WorldWideScience

Sample records for 2d xy model

  1. Non-equilibrium critical vortex dynamics of disordered 2D XY-model

    Popov, Ivan S.; Prudnikov, Pavel V.; Prudnikov, Vladimir V.

    2016-02-01

    Vortex dynamics and clustering in non-equilibrium critical relaxation of disordered 2D XY-model are investigated for different initial states. Time dependencies of vortex concentration and clusters sizes are studied for different spin concentrations. The anomalous slow down of clustering in disordered system are explained by pinning of vortices on defects. The calculated temperature dependence of transverse stiffness allows to estimate critical temperature Tbkt and applicability of spin-wave approximation for disordered system.

  2. 2d Affine XY-Spin Model/4d Gauge Theory Duality and Deconfinement

    Anber, Mohamed M.; Poppitz, Erich; /Toronto U.; Unsal, Mithat; /SLAC /Stanford U., Phys. Dept. /San Francisco State U.

    2012-08-16

    We introduce a duality between two-dimensional XY-spin models with symmetry-breaking perturbations and certain four-dimensional SU(2) and SU(2) = Z{sub 2} gauge theories, compactified on a small spatial circle R{sup 1,2} x S{sup 1}, and considered at temperatures near the deconfinement transition. In a Euclidean set up, the theory is defined on R{sup 2} x T{sup 2}. Similarly, thermal gauge theories of higher rank are dual to new families of 'affine' XY-spin models with perturbations. For rank two, these are related to models used to describe the melting of a 2d crystal with a triangular lattice. The connection is made through a multi-component electric-magnetic Coulomb gas representation for both systems. Perturbations in the spin system map to topological defects in the gauge theory, such as monopole-instantons or magnetic bions, and the vortices in the spin system map to the electrically charged W-bosons in field theory (or vice versa, depending on the duality frame). The duality permits one to use the two-dimensional technology of spin systems to study the thermal deconfinement and discrete chiral transitions in four-dimensional SU(N{sub c}) gauge theories with n{sub f} {ge} 1 adjoint Weyl fermions.

  3. Signatures of the Berezinskii-Kosterlitz-Thouless transition on the zeros of the canonical partition function for the 2D XY-model

    Rocha, Julio; Mol, Lucas; Costa, Bismarck

    2015-03-01

    In this work we show that the canonical partition function zeros, the Fisher zeros, can be used to uniquely characterize a transition as being in the Berezinskii-Kosterlitz-Thouless (BKT) class of universality. By studying the zeros map for the 2D XY model we found that its internal border coalesces into the real positive axis in a finite region corresponding to temperatures smaller than the BKT transition temperature. This behavior is consistent with the predicted existence of a line of critical points below the transition temperature, allowing one to distinguish the BKT class of universality from other ones. This work was partially supported by CNPq and Fapemig, Brazilian Agencies.

  4. FEM-2D, 2-D MultiGroup Diffusion in X-Y Geometry

    1 - Nature of physical problem solved: FEM-2D solves the two-dimensional diffusion equation in x-y geometry. This is done by the finite elements method. 2 - Method of solution: FEM-2D uses triangular elements with first and second order Lagrange approximations. The systems equations are formulated in multigroup form and solved by Cholesky procedure which operates only on nonzero elements. Various acceleration techniques are available for the outer iteration. Fluxes along various lines and rates in arbitrary zones may be output. 3 - Restrictions on the complexity of the problem: The code uses variable dimensioning. Thus, the problem size is restricted by the largest array which usually is the systems matrix. Fluxes of all groups are kept in memory. This might become another restrictive data set for a large number of groups. The validity of the results is restricted by the approximations used. FEM-2D requires a finite element net which allows the approximation of fluxes by at most parabolas. The node distribution should be more dense in areas of heavy flux changes (near absorbers or the reflector)

  5. DNTM/R2D, 2-D Transport in X-Y Geometry

    1 - Description of program or function: DNTM/R2D solves the neutron transport equation in two-dimensional X-Y geometry by the discrete nodal transport method. Source and eigenvalue problems can be solved. As compared to the two-dimensional nodal transport code DNTM/2D, the following new improved features are included: - Anisotropic scattering is considered. The order of anisotropic scattering is from P0 to P3. - The cross section input format is the same as for ANISN. Multi- group cross section libraries such as DLC-37 and DLC-BUGLE-80 can be used. 2 - Method of solution: DNTM/R2D uses the discrete nodal transport method. Anisotropic scattering is treated using Legendre expansion. Order of interior flux approximation is 2. Plane leakage approximation of surface flux is used. 3 - Restrictions on the complexity of the problem: Maximum number of: anisotropic scattering order = 3; material composition = 20; energy groups = 2; angular quadrature = 8; zones = 30. When coarse-mesh re-balancing is used, the maximum number of coarse meshes is 12 in each direction. If the computer permits some arrays can be enlarged to reduce the above restrictions

  6. Magnetic-field-induced Heisenberg to XY crossover in a quasi-2D quantum antiferromagnet

    The magnetic-field-dependent ordering temperature of the quasi-2D quantum Heisenberg antiferromagnet (QHAF) Cu(pz)2(ClO4)2 was determined by calorimetric measurement in applied dc fields up to 33 tesla. The magnetic phase diagram shows a round maximum at 5.95 K and 17.5 T (at ≈ 1/3 of its saturation field), a 40 percent enhancement of the ordering temperature above the zero field value of 4.25 K. The enhancement and reentrance are consistent with predictions of a field-induced Heisenberg to XY crossover behavior for an ideal 2D QHAF system

  7. XY model in small-world networks

    Kim, Beom Jun; Hong, H.; Holme, Petter; Jeon, Gun Sang; Minnhagen, Petter; Choi, M. Y.

    2001-01-01

    The phase transition in the XY model on one-dimensional small-world networks is investigated by means of Monte-Carlo simulations. It is found that long-range order is present at finite temperatures, even for very small values of the rewiring probability, suggesting a finite-temperature transition for any nonzero rewiring probability. Nature of the phase transition is discussed in comparison with the globally-coupled XY model.

  8. XY model on a Sierpinski gasket

    Correlation functions and topological excitations of the XY model on a Sierpinski gasket are studied. The energy of a vortex is shown to be finite, so no Berezinskii-Kosterlitz-Thouless transition can be expected to take place. At any temperature the correlation function decays exponentially at large distances. A form of the XY model on a Sierpinski gasket is found that allows for exact renormalization. The results obtained can be applied to superconducting wire networks and tunnel-junction arrays

  9. 2D solar modeling

    Ventura, P; Li, L; Sofia, S; Basu, S; Demarque, P

    2009-01-01

    Understanding the reasons of the cyclic variation of the total solar irradiance is one of the most challenging targets of modern astrophysics. These studies prove to be essential also for a more climatologic issue, associated to the global warming. Any attempt to determine the solar components of this phenomenon must include the effects of the magnetic field, whose strength and shape in the solar interior are far from being completely known. Modelling the presence and the effects of a magnetic field requires a 2D approach, since the assumption of radial symmetry is too limiting for this topic. We present the structure of a 2D evolution code that was purposely designed for this scope; rotation, magnetic field and turbulence can be taken into account. Some preliminary results are presented and commented.

  10. Equivalence between XY and dimerized models

    Campos Venuti, Lorenzo; Roncaglia, Marco

    2010-06-01

    The spin-1/2 chain with XY anisotropic coupling in the plane and the XX isotropic dimerized chain are shown to be equivalent in the bulk. For finite systems, we prove that the equivalence is exact in given parity sectors, after taking care of the precise boundary conditions. The proof is given constructively by finding unitary transformations that map the models onto each other. Moreover, we considerably generalized our mapping and showed that even in the case of fully site-dependent couplings the XY chain can be mapped onto an XX model. This result has potential application in the study of disordered systems.

  11. Equivalence between XY and dimerized models

    The spin-1/2 chain with XY anisotropic coupling in the plane and the XX isotropic dimerized chain are shown to be equivalent in the bulk. For finite systems, we prove that the equivalence is exact in given parity sectors, after taking care of the precise boundary conditions. The proof is given constructively by finding unitary transformations that map the models onto each other. Moreover, we considerably generalized our mapping and showed that even in the case of fully site-dependent couplings the XY chain can be mapped onto an XX model. This result has potential application in the study of disordered systems.

  12. CHOLESK, Diffusion Calculation with 2-D Source in X-Y or R-Z Geometry

    1 - Description of problem or function: Solution of the diffusion equation with source in two-dimensional geometries x-y or r-z. 2 - Method of solution: The finite-element method of Ritz-Galerkin is applied

  13. Lattice distortion in disordered antiferromagnetic XY models

    Li Peng-Fei; Cao Hai-Jing

    2012-01-01

    The behavior of lattice distortion in spin 1/2 antiferromagnetic XY models with random magnetic modulation is investigated with the consideration of spin-phonon coupling in the adiabatic limit.It is found that lattice distortion relies on the strength of the random modulation.For strong or weak enough spin-phonon couplings,the average lattice distortion may decrease or increase as the random modulation is strengthened.This may be the result of competition between the random magnetic modulation and the spin-phonon coupling.

  14. HEMP, 2-D Elastic Plastic Flow in 2-D X-Y or Cylindrical Geometry by Lagrangian Method

    1 - Description of problem or function: The HEMP code solves the conservation equations of two-dimensional elastic-plastic flow, in plane x-y coordinates or in cylindrical symmetry around the x- axis. Provisions for calculation of fixed boundaries, free surfaces, pistons, and boundary slide planes have been included, along with other special conditions. 2 - Method of solution: The solution is by the method of finite differences and uses the Lagrangian formulation. The materials within a physical system are divided into quadrilaterals bounded by J and K grid lines. A decoupling of grid lines is allowed along K-lines, and voids may open and close between K-lines. 3 - Restrictions on the complexity of the problem: The maximum number of J's in any K-line is 101. A problem of up to about 10,000 zones may be run

  15. Simulating the classical XY model with a laser network

    Tamate, Shuhei; Marandi, Alireza; McMahon, Peter; Utsunomiya, Shoko

    2016-01-01

    Drawing fair samples from the Boltzmann distribution of a statistical model is a challenging task for modern digital computers. We propose a physical implementation of a Boltzmann sampler for the classical XY model by using a laser network. The XY spins are mapped onto the phases of multiple laser pulses in a fiber ring cavity and the steady-state distribution of phases naturally realizes the Boltzmann distribution of the corresponding XY model. We experimentally implement the laser network by using an actively mode-locked fiber laser with optical delay lines, and demonstrate Boltzmann sampling for a one-dimensional XY ring.

  16. Activated sludge model No. 2d, ASM2d

    Henze, M.

    1999-01-01

    The Activated Sludge Model No. 2d (ASM2d) presents a model for biological phosphorus removal with simultaneous nitrification-denitrification in activated sludge systems. ASM2d is based on ASM2 and is expanded to include the denitrifying activity of the phosphorus accumulating organisms (PAOs...

  17. Multipartite geometric entanglement in finite size XY model

    We investigate the behavior of the multipartite entanglement in the finite size XY model by means of the hierarchical geometric measure of entanglement. By selecting specific components of the hierarchy, we study both global entanglement and genuinely multipartite entanglement.

  18. One-dimensional XY model: ergodic properties and hydrodynamic limit

    The authors prove theorems on convergence to a stationary state in the source of time for the one-dimensional XY model and its generalizations. The key point is the well-known Jordan-Wigner transformation, which maps the XY dynamics onto a group of Bogoliubov transformations on the CAR C*-algebra over Z1. The role of stationary states for Bogoliubov transformations is played by quasifree states and for the XY model by their inverse images with respect to the Jordan-Wigner transformation. The hydrodynamic limit for the one-dimensional XY model is also considered. By using the Jordan-Wigner transformation one reduces the problem to that of constructing the hydrodynamic limit for the group of Bogoliubov transformations. As a result, they obtain an independent motion of normal modes, which is described by a hyperbolic linear differential equation of second order. For the XX model this equation reduces to a first-order transfer equation

  19. Multipartite geometric entanglement in finite size XY model

    Blasone, Massimo; Dell' Anno, Fabio; De Siena, Silvio; Giampaolo, Salvatore Marco; Illuminati, Fabrizio, E-mail: blasone@sa.infn.i [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)

    2009-06-01

    We investigate the behavior of the multipartite entanglement in the finite size XY model by means of the hierarchical geometric measure of entanglement. By selecting specific components of the hierarchy, we study both global entanglement and genuinely multipartite entanglement.

  20. Vortex dynamics for two-dimensional XY models

    Kim, Beom Jun; Minnhagen, Petter; Olsson, Peter

    1998-01-01

    Two-dimensional XY models with resistively shunted junction (RSJ) dynamics and time dependent Ginzburg-Landau (TDGL) dynamics are simulated and it is verified that the vortex response is well described by the Minnhagen phenomenology for both types of dynamics. Evidence is presented supporting that the dynamical critical exponent $z$ in the low-temperature phase is given by the scaling prediction (expressed in terms of the Coulomb gas temperature $T^{CG}$ and the vortex renormalization given b...

  1. Matrix models of 2d gravity

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date

  2. SCORE-4, 2-D Removal Diffusion in X-Y or R-Z Geometry for Rectangular Shields

    1 - Nature of physical problem solved: The neutron flux is calculated for a shield made up of rectangular regions. The geometry is either x-y or r-z. 2 - Method of solution: Removal fluxes and sources throughout the shield regions are calculated from a given reactor core power distribution using a point kernel method. The diffusion neutron fluxes are obtained from the removal source distribution using an iterative Method of solution. 3 - Restrictions on the complexity of the problem: The amount of fast core required for the program depends on the size of shield being calculated. For example, a 100 by 100 mesh shielding calculation would require approximately 300 k bytes. Larger problems could be solved by increasing the fast storage requirements

  3. Matrix models and 2-D gravity

    In these lectures, I shall focus on the matrix formulation of 2-d gravity. In the first one, I shall discuss the main results of the continuum formulation of 2-d gravity, starting from the first renormalization group calculations which led to the concept of the conformal anomaly, going through the Polyakov bosonic string and the Liouville action, up to the recent results on the scaling properties of conformal field theories coupled to 2-d gravity. In the second lecture, I shall discuss the discrete formulation of 2-d gravity in term of random lattices, and the mapping onto random matrix models. The occurrence of critical points in the planar limit and the scaling limit at those critical points will be described, as well as the identification of these scaling limits with continuum 2-d gravity coupled to some matter field theory. In the third lecture, the double scaling limit in the one matrix model, and its connection with continuum non perturbative 2-d gravity, will be presented. The connection with the KdV hierarchy and the general form of the string equation will be discuted. In the fourth lecture, I shall discuss the non-perturbative effects present in the non perturbative solutions, in the case of pure gravity. The Schwinger-Dyson equations for pure gravity in the double scaling limit are described and their compatibility with the solutions of the string equation for pure gravity is shown to be somewhat problematic

  4. Anomalous elasticity in a disordered layered XY model

    We investigate the effects of layered quenched disorder on the behavior of planar magnets, superfluids and superconductors by performing large-scale Monte-Carlo simulations of a three-dimensional randomly layered XY model. Our data provide numerical evidence for the recently predicted anomalously elastic (sliding) intermediate phase between the conventional high-temperature and low-temperature phases. In this intermediate phase, the spin-wave stiffness perpendicular to the layers vanishes in the thermodynamic limit while the stiffness parallel to the layers as well as the spontaneous magnetization are nonzero. In addition, the susceptibility displays unconventional finite-size scaling properties. We compare our Monte-Carlo results with the theoretical predictions, and we discuss possible experiments in ultracold atomic gases, layered superconductors and in nanostructures.

  5. Port Adriano, 2D-Model tests

    Burcharth, Hans F.; Meinert, Palle; Andersen, Thomas Lykke

    This report present the results of 2D physical model tests (length scale 1:50) carried out in a waveflume at Dept. of Civil Engineering, Aalborg University (AAU). The objective of the tests was: To identify cross section design which restrict the overtopping to acceptable levels and to record the...

  6. Horns Rev II, 2-D Model Tests

    Andersen, Thomas Lykke; Frigaard, Peter

    This report present the results of 2D physical model tests carried out in the shallow wave flume at Dept. of Civil Engineering, Aalborg University (AAU), on behalf of Energy E2 A/S part of DONG Energy A/S, Denmark. The objective of the tests was: to investigate the combined influence of the pile...

  7. Phase transitions in a frustrated XY model with zig-zag couplings

    We study a new generalized version of the square-lattice frustrated XY model where unequal ferromagnetic and antiferromagnetic couplings are arranged in a zig-zag pattern. The ratio between the couplings ρ can be used to tune the system, continuously, from the isotropic square-lattice to the triangular-lattice frustrated XY model. The model can be physically realized as a Josephson-junction array with two different couplings, in a magnetic field corresponding to half-flux quanta per plaquette. Mean-field approximation, Ginzburg-Landau expansion and finite-size scaling of Monte Carlo simulations are used to study the phase diagram and critical behaviour. Depending on the value of ρ, two separate transitions or a transition line in the universality class of the XY-Ising model, with combined Z2 and U(1) symmetries, takes place. In particular, the phase transitions of the standard square-lattice and triangular-lattice frustrated XY models correspond to two different cuts through the same transition line. Estimates of the chiral (Z2) critical exponents on this transition line deviate significantly from the pure Ising values, consistent with that along the critical line of the XY-Ising model. This suggest that a frustrated XY model or Josephson-junction array with a zig-zag coupling modulation can provide a physical realization of the XY-Ising model critical line. (author). 32 refs, 9 figs

  8. The isotropic XY model on the inhomogeneous periodic chain

    The static and dynamic properties of the isotropic XY-model (s=12) on the inhomogeneous periodic chain, composed of N segments with n different exchange interactions and magnetic moments, in a transverse field h, are obtained exactly at arbitrary temperatures. The properties are determined by introducing the generalized Jordan-Wigner transformation and by reducing the problem to a diagonalization of a finite matrix of nth order. The diagonalization procedure is discussed in detail and the critical behaviour induced by the transverse field, at T=0, is presented. The quantum transitions are determined by analyzing the behaviour of the induced magnetization, defined as (1/n)-bar m=1nμmj,mz> where μm is the magnetic moment at site m within the segment j, as a function of the field, and the critical fields determined exactly. The dynamic correlations, j,mz(t)Sj',m'z(0)>, and the dynamic susceptibility χqzz(ω) are also obtained at arbitrary temperatures. Explicit results are presented in the limit T=0, where the critical behaviour occurs, for the static susceptibility χqzz(0) as a function of the transverse field h, and for the frequency dependency of dynamic susceptibility χqzz(ω). Also in this limit, the transverse time-correlation j,mx(t)Sj',m'x(0)> and the dynamic and isothermal susceptibilities, χqxx(ω) and χTxx, are obtained for the transverse field greater or equal than the saturation field

  9. Static and dynamical quantum correlations in phases of an alternating field XY model

    Chanda, Titas; Das, Tamoghna; Sadhukhan, Debasis; Pal, Amit Kumar; De, Aditi Sen; Sen, Ujjwal

    2016-01-01

    We investigate the static and dynamical patterns of entanglement in an anisotropic XY model with an alternating transverse magnetic field, which is equivalent to a two-component one-dimensional Fermi gas on a lattice, a system realizable with current technology. Apart from the antiferromagnetic and paramagnetic phases, the model possesses a dimer phase which is not present in the transverse XY model. At zero temperature, we find that the first derivative of bipartite entanglement can detect a...

  10. Effects of Staggered Magnetic Field on Entanglement in the Anisotropic XY Model

    SUN Zhe; WANG Xiao-Guang

    2006-01-01

    We investigate effects of staggered magnetic field on thermal entanglement in the anisotropic XY model.The analytic results of entanglement for the two-site cases are obtained. For the general case of even sites, we show that when the anisotropic parameter is zero, the entanglement in the XY model with a staggered magnetic field is the same as that with a uniform magnetic field.

  11. 2-D Model Test of Dolosse Breakwater

    Burcharth, Hans F.; Liu, Zhou

    1994-01-01

    The rational design diagram for Dolos armour should incorporate both the hydraulic stability and the structural integrity. The previous tests performed by Aalborg University (AU) made available such design diagram for the trunk of Dolos breakwater without superstructures (Burcharth et al. 1992). To...... extend the design diagram to cover Dolos breakwaters with superstructure, 2-D model tests of Dolos breakwater with wave wall is included in the project Rubble Mound Breakwater Failure Modes sponsored by the Directorate General XII of the Commission of the European Communities under Contract MAS-CT92......-0042. Furthermore, Task IA will give the design diagram for Tetrapod breakwaters without a superstructure. The more complete research results on Dolosse can certainly give some insight into the behaviour of Tetrapods armour layer of the breakwaters with superstructure. The main part of the experiment was on the...

  12. Surface modelling for 2D imagery

    Lieng, Henrik

    2014-01-01

    Vector graphics provides powerful tools for drawing scalable 2D imagery. With the rise of mobile computers, of different types of displays and image resolutions, vector graphics is receiving an increasing amount of attention. However, vector graphics is not the leading framework for creating and manipulating 2D imagery. The reason for this reluctance of employing vector graphical frameworks is that it is difficult to handle complex behaviour of colour across the 2D domain. ...

  13. Crossover from three- to two-dimensional behavior of the vortex energies in layered XY models for high-Tc superconductors

    We use Monte Carlo simulations of a layered XY model to study phase fluctuations in high-Tc superconductors. A vortex-antivortex interaction dominated by a term linear in the vortex separation is found in the low-temperature regime. This is in agreement with a zero-temperature variational calculation. At temperature just above the two-dimensional (2D) vortex-unbinding temperature, the linear term vanishes and an ordinary 2D vortex behavior is found. This explains the finding that high-Tc superconductors show 2D properties in the vortex fluctuations responsible for the resistivity transition close to the critical temperature

  14. Crossover from three - to two-dimensional behavior of the vortex energies in layered XY-models for high Tc superconductors

    We use Monte Carlo simulations of a layered XY-model to study the phase fluctuations in high Tc superconductors. A vortex-antivortex interaction dominated by a term linear in the vortex separation is found in the low temperature regime. This is in agreement with a zero temperature variational calculation. At temperature just above the 2D vortex unbinding temperature the linear term vanishes and an ordinary 2D vortex behaviour is found. This explains the finding that the High Tc superconductors show 2D properties in the vortex fluctuations responsible for the resistivity transition close to the critical temperature. (orig.)

  15. Crossover from three- to two-dimensional behavior of the vortex energies in layered XY-models for high Tc superconductors

    We use Monte Carlo simulations of a layered XY-model to study the phase fluctuations in high Tc superconductors. A vortex-antivortex interaction dominated by a term linear in the vortex separation is found in the low temperature region. This is in agreement with a zero temperature variational calculation. At temperature just above the 2D vortex unbinding temperature the linear term vanishes and an ordinary 2D vortex behaviour is found. This explains the finding that the High Tc superconductors show 2D properties in the vortex fluctuations responsible for the resistivity transition close to the critical temperature. (orig.)

  16. Coulomb-gas representation of the two-dimensional XY model on a torus

    Superconducting networks and superfluid films in two dimensions are often described by a theoretical model in which the unique microscopic variables are phases. Among these models the XY model with Villain's interaction potential can be mapped exactly onto a lattice Coulomb gas. This is well known, but several questions still have no clear answers: First, what is the meaning of the charge of the Coulomb gas in terms of the original variables of the XY model? Second, how can the helicity modulus be expressed exactly in the Coulomb gas representation on a finite torus? In this paper we answer these questions. The mapping onto a lattice Coulomb gas is done in a way that differs from the usual one. This mapping is applied to a phase model whose partition function has an identical mathematical structure as the one of the XY model with Villain's interaction. For this phase model, contrary to the XY model, the charges of the Coulomb gas describe indeed exactly the topological charges as we can define them in terms of the phase variables. However, this Coulomb gas contains an additional polarization energy and two additional fictitious variables accounting for the specific topological character of the torus. The helicity modulus is exactly the inverse of a dielectric constant which can be defined as the linear response to an external uniform electric field, even on a torus. The meaning of the Coulomb-gas representation is also discussed in terms of the original variables of the XY model

  17. Topological charge order and binding in a frustrated XY model and related systems

    We prove the existence of a finite temperature Z2 phase transition for the topological charge ordering within the fully frustrated XY model. Our method enables a proof of the topological charge confinement within the conventional XY models from a rather general vista. One of the complications that we face is the non-exact equivalence of the continuous (angular) XY model and its discrete topological charge dual. In reality, the energy spectra of the various topological sectors are highly nested, much unlike that suggested by the discrete dual models. We surmount these difficulties by exploiting the reflection positivity symmetry that this periodic flux phase model possesses. The techniques introduced here may prove binding of topological charges in numerous models and might be applied to examine transitions associated with various topological defects, e.g., the confinement of disclinations in the isotropic to nematic transition. (paper)

  18. VARI-QUIR-3, 2-D Multigroup Steady-State Neutron Diffusion in X-Y R-Z or R-Theta Geometry

    1 - Nature of physical problem solved: The steady-state, multigroup, two-dimensional neutron diffusion equations are solved in x-y, r-z, and r-theta geometry. 2 - Method of solution: A Gauss-Seidel type of solution with inner and outer iterations is used. The source is held constant during the inner iterations

  19. The SU(3)/Z_3 QCD(adj) deconfinement transition via the gauge theory/"affine" XY-model duality

    Anber, Mohamed M; Poppitz, Erich

    2012-01-01

    Earlier, two of us and M. Unsal [arXiv:1112.6389] showed that some 4d gauge theories, compactified on a small spatial circle of size L and considered at temperatures 1/beta near deconfinement, are dual to 2d "affine" XY-spin models. We use the duality to study deconfinement in SU(3)/Z_3 theories with n_f>1 massless adjoint Weyl fermions, QCD(adj) on R^2 x S^1_beta x S^1_L. The"affine" XY-model describes two "spins" - compact scalars taking values in the SU(3) root lattice, with nearest-neighbor interactions and subject to an "external field" preserving the topological Z_3^t and a discrete Z_3^chi subgroup of the chiral symmetry of the 4d gauge theory. The equivalent Coulomb gas representation of the theory exhibits electric-magnetic duality, which is also a high-/low-temperature duality. A renormalization group analysis suggests - but is not convincing, due to the onset of strong coupling - that the self-dual point is a fixed point, implying a continuous deconfinement transition. Here, we study the nature of ...

  20. Global regularity for the 2D Oldroyd-B model in the corotational case

    Ye, Zhuan; Xu, Xiaojing

    2016-09-01

    This paper is dedicated to the Oldroyd-B model with fractional dissipation $(-\\Delta)^{\\alpha}\\tau$ for any $\\alpha>0$. We establish the global smooth solutions to the Oldroyd-B model in the corotational case with arbitrarily small fractional powers of the Laplacian in two spatial dimensions. The methods described here are quite different from the tedious iterative approach used in recent paper \\cite{XY}. Moreover, in the Appendix we provide some a priori estimates to the Oldroyd-B model in the critical case which may be useful and of interest for future improvement. Finally, the global regularity to to the Oldroyd-B model in the corotational case with $-\\Delta u$ replaced by $(-\\Delta)^{\\gamma}u$ for $\\gamma>1$ are also collected in the Appendix. Therefore our result is more closer to the resolution of the well-known global regularity issue on the critical 2D Oldroyd-B model.

  1. Symmetries and solvable models for evaporating 2D black holes

    Cruz Muñoz, José Luis; Navarro-Salas, José; Navarro Navarro, Miguel; Talavera, C. F.

    1997-01-01

    We study the evaporation process of a 2D black hole in thermal equilibrium when the ingoing radiation is suddenly switched off. We also introduce global symmetries of generic 2D dilaton gravity models which generalize the extra symmetry of the CGHS model. © Elsevier Science B.V

  2. Maximizing entropy of image models for 2-D constrained coding

    Forchhammer, Søren; Danieli, Matteo; Burini, Nino; Zamarin, Marco; Ukhanova, Ann

    2010-01-01

    This paper considers estimating and maximizing the entropy of two-dimensional (2-D) fields with application to 2-D constrained coding. We consider Markov random fields (MRF), which have a non-causal description, and the special case of Pickard random fields (PRF). The PRF are 2-D causal finite context models, which define stationary probability distributions on finite rectangles and thus allow for calculation of the entropy. We consider two binary constraints and revisit the hard square const...

  3. Thermal excitations of frustated XY spins in two dimensions

    Benakli, M.; Zheng, H.; M. Gabay

    1996-01-01

    We present a new variational approach to the study of phase transitions in frustrated 2D XY models. In the spirit of Villain's approach for the ferromagnetic case we divide thermal excitations into a low temperature long wavelength part (LW) and a high temperature short wavelength part (SW). In the present work we mainly deal with LW excitations and we explicitly consider the cases of the fully frustrated triangular (FFTXY) and square ( FFSQXY) XY models. The novel aspect of our method is tha...

  4. Critical properties of the classical Heisenberg and XY models : A mean field renormalization group study

    A. Sadeghi

    2007-03-01

    Full Text Available  Using both mean field renormalization group (MFRG and Surface-Bulk MFRG (SBMFRG, we study the critical behavior of the classical Heisenberg and XY models on a simple cubic lattice. Critical temperatures as well as critical exponents, characteristic the universality classes of these two models were calculated, analytically for1, 2, 3 and 4 spin clusters. The results are in good agreement with higher accurate methods such as Monte Carlo and High- temperature series.

  5. Anomalous behavior of the energy gap in the one-dimensional quantum XY model.

    Okuyama, Manaka; Yamanaka, Yuuki; Nishimori, Hidetoshi; Rams, Marek M

    2015-11-01

    We reexamine the well-studied one-dimensional spin-1/2 XY model to reveal its nontrivial energy spectrum, in particular the energy gap between the ground state and the first excited state. In the case of the isotropic XY model, the XX model, the gap behaves very irregularly as a function of the system size at a second order transition point. This is in stark contrast to the usual power-law decay of the gap and is reminiscent of the similar behavior at the first order phase transition in the infinite-range quantum XY model. The gap also shows nontrivial oscillatory behavior for the phase transitions in the anisotropic model in the incommensurate phase. We observe a close relation between this anomalous behavior of the gap and the correlation functions. These results, those for the isotropic case in particular, are important from the viewpoint of quantum annealing where the efficiency of computation is strongly affected by the size dependence of the energy gap. PMID:26651656

  6. Kalman Filter for Generalized 2-D Roesser Models

    SHENG Mei; ZOU Yun

    2007-01-01

    The design problem of the state filter for the generalized stochastic 2-D Roesser models, which appears when both the state and measurement are simultaneously subjected to the interference from white noise, is discussed. The wellknown Kalman filter design is extended to the generalized 2-D Roesser models. Based on the method of "scanning line by line", the filtering problem of generalized 2-D Roesser models with mode-energy reconstruction is solved. The formula of the optimal filtering, which minimizes the variance of the estimation error of the state vectors, is derived. The validity of the designed filter is verified by the calculation steps and the examples are introduced.

  7. Collective modes in quantum lattice or three-dimensional XY model, 2

    An external field is applied to the XY model which was studied in a previous paper. With the help of Mori's memory function formalism, two types of collective modes are obtained. One of those, which was previously pointed out to correspond to the first sound in superfluid helium, survives at the critical temperature T sub(c). The other is a new mode, which disappears as a result of symmetry restored above T sub(c). This mode comes about owing to the coupling between the Goldstone mode and the energy fluctuation due to an external field, and is regarded to correspond to the second sound in superfluid helium. The linearized two-fluid hydrodynamic equations for superfluid helium are obtained in the context of the XY model, in which the detailed correspondence to the superfluid helium is clarified. (author)

  8. Thermodynamics of the two-dimensional XY model from functional renormalization

    Jakubczyk, Pawel

    2016-01-01

    We solve the nonperturbative renormalization-group flow equations for the two-dimensional XY model at the truncation level of the (complete) second-order derivative expansion. We compute the thermodynamic properties in the high-temperature phase and compare the non-universal features specific to the XY model with results from Monte Carlo simulations. In particular, we study the position and magnitude of the specific heat peak as a function of temperature. The obtained results compare well with Monte Carlo simulations. We additionally gauge the accuracy of simplified nonperturbative renormalization-group treatments relying on $\\phi^4$-type truncations. Our computation indicates that such an approximation is insufficient in the high-$T$ phase and a correct analysis of the specific heat profile requires account of an infinite number of interaction vertices.

  9. Susceptibilities of the S = 1/2 XY model on the square lattice at T = 0

    For the S = 1/2 XY model at T = 0 four susceptibilities have been calculated exactly on a sequence of finite square lattices and extrapolated to the infinite square lattice. For the ferromagnet chisub(zz) = 0 while chisub(xx) approx. Nsup(2.9); for the antiferromagnet Jchisub(xx)/N(gμsub(B))2 = 0.025 +- 0.002 and Jchisub(zz)/N(gμsub(B))2 = 0.13 +- 0.03. (orig.)

  10. Monte Carlo simulation of the three-dimensional XY model with bilinear-biquadratic exchange interaction

    Nagata, H; Žukovič, M.; Idogaki, T.

    2013-01-01

    The three-dimensional XY model with bilinear-biquadratic exchange interactions $J$ and $J'$, respectively, has been studied by Monte Carlo simulations. From the detailed analysis of the thermal variation of various physical quantities, as well as the order parameter and energy histogram analysis, the phase diagram including two different ordered phases has been determined. There is a single phase boundary from a paramagnetic to a dipole-quadrupole ordered phase, which is of second order in a ...

  11. Critical properties of XY model on two-layer Villain-ferromagnetic lattice

    Wang Yi; R. Quartu; Liu Xiao-Yan; Han Ru-Qi; Horiguchi Tsuyoshi

    2004-01-01

    We investigate phase transitions of the XY model on a two-layer square lattice which consists of a Villain plane(J) and a ferromagnetic plane (I), using Monte Carlo simulations and a histogram method. Depending on the values of interaction parameters (I, J), the system presents three phases: namely, a Kosterlitz-Thouless (KT) phase in which the two planes are critical for I predominant over J, a chiral phase in which the two planes have a chiral order for J predominant over I and a new phase in which only the Villain plane has a chiral order and the ferromagnetic plane is paramagnetic with a small value of chirality. We clarify the nature of phase transitions by using a finite size scaling method. We find three different kinds of transitions according to the values of (I, J): the KT transition, the Ising transition and an XY-Ising transition with v = 0.849(3). It turns out that the Ising or XY-Ising transition is associated with the disappearance of the chiral order in the Villain plane.

  12. Technical Review of the UNET2D Hydraulic Model

    Perkins, William A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richmond, Marshall C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2009-05-18

    The Kansas City District of the US Army Corps of Engineers is engaged in a broad range of river management projects that require knowledge of spatially-varied hydraulic conditions such as velocities and water surface elevations. This information is needed to design new structures, improve existing operations, and assess aquatic habitat. Two-dimensional (2D) depth-averaged numerical hydraulic models are a common tool that can be used to provide velocity and depth information. Kansas City District is currently using a specific 2D model, UNET2D, that has been developed to meet the needs of their river engineering applications. This report documents a tech- nical review of UNET2D.

  13. QSAR Models for P-450 (2D6) Substrate Activity

    Ringsted, Tine; Nikolov, Nikolai Georgiev; Jensen, Gunde Egeskov;

    2009-01-01

    activity relationship (QSAR) modelling systems. They cross validated (leave-groups-out) with concordances of 71%, 81% and 82%, respectively. Discrete organic European Inventory of Existing Commercial Chemical Substances (EINECS) chemicals were screened to predict an approximate percentage of CYP 2D6...... substrates. These chemicals are potentially present in the environment. The biological importance of the CYP 2D6 and the use of the software mentioned above were discussed....

  14. Markovian evolution of classical and quantum correlations in transverse-field XY model

    Pal, A. K.; Bose, I.

    2012-08-01

    The transverse-field XY model in one dimension is a well-known spin model for which the ground state properties and excitation spectrum are known exactly. The model has an interesting phase diagram describing quantum phase transitions (QPTs) belonging to two different universality classes. These are the transverse-field Ising model and the XX model universality classes with both the models being special cases of the transverse-field XY model. In recent years, quantities related to quantum information theoretic measures like entanglement, quantum discord (QD) and fidelity have been shown to provide signatures of QPTs. Another interesting issue is that of decoherence to which a quantum system is subjected due to its interaction, represented by a quantum channel, with an environment. In this paper, we determine the dynamics of different types of correlations present in a quantum system, namely, the mutual information I( ρ AB ), the classical correlations C( ρ AB ) and the quantum correlations Q( ρ AB ), as measured by the quantum discord, in a two-qubit state. The density matrix of this state is given by the nearest-neighbour reduced density matrix obtained from the ground state of the transverse-field XY model in 1d. We assume Markovian dynamics for the time-evolution due to system-environment interactions. The quantum channels considered include the bit-flip, bit-phase-flip and phase-flip channels. Two different types of dynamics are identified for the channels in one of which the quantum correlations are greater in magnitude than the classical correlations in a finite time interval. The origins of the different types of dynamics are further explained. For the different channels, appropriate quantities associated with the dynamics of the correlations are identified which provide signatures of QPTs. We also report results for further-neighbour two-qubit states and finite temperatures.

  15. Dynamical phase transitions and Loschmidt echo in the infinite-range XY model.

    Žunkovič, Bojan; Silva, Alessandro; Fabrizio, Michele

    2016-06-13

    We compare two different notions of dynamical phase transitions in closed quantum systems. The first is identified through the time-averaged value of the equilibrium-order parameter, whereas the second corresponds to non-analyticities in the time behaviour of the Loschmidt echo. By exactly solving the dynamics of the infinite-range XY model, we show that in this model non-analyticities of the Loschmidt echo are not connected to standard dynamical phase transitions and are not robust against quantum fluctuations. Furthermore, we show that the existence of either of the two dynamical transitions is not necessarily connected to the equilibrium quantum phase transition. PMID:27140975

  16. Markovian evolution of classical and quantum correlations in transverse-field XY model

    Pal, Amit Kumar

    2011-01-01

    The transverse-field XY model in one dimension is a well-known spin model for which the ground state properties and excitation spectrum are known exactly. The model has an interesting phase diagram describing quantum phase transitions (QPTs) belonging to two different universality classes. These are the transverse-field Ising model and the XX model universality classes with both the models being special cases of the transverse-field XY model. In recent years, quantities related to quantum information theoretic measures like entanglement, quantum discord (QD) and fidelity have been shown to provide signatures of QPTs. Another interesting issue is that of decoherence to which a quantum system is subjected due to its interaction, represented by a quantum channel, with an environment. In this paper, we determine the dynamics of different types of correlations present in a quantum system, namely, the mutual information $I(\\rho_{AB})$, the classical correlations $C(\\rho_{AB})$ and the quantum correlations $Q(\\rho_{...

  17. A VARIATIONAL MODEL FOR 2-D MICROPOLAR BLOOD FLOW

    He Ji-huan

    2003-01-01

    The micropolar fluid model is an essential generalization of the well-established Navier-Stokes model in the sense that it takes into account the microstructure of the fluid.This paper is devolted to establishing a variational principle for 2-D incompressible micropolar blood flow.

  18. Dynamical study of 2D and 3D barred galaxy models

    Manos, T

    2008-01-01

    We study the dynamics of 2D and 3D barred galaxy analytical models, focusing on the distinction between regular and chaotic orbits with the help of the Smaller ALigment Index (SALI), a very powerful tool for this kind of problems. We present briefly the method and we calculate the fraction of chaotic and regular orbits in several cases. In the 2D model, taking initial conditions on a Poincar\\'{e} $(y,p_y)$ surface of section, we determine the fraction of regular and chaotic orbits. In the 3D model, choosing initial conditions on a cartesian grid in a region of the $(x, z, p_y)$ space, which in coordinate space covers the inner disc, we find how the fraction of regular orbits changes as a function of the Jacobi constant. Finally, we outline that regions near the $(x,y)$ plane are populated mainly by regular orbits. The same is true for regions that lie either near to the galactic center, or at larger relatively distances from it.

  19. Transverse susceptibility of the 1D isotropic XY-model at zero temperature

    An exact expression is obtained for the dynamic transverse susceptibility Xxx (w,i,j) of the one-dimensional isotropic XY-model both on an open and on a closed chain with arbitrary number of sites at zero temperature, when the transverse field is greater than the absolute value of the exchange constant. The dynamic transverse wave-vector-dependent susceptibility for the closed infinite chain is also determined, and it is shown that in all cases the isothermal susceptibility is identical to the static susceptibility. (Author)

  20. DEVELOPMENT OF 2D HUMAN BODY MODELING USING THINNING ALGORITHM

    K. Srinivasan

    2010-11-01

    Full Text Available Monitoring the behavior and activities of people in Video surveillance has gained more applications in Computer vision. This paper proposes a new approach to model the human body in 2D view for the activity analysis using Thinning algorithm. The first step of this work is Background subtraction which is achieved by the frame differencing algorithm. Thinning algorithm has been used to find the skeleton of the human body. After thinning, the thirteen feature points like terminating points, intersecting points, shoulder, elbow, and knee points have been extracted. Here, this research work attempts to represent the body model in three different ways such as Stick figure model, Patch model and Rectangle body model. The activities of humans have been analyzed with the help of 2D model for the pre-defined poses from the monocular video data. Finally, the time consumption and efficiency of our proposed algorithm have been evaluated.

  1. Lattice simulation of 2d Gross-Neveu-type models

    Full text: We discuss a Monte Carlo simulation of 2d Gross-Neveu-type models on the lattice. The four-Fermi interaction is written as a Gaussian integral with an auxiliary field and the fermion determinant is included by reweighting. We present results for bulk quantities and correlators and compare them to a simulation using a fermion-loop representation. (author)

  2. 2D Models for Dust-driven AGB Star Winds

    Woitke, P

    2006-01-01

    New axisymmetric (2D) models for dust-driven winds of C-stars are presented which include hydrodynamics with radiation pressure on dust, equilibrium chemistry and time-dependent dust formation with coupled grey Monte Carlo radiative transfer. Considering the most simple case without stellar pulsation (hydrostatic inner boundary condition) these models reveal a more complex picture of the dust formation and wind acceleration as compared to earlier published spherically symmetric (1D) models. The so-called exterior $\\kappa$-mechanism causes radial oscillations with short phases of active dust formation between longer phases without appreciable dust formation, just like in the 1D models. However, in 2D geometry, the oscillations can be out-of-phase at different places above the stellar atmosphere which result in the formation of dust arcs or smaller caps that only occupy a certain fraction of the total solid angle. These dust structures are accelerated outward by radiation pressure, expanding radially and tangen...

  3. Modeling 2D and 3D Horizontal Wells Using CVFA

    Chen, Zhangxin; Huan, Guanren; Li, Baoyan

    2003-01-01

    In this paper we present an application of the recently developed control volume function approximation (CVFA) method to the modeling and simulation of 2D and 3D horizontal wells in petroleum reservoirs. The base grid for this method is based on a Voronoi grid. One of the features of the CVFA is that the flux at the interfaces of control volumes can be accurately computed via function approximations. Also, it reduces grid orientation effects and applies to any shape of eleme...

  4. Exactly solvable models for 2D interacting fermions

    I discuss many-body models for correlated fermions in two space dimensions which can be solved exactly using group theory. The simplest example is a model of a quantum Hall system: two-dimensional (2D) fermions in a constant magnetic field and a particular non-local four-point interaction. It is exactly solvable due to a dynamical symmetry corresponding to the Lie algebra gl∞ + gl∞. There is an algorithm to construct all energy eigenvalues and eigenfunctions of this model. The latter are, in general, many-body states with spatial correlations. The model also has a non-trivial zero temperature phase diagram. I point out that this QH model can be obtained from a more realistic one using a truncation procedure generalizing a similar one leading to mean field theory. Applying this truncation procedure to other 2D fermion models I obtain various simplified models of increasing complexity which generalize mean field theory by taking into account non-trivial correlations but nevertheless are treatable by exact methods

  5. Cellular neural network to the spherical harmonics approximation of neutron transport equation in x-y geometry. Part I: Modeling and verification for time-independent solution

    Highlights: → This paper describes the solution of time-independent neutron transport equation. → Using a novel method based on cellular neural networks (CNNs) coupled with PN method. → Utilize the CNN model to simulate spatial scalar flux distribution in steady state. → The accuracy, stability, and capabilities of CNN model are examined in x-y geometry. - Abstract: This paper describes a novel method based on using cellular neural networks (CNN) coupled with spherical harmonics method (PN) to solve the time-independent neutron transport equation in x-y geometry. To achieve this, an equivalent electrical circuit based on second-order form of neutron transport equation and relevant boundary conditions is obtained using CNN method. We use the CNN model to simulate spatial response of scalar flux distribution in the steady state condition for different order of spherical harmonics approximations. The accuracy, stability, and capabilities of CNN model are examined in 2D Cartesian geometry for fixed source and criticality problems.

  6. 1D spin-1/2 XY models as a testing ground for spin systems theory methods

    Elementary excitation energy spectrum that gives thermodynamic properties is calculated for few partial non-random and random versions of 1D spin-1/2 XY model. The exact result obtained is compared with the results derived within some well known approximate approaches that permits to understand the region of their validity. (author). 6 refs, 6 figs

  7. 2D numerical modelling of meandering channel formation

    XIAO, Y.; ZHOU, G.; YANG, F. S.

    2016-03-01

    A 2D depth-averaged model for hydrodynamic sediment transport and river morphological adjustment was established. The sediment transport submodel takes into account the influence of non-uniform sediment with bed surface armoring and considers the impact of secondary flow in the direction of bed-load transport and transverse slope of the river bed. The bank erosion submodel incorporates a simple simulation method for updating bank geometry during either degradational or aggradational bed evolution. Comparison of the results obtained by the extended model with experimental and field data, and numerical predictions validate that the proposed model can simulate grain sorting in river bends and duplicate the characteristics of meandering river and its development. The results illustrate that by using its control factors, the improved numerical model can be applied to simulate channel evolution under different scenarios and improve understanding of patterning processes.

  8. 2D numerical modelling of meandering channel formation

    Y Xiao; G Zhou; F S Yang

    2016-03-01

    A 2D depth-averaged model for hydrodynamic sediment transport and river morphological adjustment was established. The sediment transport submodel takes into account the influence of non-uniform sediment with bed surface armoring and considers the impact of secondary flow in the direction of bed-loadtransport and transverse slope of the river bed. The bank erosion submodel incorporates a simple simulation method for updating bank geometry during either degradational or aggradational bed evolution. Comparison of the results obtained by the extended model with experimental and field data, and numericalpredictions validate that the proposed model can simulate grain sorting in river bends and duplicate the characteristics of meandering river and its development. The results illustrate that by using its control factors, the improved numerical model can be applied to simulate channel evolution under differentscenarios and improve understanding of patterning processes.

  9. Brane Brick Models and 2d (0,2) Triality

    Franco, Sebastian; Seong, Rak-Kyeong

    2016-01-01

    We provide a brane realization of 2d (0,2) Gadde-Gukov-Putrov triality in terms of brane brick models. These are Type IIA brane configurations that are T-dual to D1-branes over singular toric Calabi-Yau 4-folds. Triality translates into a local transformation of brane brick models, whose simplest representative is a cube move. We present explicit examples and construct their triality networks. We also argue that the classical mesonic moduli space of brane brick model theories, which corresponds to the probed Calabi-Yau 4-fold, is invariant under triality. Finally, we discuss triality in terms of phase boundaries, which play a central role in connecting Calabi-Yau 4-folds to brane brick models.

  10. 2-D Composite Model for Numerical Simulations of Nonlinear Waves

    2000-01-01

    - A composite model, which is the combination of Boussinesq equations and Volume of Fluid (VOF) method, has been developed for 2-D time-domain computations of nonlinear waves in a large region. The whole computational region Ω is divided into two subregions. In the near-field around a structure, Ω2, the flow is governed by 2-D Reynolds Averaged Navier-Stokes equations with a turbulence closure model of k-ε equations and numerically solved by the improved VOF method; whereas in the subregion Ω1 (Ω1 = Ω - Ω2) the flow is governed by one-D Boussinesq equations and numerically solved with the predictor-corrector algorithm. The velocity and the wave surface elevation are matched on the common boundary of the two subregions. Numerical tests have been conducted for the case of wave propagation and interaction with a wave barrier. It is shown that the composite model can help perform efficient computation of nonlinear waves in a large region with the complicated flow fields near structures taken into account.

  11. Statistical mechanics of shell models for 2D-Turbulence

    Aurell, E; Crisanti, A; Frick, P; Paladin, G; Vulpiani, A

    1994-01-01

    We study shell models that conserve the analogues of energy and enstrophy, hence designed to mimic fluid turbulence in 2D. The main result is that the observed state is well described as a formal statistical equilibrium, closely analogous to the approach to two-dimensional ideal hydrodynamics of Onsager, Hopf and Lee. In the presence of forcing and dissipation we observe a forward flux of enstrophy and a backward flux of energy. These fluxes can be understood as mean diffusive drifts from a source to two sinks in a system which is close to local equilibrium with Lagrange multipliers (``shell temperatures'') changing slowly with scale. The dimensional predictions on the power spectra from a supposed forward cascade of enstrophy, and from one branch of the formal statistical equilibrium, coincide in these shell models at difference to the corresponding predictions for the Navier-Stokes and Euler equations in 2D. This coincidence have previously led to the mistaken conclusion that shell models exhibit a forward ...

  12. Finite state models of constrained 2d data

    Justesen, Jørn

    2004-01-01

    This paper considers a class of discrete finite alphabet 2D fields that can be characterized using tools front finite state machines and Markov chains. These fields have several properties that greatly simplify the analysis of 2D coding methods.......This paper considers a class of discrete finite alphabet 2D fields that can be characterized using tools front finite state machines and Markov chains. These fields have several properties that greatly simplify the analysis of 2D coding methods....

  13. A 2D channel-clogging biofilm model.

    Winstanley, H F; Chapwanya, M; Fowler, A C; O'Brien, S B G

    2015-09-01

    We present a model of biofilm growth in a long channel where the biomass is assumed to have the rheology of a viscous polymer solution. We examine the competition between growth and erosion-like surface detachment due to the flow. A particular focus of our investigation is the effect of the biofilm growth on the fluid flow in the pores, and the issue of whether biomass can grow sufficiently to shut off fluid flow through the pores, thus clogging the pore space. Net biofilm growth is coupled along the pore length via flow rate and nutrient transport in the pore flow. Our 2D model extends existing results on stability of 1D steady state biofilm thicknesses to show that, in the case of flows driven by a fixed pressure drop, full clogging of the pore can indeed happen in certain cases dependent on the functional form of the detachment term. PMID:25240390

  14. Maximizing entropy of image models for 2-D constrained coding

    Forchhammer, Søren; Danieli, Matteo; Burini, Nino;

    2010-01-01

    This paper considers estimating and maximizing the entropy of two-dimensional (2-D) fields with application to 2-D constrained coding. We consider Markov random fields (MRF), which have a non-causal description, and the special case of Pickard random fields (PRF). The PRF are 2-D causal finite...... of the Markov random field defined by the 2-D constraint is estimated to be (upper bounded by) 0.8570 bits/symbol using the iterative technique of Belief Propagation on 2 £ 2 finite lattices. Based on combinatorial bounding techniques the maximum entropy for the constraint was determined to be 0.848....

  15. Cascading rainfall uncertainties into 2D inundation impact models

    Souvignet, Maxime; de Almeida, Gustavo; Champion, Adrian; Garcia Pintado, Javier; Neal, Jeff; Freer, Jim; Cloke, Hannah; Odoni, Nick; Coxon, Gemma; Bates, Paul; Mason, David

    2013-04-01

    Existing precipitation products show differences in their spatial and temporal distribution and several studies have presented how these differences influence the ability to predict hydrological responses. However, an atmospheric-hydrologic-hydraulic uncertainty cascade is seldom explored and how, importantly, input uncertainties propagate through this cascade is still poorly understood. Such a project requires a combination of modelling capabilities, runoff generation predictions based on those rainfall forecasts, and hydraulic flood wave propagation based on the runoff predictions. Accounting for uncertainty in each component is important in decision making for issuing flood warnings, monitoring or planning. We suggest a better understanding of uncertainties in inundation impact modelling must consider these differences in rainfall products. This will improve our understanding of the input uncertainties on our predictive capability. In this paper, we propose to address this issue by i) exploring the effects of errors in rainfall on inundation predictive capacity within an uncertainty framework, i.e. testing inundation uncertainty against different comparable meteorological conditions (i.e. using different rainfall products). Our method cascades rainfall uncertainties into a lumped hydrologic model (FUSE) within the GLUE uncertainty framework. The resultant prediction uncertainties in discharge provide uncertain boundary conditions, which are cascaded into a simplified shallow water 2D hydraulic model (LISFLOOD-FP). Rainfall data captured by three different measurement techniques - rain gauges, gridded data and numerical weather predictions (NWP) models are used to assess the combined input data and model parameter uncertainty. The study is performed in the Severn catchment over the period between June and July 2007, where a series of rainfall events causing record floods in the study area). Changes in flood area extent are compared and the uncertainty envelope is

  16. Duality Between Spin Networks and the 2D Ising Model

    Bonzom, Valentin; Costantino, Francesco; Livine, Etera R.

    2016-06-01

    The goal of this paper is to exhibit a deep relation between the partition function of the Ising model on a planar trivalent graph and the generating series of the spin network evaluations on the same graph. We provide respectively a fermionic and a bosonic Gaussian integral formulation for each of these functions and we show that they are the inverse of each other (up to some explicit constants) by exhibiting a supersymmetry relating the two formulations. We investigate three aspects and applications of this duality. First, we propose higher order supersymmetric theories that couple the geometry of the spin networks to the Ising model and for which supersymmetric localization still holds. Secondly, after interpreting the generating function of spin network evaluations as the projection of a coherent state of loop quantum gravity onto the flat connection state, we find the probability distribution induced by that coherent state on the edge spins and study its stationary phase approximation. It is found that the stationary points correspond to the critical values of the couplings of the 2D Ising model, at least for isoradial graphs. Third, we analyze the mapping of the correlations of the Ising model to spin network observables, and describe the phase transition on those observables on the hexagonal lattice. This opens the door to many new possibilities, especially for the study of the coarse-graining and continuum limit of spin networks in the context of quantum gravity.

  17. Spin-Peierls instability and incommensurability in the XY model-Dynamical and thermodynamical properties

    Within the variational method in statistical mechanics, dynamical and thermodynamical properties of anharmonic crystal are discussed, in particular the thermal behavior of the crystalline expasion, phonons spectrum, specific heat and Debye-Weller factor (which satisfctorily describes the experimental data). Through the temperature dependent Green functions framework, dynamical and thermodynamical properties associated with the spin-Peierls transition in the magnetostrictive XY model (with one-dimensional magnetic interactions but structurally three-dimensional) are also discussed. Emphasis is given to the influence of an external magnetic field (along the z-axis) on the structural order parameter, phase diagram, specific heat, magnetization, magnetic susceptibility and phonons spectrun (acoustic and optic branches). Results are extended and new ons are exhibited such as: a) a structural Lifshitz point, which separates the uniform (U), dimerized (D) and modulated (M) phases in the T-H phase diagram; b) another special point is detected for high magnetic fields; c) the D-M first-order frontier and the metastability limits are obtained; d) for high elastic constants, fixed temperature and increasing magnetic field, the unusual sequence non uniform-uniform - non uniform-uniform is possible; e) the thermal dependence of the sound velocity presents a gap at the critical temperature. The present results have provided a quite satisfactory qualitative (and partially quantitative) description of the experiments on the TTF-BDT and MEM-(TCNQ)2; this fact enables us to hope that several of our predictions indeed occur in nature. (Author)

  18. On the general XY Model: positive and zero temperature, selection and non-selection

    Baraviera, A T; Lopes, A O; Mohr, J; Souza, R R

    2011-01-01

    We consider $(M,d)$ a connected and compact manifold and we denote by $\\mathcal{B}_i$ the Bernoulli space $M^{\\Z}$ of sequences represented by $$x=(... x_{-3},x_{-2},x_{-1},x_0,x_1,x_2,x_3,...),$$ where $x_i$ belongs to the space (alphabet) $M$. The case where $M=\\mathbb{S}^1$, the unit circle, is of particular interest here. The analogous problem in the one-dimensional lattice $\\mathbb{N}$ is also considered. %In this case we consider the potential $A: {\\cal B}=M^\\mathbb{N} \\to \\mathbb{R}.$ Let $A: \\mathcal{B}_i \\rar \\R$ be an {\\it observable} or {\\it potential} defined in the Bernoulli space $\\mathcal{B}_i$. The potential $A$ describes an interaction between sites in the one-dimensional lattice $M^\\mathbb{Z}$. Given a temperature $T$, we analyze the main properties of the Gibbs state $\\hat{\\mu}_{\\frac{1}{T} A}$ which is a certain probability measure over ${\\cal B}_i$. We denote this setting "the general XY model". In order to do our analysis we consider the Ruelle operator associated to $\\frac{1}{T} A$, and...

  19. Effects of Agent's Repulsion in 2d Flocking Models

    Moussa, Najem; Tarras, Iliass; Mazroui, M'hammed; Boughaleb, Yahya

    In nature many animal groups, such as fish schools or bird flocks, clearly display structural order and appear to move as a single coherent entity. In order to understand the complex behavior of these systems, many models have been proposed and tested so far. This paper deals with an extension of the Vicsek model, by including a second zone of repulsion, where each agent attempts to maintain a minimum distance from the others. The consideration of this zone in our study seems to play an important role during the travel of agents in the two-dimensional (2D) flocking models. Our numerical investigations show that depending on the basic ingredients such as repulsion radius (R1), effect of density of agents (ρ) and noise (η), our nonequilibrium system can undergo a kinetic phase transition from no transport to finite net transport. For different values of ρ, kinetic phase diagrams in the plane (η ,R1) are found. Implications of these findings are discussed.

  20. Brownian regime of finite-N corrections to particle motion in the XY Hamiltonian mean field model

    Ribeiro, Bruno V.; Amato, Marco A.; Elskens, Yves

    2016-08-01

    We study the dynamics of the N-particle system evolving in the XY Hamiltonian mean field (HMF) model for a repulsive potential, when no phase transition occurs. Starting from a homogeneous distribution, particles evolve in a mean field created by the interaction with all others. This interaction does not change the homogeneous state of the system, and particle motion is approximately ballistic with small corrections. For initial particle data approaching a waterbag, it is explicitly proved that corrections to the ballistic velocities are in the form of independent Brownian noises over a time scale diverging not slower than {N}2/5 as N\\to ∞ , which proves the propagation of molecular chaos. Molecular dynamics simulations of the XY-HMF model confirm our analytical findings.

  1. Brownian regime of finite-N corrections to particle motion in the XY hamiltonian mean field model

    Ribeiro, Bruno V; Elskens, Yves

    2016-01-01

    We study the dynamics of the N-particle system evolving in the XY hamiltonian mean field (HMF) model for a repulsive potential, when no phase transition occurs. Starting from a homogeneous distribution, particles evolve in a mean field created by the interaction with all others. This interaction does not change the homogeneous state of the system, and particle motion is approximately ballistic with small corrections. For initial particle data approaching a waterbag, it is explicitly proved that corrections to the ballistic velocities are in the form of independent brownian noises over a time scale diverging not slower than $N^{2/5}$ as $N \\to \\infty$, which proves the propagation of molecular chaos. Molecular dynamics simulations of the XY-HMF model confirm our analytical findings.

  2. Ab initio modeling of 2D layered organohalide lead perovskites

    Fraccarollo, Alberto; Cantatore, Valentina; Boschetto, Gabriele; Marchese, Leonardo; Cossi, Maurizio

    2016-04-01

    A number of 2D layered perovskites A2PbI4 and BPbI4, with A and B mono- and divalent ammonium and imidazolium cations, have been modeled with different theoretical methods. The periodic structures have been optimized (both in monoclinic and in triclinic systems, corresponding to eclipsed and staggered arrangements of the inorganic layers) at the DFT level, with hybrid functionals, Gaussian-type orbitals and dispersion energy corrections. With the same methods, the various contributions to the solid stabilization energy have been discussed, separating electrostatic and dispersion energies, organic-organic intralayer interactions and H-bonding effects, when applicable. Then the electronic band gaps have been computed with plane waves, at the DFT level with scalar and full relativistic potentials, and including the correlation energy through the GW approximation. Spin orbit coupling and GW effects have been combined in an additive scheme, validated by comparing the computed gap with well known experimental and theoretical results for a model system. Finally, various contributions to the computed band gaps have been discussed on some of the studied systems, by varying some geometrical parameters and by substituting one cation in another's place.

  3. Phase Transitions for Quantum XY-Model on the Cayley Tree of Order Three in Quantum Markov Chain Scheme

    In the present paper we study forward Quantum Markov Chains (QMC) defined on a Cayley tree. Using the tree structure of graphs, we give a construction of quantum Markov chains on a Cayley tree. By means of such constructions we prove the existence of a phase transition for the XY-model on a Cayley tree of order three in QMC scheme. By the phase transition we mean the existence of two distinct QMC for the given family of interaction operators {K}. (author)

  4. VAM2D: Variably saturated analysis model in two dimensions

    This report documents a two-dimensional finite element model, VAM2D, developed to simulate water flow and solute transport in variably saturated porous media. Both flow and transport simulation can be handled concurrently or sequentially. The formulation of the governing equations and the numerical procedures used in the code are presented. The flow equation is approximated using the Galerkin finite element method. Nonlinear soil moisture characteristics and atmospheric boundary conditions (e.g., infiltration, evaporation and seepage face), are treated using Picard and Newton-Raphson iterations. Hysteresis effects and anisotropy in the unsaturated hydraulic conductivity can be taken into account if needed. The contaminant transport simulation can account for advection, hydrodynamic dispersion, linear equilibrium sorption, and first-order degradation. Transport of a single component or a multi-component decay chain can be handled. The transport equation is approximated using an upstream weighted residual method. Several test problems are presented to verify the code and demonstrate its utility. These problems range from simple one-dimensional to complex two-dimensional and axisymmetric problems. This document has been produced as a user's manual. It contains detailed information on the code structure along with instructions for input data preparation and sample input and printed output for selected test problems. Also included are instructions for job set up and restarting procedures. 44 refs., 54 figs., 24 tabs

  5. Importance of Overpressure in 2D Gas Hydrate Modeling

    Hauschildt, J.; Unnithan, V.

    2005-12-01

    Numerical models for sub-seafloor gas hydrate formation [1],[2],[3] which describe the driving fluid transport processes only in the vertical direction, restrict the computationally expensive problem to one dimension. This assumption is only valid in regions where permeable sediments induce no overpressure and where there is little lateral variation of physical properties and boundary conditions. Local accumulations of gas hydrates or authigenic carbonates can significantly reduce the porosity and permeability. In combination with topographic and structural features, subtle but important deviations from the 1D model are considered to occur. This poster shows results obtained from a 2D finite difference model developed for describing the evolution of the gas hydrate zone in structurally complex areas. The discretisation of the terms governing the thermodynamic and transport processes is implemented explicitely in time for the advection and diffusion processes, but implicitely for phase transitions. Although the time scales for transport and phase transitions can differ by several orders of magnitude, this scheme allows for an efficient computation for model runs both over the system's equilibration period in the order of 107 yr or to resolve the effects of sea-level changes within 103 yr. A sensitivity analysis confines the parameter space relevant for hydrate formation influenced by lateral fluid flow, and results for the predicted deviations from a multi-1D model for high gas hydrate fractions and fluid flow rates are presented. References [1] M.K. Davie and B.A. Buffett. Sources of methane for marine gas hydrate: inferences from a comparison of observations and numerical models. Earth and Planetary Science Letters, 206:51-63, 2003. [2] W. Xu and C. Ruppell. Predicting the occurrence, distribution, and evolution of methane hydrate in porous marine sediments. Journal of Geohphysical Research, (B3):5081-5095, 1999. [3] J.B. Klauda and S.I. Sandler. Predictions of

  6. Influence of Non-Uniform Magnetic Field on Quantum Teleportation in Heisenberg XY Model

    SHAO Bin; YANG Tie-jian; ZHAO Yue-hong; ZOU Jian

    2007-01-01

    By considering the intrinsic decoherence, the validity of quantum teleportation of a two-qubit 1D Heisenberg XY chain in a non-uniform external magnetic field is studied. The fidelity as the measurement of a possible quantum teleportation is calculated and the effects of the non-uniform magnetic field and the intrinsic decoherence are discussed. It is found that anti-parallel magnetic field is more favorable for teleportation and the fidelity is suppressed by the intrinsic decoherence.

  7. A 2D simulation model for urban flood management

    Price, Roland; van der Wielen, Jonathan; Velickov, Slavco; Galvao, Diogo

    2014-05-01

    The European Floods Directive, which came into force on 26 November 2007, requires member states to assess all their water courses and coast lines for risk of flooding, to map flood extents and assets and humans at risk, and to take adequate and coordinated measures to reduce the flood risk in consultation with the public. Flood Risk Management Plans are to be in place by 2015. There are a number of reasons for the promotion of this Directive, not least because there has been much urban and other infrastructural development in flood plains, which puts many at risk of flooding along with vital societal assets. In addition there is growing awareness that the changing climate appears to be inducing more frequent extremes of rainfall with a consequent increases in the frequency of flooding. Thirdly, the growing urban populations in Europe, and especially in the developing countries, means that more people are being put at risk from a greater frequency of urban flooding in particular. There are urgent needs therefore to assess flood risk accurately and consistently, to reduce this risk where it is important to do so or where the benefit is greater than the damage cost, to improve flood forecasting and warning, to provide where necessary (and possible) flood insurance cover, and to involve all stakeholders in decision making affecting flood protection and flood risk management plans. Key data for assessing risk are water levels achieved or forecasted during a flood. Such levels should of course be monitored, but they also need to be predicted, whether for design or simulation. A 2D simulation model (PriceXD) solving the shallow water wave equations is presented specifically for determining flood risk, assessing flood defense schemes and generating flood forecasts and warnings. The simulation model is required to have a number of important properties: -Solve the full shallow water wave equations using a range of possible solutions; -Automatically adjust the time step and

  8. XY Systems' project management office

    Hayley, David

    2005-01-01

    XY Systems' (XY) competitive advantage stems from reputation and an ability to build long-term relationships. Both XY and its clients benefit from their long-standing relationships. The technology industry is highly competitive and competitors will use every opportunity to tarnish XY's reputation. Recently, XY's clients expressed dissatisfaction at XY's lack of Project Management (PM) skills. In addition, XY's management cannot understand the status of all XY's projects because of XY's rapid ...

  9. Critical behavior of the Higgs- and Goldstone-mass gaps for the two-dimensional S=1 XY model

    Yoshihiro Nishiyama

    2015-08-01

    Full Text Available Spectral properties for the two-dimensional quantum S=1 XY model were investigated with the exact diagonalization method. In the symmetry-broken phase, there appear the massive Higgs and massless Goldstone excitations, which correspond to the longitudinal and transverse modes of the spontaneous magnetic moment, respectively. The former excitation branch is embedded in the continuum of the latter, and little attention has been paid to the details, particularly, in proximity to the critical point. The finite-size-scaling behavior is improved by extending the interaction parameters. An analysis of the critical amplitude ratio for these mass gaps is made.

  10. Characteristics of two-dimensional vortex dynamics from XY-type models with Ginzburg-Landau dynamics

    The characteristic features of vortex dynamics corresponding to two-dimensional XY-type models with Ginzburg-Landau dynamics are extracted from simulations. The cases covered are with and without frustration, as well as above and below the Kosterlitz-Thouless transition. Most of the results are very well described by a phenomenological response function. The dependence of the characteristic frequency for this response function on the vortex density, frustration, correlation length, and temperature is obtained. A critical behavior for vortex dynamics at the Kosterlitz-Thouless transition is suggested by the simulations. The agreements with experiments and other simulations are discussed. copyright 1997 The American Physical Society

  11. The Implementation of C-ID, R2D2 Model on Learning Reading Comprehension

    Rayanto, Yudi Hari; Rusmawan, Putu Ngurah

    2016-01-01

    The purposes of this research are to find out, (1) whether C-ID, R2D2 model is effective to be implemented on learning Reading comprehension, (2) college students' activity during the implementation of C-ID, R2D2 model on learning Reading comprehension, and 3) college students' learning achievement during the implementation of C-ID, R2D2 model on…

  12. An Incompressible 2D Didactic Model with Singularity and Explicit Solutions of the 2D Boussinesq Equations

    Chae, Dongho; Constantin, Peter; Wu, Jiahong

    2014-09-01

    We give an example of a well posed, finite energy, 2D incompressible active scalar equation with the same scaling as the surface quasi-geostrophic equation and prove that it can produce finite time singularities. In spite of its simplicity, this seems to be the first such example. Further, we construct explicit solutions of the 2D Boussinesq equations whose gradients grow exponentially in time for all time. In addition, we introduce a variant of the 2D Boussinesq equations which is perhaps a more faithful companion of the 3D axisymmetric Euler equations than the usual 2D Boussinesq equations.

  13. The selection of soil models parameters in Plaxis 2D

    O.V. Sokolova

    2014-06-01

    Full Text Available Finite element method is often used to solve complex geotechnical problems. The application of FEM-based programs demands special attention to setting models parameters and simulating soil behavior. The paper considers the problem of the model selection to describe the behavior of soils when calculating soil settlement in the check task, referring to complicated geotechnical conditions of Saint Petersburg. The obtained settlement values in Linear Elastic model, Mohr – Coulomb model, Hardening Soil model and Hardening Soil Small model were compared. The paper presents results of calibrating parameters for a geotechnical model obtained on the data of compression testing. The necessity of prior calculations to evaluate the accuracy of a soil model is confirmed.

  14. Modeling Overlapping Laminations in Magnetic Core Materials Using 2-D Finite-Element Analysis

    Jensen, Bogi Bech; Guest, Emerson David; Mecrow, Barrie C.

    2015-01-01

    This paper describes a technique for modeling overlapping laminations in magnetic core materials using two-dimensional finite-element (2-D FE) analysis. The magnetizing characteristic of the overlapping region is captured using a simple 2-D FE model of the periodic overlapping geometry and a comp...

  15. 2D semiclassical model for high harmonic generation from gas

    陈黎明; 余玮; 张杰; 陈朝阳; 江文勉

    2000-01-01

    The electron behavior in laser field is described in detail. Based on the 1D semiclassical model, a 20 semiclassical model is proposed analytically using 3D DC-tunneling ionization theory. Lots of harmonic features are explained by this model, including the analytical demonstration of the maximum electron energy 3.17 Up. Finally, some experimental phenomena such as the increase of the cutoff harmonic energy with the decrease of pulse duration and the "anomalous" fluctuations in the cutoff region are explained by this model.

  16. 2-D Model Test Study of the Suape Breakwater, Brazil

    Andersen, Thomas Lykke; Burcharth, Hans F.; Sopavicius, A.;

    This report deals with a two-dimensional model test study of the extension of the breakwater in Suape, Brazil. One cross-section was tested for stability and overtopping in various sea conditions. The length scale used for the model tests was 1:35. Unless otherwise specified all values given in...

  17. 2D modelling and assessment of divertor performance for ITER

    The results of the ITER divertor modelling performed during the EDA are summarised in the paper. Studies on the operating window and optimisation of the divertor geometry are presented together with preliminary results on the start-up limiter performance. The issue of model validation against the experimental data which is crucial for extrapolation to ITER is also addressed. (author)

  18. Practical aspects of a 2-D edge-plasma model

    The poloidal divertor configuration is considered the most promising solution to the particle and energy exhaust problem for a tokamak reactor. The scrape-off layer plasma surrounding the core and the high-recycling plasma near the divertor plates can be modelled by fluid equations for particle, momentum and energy transport. A numerical code (B2) based on a two-dimensional multi-fluid model has been developed for the study of edge plasmas in tokamaks. In this report we identify some key features of this model as applied to the DIII-D tokamak. 2 refs., 1 fig

  19. Vibration induced flow in hoppers: DEM 2D polygon model

    2008-01-01

    A two-dimensional discrete element model (DEM) simulation of cohesive polygonal particles has been developed to assess the benefit of point source vibration to induce flow in wedge-shaped hoppers. The particle-particle interaction model used is based on a multi-contact principle.The first part of the study investigated particle discharge under gravity without vibration to determine the critical orifice size (Be) to just sustain flow as a function of particle shape. It is shown that polygonal-shaped particles need a larger orifice than circular particles. It is also shown that Be decreases as the number of particle vertices increases. Addition of circular particles promotes flow of polygons in a linear manner.The second part of the study showed that vibration could enhance flow, effectively reducing Be. The model demonstrated the importance of vibrator location (height), consistent with previous continuum model results, and vibration amplitude in enhancing flow.

  20. Percolation properties of the 2D Heisenberg model

    Allès, B; Criado, C; Pepé, M

    1999-01-01

    We analyze the percolation properties of certain clusters defined on configurations of the 2--dimensional Heisenberg model thermalized at a temperature T=0.5. We find that, given any direction in O(3) space, \\vec{n}, the spins almost perpendicular to \\vec{n} form a percolating cluster. Given a fixed configuration, this is true for any \\vec{n}. We briefly comment on the critical properties of the model.

  1. A fully coupled 2D model of equiaxed eutectic solidification

    Charbon, Ch.; LeSar, R.

    1995-12-31

    We propose a model of equiaxed eutectic solidification that couples the macroscopic level of heat diffusion with the microscopic level of nucleation and growth of the eutectic grains. The heat equation with the source term corresponding to the latent heat release due to solidification is calculated numerically by means of an implicit finite difference method. In the time stepping scheme, the evolution of solid fraction is deduced from a stochastic model of nucleation and growth which uses the local temperature (interpolated from the FDM mesh) to determine the local grain density and the local growth rate. The solid-liquid interface of each grain is tracked by using a subdivision of each grain perimeter in a large number of sectors. The state of each sector (i.e. whether it is still in contact with the liquid or already captured by an other grain) and the increase of radius of each grain during one time step allows one to compute the increase of solid fraction. As for deterministic models, the results of the model are the evolution of temperature and of solid fraction at any point of the sample. Moreover the model provides a complete picture of the microstructure, thus not limiting the microstructural information to the average grain density but allowing one to compute any stereological value of interest. We apply the model to the solidification of gray cast iron.

  2. Simulation of subgrid orographic precipitation with an embedded 2-D cloud-resolving model

    Jung, Joon-Hee; Arakawa, Akio

    2016-03-01

    By explicitly resolving cloud-scale processes with embedded two-dimensional (2-D) cloud-resolving models (CRMs), superparameterized global atmospheric models have successfully simulated various atmospheric events over a wide range of time scales. Up to now, however, such models have not included the effects of topography on the CRM grid scale. We have used both 3-D and 2-D CRMs to simulate the effects of topography with prescribed "large-scale" winds. The 3-D CRM is used as a benchmark. The results show that the mean precipitation can be simulated reasonably well by using a 2-D representation of topography as long as the statistics of the topography such as the mean and standard deviation are closely represented. It is also shown that the use of a set of two perpendicular 2-D grids can significantly reduce the error due to a 2-D representation of topography.

  3. Conservation laws and LETKF with 2D Shallow Water Model

    Zeng, Yuefei; Janjic, Tijana

    2016-04-01

    Numerous approaches have been proposed to maintain physical conservation laws in the numerical weather prediction models. However, to achieve a reliable prediction, adequate initial conditions are also necessary, which are produced by a data assimilation algorithm. If an ensemble Kalman filters (EnKF) is used for this purpose, it has been shown that it could yield unphysical analysis ensemble that for example violates principles of mass conservation and positivity preservation (e.g. Janjic et al 2014) . In this presentation, we discuss the selection of conservation criteria for the analysis step, and start with testing the conservation of mass, energy and enstrophy. The simple experiments deal with nonlinear shallow water equations and simulated observations that are assimilated with LETKF (Localized Ensemble Transform Kalman Filter, Hunt et al. 2007). The model is discretized in a specific way to conserve mass, angular momentum, energy and enstrophy. The effects of the data assimilation on the conserved quantities (of mass, energy and enstrophy) depend on observation covarage, localization radius, observed variable and observation operator. Having in mind that Arakawa (1966) and Arakawa and Lamb (1977) showed that the conservation of both kinetic energy and enstrophy by momentum advection schemes in the case of nondivergent flow prevents systematic and unrealistic energy cascade towards high wave numbers, a cause of excessive numerical noise and possible eventual nonlinear instability, we test the effects on prediction depending on the type of errors in the initial condition. The performance with respect to nonlinear energy cascade is assessed as well.

  4. Google Earth as a tool in 2-D hydrodynamic modeling

    Chien, Nguyen Quang; Keat Tan, Soon

    2011-01-01

    A method for coupling virtual globes with geophysical hydrodynamic models is presented. Virtual globes such as Google TM Earth can be used as a visualization tool to help users create and enter input data. The authors discuss techniques for representing linear and areal geographical objects with KML (Keyhole Markup Language) files generated using computer codes (scripts). Although virtual globes offer very limited tools for data input, some data of categorical or vector type can be entered by users, and then transformed into inputs for the hydrodynamic program by using appropriate scripts. An application with the AnuGA hydrodynamic model was used as an illustration of the method. Firstly, users draw polygons on the Google Earth screen. These features are then saved in a KML file which is read using a script file written in the Lua programming language. After the hydrodynamic simulation has been performed, another script file is used to convert the resulting output text file to a KML file for visualization, where the depths of inundation are represented by the color of discrete point icons. The visualization of a wind speed vector field was also included as a supplementary example.

  5. Point Contacts in Modeling Conducting 2D Planar Structures

    Thiel, David V; Hettenhausen, Jan; Lewis, Andrew

    2015-01-01

    Use of an optimization algorithm to improve performance of antennas and electromagnetic structures usually ends up in planar unusual shapes. Using rectangular conducting elements the proposed structures sometimes have connections with only one single point in common between two neighboring areas. The single point connections (point crossing) can affect the electromagnetic performance of the structure. In this letter, we illustrate the influence of point crossing on dipole and loop antennas using MoM, FDTD, and FEM solvers. Current distribution, radiation pattern, and impedance properties for different junctions are different. These solvers do not agree in the modeling of the point crossing junctions which is a warning about uncertainty in using such junctions. However, solvers agree that a negligible change in the junction would significantly change the antenna performance. We propose that one should consider both bridging and chamfering of the conflicting cells to find optimized structures. This reduces the ...

  6. 2D modelling of polycrystalline silicon thin film solar cells

    Leendertz Caspar

    2013-07-01

    Full Text Available The influence of grain boundary (GB properties on device parameters of polycrystalline silicon (poly-Si thin film solar cells is investigated by two-dimensional device simulation. A realistic poly-Si thin film model cell composed of antireflection layer, (n+-type emitter, thick p-type absorber, and (p+-type back surface field was created. The absorber consists of a low-defect crystalline Si grain with an adjacent highly defective grain boundary layer. The performances of a reference cell without GB, one with n-type and one with p-type GB, respectively, are compared. The doping concentration and defect density at the GB are varied. It is shown that the impact of the grain boundary on the poly-Si cell is twofold: a local potential barrier is created at the GB, and a part of the photogenerated current flows within the GB. Regarding the cell performance, a highly doped n-type GB is less critical in terms of the cell’s short circuit current than a highly doped p-type GB, but more detrimental in terms of the cell’s open circuit voltage and fill factor.

  7. An effective depression filling algorithm for DEM-based 2-D surface flow modelling

    Zhu, D.; Ren, Q.; Xuan, Y.; Y. Chen; I. D. Cluckie

    2013-01-01

    The surface runoff process in fluvial/pluvial flood modelling is often simulated employing a two-dimensional (2-D) diffusive wave approximation described by grid based digital elevation models (DEMs). However, this approach may cause potential problems when using the 2-D surface flow model which exchanges flows through adjacent cells, with conventional sink removal algorithms which also allow for flow exchange along diagonal directions, due to the existence of artificial dep...

  8. 2-D model for pollutant dispersion at the coastal outfall off Paradip

    Suryanarayana, A.; Babu, M.T.; Vethamony, P.; Gouveia, A.D

    Simulation of dispersion of the effluent discharge has been carried out using 2-D Model to verify the advection and diffusion of the pollutant patch of the proposed effluent disposal off Paradip, Orissa, India. The simulation of dispersion...

  9. Comparison between a coupled 1D-2D model and a fully 2D model for supercritical flow simulation in crossroads

    Ghostine, Rabih

    2014-12-01

    In open channel networks, flow is usually approximated by the one-dimensional (1D) Saint-Venant equations coupled with an empirical junction model. In this work, a comparison in terms of accuracy and computational cost between a coupled 1D-2D shallow water model and a fully two-dimensional (2D) model is presented. The paper explores the ability of a coupled model to simulate the flow processes during supercritical flows in crossroads. This combination leads to a significant reduction in the computational time, as a 1D approach is used in branches and a 2D approach is employed in selected areas only where detailed flow information is essential. Overall, the numerical results suggest that the coupled model is able to accurately simulate the main flow processes. In particular, hydraulic jumps, recirculation zones, and discharge distribution are reasonably well reproduced and clearly identified. Overall, the proposed model leads to a 30% reduction in run times. © 2014 International Association for Hydro-Environment Engineering and Research.

  10. Comparison of 1D and 2D modelling with soil erosion model SMODERP

    Kavka, Petr; Weyskrabova, Lenka; Zajicek, Jan

    2013-04-01

    The contribution presents a comparison of a runoff simulated by profile method (1D) and spatially distributed method (2D). Simulation model SMODERP is used for calculation and prediction of soil erosion and surface runoff from agricultural land. SMODERP is physically based model that includes the processes of infiltration (Phillips equation), surface runoff (kinematic wave based equation), surface retention, surface roughness and vegetation impact on runoff. 1D model was developed in past, new 2D model was developed in last two years. The model is being developed at the Department of Irrigation, Drainage and Landscape Engineering, Civil Engineering Faculty, CTU in Prague. 2D model was developed as a tool for widespread GIS software ArcGIS. The physical relations were implemented through Python script. This script uses ArcGIS system tools for raster and vectors treatment of the inputs. Flow direction is calculated by Steepest Descent algorithm in the preliminary version of 2D model. More advanced multiple flow algorithm is planned in the next version. Spatially distributed models enable to estimate not only surface runoff but also flow in the rills. Surface runoff is described in the model by kinematic wave equation. Equation uses Manning roughness coefficient for surface runoff. Parameters for five different soil textures were calibrated on the set of forty measurements performed on the laboratory rainfall simulator. For modelling of the rills a specific sub model was created. This sub model uses Manning formula for flow estimation. Numerical stability of the model is solved by Courant criterion. Spatial scale is fixed. Time step is dynamically changed depending on how flow is generated and developed. SMODERP is meant to be used not only for the research purposes, but mainly for the engineering practice. We also present how the input data can be obtained based on available resources (soil maps and data, land use, terrain models, field research, etc.) and how can

  11. Simulation of Cardiac Arrhythmias Using a 2D Heterogeneous Whole Heart Model

    Balakrishnan, Minimol; Chakravarthy, V. Srinivasa; Guhathakurta, Soma

    2015-01-01

    Simulation studies of cardiac arrhythmias at the whole heart level with electrocardiogram (ECG) gives an understanding of how the underlying cell and tissue level changes manifest as rhythm disturbances in the ECG. We present a 2D whole heart model (WHM2D) which can accommodate variations at the cellular level and can generate the ECG waveform. It is shown that, by varying cellular-level parameters like the gap junction conductance (GJC), excitability, action potential duration (APD) and freq...

  12. DEVELOPMENT OF COUPLED 1D-2D MATHEMATICAL MODELS FOR TIDAL RIVERS

    XU Zu-xin; YIN Hai-long

    2004-01-01

    Some coupled 1D-2D hydrodynamic and water quality models depicting tidal water bodies with complex topography were presented. For the coupled models, finite element method was used to solve the governing equations so as to study tidal rivers with complex topography. Since the 1D and 2D models were coupled, the principle of model coupling was proposed to account appropriately for the factors of water level, flow and pollutant flux and the related dynamical behavior was simulated. Specifically the models were used to probe quantitative pollution contribution of receiving water from neighboring Jiangsu and Zhejiang Provinces to the pollution in the Huangpu River passing through Shanghai City. Numerical examples indicated that the developed coupled 1D-2D models are applicable in tidal river network region of Shanghai.

  13. Hemodynamic simulation of the heart using a 2D model and MR data

    Adeler, Pernille Thorup; Thomsen, Per Grove; Barker, Vincent A.

    2002-01-01

    Computational models of the blood flow in the heart are a useful tool for studying the functioning of the heart. The purpose of this thesis is to achieve a better understanding of hemodynamics of the normal and diseased hearts through the use of a computational model and magnetic resonance (MR) data. We present a 2D computational model of the blood flow in the left side of the heart. The work is based on Peskin and McQueen's 2D model dimensioned to data on the dog heart, which we improve and ...

  14. Tidal regime in Gulf of Kutch, west coast of India, by 2D model

    Unnikrishnan, A; Gouveia, A; Vethamony, P.

    A 2D barotropic numerical model is developed for the Gulf of Kutch with a view to synthesize available information on tides and currents in the Gulf. A comparison of model results with moored current meter observations shows that the model...

  15. Analysis of vegetation effect on waves using a vertical 2-D RANS model

    A vertical two-dimensional (2-D) model has been applied in the simulation of wave propagation through vegetated water bodies. The model is based on an existing model SOLA-VOF which solves the Reynolds-Averaged Navier-Stokes (RANS) equations with the finite difference method on a staggered rectangula...

  16. Fast 2D flood modelling using GPU technology - recent applications and new developments

    Crossley, Amanda; Lamb, Rob; Waller, Simon; Dunning, Paul

    2010-05-01

    In recent years there has been considerable interest amongst scientists and engineers in exploiting the potential of commodity graphics hardware for desktop parallel computing. The Graphics Processing Units (GPUs) that are used in PC graphics cards have now evolved into powerful parallel co-processors that can be used to accelerate the numerical codes used for floodplain inundation modelling. We report in this paper on experience over the past two years in developing and applying two dimensional (2D) flood inundation models using GPUs to achieve significant practical performance benefits. Starting with a solution scheme for the 2D diffusion wave approximation to the 2D Shallow Water Equations (SWEs), we have demonstrated the capability to reduce model run times in ‘real-world' applications using GPU hardware and programming techniques. We then present results from a GPU-based 2D finite volume SWE solver. A series of numerical test cases demonstrate that the model produces outputs that are accurate and consistent with reference results published elsewhere. In comparisons conducted for a real world test case, the GPU-based SWE model was over 100 times faster than the CPU version. We conclude with some discussion of practical experience in using the GPU technology for flood mapping applications, and for research projects investigating use of Monte Carlo simulation methods for the analysis of uncertainty in 2D flood modelling.

  17. 2D Path Solutions from a Single Layer Excitable CNN Model

    Karahaliloglu, Koray

    2007-01-01

    An easily implementable path solution algorithm for 2D spatial problems, based on excitable/programmable characteristics of a specific cellular nonlinear network (CNN) model is presented and numerically investigated. The network is a single layer bioinspired model which was also implemented in CMOS technology. It exhibits excitable characteristics with regionally bistable cells. The related response realizes propagations of trigger autowaves, where the excitable mode can be globally preset and reset. It is shown that, obstacle distributions in 2D space can also be directly mapped onto the coupled cell array in the network. Combining these two features, the network model can serve as the main block in a 2D path computing processor. The related algorithm and configurations are numerically experimented with circuit level parameters and performance estimations are also presented. The simplicity of the model also allows alternative technology and device level implementation, which may become critical in autonomous...

  18. A Comparison of the Concurrence and Measurement-Induced Disturbance in Two-Qubit Spin XY Model with Decoherence

    Tao, Li; Guo-Hui, Yang

    2015-09-01

    Using the concurrence (C) and measurement-induced disturbance (MID) criterions, the quantum correlation properties in two-qubit spin XY model with decoherence environment are investigated in detail. Firstly, the result show that the general feature of the quantum correlation evolutions is oscillating at the beginning time, then reach to the steady value of C and MID. Secondly, the obvious distinction of C and MID is that there is a entanglement sudden death(ESD) in C, but not in MID. One interesting result we must mention is that the time interval of ESD is influenced obviously by the anisotropic parameter Δ, it is prolonged evidently with the decrease of Δ, but it is nearly not effected by the external magnetic field B. Finally, we find that the effect of parameter B and Δ on the SC and SMID are too complicated to get an uniform law, through analyzing the property of the steady C (SC) and steady MID (SMID) values in the limit case t → ∞, we give the reason about it.

  19. How birds fly together long-range order in a two-dimensional dynamical xy model

    Tu, Y; Tu, Yuhai; Toner, John

    1995-01-01

    We propose a non-equilibrium continuum dynamical model for the collective motion of large groups of biological organisms (e.g., flocks of birds, slime molds, etc.) Our model becomes highly non-trivial, and different from the equilibrium model, for dmodel exhibits a broken continuous symmetry even in d=2. Our model describes a large universality class of microscopic rules, including those recently simulated by Viscek et. al.

  20. Comparison between 2D turbulence model ESEL and experimental data from AUG and COMPASS tokamaks

    Ondac, Peter; Horacek, Jan; Seidl, Jakub;

    2015-01-01

    In this article we have used the 2D fluid turbulence numerical model, ESEL, to simulate turbulent transport in edge tokamak plasma. Basic plasma parameters from the ASDEX Upgrade and COMPASS tokamaks are used as input for the model, and the output is compared with experimental observations obtained...

  1. Optimal implicit 2-D finite differences to model wave propagation in poroelastic media

    Itzá, Reymundo; Iturrarán-Viveros, Ursula; Parra, Jorge O.

    2016-08-01

    Numerical modeling of seismic waves in heterogeneous porous reservoir rocks is an important tool for the interpretation of seismic surveys in reservoir engineering. We apply globally optimal implicit staggered-grid finite differences (FD) to model 2-D wave propagation in heterogeneous poroelastic media at a low-frequency range (linear systems of equations through Thomas' algorithm.

  2. Universality and Non-Perturbative Definitions of 2D Quantum Gravity from Matrix Models

    Miramontes, J. Luis; Guillen, Joaquin Sanchez

    1991-01-01

    The universality of the non-perturbative definition of Hermitian one-matrix models following the quantum, stochastic, or $d=1$-like stabilization is discussed in comparison with other procedures. We also present another alternative definition, which illustrates the need of new physical input for $d=0$ matrix models to make contact with 2D quantum gravity at the non-perturbative level.

  3. Universality and nonperturbative definitions of 2D quantum gravity from matrix models

    The universality of the nonperturbative definition of Hermitian one-matrix models following the quantum stochastic, or d = 1-like stabilization is discussed in comparison with other procedures. The authors also present another alternative definition, which illustrates the need of new physical input for d = 0 matrix models to make contact with 2D quantum gravity at the nonperturbative level

  4. Spin superfluidity in the anisotropic XY model in the triangular lattice

    Lima, L. S.

    2016-07-01

    We use the SU(3) Schwinger's boson theory to study the spin transport properties in the two-dimensional anisotropic frustrated Heisenberg model in the triangular lattice at T=0. We have investigated the behavior of the spin conductivity for this model which presents an single-ion anisotropy. We study the spin transport in the Bose-Einstein condensation regime where we have that the tz bosons are condensed and the following condition is valid: = = t . Our results show a metallic spin transport for ω > 0 and a superfluid spin transport in the limit of DC conductivity, ω → 0 , where σ(ω) tends to infinity in this limit of ω.

  5. XY-sliding phases - mirage of the Renormalization Group

    Vayl, Steven; Kuklov, Anatoly; Oganesyan, Vadim

    The so called sliding XY phases in layered systems are predicted to occur if the one loop renormalization group (RG) flow renders the interlayer Josephson coupling irrelevant, while each layer still features broken U(1) symmetry. In other words, such a layered system remains essentially two-dimensional despite the presence of inter-layer Josephson coupling. We have analyzed numerically a layered system consisting of groups of asymmetric layers where the RG analysis predicts sliding phases to occur. Monte Carlo simulations of such a system have been conducted in the dual representation by Worm Algorithm in terms of the closed loops of J-currents for layer sizes varying from 4 ×4 to 640 ×640 and the number of layers - from 2 to 40. The resulting flow of the inter-layer XY-stiffness has been found to be inconsistent with the RG prediction and fully consistent with the behavior of the 3D standard XY model where the bare inter-layer Josephson coupling is much smaller than the intra-layer stiffness. This result emphasizes the importance of the compactness of the U(1) variable for 2D to 3D transformation. This work was supported by the NSF Grant PHY1314469.

  6. Validation of DYSTOOL for unsteady aerodynamic modeling of 2D airfoils

    From the point of view of wind turbine modeling, an important group of tools is based on blade element momentum (BEM) theory using 2D aerodynamic calculations on the blade elements. Due to the importance of this sectional computation of the blades, the National Renewable Wind Energy Center of Spain (CENER) developed DYSTOOL, an aerodynamic code for 2D airfoil modeling based on the Beddoes-Leishman model. The main focus here is related to the model parameters, whose values depend on the airfoil or the operating conditions. In this work, the values of the parameters are adjusted using available experimental or CFD data. The present document is mainly related to the validation of the results of DYSTOOL for 2D airfoils. The results of the computations have been compared with unsteady experimental data of the S809 and NACA0015 profiles. Some of the cases have also been modeled using the CFD code WMB (Wind Multi Block), within the framework of a collaboration with ACCIONA Windpower. The validation has been performed using pitch oscillations with different reduced frequencies, Reynolds numbers, amplitudes and mean angles of attack. The results have shown a good agreement using the methodology of adjustment for the value of the parameters. DYSTOOL have demonstrated to be a promising tool for 2D airfoil unsteady aerodynamic modeling

  7. Validation of DYSTOOL for unsteady aerodynamic modeling of 2D airfoils

    González, A.; Gomez-Iradi, S.; Munduate, X.

    2014-06-01

    From the point of view of wind turbine modeling, an important group of tools is based on blade element momentum (BEM) theory using 2D aerodynamic calculations on the blade elements. Due to the importance of this sectional computation of the blades, the National Renewable Wind Energy Center of Spain (CENER) developed DYSTOOL, an aerodynamic code for 2D airfoil modeling based on the Beddoes-Leishman model. The main focus here is related to the model parameters, whose values depend on the airfoil or the operating conditions. In this work, the values of the parameters are adjusted using available experimental or CFD data. The present document is mainly related to the validation of the results of DYSTOOL for 2D airfoils. The results of the computations have been compared with unsteady experimental data of the S809 and NACA0015 profiles. Some of the cases have also been modeled using the CFD code WMB (Wind Multi Block), within the framework of a collaboration with ACCIONA Windpower. The validation has been performed using pitch oscillations with different reduced frequencies, Reynolds numbers, amplitudes and mean angles of attack. The results have shown a good agreement using the methodology of adjustment for the value of the parameters. DYSTOOL have demonstrated to be a promising tool for 2D airfoil unsteady aerodynamic modeling.

  8. The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis

    Purpose: This work proposes a new method of building 3D breast mass models with different morphological shapes and describes the validation of the realism of their appearance after simulation into 2D digital mammograms and breast tomosynthesis images. Methods: Twenty-five contrast enhanced MRI breast lesions were collected and each mass was manually segmented in the three orthogonal views: sagittal, coronal, and transversal. The segmented models were combined, resampled to have isotropic voxel sizes, triangularly meshed, and scaled to different sizes. These masses were referred to as nonspiculated masses and were then used as nuclei onto which spicules were grown with an iterative branching algorithm forming a total of 30 spiculated masses. These 55 mass models were projected into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. The realism of the appearance of these mass models was assessed by five radiologists via receiver operating characteristic (ROC) analysis when compared to 54 real masses. All lesions were also given a breast imaging reporting and data system (BIRADS) score. The data sets of 2D mammography and tomosynthesis were read separately. The Kendall's coefficient of concordance was used for the interrater observer agreement assessment for the BIRADS scores per modality. Further paired analysis, using the Wilcoxon signed rank test, of the BIRADS assessment between 2D and tomosynthesis was separately performed for the real masses and for the simulated masses. Results: The area under the ROC curves, averaged over all observers, was 0.54 (95% confidence interval [0.50, 0.66]) for the 2D study, and 0.67 (95% confidence interval [0.55, 0.79]) for the tomosynthesis study. According to the BIRADS scores, the nonspiculated and the spiculated masses varied in their degrees of malignancy from normal (BIRADS 1) to highly

  9. The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis

    Shaheen, Eman, E-mail: eman.shaheen@uzleuven.be; De Keyzer, Frederik; Bosmans, Hilde; Ongeval, Chantal Van [Department of Radiology, University Hospitals Leuven, Herestraat 49, 3000 Leuven (Belgium); Dance, David R.; Young, Kenneth C. [National Coordinating Centre for the Physics of Mammography, Royal Surrey County Hospital, Guildford GU2 7XX, United Kingdom and Department of Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2014-08-15

    Purpose: This work proposes a new method of building 3D breast mass models with different morphological shapes and describes the validation of the realism of their appearance after simulation into 2D digital mammograms and breast tomosynthesis images. Methods: Twenty-five contrast enhanced MRI breast lesions were collected and each mass was manually segmented in the three orthogonal views: sagittal, coronal, and transversal. The segmented models were combined, resampled to have isotropic voxel sizes, triangularly meshed, and scaled to different sizes. These masses were referred to as nonspiculated masses and were then used as nuclei onto which spicules were grown with an iterative branching algorithm forming a total of 30 spiculated masses. These 55 mass models were projected into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. The realism of the appearance of these mass models was assessed by five radiologists via receiver operating characteristic (ROC) analysis when compared to 54 real masses. All lesions were also given a breast imaging reporting and data system (BIRADS) score. The data sets of 2D mammography and tomosynthesis were read separately. The Kendall's coefficient of concordance was used for the interrater observer agreement assessment for the BIRADS scores per modality. Further paired analysis, using the Wilcoxon signed rank test, of the BIRADS assessment between 2D and tomosynthesis was separately performed for the real masses and for the simulated masses. Results: The area under the ROC curves, averaged over all observers, was 0.54 (95% confidence interval [0.50, 0.66]) for the 2D study, and 0.67 (95% confidence interval [0.55, 0.79]) for the tomosynthesis study. According to the BIRADS scores, the nonspiculated and the spiculated masses varied in their degrees of malignancy from normal (BIRADS 1) to highly

  10. Impact of high speed civil transports on stratospheric ozone. A 2-D model investigation

    Kinnison, D.E.; Connell, P.S. [Lawrence Livermore National Lab., CA (United States)

    1997-12-31

    This study investigates the effect on stratospheric ozone from a fleet of proposed High Speed Civil Transports (HSCTs). The new LLNL 2-D operator-split chemical-radiative-transport model of the troposphere and stratosphere is used for this HSCT investigation. This model is integrated in a diurnal manner, using an implicit numerical solver. Therefore, rate coefficients are not modified by any sort of diurnal average factor. This model also does not make any assumptions on lumping of chemical species into families. Comparisons to previous model-derived HSCT assessment of ozone change are made, both to the previous LLNL 2-D model and to other models from the international assessment modeling community. The sensitivity to the NO{sub x} emission index and sulfate surface area density is also explored. (author) 7 refs.

  11. Fluctuations of the front in a one dimensional model of X+Y-->2X

    Comets, Francis; Quastel, Jeremy; Ramirez, Alejandro

    2006-01-01

    We consider a model of the reaction $X+Y\\to 2X$ on the integer lattice in which $Y$ particles do not move while $X$ particles move as independent continuous time, simple symmetric random walks. $Y$ particles are transformed instantaneously to $X$ particles upon contact. We start with a fixed number $a\\ge 1$ of $Y$ particles at each site to the right of the origin, and define a class of configurations of the $X$ particles to the left of the origin having a finite $l^1$ norm with a specified ex...

  12. Comparison of 3-D finite element model of ashlar masonry with 2-D numerical models of ashlar masonry

    Beran, Pavel

    2016-06-01

    3-D state of stress in heterogeneous ashlar masonry can be also computed by several suitable chosen 2-D numerical models of ashlar masonry. The results obtained from 2-D numerical models well correspond to the results obtained from 3-D numerical model. The character of thermal stress is the same. While using 2-D models the computational time is reduced more than hundredfold and therefore this method could be used for computation of thermal stresses during long time periods with 10 000 of steps.

  13. Computational modeling of hypersingular integral equations for 2D pre-cantor scattering structure

    Kateryna Nesvit

    2015-11-01

    Full Text Available This paper presents the investigative study to derive a computational model based on hypersingular integral equations for the pre-Cantor plane-parallel diffraction structure. Such structure consists of finite numbers of the thin impedance strips located in the XY plane. A plane transverse magnetic wave is incident from infinity on considered diffraction structure at an angle and need to find the total field resulting from the scattering. The model which is considered in this work is an approximation of real fractal antennas in two-dimensional case. Pre-fractal properties of grating allow producing the newest antennas for modern mobile devices due to their compact size and broadband properties. The purpose of this work is to develop computer model their structure using parametric representation of hypersingular integral operator, Nystrom method with specific quadrature formulas. The numerical results have been obtained and investigated for pre-Cantor structures for calculating physics characteristics. These results have been compared and analyzed in different mathematical models and softwares.

  14. Global 6DOF Pose Estimation from Untextured 2D City Models

    Arth, Clemens; Pirchheim, Christian; Ventura, Jonathan; Lepetit, Vincent

    2015-01-01

    We propose a method for estimating the 3D pose for the camera of a mobile device in outdoor conditions, using only an untextured 2D model. Previous methods compute only a relative pose using a SLAM algorithm, or require many registered images, which are cumbersome to acquire. By contrast, our method returns an accurate, absolute camera pose in an absolute referential using simple 2D+height maps, which are broadly available, to refine a first estimate of the pose provided by the device's senso...

  15. A simple model for 2D image upconversion of incoherent light

    Dam, Jeppe Seidelin; Pedersen, Christian; Tidemand-Lichtenberg, Peter

    2011-01-01

    We present a simple theoretical model for 2 dimensional (2-D) image up-conversion of incoherent light. While image upconversion has been known for more than 40 years, the technology has been hindered by very low conversion quantum efficiency (~10-7). We show that our implementation compared to...

  16. Analysis of Korean Students' International Mobility by 2-D Model: Driving Force Factor and Directional Factor

    Park, Elisa L.

    2009-01-01

    The purpose of this study is to understand the dynamics of Korean students' international mobility to study abroad by using the 2-D Model. The first D, "the driving force factor," explains how and what components of the dissatisfaction with domestic higher education perceived by Korean students drives students' outward mobility to seek foreign…

  17. N=2, D=4 supersymmetric σ-models and Hamiltonian mechanics

    A deep similarity is established between the Hamiltonian mechanics of point particle and supersymmetric N=2, D=4 σ-models formulated within harmonic superspace. An essential part of the latter, the sphere S2, comes out as a counterpart of the time variable. (author). 7 refs

  18. Mechanical Modelling of Pultrusion Process: 2D and 3D Numerical Approaches

    Baran, Ismet; Hattel, Jesper Henri; Akkerman, Remko;

    2015-01-01

    mechanical analysis should be performed. In the present work, the two dimensional (2D) quasi-static plane strain mechanical model for the pultrusion of a thick square profile developed by the authors is further improved using generalized plane strain elements. In addition to that, a more advanced 3D thermo...

  19. Parallelized CCHE2D flow model with CUDA Fortran on Graphics Process Units

    This paper presents the CCHE2D implicit flow model parallelized using CUDA Fortran programming technique on Graphics Processing Units (GPUs). A parallelized implicit Alternating Direction Implicit (ADI) solver using Parallel Cyclic Reduction (PCR) algorithm on GPU is developed and tested. This solve...

  20. Structure of a model salt bridge in solution investigated with 2D-IR spectroscopy

    Huerta-Viga, Adriana; Amirjalayer, Saeed; Woutersen, Sander

    2013-01-01

    Salt bridges are known to be important for the stability of protein conformation, but up to now it has been difficult to study their geometry in solution. Here we characterize the spatial structure of a model salt bridge between guanidinium (Gdm+) and acetate (Ac-) using two-dimensional vibrational (2D-IR) spectroscopy. We find that as a result of salt bridging the infrared response of Gdm+ and Ac- change significantly, and in the 2D-IR spectrum, salt bridging of the molecules appears as cross peaks. From the 2D-IR spectrum we determine the relative orientation of the transition-dipole moments of the vibrational modes involved in the salt bridge, as well as the coupling between them. In this manner we reconstruct the geometry of the solvated salt bridge.

  1. Justification for a 2D versus 3D fingertip finite element model during static contact simulations.

    Harih, Gregor; Tada, Mitsunori; Dolšak, Bojan

    2016-10-01

    The biomechanical response of a human hand during contact with various products has not been investigated in details yet. It has been shown that excessive contact pressure on the soft tissue can result in discomfort, pain and also cumulative traumatic disorders. This manuscript explores the benefits and limitations of a simplified two-dimensional vs. an anatomically correct three-dimensional finite element model of a human fingertip. Most authors still use 2D FE fingertip models due to their simplicity and reduced computational costs. However we show that an anatomically correct 3D FE fingertip model can provide additional insight into the biomechanical behaviour. The use of 2D fingertip FE models is justified when observing peak contact pressure values as well as displacement during the contact for the given studied cross-section. On the other hand, an anatomically correct 3D FE fingertip model provides a contact pressure distribution, which reflects the fingertip's anatomy. PMID:26856769

  2. Molecular Dynamics implementation of BN2D or 'Mercedes Benz' water model

    Scukins, Arturs; Bardik, Vitaliy; Pavlov, Evgen; Nerukh, Dmitry

    2015-05-01

    Two-dimensional 'Mercedes Benz' (MB) or BN2D water model (Naim, 1971) is implemented in Molecular Dynamics. It is known that the MB model can capture abnormal properties of real water (high heat capacity, minima of pressure and isothermal compressibility, negative thermal expansion coefficient) (Silverstein et al., 1998). In this work formulas for calculating the thermodynamic, structural and dynamic properties in microcanonical (NVE) and isothermal-isobaric (NPT) ensembles for the model from Molecular Dynamics simulation are derived and verified against known Monte Carlo results. The convergence of the thermodynamic properties and the system's numerical stability are investigated. The results qualitatively reproduce the peculiarities of real water making the model a visually convenient tool that also requires less computational resources, thus allowing simulations of large (hydrodynamic scale) molecular systems. We provide the open source code written in C/C++ for the BN2D water model implementation using Molecular Dynamics.

  3. The 2dF Galaxy Redshift Survey: Voids and hierarchical scaling models

    Croton, D J; Gaztañaga, E; Baugh, C M; Norberg, P; Baldry, I K; Bland-Hawthorn, J; Bridges, T J; Cannon, R; Cole, S; Collins, C; Couch, W; Dalton, G B; De Propris, R; Driver, S P; Efstathiou, G P; Ellis, Richard S; Frenk, C S; Glazebrook, K; Jackson, C; Lahav, O; Lewis, I; Lumsden, S; Maddox, S; Madgwick, D; Peacock, J A; Peterson, B A; Sutherland, W; Taylor, K

    2004-01-01

    We study the void distribution in the completed 2dFGRS using counts-in-cells to measure the reduced void probability function (VPF). Theoretically, the VPF connects the distribution of voids to the moments of galaxy clustering of all orders. The reduced VPF measured from the 2dFGRS is in excellent agreement with the paradigm of hierarchical scaling of the galaxy clustering moments. This scaling results in a universal form for the VPF when plotted as a function of $\\Nbar\\xibar_2$, where $\\Nbar$ is the expected mean number of galaxies and $\\bar{\\xi_2}$ is the volume-averaged 2-point correlation function. Models of galaxy clustering which display hierarchical scaling yield different predictions for the reduced VPF. The accuracy of our measurement of the VPF from the 2dFGRS is such that we can rule out, at a very high significance, popular models for clustering, such as the lognormal distribution. We demonstrate that the negative binomial model gives a very good approximation to the 2dFGRS data over a wide range ...

  4. The 2dF Galaxy Redshift Survey: voids and hierarchical scaling models

    Croton, Darren J.; Colless, Matthew; Gaztañaga, Enrique; Baugh, Carlton M.; Norberg, Peder; Baldry, I. K.; Bland-Hawthorn, J.; Bridges, T.; Cannon, R.; Cole, S.; Collins, C.; Couch, W.; Dalton, G.; de Propris, R.; Driver, S. P.; Efstathiou, G.; Ellis, R. S.; Frenk, C. S.; Glazebrook, K.; Jackson, C.; Lahav, O.; Lewis, I.; Lumsden, S.; Maddox, S.; Madgwick, D.; Peacock, J. A.; Peterson, B. A.; Sutherland, W.; Taylor, K.

    2004-08-01

    We measure the redshift-space reduced void probability function (VPF) for 2dFGRS volume-limited galaxy samples covering the absolute magnitude range MbJ-5log10h=-18 to -22. Theoretically, the VPF connects the distribution of voids to the moments of galaxy clustering of all orders, and can be used to discriminate clustering models in the weakly non-linear regime. The reduced VPF measured from the 2dFGRS is in excellent agreement with the paradigm of hierarchical scaling of the galaxy clustering moments. The accuracy of our measurement is such that we can rule out, at a very high significance, popular models for galaxy clustering, including the lognormal distribution. We demonstrate that the negative binomial model gives a very good approximation to the 2dFGRS data over a wide range of scales, out to at least 20 h-1 Mpc. Conversely, the reduced VPF for dark matter in a Λ cold dark matter (ΛCDM) universe does appear to be lognormal on small scales but deviates significantly beyond ~4 h-1 Mpc. We find little dependence of the 2dFGRS reduced VPF on galaxy luminosity. Our results hold independently in both the North and South Galactic Pole survey regions.

  5. Reliability of a Novel Model for Drug Release from 2D HPMC-Matrices

    Rumiana Blagoeva

    2010-04-01

    Full Text Available A novel model of drug release from 2D-HPMC matrices is considered. Detailed mathematical description of matrix swelling and the effect of the initial drug loading are introduced. A numerical approach to solution of the posed nonlinear 2D problem is used on the basis of finite element domain approximation and time difference method. The reliability of the model is investigated in two steps: numerical evaluation of the water uptake parameters; evaluation of drug release parameters under available experimental data. The proposed numerical procedure for fitting the model is validated performing different numerical examples of drug release in two cases (with and without taking into account initial drug loading. The goodness of fit evaluated by the coefficient of determination is presented to be very good with few exceptions. The obtained results show better model fitting when accounting the effect of initial drug loading (especially for larger values.

  6. Nishimori point in random-bond Ising and Potts models in 2D

    A. Honecker; Jacobsen, J. L.; Picco, M.; Pujol, P.

    2001-01-01

    We study the universality class of the fixed points of the 2D random bond q-state Potts model by means of numerical transfer matrix methods. In particular, we determine the critical exponents associated with the fixed point on the Nishimori line. Precise measurements show that the universality class of this fixed point is inconsistent with percolation on Potts clusters for q=2, corresponding to the Ising model, and q=3

  7. Stochastic 2-D Models of Galaxy Disk Evolution. The Galaxy M33

    Mineikis, Tadas; Vansevičius, Vladas

    2015-01-01

    We have developed a fast numerical 2-D model of galaxy disk evolution (resolved along the galaxy radius and azimuth) by adopting a scheme of parameterized stochastic self-propagating star formation. We explore the parameter space of the model and demonstrate its capability to reproduce 1-D radial profiles of the galaxy M33: gas surface density, surface brightness in the i and GALEX FUV passbands, and metallicity.

  8. A U(1) Current Algebra Model Coupled to 2D-Gravity

    Stoilov, M.; Zaikov, R.

    1993-01-01

    We consider a simple model of a scalar field with $U(1)$ current algebra gauge symmetry coupled to $2D$-gravity in order to clarify the origin of Stuckelberg symmetry in the $w_{\\infty}$-gravity theory. An analogous symmetry takes place in our model too. The possible central extension of the complete symmetry algebra and the corresponding critical dimension have been found. The analysis of the Hamiltonian and the constraints shows that the generators of the current algebra, the reparametrizat...

  9. Ice shelf flexures modeled with a 2-D elastic flow line model

    Y. V. Konovalov

    2011-10-01

    Full Text Available Ice shelf flexures modeling was performed using a 2-D finite-difference elastic model, which takes into account sub-ice-shelf sea water flow. The sub-ice water flow was described by the wave equation for the sub-ice-shelf pressure perturbations (Holdsworth and Glynn, 1978. In the model ice shelf flexures result from variations in ocean pressure due to changes in prescribed sea levels. The numerical experiments were performed for a flow line down one of the fast flowing ice streams of the Academy of Sciences Ice Cap. The profile includes a part of the adjacent ice shelf. The numerical experiments were carried out for harmonic incoming pressure perturbations P' and the ice shelf flexures were obtained for a wide spectrum of the pressure perturbations frequencies, ranging from tidal periods down to periods of a few seconds (0.004..0.02 Hz. The amplitudes of the ice shelf deflections obtained by the model achieve a maxima at about T ≈ 165 s in concordance with previous investigations of the impact of waves on Antarctic ice shelves (Bromirski et al., 2010. The explanation of the effect is found in the solution of the corresponding eigenvalue problem revealing the existence of a resonance at these high frequencies.

  10. Approximate analytic solutions to 3D unconfined groundwater flow within regional 2D models

    Luther, K.; Haitjema, H. M.

    2000-04-01

    We present methods for finding approximate analytic solutions to three-dimensional (3D) unconfined steady state groundwater flow near partially penetrating and horizontal wells, and for combining those solutions with regional two-dimensional (2D) models. The 3D solutions use distributed singularities (analytic elements) to enforce boundary conditions on the phreatic surface and seepage faces at vertical wells, and to maintain fixed-head boundary conditions, obtained from the 2D model, at the perimeter of the 3D model. The approximate 3D solutions are analytic (continuous and differentiable) everywhere, including on the phreatic surface itself. While continuity of flow is satisfied exactly in the infinite 3D flow domain, water balance errors can occur across the phreatic surface.

  11. Cluster Model for Wave-Like Motions of a 2D Vertically Vibrated Granular System

    The fact that trapezoid clusters exist in 2D vertically vibrated granular systems leads us to construct a cluster model, in which wave-like motions are explained as the result of cluster-plate and cluster-cluster collisions. By analyzing the collision of one cluster with the plate in detail, we deduce a basic equation from velocity relationship, which could be separated into two correlative equations: one relates wave-like motion with exciting acceleration, and we call it the excitation condition; the other relates wavelength with exciting frequency, viz., the dispersion relation. The theoretical results are in agreement with the experimental ones, which supports the idea of the cluster model. Moreover, from the cluster model, we also predict a possibility of abnormal dispersion relation of a 2D granular system. (fundamental areas of phenomenology(including applications))

  12. Numerical Methods and Comparisons for 1D and Quasi 2D Streamer Propagation Models

    Huang, Mengmin; Guan, Huizhe; Zeng, Rong

    2016-01-01

    In this work, we propose four different strategies to simulate the one-dimensional (1D) and quasi two-dimensional (2D) model for streamer propagation. Each strategy involves of one numerical method for solving Poisson's equation and another method for solving continuity equations in the models, and a total variation diminishing three-stage Runge-Kutta method in temporal discretization. The numerical methods for Poisson's equation include finite volume method, discontinuous Galerkin methods, mixed finite element method and least-squared finite element method. The numerical method for continuity equations is chosen from the family of discontinuous Galerkin methods. The accuracy tests and comparisons show that all of these four strategies are suitable and competitive in streamer simulations from the aspects of accuracy and efficiency. By applying any strategy in real simulations, we can study the dynamics of streamer propagations and influences due to the change of parameters in both of 1D and quasi 2D models. T...

  13. COMPARISON BETWEEN 2D TURBULENCE MODEL ESEL AND EXPERIMENTAL DATA FROM AUG AND COMPASS TOKAMAKS

    Peter Ondac

    2015-04-01

    Full Text Available In this article we have used the 2D fluid turbulence numerical model, ESEL, to simulate turbulent transport in edge tokamak plasma. Basic plasma parameters from the ASDEX Upgrade and COMPASS tokamaks are used as input for the model, and the output is compared with experimental observations obtained by reciprocating probe measurements from the two machines. Agreements were found in radial profiles of mean plasma potential and temperature, and in a level of density fluctuations. Disagreements, however, were found in the level of plasma potential and temperature fluctuations. This implicates a need for an extension of the ESEL model from 2D to 3D to fully resolve the parallel dynamics, and the coupling from the plasma to the sheath.

  14. 2D and 3D numerical models on compositionally buoyant diapirs in the mantle wedge

    Hasenclever, Jörg; Morgan, Jason Phipps; Hort, Matthias; Rüpke, Lars H.

    2011-11-01

    We present 2D and 3D numerical model calculations that focus on the physics of compositionally buoyant diapirs rising within a mantle wedge corner flow. Compositional buoyancy is assumed to arise from slab dehydration during which water-rich volatiles enter the mantle wedge and form a wet, less dense boundary layer on top of the slab. Slab dehydration is prescribed to occur in the 80-180 km deep slab interval, and the water transport is treated as a diffusion-like process. In this study, the mantle's rheology is modeled as being isoviscous for the benefit of easier-to-interpret feedbacks between water migration and buoyant viscous flow of the mantle. We use a simple subduction geometry that does not change during the numerical calculation. In a large set of 2D calculations we have identified that five different flow regimes can form, in which the position, number, and formation time of the diapirs vary as a function of four parameters: subduction angle, subduction rate, water diffusivity (mobility), and mantle viscosity. Using the same numerical method and numerical resolution we also conducted a suite of 3D calculations for 16 selected parameter combinations. Comparing the 2D and 3D results for the same model parameters reveals that the 2D models can only give limited insights into the inherently 3D problem of mantle wedge diapirism. While often correctly predicting the position and onset time of the first diapir(s), the 2D models fail to capture the dynamics of diapir ascent as well as the formation of secondary diapirs that result from boundary layer perturbations caused by previous diapirs. Of greatest importance for physically correct results is the numerical resolution in the region where diapirs nucleate, which must be high enough to accurately capture the growth of the thin wet boundary layer on top of the slab and, subsequently, the formation, morphology, and ascent of diapirs. Here 2D models can be very useful to quantify the required resolution, which we

  15. Influence of the Boundary Condition on the Short-Time Dynamic Behaviour of the Ising-Like Phase Transition in Square-Lattice Fully Frustrated XY Models

    罗孟波; 陈庆虎; 焦正宽

    2002-01-01

    We investigate the influence of the boundary condition on the short-time dynamic behaviour of the Ising-like phase transition in square-lattice fully frustrated (FF) XY models with periodic and fluctuating twist boundary conditions. The transition temperature Tc and the dynamic and static critical exponents z, 2β/v and v are estimated for both cases using short-time dynamic scaling analysis. The results show that both models have the same critical exponents, indicating that the boundary condition has nearly no effect on the short-time dynamic behaviour of the FFXY model.

  16. An effective depression filling algorithm for DEM-based 2-D surface flow modelling

    D. Zhu

    2013-02-01

    Full Text Available The surface runoff process in fluvial/pluvial flood modelling is often simulated employing a two-dimensional (2-D diffusive wave approximation described by grid based digital elevation models (DEMs. However, this approach may cause potential problems when using the 2-D surface flow model which exchanges flows through adjacent cells, with conventional sink removal algorithms which also allow for flow exchange along diagonal directions, due to the existence of artificial depression in DEMs. In this paper, we propose an effective method for filling artificial depressions in DEM so that the problem can be addressed. We firstly analyse two types of depressions in DEMs and demonstrate the issues caused by the current depression filling algorithms using the surface flow simulations from the MIKE SHE model built for a medium-sized basin in Southeast England. The proposed depression-filling algorithm for 2-D overland flow modelling is applied and evaluated by comparing the simulated flows at the outlet of the catchment represented by DEMs at various resolutions (50 m, 100 m and 200 m. The results suggest that the existence of depressions in DEMs can substantially influence the overland flow estimation and the new depression filling algorithm is shown to be effective in tackling this issue based upon the comparison of simulations for sink-dominated and sink-free DEMs, especially in the areas with relatively flat topography.

  17. TRENT2D WG: a smart web infrastructure for debris-flow modelling and hazard assessment

    Zorzi, Nadia; Rosatti, Giorgio; Zugliani, Daniel; Rizzi, Alessandro; Piffer, Stefano

    2016-04-01

    Mountain regions are naturally exposed to geomorphic flows, which involve large amounts of sediments and induce significant morphological modifications. The physical complexity of this class of phenomena represents a challenging issue for modelling, leading to elaborate theoretical frameworks and sophisticated numerical techniques. In general, geomorphic-flows models proved to be valid tools in hazard assessment and management. However, model complexity seems to represent one of the main obstacles to the diffusion of advanced modelling tools between practitioners and stakeholders, although the UE Flood Directive (2007/60/EC) requires risk management and assessment to be based on "best practices and best available technologies". Furthermore, several cutting-edge models are not particularly user-friendly and multiple stand-alone software are needed to pre- and post-process modelling data. For all these reasons, users often resort to quicker and rougher approaches, leading possibly to unreliable results. Therefore, some effort seems to be necessary to overcome these drawbacks, with the purpose of supporting and encouraging a widespread diffusion of the most reliable, although sophisticated, modelling tools. With this aim, this work presents TRENT2D WG, a new smart modelling solution for the state-of-the-art model TRENT2D (Armanini et al., 2009, Rosatti and Begnudelli, 2013), which simulates debris flows and hyperconcentrated flows adopting a two-phase description over a mobile bed. TRENT2D WG is a web infrastructure joining advantages offered by the software-delivering model SaaS (Software as a Service) and by WebGIS technology and hosting a complete and user-friendly working environment for modelling. In order to develop TRENT2D WG, the model TRENT2D was converted into a service and exposed on a cloud server, transferring computational burdens from the user hardware to a high-performing server and reducing computational time. Then, the system was equipped with an

  18. A Convective Vorticity Vector Associated With Tropical Convection: A 2D Cloud-Resolving Modeling Study

    Gao, Shou-Ting; Ping, Fan; Li, Xiao-Fan; Tao, Wei-Kuo

    2004-01-01

    Although dry/moist potential vorticity is a useful physical quantity for meteorological analysis, it cannot be applied to the analysis of 2D simulations. A convective vorticity vector (CVV) is introduced in this study to analyze 2D cloud-resolving simulation data associated with 2D tropical convection. The cloud model is forced by the vertical velocity, zonal wind, horizontal advection, and sea surface temperature obtained from the TOGA COARE, and is integrated for a selected 10-day period. The CVV has zonal and vertical components in the 2D x-z frame. Analysis of zonally-averaged and mass-integrated quantities shows that the correlation coefficient between the vertical component of the CVV and the sum of the cloud hydrometeor mixing ratios is 0.81, whereas the correlation coefficient between the zonal component and the sum of the mixing ratios is only 0.18. This indicates that the vertical component of the CVV is closely associated with tropical convection. The tendency equation for the vertical component of the CVV is derived and the zonally-averaged and mass-integrated tendency budgets are analyzed. The tendency of the vertical component of the CVV is determined by the interaction between the vorticity and the zonal gradient of cloud heating. The results demonstrate that the vertical component of the CVV is a cloud-linked parameter and can be used to study tropical convection.

  19. Parameterising root system growth models using 2D neutron radiography images

    Schnepf, Andrea; Felderer, Bernd; Vontobel, Peter; Leitner, Daniel

    2013-04-01

    Root architecture is a key factor for plant acquisition of water and nutrients from soil. In particular in view of a second green revolution where the below ground parts of agricultural crops are important, it is essential to characterise and quantify root architecture and its effect on plant resource acquisition. Mathematical models can help to understand the processes occurring in the soil-plant system, they can be used to quantify the effect of root and rhizosphere traits on resource acquisition and the response to environmental conditions. In order to do so, root architectural models are coupled with a model of water and solute transport in soil. However, dynamic root architectural models are difficult to parameterise. Novel imaging techniques such as x-ray computed tomography, neutron radiography and magnetic resonance imaging enable the in situ visualisation of plant root systems. Therefore, these images facilitate the parameterisation of dynamic root architecture models. These imaging techniques are capable of producing 3D or 2D images. Moreover, 2D images are also available in the form of hand drawings or from images of standard cameras. While full 3D imaging tools are still limited in resolutions, 2D techniques are a more accurate and less expensive option for observing roots in their environment. However, analysis of 2D images has additional difficulties compared to the 3D case, because of overlapping roots. We present a novel algorithm for the parameterisation of root system growth models based on 2D images of root system. The algorithm analyses dynamic image data. These are a series of 2D images of the root system at different points in time. Image data has already been adjusted for missing links and artefacts and segmentation was performed by applying a matched filter response. From this time series of binary 2D images, we parameterise the dynamic root architecture model in the following way: First, a morphological skeleton is derived from the binary

  20. 2D axisymmetric model of particle acceleration in colliding shock flows system

    Gladilin, P. E.; Bykov, A. M.; Osipov, S. M.; Romanskiy, V. I.

    2015-12-01

    We present the 2D axisymmetric model of particle acceleration at colliding shocks from supernova remnant and stellar wind from the nearby star. The model is the expansion of the previously developed plane-parallel model and takes into account three three-dimensional structure of the stellar wind and the supernova remnant shock. Numerical and analytical calculations provides the energetic and spatial distributions of the particles accelerated by colliding shock flows system. The presented model can be used in calculations of the emission spectra of different stellar associations and star clusters with colliding shock flows.

  1. Renormalisation group calculation of correlation functions for the 2D random bond Ising and Potts models

    Dotsenko, V S; Pujol, P; Dotsenko, Vladimir; Picco, Marco; Pujol, Pierre

    1995-01-01

    We find the cross-over behavior for the spin-spin correlation function for the 2D Ising and 3-states Potts model with random bonds at the critical point. The procedure employed is the renormalisation approach of the perturbation series around the conformal field theories representing the pure models. We obtain a crossover in the amplitude for the correlation function for the Ising model which doesn't change the critical exponent, and a shift in the critical exponent produced by randomness in the case of the Potts model. A comparison with numerical data is discussed briefly.

  2. 2D edge plasma modeling extended up to the main chamber

    Dekeyser, W., E-mail: wouter.dekeyser@mech.kuleuven.be [Department of Mechanical Engineering, Katholieke Universiteit Leuven, Celestijnenlaan 300A, 3001 Leuven (Belgium); Baelmans, M. [Department of Mechanical Engineering, Katholieke Universiteit Leuven, Celestijnenlaan 300A, 3001 Leuven (Belgium); Reiter, D.; Boerner, P.; Kotov, V. [Institut fuer Plasmaphysik, Forschungszentrum Juelich GmbH, EURATOM-Association, Trilateral Euregio Cluster, D-52425 Juelich (Germany)

    2011-08-01

    Far SOL plasma flow, and hence main chamber recycling and plasma surface interaction, are today still only very poorly described by current 2D fluid edge codes, such as B2, UEDGE or EDGE2D, due to a common technical limitation. We have extended the B2 plasma fluid solver in the current ITER version of B2-EIRENE (SOLPS4.3) to allow plasma solutions to be obtained up to the 'real vessel wall', at least on the basis of ad hoc far SOL transport models. We apply here the kinetic Monte Carlo Code EIRENE on such plasma solutions to study effects of this model refinement on main chamber fluxes and sputtering, for an ITER configuration. We show that main chamber sputtering may be significantly modified both due to thermalization of CX neutrals in the far SOL and poloidally highly asymmetric plasma wall contact, as compared to hitherto applied teleportation of particle fluxes across this domain.

  3. Hybrid 2D-3D modelling of GTA welding with filler wire addition

    Traidia, Abderrazak

    2012-07-01

    A hybrid 2D-3D model for the numerical simulation of Gas Tungsten Arc welding is proposed in this paper. It offers the possibility to predict the temperature field as well as the shape of the solidified weld joint for different operating parameters, with relatively good accuracy and reasonable computational cost. Also, an original approach to simulate the effect of immersing a cold filler wire in the weld pool is presented. The simulation results reveal two important observations. First, the weld pool depth is locally decreased in the presence of filler metal, which is due to the energy absorption by the cold feeding wire from the hot molten pool. In addition, the weld shape, maximum temperature and thermal cycles in the workpiece are relatively well predicted even when a 2D model for the arc plasma region is used. © 2012 Elsevier Ltd. All rights reserved.

  4. A Neural-FEM tool for the 2-D magnetic hysteresis modeling

    Cardelli, E.; Faba, A.; Laudani, A.; Lozito, G. M.; Riganti Fulginei, F.; Salvini, A.

    2016-04-01

    The aim of this work is to present a new tool for the analysis of magnetic field problems considering 2-D magnetic hysteresis. In particular, this tool makes use of the Finite Element Method to solve the magnetic field problem in real device, and fruitfully exploits a neural network (NN) for the modeling of 2-D magnetic hysteresis of materials. The NS has as input the magnetic inductions components B at the k-th simulation step and returns as output the corresponding values of the magnetic field H corresponding to the input pattern. It is trained by vector measurements performed on the magnetic material to be modeled. This input/output scheme is directly implemented in a FEM code employing the magnetic potential vector A formulation. Validations through measurements on a real device have been performed.

  5. Anisotropy effects and friction maps in the framework of the 2d PT model

    We present a series of numerical simulations on the friction–anisotropy behavior and stick–slip dynamics of a point mass in the framework of a 2d Prandtl–Tomlinson model. Results for three representative surface lattice are shown: square, hexagonal and honeycomb. Curves for scan angle dependence of static friction force, and kinetic one at T=0 K and T=300 K are shown. Friction force maps are computed at different directions

  6. Exotic magnetisation plateaus in a quasi-2D Shastry-Sutherland model

    Foltin, G. R.; Manmana, S. R.; Schmidt, K. P.

    2014-01-01

    We find unconventional Mott insulators in a quasi-2D version of the Shastry-Sutherland model in a magnetic field. In our realization on a 4-leg tube geometry, these are stabilized by correlated hopping of localized magnetic excitations. Using perturbative continuous unitary transformations (pCUTs, plus classical approximation or exact diagonalization) and the density matrix renormalisation group method (DMRG), we identify prominent magnetization plateaus at magnetizations M=1/8, M=3/16, M=1/4...

  7. Anisotropy effects and friction maps in the framework of the 2d PT model

    Fajardo, O.Y. [Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada, CSIC-Universidad de Zaragoza, E-50009 Zaragoza (Spain); Gnecco, E. [Instituto Madrileño de Estudios Avanzados, IMDEA Nanociencia, 28049 Madrid (Spain); Mazo, J.J., E-mail: juanjo@unizar.es [Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada, CSIC-Universidad de Zaragoza, E-50009 Zaragoza (Spain)

    2014-12-15

    We present a series of numerical simulations on the friction–anisotropy behavior and stick–slip dynamics of a point mass in the framework of a 2d Prandtl–Tomlinson model. Results for three representative surface lattice are shown: square, hexagonal and honeycomb. Curves for scan angle dependence of static friction force, and kinetic one at T=0 K and T=300 K are shown. Friction force maps are computed at different directions.

  8. On a superconducting instability in the 2D repulsive Hubbard model at low occupancy

    A Cooper instability for a weakly interacting 2D repulsive Hubbard model on a square lattice is found at low fermion occupancy. The point is that the previously known results concerning superconductivity under the conditions presented claim the absence of both s- and p-pairings when only nearest neighbors are accounted for. Taking into account next-to-nearest hopping terms in the Hamiltonian one can change the situation so that the l=1 partial scattering amplitude becomes singular. (author). 6 refs

  9. Effects of vegetation on high waters in 2D hydraulic modeling

    Müller, Matej

    2009-01-01

    Due to increasing impervious surfaces and climate change, the frequency of high water is increasing in recent decades. In parallel, the damage produced by them also increases. The need for preparedness for such events and for constructing flood measures grows. Hydraulic analysis are necessary for the assessment of the flood hazard and for flood extension forecasting. In recent years the development of advanced computers increased the use of complex 2D hydraulic models. The accuracy of such...

  10. TMRPres2D: high quality visual representation of transmembrane protein models.

    Spyropoulos, Ioannis C; Liakopoulos, Theodore D; Bagos, Pantelis G; Hamodrakas, Stavros J

    2004-11-22

    The 'TransMembrane protein Re-Presentation in 2-Dimensions' (TMRPres2D) tool, automates the creation of uniform, two-dimensional, high analysis graphical images/models of alpha-helical or beta-barrel transmembrane proteins. Protein sequence data and structural information may be acquired from public protein knowledge bases, emanate from prediction algorithms, or even be defined by the user. Several important biological and physical sequence attributes can be embedded in the graphical representation. PMID:15201184

  11. A 2D wavenumber domain phase model for ground moving vehicles in synthetic aperture radar imagery

    In this paper, fundamental phase characteristics of moving vehicles in synthetic aperture radar (SAR) data are reviewed. A 2D phase model for a moving point scatterer is expressed in terms of range and azimuth wavenumbers. The moving point scatterer impulse response is then the 2D Fourier transform of the associated complex sinusoid. Numerical computation of the 2D phase for arbitrary relative radar-point scatter motion is organized as a composition of functions expressing time, frequency and angle in terms of wavenumber vectors. An analytic model for the phase is subsequently derived in the special case that the Doppler cone angle is 90°. With that model it is observed that the map from velocity and acceleration to quadratic phase is not one-to-one and therefore the associated inverse problem is ill-posed. An example of moving vehicle Doppler energy dispersion and corresponding phase measured in clutter suppressed SAR image data is provided. Clutter suppression is achieved by application of spacetime adaptive processing. (paper)

  12. APPLICATION OF MULTIGRID METHOD IN 2-D MATHEMATICAL MODEL IN OPEN CHANNELS

    2000-01-01

    In 2-D mathematical model, one of the important problems is to improve computational speed. The multigrid method is a new rapid iteration method developed in the resent 20 years, and it has been widely used in many fields, but in sediment mathematical model it has been rarely used, especially in plane mathematical model with large scale computational scope. In this paper, the multigrid method is introduced and expected to be used widely in this field. And it is verified that the more layers are adopted, the higher convergent speed will be reached in computation.

  13. Innovative Machine Vision Technique for 2D/3D Complex and Irregular Surfaces Modelling

    Shahzad Anwar

    2012-09-01

    Full Text Available This study propose and demonstrates a novel technique incorporating multilayer perceptron (MLP neural networks for feature extraction with Photometric stereo based image capture techniques for the analysis of complex and irregular 2D profiles and 3D surfaces. In order to develop the method and to ensure that it is capable of modelling non-axisymmetric and complex 2D/3D profiles, the network was initially trained and tested on 2D profiles, and subsequently using objects consisting of between 1 and 4 hemispherical 3D forms. To test the capability of the proposed model, random noise was added to 2D profiles. 3D objects were coated with various degrees of coarsenesses (ranging from low-high. The gradient of each surface normal was quantified in terms of the slant and tilt angles of the vector about the x and y axis respectively. The slant and tilt angles were obtained from the bump maps and these data were subsequently employed for training of a NN that had x and y as inputs and slant and tilt angles as outputs. The network employed had the following architecture: MLP and a Levenberg-Marquardt algorithm (LMA for training the network for 12,000 epochs. At each point on the surface the network was consulted to predict slant and tilt and the actual slant and tilt was subtracted, giving a measure of surface irregularity. The network was able to model the underlying asymmetrical geometry with an accuracy regression analysis R-value of 0.93 for a single 3D hemispheres and 0.90 for four adjacent 3D non-axisymmetric hemispheres.

  14. A simple 2-D inundation model for incorporating flood damage in urban drainage planning

    A. Pathirana

    2008-11-01

    Full Text Available In this paper a new inundation model code is developed and coupled with Storm Water Management Model, SWMM, to relate spatial information associated with urban drainage systems as criteria for planning of storm water drainage networks. The prime objective is to achive a model code that is simple and fast enough to be consistently be used in planning stages of urban drainage projects.

    The formulation for the two-dimensional (2-D surface flow model algorithms is based on the Navier Stokes equation in two dimensions. An Alternating Direction Implicit (ADI finite difference numerical scheme is applied to solve the governing equations. This numerical scheme is used to express the partial differential equations with time steps split into two halves. The model algorithm is written using C++ computer programming language.

    This 2-D surface flow model is then coupled with SWMM for simulation of both pipe flow component and surcharge induced inundation in urban areas. In addition, a damage calculation block is integrated within the inundation model code.

    The coupled model is shown to be capable of dealing with various flow conditions, as well as being able to simulate wetting and drying processes that will occur as the flood flows over an urban area. It has been applied under idealized and semi-hypothetical cases to determine detailed inundation zones, depths and velocities due to surcharged water on overland surface.

  15. Universal behavior of entanglement in 2D quantum critical dimer models

    We examine the scaling behavior of the entanglement entropy for the 2D quantum dimer model (QDM) at criticality and derive the universal finite sub-leading correction γQCP. We compute the value of γQCP without approximation working directly with the wavefunction of a generalized 2D QDM at the Rokhsar–Kivelson QCP in the continuum limit. Using the replica approach, we construct the conformal boundary state corresponding to the cyclic identification of n-copies along the boundary of the observed region. We find that the universal finite term is γQCP = lnR − 1/2 where R is the compactification radius of the Bose field theory quantum Lifshitz model, the effective field theory of the 2D QDM at quantum criticality. We also demonstrated that the entanglement spectrum of the critical wavefunction on a large but finite region is described by the characters of the underlying conformal field theory. It is shown that this is formally related to the problems of quantum Brownian motion on n-dimensional lattices or equivalently a system of strings interacting with a brane containing a background electromagnetic field and can be written as an expectation value of a vertex operator

  16. Nested 1D-2D approach for urban surface flood modeling

    Murla, Damian; Willems, Patrick

    2015-04-01

    Floods in urban areas as a consequence of sewer capacity exceedance receive increased attention because of trends in urbanization (increased population density and impermeability of the surface) and climate change. Despite the strong recent developments in numerical modeling of water systems, urban surface flood modeling is still a major challenge. Whereas very advanced and accurate flood modeling systems are in place and operation by many river authorities in support of flood management along rivers, this is not yet the case in urban water management. Reasons include the small scale of the urban inundation processes, the need to have very high resolution topographical information available, and the huge computational demands. Urban drainage related inundation modeling requires a 1D full hydrodynamic model of the sewer network to be coupled with a 2D surface flood model. To reduce the computational times, 0D (flood cones), 1D/quasi-2D surface flood modeling approaches have been developed and applied in some case studies. In this research, a nested 1D/2D hydraulic model has been developed for an urban catchment at the city of Gent (Belgium), linking the underground sewer (minor system) with the overland surface (major system). For the overland surface flood modelling, comparison was made of 0D, 1D/quasi-2D and full 2D approaches. The approaches are advanced by considering nested 1D-2D approaches, including infiltration in the green city areas, and allowing the effects of surface storm water storage to be simulated. An optimal nested combination of three different mesh resolutions was identified; based on a compromise between precision and simulation time for further real-time flood forecasting, warning and control applications. Main streets as mesh zones together with buildings as void regions constitute one of these mesh resolution (3.75m2 - 15m2); they have been included since they channel most of the flood water from the manholes and they improve the accuracy of

  17. Complex zeros of the 2 d Ising model on dynamical random lattices

    Ambjørn, J.; Anagnostopoulos, K. N.; Magnea, U.

    1998-04-01

    We study the zeros in the complex plane of the partition function for the Ising model coupled to 2 d quantum gravity for complex magnetic field and for complex temperature. We compute the zeros by using the exact solution coming from a two matrix model and by Monte Carlo simulations of Ising spins on dynamical triangulations. We present evidence that the zeros form simple one-dimensional patterns in the complex plane, and that the critical behaviour of the system is governed by the scaling of the distribution of singularities near the critical point.

  18. On Spectral Laws of 2D--Turbulence in Shell Models

    Frick, Peter; Aurell, Erik

    1993-01-01

    We consider a class of shell models of 2D-turbulence. They conserve inertially the analogues of energy and enstrophy, two quadratic forms in the shell amplitudes. Inertially conserving two quadratic integrals leads to two spectral ranges. We study in detail the one characterized by a forward cascade of enstrophy and spectrum close to Kraichnan's $k^{-3}$--law. In an inertial range over more than 15 octaves, the spectrum falls off as $k^{-3.05\\pm 0.01}$, with the same slope in all models. We i...

  19. Ferromagnetism and d-wave superconductivity in the 2D Hubbard model

    By using the functional renormalization group we compute detailed momentum dependencies of the scale-dependent interaction vertex of the 2D (t,t')-Hubbard model. Compared to previous studies we improve accuracy by separating dominant parts from a remainder term. The former explicitly describe, for example, the interaction of Cooper pairs or spin operators. Applying the method to the repulsive Hubbard model we find d-wave superconductivity or ferromagnetism for larger next-to-nearest neighbor hopping amplitude t' at Van Hove Filling. Both ordering tendencies strongly compete with each other.

  20. Brane brick models, toric Calabi-Yau 4-folds and 2d (0,2) quivers

    Franco, Sebastián; Lee, Sangmin; Seong, Rak-Kyeong

    2016-02-01

    We introduce brane brick models, a novel type of Type IIA brane configurations consisting of D4-branes ending on an NS5-brane. Brane brick models are T-dual to D1-branes over singular toric Calabi-Yau 4-folds. They fully encode the infinite class of 2 d (generically) {N}=(0,2) gauge theories on the worldvolume of the D1-branes and streamline their connection to the probed geometries. For this purpose, we also introduce new combinatorial procedures for deriving the Calabi-Yau associated to a given gauge theory and vice versa.

  1. Brane Brick Models, Toric Calabi-Yau 4-Folds and 2d (0,2) Quivers

    Franco, Sebastian; Seong, Rak-Kyeong

    2015-01-01

    We introduce brane brick models, a novel type of Type IIA brane configurations consisting of D4-branes ending on an NS5-brane. Brane brick models are T-dual to D1-branes over singular toric Calabi-Yau 4-folds. They fully encode the infinite class of 2d (generically) N=(0,2) gauge theories on the worldvolume of the D1-branes and streamline their connection to the probed geometries. For this purpose, we also introduce new combinatorial procedures for deriving the Calabi-Yau associated to a given gauge theory and vice versa.

  2. Canonical vs. micro-canonical sampling methods in a 2D Ising model

    Canonical and micro-canonical Monte Carlo algorithms were implemented on a 2D Ising model. Expressions for the internal energy, U, inverse temperature, Z, and specific heat, C, are given. These quantities were calculated over a range of temperature, lattice sizes, and time steps. Both algorithms accurately simulate the Ising model. To obtain greater than three decimal accuracy from the micro-canonical method requires that the more complicated expression for Z be used. The overall difference between the algorithms is small. The physics of the problem under study should be the deciding factor in determining which algorithm to use. 13 refs., 6 figs., 2 tabs

  3. On the 2D zero modes' algebra of the SU(n) WZNW model

    Hadjiivanov, Ludmil

    2014-01-01

    A quantum group covariant extension of the chiral parts of the Wess-Zumino-Novikov-Witten model on a compact Lie group G gives rise to two matrix algebras with non-commutative entries. These are generated by "chiral zero modes" which combine in the 2D model into "Q-operators" which encode information about the internal symmetry and the fusion ring. We review earlier results about the SU(n) WZNW Q-algebra and its Fock representation for n=2 and display the first steps towards their generalization to higher n.

  4. Thermal excitations of frustrated XY spins in two dimensions

    We present a new variational approach to the study of phase transitions in frustrated 2D XY models. In the spirit of Villain's approach for the ferromagnetic case we divide thermal excitations into a low temperature long wavelength part (LW) and a high temperature short wavelength part (SW). In the present work we mainly deal with LW excitations and we explicitly consider the cases of the fully frustrated triangular (FFTXY) and square (FFSQXY) XY models. The novel aspect of our method is that it preserves the coupling between phase (spin angles) and chiral degrees of freedom. LW fluctuations consist of coupled phase and chiral excitations. As a result, we find that for frustrated systems the effective interactions between phase variables is long range and oscillatory in contrast to the unfrustrated problem. Using Monte Carlo (MC) simulations we show that our analytical calculations produce accurate results at all temperature T; this is seen at low T in the spin wave stiffness constant and in the staggered chirality; this is also the case near Tc: transitions are driven by the SW part associated with domain walls and vortices, but the coupling between phase and chiral variables is still relevant in the critical region. In that regime our analytical results yield the correct T dependence for bare couplings (given by the LW fluctuations) such as the Coulomb gas temperature TCG of the frustrated XY models. In particular, we find that TCG tracks chiral rather than phase fluctuations. Our results provide support for a single phase transition scenario in the FFTXY and FFSQXY models. (author). 35 refs, 8 figs

  5. Graphene as a model system for 2D fracture behavior of perfect and defective solids

    P. Hess

    2015-10-01

    Full Text Available A 2D bond-breaking model is presented that allows the extraction of the intrinsic line or edge energy, fracture toughness, and strain energy release rate of graphene from measured and calculated 2D Young’s moduli and 2D pristine strengths. The ideal fracture stress of perfect graphene is compared with the critical fracture stresses of defective graphene sheets containing different types of imperfections. This includes (multiple vacancies in the subnanometer range, grain boundaries, slits in the nanometer region, and artificial pre-cracks with sizes of 30 nm to 1 μm. Independent of the type of defect, a common dependence of the critical fracture strength on the square root of half defect size is observed. Furthermore, the results suggest the applicability of the Griffith relation at length scales of several nanometers. This observation is not consistent with simulations pointing to the existence of a flaw tolerance for defects with nanometer size. According to simulations for quasi-static growth of pre-existing cracks, the atomic mechanism may also consist of an alternating sequence of bond-breaking and bond-rotation steps with a straight extension of the crack path. Independent of the exact atomic failure mechanism brittle fracture of graphene is generally assumed at low temperatures.

  6. 2D-3D Registration of CT Vertebra Volume to Fluoroscopy Projection: A Calibration Model Assessment

    P. Bifulco

    2010-01-01

    Full Text Available This study extends a previous research concerning intervertebral motion registration by means of 2D dynamic fluoroscopy to obtain a more comprehensive 3D description of vertebral kinematics. The problem of estimating the 3D rigid pose of a CT volume of a vertebra from its 2D X-ray fluoroscopy projection is addressed. 2D-3D registration is obtained maximising a measure of similarity between Digitally Reconstructed Radiographs (obtained from the CT volume and real fluoroscopic projection. X-ray energy correction was performed. To assess the method a calibration model was realised a sheep dry vertebra was rigidly fixed to a frame of reference including metallic markers. Accurate measurement of 3D orientation was obtained via single-camera calibration of the markers and held as true 3D vertebra position; then, vertebra 3D pose was estimated and results compared. Error analysis revealed accuracy of the order of 0.1 degree for the rotation angles of about 1 mm for displacements parallel to the fluoroscopic plane, and of order of 10 mm for the orthogonal displacement.

  7. Methodology for Modeling 2-D Groundwater Motion in a Geographic Information System (GIS)

    From the mid-1950's through the 1980's, the U.S. Department of Energy's Savannah River Site (SRS) produced nuclear materials for the weapons stockpile, for medical and industrial applications, and for space exploration. A legacy of this production is groundwater contamination located near previous production sites. This contamination is comprised mainly of heavy metals, organic degreasers, and radionuclides such as tritium. To monitor this contamination, a network of more than 1000 groundwater wells has been established across SRS. As a result of this contamination, extensive remediation activities are ongoing at SRS. Modeling the 3-D flow and transport of groundwater to support these efforts is a time consuming and arduous task involving discretizing a model domain representing geological and hydrogeological surfaces, specifying appropriate boundary conditions, and calibrating the model to measured piezometric and potentiometric data. For SRS areas where the groundwater motion is essentially 2-D with negligible vertical gradients, a simplified modeling capability was developed in a GIS software framework providing the capability to simulate 2-D groundwater motion with results that could be obtained in hours, versus weeks or months often required for a full 3-D model

  8. Comparison of 1D and 2D CSR Models with Application to the FERMI@ELETTRA Bunch Compressors

    Bassi, G.; Ellison, J.A.; Heinemann, K.

    2011-03-28

    We compare our 2D mean field (Vlasov-Maxwell) treatment of coherent synchrotron radiation (CSR) effects with 1D approximations of the CSR force which are commonly implemented in CSR codes. In our model we track particles in 4D phase space and calculate 2D forces [1]. The major cost in our calculation is the computation of the 2D force. To speed up the computation and improve 1D models we also investigate approximations to our exact 2D force. As an application, we present numerical results for the Fermi{at}Elettra first bunch compressor with the configuration described in [1].

  9. Comparison of 1D and 2D CSR Models with Application to the FERMI(at)ELETTRA Bunch Compressors

    We compare our 2D mean field (Vlasov-Maxwell) treatment of coherent synchrotron radiation (CSR) effects with 1D approximations of the CSR force which are commonly implemented in CSR codes. In our model we track particles in 4D phase space and calculate 2D forces (1). The major cost in our calculation is the computation of the 2D force. To speed up the computation and improve 1D models we also investigate approximations to our exact 2D force. As an application, we present numerical results for the Fermi(at)Elettra first bunch compressor with the configuration described in (1).

  10. Gender and ethnicity specific generic elastic models from a single 2D image for novel 2D pose face synthesis and recognition.

    Heo, Jingu; Savvides, Marios

    2012-12-01

    In this paper, we propose a novel method for generating a realistic 3D human face from a single 2D face image for the purpose of synthesizing new 2D face images at arbitrary poses using gender and ethnicity specific models. We employ the Generic Elastic Model (GEM) approach, which elastically deforms a generic 3D depth-map based on the sparse observations of an input face image in order to estimate the depth of the face image. Particularly, we show that Gender and Ethnicity specific GEMs (GE-GEMs) can approximate the 3D shape of the input face image more accurately, achieving a better generalization of 3D face modeling and reconstruction compared to the original GEM approach. We qualitatively validate our method using publicly available databases by showing each reconstructed 3D shape generated from a single image and new synthesized poses of the same person at arbitrary angles. For quantitative comparisons, we compare our synthesized results against 3D scanned data and also perform face recognition using synthesized images generated from a single enrollment frontal image. We obtain promising results for handling pose and expression changes based on the proposed method. PMID:22201062

  11. 2D cellular automaton model for the evolution of active region coronal plasmas

    Fuentes, Marcelo López

    2016-01-01

    We study a 2D cellular automaton (CA) model for the evolution of coronal loop plasmas. The model is based on the idea that coronal loops are made of elementary magnetic strands that are tangled and stressed by the displacement of their footpoints by photospheric motions. The magnetic stress accumulated between neighbor strands is released in sudden reconnection events or nanoflares that heat the plasma. We combine the CA model with the Enthalpy Based Thermal Evolution of Loops (EBTEL) model to compute the response of the plasma to the heating events. Using the known response of the XRT telescope on board Hinode we also obtain synthetic data. The model obeys easy to understand scaling laws relating the output (nanoflare energy, temperature, density, intensity) to the input parameters (field strength, strand length, critical misalignment angle). The nanoflares have a power-law distribution with a universal slope of -2.5, independent of the input parameters. The repetition frequency of nanoflares, expressed in t...

  12. Cognitive and Energy Harvesting-Based D2D Communication in Cellular Networks: Stochastic Geometry Modeling and Analysis

    Sakr, Ahmed Hamdi; Hossain, Ekram

    2014-01-01

    While cognitive radio enables spectrum-efficient wireless communication, radio frequency (RF) energy harvesting from ambient interference is an enabler for energy-efficient wireless communication. In this paper, we model and analyze cognitive and energy harvesting-based D2D communication in cellular networks. The cognitive D2D transmitters harvest energy from ambient interference and use one of the channels allocated to cellular users (in uplink or downlink), which is referred to as the D2D c...

  13. Verification of Numerical Modeling in 2-D Wave Propagation in Rock

    LEI Wei-dong; HEFNY Ashraf; TENG Jun; ZHAO Jian; SONG Hong-wei

    2005-01-01

    Compressional harmonic wave propagation from a cylindrical tunnel or borehole in an intact rock is the basis for investigation of the practical explosion waves in a fractured rock mass. The amplitudes of the radial stress wave obtained from the universal distinct element code (UDEC) were compared with the analytical solutions for two cases with different conditions. Good agreements between the UDEC results and the analytical solutions have been achieved. It indicates that UDEC can model 2-D dynamic problems at a high degree of accuracy.

  14. Nishimori point in the 2D +/- J random-bond Ising model

    A. Honecker; Picco, M.; Pujol, P.

    2000-01-01

    We study the universality class of the Nishimori point in the 2D +/- J random-bond Ising model by means of the numerical transfer-matrix method. Using the domain-wall free-energy, we locate the position of the fixed point along the Nishimori line at the critical concentration value p_c = 0.1094 +/- 0.0002 and estimate nu = 1.33 +/- 0.03. Then, we obtain the exponents for the moments of the spin-spin correlation functions as well as the value for the central charge c = 0.464 +/- 0.004. The mai...

  15. Prominence Parameters from 2D Modeling of Lyman Lines Measured with SUMER

    Gunár, Stanislav; Heinzel, Petr; Schmieder, B.; Anzer, U.

    San Francisco: Astronomical Society of the Pacific, 2007 - (Heinzel, P.; Dorotovič, I.; Rutten, R.), s. 317-320. (ASP Conference Series. 368). ISBN 978-1-583812-36-5. [Solar Physics Meeting. Coimbra (PT), 09.10.2006-13.10.2006] Grant ostatní: EU(XE) ESA-PECS project NO. 9030 Institutional research plan: CEZ:AV0Z10030501 Source of funding: V - iné verejné zdroje Keywords : solar prominence * Lyman series lines * 2D modeling Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  16. A quasi 2D semianalytical model for the potential profile in hetero and homojunction tunnel FETs

    Villani, F.; Gnani, E.; Gnudi, A.; Reggiani, S.; Baccarani, G.

    2015-11-01

    A quasi 2D semianalytical model for the potential profile in hetero and homojunction tunnel FETs is developed and compared with full-quantum simulation results. It will be shown that the pure analytical solution perfectly matches results at high VDS. However, a coupling with the numerical solution of the 1D Poisson equation in the radial direction is necessary at low VDS, in order to properly account for the charge density in equilibrium with the drain contact. With such an approach we are able to correctly predict the potential profile for both the linear and saturation regimes.

  17. Non-Fragile Controller Design for 2-D Discrete Uncertain Systems Described by the Roesser Model

    Amit Dhawan

    2012-01-01

    This paper is concerned with the design problem of non-fragile controller for a class of two-dimensional (2-D) discrete uncertain systems described by the Roesser model. The parametric uncertainties are assumed to be norm-bounded. The aim of this paper is to design a memoryless non-fragile state feedback control law such that the closed-loop system is asymptotically stable for all admissible parameter uncertainties and controller gain variations. A new linear matrix inequality (LMI) based suf...

  18. Entanglement entropy through conformal interfaces in the 2D Ising model

    Brehm, Enrico M

    2015-01-01

    We consider the entanglement entropy for the 2D Ising model at the conformal fixed point in the presence of interfaces. More precisely, we investigate the situation where the two subsystems are separated by a defect line that preserves conformal invariance. Using the replica trick, we compute the entanglement entropy between the two subsystems. We observe that the entropy, just like in the case without defects, shows a logarithmic scaling behavior with respect to the size of the system. Here, the prefactor of the logarithm depends on the strength of the defect encoded in the transmission coefficient. We also commend on the supersymmetric case.

  19. Fusion of Critical Defect Lines in the 2D Ising Model

    Bachas, Costas; Brunner, Ilka; Roggenkamp, Daniel

    2013-01-01

    Two defect lines separated by a distance delta look from much larger distances like a single defect. In the critical theory, when all scales are large compared to the cutoff scale, this fusion of defect lines is universal. We calculate the universal fusion rule in the critical 2D Ising model and show that it is given by the Verlinde algebra of primary fields, combined with group multiplication in O(1,1)/Z_2. Fusion is in general singular and requires the subtraction of a divergent Casimir ene...

  20. 3D reconstruction of femoral shape using a two 2D radiographs and statistical parametric model

    In medical imaging, X-ray CT scanner or MRI system are quite useful to acquire 3D shapes of internal organs or bones. However, these apparatuses are generally very expensive and of large size. They also need a prior arrangement, and thus, they are unsuitable for an urgent fracture diagnosis in emergency treatment. This paper proposes a method to estimate a 3D shape of patient's femur from only two radiographs using a parametric femoral model. Firstly, we develop the parametric femoral model utilizing statistical procedure of 3D femoral models by CT images of 51 patients. Then, the pose and shape parameters of the parametric model are estimated from two 2D images using a distance map constructed by the Level Set Method. Experiments using synthesized images and radiographs of a phantom femur are carried out to verify the performance of the proposed technique. (author)

  1. Quasi 2D hydrodynamic modelling of the flooded hinterland due to dyke breaching on the Elbe River

    S. Huang

    2007-01-01

    Full Text Available In flood modeling, many 1D and 2D combination and 2D models are used to simulate diversion of water from rivers through dyke breaches into the hinterland for extreme flood events. However, these models are too demanding in data requirements and computational resources which is an important consideration when uncertainty analysis using Monte Carlo techniques is used to complement the modeling exercise. The goal of this paper is to show the development of a quasi-2D modeling approach, which still calculates the dynamic wave in 1D but the discretisation of the computational units are in 2D, allowing a better spatial representation of the flow in the hinterland due to dyke breaching without a large additional expenditure on data pre-processing and computational time. A 2D representation of the flow and velocity fields is required to model sediment and micro-pollutant transport. The model DYNHYD (1D hydrodynamics from the WASP5 modeling package was used as a basis for the simulations. The model was extended to incorporate the quasi-2D approach and a Monte-Carlo Analysis was used to conduct a flood sensitivity analysis to determine the sensitivity of parameters and boundary conditions to the resulting water flow. An extreme flood event on the Elbe River, Germany, with a possible dyke breach area was used as a test case. The results show a good similarity with those obtained from another 1D/2D modeling study.

  2. Adaptive finite element modeling of direct current resistivity in 2-D generally anisotropic structures

    Yan, Bo; Li, Yuguo; Liu, Ying

    2016-07-01

    In this paper, we present an adaptive finite element (FE) algorithm for direct current (DC) resistivity modeling in 2-D generally anisotropic conductivity structures. Our algorithm is implemented on an unstructured triangular mesh that readily accommodates complex structures such as topography and dipping layers and so on. We implement a self-adaptive, goal-oriented grid refinement algorithm in which the finite element analysis is performed on a sequence of refined grids. The grid refinement process is guided by an a posteriori error estimator. The problem is formulated in terms of total potentials where mixed boundary conditions are incorporated. This type of boundary condition is superior to the Dirichlet type of conditions and improves numerical accuracy considerably according to model calculations. We have verified the adaptive finite element algorithm using a two-layered earth with azimuthal anisotropy. The FE algorithm with incorporation of mixed boundary conditions achieves high accuracy. The relative error between the numerical and analytical solutions is less than 1% except in the vicinity of the current source location, where the relative error is up to 2.4%. A 2-D anisotropic model is used to demonstrate the effects of anisotropy upon the apparent resistivity in DC soundings.

  3. Stochastic dynamics of phase singularities under ventricular fibrillation in 2D Beeler-Reuter model

    Akio Suzuki

    2011-09-01

    Full Text Available The dynamics of ventricular fibrillation (VF has been studied extensively, and the initiation mechanism of VF has been elucidated to some extent. However, the stochastic dynamical nature of sustained VF remains unclear so far due to the complexity of high dimensional chaos in a heterogeneous system. In this paper, various statistical mechanical properties of sustained VF are studied numerically in 2D Beeler-Reuter-Drouhard-Roberge (BRDR model with normal and modified ionic current conductance. The nature of sustained VF is analyzed by measuring various fluctuations of spatial phase singularity (PS such as velocity, lifetime, the rates of birth and death. It is found that the probability density function (pdf for lifetime of PSs is independent of system size. It is also found that the hyper-Gamma distribution serves as a universal pdf for the counting number of PSs for various system sizes and various parameters of our model tissue under VF. Further, it is demonstrated that the nonlinear Langevin equation associated with a hyper-Gamma process can mimic the pdf and temporal variation of the number of PSs in the 2D BRDR model.

  4. EDGE2D modelling of edge profiles obtained in JET diagnostic optimized configuration

    Kallenbach, A [MPI fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany); Andrew, Y [EURATOM/UKAEA Fusion Association, Culham (United Kingdom); Beurskens, M [FOM-Rijnhuizen, Ass. Euratom-FOM, TEC (Netherlands); Corrigan, G [EURATOM/UKAEA Fusion Association, Culham (United Kingdom); Eich, T [MPI fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany); Jachmich, S [ERM, Brussels (Belgium); Kempenaars, M [FOM-Rijnhuizen, Ass. Euratom-FOM, TEC (Netherlands); Korotkov, A [EURATOM/UKAEA Fusion Association, Culham (United Kingdom); Loarte, A [EFDA Close Support Unit, Garching (Germany); Matthews, G [EURATOM/UKAEA Fusion Association, Culham (United Kingdom); Monier-Garbet, P [CEA Cadarache (France); Saibene, G [EFDA Close Support Unit, Garching (Germany); Spence, J [EURATOM/UKAEA Fusion Association, Culham (United Kingdom); Suttrop, W [MPI fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany)

    2004-03-01

    Nine type-I ELMy H-mode discharges in diagnostic optimized configuration in JET are analysed with the EDGE2D/NIMBUS package. EDGE2D solves the fluid equations for the conservation of particles, momentum and energy for hydrogenic and impurity ions, while neutrals are followed with the two-dimensional Monte Carlo module NIMBUS. Using external boundary conditions from the experiment, the perpendicular heat conductivities {chi}{sub i,e} and the particle transport coefficients D, v are varied until good agreement between code result and measured data is obtained. A step-like ansatz is used for the edge transport parameters for the outer core region, the edge transport barrier and the outer scrape-off layer. The time-dependent effect of edge localized modes on the edge profiles is simulated with an ad hoc ELM model based on the repetitive increase of the transport coefficients {chi}{sub i,e} and D. The values of the transport coefficients are matched to experimental data mapped to the outer midplane, in the course of which radial shifts of experimental profiles of the order of 1 cm caused by the accuracy limit of the equilibrium reconstruction are taken into account. Simulated divertor profiles obtained from the upstream transport ansatz and the experimental boundary conditions agree with measurements, except a small region localized at the separatrix strike points which is supposed to be affected by direct ion losses. The integrated analysis using EDGE2D modelling, although still limited by the marginal spatial resolution of individual diagnostics, allows the characterization of profiles in the edge/pedestal region and supplies additional information on the separatrix position. The steep density gradient zone inside the separatrix shrinks compared to the electron temperature with increasing density, indicating the effect of the neutral penetration depth becoming shorter than the region of reduced transport.

  5. Uncertainties in modelling Mt. Pinatubo eruption with 2-D AER model and CCM SOCOL

    Kenzelmann, P.; Weisenstein, D.; Peter, T.; Luo, B. P.; Rozanov, E.; Fueglistaler, S.; Thomason, L. W.

    2009-04-01

    Large volcanic eruptions may introduce a strong forcing on climate. They challenge the skills of climate models. In addition to the short time attenuation of solar light by ashes the formation of stratospheric sulphate aerosols, due to volcanic sulphur dioxide injection into the lower stratosphere, may lead to a significant enhancement of the global albedo. The sulphate aerosols have a residence time of about 2 years. As a consequence of the enhanced sulphate aerosol concentration both the stratospheric chemistry and dynamics are strongly affected. Due to absorption of longwave and near infrared radiation the temperature in the lower stratosphere increases. So far chemistry climate models overestimate this warming [Eyring et al. 2006]. We present an extensive validation of extinction measurements and model runs of the eruption of Mt. Pinatubo in 1991. Even if Mt. Pinatubo eruption has been the best quantified volcanic eruption of this magnitude, the measurements show considerable uncertainties. For instance the total amount of sulphur emitted to the stratosphere ranges from 5-12 Mt sulphur [e.g. Guo et al. 2004, McCormick, 1992]. The largest uncertainties are in the specification of the main aerosol cloud. SAGE II, for instance, could not measure the peak of the aerosol extinction for about 1.5 years, because optical termination was reached. The gap-filling of the SAGE II [Thomason and Peter, 2006] using lidar measurements underestimates the total extinctions in the tropics for the first half year after the eruption by 30% compared to AVHRR [Rusell et. al 1992]. The same applies to the optical dataset described by Stenchikov et al. [1998]. We compare these extinction data derived from measurements with extinctions derived from AER 2D aerosol model calculations [Weisenstein et al., 2007]. Full microphysical calculations with injections of 14, 17, 20 and 26 Mt SO2 in the lower stratosphere were performed. The optical aerosol properties derived from SAGE II

  6. Well-posedness and generalized plane waves simulations of a 2D mode conversion model

    Imbert-Gérard, Lise-Marie

    2015-01-01

    Certain types of electro-magnetic waves propagating in a plasma can undergo a mode conversion process. In magnetic confinement fusion, this phenomenon is very useful to heat the plasma, since it permits to transfer the heat at or near the plasma center. This work focuses on a mathematical model of wave propagation around the mode conversion region, from both theoretical and numerical points of view. It aims at developing, for a well-posed equation, specific basis functions to study a wave mode conversion process. These basis functions, called generalized plane waves, are intrinsically based on variable coefficients. As such, they are particularly adapted to the mode conversion problem. The design of generalized plane waves for the proposed model is described in detail. Their implementation within a discontinuous Galerkin method then provides numerical simulations of the process. These first 2D simulations for this model agree with qualitative aspects studied in previous works.

  7. A coupled $2\\times2$D Babcock-Leighton solar dynamo model. II. Reference dynamo solutions

    Lemerle, Alexandre

    2016-01-01

    In this paper we complete the presentation of a new hybrid $2\\times2$D flux transport dynamo (FTD) model of the solar cycle based on the Babcock-Leighton mechanism of poloidal magnetic field regeneration via the surface decay of bipolar magnetic regions (BMRs). This hybrid model is constructed by allowing the surface flux transport (SFT) simulation described in Lemerle et al. 2015 to provide the poloidal source term to an axisymmetric FTD simulation defined in a meridional plane, which in turn generates the BMRs required by the SFT. A key aspect of this coupling is the definition of an emergence function describing the probability of BMR emergence as a function of the spatial distribution of the internal axisymmetric magnetic field. We use a genetic algorithm to calibrate this function, together with other model parameters, against observed cycle 21 emergence data. We present a reference dynamo solution reproducing many solar cycle characteristics, including good hemispheric coupling, phase relationship betwe...

  8. Using the activated sludge model 2d (ASM2d) to understand and predict the phosphorus accumulating organisms mechanism in enhanced biological phosphorus removal in relation to disintegrated sludge as a carbon source

    Boontian, Nittaya

    2012-01-01

    Carbon sources are considered as one of the most important factors in the performance of enhanced biological phosphorus removal (EBPR). Disintegrated sludge (DS) can act as carbon source to increase the efficiency of EBPR. This research explores the influence of DS upon phosphorus removal efficiency using mathematical simulation modeling. Activated Sludge Model No. 2d (ASM2d) is one of the most useful of activated sludge (AS) models. This is because ASM2d can express the integrated mechanisms...

  9. Modeling and 2-D discrete simulation of dislocation dynamics for plastic deformation of metal

    Liu, Juan; Cui, Zhenshan; Ou, Hengan; Ruan, Liqun

    2013-05-01

    Two methods are employed in this paper to investigate the dislocation evolution during plastic deformation of metal. One method is dislocation dynamic simulation of two-dimensional discrete dislocation dynamics (2D-DDD), and the other is dislocation dynamics modeling by means of nonlinear analysis. As screw dislocation is prone to disappear by cross-slip, only edge dislocation is taken into account in simulation. First, an approach of 2D-DDD is used to graphically simulate and exhibit the collective motion of a large number of discrete dislocations. In the beginning, initial grains are generated in the simulation cells according to the mechanism of grain growth and the initial dislocation is randomly distributed in grains and relaxed under the internal stress. During the simulation process, the externally imposed stress, the long range stress contribution of all dislocations and the short range stress caused by the grain boundaries are calculated. Under the action of these forces, dislocations begin to glide, climb, multiply, annihilate and react with each other. Besides, thermal activation process is included. Through the simulation, the distribution of dislocation and the stress-strain curves can be obtained. On the other hand, based on the classic dislocation theory, the variation of the dislocation density with time is described by nonlinear differential equations. Finite difference method (FDM) is used to solve the built differential equations. The dislocation evolution at a constant strain rate is taken as an example to verify the rationality of the model.

  10. Modeling floods in a dense urban area using 2D shallow water equations

    Mignot, E.; Paquier, A.; Haider, S.

    2006-07-01

    SummaryA code solving the 2D shallow water equations by an explicit second-order scheme is used to simulate the severe October 1988 flood in the Richelieu urban locality of the French city of Nîmes. A reference calculation using a detailed description of the street network and of the cross-sections of the streets, considering impervious residence blocks and neglecting the flow interaction with the sewer network provides a mean peak water elevation 0.13 m lower than the measured flood marks with a standard deviation between the measured and computed water depths of 0.53 m. Sensitivity analysis of various topographical and numerical parameters shows that globally, the results keep the same level of accuracy, which reflects both the stability of the calculation method and the smoothening of results. However, the local flow modifications due to change of parameter values can drastically modify the local water depths, especially when the local flow regime is modified. Furthermore, the flow distribution to the downstream parts of the city can be altered depending on the set of parameters used. Finally, a second event, the 2002 flood, was simulated with the calibrated model providing results similar to 1988 flood calculation. Thus, the article shows that, after calibration, a 2D model can be used to help planning mitigation measures in a dense urban area.

  11. Interpretation of gravity data using 2-D continuous wavelet transformation and 3-D inverse modeling

    Roshandel Kahoo, Amin; Nejati Kalateh, Ali; Salajegheh, Farshad

    2015-10-01

    Recently the continuous wavelet transform has been proposed for interpretation of potential field anomalies. In this paper, we introduced a 2D wavelet based method that uses a new mother wavelet for determination of the location and the depth to the top and base of gravity anomaly. The new wavelet is the first horizontal derivatives of gravity anomaly of a buried cube with unit dimensions. The effectiveness of the proposed method is compared with Li and Oldenburg inversion algorithm and is demonstrated with synthetics and real gravity data. The real gravity data is taken over the Mobrun massive sulfide ore body in Noranda, Quebec, Canada. The obtained results of the 2D wavelet based algorithm and Li and Oldenburg inversion on the Mobrun ore body had desired similarities to the drill-hole depth information. In all of the inversion algorithms the model non-uniqueness is the challenging problem. Proposed method is based on a simple theory and there is no model non-uniqueness on it.

  12. 2D-hybrid particle model with non-linear electron distribution

    A 2D, hybrid (particle-ion, fluid-electron) simulation code characterized by the solution of the non-linear modified Poisson equation, which results assuming the Boltzmann distribution for the electrons, is presented. The field solution is achieved through an iterative procedure. Anyhow a new scheme is considered. The potential is not obtained by directly solving the finite difference equation but via the Green's function method. The procedure begins with the first guess for the potential. This is found through the solution of the linearized modified Poisson equation. The Green's function for this equation, in the 2D case which is considered, can be found analytically in terms of the Newmann functions. Once the potential corresponding to the linearized modified Poisson equation is known, the first approximation of the electron (Boltzmann) distribution can be calculated. This distribution, plus the one given by the (particle) ions, is considered as the source term for the Poisson equation (which now is not modified since the fluid electron component is taken into account in the source term itself). The solution of this Poisson equation gives the second approximation of the electric potential and is still obtained via the Green's function method (as it comes from the Coulomb law, modified for the 2D case). Each time step this procedure can be iterated according to the desired accuracy. The last iteration cycle is different: in fact the direct solution for the electric field can be obtained, without numerical differencing from the potential. It is sufficient in this case to consider the electric field Green's functions (x- and y-component) for the Poisson equation (in place of the electric potential Green's function). The first results obtained with this new code are here presented and compared with previous simulation runs based on a linearized Boltzmann distribution model. 3 refs

  13. Improved CUDA programs for GPU computing of Swendsen-Wang multi-cluster spin flip algorithm: 2D and 3D Ising, Potts, and XY models

    Komura, Yukihiro; Okabe, Yutaka

    2016-03-01

    We present new versions of sample CUDA programs for the GPU computing of the Swendsen-Wang multi-cluster spin flip algorithm. In this update, we add the method of GPU-based cluster-labeling algorithm without the use of conventional iteration (Komura, 2015) to those programs. For high-precision calculations, we also add a random-number generator in the cuRAND library. Moreover, we fix several bugs and remove the extra usage of shared memory in the kernel functions.

  14. Be2D: A model to understand the distribution of meteoric 10Be in soilscapes

    Campforts, Benjamin; Vanacker, Veerle; Vanderborght, Jan; Govers, Gerard

    2016-04-01

    Cosmogenic nuclides have revolutionised our understanding of earth surface process rates. They have become one of the standard tools to quantify soil production by weathering, soil redistribution and erosion. Especially Beryllium-10 has gained much attention due to its long half-live and propensity to be relatively conservative in the landscape. The latter makes 10Be an excellent tool to assess denudation rates over the last 1000 to 100 × 103 years, bridging the anthropogenic and geological time scale. Nevertheless, the mobility of meteoric 10Be in soil systems makes translation of meteoric 10Be inventories into erosion and deposition rates difficult. Here we present a coupled soil hillslope model, Be2D, that is applied to synthetic and real topography to address the following three research questions. (i) What is the influence of vertical meteoric Be10 mobility, caused by chemical mobility, clay translocation and bioturbation, on its lateral redistribution over the soilscape, (ii) How does vertical mobility influence erosion rates and soil residence times inferred from meteoric 10Be inventories and (iii) To what extent can a tracer with a half-life of 1.36 Myr be used to distinguish between natural and human-disturbed soil redistribution rates? The model architecture of Be2D is designed to answer these research questions. Be2D is a dynamic model including physical processes such as soil formation, physical weathering, clay migration, bioturbation, creep, overland flow and tillage erosion. Pathways of meteoric 10Be mobility are simulated using a two step approach which is updated each timestep. First, advective and diffusive mobility of meteoric 10Be is simulated within the soil profile and second, lateral redistribution because of lateral soil fluxes is calculated. The performance and functionality of the model is demonstrated through a number of synthetic and real model runs using existing datasets of meteoric 10Be from case-studies in southeastern US. Brute

  15. Estimating nitrogen losses in furrow irrigated soil amended by compost using HYDRUS-2D model

    Iqbal, Shahid; Guber, Andrey; Zaman Khan, Haroon; ullah, Ehsan

    2014-05-01

    Furrow irrigation commonly results in high nitrogen (N) losses from soil profile via deep infiltration. Estimation of such losses and their reduction is not a trivial task because furrow irrigation creates highly nonuniform distribution of soil water that leads to preferential water and N fluxes in soil profile. Direct measurements of such fluxes are impractical. The objective of this study was to assess applicability of HYDRUS-2D model for estimating nitrogen balance in manure amended soil under furrow irrigation. Field experiments were conducted in a sandy loam soil amended by poultry manure compost (PMC) and pressmud compost (PrMC) fertilizers. The PMC and PrMC contained 2.5% and 0.9% N and were applied at 5 rates: 2, 4, 6, 8 and 10 ton/ha. Plots were irrigated starting from 26th day from planting using furrows with 1x1 ridge to furrow aspect ratio. Irrigation depths were 7.5 cm and time interval between irrigations varied from 8 to 15 days. Results of the field experiments showed that approximately the same corn yield was obtained with considerably higher N application rates using PMC than using PrMC as a fertilizer. HYDRUS-2D model was implemented to evaluate N fluxes in soil amended by PMC and PrMC fertilizers. Nitrogen exchange between two pools of organic N (compost and soil) and two pools of mineral N (soil NH4-N and soil NO3-N) was modeled using mineralization and nitrification reactions. Sources of mineral N losses from soil profile included denitrification, root N uptake and leaching with deep infiltration of water. HYDRUS-2D simulations showed that the observed increases in N root water uptake and corn yields associated with compost application could not be explained by the amount of N added to soil profile with the compost. Predicted N uptake by roots significantly underestimated the field data. Good agreement between simulated and field-estimated values of N root uptake was achieved when the rate of organic N mineralization was increased

  16. Singularities of the Partition Function for the Ising Model Coupled to 2D Quantum Gravity

    Ambjørn, J.; Anagnostopoulos, K. N.; Magnea, U.

    We study the zeros in the complex plane of the partition function for the Ising model coupled to 2D quantum gravity for complex magnetic field and real temperature, and for complex temperature and real magnetic field, respectively. We compute the zeros by using the exact solution coming from a two-matrix model and by Monte-Carlo simulations of Ising spins on dynamical triangulations. We present evidence that the zeros form simple one-dimensional curves in the complex plane, and that the critical behaviour of the system is governed by the scaling of the distribution of the singularities near the critical point. Despite the small size of the systems studied, we can obtain a reasonable estimate of the (known) critical exponents.

  17. On Spectral Laws of 2D-Turbulence in Shell Models

    Frick, P; Frick, Peter; Aurell, Erik

    1993-01-01

    We consider a class of shell models of 2D-turbulence. They conserve inertially the analogues of energy and enstrophy, two quadratic forms in the shell amplitudes. Inertially conserving two quadratic integrals leads to two spectral ranges. We study in detail the one characterized by a forward cascade of enstrophy and spectrum close to Kraichnan's $k^{-3}$--law. In an inertial range over more than 15 octaves, the spectrum falls off as $k^{-3.05\\pm 0.01}$, with the same slope in all models. We identify a ``spurious'' intermittency effect, in that the energy spectrum over a rather wide interval adjoing the viscous cut-off, is well approximated by a power-law with fall-off significantly steeper than $k^{-3}$.

  18. Optimal implicit 2-D finite differences to model wave propagation in poroelastic media

    Itzá, Reymundo; Iturrarán-Viveros, Ursula; Parra, Jorge O.

    2016-05-01

    Numerical modeling of seismic waves in heterogeneous porous reservoir rocks is an important tool for the interpretation of seismic surveys in reservoir engineering. We apply globally optimal implicit staggered-grid finite-differences to model 2-D wave propagation in heterogeneous poroelastic media at a low-frequency range (waves (for a porous media saturated with fluid). The numerical dispersion and stability conditions are derived using von Neumann analysis, showing that over a wide range of porous materials the Courant condition governs the stability and this optimal implicit scheme improves the stability of explicit schemes. High order explicit finite-differences (FD) can be replaced by some lower order optimal implicit FD so computational cost will not be as expensive while maintaining the accuracy. Here we compute weights for the optimal implicit FD scheme to attain an accuracy of γ = 10-8. The implicit spatial differentiation involves solving tridiagonal linear systems of equations through Thomas' algorithm.

  19. Complex-temperature properties of the Ising model on 2D heteropolygonal lattices

    Matveev, V; Matveev, Victor; Shrock, Robert

    1995-01-01

    Using exact results, we determine the complex-temperature phase diagrams of the 2D Ising model on three regular heteropolygonal lattices, (3 \\cdot 6 \\cdot 3 \\cdot 6) (kagom\\'{e}), (3 \\cdot 12^2), and (4 \\cdot 8^2) (bathroom tile), where the notation denotes the regular n-sided polygons adjacent to each vertex. We also work out the exact complex-temperature singularities of the spontaneous magnetisation. A comparison with the properties on the square, triangular, and hexagonal lattices is given. In particular, we find the first case where, even for isotropic spin-spin exchange couplings, the nontrivial non-analyticities of the free energy of the Ising model lie in a two-dimensional, rather than one-dimensional, algebraic variety in the z=e^{-2K} plane.

  20. SO(3) vortices and disorder in the 2d SU(2) chiral model

    Kovács, T G

    1995-01-01

    We study the correlation function of the 2d SU(2) principal chiral model on the lattice. By rewriting the model in terms of Z(2) degrees of freedom coupled to SO(3) vortices we show that the vortices play a crucial role in disordering the correlations at low temperature. Using a series of exact transformations we prove that, if satisfied, certain inequalities between vortex correlations imply exponential fall-off of the correlation function at arbitrarily low temperatures. We also present some Monte Carlo evidence that these correlation inequalities are indeed satisfied. Our method can be easily translated to the language of 4d SU(2) gauge theory to establish the role of corresponding SO(3) monopoles in maintaining confinement at small couplings.

  1. A VERTICAL 2D MATHEMATICAL MODEL FOR HYDRODYNAMIC FLOWS WITH FREE SURFACE IN σ COORDINATE

    2006-01-01

    Numerical models with hydrostatic pressure have been widely utilized in studying flows in rivers, estuaries and coastal areas. The hydrostatic assumption is valid for the large-scale surface flows where the vertical acceleration can be ignored, but for some particular cases the hydrodynamic pressure is important. In this paper, a vertical 2D mathematical model with non-hydrostatic pressure was implemented in the σ coordinate. A fractional step method was used to enable the pressure to be decomposed into hydrostatic and hydrodynamic components and the predictor-corrector approach was applied to integration in time domain. Finally, several computational cases were studied to validate the importance of contributions of the hydrodynamic pressure.

  2. 2D and 3D numerical modeling of seismic waves from explosion sources

    Over the last decade, nonlinear and linear 2D axisymmetric finite difference codes have been used in conjunction with far-field seismic Green's functions to simulate seismic waves from a variety of sources. In this paper we briefly review some of the results and conclusions that have resulted from numerical simulations and explosion modeling in support of treaty verification research at S-CUBED in the last decade. We then describe in more detail the results from two recent projects. Our goal is to provide a flavor for the kinds of problems that can be examined with numerical methods for modeling excitation of seismic waves from explosions. Two classes of problems have been addressed; nonlinear and linear near-source interactions. In both classes of problems displacements and tractions are saved on a closed surface in the linear region and the representation theorem is used to propagate the seismic waves to the far-field

  3. A New Material Model for 2D FE Analysis of Adhesively Bonded Composite Joints

    Libin ZHAO

    2014-12-01

    Full Text Available Effective and convenient stress analysis techniques play important roles in the analysis and design of adhesively bonded composite joints. A new material model is presented at the level of composite ply according to the orthotropic elastic mechanics theory and plane strain assumption. The model proposed has the potential to reserve nature properties of laminates with ply-to-ply modeling. The equivalent engineering constants in the model are obtained only by the material properties of unidirectional composites. Based on commercial FE software ABAQUS, a 2D FE model of a single-lap adhesively bonded joint was established conveniently by using the new model without complex modeling process and much professional knowledge. Stress distributions in adhesive were compared with the numerical results by Tsai and Morton and interlaminar stresses between adhesive and adherents were compared with the results from a detailed 3D FE analysis. Good agreements in both cases verify the validity of the proposed model. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.5960

  4. 2D time-domain finite-difference modeling for viscoelastic seismic wave propagation

    Fan, Na; Zhao, Lian-Feng; Xie, Xiao-Bi; Ge, Zengxi; Yao, Zhen-Xing

    2016-07-01

    Real Earth media are not perfectly elastic. Instead, they attenuate propagating mechanical waves. This anelastic phenomenon in wave propagation can be modeled by a viscoelastic mechanical model consisting of several standard linear solids. Using this viscoelastic model, we approximate a constant Q over a frequency band of interest. We use a four-element viscoelastic model with a tradeoff between accuracy and computational costs to incorporate Q into 2D time-domain first-order velocity-stress wave equations. To improve the computational efficiency, we limit the Q in the model to a list of discrete values between 2 and 1000. The related stress and strain relaxation times that characterize the viscoelastic model are pre-calculated and stored in a database for use by the finite-difference calculation. A viscoelastic finite-difference scheme that is second-order in time and fourth-order in space is developed based on the MacCormack algorithm. The new method is validated by comparing the numerical result with analytical solutions that are calculated using the generalized reflection/transmission coefficient method. The synthetic seismograms exhibit greater than 95 per cent consistency in a two-layer viscoelastic model. The dispersion generated from the simulation is consistent with the Kolsky-Futterman dispersion relationship.

  5. Transforming 2d Cadastral Data Into a Dynamic Smart 3d Model

    Tsiliakou, E.; Labropoulos, T.; Dimopoulou, E.

    2013-08-01

    3D property registration has become an imperative need in order to optimally reflect all complex cases of the multilayer reality of property rights and restrictions, revealing their vertical component. This paper refers to the potentials and multiple applications of 3D cadastral systems and explores the current state-of-the art, especially the available software with which 3D visualization can be achieved. Within this context, the Hellenic Cadastre's current state is investigated, in particular its data modeling frame. Presenting the methodologies and specifications addressing the registration of 3D properties, the operating cadastral system's shortcomings and merits are pointed out. Nonetheless, current technological advances as well as the availability of sophisticated software packages (proprietary or open source) call for 3D modeling. In order to register and visualize the complex reality in 3D, Esri's CityEngine modeling software has been used, which is specialized in the generation of 3D urban environments, transforming 2D GIS Data into Smart 3D City Models. The application of the 3D model concerns the Campus of the National Technical University of Athens, in which a complex ownership status is established along with approved special zoning regulations. The 3D model was built using different parameters based on input data, derived from cadastral and urban planning datasets, as well as legal documents and architectural plans. The process resulted in a final 3D model, optimally describing the cadastral situation and built environment and proved to be a good practice example of 3D visualization.

  6. The development and testing of a 2D laboratory seismic modelling system for heterogeneous structure investigations

    Mo, Yike; Greenhalgh, Stewart A.; Robertsson, Johan O. A.; Karaman, Hakki

    2015-05-01

    Lateral velocity variations and low velocity near-surface layers can produce strong scattered and guided waves which interfere with reflections and lead to severe imaging problems in seismic exploration. In order to investigate these specific problems by laboratory seismic modelling, a simple 2D ultrasonic model facility has been recently assembled within the Wave Propagation Lab at ETH Zurich. The simulated geological structures are constructed from 2 mm thick metal and plastic sheets, cut and bonded together. The experiments entail the use of a piezoelectric source driven by a pulse amplifier at ultrasonic frequencies to generate Lamb waves in the plate, which are detected by piezoelectric receivers and recorded digitally on a National Instruments recording system, under LabVIEW software control. The 2D models employed were constructed in-house in full recognition of the similitude relations. The first heterogeneous model features a flat uniform low velocity near-surface layer and deeper dipping and flat interfaces separating different materials. The second model is comparable but also incorporates two rectangular shaped inserts, one of low velocity, the other of high velocity. The third model is identical to the second other than it has an irregular low velocity surface layer of variable thickness. Reflection as well as transmission experiments (crosshole & vertical seismic profiling) were performed on each model. The two dominant Lamb waves recorded are the fundamental symmetric mode (non-dispersive) and the fundamental antisymmetric (flexural) dispersive mode, the latter normally being absent when the source transducer is located on a model edge but dominant when it is on the flat planar surface of the plate. Experimental group and phase velocity dispersion curves were determined and plotted for both modes in a uniform aluminium plate. For the reflection seismic data, various processing techniques were applied, as far as pre-stack Kirchhoff migration. The

  7. Coronary arteries motion modeling on 2D x-ray images

    Gao, Yang; Sundar, Hari

    2012-02-01

    During interventional procedures, 3D imaging modalities like CT and MRI are not commonly used due to interference with the surgery and radiation exposure concerns. Therefore, real-time information is usually limited and building models of cardiac motion are difficult. In such case, vessel motion modeling based on 2-D angiography images become indispensable. Due to issues with existing vessel segmentation algorithms and the lack of contrast in occluded vessels, manual segmentation of certain branches is usually necessary. In addition, such occluded branches are the most important vessels during coronary interventions and obtaining motion models for these can greatly help in reducing the procedure time and radiation exposure. Segmenting different cardiac phases independently does not guarantee temporal consistency and is not efficient for occluded branches required manual segmentation. In this paper, we propose a coronary motion modeling system which extracts the coronary tree for every cardiac phase, maintaining the segmentation by tracking the coronary tree during the cardiac cycle. It is able to map every frame to the specific cardiac phase, thereby inferring the shape information of the coronary arteries using the model corresponding to its phase. Our experiments show that our motion modeling system can achieve promising results with real-time performance.

  8. The combined effect of attraction and orientation zones in 2D flocking models

    Iliass, Tarras; Cambui, Dorilson

    2016-01-01

    In nature, many animal groups, such as fish schools or bird flocks, clearly display structural order and appear to move as a single coherent entity. In order to understand the complex motion of these systems, we study the Vicsek model of self-propelled particles (SPP) which is an important tool to investigate the behavior of collective motion of live organisms. This model reproduces the biological behavior patterns in the two-dimensional (2D) space. Within the framework of this model, the particles move with the same absolute velocity and interact locally in the zone of orientation by trying to align their direction with that of the neighbors. In this paper, we model the collective movement of SPP using an agent-based model which follows biologically motivated behavioral rules, by adding a second region called the attraction zone, where each particles move towards each other avoiding being isolated. Our main goal is to present a detailed numerical study on the effect of the zone of attraction on the kinetic phase transition of our system. In our study, the consideration of this zone seems to play an important role in the cohesion. Consequently, in the directional orientation, the zone that we added forms the compact particle group. In our simulation, we show clearly that the model proposed here can produce two collective behavior patterns: torus and dynamic parallel group. Implications of these findings are discussed.

  9. Universality Class of the Nishimori Point in the 2D +/-J Random-Bond Ising Model

    Honecker, A.; Picco, M.; Pujol, P.

    2001-07-01

    We study the universality class of the Nishimori point in the 2D +/-J random-bond Ising model by means of the numerical transfer-matrix method. Using the domain-wall free energy, we locate the position of the fixed point along the Nishimori line at the critical concentration value pc = 0.1094+/-0.0002 and estimate ν = 1.33+/-0.03. Then, we obtain the exponents for the moments of the spin-spin correlation functions as well as the value for the central charge c = 0.464+/-0.004. The main qualitative result is the fact that percolation is now excluded as a candidate for describing the universality class of this fixed point.

  10. Universality Class of the Nishimori Point in the 2D {+-}J Random-Bond Ising Model

    Honecker, A.; Picco, M.; Pujol, P.

    2001-07-23

    We study the universality class of the Nishimori point in the 2D {+-}J random-bond Ising model by means of the numerical transfer-matrix method. Using the domain-wall free energy, we locate the position of the fixed point along the Nishimori line at the critical concentration value p{sub c}=0.1094{+-}0.0002 and estimate {nu}=1.33{+-}0.03 . Then, we obtain the exponents for the moments of the spin-spin correlation functions as well as the value for the central charge c=0.464{+-}0.004 . The main qualitative result is the fact that percolation is now excluded as a candidate for describing the universality class of this fixed point.

  11. The strong-weak coupling symmetry in 2D Φ4 field models

    B.N.Shalaev

    2005-01-01

    Full Text Available It is found that the exact beta-function β(g of the continuous 2D gΦ4 model possesses two types of dual symmetries, these being the Kramers-Wannier (KW duality symmetry and the strong-weak (SW coupling symmetry f(g, or S-duality. All these transformations are explicitly constructed. The S-duality transformation f(g is shown to connect domains of weak and strong couplings, i.e. above and below g*. Basically it means that there is a tempting possibility to compute multiloop Feynman diagrams for the β-function using high-temperature lattice expansions. The regular scheme developed is found to be strongly unstable. Approximate values of the renormalized coupling constant g* found from duality symmetry equations are in an agreement with available numerical results.

  12. Transition from static to kinetic friction: Insights from a 2D model

    Trømborg, Jørgen; Amundsen, David Skålid; Thøgersen, Kjetil; Malthe-Sørenssen, Anders

    2013-01-01

    We describe a 2D spring-block model for the transition from static to kinetic friction at an elastic slider/rigid substrate interface obeying a minimalistic friction law (Amontons-Coulomb). By using realistic boundary conditions, a number of previously unexplained experimental results on precursory micro-slip fronts are successfully reproduced. From the analysis of the interfacial stresses, we derive a prediction for the evolution of the precursor length as a function of the applied loads, as well as an approximate relationship between microscopic and macroscopic friction coefficients. We show that the stress build-up due to both elastic loading and micro-slip-related relaxations depend only weakly on the underlying shear crack propagation dynamics. Conversely, crack speed depends strongly on both the instantaneous stresses and the friction coefficients, through a non-trivial scaling parameter.

  13. Time domain numerical modeling of wave propagation in 2D acoustic / porous media

    Chiavassa, Guillaume

    2011-01-01

    Numerical methods are developed to simulate the wave propagation in 2D heterogeneous fluid / poroelastic media. Wave propagation is described by the usual acoustics equations (in the fluid medium) and by the low-frequency Biot's equations (in the porous medium). Interface conditions are introduced to model various hydraulic contacts between the two media: open pores, sealed pores, and imperfect pores. Well-possedness of the initial-boundary value problem is proven. Cartesian grid numerical methods previously developed in porous heterogeneous media are adapted to the present context: a fourth-order ADER scheme with Strang splitting for time-marching; a space-time mesh-refinement to capture the slow compressional wave predicted by Biot's theory; and an immersed interface method to discretize the interface conditions and to introduce a subcell resolution. Numerical experiments and comparisons with exact solutions are proposed for the three types of interface conditions, demonstrating the accuracy of the approach...

  14. Surface delta interaction in the g7/2 - d5/2 model space

    Yu, Xiaofei; Zamick, Larry

    2016-05-01

    Using an attractive surface delta interaction we obtain wave functions for 2 neutrons (or neutron holes) in the g7/2 -d5/2 model space. If we take the single particle energies to be degenerate we find that the g factors for I = 2 , 4 and 6 are all the same G (J) =gl, the orbital g factor of the nucleon. For a free neutron gl = 0, so in this case all 2 particles or 2 holes' g factors are equal to zero. Only the orbital part of the g-factors contributes - the spin part cancels out. We then consider the effects of introducing a single energy splitting between the 2 orbits. We make a linear approximation for all other n values.

  15. 2D XXZ model ground state properties using an analytic Lanczos expansion

    A formalism was developed for calculating arbitrary expectation values for any extensive lattice Hamiltonian system using a new analytic Lanczos expansion, or plaquette expansion, and a recently proved exact theorem for ground state energies. The ground state energy, staggered magnetisation and the excited state gap of the 2D anisotropic antiferromagnetic Heisenberg Model are then calculated using this expansion for a range of anisotropy parameters and compared to other moment based techniques, such as the t-expansion, and spin-wave theory and series expansion methods. It was found that far from the isotropic point all moment methods give essentially very similar results, but near the isotopic point the plaquette expansion is generally better than the others. 20 refs., 6 tabs

  16. Structure-approximating inverse protein folding problem in the 2D HP model.

    Gupta, Arvind; Manuch, Ján; Stacho, Ladislav

    2005-12-01

    The inverse protein folding problem is that of designing an amino acid sequence which has a particular native protein fold. This problem arises in drug design where a particular structure is necessary to ensure proper protein-protein interactions. In this paper, we show that in the 2D HP model of Dill it is possible to solve this problem for a broad class of structures. These structures can be used to closely approximate any given structure. One of the most important properties of a good protein (in drug design) is its stability--the aptitude not to fold simultaneously into other structures. We show that for a number of basic structures, our sequences have a unique fold. PMID:16379538

  17. An application of the distributed hydrologic model CASC2D to a tropical montane watershed

    Marsik, Matt; Waylen, Peter

    2006-11-01

    SummaryIncreased stormflow in the Quebrada Estero watershed (2.5 km 2), in the northwestern Central Valley tectonic depression of Costa Rica, reportedly has caused flooding of the city of San Ramón in recent decades. Although scientifically untested, urban expansion was deemed the cause and remedial measures were recommended by the Programa de Investigación en Desarrollo Humano Sostenible (ProDUS). CASC2D, a physically-based, spatially explicit hydrologic model, was constructed and calibrated to a June 10th 2002 storm that delivered 110.5 mm of precipitation in 4.5 h visibly exceeded the bankfull stage (0.9 m) of the Quebrada flooding portions of San Ramón. The calibrated hydrograph showed a peak discharge 16.68% (2.5 m 3 s -1) higher, an above flood stage duration 20% shorter, and time to peak discharge 11 min later than the same observed discharge hydrograph characteristics. Simulations of changing land cover conditions from 1979 to 1999 showed an increase also in the peak discharge, above flood stage duration, and time to peak discharge. Analysis using a modified location quotient identified increased urbanization in lower portions of the watershed over the time period studied. These results suggest that increased urbanization in the Quebrada Estero watershed have increased flooding peaks, and durations above threshold, confirming the ProDUS report. These results and the CASC2D model offer an easy-to-use, pragmatic planning tool for policymakers in San Ramón to assess future development scenarios and their potential flooding impacts to San Ramón.

  18. Assessment of the Impacts of Compensation Flow Changes Upon Instream Habitat Using 2D Modelling

    Mould, D. C.; Lane, S. N.; Christmas, M.

    2004-05-01

    Many millstone-grit rivers in northern England are impounded. In such cases the water company in the area has to release compensation flows from the reservoirs, traditionally to meet industrial needs: these flows are rarely set with ecology in mind; and have commonly involved constant flow. Dam overtopping may create spates, but spawning in many fish species is prompted by a spate flow in the early autumn when dams are rarely full enough to overtop. Such flows are important for fine sediment flushing and controlling the wetted useable area for spawning. Classical physical habitat modelling for instream habitat has been largely reliant upon 1D approaches, such as the Instream Flow Incremental Methodology (IFIM). Here we use a 2D finite element model (FESWMS), to simulate changes in instream habitat with variations in the compensation flow regimes. The spatial resolution of 2D models can be adapted to the scale of fish habitats so providing better representation of the reach-scale flow processes (such as slack water in the margins, wetting and drying) than the 1D case. The model is applied to the Rivers Rivelin and Loxley in Sheffield, Northern England. At the confluence of the two rivers, the compensation flow level is set at 30.6 Thousand Cubic Metres per Day (TCMD). Due to historical reasons, the compensation is not divided equally, as the Loxley receives 28 TCMD whilst the Rivelin receives only 2.6 TCMD. The model is used to simulate a transfer of 6 TCMD from the Loxley to the Rivelin. After validation, model predictions are combined with available habitat requirement data (e.g. velocity and depth needs) to develop an index of change in habitat suitability in terms of first order variables (e.g. velocity, depth and wetted useable area). This suggests that the change in compensation may significantly improve instream ecology in relation to macroinvertebrates, brown trout (Salmo trutta) and bullhead (Cottus gobio) in the Rivelin without causing detrimental impacts

  19. Graded Poisson-Sigma models and dilaton-deformed 2D supergravity algebra

    Supergravity extensions of generic 2d gravity theories obtained from the graded Poisson-Sigma model (gPSM) approach show a large degree of ambiguity. On the other hand, obstructions may reduce the allowed range of fields as given by the bosonic theory, or even prohibit any extension in certain cases. In our present work we relate the finite W-algebras inherent in the gPSM algebra of constraints to supergravity algebras (Neuveu-Schwarz or Ramond algebras resp.), deformed by the presence of the dilaton field. With very straightforward and natural assumptions on them - like the one linking the anti-commutator of certain fermionic charges to the Hamiltonian constraint without deformation - we are able not only to remove the ambiguities but, at the same time, the singularities referred to above. Thus all especially interesting bosonic models (spherically reduced gravity, the Jackiw-Teitelboim model etc.) under these conditions possess a unique fermionic extension and are free from new singularities. The superspace supergravity model of Howe is found as a special case of this supergravity action. For this class of models the relation between bosonic potential and prepotential does not introduce obstructions as well. (author)

  20. Thermochemical Nonequilibrium 2D Modeling of Nitrogen Inductively Coupled Plasma Flow

    Yu, Minghao; Yusuke, Takahashi; Hisashi, Kihara; Ken-ichi, Abe; Kazuhiko, Yamada; Takashi, Abe; Satoshi, Miyatani

    2015-09-01

    Two-dimensional (2D) numerical simulations of thermochemical nonequilibrium inductively coupled plasma (ICP) flows inside a 10-kW inductively coupled plasma wind tunnel (ICPWT) were carried out with nitrogen as the working gas. Compressible axisymmetric Navier-Stokes (N-S) equations coupled with magnetic vector potential equations were solved. A four-temperature model including an improved electron-vibration relaxation time was used to model the internal energy exchange between electron and heavy particles. The third-order accuracy electron transport properties (3rd AETP) were applied to the simulations. A hybrid chemical kinetic model was adopted to model the chemical nonequilibrium process. The flow characteristics such as thermal nonequilibrium, inductive discharge, effects of Lorentz force were made clear through the present study. It was clarified that the thermal nonequilibrium model played an important role in properly predicting the temperature field. The prediction accuracy can be improved by applying the 3rd AETP to the simulation for this ICPWT. supported by Grant-in-Aid for Scientific Research (No. 23560954), sponsored by the Japan Society for the Promotion of Science

  1. Spin Circuit Model for 2D Channels with Spin-Orbit Coupling

    Hong, Seokmin; Sayed, Shehrin; Datta, Supriyo

    2016-03-01

    In this paper we present a general theory for an arbitrary 2D channel with “spin momentum locking” due to spin-orbit coupling. It is based on a semiclassical model that classifies all the channel electronic states into four groups based on the sign of the z-component of the spin (up (U), down (D)) and the sign of the x-component of the velocity (+, -). This could be viewed as an extension of the standard spin diffusion model which uses two separate electrochemical potentials for U and D states. Our model uses four: U+, D+, U-, and D-. We use this formulation to develop an equivalent spin circuit that is also benchmarked against a full non-equilibrium Green’s function (NEGF) model. The circuit representation can be used to interpret experiments and estimate important quantities of interest like the charge to spin conversion ratio or the maximum spin current that can be extracted. The model should be applicable to topological insulator surface states with parallel channels as well as to other layered structures with interfacial spin-orbit coupling.

  2. Modelling and Experimental Verification of a DEAP based 2-D rotational positioner

    Iskandarani, Yosef; Bilberg, Arne; Sarban, Rahimullah

    2010-01-01

    A feasibility study into the appropriateness of using a laminated dielectric electro active polymer (DEAP) film, called PolyPowerTM, for two dimensional rotational positioning is reviewed in this work. The maximum strain in the film is limited to 50 % and the maximum applied voltage is currently limited to 3000 V. This work will examine the ability of positioning a shaft coupled to a laser beam pointer in x-y direction which will provide insight into (a) the practicality of using the material...

  3. Secure D2D Communication in Large-Scale Cognitive Cellular Networks: A Wireless Power Transfer Model

    Liu, Yuanwei; Wang, Lifeng; Zaidi, Syed Ali Raza; Elkashlan, Maged; Duong, Trung Q.

    2015-01-01

    In this paper, we investigate secure device-to-device (D2D) communication in energy harvesting large-scale cognitive cellular networks. The energy constrained D2D transmitter harvests energy from multiantenna equipped power beacons (PBs), and communicates with the corresponding receiver using the spectrum of the primary base stations (BSs). We introduce a power transfer model and an information signal model to enable wireless energy harvesting and secure information transmission. In the power...

  4. A new model for two-dimensional numerical simulation of pseudo-2D gas-solids fluidized beds

    Li, Tingwen; Zhang, Yongmin

    2013-10-11

    Pseudo-two dimensional (pseudo-2D) fluidized beds, for which the thickness of the system is much smaller than the other two dimensions, is widely used to perform fundamental studies on bubble behavior, solids mixing, or clustering phenomenon in different gas-solids fluidization systems. The abundant data from such experimental systems are very useful for numerical model development and validation. However, it has been reported that two-dimensional (2D) computational fluid dynamic (CFD) simulations of pseudo-2D gas-solids fluidized beds usually predict poor quantitative agreement with the experimental data, especially for the solids velocity field. In this paper, a new model is proposed to improve the 2D numerical simulations of pseudo-2D gas-solids fluidized beds by properly accounting for the frictional effect of the front and back walls. Two previously reported pseudo-2D experimental systems were simulated with this model. Compared to the traditional 2D simulations, significant improvements in the numerical predictions have been observed and the predicted results are in better agreement with the available experimental data.

  5. Distributed and coupled 2D electro-thermal model of power semiconductor devices

    Belkacem, Ghania; Lefebvre, Stéphane; Joubert, Pierre-Yves; Bouarroudj-Berkani, Mounira; Labrousse, Denis; Rostaing, Gilles

    2014-05-01

    The development of power electronics in the field of transportations (automotive, aeronautics) requires the use of power semiconductor devices providing protection and diagnostic functions. In the case of series protections power semiconductor devices which provide protection may operate in shortcircuit and act as a current limiting device. This mode of operations is very constraining due to the large dissipation of power. In these particular conditions of operation, electro-thermal models of power semiconductor devices are of key importance in order to optimize their thermal design and increase their reliability. The development of such an electro-thermal model for power MOSFET transistors based on the coupling between two computation softwares (Matlab and Cast3M) is described in this paper. The 2D electro-thermal model is able to predict (i) the temperature distribution on chip surface well as in the volume under short-circuit operations, (ii) the effect of the temperature on the distribution of the current flowing within the die and (iii) the effects of the ageing of the metallization layer on the current density and the temperature. In this paper, the electrical and thermal models are described as well as the implemented coupling scheme.

  6. LBQ2D, Extending the Line Broadened Quasilinear Model to TAE-EP Interaction

    Ghantous, Katy; Gorelenkov, Nikolai; Berk, Herbert

    2012-10-01

    The line broadened quasilinear model was proposed and tested on the one dimensional electrostatic case of the bump on tailfootnotetextH.L Berk, B. Breizman and J. Fitzpatrick, Nucl. Fusion, 35:1661, 1995 to study the wave particle interaction. In conventional quasilinear theory, the sea of overlapping modes evolve with time as the particle distribution function self consistently undergo diffusion in phase space. The line broadened quasilinear model is an extension to the conventional theory in a way that allows treatment of isolated modes as well as overlapping modes by broadening the resonant line in phase space. This makes it possible to treat the evolution of modes self consistently from onset to saturation in either case. We describe here the model denoted by LBQ2D which is an extension of the proposed one dimensional line broadened quasilinear model to the case of TAEs interacting with energetic particles in two dimensional phase space, energy as well as canonical angular momentum. We study the saturation of isolated modes in various regimes and present the analytical derivation and numerical results. Finally, we present, using ITER parameters, the case where multiple modes overlap and describe the techniques used for the numerical treatment.

  7. A case study of fluid flow in fractured rock mass based on 2-D DFN modeling

    Han, Jisu; Noh, Young-Hwan; Um, Jeong-Gi; Choi, Yosoon

    2014-05-01

    A two dimensional steady-state fluid flow through fractured rock mass of an abandoned copper mine in Korea is addressed based on discrete fracture network modeling. An injection well and three observation wells were installed at the field site to monitor the variations of total heads induced by injection of fresh water. A series of packer tests were performed to estimate the rock mass permeability. First, the two dimensional stochastic fracture network model was built and validated for a granitic rock mass using the geometrical and statistical data obtained from surface exposures and borehole logs. This validated fracture network model was combined with the fracture data observed on boreholes to generate a stochastic-deterministic fracture network system. Estimated apertures for each of the fracture sets using permeability data obtained from borehole packer tests were discussed next. Finally, a systematic procedure for fluid flow modeling in fractured rock mass in two dimensional domain was presented to estimate the conductance, flow quantity and nodal head in 2-D conceptual linear pipe channel network. The results obtained in this study clearly show that fracture geometry parameters (orientation, density and size) play an important role in the hydraulic behavior of fractured rock masses.

  8. Aespoe Pillar Stability Experiment. Final 2D coupled thermo-mechanical modelling

    A site scale Pillar Stability Experiment is planned in the Aespoe Hard Rock Laboratory. One of the experiment's aims is to demonstrate the possibilities of predicting spalling in the fractured rock mass. In order to investigate the probability and conditions for spalling in the pillar 'prior to experiment' numerical simulations have been undertaken. This report presents the results obtained from 2D coupled thermo-mechanical numerical simulations that have been done with the Finite Element based programme JobFem. The 2D numerical simulations were conducted at two different depth levels, 0.5 and 1.5 m below tunnel floor. The in situ stresses have been confirmed with convergence measurements during the excavation of the tunnel. After updating the mechanical and thermal properties of the rock mass the final simulations have been undertaken. According to the modelling results the temperature in the pillar will increase from the initial 15.2 deg up to 58 deg after 120 days of heating. Based on these numerical simulations and on the thermal induced stresses the total stresses are expected to exceed 210 MPa at the border of the pillar for the level at 0.5 m below tunnel floor and might reach 180-182 MPa for the level at 1.5 m below tunnel floor. The stresses are slightly higher at the border of the confined hole. Upon these results and according to the rock mechanical properties the Crack Initiation Stress is exceeded at the border of the pillar already after the excavation phase. These results also illustrate that the Crack Damage Stress is exceeded only for the level at 0.5 m below tunnel floor and after at least 80 days of heating. The interpretation of the results shows that the required level of stress for spalling can be reached in the pillar

  9. A New 2D-Advection-Diffusion Model Simulating Trace Gas Distributions in the Lowermost Stratosphere

    Hegglin, M. I.; Brunner, D.; Peter, T.; Wirth, V.; Fischer, H.; Hoor, P.

    2004-12-01

    Tracer distributions in the lowermost stratosphere are affected by both, transport (advective and non-advective) and in situ sources and sinks. They influence ozone photochemistry, radiative forcing, and heating budgets. In-situ measurements of long-lived species during eight measurement campaigns revealed relatively simple behavior of the tracers in the lowermost stratosphere when represented in an equivalent-latitude versus potential temperature framework. We here present a new 2D-advection-diffusion model that simulates the main transport pathways influencing the tracer distributions in the lowermost stratosphere. The model includes slow diabatic descent of aged stratospheric air and vertical and/or horizontal diffusion across the tropopause and within the lowermost stratosphere. The diffusion coefficients used in the model represent the combined effects of different processes with the potential of mixing tropospheric air into the lowermost stratosphere such as breaking Rossby and gravity waves, deep convection penetrating the tropopause, turbulent diffusion, radiatively driven upwelling etc. They were specified by matching model simulations to observed distributions of long-lived trace gases such as CO and N2O obtained during the project SPURT. The seasonally conducted campaigns allow us to study the seasonal dependency of the diffusion coefficients. Despite its simplicity the model yields a surprisingly good description of the small scale features of the measurements and in particular of the observed tracer gradients at the tropopause. The correlation coefficients between modeled and measured trace gas distributions were up to 0.95. Moreover, mixing across isentropes appears to be more important than mixing across surfaces of constant equivalent latitude (or PV). With the aid of the model, the distribution of the fraction of tropospheric air in the lowermost stratosphere can be determined.

  10. Transectional heat transfer in thermoregulating bigeye tuna (Thunnus obesus) - a 2D heat flux model.

    Boye, Jess; Musyl, Michael; Brill, Richard; Malte, Hans

    2009-11-01

    We developed a 2D heat flux model to elucidate routes and rates of heat transfer within bigeye tuna Thunnus obesus Lowe 1839 in both steady-state and time-dependent settings. In modeling the former situation, we adjusted the efficiencies of heat conservation in the red and the white muscle so as to make the output of the model agree as closely as possible with observed cross-sectional isotherms. In modeling the latter situation, we applied the heat exchanger efficiencies from the steady-state model to predict the distribution of temperature and heat fluxes in bigeye tuna during their extensive daily vertical excursions. The simulations yielded a close match to the data recorded in free-swimming fish and strongly point to the importance of the heat-producing and heat-conserving properties of the white muscle. The best correspondence between model output and observed data was obtained when the countercurrent heat exchangers in the blood flow pathways to the red and white muscle retained 99% and 96% (respectively) of the heat produced in these tissues. Our model confirms that the ability of bigeye tuna to maintain elevated muscle temperatures during their extensive daily vertical movements depends on their ability to rapidly modulate heating and cooling rates. This study shows that the differential cooling and heating rates could be fully accounted for by a mechanism where blood flow to the swimming muscles is either exclusively through the heat exchangers or completely shunted around them, depending on the ambient temperature relative to the body temperature. Our results therefore strongly suggest that such a mechanism is involved in the extensive physiological thermoregulatory abilities of endothermic bigeye tuna. PMID:19880733