are measured by neutron activation analysis (Au-Cd foils). Experimental results are verified with Monte Carlo results. The results of neutron/photon spectrum, thermal/epithermal neutron flux, fast group photon fluence and change of the neutron fluxes with the beam port length are presented. PMID:25746919

  11. Collimator and shielding design for boron neutron capture therapy (BNCT) facility at TRIGA MARK II reactor

    The geometry of reactor core, thermal column, collimator and shielding system for BNCT application of TRIGA MARK II Reactor were simulated with MCNP5 code. Neutron particle lethargy and dose were calculated with MCNPX code. Neutron flux in a sample located at the end of collimator after normalized to measured value (Eid Mahmoud Eid Abdel Munem, 2007) at 1 MW power was 1.06 x 108 n/ cm2/ s. According to IAEA (2001) flux of 1.00 x 109 n/ cm2/ s requires three hours of treatment. Few modifications were needed to get higher flux. (Author)

  12. Epithermal neutron flux characterization of the TRIGA MARK II reactor, Ljubljana, Yugoslavia, for use in NAA

    The nonideality of the epithermal neutron flux distribution at a reactor site can be described by a 1/E1+α spectrum representation, with parameter α as a measure of nonideality. α-values were determined in 3 typical irradiation positions of the TRIGA MARK II reactor, Ljubljana, Yugoslavia, using the 'Cd-ratio for multi-monitor' method. The simpler 'Cd-ratio for dual monitor' method also yielded reliable results. This characterization is useful in the ko-method of NAA. (author) 18 refs.; 3 figs

  13. Neutron flux determination at the IPR-R1 Triga Mark I neutron beam extractor

    The IPR-R1 Triga Mark I Reactor located at the CDTN/CNEN, Belo Horizonte, Brazil, has been operating since November of 1960. In this work, measurements of thermal and epithermal neutron flux along the IPR-R1 neutron beam extractor were performed by neutron activation of reference materials using the two foils method. The obtained results were compared with results from two previous works: an experimental measurement done in a previous reactor core configuration and a numerical work made by Monte Carlo simulation using the actual reactor core configuration. The main purpose of this work is to update the measured data to the actual reactor core configuration. (author)

  14. Design and Implementation of a Fuzzy Controller for a TRIGA Mark III Reactor

    Rivero-Gutiérrez, Tonatiuh; Benítez-Read, Jorge S.; Segovia-De-los-Ríos, Armando; Longoria-Gándara, Luis C.; Palacios-Hernández, Javier C.

    2012-01-01

    The design and testing of a fuzzy rule based controller to regulate the power of a TRIGA Mark III research nuclear reactor are presented. The design does not require the current exact parameters of the point kinetic equations of the reactor. Instead, from a qualitative analysis of the actions taken by the operators during the reactor’s operation, a set of control rules is derived. The rules cover the operation of the reactor from low levels of about dozens of watts up to its full power level ...

  15. Radioactive waste management plan during the TRIGA Mark II and III decommissioning

    The decontamination and decommissioning (D and D) project of TRIGA Mark-I and Mark-II (KRR 1 and 2) was started in January 1997 and will be completed by December 2002. In the first year of the project, work was performed in preparation of the decommissioning plan, start of the environmental impact assessment and setup licensing procedure and documentation for the project with cooperation of the Korea Institute of Nuclear Safety (KINS). In the second year, Hyundai Engineering Company (HEC) with British Nuclear Fuels pie (BNFL) as technical assisting partner was designated as the contractor to do design and licensing documentation for the D and D of both reactors. After pre-design, a hazard and operability (HAZOP) study checked each step of the work. At the end of 1998, the decommissioning plan documentation including environmental impact assessment report was finished and submitted to the Ministry of Science and Technology (MOST) for licensing. It is expected to be issued by the end of September 1999. Practical work will then be started around the end of 1999. The safe treatment and management of the radioactive waste arising from the D and D activities is of utmost importance for successful completion of the practical dismantling work. This paper summarizes general aspects of radioactive waste treatment and management plan for the TRIGA Mark-I and II decommissioning work. (author)

  16. Treatment for dismantled radioactive solid waste from the TRIGA Mark-2 and 3

    Park, Seung Kook; Jung, Kyung Hwan

    1999-06-01

    Radioactive wastes are generally classified into 3 type depending on their physical property: liquid, solid and gaseous type. State-of -the art concerning liquid waste treatment has already been published; KAERI/TR-1315/99. Solid wastes classification package and treatment method will be studied to effectively manage them during the practical decommissioning work. All of the spent fuel produced during the operation of the TRIGA Mark-2 and 3 have been transported to the US last year, 1998, according to the spent fuel management strategy set-up by the US government for the non-proliferation of nuclear energy. Solid wastes are mainly all equipment existing inside of the reactors, activated concrete among the bio-shielded concrete, pipes, pimps, resin filter and it's housings, heat-exchangers, liquid waste storage tanks, to radioactive waste storage treatment facilities and so on. Solid wastes are generally low-level. They are classified according to the national regulation and nuclear law and IAEA Safety Standard Series ST-1(1996). Medium level radioactive wastes from reactor structures, mainly stainless steel component from the Rotary Specimen Rack(RSR) will be properly dismantled and stored in a shield container such as TIF(TRIGA Irradiated Fuel) container. While, low-level solid waste will be treated and packed in a ISO container(4m{sup 3} ISO container for example) according to the IAEA recommendation. And combustible solid waste such as cloths, gloves, paper etc. will be packed in a 200 liters drum. This state-of-the art shows a general feature of the solid radioactive waste management which will be produced during the decommissioning of the TRIGA Mark-2 and 3 research reactors. (author). 17 refs., 17 tabs., 2 figs.

  17. Neutronics analysis of the initial core of the TRIGA Mark II reactor

    Khan, R., E-mail: rustamzia@yahoo.co [Vienna University of Technology, Atominstitute (ATI), Stadion allee 2, A-1020, Vienna (Austria); Stummer, T.; Boeck, H.; Villa, M. [Vienna University of Technology, Atominstitute (ATI), Stadion allee 2, A-1020, Vienna (Austria)

    2011-05-15

    Highlights: The TRIGA Mark II Vienna is modeled employing MCNP5. The model is confirmed through three different experiments. Initial critical, reactivity distribution and flux mapping experiment. - Abstract: The Atominstitute (ATI) of Vienna University of Technology (VUT) operates a TRIGA Mark II research reactor since March 1962. Its initial criticality was achieved on 7th March 1962 when 57th Fuel Element (FE) was loaded to the core. This paper describes the development of the MCNP model of the TRIGA reactor and its validation through three different experiments i.e. initial criticality, reactivity distribution and a thermal flux mapping experiment in the reactor core. All these experiments were performed on the initial core configuration. The MCNP model includes all necessary core components i.e. FE, Graphite Element GE, neutron Source Element (SE), Central IRradiation channel (CIR) etc. Outside the core, this model simulates the annular grooved graphite reflector, the thermal and thermalizing column, four beam tubes and the reactor water tank up to 100 cm in radial and +60 and -60 cm in axial direction. Each grid position at its exact location is modeled. This model employs the ENDF/B-VI data library except for the Sm-isotopes which are taken from JEFF 3.1 because ENDF/B-VI lacks samarium (Sm) cross sections. For the first experiment, the model predicts an effective multiplication factor ({kappa}{sub eff}) of 1.00183 with an estimated standard deviation 0.00031 which is very close to the experimental value 1.00114. The second experiment measures the reactivity values of four FE and one GE. In comparison to the MCNP results, the percent difference ranges from 4 to 22. The third experiment verifies the model at a local level with the radial and axial thermal flux density distribution in the core. Though the trends are similar, the MCNP model overestimates the radial thermal flux density in the core and underestimates these results at the core periphery.

  18. Neutronics analysis of the initial core of the TRIGA Mark II reactor

    Highlights: → The TRIGA Mark II Vienna is modeled employing MCNP5. → The model is confirmed through three different experiments. → Initial critical, reactivity distribution and flux mapping experiment. - Abstract: The Atominstitute (ATI) of Vienna University of Technology (VUT) operates a TRIGA Mark II research reactor since March 1962. Its initial criticality was achieved on 7th March 1962 when 57th Fuel Element (FE) was loaded to the core. This paper describes the development of the MCNP model of the TRIGA reactor and its validation through three different experiments i.e. initial criticality, reactivity distribution and a thermal flux mapping experiment in the reactor core. All these experiments were performed on the initial core configuration. The MCNP model includes all necessary core components i.e. FE, Graphite Element GE, neutron Source Element (SE), Central IRradiation channel (CIR) etc. Outside the core, this model simulates the annular grooved graphite reflector, the thermal and thermalizing column, four beam tubes and the reactor water tank up to 100 cm in radial and +60 and -60 cm in axial direction. Each grid position at its exact location is modeled. This model employs the ENDF/B-VI data library except for the Sm-isotopes which are taken from JEFF 3.1 because ENDF/B-VI lacks samarium (Sm) cross sections. For the first experiment, the model predicts an effective multiplication factor (κeff) of 1.00183 with an estimated standard deviation 0.00031 which is very close to the experimental value 1.00114. The second experiment measures the reactivity values of four FE and one GE. In comparison to the MCNP results, the percent difference ranges from 4 to 22. The third experiment verifies the model at a local level with the radial and axial thermal flux density distribution in the core. Though the trends are similar, the MCNP model overestimates the radial thermal flux density in the core and underestimates these results at the core periphery.

  19. Monte Carlo Simulation of the TRIGA Mark II Benchmark Experiment with Burned Fuel

    Monte Carlo calculations of a criticality experiment with burned fuel on the TRIGA Mark II research reactor are presented. The main objective was to incorporate burned fuel composition calculated with the WIMSD4 deterministic code into the MCNP4B Monte Carlo code and compare the calculated keff with the measurements. The criticality experiment was performed in 1998 at the ''Jozef Stefan'' Institute TRIGA Mark II reactor in Ljubljana, Slovenia, with the same fuel elements and loading pattern as in the TRIGA criticality benchmark experiment with fresh fuel performed in 1991. The only difference was that in 1998, the fuel elements had on average burnup of ∼3%, corresponding to 1.3-MWd energy produced in the core in the period between 1991 and 1998. The fuel element burnup accumulated during 1991-1998 was calculated with the TRIGLAV in-house-developed fuel management two-dimensional multigroup diffusion code. The burned fuel isotopic composition was calculated with the WIMSD4 code and compared to the ORIGEN2 calculations. Extensive comparison of burned fuel material composition was performed for both codes for burnups up to 20% burned 235U, and the differences were evaluated in terms of reactivity. The WIMSD4 and ORIGEN2 results agreed well for all isotopes important in reactivity calculations, giving increased confidence in the WIMSD4 calculation of the burned fuel material composition. The keff calculated with the combined WIMSD4 and MCNP4B calculations showed good agreement with the experimental values. This shows that linking of WIMSD4 with MCNP4B for criticality calculations with burned fuel is feasible and gives reliable results

  20. Neutronics analysis of the current core of the TRIGA Mark II reactor Vienna

    This paper presents the part of PhD work performed at the TRIGA Mark II Vienna. A detailed three dimensional MCNP model of the reactor was developed. The neutronics library JEFF3.1 was applied to this model. The model was completed by employing the fresh fuel composition experiments and was confirmed by the initial criticality, reactivity distribution and thermal flux distribution performed in 1962. To analyse the current burned core, burn up and its relevant material composition was calculated by ORIGEN2 and confirmed by gamma spectroscopy of six spent Fuel Elements FE(s). This new material composition of the current core was incorporated into the already developed MCNP model. This paper presents the current core calculations employing MCNP5 and its experimental validation through criticality and reactivity distribution experiments, performed at the TRIGA Mark II research reactor Vienna. The MCNP predicts the criticality of the current core on loading of 78th FE in the core which is also confirmed experimentally. Five FE(s) were calculated and measured for their reactivity worths. The deviations between theoretical results and experimental observations were in range from 3% to 17%. (author)

  1. Criticality calculation in TRIGA MARK II PUSPATI Reactor using Monte Carlo code

    A Monte Carlo simulation of the Malaysian nuclear reactor has been performed using MCNP Version 5 code. The purpose of the work is the determination of the multiplication factor (keff) for the TRIGA Mark II research reactor in Malaysia based on Monte Carlo method. This work has been performed to calculate the value of keff for two cases, which are the control rod either fully withdrawn or fully inserted to construct a complete model of the TRIGA Mark II PUSPATI Reactor (RTP). The RTP core was modeled as close as possible to the real core and the results of keff from MCNP5 were obtained when the control fuel rods were fully inserted, the keff value indicates the RTP reactor was in the subcritical condition with a value of 0.98370±0.00054. When the control fuel rods were fully withdrawn the value of keff value indicates the RTP reactor is in the supercritical condition, that is 1.10773±0.00083. (Author)

  2. In-situ gamma spectrometry measurements of time-dependent Xenon-135 inventory in the TRIGA Mark II reactor Vienna

    Riede, Julia; Boeck, Helmuth

    2013-01-01

    In this work, it has been shown that the time dependent Xe-135 inventory in the TRIGA Mark II reactor in Vienna, Austria can be measured via gamma spectrometry even in the presence of strong background radiation. It is focussing on the measurement of (but not limited to) the nuclide Xe-135. The time dependent Xe-135 inventory of the TRIGA Mark II reactor Vienna has been measured using a temporary beam line between one fuel element of the core placed onto the thermal column after shutdown and ...

  3. Investigation of subcritical multiplication parameters in TRIGA Mark II accelerator driven system

    Highlights: • TRIGA ADS neutron external source was numerically investigated. • Source target material, radius, position, and incident beam energy were studied. • Maximum neutron yield for W, Pb, and W–Cu targets are at radii 3.25, 3.5 and 7 cm. • Maximum source efficiency for targets at the given core is achieved at the center. • Maximum source efficiency is achieved at 40 MeV incident electron beam energy. - Abstract: The accelerator driven system (ADS) is a very interesting option to improve the safety of nuclear power reactor and for transmutation of spent fuel. The Texas phase of the reactor–accelerator coupling experiment (RACE), completed in March 2006, demonstrated the feasibility of operating a training research isotopes general atomic (TRIGA) research reactor in a subcritical configuration driven to a significant power by an electron LINAC neutron source (photoneutron). In the present study, the effects of changing the source cylindrical target material, radius, position and the electron beam energy on the final neutron production, fission probability, and the subcritical system multiplication of TRIGA Mark II research reactor, have been numerically investigated. Three target materials are used: Tungsten, Lead and Tungsten–Copper alloy, while varying the target radius from 2 to 8 cm, the source position at three locations, and the beam energy from 10 to 55 MeV. The investigation is based on the numerical calculation of the subcritical multiplication factor and the external source efficiency using Monte Carlo MCNPX code. Through the comparison of the studied cases results, the favorable target material and radius, source position, and beam energy can be obtained

  4. Activation calculation of steel of the control rods of TRIGA Mark III reactor; Calculo de activacion del acero de las barras de control del reactor TRIGA Mark III

    Garcia M, T.; Cruz G, H. S.; Ruiz C, M. A.; Angeles C, A., E-mail: teodoro.garcia@inin.gob.mx [ININ, Carretera Mexico-Toluca sn, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    In the pool of TRIGA Mark III reactor of the Instituto Nacional de Investigaciones Nucleares (ININ), there are control rods that were removed from the core, and which are currently on shelves of decay. These rods were part of the reactor core when only had fuel standard (from 1968-1989). To conduct a proper activation analysis of the rods, is very important to have well-characterized the materials which are built, elemental composition of the same ones, the atomic densities and weight fractions of the elements that constitute them. To determine the neutron activation of the control rods MCNP5 code was used, this code allows us to have well characterized the radionuclides inventory that were formed during irradiation of the control rods. This work is limited to determining the activation of the steel that is part of the shielding of the control rods, the nuclear fuel that is in the fuel follower does not include. The calculation model of the code will be validated with experimental measurements and calculating the activity of fission products of the fuel follower which will take place at the end of 2014. (Author)

  5. Immobilization of Ion Exchange radioactive resins of the TRIGA Mark III Nuclear Reactor; Inmovilizacion de resinas de intercambio ionico radiactivas del reactor nuclear TRIGA Mark III

    Garcia Martinez, H

    1999-07-01

    In the last decades many countries in the world have taken interest in the use, availability, and final disposal of dangerous wastes in the environment, within these, those dangerous wastes that contain radioactive material. That is why studies have been made on materials used as immobilization agent of radioactive waste that may guarantee its storage for long periods of time under drastic conditions of humidity, temperature change and biodegradation. In mexico, the development of different applications of radioactive material in the industry, medicine and investigation, have generated radioactive waste, sealed and open sources, whose require a special technological development for its management and final disposal. The present work has as a finality to develop the process and define the agglutinating material, bitumen, cement and polyester resin that permits immobilization of resins of Ionic Exchange contaminated by Barium 153, Cesium 137, Europium 152, Cobalt 60 and Manganese 54 generated from the nuclear reactor TRIGA Mark III. Ionic interchange contaminated resin must be immobilized and is analysed under different established tests by the Mexican Official Standard NOM-019-NUCL-1995 {sup L}ow level radioactive wastes package requirements for its near-surface final disposal. Immobilization of ionic interchange contaminated resins must count with the International Standards applicable in this process; in these standards, the following test must be taken in prototype examples: Free-standing water, leachability, compressive strength, biodegradation, radiation stability, thermal stability and burning rate. (Author)

  6. Renewal and upgrading of the TRIGA Mark II research reactor in Ljubljana

    At the 250 kW TRIGA Mark II research reactor in Ljubljana, ever since the beginning of operation in 1966, gradual modification and modernization have been taking place. In 1991 the reactor has been almost completely reconstructed and upgraded. The reconstruction consisted mainly of replacing the grid plates, the control rod mechanisms and the control unit. A new PC based system to collect the operational radiation data of the reactor was developed. A new spent fuel storage facility was built in the basement of the reactor building with a capacity of 630 spent fuel elements. The main novelty in the reactor physics and operational features of the reactor was installation of the pulse rod. The following experiments were conducted: initial criticality, excess reactivity measurement, control rod worth measurement, fuel temperature distribution, fuel temperature reactivity coefficient, pulse parameter measurements (peak power, prompt energy, peak temperature). Flux distributions in steady state and pulse mode were measured as well. The experiments were performed with completely fresh fuel of 12 w% Standard Stainless Steel type. The core configuration was uniform (one fuel element type, including fuelled followers) and compact (no irradiation channels or gaps), as such an array is particularly convenient for testing computer codes for TRIGA reactor calculations

  7. Gamma spectrometry inspection of TRIGA MARK II fuel using caesium isotopes

    Karimzadeh, S., E-mail: sam.karimzadeh@ati.ac.a [Vienna University of Technology, Institute of Atomic and Subatomic Physics (ATI), Stadionallee 2, A-1020 Vienna (Austria); Khan, R.; Boeck, H. [Vienna University of Technology, Institute of Atomic and Subatomic Physics (ATI), Stadionallee 2, A-1020 Vienna (Austria)

    2011-01-15

    Research highlights: Cs isotopes are the best choices for the burn up determination of spent fuel. Gamma spectrometer calibration using MCNP5. Cs-ratio can be applied by relative calibration method. - Abstract: Gamma spectrometry is one of the common methods to inspect the spent fuel from research reactors. This method has been applied to in-pool measurements of the Spent Fuel Elements (SPEs) of the TRIGA Mark II research reactor. Due to mixed nature of the reactor core and complicated irradiation history of the fuel elements (FEs), the gamma spectrometry of the FE establishes improvements in the calculation and measurement of the SPE. In order to inspect the TRIGA SPE from dry storage and cooled fuel from the reactor pool, the selected spend fuels are scanned and measured using the fuel-scanning machine. Gamma spectrometry is performed by HPGe detector for spend fuel inspection and determination of the {sup 137}Cs activity and {sup 134}Cs/{sup 137}Cs ratio. In this work, the steps of the detector calibration and the use of the Monte Carlo radiation transport code (MCNP5) have been described. In addition, the fuel-scanning machine and the gamma spectrometer are modelled by MCNP5 to simulate the gamma transport from fuel to detector. It also simulate the gamma spectrometer calibration for the burn up determination of the spend fuel. The results from MCNP5 simulation are applied to spectroscopic measurements and compared with the theoretical predictions of the neutronics code ORIGEN2 in this research work.

  8. Numerical simulation of non-steady state neutron kinetics of the TRIGA Mark II reactor Vienna

    Riede, J., E-mail: jriede@ati.ac.at; Boeck, H., E-mail: boeck@ati.ac.at

    2013-12-15

    Highlights: • Power changes after reactivity changes have been measured with high time resolution. • Time dependent power changes after reactivity changes have been calculated numerically including feedback mechanisms. • The model has been verified by comparing numerical results to experimental data. • The verified model has been used to predict time dependent power changes after several reactivity changes. - Abstract: This paper presents an algorithm for numerical simulations of non-steady states of the TRIGA Mark II reactor in Vienna, Austria. The primary focus of this work has been the development of an algorithm which provides time series of integral neutron flux after reactivity changes introduced by perturbations without the usage of thermal-hydraulic/neutronic numerical code systems for the TRIGA reactor in Vienna, Austria. The algorithm presented takes into account both external reactivity changes as well as internal reactivity changes caused by feedback mechanisms like effects caused by temperature changes of the fuel and poisoning effects. The resulting time series have been compared to experimental results.

  9. Numerical simulation of non-steady state neutron kinetics of the TRIGA Mark II reactor Vienna

    Highlights: • Power changes after reactivity changes have been measured with high time resolution. • Time dependent power changes after reactivity changes have been calculated numerically including feedback mechanisms. • The model has been verified by comparing numerical results to experimental data. • The verified model has been used to predict time dependent power changes after several reactivity changes. - Abstract: This paper presents an algorithm for numerical simulations of non-steady states of the TRIGA Mark II reactor in Vienna, Austria. The primary focus of this work has been the development of an algorithm which provides time series of integral neutron flux after reactivity changes introduced by perturbations without the usage of thermal-hydraulic/neutronic numerical code systems for the TRIGA reactor in Vienna, Austria. The algorithm presented takes into account both external reactivity changes as well as internal reactivity changes caused by feedback mechanisms like effects caused by temperature changes of the fuel and poisoning effects. The resulting time series have been compared to experimental results

  10. Simulation of TRIGA Mark II Benchmark Experiment using WIMSD4 and CITATION codes

    This paper presents a simulation of the TRIGA Mark II Benchmark Experiment, Part I: Steady-State Operation and is part of the calculation methodology validation developed to the neutronic calculation of the CDTN's TRIGA IPR - R1 reactor. A version of the WIMSD4, obtained in the Centro de Tecnologia Nuclear, in Cuba, was used in the cells calculation. In the core calculations was adopted the diffusion code CITATION. Was adopted a 3D representation of the core and the calculations were carried out at two energy groups. Many of the experiments were simulated, including, Keff, control rods reactivity worth, fuel elements reactivity worth distribution and the fuel temperature reactivity coefficient. The comparison of the obtained results, with the experimental results, shows differences in the range of the accuracy of the measurements, to the control rods worth and fuel temperature reactivity coefficient, or on an acceptable range, following the literature, to the Keff and fuel elements reactivity worth distribution and the fuel temperature reactivity coefficient. The comparison of the obtained results, with the experimental. results, shows differences in the range of the accuracy of the measurements, to the control rods worth and fuel temperature reactivity coefficient, or in an acceptable range, following the literature, to the Keff and fuel elements reactivity worth distribution. (author)

  11. Gamma spectrometry inspection of TRIGA MARK II fuel using caesium isotopes

    Research highlights: → Cs isotopes are the best choices for the burn up determination of spent fuel. → Gamma spectrometer calibration using MCNP5. → Cs-ratio can be applied by relative calibration method. - Abstract: Gamma spectrometry is one of the common methods to inspect the spent fuel from research reactors. This method has been applied to in-pool measurements of the Spent Fuel Elements (SPEs) of the TRIGA Mark II research reactor. Due to mixed nature of the reactor core and complicated irradiation history of the fuel elements (FEs), the gamma spectrometry of the FE establishes improvements in the calculation and measurement of the SPE. In order to inspect the TRIGA SPE from dry storage and cooled fuel from the reactor pool, the selected spend fuels are scanned and measured using the fuel-scanning machine. Gamma spectrometry is performed by HPGe detector for spend fuel inspection and determination of the 137Cs activity and 134Cs/137Cs ratio. In this work, the steps of the detector calibration and the use of the Monte Carlo radiation transport code (MCNP5) have been described. In addition, the fuel-scanning machine and the gamma spectrometer are modelled by MCNP5 to simulate the gamma transport from fuel to detector. It also simulate the gamma spectrometer calibration for the burn up determination of the spend fuel. The results from MCNP5 simulation are applied to spectroscopic measurements and compared with the theoretical predictions of the neutronics code ORIGEN2 in this research work.

  12. Determination of the thermal-hydraulic parameters of ITU TRIGA Mark-II reactor

    In this study, a transient, one-dimensional thermal-hydraulic subchannel analysis for I.T.U. TRIGA Mark-II reactor was employed. Mixed convection is considered in modelling to enhance the capability of the computer code. After the continuity, conservation of energy, momentum balance equations for coolant in axial direction and the heat-conduction equation for the fuel rod in radial direction had been written, they were discretized by using the control volume approach to obtain a set of algebraic equations. By the aid of the discretized continuity and momentum balance equations, a pressure and a pressure-correction equations were derived. Then, two different FORTRAN programs called TRIGATH (TRIGA Thermal-Hydraulics) and TRIGATH-R (TRIGATH Revised) have been developed to solve this set of algebraic equations by using SIMPLE and SIMPLER algorithms respectively. As a result, the temperature distributions of the coolant and the fuel rods as well as the velocity and pressure distributions of the coolant have been estimated for both transient and steady state regimes from both algorithms. Their results, which are in good agreement, are compared to the results of the computer code

  13. Development of neutron beam projects at the University of Texas TRIGA Mark II Reactor

    Recently, the UT-TRIGA research reactor was licensed and has become fully operational. This reactor, the first new US university reactor in 17 years, is the focus of a new reactor laboratory facility which is located on the Balcones Research Center at The University of Texas at Austin. The TRIGA Mark II reactor is licensed for 1.1 MW steady power operation, 3 dollar pulsing, and includes five beam ports. Various neutron beam-line projects have been assigned to each beam port. Neutron Depth Profiling (NDP) and the Texas Cold Neutron Source (TCNS) are close to completion and will be operational in the near future. The design of the NDP instrument has been completed, a target chamber has been built, and the thermal neutron collimator, detectors, data acquisition electronics, and data processing computers have been acquired. The target chamber accommodates wafers up to 12'' in diameter and provides remote positioning of these wafers. The design and construction of the TCNS has been completed. The TCNS consists of a moderator (mesitylene), a neon heat pipe, a cryogenic refrigerator, and neutron guide tubes. In addition, fission-fragment research (HIAWATHA), Neutron Capture Therapy, and Neutron Radiography are being pursued as projects for the other three beam ports. (author)

  14. Relative fission product yield determination in the USGS TRIGA Mark I reactor

    Koehl, Michael A.

    Fission product yield data sets are one of the most important and fundamental compilations of basic information in the nuclear industry. This data has a wide range of applications which include nuclear fuel burnup and nonproliferation safeguards. Relative fission yields constitute a major fraction of the reported yield data and reduce the number of required absolute measurements. Radiochemical separations of fission products reduce interferences, facilitate the measurement of low level radionuclides, and are instrumental in the analysis of low-yielding symmetrical fission products. It is especially useful in the measurement of the valley nuclides and those on the extreme wings of the mass yield curve, including lanthanides, where absolute yields have high errors. This overall project was conducted in three stages: characterization of the neutron flux in irradiation positions within the U.S. Geological Survey TRIGA Mark I Reactor (GSTR), determining the mass attenuation coefficients of precipitates used in radiochemical separations, and measuring the relative fission products in the GSTR. Using the Westcott convention, the Westcott flux, modified spectral index, neutron temperature, and gold-based cadmium ratios were determined for various sampling positions in the USGS TRIGA Mark I reactor. The differential neutron energy spectrum measurement was obtained using the computer iterative code SAND-II-SNL. The mass attenuation coefficients for molecular precipitates were determined through experiment and compared to results using the EGS5 Monte Carlo computer code. Difficulties associated with sufficient production of fission product isotopes in research reactors limits the ability to complete a direct, experimental assessment of mass attenuation coefficients for these isotopes. Experimental attenuation coefficients of radioisotopes produced through neutron activation agree well with the EGS5 calculated results. This suggests mass attenuation coefficients of molecular

  15. Determination of the neutron fluxes in the research nuclear reactors: the Triga Mark I and the WRS

    In this paper is presented the determination of the thermal, epithermal and fast neutron fluxes, using neutron activation analysis technique, for two research nuclear reactors of different design: the TRIGA Mark I reactor was designed by Gulf General Atomic Co in US and the W WRS reactor was designed in the URSS, both in the 50's years. (Author)

  16. Operation, maintenance, and utilization of 250 kW TRIGA Mark II reactor at the Institute Jozef Stefan, Ljubljana (Yugoslavia))

    At the Institute 'Jozef Stefan' in Ljubljana 250 kW TRIGA Mark II Reactor has been in operation since May 31, 1966. It is the steady state operated reactor without pulsing capabilities. In the paper the operational data, maintenance and utilization of the reactor are summarized for the first four years of reactor operation. (author)

  17. Calculation of neutron fluxes in biological shield of the TRIGA Mark II reactor

    The complete calculation of neutron fluxes in biological shield and verification with experimental results is presented. Calculated results are obtained with TORT code (TORT-Three Dimensional Oak Ridge Discrete Ordinates Neutron/Photon Transport Code). Experimental results used for comparison are available from irradiation experiment with selected type of concrete and other materials in irradiation channel 4 in TRIGA Mark II reactor. These experimental results were used as a benchmark. Homogeneous type of problem (without inserted irradiation channel) and problem with asymmetry (inserted beam port 4, filled with different materials) were of interest for neutron flux calculation. Deviation from material data set up as original parameters is also considered (first of all presence of water in concrete and density of concrete) for type of concrete in biological shield and for selected type of concrete in irradiation channel. BUGLE-96 (47 neutron energy groups) library is used. Excellent agreement between calculated and experimental results for reaction rate is received.(author)

  18. Development process of the new control console of ININ's TRIGA mark III reactor

    A description of the development of the new ININ's TRIGA Mark III reactor control console is presented in this meeting. Most of the operation and safety monitoring of the reactor is carried out by means of a personal computer (PC), some interface cards, and an auxiliary computer that drives the control rod mechanisms. In this console, the safety actions are taken by the Protection System (SEC), which acquires the data directly from the safety related systems, specified in the reactor's console design technical specifications. The console, based on the concept of virtual instrumentation, is composed of a group of systems that make easier to the operator the activation of the sequential steps required to operate the reactor. (authors)

  19. Neutron spectra in two beam ports of a TRIGA Mark III reactor with HEU fuel

    Before to change the HEU for Leu fuel of the ININ's TRIGA Mark III nuclear reactor the neutron spectra were measured in two beam ports using 5 and 10 W. Measurements were carried out in a tangential and a radial beam port using a Bonner sphere spectrometer. It was found that neutron spectra are different in the beam ports, in radial beam port the amplitude of thermal and fast neutrons are approximately the same while, in the tangential beam port thermal neutron peak is dominant. In the radial beam port the fluence-to-ambient dose equivalent factors are 131±11 and 124±10 p Sv-cm2 for 5 and 10 W respectively while in the tangential beam port the fluence-to-ambient dose equivalent factor is 55±4 p Sv-cm2 for 10 W. (Author)

  20. Enhancement of mechanical properties of blended polyethylene radiation capsules for the TRIGA MARK II Research Reactor

    Mechanical properties of blended polyethylene (PE) containing the antioxidant Irganox 1010 and the UV-absorber Tinuvin 326 were studied for future use as radiation capsule material for the TRIGA Mark II research reactor. High density and low density polyethylene were blended with the additives and tested for elongation at break, impact strength and gel content, before and after irradiation inside the nuclear reactor. Characterization via FTIR as well as determination of crystallization and melt transition temperatures through DSC were also conducted. It was found that the addition of the antioxidant at different amounts (from 0 to 4 phr) had various effects on the properties of the blended PE, with 0 phr being the amount at which there was the biggest increase in elongation at break and impact strength, post-irradiation. (author)

  1. Experimental measurement of the refrigerant temperature of the TRIGA Mark III reactor of the ININ

    With the object of knowing the axial temperature profile of the refrigerant in the core of the TRIGA Mark III reactor of the ININ, the temperatures of this, at the enter, in the center and the exit of the core were measured, in the positions: west 2, north 2 and south 1. This was made by means of the thermo pars introduction mounted in aluminum guides, connected to a measurer of digital temperature, whose resolution is of ± 0.1 C. The measurements showed a bigger heating of the refrigerant in the superior half of the core, that which suggests that the axial profile of temperature of the reactor is not symmetrical with respect to the center or that those temperature measurements in the center are not correct. (Author)

  2. Non-destructive material investigation with thermal neutrons at the TRIGA Mark II reactor in Vienna

    Neutron tomography providing 3D information about interior of an object is a very efficient tool to visualize inner defects of the materials, non-destructively. In this study, some applications of neutron tomography in different fields such as geology, aerospace, civil engineering and archaeology were presented. Distribution of minerals in pumice and rock samples, visualization of inner defects within a new developed titan aluminum turbine blade, and distribution of silica gel as an important impregnating agent in construction and restoration of buildings were investigated. The measurements of tomography projections taken in the 0 to 180o angle were performed with a thermal neutron flux of 105 at the TRIGA Mark II research reactor in Vienna, and the common filtered back projection method was used for the 3D image reconstruction. (author)

  3. Operating experience and maintenance at the TRIGA Mark II LENA reactor

    Reactor operation at the Triga Mark II LENA plant, at the University of Pavia, in the past two years has been greatly affected by fulfilment of the new Italian fire prevention act's requirements, by the final red-tape work to get the renewal of the operation licence and by answering to the observations of Inspectors of the Italian Ministry of Labour and Social Security. All personnel was involved in the revision of manuals and prescriptions according to government rules and new ideas on modern nuclear safety. Consequently reactor operation was largely reduced due to works going on in the plant and to the lack of practicability of the Radiochemistry Laboratory. Finally, at the end of May 1990, the Reactor Operation Licence was renewed for the time period 1990-1995 by the Italian Ministry of Industry. (orig.)

  4. Characterization of the neutron flux gradients in typical irradiation channels of a TRIGA Mark II reactor

    The neutron distribution in a defined volume (gradient) for different matrices (air, water, cellulose, biological material and silicon dioxide) in two typical irradiation channels (pneumatic tube (PT) and IC40-channel in the carousel facility) in the TRIGA Mark II reactor at the Jozef Stefan Institute (IJS) was studied. Experiment was based on inserting Fe wires (flux monitors) into the chosen matrices. The wires were cut into small pieces after irradiation and the induced activities of 59Fe measured. The results showed that for the studied geometry the average spatial thermal neutron flux inhomogeneities (for five studied matrices) are about 2.3% in the PT-channel and about 2.9% in the IC40-channel. (author)

  5. Thermal hydraulic parameter studies of heat exchanger for the TRIGA MARK II research reactor

    Thermal Hydraulic studies have being conducted at PUSPATI TRIGA Mark II (RTP) Nuclear Research Reactor. The purpose of this study is to determine the heat transfer characteristic and heat exchanger performance at difference reactor power. Fundamental concept and a plate type application of heat exchanger in RTP are presented in this study. A plate type heat exchanger is a device for RTP reactor cooling system built for efficient heat transfer from one fluid to another. The study involves the observation of inlet and outlet temperature profile, flow rate and pressure at the reactor pool and heat exchanger. The observed parameters are compared to basic engineering calculation and the output of the study has been beneficial to evaluate the performance of newly-installed plate type heat exchanger. (author)

  6. TRIGASIM: A computer program to simulate a TRIGA Mark I Reactor

    A Fortran-77 computer program has been written which simulates the operation of a TRIGA Mark I Reactor. The 'operator' has options at 1-second intervals, of raising rods, lowering rods, maintaining rods steady, dropping a rod, or scramming the reactor. Results are printed to the screen, and to 2 output files - a tabular record and a logarithmic plot of the power. The Point Kinetic Equations are programmed with 6 delayed groups, quasi-static power feedback, and forward differencing. A pulsing option is available, with simulation which employs the Fuchs Model. A pulse-tail model has been devised to simulate behavior for a few minutes following a pulse. Both graphic and tabular output are also available for the pulses. (author)

  7. Present Services at the TRIGA Mark II Reactor of the JSI

    The TRIGA Mark II research reactor of the Jožef Stefan Institute has been continuously operating since the year 1966. The currently offered services include: (1) Neutron activation analysis in both instrumental and radiochemical modes; (2) neutron irradiation of various kinds of materials intended to be used for research and applicative purposes; (3) training and education of university students as well as on-job training of staff working in public and private institutions, (4) verification of computer codes and nuclear data, comprising primarily criticality calculations and neutron flux distribution studies and (5) testing and development of a digital reactivity meter. The paper briefly describes the aforementioned activities and shows that even such small reactors are still indispensable in nuclear science and technology. (author)

  8. Main configurations of the reactor core TRIGA Mark III of the ININ, during their operation

    The Reactor TRIGA Mark III is 43 years old since was put lay critical on November 8 of 1968 for the first time, along their operative life there have been 18 different configurations of the core, being three those more important: the first configuration with elements standard with an enrichment lightly minor than 20% in U-235, the second configuration that deserves out attention is when a mixed core was charged, composite of two different fuels as for their enrichment, the core consisted of 26 fuel elements Flip (of high enrichment approximately of 70%) more 3 control bars with follower of fuel Flip and 59 standard fuel elements, as those mentioned previously, finally is necessary to consider the recent reload of the reactor, with a compound core by fuel elements of low enrichment LEU 30/20. In this work the characteristics more important of the reactor are presented as well as of each one of the described cores. (Author)

  9. Characterization of the TRIGA Mark III reactor for k0 neutron activation analysis

    The k0 standardization for instrumental neutron activation analysis is a relatively new nuclear analytical technique. It is extended i n more than 20 countries of the world with reactor facilities, including some from Latin America. The great advantages of this technique (low uncertainties, fast and massive analysis, no standard necessity) with respect to relative, absolute and radiochemical activation analysis, are the reason of it fast introduction in Geology, Medicine, Agriculture and other fields of applications. But for the k0 instrumental neutron activation analysis implementation, the good knowledge of some reactor neutron flux and isotopes characteristics is necessary. The non ideality of the epithermal neutron flux temperature (Tn) and the k0 factors for more than 20 isotopes were determinate in the 3 typical irradiation positions of the TRIGA Mark III reactor of the National Nuclear Research Institute, Salazar, Mexico, using different experimental methods with conventional and non-conventional monitors

  10. Development process of the new control console of ININ's TRIGA mark III reactor

    Rivero-Gutierrez, T. [Inst. Nacional de Investigationes Nucleares ININ, Gerencia de Ciencias Aplicadas, Carretera Mexico-Toluca S/N, Estado de Mexico, C.P. 52750 (Mexico); Inst. Tecnologico de Toluca, Div. de Estudios de Postgrado e Investigacion, Av. Tecnologico S/N, Estado de Mexico, C.P. 52140 (Mexico); Sainz-Mejia, E. [Inst. Nacional de Investigationes Nucleares ININ, Gerencia de Ciencias Aplicadas, Carretera Mexico-Toluca S/N, Estado de Mexico, C.P. 52750 (Mexico); Benitez-Read, J. S. [Inst. Nacional de Investigationes Nucleares ININ, Gerencia de Ciencias Aplicadas, Carretera Mexico-Toluca S/N, Estado de Mexico, C.P. 52750 (Mexico); Inst. Tecnologico de Toluca, Div. de Estudios de Postgrado e Investigacion, Av. Tecnologico S/N, Estado de Mexico, C.P. 52140 (Mexico); Marroquin, J. L. G. [Inst. Nacional de Investigationes Nucleares ININ, Gerencia de Ciencias Aplicadas, Carretera Mexico-Toluca S/N, Estado de Mexico, C.P. 52750 (Mexico)

    2006-07-01

    A description of the development of the new ININ's TRIGA Mark III reactor control console is presented in this meeting. Most of the operation and safety monitoring of the reactor is carried out by means of a personal computer (PC), some interface cards, and an auxiliary computer that drives the control rod mechanisms. In this console, the safety actions are taken by the Protection System (SEC), which acquires the data directly from the safety related systems, specified in the reactor's console design technical specifications. The console, based on the concept of virtual instrumentation, is composed of a group of systems that make easier to the operator the activation of the sequential steps required to operate the reactor. (authors)

  11. Microfungal Activity Test Of The Triga Mark II Reactor Tank Isolation to Aluminium corrosion

    In our pres ious study some pure species of micro fungal have been isolated from cooling water and samples taken from surrounding tank wall of TRIGA Mark II Reaktor. This study was conducted to determine their activities to aluminium 6061-T using modified method of Hortative (1962) in the speed of corrosion transmission process. Each isolate was inoculated into mineral nutrient solution. Changes of ph and reduced weight of Aluminium specimen weight between the experimental and the control groups, and the amounts were proportional to to the length of investigation times. The highest degree of the corrosion speed is given by Penicillium simplicissimum inoculant 2,95.10-6, followed by Paecilomyceus carneus 2,61.106, Penicillium canescens 2,59.10-6 and the control 2,11.106 respectively

  12. Detection of a leaking boron-carbide control rod in a TRIGA Mark I reactor

    During a routine quarterly inspection of the boron-carbide control rods of the Omaha Veterans Administration Hospital 18 kW Triga Mark I reactor, a pin hole leak was detected approximately 3 mm from the chamfered edge. The leak was found by observing bubbles when the rod was withdrawn from the reactor tank for visual observation, and could not be seen with the naked eye. This suggests that pin hole leaks could occur and not be visually detected in control rods and fuel elements examined underwater. A review of the rod calibrations showed that the leak had not caused a loss in rod worth. Slides will be presented showing the bubbles observed during the inspection, together with an unmagnified and magnified view of the pin hole. (author)

  13. Design and Implementation of a Fuzzy Controller for a TRIGA Mark III Reactor

    Tonatiuh Rivero-Gutiérrez

    2012-01-01

    Full Text Available The design and testing of a fuzzy rule based controller to regulate the power of a TRIGA Mark III research nuclear reactor are presented. The design does not require the current exact parameters of the point kinetic equations of the reactor. Instead, from a qualitative analysis of the actions taken by the operators during the reactor’s operation, a set of control rules is derived. The rules cover the operation of the reactor from low levels of about dozens of watts up to its full power level of one megawatt. The controller is able to increase power from different initial values to a wide range of desired levels, maintaining constant levels for long periods of time. The controller’s output is the external reactivity, which is further converted to a control rod incremental movement. The fuzzy controller is implemented on the reactor’s digital operating console, and the results of a series of experiments are discussed.

  14. Neutron spectra at two beam ports of a TRIGA Mark III reactor loaded with HEU fuel.

    Vega-Carrillo, H R; Hernández-Dávila, V M; Aguilar, F; Paredes, L; Rivera, T

    2014-01-01

    The neutron spectra have been measured in two beam ports, one radial and another tangential, of the TRIGA Mark III nuclear reactor from the National Institute of Nuclear Research in Mexico. Measurements were carried out with the reactor core loaded with high enriched uranium fuel. Two reactor powers, 5 and 10 W, were used during neutron spectra measurements using a Bonner sphere spectrometer with a (6)LiI(Eu) scintillator and 2, 3, 5, 8, 10 and 12 in.-diameter high-density polyethylene spheres. The neutron spectra were unfolded using the NSDUAZ unfolding code. For each spectrum total flux, mean energy and ambient dose equivalent were determined. Measured spectra show fission, epithermal and thermal neutrons, being harder in the radial beam port. PMID:23746708

  15. Archaeometric studies by using neutron radiography in ITU TRIGA Mark-II reactor

    Archaeometric many studies have been done by using neutron radiography in ITU TRIGA Mark-II Training and Research Reactor for over 15 years. Tangential beam tube has been arranged for using neutron radiography. Generally, transfer technique has been preferred with using dysprosium screen, but indium screen also is used. Some studies are described which are all on the Anatolian artefacts. The first study from 13th century AD deals with Seljukian period from south-east Anatolia. It investigated a plate from Great Mosque door in Cizre. With means of the neutron radiography painting traces are investigated on the plates. Organic dye traces are noticed on some of plates, which have generally animal figures. Other studies from Urartu period at the first millennium B.C, investigates artefacts found at the vicinity of Van on east Anatolia. An important one is a sword that was found in a grave. It has some corrosion defects. The neutron radiography was applied and shown that wooden parts are there. Other studies referred to samples from the Ikiztepe Excavation site on north Anatolia. Many artefacts were examined by neutron radiography. Some of them evidenced animal parts are recognised as covering parts. An interesting result was obtained to a sword and its sheath that were corroded together. After the neutron radiography applications, it was noticed that there are a cloth between the sword and its sheath. Hence, it was the cause of corrosion of the artefact. By using neutron radiography, many interesting and detailed results were observed by means of the neutron beam from the ITU TRIGA Mark-II Training and Research Reactor. Some of them could not be evidenced by means of any other technique

  16. Neutron radiography applications in I.T.U. TRIGA Mark-II reactor

    Neutron radiography is an important radiographic technique which is supplied different and advanced information according to the X or gamma ray radiography. However, it has a trouble for supplying the convenient neutron sources. Tangential beam tube of Istanbul Technical University (ITU) TRIGA Mark-II Training and Research Reactor has been arranged for using neutron radiography. The neutron radiography set defined as detailed for the application of the technique. Two different techniques for neutron radiography are defined as namely, transfer method and direct method. For the transfer method dysprosium and indium screens are used in the study. But, dysprosium generally was preferred in many studies in the point of view nuclear safety. Gadolinium was used for direct method. Two techniques are compared and explained the preferring of the transfer technique. Firstly, reference composition is prepared for seeing the differences between neutron and X-ray or gamma radiography. In addition of it, some radiograph samples are given neutron and X-ray radiography which shows the different image characters. Lastly, some examples are given from archaeometric studies. One of them the brass plates of Great Mosque door in Cizre. After the neutron radiography application, organic dye traces are noticed. Other study is on a sword that belong to Urartu period at the first millennium B.C. It is seen that some wooden part on it. Some different artefacts are examined with neutron radiography from the Ikiztepe excavation site, then some animal post parts are recognized on them. One of them is sword and sheath which are corroded together. After the neutron radiography application, it can be noticed that there are a cloth between the sword and its sheath. By using neutron radiography, many interesting and detailed results are observed in ITU TRIGA Mark-II Training and Research Reactor. Some of them shouldn't be recognised by using any other technique

  17. Subchannel analysis of fuel temperature and departure of nucleate boiling of TRIGA Mark I

    Highlights: • Developed a steady-state subchannel code for the TRIGA Mark I. • Assessed natural convection correlations for steady-state operations. • Methodology outlined for gap conductance model development. • Validated subchannel code to a wide range of operating conditions. - Abstract: An evaluation of fuel temperature and departure of nucleate boiling as a function of bulk pool temperature was performed at the Texas A and M University Nuclear Science Center’s TRIGA Mark I reactor. A subchannel analysis code was written with the support of experimentally determined correlations, including the development of a gap conductance model. The code was validated for predicting peak fuel temperature at all operational power levels. The peak fuel temperature was calculated using different correlations for forced and natural convection flows for pool temperatures of 30 °C and 60 °C. The forced convection correlation predicted a fuel temperature rise of 2 °C for the difference in pool temperatures, contrary to the predicted rise of 26 °C from natural convection relationships. Experimental data shows that the relationship of fuel temperature rise with increasing pool temperature is more accurately represented by the natural convection correlation. The peak fuel temperature, for the validated natural convection relationship, is predicted to be 441 °C and 457 °C at a pool temperature of 30 °C and 60 °C, respectively. The minimum departure of nucleate boiling ratio is calculated as 2.14 and 1.72 for a pool temperature of 30 °C and 60 °C, respectively, using the Bernath correlation

  18. A digital data acquisition and display system for ITU TRIGA Mark II reactor

    Full text: In this study, a digital data acquisition and display system realized for ITU TRIGA Mark-II Reactor is described. This system is realized in order to help the reactor operator and to increase reactor console capacity. The system consists of two main units, which are host computers and RTI-815F, analog devices, data acquisition card. RTI-815F is multi-function analog/digital input/output board that plugs into one of the available long expansion slots in the IBM-PC, PC/XT, PC/AT, or equivalent personal computers. It has 16 analog input channels for single-ended input signals or 8 analog input channels for differential input signals. But its channel capacity can be increased to 32 input channels for single-ended input signals or 16 input channels for differential input signals. RTI-815F board contains 2 analog output channels, 8 digital input channels and 8 digital output channels. In the ITD TRIGA Mark-II Reactor, 6 fuel temperature channels, 3 water temperature channels, 3 control rod position channels and 4 power channels are chosen as analog input signals for RTI-815F. Its digital outputs are assigned to cooling tower fan, primary and secondary pump reactor scram, control rod rundown. During operation, data are automatically archived to disk and displayed on screen. The channel selection time and sampling time can be adjusted. The simulated movement and position of control rods in the reactor core can be noted and displayed. The changes of power, fuel temperature and water temperature can be displayed on the screen as a graphic. In this system both period and reactivity are calculated and displayed on the screen. (authors)

  19. Adaptive fuzzy control of neutron power of the TRIGA Mark III reactor; Control difuso adaptable de la potencia neutronica del reactor Triga Mark III

    Rojas R, E.

    2014-07-01

    The design and implementation of an identification and control scheme of the TRIGA Mark III research nuclear reactor of the Instituto Nacional de Investigaciones Nucleares (ININ) of Mexico is presented in this thesis work. The identification of the reactor dynamics is carried out using fuzzy logic based systems, in which a learning process permits the adjustment of the membership function parameters by means of techniques based on neural networks and bio-inspired algorithms. The resulting identification system is a useful tool that allows the emulation of the reactor power behavior when different types of insertions of reactivity are applied into the core. The identification of the power can also be used for the tuning of the parameters of a control system. On the other hand, the regulation of the reactor power is carried out by means of an adaptive and stable fuzzy control scheme. The control law is derived using the input-output linearization technique, which permits the introduction of a desired power profile for the plant to follow asymptotically. This characteristic is suitable for managing the ascent of power from an initial level n{sub o} up to a predetermined final level n{sub f}. During the increase of power, a constraint related to the rate of change in power is considered by the control scheme, thus minimizing the occurrence of a safety reactor shutdown due to a low reactor period value. Furthermore, the theory of stability in the sense of Lyapunov is used to obtain a supervisory control law which maintains the power error within a tolerance region, thus guaranteeing the stability of the power of the closed loop system. (Author)

  20. Thermo-hydrodynamic design and safety parameter studies of the TRIGA MARK II research reactor

    The PARET computer code was used to analyse important thermo-hydrodynamic design and safety parameters of the 3 MW TRIGA MARK II research reactor at Atomic Energy Research Establishment (AERE), Savar, Dhaka, Bangladesh. The study involves the determination of the departure from nucleate boiling (DNB) value and studying its effect over the thermo-hydrodynamic design of the reactor. In the process the temperature profile, heat flux and pressure drop across the hottest channel of the TRIGA core were evaluated. The DNB ratio (DNBR), which is defined as the ratio of the critical heat flux to the heat flux achieved in the core, was computed by means of a suitable correlation as defined in PARET code. Over the length 0.381 m of the hottest channel the DNBR varies, starting from 3.8951 to 5.4031, with a minimum of 2.7851. The peak heat flux occurs at the axial centre of the fuel elements; therefore the DNBR is minimum at this location. The reactor core should be designed so as to prevent the DNBR from dropping below a chosen value under a high heat flux transient condition for the most adverse set of mechanical and coolant conditions. The loss-of-flow accident (LOFA) scenario of the reactor has also been studied to ensure that the existing design and procedures are adequate to assure that the consequences from this anticipated occurrence does not lead to a significant accident. The loss-of-flow transient after a trip time of 4.08 s at 85% of loss of normal flow for the TRIGA core shows a peak temperature of 709.22 deg. C in the fuel centreline and 131.94 deg. C in the clad and 46.63 deg. C in the coolant exit of the hottest channel. The transient was terminated at 15% of nominal flow after ∼48.0 s and the time at which the reversal of coolant flow starts is ∼67.0 s

  1. Spent Fuel Management Program in the 3MW TRIGA MARK-II Research Reactor of Bangladesh

    Bangladesh Atomic Energy Commission (BAEC) has been operating a 3 MW TRIGA MARK II research reactor since 1986. The reactor was installed in the campus of the Atomic Energy Research Establishment (AERE) at Savar, Dhaka. It is one of the main nuclear research facilities in the country. The reactor uses TRIGA LEU fuel with uranium content of 20% by weight. The enrichment level of the fuel is 19.7%. The reactor has so far been operated for 7834 hours with a total cumulative burn up of 15898 MWh (662.5 MWd). The total burn up life of the present core is 1200 MWd. The main areas of use are: training of man-power for nuclear power plant applications, radioisotope (RI) production, neutron activation analysis (NAA), neutron radiography (NR) and neutron scattering. The government of Bangladesh has taken decision to establish nuclear power programme in the country. There is an ADP (Annual Development Project) to accomplish necessary activities for construction of medium size nuclear power plant (NPP) in the western zone of the country. Now, with regard to the safe management, storage of spent fuel and disposal of radioactive waste arising from operation of the research reactor and also from the proposed NPP expected to be constructed in future, BAEC is drawing up short and long-term plans and programs. At present, there does not exist any spent fuel element in the reactor facility. It is to be mentioned that Bangladesh is aware of the US DOE’s ‘Take Back Program’ in connection with the research reactor spent fuel of US origin, and is very much interested to take part in this program. The paper presents the current status of handling and storage facilities available for spent fuel and strategy for the safe management of spent fuel to be generated from the research reactor in near future. (author)

  2. TRIGA reactor main systems

    This module describes the main systems of low power (<2 MW) and higher power (≥2 MW) TRIGA reactors. The most significant difference between the two is that forced reactor cooling and an emergency core cooling system are generally required for the higher power TRIGA reactors. However, those TRIGA reactors that are designed to be operated above 3 MW also use a TRIGA fuel that is specifically designed for those higher power outputs (3 to 14 MW). Typical values are given for the respective systems although each TRIGA facility will have unique characteristics that may only be determined by the experienced facility operators. Due to the inherent wide scope of these research reactor facilities construction and missions, this training module covers those systems found at most operating TRIGA reactor facilities but may also discuss non-standard equipment that was found to be operationally useful although not necessarily required. (author)

  3. Applicable regulations and development of surveillance experiments of criticality approach in the TRIGA III Mark reactor; Normativa aplicable y desarrollo de experimentos de vigilancia de aproximacion a criticidad en el reactor Triga Mark III

    Gonzalez M, J.L.; Aguilar H, F.; Rivero G, T.; Sainz M, E. [Instituto nacional de Investigaciones Nucleares, Departamento de Automatizacion, A.P. 18-1027, Col. Escandon, 11801 Mexico D.F. (Mexico)

    2000-07-01

    In the procedure elaborated to repair the vessel of TRIGA III Mark reactor is required to move toward two tanks of temporal storage the fuel elements which are in operation and the spent fuel elements which are in decay inside the reactor pool. The National Commission of Nuclear Safety and Safeguards (CNSNS) has requested as protection measure that it is carried out a surveillance of the criticality approach of the temporal storages. This work determines the main regulation aspects that entails an experiment of criticality approach, moreover, informing about the results obtained in the developing of this experiments. The regulation aspects are not exclusives for this work in the TRIGA Mark III reactor but they also apply toward any assembling of fissile material. (Author)

  4. Plan for the safe decommissioning of the BAEC 3MW TRIGA MARK-II research reactor

    The 3 MW TRIGA Mark-II research reactor of Bangladesh Atomic Energy Commission (BAEC) has been operating since September 14, 1986. The reactor is used for radioisotope production (131I, 99mTc, 46Sc), various R and D activities, and manpower training. The reactor has been operated successfully since it's commissioning with the exception of a few reportable incidents. Of these, the decay tank leakage incident of 1997 is considered to be the most significant one. As a result of this incident, reactor operation at full power remained suspended for about 4 years. However, the reactor operation was continued during this period at a power level of 250 kW to cater the needs of various R and D groups, which required lower neutron flux for their experiments. This was made possible by establishing a temporary by pass connection across the decay tank using local technology. The reactor was made operational again at full power after successful replacement of the damaged decay tank in August 2001. At present the reactor is operated 5 days a week at a full power level of 3 MW for production of I-131 and R and D purposes. Up to December 2005 total burn-up of the core stands at about 358 Megawatt Days (MWDs). BAEC has planned to increase the production of 131I and as such, the core burn-up is expected to be increased very significantly in the years to come. There is a declaration from the US DOE that all US origin research reactor spent fuel generated within 2006 will be taken away to the USA at their own cost within 2009. But the fuel burn up of the BAEC research reactor is about 6%. So the reactor can operate for about 10-20 years more. An initial decommissioning plan for the BAEC TRIGA reactor and relevant facilities should be established as early as possible as recommended in the IAEA Safety Standards Series No.WS-G-2.1 (Decommissioning of Nuclear Power Plants and Research Reactors - Safety Standards Series No.WS-G-2.1, IAEA, Vienna, 1999). During the design and construction

  5. Calculation of neutron flux in PUSPATI TRIGA MARK II reactor using Monte-Carlo n-particle approach

    A Monte Carlo simulation of neutron flux at the TRIGA MARK II PUSPATI (RTP) nuclear research reactor at Agensi Nuklear Malaysia was carried out using the MCNP5 program. The objective of the work is to simulate the neutron flux inside the reactor core. Calculations of neutron flux for fast and thermal neutron were carried out under the conditions in which the control rod was either fully withdrawn from or fully inserted into the reactor. (Author)

  6. Characterization of control rod worths and fuel rod power peaking factors in the university of Utah TRIGA Mark I reactor

    Alroumi Fawaz; Kim Donghoon; Schow Ryan; Jevremovic Tatjana

    2016-01-01

    Control rod reactivity (worths) for the three control rods and fuel rod power peaking factors in the University of Utah research reactor (100 kW TRIGA Mark I) are characterized using the AGENT code system and the results described in this paper. These values are compared to the MCNP6 and existing experimental measurements. In addition, the eigenvalue, neutron spatial flux distributions and reaction rates are analyzed and discussed. The AGENT code system is ...

  7. Visualization of neutron flux and power distributions in TRIGA Mark II reactor as an educational tool

    Modern Monte Carlo computer codes (e.g. MCNP) for neutron transport allow calculation of detailed neutron flux and power distribution in complex geometries with resolution of ∼1 mm. Moreover they enable the calculation of individual particle tracks, scattering and absorption events. With the use of advanced software for 3D visualization (e.g. Amira, Voxler, etc.) one can create and present neutron flux and power distribution in a 'user friendly' way convenient for educational purposes. One can view axial, radial or any other spatial distribution of the neutron flux and power distribution in a nuclear reactor from various perspectives and in various modalities of presentation. By visualizing the distribution of scattering and absorption events and individual particle tracks one can visualize neutron transport parameters (mean free path, diffusion length, macroscopic cross section, up-scattering, thermalization, etc.) from elementary point of view. Most of the people remember better, if they visualize the processes. Therefore the representation of the reactor and neutron transport parameters is a convenient modern educational tool for the (nuclear power plant) operators, nuclear engineers, students and specialists involved in reactor operation and design. The visualization of neutron flux and power distributions in Jozef Stefan Institute TRIGA Mark II research reactor is treated in the paper. The distributions are calculated with MCNP computer code and presented using Amira and Voxler software. The results in the form of figures are presented in the paper together with comments qualitatively explaining the figures. (authors)

  8. Conversion of the core of the TRIGA Mark III reactor at the Mexican Nuclear Centre

    It was decided to convert the core of the TRIGA MARK III reactor at the Mexican Nuclear Centre run by the National Nuclear Institute because of problems detected during the operation, such as a lack of excess reactivity for operation at nominal power over long periods and difficulties in the maintenance and calibration of the control panel. In order to compensate for the lack of excess reactivity the fuel elements taken to the highest burnup were replaced by fresh elements acquired for this purpose. The latter, however, had a different enrichment, and this necessitated a detailed analysis of the neutronic and thermohydraulic behaviour of the reactor with a view to determining a mixed core configuration which would meet safe operation requirements. In conducting the thermohydraulic analysis, a natural convection coolant flow model was developed to determine coolant velocity and pressure drop patterns within the core. The heat transfer equations were solved and it was found that the hottest fuel element did not attain critical heat flux conditions. In loading this core it was also necessary to analyse procedures and to consider the possible effects of reaching criticality with fuel elements having different enrichments. The loading procedure is described, as is the measurement system and the results obtained. In order to resolve the calibration and maintenance problems, a new, more advanced control panel was designed with conventional and nuclear detection systems and modern components

  9. Neutron spectra in two beam ports of the TRIGA Mark III reactor

    The neutron spectra have been measured in two beam ports, radial and tangential, of the TRIGA Mark III nuclear reactor from the National Institute of Nuclear Research. Measurements were carried out with the core with mixed fuel (Leu 8.5/20 and Flip Heu 8.5/70). Two reactor powers, 5 and 10 W, were used during neutron spectra measurements using a Bonner sphere spectrometer with a 6Lil(Eu) scintillator and 2, 3, 5, 8, 10 and 12 inches-diameter high density polyethylene spheres. The neutron spectra were unfolded using the NSDUAZ unfolding code; from each spectrum the total neutron flux, the neutron mean energy and the neutron ambient dose equivalent dose were determined. Measured spectra show fission (E≥ 0.1 MeV), epithermal (from 0.4 eV up to 0.1 MeV) and thermal neutrons (E≤ 0.4 eV). For both reactor powers the spectra in the radial beam port have similar features which are different to the neutron spectrum characteristics in the tangential beam port. (Author)

  10. Operational Experience with the TRIGA Mark II Reactor of the University of Pavia

    The Laboratory of Applied Nuclear Energy (LENA) is an Interdepartmental Research Centre of the University of Pavia which operates a 250 kW TRIGA Mark II Research Nuclear Reactor, a Cyclotron for the production of radioisotopes and other irradiation facilities. The reactor is in operation since 1965 and many home-made upgrading were realized in the past years in order to assure a continuous operation of the reactor for the future. The annual reactor operational time at nominal power is in the range of 300 - 400 hours depending upon the time schedule of some experiments and research activities. The reactor is mainly used for NAA activities, BNCT research, samples irradiation and training. In specific, few tens of hours of reactor operation per year are dedicated to training courses for University students and for professionals. Besides, the LENA Centre hosts every year more than one thousand high school students in visit. Lately, LENA was certified ISO 9001:2008 for the ''operation and maintenance of the reactor'' and for the ''design and delivery of the irradiation service''. Nowadays the reactor shows a good technical state and, at the moment, there are no political or economical reason to consider the reactor shut-down. (author)

  11. Renewal and upgrading of the TRIGA Mark II research reactor in Ljubljana

    Despite regulatory supervision, the owner/operator is directly responsible for safe operation of the reactor. Therefore, at the 250 kW TRIGA Mark II research reactor in Ljubljana ever since the beginning of the operation in 1966 gradually modification and modernization have been taking place. During the last twenty years many improvements were introduced, such as: - a dry central thimble for target irradiations (isotope production) - a new pneumatic facility for loading and unloading samples in a new rotary specimen rack or the central thimble - automatic data logging by a configuration based on two microcomputers (already in 1978) - a new analog instrumentation for the nuclear channels, a water level indicator, an integrator (digital power meter) and a reactivity meter - a new spent fuel storage. Further more, it was decided in 1989 to upgrade our reactor for pulsing mode operation and pulse registration. The technical experience that has taken place during the last 25 years was utilized in planning and installing a new control console, and to develop a sophisticated system for the pulse mode operation. (orig.)

  12. Design of a PGAA Facility at the TRIGA Mark III of ININ, Mexico

    A thermal neutron prompt gamma activation analysis (PGAA) facility is being developed at the TRIGA-Mark III research reactor, located at the Nabor Carrillo Nuclear Center of the Mexican Institute for Nuclear Research. The PGAA facility is to be built at the exit of a 3.9-m-long radial beam port, which pierces the graphite core reflector. The measured thermal neutron flux at the beam port exit is 0.7 x 108 n/cm2s, with an epithermal neutron flux of 0.66 x 108 n/cm2s and a gamma-ray dose of 0.1 Sv/h at full reactor power. Under these circumstances, the extraction of a suitable thermal neutron beam becomes quite challenging. The neutron beam filtering and collimation systems are to be designed for a substantial reduction of the background source components in order to maximize the usable thermal neutron intensity. To obtain reasonable PGAA performance from a filtered low-intensity thermal neutron beam, a Compton suppression feature is added to the detection system. Representative suppressed and unsuppressed spectra of paraffin (hydrogen) neutron capture gamma rays are shown

  13. Neutron detection of the Triga Mark III reactor, using nuclear track methodology

    Espinosa, G., E-mail: espinosa@fisica.unam.mx; Golzarri, J. I. [Instituto de Física, Universidad Nacional Autónoma de México Circuito de la Investigación Científica, Ciudad Universitaria. México, DF (Mexico); Raya-Arredondo, R.; Cruz-Galindo, S. [Instituto Nacional de Investigaciones Nucleares (Mexico); Sajo-Bohus, L. [Universidad Simón Bolivar, Laboratorio de Física Nuclear, Caracas (Venezuela, Bolivarian Republic of)

    2015-07-23

    Nuclear Track Methodology (NTM), based on the neutron-proton interaction is one often employed alternative for neutron detection. In this paper we apply NTM to determine the Triga Mark III reactor operating power and neutron flux. The facility nuclear core, loaded with 85 Highly Enriched Uranium as fuel with control rods in a demineralized water pool, provide a neutron flux around 2 × 10{sup 12} n cm{sup −2} s{sup −1}, at the irradiation channel TO-2. The neutron field is measured at this channel, using Landauer{sup ®} PADC as neutron detection material, covered by 3 mm Plexiglas{sup ®} as converter. After exposure, plastic detectors were chemically etched to make observable the formed latent tracks induced by proton recoils. The track density was determined by a custom made Digital Image Analysis System. The resulting average nuclear track density shows a direct proportionality response for reactor power in the range 0.1-7 kW. We indicate several advantages of the technique including the possibility to calibrate the neutron flux density measured at low reactor power.

  14. Utilization and operating experience of the TRIGA Mark II research reactor in Ljubljana

    Dimic, V. (J. Stefan Institute, Ljubljana (Slovenia))

    1999-12-15

    The operating experience of the 250 kW TRIGA Mark-II reactor of the J. Stefan Institute in Ljubljana, Slovenia in the years 1996 and 1997 is reported. The reactor has been in operation without long undesired shut-down. In 1996 the production of energy was 401 MWh (around 1600 hours in operation) and there was 7 unplanned shut-downs because of electricity broke down. In 1997 the production of energy was 272 MWh (around 1090 hours in operation). In 1991 and 1997 the reactor was almost completely reconstructed and upgraded. The reconstruction consisted mainly of replacing the grid plates, the control rod mechanisms and the control unit. Recently, the new PC based system was adopted and developed to collect the operational radiation data of the reactor. The new wiring of the electric power system, part of the primary and secondary coolant system piping and the spent fuel storage pool have been modified and the new air-exchange system in the control room were installed. Because of this large reconstruction of the reactor, for the last years in the operation of the reactor no significant problems have been detected. The facility is expected to operate without major investment at least until 2006. The reactor has been utilized in the projects: Neutron activation analysis, Boron neutron capture therapy, Real time neutron radiography, Neutron tomography, and Dosimetry research. The activities of neutron activation analysis, neutron radiography and tomography as well as boron neutron capture therapy are shortly presented

  15. Neutronic Analysis of the Pavia University TRIGA Mark II Reactor Core

    Tigliole, A. Borio Di [University of Pavia, Department of Nuclear and Theoretical Physics, Via Bassi 4, 27100 Pavia (Italy); University of Pavia, Laboratory of Applied Nuclear Energy, Via Aselli 41, 27100 Pavia (Italy); Cammi, A. [Polytechnic of Milano, Department of Energy, Via La Masa 34, 20156 Milano (Italy); Chiesa, D.; Clemenza, M. [University of Milano-Bicocca, Physics Department, Piazza della Scienza 3, 20126, Milano (Italy); Pattavina, L.; Previtali, E. [University of Milano-Bicocca, Physics Department, Piazza della Scienza 3, 20126, Milano (Italy); INFN section of Milano-Bicocca, Piazza della Scienza 3, 20126, Milano (Italy); Scian, G. [University of Pavia, Laboratory of Applied Nuclear Energy, Via Aselli 41, 27100 Pavia (Italy)

    2011-07-01

    An advanced computational tool based on Monte Carlo code was developed for the neutronic analysis of the TRIGA Mark II research reactor of the University of Pavia and the results from simulations were benchmarked with the experimental data. The neutron analysis was performed by means of the 3-D continuous-energy Monte Carlo codes MCNP4C and MCNP5. All core components were reproduced in good detail and the model allows the description of different core and fuel configurations with good versatility. In a first step, the results from the simulations with fresh fuel at room temperature were compared with the experimental data about critical core parameters at zero power level, quoted in the reactor First Criticality Final Report; a very good agreement was found and the goodness of the model was proved. Afterwards, neutron flux and reactivity dependence on the fuel and moderator temperature was studied in detail; all the available methods for the simulation of thermal effects were analyzed in order to model the reactor in the stationary operating condition at 250 kW. The model was updated to the present configuration and the use of specific S({alpha},{beta}) cross sections was found to be of primary importance for a correct simulation of low-energy neutrons scattering within moderator. (author)

  16. Neutronic Analysis of the Pavia University TRIGA Mark II Reactor Core

    An advanced computational tool based on Monte Carlo code was developed for the neutronic analysis of the TRIGA Mark II research reactor of the University of Pavia and the results from simulations were benchmarked with the experimental data. The neutron analysis was performed by means of the 3-D continuous-energy Monte Carlo codes MCNP4C and MCNP5. All core components were reproduced in good detail and the model allows the description of different core and fuel configurations with good versatility. In a first step, the results from the simulations with fresh fuel at room temperature were compared with the experimental data about critical core parameters at zero power level, quoted in the reactor First Criticality Final Report; a very good agreement was found and the goodness of the model was proved. Afterwards, neutron flux and reactivity dependence on the fuel and moderator temperature was studied in detail; all the available methods for the simulation of thermal effects were analyzed in order to model the reactor in the stationary operating condition at 250 kW. The model was updated to the present configuration and the use of specific S(α,β) cross sections was found to be of primary importance for a correct simulation of low-energy neutrons scattering within moderator. (author)

  17. Operational Experience with the TRIGA Mark II Reactor of the University of Pavia

    Tigliole, A. Borio Di; Alloni, D.; Cagnazzo, M.; Coniglio, M.; Lana, F.; Losi, A.; Magrotti, G.; Manera, S.; Marchetti, F.; Pappalardo, P.; Prata, M.; Provasi, M.C.; Salvini, A.; Scian, G.; Vinciguerra, G. [University of Pavia, Laboratory of Applied Nuclear Energy (L.E.N.A), Via Aselli 41, 27100 Pavia (Italy)

    2011-07-01

    The Laboratory of Applied Nuclear Energy (LENA) is an Interdepartmental Research Centre of the University of Pavia which operates a 250 kW TRIGA Mark II Research Nuclear Reactor, a Cyclotron for the production of radioisotopes and other irradiation facilities. The reactor is in operation since 1965 and many home-made upgrading were realized in the past years in order to assure a continuous operation of the reactor for the future. The annual reactor operational time at nominal power is in the range of 300 - 400 hours depending upon the time schedule of some experiments and research activities. The reactor is mainly used for NAA activities, BNCT research, samples irradiation and training. In specific, few tens of hours of reactor operation per year are dedicated to training courses for University students and for professionals. Besides, the LENA Centre hosts every year more than one thousand high school students in visit. Lately, LENA was certified ISO 9001:2008 for the ''operation and maintenance of the reactor'' and for the ''design and delivery of the irradiation service''. Nowadays the reactor shows a good technical state and, at the moment, there are no political or economical reason to consider the reactor shut-down. (author)

  18. Neutron spectra in two beam ports of the TRIGA Mark III reactor

    Vega C, H. R.; Hernandez D, V. M. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98060 Zacatecas (Mexico); Aguilar, F.; Paredes, L. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Rivera M, T., E-mail: fermineutron@yahoo.com [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Legaria, Av. Legaria 694, 11500 Mexico D. F. (Mexico)

    2013-10-15

    The neutron spectra have been measured in two beam ports, radial and tangential, of the TRIGA Mark III nuclear reactor from the National Institute of Nuclear Research. Measurements were carried out with the core with mixed fuel (Leu 8.5/20 and Flip Heu 8.5/70). Two reactor powers, 5 and 10 W, were used during neutron spectra measurements using a Bonner sphere spectrometer with a {sup 6}Lil(Eu) scintillator and 2, 3, 5, 8, 10 and 12 inches-diameter high density polyethylene spheres. The neutron spectra were unfolded using the NSDUAZ unfolding code; from each spectrum the total neutron flux, the neutron mean energy and the neutron ambient dose equivalent dose were determined. Measured spectra show fission (E≥ 0.1 MeV), epithermal (from 0.4 eV up to 0.1 MeV) and thermal neutrons (E≤ 0.4 eV). For both reactor powers the spectra in the radial beam port have similar features which are different to the neutron spectrum characteristics in the tangential beam port. (Author)

  19. A sipping test system to the Triga Mark I IPR-R1 reactor

    The IPR-R1 TRIGA MARK I Research Reactor of the Nuclear Technology Development Centre (CDTN/CNEN-MG) is a tank type reactor of General Atomic Company that has been operating since 1960 at a power of 100 kW. At present there are 63 fuel rods at the reactor core (58 aluminum cladding, 5 stainless steel and 1 stainless steel instrumented). The oldest fuel elements are made with aluminum alloy and the new ones from stainless steel. Some of the old fuel rods present some spots along their lateral fuel plates. These spots are originated by galvanic corrosion between the fuel cladding and the aluminum core grid. To provide an ageing program to the reactor, a sipping tests system will be performed with the reactor fuel. The system intends evaluate the possible presence of 137Cs leaking rate. This work presents the system, the procedure and methodology that will is used to perform the sipping tests with the fuel rods at the reactor core. The results obtained for the 137Cs sipping water activity for some fuel assembly, if any, will be evaluated with the system in operation. A correlation between the possible corrosion and the activity values measured will be realized. (author)

  20. Immobilization of Ion Exchange radioactive resins of the TRIGA Mark III Nuclear Reactor

    In the last decades many countries in the world have taken interest in the use, availability, and final disposal of dangerous wastes in the environment, within these, those dangerous wastes that contain radioactive material. That is why studies have been made on materials used as immobilization agent of radioactive waste that may guarantee its storage for long periods of time under drastic conditions of humidity, temperature change and biodegradation. In mexico, the development of different applications of radioactive material in the industry, medicine and investigation, have generated radioactive waste, sealed and open sources, whose require a special technological development for its management and final disposal. The present work has as a finality to develop the process and define the agglutinating material, bitumen, cement and polyester resin that permits immobilization of resins of Ionic Exchange contaminated by Barium 153, Cesium 137, Europium 152, Cobalt 60 and Manganese 54 generated from the nuclear reactor TRIGA Mark III. Ionic interchange contaminated resin must be immobilized and is analysed under different established tests by the Mexican Official Standard NOM-019-NUCL-1995 Low level radioactive wastes package requirements for its near-surface final disposal. Immobilization of ionic interchange contaminated resins must count with the International Standards applicable in this process; in these standards, the following test must be taken in prototype examples: Free-standing water, leachability, compressive strength, biodegradation, radiation stability, thermal stability and burning rate. (Author)

  1. IPR-RI TRIGA MARK I reactor and the neutron activation analysis at CDTN/CNEN

    The IPR-R1 TRIGA Mark I research reactor started up in 1960. It is located at Centro de Desenvolvimento da Tecnologia Nuclear (Nuclear Technology Development Centre) / Comissao Nacional de Energia Nuclear (Brazilian Commission for Nuclear Energy), CDTN/CNEN. Join to the reactor, the Laboratory for Neutron Activation Analysis has been developing its activities since 1960. The activities of the Laboratory comprise the delayed fission neutron activation analysis, instrumental (comparative and parametric methods) and radiochemical / chemical methods. These methods are responsible for relevant percentage of CDTN's analysis demand, meeting the clients' analytical needs and researches developed by the Laboratory, by CDTN and by other institutions. Over the years the work has been linked to the goals of the country and the institutions. Nowadays several elements - Ag, Al, Au, As, Ba, Br, Ca, Cd, Ce, Cl, Co, Cr, Cs, Cu, Dy, Eu, Fe, Ga, Hf, Hg, Ho, K, La, Mg, Mn, Mo, Na, Nd, Rb, Sb, Sc, Se, Sm, Sr, Ta, Tb, Th, Ti, U, V, W, Yb, Zn and Zr - are determined in several matrices and range of concentrations. In Brazil, CDTN is the only Institute that fully masters the instrumental neutron activation analysis k0-method determining short, medium and long half-life radionuclides using its own nuclear reactor. The good performance of the reactor is pointed out in a table with experimental and certified values for Certified Reference Materials. (authors)

  2. Fuel burnup analysis of the TRIGA Mark II Reactor at the University of Pavia

    Chiesa, Davide; Pozzi, Stefano; Previtali, Ezio; Sisti, Monica; Alloni, Daniele; Magrotti, Giovanni; Manera, Sergio; Prata, Michele; Salvini, Andrea; Cammi, Antonio; Zanetti, Matteo; Sartori, Alberto

    2015-01-01

    A time evolution model was developed to study fuel burnup for the TRIGA Mark II reactor at the University of Pavia. The results were used to predict the effects of a complete core reconfiguration and the accuracy of this prediction was tested experimentally. We used the Monte Carlo code MCNP5 to reproduce system neutronics in different operating conditions and to analyse neutron fluxes in the reactor core. The software that took care of time evolution, completely designed in-house, used the neutron fluxes obtained by MCNP5 to evaluate fuel consumption. This software was developed specifically to keep into account some features that differentiate experimental reactors from power ones, such as the daily ON/OFF cycle and the long fuel lifetime. These effects can not be neglected to properly account for neutron poison accumulation. We evaluated the effect of 48 years of reactor operation and predicted a possible new configuration for the reactor core: the objective was to remove some of the fuel elements from the...

  3. Testing the applicability of the k 0-NAA method at the MINT's TRIGA MARK II reactor

    The Analytical Chemistry Laboratory at MINT is using the NAA technique since 1980s and is the only laboratory in Malaysia equipped with a research reactor, namely the TRIGA MARK II. Throughout the years the development of NAA technique has been very encouraging and was made applicable to a wide range of samples. At present, the k 0 method has become the preferred standardization method of NAA (k 0-NAA) due to its multi-elemental analysis capability without using standards. Additionally, the k 0 method describes NAA in physically and mathematically understandable definitions and is very suitable for computer evaluation. Eventually, the k 0-NAA method has been adopted by MINT in 2003, in collaboration with the Nuclear Research Institute (NRI), Vietnam. The reactor neutron parameters (α and f) for the pneumatic transfer system and for the rotary rack at various locations, as well as the detector efficiencies were determined. After calibration of the reactor and the detectors, the implemented k 0 method was validated by analyzing some certified reference materials (including IAEA Soil 7, NIST 1633a, NIST 1632c, NIST 1646a and IAEA 140/TM). The analysis results of the CRMs showed an average u score well below the threshold value of 2 with a precision of better than ±10% for most of the elemental concentrations obtained, validating herewith the introduction of the k 0-NAA method at the MINT

  4. Testing the applicability of the k0-NAA method at the MINT's TRIGA MARK II reactor

    Siong, Wee Boon; Dung, Ho Manh; Wood, Ab. Khalik; Salim, Nazaratul Ashifa Abd.; Elias, Md. Suhaimi

    2006-08-01

    The Analytical Chemistry Laboratory at MINT is using the NAA technique since 1980s and is the only laboratory in Malaysia equipped with a research reactor, namely the TRIGA MARK II. Throughout the years the development of NAA technique has been very encouraging and was made applicable to a wide range of samples. At present, the k0 method has become the preferred standardization method of NAA ( k0-NAA) due to its multi-elemental analysis capability without using standards. Additionally, the k0 method describes NAA in physically and mathematically understandable definitions and is very suitable for computer evaluation. Eventually, the k0-NAA method has been adopted by MINT in 2003, in collaboration with the Nuclear Research Institute (NRI), Vietnam. The reactor neutron parameters ( α and f) for the pneumatic transfer system and for the rotary rack at various locations, as well as the detector efficiencies were determined. After calibration of the reactor and the detectors, the implemented k0 method was validated by analyzing some certified reference materials (including IAEA Soil 7, NIST 1633a, NIST 1632c, NIST 1646a and IAEA 140/TM). The analysis results of the CRMs showed an average u score well below the threshold value of 2 with a precision of better than ±10% for most of the elemental concentrations obtained, validating herewith the introduction of the k0-NAA method at the MINT.

  5. Characterization of the TRIGA Mark II reactor full-power steady state

    Cammi, Antonio; Chiesa, Davide; Clemenza, Massimiliano; Pozzi, Stefano; Previtali, Ezio; Sisti, Monica; Magrotti, Giovanni; Prata, Michele; Salvini, Andrea

    2015-01-01

    In this work, the characterization of the full-power steady state of the TRIGA Mark II nuclear reactor of the University of Pavia is performed by coupling Monte Carlo (MC) simulation for neutronics with "Multiphysics" model for thermal-hydraulics. Neutronic analyses have been performed starting from a MC model of the entire reactor system, based on the MCNP5 code, that was already validated in fresh fuel and zero-power configuration (in which thermal effects are negligible) using the available experimental data as benchmark. In order to describe the full-power reactor configuration, the temperature distribution in the core is necessary. To evaluate it, a thermal-hydraulic model has been developed, using the power distribution results from MC simulation as input. The thermal-hydraulic model is focused on the core active region and takes into account sub-cooled boiling effects present at full reactor power. The obtained temperature distribution is then introduced in the MC model and a benchmark analysis is carr...

  6. Utilization and operating experience of the 250 kw TRIGA Mark II research reactor in Ljubljana

    In its 35th year, the TRIGA Mark II 250 kW pulsing research reactor in Ljubljana is continuing its busy operation. With the maximum neutron flux in the central thimble of 10 13 n/cm 2 sec and many sample radiation positions the reactor has been used to perform many experiments in the following fields: solid state physics (elastic and inelastic neutron scattering), neutron dosimetry, neutron radiography, reactor physics including burn up measurements and calculations, boron neutron capture therapy and neutron activation analysis which represents one of the major usage of our reactor. Besides these, applied research around the reactor has been conducted, such as doping of silicon monocrystals, a routine production of various radioactive isotopes for industry ( 60Co, 64Zn, 24Na, 82Br) and medical use ( 18F, 99m Tc, etc.) and other activities. During the past decade the reactor was almost completely reconstructed (new grid plates, the control mechanisms and the control unit, modification of the spent fuel storage pool, etc). The main novelty in the reactor physics and operation features of the reactor was the installation of a pulse rod, therefore the reactor can be operated in a pulse mode. After reconstruction, the core was loaded with fresh 20% enriched fuel elements. In 1999 all spent fuel elements were shipped to the USA. (author)

  7. Simulation of Collimator for Neutron Imaging Facility of TRIGA MARK II PUSPATI Reactor

    Zin, Muhammad Rawi Mohamed; Jamro, Rafhayudi; Yazid, Khairiah; Hussain, Hishamuddin; Yazid, Hafizal; Ahmad, Megat Harun Al Rashid Megat; Azman, Azraf; Mohamad, Glam Hadzir Patai; Hamzah, Nai'im Syaugi; Abu, Mohamad Puad

    Neutron Radiography facility in TRIGA MARK II PUSPATI reactor is being upgraded to obtain better image resolution as well as reducing exposure time. Collimator and exposure room are the main components have been designed for fabrication. This article focuses on the simulation part that was carried out to obtain the profile of collimated neutron beam by utilizing the neutron transport protocol code in the Monte Carlo N-Particle (MCNP) software. Particular interest is in the selection of materials for inlet section of the collimator. Results from the simulation indicates that a combination of Bismuth and Sapphire, each of which has 5.0 cm length that can significantly filter both the gamma radiation and the fast neutrons. An aperture made of Cadmium with 1.0 cm opening diameter provides thermal neutron flux about 1.8 x108 ncm-2s-1 at the inlet, but reduces to 2.7 x106 ncm-2s-1 at the sample plane. Still the flux obtained is expected to reduces exposure time as well as gaining better image resolution.

  8. Utilization and operating experience of the TRIGA Mark II research reactor in Ljubljana

    The operating experience of the 250 kW TRIGA Mark-II reactor of the J. Stefan Institute in Ljubljana, Slovenia in the years 1996 and 1997 is reported. The reactor has been in operation without long undesired shut-down. In 1996 the production of energy was 401 MWh (around 1600 hours in operation) and there was 7 unplanned shut-downs because of electricity broke down. In 1997 the production of energy was 272 MWh (around 1090 hours in operation). In 1991 and 1997 the reactor was almost completely reconstructed and upgraded. The reconstruction consisted mainly of replacing the grid plates, the control rod mechanisms and the control unit. Recently, the new PC based system was adopted and developed to collect the operational radiation data of the reactor. The new wiring of the electric power system, part of the primary and secondary coolant system piping and the spent fuel storage pool have been modified and the new air-exchange system in the control room were installed. Because of this large reconstruction of the reactor, for the last years in the operation of the reactor no significant problems have been detected. The facility is expected to operate without major investment at least until 2006. The reactor has been utilized in the projects: Neutron activation analysis, Boron neutron capture therapy, Real time neutron radiography, Neutron tomography, and Dosimetry research. The activities of neutron activation analysis, neutron radiography and tomography as well as boron neutron capture therapy are shortly presented

  9. Thermal Hydraulics Analysis for the 3MW TRIGA MARK-II Research Reactor Under Transient Condition

    Some important thermal hydraulic parameters of the 3 MW TRIGA MARK-II research reactor operating under transient condition were investigated using two computer codes PULTRI and TEMPUL. Major transient parameters, such as, peak power and prompt energy released after pulse, maximum fuel and coolant temperature, surface heat flux, time and radial distribution of temperature within fuel element after pulse, fuel, fuel-cladding gap width variation, etc. were computer and compared with the experimental and operational values as reported in the safety Analysis Report (SAR). It was observed that pulsing of the reactor inserting an excess reactivity of $2.00 shoots the reactor power level to 854.353 MW compared to an experimental value of 852 MW; the maximum fuel temperature corresponding to this peak power was found to be 846.76o C which is much less than the limiting maximum value of fuel temperature of 11500 C as reported in SAR. During a pulse if the film boiling occurs for a peak adiabatic fuel temperature of 1000o C, the calculated outer cladding wall temperature was observed to be 702.390 C compared to a value of 760o C reported in SAR under the same condition. The investigated other results were also found to be in good agreement with the values reported in the SAR. 16 refs., 22 figs. (author)

  10. The future of the IPR-R1 TRIGA MARK I reactor after 48 years operation

    The TRIGA Mark I IPR-R1 Reactor operates in the Nuclear Technology Development Center/ Brazilian Committion for Nuclear Energy (CDTN/CNEN), originally Institute of Radioactive Researches, in Belo Horizonte, Minas Gerais, since November 6, 1960. Initially it operated for isotope production for different uses, being later used in wide scale for another purposes as analyses for activation with neutrons and training of nuclear power plants operators. Dozens of degree theses were also developed with the use of the reactor. Along the years, several improvements were introduced in the reactor and its auxiliary systems, with the purpose to provide better use of the facilities and with the objective to increase the safety in the operation. The reactor is ready right now to operate at 250 kW, and for sure the nuclear applications programmed will be improved. The Operation Manual and the Safety Analysis report were already modified, as well as the Emergency Plan and the relative procedures to the same. After the tests at the end of 2008, the reactor will already be operating in the new power. This work presents a description of the several accomplishments of the last years and comments about the possibility of new uses for the reactor in the several areas of nuclear applications and some of the experiments and tests results during the upgrading program. (authors)

  11. Calculation analysis of TRIGA MARK II reactor core composed of two types of fuel elements

    The most important properties of mixed cores are treated for TRIGA MARK II reactor, composed of standard (20% enriched, 8.5w% U content) and FLIP (70% enriched, 8.5w% U content) fuel elements. Large difference in enrichment and presence of burnable poison in FLIP fuel have strong influence on the main core characteristics, such as: fuel temperature coefficient, power defect, Xe and Sm worth, power and flux distributions, etc. They are significantly different for both types of fuel. Optimal loading of mixed cores therefore strongly depends on the loading pattern of both types of fuel elements. Results of systematic calculational analysis of mixed cores are presented. Calculations on the level of fuel element are performed with WIMSD-4 computer code with extended cross-section library. Core calculations are performed with TRIGAP two-group 1-D diffusion code. Results are compared to measurements and physical explanation is provided. Special concern is devoted to realistic mixed cores, for which optimal in-core fuel management is derived. Refs, figs and tabs

  12. The IPR-R1 TRIGA Mark I Reactor in 39 years: Operations and general improvements

    The nuclear IPR-R1 TRIGA Mark I Reactor operating in the Nuclear Technology Development Center, originally Institute for Radioactive Research in Minas Gerais, Brazil, was dedicated in November 11, 1960. Initially operating for the production of radioisotopes for different uses, it started later to be used in large scale for neutron activation analysis and training of operators for nuclear power plants. Many improvements have been made throughout these years to provide a better performance in its operation and safety conditions. A new cooling system to operate until 300 kW, a new control rod mechanism, an aluminum tank for the reactor pool, an optimization in the pneumatic system, a new reactor control console and a general remodeling of the reactor laboratory were some of the improvements added. To prevent and mitigate the ageing effects, the reactor operation personnel is starting a program to minimize future operation problems. This paper describes the improvements made, the results obtained during the past 39 years, and the precautions taken to ensure future safe operation of the reactor to give operators better conditions of safe work. (author)

  13. Activation calculation of steel of the control rods of TRIGA Mark III reactor

    In the pool of TRIGA Mark III reactor of the Instituto Nacional de Investigaciones Nucleares (ININ), there are control rods that were removed from the core, and which are currently on shelves of decay. These rods were part of the reactor core when only had fuel standard (from 1968-1989). To conduct a proper activation analysis of the rods, is very important to have well-characterized the materials which are built, elemental composition of the same ones, the atomic densities and weight fractions of the elements that constitute them. To determine the neutron activation of the control rods MCNP5 code was used, this code allows us to have well characterized the radionuclides inventory that were formed during irradiation of the control rods. This work is limited to determining the activation of the steel that is part of the shielding of the control rods, the nuclear fuel that is in the fuel follower does not include. The calculation model of the code will be validated with experimental measurements and calculating the activity of fission products of the fuel follower which will take place at the end of 2014. (Author)

  14. Neutron detection of the Triga Mark III reactor, using nuclear track methodology

    Nuclear Track Methodology (NTM), based on the neutron-proton interaction is one often employed alternative for neutron detection. In this paper we apply NTM to determine the Triga Mark III reactor operating power and neutron flux. The facility nuclear core, loaded with 85 Highly Enriched Uranium as fuel with control rods in a demineralized water pool, provide a neutron flux around 2 × 1012 n cm−2 s−1, at the irradiation channel TO-2. The neutron field is measured at this channel, using Landauer® PADC as neutron detection material, covered by 3 mm Plexiglas® as converter. After exposure, plastic detectors were chemically etched to make observable the formed latent tracks induced by proton recoils. The track density was determined by a custom made Digital Image Analysis System. The resulting average nuclear track density shows a direct proportionality response for reactor power in the range 0.1-7 kW. We indicate several advantages of the technique including the possibility to calibrate the neutron flux density measured at low reactor power

  15. Determination of irradiation doses in the TRIGA Mark II by Fricke dosimetry

    One of the most frequently applied aqueous chemical systems for measuring radiation doses is the Fricke dosimeter. In this system a 10-3 molar solution of ferrous sulphate in air saturated 0,8 molar sulphuric acid is oxidated to ferric sulphate. Only freshly prepared solutions had been used or corrections had been made for the rate of auto oxidation in the stored solutions. The determination of ferric ion yield may either be done by spectrophotometric or potentiometric measurements of the irradiated solution. The dosimetric range of the solution is about 5.102 to 5.104 rad. The measurements of radiation doses by the method can be done very easily and quickly and with good reproducibility. With this simple technique it is possible to make dosimetric measurements even during the irradiation. In this paper results are mentioned which are obtained by experiments with gamma radiation and by irradiation in the TRIGA Mark II reactor. This irradiation had been made in several positions, for instance in the water tank and in the thermal column. The difficulty of measurements in the pneumatic system or in the central thimble is the evaluation of the G-value for the mixed irradiation field. (author)

  16. Neutron detection of the Triga Mark III reactor, using nuclear track methodology

    Espinosa, G.; Golzarri, J. I.; Raya-Arredondo, R.; Cruz-Galindo, S.; Sajo-Bohus, L.

    2015-07-01

    Nuclear Track Methodology (NTM), based on the neutron-proton interaction is one often employed alternative for neutron detection. In this paper we apply NTM to determine the Triga Mark III reactor operating power and neutron flux. The facility nuclear core, loaded with 85 Highly Enriched Uranium as fuel with control rods in a demineralized water pool, provide a neutron flux around 2 × 1012 n cm-2 s-1, at the irradiation channel TO-2. The neutron field is measured at this channel, using Landauer® PADC as neutron detection material, covered by 3 mm Plexiglas® as converter. After exposure, plastic detectors were chemically etched to make observable the formed latent tracks induced by proton recoils. The track density was determined by a custom made Digital Image Analysis System. The resulting average nuclear track density shows a direct proportionality response for reactor power in the range 0.1-7 kW. We indicate several advantages of the technique including the possibility to calibrate the neutron flux density measured at low reactor power.

  17. Triga Mark III Reactor Operating Power and Neutron Flux Study by Nuclear Track Methodology

    Espinosa, G.; Golzarri, J. I.; Raya-Arredondo, R.; Cruz-Galindo, S.; Sajo-Bohus, L.

    The operating power of a TRIGA Mark III reactor was studied using Nuclear Track Methodology (NTM). The facility has a Highly Enriched Uranium core that provides a neutron flux of around 2 x 1012 n cm-2 s-1 in the TO-2 irradiation channel. The detectors consisted of a Landauer® CR-39 (allyl diglycol polycarbonate) chip covered with a 3 mm Plexiglas® converter. After irradiation, the detectors were chemically etched in a 6.25M-KOH solution at 60±1 °C for 6 h. Track density was determined by a custom-made Digital Image Analysis System. The results show a direct proportionality between reactor power and average nuclear track density for powers in the range 0.1-7 kW. Data reproducibility and relatively low uncertainty (±3%) were achieved. NTM is a simple, fast and reliable technique that can serve as a complementary procedure to measure reactor operating power. It offers the possibility of calibrating the neutron flux density in any low power reactor.

  18. Operation and maintenance experience at the General Atomic Company's TRIGA reactor facility at San Diego, California

    Since the startup of the original 250 kW TRIGA Mark I reactor in 1958, General Atomic Company has accumulated nearly 24 years of operation and maintenance experience with this type of reactor. In addition to the nearly 24 years of experience gained on the Mark I, GA has operated the 1.5 MW Advanced Prototype Test Reactor (Mark F) for 22 years and operated a 2 MW below-ground TRIGA Mark III for five years. Information obtained from normal and abnormal operation are presented. (author)

  19. Reactor physics tests of TRIGA Mark-II Reactor in Ljubljana

    TRIGA Mark-II Reactor in Ljubljana was recently reconstructed. The reconstruction consisted mainly of replacing the grid plates, the control rod mechanisms and the control unit. The standard type control rods were replaced by the fuelled follower type, the central grid location (A ring) was adapted for fuel element insertion, the triangular cutouts were introduced in the upper plate design. However, the main novelty in reactor physics and operational features of the reactor was the installation of a pulse rod. Having no previous operational experience in pulsing, a detailed and systematic sequence of tests was defined in order to check the predicted design parameters of the reactor with measurements. The following experiments are treated in this paper: initial criticality, excess reactivity measurements, control rod worth measurement, fuel temperature distribution, fuel temperature reactivity coefficient, pulse parameters measurement (peak power, prompt energy, peak temperature). Flux distributions in steady state and pulse mode were measured as well, however, they are treated only briefly due to the volume of the results. The experiments were performed with completely fresh fuel of 12 w% enriched Standard Stainless Steel type. The core configuration was uniform (one fuel element type, including fuelled followers) and compact (no irradiation channels or gaps), as such being particularly convenient for testing the computer codes for TRIGA reactor calculations. Comparison of analytical predictions, obtained with WIMS, SLXTUS, TRIGAP and PULSTRI codes to measured values showed agreement within the error of the measurement and calculation. The paper has the following contents: 1. Introduction; 2. Steady State Experiments; 2.1. Core loading and critical experiment; 2.2. Flux range determination for tests at zero power; 2.3. Digital reactivity meter checkout; 2.4. Control rod worth measurements; 2.5. Excess reactivity measurement; 2.6. Thermal power calibration; 2

  20. Criticality calculations for the TRIGA Mark-II reactor of ITU by the finite element and finite difference methods

    In this study, TRIGA Mark-II reactor of the Istanbul Technical University is treated in cylindrical geometry. Using two-region and ten-region models C23 of this reactor, both FDM and FEM have been utilized to solve multiplication eigenvalue problems. Polynomial approximations up to degree ten have been used in the FEM solutions. Such high degree polynomial approximations are not reported in the literature, perhaps due to the difficulty of assembling the coefficient matrix. By the use of the computer also in the formulation of the problem, such high degree approximations are made possible. The relative computer execution times of FDM and various degree FEM solutions are compared and their relative merits in TRIGA calculations are assessed. Both consistent and lumped source variety FEM solutions are obtained

  1. Utilization of the 250 kW TRIGA Mark II reactor in Ljubljana. Thirty years of experiences

    In its 30th year, the TRIGA Mark II 250 kW pulsing reactor is continuing its busy operation. With the maximum neutron flux in the central thimble of 1.1013 n/cm2 sec and many sample radiation positions the reactor has been used for a number of sophisticated experiments in the following fields: solid state physics (elastic and inelastic scattering of neutrons), neutron dosimetry, neutron radiography, reactor physics including nuclear burn up measurements and calculations and neutron activation analysis which represents one of the major usage of our reactor. Besides these, applied research around the reactor has been conducted, such as dopping of silicon monocrystals, a routine production of various radioactive isotopes for industry and medical use (18F,99mTc). At the Nuclear Training Centre the TRIGA reactor is the main teaching equipment. This training centre can fulfil the training requirements of the first Slovenian Nuclear Power Plant Krsko. (orig.)

  2. Computational analysis of neutronic parameters for TRIGA Mark-II research reactor using evaluated nuclear data libraries

    The aim of this study is to analyze the neutronic parameters of TRIGA Mark-II research reactor using the chain of NJOY-WIMS-CITATION computer codes based on evaluated nuclear data libraries CENDL-2.2 and JEFF-3.1.1. The nuclear data processing code NJOY99.0 has been employed to generate the 69 group WIMS library for the isotopes of TRIGA core. The cell code WIMSD-5B was used to generate the cross sections in CITATION format and then 3-dimensional diffusion code CITTATION was used to calculate the neutronic parameters of the TRIGA Mark-II research reactor. All the analyses were performed using the 7-group macroscopic cross section library. The CITATION test-runs using different cross section sets based on different models applied in WIMS calculations have shown a strong influence of those models on the final integral parameters. Some of the cells were specially treated with PRIZE options available in WIMSD-5B to take into account the fine structure of the flux gradient in the fuel-reflector interface region. It was observed that two basic parameters, the effective multiplication factor, keff and the thermal neutron flux, were in good agreement among the calculated results with each other as well as the measured values. The maximum power densities at the hot spot were 1.0446E02 W/cc and 1.0426E02 W/cc for the libraries CENDL-2.2 and JEFF-3.1.1 respectively. The calculated total peaking factors 5.793 and 5.745 were compared to the original SAR value of 5.6325 as well as MCNP result. Consequently, this analysis will be helpful to enhance the neutronic calculations and also be used for the further thermal-hydraulics study of the TRIGA core.

  3. Computational analysis of neutronic parameters for TRIGA Mark-II research reactor using evaluated nuclear data libraries

    Uddin, M.N. [Department of Physics, Jahangirnagar University, Dhaka (Bangladesh); Sarker, M.M., E-mail: sarker_md@yahoo.co [Reactor Physics and Engineering Division, Institute of Nuclear Science and Technology, Atomic Energy Research Establishment, Ganakbari, Savar, GPO Box 3787, Dhaka-1000 (Bangladesh); Khan, M.J.H. [Reactor Physics and Engineering Division, Institute of Nuclear Science and Technology, Atomic Energy Research Establishment, Ganakbari, Savar, GPO Box 3787, Dhaka-1000 (Bangladesh); Islam, S.M.A. [Department of Physics, Jahangirnagar University, Dhaka (Bangladesh)

    2010-03-15

    The aim of this study is to analyze the neutronic parameters of TRIGA Mark-II research reactor using the chain of NJOY-WIMS-CITATION computer codes based on evaluated nuclear data libraries CENDL-2.2 and JEFF-3.1.1. The nuclear data processing code NJOY99.0 has been employed to generate the 69 group WIMS library for the isotopes of TRIGA core. The cell code WIMSD-5B was used to generate the cross sections in CITATION format and then 3-dimensional diffusion code CITTATION was used to calculate the neutronic parameters of the TRIGA Mark-II research reactor. All the analyses were performed using the 7-group macroscopic cross section library. The CITATION test-runs using different cross section sets based on different models applied in WIMS calculations have shown a strong influence of those models on the final integral parameters. Some of the cells were specially treated with PRIZE options available in WIMSD-5B to take into account the fine structure of the flux gradient in the fuel-reflector interface region. It was observed that two basic parameters, the effective multiplication factor, k{sub eff} and the thermal neutron flux, were in good agreement among the calculated results with each other as well as the measured values. The maximum power densities at the hot spot were 1.0446E02 W/cc and 1.0426E02 W/cc for the libraries CENDL-2.2 and JEFF-3.1.1 respectively. The calculated total peaking factors 5.793 and 5.745 were compared to the original SAR value of 5.6325 as well as MCNP result. Consequently, this analysis will be helpful to enhance the neutronic calculations and also be used for the further thermal-hydraulics study of the TRIGA core.

  4. Licensing of the TRIGA Mark III reactor at the Mexican Nuclear Centre

    The TRIGA Mark III reactor at the Mexican Nuclear Centre went critical in 1968 and remained so until 1979 when the National Commission for Nuclear Safety and Safeguards (CNSNS), the Mexican regulatory authority, was set up. The reactor was therefore operating without a formal operating license, and the CNSNS accordingly requested the ININ to license the reactor under the existing conditions and to ensure that any modification of the original design complied with Standards ANSI/ANS-15 and with the code of practice set out in IAEA Safety Series No. 35. The most relevant points in granting the operating licence were: (a) the preparation of the Safety Report; (b) the formulation and application of the Quality Assurance Programme; (c) the reconditioning of the following reactor systems: the cooling systems; the ventilation and exhaust system; the monitoring system and control panel; (d) the training of the reactor operating staff at junior and senior levels; and (e) the formulation of procedures and instructions. Once the provisional operating license was obtained for the reactor it was considered necessary to modify the reactor core, which has been composed of 20% enriched standards fuel, to a mixed core based on a mixture of standard fuel and FLIP-type fuel with 70% 235U enrichment. The CNSNS therefore requested that the mixed core be licensed and a technical report was accordingly annexed to the Safety Report, its contents including the following subjects: (a) neutron analysis of the proposed configuration; (b) reactor shutdown margins; (c) accident analysis; and (d) technical specifications. The licensing process was completed this year and we are now hoping to obtain the final operating license

  5. Adaptive fuzzy control of neutron power of the TRIGA Mark III reactor

    The design and implementation of an identification and control scheme of the TRIGA Mark III research nuclear reactor of the Instituto Nacional de Investigaciones Nucleares (ININ) of Mexico is presented in this thesis work. The identification of the reactor dynamics is carried out using fuzzy logic based systems, in which a learning process permits the adjustment of the membership function parameters by means of techniques based on neural networks and bio-inspired algorithms. The resulting identification system is a useful tool that allows the emulation of the reactor power behavior when different types of insertions of reactivity are applied into the core. The identification of the power can also be used for the tuning of the parameters of a control system. On the other hand, the regulation of the reactor power is carried out by means of an adaptive and stable fuzzy control scheme. The control law is derived using the input-output linearization technique, which permits the introduction of a desired power profile for the plant to follow asymptotically. This characteristic is suitable for managing the ascent of power from an initial level no up to a predetermined final level nf. During the increase of power, a constraint related to the rate of change in power is considered by the control scheme, thus minimizing the occurrence of a safety reactor shutdown due to a low reactor period value. Furthermore, the theory of stability in the sense of Lyapunov is used to obtain a supervisory control law which maintains the power error within a tolerance region, thus guaranteeing the stability of the power of the closed loop system. (Author)

  6. An Object Oriented Approach to Simulation of TRIGA Mark II Dynamic Response

    Bigoni, A.; Cammi, A.; Ponciroli, R. [Politecnico di Milano, Department of Energy, Nuclear Engineering Division (CeSNEF) Via Ponzio 34/3, 20133 Milano (Italy); Tigliole, A. Borio Di [University of Pavia, Department of Nuclear and Theoretical Physics and Laboratory of Applied Nuclear Energy (L.E.N.A), Via Bassi 4, 27100 Pavia (Italy)

    2011-07-01

    This paper deals with the development of a model for the nuclear research reactor TRIGA Mark II operating at University of Pavia. The purpose of the modeling is to reproduce the dynamic behavior of the reactor on the entire operative power range, i.e. 0-250 kW, using the object oriented approach, implemented by the Modelica language. The main advantage is the a-causal formulation of the model, based on equations instead of statement assignment. Equations do not specify which variables are inputs and which are outputs, thus the causality in the model is unspecified and is fixed only when the corresponding equation system is solved. In this way, equations can be solved according to the data flow context in which the solution is computed. The model describes the entire plant, including the heat removal system. The component representing the reactor core contains a series of sub-components linked together through rigorously defined interfaces: in this way, it is possible to consider the interactions between the different physical aspects of the system. Equations governing natural circulation have been implemented in a component which defines the mass flow rate through the core, according to the temperature difference at the ends of the channels. Secondary and tertiary cooling loops are modeled using a simplified heat exchangers configuration: concentric tube version is adopted, which allows recreating the heat exchange dynamics without a great modeling effort. The developed a-causal model has been validated through the comparison with experimental data collected on the site, concerning three different power transients at 100 kW, 50 kW and 1 kW. A corresponding causal model has been referenced as concerns fuel and coolant temperatures evolution during the transients. The predictions of the two main approaches to dynamic modeling have been compared. A very satisfying accordance is found as discrepancies observed on the coolant temperature are comprised between 0.5% and 1

  7. An Object Oriented Approach to Simulation of TRIGA Mark II Dynamic Response

    This paper deals with the development of a model for the nuclear research reactor TRIGA Mark II operating at University of Pavia. The purpose of the modeling is to reproduce the dynamic behavior of the reactor on the entire operative power range, i.e. 0-250 kW, using the object oriented approach, implemented by the Modelica language. The main advantage is the a-causal formulation of the model, based on equations instead of statement assignment. Equations do not specify which variables are inputs and which are outputs, thus the causality in the model is unspecified and is fixed only when the corresponding equation system is solved. In this way, equations can be solved according to the data flow context in which the solution is computed. The model describes the entire plant, including the heat removal system. The component representing the reactor core contains a series of sub-components linked together through rigorously defined interfaces: in this way, it is possible to consider the interactions between the different physical aspects of the system. Equations governing natural circulation have been implemented in a component which defines the mass flow rate through the core, according to the temperature difference at the ends of the channels. Secondary and tertiary cooling loops are modeled using a simplified heat exchangers configuration: concentric tube version is adopted, which allows recreating the heat exchange dynamics without a great modeling effort. The developed a-causal model has been validated through the comparison with experimental data collected on the site, concerning three different power transients at 100 kW, 50 kW and 1 kW. A corresponding causal model has been referenced as concerns fuel and coolant temperatures evolution during the transients. The predictions of the two main approaches to dynamic modeling have been compared. A very satisfying accordance is found as discrepancies observed on the coolant temperature are comprised between 0.5% and 1

  8. Analysis of tritium production in TRIGA Mark II reactor at JSI for the needs of fusion research reactors

    Jazbec, Anze; Zerovnik, Gasper; Snoj, Luka; Trkov, Andrej [Jozef Stefan Institute, Ljubljana (Slovenia)

    2013-12-15

    In future, electricity could be produced in fusion power plants. One of the steps towards development of fusion power plants is the construction of an experimental fusion reactor ITER where deuterium (D) and tritium (T) will be fused and energy will be released. As natural concentrations of T are extremely low, the T as fusion fuel will have to be produced artificially. A series of calculations were made to investigate the possibility of producing small quantities of T for experimental fusion reactors such as JET and ITER in a small research reactor like the TRIGA Mark II reactor at the Jozef Stefan Institute (JSI). The T production is the largest if all irradiation channels in reactor's reflector are filled with LiAlO{sub 2} samples. When samples are inserted, the excess reactivity decreases by around 200 pcm. In the second part of the work an estimate was made of how long the reactor can operate with current fuel supplies. Calculations were made with the TRIGLAV computer code. TRIGA can operate at full power for at least 2,860 days, during which 152 mg of T could be produced. We conclude that small TRIGA reactors can not produce any significant quantities of T for the needs of the future experimental fusion reactors. (orig.)

  9. Analysis of tritium production in TRIGA Mark II reactor at JSI for the needs of fusion research reactors

    In future, electricity could be produced in fusion power plants. One of the steps towards development of fusion power plants is the construction of an experimental fusion reactor ITER where deuterium (D) and tritium (T) will be fused and energy will be released. As natural concentrations of T are extremely low, the T as fusion fuel will have to be produced artificially. A series of calculations were made to investigate the possibility of producing small quantities of T for experimental fusion reactors such as JET and ITER in a small research reactor like the TRIGA Mark II reactor at the Jozef Stefan Institute (JSI). The T production is the largest if all irradiation channels in reactor's reflector are filled with LiAlO2 samples. When samples are inserted, the excess reactivity decreases by around 200 pcm. In the second part of the work an estimate was made of how long the reactor can operate with current fuel supplies. Calculations were made with the TRIGLAV computer code. TRIGA can operate at full power for at least 2,860 days, during which 152 mg of T could be produced. We conclude that small TRIGA reactors can not produce any significant quantities of T for the needs of the future experimental fusion reactors. (orig.)

  10. Validation of WIMS-SNAP code systems for calculations in TRIGA-MARK II type reactors

    The following paper contributes to validate the Nuclear Engineering Department methods to carry out calculations in TRIGA reactors solving a Benchmark. The benchmark is analyzed with the WIMS-D/4-SNAP/3D code system and using the cross section library WIMS-TRIGA. A brief description of the DSN method is presented used in WIMS/d4 code and also the SNAP-3d code is shortly explained. The results are presented and compared with the experimental values. In other hand the possible error sources are analyzed. (author)

  11. Analysis and core-life calculation of 3 MW Triga Mark II research reactor including effects of central thimble modification

    The principal objective of this study was to formulate an effective optimal fuel management strategy for TRIGA MARK II research reactor at AERE, Savar. The core management study has been performed by utilizing four basic types of information calculated for the reactor: criticality, power peaking, neutron flux and burnup calculation. Reshuffling at 20,000 MWh step gives the longest core life of the reactor which is 64500 MWh. Central thimble modification altered the shape of the flux which increased the core reactivity by c 12 and the core-life by 500 MWh. Besides, the study gives valuable insight into the behaviour of the reactor

  12. Determination of the parameters α and f of the reactor triga mark II of Cren-K

    The α parameter and the thermal to epithermal flux ratio (f) have been determined for irradiation channels (LS3, LS5, LS9, LS11 and LS25) of nuclear reactor Triga Mark II of the Regional Nuclear Centre of Kinshasa. The three methods - Cd radio method covered Cd monitor method and base monitor method used for evaluation of α parameter give the same result in each irradiation position. The thermal to epithermal flux ratio f has been determined by the Cd ratio method. Results show that nuclear parameters α and f, change from one point to another of the reactor; α being negative, the resonance integrals I.(α) are increased.

  13. Evaluation for the status of the IAEA inspection at Hanaro and TRIGA Mark II and III reactor

    Safeguards implementation of nuclear material was carried out at facility level in an effect to support the peaceful nuclear activities in KAERI. Safeguards implementation is to fulfill the obligations associated with international agreements such as IAEA comprehensive safeguards agreement and additional protocol. IAEA inspection is the most important and basic factor of the safeguards implementation for the purpose of verifying whether all source or special fissionable material is diverted to nuclear weapons or other nuclear explosive devices. The status of the IAEA inspection at Hanaro and TRIGA Mark II and III reactor during 2001-2006 is evaluated in this report

  14. Capture programs, analysis, data graphication for the study of the thermometry of the TRIGA Mark III reactor core

    This document covers the explanation of the capture programs, analysis and graphs of the data obtained during the measurement of the temperatures of the instrumented fuel element of the TRIGA Mark III reactor and of the coolant one near to this fuel, using the conversion card from Analogic to Digital of 'Data Translation', and using a signal conditioner for five temperature measurers with the help of thermo par type K, developed by the Simulation and Control of the nuclear systems management department, which gives a signal from 0 to 10 Vcd for an interval of temperature of 0 to 1000 C. (Author)

  15. Behavior of exposed human lymphocytes to a neutron beam of the reactor TRIGA Mark III

    Excessive exposure to ionizing radiation occurs in people who require radiation treatment, also in those for work can come to receive doses above the permitted levels. A third possibility of exposure is the release of radioactive material in which the general population is affected. Most of the time the exhibition is partial and only rarely occurs throughout the body. For various reasons, situations arise where it is impossible to determine by conventional physical methods, the amount of radiation you were exposed to the affected person and in these cases where the option to follow is the Biological Dosimetry, where the analysis of chromosomes dicentrics is used to estimate the dose of ionizing radiation exposure. A calibration curve is generated from in vitro analysis of dicentric chromosome, which are found in human lymphocytes, treated with different types and doses of radiation. The dicentric is formed from two lesions, one on each chromosome and their union results in a structure having two centromeres, acentric fragment with her for the union of several chromosomes leads to more complex structures as tri-centric s, tetra or penta-centric s, which have the same origin. The dose-response curve is estimated by observing the frequency of dicentrics and extrapolated to a dose-effect curve previously established, for which it is necessary that each lab has its own calibration curves, taking into account that for a Let low radiation, dose-effect curve follows a linear-quadratic model Y=C + αD + βD. The production of dicentric chromosomes with a high Let, was studied using a beam of neutrons generated in the reactor TRIGA Mark III with an average energy of 1 MeV, adjusting the linear model Y=αD. The dose-response relationship is established in blood samples from the same donor, the coefficient α of the dose-response is Y = (0.3692 ± 0.011 * D), also shows that saturation is reached in system 4 Gy. (Author)

  16. Operation experience with the 3 MW TRIGA Mark-II research reactor of Bangladesh

    The 3 MW TRIGA Mark-II research reactor of Bangladesh Atomic Energy Commission (BAEC) has been operating since September 14, 1986. The reactor is used for radioisotope production (131I, 99mTc, 46Sc), various R and D activities and manpower training. The reactor has been operated successfully since it's commissioning with the exception of a few reportable incidents. Of these, the decay tank leakage incident of 1997 is considered to be the most significant one. As a result of this incident, reactor operation at full power under forced-convection mode remained suspended for about 4 years. During that time, the reactor was operated at a power level of 250 kW so as to carry out experiments that require lower neutron flux. This was made possible by establishing a temporary by pass connection across the decay tank using local technology. The other incident was the contamination of the Dry Central Thimble (DCT) that took place in March 2002 when a pyrex vial containing 50 g of TeO2 powder got melted inside the DCT. The vial was melted due to high heat generation on its surface while the reactor was operated for 8 hours at 3 MW for trial production of Iodine-131 (131I). A Wet Central Thimble (WCT) was used to replace the damaged DCT in June 2002 such that the reactor operation could be resumed. The WCT was again replaced by a new DCT in June 2003 such that radioisotope production could be continued. A total of 873 irradiation requests (IRs) have been catered for different reactor uses. Out of these, 114 IRs were for radioisotope (RI) production and 759 IRs for different experiments. The total amount of RI produced stands at about 2100 GBq. The total amount of burn-up-fuel is about 6158 MWh. Efforts are on to undertake an ADP project so as to convert the analog console and I and C system of the reactor into digital one. The paper summarizes the reactor operation experiences focusing on troubleshooting, rectification, modification, RI production, various R and D activities

  17. Operation experience and maintenance at the TRIGA Mark II L.E.N.A. reactor

    The TRIGA Mark II reactor of the University of Pavia was operated in the last two years on a routine basis, mostly for neutron activation analysis purposes. Moreover the reactor was completely shutdown in the first six months of this year to allow the dismantling of the NADIR experimental setup. The paper presents: - Reactor operation from July 1990 to June 1992; - Reactor users in the time period January 1990 - December 1991; - Specific activities of some radionuclides in the filling materials; - Specific activity of some radionuclides in thermal column materials. Operations related to dismantling of NADIR experimental facility are described. Finally the new thermal column configuration is presented. Starting from the end inside the reactor tank, a graphite layer (35 cm thick) was positioned, followed by a bismuth layer (10 cm thick) to reduce gamma-ray intensity. The old graphite rods were then positioned leaving in the central part, on the equatorial plane of the thermal column, a cavity whose vertical section has 40 cm width and 20 cm height. The bottom of the cavity, towards to the reactor tank, has been lined with additional layers of graphite (10 cm), bismuth (10 cm) and again graphite (1 cm). The new configuration allowed new experiments to be performed. The cavity in the central part has been created to allow the irradiation of large biological samples such as experimental animal and human livers. This is a peculiar step in a neutron capture boron therapy project to be carried out at the University of Pavia. In order to avoid an implemented 41Ar production in the void space between shutters and the thermal column outer end, the external surface of the thermal column has been coated with boral sheets. The neutron flux profile, both thermal and epithermal, and cadmium ratio for gold are shown. The flux distribution appears to be adequate to proceed with the neutron capture boron therapy experiment. The LENA Health Physics Service has checked all phases of

  18. A Zero Dimensional Model for Simulation of TRIGA Mark II Dynamic Response

    Cammi, A.; Poli, A. Fusar; Ponciroli, R. [Politecnico di Milano, Department of Energy, Nuclear Engineering Division (CeSNEF), Via Ponzio 34/3, 20133 Milano (Italy); Tigliole, A. Borio Di [University of Pavia, Department of Nuclear and Theoretical Physics and Laboratory of Applied Nuclear Energy (L.E.N.A), Via Bassi 4, 27100 Pavia (Italy); Magrotti, G. [University of Pavia, Laboratory of Applied Nuclear Energy (L.E.N.A), Via Aselli 41, 27100 Pavia (Italy)

    2011-07-01

    In this paper the development of a model for the nuclear research reactor TRIGA Mark II operating at University of Pavia is presented. Purpose of the modeling is to reproduce the dynamic behavior of the reactor on the entire operative power range, i.e. 0-250 kW. A zero dimensional approach is accounted for and the coupling between neutronics and thermal-hydraulics in natural circulation is considered. The model has been validated through comparison with experimental data, concerning three different power transients. For neutronics, point reactor kinetics model with one energy group and six delayed neutron precursors groups has been adopted. The system reactivity can be modified moving the control rods, which allow the reactor to operate at different power levels. As far as thermal-hydraulics is concerned, two regions have been defined, i.e. the fuel and the coolant. Heat exchange (convective and conductive) has been modeled by proper adoption of a global heat transfer coefficient. This has been considered as a function of coolant mass flow rate through the core to introduce the effects of natural circulation, evaluated using Boussinesque approximation for buoyancy effects. Neutronics and thermal-hydraulics are coupled together by means of fuel and moderator temperature feedback coefficients. The large thermal inertia due to the mass of water in the tank containing the reactor core causes temperature variation during transients to be very small. Therefore, moderator temperature feedback coefficient can be neglected. On the contrary, the fuel temperature coefficient strongly influences the dynamic behavior of the system and has been estimated making a best-fit between the model response and the experimental data regarding positive reactivity insertion in the system at three different power levels, i.e. 1 kW, 50 kW and 100 kW. The results obtained show that the fuel temperature coefficient is a monotonically increasing function of fuel temperature and its magnitude is

  19. A Zero Dimensional Model for Simulation of TRIGA Mark II Dynamic Response

    In this paper the development of a model for the nuclear research reactor TRIGA Mark II operating at University of Pavia is presented. Purpose of the modeling is to reproduce the dynamic behavior of the reactor on the entire operative power range, i.e. 0-250 kW. A zero dimensional approach is accounted for and the coupling between neutronics and thermal-hydraulics in natural circulation is considered. The model has been validated through comparison with experimental data, concerning three different power transients. For neutronics, point reactor kinetics model with one energy group and six delayed neutron precursors groups has been adopted. The system reactivity can be modified moving the control rods, which allow the reactor to operate at different power levels. As far as thermal-hydraulics is concerned, two regions have been defined, i.e. the fuel and the coolant. Heat exchange (convective and conductive) has been modeled by proper adoption of a global heat transfer coefficient. This has been considered as a function of coolant mass flow rate through the core to introduce the effects of natural circulation, evaluated using Boussinesque approximation for buoyancy effects. Neutronics and thermal-hydraulics are coupled together by means of fuel and moderator temperature feedback coefficients. The large thermal inertia due to the mass of water in the tank containing the reactor core causes temperature variation during transients to be very small. Therefore, moderator temperature feedback coefficient can be neglected. On the contrary, the fuel temperature coefficient strongly influences the dynamic behavior of the system and has been estimated making a best-fit between the model response and the experimental data regarding positive reactivity insertion in the system at three different power levels, i.e. 1 kW, 50 kW and 100 kW. The results obtained show that the fuel temperature coefficient is a monotonically increasing function of fuel temperature and its magnitude is

  20. Benchmarking of the WIMSD/CITATION deterministic code system for the neutronic calculations of TRIGA Mark-III research reactors

    Highlights: • Benchmark study performed for the neutronic calculations of TRIGA research reactors. • WIMSD-5B/CITATION is the utilized code system along with the WIMSD-IAEA-69 library. • The studied condensed spectra are five and seven energy groups spectra. • Analyzed: lattice parameters, reactivities, CR worth, flux and power distribution. • The lattice and neutronic parameters showed the accuracy of both condensed spectra. - Abstract: The objective of this paper is to assess the suitability and accuracy of the deterministic diffusion method for the neutronic calculations of the TRIGA Mark-III research reactors using the WIMSD/CITATION code system in proposed condensed energy spectra of five and seven energy groups with one and three thermal groups respectively. The utilized cell transport calculations code and core diffusion calculations code are the WIMSD-5B and the CITVAP v3.1 codes respectively, along with the WIMSD-IAEA-69 nuclear data library. Firstly, the assessment goes through analyzing the integral parameters – keff, ρ238, δ235, δ238, and C* – of the TRX and BAPL benchmark lattices and comparison with experimental and previous reference results using other ENDLs at the full energy spectra which show good agreement with the references at both spectra. Secondly, evaluation of the 3D nuclear characteristics of three different cores of the TRR-1/M1 TRIGA Mark-III Thai research reactor at the condensed energy spectra. The results include the excess reactivities of the cores and the worth of selected control rods which were compared with reference Monte Carlo results and experimental values. The results show good agreement with the references at both energy spectra and the better accuracy are attainable in the five energy groups spectrum. The results also include neutron flux distributions which are evaluated for future comparisons with other calculational techniques even they are comparable to reactors and fuels of the same type. The

  1. The new area monitoring system and the fuel database of the TRIGA Mark II reactor in Vienna

    The 250 kW TRIGA Mark-II reactor operates since March 1962 at the Atominstitut, Vienna, Austria. Its main tasks are nuclear education and training in the fields of neutron- and solid state physics, nuclear technology, reactor safety, radiochemistry, radiation protection and dosimetry, and low temperature physics and fusion research. Academic research is carried out by students in the above mentioned fields coordinated and supervised by about 70 staff members with the aim of a masters- or PhD degree in one of the above mentioned areas. After 25 years of successful operation, it was necessary to exchange the old area monitoring system with a new digital one. The purpose of the new system is the permanent control of the reactor hall, the primary and secondary cooling system and the monitoring of the ventilation system. The paper describes the development and implementation of the new area monitoring system. The second topic in this paper describes the development of the new fuel database. Since March 7th, 1962, the TRIGA Mark II reactor Vienna operates with an average of 263 MWh per year, which corresponds to a uranium burn-up of 13.7 g per year. Presently we have 81 TRIGA fuel elements in the core, 55 of them are old aluminium clad elements from the initial criticality while the rest are stainless steel clad elements which had been added later to compensate the uranium consumption. Because 67 % of the elements are older than 40 years, it was necessary to put the history of every element in a database, to get an easy access to all the relevant data for every element in our facility. (author)

  2. Implementation of k0-INAA standardisation at ITU TRIGA Mark II research reactor, Turkey based on k0-IAEA software

    Esen, Ayse Nur; Haciyakupoglu, Sevilay

    2016-02-01

    The purpose of this study is to test the applicability of k0-INAA method at the Istanbul Technical University TRIGA Mark II research reactor. The neutron spectrum parameters such as epithermal neutron flux distribution parameter (α), thermal to epithermal neutron flux ratio (f) and thermal neutron flux (φth) were determined at the central irradiation channel of the ITU TRIGA Mark II research reactor using bare triple-monitor method. HPGe detector calibrations and calculations were carried out by k0-IAEA software. The α, f and φth values were calculated to be -0.009, 15.4 and 7.92·1012 cm-2 s-1, respectively. NIST SRM 1633b coal fly ash and intercomparison samples consisting of clay and sandy soil samples were used to evaluate the validity of the method. For selected elements, the statistical evaluation of the analysis results was carried out by z-score test. A good agreement between certified/reported and experimental values was obtained.

  3. COMMIX-1C code estimation for the pool dynamics of Istanbul Technical University TRIGA MARK-II reactor

    In this study, the COMMIX-1C code is used to investigate the pool dynamics of Istanbul Technical University (ITU)TRIGA MARK-II reactor by simulating the velocity, pressure and temperature distributions in the reactor pool as a function of core design parameters and pool configuration. COMMIX-1C is multi-purpose, three-dimensional. transient, single-phase, thermal-hydraulics computer code. For the mass, momentum and energy equations, it uses a porous-medium formulation, a finite-volume algorithm, a flow modulated skew-upwind discretization scheme to reduce numerical diffusion and k-ε two-equation turbulence model. Its implementation for the particular system requires geometric and physical modelling decisions. ITU TRIGA MARK-II reactor pool is considered partly as continuum and partly as porous medium. All the major pool components are explicitly modelled in the simulation. Shape of the pool structure and computational cells are accounted for using the concept of directional surface permeability, volume porosity, distributed resistance, and distributed heat source or sink. The results are compared to the results of the computer codes TRISTAN, TRIGATH and TRIGATH-R

  4. In-situ gamma spectrometry measurements of time-dependent Xenon-135 inventory in the TRIGA Mark II reactor Vienna

    Riede, Julia

    2013-01-01

    In this work, it has been shown that the time dependent Xe-135 inventory in the TRIGA Mark II reactor in Vienna, Austria can be measured via gamma spectrometry even in the presence of strong background radiation. It is focussing on the measurement of (but not limited to) the nuclide Xe-135. The time dependent Xe-135 inventory of the TRIGA Mark II reactor Vienna has been measured using a temporary beam line between one fuel element of the core placed onto the thermal column after shutdown and a detector system located just above the water surface of the reactor tank. For the duration of one week, multiple gamma ray spectra were recorded automatically, starting each afternoon after reactor shutdown until the next morning. One measurement series has been recorded over the weekend. The Xe-135 peaks were extracted from a total of 1227 recorded spectra using an automated peak search algorithm and analyzed for their time-dependent properties. Although the background gamma radiation present in the core after shutdown...

  5. Feasibility study for production of 99mTc by neutron irradiation of MoO3 in a 250 kW TRIGA Mark II reactor

    The subject of this paper is to explore the possibility to obtain 99mTc from activation of 98Mo, using the TRIGA Mark II low flux research reactor (Vienna, Austria). Irradiation of both natural and enriched in 98Mo molybdenum oxides was compared. Aims of this work included the determination of neutron fluxes and 98Mo(n, γ)99Mo reaction effective cross section in the TRIGA Mark II reactor irradiation channels, calculation of 99Mo specific activities, determination of optimal irradiation conditions for the subsequent 99mTc separation from MoO3 targets using concentrating technologies. (author)

  6. Neutron physics experiments exploiting the pulsing capability of the Vienna TRIGA-Mark ll

    The combination of a pulsed high magnetic field system with the pulsing capability of the TRIGA reactor leads to the realization of a neutron diffractometer which opens new fields in solid state physics. It allows to expose the sample to magnetic fields of up to 25 T and hence to study field-induced phase transitions in ferri- and antiferromagnetically ordering materials. Neutron depolarization is another technique where such a pulsed high magnetic field is of great merit. (author)

  7. Validation of the Serpent 2 code on TRIGA Mark II benchmark experiments.

    Ćalić, Dušan; Žerovnik, Gašper; Trkov, Andrej; Snoj, Luka

    2016-01-01

    The main aim of this paper is the development and validation of a 3D computational model of TRIGA research reactor using Serpent 2 code. The calculated parameters were compared to the experimental results and to calculations performed with the MCNP code. The results show that the calculated normalized reaction rates and flux distribution within the core are in good agreement with MCNP and experiment, while in the reflector the flux distribution differ up to 3% from the measurements. PMID:26516989

  8. Optical inspection and maintenance of the triga mark-II reactor in Pavia/Italy

    The TRIGA reactor Pavia was optically inspected using the underwater endoscope. Problems which required this inspection were a loose control rod guide tube connection to the lower grid plate and a deformed central irradiation thimble which prevented the removal of this tube through the upper grid plate. Both problems were resolved by optically inspecting the inner core area. Using special tools both pieces were repaired. In addition the tank was cleaned and debris was removed from the tank. (author)

  9. Research programs carried out at the TRIGA Mark II reactor Vienna

    Some research programs mentioned at the 6th TRIGA Users Conference in Mainz 1980 have been completed and published such as the investigations of fibrotic behaviour under gamma irradiation and the application of active and passive techniques for fuel burn-up investigations. Since 1980 several new programs have been initiated which are i.e. Development and test of self-powered gamma detectors; Intercomparison of neutron flux density values determined by foil activation methods and by self-powered neutron detectors; Development of an in-pool capsule for the investigation of damaged TRIGA fuel elements; Preparation of a Cs-137 calibration source from a spent TRIGA fuel element; Data transmission properties of glass-fibre cables in a radiation field In addition some previously mentioned research programs continue or have been extended such as the investigation of trace elements in fossil fuel. As an additional method to the neutron activation analysis and for intercomparison the X-ray fluorescence technique (XFA) has been applied, allowing determination of some additional trace elements not detectable by NAA. Further these methods are also applied to the ashes from district heating stations and waste burning plants in the Viennese area

  10. Estimation of fast neutron fluence in steel specimens type Laguna Verde in TRIGA Mark III reactor; Estimacion de la fluencia de neutrones rapidos en probetas de acero tipo Laguna Verde en el reactor Triga Mark III

    Galicia A, J.; Francois L, J. L. [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Ciudad de Mexico (Mexico); Aguilar H, F., E-mail: blink19871@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2015-09-15

    The main purpose of this work is to obtain the fluence of fast neutrons recorded within four specimens of carbon steel, similar to the material having the vessels of the BWR reactors of the nuclear power plant of Laguna Verde when subjected to neutron flux in a experimental facility of the TRIGA Mark III reactor, calculating an irradiation time to age the material so accelerated. For the calculation of the neutron flux in the specimens was used the Monte Carlo code MCNP5. In an initial stage, three sheets of natural molybdenum and molybdenum trioxide (MoO{sub 3}) were incorporated into a model developed of the TRIGA reactor operating at 1 M Wth, to calculate the resulting activity by setting a certain time of irradiation. The results obtained were compared with experimentally measured activities in these same materials to validate the calculated neutron flux in the model used. Subsequently, the fast neutron flux received by the steel specimens to incorporate them in the experimental facility E-16 of the reactor core model operating at nominal maximum power in steady-state was calculated, already from these calculations the irradiation time required was obtained for values of the neutron flux in the range of 10{sup 18} n/cm{sup 2}, which is estimated for the case of Laguna Verde after 32 years of effective operation at maximum power. (Author)

  11. Monte Carlo simulation of the thermal column and beam tube of the TRIGA Mark II research reactor

    Khan, R., E-mail: rustamzia@yahoo.com [Atominstitute (ATI), Vienna University of Technology (TU Wien), Stadion allee 2, A-1020 Vienna (Austria); Karimzadeh, S.; Stummer, T.; Boeck, H. [Atominstitute (ATI), Vienna University of Technology (TU Wien), Stadion allee 2, A-1020 Vienna (Austria)

    2011-08-15

    Highlights: > Neutronics parameters of the reactor shielding. > Biological shielding of the TRIGA reactor. > Thermal flux measurement in the thermal column and BT-A. > MCNP model validation. - Abstract: The Monet Carlo simulation of the TRIGA Mark II research reactor core has been performed employing the radiation transport computer code MCNP5. The model has been confirmed experimentally in the PhD research work at the Atominstitute (ATI) of the Vienna University of Technology. The MCNP model has been extended to complete biological shielding of the reactor including the thermal column, radiographic collimator and four beam tubes. This paper presents the MCNP simulated results in the thermal column and one of the beam tubes (beam tube A) of the reactor. To validate these theoretical results, thermal neutron flux density measurements using the gold foil activation method have been performed in the thermal column and beam tube A (BT-A). In the thermal column, the theoretical and experimental results are in fairly good agreement i.e. maximum thermal flux density in the centre decreases in radial direction. Further, it is also agreed that thermal flux densities in the lower part is greater than the upper part of the thermal column. In the BT-A experiment, the thermal flux density distribution is measured using gold foil. The experimental and theoretical diffusion lengths have been determined as 10.77 cm and 9.36 cm respectively with only 13% difference, reflecting good agreement between the experimental and simulated results. To save the computational cost and to incorporate the accurate and complete information of each individual Monte Carlo MC particle tracks, the surface source writing capability of MCNP has been utilized to the TRIGA shielding model. The variance reduction techniques have been applied to improve the statistics of the problem and to save computational efforts.

  12. Monte Carlo simulation of the thermal column and beam tube of the TRIGA Mark II research reactor

    Highlights: → Neutronics parameters of the reactor shielding. → Biological shielding of the TRIGA reactor. → Thermal flux measurement in the thermal column and BT-A. → MCNP model validation. - Abstract: The Monet Carlo simulation of the TRIGA Mark II research reactor core has been performed employing the radiation transport computer code MCNP5. The model has been confirmed experimentally in the PhD research work at the Atominstitute (ATI) of the Vienna University of Technology. The MCNP model has been extended to complete biological shielding of the reactor including the thermal column, radiographic collimator and four beam tubes. This paper presents the MCNP simulated results in the thermal column and one of the beam tubes (beam tube A) of the reactor. To validate these theoretical results, thermal neutron flux density measurements using the gold foil activation method have been performed in the thermal column and beam tube A (BT-A). In the thermal column, the theoretical and experimental results are in fairly good agreement i.e. maximum thermal flux density in the centre decreases in radial direction. Further, it is also agreed that thermal flux densities in the lower part is greater than the upper part of the thermal column. In the BT-A experiment, the thermal flux density distribution is measured using gold foil. The experimental and theoretical diffusion lengths have been determined as 10.77 cm and 9.36 cm respectively with only 13% difference, reflecting good agreement between the experimental and simulated results. To save the computational cost and to incorporate the accurate and complete information of each individual Monte Carlo MC particle tracks, the surface source writing capability of MCNP has been utilized to the TRIGA shielding model. The variance reduction techniques have been applied to improve the statistics of the problem and to save computational efforts.

  13. Operation and maintenance of the 250 kW TRIGA Mark II reactor at the J. Stefan Institute

    Over the last two years the TRIGA Mark II reactor in Ljubljana has been operated at an energy release of about 2250 MWh or about 4200 hours per year. In this period, about 2000 samples were irradiated. Since the last TRIGA Owners' Conference there has been an increase in all operational data because of a very extensive programme of irradiation of molybdenum for the everyday production of technetium-99 m by a solvent extraction method. Because of its age and absolencence replacement of the console electronics was considered some time ago. Therefore, partly new instrumentation was installed this year. A new console is under construction. Furthermore, a new core configuration was established after 7 fresh FLIP fuel elements were delivered by GA. At this time it was noticed that 2 dummy elements are stuck in the upper grid plate. They will be exchanged during the regular maintenance work in August this year. During the last two years the reactor has been operated without any longer shut-down due to technical difficulties. (author)

  14. Benchmark analysis of reactivity experiment in the TRIGA Mark 2 reactor using a continuous energy Monte Carlo code MCNP

    A good model on experimental data (criticality, control rod worth, and fuel element worth distributions) is encouraged to provide from the Musashi-TRIGA Mark 2 reactor. In the previous paper, as the keff values for different fuel loading patterns had been provided ranging from the minimum core to the full one, the data would be candidate for an ICSBEP evaluation. Evaluation of the control rod worth and fuel element worth distributions presented in this paper could be an excellent benchmark data applicable for validation of calculation technique used in the field of modern research reactor. As a result of simulation on the TRIGA-2 benchmark experiment, which was performed by three-dimensional continuous-energy Monte Carlo code (MCNP4A), it was found that the MCNP calculated values of control rod worth were consisted to the experimental data for both rod-drop and period methods. And for the fuel and the graphite element worth distributions, the MCNP calculated values agreed well with the measured ones though consideration of real control rod positions was needed for calculating fuel element reactivity positioned in inner ring. (G.K.)

  15. Burnup analysis and in-core fuel management study of the 3 MW TRIGA MARK II research reactor

    The principal objective of this study is to formulate an effective optimal fuel management strategy for the TRIGA MARK II research reactor at AERE, Savar. The core management study has been performed by utilizing four basic types of information calculated for the reactor: criticality, power peaking, neutron flux and burnup calculation. This paper presents the results of the burnup calculations for TRIGA LEU fuel elements. The fuel element burnup for approximately 20 years of operation was calculated using the TRIGAP compute code. The calculation is performed in one-dimensional radial geometry in TRIGAP. Inter-comparison of TRIGAP results with other two calculations performed by MVP-BURN and MCNP4C-ORIGEN2.1 show very good agreement. Reshuffling at 20,000 MWh step provides the highest core lifetime of the reactor, which is 64,500 MWh. Besides, the study gives valuable insight into the behaviour of the reactor and will ensure better utilization and operation of the reactor in future

  16. Operation and maintenance of the 250 kW TRIGA Mark II reactor at the Jozef Stefan Institute in Ljubljana

    Over the last two years the TRIGA Mark II reactor in Ljubljana has been operated at an energy release of about 2500 MWh or about 4100 hour per year. In this period, about 1800 samples were irradiated. In 1983, a new core configuration was established because all Al-clad fuel elements in the core were replaced by the SS-clad elements. The 'J.Stefan' Institute received in 1983, namely, from the TRIGA reactor in Neuherberg, Federal Republic of Germany 107 SS-clad partly burned fuel elements together with some instrumentation which will gradually replace the old radiological and safety instrumentation. The transportation and the dischange of the highly radioactive fuel was done quickly and without any problem. During the last two years the reactor has been operated without any longer shut-down due to technical difficulties. In 1983 we noticed only a fuel element failure during operation. After the short inspection the fuel element with a small clading hole was found and replaced by a new one. (orig.)

  17. Study of a new automatic reactor power control for the TRIGA Mark II reactor at University of Pavia

    The installation of a new Instrumentation and Control (IC) system for the TRIGA Mark-II reactor at University of Pavia has recently been completed in order to assure a safe and continuous reactor operation for the future. The intervention involved nearly the whole IC system and required a channel-by-channel component substitution. One of the most sensitive part of the intervention concerned the Automatic Reactor Power Controller (ARPC) which permits to keep the reactor at an operator-selected power level acting on the control rod devoted to the fine regulation of system reactivity. This controller installed can be set up using different control logics: currently the system is working in relay mode. The main goal of the work presented in this paper is to set up a Proportional-Integral-Derivative (PID) configuration of the new controller installed on the TRIGA reactor of Pavia so as to optimize the response to system perturbations. The analysis have shown that a continuous PID offers generally better results than the relay mode which causes power oscillations with an amplitude of 3% of the nominal power

  18. Computer aided design (CAD) for electronics improvement of the nuclear channels of TRIGA Mark III reactor of the ININ; Diseno asistido por computadora (DAC) para mejorar la electronica de los canales nucleares del reactor TRIGA Mark III del ININ

    Gonzalez M, J.L.; Rivero G, T.; Aguilar H, F. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)]. e-mail: jlgm@nuclear.inin.mx

    2007-07-01

    The 4 neutron measurement channels of the digital control console (CCD) of the TRIGA Mark III reactor (RTMIII) of the ININ, its were designed and built with the corresponding Quality Guarantee program, being achieved the one licensing to replace the old console. With the time they were carried out some changes to improve and to not solve some problems detected in the tests, verification and validation, requiring to modify the circuits originally designed. In this work the corrective actions carried out to eliminate the Non Conformity generated by these problems, being mentioned the advantages of using modern tools, as the software applied to the Attended Engineering by Computer, and those obtained results are presented. (Author)

  19. Development of a software for the control of the quality management system of the TRIGA-Mark III reactor; Desarrollo de un software para el control del sistema de gestion de calidad del reactor TRIGA Mark III

    Herrera A, E. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Hernandez, L.V.; Hernandez, J.A. [UAEM, Depto. de Ingenieria en Computacion, 50000 Toluca, estado de Mexico (Mexico)]. e-mail: eha@nuclear.inin.mx

    2006-07-01

    The quality has not only become one of the essential requirements of the product but rather at the presenme it is a strategic factor key of which depends the bigger part of the organizations, not only to maintain their position in the market but also to assure their survival. The good organizations will have processes, procedures and standards to confront these challenges. The big organizations require of the certification of their administration systems, and once the organization has obtained this certification the following step it is to maintain it. The implementation and certification of an administration system requires of an appropriate operative organization that achieves continuous improvements in their operation. This is the case of the TRIGA Mark III reactor, which contains a computer program that upgrades, it controls and it programs activities to develop in the Installation, allowing one operative organization to the whole personnel of the same one. With the purpose of avoiding activities untimely. (Author)

  20. Corrosion of aluminium alloy test coupons in the TRIGA Mark III Research Reactor of Mexico

    The results of corrosion studies developed in the Instituto Nacional de Investigaciones Nucleares (ININ) are presented. The extent of corrosion of the aluminium alloy coupons exposed to the water of ININ TRIGA reactor pool was not significant. Few pits and oxides were observed on the coupon surfaces immersed for different times. This reduced extent of corrosion was similar to those on coupons exposed at other sites as per data obtained by visual inspection, metallographic analysis and image analysis. The water chemistry in the reactor pool was monitored throughout the duration of the project. The main parameters that influence the corrosion of Al alloy fuel cladding were measured. The conductivity of the water in the reactor pool was 1-3 μS/cm, within recommended values to avoid corrosion. The chloride ion concentration was maintained below 1 ppm. Others ions (sulphates, calcium, nitrates) were also below 1 ppm. Another parameter that was measured was the amount of settled solids on coupon surfaces and their influence on corrosion. The sedimentation rate in the TRIGA Reactor pool was 17.66 μg/cm2 and the sediment composition indicated iron oxides, aluminium-silicon compounds and some calcium carbonates. The sedimentation rate was similar in magnitude to that at other storage sites. However, the corrosion racks in the ININ TRIGA Reactor were exposed to high water flow rates, 1324.5 l/min. This high flow rate is considered to reduce the amount of deposited solids on coupon surfaces. The particles deposited on the coupon surfaces influenced pit initiation. (author)

  1. Evaluation of the aptitude for the service of the pool of the TRIGA Mark III reactor of the National Institute of Nuclear Research of Mexico

    This work describes the evaluation of the structural integrity of the pool of the TRIGA Mark III reactor of the National Institute of Nuclear Research of Mexico, which was realized in July 2001, as an element to determine those actions for preventive and corrective maintenance which owner must do it for a safety and efficient operation of the component in the next years. (Author)

  2. Operation experience with the TRIGA Mark II reactor Vienna in the years 1972 through 1974

    Since the last TRIGA Users Conference in Pavia 1972 the TRIGA reactor Vienna was in operation without any larger undesired shut-down. The integral thermal power production by Sept. 1, 1974 was 3420 MWh. The principal work carried out during the last two years on the reactor system was the installation of a new heat exchanger and primary pump both designed for 1 MW steady state operation. Permission was also obtained from the local authority to withdraw up to 90 m3/h secondary cooling water from the well. Some troubles were observed with the pulse rod. After nearly 12 years of operation the connection between the piston rod and control rod broke off just below the water surface. Therefore the piston was shot out without withdrawing the pulse rod itself. After locating the trouble the damage was repaired within one day. The SST fuel elements type 110 were received by the end of 1972 for the purpose of power upgrading. All other fuel elements except one are still located in the reactor core and shifted periodically in order to obtain an optimal burnup. A new alarm system was ordered from Hartmann and Braun and is under installation at the moment. In order to facilitate cooperation with the reactor operation personnel and the experimenters in the reactor hall an accurate power indicator has been installed in the reactor hall which allows all experimenters to read the reactor power as accurately as in the control room itself. (U.S.)

  3. Recent research programs at the TRIGA Mark II reactor in Ljubljana

    Recent developments and new research activities which make use of the TRIGA reactor in Ljubljana are reported. They are spread over a broad range of research fields from nuclear and solid state physics, reactor physics and engineering, neutron radiography, analytical chemistry, medicine and biology, and industrial applications. The following investigations are briefly described: Improvements in the thermal neutron beam facility for nuclear capture studies, a rotating crystal time-of-flight spectrometer and its use for measurements of dynamics of crystal lattices in liquid crystals and ferroelectrics, measurements by the fast neutron spectroscopy and dosimetry group of fission-spectrum averaged activation cross-sections for some threshold detectors; measurements of fast neutron spectra in standard TRIGA seed irradiation facilities and improvements of activation data unfolding program ITER II and its application to unfolding of single crystal fast neutron scintillation spectrometers, a simple nuclear power plant simulator to be used for education of plant personnel; neutron activation analysis falls into two parts: ecological studies of the uptake and distribution of mercury and some other micro-elements in particular in the Idrija area (mercury mining), and the development of methods for the analysis of trace elements in standard reference materials, biological samples, and high purity materials. (U.S.)

  4. Benchmark analysis of TRIGA mark II reactivity experiment using a continuous energy Monte Carlo code MCNP

    The benchmark analysis of reactivity experiments in the TRIGA-II core at the Musashi Institute of Technology Research Reactor (Musashi reactor; 100 kW) was performed by a three-dimensional continuous-energy Monte Carlo code MCNP4A. The reactivity worth and integral reactivity curves of the control rods as well as the reactivity worth distributions of fuel and graphite elements were used in the validation process of the physical model and neutron cross section data from the ENDF/B-V evaluation. The calculated values of integral reactivity curves of the control rods were in agreement with the experimental data obtained by the period method. The integral worth measured by the rod drop method was also consistent with the calculation. The calculated values of the fuel and the graphite element worth distributions were consistent with the measured ones within the statistical error estimates. These results showed that the exact core configuration including the control rod positions to reproduce the fission source distribution in the experiment must be introduced into the calculation core for obtaining the precise solution. It can be concluded that our simulation model of the TRIGA-II core is precise enough to reproduce the control rod worth, fuel and graphite elements reactivity worth distributions. (author)

  5. Development of a neutron radiography system at the Triga Mark III Reactor of the Nuclear Center of Mexico

    The TRIGA MARK III Reactor provides usable neutron yields for use in Neutron Radiography. Neutron Radiographs showing acceptable resolution obtainable with a simple set up can be produced in exposures as short as three minutes with efficient neutron converters and fast film. The facility used for thermal neutron radiography is described. The beam configuration for radiographic applications provided a total beam intensity of 3.85x106 n/cm2-sec with a thermal neutron intensity of 2.89x105 n/cm2-mR, a cadmium ratio of 3.65, and a γ-intensity of 30 R/hr over a useful beam coverage 8 inches diameter area. The collimation system was improved by constructing diaphragms of paraffin, lead and cadmium, which had the functions of a diverging collimator; the L/A ratio is about 135. (Auth.)

  6. Melting Decontamination of the Aluminum Wastes generated from TRIGA MARK-III Research Reactor in the Electric Arc Furnace

    Recently, there has been growing interest in D and D (Decommissioning and decontamination) of the nuclear facilities around world. In Korea the TRIGA MARK III research reactor has been dismantled since 1997. These decommissioning works result in the various metal wastes such as stainless steel, carbon steel, aluminum and copper. Since the total amount of the steel (stainless steel, carbon steel) wastes from nuclear facilities was up to 70 ∼ 80%, considerable researches have been devoted to the radionuclides distribution and decontamination characteristics of the steel until now. But based on the report by Garbay and Chapuis, they concluded that a PWR contained 20 to 100 ton of aluminum, mostly as electrical cable. Therefore rather more study has been paid to the characteristics of the aluminum melting and the distribution of radionuclides

  7. Determination of the fluence profile in three dimension for the thermal column of the TRIGA Mark III reactor

    In this work the results of the dosimetric properties of the lithium carbonate are presented (detecting), before the thermal neutrons. The process consists on irradiating samples of lithium carbonate in the installation of the thermal column of the TRIGA Mark III reactor, with a controlled period and with time intervals of 20 hours of irradiation. It is necessary to mention that the detectors were placed in different internal positions of the thermal column. With the purpose of being used these results for future studies, like it is the fluence profile in the thermal column. To use the BNCT technique (Boron Neutron Capture Therapy). Which is a binary technique that requires the simultaneous presence of a neutron flux with appropriate energy and a neutron captor (10B), those which interacting to attack to the tumor cells without producing significant damage to the tissues when both agents are separated. (Author)

  8. Verification of Monte Carlo calculations of the neutron flux in the carousel channels of the TRIGA Mark II reactor, Ljubljana

    In this work experimental verification of Monte Carlo neutron flux calculations in the carousel facility (CF) of the 250 kW TRIGA Mark II reactor at the Jozef Stefan Institute is presented. Simulations were carried out using the Monte Carlo radiation-transport code, MCNP4B. The objective of the work was to model and verify experimentally the azimuthal variation of neutron flux in the CF for core No. 176, set up in April 2002. '1'9'8Au activities of Al-Au(0.1%) disks irradiated in 11 channels of the CF covering 180'0 around the perimeter of the core were measured. The comparison between MCNP calculation and measurement shows relatively good agreement and demonstrates the overall accuracy with which the detailed spectral characteristics can be predicted by calculations.(author)

  9. An epithermal irradiation terminal project for the IPR-R1 Triga Mark I reactor, CDTN/CNEN

    The IPR-R1 Triga Mark I is a research reactor operating since 1960. It has being used mainly for training neutron activation analysis and production of some special radioisotopes. In the last years, it is coming up the necessity of using a thermal neutrons filter during neutron activation. It is in order to solve many specific situations where only activation by fast and epithermal neutrons is required. For instance, the labeling of some special molecules used for pharmaceutical investigations and the activation of biological samples in which thermal sodium activation may cause undesired analysis interferences. The usual procedure used in such cases - to irradiate the samples in the rotary specimen rack inside a cadmium box with a 1 mm wall thickness - normally offers radiological risks due to the high exposure dose. The aim of the project presented here is to optimize the procedures when the epithermal irradiation is needed. (author)

  10. Determination of the nuclear parameters α, f and neutrons temperature in the TRIGA Mark I IPR-R1 reactor

    This research intends to determine the nuclear parameters α, f and neutron temperature in several irradiations positions of the TRIGA Mark I IPR-R1 reactor, to implant the parametric method k0 of neutrons activation analysis in the CDTN. At the time the parameters were determined at the rotatory rack, lower layer and in the central thimble: α was calculated applying the three bare monitor method using 197 Au, 94 Zr and 96 Zr; f determination was done according to the bare bi - isotopic method; neutron temperature was calculated through the direct method using 176 Lu, 94 Zr, 96 Zr and 197 Au and the Westcott's g(Tn) function for the 176 Lu was calculated and the result was interpolated in the GRINTAKIS Table [6], determining the neutron temperature. (author)

  11. Melting Decontamination of the Aluminum Wastes generated from TRIGA MARK-III Research Reactor in the Electric Arc Furnace

    Min, Byung Youn; Kang, Yong [Chungnam National University, Taejon (Korea, Republic of); Song, Pyung Seob; Choi, Wang Kyu; Jung, Chong Hun; Oh, Won Zin [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2006-07-01

    Recently, there has been growing interest in D and D (Decommissioning and decontamination) of the nuclear facilities around world. In Korea the TRIGA MARK III research reactor has been dismantled since 1997. These decommissioning works result in the various metal wastes such as stainless steel, carbon steel, aluminum and copper. Since the total amount of the steel (stainless steel, carbon steel) wastes from nuclear facilities was up to 70 {approx} 80%, considerable researches have been devoted to the radionuclides distribution and decontamination characteristics of the steel until now. But based on the report by Garbay and Chapuis, they concluded that a PWR contained 20 to 100 ton of aluminum, mostly as electrical cable. Therefore rather more study has been paid to the characteristics of the aluminum melting and the distribution of radionuclides.

  12. Computer aided design (CAD) for electronics improvement of the nuclear channels of TRIGA Mark III reactor of the ININ

    The 4 neutron measurement channels of the digital control console (CCD) of the TRIGA Mark III reactor (RTMIII) of the ININ, its were designed and built with the corresponding Quality Guarantee program, being achieved the one licensing to replace the old console. With the time they were carried out some changes to improve and to not solve some problems detected in the tests, verification and validation, requiring to modify the circuits originally designed. In this work the corrective actions carried out to eliminate the Non Conformity generated by these problems, being mentioned the advantages of using modern tools, as the software applied to the Attended Engineering by Computer, and those obtained results are presented. (Author)

  13. Neutron flux measurement in the thermal column of the Malaysian TRIGA mark II reactor with MCNP verification

    A study of the thermal column of the Malaysian TRIGA Mark II reactor, forming part of a feasibility study for BNCT was proposed in 2001. In the current study, pure metals were used to measure the neutron flux at selected points in the thermal column and the neutron flux determined using SAND-II. Monte Carlo simulation of the thermal column was also carried out. The reactor core was homogenized and calculations of the neutron flux through the graphite stringers performed using MCNP5. The results show good agreement between the measured flux and the MCNP calculated flux. An obvious extension from this is that the MCNP neutron flux output can be utilized as an input spectrum for SAND-II for the flux iteration. (author)

  14. Development of a software for the control of the quality management system of the TRIGA-Mark III reactor

    The quality has not only become one of the essential requirements of the product but rather at the present time it is a strategic factor key of which depends the bigger part of the organizations, not only to maintain their position in the market but also to assure their survival. The good organizations will have processes, procedures and standards to confront these challenges. The big organizations require of the certification of their administration systems, and once the organization has obtained this certification the following step it is to maintain it. The implementation and certification of an administration system requires of an appropriate operative organization that achieves continuous improvements in their operation. This is the case of the TRIGA Mark III reactor, which contains a computer program that upgrades, it controls and it programs activities to develop in the Installation, allowing one operative organization to the whole personnel of the same one. With the purpose of avoiding activities untimely. (Author)

  15. General improvements of the IPR-R1 TRIGA Mark I reactor in 37 years of operation

    The nuclear IPR-R1 TRIGA Mark I Reactor operating in the Nuclear Technology Development Center, originally Institute for Radioactive Research in Minas Gerais, Brazil, was dedicated in November 11, 1960.Initially operating for the production of radioisotopes for different uses, it started later to be used in large scale for neutron activation analysis and training of operators for nuclear power plants. Many improvements have been made throughout these years to provide a better performance in its operation and safety conditions. A new cooling system to operate until 300 k W, a new control console and a general remodeling of the reactor laboratory were some of the improvements added. To prevent and mitigate the ageing effects, the reactor operation personnel is starting a program to minimize future operation problems. Tis paper describes the improvements made, the results obtained during the past 37 years, and the precautions taken to ensure future safe operation of the reactor to give operators better conditions of safe

  16. Boron Neutron Capture Therapy at the TRIGA Mark II of Pavia, Italy - The BNCT of the diffuse tumours

    Altieri, S.; Bortolussi, S.; Stella, S.; Bruschi, P.; Gadan, M.A. [University of Pavia (Italy); INFN - National Institute for Nuclear Physics, of Pavia (Italy)

    2008-10-29

    The selectivity based on the B distribution rather than on the irradiation field makes Boron neutron Capture Therapy (BNCT) a valid option for the treatment of the disseminated tumours. As the range of the high LET particles is shorter than a cell diameter, the normal cells around the tumour are not damaged by the reactions occurring in the tumoral cells. PAVIA 2001: first treatment of multiple hepatic metastases from colon ca by BNCT and auto-transplantation technique: TAOrMINA project. The liver was extracted after BPA infusion, irradiated in the Thermal Column of the Pavia TRIGA Mark II reactor, and re-implanted in the patient. Two patients were treated, demonstrating the feasibility of the therapy and the efficacy in destroying the tumoral nodules sparing the healthy tissues. In the last years, the possibility of applying BNCT to the lung tumours using epithermal collimated neutron beams and without explanting the organ, is being explored. The principal obtained results of the BNCT research are presented, with particular emphasis on the following aspects: a) the project of a new thermal column configuration to make the thermal neutron flux more uniform inside the explanted liver, b) the Monte Carlo study by means of the MCNP code of the thermal neutron flux distribution inside a patient's thorax irradiated with epithermal neutrons, and c) the measurement of the boron concentration in tissues by (n,{alpha}) spectroscopy and neutron autoradiography. The dose distribution in the thorax are simulated using MCNP and the anthropomorphic model ADAM. To have a good thermal flux distribution inside the lung epithermal neutrons must be used, which thermalize crossing the first tissue layers. Thermal neutrons do not penetrate and the obtained uniformity is poor. In the future, the construction of a PGNAA facility using a horizontal channel of the TRIGA Mark II is planned. With this method the B concentration can be measured also in liquid samples (blood, urine) and

  17. Reactivity calculations for the fuel elements of I.T.U. TRIGA MARK-II reactor by means of one-group perturbation theory

    The reactivities of the fuel elements of I.T.U. TRIGA MARK-II reactor has been calculated by using both one-group perturbation theory and a one-dimensional, two-group diffusion computer code TRIGAP. For each fuel element, reactivities calculated by both methods are compared with those measured experimentally. It is seen that the reactivity calculations made by using the one-group perturbation theory give the results with better accuracy in comparison to TRIGAP. One-group perturbation theory can be easily applied to the reactivity calculations of fuel elements of TRIGA type reactors in acceptable range (orig.)

  18. Monte Carlo modelling of TRIGA research reactor

    El Bakkari, B., E-mail: bakkari@gmail.co [Reactor Operating Unit (UCR), National Centre of Sciences, Energy and Nuclear Techniques (CNESTEN/CENM), POB 1382, Rabat (Morocco); ERSN-LMR, Department of Physics, Faculty of Sciences, POB 2121, Tetuan (Morocco); Nacir, B. [Reactor Operating Unit (UCR), National Centre of Sciences, Energy and Nuclear Techniques (CNESTEN/CENM), POB 1382, Rabat (Morocco); El Bardouni, T. [ERSN-LMR, Department of Physics, Faculty of Sciences, POB 2121, Tetuan (Morocco); El Younoussi, C. [Reactor Operating Unit (UCR), National Centre of Sciences, Energy and Nuclear Techniques (CNESTEN/CENM), POB 1382, Rabat (Morocco); ERSN-LMR, Department of Physics, Faculty of Sciences, POB 2121, Tetuan (Morocco); Merroun, O. [ERSN-LMR, Department of Physics, Faculty of Sciences, POB 2121, Tetuan (Morocco); Htet, A. [Reactor Technology Unit (UTR), National Centre of Sciences, Energy and Nuclear Techniques (CNESTEN/CENM), POB 1382, Rabat (Morocco); Boulaich, Y. [Reactor Operating Unit (UCR), National Centre of Sciences, Energy and Nuclear Techniques (CNESTEN/CENM), POB 1382, Rabat (Morocco); ERSN-LMR, Department of Physics, Faculty of Sciences, POB 2121, Tetuan (Morocco); Zoubair, M.; Boukhal, H. [ERSN-LMR, Department of Physics, Faculty of Sciences, POB 2121, Tetuan (Morocco); Chakir, M. [EPTN-LPMR, Faculty of Sciences, Kenitra (Morocco)

    2010-10-15

    The Moroccan 2 MW TRIGA MARK II research reactor at Centre des Etudes Nucleaires de la Maamora (CENM) achieved initial criticality on May 2, 2007. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes for their use in agriculture, industry, and medicine. This study deals with the neutronic analysis of the 2-MW TRIGA MARK II research reactor at CENM and validation of the results by comparisons with the experimental, operational, and available final safety analysis report (FSAR) values. The study was prepared in collaboration between the Laboratory of Radiation and Nuclear Systems (ERSN-LMR) from Faculty of Sciences of Tetuan (Morocco) and CENM. The 3-D continuous energy Monte Carlo code MCNP (version 5) was used to develop a versatile and accurate full model of the TRIGA core. The model represents in detailed all components of the core with literally no physical approximation. Continuous energy cross-section data from the more recent nuclear data evaluations (ENDF/B-VI.8, ENDF/B-VII.0, JEFF-3.1, and JENDL-3.3) as well as S({alpha}, {beta}) thermal neutron scattering functions distributed with the MCNP code were used. The cross-section libraries were generated by using the NJOY99 system updated to its more recent patch file 'up259'. The consistency and accuracy of both the Monte Carlo simulation and neutron transport physics were established by benchmarking the TRIGA experiments. Core excess reactivity, total and integral control rods worth as well as power peaking factors were used in the validation process. Results of calculations are analysed and discussed.

  19. Monte Carlo modelling of TRIGA research reactor

    The Moroccan 2 MW TRIGA MARK II research reactor at Centre des Etudes Nucleaires de la Maamora (CENM) achieved initial criticality on May 2, 2007. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes for their use in agriculture, industry, and medicine. This study deals with the neutronic analysis of the 2-MW TRIGA MARK II research reactor at CENM and validation of the results by comparisons with the experimental, operational, and available final safety analysis report (FSAR) values. The study was prepared in collaboration between the Laboratory of Radiation and Nuclear Systems (ERSN-LMR) from Faculty of Sciences of Tetuan (Morocco) and CENM. The 3-D continuous energy Monte Carlo code MCNP (version 5) was used to develop a versatile and accurate full model of the TRIGA core. The model represents in detailed all components of the core with literally no physical approximation. Continuous energy cross-section data from the more recent nuclear data evaluations (ENDF/B-VI.8, ENDF/B-VII.0, JEFF-3.1, and JENDL-3.3) as well as S(α, β) thermal neutron scattering functions distributed with the MCNP code were used. The cross-section libraries were generated by using the NJOY99 system updated to its more recent patch file 'up259'. The consistency and accuracy of both the Monte Carlo simulation and neutron transport physics were established by benchmarking the TRIGA experiments. Core excess reactivity, total and integral control rods worth as well as power peaking factors were used in the validation process. Results of calculations are analysed and discussed.

  20. Monte Carlo modelling of TRIGA research reactor

    El Bakkari, B.; Nacir, B.; El Bardouni, T.; El Younoussi, C.; Merroun, O.; Htet, A.; Boulaich, Y.; Zoubair, M.; Boukhal, H.; Chakir, M.

    2010-10-01

    The Moroccan 2 MW TRIGA MARK II research reactor at Centre des Etudes Nucléaires de la Maâmora (CENM) achieved initial criticality on May 2, 2007. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes for their use in agriculture, industry, and medicine. This study deals with the neutronic analysis of the 2-MW TRIGA MARK II research reactor at CENM and validation of the results by comparisons with the experimental, operational, and available final safety analysis report (FSAR) values. The study was prepared in collaboration between the Laboratory of Radiation and Nuclear Systems (ERSN-LMR) from Faculty of Sciences of Tetuan (Morocco) and CENM. The 3-D continuous energy Monte Carlo code MCNP (version 5) was used to develop a versatile and accurate full model of the TRIGA core. The model represents in detailed all components of the core with literally no physical approximation. Continuous energy cross-section data from the more recent nuclear data evaluations (ENDF/B-VI.8, ENDF/B-VII.0, JEFF-3.1, and JENDL-3.3) as well as S( α, β) thermal neutron scattering functions distributed with the MCNP code were used. The cross-section libraries were generated by using the NJOY99 system updated to its more recent patch file "up259". The consistency and accuracy of both the Monte Carlo simulation and neutron transport physics were established by benchmarking the TRIGA experiments. Core excess reactivity, total and integral control rods worth as well as power peaking factors were used in the validation process. Results of calculations are analysed and discussed.

  1. Improvements to the TRIGA Mark II instrumentation and the direct digital control by microprocessors

    Two tendencies have been present in the maintenance of the TRIGA instrumentation: one was to renew only those parts that were deteriorating with age, thus ensuring the continuation of the satisfactory service in the original scope; the other was aimed at adding new features and possibly at changing the whole concept of the reactor control and instrumentation. Though the activities along both lines were not best coordinated at all times, the presently emerging result may be highly satisfactory. Besides the well maintained instrumentation in the original scope and concept, a digital data logging and control system is being installed, based on microprocessors, which should offer new level of flexibility and convenience to the operators and experimenters, without compromising either safety of reliability of the overall instrumentation and control system

  2. Experience with modernization and refurbishment of the Vienna TRIGA Mark II reactor I and C system

    The refurbishment of the instrumentation and control (I and C) system of a research reactor is a major task which needs careful planning and taking many aspects into account. At any early planning stage, the future of the facility has to be demonstrated to the national authorities by providing a detailed business plan and the cost of I and C replacement will be compared by financial authorities against the cost of decommissioning the facility. The TRIGA reactor Vienna was modernized in 1992 with a new digital instrumentation and control (I and C) system. The replacement procedure and the reactor-specific modifications to the standard reactor instrumentation offered by the supplier, the operation experience during the past 15 years and a compilation of benefits and other issues to be considered in these procedures (changing from analog to digital I and C system) are summarized in this report. (nevyjel)

  3. Recently-developed neutron activation analysis techniques utilizing the University of California at Irvine TRIGA Mark I reactor

    The University of California at Irvine (UCI) 250 kW TRIGA Mark I reactor is used extensively for neutron activation analysis (NAA) studies. These particularly include basic technique studies and application studies in the fields of environmental pollution, crime investigation, archaeology, oceanography, and geochemistry. In recent NAA studies at UCI, a number of techniques have been developed which considerably improve the usefulness of such a research reactor for NAA work, and which should be of interest and use to others. Six of these techniques will be described in further detail in the full paper. They are as follows: development and use of (1) an automated high-precision rapid transfer system for instrumental NAA measurements with induced activities having half lives as short as 0.5 second, (2) an automated measurement system and computer program for making accurate dead-time corrections under conditions where the Ge(Li) spectrometer deadtime is changing rapidly during the counting period, (3) a technique to minimize the loss of mercury from samples during reactor irradiation via the use of dry-ice-packed, vented TRIGA rotary rack tubes, (4) a technique for compacting powdered samples, by pre-irradiation treatment with a solution of paraffin in carbon disulfide, to provide reproducible irradiation and counting geometries, (5) a method utilizing hydrated antimony pentoxide (HAP) as a pre-irradiation treatment material for removal of sodium from aqueous and wet-ashed samples, and (6) a computerized system for predicting in advance of activation, from approximate known elemental compositions, the total counting rate, deadtime, spectrum shape, principal photopeaks, and approximate actual lower limits of instrumental NAA detection of designated elements for any selected irradiation and decay times. (author)

  4. Characterization of the neutron flux in the Hohlraum of the thermal column of the TRIGA Mark III reactor of the ININ; Caracterizacion del flujo neutronico en el Hohlraum de la columna termica del reactor TRIGA Mark III del ININ

    Delfin L, A.; Palacios, J.C.; Alonso, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: adl@nuclear.inin.mx

    2006-07-01

    Knowing the magnitude of the neutron flux in the reactor irradiation facilities, is so much importance for the operation of the same one, like for the investigation developing. Particularly, knowing with certain precision the spectrum and the neutron flux in the different positions of irradiation of a reactor, it is essential for the evaluation of the results obtained for a certain irradiation experiment. The TRIGA Mark III reactor account with irradiation facilities designed to carry out experimentation, where the reactor is used like an intense neutron source and gamma radiation, what allows to make irradiations of samples or equipment in radiation fields with components and diverse levels in the different facilities, one of these irradiation facilities is the Thermal Column where the Hohlraum is. In this work it was carried out a characterization of the neutron flux inside the 'Hohlraum' of the irradiation facility Thermal Column of the TRIGA Mark III reactor of the Nuclear Center of Mexico to 1 MW of power. It was determined the sub cadmic neutron flux and the epi cadmic by means of the neutron activation technique of thin sheets of gold. The maps of the distribution of the neutron flux for both energy groups in three different positions inside the 'Hohlraum' are presented, these maps were obtained by means of the irradiation of undressed thin activation sheets of gold and covered with cadmium in arrangements of 10 x 12, located parallel to 11.5 cm, 40.5 cm and 70.5 cm to the internal wall of graphite of the installation in inverse address to the position of the reactor core. Starting from the obtained values of neutron flux it was found that, for the same position of the surface of irradiation of the experimental arrangement, the relative differences among the values of neutron flux can be of 80%, and that the differences among different positions of the irradiation surfaces can vary until in a one order of magnitude. (Author)

  5. Periodic Safety review of JSI TRIGA Mark II and inspection of the reactor vessel

    Jazbec, Anze; Snoj, Luak; Smodis, Borut [Jozef Stefan Institute, Ljubljana (Slovenia)

    2013-07-01

    Reactor TRIGA at the Jozef Stefan Institute (JSI) has been in operation since the year 1966. Most of the components were replaced during the process of maintenance and modernisation, but some of the equipment is still original or was replaced many years ago. Because of the ageing mechanisms, periodic safety review (PSR) is one of the crucial points for future utilization. According to legislation, PSR should be performed every 10 years. It features systematic inspection of structures, systems and components (SSC) of the reactor. Impacts of ageing, modernisation, operational experiences, technical progress, and changes of the site on the radiation and nuclear safety are verified. However, PSR does not give only inspection of the SSC, but also allows for the review of operating staff, their competence, operating procedures and other safety related procedures. PSR is pre-condition for extending operating licence. One of the components that have never been replaced is the aluminium reactor vessel. An externally contracted company made extensive analysis of the reactor vessel condition. Firstly, a visual inspection using underwater camera was made. Then all critical areas and welds were examined by using the ultrasound. Thickness of the wall was carefully measured and analysed. Using the same method, inspection for possible cracks inside aluminium was made. No failures were discovered and reactor vessel was found to be in a good condition.

  6. Long-lived activation products in TRIGA Mark II research reactor concrete shield: calculation and experiment

    Žagar, Tomaž; Božič, Matjaž; Ravnik, Matjaž

    2004-12-01

    In this paper, a process of long-lived activity determination in research reactor concrete shielding is presented. The described process is a combination of experiment and calculations. Samples of original heavy reactor concrete containing mineral barite were irradiated inside the reactor shielding to measure its long-lived induced radioactivity. The most active long-lived (γ emitting) radioactive nuclides in the concrete were found to be 133Ba, 60Co and 152Eu. Neutron flux, activation rates and concrete activity were calculated for actual shield geometry for different irradiation and cooling times using TORT and ORIGEN codes. Experimental results of flux and activity measurements showed good agreement with the results of calculations. Volume of activated concrete waste after reactor decommissioning was estimated for particular case of Jožef Stefan Institute TRIGA reactor. It was observed that the clearance levels of some important long-lived isotopes typical for barite concrete (e.g. 133Ba, 41Ca) are not included in the IAEA and EU basic safety standards.

  7. Design of sample carrier for neutron irradiation facility at TRIGA MARK II nuclear reactor

    Abdullah, Y.; Hamid, N. A.; Mansor, M. A.; Ahmad, M. H. A. R. M.; Yusof, M. R.; Yazid, H.; Mohamed, A. A.

    2013-06-01

    The objective of this work is to design a sample carrier for neutron irradiation experiment at beam ports of research nuclear reactor, the Reaktor TRIGA PUSPATI (RTP). The sample carrier was designed so that irradiation experiment can be performed safely by researchers. This development will resolve the transferring of sample issues faced by the researchers at the facility when performing neutron irradiation studies. The function of sample carrier is to ensure the sample for the irradiation process can be transferred into and out from the beam port of the reactor safely and effectively. The design model used was House of Quality Method (HOQ) which is usually used for developing specifications for product and develop numerical target to work towards and determining how well we can meet up to the needs. The chosen sample carrier (product) consists of cylindrical casing shape with hydraulic cylinders transportation method. The sample placing can be done manually, locomotion was by wheel while shielding used was made of boron materials. The sample carrier design can shield thermal neutron during irradiation of sample so that only low fluencies fast neutron irradiates the sample.

  8. Design of sample carrier for neutron irradiation facility at TRIGA MARK II nuclear reactor

    The objective of this work is to design a sample carrier for neutron irradiation experiment at beam ports of research nuclear reactor, the Reaktor TRIGA PUSPATI (RTP). The sample carrier was designed so that irradiation experiment can be performed safely by researchers. This development will resolve the transferring of sample issues faced by the researchers at the facility when performing neutron irradiation studies. The function of sample carrier is to ensure the sample for the irradiation process can be transferred into and out from the beam port of the reactor safely and effectively. The design model used was House of Quality Method (HOQ) which is usually used for developing specifications for product and develop numerical target to work towards and determining how well we can meet up to the needs. The chosen sample carrier (product) consists of cylindrical casing shape with hydraulic cylinders transportation method. The sample placing can be done manually, locomotion was by wheel while shielding used was made of boron materials. The sample carrier design can shield thermal neutron during irradiation of sample so that only low fluencies fast neutron irradiates the sample.

  9. Data acquisition system for TRIGA Mark I nuclear reactor and a proposal for its automatic operation

    The TRIGA IPR-R1 Nuclear Research Reactor, located at the Nuclear Technology Development Center (CDTN/CNEN) in Belo Horizonte, Brazil, is being operated since 44 years ago. During these years the main operational parameters were monitored by analog recorders and counters located in the reactor control console. The most important operational parameters and data in the reactor logbook were registered by the reactor operators. This process is quite useful, but it can involve some human errors. It is also impossible for the operators to take notes of all variables involving the process mainly during fast power transients operations. A PC-based Data Acquisition was developed for the reactor that allows on line monitoring, through graphic interfaces, and shows operational parameters evolution to the operators. Some parameters that never were measured on line, like the thermal power and the coolant flow rate at the primary loop, are monitored now in the computer video monitor. The developed system allows measure out all parameters in a frequency up to 1 kHz. These data is also recorded in text files available for consults and analysis. (author)

  10. TRIGA Reactor Power Upgrading Analysis

    Reactor physics safety analysis supporting the power upgrading from 1MW to 2MW of a typical TRIGA Mark II reactor is presented for steady state and pulse operation. The analysis is performed for mixed core configuration consisting of two types of fuel elements: standard 8,5% or 12% stainless-steel clad fuel elements and LEU fuel elements (20% uranium concentration). The following reactor physics codes are applied: WIMS, TRIGAC, EXTERMINATOR, PULSTRI and TRISTAN. Results of the calculations are compared to experiments for steady state operation at 1 MW. The analysis shows that besides technical modifications of the core (installation of an additional control rod) also some strict administrative limitations have to be imposed on operational parameters (excess reactivity, pulse reactivity, core composition) to assure safe operation within design limits. (author)

  11. Dry reloading and packaging of spent fuel at TRIGA MARK I reactor of Medical University Hanover (MHH), Germany

    Between 1994 and 1998 the equipment for dry reloading of a research reactor was developed by Noell, which was funded by the German Federal Government and State of Saxonia. The task of this development programme was the design and delivery of an equipment able to load the spent fuel into the shipping casks in a dry mode for research reactors, where wet loading inside the storage pool is impossible. ALARA and infrastructure conditions had to be taken into consideration. Most of the research reactors of TRIGA MARK I type or WWR-SM have operating modes for handling of spent fuel inside the pond or for transfer of spent fuel from pond to dry/wet storage pools. On the other hand, most of them cannot handle heavy weighted shipping casks inside the reactor building because of the crane capacity, or inside water pool because of dimensions and weight of shipping casks. A typical licensed normal operating procedure for spent fuel in research reactors (TRIGA MARK I) is shown. Dry unloading procedure is described. Additionally to the normal operating procedures at the MHH research reactor the following steps were necessary: - dry packaging of spent fuel elements into the loading units (six packs) in order to minimise the transfer and loading steps between the pool and shipping cask; - transfer of spent fuel loading units from dry storage pool to the shipping cask (outside the reactor building) in a shielded transfer cask; - dry reloading of loading units, into the shipping casks outside the reactor building. The Dry Reloading Equipment implies the following 5 items: 1. loading units (six packs), which includes: - capacity up to six spent fuel elements; - criticality safe placement of spent fuel elements; - handling of several spent fuel elements in an aluminium loading unit. 2. Special Transfer Cask, which includes: - shielded housing with locks; - gripper inside housing; - hoist outside housing; - computer aided operation mode for loading and unloading. 3. Transfer Vehicle

  12. Determination of the neutrons energy spectrum in the central thimble of the reactor core TRIGA Mark III; Determinacion del espectro de energia de los neutrones en el dedal central del nucleo del reactor TRIGA Mark III

    Parra M, M. A.; Luis L, M. A. [Universidad Autonoma Metropolitana, Unidad Azcapotzalco, Division de Ciencias Basicas, Av. San Pablo No. 180, Col. Reynosa Tamaulipas, 02200 Mexico D. F. (Mexico); Raya A, R.; Cruz G, H. S., E-mail: roberto.raya@inin.gob.mx [ININ, Departamento del Reactor, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    This work presents the measurement of the neutrons spectrum in energies in the central thimble of the reactor TRIGA Mark III to a power of 1 MW in stationary state, with the core in the center of the pool. To achieve this objective, several thin sheets were irradiated (one at the time) in the same position of the core. The activation probes were selected in such a way that covered the energy range (1 x 10{sup -10} to 20 MeV) of the neutrons spectrum in the reactor core, for this purpose thin sheets were used of {sup 197}Au, {sup 58}Ni, {sup 115}In, {sup 24}Mg, {sup 27}Al, {sup 58}Fe, {sup 59}Co and {sup 63}Cu. After the irradiation, the high energy gamma emissions of the activated thin sheets were measured by means of gamma spectrometry, in a counting system of high resolution, with a Hyper pure Germanium detector, obtaining this way the activity induced in the thin sheets whose magnitude is proportional to the intensity of the neutrons flow, this activity together to a theoretical initial spectrum are the main entrance data of the computational code SANDBP (Hungarian version of the code Sand-II) that uses the unfolding method for the calculation of the spectrum. (Author)

  13. Development and validation of a model TRIGA Mark III reactor with code MCNP5; Desarrollo y validacion de un modelo del reactor Triga Mark III con el codigo MCNP5

    Galicia A, J.; Francois L, J. L. [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Ciudad de Mexico (Mexico); Aguilar H, F., E-mail: blink19871@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2015-09-15

    The main purpose of this paper is to obtain a model of the reactor core TRIGA Mark III that accurately represents the real operating conditions to 1 M Wth, using the Monte Carlo code MCNP5. To provide a more detailed analysis, different models of the reactor core were realized by simulating the control rods extracted and inserted in conditions in cold (293 K) also including an analysis for shutdown margin, so that satisfied the Operation Technical Specifications. The position they must have the control rods to reach a power equal to 1 M Wth, were obtained from practice entitled Operation in Manual Mode performed at Instituto Nacional de Investigaciones Nucleares (ININ). Later, the behavior of the K{sub eff} was analyzed considering different temperatures in the fuel elements, achieving calculate subsequently the values that best represent the actual reactor operation. Finally, the calculations in the developed model for to obtain the distribution of average flow of thermal, epithermal and fast neutrons in the six new experimental facilities are presented. (Author)

  14. Measurement of Natural and Artificial Radioactivity in Soil at Some Selected Thanas around the TRIGA Mark-II Research Reactor at AERE, Savar, Dhaka

    Shawpan C. Sarkar; Idris Ali; Debasish Paul; Mahbubur R. Bhuiyan; Sheikh M. A. Islam

    2011-01-01

    The activity concentration of natural and fallout radionuclides in the soil at some selected Thanas around the TRIGA Mark-II Research Reactor at Atomic Energy Research Establishment (AERE), Savar, Dhaka were measured by using a high purity germanium detector (HPGe). The study revealed that only natural radionuclides were present in the samples and no trace of any artificial radionuclide was found. The average activity concentration of 238U, 232Th ...

  15. Evaluation of the aptitude for the service of the pool of the TRIGA Mark III reactor of the National Institute of Nuclear Research of Mexico; Evaluacion de la aptitud para el servicio de la piscina del reactor TRIGA Mark III del Instituto Nacional de Investigaciones Nucleares de Mexico

    Merino C, J.; Gachuz M, M.; Diaz S, A.; Arganis J, C.; Gonzalez R, C.; Nava G, T.; Medina R, M.J. [Departamento de Sintesis y Caracterizacion de Materiales del ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2001-07-01

    This work describes the evaluation of the structural integrity of the pool of the TRIGA Mark III reactor of the National Institute of Nuclear Research of Mexico, which was realized in July 2001, as an element to determine those actions for preventive and corrective maintenance which owner must do it for a safety and efficient operation of the component in the next years. (Author)

  16. ÝTÜ TRIGA MARK-II REAKTÖRÜNDE ÞEBEKE FREKANSI ETKÝSÝNÝN DALGACIK ANALÝZÝYLE FÝLTRELENMESÝ

    BARUTCU, Burak; EKER, Serhat

    2011-01-01

    In this research, data acquisition studies for signals from the neutron detectors and fuel thermo -couplesof ITU TRIGA MARK-II nuclear reactor was implemented. Also, spectral properties related to the datawere examined using frequency and time-frequency domain techniques. Fundamental frequencycomponent at 50 Hz of electric power network and its harmonics were removed from the originalsignals by wavelet analysis approach.Key Words : TRIGA MARK II Nuclear Reactor, frequency domain analysis, Wav...

  17. 14. U.S. TRIGA users conference. Final program and summary of papers

    The following papers were presented at the Conference: Early Development and Use of the TRIGA Reactor; Results of the MCNP Analysis of 20/20 LEU Fuel for the Oregon State University TRIGA Reactor; Upgradeable 2MW TRIGA Reactor Design for the Morocco Nuclear Energy Center McClellan Nuclear Radiation Center TRIGA Reactor: Four Years of Operations

  18. Analysis of the TRIGA Mark-II benchmark IEU-COMP-THERM-003 with Monte Carlo code MVP

    The benchmark experiments of the TRIGA Mark-II reactor in the ICSBEP handbook have been analyzed with the Monte Carlo code MVP using the cross section libraries based on JENDL-3.3, JENDL-3.2 and ENDF/B-VI.8. The MCNP calculations have been also performed with the ENDF/B-VI.6 library for comparison between the MVP and MCNP results. For both cores labeled 132 and 133, which have different core configurations, the ratio of the calculated to the experimental results (C/E) for keff obtained by the MVP code is 0.999 for JENDL-3.3, 1.003 for JENDL-3.2, and 0.998 for ENDF/B-VI.8. For the MCNP code, the C/E values are 0.998 for both Core 132 and 133. All the calculated results agree with the reference values within the experimental uncertainties. The results obtained by MVP with ENDF/B-VI.8 and MCNP with ENDF/B-VI.6 differ only by 0.02% for Core 132, and by 0.01% for Core 133. (author)

  19. Environmental impact assessment of Ar-41 released by the normal operation of TRIGA-Mark 2 research reactor

    Full text: In accordance with the international regulation of nuclear safety and radiological protection of the environment applicable to the basic nuclear installations, category in which the Triga-Mark 2 research reactor is considered, an assesment of the impact in to the environment of the Ar-41 radioelement is accomplished. This radioelement is released by the normal operation of this reactor. The assessment is based on the characteristics of a Moroccan site (where the reactor is installed). It is carried out using CEA Gaussian models and mathematical models developed in LLNL. Considering the assumptions of impact assessments of the radioactivity in the atmosphere, the most important exposure is relatively corresponding to 1 Km from the reactor. This exposure is approximately 0,07% of the lawful limit. Beyond this locality, the exposure becomes lower than 0,02% of this limit. Beyond 5 Km, it becomes lower than ten nono-Sivert. In the basis of the site radiological baseline, the environmental impact of Ar-41 released in normal operation of the reactor is negligible in the studied case.

  20. Characterization of typical irradiation channels of CNESTEN'S TRIGA Mark II reactor (Rabat, Morocco) using NAA K0-method

    The aim of this work is the use of neutron activation analysis using k0-standardization method to characterize some typical irradiation channels of the Moroccan TRIGA Mark II research reactor. The two parameters of neutron flux in the selected irradiation channels used for elemental concentration calculation, f (thermal-to-epithermal ratio) and α (deviation from the 1/E distribution), have been determined as well in the pneumatic tube (PT) as in the carousel facility (CR1) using the zirconium bare triple method. Results obtained for f and α in two irradiation channels show that f parameter determined in this way is different in the carousel facility (CR1) and the PT channel. This can be explained by the fact that the CR1 channel is situated in a graphite reflector and is relatively far from the reactor core, while the PT is in the core. Parameter α in the CR1 has a positive value, as expected, indicating that the neutron spectrum is relatively well thermalized. Parameter α in the PT has a negative value, which is very small and cannot significantly influence the final results obtained by k0-method. The method in our laboratory is validated by analyzing the elemental concentrations of the IAEA Standard Reference Material (Soil-7). All calculations were performed using Kay Win Software. (author)

  1. Safety evaluation for instrumentation and control system upgrading project of Malaysian TRIGA MARK II PUSPATI Research reactor

    Full-text: Malaysian TRIGA MARK II research reactor has been in safe operation since its first criticality in 1982. The reactor is licensed to be operated by Malaysian Nuclear Agency to perform training and research development related activities. Due to its extensive operation since last three decades, the option of modifications for safety and safety-related item and component become a necessary to replace the outdated equipment to a stat-of-art, reliable technologies. This paper will present the current regulatory activities performed by Atomic Energy Licensing Board (AELB) to ensure the upgrading of analogue to digital instrumentation and control system is implemented in safe manner. The review activity includes documentation review, manufacturer quality audit and on-site inspection for commissioning. The review performed by AELB is based on The International Atomic Energy Agency (IAEA) Safety Requirements NS-R-4, entitled Safety of Research Reactors. During this endeavour, AELB seeks technical cooperation from Korea Institute of Nuclear Safety (KINS), the nuclear experts organization of the country of origin of the instrumentation and control technology. The regulatory activity is still on-going and is expected to be completed by issuance of Authorization for Restart on December 2013. (author)

  2. Validation of eureka-2/rr code for analysis of pulsing parameters of triga mark ii research reactor in bangladesh

    Some parametric studies on pulsing mode for fresh core of TRIGA Mark II research reactor in AERE, Savar, have been carried out with coupled thermal-hydraulics code EUREKA-2/RR in association with neutronics code SRAC. At the beginning, role of some important parameters in pulsing like delayed neutron fraction (beta eff) and reactivity insertion have been studied keeping prompt neutron life time (lp) fixed at 33.4 micro-sec. After a series of experiments, we found that the pulsing peak that is consistent with the Safety Analysis Report (SAR) is for the delayed neutron fraction (beta eff) of 0.007 and reactivity insertion of 2. Study has determined the pulsing peak of the fresh core for this particular condition to be 857.86 MW which is 852 MW according to SAR. Experiment also shows the pulsing peak increases with the increase of reactivity insertion whereas decreases with increase of delayed neutron fraction. With the utilization of the particular values of these parameters, pulsing parameters like prompt energy released, reactor period, pulse width at half maxima, alongwith safety parameters including peak power and clad maximum temperature, have been analyzed. The clad maximum temperature for fresh core is simulated to be 144.54 MW, which is much less than the SAR Value, ensuring the validity of codes and the safety of pulsing in that particular condition. (author)

  3. Characterization of typical irradiation channels of CNESTEN's TRIGA MARK II reactor (Rabat, Morocco) using NAA k0-Method

    The aim of this work is the use of neutron activation analysis using k0-standardization method to characterize some typical irradiation channels of the Moroccan TRIGA Mark II research reactor. The two parameters of neutron flux in the selected irradiation channels used for elemental concentration calculation, f (thermal-to-epithermal ratio) and α (deviation from the 1/E distribution), have been determined as well in the pneumatic tube (PT) as in the carousel facility (CR1) using a set of Al (99.9%), Au (0.l %), Zn (99.99%) and Zr (99.8%) monitors. Results obtained for f and α in two irradiation channels show that f parameter determined in this way is different in the carousel facility (CRl) and the PT channel. This can be explained by the fact that the CR1 channel is situated in a graphite reflector and is relatively far from the reactor core, while the PT is in the core. Parameter α in the CR1 has a positive value, as expected, indicating that the neut ron spectrum is relatively well thermalized. Parameter α in the PT has a negative value, which is very small and can not significantly influence the final result obtained by k0-method. The method in our laboratory is validated by analyzing the elemental concentrations of the IAEA Standard Reference Material (Soil-7). All calculations were performed using Kay Win Software.

  4. Performance and improvements of the IPR-R1 Triga Mark I reactor in 45 years of operation

    The TRIGA Mark I IPR-R1 Reactor operates in the Nuclear Technology Development Center-CDTN/CNEN, originally Institute of Radioactive Researches, in Belo Horizonte, Minas Gerais, since November 6, 1960. Initially it was operated for radioisotopes production for different uses, being later used in wide scale for other purposes as neutron activation analysis and training of operators for nuclear power plants. Along the years, several improvements were introduced in the reactor and in its auxiliary systems providing better use of its facilities and optimizing the safety in the operation. A new cooling system, control rod mechanism, aluminum reactor tank, pneumatic system optimization, new control console and a general reform at the reactor room are some of these improvements. The reactor arrives at the 45 years, with a decrease in the rhythm of the works but with perspective of new applications for the same. This paper reports the performance of the reactor in 45 years of operation, providing data about energy released, samples irradiated, hours of operation and purposes of the isotopes produced and cybernetics and information technologies used to provide reactor calculations and monitoring parameters. (author)

  5. Neutron activation analysis at CDTN/CNEN using the IPR-R1 Triga Mark I reactor

    This paper describes in summary the activities developed by the Laboratory for Neutron Activation Analysis since the starting up of the IPR-R1 TRIGA Mark I research reactor in 1960. This Laboratory is located at Centro de Desenvolvimento da Tecnologia Nuclear (Nuclear Technology Development Centre) / Comissao Nacional de Energia Nuclear (Brazilian Commission for Nuclear Energy), CDTN/CNEN. The activities of the Laboratory comprise the delayed fission neutron activation analysis, instrumental (comparative and parametric methods) and radiochemical / chemical methods. These methods are responsible for significant percentage of CDTN's analytical demand, meeting the clients' analytical needs and researches developed by the Laboratory, by CDTN and by other institutions. Over the years the work has been linked to the goals of the country and the institutions. Nowadays the neutron activation analysis is responsible for 70% of the analytical demand and the k0- Instrumental method for 80% of this demand answering clients' request and researches. In Brazil, CDTN is the only Institute that fully masters the Instrumental Neutron Activation Analysis k0-method using its own nuclear reactor. (author)

  6. Characterization of control rod worths and fuel rod power peaking factors in the university of Utah TRIGA Mark I reactor

    Alroumi Fawaz

    2016-01-01

    Full Text Available Control rod reactivity (worths for the three control rods and fuel rod power peaking factors in the University of Utah research reactor (100 kW TRIGA Mark I are characterized using the AGENT code system and the results described in this paper. These values are compared to the MCNP6 and existing experimental measurements. In addition, the eigenvalue, neutron spatial flux distributions and reaction rates are analyzed and discussed. The AGENT code system is widely benchmarked for various reactor types and complexities in their geometric arrangements of the assemblies and reactor core material distributions. Thus, it is used as a base methodology to evaluate neutronics variables of the research reactor at the University of Utah. With its much shorter computation time than MCNP6, AGENT provides agreement with the MCNP6 within a 0.5 % difference for the eigenvalue and a maximum difference of 10% in the power peaking factor values. Differential and integral control rod worths obtained by AGENT show well agreement with MCNP6 and the theoretical model. However, regulating the control rod worth is somewhat overestimated by both MCNP6 and AGENT models when compared to the experimental/theoretical values. In comparison to MCNP6, the total control rod worths and shutdown margin obtained with AGENT show better agreement to the experimental values.

  7. Inspection with non destructive assay techniques of the aluminium coating of the TRIGA Mark III reactor vat

    In June 2000, the Reactor Department assigned to the Scientific Research Direction of the National Institute of Nuclear Research requested to the Non-destructive Assays Laboratory (LEND), assigned to the Materials Science Management, the inspection and measurement of thickness of the aluminium coating (liner) of the TRIGA Mark III reactor vat with non-destructive assay techniques, due to that the aluminium coating is exposed mainly to undergo slimming on its back side due to corrosion phenomena. Activity that was able to be carried out from april until august 2001. It is worth pointing out that this type of inspection with these techniques was realized by first time. The non-destructive assays (NDA) are techniques which use indirect physical methods for inspecting the sanitation of components in process or in service, for detect lack of continuity or defects which affect their quality or usefulness. The application of those do not alter the physical, chemical, mechanical or dimensional properties of the part subject of inspection. The results of the application of the ultrasound inspection techniques, industrial radiography and penetrating liquids are presented. (Author)

  8. 10th European TRIGA users conference

    Abstracts of 46 papers on various aspects of Triga reactors (mainly Triga Mark 2 reactors) are given, according to the main headings: reactor operation and maintenance experience; new developments and improvements of Triga components and systems, including instrumentation; fuel and fuel management; safety aspects, licensing and radiation protection; experiments with Triga reactors; radiochemistry, radioisotope production and NAA; reactor physics. (qui)

  9. Determination of the energy spectrum of the neutrons in the central thimble of the reactor core TRIGA Mark III; Determinacion del espectro de energia de los neutrones en el dedal central del nucleo del reactor Triga Mark III

    Parra M, M. A.

    2014-07-01

    This thesis presents the neutron spectrum measurements inside the core of the TRIGA Mark III reactor at 1 MW power in steady-state, with the bridge placed in the center of the swimming pool, using several metallic threshold foils. The activation detectors are inserted in the Central Thimble of the reactor core, all the foils are irradiated in the same position and irradiation conditions (one by one). The threshold detectors are made of different materials such as: Au{sup 197}, Ni{sup 58}, In{sup 115}, Mg{sup 24}, Al{sup 27}, Fe{sup 58}, Co{sup 59} and Cu{sup 63}, they were selected to cover the full range the energies (10{sup -10} to 20 MeV) of the neutron spectrum in the reactor core. After the irradiation, the activation detectors were measured by means of spectrometry gamma, using a high resolution counting system with a hyper pure Germanium crystal, in order to obtain the saturation activity per target nuclide. The saturation activity is one of the main input data together with the initial spectrum, for the computational code SANDBP (hungarian version of the code SAND-II), which through an iterative adjustment, gives the calculated spectrum. The different saturation activities are necessary for the unfolding method, used by the computational code SANDBP. This research work is very important, since the knowledge of the energetic and spatial distribution of the neutron flux in the irradiation facilities, allows to characterize properly the irradiation facilities, just like, to estimate with a good precision various physics parameters of the reactor such as: neutron fluxes (thermal, intermediate and fast), neutronic dose, neutron activation analysis (NAA), spectral indices (cadmium ratio), buckling, fuel burnup, safety parameters (reactivity, temperature distribution, peak factors). In addition, the knowledge of the already mentioned parameters can give a best use of reactor, optimizing the irradiations requested by the users for their production process or

  10. Research work with TRIGA Mark II at the Nuclear Chemistry Section of the 'J. Stefan' Institute in Ljubljana

    The general features of our research programme using TRIGA MK II, as outlined at the last TRIGA Reactor Users Conference in Vienna, September 28-30,1976, remain the same; namely, neutron activation analysis for trace and some minor elements. The four main areas presently investigated are a) environmental studies, b) life sciences research, c) standardization and d) methodology for specific problems arising in the first three topics

  11. Fast neutron spectrum unfolding of a TRIGA Mark II reactor and measurement of spectrum-averaged cross sections. Integral tests of differential cross sections of neutron threshold reactions

    Uddin, M.S.; Hossain, S.M.; Khan, R. [Atomic Energy Research Establishment, Dhaka (Bangladesh). Inst. of Nuclear Science and Technology (INST); Sudar, S. [Debrecen Univ. (Hungary). Inst. of Experimental Physics; Zulquarnain, M.A. [Bangladesh Atomic Energy Commission, Dhaka (Bangladesh); Qaim, S.M. [Forschungszentrum Juelich (Germany). Inst. fuer Neurowissenschaften und Medizin (INM-5)

    2013-07-01

    The spectrum of fast neutrons having energies from 0.5 to 20 MeV in the core of the 3MW TRIGA Mark II reactor at Savar, Dhaka, Bangladesh, was unfolded by activating several metal foils to induce threshold nuclear reactions covering the whole spectrum, and then doing necessary iterative calculations utilizing the activation results and the code SULSA. The analysed shape of the spectrum in the TRIGA core was found to be similar to that of the pure {sup 235}U-fission spectrum, except for the energies between 0.5 and 1.5 MeV, where it was slightly higher than the fission spectrum. Spectrum-averaged cross sections were determined by integral measurements. The integral values measured in this work were compared with the recommended values for a pure fission spectrum as well as with the integrated data deduced from measured and evaluated excitation functions of a few reactions given in some data files. The good agreement between integral measurements and integrated data in case of well-investigated reactions shows that the fast neutron field at the TRIGA Mark II reactor can be used for validation of evaluated data of neutron threshold reactions. (orig.)

  12. Fast neutron spectrum unfolding of a TRIGA Mark II reactor and measurement of spectrum-averaged cross sections. Integral tests of differential cross sections of neutron threshold reactions

    The spectrum of fast neutrons having energies from 0.5 to 20 MeV in the core of the 3MW TRIGA Mark II reactor at Savar, Dhaka, Bangladesh, was unfolded by activating several metal foils to induce threshold nuclear reactions covering the whole spectrum, and then doing necessary iterative calculations utilizing the activation results and the code SULSA. The analysed shape of the spectrum in the TRIGA core was found to be similar to that of the pure 235U-fission spectrum, except for the energies between 0.5 and 1.5 MeV, where it was slightly higher than the fission spectrum. Spectrum-averaged cross sections were determined by integral measurements. The integral values measured in this work were compared with the recommended values for a pure fission spectrum as well as with the integrated data deduced from measured and evaluated excitation functions of a few reactions given in some data files. The good agreement between integral measurements and integrated data in case of well-investigated reactions shows that the fast neutron field at the TRIGA Mark II reactor can be used for validation of evaluated data of neutron threshold reactions. (orig.)

  13. Operating experience and maintenance at the TRIGA Mark II LENA reactor

    The last two years at the Trigs Mark II LENA plant were characterized by the running of the n-n-bar oscillation NADIR experiment. Consequently reactor operation was positively affected and the running hours rose again above 1000 hours per year. The LENA team was also deeply involved in the procedures for the renewal of the reactor operation license. The new requirements set by the Nuclear Energy Licensing Authority (ENEA for Italy) most of which concerning radiation protection and environmental impact, have been already fulfilled. In some cases the installation of new apparatus is underway

  14. Recent neutron physical experiments at the TRIGA Mark II reactor Vienna

    Experiments using polarized neutrons and the recently constructed neutron interferometer are described. Polarized neutrons are used for the investigation of magnetic domains. These measurements are based on the depolarizing action of a ferromagnetic material. A substance extensively investigated is DY. Here some interesting features were measured. One is the heavy broadening of the AFM-FM phase transition in polycrystalline material. This is an indication of internal stresses which influence the magnetic energy and thus the phase transition via the magnetostrictive effect. Further, two different phase transition points with raising and lowering temperature and a marked time dependence of the neutron depolarization were observed. A Laue type neutron interferometer was successfully tested. In this interferometer two widely separated coherent neutron beams are obtained by diffraction on an ideal Si-crystal. Putting a phase shifting medium within the two beams causes a characteristic intensity variation behind the interferometer. These intensity oscillations could easily be detected using Al and Bi as phase shifted material. An inhomogeneous magnetic field caused a marked reduction of these oscillations. No intensity oscillations could be observed using an unmagnetized Ni-sample as phase shifter. This is a result of inhomogeneous phase shifts because of the random magnetic domain structure of the sample. (U.S.)

  15. Design of the instrument fault detection for TRIGA Mark II Bandung

    The instrument fault detection of Bandung trigra mark II reactor has been designed. The validated reactor model was applied to design three instruments observers which each of them will estimate the reactor power, fuel element and coolant water temperatures. the observer inputs were the inputs and outputs of the system. By comparing the outputs of each observer, the faulty instrument can be determined. The result obtained from the reactor simulation show that there is no deviation in the steady state between observers and the model. All state variable of observer 1 are sensitive to power changes that these variables can be used to determine whether the fault occurs or not. On the contrary, only the 6th and 70th suite variables of observer 2 and 3 can be used to determine the instrument condition because these variables are sensitive to fuel element temperature changes for observer 2 and sensitive to coolant water temperature changes for observer 3. (author)

  16. Determination of the energy spectrum of the neutrons in the central thimble of the reactor core TRIGA Mark III

    This thesis presents the neutron spectrum measurements inside the core of the TRIGA Mark III reactor at 1 MW power in steady-state, with the bridge placed in the center of the swimming pool, using several metallic threshold foils. The activation detectors are inserted in the Central Thimble of the reactor core, all the foils are irradiated in the same position and irradiation conditions (one by one). The threshold detectors are made of different materials such as: Au197, Ni58, In115, Mg24, Al27, Fe58, Co59 and Cu63, they were selected to cover the full range the energies (10-10 to 20 MeV) of the neutron spectrum in the reactor core. After the irradiation, the activation detectors were measured by means of spectrometry gamma, using a high resolution counting system with a hyper pure Germanium crystal, in order to obtain the saturation activity per target nuclide. The saturation activity is one of the main input data together with the initial spectrum, for the computational code SANDBP (hungarian version of the code SAND-II), which through an iterative adjustment, gives the calculated spectrum. The different saturation activities are necessary for the unfolding method, used by the computational code SANDBP. This research work is very important, since the knowledge of the energetic and spatial distribution of the neutron flux in the irradiation facilities, allows to characterize properly the irradiation facilities, just like, to estimate with a good precision various physics parameters of the reactor such as: neutron fluxes (thermal, intermediate and fast), neutronic dose, neutron activation analysis (NAA), spectral indices (cadmium ratio), buckling, fuel burnup, safety parameters (reactivity, temperature distribution, peak factors). In addition, the knowledge of the already mentioned parameters can give a best use of reactor, optimizing the irradiations requested by the users for their production process or research projects. (Author)

  17. Determination of the flows profile in the role of power in the central thimble of TRIGA Mark III Reactor

    The overall objective of the thesis project is to determine the flow profiles sub cadmic and epi cadmic in the central thimble to different powers and operation times of TRIGA Mark III Reactor, using activation foils as detectors. In the reactor operation, it is necessary to know the neutron flow profile for to realize other tasks as: the radioisotopes production, research in reactors physics and fuel burning. The distribution of the neutron flow, accurately reflects what is happening in the reactor core, plus the flows value in this distribution is directly related to the power generated. For this reason it is performed the sub cadmic flow measurement with energies between 0 and 0.4 eV (energy of the cadmium cut Ecd ∼ 0.4 eV) and epi cadmic flow with energies greater than 0.4 eV, in the central thimble powers to the powers of 10, 100 W, 1, 10 100 Kw and 1 MW. The method used is known as flakes activation, which is to be arranged by placing flakes ( 3 mm of diameter and 0.0508 mm of thickness) of a given material (either Au, In, Cu, Mn, etc.) into an aluminum tube outside diameter equal to 6.35 mm, alternating flakes with lids covered and discovered of cadmium (3.4 mm of diameter and 0.508 mm of thickness) and separated by lucite pieces of 3 mm of diameter and 25.4 mm in length. After irradiating the flakes for some time, is measured the gamma activity of each of them, using a hyper pure germanium detector of high resolution. Already known gamma activity, proceed to calculate the epi cadmic and sub cadmic flows using a computer program in Fortran language, called Caflu. (Author)

  18. A high performance neutron powder diffractometer at 3 MW Triga Mark-II research reactor in Bangladesh

    Kamal, I.; Yunus, S. M.; Datta, T. K.; Zakaria, A. K. M.; Das, A. K.; Aktar, S.; Hossain, S.; Berliner, R.; Yelon, W. B.

    2016-07-01

    A high performance neutron diffractometer called Savar Neutron Diffractometer (SAND) was built and installed at radial beam port-2 of TRIGA Mark II research reactor at AERE, Savar, Dhaka, Bangladesh. Structural studies of materials are being done by this technique to characterize materials crystallograpohically and magnetically. The micro-structural information obtainable by neutron scattering method is very essential for determining its technological applications. This technique is unique for understanding the magnetic behavior in magnetic materials. Ceramic, steel, electronic and electric industries can be benefited from this facility for improving their products and fabrication process. This instrument consists of a Popovicimonochromator with a large linear position sensitive detector array. The monochromator consists of nine blades of perfect single crystal of silicon with 6mm thickness each. The monochromator design was optimized to provide maximum flux on 3mm diameter cylindrical sample with a relatively flat angular dependence of resolution. Five different wave lengths can be selected by orienting the crystal at various angles. A sapphire filter was used before the primary collimator to minimize the first neutron. The detector assembly is composed of 15 linear position sensitive proportional counters placed at either 1.1 m or 1.6 m from the sample position and enclosed in a air pad supported high density polythene shield. Position sensing is obtained by charge division using 1-wide NIM position encoding modules (PEM). The PEMs communicate with the host computer via USB. The detector when placed at 1.1 m, subtends 30˚ (2θ) at each step and covers 120˚ in 4 steps. When the detector is placed at 1.6 m it subtends 20˚ at each step and covers 120˚ in 6 steps. The instrument supports both low and high temperature sample environment. The instrument supports both low and high temperature sample environment. The diffractometer is a state-of-the art technology

  19. Loss of Coolant Accident Analysis for 1MW PUSPATI Triga Mark II Research Reactor (RTP) Using MARS-KS Code

    Abd, Aziz Sadri [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Shin, Andong [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    RTP is a pool type reactor cooled by natural circulation and the reactor core is located at the bottom of a demineralized water-filled aluminum liner tank of 2.0 meter diameter and 6.5 meter depth. The core assembly is composed of 100 cylindrical fuel rods including of 4 control rods in circular array. From the literature, development of thermal hydraulic analysis of RTP using computer code has not been well established. Therefore, establishment and development of appropriate thermal hydraulic safety analysis model is very critical to ensure the safety operation of the reactor. Hence, key thermal hydraulic parameters of RTP reactor operating under steady state and transient condition were investigated. In this paper, Loss Of Coolant Accident (LOCA) were calculated and analyzed and compared with corresponding values in Safety Analysis Report (SAR) 2008 and test report. PUSPATI Triga Mark II research reactor (RTP) has been operated at Malaysian Nuclear Agency since 1982 and primary cooling system was modified in 2010. Thermal hydraulic modeling of RTP of 1MWt has been successfully investigated with MARS-KS code. The calculated normal operation parameters have been compared with reactor Safety Analysis Report (SAR) and experimental data. Most of the thermal hydraulic parameters show good agreement with SAR and experimental data within an acceptable percentage error. The loss of coolant accident was simulated in case of leak of primary side heat exchanger gasket. The calculation result showed fast decrease of reactor pool level. About 5 minutes after the leak, reactor tank was fully depleted. Furthermore, claddings temperature was reached 1173.4K at 3270s which could result in failure of SS304 cladding. Based on the assessment, it is found that appropriate remedies including physical modifications or emergency procedures need be prepared to protect the reactor tank depletion by the heat exchanger leak accident.

  20. Loss of Coolant Accident Analysis for 1MW PUSPATI Triga Mark II Research Reactor (RTP) Using MARS-KS Code

    RTP is a pool type reactor cooled by natural circulation and the reactor core is located at the bottom of a demineralized water-filled aluminum liner tank of 2.0 meter diameter and 6.5 meter depth. The core assembly is composed of 100 cylindrical fuel rods including of 4 control rods in circular array. From the literature, development of thermal hydraulic analysis of RTP using computer code has not been well established. Therefore, establishment and development of appropriate thermal hydraulic safety analysis model is very critical to ensure the safety operation of the reactor. Hence, key thermal hydraulic parameters of RTP reactor operating under steady state and transient condition were investigated. In this paper, Loss Of Coolant Accident (LOCA) were calculated and analyzed and compared with corresponding values in Safety Analysis Report (SAR) 2008 and test report. PUSPATI Triga Mark II research reactor (RTP) has been operated at Malaysian Nuclear Agency since 1982 and primary cooling system was modified in 2010. Thermal hydraulic modeling of RTP of 1MWt has been successfully investigated with MARS-KS code. The calculated normal operation parameters have been compared with reactor Safety Analysis Report (SAR) and experimental data. Most of the thermal hydraulic parameters show good agreement with SAR and experimental data within an acceptable percentage error. The loss of coolant accident was simulated in case of leak of primary side heat exchanger gasket. The calculation result showed fast decrease of reactor pool level. About 5 minutes after the leak, reactor tank was fully depleted. Furthermore, claddings temperature was reached 1173.4K at 3270s which could result in failure of SS304 cladding. Based on the assessment, it is found that appropriate remedies including physical modifications or emergency procedures need be prepared to protect the reactor tank depletion by the heat exchanger leak accident

  1. Measuring the dose rate at the core and tank of the CDTN IPR-R1 TRIGA Mark I reactor

    The IPR-R1 TRIGA Mark I Reactor of the Nuclear Technology Development Center, CDTN/CNEN, is a research reactor, training and isotopes production that operates since 1960. It is operating at 100 kW and is on licensing process to operate at 250 kW, with the core modifications, cooling system, instrumentation and the operation documents partially implemented. In 47 years of operation more than 1.900.000 kWh of energy and, consequently, a great amount of fission products, some of long half-life, were released. Most of the 63 fuel elements of the current configuration are in the core since the first criticality. There is a great radiation activity due to the present fission products inside these elements, due to the core structural components and the stainless steel cladding of the new fuel elements, both activated by neutrons. With the ageing of the reactor, some procedures have being implemented to provide safety operations. Some of these procedures include the use of sensitive devices to the radiation, as cameras for visual inspection and other equipment used in the structural integrity tests. The knowledge of the dose rates has great importance in the specifications of those acquisition devices and safely operation during handling of them. This study can make possible, also, the use of the reactor as a gamma irradiation source for small samples. The paper shows the gamma dose rates in the reactor core, using special dosimeters, in different times after 8 hours operations at 100 kW and without neutron influence. (author)

  2. Validation of WIMS-SNAP code systems for calculations in TRIGA-MARK II type reactors; Validacion del sistema de codigos WIMS-SNAP para calculos en reactores nucleares tipo TRIGA-MARK II

    Hernandez Valle, S.; Lopez Aldama, D. [Centro de Investigaciones Nucleares, Tecnologicas y Ambientales, La Habana (Cuba). E-mail: svalle@ctn.isctn.edu.cu

    2000-07-01

    The following paper contributes to validate the Nuclear Engineering Department methods to carry out calculations in TRIGA reactors solving a Benchmark. The benchmark is analyzed with the WIMS-D/4-SNAP/3D code system and using the cross section library WIMS-TRIGA. A brief description of the DSN method is presented used in WIMS/d{sup 4} code and also the SNAP-3d code is shortly explained. The results are presented and compared with the experimental values. In other hand the possible error sources are analyzed. (author)

  3. Preliminary investigations of a mixed standard-flip core for a TRIGA Mark II

    Several years ago it became apparent that due to our rapidly- increasing use rate, we would need a substantial amount of new fuel by late 1974 or early 1975. After investigations and discussions with GA, we decided that FLIP fuel would best meet our requirements for maximum fuel economy and high peak pulsing power. A proposal was submitted to the AEC for fuel assistance, and late in 1973 we were awarded a grant of $61,875. This will allow us to buy 3 FLIP-fueled-follower control rods, 1 instrumented FLIP fuel element, and 26 standard FLIP elements, giving us then a mixed core of approximately one-third FLIP and two-thirds standard elements. License amendments to accommodate this change are rather straightforward; modifications to the Technical Specifications will be somewhat more involved. The largest revisions which we envision are to our Safety Analysis Report. Although a few reactors have operated with a full FLIP core, and a few others have converted to mixed standard-FLIP cores, none of these has a standard Mark II core configuration. Those who have already converted to a mixed core have data and calculations which may be helpful to us, but the extent to which we can use these remains to be seen. The present status of our investigations into the analysis of a mixed standard-FLIP core will be presented. Any problems in calculational methods, finding appropriate data, modifications to Technical Specifications, etc., will be identified, and suggestions and help in these areas will be welcomed. (author)

  4. Criticality and safety parameter studies for upgrading 3 MW TRIGA MARK II research reactor and validation of generated cross section library and computational method

    This study deals with the neutronic and thermal hydraulic analysis of the 3MW TRIGA MARK II research reactor to upgrade it to a higher flux. The upgrading will need a major reshuffling and reconfiguration of the current core. To reshuffle the current core configuration, the chain of NJOY94.10 - WIMSD-5A - CITATION - PARET - MCNP4B2 codes has been used for the overall analysis. The computational methods, tools and techniques, customisation of cross section libraries, various models for cells and super cells, and a lot of associated utilities have been standardised and established/validated for the overall core analysis. Analyses using the 4-group and 7-group libraries of macroscopic cross sections generated from the 69-group WIMSD-5 library showed that a 7-group structure is more suitable for TRIGA calculations considering its LEU fuel composition. The MCNP calculations established that the CITATION calculations and the generated cross section library are reasonably good for neutronic analysis of TRIGA reactors. Results obtained from PARET demonstrated that the flux upgrade will not cause the temperature limit on the fuel to be exceeded. Also, the maximum power density remains, by a substantial margin below the level at which the departure from nucleate boiling could occur. A possible core with two additional irradiation channels around the CT is projected where almost identical thermal fluxes as in the CT are obtained. The reconfigured core also shows 7.25% thermal flux increase in the Lazy Susan. (author)

  5. In-core fuel management, safety, and thermal hydraulics studies for upgrading TRIGA MARK II research reactor

    Bangladesh Atomic Energy Commission has approved a project to upgrade the research reactor to higher flux to meet the growing demand of medical radio-isotopes production and other irradiation facilities. Preliminary studies with the various core parameters showed that it might be possible to create new irradiation flux traps, increase the neutron flux at desired location, and at the same time the fuel burn-up can be made optimal. This will need major reshuffling and reconfiguration of the core with fuel rods initially loaded. The principal objective of this study is focused to make the above improvements in the core without disturbing the safety parameters. This presentation deals with the neutronic and thermal hydraulic analysis of the 3 MW TRIGA MARK II research reactor to upgrade it to a higher flux. To realize this objective, the overall strategy followed is: (I) generation of problem dependent cross section library from basic Evaluated Nuclear Data Files such as ENDF/B-VI, JENDL 3.2 with NJOY94.10+, (ii) use WIMSD-5 package to generate cell constants for all of the materials in the core and its immediate neighborhood, (iii) use CITATION to perform 3-D global analysis of the core to study multiplication factor, neutron flux and power distribution, power peaking factors, temperature reactivity coefficients, etc., (iv) check the validity of the deterministic codes with the Monte Carlo code MCNP-4B2, (v) couple output of CITATION with PARET to study thermal hydraulic behavior to predict safety margins, and (vi) reshuffle the current core configuration to achieve the desired objectives. The computational methods, tools and techniques, customization of cross section libraries, various models for cells and super cells, and a lot of associated utilities have been standardized and established/validated for the overall core analysis. Analyses using the 4-group, and 7-group libraries of macroscopic cross sections generated from the 69-group WIMSD-5 library were performed

  6. Simulator of the punctual kinetics of a TRIGA Mark III reactor with power diffuse control in a visual environment; Simulador de la cinetica puntual de un reactor nuclear TRIGA Mark III con control difuso de potencia en un ambiente visual

    Perez M, C

    2004-07-01

    The development of a software is presented that simulates the punctual kinetics of a nuclear reactor of investigation model TRIGA Mark III, generating the answers of the reactor low different algorithms of control of power. The user requires a graphic interface that allows him easily interacting with the simulator. To achieve the proposed objective, first the system was modeled in open loop, not using a mathematical model of the consistent reactor in a system of linear ordinary differential equations. For their solution in real time the numeric method of Runge-Kutta-Fehlberg was used. As second phase, it was modeled to the system in closed loop, using for it an algorithm of control of the power based on fuzzy logic. This software has as purpose to help the investigator in the control area who will be able to prove different algorithms for the control of the power of the reactor. This is achieved using the code source in language C, C++, Visual Basic, with which a file is generated. DLL and it is inserted in the simulator. Then they will be able to visualize the results as if their controller had installed in the reactor, analyzing the behavior of all his variables that will be stored in files, for his later study. The easiness of proving these control algorithms in the reactor without necessity to make it physically has important consequences as the saving in the expense of fuel, the not generation of radioactive waste and the most important thing, one doesn't run any risk. The simulator can be used how many times it is necessary until the total purification of the algorithm. This program is the base for following investigation processes, enlarging the capacities and options of the same one. The program fulfills the time of execution satisfactorily, assisting to the necessity of visualizing the behavior in real time of the reactor, and it responds from an effective way to the petitions of changes of power on the part of the user. (Author)

  7. Establishment of nuclear prototype testing in the Torrey Pines TRIGA Mark F to verify civilian nuclear submarine power plant reactor design

    ECS-Power Systems, Inc. is in the advanced stages of the design and development of a small nuclear reactor-based electrical power generating plant, designated the Autonomous Marine Power Source (AMPS). This power source will be used initially in the SAGA-N a nuclear-powered submarine which can support operations to depths of 600m. The AMPS power supply consists of a 1500 kW low-pressure water-cooled reactor heat source utilizing TRIGA-type U-Zr-H fuel, coupled to a low temperature organic Rankine cycle power conversion system delivering 100 kW(e) to the ship's electrical bus. Verification of the AMPS reactor design parameters will be supported by the assembly and operation of a Nuclear Prototype Test (NPT), to be carried out in the Torrey Pines TRIGA Mark F reactor pool, using many of the components and support facilities of this 1500 kW reactor. The objectives of the NPT test program are to verify the reactor neutronic design and to study the behavior of the reactor under closely approximated neutronic and thermal- hydraulic operating conditions. A key feature of the AMPS reactor, in addition to the inherent safety characteristics of the TRIGA-type fuel, is a passive auxiliary cooling system. One of the objectives of the NPT is to demonstrate operation of the passive cooling system when driven by the TRIGA-fueled nuclear heat source over a wide range of conditions. The NPT will be assembled in the TRIGA Mark F pool, using the existing primary loop, water purification system, instrumentation and control system, and radiation detection instrumentation. AMPS specification core support structures, reactor vessel, headers, reflector, grid plates, and pool cooling unit and decay tank will be provided. Additional instrumentation specific to demonstrating the inherent safety features of the unique AMPS cooling system configuration will be installed. Also, SAGA-N fuel elements and control rods will be used in the NPT. The basic tests to be performed will include: Zero

  8. The thermal column. A new irradiation position for fission-track dating in the University of Pavia Triga Mark II nuclear reactor

    In the present paper a new irradiation position arranged for fission-track dating in the Triga Mark II reactor of the University of Pavia is described. Fluence values determined using the NIST glass standard SRM 962a for fission-track dating and the traditional metal foils are compared. Relatively high neutron thermalization (cadmium ratio of 85.3 for gold and 643 for cobalt) and lack of significant fluence spatial gradients are very favorable factors for fission-track dating. Finally, international age standards (or putative age standards) irradiated in this new position yielded results consistent with independent reference ages. (author). 9 refs., 2 figs., 4 tabs

  9. Neutron flux variability at the TRIGA MARK II reactor, Ljubljana, as a parameter with applying the k0-method of NAA

    Neutron flux behaviour during irradiation should be known when applying the k0 method of neutron activation analysis. During two 100-hour operating periods of the TRIGA MARK II reactor, Ljubljana, the flux was measured by means of a 197Au(n,γ)198Au monitor (Eγ=411.8 keV). Cadmium-covered irradiations were also performed to obtain the epithermal flux and thermal-to-epithermal flux ratio variations. Consistency was found between these results and the reactor operators' logbook record. (author) 5 refs.; 3 figs

  10. Simulator of the punctual kinetics of a TRIGA Mark III reactor with power diffuse control in a visual environment

    The development of a software is presented that simulates the punctual kinetics of a nuclear reactor of investigation model TRIGA Mark III, generating the answers of the reactor low different algorithms of control of power. The user requires a graphic interface that allows him easily interacting with the simulator. To achieve the proposed objective, first the system was modeled in open loop, not using a mathematical model of the consistent reactor in a system of linear ordinary differential equations. For their solution in real time the numeric method of Runge-Kutta-Fehlberg was used. As second phase, it was modeled to the system in closed loop, using for it an algorithm of control of the power based on fuzzy logic. This software has as purpose to help the investigator in the control area who will be able to prove different algorithms for the control of the power of the reactor. This is achieved using the code source in language C, C++, Visual Basic, with which a file is generated. DLL and it is inserted in the simulator. Then they will be able to visualize the results as if their controller had installed in the reactor, analyzing the behavior of all his variables that will be stored in files, for his later study. The easiness of proving these control algorithms in the reactor without necessity to make it physically has important consequences as the saving in the expense of fuel, the not generation of radioactive waste and the most important thing, one doesn't run any risk. The simulator can be used how many times it is necessary until the total purification of the algorithm. This program is the base for following investigation processes, enlarging the capacities and options of the same one. The program fulfills the time of execution satisfactorily, assisting to the necessity of visualizing the behavior in real time of the reactor, and it responds from an effective way to the petitions of changes of power on the part of the user. (Author)

  11. Larger research programs at the beam holes of the Austrian TRIGA Mark II reactor. Design and construction of a Fourier chopper-selector at the Austrian TRIGA reactor

    A neutron chopping system utilizing Fourier analysis has great advantages to alternative systems. For this purpose the chopper consists of a disc, opaque to neutrons, rotating on an axis perpendicular to its centre. Around its outside edge a series of uniformly spaced teeth and spaces are formed with neutron transparent gaps extending towards the centre. By using a stationary section having the same pattern of teeth and gaps it is possible to utilize a beam area considerably larger than the area of one tooth. During the last years at the TRIGA Reactor in Vienna a neutron chopping-and selecting-system is developed and in construction, which will not only chop the beam in that way necessary for Fourier analysis but also select the energy. The selection is done by seven discs of the form described above mounted on an axis. The selector is designed for neutron wave lengths between 3 and 30 A. The resolution is constant over the whole range of energy and depends on the beam divergence. Thus the modulation frequency is 104 sec-1 and the half-width of the neutron pulse about 50 μsec

  12. Thermal hydraulic transient study of 3 MW TRIGA Mark-II research reactor of Bangladesh using the EUREKA-2/RR code

    Highlights: ► Reactor power transition time depends on magnitude and form of reactivity. ► This time also depends on existing reactor power during reactivity insertion. ► Pattern of power transition depends on form of reactivity insertion. ► Doppler’s effect is seen for lower reactivity insertion when reactor power is low. ► EUREKA-2/RR code performs well for RIA and LOFA of TRIGA Mark-II research reactor. - Abstract: EUREKA-2/RR code has been used for the analyses of reactivity insertion accident (RIA) and loss of flow accident (LOFA) of 3 MW TRIGA Mark-II research reactor of Bangladesh. Transient characteristics of different parameters such as core power, fuel temperature, clad temperature, departure from nucleate boiling ratio (DNBR) due to the different form and magnitude of reactivity insertion has been focused. It is found from the analysis that the magnitude of insertion reactivity and the reactor operating power during this insertion impose a total effect on the core safety. Also, transient effects on reactor were studied for 15% loss of flow of the primary coolant. Provided the scram system is available, the reactor is found to shutdown safely in both cases. From these two studies in series, it is seen that EUREKA-2/RR is well suited for the analyses of reactor safety parameters with good approximations.

  13. The use of beam neutron of TRIGA IPR-R1 (Mark 1) reactor for general applications

    At present, there are four devices in the TRIGA IPR-R1 reactor at the CDTN for sample irradiation, but in these irradiators the mass and form of the sample are limited to the standardized dimensions of the irradiation receivers. Besides, the irradiation is made under, approximately, 5 meters of water, complicating the access. However, through an beam neutron extractor arrangement, it is possible to irradiate larger samples, in a local more accessible and with minimum interference of fast neutrons facilitating to measure neutronic parameters, to do crystals neutron diffraction, to obtain neutron radiographs, among other applications. This work presents results of the experimental Neutron Extractor arrangement in TRIGA reactor at CDTN. (author)

  14. Present and future beam tube experiments at the 250 kW TRIGA Mark II reactor Wien

    The four beam tubes and the thermal column at the TRIGA reactor Wien were well used in the reporting period. Since the thermal column is used as a gamma source for different irradiation experiments and as a neutron source for radiography, the other facilities are mainly used for neutron spectroscopy experiments: polarized neutrons, neutron interferometry, small angle scattering and neutron choppers, In the piercing beam tube a fast rabbit system is installed which is mainly used for high precision activation analysis. (author)

  15. Operating experience and maintenance of the TRIGA Mark II reactor Vienna in the period July 1978 to July 1980

    The TRIGA reactor Vienna has operated satisfactory during the reported period. Several events resulted in undesired shut down, like problems with the top grid plate; problems with the rotary specimen rack; problems with the pulse rod. In addition as a result from the licensing procedure modifications were performed on auxiliary systems. With the help of an underwater flashlight photo camera the area below the core, below the thermal column and other inaccessible areas were inspected

  16. Analysis of the DNB ratio and the loss-of-flow accident (LOFA) of the 3 MW TRIGA MARK II research reactor

    The PARET code was used to analyze two most important thermal hydraulic design parameters of the 3 MW TRIGA MARK II research reactor. The first design parameters is the DNB (departure from nucleate boiling) ratio, which is defined as the ratio of the critical heat flux to the heat flux achieved in the core and was computed by means of a suitable correlation as defined in PARET code. The reactor core should be designed so as to prevent the DNBR from dropping below a chosen value under a high heat flux transient condition for the most adverse set of mechanical and coolant conditions. Over the length 0.381 m of the hottest channel the DNB ratio varies, starting from 3.8951 to 5.4031, with a minimum of 2.7851. The peak heat flux occurs at the axial center of the fuel elements; therefore the DNB ratio is minimum at this location. The second design parameter is the loss-of-flow accident scenario of the TRIGA reactor. The Bergles-Rohsenow correlation was selected for detecting onset of nucleate boiling, the transition model with the McAdams correlation was included for fully developed two-phase flow, and the Seider-Tate correlation was used for the single-phase forced convection regime. The loss-of-flow transient after a trip time of 4.08 sec at 85% of loss of normal flow for the TRIGA core shows a peak temperature of 709.22 C in the fuel centerline and 131.94 C in the clad and 46.63 C in the coolant exit of the hottest channel. The transient was terminated at 15% of nominal flow after about 48.0 sec. The time at which the reversal of coolant flow starts is about 67.0 sec. (author)

  17. Development of a simulator for design and test of power controllers in a TRIGA Mark III reactor; Desarrollo de un simulador para diseno y prueba de controladores de potencia en un reactor TRIGA Mark III

    Perez M, C.; Benitez R, J.S.; Lopez C, R. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    The development of a simulator that uses the Runge-Kutta-Fehlberg method to solve the model of the punctual kinetics of a nuclear research reactor type TRIGA. The simulator includes an algorithm of power control of the reactor based on the fuzzy logic, a friendly graphic interface which responds to the different user's petitions and that it shows numerical and graphically the results in real time. The user can modify the demanded power and to visualize the dynamic behavior of the one system. This simulator was developed in Visual Basic under an open architecture with which its will be prove different controllers for its analysis. (Author)

  18. Benchmark tests of JENDL-3.3 and ENDF/B-VI data files using Monte Carlo simulation of the 3 MW TRIGA MARK II research reactor

    The three-dimensional continuous-energy Monte Carlo code MNCP4C was used to develop a versatile and accurate full-core model of the 3 MW TRIGA MARK II research reactor at Atomic Energy Research Establishment, Savar, Dhaka, Bangladesh. The model represents in detail all components of the core with literally no physical approximation. All fresh fuel and control elements as well as the vicinity of the core were precisely described. Validation of the newly generated continuous energy cross section data from JENDL-3.3 was performed against some well-known benchmark lattices using MCNP4C and the results were found to be in very good agreement with the experiment and other evaluations. For TRIGA analysis continuous energy section data from JENDL-3.3 and ENDF/B-VI in combination with the JENDL-3.2 and ENDF/B-V data files (for natZr, natMo, natCr, natFe, natNi, natSi, and natMg) at 300K evaluations were used. Full S(α, β) scattering functions from ENDF/B-V for Zr in ZrH, H in ZrH and water molecule, and for graphite were used in both cases. The validation of the model was performed against the criticality and reactivity benchmark experiments of the reactor. The MNCP calculated values for effective multiplication factor keff underestimated 0.0250%Δk/k and 0.2510%Δk/k for control rods critical positions and overestimated 0.2098%Δk/k and 0.0966%Δk/k for all control rods withdrawn positions using JENDL-3.3 and ENDF/B-VI, respectively. The core multiplication factor differs appreciably (∼3.3%) between the no S(α, β) (when temperature representation for free gas treatment is about 300K) and 300K S(α, β) case. However, there is ∼20.0% decrease of thermal neutron flux occurs when the thermal library is removed. Effect of erbium isotope that is present in the TRIGA fuel over the criticality analysis of the reactor was also studied. In addition to the keff values, the well known integral parameters: δ28, δ25, ρ25, and C were calculated and compared for both JENDL3

  19. Comparative Study of some Parameters reported in the Safety Analysis Report of TRIGA MARK II Research reactor with Calculations

    An attempt has been made to investigate some of the parametric results reported in the safety Analysis Report (SAR) with the theoretical analysis carried out by different computer codes and data bases. Different neutronics, thermal hydraulics and safety parameters such as core criticality and burnup lifetime, power peaking factor, prompt negative temperature coefficient, neutron flux, pulse characteristics, steady state and transient behaviors of the TRIGA reactor were analyzed. The investigated results were found to be in fairly good agreement with the values reported in the SAR. 12 refs., 14 figs., 1 table (Author)

  20. Development of a simulator for design and test of power controllers in a TRIGA Mark III reactor

    The development of a simulator that uses the Runge-Kutta-Fehlberg method to solve the model of the punctual kinetics of a nuclear research reactor type TRIGA. The simulator includes an algorithm of power control of the reactor based on the fuzzy logic, a friendly graphic interface which responds to the different user's petitions and that it shows numerical and graphically the results in real time. The user can modify the demanded power and to visualize the dynamic behavior of the one system. This simulator was developed in Visual Basic under an open architecture with which its will be prove different controllers for its analysis. (Author)

  1. Benchmark analysis of criticality experiments in the TRIGA mark II using a continuous energy Monte Carlo code MCNP

    The criticality analysis of the TRIGA-II benchmark experiment at the Musashi Institute of Technology Research Reactor (MuITR, 100kW) was performed by the three-dimensional continuous-energy Monte Carlo code (MCNP4A). To minimize errors due to an inexact geometry model, all fresh fuels and control rods as well as vicinity of the core were precisely modeled. Effective multiplication factors (keff) in the initial core critical experiment and in the excess reactivity adjustment for the several fuel-loading patterns as well as the fuel element reactivity worth distributions were used in the validation process of the physical model and neutron cross section data from the ENDF/B-V evaluation. The calculated keff overestimated the experimental data by about 1.0%Δk/k for both the initial core and the several fuel-loading arrangements (fuels or graphite elements were added only to the outer-ring), but the discrepancy increased to 1.8%Δk/k for the some fuel-loading patterns (graphite elements were inserted into the inner-ring). The comparison result of the fuel element worth distribution showed above tendency. All in all, the agreement between the MCNP predictions and the experimentally determined values is good, which indicates that the Monte Carlo model is enough to simulate criticality of the TRIGA-II reactor. (author)

  2. Production of the radioactive antitumoral cis-platinum using the reactor TRIGA Mark I IPR-R1, CDTN/CNEN

    This work presents a preparation of the radiolabeled cis-dichlorodiammineplatinum (II), CDDP, at TRIGA MARK I IPR R-1 research reactor and the results of its biodistribution in mice. This radiolabeled molecule, CDDP*, was obtained by direct irradiation at 100 kW, under an average thermal flux of 6.4 x1011 neutrons.cm-2.s-1 producing a compound with very high chemical purity. Preliminary results of the material irradiated bare and Cd-covered suggest that high specific activity with the necessary chemical and radiochemical purity can be obtained. The measured activity of CDDP* in mice organs in a well- type detector showed satisfactory results for biological experiments. (author)

  3. Operating experience and maintenance of the 250 kW TRIGA Mark II Reactor Vienna in the period July 1982 to July 1984

    The operation and maintenance of the TRIGA Mark II Reactor Vienna during the period July 1982 to July 1984 is reported. The reactor operated without any major undesired shutdown period. The total power production was 261 MWh in 1982 and 200 MWh in 1983. The reactor was still operated without a rotary specimen rack, several irradiation positions were provided by tubes. The damaged Lazy Susan was finally shipped in a concrete container to a waste storage facility. Some problems were encountered with reactor components due to aging or wear such as the control rod drive motors, the fuel handling tool and the rod magnets. To increase the use and to facilitate the access to the thermal column a movable shielding platform was designed and constructed. Within the next year reinspection of the reactor tank and the supporting facilities will take place, especially the thermalizing column, presently housing a cold neutron source facility will be replaced by a neutron radiography installation

  4. Chromosome aberrations induced in human lymphocytes by U-235 fission neutrons: I. Irradiation of human blood samples in the "dry cell" of the TRIGA Mark II nuclear reactor.

    Fajgelj, A; Lakoski, A; Horvat, D; Remec, I; Skrk, J; Stegnar, P

    1991-11-01

    A set-up for irradiation of biological samples in the TRIGA Mark II research reactor in Ljubljana is described. Threshold activation detectors were used for characterisation of the neutron flux, and the accompanying gamma dose was measured by TLDs. Human peripheral blood samples were irradiated "in vitro" and biological effects evaluated according to the unstable chromosomal aberrations induced. Biological effects of two types of cultivation of irradiated blood samples, the first immediately after irradiation and the second after 96 h storage, were studied. A significant difference in the incidence of chromosomal aberrations between these two types of samples was obtained, while our dose-response curve fitting coefficients alpha 1 = (7.71 +/- 0.09) x 10(-2) Gy-1 (immediate cultivation) and alpha 2 = (11.03 +/- 0.08) x 10(-2) Gy-1 (96 h delayed cultivation) are in both cases lower than could be found in the literature. PMID:1962281

  5. Measurement of DNA damage induced by irradiation with gamma-rays from a TRIGA Mark II research reactor in human cells using Fast Micromethod.

    Hassanein, Hamdy; Müller, Claudia I; Schlösser, Dietmar; Kratz, Karl-Ludwig; Senyuk, Olga F; Schröder, Heinz C

    2002-06-01

    The Fast Micromethod is a novel quick and convenient microplate assay for determination of DNA single-strand breaks. This method measures the rate of unwinding of cellular DNA upon exposure to alkaline conditions using a fluorescent dye which preferentially binds to double-stranded DNA. Here we applied this method to determine the levels of DNA single-strand breaks in HeLa cells induced by y-irradiation deriving from fission isotopes and activation products at the TRIGA Mark II research reactor in Mainz. An increased strand scission factor (SSF) value, which is indicative for DNA damage, was found at doses of 1 Gy and higher. A similar increase in SSF value, which further increased in a dose-dependent manner, was found in human peripheral blood mononuclear cells after irradiation with 6 MV X-rays from a linear accelerator to give a total exposure of 0.5 to 10 Gy. PMID:12064446

  6. Experience on the refurbishment of the cooling system of the 3 MW TRIGA Mark II research reactor of Bangladesh and the modernization plan of the reactor control console

    The 3 MW TRIGA Mark II research reactor of the Bangladesh Atomic Energy Commission (BAEC) achieved its first criticality on 14 September 1986. Since then, the reactor has been used for manpower training, radioisotope production, and various R and D activities in the field of neutron activation analysis (NAA), neutron radiography (NR), and neutron scattering. Full power reactor operations remained suspended from 1997-2001 when a corrosion leakage problem in the 16N decay tank threatened the integrity of the primary cooling loop. The new tank was installed in 2001 and some modification and upgrades were carried out in the reactor cooling system such that the operational safety of the reactor could be strengthened. The cooling system upgrade mainly included replacement of the fouled shell and tube-type heat exchanger by a new plate-type one, modification of the cooling system piping layout, installation of isolation valves, installation of a chemical injection system for the secondary cooling system, modification of the Emergency Core Cooling System (ECCS), etc. After successful completion of all these modifications, the reactor was made operational again at full power of 3 MW in August 2001. BAEC, the operating organization, is now implementing a government-funded project to replace the old analogue control console of the research reactor with a digital control console. This paper focuses on the modification of the cooling system as well as the I and C system and the upcoming control console upgrade of the 3 MW TRIGA Mark II research reactor of Bangladesh. It also presents short descriptions of major incidents encountered so far in the reactor facility. (author)

  7. Determination of the effect of xenon-135 poisoning on reactivity for the I.T.U. TRIGA MARK-II reactor

    The reactivity change due to the Xe135 poisoning was determined by the aid of an experiment and a simple mathematical model for the I. T. U. TRIGA MARK-II reactor. Temperature coefficients of reactivity for the fuel and the other components were determined experimentally. Then, the total reactivity change rising from the xenon poisoning and the temperature feedbacks was measured during the operation of the reactor for 100 hours. Time, rod positions, power level, temperature of the instrumented fuel element and water were recorded periodically during the experiment. After the reactor had operated at a power of 100 kW for 65 hours, xenon reactivity reached approximately an equilibrium level. In the second part of the experiment, instead of shutdown, the reactor power was decreased to a very low level in order to carry on the measurements continuously. Subtracting the change of the reactivity related to the temperature feedbacks for the fuel and the other components from that of the total, the reactivity change corresponding to the xenon poisoning was determined. An analytical expression for the variation of the xenon reactivity with time for a given power was fitted to the experimental data that were obtained during the first 65 hours of the experiment. Consequently, the macroscopic thermal fission cross section of the fuel, the total absorption cross section and the average thermal neutron flux were obtained. The resultant expression was tested by comparing its predictions with the data obtained in the second part of the experiment. It was also checked with the results of a new experiment in which the reactor was operated at a power of 200 kW. The predictions are in good agreement with the results of the measurements. This model makes possible to calculate the reactivity changes from xenon poisoning at various times for different power levels beginning from any Xe135 concentration for the I.T.U. TRIGA MARK-II reactor. (orig.)

  8. Corrosion Induced Leakage Problem of the Radial Beam Port 1 of BAEC Triga Mark-II Research Reactor

    The BAEC reactor has so far been operated as per the technical specifications and procedures laid down in the SAR of the research reactor. The BP leakage problem of the BAEC research reactor was an issue that could lead to a situation close to a LOCA. Therefore, the matter was handled carefully, taking all measures so that such an incident could be prevented. Assistance of agencies outside BAEC was taken for solving the problem. It is understood that the silicone rubber lining of the encirclement clamp may become damaged by neutron irradiation. Therefore, while designing the clamp, provisions were kept such that it can be dismantled and reinstalled again following lining replacement. As a moderately aged facility, the ageing management BAEC TRIGA research reactor deserves significant attention. BAEC, together with its strategic partners, are doing what is needed in this regard

  9. Current research projects at the Austrian TRIGA Mark II. Transient response of cobalt self-powered neutron detectors

    Self-powered neutron detectors with cobalt emitters are of particular interest for control of large nuclear power reactors, as this type of detector has a relatively low burn-up rate and a fast response. The detector used in the experiment is presented. The cobalt detector was inserted into the central thimble of the TRIGA reactor core. The registration of the pulse by the reactor instrumentation is carried out by means of an uncompensated ionisation chamber and a fast amplifier. In the study of the response time of the cobalt detector the registration of the detector current is compared with that of the ionisation chamber. The results reveal that the cobalt detector has a response as fast as the ionisation chamber, being fast enough to be used in reactor control and safety instrumentation systems

  10. Computational Analysis of Nuclear Safety Parameters of 3 MW TRIGA Mark-II Research Reactor Based on Evaluated Nuclear Data Libraries JENDL-3.3 and ENDF/B-VII.0

    Khan, Jahirul Haque [Bangladesh Atomic Energy Commission, Dhaka (Bangladesh)

    2013-07-01

    The objective of this study is to explain the main nuclear safety parameters of 3 MW TRIGA Mark-II Research Reactor at AERE, Savar, Dhaka, Bangladesh from the viewpoint of reactor safety and also reactor operator. The most important nuclear reactor physics safety parameters are power distribution, power peaking factors, shutdown margin, control rod worth, excess reactivity and fuel temperature reactivity coefficient. These parameters are calculated using the chain of the computer codes the SRAC-PIJ for cell calculation based on neutron transport theory and the SRAC-CITATION for core calculation based on neutron diffusion equation. To achieve this objective the TRIGA model is developed by the 3-D diffusion code SRAC-CITATION based on the group constants that come from the collision probability transport code SRAC-PIJ. In this study the evaluated nuclear data libraries JENDL-3.3 and ENDF/B-VII.0 are used. The calculated most important reactor physics parameters are compared to the safety analysis report (SAR) values as well as earlier published MCNP results (numerically benchmark). It was found that the calculated results show a good agreement between the said libraries. Besides, in most cases the calculated results reveal a reasonable agreement with the SAR values (by General Atomic) as well as the MCNP results. In addition, this analysis can be used as the inputs for thermal-hydraulic calculations of the TRIGA fresh core in the steady state and pulse mode operation. Because of power peaking factors, power distributions and temperature reactivity coefficients are the most important reactor safety parameters for normal operation and transient safety analysis in research as well as in power reactors. They form the basis for technical specifications and limitations for reactor operation such as loading pattern limitations for pulse operation (in TRIGA). Therefore, this analysis will be very important to develop the nuclear safety parameters data of 3 MW TRIGA Mark

  11. Computational Analysis of Nuclear Safety Parameters of 3 MW TRIGA Mark-II Research Reactor Based on Evaluated Nuclear Data Libraries JENDL-3.3 and ENDF/B-VII.0

    The objective of this study is to explain the main nuclear safety parameters of 3 MW TRIGA Mark-II Research Reactor at AERE, Savar, Dhaka, Bangladesh from the viewpoint of reactor safety and also reactor operator. The most important nuclear reactor physics safety parameters are power distribution, power peaking factors, shutdown margin, control rod worth, excess reactivity and fuel temperature reactivity coefficient. These parameters are calculated using the chain of the computer codes the SRAC-PIJ for cell calculation based on neutron transport theory and the SRAC-CITATION for core calculation based on neutron diffusion equation. To achieve this objective the TRIGA model is developed by the 3-D diffusion code SRAC-CITATION based on the group constants that come from the collision probability transport code SRAC-PIJ. In this study the evaluated nuclear data libraries JENDL-3.3 and ENDF/B-VII.0 are used. The calculated most important reactor physics parameters are compared to the safety analysis report (SAR) values as well as earlier published MCNP results (numerically benchmark). It was found that the calculated results show a good agreement between the said libraries. Besides, in most cases the calculated results reveal a reasonable agreement with the SAR values (by General Atomic) as well as the MCNP results. In addition, this analysis can be used as the inputs for thermal-hydraulic calculations of the TRIGA fresh core in the steady state and pulse mode operation. Because of power peaking factors, power distributions and temperature reactivity coefficients are the most important reactor safety parameters for normal operation and transient safety analysis in research as well as in power reactors. They form the basis for technical specifications and limitations for reactor operation such as loading pattern limitations for pulse operation (in TRIGA). Therefore, this analysis will be very important to develop the nuclear safety parameters data of 3 MW TRIGA Mark

  12. Computational analysis of neutronic parameters for TRIGA Mark-II research reactor using evaluated nuclear data libraries ENDF/B-VII.0 and JENDL-3.3

    Highlights: • SRAC-PIJ code and SRAC-CITATION have been utilized to model the core. • Most of the simulated results show no significant differences with references. • Thermal peak flux varies a bit due to up condition of TRIGA. • ENDF/B-VII.0 and JENDL-3.3 libraries perform well for neutronics analysis of TRIGA. - Abstract: Important kinetic parameters such as effective multiplication factor, keff, excess reactivity, neutron flux and power distribution, and power peaking factors of TRIGA Mark II research reactor in Bangladesh have been calculated using the comprehensive neutronics calculation code system SRAC 2006 with the evaluated nuclear data libraries ENDF/B-VII.0 and JENDL-3.3. In the code system, PIJ code was employed to obtain cross section of the core cells, followed by the integral calculation of neutronic parameters of the reactor conducted by CITATION code. All the analyses were performed using the 7-group macroscopic cross section library. Results were compared to the experimental data, the safety analysis report (SAR) of the reactor provided by General Atomic as well as to the simulated values by numerically benchmarked MCNP4C, WIMS-CITATION and SRAC-CITATION codes. The maximum power densities at the hot spot were found to be 169.7 W/cc and 170.1 W/cc for data libraries ENDF/B-VII.0 and JENDL-3.3, respectively. Similarly, the total peaking factors based on ENDF/B-VII.0 and JENDL-3.3 were calculated as 5.68 and 5.70, respectively, which were compared to the original SAR value of 5.63, as well as to MCNP4C, WIMS-CITATION and SRAC-CITATION results. It was found in most cases that the calculated results demonstrate a good agreement with our experiments and published works. Therefore, this analysis benchmarks the code system and will be helpful to enhance further neutronics and thermal hydraulics study of the reactor

  13. Thermal-Hydraulic Analysis of the 3-MW TRIGA MARK-II Research Reactor Under Steady-State and Transient Conditions

    Important thermal-hydraulic parameters of the 3-MW TRIGA MARK-II research reactor operating under both steady-state and transient conditions are reported. Neutronic analyses were performed by using the CITATION diffusion code and the MCNP4B2 Monte Carlo code. The output of CITATION and MCNP4B2 were input to the PARET thermal-hydraulic code to study the steady-state and transient thermal-hydraulic behavior of the reactor. To benchmark the PARET model, data were obtained from different measurements performed by thermocouples in the instrumented fuel (IF) rod during the steady-state operation both under forced- and natural-convection mode and compared with the calculation. The mass flow rates needed for input to PARET were taken from the Final Safety Analysis Report for a downward forced coolant flow equivalent to 3500 gal/min. For natural convection cooling of the reactor, the mass flow rate was generated using the NCTRIGA code. Peak fuel temperatures measured by the thermocouples in the IF rods at different power levels of the TRIGA core were compared with the values calculated by PARET. The axial distribution of the temperatures of the fuel centerline, fuel surface, and the cladding surface in the hot channel were calculated for the reactor operating at the full-power level. Fuel surface heat flux and heat transfer coefficients for the hot channel were also calculated for the reactor operating at the full-power level. The investigated results were found to be in good agreement with the experimental and operational values. The testing of the PARET model calculations through benchmarking the available TRIGA experimental and operational data for pulse-mode operations showed that PARET can successfully be used to analyze the transient behavior of the reactor. Major transient parameters, such as peak power and prompt energy released after pulse, full-width at half-maximum of pulse peak, and maximum fuel centerline temperatures for different fuel elements at different

  14. Estimation of (41)Ar activity concentration and release rate from the TRIGA Mark-II research reactor.

    Hoq, M Ajijul; Soner, M A Malek; Rahman, A; Salam, M A; Islam, S M A

    2016-03-01

    The BAEC TRIGA research reactor (BTRR) is the only nuclear reactor in Bangladesh. Bangladesh Atomic Energy Regulatory Authority (BAERA) regulations require that nuclear reactor licensees undertake all reasonable precautions to protect the environment and the health and safety of persons, including identifying, controlling and monitoring the release of nuclear substances to the environment. The primary activation product of interest in terms of airborne release from the reactor is (41)Ar. (41)Ar is a noble gas readily released from the reactor stacks and most has not decayed by the time it moves offsite with normal wind speed. Initially (41)Ar is produced from irradiation of dissolved air in the primary water which eventually transfers into the air in the reactor bay. In this study, the airborne radioisotope (41)Ar generation concentration, ground level concentration and release rate from the BTRR bay region are evaluated theoretically during the normal reactor operation condition by several governing equations. This theoretical calculation eventually minimizes the doubt about radiological safety to determine the radiation level for (41)Ar activity whether it is below the permissible limit or not. Results show that the estimated activity for (41)Ar is well below the maximum permissible concentration limit set by the regulatory body, which is an assurance for the reactor operating personnel and general public. Thus the analysis performed within this paper is so much effective in the sense of ensuring radiological safety for working personnel and the environment. PMID:26736180

  15. Data acquisition and signal processing system for IPR R1 TRIGA-Mark I nuclear research reactor of CDTN

    The TRIGA IPR-R1 Nuclear Research Reactor, located at the Nuclear Technology Development Center (CDTN/CNEN) in Belo Horizonte, Brazil, is being operated since 44 years ago. The main operational parameters were monitored by analog recorders and counters located in the reactor control console. The reactor operators registered the most important operational parameters and data in the reactor logbook. This process is quite useful, but it can involve some human errors. It is also impossible for the operators to take notes of all variables involving the process mainly during fast power transients in some operations. A PC-based data acquisition was developed for the reactor that allows online monitoring, through graphic interfaces, and shows operational parameters evolution to the operators. Some parameters that were not measured, like the power and the coolant flow rate at the primary loop, are monitored now in the computer video monitor. The developed system allows measuring out all parameters in a frequency up to 1 kHz. These data is also recorded in text files available for consults and analysis. (author)

  16. Refurbishment, Modernization and Ageing Management Program of The 3MW TRIGA Mark-II Research Reactor of Bangladesh

    The 3 MW TRIGA MK-II research reactor of Bangladesh Atomic Energy Commission (BAEC) achieved its first criticality on 14 September 1986. The reactor has been used for manpower training, radioisotope production and various R and D activities in the field of neutron activation analysis, neutron radiography and neutron scattering. Reactor Operation and Maintenance Unit (ROMU) is responsible for operation and maintenance of the research reactor. During the past twenty seven years ROMU carried out several refurbishments, replacement, modification and modernization activities in the reactor facility. The major tasks carried out under refurbishment program were replacement of the corrosion damaged N-16 decay tank by a new one, replacement of the fouled shell and tube type heat exchanger by a plate type one, modification of the shielding arrangements around the N-16 decay tank and ECCS system and solving the radial beam port-1 leakage problem. All of these refurbishment activities were performed under an annual development project (ADP) funded by Bangladesh government. BAEC research reactor (RR) was operated by analogue console system from its commissioning to July, 2011. Old analog based console has been replaced by digital console on June, 2012. Modernization program for the reactor control console due to obsolescence and unavailability of spare parts of I and C system was vital to restore the safe operation of the reactor. Considering these facts, installation of a digital control console and I and C system based on the state-of-the-art digital technology became necessary. Reactor digital console system installation tasks were performed under another ADP funded project by Bangladesh government. Now the reactor is operating with the digital control system. Besides this, the Neutron Radiography (NR) facility has been modernized by the addition of a digital neutron radiography set-up at the tangential beam port. The Neutron Scattering (NS) facility also has been upgraded

  17. Refurbishment, Modernization and Ageing Management Program of The 3MW TRIGA Mark-II Research Reactor of Bangladesh

    Salam, M. A. [Atomic Energy Research Establishment, Dhaka (Bangladesh)

    2013-07-01

    The 3 MW TRIGA MK-II research reactor of Bangladesh Atomic Energy Commission (BAEC) achieved its first criticality on 14 September 1986. The reactor has been used for manpower training, radioisotope production and various R and D activities in the field of neutron activation analysis, neutron radiography and neutron scattering. Reactor Operation and Maintenance Unit (ROMU) is responsible for operation and maintenance of the research reactor. During the past twenty seven years ROMU carried out several refurbishments, replacement, modification and modernization activities in the reactor facility. The major tasks carried out under refurbishment program were replacement of the corrosion damaged N-16 decay tank by a new one, replacement of the fouled shell and tube type heat exchanger by a plate type one, modification of the shielding arrangements around the N-16 decay tank and ECCS system and solving the radial beam port-1 leakage problem. All of these refurbishment activities were performed under an annual development project (ADP) funded by Bangladesh government. BAEC research reactor (RR) was operated by analogue console system from its commissioning to July, 2011. Old analog based console has been replaced by digital console on June, 2012. Modernization program for the reactor control console due to obsolescence and unavailability of spare parts of I and C system was vital to restore the safe operation of the reactor. Considering these facts, installation of a digital control console and I and C system based on the state-of-the-art digital technology became necessary. Reactor digital console system installation tasks were performed under another ADP funded project by Bangladesh government. Now the reactor is operating with the digital control system. Besides this, the Neutron Radiography (NR) facility has been modernized by the addition of a digital neutron radiography set-up at the tangential beam port. The Neutron Scattering (NS) facility also has been upgraded

  18. Operation and maintenance of the 250 kW TRIGA Mark II reactor at the J. Stefan Institute

    Since the last TRIGA Conference, the reactor has completed approximately 4800 operating hours without major problems. The problem with the lack of fresh fuel elements is going to be solved after the signing of a new agreement for the supply of fuel between the IAEA, the Yugoslav and US Governments. In order to increase the reactivity the fuel elements from the outer zone we shuffled to the inner zone, and old fuel elements from the fuel container were added to the F ring. Due to the large demand for irradiation, a new pneumatic facility for loading and unloading the samples in the rotary specimen rack or central thimble has been constructed and installed. A configuration based on two microcomputers in a master slave hierarchical organisation for automatic data logging and direct has been finished and the system was installed after extensive testing. The reactor operation is now more reliable and simpler for the operators. Some of the original instrumentation of the reactor has been gradually substituted because of ageing: a start-up channel with digital display, a power integrator, a digital electronic rod position indicator, a digital power range switch without resistors and a new 2-pen recorder have been installed. The following instrumentation was ordered by the IAEA from the Hartmann and Brawn company: a start-up channel, a log channel, a safety channel, an automatic power control and water temperature, conductivity, level and activity measuring units. During the last year, with the help of our nuclear chemistry department, the production of high concentration and high purity technetium-99 m for medical use was developed by a solvent extraction method

  19. Validation of absolute axial neutron flux distribution calculations with MCNP with 197Au(n,γ)198Au reaction rate distribution measurements at the JSI TRIGA Mark II reactor.

    Radulović, Vladimir; Štancar, Žiga; Snoj, Luka; Trkov, Andrej

    2014-02-01

    The calculation of axial neutron flux distributions with the MCNP code at the JSI TRIGA Mark II reactor has been validated with experimental measurements of the (197)Au(n,γ)(198)Au reaction rate. The calculated absolute reaction rate values, scaled according to the reactor power and corrected for the flux redistribution effect, are in good agreement with the experimental results. The effect of different cross-section libraries on the calculations has been investigated and shown to be minor. PMID:24316530

  20. Design, construction, and demonstration of a neutron beamline and a neutron imaging facility at a Mark-I TRIGA reactor

    Craft, Aaron E.

    The fleet of research and training reactors is aging, and no new research reactors are planned in the United States. Thus, there is a need to expand the capabilities of existing reactors to meet users' needs. While many research reactors have beam port facilities, the original design of the United States Geological Survey TRIGA Reactor (GSTR) did not include beam ports. The MInes NEutron Radiography (MINER) facility developed by this thesis and installed at the GSTR provides new capabilities for both researchers and students at the Colorado School of Mines. The facility consists of a number of components, including a neutron beamline and beamstop, an optical table, an experimental enclosure and associated interlocks, a computer control system, a multi-channel plate imaging detector, and the associated electronics. The neutron beam source location, determined through Monte Carlo modeling, provides the best mixture of high neutron flux, high thermal neutron content, and low gamma radiation content. A Monte Carlo n-Particle (MCNP) model of the neutron beam provides researchers with a tool for designing experiments before placing objects in the neutron beam. Experimental multi-foil activation results, compared to calculated multi-foil activation results, verify the model. The MCNP model predicts a neutron beamline flux of 2.2*106 +/- 6.4*105 n/cm2-s based on a source particle rate determined from the foil activation experiments when the reactor is operating at a power of 950 kWt with the beam shutter fully open. The average cadmium ratio of the beamline is 7.4, and the L/D of the neutron beam is approximately 200+/-10. Radiographs of a sensitivity indicator taken using both the digital detector and the transfer foil method provide one demonstration of the radiographic capabilities of the new facility. Calibration fuel pins manufactured using copper and stainless steel surrogate fuel pellets provide additional specimens for demonstration of the new facility and offer a

  1. Comparison of neutron fluxes obtained by 2-D and 3-D geometry with different shielding libraries in biological shield of the TRIGA MARK II reactor

    Neutron fluxes in different spatial locations in biological shield are obtained with TORT code (TORT-Three Dimensional Oak Ridge Discrete Ordinates Neutron/Photon Transport Code). Libraries used with TORT code were BUGLE-96 library (coupled library with 47 neutron groups and 20 gamma groups) and VITAMIN-B6 library (coupled library with 199 neutron groups and 42 gamma groups). BUGLE-96 library is derived from VITAMIN-B6 library. 2-D and 3-D models for homogeneous type of problem (without inserted beam port 4) and problem with asymmetry (non-homogeneous problem; inserted beam port 4, filled with different materials) were of interest for neutron flux calculation. The main purpose is to verify the possibility for using 2-D approximation model instead of large 3-D model in some calculations. Another purpose of this paper was to compare neutron spectral constants obtained from neutron fluxes (3-D model) determined with smaller BUGLE-96 library with new constants obtained from fluxes calculated with bigger VITAMIN-B6 library. These neutron spectral constants are used in isotopic calculation with SCALE code package (ORIGEN-S). In past only neutron spectral constants determined by neutron fluxes from BUGLE-96 library were used. Experimental results used for isotopic composition comparison are available from irradiation experiment with selected type of concrete and other materials in beam port 4 (irradiation channel 4) in TRIGA Mark II reactor. These experimental results were used as a benchmark in this paper. (author)

  2. Simulator of the punctual kinetics of a TRIGA Mark III nuclear reactor with diffuse control of power in a visual environment

    The development of a software that simulates the punctual kinetics of a nuclear research reactor model TRIGA Mark III, generating the answers of the reactor low different algorithms of control of power is presented. The user requires a graphic interface that allows him easily interacting with the pretender. To achieve the proposed objective, first the system was modeled in open knot, not using a mathematical model of the consistent reactor in a system of ordinary differential equations lineal. For their solution in real time the numeric method of Runge-Kutta-Fehlberg was used. As second phase, it was modeled to the system in closed knot, using for it an algorithm of control of the power based on fuzzy logic. Taking into account the graphic characteristics detailed in the requirements of the system (chapter 4), it was chosen to develop the pretender the language of Visual programming Basic 6.0. The program fulfills the time of execution satisfactorily, assisting to the necessity of visualizing the behavior in real time of the reactor, and it responds from an effective way to the petitions of changes of power on the part of the user. (Author)

  3. Power level control of the TRIGA Mark-II research reactor using the multifeedback layer neural network and the particle swarm optimization

    Highlights: • A multifeedback-layer neural network controller is presented for a research reactor. • Off-line learning of the MFLNN is accomplished by the PSO algorithm. • The results revealed that the MFLNN–PSO controller has a remarkable performance. - Abstract: In this paper, an artificial neural network controller is presented using the Multifeedback-Layer Neural Network (MFLNN), which is a recently proposed recurrent neural network, for neutronic power level control of a nuclear research reactor. Off-line learning of the MFLNN is accomplished by the Particle Swarm Optimization (PSO) algorithm. The MFLNN-PSO controller design is based on a nonlinear model of the TRIGA Mark-II research reactor. The learning and the test processes are implemented by means of a computer program at different power levels. The simulation results obtained reveal that the MFLNN-PSO controller has a remarkable performance on the neutronic power level control of the reactor for tracking the step reference power trajectories

  4. Neutron flux measurements with Monte Carlo verification at the thermal column of a TRIGA MARK II reactor: Feasibility study for a BNCT facility

    The treatment of the malignant brain tumor through Boron Neutron Capture Therapy (BNCT) requires a high-flux neutron source. The Malaysian TRIGA Mark II reactor was investigated for a proposed BNCT facility. The neutron flux was measured along the central stringer of the thermal column and the outermost positions of the other stringers. The unfolding foil method was applied here. We have used Al, As, Au, Co, In, Mo, Ni and Re foils and Cd as a cover with 19 useful reactions in this study. The infinitely diluted foil activity was calculated and used in the SAND-II code (Spectrum Analysis by Neutron Detectors) to calculate the neutron flux. The reactor was also simulated using Monte Carlo code (MCNP5) and the neutron flux was calculated along the thermal column. The measured and calculated neutron flux along the thermal column show good agreement. The minimum epithermal neutron intensity required for BNCT is achieved up to position 22 with a mixed neutron-gamma beam. A suggested MCNP simulated modification of the reactor thermal column increased the neutron flux at distant positions from the reactor core but the epithermal neutron part was below the minimum requirement for a BNCT facility. The photon flux calculations along the thermal column show relatively high results which should be filtered. The calculation of the neutron and gamma dose in a head phantom (water) indicated that the available neutron spectrum requires modifications to increase the epithermal part of the neutrons and filter the gamma ray contamination. (author)

  5. Generation of a library for reactor calculations and some applications in core and safety parameter studies of the 3-MW TRIGA MARK-II research reactor

    This paper reports on a data base of the TRIGAP code that is generated for the 3-MW TRIGA MARK-II research reactor in Bangladesh. The library is created using the WIMS-D/4 code. Cross sections are calculated from zero burnup to 37% of initial 235U in 20 burnup steps. The created TRIGAP library is tested through practical calculations and is compared with experimental values or with values in the safety analysis report (SAR). Excess reactivity of the fresh core configuration is measured and determined to be 10.27 dollars, while a value of 10.267 dollars is obtained using the generated library. By choosing burnup steps of 0, 50, 350, and 750, WM · h, the whole operating history is covered. The calculated temperature defect at 1 and 3 MW is 1.15 and 3.59 dollars compared with the experimental value of 1.02 and 3.64 dollars, respectively. The xenon value obtained at 1 and 3 MW is 2.21 and 3.20 dollars, respectively, compared with 3.57 dollars at 3 MW in the SAR. The TRIGAP code with its new library is used for calculating fast and thermal flux distributions close to values from the SAR

  6. Measurements of miniature ionization chamber currents in the JSI TRIGA Mark II reactor demonstrate the importance of the delayed contribution to the photon field in nuclear reactors

    Radulović, Vladimir; Fourmentel, Damien; Barbot, Loïc; Villard, Jean-François; Kaiba, Tanja; Gašper, Žerovnik; Snoj, Luka

    2015-12-01

    The characterization of experimental locations of a research nuclear reactor implies the determination of neutron and photon flux levels within, with the best achievable accuracy. In nuclear reactors, photon fluxes are commonly calculated by Monte Carlo simulations but rarely measured on-line. In this context, experiments were conducted with a miniature gas ionization chamber (MIC) based on miniature fission chamber mechanical parts, recently developed by the CEA (French Atomic Energy and Alternative Energies Commission) irradiated in the core of the Jožef Stefan Institute TRIGA Mark II reactor in Ljubljana, Slovenia. The aim of the study was to compare the measured MIC currents with calculated currents based on simulations with the MCNP6 code. A discrepancy of around 50% was observed between the measured and the calculated currents; in the latter taking into consideration only the prompt photon field. Further experimental measurements of MIC currents following reactor SCRAMs (reactor shutdown with rapid insertions of control rods) provide evidence that over 30% of the total measured signal is due to the delayed photon field, originating from fission and activation products, which are untreated in the calculations. In the comparison between the measured and calculated values, these findings imply an overall discrepancy of less than 20% of the total signal which is still unexplained.

  7. Criticality and safety parameter studies for upgrading 3MW TRIGA MARK II research reactor and validation of generated cross section library and computational method

    The neutronic and thermal hydraulic analysis of the 3 MW TRIGA MARK II research reactor to upgrade it is presented. The upgrading will need a major reshuffling and reconfiguration of the current core. To realize this objective, the overall strategy followed is: 1.) generation of problem dependent cross section library from basic Evaluated Nuclear Data Files such as ENDF/B-VI, JENDL3.2 with NJOY94.10+, 2.) use WIMSD-5 package to generate cell constants for all of the materials in the core and its immediate neighborhood, 3.) use CITATION to perform 3-D global analysis of the core to study multiplication factor, neutron flux and power distributions, power peaking factors, temperature reactivity coefficients, etc., 4.) couple output of CITATION with PARET to study thermal hydraulic behavior to predict safety margins, 5.) check the validity of the deterministic codes with the Monte Carlo code MCNP4B2 , and 6.) reshuffle the current core configuration to achieve the desired objectives. The computational methods, tools and techniques, customization of cross section libraries, various models for cells and super cells, and a lot of associated utilities have been standardized and established/validated for the overall core analysis

  8. Feasibility analysis of I-131 production in the Moroccan TRIGA research reactor

    Highlights: • A feasibility analysis for I-131 production at the Moroccan TRIGA MARK II research reactor was conducted. • Two production scenarios were discussed with several TeO2 target masses. • The MCNPX v2.7 computer code with its depletion capabilities was used. • A production activity of about 4.63 Ci per 80 MWh irradiation period is obtained. - Abstract: Since the commissioning of the Moroccan 2 MW TRIGA MARK II research reactor hosted by the Centre National de l’Energie des Sciences et des Techniques Nucléaires (CNESTEN), the latter institution has established a radioisotope production program to supply radiopharmaceuticals for use in nuclear medicine. This paper presents a feasibility analysis for I-131 production using two in-core irradiation positions within the Moroccan TRIGA MARK II research reactor. The MCNPX v2.7 code, with its depletion capabilities, was used for the evaluation of two different production scenarios using several masses of TeO2 target samples. The maximum achievable activities were found to be 3.90 Ci/week for scenario 1 and 4.63 Ci/week for scenario 2. Thermal analysis shows that safety limits of capsules used for these experiments were not violated

  9. Higher power density TRIGA research reactors

    The uranium zirconium hydride (U-ZrH) fuel is the fundamental feature of the TRIGA family of reactors that accounts for its widely recognized safety, good performance, economy of operation, and its acceptance worldwide. Of the 65 TRIGA reactors or TRIGA fueled reactors, several are located in hospitals or hospital complexes and in buildings that house university classrooms. These examples are a tribute to the high degree of safety of the operating TRIGA reactor. In the early days, the majority of the TRIGA reactors had power levels in the range from 10 to 250 kW, many with pulsing capability. An additional number had power levels up to 1 MW. By the late 1970's, seven TRIGA reactors with power levels up to 2 MW had been installed. A reduction in the rate of worldwide construction of new research reactors set in during the mid 1970's but construction of occasional research reactors has continued until the present. Performance of higher power TRIGA reactors are presented as well as the operation of higher power density reactor cores. The extremely safe TRIGA fuel, including the more recent TRIGA LEU fuel, offers a wide range of possible reactor configurations. A long core life is assured through the use of a burnable poison in the TRIGA LEU fuel. In those instances where large neutron fluxes are desired but relatively low power levels are also desired, the 19-rod hexagonal array of small diameter fuel rods offers exciting possibilities. The small diameter fuel rods have provided extremely long and trouble-free operation in the Romanian 14 MW TRIGA reactor

  10. Analysis of fuel options in TRIGA reactor

    In this paper, nuclear characteristics of TRIGA Mark-III has been analyzed in detail for six different fuel options. Presently, 70w/o enriched FLIP fuels are adopted for TRIGA core to improve fuel lifetime. However, such highly enriched fuels are not easily obtained due to nonproliferation treaty. This research examines the possible substitution for FLIP fuels with high density fuels without reducing the nuclear performance. This work will provide long-time plan for TRIGA operation (author)

  11. Operation experience and maintenance of the 250 kW TRIGA Mark II reactor in Vienna in the period July 1984 to September 1986

    The TRIGA Mark II reactor Vienna operated in the period from July 1984 to September 1986 without any major undesired shut down. The energy produced during this period accumulated approximately to 460 MWh. During a four month period in summer 1985 a major maintenance and service programme was carried out after 24 years of operation. These works included a complete removal of all fuel - and graphite elements from the core, the removal of the topgrid plate and the visual inspection by on underwater telescope of all surfaces in the reactor tank. Prior to this work the reactor bridge was removed and all iron parts were repainted before reinstallation. Also two of the beam tubes were inspected optically with an endoscope. During this shut down period a new water purification circuit independent from the main cooling circuit was installed and the reactor block repainted. While the reactor was empty from all fuel elements the cold neutron source installed in the previous thermalizing column was removed and replaced by a neutron radiography collimator. The experimental tank being empty since two decades was repainted and roll-away concrete shielding blocks were designed to shield the experimental tanks. During a one month shut down period in summer 1986 a new primary cooling circuit was installed, replacing the original cooling circuit which has been modified several times during the past decades. In the near future two main investments will be necessary which are new fuel elements (approx 50 units) and replacement of the reactor instrumentation being now 18 years of age. (author)

  12. Safe management of radioactive wastes originating from the operation and utilization of the TRIGA Mark-II research reactor in Bangladesh

    A 3 MW TRIGA Mark-II research reactor commissioned within AERE campus in 1986 has been in operation since 1987 for training of man-power, conducting research and production of radioisotopes. The reactor has a reactor tank of capacity 5000 gallons and a delay tank of capacity 8000 gallons, and has several plastic tanks for storage of liquid wastes. A small but significant quantity of radioactive wastes is being generated from the operation and utilization of the research reactor (RR). Radionuclides in the wastes generated are: 60Co, 54Mn, 51Cr, 110mAg, 65Zn and some others. In the operation and utilization of the RR, radio-chemical processing, quality control, etc. of irradiated targets ( for radioisotopes production) and neutron activation analysis of different environmental samples, some aqueous and organic liquid wastes, contaminated glass and other wares; tissue papers, hand gloves, shoe-covers, spent ion-exchange resins, filters/absorbers, soil, metallic foils, etc are generated. The wastes generated are contaminated with 134Cs + 137Cs, 57Co, 60Co, 125I, 131I, 54Mn, 24Na, 65Zn, 14C, 3H, and other radionuclides. Types/categories of wastes that are generated from the operation and utilization are shown. Thus, a semi-pilot-scale centralized waste processing and storage facility (CWPSF), following the IAEA Ref. design recommended for developing countries, is being established within AERE campus through a joint effort of the Country's ADP (since 1999) and the IAEA TC Project BGD/4/022 (since 2001)

  13. Neutron flux characterization of the Moroccan Triga Mark II research reactor and validation of the k0 standardization method of NAA using k0-IAEA program

    The aim of this work was to implement and to validate the k0 standardization method in neutron activation analysis (k0-NAA) at the Moroccan TRIGA Mark II research reactor. This technique was used in order to determine, the calibration of several HPGe detectors and calibration of neutron flux parameters in the typical irradiation channels [rotary specimen rack (RSR) and the pneumatic tube system (PTS) facilities]. Calibrations and calculations of k0-NAA results were carried out using the k0-IAEA program. The two parameters of neutron flux in the selected irradiation channels used for elemental concentration calculation, f (thermal-to-epithermal ratio) and α (deviation from the 1/E distribution), have been determined as well in the PTS as in the RSR facilities using the zirconium bare triple method. Results obtained for f and α in two irradiation channels show that f parameter determined in this way is different in the RSR and the PTS facilities. This can be explained by the fact that the RSR channel is situated in a graphite reflector and is relatively far from the reactor core, while the PTS is in the core. Five reference materials of different origin obtained from USGS (basalt BE-N, bauxite BX-N, biotite mica-Fe, granite GS-N) and IAEA (Soil-7) were used to evaluate the validity of this method in our laboratory by analyzing the elemental concentrations with respect to the certified values. In general, good agreement was obtained between results of this work and values in certificates of the individual reference materials, thus proving the accuracy of our results and successful implementation of the method for analysis of real samples. (author)

  14. Survey of nuclear parameters from the TRIGA Mark I IPR R1 Brazilian reactor with concentric configuration aiming the application of K0 neutron activation technique

    This research intended to determine the nuclear parameters a, f, spectral index and neutron temperature in several irradiations positions of the TRIGA Mark 1 IPR-R1 reactor, for use on the parametric method K0 in the CDTN. K0 is a monostandard method of neutron activation analysis. It is, on the whole, experimentally simple, flexible and an important tool for accurate and convenient standardization in instrumental multi-element analysis. At the time the parameters were determined at the rotatory rack, lower layer and in the central thimble: alpha was calculated applying the three bare monitor method using 197Au, 94Zr and 96Zr; f determination was done according to the bare bi-isotopic method; neutron temperature was calculated through the direct method using 176Lu, 94Zr, 96Zr and 197Au and the Westcott's g(Tn) function for the 176Lu was calculated and the result was interpolated in the Grintakis and Kim (1975) Table, determining the neutron temperature. The procedure to check the parameters consisted in using standard solutions of Au (metal foil, NBS), Lu (LuO2, Johnson Mattey Company - JMC) and Zr (ZrO2 and metal foil, Johnson Mattey Company 99,99% and Zry - 4: 98,14% of Zr, National Bureau of Standard- NBS). Several certified reference materials and two samples of intercomparisons (samples of sediment of the IAEA/ARCAL XXVI project) have been analysed by means of k0- INAA in order to verify the efficiency of the method and the quality of the parameters. The certified reference materials were: GXR-2, GXR-5 and GXR-6 of the United States Geological Survey (USGS) and Soil-5, Soil-7 and SL-1 of the International Atomic Energy Agency (IAEA). (author)

  15. Theoretical evaluation of the production of the poisons Xe-135 and Sm-149 of the TRIGA Mark III reactor with mixed core

    It was theoretically determined the accumulation of the Xe135 and Sm 149 in function, of the time during a stationary state of 72 h. continuous for the reactor TRIGA Mark III to 1 MW of thermal power with mixed core. The values of negative reactivity due to these isotopes are of 2.04 dollars and 0.694 dollars to the 72 h, quantities that will have to be compensated if wants that the reactor continues working to this power. Under the same conditions but considering a core with standard fuel, it was found a value of ρ = 1.70 dollars, resulting a difference of 0.30 dollars of negative reactivity in function of the type of analyzed core. This difference is important for the calculations of fuel management of a reactor. The concentration in balance of the xenon was reaches after an operation to constant power of 1 MW by 50 h, contrary to the samarium that reaches it balance after 3 weeks of operation starting from the initial start up and it stays constant along the useful life of the reactor while a change of fuel doesn't exist. It was obtained that for operation times greater to 60 h. at 1 MW, a peak of negative reactivity of the Xe135 is generated between the 7 and 11 h after the instantaneous shut down, with a value of 2.43 dollars, that is to say 0.39 additional dollars to those taken place during the continuous irradiation. (Author)

  16. Estimation of radiological doses due to the failure of a single element of a 3 MW (T) TRIGA Mark-II research reactor

    Radiological doses due to the failure of a single fuel element of a 3 MW (t) TRIGA Mark-II Research Reactor was estimated for both anticipated and design basis releases considering hypothetical accident conditions. The noble gas and halogen fission product inventory has been calculated assuming a burn-up of 2000 MWd occurring in 1.8 calendar years. For both of the releases, one hundred percent of the noble gases in the fuel-cladding gap were assumed to release from the fuel element and subsequently transferred directly to the reactor hall and twenty-five percent of the halogens in the fuel-cladding gap were assumed to release from the fuel element (with the remainder assumed to plat out on the relatively cool cladding). For the removal of the fission product gases from the reactor hall to the environment, two mechanisms were considered. These are: (1) removal by the emergency ventilation system through an activated charcoal trap in the event of a design basis release and (2) removal by the normal ventilation system for anticipated release. For the first removal mechanism, the system has been designed with activated charcoal filters having an efficiency of 0% for noble gases and 99 % for halogens. For both the cases, only the bottom one-fifth of the reactor hall volume was assumed to be involved in the air circulation (i.e., the top four-fifths was considered to be stagnant). The dispersion of the escaped fission products to the environment through the stack of the reactor was estimated using a Gaussian plume model and basing on the design parameters of the TRIGA reactor as well as the meteorological data of the site. Total individual doses in the reactor hall as well as in the environment were calculated applying the methodologies described in the IAEA publications with the assumptions as mentioned above. The total dose was regarded as the doses caused by immersion in the radioactive air plume (for both noble gas and halogen), inhaled halogen and the deposited

  17. Criticality and Safety Parameter Studies of a 3-MW TRIGA MARK-II Research Reactor and Validation of the Generated Cross-Section Library and Computational Method

    This study deals with the analysis of some neutronics and safety parameters of the current core of a 3-MW TRIGA MARK-II research reactor and validation of the generated macroscopic cross-section library and calculational techniques by benchmarking with experimental, operational, and available Safety Analysis Report (SAR) values. The overall strategy is: (a) generation of the problem-dependent cross-section library from basic Evaluated Nuclear Data Files such as ENDF/B-VI and JENDL-3.2 with NJOY94.10+, (b) use of the WIMSD-5 package to generate a few-group neutron macroscopic cross section for all of the materials in the core and its immediate neighborhood, (c) use the three-dimensional CITATION code to perform the global analysis of the core, and (d) checking of the validity of the CITATION diffusion code with the MCNP4B2 Monte Carlo code. The ultimate objective is to establish methods for reshuffling the current core configuration to upgrade the thermal flux at irradiation locations for increased isotope production. The computational methods, tools and techniques, customization of cross-section libraries, various models for cells and supercells, and many associated utilities are standardized and established/validated for the overall neutronic analysis. The excess reactivity, neutron flux, power distribution, power peaking factors, determination of the hot spot, and fuel temperature reactivity coefficients αf in the temperature range of 45 to 1000 deg. C are studied. All the analyses are performed using the 4- and 7-group libraries of the macroscopic cross sections generated from the 69-group WIMSD-5 library. The 7-group calculations yield comparatively better agreement with the experimental value of keff and the other core parameters. The CITATION test runs using different cross-section sets based on the different models applied in the WIMSD-5 calculations show a strong influence of those models on the final integral parameter. Some of the cells are specially

  18. Experience in the operation and maintenance of the L.E.N.A. 250 kW TRIGA Mark II reactor at the University of Pavia, 1966-1970

    Experience in the operation and maintenance of the L.E.N.A. 250 Kw TRIGA Mark II reactor at the University of Pavia - Italy is described. First the Laboratorio Energia Nucleare Applicata (L.E.N.A.) is presented including some historical notes, administration and personnel. Reactor operation since 1966 is reported together with the cost of a recent one year period. Some minor operational difficulties such as a crack in the biological shield and fuel element elongations are described in detail. The activity of the health physics group is also presented. (author)

  19. The new neutron imaging facility at TRIGA reactor in Morocco

    A new neutron imaging facility is currently developed around 2 MW TRIGA MARK-II reactor at Maamora Nuclear research centre (CENM). Neutron imaging combined to X-ray or gamma radiography offers the opportunity to extend Non Destructive Testing (NDT) activities DT in Morocco to new fields of applications such as space and aircraft Moroccan industry, mining, wood industry and Archeology. The facility is planed to be completed in the end of 2011. In order to reduce the gamma-ray content in the neutron beam, the reactor tangential channel is selected. For power of 2 MW, the corresponding thermal neutron flux at the inlet of the tangential channel is around 1.1013ncm2/s. The facility will be based on a conical neutron collimator with a flight tube of 8m and offers three circular diaphragms with diameters of 1cm, 2 cm and 4 cm corresponding to L/D-ratio varying between 200 and 600. The holes will be housed in the primary shutter. These diaphragms' sizes allow to perform neutron radiography with high resolution (L/D = 600) and high speed (L/D= 200). Monte Carlo calculations by a fully 3D numerical code GEANT4 are used to optimize the whole neutron beam line and to reach a shorten distance between the source and detector and reduce as possible the exposure time. (author)

  20. The new neutron imaging facility at TRIGA reactor in Morocco

    Ouardi, A.; Alami, R.; Bensitel, A. [Centre National de l' Energie des Science et des Techniques Nucleaires, PB.1382 R.P 10001 Rabat (Morocco)

    2011-07-01

    A new neutron imaging facility is currently developed around 2 MW TRIGA MARK-II reactor at Maamora Nuclear research centre (CENM). Neutron imaging combined to X-ray or gamma radiography offers the opportunity to extend Non Destructive Testing (NDT) activities DT in Morocco to new fields of applications such as space and aircraft Moroccan industry, mining, wood industry and Archeology. The facility is planed to be completed in the end of 2011. In order to reduce the gamma-ray content in the neutron beam, the reactor tangential channel is selected. For power of 2 MW, the corresponding thermal neutron flux at the inlet of the tangential channel is around 1.10{sup 13}ncm{sup 2}/s. The facility will be based on a conical neutron collimator with a flight tube of 8m and offers three circular diaphragms with diameters of 1cm, 2 cm and 4 cm corresponding to L/D-ratio varying between 200 and 600. The holes will be housed in the primary shutter. These diaphragms' sizes allow to perform neutron radiography with high resolution (L/D = 600) and high speed (L/D= 200). Monte Carlo calculations by a fully 3D numerical code GEANT4 are used to optimize the whole neutron beam line and to reach a shorten distance between the source and detector and reduce as possible the exposure time. (author)

  1. Experimental evaluation of the production of the poisons Xe-135 and Sm-149 of the TRIGA Mark III reactor with mixed core, configuration No. 16 (Final report of the project); Evaluacion experimental de la produccion de los venenos Xe-135 y Sm-149 del reactor TRIGA Mark III con nucleo mixto, config. No. 16 (Informe final del proyecto)

    Paredes G, L.C

    1991-11-15

    It was generated the concentration curve of the Xe{sup 135} (t) during the TRIGA Mark III reactor operation cycle, for a continuous irradiation of 72 h to 1 MW of thermal power, as well as the accumulation curve of the isotope after the shutdown, for the fuel configuration No. 16 in the thermal column. The maximum negative reactivities generated by the Xe{sup 135} for operation times greater than 60 h to 1 MW and after the reactor shutdown its were of 1.968 {+-} 0.15 dollars and 2.30 {+-} 0.15 dollars respectively. When comparing these results with those theoretically calculated we find differences of the order of 3.6% and 5.34% which are understood inside the experimental error that on the average was of 7.6%. The results before mentioned have an important application during the start up process of the Reactor, when analyzing the value of the weekly reactivity excess of the core and when is choice the pattern of bars to use for experiments of but of 2 h, where is required to minimize the temporary and space interferences of the neutron flux. (Author)

  2. TRIGA research reactor activities around the world

    Recent activities at several overseas TRIGA installations are discussed in this paper, including reactor performance, research programs under way, and plans for future upgrades. The following installations are included: (1) 14,000-kW TRIGA at the Institute for Nuclear Research, Pitesti, Romania; (2) 2,000-kW TRIGA Mark II at the Institute of Nuclear Technology, Dhaka, Bangladesh; (3) 3,000-kW TRIGA conversion, Philippine Nuclear Research Institute, Quezon City, Philippines; and (4) other ongoing installations, including a 1,500-kW TRIGA Mark II at Rabat, Morocco, and a 1,000-kW conversion/upgrade at the Institute Asunto Nucleares, Bogota, Columbia

  3. TRIGA research reactor activities around the world

    Chesworth, R.H.; Razvi, J.; Whittemore, W.L. (General Atomics, San Diego, CA (United States))

    1991-11-01

    Recent activities at several overseas TRIGA installations are discussed in this paper, including reactor performance, research programs under way, and plans for future upgrades. The following installations are included: (1) 14,000-kW TRIGA at the Institute for Nuclear Research, Pitesti, Romania; (2) 2,000-kW TRIGA Mark II at the Institute of Nuclear Technology, Dhaka, Bangladesh; (3) 3,000-kW TRIGA conversion, Philippine Nuclear Research Institute, Quezon City, Philippines; and (4) other ongoing installations, including a 1,500-kW TRIGA Mark II at Rabat, Morocco, and a 1,000-kW conversion/upgrade at the Institute Asunto Nucleares, Bogota, Columbia.

  4. Survey of nuclear parameters from the TRIGA Mark I IPR R1 Brazilian reactor with concentric configuration aiming the application of K{sub 0} neutron activation technique; Levantamento de parametros nucleares do reator TRIGA Mark I IPR R1 com configuracao concentrica visando a aplicacao da tecnica de ativacao neutronica K{sub 0}

    Franco, Milton Batista

    2006-07-01

    This research intended to determine the nuclear parameters a, f, spectral index and neutron temperature in several irradiations positions of the TRIGA Mark 1 IPR-R1 reactor, for use on the parametric method K{sub 0} in the CDTN. K{sub 0} is a monostandard method of neutron activation analysis. It is, on the whole, experimentally simple, flexible and an important tool for accurate and convenient standardization in instrumental multi-element analysis. At the time the parameters were determined at the rotatory rack, lower layer and in the central thimble: alpha was calculated applying the three bare monitor method using {sup 197}Au, {sup 94}Zr and {sup 96}Zr; f determination was done according to the bare bi-isotopic method; neutron temperature was calculated through the direct method using {sup 176}Lu, {sup 94}Zr, {sup 96}Zr and {sup 197}Au and the Westcott's g(Tn) function for the {sup 176}Lu was calculated and the result was interpolated in the Grintakis and Kim (1975) Table, determining the neutron temperature. The procedure to check the parameters consisted in using standard solutions of Au (metal foil, NBS), Lu (LuO{sub 2}, Johnson Mattey Company - JMC) and Zr (ZrO{sub 2} and metal foil, Johnson Mattey Company 99,99% and Zry - 4: 98,14% of Zr, National Bureau of Standard- NBS). Several certified reference materials and two samples of intercomparisons (samples of sediment of the IAEA/ARCAL XXVI project) have been analysed by means of k{sub 0}- INAA in order to verify the efficiency of the method and the quality of the parameters. The certified reference materials were: GXR-2, GXR-5 and GXR-6 of the United States Geological Survey (USGS) and Soil-5, Soil-7 and SL-1 of the International Atomic Energy Agency (IAEA). (author)

  5. Theoretical evaluation of the production of the poisons Xe-135 and Sm-149 of the TRIGA Mark III reactor with mixed core; Evaluacion teorica de la produccion de los venenos Xe-135 y Sm-149 del reactor TRIGA Mark III con nucleo mixto

    Paredes G, L.C

    1991-11-15

    It was theoretically determined the accumulation of the Xe{sup 135} and Sm {sup 149} in function, of the time during a stationary state of 72 h. continuous for the reactor TRIGA Mark III to 1 MW of thermal power with mixed core. The values of negative reactivity due to these isotopes are of 2.04 dollars and 0.694 dollars to the 72 h, quantities that will have to be compensated if wants that the reactor continues working to this power. Under the same conditions but considering a core with standard fuel, it was found a value of {rho} = 1.70 dollars, resulting a difference of 0.30 dollars of negative reactivity in function of the type of analyzed core. This difference is important for the calculations of fuel management of a reactor. The concentration in balance of the xenon was reaches after an operation to constant power of 1 MW by 50 h, contrary to the samarium that reaches it balance after 3 weeks of operation starting from the initial start up and it stays constant along the useful life of the reactor while a change of fuel doesn't exist. It was obtained that for operation times greater to 60 h. at 1 MW, a peak of negative reactivity of the Xe{sup 135} is generated between the 7 and 11 h after the instantaneous shut down, with a value of 2.43 dollars, that is to say 0.39 additional dollars to those taken place during the continuous irradiation. (Author)

  6. Spatial dependence of the void coefficient in the interstitial coolant channel positions of a stainless steel-clad TRIGA Mark I core

    A new top grid plate was manufactured and installed in the U of A TRIGA. The new grid plate was identical to the old grid plate with respect to the fuel element array, but included two minor modifications; 1) 3/8'' holes were drilled in six interstitial positions between fuel element rings to allow for insertion of a small diameter void rod for void coefficient measurements in the coolant channels, and 2) flux wire holes were drilled in all remaining interstitial positions. The purpose of this report is to update the previously reported void coefficient measurements with data taken in one of the coolant channel positions

  7. Environmental impact assessment of Ar41 released by normal operation of Triga-Mark reactor. Analysis of the submitted Moroccan inputs to the IAEA Nuclear Information System related to analytic nuclear techniques

    Full text: In accordance with the international regulation of nuclear safety and radiological protection of the environment applicable to the basic Nuclear Installations, category in which the Triga-Mark reactor is considered, an assessment of this reactor impact in to the environment is accomplished. This assessment is based on the radioactive materials inventory released in normal operation of this reactor and the characteristics of the site where this reactor is installed. It is carried out using CEA Gaussian models and mathematical models developed in Lawrence Livermore National Laboratory . Considering the assumptions of impact assessments of Ar41 in the atmosphere, the most important exposure is relatively corresponding to the location witch is approximately at about 1Km from the reactor. This exposure is approximately 0,07% of the lawful limit. Beyond this locality, the exposure becomes lower than 0.002% of this limit. Beyond 5 Km, it becomes lower than 10 nono-Sivert. In the basis of the Triga-Mark nuclear reactor site radiological baseline, the environmental impact of Ar41 is negligible in the studied case. The second work presented in this paper concerns the analysis of the input records of IAEA Nuclear Information system regarding analytic nuclear techniques. The results obtained from this work shows that the Moroccan contribution to theses inputs until 2011, is still very low - about 0.01%. Nevertheless, the evolution, in time, of the scientific production in the field studied is about 28%. It is then expected progressively a big increasing of the production in this field

  8. Research activities at the TRIGA Mainz

    The TRIGA Mark II reactor of the Mainz University became first critical on August 3, 1965. It can be operated in the steady state mode with a maximum power of 100 kW and in the pulse mode with a peak power of 250 MW. The TRIGA Mainz is mainly used for neutron activation analysis, isotope production, basic research in nuclear chemistry and nuclear physics as well as for education and training

  9. Upgrading Status Of Bandung Triga 2000 Reactor

    Upgrading Status Of Bandung TRIGA 2000 Reactor. Upgrading of TRIGA Mark II Reactor from 1000 k W to 2000 k W has been done. On June 24, 2000 it has been inaugurated by the Vice President, Madame Megawati Soekarnoputri. The solution of the problems faced in the upgrading should be described here since some experiences got during the process probably are very useful, especially the methods in finishing the project

  10. The Design of a Prompt Gamma Neutron Activation Analysis Beam for BNCT Purpose at the TRIGA Mark II Reactor in Pavia

    Stella, S.; Bazani, A.; Ballarini, F.; Bortolussi, S.; Protti, N.; Altieri, S. [Department of Nuclear and Theoretical Physics, University of Pavia (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Section of Pavia (Italy); Bruschi, P. [Department of Nuclear and Theoretical Physics, University of Pavia (Italy)

    2011-07-01

    In preclinical and clinical Boron Neutron Capture Therapy studies the knowledge of the amount of {sup 10}B in blood and tissues is very important. The boron concentration measurements method used in Pavia (Italy) is based on the charged particles spectrometry of thin tissue cuts irradiated in the Thermal Column of the TRIGA reactor of the University. In order to perform measurements in biological liquids such as blood and urine, or in other tissue that cannot be cut in slices, a Prompt Gamma Neutron Activation Analysis (PGNAA) facility is being designed, which measures {sup 10}B concentration detecting the prompt gamma from boron nuclear capture reaction. At the TRIGA reactor in Pavia, there are four horizontal channels, potentially available for PGNAA. The choice of the suitable channel, and the design of its configuration, were achieved using the Monte Carlo neutron transport code MCNP4c2. To perform the simulations, an input code already validated, describing the reactor structure and the neutron source, was used. The calculations were implemented applying non-analog techniques for the neutron transport, that are necessary to obtain a sufficient statistic in every positions along the channel and especially at its end. The selection of the channel for PGNAA installation was carried out by comparing the simulated fluxes obtained in the different channels at the present configuration. The channel shielded by the core reflector was chosen, because the graphite lowers the fast component of the neutrons, with no need to insert additional material in the facility. The thermal flux at its end is 1.7 x 10{sup 8} n/cm{sup 2} s with thermal-to-total neutron flux ratio around 0.8. Subsequently a bismuth block for gamma radiation shielding and blocks of single crystal sapphire as filter for fast neutron component were inserted in the channel. Other components of the facility that are under study are a collimator and the beam catcher. (author)

  11. A 2 MW heating plant supply by farmers

    Nilsson, P.

    1993-12-31

    In Sweden, non-food products are encouraged since 1991, so energetic cultures develop. This paper deals with a Salix plantation and a 2 MW heating plant in Kolback supplied by salix plantations and wood waste. (TEC). 1 fig.

  12. The research reactor TRIGA Mainz

    The TRIGA Mark II reactor at the Institut fuer Kernchemie became first critical on August 3rd, 1965. It can be operated in the steady state mode with a maximum power of 100 kWth and in the pulse mode with a peak power of 250 MWth. A survey of the research programmes performed at the TRIGA Mainz is given covering applications in basic research as well as applied science in nuclear chemistry and nuclear physics. Furthermore, the reactor is used for neutron activation analysis and for education and training of scientists, teachers, students and technical personal. Important projects for the future of the TRIGA Mainz are the UCN (ultra cold neutrons) experiment, fast chemical separation, medical applications and the use of the NAA as well as the use of the reactor facility for the training of students in the fields of nuclear chemistry, nuclear physics and radiation protection. Taking into account the past and future operation schedule and the typically low burn-up of TRIGA fuel elements (∝4 g U-235/a), the reactor can be operated for at least the next decade taking into account the fresh fuel elements on stock and without changing spent fuels. (orig.)

  13. Temporal variation of the neutron flux in the carousel facility of the TRIGA Mark II reactor for different core set up

    In this work we focused on identifying quantitatively the effects on activation measurements due to temporal (time-dependent) variation of neutron flux. Irradiations in the carousel facility (CF) of TRIGA reactor at the Jozef Stefan Institute (JSI) for core No. 176 (April 2002) and current core No. 189, set up in June 2006, are discussed for illustrations. The measurements are based on neutron detectors (ionisation chambers), which surround the graphite reflector of the reactor core. In principle, the variations of the neutron flux produce a systematic error in the results obtained by absolute or 'quasi' absolute measuring techniques (such as neutron activation analysis (NAA) by the ko-standardization method), which assume constant conditions during irradiation. The results of our study show that for typical irradiation of 20 hours in channels of the CF aligned in the direction of the ionisation chamber (safety channel) the time-dependent variation of the neutron flux is about 6-8%. In the ko method, which we are using for routine work at the JSI, this variation introduced a systematic error in the results after long irradiation of 20 hours up to 5%, depending on the half-life of the investigated radionuclide

  14. EURACOS II facility in the modified thermal column of the TRIGA Mark II reactor at the University of Pavia LENA Laboratory

    The EURACOS II (Enriched Uranium Converter Source) project foresees the installation of an U--Al alloy converter plate at the end of the thermal column in the Pavia University LENA reactor. The incident thermal flux on the 5 Kg of 235U generates a fast neutron source whose power is 0.4 kW. The fast flux near the center exceeds 109 neutrons/cm2-sec. The fission plate is cooled by a forced air flow of 500 m3/h; the use of air instead of water reduces to a minimum the initial spectrum deformation of source neutrons. An irradiation chamber of 3.75 x 1.5 x 1.8 m3 is placed in front of the source and contains the mock-up under investigation. The facility is principally intended for benchmark-and mock-up-experiments in the reactor shielding field, but irradiations to different types and materials not directly related to shielding can be extended. The modification of the TRIGA thermal column, the characteristics of the EURACOS II facility, and the experiments now in preparation are described. The source intensity allows the study of neutron attenuation factor of 105 for fast, and 108 for thermal neutrons. The neutron spectra are investigated with the sandwich technique in the epithermal range, and with threshold detectors, organic and telescopic spectrometers in the fast energy range. (U.S.)

  15. Thermal power calibration of the TRIGA Mark I IPR-R1 reactor during the upgrading tests to 250 kW

    This paper presents the results and the methodology used to calibrate the thermal power of the Reactor TRIGA IPR-R1 in CDTN, Belo Horizonte, Brazil. This calibration took place during the operation tests carried out to allow the reactor power increases from the current 100 kW. The methodology consisted in the measurement of the water flow, as well as the inlet temperatures in the primary cooling loop. The primary cooling loop thermal balance together with the thermal losses gave the thermal power. Three sequences of tests were carried out. The first rising of the thermal power was made with the usual configuration of the core (59 fuel elements). After changing the place of the ion chambers, and the positions of the control bars, the number of fuel elements was increased to 63, and a new evaluation of the thermal power was accomplished. Afterwards the core returned to its initial configuration (59 fuel elements), the power level of the reactor returned to 100 KW, and a new test took place. (author)

  16. 15. European TRIGA Conference

    The 15th European TRIGA Conference was organised by the VTT Chemical Technology and held in June 15-17, 1998, in Espoo, Finland. The topics of the conference included: reactor operation and maintenance experience, developments and improvements of TRIGA components, safety aspects, licensing, radiation protection, fuel management, personnel, training programmes, and research programmes at TRIGA stations. The special topic of the conference was TRIGA reactors and the Boron Neutron Capture Therapy (BNCT)

  17. 15. European TRIGA Conference

    Salmenhaara, S. (ed.)

    1999-12-15

    The 15th European TRIGA Conference was organised by the VTT Chemical Technology and held in June 15-17, 1998, in Espoo, Finland. The topics of the conference included: reactor operation and maintenance experience, developments and improvements of TRIGA components, safety aspects, licensing, radiation protection, fuel management, personnel, training programmes, and research programmes at TRIGA stations. The special topic of the conference was TRIGA reactors and the Boron Neutron Capture Therapy (BNCT)

  18. An experimental study of natural convection in the hottest channel of TRIGA 2000 KW

    Full text: Full text: With the increasing demand of radioisotope, in 1995, National Nuclear Energy Agency of Indonesia made a decision to upgrade the power of the TRIGA Mark II reactor from 1 to 2 MW maximum powers. The reactor reached its first criticality on May 13, 2000. To accomplish the safety evaluation of the reactor, using thermal hydraulic computer code carried out a thermal hydraulic analysis. This code calculates the natural convection flow through water coolant bounded by vertical cylindrical heat sources. In this paper, it will be reported the experimental study of natural convection in the hottest channel of TRIGA 2000 kW. The purpose of the experimental study is to verify the theoretical analysis, especially the temperature distribution in the hottest coolant channel. In this experiment, a special probe for temperature detection has been designed and inserted to central thimble (CT). In the experiment, eight thermocouples were used to measure the bulk temperature of the water at different position in the cooling channel and simultaneous quantitative measurement of the temperature distribution were done by using a data acquisition cards system. The result obtained theoretically using the STAT code has been verified by this experimental study

  19. An Experimental Study of Natural Convection in The Hottest Channel of TRIGA 2000 k W Reactor

    With the increase of radioisotope demand, in 1995, National Nuclear Energy Agency of Indonesia made a decision to upgrade the power of the TRIGA Mark II reactor from 1 MW to 2 MW maximum power. The reactor reached its first criticality on May 13, 2000. To accomplish the safety evaluation of the reactor, a thermal hydraulic analysis was carried out by using thermal hydraulic computer code. This code calculates the natural convection flow through water coolant bounded by vertical cylindrical heat sources. In this paper, it will be reported the experimental study of natural convection in the hottest channel of TRIGA 2000 k W reactor. The purpose of the experimental study is to verify the theoretical analysis, especially the temperature distribution in the hottest coolant channel. In this experiment, a special probe for temperature detection has been designed and inserted to central thimble (CT). In the experiment, eight thermocouples were used to measure the bulk temperature of the water at different position in the cooling channel and simultaneous quantitative measurement of the temperature distribution were done by using a data acquisition cards system. The result obtained theoretically using the STAT code has been verified by this experimental study. (author)

  20. TRIGA reactor characteristics

    The general design, characteristics and parameters of TRIGA reactors and fuel are described. This is a training module with the learning objectives: to understand the basics of the physics and mechanical design of the TRIGA fuel as well as its unique operational characteristics and realize the differences between TRIGA fuels and other more traditional. 10 figs., 6 tabs. (nevyjel)

  1. Radiological Concentration Distribution of 131I, 132I, 133I, 134I, and 135I Due to a Hypothetical Accident of TRIGA Mark-II Research Reactor

    Malek, M.A.; K. J. A. Chisty; Rahman, M M

    2012-01-01

    The present work gives a methodology for assessing radiological concentration of 131I, 132I, 133I, 134I, and 135I due to a hypothetical accident of TRIGA Mark-II research Reactor at AERE, Savar, Bangladesh. The concentrations were estimated through different pathways like ingestion of vegetation, milk, and meat from air and ground deposition. The maximum air concentrations for al...

  2. Experimental evaluation of the production of the poisons Xe-135 and Sm-149 of the TRIGA Mark III reactor with mixed core, configuration No. 16 (Final report of the project)

    It was generated the concentration curve of the Xe135 (t) during the TRIGA Mark III reactor operation cycle, for a continuous irradiation of 72 h to 1 MW of thermal power, as well as the accumulation curve of the isotope after the shutdown, for the fuel configuration No. 16 in the thermal column. The maximum negative reactivities generated by the Xe135 for operation times greater than 60 h to 1 MW and after the reactor shutdown its were of 1.968 ± 0.15 dollars and 2.30 ± 0.15 dollars respectively. When comparing these results with those theoretically calculated we find differences of the order of 3.6% and 5.34% which are understood inside the experimental error that on the average was of 7.6%. The results before mentioned have an important application during the start up process of the Reactor, when analyzing the value of the weekly reactivity excess of the core and when is choice the pattern of bars to use for experiments of but of 2 h, where is required to minimize the temporary and space interferences of the neutron flux. (Author)

  3. Component failure data base of TRIGA reactors

    This compilation provides failure data such as first criticality, component type description (reactor component, population, cumulative calendar time, cumulative operating time, demands, failure mode, failures, failure rate, failure probability) and specific information on each type of component of TRIGA Mark-II reactors in Austria, Bangladesh, Germany, Finland, Indonesia, Italy, Indonesia, Slovenia and Romania. (nevyjel)

  4. TRIGA reactor characteristics

    This module describes the general design, characteristics and parameters of TRIGA reactors and fuels. It is recommended that most of this information should be incorporated into any reactor operator training program and, in many cases, the facility Safety Analysis Report. It is oriented to teach the basics of the physics and mechanical design of the TRIGA fuel as well as its unique operational characteristics and the differences between TRIGA fuels and others more traditional reactor fuels. (nevyjel)

  5. Operation experience with the TRIGA reactor Wien

    Boeck, H. (Atominstitut, Vienna (Austria))

    1999-12-15

    The TRIGA Mark-II reactor Wien has been in operation more than 36 years. The average operation time is about 230 days per year with 90 % of this time at nominal power of 250 kW. The remaining 10 % operation time is used for students' training cources at low power level. Pulse operation is rather infrequent with about 5 to 10 pulses per year. The TRIGA reactor Wien is well utilized and in an excellent technical state. There are no technical or economical reasons to consider an imminent shut-down. However, the present fuel return policy might influence the destiny of this facility in the next decade. (orig.)

  6. Research activities at the TRIGA Mainz

    The TRIGA Mark II research reactor of the Johannes Gutenberg-Universitaet Mainz is in operation since 1965 with only a few months shutdown for the refurbishment of the cooling circuits. It can be operated in the steady state mode with a maximum power of 100 kWth and in the pulse mode with a peak power of 250 MWth. The operation of the reactor will last at least until the year 2010. The paper gives a survey of the research programmes carried out at the TRIGA Mainz. It covers a wide range of applications in nuclear chemistry, nuclear and particle physics, neutron activation analysis and isotope production for various purposes. (author)

  7. Fuel burnup analysis for the Moroccan TRIGA research reactor

    Highlights: ► A fuel burnup analysis of the 2 MW TRIGA MARK II Moroccan research reactor was established. ► Burnup calculations were done by means of the in-house developed burnup code BUCAL1. ► BUCAL1 uses the MCNP tallies directly in the calculation of the isotopic inventories. ► The reactor life time was found to be 3360 MW h considering full power operating conditions. ► Power factors and fluxes of the in-core irradiation positions are strongly affected by burnup. -- Abstract: The fundamental advantage and main reason to use Monte Carlo methods for burnup calculations is the possibility to generate extremely accurate burnup dependent one group cross-sections and neutron fluxes for arbitrary core and fuel geometries. Yet, a set of values determined for a material at a given position and time remains accurate only in a local region, in which neutron spectrum and flux vary weakly — and only for a limited period of time, during which changes of the local isotopic composition are minor. This paper presents the approach of fuel burnup evaluation used at the Moroccan TRIGA MARK II research reactor. The approach is essentially based upon the utilization of BUCAL1, an in-house developed burnup code. BUCAL1 is a FORTRAN computer code designed to aid in analysis, prediction, and optimization of fuel burnup performance in nuclear reactors. The code was developed to incorporate the neutron absorption reaction tally information generated directly by MCNP5 code in the calculation of fissioned or neutron-transmuted isotopes for multi-fueled regions. The fuel cycle length and changes in several core parameters such as: core excess reactivity, control rods position, fluxes at the irradiation positions, axial and radial power factors and other parameters are estimated. Besides, this study gives valuable insight into the behavior of the reactor and will ensure better utilization and operation of the reactor during its life-time and it will allow the establishment of

  8. Deployment of a three-dimensional array of Micro-Pocket Fission Detector triads (MPFD3) for real-time, in-core neutron flux measurements in the Kansas State University TRIGA Mark-II Nuclear Reactor

    Ohmes, Martin Francis

    A Micro-Pocket Fission Detector (MPFD) is a miniaturized type of fission chamber developed for use inside a nuclear reactor. Their unique design allows them to be located between or even inside fuel pins while being built from materials which give them an operational lifetime comparable to or exceeding the life of the fuel. While other types of neutron detectors have been made for use inside a nuclear reactor, the MPFD is the first neutron detector which can survive sustained use inside a nuclear reactor while providing a real-time measurement of the neutron flux. This dissertation covers the deployment of MPFDs as a large three-dimensional array inside the Kansas State University TRIGA Mark-II Nuclear Reactor for real-time neutron flux measurements. This entails advancements in the design, construction, and packaging of the Micro-Pocket Fission Detector Triads with incorporated Thermocouple, or MPFD3-T. Specialized electronics and software also had to be designed and built in order to make a functional system capable of collecting real-time data from up to 60 MPFD3-Ts, or 180 individual MPFDs and 60 thermocouples. Design of the electronics required the development of detailed simulations and analysis for determining the theoretical response of the detectors and determination of their size. The results of this research shows that MPFDs can operate for extended times inside a nuclear reactor and can be utilized toward the use as distributed neutron detector arrays for advanced reactor control systems and power mapping. These functions are critical for continued gains in efficiency of nuclear power reactors while also improving safety through relatively inexpensive redundancy.

  9. Optimum burnup of BAEC TRIGA research reactor

    Highlights: ► Optimum loading scheme for BAEC TRIGA core is out-to-in loading with 10 fuels/cycle starting with 5 for the first reload. ► The discharge burnup ranges from 17% to 24% of U235 per fuel element for full power (3 MW) operation. ► Optimum extension of operating core life is 100 MWD per reload cycle. - Abstract: The TRIGA Mark II research reactor of BAEC (Bangladesh Atomic Energy Commission) has been operating since 1986 without any reshuffling or reloading yet. Optimum fuel burnup strategy has been investigated for the present BAEC TRIGA core, where three out-to-in loading schemes have been inspected in terms of core life extension, burnup economy and safety. In considering different schemes of fuel loading, optimization has been searched by only varying the number of fuels discharged and loaded. A cost function has been defined and evaluated based on the calculated core life and fuel load and discharge. The optimum loading scheme has been identified for the TRIGA core, the outside-to-inside fuel loading with ten fuels for each cycle starting with five fuels for the first reload. The discharge burnup has been found ranging from 17% to 24% of U235 per fuel element and optimum extension of core operating life is 100 MWD for each loading cycle. This study will contribute to the in-core fuel management of TRIGA reactor

  10. Digital, remote control system for a 2-MW research reactor

    Battle, R.E.; Corbett, G.K.

    1988-01-01

    A fault-tolerant programmable logic controller (PLC) and operator workstations have been programmed to replace the hard-wired relay control system in the 2-MW Bulk Shielding Reactor (BSR) at Oak Ridge National Laboratory. In addition to the PLC and remote and local operator workstations, auxiliary systems for remote operation include a video system, an intercom system, and a fiber optic communication system. The remote control station, located at the High Flux Isotope Reactor 2.5 km from the BSR, has the capability of rector startup and power control. The system was designed with reliability and fail-safe features as important considerations. 4 refs., 3 figs.

  11. Research with Neutrons at the TRIGA Mainz

    Hampel, Gabriele [University of Mainz, Fritz-Strassmann-Weg 2, D-55128 Mainz (Germany)

    2008-10-29

    The TRIGA Mark II reactor at the Institut fuer Kernchemie of the Johannes Gutenberg-Universitaet in Mainz became first critical on August 3, 1965 and is still intensively used for basic research, applied science and educational purposes. Considering the past and future operation schedule and the low burn-up of the fuel elements ({approx}4 g {sup 235}U/a), the reactor can be operated for at least the next decade taking into account the fresh fuel elements on stock and without changing spent fuels. The operation of the TRIGA Mainz has been extended very recently until the year 2020. The TRIGA Mainz can be operated in the steady state mode with a maximum power of 100 kWth and in the pulse mode with a peak power of 250 MWth. Until now, more than 16600 pulses have been carried out without any fuel failure. For irradiations the TRIGA Mainz has a central experimental tube, three pneumatic transfer systems and a rotary specimen rack with 40 positions which allows the irradiation of 80 samples at the same time. In addition, the TRIGA Mainz includes four horizontal beam ports penetrating the concrete shielding and extending inside the pool towards the reflector. A graphite thermal column provides a source of well-thermalized neutrons suitable for physical research or biological and medical irradiations. Important projects for the future of the TRIGA Mainz are the production of ultracold neutrons (UCN) and experiments with UCN, high precision mass measurements and laser spectroscopy of short-lived fission products (TRIGA-TRAP), the production of radionuclides for fast chemical separations, medical and radiopharmaceutical applications, and the use of the neutron activation analysis for the application in archeometry, solar energy technique, criminalistics and vine analysis. Furthermore, studies are performed to judge if the Boron Neutron Capture Therapy (BNCT) can be applied at the TRIGA Mainz for cancer treatment of liver metastases. Also, the reactor facility is used for the

  12. Research with Neutrons at the TRIGA Mainz

    The TRIGA Mark II reactor at the Institut fuer Kernchemie of the Johannes Gutenberg-Universitaet in Mainz became first critical on August 3, 1965 and is still intensively used for basic research, applied science and educational purposes. Considering the past and future operation schedule and the low burn-up of the fuel elements (∼4 g 235U/a), the reactor can be operated for at least the next decade taking into account the fresh fuel elements on stock and without changing spent fuels. The operation of the TRIGA Mainz has been extended very recently until the year 2020. The TRIGA Mainz can be operated in the steady state mode with a maximum power of 100 kWth and in the pulse mode with a peak power of 250 MWth. Until now, more than 16600 pulses have been carried out without any fuel failure. For irradiations the TRIGA Mainz has a central experimental tube, three pneumatic transfer systems and a rotary specimen rack with 40 positions which allows the irradiation of 80 samples at the same time. In addition, the TRIGA Mainz includes four horizontal beam ports penetrating the concrete shielding and extending inside the pool towards the reflector. A graphite thermal column provides a source of well-thermalized neutrons suitable for physical research or biological and medical irradiations. Important projects for the future of the TRIGA Mainz are the production of ultracold neutrons (UCN) and experiments with UCN, high precision mass measurements and laser spectroscopy of short-lived fission products (TRIGA-TRAP), the production of radionuclides for fast chemical separations, medical and radiopharmaceutical applications, and the use of the neutron activation analysis for the application in archeometry, solar energy technique, criminalistics and vine analysis. Furthermore, studies are performed to judge if the Boron Neutron Capture Therapy (BNCT) can be applied at the TRIGA Mainz for cancer treatment of liver metastases. Also, the reactor facility is used for the training

  13. Fuel experience at a 37 year old TRIGA type reactor

    Boeck, H. [Atominstitut der Oesterreichischen Universitaeten, Wien (Austria)

    1999-07-01

    A survey is given on 37 years of TRIGA fuel experience at the 250 kW TRIGA Mark II reactor Vienna. Approximately 3000 fuel-years of experience have accumulated at this facility with only minor problems. Totally only 8 fuel elements had to be removed permanently from the core. Various inspection methods which have been developed throughout the years are described in this paper. (author)

  14. INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION

    FuelCell Energy

    2005-05-16

    With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP V Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery

  15. Development of a 2 MW relativistic backward wave oscillator

    Yaduvendra Choyal; Lalit Gupta; Prasad Deshpande; Krishna Prasad Maheshwari; Kailash Chander Mittal; Suresh Chand Bapna

    2008-12-01

    In this paper, a high power relativistic backward wave oscillator (BWO) experiment is reported. A 230 keV, 2 kA, 150 ns relativistic electron beam is generated using a Marx generator. The beam is then injected into a hollow rippled wall metallic cylindrical tube that forms a slow wave structure. The beam is guided using an axial pulsed magnetic field having a peak value 1 T and duration 1 ms. The field is generated by the discharge of a capacitor bank into a solenoidal coil. A synchronization circuit ensures the generation of the electron beam at the instant when the axial magnetic field attains its peak value. The beam interacts with the SWS modes and generates microwaves due to Cherenkov interaction. Estimated power of 2 MW in TM 01 mode is observed.

  16. The Berkeley TRIGA Mark III research reactor

    The Berkeley Research Reactor went critical on August 10, 1966, and achieved licensed operating power of 1000 kW shortly thereafter. Since then, the reactor has operated, by and large, trouble free on a one-shift basis. The major use of the reactor is in service irradiations, and many scientific programs are accommodated, both on and off campus. The principal off-campus user is the Lawrence Radiation Laboratory at Berkeley. The reactor is also an important instructional tool in the Nuclear Engineering Department reactor experiments laboratory course, and as a source of radioisotopes for two other laboratory courses given by the Department. Finally, the reactor is used in several research programs conducted within the Department, involving studies with neutron beams and in reactor kinetics

  17. Modeling the PUSPATI TRIGA Reactor using MCNP code

    The 1 MW TRIGA MARK II research reactor at Malaysian Nuclear Agency achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. This paper describes the reactor parameters calculation for the PUSPATI TRIGA REACTOR (RTP); focusing on the application of the developed reactor 3D model for criticality calculation, analysis of power and neutron flux distribution and depletion study of TRIGA fuel. The 3D continuous energy Monte Carlo code MCNP was used to develop a versatile and accurate full model of the TRIGA reactor. The model represents in detailed all important components of the core and shielding with literally no physical approximation. (author)

  18. Calibração da potência do reator nuclear de Pesquisa TRIGA IPR-R1

    Mesquita, Amir Zacarias; Rezende, Hugo César; Tambourgi, Elias Basile

    2005-01-01

    Este trabalho apresenta os resultados e a metodologia utilizada para calibrar a potencia térmica do Reator de Pesquisa TRIGA Mark I IPR-RJ do Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) em Belo Horizonte, Brasil. Os Reatores TRIGA Mark I sao d

  19. Design improvements in TRIGA reactors

    There have been many design improvements to TRIGA reactor hardware in the past twelve years. One of the more important and most obvious improvements has been in the area of reactor instrumentation. The low profile, completely transistorized Mark III console was a great step forward in a low maintenance, high reliability instrumentation system. Other design improvements include the lazy susan specimen pickup assembly; the specimen container; an empty stainless steel fuel element which can be filled with samples and can be located anywhere in the core; the flexible fuel handling tool; a new fuel measuring tool design; the shock absorber on the adjustable transient rod drive; new testing and evaluation procedures on the thermocouples and other

  20. TRIGA research reactors

    TRIGA (Training, Research, Isotope production, General-Atomic) has become the most used research reactor in the world with 65 units operating in 24 countries. The original patent for TRIGA reactors was registered in 1958. The success of this reactor is due to its inherent level of safety that results from a prompt negative temperature coefficient. Most of the neutron moderation occurs in the nuclear fuel (UZrH) because of the presence of hydrogen atoms, so in case of an increase of fuel temperature, the neutron spectrum becomes harder and neutrons are less likely to fission uranium nuclei and as a consequence the power released decreases. This inherent level of safety has made this reactor fit for training tool in university laboratories. Some recent versions of TRIGA reactors have been designed for medicine and industrial isotope production, for neutron therapy of cancers and for providing a neutron source. (A.C.)

  1. Power peakings in mixed TRIGA cores

    Snoj, Luka; Ravnik, Matjaz [Jozef Stefan Institute, Reactor Physics Division F-8, Jamova 39, SI-1000 Ljubljana (Slovenia)], E-mail: luka.snoj@ijs.si

    2006-07-01

    Power distribution in the reactor core is normally calculated by the diffusion codes (e.g. TRIGLAV package) in 2-D approximation. Diffusion codes normally treat the fuel rods and surrounding water as homogeneous regions called unit cells. Modern Monte-Carlo codes (e.g. MCNP) allow calculation of the power density distribution in 3-D geometry assuming detailed geometry without unit-cell homogenization. The power density distribution (and its maximum value - the peaking) can be calculated 'point-wise' with the resolution of approximately 1 mm. Results of the detailed power density distribution calculated by MCNP are presented for 250 kW TRIGA Mark II reactor, assuming various realistic and hypothetical core loading patterns with focus on the mixed cores. Combinations of 8.5 w/o, 12 w/o and 20 w/o low enriched (20 %) TRIGA fuel elements are systematically treated in the mixed cores. (author)

  2. Research activities at the TRIGA Mainz

    Eberhardt, K.; Trautmann, N. [Institut fuer Kernchemie, Universitaet Mainz, D-55128 Mainz (Germany)

    2000-07-01

    The TRIGA Mark II research reactor of the Johannes Gutenberg-Universitaet Mainz is in operation since 1965 with only a few months shutdown for the refurbishment of the cooling circuits. It can be operated in the steady state mode with a maximum power of 100 kW{sub th} and in the pulse mode with a peak power of 250 MW{sub th}. The operation of the reactor will last at least until the year 2010. The paper gives a survey of the research programmes carried out at the TRIGA Mainz. It covers a wide range of applications in nuclear chemistry, nuclear and particle physics, neutron activation analysis and isotope production for various purposes. (author)

  3. Evaluation of the thermal neutron flux in samples of Al–Au alloy irradiated in the carrousel channels of the TRIGA MARK I IPR-R1 reactor using MCNP code

    Salomé, J.A.D.; Guerra, B.T. [Departamento de Engenharia Nuclear, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 – PCA1 – Anexo Engenharia – Pampulha, CEP 31270-901, Belo Horizonte, MG (Brazil); Pereira, C., E-mail: claubia@nuclear.ufmg.br [Departamento de Engenharia Nuclear, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 – PCA1 – Anexo Engenharia – Pampulha, CEP 31270-901, Belo Horizonte, MG (Brazil); Menezes, M.Â.B.C. de [Centro de Desenvolvimento da Tecnologia Nuclear, Comissão Nacional de Energia Nuclear, Campus da UFMG, Av. Antônio Carlos, 6627 31270-901, P.O. Box 941, Belo Horizonte, MG (Brazil); Silva, C.A.M. da [Departamento de Engenharia Nuclear, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 – PCA1 – Anexo Engenharia – Pampulha, CEP 31270-901, Belo Horizonte, MG (Brazil); Dalle, H.M. [Centro de Desenvolvimento da Tecnologia Nuclear, Comissão Nacional de Energia Nuclear, Campus da UFMG, Av. Antônio Carlos, 6627 31270-901, P.O. Box 941, Belo Horizonte, MG (Brazil)

    2014-07-01

    Highlights: • The TRIGA IPR-R1 was modelled using MCNP. • The thermal neutron flux through the samples in eleven irradiation channels was obtained. • The simulated results were compared to experimental values. • The relative error, the relative trend, the z-score test and uncertainty were analysed. - Abstract: The TRIGA IPR-R1 was modelled using MCNP. The model consists of a cylinder filled with water, fuel elements, radial reflectors, central tube, control rods and neutron source. Around the core is placed the Rotary Specimen Rack (RSR) with adequate groove to insert the samples to irradiation. The values of the thermal neutron flux through the samples in eleven irradiation channels were simulated and compared to the experimental results to validate the model. After that, the values of the thermal neutron flux, in the same channels, were simulated on two horizontal planes at different heights and compared to validate the model. These channels were characterized as representative channels of the neutron flux distribution in the RSR. To evaluate the results, the relative errors, the relative trend, the z-score test and the relevance to a confidence interval of 95% were analysed. Good agreement has been obtained for the most channels when compared with the experimental results.

  4. TRIGA spent fuel storage

    Storage of spent fuel elements is a step preliminary to final radioactive waste disposal operation. The spent fuel issue will have a common solution for both spent fuel from Cernavoda NPP and research TRIGA reactors currently operated in Romania. For the case of TRIGA reactor spent fuel this will be an alternative solution to the now functioning alternative of 'on site' storing solution adopted so far at INR Pitesti. For the time being the short term storage requirements for TRIGA spent fuel are adequately fulfilled by the pool of a multizonal reactor, the construction of which was definitively stopped. On the other hand the HEU - LEU conversion of the 14 MW TRIGA reactor which will be completed till May 2006, will pose not spent fuel problems as the TRIGA HEU fuel (612 elements) will be transferred in US (not later than May 2009). Consequently, the needs for intermediate storage will be associated only with the LEU spent fuel from TRIGA LEU-SSR and TRIGA LEU-ACPR reactors. In the latter case the maximum number of elements will be 167. For the stationary 14 MW (SSR) reactor but the amount of fuel elements to be stored on a intermediate term will be a function of service span of this reactor as well of the degree of request. Totally, some 1,750 SSR-LEU fuel elements will require intermediate storage. There is a preliminary agreement with 'NUCLEARELECTRICA -S.A.' Company regarding LEU TRIGA spent fuel storage at the intermediate storage facility for spent fuel of Cernavoda NPP.. A safety investigation is underway to determine the impact of LEU spent fuel upon the dry environment containing spent CANDU fuel. To fulfil the requirements imposed by CANDU storage technology the LEU spent fuel will be correspondingly conditioned. Then adequate containers will be used for transportation of fuel to Cernavoda's storage cell. Subcriticality condition in the storage cell loaded with LEU was checked by calculating the multiplication factor for an infinite lattice. The

  5. TRIGA low enrichment fuel

    Sixty TRIGA reactors have been sold and the earliest of these are now passing twenty years of operation. All of these reactors use the uranium-zirconium hydride fuel (UZrH) which provides certain unique advantages arising out of its large prompt negative temperature coefficient, very low fission product release, and high temperature capability. Eleven of these Sixty reactors are conversions from plate fuel to TRIGA fuel which were made as a result of these advantages. With only a few exceptions, TRIGA reactors have always used low-enriched-uranium (LEU) fuel with an enrichment of 19.9%. The exceptions have either been converted from the standard low-enriched fuel to the 70% enriched FLIP fuel in order to achieve extended lifetime, or are higher powered reactors which were designed for long life using 93%-enriched uranium during the time when the use and export of highly enriched uranium (HEU) was not restricted. The advent of international policies focusing attention on nonproliferation and safeguards made the HEU fuels obsolete. General Atomic immediately undertook a development effort (nearly two years ago) in order to be in a position to comply with these policies for all future export sales and also to provide a low-enriched alternative to fully enriched plate-type fuels. This important work was subsequently partially supported by the U.S. Department of Energy. The laboratory and production tests have shown that higher uranium densities can be achieved to compensate for reducing the enrichment to 20%, and that the fuels maintain the characteristics of the very thoroughly proven standard TRIGA fuels. In May of 1978, General Atomic announced that these fuels were available for TRIGA reactors and for plate-type reactors with power levels up to 15 MW with GA's standard commercial warranty

  6. TRIGA low enrichment fuel

    Sixty TRIGA reactors have been sold and the earliest of these are now passing twenty years of operation. All of these reactors use the uranium zirconium hydride fuel (UZrH) which provides certain unique advantages arising out of its large prompt negative temperature coefficient, very low fission product release, and high temperature capability. Eleven of these Sixty reactors are conversions from plate fuel to TRIGA fuel which were made as a result of these advantages. With only a few exceptions, TRIGA reactors have always used low-enriched uranium (LEU) fuel with an enrichment of 19.9%. The exceptions have either been converted from the standard low-enriched fuel to the 70% enriched FLIP fuel in order to achieve extended lifetime, or are higher powered reactors which were designed for long life using 93%-enriched uranium during the time when the use and export of highly enriched uranium (HEU) was not restricted. The advent of international policies focusing attention on nonproliferation and safeguards made the HEU fuels obsolete. General Atomic immediately undertook a development effort (nearly two years ago) in order to be in a position to comply with these policies for all future export sales and also to provide a low-enriched alternative to fully enriched plate-type fuels. This important work was subsequently partially supported by the U.S. Department of Energy. The laboratory and production tests have shown that higher uranium densities can be achieved to compensate for reducing the enrichment to 20%, and that the fuels maintain the characteristics of the very thoroughly proven standard TRIGA fuels. In May of 1978, General Atomic announced that these fuels were available for TRIGA reactors and for plate-type reactors with power levels up to 15 MW with General Atomic's standard commercial warranty

  7. Small Angle Neutron Scattering instrument at Malaysian TRIGA reactor

    Shukri Mohd; Razali Kassim; Zal Uyun Mahmood [Malaysian Inst. for Nuclear Technology Research (MINT), Bangi, Kajang (Malaysia); Shahidan Radiman

    1998-10-01

    The TRIGA MARK II Research reactor at the Malaysian Institute for Nuclear Research (MINT) was commissioned in July 1982. Since then various works have been performed to utilise the neutrons produced from this steady state reactor. One of the project involved the Small Angle Neutron Scattering (SANS). (author)

  8. The construction, installation and commissioning of the PUSPATI TRIGA reactor

    A TRIGA Mark II research reactor has been installed at the Tun Ismail Atomic Research Centre (PUSPATI), Selangor, Malaysia. The reactor was commissioned in July 1982. With the commissioning of the reactor, a new era in the development of nuclear science and technology in Malaysia has just begun. This report describes the construction, installation and commissioning of the reactor. (author)

  9. Operational reactivity considerations of Texas A and M TRIGA

    The Texas A and M University Nuclear Science Center Reactor was converted from a 100 kW MTR type core to a modified 1 MW TRIGA Mark III core in August, 1968. The TRIGA core has solved many of the low neutron flux problems without requiring a forced cooled reactor. However, the TRIGA core has presented some operational problems as the results of its reactivity requirements. Several solutions have been proposed to eliminate the problem of burnup. The use of fueled followers is presently being implemented at Texas A and M, but this is only a temporary solution. A final solution is the use of FLIP fuel which is presently under development. It incorporates a burnable poison in the fuel matrix, which results in a predicted lifetime of 9 MW-years. A decision to use this fuel will depend on the results of the PRNC conversion

  10. The future of spent TRIGA fuel elements from European TRIGA reactor stations

    The paper gives a summary of the information collected and presented to the General Atomics about TRIGA fuel elements available at European TRIGA stations under the initiative to solve the problem of the future of spent TRIGA fuel elements

  11. Utilisation of the Research Reactor TRIGA Mainz

    The TRIGA Mark II reactor of the University of Mainz can be operated in the steady state mode with thermal powers up to a maximum of 100 kW and in the pulse mode with a maximum peak power of 250 MW. So far, more than 17 000 pulses have been performed. For irradiations the TRIGA Mainz has a central experimental tube, three pneumatic transfer systems and a rotary specimen rack. In addition, the TRIGA Mainz includes four horizontal beam ports and a graphite thermal column which provides a source of well-thermalised neutrons. A broad spectrum of commercial applications, scientific research and training can be executed. For education and training various courses in nuclear and radiochemistry, radiation protection, reactor operation and physics are held for scientists, advanced students, teachers, engineers and technicians. Isotope production and Neutron Activation Analysis (NAA) are applied in in-core positions for different applications. NAA in Mainz is focused to determine trace elements in different materials such as in archaeometry, forensics, biology and technical materials including semiconductors for photovoltaics. The beam ports and the thermal column are used for commercial as well as for special basic and applied research in medicine, biology, chemistry and physics. Experiments are in preparation to determine the fundamental neutron properties with very high precision using ultra cold neutrons (UCN) produced at the tangential beam port. A second source is under development at the radial piercing beam port. Another experiment under development is the determination of ground-state properties of radioactive nuclei with very high precision using a penning trap and collinear laser spectroscopy. For many years fast chemical separation procedures combining a gas-jet transport system installed in one beam tube with either continuous or discontinuous chemical separation are carried out. In addition the thermal column of the reactor is also used for medical and

  12. Environmental Assessment: Relocation and storage of TRIGA reg-sign reactor fuel, Hanford Site, Richland, Washington

    In order to allow the shutdown of the Hanford 308 Building in the 300 Area, it is proposed to relocate fuel assemblies (101 irradiated, three unirradiated) from the Mark I TRIGA Reactor storage pool. The irradiated fuel assemblies would be stored in casks in the Interim Storage Area in the Hanford 400 Area; the three unirradiated ones would be transferred to another TRIGA reactor. The relocation is not expected to change the offsite exposure from all Hanford Site 300 and 400 Area operations

  13. Thermal Hydraulic Analysis of 3 MW TRIGA Research Reactor of Bangladesh Considering Different Cycles of Burnup

    M. H. Altaf; N.H. Badrun

    2014-01-01

    Burnup dependent steady state thermal hydraulic analysis of TRIGA Mark-II research reactor has been carried out utilizing coupled point kinetics, neutronics and thermal hydraulics code EUREKA-2/RR. From the previous calculations of neutronics parameters including percentage burnup of individual fuel elements performed so far for 700 MWD burnt core of TRIGA reactor showed that the fuel rod predicted as hottest at the beginning of cycle (fresh core) was found to remain as the hottest until 200 ...

  14. Operation experience operation experience with the TRIGA Reactor Wien

    The TRIGA Reactor Wien is the Closest Nuclear Facility to the IAEA. It is involved in: development of safeguards instrumentation, prevention of illicit trafficking, calibration of nuclear instrumentation, irradiation and test of safeguards instrumentation, storage of special nuclear material, training courses for junior inspectors (more than 120 trained and since 1992 more than 100 IAEA fellows from developing countries). The TRIGA Mark II Reactor Vienna is the only operating research reactor and the only nuclear facility in Austria, uniquely used for training and education of students and junior professionals in the fields of: nuclear technology, neutron and solid state physics, radiochemistry, radiation protection and dosimetry, low temperature physics, nuclear- and nuclear astrophysics, electron- and x-ray physics. The main technical data of the TRIGA Mark-II Reactor are reviewed as well as the operation experience during the 2004-2008 period: Visual inspection of beam tubes A (piercing) and D (radial), MCNP core calculations, investigation of shielding concrete for trace elements, estimation of radiation exposure during dismantling, replacement of both monitors at the console, problems with the NM-1000 wide range channel, Noise pick-up by nm-1000 due to grounding problems, Change of core configuration: 6 FLIP fuel elements transferred from C-ring into B-ring. The concrete studies at the TRIGA Vienna include: the determination of long-lived radionuclides in heavy concrete (mainly Ba-133, Eu 133, Eu-152, Eu-154, Co 154, Co-60), the measurement of the composition of heavy concrete, the estimation of the neutron attenuation in heavy concrete: aim is to establish a model and to predict the mass and activity of activated concrete in the Vienna TRIGA shield in view of future dismantling, the validation of model using the data from the dismantled 10 MW ASTRA reactor at Seibersdorf. In conclusions: after 50 years of successful TRIGA reactor operation (May 3, 1958) there

  15. Operation experience with the TRIGA reactor Wien 2004

    The TRIGA Mark-II reactor in Vienna is now in operation for more than 42 years. The average operation time is about 230 days per year with 90 % of this time at nominal power of 250 kW. The remaining 10 % operation time is used for students' training courses at low power level. Pulse operation is rather infrequent with about 5 to 10 pulses per year. The utilization of this facility is excellent, the number of students participating in practical exercises has strongly increased, and also training courses for outside groups such as the IAEA or for the 2004 Eugene Wigner Course are using the reactor, because it is the only TRIGA reactor remaining in Austria. Therefore, there is no need for decommissioning and it is intended to operate it as long as possible into the next decade. Nevertheless, in early 2004 it was decided to prepare a report on a decommissioning procedure for a typical TRIGA Mark II reactor which lists the volumes, the activity and the weight of individual materials such as concrete, aluminium, stainless steel, graphite and others which will accumulate during this process (a summary of possible activated and contaminated materials and the activity of a single TRIGA fuel element as a function of fuel type and decay time in Bq is presented). The status of the reactor (instrumentation, fuel elements, cooling circuit, ventilation system, re-inspection and maintenance program, cost/benefit) is outlined. (nevyjel)

  16. TRIGA reactor operating experience

    The Oregon State TRIGA Reactor (OSTR) has been in operation 3 years. Last August it was upgraded from 250 kW to 1000 kW. This was accomplished with little difficulty. During the 3 years of operation no major problems have been experienced. Most of the problems have been minor in nature and easily corrected. They came from lazy susan (dry bearing), Westronics Recorder (dead spots in the range), The Reg Rod Magnet Lead-in Circuit (a new type lead-in wire that does not require the lead-in cord to coil during rod withdrawal hss been delivered, much better than the original) and other small corrections

  17. Computer codes used during upgrading activities at MINT TRIGA reactor

    Mohammad Suhaimi Kassim; Adnan Bokhari; Mohd. Idris Taib [Malaysian Institute for Nuclear Technology Research, Kajang (Malaysia)

    1999-10-01

    MINT TRIGA Reactor is a 1-MW swimming pool nuclear research reactor commissioned in 1982. In 1993, a project was initiated to upgrade the thermal power to 2 MW. The IAEA assistance was sought to assist the various activities relevant to an upgrading exercise. For neutronics calculations, the IAEA has provided expert assistance to introduce the WIMS code, TRIGAP, and EXTERMINATOR2. For thermal-hydraulics calculations, PARET and RELAP5 were introduced. Shielding codes include ANISN and MERCURE. However, in the middle of 1997, MINT has decided to change the scope of the project to safety upgrading of the MINT Reactor. This paper describes some of the activities carried out during the upgrading process. (author)

  18. Design of a 250 kW mini-TRIGA reactor

    General Atomic Company has designed an inexpensive, compact core for a below-ground research reactor capable of up to 250 kW steady-state operation. This mini-TRIGA reactor is a simplified version of the familiar TRIGA Mark I. Created as a tool for small laboratories, the mini-TRIGA is intended for applications such as neutron activation analysis, neutron radiography, isotope production, and training. Like the Mark I, the mini-TRIGA is a below ground, graphite reflected, natural convection cooled reactor utilizing uranium-zirconium-hydride fuel. The principal difference between the mini-TRIGA and the Mark I is the U-235 enrichment in the fuel. In order to reduce core size, uranium enriched to 93 percent has been used instead of the standard 20 percent enrichment. Aluminum cladding is used for mini-TRIGA elements instead of stainless steel in order to reduce parasitic neutron capture and thus further reduce core size. A standard seventeen-element core results from these features which provides a thermal neutron flux of approximately 8.7 x 1012 n/cm2-sec at 250 kW in the central thimble. The standard instrumentation and control system has been greatly simplified for the mini-TRIGA. Included in the mini-TRIGA instrumentation package are a wide range log power instrument with period and safety channel and a multi-range linear power channel. The rod control chassis includes one rod position indicator with a selector switch, magnet power supply, annunciators, and scram switches. Experimental facilities available include an in-core thimble and an optional pneumatic transfer system and rotary specimen rack. (U.S.)

  19. The research reactor TRIGA Mainz

    Paper dwells upon the design and the operation of one of the German test reactors, namely, the TRIGA Mainz one (TRIGA: Training Research Isotope Production General Atomic). The TRIGA reactor is a pool test reactor the core of which contains a graphite reflector and is placed into 2 m diameter and 6.25 m height aluminum vessel. There are 75 fuel elements in the reactor core, and any of them contains about 36 g of 235U. The TRIGA reactors under the stable operation enjoy wide application to ensure tests and irradiation, namely: neutron activation analysis, radioisotope production, application of a neutron beam to ensure the physical, the chemical and the medical research efforts. Paper presents the reactor basic experimental program lines

  20. Operation experience with the TRIGA reactor Wien

    The TRIGA Mark-II reactor Wien is now in operation for more than 38 years. The average operation time is about 230 days per year with 90% of this time at nominal power of 250 kW. The remaining 10% operation time is used for students' training courses at low power level. Pulse operation is rather infrequent with about 5 to 10 pulses per year. The utilization of this facility is excellent. All experimental facilities are intensively used, therefore, neither from a technical nor from an economical and utilization viewpoint a need for decommissioning is necessary and it is intended to operate the reactor as long as possible into the next decade. The on-going US fuel return program has been discussed with the Regulatory Body and the authority's viewpoint is to return the nine HEU fuel elements at present installed in the core and to continue reactor operation beyond 2006 only with LEU standard TRIGA fuel. All components and systems are reinspected following an elaborate reinspection program. This consumes about 4 man-days per month. Once a year all the reactor systems are inspected in presence of an expert nominated by the regulatory body and his expertise is the basis for the annual renewal of the operation license valid again for the coming year. This annual inspection requires approximately 1 man-month (four persons for two weeks). Some of the inspection methods have been successfully applied in other TRIGA reactors. The paper has the following structure: - 1. Introduction; - 2. Status of Main Reactor Systems; - 2.1 Instrumentation; - 2.2 Fuel Elements; - 2.3 Cooling Circuits; - 2.4 Ventilation System; - 2.5 Area Monitoring System; - 2.6 Reinspection and Maintenance Program; - 3. Summary and Outlook

  1. Radiochemical measurement of neutron-spectrum averaged cross sections for the formation of {sup 64}Cu and {sup 67}Cu via the (n,p) reaction at a TRIGA Mark-II reactor. Feasibility of simultaneous production of the theragnostic pair {sup 64}Cu/{sup 67}Cu

    Uddin, M. Shuza; Hossain, Syed Mohammod [Atomic Energy Research Establishment, Dhaka (Bangladesh). Inst. of Nuclear Science and Technology; Rumman-uz-Zaman, M. [Atomic Energy Research Establishment, Dhaka (Bangladesh). Inst. of Nuclear Science and Technology; Dhaka Univ. (Bangladesh). Dept. of Applied Chemistry and Chemical Engineering; Qaim, Syed M. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Neurowissenschaften und Medizin (INM-5) - Nuklearchemie

    2014-09-01

    Integral cross sections of the {sup 64}Zn(n,p){sup 64}Cu and {sup 67}Zn(n,p){sup 67}Cu reactions were measured for the fast neutron spectrum of TRIGA Mark-II reactor at Savar, Dhaka, Bangladesh. A clean radiochemical separation was performed to isolate the copper radionuclides from the target element zinc. The radioactivities produced in the irradiation were measured by HPGe γ-ray spectroscopy. The neutron flux over the energy range 0.5-20 MeV was determined using the {sup 58}Ni(n,p){sup 58}Co monitor reaction. The measured results amount to 28.9 ± 2.0 mb and 0.84 ± 0.07 mb for the formation of {sup 64}Cu and {sup 67}Cu, respectively. These values are slightly lower than the respective values for a pure fission spectrum. The present results were compared with data calculated using the neutron spectral distribution and the recently critically analysed excitation function of each reaction given in the literature. The good agreement validates the reliability of those excitation functions. The feasibility of simultaneous production of {sup 64}Cu and {sup 67}Cu with fast neutrons is discussed. (orig.)

  2. 4. TRIGA owners' conference. Papers and abstracts

    The Conference covers the following aspects of TRIGA reactors operation: fuel utilization; TRIGA design and startup tests radiation release and unusual occurrences; operating experience; design of experimental facilities and instruments

  3. 3. TRIGA owners' conference. Papers and abstracts

    The TRIGA Owners' Conference III was held February 25-27, 1974, in Albuquerque, New Mexico. Seventy representatives were in attendance from 26 TRIGA facilities in the United States, Mexico, Puerto Rico, Indonesia, and from interested government agencies and industrial concerns. The main topics, discussed at the Conference were: TRIGA operating experiences; analytical and experimental methods; limits on effluents release for research reactor; and TRIGA modifications

  4. European TRIGA owners' conference. Papers and abstracts

    The conference covers the following topics, concerning TRIGA reactors: Experience in the Operation and Maintenance and utilization of TRIGA reactors; reactor upgrading; irradiation facilities; fuel management; air-concentration measurements; nuclear tests; use of TRIGA in nuclear medicine and biology; reactor design, fuel and performance; failures and other research activities

  5. The TRIGA reactor as chemistry apparatus

    At the Irvine campus of the University of California, the Mark I, 250 kilowatt TRIGA reactor is used as a regular teaching and research tool by the Department of Chemistry which operates the reactor. Students are introduced to radiochemistry and activation analysis in undergraduate laboratory courses and the relation of nuclear to chemical phenomena is emphasized even in Freshman chemistry. Special peripheral items have been developed for use in graduate and undergraduate research, including a fast pneumatic transfer system for studying short-lived isotopes and arrangements for irradiations at low temperatures. These and other unique features of a purely chemically oriented operation will be discussed and some remarks appended with regard to the merits of a low budget operation. (author)

  6. Neutronic and thermal-hydraulic experimental program in the IPR-R1 TRIGA reactor at CDTN

    The IPR-R1 TRIGA reactor, located at CDTN (Belo Horizonte/Brazil), is a typical 100 kW Mark I light-water reactor cooled by assisted natural convection with an annular graphite reflector. In order to study the safety aspects connected with the increase of the maximum steady state power of the IPR-R1 TRIGA reactor, experimental measures were taken. This paper summarizes the experimental program and some recent results and procedures of the neutronic and thermalhydraulic experiments carried out in the IPR-R1 TRIGA reactor. (authors)

  7. CD3 TRIGA users conference

    The Sixteenth European TRIGA Users Conference was held in Pitesti, Romania, on 25-28 September, 2000, under the sponsorship of the Institute for Nuclear Research at Pitesti. The papers which follow in this document are presented in the same order as listed in the Conference Program. All papers which were received for publication (44) have been included. Those papers which were presented but not received for publication are presented in abstract form (4 papers). It was very interesting for the Conference attendees from the West to learn about the large scope of excellent work conducted in Romania, especially at the Institute of Nuclear Research in Pitesti. Similarly, it was fortunate that a large attendance of Romanian researchers (53) from many institutes, universities, and government agencies could attend the Conference and interact with their counterparts from outside Romania. The European TRIGA9 Owners' Group was fortunate to be hosted by the owners and users of the world's largest TRIGA reactor - the 14-MW Romanian research and test reactor. The Opening Session talk was given by Radu Berceanu, Minister of Industries and Commerce. It was followed by the following presentations: R and D - Support for Nuclear Power Development by Ioan Rotaru (General Manager of SNNE); Overview of TRIGA Reactor and other Programs at GENERAL ATOMICS by Junaid Razvi (General Manager TRIGA Reactor at GA); Development strategies connected to National Power and Energy Program by Mircea Ionescu (Director Nuclear Energy Department of M.I.C.); Contribution of INR R and D Programs to Sustain Peaceful and Safe utilization of Nuclear Energy in Romania by Constantin Gheorghiu (Scientific Deputy Director at SCN). A Technical visit to TRIGA Reactor at INR Pitesti took place. Opening Session was followed by five sessions dedicated to the following subjects: Session 1 (8 papers) - TRIGA reactors operation, repair and maintenance; Session 2 (10 papers) - Future developments and future goals of

  8. Thermal hydraulic analysis of the IPR-R1 TRIGA reactor; Analise termo-hidraulica do reator TRIGA IPR-R1

    Veloso, Marcelo Antonio [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil); Fortini, Maria Auxiliadora [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear

    2002-07-01

    The subchannel approach, normally employed for the analysis of power reactor cores that work under forced convection, have been used for the thermal hydraulic evaluation of a TRIGA Mark I reactor, named IPR-R1, at 250 kW power level. This was accomplished by using the PANTERA-1P subchannel code, which has been conveniently adapted to the characteristics of natural convection of TRIGA reactors. The analysis of results indicates that the steady state operation of IPR-R1 at 250 kW do not imply risks to installations, workers and public. (author)

  9. Isothermal temperature reactivity coefficient measurement in TRIGA reactor

    Direct measurement of an isothermal temperature reactivity coefficient at room temperatures in TRIGA Mark II research reactor at Jozef Stefan Institute in Ljubljana is presented. Temperature reactivity coefficient was measured in the temperature range between 15 oC and 25 oC. All reactivity measurements were performed at almost zero reactor power to reduce or completely eliminate nuclear heating. Slow and steady temperature decrease was controlled using the reactor tank cooling system. In this way the temperatures of fuel, of moderator and of coolant were kept in equilibrium throughout the measurements. It was found out that TRIGA reactor core loaded with standard fuel elements with stainless steel cladding has small positive isothermal temperature reactivity coefficient in this temperature range.(author)

  10. Education and Training Programme at the Research Reactor TRIGA Mainz

    Hampel, Gabriele; Eberhardt, Klaus [University of Mainz, Institute for Nuclear Chemistry, D-55099 Mainz (Germany)

    2011-07-01

    Education and training are important elements for the future of nuclear science, technology and safety. Fields of interest include high- technology applications in nuclear techniques and neutron sources, advances in the areas of power reactor safety, establishing the scientific basis of new reactors, training of personnel needed to operate, maintain, regulate and improve reactors or other facilities associated with nuclear power. Also, creating a knowledgeable public through education usually means less opposition and more support. Education and training for safeguards, operators, researchers and quality programmes (calibration services, etc.) are one of the main utilisations of TRIGA research reactors. Use of a reactor as a training tool for university students studying nuclear engineering and/or physics, where there is a growing demand at European Universities, is of vital importance. In particular, the TRIGA Mark II reactor, located at the University of Mainz, one of the largest universities in Germany, offers a broad range of nuclear-related courses for training and education. (author)

  11. Education and Training Programme at the Research Reactor TRIGA Mainz

    Education and training are important elements for the future of nuclear science, technology and safety. Fields of interest include high- technology applications in nuclear techniques and neutron sources, advances in the areas of power reactor safety, establishing the scientific basis of new reactors, training of personnel needed to operate, maintain, regulate and improve reactors or other facilities associated with nuclear power. Also, creating a knowledgeable public through education usually means less opposition and more support. Education and training for safeguards, operators, researchers and quality programmes (calibration services, etc.) are one of the main utilisations of TRIGA research reactors. Use of a reactor as a training tool for university students studying nuclear engineering and/or physics, where there is a growing demand at European Universities, is of vital importance. In particular, the TRIGA Mark II reactor, located at the University of Mainz, one of the largest universities in Germany, offers a broad range of nuclear-related courses for training and education. (author)

  12. Recent Progress of 2MW 140GHz ECRH System on HL-2A

    Lu Z.H.

    2012-09-01

    Full Text Available In order to provide more capability of physics study for high-performance plasma, such as current profile control, neoclassical tearing modes suppression, transport study and so on, a new 2MW/140GHz/3s second-harmonic ECRH system with X-mode injection is on schedule on HL-2A. The total power of this system is 2MW and the pulse duration is 3 sec, which is generated by two gyrotrons manufactured by GYCOM. Two evacuated Φ63.5mm transmission lines were used to propagate these two 1MW/3s wave beams. A fast steerable launcher has been designed and installed on the HL-2A tokamak to inject four beams with narrow beam width and enable continuous beam scanning in toroidal and poloidal directions independently.

  13. 1.2-MW CW high-power klystron for accelerator

    A super power CW klystron was developed for TRISTAN accelerator at National Laboratory of High Energy Physics, Japan. The klystron can deliver 1.2 MW at 508.6 MHz with an efficiency of 62 % and a gain of 54 DB. The collector is vapor-cooled and the output window is a 152D coaxial disk type. A TiN coating on the output window is a key technique to suppress multipactoring discharge of the window. (author)

  14. Design of a dummy load for the 2 MW HF transmitter

    A 2 MW transmitter with a frequency ranging from 30 to 60 MHz is used for the KSTAR ICRF heating source and it is necessary to equip it with a dummy load which has a low VSWR above the second or third harmonic frequency for testing the 2 MW transmitter. The resistive film type is well known as a non-inductive dummy load, however it can't be used above 300 kW because of problem at the surface adhesion between the ceramic substrate and the resistive film or sputtered carbon which imposes a limit on the power density of the film resistor. So, above 1 MW the most promising candidate is the soda water dummy load where the soda water plays a role in both the rf power absorbing medium and the cooling water. In this work, the electrical and mechanical design requirements of the 2 MW soda dummy load are introduced and RF characteristics are discussed using a lumped circuit model and a numerical analysis. (author)

  15. A comparison of integral transport and diffusion theory methods in whole-core Triga calculations

    Ozgener, H. A.; Ozgener, B.; Buke, T. (Istanbul Technical University (Turkey). Institute of Nuclear Energy)

    1999-12-15

    Whole-core calculations are carried out for ITU-TRIGA Mark-II Reactor, using both integral transport theory and diffusion theory. By comparing effective multiplication factors, flux distributions and average fuel-rod reactivity worths, the merit of diffusion theory, which have been traditionally used in whole-core calculations, is assessed. (orig.)

  16. Reactor TRIGA at the J.Stefan institute in Ljubljana

    The TRIGA Mark II Reactor began its operation on May 1966. The power of the reactor is 250 kW. TRIGA utilizes solid fuel elements in which the zirconium hydride moderator is homogeneously mixed 20% or 70% enriched uranium. The inique featUre of these fuel - moderator elements is the prompt negative temperature coefficient of reactivity, which gives TRIGA its built-in safety. The reactor core consist of a lattice of cylindrical fuel-moderator elements and graphite (dummy) elements at the bottom of the 6 m high tank full of light water which is used for cooling and radiation protection. The reactor has the following experimental and irradiation facilities: 2 radial beam channels, 2 tangential beam channels, 2 thermal colomns, 40 position rotary specimen rack, pneumatic transfer tube and central thimble. The reactor operates about 2.500 hours per year and it is utilized for the production of isotopes, as a source of neutrons for various experiments and for the training of personnel for the nuclear power station in Krsko

  17. A study on TRIGA core reconfiguration with new irradiation channels

    Highlights: ► TRIGA reactor core has been studied to achieve enhanced irradiation facilities. ► Two neutronic performance parameters and three safety parameters are calculated. ► Results are compared with reference configuration with single irradiation channel. ► Simultaneous introduction of three irradiation channels inside the core is positive. - Abstract: This study is being carried on as a provision of achieving enhanced irradiation facilities in the TRIGA MARK II research reactor core. Two reconfigured cores, each one having three irradiation channels are being analyzed with the Monte Carlo code MVP and the nuclear data library JENDL-3.3. The existing core has only one irradiation channel at the center. The graphite dummies are rearranged to surround the new irradiation channels in the new configurations. The results for each reconfigured core are compared with the existing core as reference. From this study important information are obtained for enhanced as well as economic utilization of TRIGA core. The results show positively the possibility to introduce new irradiation channels without disturbing the core excess reactivity and neutron flux significantly as well as keeping the shutdown margin and peaking factor close to the reference.

  18. ENEA TRIGA RC -1 research reactor and trade project: An important contribution to the ADS road map

    TRIGA Mark II reactor of ENEA's Casaccia research Center (in Italy named RC-1) reached first criticality in 1960 and it is still running at 1 MW power level, mainly for short mean life time radioisotopes production (for medical purposes) and neutron radiography. Since 2001, plant personnel and other national/international scientist, were involved in the TRADE (TRiga Accelerator Driven Experiment) project. TRADE experiment, that consists in the coupling of an external proton accelerator to a target to be installed in the central channel of the TRIGA core scrammed to sub-criticality, was based on an original idea of Prof. Carlo Rubbia, presented at CEA in October 2000 and was aimed at a global demonstration of the ADS concept. The TRADE layout, the studies about Target, Target Cooling System, Shielding and other matters that were investigated will be described in order to evidence their impact on the Triga reactor and reactor activity. (author)

  19. A 2 MW, 170 GHz coaxial cavity gyrotron - experimental verification of the design of main components

    A 2 MW, CW, 170 GHz coaxial cavity gyrotron is under development in cooperation between European Research Institutions (FZK Karlsruhe, CRPP Lausanne, HUT Helsinki) and the European tube industry (TED, Velizy, France). The design of critical components has recently been examined experimentally at FZK Karlsruhe with a short pulse (∼ few ms) coaxial cavity gyrotron. This gyrotron uses the same cavity and the same quasioptical (q.o.) RF-output system as designed for the industrial prototype and a very similar electron gun

  20. 2 MW Active Bouncer Converter Design for Long Pulse Klystron Modulators

    Aguglia, D

    2012-01-01

    This paper presents some design issues of a 2 MW interleaved buck converter which is used as an active bouncer droop compensator for a 5.5MW long pulse klystron modulator. This novel design concept presents many challenges in terms of voltage ripple versus pulse rise-time. Issues related to the voltage ripple specification versus output filter design are discussed in detail. The design study is analyzed analytically, simulated numerically and is validated by experimental results obtained from a full power prototype.

  1. In-core fuel management amd attainable fuel burn-up in TRIGA

    The principles of in-core fuel management in research reactors, and especially in TRIGA, are discussed. Calculations made to determine the attainable fuel burn-up values of various fuel element types in the Otaniemi TRIGA Mark II reactor are described and the results obtained are given. Recommendations are given of how to perform the in-core fuel management to achieve good fuel utilization. The results obtained indicate that burn-up values of up to 5 and 2.5 MWd/element can be achieved for the 8 wt-% U Al clad and the 8.5 wt-% U SS clad elements, respectively. (author)

  2. Operation experience with the TRIGA Mainz and research activities at this station

    Trautmann, N. (Mainz Univ. (Germany). Institut fuer Kernchemie)

    1999-12-15

    The TRIGA Mark II reactor Mainz has been in operation for more than 33 years. So far no serious problems occurred and there was only a seven months shut-down period in 1995 in order to replace the heat exchanger and to install a new primary, secondary and purification circuit. The experimental programme at the TRIGA Mainz covers a wide range of applications in nuclear chemistry, nuclear physics, neutron activation analysis and isotope production. The experimental facilities are mainly used for neutron activation analysis, for the development of fast chemical separation procedures using short lived fission products and for the production of polarized neutrons. (orig.)

  3. Thermal hydraulic analysis of the IPR-R1 TRIGA reactor

    The subchannel approach, normally employed for the analysis of power reactor cores that work under forced convection, have been used for the thermal hydraulic evaluation of a TRIGA Mark I reactor, named IPR-R1, at 250 kW power level. This was accomplished by using the PANTERA-1P subchannel code, which has been conveniently adapted to the characteristics of natural convection of TRIGA reactors. The analysis of results indicates that the steady state operation of IPR-R1 at 250 kW do not imply risks to installations, workers and public. (author)

  4. Validation of the Monteburns code for criticality calculation of TRIGA reactors

    Dalle, Hugo Moura [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil); Jeraj, Robert [Jozef Stafan Institute, Ljubljana (Slovenia)

    2002-07-01

    Use of Monte Carlo methods in burnup calculations of nuclear fuel has become practical due to increased speed of computers. Monteburns is an automated computational tool that links the Monte Carlo code MCNP with the burnup and decay code ORIGEN2.1. This code system was used to simulate a criticality benchmark experiment with burned fuel on a TRIGA Mark II research reactor. Two core configurations were simulated and k{sub eff} values calculated. The comparison between the calculated and experimental values shows good agreement, which indicates that the MCNP/Monteburns/ORIGEN2.1 system gives reliable results for neutronic simulations of TRIGA reactors. (author)

  5. TRIGA forced shutdowns analysis

    The need for improving the operation leads us to use new methods and strategies. Probabilistic safety assessments and statistical analysis provide insights useful for our reactor operation. This paper is dedicated to analysis of the forced shutdowns during the first reactor operation period, between 1980 to 1989. A forced shutdown data base was designed using data on forced shutdowns collected from the reactor operation logbooks. In order to sort out the forced shutdowns the records have the following fields: - current number, date, equipment failed, failure type (M for mechanical, E for electrical, D for irradiation device, U for human factor failure; - scram mode, SE for external scram, failure of reactor cooling circuits and/or irradiation devices, SR for reactor scram, exceeding of reactor nuclear parameters, SB for reactor scram by control rod drop, SM for manual scram required by the abnormal reactor status; - scram cause, giving more information on the forced shutdown. This data base was processed using DBase III. The data processing techniques are presented. To sort out the data, one of the criteria was the number of scrams per year, failure type, scram mode, etc. There are presented yearly scrams, total operation time in hours, total unavailable time, median unavailable time period, reactor availability A. There are given the formulae used to calculate the reactor operational parameters. There are shown the scrams per year in the 1980 to 1989 period, the reactor operation time per year, the reactor shutdown time per year and the operating time versus down time per year. Total number of scrams in the covered period was 643 which caused a reactor down time of 4282.25 hours. In a table the scrams as sorted on the failure type is shown. Summarising, this study emphasized some problems and difficulties which occurred during the TRIGA reactor operation at Pitesti. One main difficulty in creating this data base was the unstandardized scram record mode. Some times

  6. TRIGA's and NDI

    Full text: The Sacramento Air Logistics Center at McClellan Air Force Base is planning the installation of advanced state-of-the-art nondestructive testing equipment. This equipment will allow maintenance specialists to detect corrosion at its earliest stages, before the corrosion affects the structural integrity of the aircraft. Present inspection by X-ray techniques cannot detect the early stages of corrosion, but neutron radiography can detect the presence of very small amounts of moisture that lead to corrosion in aluminum and degradation of bond in composite structures. The new inspection equipment will consist of three major items,.the Maneuverable X-Ray Radiography System (MXRS), the Maneuverable Neutron Radiography System (MNRS), and the Stationary Neutron Radiography System (SNRS). The foremost benefit of the MNRS and MXRS is the fact that the inspections will be performed on the entire aircraft. Presently, the aircraft is disassembled, then inspected and repaired. This involves a large amount of unnecessary work to remove panels that do not require repair. The MXRS and MNRS systems are quite similar. The building walls are designed to support the robot structure. Each system will consist of the runway rails installed on the wall ledges, a bridge beam spanning the bay, a carriage that traverses the inspection bay, a mast that moves the inspection device in the Z-axis, three rotational movements of a U-shaped yoke at the bottom of the mast. Each system is controlled from a dedicated control room on a mezzanine level. The MXRS source includes a microfocus X-Ray where as the MNRS source consists of 50mg of Californium-252. Both systems have state-of-the-art Real-Time Imaging and digital image processing of images. The third system is the Stationary Neutron Radiography System (SNRS). The SNRS consists of a small TRIGA-type research reactor, shielded radiography bays capable of inspecting aircraft panels, parts manipulation facilities, components preparation

  7. Return of spent TRIGA fuel

    Spent fuel from J. Stefan Institute TRIGA reactor was successfully shipped to the US in 1999. Totally 219 standard TRIGA fuel rods used in the reactor from 1966 to 1991 were shipped. Together with the experience interesting for other reactors preparing for shipment, the following aspects of the project are explained: training of all persons involved, organization (QA, responsibilities), pre-preparation of the fuel, characterization of the fuel elements (burn-up determination, inspection of physical integrity), technical preparation for the shipment, administrative preparation (environmental impact report, safety report, operating and emergency procedures, qualification of equipment, permit), loading of the shipment containers, transfer of the containers to the port, signing of the bill of lading and transfer of liability. The role of main parties involved (J. Stefan Institute, US-DOE, IAEA, NAC) is explained. According to the contract covering the first shipment, we intend to return also the remaining fuel elements after 2016. (author)

  8. Development of a 2 MW CW Waterload for Electron Cyclotron Heating Systems

    R. Lawrence,Ives; Maxwell Mizuhara; George Collins; Jeffrey Neilson; Philipp Borchard

    2012-11-09

    Calabazas Creek Research, Inc. developed a load capable of continuously dissipating 2 MW of RF power from gyrotrons. The input uses HE11 corrugated waveguide and a rotating launcher to uniformly disperse the power over the lossy surfaces in the load. This builds on experience with a previous load designed to dissipate 1 MW of continuous RF power. The 2 MW load uses more advanced RF dispersion to double the capability in the same size device as the 1 MW load. The new load reduces reflected power from the load to significantly less than 1 %. This eliminates requirements for a preload to capture reflected power. The program updated control electronics that provides all required interlocks for operation and measurement of peak and average power. The program developed two version of the load. The initial version used primarily anodized aluminum to reduce weight and cost. The second version used copper and stainless steel to meet specifications for the ITER reactor currently under construction in France. Tests of the new load at the Japanese Atomic Energy Agency confirmed operation of the load to a power level of 1 MW, which is the highest power currently available for testing the load. Additional tests will be performed at General Atomics in spring 2013. The U.S. ITER organization will test the copper/stainless steel version of the load in December 2012 or early in 2013. Both loads are currently being marketed worldwide.

  9. TRIGA reactor health physics considerations

    The factors influencing the complexity of a TRIGA health physics program are discussed in details in order to serve as a basis for later consideration of various specific aspects of a typical TRIGA health physics program. The health physics program must be able to provide adequate assistance, control, and safety for individuals ranging from the inexperienced student to the experienced postgraduate researcher. Some of the major aspects discussed are: effluent release and control; reactor area air monitoring; area monitoring; adjacent facilities monitoring; portable instrumentation, personnel monitoring. TRIGA reactors have not been associated with many significant occurrences in the area of health physics, although some operational occurrences have had health physics implications. One specific occurrence at OSU is described involving the detection of non-fission-product radioactive particulates by the continuous air monitor on the reactor top. The studies of this particular situation indicate that most of the particulate activity is coming from the rotating rack and exhausting to the reactor top through the rotating rack loading tube

  10. Power and neutron flux calculation for the PUSPATI TRIGA Reactor using MCNP

    The Malaysian 1 MW TRIGA MARK II research reactor at Malaysian Nuclear Agency is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes for their use in agriculture, industry, and medicine. This study deals with the calculation of neutron flux and power distribution in PUSPATI TRIGA REACTOR (RTP) 14th core configuration. The 3-D continuous energy Monte Carlo code MCNP was used to develop a versatile and accurate full model of the TRIGA core and fuels. The model represents in detailed all components of the core with literally no physical approximation. Continuous energy cross-section data from the more recent nuclear data as well as S (α, β) thermal neutron scattering functions distributed with the MCNP code were used. Results of calculations are analyzed and discussed. (author)

  11. Qualitative Analysis on Void Fraction of TRIGA 2000 Reactor in Bandung

    A qualitative analysis concerning the void fraction of TRIGA 2000 reactor has been done. That analysis is performed by studying the void phenomenon theoretically, followed by studying the cooling system performance, measuring the fuel element and cooling temperature, and visually observing the operation of reactor system. TRIGA 2000 reactor is a TRIGA Mark II reactor, which originally has 1000 kW thermal power, and then is upgraded up to 2000 kW. During reactor operation, voids are observed beginning at 1000 kW power and increased at higher power. The are several probability on where the voids come from. They might be caused by boiling process, water radiolysis, pump leakage, or cavitation. From the analysis performed, the voids might be caused by nucleate boiling, which do not affect the safety of reactor operation at certain margin. (author)

  12. Temperature distribution calculations in TRIGA fuel element after the pulse

    The computer program TEMPUL for calculating radial temperature distribution in a fuel element after the pulse operation is shortly described. It is based on one-dimensional diffusion equation for heat transfer in cylindrical geometry and implicit boundary condition at the element-coolant interface, defined by empirical boiling curve, which relates the heat flux from the rod and the difference between the fuel element surface temperature and water boiling point. As an example the results of such analysis of maximal allowed pulse at TRIGA Mark II reactor in Ljubljana are presented. (author)

  13. The evaluation of research reactor TRIGA MARK II safety

    In the paper the Probabilistic Safety Analysis (PSA) of a research reactor is described. Five different initiating events were selected and analyzed with the use of event trees. Seven reactor systems were modeled with fault trees. Three groups of radiation releases were introduced - Success, Reactor-Hall, Environment - and their frequencies were estimated. The importance factors of initiating events, human errors and basic events were calculated regarding the consequence groups. (author)

  14. Pre-Analysis of Triga Mark II Reactor Cooling System

    AKAY, Orhan Erdal

    2012-01-01

    In this study, work of the reactor cooling system is divided into two time zone. The second cooling circuit has been that the conditions required operating. Cooling system which is the center of the heat exchanger total heat transfer coefficient correlations were calculated using the theoretical. The design values were compared with results obtained by calculation.

  15. Proceedings of 1. world TRIGA users conference

    The conference was focused on various topics concerning TRIGA reactors-operation, repair and maintenance experience; core, internals and liners, I and C systems; data collection and processing upgrading and testing; Core Management and Fuel Elements Diagnostic; Computer Codes for Nuclear and Thermal-hydraulic analysis; research projects with TRIGA reactor etc

  16. Operation experience with the TRIGA Reactor Vienna

    Since the last European TRIGA Users Conference in Bucharest, Romania in September 1992 the TRIGA reactor Vienna operated without any major undesired shutdown. Some problems were centred around the new microprocessor controlled instrumentation installed in summer 1992. The fuel behaviour was excellent, no fuel failures were experienced. The experimental facilities were extensively used for students education and training

  17. TRIGA reactor owners' seminar. Papers and abstracts

    The TRIGA Reactor Owners' Conference was planned with the aim of bringing together a group of persons interested in the ownership and operation of TRIGA reactors in the hope that an interchange of viewpoints, information, and experience would prove of mutual benefit

  18. Physical influence of spherical packing rate on the 2 MW AHTR

    Background: With a constant fuel inventory, the pebble packing rate has an important influence on the physical property of AHTR. Purpose: This paper attempts to study the influence of the pebble packing on a 2 MW AHTR. Methods: We used Monte Carlo Code MCNP 5 to study the related parameters, such as Keff, neutron spectrum and neutron flux distribution. In the analysis, we changed the packing from 0.7405 to 0.5236. Results: Results show that the changes of the pebble packing could increase the Keff of the core, make the neutron spectrum harder, and make the neutron flux peak up in axial position. Conclusions: Results provide rational theory for the design of AHTR and the development of computation code. (authors)

  19. Status of the 2 MW, 170 GHz coaxial cavity gyrotron for ITER

    Full text: A 170 GHz coaxial cavity gyrotron with 2 MW output power in continuous wave (CW) operation is under development in cooperation between European research centres together with European industry. A first industrial prototype of such a gyrotron has already been fabricated and delivered to CRPP Lausanne, where a suitable test facility has been constructed. Due to a delay in fabrication the delivery of the gyrotron magnet is expected in May 2007. Thus experimental tests are expected for the second half of this year. In parallel to the industrial activities, experimental operation with a short pulse (∼ few ms) 170 GHz coaxial gyrotron ('pre-prototype') which uses the same main components as designed for the industrial tube has been continued. The mechanism of parasitic low frequency (LF) oscillations around 260 MHz has been identified. Based on this identification, small modifications of the geometry of the coaxial insert have been made. As a result the starting current for the LF oscillations has been increased by a factor of about 3 causing a strong reduction of the LF amplitude. Measurements with a prototype of a microwave load, which has been designed and fabricated for operation with the 2 MW prototype tube, have been performed. In addition to the distribution of the microwave power absorbed on the wall, the amount of power reflected back into the gyrotron has been measured and its influence on gyrotron performance has been investigated. The performance of the quasi optical (q.o.) RF output system presently installed in the industrial prototype tube is insufficient, mainly because of the low Gaussian content of the RF output beam. As a first step a new launcher with a different wall corrugation and a new adapted phase correcting mirror has been designed and fabricated. According to simulations an increase of the Gaussian content to about 87% is expected. This q.o. RF output system has been installed in the pre-prototype tube for performing hot

  20. Research work at the TRIGA Mainz reactor

    In the last two years the research activities at the TRIGA Mark II reactor in Mainz have mainly been concentrated on the investigation of short- lived nuclides of medium mass number produced by thermal-neutron induced fission of 235U and other fissile materials. For the identification of these nuclides and for detailed studies of their properties rapid chemical separation procedures in combination with high-resolution gamma-ray and neutron spectroscopy as well as mass-separated samples have been used. Fast, discontinuous separation techniques are illustrated by a procedure for technetium. Continuous separation methods from aqueous solutions and in the gas phase, accomplished by combining a gas jet recoil transport system with an on-line operating solvent extraction technique and a thermo- chromatographic method, are presented. The application of such procedures to decay scheme and delayed neutron studies is demonstrated by a few examples. The experimental set-up and the method for nuclear spin - and magnetic moment measurements on alkali isotopes far from the region of beta-stability applying the nuclear radiation detected optical pumping technique to mass- separated samples of neutron-rich alkali nuclides are briefly described. (author)