2D Seismic Reflection Data across Central Illinois
Smith, Valerie; Leetaru, Hannes
2014-09-30
In a continuing collaboration with the Midwest Geologic Sequestration Consortium (MGSC) on the Evaluation of the Carbon Sequestration Potential of the Cambro-Ordovician Strata of the Illinois and Michigan Basins project, Schlumberger Carbon Services and WesternGeco acquired two-dimensional (2D) seismic data in the Illinois Basin. This work included the design, acquisition and processing of approximately 125 miles of (2D) seismic reflection surveys running west to east in the central Illinois Basin. Schlumberger Carbon Services and WesternGeco oversaw the management of the field operations (including a pre-shoot planning, mobilization, acquisition and de-mobilization of the field personnel and equipment), procurement of the necessary permits to conduct the survey, post-shoot closure, processing of the raw data, and provided expert consultation as needed in the interpretation of the delivered product. Three 2D seismic lines were acquired across central Illinois during November and December 2010 and January 2011. Traversing the Illinois Basin, this 2D seismic survey was designed to image the stratigraphy of the Cambro-Ordovician sections and also to discern the basement topography. Prior to this survey, there were no regionally extensive 2D seismic data spanning this section of the Illinois Basin. Between the NW side of Morgan County and northwestern border of Douglas County, these seismic lines ran through very rural portions of the state. Starting in Morgan County, Line 101 was the longest at 93 miles in length and ended NE of Decatur, Illinois. Line 501 ran W-E from the Illinois Basin – Decatur Project (IBDP) site to northwestern Douglas County and was 25 miles in length. Line 601 was the shortest and ran N-S past the IBDP site and connected lines 101 and 501. All three lines are correlated to well logs at the IBDP site. Originally processed in 2011, the 2D seismic profiles exhibited a degradation of signal quality below ~400 millisecond (ms) which made
2D Seismic Data Processing for Straight Lines in the Loess Plateaus in Fuxian of Shanbei
LiMinjie; ChenYequan; ZhangHai; PangShangming; DengGuozhen
2005-01-01
The crooked seismic lines along valleys were irregular previously in Fuxian of Shanbei,showing an irregular branch in plane, and hard to complete close grids. Therefore, it's difficult to conduct reservoir inversion of 2D seismic data. In 2001, Zhongyuan Oilfield Company carried out the study on field acquisition methods and seismic processing technology in Fuxian. Straight lines were passing through plateaus and formed seismic grids by using flexible geometry with variable linear bins.Data processing involved model-inversion based refraction static correction, surface consistent amplitude compensation, deconvolution, and pre-stack noise attenuation. As the result, seismic data with a high fidelity was provided for the subsequent reservoir predictions, small-amplitude structure interpretation and integrative geologic study. Because all lines were jointed to form grids, comprehensive interpretation of reservoir inversion could be finally implemented by using the pseudo logging method to control lines without wells.
Research of CRP-based irregular 2D seismic acquisition
Zhao, Hu; Yin, Cheng; He, Guang-Ming; Chen, Ai-Ping; Jing, Long-Jiang
2015-03-01
Seismic exploration in the mountainous areas of western Chinese is extremely difficult because of the complexity of the surface and subsurface, which results in shooting difficulties, seismic data with low signal-to-noise ratio, and strong interference. The complexity of the subsurface structure leads to strong scattering of the reflection points; thus, the curved-line acquisition method has been used. However, the actual subsurface structural characteristics have been rarely considered. We propose a design method for irregular acquisition based on common reflection points (CRP) to avoid difficult-to-shoot areas, while considering the structural characteristics and CRP positions and optimizing the surface-receiving line position. We arrange the positions of the receiving points to ensure as little dispersion of subsurface CRP as possible to improve the signal-to-noise ratio of the seismic data. We verify the applicability of the method using actual data from a site in Sichuan Basin. The proposed method apparently solves the problem of seismic data acquisition and facilitates seismic exploration in structurally complex areas.
Research of CRP-based irregular 2D seismic acquisition
Zhao Hu; Yin Cheng; He Guang-Ming; Chen Ai-Ping; Jing Long-Jiang
2015-01-01
Seismic exploration in the mountainous areas of western Chinese is extremely diffi cult because of the complexity of the surface and subsurface, which results in shooting difficulties, seismic data with low signal-to-noise ratio, and strong interference. The complexity of the subsurface structure leads to strong scattering of the refl ection points; thus, the curved-line acquisition method has been used. However, the actual subsurface structural characteristics have been rarely considered. We propose a design method for irregular acquisition based on common refl ection points (CRP) to avoid diffi cult-to-shoot areas, while considering the structural characteristics and CRP positions and optimizing the surface-receiving line position. We arrange the positions of the receiving points to ensure as little dispersion of subsurface CRP as possible to improve the signal-to-noise ratio of the seismic data. We verify the applicability of the method using actual data from a site in Sichuan Basin. The proposed method apparently solves the problem of seismic data acquisition and facilitates seismic exploration in structurally complex areas.
2D Time-lapse Seismic Tomography Using An Active Time Constraint (ATC) Approach
We propose a 2D seismic time-lapse inversion approach to image the evolution of seismic velocities over time and space. The forward modeling is based on solving the eikonal equation using a second-order fast marching method. The wave-paths are represented by Fresnel volumes rathe...
Monitoring of injected CO2 using the seismic full waveform inversion for 2-D elastic VTI media
Kim, W. K.; Min, D. J.; KIM, S.; Shin, Y.; Moon, S.
2014-12-01
To monitor the injected CO2 in the subsurface, seismic monitoring techniques are extensively applied because of its high resolution. Among the seismic monitoring techniques, seismic full waveform inversion (FWI) has high applicability because it can delineate parameter changes by injected CO2. When seismic FWIs are applied, subsurface media can be generally assumed to be isotropic. However, most subsurface media are not isotropic, and shale is a representative anisotropic medium, particularly vertical transversely isotropic (VTI) medium, which is often encountered as a barrier to injected CO2. Thus, anisotropic properties of subsurface media are important for monitoring of injected CO2. For these issues, we need to consider anisotropy of subsurface media when seismic FWIs are applied as a monitoring tool for CO2 sequestration. In this study, we performed seismic FWI for 2-D elastic VTI media to investigate the effects of anisotropic properties in CO2 monitoring. For this numerical test, we assumed a geological model, which copies after one of CO2 storage prospects in Korea. We also applied seismic FWI algorithm for 2-D elastic isotropic media for comparison. From this comparison, we noticed that we can obtain more reliable results when we apply the anisotropic FWI algorithm. Numerical examples indicate that we should apply the anisotropic FWI algorithm rather than the isotropic FWI algorithm when we interpret seismic monitoring data acquired in anisotropic media to increase the success of monitoring for injected CO2. Our numerical results can also be used as references for real seismic monitoring of the Korea CO2 sequestration projects in the near future. Acknowledgements This work was supported by the Human Resources Development program (No. 20134010200510) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean government Ministry of Trade, Industry, and Energy and by the "Development of Technology for CO2 Marine
Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.
Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr
2016-01-01
The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346
2D seismic residual statics derived from refraction interferometry
Zhang, Chao; Zhang, Jie
2016-07-01
Refraction traveltimes have long been applied for deriving long-wavelength statics solutions. These traveltimes are also applied for the derivation of residual statics, but they must be sufficiently accurate at short wavelengths. In this study, we present a seismic residual statics method that applies interferometric theory to produce four stacked virtual refraction gathers with a significantly improved signal-to-noise ratio. These gathers are composed of forward and backward virtual refraction gathers for receivers and shots. By picking the first arrivals on these four gathers followed by the application of a set of refraction equations, reliable residual statics solutions can be derived. This approach can help deal with noisy data and also avoid using traveltime picks from shot gathers. We demonstrate the approach by applying it to synthetic data as well as real data.
Bernoulli-based random undersampling schemes for 2D seismic data regularization
Cai, Rui; Zhao, Qun; She, De-Ping; Yang, Li; Cao, Hui; Yang, Qin-Yong
2014-09-01
Seismic data regularization is an important preprocessing step in seismic signal processing. Traditional seismic acquisition methods follow the Shannon-Nyquist sampling theorem, whereas compressive sensing (CS) provides a fundamentally new paradigm to overcome limitations in data acquisition. Besides the sparse representation of seismic signal in some transform domain and the 1-norm reconstruction algorithm, the seismic data regularization quality of CS-based techniques strongly depends on random undersampling schemes. For 2D seismic data, discrete uniform-based methods have been investigated, where some seismic traces are randomly sampled with an equal probability. However, in theory and practice, some seismic traces with different probability are required to be sampled for satisfying the assumptions in CS. Therefore, designing new undersampling schemes is imperative. We propose a Bernoulli-based random undersampling scheme and its jittered version to determine the regular traces that are randomly sampled with different probability, while both schemes comply with the Bernoulli process distribution. We performed experiments using the Fourier and curvelet transforms and the spectral projected gradient reconstruction algorithm for 1-norm (SPGL1), and ten different random seeds. According to the signal-to-noise ratio (SNR) between the original and reconstructed seismic data, the detailed experimental results from 2D numerical and physical simulation data show that the proposed novel schemes perform overall better than the discrete uniform schemes.
Development of the Borehole 2-D Seismic Tomography Software Using MATLAB
Nugraha, A. D.; Syahputra, A.; Fatkhan, F.; Sule, R.; Hendriyana, A.
2011-12-01
We developed 2-D borehole seismic tomography software that we called "EARTHMAX-2D TOMOGRAPHY" to image subsurface physical properties including P-wave and S-wave velocities between two boreholes. We used Graphic User Interface (GUI) facilities of MATLAB programming language to create the software. In this software, we used travel time of seismic waves from source to receiver by using pseudo bending ray tracing method as input for tomography inversion. We can also set up a model parameterization, initial velocity model, ray tracing processes, conduct borehole seismic tomography inversion, and finally visualize the inversion results. The LSQR method was applied to solve of tomography inversion solution. We provided the Checkerboard Test Resolution (CTR) to evaluate the model resolution of the tomography inversion. As validation of this developed software, we tested it for geotechnical purposes. We then conducted data acquisition in the "ITB X-field" that is located on ITB campus. We used two boreholes that have a depth of 39 meters. Seismic wave sources were generated by impulse generator and sparker and then they were recorded by borehole hydrophone string type 3. Later on, we analyzed and picked seismic arrival time as input for tomography inversion. As results, we can image the estimated weathering layer, sediment layer, and basement rock in the field depicted by seismic wave structures. More detailed information about the developed software will be presented. Keywords: borehole, tomography, earthmax-2D, inversion
The feasibility of speeding up 2D seismic migration using a specific processor on a FPGA
Sergio Alberto Abreo Carrillo
2010-05-01
Full Text Available This paper was aimed at describing the state of the art regarding 2D migration from a software and hardware perspective. It also gives the current state of specific processing using field programmable gate array (FPGA and then concludes with the feasibility of fully implementing 2D seismic migration on a FPGA via a specific processor. Work was used showing performance in different areas of knowledge to gain an overview of the current state of specific processing using FPGAs. As 2D seismic migration employs floating-point data, this article thus compiles several papers showing trends in floating-point operations in both general and specific processors. The information presented in this article led to concluding that FPGAs have a promising future in this area due to oil industry companies having begun to develop their own tools aimed at further optimising field exploration.
王夫运; 张先康; 杨卓欣
2002-01-01
2-D velocity structure and tectonics of the crust and upper mantle is revealed by inversion of seismic refraction and wide-angle reflection traveltimes acquired along the profile L1 in the Changbaishan-Tianchi volcanic region. It is used in this study that seismic traveltime inversion for simultaneous determination of 2-D velocity and interface structure of the crust and upper mantle. The result shows that, under Changbaishan-Tianchi crater, there exists a low-velocity body in the shape of an inverted triangle, and the crustal reflecting boundaries and Moho all become lower by a varying margin of 2~6 km, forming a crustal root which is assumed to be the Changbaishan-Tianchi volcanic system. Finally, we make a comparison between our 2-D velocity model and the result from the studies by using trial-and-error forward modeling with SEIS83.
2D and 3D numerical modeling of seismic waves from explosion sources
Over the last decade, nonlinear and linear 2D axisymmetric finite difference codes have been used in conjunction with far-field seismic Green's functions to simulate seismic waves from a variety of sources. In this paper we briefly review some of the results and conclusions that have resulted from numerical simulations and explosion modeling in support of treaty verification research at S-CUBED in the last decade. We then describe in more detail the results from two recent projects. Our goal is to provide a flavor for the kinds of problems that can be examined with numerical methods for modeling excitation of seismic waves from explosions. Two classes of problems have been addressed; nonlinear and linear near-source interactions. In both classes of problems displacements and tractions are saved on a closed surface in the linear region and the representation theorem is used to propagate the seismic waves to the far-field
2-D linear motion system. Innovative technology summary report
The US Department of Energy's (DOE's) nuclear facility decontamination and decommissioning (D and D) program requires buildings to be decontaminated, decommissioned, and surveyed for radiological contamination in an expeditious and cost-effective manner. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. D and D workers must perform duties high off the ground, requiring the use of manlifts or scaffolding, often, in radiologically or chemically contaminated areas or in areas with limited access. Survey and decontamination instruments that are used are sometimes heavy or awkward to use, particularly when the worker is operating from a manlift or scaffolding. Finding alternative methods of performing such work on manlifts or scaffolding is important. The 2-D Linear Motion System (2-D LMS), also known as the Wall Walker trademark, is designed to remotely position tools and instruments on walls for use in such activities as radiation surveys, decontamination, and painting. Traditional (baseline) methods for operating equipment for these tasks require workers to perform duties on elevated platforms, sometimes several meters above the ground surface and near potential sources of contamination. The Wall Walker 2-D LMS significantly improves health and safety conditions by facilitating remote operation of equipment. The Wall Walker 2-D LMS performed well in a demonstration of its precision, accuracy, maneuverability, payload capacity, and ease of use. Thus, this innovative technology is demonstrated to be a viable alternative to standard methods of performing work on large, high walls, especially those that have potential contamination concerns. The Wall Walker was used to perform a final release radiological survey on over 167 m2 of walls. In this application, surveying using a traditional (baseline) method that employs an aerial lift for manual access was 64% of the total cost of the improved technology. However
2-D traveltime and waveform inversion for improved seismic imaging: Naga Thrust and Fold Belt, India
Jaiswal, Priyank; Zelt, Colin A.; Bally, Albert W.; Dasgupta, Rahul
2008-05-01
Exploration along the Naga Thrust and Fold Belt in the Assam province of Northeast India encounters geological as well as logistic challenges. Drilling for hydrocarbons, traditionally guided by surface manifestations of the Naga thrust fault, faces additional challenges in the northeast where the thrust fault gradually deepens leaving subtle surface expressions. In such an area, multichannel 2-D seismic data were collected along a line perpendicular to the trend of the thrust belt. The data have a moderate signal-to-noise ratio and suffer from ground roll and other acquisition-related noise. In addition to data quality, the complex geology of the thrust belt limits the ability of conventional seismic processing to yield a reliable velocity model which in turn leads to poor subsurface image. In this paper, we demonstrate the application of traveltime and waveform inversion as supplements to conventional seismic imaging and interpretation processes. Both traveltime and waveform inversion utilize the first arrivals that are typically discarded during conventional seismic processing. As a first step, a smooth velocity model with long wavelength characteristics of the subsurface is estimated through inversion of the first-arrival traveltimes. This velocity model is then used to obtain a Kirchhoff pre-stack depth-migrated image which in turn is used for the interpretation of the fault. Waveform inversion is applied to the central part of the seismic line to a depth of ~1 km where the quality of the migrated image is poor. Waveform inversion is performed in the frequency domain over a series of iterations, proceeding from low to high frequency (11-19 Hz) using the velocity model from traveltime inversion as the starting model. In the end, the pre-stack depth-migrated image and the waveform inversion model are jointly interpreted. This study demonstrates that a combination of traveltime and waveform inversion with Kirchhoff pre-stack depth migration is a promising approach
Mo, Yike; Greenhalgh, Stewart A.; Robertsson, Johan O. A.; Karaman, Hakki
2015-05-01
Lateral velocity variations and low velocity near-surface layers can produce strong scattered and guided waves which interfere with reflections and lead to severe imaging problems in seismic exploration. In order to investigate these specific problems by laboratory seismic modelling, a simple 2D ultrasonic model facility has been recently assembled within the Wave Propagation Lab at ETH Zurich. The simulated geological structures are constructed from 2 mm thick metal and plastic sheets, cut and bonded together. The experiments entail the use of a piezoelectric source driven by a pulse amplifier at ultrasonic frequencies to generate Lamb waves in the plate, which are detected by piezoelectric receivers and recorded digitally on a National Instruments recording system, under LabVIEW software control. The 2D models employed were constructed in-house in full recognition of the similitude relations. The first heterogeneous model features a flat uniform low velocity near-surface layer and deeper dipping and flat interfaces separating different materials. The second model is comparable but also incorporates two rectangular shaped inserts, one of low velocity, the other of high velocity. The third model is identical to the second other than it has an irregular low velocity surface layer of variable thickness. Reflection as well as transmission experiments (crosshole & vertical seismic profiling) were performed on each model. The two dominant Lamb waves recorded are the fundamental symmetric mode (non-dispersive) and the fundamental antisymmetric (flexural) dispersive mode, the latter normally being absent when the source transducer is located on a model edge but dominant when it is on the flat planar surface of the plate. Experimental group and phase velocity dispersion curves were determined and plotted for both modes in a uniform aluminium plate. For the reflection seismic data, various processing techniques were applied, as far as pre-stack Kirchhoff migration. The
2-D TFPF based on Contourlet transform for seismic random noise attenuation
Zhao, Xian; Li, Yue; Zhuang, Guanghai; Zhang, Chao; Han, Xue
2016-06-01
The time-frequency peak filtering (TFPF) algorithm is useful for attenuating seismic random noise. Conventional TFPF processes each channel of the seismic record independently with a fixed window length (WL), which is a one-dimensional algorithm due to filtering along the channel direction. However, the fixed WL is not appropriate for all frequency components at the same time, so using this technique cannot preserve the reflected signals effectively. Also, Conventional TFPF ignores the spatial characteristics of reflection events, resulting in poor continuity of seismic events and serious loss of the correlation among channels. Here we introduce a new spatiotemporal method, called two-dimensional (2-D) TFPF based on Contourlet transform, which considers spatial correlation and improves the performance of the TFPF. Regarding the event as the contour in an image and using Contourlet transform (CT) to the record, we can find the optimal radial filtering trace which best matches the event, and then sample the record to extract signals along the trace. In this way, frequencies of sampled signals are low and similar. After applying the TFPF along the trace instead of along each channel, the estimation bias is decreased due to the low frequency. Moreover, using the same WL is suitable as a result of similar frequencies. Experiments on synthetic models and the field data illustrate that the new method performs well in random noise attenuation and reflection event preservation.
2D seismic tomography of Somma- Vesuvius. Description of the experiment and preliminary results.
G. Milano
1996-06-01
Full Text Available A multidisciplinary project for the investigation of Mt. Vesuvius Structure was started in 1993. The core of the project is represented by a high resolution seismic tomography study by using controlled and natura1 sources. The main research objective is to investigate the feeding system of the vo1cano and to retrieve details of the upper crustal structure in the area. A first 2D using seismic experiment was performed in May 1994, with the aim of studing the feasibility of lIsing tomographic techniques for exploring the vo1cano interiors. Particularly, this experiment was designed to obtain information on the optimal sources-receivers configuration and on the depth extension of the volume sampled by shot-generated seismic waves. 66 three-component seismic stations and 16 single-component analogue instruments were installed by several Italian and French groups to record signals generated by three on-land, underground explosions. Sources and geophones were deployed along a 30-km NW-SE profile passing through the volcano crater. Receivers were placed at an average spacing of 250 m in the middle of the recording line and at 500 m outside. The arrival time data base was complemented by first P and S readings of micro earthquakes which occurred in the recent past within the volcano. The first arrival data set was preliminary used to determine the shallow structure of the volcano by applying Thurber's (1983 tomographic inversion technique. This analysis shows evidence for a high-velocity body which extends vertically from about 400 m below the crater down to at least 3000 m and for a shallow 300-500 m thick low-velocity cover which borders the edifice. Data from the distant shot show evidence for arrivals of deep reflected/converted phases and provide information on the deeper structure under the volcano. The results from the interpretation of 2D data are used for planning a 3D tomographic survey which will be cauied out in 1996.
LIU Zhi; ZHANG Xian-kang; WANG Fu-yun; DUAN Yong-hong; LAI Xiao-ling
2005-01-01
Based on the inversion method of 2D velocity structure and interface, the crustal velocity structures of P-wave and S-wave along the profile L1 are determined simultaneously with deep seismic sounding data in Changbaishan Tianchi volcanic region, and then its Poisson's ratio is obtained. Calculated results show that this technique overcomes some defects of traditional forward calculation method, and it is also very effective to determine Poisson's ratio distribution of deep seismic sounding profile, especially useful for study on volcanic magma and crustal fault zone. Study result indicates that there is an abnormally high Poisson's ratio body that is about 30 km wide and 12 km high in the low velocity region under Tianchi crater. Its value of Poisson's ratio is 8% higher than that of surrounding medium and it should be the magma chamber formed from melted rock with high temperature. There is a high Poisson's ratio zone ranging from magma chamber to the top of crust, which may be the uprise passage of hot substance. The lower part with high Poisson's ratio, which stretches downward to Moho, is possibly the extrusion way of hot substance from the uppermost mantle. The conclusions above are consistent with the study results of both tomographic determination of 3D crustal structure and magnetotelluric survey in this region.
Seismic Physical Modeling Technology and Its Applications
无
2006-01-01
This paper introduces the seismic physical modeling technology in the CNPC Key Lab of Geophysical Exploration. It includes the seismic physical model positioning system, the data acquisition system, sources, transducers,model materials, model building techniques, precision measurements of model geometry, the basic principles of the seismic physical modeling and experimental methods, and two physical model examples.
Comparative 2D BRT and seismic modeling of CO2 plumes in deep saline reservoirs
Hagrey, Said Attia Al; Strahser, Matthias; Rabbel, Wolfgang
2010-05-01
resolution and anomaly magnitudes are inversely proportional to the host salinity and temperatures and directly proportional to CO2 saturation and reservoir dimensions. The sensitivity of the seismic method to changes in saturation is most pronounced for low CO2 concentrations while the geoelectric method has a higher sensitivity at high concentrations. Acknowledgements: This study is funded by the German Federal Ministry of Education and Research (BMBF), EnBW Energie Baden-Württemberg AG, E.ON Energie AG, E.ON Ruhrgas AG, RWE Dea AG, Vattenfall Europe Technology Research GmbH, Wintershall Holding AG and Stadtwerke Kiel AG as part of the CO2-MoPa joint project in the framework of the Special Program GEOTECHNOLOGIEN.
P. Labak
1995-06-01
Full Text Available The seismic response of the geologic structure beneath the Colosseum is investigated using a two-dimensional modeling for a vertically incident plane SH wave. Computations indicate that the southern part of the Colosseum may be exposed to a seismic ground motion with significantly larger amplitudes, differential motion and longer duration than the northern part. because the southern part of the Colosseum is underlain by a sedimentfilled valley created by sedimentary filling of the former tributary of the River Tiber. A 2-D resonance may develop in the valley. Unlike the previous theoretical studies on 2-D resonance in sediment-filled valleys, an effect of heterogeneous valley surroundings on the resonance is partly investigated. A very small sensitivity of the maximum spectral amplifications connected with the fundamental and first higher modes to the presence of a horizontal surface layer (with an intermediate velocity in the valley surroundings is observed in the studied models.
Interest in studying impact crater on earth has increased tremendously due to its importance in geologic events, earth inhabitant history as well as economic value. The existences of few shock metamorphism and crater morphology evidences are discovered in Bukit Bunuh, Malaysia thus detailed studies are performed using geophysical and geotechnical methods to verify the type of the crater and characteristics accordingly. This paper presents the combined analysis of 2-D electrical resistivity, seismic refraction, geotechnical SPT N value, moisture content and RQD within the study area. Three stages of data acquisition are made starting with regional study followed by detailed study on West side and East side. Bulk resistivity and p-wave seismic velocity were digitized from 2-D resistivity and seismic sections at specific distance and depth for corresponding boreholes and samples taken. Generally, Bukit Bunuh shows the complex crater characteristics. Standard table of bulk resistivity and p-wave seismic velocity against SPT N value, moisture content and RQD are produce according to geological classifications of impact crater; inside crater, rim/slumped terrace and outside crater
Seismic 2D reflection processing and interpretation of shallow refraction data
Posiva Oy takes care of the final disposal of spent nuclear fuel in Finland. In year 2001 Olkiluoto was selected for the site of final disposal. Currently construction of the underground research facility, ONKALO, is going on at the Olkiluoto site. The aim of this work was to use two-dimensional reflection seismic processing methods to refraction seismic data collected from the ONKALO area in year 2002, and to locate gently dipping reflectors from the stacked sections. Processing was done using mainly open source software Seismic Unix. After the processing, the most distinct two-dimensional reflectors were picked from seismic sections using visualization environment OpendTect. After picking the features from crossing lines were combined into three-dimensional surfaces. Special attention was given for the detection of possible faults and discontinuities. The surfaces were given coordinates and their orientation was adjusted using a geometric procedure, which corresponds roughly a 3D migration, transferred to 3D presentation utility and compared to available geological information. The advantage of this work is to be able to get three-dimensional reflection seismic results from existing data set at only processing costs. Survey lines are also partly located in ONKALO area where extensive surface seismic surveys may not be possible to perform. The applied processing method was successful in detecting the reflectors. Most significant steps were the refraction and residual statics, and deconvolution. Some distinct reflectors can be seen at times 20-200 ms (vertical depths 50-500 m). The signal gets noisier below 200 ms. Reflectors are best visible as coherent phase between the adjacent traces, but do not raise much above the surrounding noise level. Higher amount of traces to be stacked would emphasis the reflections and their continuity more. Reflectors picked on crossing lines match well to borehole observations (KR4, KR7, KR24 and KR38) of fracture zones, and get
Magee, Craig; Hunt-Stewart, Esther; Jackson, Christopher A.-L.
2013-07-01
Temporal and spatial changes in volcano morphology and internal architecture can determine eruption style and location. However, the relationship between the external and internal characteristics of volcanoes and sub-volcanic intrusions is often difficult to observe at outcrop or interpret uniquely from geophysical and geodetic data. We use high-quality 2D seismic reflection data from the Ceduna Sub-basin, offshore southern Australia, to quantitatively analyse 56, pristinely-preserved, Eocene-age volcanogenic mounds, and a genetically-related network of sub-volcanic sills and laccoliths. Detailed seismic mapping has allowed the 3D geometry of each mound to be reconstructed and distinct seismic facies within them to be recognised. Forty-six continental, basaltic shield volcanoes have been identified that have average flank dips of attributed to intrusions with complex morphologies; and/or (iii) reflect magma movement along pre-existing fracture systems. These complexities should therefore be considered in eruption forecasting models that link pre-eruption ground deformation to subterranean magma emplacement depth and volume. More generally, our study highlights the key role that seismic reflection data can play in understanding the geometry, distribution and evolution of ancient and modern volcanic systems.
Modeling seismic wave propagation and amplification in 1D/2D/3D linear and nonlinear unbounded media
Semblat, Jean-François
2011-01-01
To analyze seismic wave propagation in geological structures, it is possible to consider various numerical approaches: the finite difference method, the spectral element method, the boundary element method, the finite element method, the finite volume method, etc. All these methods have various advantages and drawbacks. The amplification of seismic waves in surface soil layers is mainly due to the velocity contrast between these layers and, possibly, to topographic effects around crests and hills. The influence of the geometry of alluvial basins on the amplification process is also know to be large. Nevertheless, strong heterogeneities and complex geometries are not easy to take into account with all numerical methods. 2D/3D models are needed in many situations and the efficiency/accuracy of the numerical methods in such cases is in question. Furthermore, the radiation conditions at infinity are not easy to handle with finite differences or finite/spectral elements whereas it is explicitely accounted in the B...
Modeling the 2-D seismic velocity structure across the Kenya rift
Braile, L. W.; Wang, B.; Daudt, C. R.; Keller, G. R.; Patel, J. P.
1994-09-01
A 460-km-long seismic refraction/wide-angle reflection profile across the East African rift in Kenya has been interpreted using a travel-time inversion method to calculate a two-dimensional crustal and uppermost mantle seismic velocity model. The derived model is consistent with the crustal structure determined by independent interpretation of axial (along the rift) and flank (near the eastern end of the cross profile) data sets. The velocity model indicates that the Kenya rift at this location (near the Equator) is a relatively narrow (about 100 km wide) feature from surface expression (fault-bounded basins) to upper-mantle depths. A 5-km-deep, sediment- and volcanic-filled basin is present beneath the rift valley. Seismic velocities in the underlying crust are slightly higher directly beneath the rift valley than in the adjacent terranes. Additionally, the crust thins by about 8 km (to a thickness of about 30 km) in a 100-km-wide zone beneath the rift valley and anomalously low upper-mantle seismic velocity (Pn ≈ 7.6 km/s) is present only beneath the thinned crust and extends to depths of greater than 120 km.
Maeda, Takuto; Nishida, Kiwamu; Takagi, Ryota; Obara, Kazushige
2016-04-01
The high-sensitive seismograph network (Hi-net) operated by National Research Institute for Earth Science and Disaster Prevention (NIED) has about 800 stations with average separation of 20 km all over the Japanese archipelago. Although it is equipped with short-period seismometers, we also can observe long-period seismic wave up to 100 s in periods for significantly large earthquakes. In this case, we may treat long-period seismic waves as a 2D wavefield with station separations shorter than wavelength rather than individual traces at stations. In this study, we attempt to reconstruct 2D wavefield and obtain its propagation properties from seismic gradiometry (SG) method. The SG estimates the wave amplitude and its spatial derivative coefficients from discrete station record by the Taylor series approximation with an inverse problem. By using spatial derivatives in horizontal directions, we can obtain properties of propagating wave packet such as the arrival direction, slowness, geometrical spreading and radiation pattern. In addition, by using spatial derivatives together with free-surface boundary condition, we may decompose the vector elastic 2D wavefield estimated by the SG into divergence and rotation components. First, we applied the seismic gradiometry to a synthetic long-period (20-50 s) seismogram dataset computed by numerical simulation in realistic 3D medium at the Hi-net station layout as a feasibility test. We confirmed that the wave amplitude and its spatial derivatives are very well reproduced with average correlation coefficients higher than 0.99 in this period range. Applications to a real large earthquakes show that the amplitude and phase of the wavefield are well reconstructed with additional information of arrival direction and its slowness. The reconstructed wavefield contained a clear contrast in slowness between body and surface waves, regional non-great-circle-path wave propagation which may be attributed to scattering. Slowness
Induced Seismicity Potential of Energy Technologies
Hitzman, Murray
2013-03-01
Earthquakes attributable to human activities-``induced seismic events''-have received heightened public attention in the United States over the past several years. Upon request from the U.S. Congress and the Department of Energy, the National Research Council was asked to assemble a committee of experts to examine the scale, scope, and consequences of seismicity induced during fluid injection and withdrawal associated with geothermal energy development, oil and gas development, and carbon capture and storage (CCS). The committee's report, publicly released in June 2012, indicates that induced seismicity associated with fluid injection or withdrawal is caused in most cases by change in pore fluid pressure and/or change in stress in the subsurface in the presence of faults with specific properties and orientations and a critical state of stress in the rocks. The factor that appears to have the most direct consequence in regard to induced seismicity is the net fluid balance (total balance of fluid introduced into or removed from the subsurface). Energy technology projects that are designed to maintain a balance between the amount of fluid being injected and withdrawn, such as most oil and gas development projects, appear to produce fewer seismic events than projects that do not maintain fluid balance. Major findings from the study include: (1) as presently implemented, the process of hydraulic fracturing for shale gas recovery does not pose a high risk for inducing felt seismic events; (2) injection for disposal of waste water derived from energy technologies does pose some risk for induced seismicity, but very few events have been documented over the past several decades relative to the large number of disposal wells in operation; and (3) CCS, due to the large net volumes of injected fluids suggested for future large-scale carbon storage projects, may have potential for inducing larger seismic events.
Haines, S. S.; Hart, P. E.; Shedd, W. W.; Frye, M.; Agena, W.; Miller, J. J.; Ruppel, C. D.
2013-12-01
In the spring of 2013, the U.S. Geological Survey led a 16-day seismic acquisition cruise aboard the R/V Pelican in the Gulf of Mexico to survey two established gas hydrate study sites. We used a pair of 105/105 cubic inch generator/injector airguns as the seismic source, and a 450-m 72-channel hydrophone streamer to record two-dimensional (2D) data. In addition, we also deployed at both sites an array of 4-component ocean-bottom seismometers (OBS) to record P- and S-wave energy at the seafloor from the same seismic source positions as the streamer data. At lease block Green Canyon 955 (GC955), we acquired 400 km of 2-D streamer data, in a 50- to 250-m-spaced grid augmented by several 20-km transects that provide long offsets for the OBS. The seafloor recording at GC955 was accomplished by a 2D array of 21 OBS at approximately 400-m spacing, including instruments carefully positioned at two of the three boreholes where extensive logging-while-drilling data is available to characterize the presence of gas hydrate. At lease block Walker Ridge 313 (WR313), we acquired 450 km of streamer data in a set of 11-km, 150- to 1,000-m-spaced, dip lines and 6- to 8-km, 500- to 1000-m-spaced strike lines. These were augmented by a set of 20-km lines that provide long offsets for a predominantly linear array of 25 400- to 800-m spaced OBS deployed in the dip direction in and around WR313. The 2D data provide at least five times better resolution of the gas hydrate stability zone than the available petroleum industry seismic data from the area; this enables considerably improved analysis and interpretation of stratigraphic and structural features including previously unseen faults and gas chimneys that may have considerable impact on gas migration. Initial processing indicates that the OBS data quality is good, and we anticipate that these data will yield estimates of P- and S-wave velocities, as well as PP (reflected) and PS (converted wave) images beneath each sensor location.
A. Caserta
1995-06-01
Full Text Available The geological information collected in the last years by the Istituto Nazionale di Geofisica for the city of Rome is used to construct 1- and 2-D models of the nearsurface structure. These models are the basis for the numerical generation of synthetic accelerograms which can simulate the horizontal ground motion (SH waves produced in the different areas of the city by a large (M ? 7 potential earthquake 100 km away in Central Apennines. The proposed methodology yields earthquake engineering parameters (peak ground acceleration and velocity, Arias intensity, energy flux, response spectra whose spatial variations are consistent with the damage distribution caused by the strongest earthquakes felt in Rome during its long history. Based on the macroseismic inforination and the results of the numerical simulations, general criteria for seismic zonation of the city of Rome are proposed.
2D time-domain finite-difference modeling for viscoelastic seismic wave propagation
Fan, Na; Zhao, Lian-Feng; Xie, Xiao-Bi; Ge, Zengxi; Yao, Zhen-Xing
2016-07-01
Real Earth media are not perfectly elastic. Instead, they attenuate propagating mechanical waves. This anelastic phenomenon in wave propagation can be modeled by a viscoelastic mechanical model consisting of several standard linear solids. Using this viscoelastic model, we approximate a constant Q over a frequency band of interest. We use a four-element viscoelastic model with a tradeoff between accuracy and computational costs to incorporate Q into 2D time-domain first-order velocity-stress wave equations. To improve the computational efficiency, we limit the Q in the model to a list of discrete values between 2 and 1000. The related stress and strain relaxation times that characterize the viscoelastic model are pre-calculated and stored in a database for use by the finite-difference calculation. A viscoelastic finite-difference scheme that is second-order in time and fourth-order in space is developed based on the MacCormack algorithm. The new method is validated by comparing the numerical result with analytical solutions that are calculated using the generalized reflection/transmission coefficient method. The synthetic seismograms exhibit greater than 95 per cent consistency in a two-layer viscoelastic model. The dispersion generated from the simulation is consistent with the Kolsky-Futterman dispersion relationship.
Xiaojun; ZHONG; Zhijie; LAI; Yan; CHEN; Jianxin; QIAN; Xiaocong; HONG; Caiyi; LI
2014-01-01
Two-dimensional(2D) barcode technology is an electronic tagging technology based on combination of computer and optical technology. It is an important way of information collection and input. 2D barcode technology has been widely used in various fields of logistics,production automation,and e-commerce,but it also has brought about a series of safety problems. Based on evolutionary encryption technology,this paper improved algorithm of traditional 2D barcode generation,to improve forgery- proof performance of 2D barcode. This algorithm is applied to agricultural products quality and safety traceability system and the results show that it is effective.
Fast 2D flood modelling using GPU technology - recent applications and new developments
Crossley, Amanda; Lamb, Rob; Waller, Simon; Dunning, Paul
2010-05-01
In recent years there has been considerable interest amongst scientists and engineers in exploiting the potential of commodity graphics hardware for desktop parallel computing. The Graphics Processing Units (GPUs) that are used in PC graphics cards have now evolved into powerful parallel co-processors that can be used to accelerate the numerical codes used for floodplain inundation modelling. We report in this paper on experience over the past two years in developing and applying two dimensional (2D) flood inundation models using GPUs to achieve significant practical performance benefits. Starting with a solution scheme for the 2D diffusion wave approximation to the 2D Shallow Water Equations (SWEs), we have demonstrated the capability to reduce model run times in ‘real-world' applications using GPU hardware and programming techniques. We then present results from a GPU-based 2D finite volume SWE solver. A series of numerical test cases demonstrate that the model produces outputs that are accurate and consistent with reference results published elsewhere. In comparisons conducted for a real world test case, the GPU-based SWE model was over 100 times faster than the CPU version. We conclude with some discussion of practical experience in using the GPU technology for flood mapping applications, and for research projects investigating use of Monte Carlo simulation methods for the analysis of uncertainty in 2D flood modelling.
Frary, R.; Louie, J. [UNR; Pullammanappallil, S. [Optim; Eisses, A.
2016-08-01
Roxanna Frary, John N. Louie, Sathish Pullammanappallil, Amy Eisses, 2011, Preliminary 3d depth migration of a network of 2d seismic lines for fault imaging at a Pyramid Lake, Nevada geothermal prospect: presented at American Geophysical Union Fall Meeting, San Francisco, Dec. 5-9, abstract T13G-07.
Modelling of a coal seam of the deposit Đurđevik (BiH) by means of 2D reflection seismic imaging
Arsenović, Siniša; Urošević, Milovan; Sretenović, Branislav; Cvetkov, Vesna; Životić, Dragana
2016-06-01
A low cost 2D reflection seismic survey was used to map the continuity of the main seams as well as the numerous faults at the Đurđevik sub-bituminous coal deposit (BiH). A 24-channel seismic data acquisition system was available for this survey. The natural high reflectivity of the coal seams and a favourable geometry of seismic profiles enabled the identification and correlation of major faults across the area. Rugged terrain presented challenges to both data acquisition and processing. Stacks of acceptable quality were obtained only after the application of surface consistent statics and careful application of multi-channel filtering. A set of recorded 2D lines was interpreted in a 3D environment. Inferred structural elements disrupting the seam continuity were identified and were in agreement with available drilling results and mine workings. The result of this work was used to reduce mining hazards and also to help optimise mine planning.
Blacic, Tanya M.; Jun, Hyunggu; Rosado, Hayley; Shin, Changsoo
2016-02-01
In seismic oceanography, processed images highlight small temperature changes, but inversion is needed to obtain absolute temperatures. Local search-based full waveform inversion has a lower computational cost than global search but requires accurate starting models. Unfortunately, most marine seismic data have little associated hydrographic data and the band-limited nature of seismic data makes extracting the long wavelength sound speed trend directly from seismic data inherently challenging. Laplace and Laplace-Fourier domain inversion (LDI) can use rudimentary starting models without prior information about the medium. Data are transformed to the Laplace domain, and a smooth sound speed model is extracted by examining the zero and low frequency components of the damped wavefield. We applied LDI to five synthetic data sets based on oceanographic features and recovered smoothed versions of our synthetic models, showing the viability of LDI for creating starting models suitable for more detailed inversions.
Pecher, I.; Yang, J.; Anderson, R.; Tohidi, B.; MacBeth, C. [Heriot-Watt Univ., Edinburgh (United Kingdom). Inst. of Petroleum Engineering; Freij-Ayoub, R.; Clennell, B. [CSIRO Petroleum, Bentley, WA (Australia)
2008-07-01
Dissociation of gas hydrate to water and potentially overpressured gas around boreholes may pose a hazard for deep-water hydrocarbon production. Strategies to mitigate this risk include monitoring for early detection of dissociation. Seismic methods are especially promising, primarily because of a high sensitivity of P-wave velocity to gas in the pore space of unconsolidated sediments. This paper presented a study that applied commonly used rock physics modeling to predict the seismic response to gas hydrate dissociation with a focus on P-impedance and performed sensitivity tests. The geomechanical model was translated into seismic models. In order to determine which parameters needed to be particularly well calibrated in experimental and modeling studies, the sensitivity of seismic properties to a variation of input parameters was estimated. The seismic response was predicted from dissociating gas hydrates using two-dimensional finite-difference wave-propagation modeling to demonstrate that despite the small predicted lateral extent of hydrate dissociation, its pronounced effect on seismic properties should allow detection with a seismic source on a drilling platform and receivers on the seafloor. The paper described the methods, models, and results of the study. It was concluded that the key factors for predicting the seismic response of sediments to hydrate dissociation were the mode of gas hydrate distribution, gas distribution in the sediments, gas saturation, and pore pressure. 33 refs., 3 tabs., 8 figs.
Haines, Seth S.; Hart, Patrick E.; Shedd, William W.; Frye, Matthew
2014-01-01
The U.S. Geological Survey led a seismic acquisition cruise at Green Canyon 955 (GC955) and Walker Ridge 313 (WR313) in the Gulf of Mexico from April 18 to May 3, 2013, acquiring multicomponent and high-resolution 2D seismic data. GC955 and WR313 are established, world-class study sites where high gas hydrate saturations exist within reservoir-grade sands in this long-established petroleum province. Logging-while-drilling (LWD) data acquired in 2009 by the Gulf of Mexico Gas Hydrates Joint Industry Project provide detailed characterization at the borehole locations, and industry seismic data provide regional- and local-scale structural and stratigraphic characterization. Significant remaining questions regarding lithology and hydrate saturation between and away from the boreholes spurred new geophysical data acquisition at these sites. The goals of our 2013 surveys were to (1) achieve improved imaging and characterization at these sites and (2) refine geophysical methods for gas hydrate characterization in other locations. In the area of GC955 we deployed 21 ocean-bottom seismometers (OBS) and acquired approximately 400 km of high-resolution 2D streamer seismic data in a grid with line spacing as small as 50 m and along radial lines that provide source offsets up to 10 km and diverse azimuths for the OBS. In the area of WR313 we deployed 25 OBS and acquired approximately 450 km of streamer seismic data in a grid pattern with line spacing as small as 250 m and along radial lines that provide source offsets up to 10 km for the OBS. These new data afford at least five times better resolution of the structural and stratigraphic features of interest at the sites and enable considerably improved characterization of lithology and the gas and gas hydrate systems. Our recent survey represents a unique application of dedicated geophysical data to the characterization of confirmed reservoir-grade gas hydrate accumulations.
Royle, G J; Speller, R D; Hall, G; Iles, G; Raymond, M; Corrin, E; Stelt, P F; Manthos, N; Triantis, F A
2002-01-01
2D silicon strip sensors using particle physics readout technology have been evaluated as mammographic detectors. Two different versions of the APV series of front-end electronics were used that provided different noise levels. The sensors were evaluated using a typical mammography X-ray spectrum. The spatial resolution was evaluated using line pair test patterns and the modulation transfer function (MTF) was measured using the Edge Response Function. Low contrast performance was measured using the TOR(MAX) test object. Limiting spatial resolution of 52 mu m was obtained and an MTF value of 0.1 at 16 lp/mm. The low contrast performance was estimated from 250, 500 mu m and 6 mm diameter objects and was found to be 11.5%, 7% and better than 3.8%, respectively.
A. Caserta; L. Malagnini; A. Rovelli; Marra, F
1995-01-01
The geological information collected in the last years by the Istituto Nazionale di Geofisica for the city of Rome is used to construct 1- and 2-D models of the nearsurface structure. These models are the basis for the numerical generation of synthetic accelerograms which can simulate the horizontal ground motion (SH waves) produced in the different areas of the city by a large (M ? 7) potential earthquake 100 km away in Central Apennines. The proposed methodology yields earthquake engineerin...
Seismic research in support of reactor technology
This paper gives an overview of various topics related to the seismic analysis of nuclear power plants which are soil structure interaction, analytical methods for equipment analysis with linear or non linear behavior. In addition comments on piping system behavior and experimental analysis will be given. The research which is undertaken in CEA/DMT on these topics will also be described
Frederik, M. C. G.; Gulick, S. P. S.; Austin, J. A.; Bangs, N. L. B.; Udrekh
2015-09-01
Recent large earthquakes have prompted studies to reevaluate seismicity and rupture propagation behavior along the world's major subduction margins. Our study area covers the entire fore arc from northwest of northern Sumatra to west of Simeulue Island, the southern portion of the 2004 tsunamigenic earthquake rupture zone. The accretionary prism width is up to ~180 km, water depths between ~4.5 km near the Sunda Trench and <1 km on fore-arc high. The wedge consists of a steep outer slope (5-12°), a plateau ~100-120 km wide with anticlinal folds spaced 2-15 km apart, and a steep inner slope adjacent to the Aceh Basin. Analysis of seismic profiles and bathymetry reveal three main structural zones consistent along-strike, from the trench landward: (1) predominantly landward vergent folds, (2) mixed vergent folds, and (3) predominantly seaward vergent folds. This paper uses those zones to propose a geometry of an underlying rigid backstop. This backstop is seaward dipping and extends from under the Aceh Basin to beneath the mixed vergence zone. A dynamic backstop possibly exists seaward of the rigid backstop and is responsible for the steep slope of the outer prism. Indurated accreted sediments form the landward vergence zone. Along with the possible dynamic backstop beneath the outer wedge, and the rigid backstop in the inner wedge, all behave as a solid block coseismically. This block allows great earthquake rupture to propagate farther seaward toward the Sunda Trench, with resultant hazardous tsunamigenic potential.
Aimed at ancient architectures which own the characteristics of huge data quantity, fine-grained and high-precise, a 3D fine management and visualization method for ancient architectures based on the integration of 2D and 3D GIS is proposed. Firstly, after analysing various data types and characters of digital ancient architectures, main problems and key technologies existing in the 2D and 3D data management are discussed. Secondly, data storage and indexing model of digital ancient architecture based on 2D and 3D GIS integration were designed and the integrative storage and management of 2D and 3D data were achieved. Then, through the study of data retrieval method based on the space-time indexing and hierarchical object model of ancient architecture, 2D and 3D interaction of fine-grained ancient architectures 3D models was achieved. Finally, take the fine database of Liangyi Temple belonging to Wudang Mountain as an example, fine management and visualization prototype of 2D and 3D integrative digital ancient buildings of Liangyi Temple was built and achieved. The integrated management and visual analysis of 10GB fine-grained model of the ancient architecture was realized and a new implementation method for the store, browse, reconstruction, and architectural art research of ancient architecture model was provided
IAEA specialists' meeting on seismic isolation technology. Proceedings
The objective of the Meeting on Seismic Isolation Technology was to provide a forum for review and discussion of seismic isolation technology applicable to thermal and fast reactors. The meeting was conducted consistent with the recommendations of the IAEA Working Group Meeting on Fast Breeder Reactor-Block Antiseismic Design and Verification in October 1987, to augment a coordinated research program with specific recommendations and an assessment of technology in the area of seismic isolation. Seismic isolation has become an attractive means for mitigating the consequences of severe earthquakes. Although the general idea of seismic isolation has been considered since the turn of the century, real practical applications have evolved, at an accelerating pace, over the last fifteen years aided by several key developments: (1) recent advances in hardware developments in the form of reliable elastomer bearings, (2) development of reliable analytical methods for the prediction of dynamic responses of structures (3) construction of large bearing test machines and large shake tables to simulate earthquake effects on structures for validation analytical models and demonstration of performance characteristics, and (4) advances in seismological engineering. Although the applications and developments of seismic isolation technology have mainly benefited commercial facilities and structures, including office buildings, research laboratories, hospitals, museums, bridges, ship loaders, etc., several seismically isolated nuclear facilities were implemented: the four 900 MWe pressurized water reactor units of the Cruas plant in France, the two Framatome units in Koeberg, South Africa, a nuclear waste storage facility in France and a nuclear fuel reprocessing plant in England. The scope of this specialists' meeting was to review the state-of-the-art technology related to the performance of seismic isolator elements and systems, performance limits and margins, criteria for the
Sonnenwald, Diane H.; Maurin, Hanna; Cairns, Bruce;
2006-01-01
We are investigating the potential of 3D telepresence technology to support collaboration among geographically separated medical personnel in trauma emergency care situations. 3D telepresence technology has the potential to provide richer visual information than current 2D video conferencing...... techniques. This may be of benefit in diagnosing and treating patients in emergency situations where specialized medical expertise is not locally available. We conducted an experimental evaluation, simulating an emergency medical situation and examining the interaction between the attending paramedic and...
Splitting of 3d quaternion dimensions into 2d-sells and a "world screen technology"
Yefremov, Alexander P
2012-01-01
A set of basic vectors locally describing metric properties of an arbitrary 2-dimensional (2D) surface is used for construction of fundamental algebraic objects having nilpotent and idempotent properties. It is shown that all possible linear combinations of the objects when multiplied behave as a set of hypercomples (in particular, quaternion) units; thus interior structure of the 3D space dimensions pointed by the vector units is exposed. Geometric representations of elementary surfaces (2D-sells) structuring the dimensions are studied in detail. Established mathematical link between a vector quaternion triad treated as a frame in 3D space and elementary 2D-sells prompts to raise an idea of "world screen" having 1/2 of a space dimension but adequately reflecting kinematical properties of an ensemble of 3D frames.
Haines, S. S.; Hart, P. E.; Collett, T. S.; Shedd, W. W.; Frye, M.
2014-12-01
In 2013, the U.S. Geological Survey led a seismic acquisition expedition in the Gulf of Mexico, acquiring multicomponent data and high-resolution 2D multichannel seismic (MCS) data at Green Canyon 955 (GC955) and Walker Ridge 313 (WR313). Based on previously collected logging-while-drilling (LWD) borehole data, these gas hydrate study sites are known to include high concentrations of gas hydrate within sand layers. At GC955 our new 2D data reveal at least three features that appear to be fluid-flow pathways (chimneys) responsible for gas migration and thus account for some aspects of the gas hydrate distribution observed in the LWD data. Our new data also show that the main gas hydrate target, a Pleistocene channel/levee complex, has an areal extent of approximately 5.5 square kilometers and that a volume of approximately 3 x 107 cubic meters of this body lies within the gas hydrate stability zone. Based on LWD-inferred values and reasonable assumptions for net sand, sand porosity, and gas hydrate saturation, we estimate a total equivalent gas-in-place volume of approximately 8 x 108 cubic meters for the inferred gas hydrate within the channel/levee deposits. At WR313 we are able to map the thin hydrate-bearing sand layers in considerably greater detail than that provided by previous data. We also can map the evolving and migrating channel feature that persists in this area. Together these data and the emerging results provide valuable new insights into the gas hydrate systems at these two sites.
Design and fabrication technology of a microcavity structure based on a double heterojunction in macroporous silicon is suggested. The fabrication process of a strip of a 2D photonic crystal constituted by a finite number of lattice periods and the technique for defect formation by local opening of macropores on the substrate side, followed by filling of these macropores with a nematic liquid crystal, are considered.
Sourbier, Florent; Operto, Stéphane; Virieux, Jean; Amestoy, Patrick; L'Excellent, Jean-Yves
2009-03-01
This is the first paper in a two-part series that describes a massively parallel code that performs 2D frequency-domain full-waveform inversion of wide-aperture seismic data for imaging complex structures. Full-waveform inversion methods, namely quantitative seismic imaging methods based on the resolution of the full wave equation, are computationally expensive. Therefore, designing efficient algorithms which take advantage of parallel computing facilities is critical for the appraisal of these approaches when applied to representative case studies and for further improvements. Full-waveform modelling requires the resolution of a large sparse system of linear equations which is performed with the massively parallel direct solver MUMPS for efficient multiple-shot simulations. Efficiency of the multiple-shot solution phase (forward/backward substitutions) is improved by using the BLAS3 library. The inverse problem relies on a classic local optimization approach implemented with a gradient method. The direct solver returns the multiple-shot wavefield solutions distributed over the processors according to a domain decomposition driven by the distribution of the LU factors. The domain decomposition of the wavefield solutions is used to compute in parallel the gradient of the objective function and the diagonal Hessian, this latter providing a suitable scaling of the gradient. The algorithm allows one to test different strategies for multiscale frequency inversion ranging from successive mono-frequency inversion to simultaneous multifrequency inversion. These different inversion strategies will be illustrated in the following companion paper. The parallel efficiency and the scalability of the code will also be quantified.
di Fiore, V.; Angelino, A.; Buonocunto, F. P.; Rapolla, A.; Tarallo, D.
2009-04-01
We present a model to describe the behavior of a tuff cliff under the dynamic stress considering a law reference input motion. The studied area is located in the Sorrento Peninsula, a major Quaternary morpho-structural unit of the western flank of Southern Apennines. The peninsula forms a narrow and elevated mountain range (up to 1444 m) that separates two major embayments of the eastern Tyrrhenian margin and is characterized by a carbonate bedrock capped by pyroclastic deposits (i.e. "Campania Ignimbrite"), originated from the Campi Flegrei volcanic district. The occurrence of steep slopes and the high relief energy of the area, along with the marine erosion at the base of the coastal cliff creates favorable conditions for the occurrence of a generalized instability of the slopes that is manifested by tuff rock falls as prevailing landslide phenomena. These events are highly dangerous because of the sudden detachments of conspicuous volumes of rocks with high speed, especially when the rock fall initiates in the upper part of the slopes. Prediction of such landslides is difficult if not accompanied by accurate hydrogeologic and geotechnical monitoring and assessment. The geometry of our model is represented by a tuff cliff of 48 m height, covered by a 8 m thick volcaniclastic layer. At the base of the tuff cliff marine sand deposits occur. The geotechnical parameters used for the analysis were selected from the literature. We have used an effective stress non-linear 2D model to determine the dynamic stress field of our model. The effective stress non-linear algorithm uses the Direct Integration Method to compute the motion and excess pore-water pressures arising from inertial forces at user-defined time steps. The seismic response analysis was performed using the field shear stress generated by synthetic 1-30 Hz band-limited accelerogram. The finite elements mesh considered for the test problem was established by 395 element and 401 nodal point. Our results show a
Seismic tomography Technology for the Water Infiltration Experiment
NSA Engineering, Inc., conducted seismic tomography surveys in Niche No.3 in the Exploratory Studies Facility (ESF), Yucca Mountain, Nevada, and Alcove No.8 in the Enhanced Characterization of the Repository Block (ECRB) cross drift as part of the Infiltration Experiment being conducted in Niche No.3. NSA Engineering is a direct support contractor to the Yucca Mountain Project. This report documents the work performed from August 14 through 30, 2000, prior to the beginning of the infiltration experiment. The objective of the seismic tomography survey was to investigate the flow path of water between access drifts and more specifically to (Kramer 2000): (1) Conduct a baseline seismic tomography survey prior to the infiltration experiment; (2) Produce 2-D and 3-D tomographic images of the rock volume between Alcove No.8 and Niche No.3; (3) Correlate tomography results with published structural and lithological features, and with other geophysical data such as ground penetrating radar (GPR); and (4) Results of this survey will form a baseline with which to compare subsequent changes to the rock mass. These changes may be as a result of the water infiltration tests that could be conducted in Alcove No.8 in 2001. The scope of this reported work is to use the velocity tomograms to: (a) assess the structures and lithologic features within the surveyed area and/or volume between the two access drifts; and (b) provide information on the structural state of the rock mass as inferred by the velocity signatures of the rock prior to the beginning of the infiltration experiment
Technology transfer package on seismic base isolation - Volume I
NONE
1995-02-14
This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume I contains the proceedings of the Workshop on Seismic Base Isolation for Department of Energy Facilities held in Marina Del Rey, California, May 13-15, 1992.
Technology transfer package on seismic base isolation - Volume II
NONE
1995-02-14
This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume II contains the proceedings for the Short Course on Seismic Base Isolation held in Berkeley, California, August 10-14, 1992.
Seismic risk evaluation within the technology neutral framework
Highlights: ► We examine seismic risk within the Technology Neutral Framework (TNF). ► We find that the risk goals in the TNF to be stringent compared with current goals. ► We note that the current fleet reactors would not meet the TNF goals. ► We recommend that an initiating frequency cutoff of 10−5 per year be use in evaluating seismic risk. - Abstract: The NRC Office of Nuclear Regulatory Research has proposed a risk-informed and performance-based licensing process that is referred to as the technology neutral framework (TNF). In the TNF, licensing basis events (LBEs), determined using probabilistic risk assessment methods, take the place of design basis accidents. These LBEs are constructed by grouping together accident sequences with similar phenomenology. All event sequences with a mean frequency greater than 10−7 per reactor year are to be considered as part of the licensing basis. Imposing such a limit would require that earthquakes with a mean return period of ten million years be considered as part of the licensing basis. It is difficult to get seismic hazards (i.e., ground accelerations) from expert seismologists at such low frequencies. This is because it is difficult or impossible to confidently say what the seismic hazard might be at these extremely low frequencies. A linear extrapolation in log-log space of hazard curves at the Clinton site down to 10−7 per year leads to a peak ground acceleration of about 4.5 g. A Weibull distribution is also used to fit the curve leading to a peak ground acceleration of about 2.6 g. These extrapolations demonstrate the extreme nature of rare earthquakes. Even when seismic isolation is implemented, the TNF goal is not met. The problem appears to be that there is no limit on initiating event frequency in the TNF. Demonstrating that a design meets the goals of the TNF would be nearly impossible. A frequency limit for earthquakes could be imposed at a frequency of about 10−5 per year to focus on events
Technology transfer package on seismic base isolation - Volume III
NONE
1995-02-14
This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume III contains supporting materials not included in Volumes I and II.
Some progress on seismic isolation technology in building structure in China
Seismic isolation technology has been considerably developed in China. Appropriate codes and design manuals have ben used. There is a plan of developing Fast reactor technology in China. The conceptual design for a fast experimental reactor was completed. Investigation of seismic isolation technology for fast reactor has started
Seismic risk evaluation within the technology neutral framework
The NRC staff has proposed a risk-informed and performance-based licensing process in NUREG-1860 that is referred to as the Technology Neutral Framework (TNF). In the TNF, Licensing Basis Events (LBEs) are determined using probabilistic risk assessment methods and take the place of design basis accidents. These LBEs are constructed by grouping together accident sequences with similar phenomenology. All event sequences with a mean frequency greater than 10-7 per reactor year are to be considered as part of the licensing basis. Imposing such a limit would require that earthquakes with a mean return period of ten million years be considered as part of the licensing basis. It is difficult to get seismic hazard curves from expert seismologists at such low frequencies. A linear extrapolation in log-log space of hazard curves at the Clinton site down to 10-7 per year leads to a peak ground acceleration (PGA) of around 4 g. Although this extrapolation is conservative, it demonstrates the extreme nature of rare earthquakes. The TNF, as currently formulated, is impractical. The problem appears to be that there is no limit on initiating event frequency. Demonstrating that a design meets the goals of the TNF as stated currently would be nearly impossible. An initiating-event frequency limit for seismic events could be imposed at a frequency of 10 -5 per year or greater to focus on events that may be designed against. (authors)
Yokota, T.; Miyazaki, T. [Geological Survey of Japan, Tsukuba (Japan); Rokugawa, S.; Matsushima, J. [The University of Tokyo, Tokyo (Japan). Faculty of Engineering; Ashida, Y. [Kyoto University, Kyoto (Japan). Faculty of Engineering
1996-10-01
In the case where sources and receivers are not distributed on a 2-D plane, seismic tomography inversion was studied. In tomography experiments, the existing wells are generally used. In such case, sources and receivers are frequently not distributed on a 2-D plane. The 2.5-D analysis method including 2-D structure and 3-D ray-tracing was thus developed. This method is featured by less memory necessary for ray-tracing calculation, and the same algorithm for velocity determination as 2-D analysis method. In previous methods, since analysis is generally carried out by projecting sources and receivers on a certain assumed 2-D plane, it can derive correct results in the case of constant velocity and straight ray, however, in the other case, it derives incorrect results. Application of 3-D tomography requires a large amount of memory, and falls into poor convergence because of various parameters. The 2.5-D analysis method can avoid these demerits. This analysis method was applied to the data obtained in Ogiri area, Kagoshima prefecture. 5 refs., 3 figs., 2 tabs.
马超; 马佳琳
2015-01-01
The Lua scripting language technology has brought the new heaven and earth for the development of Coco2d-x.Through the Lua scripting language development Cocos2d-x application,get rid of the tedious code of C/C++ development,makes the development of fast and efficient and can run on multiple platforms at the same time,the Lua scripting language can expand sex,can make it a good integration in the application.At the same time the Lua language become controller in development.Control the application logic and Coco2d-providing display functions of x and cross-platform features.Such development can dynamically modify the client not only bugs,but also dynamic update application content to avoid the update of customer churn.Free,small,fast,easy to transplant the Lua language reduces the development cost and guarantee the application performance.%Lua脚本语言技术给Coco2d-x开发,带来了新的天地.通过Lua脚本语言开发Cocos2d-x应用,摆脱了C/C++开发的繁琐代码,使得开发变得快速高效又能同时在多个平台运行,Lua脚本语言的可拓展性,可以使它很好的集成在应用程序中.同时Lua语言在开发成为控制器.控制应用程序的逻辑而Coco2d-x之提供显示功能和跨平台功能.这样开发不仅可以动态修改客户端BUG,而且还能动态更新应用内容避免了更新带来的客户流失.Lua语言免费、小巧、快速易移植降低了开发成本又保证了应用性能.
Application Results of 3-D Seismic Exploration Technology in Coal Mines
SUN Shenglin; WU Xizun
2004-01-01
This paper briefly introduces the development and present situation of China's coal seismic exploration. It focuses on analyzing the important functions of 3-D seismic exploration technology in the designing and production of coal mines, and also the results of its application.
Isyaku, Aminu A.; Rust, Derek; Teeuw, Richard; Whitworth, Malcolm
2016-09-01
Structural and stratigraphic mapping within the Bornu Basin in north east Nigeria was commonly carried out using traditional field geological methods. However, such traditional approaches remain inadequate in the semi-arid region characterised by topographically flat areas and lack of continuous bedrock outcrops that are mostly concealed beneath sand cover. Previous studies in the north-eastern part of the basin carried out using ditch cuttings from few wells and disconnected seismic data were largely inadequate and the resulting stratigraphic analyses were more often generalised. This paper presents an integrated structural and stratigraphic study of the basin using combined subsurface geophysical datasets. A Combined Log Pattern (CLP) method is a well log analysis, which utilises various well log data including gamma ray, resistivity, bulk density and sonic logs to identify lithology and stratigraphic boundaries of subsurface formations. This method is applied to constrain the subsurface stratigraphy of the north-eastern part of the Bornu Basin bordering the Lake Chad. In addition to qualitative combined well log analysis, the time-depth relationship of the sonic log and seismic data was quantitatively determined by tying a well with an intersecting seismic section to validate the stratigraphic facies horizons identified. Four well log facies and their environments of deposition were characterised from the combined well log analysis of the different log types. It is discovered that the Cretaceous basement structural features controlled the deposition of overlying formations in the basin. Without intact core data, the shallower wells were discovered to have bottomed over subsurface horst features while deeper wells penetrated into the basal facies contained mainly within the grabens. Main subsurface structural lineaments in the area include NW-SE, NE-SW and NNW-SSE trending faults, which mainly formed the horst and graben features. Some stratigraphic formations
Bing Xu
2016-05-01
Full Text Available In this study, we mapped the co-seismic deformation of the 2015 Mw 8.3 Illapel, Chile earthquake with multiple Sentinel-1A TOPS data frames from both ascending and descending geometries. To meet the requirement of very high co-registration precision, an improved spectral diversity method was proposed to correct the co-registration slope error in the azimuth direction induced by multiple Sentinel-1A TOPS data frames. All phase jumps that appear in the conventional processing method have been corrected after applying the proposed method. The 2D deformation fields in the east-west and vertical directions are also resolved by combing D-InSAR and Offset Tracking measurements. The results reveal that the east-west component dominated the 2D displacement, where up to 2 m displacement towards the west was measured in the coastal area. Vertical deformations ranging between −0.25 and 0.25 m were found. The 2D displacements imply the collision of the Nazca plate squeezed the coast, which shows good accordance with the geological background of the region.
Pangratis Pangratis
2012-07-01
Full Text Available A geophysical survey carried out at Omalos plateau in Chania, Western Crete, Greece employed seismic as well as electrical tomography methods in order to image karstic structures and the metamorphic carbonates (Tripali unit and Plattenkalk group which are covered by post-Mesozoic deposits (terra rossa, clays, sands and gravels. The geoelectrical sections image the metamorphic carbonates which exhibit a highly irregular relief. At the central part of the plateau the thickness of post-Mesozoic deposits (terra rossa, clays, sands and gravels ranges from 40-130 m. A 3D resistivity image was generated by inverting resistivity data collected on a grid to the south west at the Omalos plateau. The 3D resistivity image delineated a karstic structure at a depth of 25 to 55 m. On the same grid the depth to the top of the karstified carbonates ranges from 25-70 m. This is also verified on the resistivity sections and seismic velocity sections along lines 5 and 7 of the above mentioned grid which are derived from the cross-gradients joint inversion.
Lectures on 2D gravity and 2D string theory
This report the following topics: loops and states in conformal field theory; brief review of the Liouville theory; 2D Euclidean quantum gravity I: path integral approach; 2D Euclidean quantum gravity II: canonical approach; states in 2D string theory; matrix model technology I: method of orthogonal polynomials; matrix model technology II: loops on the lattice; matrix model technology III: free fermions from the lattice; loops and states in matrix model quantum gravity; loops and states in the C=1 matrix model; 6V model fermi sea dynamics and collective field theory; and string scattering in two spacetime dimensions
Seismic Attenuation Technology for the Advanced Virgo Gravitational Wave Detector
Beker, M. G.; Blom, M.; van den Brand, J. F. J.; Bulten, H. J.; Hennes, E.; Rabeling, D. S.
The current interferometric gravitational wave detectors are being upgraded to what are termed 'second generation' devices. Sensitivities will be increased by an order of magnitude and these new instruments are expected to uncover the field of gravitational astronomy. A main challenge in this endeavor is the mitigation of noise induced by seismic motion. Detailed studies with Virgo show that seismic noise can be reinjected into the dark fringe signal. For example, laser beam jitter and backscattered light limit the sensitivity of the interferometer. Here, we focus on seismic attenuators based on compact inverted pendulums in combination with geometric anti-prings to obtain 40 dB of attenuation above 4 Hz in six degrees of freedom. Low frequency resonances (< 0.5 Hz) are damped by using a control system based on input from LVDTs and geophones. Such systems are under development for the seismic attenuation of optical benches operated both in air and vacuum. The design and realization of the seismic attenuation system for the Virgo external injection bench, including its control scheme, will be discussed and stand-alone performance presented.
Missous, Ghalia; Thammavongs, Bouachanh; Dieuleveux, Virginie; Houssin, Maryline; Henry, Joël; Panoff, Jean-Michel
2012-01-01
Geotrichum candidum is a micro-fungus widely used as a ripening starter in cheese making. In anthropogenic environments such as dairy industries, this microorganism is subjected to many environmental and technological stresses including low temperature exposure. Our aim was to study the proteomic response of G. candidum to cold stress using a comparative proteomic approach by two-dimensional Differential In Gel Electrophoresis (2D DIGE). This technique consists on the labeling of proteins by specific fluorescent dyes (CyDyes). The results, obtained with G. candidum cells subjected to cold temperature, show significant proteomic patterns differences compared with the standard conditions. Furthermore, this biochemical response seems strain specific. 2D DIGE technology combined with SameSpots™ software analysis support these results through an important statistical validity. The comparative studies in a single gel, using two different fluorescent CyDyes (Cy3 and Cy5), lead to proteins differentiation. Selected spots were treated and analyzed by mass spectrometry. PMID:22987240
Auer, L.; Greenhalgh, S. A.; Maurer, H. R.; Marelli, S.; Nuber, A.
2012-04-01
Seismic full waveform inversion is often based on forward modeling in the computationally attractive 2-D domain. Any solution of the 2-D cartesian wave equation inherently carries the implicit assumption of a line source extended in the out-of-plane medium invariant direction. This implies that the source energy in homogeneous media spreads over the surface of an approximately expanding cylinder, such that the wavefield amplitudes (at least in the far field) scale inversely with the square-root of distance. However, realistic point sources like explosives or airguns, fired in a 3-D medium, generate amplitudes that decay inversely with the first power of distance, since the wavefield expands quasi-spherically in all three dimensions. Usually, practitioners correct for this amplitude difference and the associated phase shift of π/4 by transforming the recorded 3-D field data to the approximate 2-D situation by using simplistic, asymptotic filter algorithms. Such filters operate on a square root of time-sample convolutional basis and implicitly assume straight ray paths and a constant velocity medium. The unsubstantiated usage of these asymptotic filters is in contradiction to their well known limitations. In this study, we present an extensive quantitative appraisal of 3D-to-2D data transformation procedures. Our analysis relies on a simple numerical modeling study, based on propagating 3-D and 2-D wavefields through 2-D media and comparing the true 2-D and the filtered 3-D synthetic data. It is shown that the filtering errors are moderate in purely acoustic situations but become substantial in complex media when arrivals overlap each other or ray paths deviate strongly from straight lines. Normalized root-mean-square deviations up to 5% and maximum relative time domain errors of up to 40% were found in high contrast media, when full elastic treatment was considered. In order to examine if this error translates into a deficient model reconstruction in full waveform
Marco Groh
2010-04-01
Full Text Available Geophysical exploration is indispensable for planning deep drilling. Usually 2D- or 3D-seismics investigations are applied and, depending on the resulting geologic model for the underground, the drill site and drilling path are determined. In recent years the focus of exploration has shifted towards small-scale geological structures such as local layers and faults. Depending on the source frequencies and the target depth, 2D- or 3D-seismics from surface cannot always resolve such structures in particular at larger depths. In general, signal frequencies of about 30–70 Hz are typical for surface seismic methods. The deeper and smaller the sought-after structures are, the worse will be the resolution. Therefore, borehole seismic measurements like Vertical Seismic Profile (VSP or Seismic While Drilling (SWD have been developed (Fig. 1. For the VSP method geophones are normally integrated in the borehole, while the seismicsource generates seismic waves at the surface. The SWD method uses the drill bit as the seismic source. Hence, the quality of the seismic signals is highly dependent on the drilled rock and the type of drill bit, but even well-suited rock conditions and adequate drilling may not provide sufficient data quality.
Development of seismic technology and reliability based on vibration tests
Sasaki, Youichi [Nuclear Power Engineering Corp., Tokyo (Japan)
1997-03-01
This paper deals with some of the vibration tests and investigations on the seismic safety of nuclear power plants (NPPs) in Japan. To ensure the reliability of the seismic safety of nuclear power plants, nuclear power plants in Japan have been designed according to the Technical Guidelines for Aseismic Design of Nuclear Power Plants. This guideline has been developed based on technical date base and findings which were obtained from many vibration tests and investigations. Besides the tests for the guideline, proving tests on seismic reliability of operating nuclear power plants equipment and systems have been carried out. In this paper some vibration tests and their evaluation results are presented. They have crucially contributed to develop the guideline. (J.P.N.)
Technological Advancements: Seismic Refraction on the Pajarito Plateau, Northern New Mexico.
Nisengard, J. E. (Jennifer E.); Ferguson, J. F. (John F.); Hinz, E. (Emily); Isaacson, J. (John); Gauthier, Rory P.
2005-01-01
Geophysical techniques can be used for non-invasive surveys at archaeological sites. Seismic refraction is one such technology that has many potential applications, although it has been under-utilized. It is an inexpensive, efficient way to characterize subsurface deposits, especially at sites in shallow contexts over bedrock. Archaeologists and geophysicists participating in the Summer of Applied Geophysics Experience (SAGE), from Los Alamos National Laboratory (LANL), and Bandelier National Monument are working together to characterize Ancestral Pueblo (A.D. 1200 to 1600) sites. We present the results from three seismic refraction surveys and provide an overview of how seismic refraction works.
Wirgin, A; Wirgin, Armand
2004-01-01
We show, essentially by theoretical means, that for a site with the chosen simple geometry and mechanical properties (horizontal, homogeneous, soft viscoelastic layer of infinite lateral extent overlying, and in welded contact with, a homogeneous, hard elastic substratum of half-infinite radial extent, shear-horizontal motion): 1) coupling to Love modes is all the weaker the farther the seismic source (modeled as a line, assumed to lie in the substratum) is from the lower boundary of the soft layer, 2) for a line source close to the lower boundary of the soft layer, the ground response is characterized by possible beating phenomena, and is of significantly-longer duration than for excitation by cylindrical waves radiated by deep sources. Numerical applications of the theory show, for instance, that a line source, located 40m below the lower boundary of a 60m thick soft layer in a hypothetical Mexico City-like site, radiating a SH pulse of 4s duration, produces substantial ground motion during 200s, with marke...
Seismic protection technology for nuclear power plants. A systematic review
Seismic protection systems (SPS) have been developed and used successfully in conventional structures, but their applications in nuclear power plants (NPPs) are scarce. However, valuable research has been conducted worldwide to include SPS in nuclear engineering design. This study aims to provide a state-of-the-art review of SPS in nuclear engineering and to answer four significant research questions: (1) why are SPS not adopted in the nuclear industry and what issues have prevented their deployment? (2) what types of SPS are being considered in nuclear engineering research? (3) what are the strategies for location of SPS within NPPs? and (4) how may SPS provide improved structural performance and safety of NPPs under seismic actions? This review is conducted following the procedures of systematic reviews, where possible. The issues concerning the use of SPS in NPPs are identified: cost, safety, licensing and scarcity of applications. NPPs demand full structural integrity and reactor's safe shutdown during earthquake actions. Therefore, horizontal isolation may be insufficient in active seismic zones and isolation in the vertical direction may be required. Based on the results in this review, it is likely that next generation reactors in seismic zones will include state-of-the-art SPS to achieve full standardised design. (author)
A novel beat-noise-reducing en/decoding technology for a coherent 2-D OCDMA system.
Zheng, Jilin; Wang, Rong; Pu, Tao; Lu, Lin; Fang, Tao; Cheng, Yun; Chen, Xiangfei
2009-10-12
A novel fiber Bragg grating (FBG)-based en/decoder for a coherent two-dimensional (2-D) wavelength-time (WT) optical code-division multiple-access (OCDMA) system is proposed to suppress the beat noise (BN). The feasibility of en/decoding function and the effectiveness of BN suppression are demonstrated by the simulation comparison between the conventional and proposed scheme, which are also further validated by en/decoding experiments with two users at a data rate of 2.5, 5 and 10 Gb/s respectively. The further numerical performance analysis of the proposed en/decoding method reveals the BER improvement compared with the conventional system. PMID:20372663
Technology of research of hydroturbine unit work using seismic methods
Seleznev, V. S.; Liseikin, A. V.; Gromyko, P. V.; Soloviev, V. M.
2013-05-01
On August, 17, 2009 one of the most significant accident in hydropower engineering was happened at Sayano-Shushenskaya Hydroelectric Power Station. Specialists of Geophysical Survey SB RAS took part in the State Committee on investigation of the accident cause at Sayano-Shushenskaya HPS. It was determined, that the cause of the accident was a break of stud-bolts on the turbine cover. Why stud-bolts did not stand a load? There were assumptions that hydraulic shock provoked the accident. But, if it is so, seismic station "Cheremushky", situated in 4 km away from the HPS, should has a record of this event. First of all, investigating the record, got at the seismic station in the moment of the accident, it was determined that strength of seismic waves, recorded at the moment of the accident, did not exceed strength of waves got at trotyl explosion of 500 g at a distance to 4 km. The version of hydraulic shock was not proved. There were distinguished low-frequency oscillations and it was determined that the hydroturbine unit (HU) had been raised up more then 10 m in height for 10 sec. Analyzing the seismic station records during the period of more than a year before the accident and records of operating modes of different HU, there was determined that oscillations radiated by second (damaged) HU were approximately 1.5 times more intense than oscillations from all other HU. After the accident at Sayano-Shushenskaya HPS hydroturbine units were started in turns: at first there were started hydroturbine units of old construction (3, 4, 5, 6), then HP of new construction (1, 7, 8, 9). We installed 10 - 15 three-component seismic stations in different points around a HU and studied field of seismic oscillations from it's work. It was determined, that HU radiates a set of monochromatic oscillations divisible by speed of rotation equal to 2.381 Hz. Change of these signals amplitude is connected with change of HU operation modes. Research of changes in oscillations spectral
自动2D-to-3D视频转换技术研究%The Research of Automatic 2D-to-3D Video Conversion Technology
杨宇; 李鉴增
2012-01-01
Lack of 3D content embarrassed 3D development. 2D images can be converted to 3D by auto- matic 2D -to -3D system,which can make 3D content generating more conveniently and cheaply. Auto- matic 2D- to- 3D processing includes image segmentation, depth extraction, depth fusion and assign- ment, depth image based rendering. This paper presents the methods and algorithm, and then introduces the situation of assessment methods researching for color and depth image based stereo video.%目前3D视频内容不足是制约3D技术发展的重要因素之一，自动2D-to-3D视频系统可以快速且低成本地将二维图像转换成双目立体图像。具有很好的发展前景。自动2D-to-3D视频系统分为图像分割、深度信息提取、深度的融合与分配、立体图像生成等多个部分，本文对自动2D-to-3D系统的各个组成部分的原理与主要算法进行了介绍与分析，最后，还介绍了自动2D-to-3D系统生成的图像客观评价的发展情况。
Designing in seismic areas in the third millennium: modern technologies
The World Conference on Seismic Isolation, Energy Dissipation and Active Vibrations Control of Structures, which took place in Sendai (Japan) on September 24-26, 2013. Other papers presented at this conference deal with the use of the traditional approach. More updated information on the application of the AS systems became available at the ASSISi 14. World Conference, held in San Diego (California, USA) on September 7-11, 2015. Most SI systems rely on the use of rubber bearings (RBs), such as the High Damping natural Rubber Bearings (HDRBs), Neoprene Bearings (NBs), Lead Rubber Bearings (LRBs), or (especially in Japan) Low Damping Rubber Bearings (LDRBs) in parallel with dampers; in buildings, some plane surfaces steel-Teflon (PTFE) Sliding Devices (SDs) are frequently added to the RBs to support their light parts without unnecessarily stiffening the SI system (which would make it less effective) and (if they are significantly asymmetric in the horizontal plane) to minimize the torsion effects (the effects of the vertical asymmetries are drastically reduced by the quasi 'rigid body motion' of the seismically isolated superstructure). Another type of isolators, which has been used in Italy after the 2009 Abruzzo earthquake, is the so-called Curved Surface Slider (CSS), which derived from the US Friction Pendulum (FPS) and the subsequent German Seismic Isolation Pendulum (SIP). Finally, rolling isolators (in particular Ball Bearings, BBs, and Sphere Bearings) are also applied: they are very effective and find numerous applications (more than 200 in 2013) to protect buildings in Japan, but not in Italy, because there they have been judged to be too expensive (however, they have already been used, even in Italy, to protect precious masterpieces and other contents of museums, as well as costly equipment, including that of operating-rooms in hospitals). It shall be stressed that, to the knowledge of the author, all structures protected by RBs that were located
Micale, Barbara L.
2010-01-01
Theresa Jefferson and John Harrald, research faculty at the Virginia Tech Center for Technology, Security, and Policy in the National Capital Region recently completed a Federal Emergency Management Agency (FEMA)-funded research project to model the social impacts and disaster response requirements of a 7.7 magnitude catastrophic earthquake on the three segments of the New Madrid Seismic Zone.
Research on database realization technology of seismic information system in CTBT verification
Developing CTBT verification technology has become the most important method that makes sure CTBT to be fulfilled conscientiously. The seismic analysis based on seismic information system (SIS) is playing an important rule in this field. Based on GIS, the SIS will be very sufficient and powerful in spatial analysis, topologic analysis and visualization. However, the critical issue to implement the whole system function depends on the performance of SIS DB. Based on the ArcSDE Geodatabase data model, not only have the spatial data and attribute data seamless integrated management been realized with RDBMS ORACLE really, but also the most functions of ORACLE have been reserved. (authors)
Investigation on seismic load reduction technology for integral reactor
Park, Moon Shik; Kim, Young Soo; Kang, Gyung Mo [Hannam Univ., Daejeon (Korea, Republic of)
2006-02-15
Dynamic responses of the reactor vessel assembly are characterized by analytic methods under the seismic excitation loads which are regulatory that a vibration isolation device is developed to satisfy the dynamic design requirements of the reactor vessel assembly by means of minimizing its responses. Response spectra in terms of subsystems within the reactor vessel assembly are derived incorporating the RVA and the springs as well as the IST. To be able to select optimized spring, a simple lumped model consisting of a mass and a spring and a three degrees of freedom model of vertical, horizontal and rotational motion are constructed with time integration of R-K method or by using Nastran which result in the same results. Out of several springs and their layout alternatives, IDC M32-528-08 is selected as a optimal spring compliable with dynamic design requirement, manufacture and maintenance. Incorporating the RVA, the IST and the selected springs with their nonlinear load-defection relationships, static deflection analysis, eigenmode analysis and nonlinear transient analysis are done. Analyzing the responses, how the IST and the springs affect the RVA in its behaviors is derived. Floor response spectra of the RVA are calculated by finite element modeling of the RVA, the springs and the IST. The effects of the IST on the floor response spectra are identified as meaningful to those high natural frequency subsystems. Floor response spectra are calculated for different levels of damping ratio to be able to applicable for many subsystems.
Benefits of remote sensing technologies in the assessment of seismicity and environment
Estimating the likelihood of seismic hazard and the degree of damage, including damage of secondary effects is essential for damage mitigation planning. The present study is an attempt to integrate various data sets as LANDSAT ETM - and satellite radar (ERS) - data and geological and geophysical data to obtain a better understanding of processes influencing the damage intensity of stronger earthquakes. Special attention is given to the mapping of structural features visible on satellite imageries from the area in order to investigate the tectonic setting and to detect surface traces of fracture and fault zones that might influence the contour and degree of seismic shock and earthquake induced secondary effects as soil liquefaction. Special attention is focussed on active, neotectonic features. Linear features visible on remote sensing - data from the test area, thus, were mapped and risk areas delineated using ArcView - Geographic Information System (GIS) - technology. As risk areas were mapped those regions with higher risk of seismic wave amplification due to water saturated surfaces or due to intersecting fault zones guiding seismic waves. The evaluations were compared, correlated and combined with available geologic and geophysics data. The results of this study allow an application for seismic microzonation purposes
Seismic Sleuths: Using Visualization Technology to Teach Middle School Earth Sciences Content
Peach, C.; Kilb, D.; Kent, G.; Fisler, S.
2006-12-01
Scientists from the Scripps Institution of Oceanography (SIO) Visualization Center and science educators from the Birch Aquarium at Scripps (BAS) and Aquatic Adventures Science Education Foundation (AASEF) collaborated to create Seismic Sleuths, a field trip experience for 6th graders that introduces concepts in global tectonics and seismicity using data visualization techniques. Designed to teach 6th grade California Earth science content standards, the program emphasizes how scientists gather and use data to understand Earth processes. The Seismic Sleuths field trip program is the culminating event for a four-week, in-school Earth science enrichment program provided to four of San Diego's most underserved middle schools by AASEF. Using data and visualization techniques adopted from the SIO Visualization Center, the fieldtrip experience reinforces concepts taught in the in-school portion of the program. During the 1 1/2 hour field trip program, students rotate through three learning stations that include 1) examination of global topography and seismicity data using an internal projection globe; 2) interactive 3-D visualization (Fledermaus) of earthquake hypocenter data and topography at convergent and divergent plate boundaries; and 3) a working ocean bottom seismometer that is used to demonstrate how seismic data are collected. Data from an evaluation of the program suggest that use of the visualization technology enhances student learning with substantial increases in student knowledge measured in pre- and post-field trip student knowledge surveys.
Fischer, Jenny J.; Graebner, Olivia; Dreger, Mathias; Glinski, Mirko; Baumgart, Sabine; Koester, Hubert
2011-01-01
An increasingly popular and promising field in functional proteomics is the isolation of proteome subsets based on small molecule-protein interactions. One platform approach in this field are Capture Compounds that contain a small molecule of interest to bind target proteins, a photo-activatable reactivity function to covalently trap bound proteins, and a sorting function to isolate captured protein conjugates from complex biological samples for direct protein identification by liquid chromatography/mass spectrometry (nLC-MS/MS). In this study we used staurosporine as a selectivity group for analysis in HepG2 cells derived from human liver. In the present study, we combined the functional isolation of kinases with different separation workflows of automated split-free nanoflow liquid chromatography prior to mass spectrometric analysis. Two different CCMS setups, CCMS technology combined with 1D LC-MS and 2D LC-MS, were compared regarding the total number of kinase identifications. By extending the chromatographic separation of the tryptic digested captured proteins from 1D LC linear gradients to 2D LC we were able to identify 97 kinases. This result is similar to the 1D LC setup we previously reported but this time 4 times less input material was needed. This makes CCMS of kinases an even more powerful tool for the proteomic profiling of this important protein family. PMID:21941435
P-Cable: New High-Resolution 3D Seismic Acquisition Technology
Planke, Sverre; Berndt, Christian; Mienert, Jürgen; Bünz, Stefan; Eriksen, Frode N.; Eriksen, Ola K.
2010-05-01
We have developed a new cost-efficient technology for acquisition of high-resolution 3D seismic data: the P-Cable system. This technology is very well suited for deep water exploration, site surveys, and studies of shallow gas and fluid migration associated with gas hydrates or leaking reservoirs. It delivers unparalleled 3D seismic images of subsurface sediment architectures. The P-Cable system consists of a seismic cable towed perpendicular to a vessel's steaming direction. This configuration allows us to image an up to 150 m wide swath of the sub-surface for each sail line. Conventional 3D seismic technology relies on several very long streamers (up to 10 km long streamers are common), large sources, and costly operations. In contrast, the P-Cable system is light-weight and fast to deploy from small vessels. Only a small source is required as the system is made for relatively shallow imaging, typically above the first water-bottom multiple. The P-Cable system is particularly useful for acquisition of small 3D cubes, 10-50 km2, in focus areas, rather than extensive mapping of large regions. The rapid deployment and recovery of the system makes it possible to acquire several small cubes (10 to 30 km2) with high-resolution (50-250 Hz) seismic data in during one cruise. The first development of the P-Cable system was a cooperative project achieved by Volcanic Basin Petroleum Research (VBPR), University of Tromsø, National Oceanography Centre, Southampton, and industry partners. Field trials using a 12-streamer system were conducted on sites with active fluid-leakage systems on the Norwegian-Barents-Svalbard margin, the Gulf of Cadiz, and the Mediterranean. The second phase of the development introduced digital streamers. The new P-Cable2 system also includes integrated tow and cross cables for power and data transmission and improved doors to spread the larger cross cable. This digital system has been successfully used during six cruises by the University of Troms
The Complementary Nature of Seismic and Infrasound Technologies in Regional Monitoring (Invited)
Stump, B. W.; Hayward, C.; Park, J.
2013-12-01
Under current CTBTO event detection and location operating conditions, signal detection is a station-centric decision (was an event phase detected at this station?), rather than a global hypothesis test. Currently, infrasound and seismic detection use signal detectors run independently on each technology. It is only after event formation that the observations and inferences are merged. Development of this independent processing is a result of the vastly different signal and noise characteristics of these two waveform technologies. However, for specific signals there may be a utility to a joint seismic-infrasound detector. For example, noise estimates from one technology may help characterize or identify the noise on another technology (wind couples to both infrasound and seismic). Back-projection methods for both seismic and infrasound could easily be combined to produce a common seismo-acoustic detection and associated event location. The opportunity exists to integrate detection and location into a single multi-disciplinary approach. One such example is the ongoing infrasound detection and location procedure that utilizes an adaptive F-detector as input into the Bayesian Infrasonic Source Location (BISL, Modrak et al. 2010) procedure that provides an estimate of source location using assigned prior probabilities based on what is known of the propagation path and on the signal detector estimates (arrival time, phase velocity and azimuth). As the atmospheric model is better defined these priors may be changed, thus linking improved location estimates directly to improvements in atmospheric models. The final step following event location is identification. Seismic and infrasound observations and their interpretation for the recent set of North Korean nuclear explosions in 2006, 2009, and 2013 provide a motivation for multiple disciplinary approach to this step as well. Seismic analysis of these tests have documented that for existing parameterized source models
4 was only 70% that of Unit 2 at the same site. Given these circumstances, JNES initiated the 'Observation and Evaluation Study of Ground Motion Amplification' project by drilling a three-kilometer deep borehole on the premises of the Niigata Institute of Technology, which is located near the Kashiwazaki site, and proposed a series of workshops related to deep underground seismic observation and ground motion evaluation to the Seismic Subgroup of the OECD/NEA/IAGE Group at the April 2010 meeting. The first was held from 24-26 November 2010 as part of the first Kashiwazaki International Symposium on seismic safety, and the second was held on 7 to 9 November 2012. In the second WS, 36 papers were presented by the participants from eight countries including two international organizations, and discussed in three sessions (i.e. observation technology, evaluation of the observed seismic motion and the multipurpose use). Regarding the observation technology session, useful lessons-learned in probe development, setup and maintenance under the challenging conditions posed by great depth were described. This information from SAFORD and Kashiwazaki was thought to be particularly valuable for the planning and operation of similar facilities. As for the seismic observations from a deep borehole, it was identified that such observations are very effective for investigation of the earthquake generating process and are important for detailed understanding of the three-dimensional underground structure. There is not yet much experience with observation and application of a deep borehole, and therefore future developments and achievements are expected. The importance of simple ground motion evaluation technology combined with geophysical exploration was also acknowledged. Examples of multipurpose utilization and the advantage of seismic observations in deep boreholes were discussed. Multipurpose use was discussed not only for seismic design and evaluation of nuclear installations
Optoelectronics with 2D semiconductors
Mueller, Thomas
2015-03-01
Two-dimensional (2D) atomic crystals, such as graphene and layered transition-metal dichalcogenides, are currently receiving a lot of attention for applications in electronics and optoelectronics. In this talk, I will review our research activities on electrically driven light emission, photovoltaic energy conversion and photodetection in 2D semiconductors. In particular, WSe2 monolayer p-n junctions formed by electrostatic doping using a pair of split gate electrodes, type-II heterojunctions based on MoS2/WSe2 and MoS2/phosphorene van der Waals stacks, 2D multi-junction solar cells, and 3D/2D semiconductor interfaces will be presented. Upon optical illumination, conversion of light into electrical energy occurs in these devices. If an electrical current is driven, efficient electroluminescence is obtained. I will present measurements of the electrical characteristics, the optical properties, and the gate voltage dependence of the device response. In the second part of my talk, I will discuss photoconductivity studies of MoS2 field-effect transistors. We identify photovoltaic and photoconductive effects, which both show strong photoconductive gain. A model will be presented that reproduces our experimental findings, such as the dependence on optical power and gate voltage. We envision that the efficient photon conversion and light emission, combined with the advantages of 2D semiconductors, such as flexibility, high mechanical stability and low costs of production, could lead to new optoelectronic technologies.
These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.
Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor
2005-09-20
These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.
Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor
2006-09-19
These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.
These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.
Subglacial Landforms and Processes: new Information From 3D Seismic Technology
Andreassen, K.
2007-12-01
Three-dimensional (3D) seismic interpretation and imaging techniques provide a unique means of investigating submarine geomorphic features produced by former ice sheets. An extensive two-dimensional (2D) and 3D seismic data base is here used to image the imprints left behind by glaciers that flowed out a major cross-shelf trough (Bjornoyrenna) of the north-Norwegian continental shelf during repeated glacial episodes. Mega-scale glacial lineations characterize the seafloor geomorphology of Bjornoyrenna and smaller, contributing cross-shelf troughs, where they are inferred to represent flow-lines of former ice streams that where active during the most recent (Weichselian) glacial period. Similar features are commonly observed on buried horizons. Large- scale seafloor imprints from an early readvance after the last glacial maximum are especially well preserved. Streamlined landforms and associated lobe-shaped ridges indicate that this major cross-shelf trough hosted six separate ice stream lobes that diverged fan-like at their margins, but were not all active simultaneously. A 300 km wide grounding-zone wedge results from high sediment flux within sub-ice stream deformable beds. A 2 to 3 km thick Pleistocene record is preserved at the mouth of Bjornoyrenna, in the Bjornoya Trough Mouth Fan. The preservation of up to several hundred meters of glacigenic sediments between the buried, glacially eroded surfaces, provides here the opportunity to study the internal structure of till units. 3D seismic attribute maps reveal that megablocks and rafts commonly occur within the till units. The sediments blocks are often aligned in chains that may be up to 2 km wide and over 50 km long. The largest individual megablocks have an areal extent of over 2 km2. The sediment chains are interpreted to have been eroded, transported and deposited by grounded ice, most probably fast-flowing ice streams. This is based on the relationship between the sediment chains and the horizons revealing
A new 2-D and 3-D self-consistent code has been developed and is applied to understanding the charge trapping in SOI buried oxide causing back-channel MOS leakage in SOI transistors. Clear indications on scaling trends are obtained with respect to supply voltage and oxide thickness. (authors)
Development of seismic safety assessment technology for SSI systems of nuclear power plants
This paper presents the seismic safety assessment technology developed by the Korea Institute of Nuclear Safety (KINS) for soil-structure interaction (SSI) systems of nuclear power plants. In the study, SSI analysis methods were developed and complemented such as the substructure method utilizing a lumped-parameter model and the direct method based on the infinite element and the hyper element. Based on the methods, the computer codes, LUMSSI, KIESSI, HYPER3X were developed. The computer codes FREE and M-SHAKE were also developed for site response analysis. The M-SHAKE is a user-friendly, complemented version of the previously developed code SHAKE. To validate the analysis methodologies and the computer codes, KIESSI, LUMSSI, HYPER3X, and SASSI which had been already installed in the KINS, we are participating in the Hualien LSST project which is an international cooperative research project. For the Hualien LSST, blind prediction and post-correlation analyses for the forced vibration of the test model before and after backfill, and earthquake response analyses were carried out. Earthquake response analysis of the Lotung LSST model in Taiwan, and forced vibration analysis and earthquake response analysis of the test model by TEPSCO, Japan, were also performed by using thee LUMSSI and the KIESSI. The analyses gave satisfactory results. In addition, guidelines for seismic safety assessment of SSI systems were developed in the study through utilizing the SSI analysis results of the test models and performing additional parametric studies. (author). 11 refs., 11 figs
Antunes, Alex Francisco [Rio Grande do Norte Univ., Natal, RN (Brazil)]. E-mail: alex@geologia.ufrn.br; Jardim de Sa, Emanuel Ferraz [Rio Grande do Norte Univ., Natal, RN (Brazil). Programa de Pos-graduacao em Geodinamica e Geofisica; Matos, Renato Marcos Darros de [Rio Grande do Norte Univ., Natal, RN (Brazil). Dept. de Geologia; Keller Filho, Odilon [PETROBRAS S.A., Natal, RN (Brazil). Unidade de Negocios RN/CE; Lima Neto, Francisco Fontes [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas
2003-07-01
This paper presents a reinterpretation of seismic sections of the Xareu Oil Field, located in the central portion of the Mundau Sub-basin (Ceara Basin, Northeast Brazil). These seismic sections were acquired during the 80's and the 90's. Their reinterpretation show that the field is structured by a main arrangement of N W-trending listric normal faults, with associated roll-over structures affecting the rocks of the rift (Mundau Formation) and transitional (Paracuru Formation) sections of the basin. Some of these faults also affect the basal and intermediate layers of the drift section (Ubarana Formation), what denotes their reactivation (or even the formation of new faults). the new interpretation allows a better understanding of the frequency, geometry, orientation, style and kinematic of the faults, important factors in the structural characterization of the Xareu Oil Field. (author)
Ventura, P; Li, L; Sofia, S; Basu, S; Demarque, P
2009-01-01
Understanding the reasons of the cyclic variation of the total solar irradiance is one of the most challenging targets of modern astrophysics. These studies prove to be essential also for a more climatologic issue, associated to the global warming. Any attempt to determine the solar components of this phenomenon must include the effects of the magnetic field, whose strength and shape in the solar interior are far from being completely known. Modelling the presence and the effects of a magnetic field requires a 2D approach, since the assumption of radial symmetry is too limiting for this topic. We present the structure of a 2D evolution code that was purposely designed for this scope; rotation, magnetic field and turbulence can be taken into account. Some preliminary results are presented and commented.
Lotsch, Bettina V.
2015-07-01
Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.
Vibration analysis and innovative technologies in the seismic preservation of cultural heritage
In order to preserve historical buildings and monuments against the effects of earthquakes a detailed analysis is needed to evaluate the characteristics of the seismic input and the dynamic behaviour of structures under seismic actions and to choose the most suitable seismic rehabilitation technique. In this paper the experimental analysis carried out on the Colosseum and the Lateran Obelisk are first shown. Then the application of seismic isolation in historical buildings is discussed and a new structure for the seismic isolation of existing building is presented.
Zhang Qi-sheng; Deng Ming; Guo Jian; Luo Wei-bing; Wang Qi; Feng Yong-qiang
2013-01-01
There has been considerable development of seismic detectors over the last 80 years. However, there is still a need to further develop new earthquake exploration and data acquisition systems with high precision. In particular, for China to keep up with the latest technology of these systems, it is important to be involved in the research and development, instead of importing systems that soon fall behind the latest technology. In this study, the features of system-on-a-programmable-chip (SoPC...
Dominic Arsenault
2013-03-01
Full Text Available This paper provides an overview of a research project currently in progress at the Université de Montréal (Québec, Canada. Funded by the FQRSC (Fonds de recherche Québec – Société et Culture / Quebec Fund for Research – Society and Culture for a three-year period (from May 2012 to May 2015, the project studies the transition from 2D to 3D graphics in gaming during the 1990s
Two three-dimensional (3-D), high-resolution seismic reflection pilot studies were conducted in California at two sites, where the primary contaminants of concern are solvents. Identify pathways of contaminant migration. Determine the subsurface stratigraphy and structure to optimize the location for placement of remedial systems. The geology at the first site, located at the Lawrence Livermore National Laboratory in Livermore, California, is characterized by unconsolidated alluvium. Ground water varies in depth from about 30 to 100 ft. The site typically is subjected to extensive cultural noise. The second site, in Southern California, is located in a broad, synclinal depression in the Transverse Range. Shallow alluvium overlies a marine turbidite sequence that crops out as massive sandstone beds. Field work for both surveys took place in August 1992. A Bison Model 90120-A, 120-channel (DIFP) seismograph was used to record the data. Thirty-hertz, natural-frequency geophones were used to receive the data, and an Elastic Wave Generator (EWG) was used as the seismic source. The use of a signal-stacking, noninvasive source was found to be an effective method of overriding background noise at the sites. Prior to the commencement of the 3-D pilot studies, a two-dimensional (2-D) profile was recorded to test the acquisition parameters, which included the geometry of the survey, digital sample rate, and analog filter settings. The data were monitored in the field with a Bison 486 Explorer outdoor computer. The 2-D data were processed and displayed in the field. Both sites displayed coherent seismic reflections from the depths of interest on the field-stacked sections
NONE
1995-10-01
Many basins in the Rocky Mountains contain naturally fractured gas reservoirs. Production from these reservoirs is controlled primarily by the shape, orientation and concentration of the natural fractures. The detection of gas filled fractures prior to drilling can, therefore, greatly benefit the field development of the reservoirs. The objective of this project was to test and verify specific seismic methods to detect and characterize fractures in a naturally fractured reservoir. The Upper Green River tight gas reservoir in the Uinta Basin, Northeast Utah was chosen for the project as a suitable reservoir to test the seismic technologies. Knowledge of the structural and stratigraphic geologic setting, the fracture azimuths, and estimates of the local in-situ stress field, were used to guide the acquisition and processing of approximately ten miles of nine-component seismic reflection data and a nine-component Vertical Seismic Profile (VSP). Three sources (compressional P-wave, inline shear S-wave, and cross-line, shear S-wave) were each recorded by 3-component (3C) geophones, to yield a nine-component data set. Evidence of fractures from cores, borehole image logs, outcrop studies, and production data, were integrated with the geophysical data to develop an understanding of how the seismic data relate to the fracture network, individual well production, and ultimately the preferred flow direction in the reservoir. The multi-disciplinary approach employed in this project is viewed as essential to the overall reservoir characterization, due to the interdependency of the above factors.
2-D or not 2-D, that is the question: A Northern California test
Mayeda, K; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D
2005-06-06
Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. The complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Using the same station and event distribution, we compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7{le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter that was generally 10-30% smaller. For complex regions where data are plentiful, a 2-D approach can significantly improve upon the simple 1-D assumption. In regions where only 1-D coda correction is available it is
Caccavale, Mauro
2011-01-01
Earthquakes, weak or strong, represent always a psychological and emotional stress for people, but also a strong socio-economic impact for the affected area. The earthquake generation, the propagation of seismic waves, the seismic waves modification due to the propagation media and the interaction between seismic wave and human structures, are the main topics of different research disciplines. In the last years a wide interdisciplinary research program (physics, seismology, mathematics, geolo...
This volume is divided into six chapters: analysis techniques, equivalent damping values, probabilistic design factors, design verifications, equivalent response cycles for fatigue analysis, and seismic isolation
Reddy, D.P. (ed)
1983-04-01
This volume is divided into six chapters: analysis techniques, equivalent damping values, probabilistic design factors, design verifications, equivalent response cycles for fatigue analysis, and seismic isolation. (JDB)
Activated sludge model No. 2d, ASM2d
Henze, M.
1999-01-01
The Activated Sludge Model No. 2d (ASM2d) presents a model for biological phosphorus removal with simultaneous nitrification-denitrification in activated sludge systems. ASM2d is based on ASM2 and is expanded to include the denitrifying activity of the phosphorus accumulating organisms (PAOs...
Seismic technology of nuclear fuel cycle facilities: A view of BNFL's approach and methods
The approach BNFL employs in the seismic qualification of its nuclear fuel cycle facilities is described in this paper. The overall seismic qualification process from design to installation and commissioning is considered. The approach for new facilities, such as the Sellafield Mixed Oxide Fuel Plant and Windscale Vitrification Plant Line 3 currently under construction, is examined. (author)
This volume is divided into five chapters: experimental verification of piping systems, analytical verification of piping restraint systems, seismic analysis techniques for piping systems with multisupport input, development of floor spectra from input response spectra, and seismic analysis procedures for in-core components
Internal Photoemission Spectroscopy of 2-D Materials
Nguyen, Nhan; Li, Mingda; Vishwanath, Suresh; Yan, Rusen; Xiao, Shudong; Xing, Huili; Cheng, Guangjun; Hight Walker, Angela; Zhang, Qin
Recent research has shown the great benefits of using 2-D materials in the tunnel field-effect transistor (TFET), which is considered a promising candidate for the beyond-CMOS technology. The on-state current of TFET can be enhanced by engineering the band alignment of different 2D-2D or 2D-3D heterostructures. Here we present the internal photoemission spectroscopy (IPE) approach to determine the band alignments of various 2-D materials, in particular SnSe2 and WSe2, which have been proposed for new TFET designs. The metal-oxide-2-D semiconductor test structures are fabricated and characterized by IPE, where the band offsets from the 2-D semiconductor to the oxide conduction band minimum are determined by the threshold of the cube root of IPE yields as a function of photon energy. In particular, we find that SnSe2 has a larger electron affinity than most semiconductors and can be combined with other semiconductors to form near broken-gap heterojunctions with low barrier heights which can produce a higher on-state current. The details of data analysis of IPE and the results from Raman spectroscopy and spectroscopic ellipsometry measurements will also be presented and discussed.
Coakley, B.; Anderson, R.; Chayes, D. N.; Goemmer, S.; Oursler, M.
2009-12-01
Great advances in mapping the Arctic Ocean have recently been made through the relatively routine acquisition of multibeam data from icebreakers operating on various cruise. The USCGC Healy, the German icebreaker Polarstern, the Canadian icebreaker Amundsen and the Swedish icebreaker Oden all routinely collect multibeam data, even while in heavy ice pack. This increase in data has substantially improved our knowledge of the form of the Arctic Ocean seafloor. Unfortunately, it is not possible to routinely collect Multi Channel Seismic Reflection (MCS) data while underway in the ice pack. Our inability to simply collect these data restricts how we understand many of the features that segment the basin by depriving us of the historical information that can be obtained by imaging the stratigraphy. Without these data, scientific ocean drilling, the ultimate ground truth for Marine Geology, cannot be done. The technology and expertise to collect MCS must be adapted for the particular circumstances of the Arctic Ocean. While MCS data have been collected in the Arctic Ocean, the procedures have relied on icebreakers towing equipment. Since icebreakers follow the path of least resistance through the pack, data are acquired in locations that are not scientifically optimal and rarely in the relatively straight lines necessary for optimal processing. Towing in the ice pack is also difficult, inefficient and puts this equipment at substantial risk of crushing or loss. While icebreakers are one means to collect these data, it is time to conduct a systematic evaluation of the costs and benefits of different platforms for MCS data acquisition. This evaluation should enable collection of high-quality data set at selected locations to solve scientific problems. Substantial uncertainties exist about the relative capabilities, costs and limitations for acquisition of MCS data from various platforms in the Arctic Ocean. For example; - Is it possible to collect multi-channel seismic
Bunch, Dustin R.; Miller, Abby Y.; Wang, Sihe
2009-01-01
Background: Vitamin D is important to health and disease. Liquid chromatography-tandem mass spectrometry (LC-MSMS) is considered the most accurate technology for quantification of serum 25-hydroxyvitamin D (25OHD) which is the best biomarker for estimating vitamin D nutritional status. Methods: Serum was mixed with acetonitrile containing hexadeuterated 25-hydroxyvitamin D3 (d6-25OHD3) and centrifuged 10 min at 15,634×g. The supernatant was injected onto a turbulent flow preparatory column t...
Zhang Qi-sheng
2013-08-01
Full Text Available There has been considerable development of seismic detectors over the last 80 years. However, there is still a need to further develop new earthquake exploration and data acquisition systems with high precision. In particular, for China to keep up with the latest technology of these systems, it is important to be involved in the research and development, instead of importing systems that soon fall behind the latest technology. In this study, the features of system-on-a-programmable-chip (SoPC technology are analyzed and used to design a new digital seismic-data acquisition station. The hardware circuit of the station was developed, and the analog board and the main control data-transmission board were designed according to the needs of digital seismic-data acquisition stations. High-definition analog-to-digital converter sequential digital filter technology of the station (cascade integrator comb filter, finite impulse response digital filter were incorporated to provide advantages to the acquisition station, such as high definition, large dynamic scope, and low noise. A specific data-transmission protocol was designed for the station, which ensured a transmission speed of 16 Mbps along a 55-m wire with low power consumption. Synchronic acquisition was researched and developed, so as to achieve accuracy better than 200 ns. The key technologies were integrated into the SoPC of the main control data-transmission board, so as to ensure high-resolution acquisition of the station, while improving the accuracy of the synchronic acquisition and data-transmission speed, lowering the power consumption, and preparing for the follow-up efforts to tape out.
Optical modulators with 2D layered materials
Sun, Zhipei; Martinez, Amos; Wang, Feng
2016-04-01
Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that 2D layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this Review, we cover the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as 2D heterostructures, plasmonic structures, and silicon and fibre integrated structures. We also take a look at the future perspectives and discuss the potential of yet relatively unexplored mechanisms, such as magneto-optic and acousto-optic modulation.
Warren, N. Jill [Editor
1999-09-21
These proceedings contain papers prepared for the 21st Seismic Research Symposium: Technologies for Monitoring The Comprehensive Nuclear-Test-Ban Treaty, held 21-24 September 1999 in Las Vegas, Nevada. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Technical Applications Center (AFTAC), Department of Defense (DoD), the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.
Data transmission from seismic stations via network AGNES using GSM-GPRS technology
Knejzlík, Jaromír
2004-01-01
Roč. 1, č. 1 (2004), s. 73-76. ISSN 1211-1910. [Mining and Environmental geophysics/29./. Sedmihorky, 00.06.2003] R&D Projects: GA ČR GA205/01/0480 Institutional research plan: CEZ:AV0Z3086906 Keywords : seismic data transmission * GMS * GPRS Subject RIV: DC - Siesmology, Volcanology, Earth Structure
Seismic and Geological Interpretations of the Norne Field
Riis-Johannessen, Kristoffer
2013-01-01
The art of seismic interpretation is an essential geophysical discipline before, during and after oil and gas is found (Tjåland, selection of verbal quotes). As there is no simple manual on how to carry out seismic and geological interpretations from a few selected 2D lines to the creation of 3D surfaces; this thesis written by me at the Norwegian University of Science and Technology (NTNU) seeks to highlight some of the practical techniques needed to succeed in such a task on real field...
2D-hahmoanimaation toteuttamistekniikat
Smolander, Aku
2009-01-01
Opinnäytetyössä tutkitaan erilaisia 2D-hahmoanimaation toteuttamistekniikoita. Aluksi luodaan yleiskatsaus animoinnin historiaan ja tekniikoihin piirtämisestä mallintamiseen. Alkukatsauksen jälkeen tutkitaan 2D-hahmon suunnittelua ja liikkeitä koskevia sääntöjä. Hahmoanimaation liikkeissä huomionarvoisia asioita ovat muun muassa ajastus, liioittelu, ennakointi ja painovoima. Seuraavaksi perehdytään itse 2D-hahmoanimaation toteuttamistekniikoihin. Tavoitteena on selvittää, tutkia ja vertailla ...
杨杰; 卢选民; 李成福
2012-01-01
移动通信系统的快速发展使得频谱资源日益紧缺.D2D通信是一种在系统的控制下,允许终端之间通过复用小区资源直接进行通信的新型技术.它能减少小区网络的负载,还能支持新型的小范围点对点数据通信,是未来绿色通信发展的趋势.针对这一新型的通信技术,提出了基于Android OS平台,以JXTA协议为模型的无线D2D通信技术,使得移动终端之间能够进行通信与资源共享,并通过网络实验验证了其有效性.%The rapid development of mobile communication system makes spectrum resources increasingly scarce. D2D is a new communication technology,which is under the control of a system, allowing the terminal to directly reuse the area's resources. It can reduce the load of network, and support the new point-to-point communication of small ranges. It is the trend of the green communication. In response to this new technology, this paper proposed the D2D communication based on the Android operating system, JXTA protocol as a model, so that these terminals can communicate and share resources. Finally the network experiments proved its effectiveness.
Hardage, Bob A. [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; DeAngelo, Michael V. [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Ermolaeva, Elena [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Hardage, Bob A. [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Remington, Randy [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Sava, Diana [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Wagner, Donald [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Wei, Shuijion [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology
2013-02-01
The objective of our research was to develop and demonstrate seismic data-acquisition and data-processing technologies that allow geothermal prospects below high-velocity rock outcrops to be evaluated. To do this, we acquired a 3-component seismic test line across an area of exposed high-velocity rocks in Brewster County, Texas, where there is high heat flow and surface conditions mimic those found at numerous geothermal prospects. Seismic contractors have not succeeded in creating good-quality seismic data in this area for companies who have acquired data for oil and gas exploitation purposes. Our test profile traversed an area where high-velocity rocks and low-velocity sediment were exposed on the surface in alternating patterns that repeated along the test line. We verified that these surface conditions cause non-ending reverberations of Love waves, Rayleigh waves, and shallow critical refractions to travel across the earth surface between the boundaries of the fast-velocity and slow-velocity material exposed on the surface. These reverberating surface waves form the high level of noise in this area that does not allow reflections from deep interfaces to be seen and utilized. Our data-acquisition method of deploying a box array of closely spaced geophones allowed us to recognize and evaluate these surface-wave noise modes regardless of the azimuth direction to the surface anomaly that backscattered the waves and caused them to return to the test-line profile. With this knowledge of the surface-wave noise, we were able to process these test-line data to create P-P and SH-SH images that were superior to those produced by a skilled seismic data-processing contractor. Compared to the P-P data acquired along the test line, the SH-SH data provided a better detection of faults and could be used to trace these faults upward to the boundaries of exposed surface rocks. We expanded our comparison of the relative value of S-wave and P-wave seismic data for geothermal
JNES had been collecting and analyzing new finding and knowledge on science and technology to be reflected to seismic safety assessment for nuclear facilities, which was updated so as to develop a system to organize and disseminate such information in response to Nuclear Regulation Authority (NRA)'s policy on new safety regulations requesting enhanced protective measures against extreme natural hazards. The tasks were as follows; (1) collection of new finding and knowledge from seismic safety research of JNES, (2) constructing database of seismic safety research from documents published by committees and including the Great East Japan Earthquake and (3) dissemination of information related to seismic research. As for JFY 2012 activities, collecting and analyzing new finding and knowledge were on three areas such as active fault, seismic source/ground motion and tsunami. 4 theme related with the Great East Japan Earthquake, 7 items not related with the Great East Japan Earthquake and one item on external event were collected and analyzed whether incorporating in seismic safety research important for regulation to increase seismic safety of nuclear facilities, with no such theme confirmed. (T. Tanaka)
Efficient 2d full waveform inversion using Fortran coarray
Ryu, Donghyun; Kim, ahreum; Ha, Wansoo
2016-04-01
We developed a time-domain seismic inversion program using the coarray feature of the Fortran 2008 standard to parallelize the algorithm. We converted a 2d acoustic parallel full waveform inversion program with Message Passing Interface (MPI) to a coarray program and examined performance of the two inversion programs. The results show that the speed of the waveform inversion program using the coarray is slightly faster than that of the MPI version. The standard coarray lacks features for collective communication; however, it can be improved in following standards since it is introduced recently. The parallel algorithm can be applied for 3D seismic data processing.
Changes in the technology of steam generator restraints for high seismic conditions
In order to assure the behavior of Reactor Coolant System when strong earthquakes must be considered it is necessary to take design measures especially for the primary equipment supports. A French four-loop Pressurized Water Reactor primary coolant system has been studied for the purpose of determining peak of seismic loads for dimensioning supports and equipments. This paper discusses different new solutions to realize the Steam Generator supports. The seismic analyses were performed by floor response spectrum method which is generally used to verify the design acceptability during the first step of the project. The solution finally selected combines jack screw type restraints at the lower support level and an integral attachment type support at the upper level
2D-Tasks for Cognitive Rehabilitation
Caballero Hernandez, Ruth; Martinez Moreno, Jose Maria; García Molina, A.; Ferrer Celma, S.; Solana Sánchez, Javier; Sanchez Carrion, R.; Fernandez Casado, E.; Pérez Rodríguez, Rodrigo; Gomez Pulido, A.; Anglès Tafalla, C.; Cáceres Taladriz, César; Ferre Vergada, M.; Roig Rovira, Teresa; Garcia Lopez, P.; Tormos Muñoz, Josep M.
2011-01-01
Neuropsychological Rehabilitation is a complex clinic process which tries to restore or compensate cognitive and behavioral disorders in people suffering from a central nervous system injury. Information and Communication Technologies (ICTs) in Biomedical Engineering play an essential role in this field, allowing improvement and expansion of present rehabilitation programs. This paper presents a set of cognitive rehabilitation 2D-Tasks for patients with Acquired Brain Injury (ABI). These t...
This report is divided into twelve chapters: seismic hazard analysis procedures, statistical and probabilistic considerations, vertical ground motion characteristics, vertical ground response spectrum shapes, effects of inclined rock strata on site response, correlation of ground response spectra with intensity, intensity attenuation relationships, peak ground acceleration in the very mean field, statistical analysis of response spectral amplitudes, contributions of body and surface waves, evaluation of ground motion characteristics, and design earthquake motions
Reddy, D.P.
1983-04-01
This report is divided into twelve chapters: seismic hazard analysis procedures, statistical and probabilistic considerations, vertical ground motion characteristics, vertical ground response spectrum shapes, effects of inclined rock strata on site response, correlation of ground response spectra with intensity, intensity attenuation relationships, peak ground acceleration in the very mean field, statistical analysis of response spectral amplitudes, contributions of body and surface waves, evaluation of ground motion characteristics, and design earthquake motions. (DLC)
Development of a New Stratigraphic Trap Exploration Using Elastic-Wave Seismic Technology
Bryan DeVault
2008-02-05
Vecta acquired 9 square miles of 9-C seismic data in Mountrail County, North Dakota with the Mission Canyon shoreline as a primary target. Vecta contracted the Institute Francais du Petrole in order to co-develop a more rigorous multicomponent seismic interpretation product. The final interpretation was very unique in that it utilized not only the 9-C seismic data but also the new jointly developed software. A Mission Canyon anomaly was developed in 2006; however, it was of insufficient size to be a commercial target at the time. Therefore, Vecta analyzed the shear data for anisotropy within the Bakken formation and successfully reentered an abandoned producer within the project area and drilled a horizontal leg through the anomalous zones of the middle member of the Bakken formation. The well was open hole completed, swab tested, sand fraced, and swab tested some more. No shows of oil were ever seen from the Bakken formation, but the well yielded considerable amounts of formation water. The well has been abandoned as non-commercial. From the swab tests, one may conclude considerable permeability exists in the formation, thus confirming the utility of the shear wave to detect fractures within the targeted formation.
Optimal implicit 2-D finite differences to model wave propagation in poroelastic media
Itzá, Reymundo; Iturrarán-Viveros, Ursula; Parra, Jorge O.
2016-08-01
Numerical modeling of seismic waves in heterogeneous porous reservoir rocks is an important tool for the interpretation of seismic surveys in reservoir engineering. We apply globally optimal implicit staggered-grid finite differences (FD) to model 2-D wave propagation in heterogeneous poroelastic media at a low-frequency range (linear systems of equations through Thomas' algorithm.
Accretion Disks Phase Transitions 2-D or not 2-D?
Abramowicz, M A; Igumenshchev, I V; Abramowicz, Marek Artur; Bjornsson, Gunnlaugur; Igumenshchev, Igor V.
2000-01-01
We argue that the proper way to treat thin-thick accretion-disk transitions should take into account the 2-D nature of the problem. We illustrate the physical inconsistency of the 1-D vertically integrated approach by discussing a particular example of the convective transport of energy.
Controllable and Observable Polynomial Description for 2D Noncausal Systems
M. S. Boudellioua
2007-06-01
Full Text Available Two-dimensional state-space systems arise in applications such as image processing, iterative circuits, seismic data processing, or more generally systems described by partial differential equations. In this paper, a new direct method is presented for the polynomial realization of a class of noncausal 2D transfer functions. It is shown that the resulting realization is both controllable and observable.
This lecture deals with: qualification methods for seismic testing; objectives of seismic testing; seismic testing standards including examples; main content of standard; testing means; and some important elements of seismic testing
SES2D is an interactive graphics code designed to generate plots of equation of state data from the Los Alamos National Laboratory Group T-4 computer libraries. This manual discusses the capabilities of the code. It describes the prompts and commands and illustrates their use with a sample run
Blanco, O R; Bambade, P
2015-01-01
The Oide effect considers the synchrotron radiation in the final focusing quadrupole and it sets a lower limit on the vertical beam size at the Interaction Point, particularly relevant for high energy linear colliders. The theory of the Oide effect was derived considering only the radiation in the focusing plane of the magnet. This article addresses the theoretical calculation of the radiation effect on the beam size consider- ing both focusing and defocusing planes of the quadrupole, refered to as 2D-Oide. The CLIC 3 TeV final quadrupole (QD0) and beam parameters are used to compare the theoretical results from the Oide effect and the 2D-Oide effect with particle tracking in PLACET. The 2D-oide demonstrates to be important as it increases by 17% the contribution to the beam size. Further insight into the aberrations induced by the synchrotron radiation opens the possibility to partially correct the 2D-Oide effect with octupole magn
Robust site security using smart seismic array technology and multi-sensor data fusion
Hellickson, Dean; Richards, Paul; Reynolds, Zane; Keener, Joshua
2010-04-01
Traditional site security systems are susceptible to high individual sensor nuisance alarm rates that reduce the overall system effectiveness. Visual assessment of intrusions can be intensive and manually difficult as cameras are slewed by the system to non intrusion areas or as operators respond to nuisance alarms. Very little system intrusion performance data are available other than discrete sensor alarm indications that provide no real value. This paper discusses the system architecture, integration and display of a multi-sensor data fused system for wide area surveillance, local site intrusion detection and intrusion classification. The incorporation of a novel seismic array of smart sensors using FK Beamforming processing that greatly enhances the overall system detection and classification performance of the system is discussed. Recent test data demonstrates the performance of the seismic array within several different installations and its ability to classify and track moving targets at significant standoff distances with exceptional immunity to background clutter and noise. Multi-sensor data fusion is applied across a suite of complimentary sensors eliminating almost all nuisance alarms while integrating within a geographical information system to feed a visual-fusion display of the area being secured. Real-time sensor detection and intrusion classification data is presented within a visual-fusion display providing greatly enhanced situational awareness, system performance information and real-time assessment of intrusions and situations of interest with limited security operator involvement. This approach scales from a small local perimeter to very large geographical area and can be used across multiple sites controlled at a single command and control station.
High-resolution shallow seismic surveying using parametric acoustic source technology
Vestrheim, M.; Lunde, P. (Chr.Michelsen Institute, Dept. of science and Technology, Bergen (Norway)); Meldahl, P.; Statoil (Geology and Geophysics Dept., Stavanger (Norway))
1988-01-01
The paper briefly discusses the potentials of using parametric source technology for improving shallow gas surveying operations. The use of a parametric source offers several important advantageous features, such as a broad frequency bandwidth, flexibility in pulse shaping, improved stability and repeatability, and high directivity. Through optimization of performance the application of parametric source technology for shallow gas surveying is seen to be technologically feasible. 6 figs., 3 refs. (Author).
Analysis of Seismic Fortification Technology Applied to Houses at Railway Station%铁路站房抗震设防的技术分析
朱瑞
2014-01-01
The seismic fortification required that railway sta- tions should have the ability of seismic fortification regardless of what geographical environment they are in. This paper ma- inly described the importance of the seismic fortification of railway station, and analyzed the concrete technology of seis- mic fortification of railway station.%铁路站房的抗震设防工作要求不管是处于什么地理环境下的铁路站房都应该具备抗震设防能力。本文主要讲述了铁路站房抗震设防的重要性，并对铁路站房抗震设防做出了具体的技术分析。
MAO Ning-bo; DAI Ta-gen; PENG Sheng-lin
2005-01-01
Forecasting subtle traps by sequence stratigraphy and 3D seismic data is a sensitive topic in hydrocarbon exploration. Research on subtle traps by geophysical data is the most popular and difficult. Based on the sufficiently drilling data, log data, core data and 3D seismic data, sediment sequence of Qikou depression, Huanghua basin was partitioned by using sequence stratigraphy theory. Each sediment sequence system mode was built. Sediment faces of subtle traps were pointed out. Dominating factors forming subtle traps were analyzed. Sandstone seismic rock physics and its response were studied in Tertiary System. Sandstone geophysical response and elastic modulus vary laws with pressure, temperature, porosity, depth were built. Experimental result and practice shows that it is possible using seismic information forecasting subtle traps. Integrated using geology, log, drilling data, special seismic processing technique, interpretation technique, high precision horizon calibration technique, 3D seismic visualizing interpretation, seismic coherence analysis, attribute analysis, logging-constrained inversion, time frequency analysis, subtle trapsobject is identified and interpreted. Finally, advantage object of subtle trap in this area was determined. Bottomland sand stratigraphic and lithologic reservoirs in Qinan slope zone have been founded by means of high resolution 3D seismic data field technique, high resolution 3D seismic data processing technique and seismic wave impendence inversion technique.
煤田地震勘探技术的应用研究%Application research on coalfield seismic survey technology
武程
2015-01-01
Taking relevant coalfield survey technology experience,the paper introduces basic concept,development status and application of coalfield seismic survey technology,and mainly explores its future development trend,which will be some help for continuously improving coalfield seismic survey technology level.%以煤田地震勘探技术的相关经验为基础，介绍了煤田地震勘探技术的基本概念、发展现状与应用情况，并着重探讨了该勘探技术的未来发展趋势，有利于煤田地震勘探技术水平的不断提高。
2D-animaatiotuotannon optimointi
Saturo, Reetta
2015-01-01
Tämän opinnäytetyön tavoitteena on tutkia 2D-animaatiotuotannon optimoinnin mahdollisuuksia tiukan tuotantoaikataulun vaatimuksissa. Tutkielmassa tarkastellaan kahta asiakasprojektia, jotka on toteutettu pienellä tuotantotiimillä. Työkaluna animaatioissa on käytetty pääosin Adoben After Effects -ohjelmistoa. Tutkielman alussa esitellään animaatiotuotannot, joiden tuloksena syntyi kaksi lyhyttä mainoselokuvaa. Sen jälkeen käydään läpi animaatioelokuvan tuotantoprosessia vaiheittain ja tark...
Fallow), Stray
2009-01-01
Having trouble with geometry? Do Pi, The Pythagorean Theorem, and angle calculations just make your head spin? Relax. With Head First 2D Geometry, you'll master everything from triangles, quads and polygons to the time-saving secrets of similar and congruent angles -- and it'll be quick, painless, and fun. Through entertaining stories and practical examples from the world around you, this book takes you beyond boring problems. You'll actually use what you learn to make real-life decisions, like using angles and parallel lines to crack a mysterious CSI case. Put geometry to work for you, and
NONE
1996-03-01
This report provides the development of new exploration technology using elastic waves, such as reflection seismic survey, VSP, and seismic tomography, for precisely characterizing subsurface fractures in geothermal reservoirs. In order to investigate and improve the effective data acquisition and analysis methods for detecting a fault type of fractures, an experiment of a seismic tomography method was conducted using wells drilled in the Ogiri geothermal field, Aira-gun, Kagoshima Prefecture. An experiment of propagation characteristics of piezo type underground seismic source in the volcanic field was also conducted as a trend survey of underground seismic sources. The fracture type in the model field was systematically analyzed by measuring the core samples obtained in the demonstration test field through remanence measurement, fluid inclusion measurement, and zircon measurement using test equipment, and by analyzing results obtained from cores and results of seismic tomography obtained from the wells. Based on these results, the effectiveness and practical application of exploration methods using elastic waves were investigated. 80 refs., 250 figs., 49 tabs.
Medvedev, S. N.
2015-10-01
Stacking by CDP technique is inapplicable for processing of data from bottom seismic stations or acoustic sonobuoys. In addition, big amount of unknown velocity and structural parameters of the real layered medium do not allow these parameters to be defined by standard processing methods. Local sloped stacking is proposed for simultaneous obtaining the stacked tracks, travel time curve of a chosen wave, and the first derivative of this travel time curve. The additionally defined parameters are second derivative of this travel time curve and integrated average of squared travel time curve. These data are sufficient to reduce the amount of unknown parameters (down to one-two for each boundary) when layer-by-layer top-to-bottom processing. As a result, the stable estimates of velocity parameters of the layered (isotropic or anisotropic) medium can be obtained and stacked tracks obtained by local sloped staking can be transformed into boundaries in the time and depth sections.
Development of Vertical Cable Seismic System
Asakawa, E.; Murakami, F.; Sekino, Y.; Okamoto, T.; Ishikawa, K.; Tsukahara, H.; Shimura, T.
2011-12-01
In 2009, Ministry of Education, Culture, Sports, Science and Technology(MEXT) started the survey system development for Hydrothermal deposit. We proposed the Vertical Cable Seismic (VCS), the reflection seismic survey with vertical cable above seabottom. VCS has the following advantages for hydrothermal deposit survey. (1) VCS is an efficient high-resolution 3D seismic survey in limited area. (2) It achieves high-resolution image because the sensors are closely located to the target. (3) It avoids the coupling problems between sensor and seabottom that cause serious damage of seismic data quality. (4) Because of autonomous recording system on sea floor, various types of marine source are applicable with VCS such as sea-surface source (GI gun etc.) , deep-towed or ocean bottom source. Our first experiment of 2D/3D VCS surveys has been carried out in Lake Biwa, JAPAN, in November 2009. The 2D VCS data processing follows the walk-away VSP, including wave field separation and depth migration. Seismic Interferometry technique is also applied. The results give much clearer image than the conventional surface seismic. Prestack depth migration is applied to 3D data to obtain good quality 3D depth volume. Seismic Interferometry technique is applied to obtain the high resolution image in the very shallow zone. Based on the feasibility study, we have developed the autonomous recording VCS system and carried out the trial experiment in actual ocean at the water depth of about 400m to establish the procedures of deployment/recovery and to examine the VC position or fluctuation at seabottom. The result shows that the VC position is estimated with sufficient accuracy and very little fluctuation is observed. Institute of Industrial Science, the University of Tokyo took the research cruise NT11-02 on JAMSTEC R/V Natsushima in February, 2011. In the cruise NT11-02, JGI carried out the second VCS survey using the autonomous VCS recording system with the deep towed source provided by
无
2003-01-01
A novel pilot stage valve called simplified 2D valve, which utilizes both rotary and linear motions of a single spool, is presented.The rotary motion of the spool incorporating hydraulic resistance bridge, formed by a damper groove and a crescent overlap opening, is utilized as pilot to actuate linear motion of the spool.A criterion for stability is derived from the linear analysis of the valve.Special experiments are designed to acquire the mechanical stiffness, the pilot leakage and the step response.It is shown that the sectional size of the spiral groove affects the dynamic response and the stiffness contradictorily and is also very sensitive to the pilot leakage.Therefore, it is necessary to establish a balance between the static and dynamic characteristics in deciding the structural parameters.Nevertheless, it is possible to sustain the dynamic response at a fairly high level, while keeping the leakage of the pilot stage at an acceptable level.
Waldin, Nicholas
2016-06-24
2D color maps are often used to visually encode complex data characteristics such as heat or height. The comprehension of color maps in visualization is affected by the display (e.g., a monitor) and the perceptual abilities of the viewer. In this paper we present a novel method to measure a user\\'s ability to distinguish colors of a two-dimensional color map on a given monitor. We show how to adapt the color map to the user and display to optimally compensate for the measured deficiencies. Furthermore, we improve user acceptance of the calibration procedure by transforming the calibration into a game. The user has to sort colors along a line in a 3D color space in a competitive fashion. The errors the user makes in sorting these lines are used to adapt the color map to his perceptual capabilities.
Novel approach for improving signal to noise ratio of seismic images
陈凤; 李金宗; 李冬冬
2004-01-01
A novel approach of digital image processing technology is applied to improve SNR of seismic images. At first,we analyze the characters of line-like texture in seismic images, and then a preprocessing method named 2 D tracing horizon filtering is designed. After that, the technology of optical flow analysis is adopted to calculate the displacement vectors of adjacent pixels between neighboring seismic images. At last, the novel image accumulation algorithms are proposed, which are applied to greatly improve SNR and definition of seismic images. The experimental results show that SNR of seismic section images with SNR of about 20 dB and 17 dB are increased 8 dB～9 dB under keeping signal energy 67%～80% by processing section images and 3dB～4dB under keeping signalenergy 80～90% by processing horizontal slice images. Thereby, the proposed novel approaches are very helpful to the correct seismic interpretation and have very important significance for seismic exploring.
Katterbauer, Klemens
2015-11-18
Increasing complexity of hydrocarbon projects and the request for higher recovery rates have driven the oil-and-gas industry to look for a more-detailed understanding of the subsurface formation to optimize recovery of oil and profitability. Despite the significant successes of geophysical techniques in determining changes within the reservoir, the benefits from individually mapping the information are limited. Although seismic techniques have been the main approach for imaging the subsurface, the weak density contrast between water and oil has made electromagnetic (EM) technology an attractive complement to improve fluid distinction, especially for high-saline water. This crosswell technology assumes greater importance for obtaining higher-resolution images of the interwell regions to more accurately characterize the reservoir and track fluid-front developments. In this study, an ensemble-Kalman-based history-matching framework is proposed for directly incorporating crosswell time-lapse seismic and EM data into the history-matching process. The direct incorporation of the time-lapse seismic and EM data into the history-matching process exploits the complementarity of these data to enhance subsurface characterization, to incorporate interwell information, and to avoid biases that may be incurred from separate inversions of the geophysical data for attributes. An extensive analysis with 2D and realistic 3D reservoirs illustrates the robustness and enhanced forecastability of critical reservoir variables. The 2D reservoir provides a better understanding of the connection between fluid discrimination and enhanced history matches, and the 3D reservoir demonstrates its applicability to a realistic reservoir. History-matching enhancements (in terms of reduction in the history-matching error) when incorporating both seismic and EM data averaged approximately 50% for the 2D case, and approximately 30% for the 3D case, and permeability estimates were approximately 25
Multienzyme Inkjet Printed 2D Arrays.
Gdor, Efrat; Shemesh, Shay; Magdassi, Shlomo; Mandler, Daniel
2015-08-19
The use of printing to produce 2D arrays is well established, and should be relatively facile to adapt for the purpose of printing biomaterials; however, very few studies have been published using enzyme solutions as inks. Among the printing technologies, inkjet printing is highly suitable for printing biomaterials and specifically enzymes, as it offers many advantages. Formulation of the inkjet inks is relatively simple and can be adjusted to a variety of biomaterials, while providing nonharmful environment to the enzymes. Here we demonstrate the applicability of inkjet printing for patterning multiple enzymes in a predefined array in a very straightforward, noncontact method. Specifically, various arrays of the enzymes glucose oxidase (GOx), invertase (INV) and horseradish peroxidase (HP) were printed on aminated glass surfaces, followed by immobilization using glutardialdehyde after printing. Scanning electrochemical microscopy (SECM) was used for imaging the printed patterns and to ascertain the enzyme activity. The successful formation of 2D arrays consisting of enzymes was explored as a means of developing the first surface confined enzyme based logic gates. Principally, XOR and AND gates, each consisting of two enzymes as the Boolean operators, were assembled, and their operation was studied by SECM. PMID:26214072
Learn Unity for 2D game development
Thorn, Alan
2013-01-01
The only Unity book specifically covering 2D game development Written by Alan Thorn, experience game developer and author of seven books on game programming Hands-on examples of all major aspects of 2D game development using Unity
Recent developments in 2D layered inorganic nanomaterials for sensing
Kannan, Padmanathan Karthick; Late, Dattatray J.; Morgan, Hywel; Rout, Chandra Sekhar
2015-08-01
Two dimensional layered inorganic nanomaterials (2D-LINs) have recently attracted huge interest because of their unique thickness dependent physical and chemical properties and potential technological applications. The properties of these layered materials can be tuned via both physical and chemical processes. Some 2D layered inorganic nanomaterials like MoS2, WS2 and SnS2 have been recently developed and employed in various applications, including new sensors because of their layer-dependent electrical properties. This article presents a comprehensive overview of recent developments in the application of 2D layered inorganic nanomaterials as sensors. Some of the salient features of 2D materials for different sensing applications are discussed, including gas sensing, electrochemical sensing, SERS and biosensing, SERS sensing and photodetection. The working principles of the sensors are also discussed together with examples.
Choun, Young Sun; Choi, In Kil; Kim, Min Kyu [KAERI, Daejon (Korea, Republic of); Ohtori, Yasuki; Shiba, Yoshiaki; Nakajima, Masato [Central Research Institute of Electric Power Industry, Tokyo (Japan)
2005-12-15
Several recent improved methods for the EGFM are introduced in order to avoid artificial holes seen in the synthetic acceleration spectrum. Furthermore evaluation of input ground motions at Wolsung NPP are performed by varying the source parameters that may control the high-frequency wave radiation and the deviation of the synthetic motions are revealed. The PSHA case studies for four NPP sites (Wolsung, Kori, Uljin, Younggwang) are performed. In the analysis, site-specific attenuation equations developed for Korean NPP sites are employed, and the seismic hazards for the target sites are evaluated in the case where the four kind of seismic source models are considered. Moreover, the PSHA for Wolsung and Younggwang are conducted by using the site-specific attenuation equation with the index of response spectra and the uniform hazard spectra are evaluated for the two sites. The supporting tool for seismic response analysis and the evaluation tool for evaluating annual probability of failure were integrated in the frame of the seismic risk assessment system. Then, the tools were applied to the seismic risk assessment of the conventional EDG and isolated EDG. General information such as earthquake parameters and regional distribution of seismic intensity is summarized on the 2005 West Off Fukuoka earthquake. Then, the observed strong motion records in Japan and Korea sites are compiled, and regional distribution of peak accelerations are represented. Moreover, the peak accelerations of the records are compared with the values estimated from the existing attenuation equations.
Seismic engineering -- 1996. PVP-volume 340
The 37 papers in this volume have been arranged under the following topical sections: advanced methods in seismic engineering (7 papers); high level dynamic response of piping systems (5); equipment seismic qualification (6); soil structure interaction (3); advanced seismic technology in Asian countries (8); developments in seismic codes and standards (8); and a panel discussion on the review of current issues by the Special Working Group on seismic rules. Papers have been processed separately for inclusion on the data base
CALIBRATION OF SEISMIC ATTRIBUTES FOR RESERVOIR CHARACTERIZATION
Wayne D. Pennington; Horacio Acevedo; Aaron Green; Joshua Haataja; Shawn Len; Anastasia Minaeva; Deyi Xie
2002-10-01
productive and non-productive subfacies, and we developed a method involving cross-correlation of seismic waveforms to provide a reliable map of the various facies present in the area. The Wamsutter data set led to the use of unconventional attributes including lateral incoherence and horizon-dependent impedance variations to indicate regions of former sand bars and current high pressure, respectively, and to evaluation of various upscaling routines. The Teal South data set has provided a surprising set of results, leading us to develop a pressure-dependent velocity relationship and to conclude that nearby reservoirs are undergoing a pressure drop in response to the production of the main reservoir, implying that oil is being lost through their spill points, never to be produced. Additional results were found using the public-domain Waha and Woresham-Bayer data set, and some tests of technologies were made using 2D seismic lines from Michigan and the western Pacific ocean.
Calibration of Seismic Attributes for Reservoir Characterization
Wayne D. Pennington
2002-09-29
developed a method involving cross-correlation of seismic waveforms to provide a reliable map of the various facies present in the area. The Wamsutter data set led to the use of unconventional attributes including lateral incoherence and horizon-dependent impedance variations to indicate regions of former sand bars and current high pressure, respectively, and to evaluation of various upscaling routines. The Teal South data set has provided a surprising set of results, leading us to develop a pressure-dependent velocity relationship and to conclude that nearby reservoirs are undergoing a pressure drop in response to the production of the main reservoir, implying that oil is being lost through their spill points, never to be produced. Additional results were found using the public-domain Waha and Woresham-Bayer data set, and some tests of technologies were made using 2D seismic lines from Michigan and the western Pacific ocean.
2-D Imaging of Electron Temperature in Tokamak Plasmas
T. Munsat; E. Mazzucato; H. Park; C.W. Domier; M. Johnson; N.C. Luhmann Jr.; J. Wang; Z. Xia; I.G.J. Classen; A.J.H. Donne; M.J. van de Pol
2004-07-08
By taking advantage of recent developments in millimeter wave imaging technology, an Electron Cyclotron Emission Imaging (ECEI) instrument, capable of simultaneously measuring 128 channels of localized electron temperature over a 2-D map in the poloidal plane, has been developed for the TEXTOR tokamak. Data from the new instrument, detailing the MHD activity associated with a sawtooth crash, is presented.
2-D Imaging of Electron Temperature in Tokamak Plasmas
By taking advantage of recent developments in millimeter wave imaging technology, an Electron Cyclotron Emission Imaging (ECEI) instrument, capable of simultaneously measuring 128 channels of localized electron temperature over a 2-D map in the poloidal plane, has been developed for the TEXTOR tokamak. Data from the new instrument, detailing the MHD activity associated with a sawtooth crash, is presented
Surface modelling for 2D imagery
Lieng, Henrik
2014-01-01
Vector graphics provides powerful tools for drawing scalable 2D imagery. With the rise of mobile computers, of different types of displays and image resolutions, vector graphics is receiving an increasing amount of attention. However, vector graphics is not the leading framework for creating and manipulating 2D imagery. The reason for this reluctance of employing vector graphical frameworks is that it is difficult to handle complex behaviour of colour across the 2D domain. ...
Perspectives for spintronics in 2D materials
Han, Wei
2016-03-01
The past decade has been especially creative for spintronics since the (re)discovery of various two dimensional (2D) materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.
Perspectives for spintronics in 2D materials
Wei Han
2016-03-01
Full Text Available The past decade has been especially creative for spintronics since the (rediscovery of various two dimensional (2D materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.
Elena Purcaru
2011-09-01
Full Text Available The paper presents a solution for endcoding/decoding DNA information in 2D barcodes. First part focuses on the existing techniques and symbologies in 2D barcodes field. The 2D barcode PDF417 is presented as starting point. The adaptations and optimizations on PDF417 and on DataMatrix lead to the solution – DNA2DBC – DeoxyriboNucleic Acid Two Dimensional Barcode. The second part shows the DNA2DBC encoding/decoding process step by step. In conclusions are enumerated the most important features of 2D barcode implementation for DNA.
Purcaru, Elena
2012-01-01
The paper presents a solution for endcoding/decoding DNA information in 2D barcodes. First part focuses on the existing techniques and symbologies in 2D barcodes field. The 2D barcode PDF417 is presented as starting point. The adaptations and optimizations on PDF417 and on DataMatrix lead to the solution - DNA2DBC - DeoxyriboNucleic Acid Two Dimensional Barcode. The second part shows the DNA2DBC encoding/decoding process step by step. In conclusions are enumerated the most important features of 2D barcode implementation for DNA.
Bedform characterization through 2D spectral analysis
Lefebvre, Alice; Ernstsen, Verner Brandbyge; Winter, Christian
energetic peak of the 2D spectrum was found and its energy, frequency and direction were calculated. A power-law was fitted to the average of slices taken through the 2D spectrum; its slope and y-intercept were calculated. Using these results the test area was morphologically classified into 4 distinct...... characteristics using twodimensional (2D) spectral analysis is presented and tested on seabed elevation data from the Knudedyb tidal inlet in the Danish Wadden Sea, where large compound bedforms are found. The bathymetric data were divided into 20x20 m areas on which a 2D spectral analysis was applied. The most...
Kaur, Kuldeep; Khan, Manju
2012-01-01
Let $p$ be an odd prime, $D_{2p}$ be the dihedral group of order 2p, and $F_{2}$ be the finite field with two elements. If * denotes the canonical involution of the group algebra $F_2D_{2p}$, then bicyclic units are unitary units. In this note, we investigate the structure of the group $\\mathcal{B}(F_2D_{2p})$, generated by the bicyclic units of the group algebra $F_2D_{2p}$. Further, we obtain the structure of the unit group $\\mathcal{U}(F_2D_{2p})$ and the unitary subgroup $\\mathcal{U}_*(F_...
Seismic isolation structure has been widely used in civil engineering and construction industry and its validity was observed at the Kobe Earthquake in 1995. A layered rubber isolator, which has been mostly deployed, is not good at uncertain loading conditions of external forces because of its seismic isolation structure of a resonance period and also becomes unstable at limiting deformation. Recently a ball isolator with guide or roller-guide has been introduced instead of it. As for a new seismic isolation system for nuclear facilities, semi-active seismic isolation and vibration damping system has been proposed with a ball isolator and a controllable friction damper using smart materials (magneto-rheological fluid). Effects of adhesion of a ball isolator due to aging and semi-active control on smart materials damper have been tested using small test modules. Analysis model of a ball isolator dependent on contact stress has been also developed. Larger mockup tests and their detailed analysis will be needed for their deployment for nuclear facilities. (T. Tanaka)
This volume is divided into six chapters: definition of seismic input ground motion, review of state-of-the-art procedures, analysis guidelines, rock/structure interaction analysis example, comparison of two- and three-dimensional analyses, and comparison of analyses using FLUSH and TRI/SAC Codes
Annotated Bibliography of EDGE2D Use
This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables
2D NMR studies of biomolecules
The work described in this thesis comprises two related subjects. The first part describes methods to derive high-resolution structures of proteins in solution using two-dimensional (2-D) NMR. The second part describes 2-D NMR studies on the interaction between proteins and DNA. (author). 261 refs.; 52 figs.; 23 tabs
Applications of 2D helical vortex dynamics
Okulov, Valery; Sørensen, Jens Nørkær
In the paper, we show how the assumption of helical symmetry in the context of 2D helical vortices can be exploited to analyse and to model various cases of rotating flows. From theory, examples of three basic applications of 2D dynamics of helical vortices embedded in flows with helical symmetry...
Annotated Bibliography of EDGE2D Use
J.D. Strachan and G. Corrigan
2005-06-24
This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.
Reproducibility in Seismic Imaging
González-Verdejo O.
2012-04-01
Full Text Available Within the field of exploration seismology, there is interest at national level of integrating reproducibility in applied, educational and research activities related to seismic processing and imaging. This reproducibility implies the description and organization of the elements involved in numerical experiments. Thus, a researcher, teacher or student can study, verify, repeat, and modify them independently. In this work, we document and adapt reproducibility in seismic processing and imaging to spread this concept and its benefits, and to encourage the use of open source software in this area within our academic and professional environment. We present an enhanced seismic imaging example, of interest in both academic and professional environments, using Mexican seismic data. As a result of this research, we prove that it is possible to assimilate, adapt and transfer technology at low cost, using open source software and following a reproducible research scheme.
Ultrasonic 2D matrix PVDF transducer
Ptchelintsev, A.; Maev, R. Gr.
2000-05-01
During the past decade a substantial amount of work has been done in the area of ultrasonic imaging technology using 2D arrays. The main problems arising for the two-dimensional matrix transducers at megahertz frequencies are small size and huge count of the elements, high electrical impedance, low sensitivity, bad SNR and slower data acquisition rate. The major technological difficulty remains the high density of the interconnect. To solve these problems numerous approaches have been suggested. In the present work, a 24×24 elements (24 transmit+24 receive) matrix and a switching board were developed. The transducer consists of two 52 μm PVDF layers each representing a linear array of 24 elements placed one on the top of the other. Electrodes in these two layers are perpendicular and form the grid of 0.5×0.5 mm pitch. The layers are bonded together with the ground electrode being monolithic and located between the layers. The matrix is backed from the rear surface with an epoxy composition. During the emission, a linear element from the emitting layer generates a longitudinal wave pulse propagating inside the test object. Reflected pulses are picked-up by the receiving layer. During one transmit-receive cycle one transmit element and one receive element are selected by corresponding multiplexers. These crossed elements emulate a small element formed by their intersection. The present design presents the following advantages: minimizes number of active channels and density of the interconnect; reduces the electrical impedance of the element improving electrical matching; enables the transmit-receive mode; due to the efficient backing provides bandwidth and good time resolution; and, significantly reduces the electronics complexity. The matrix can not be used for the beam steering and focusing. Owing to this impossibility of focusing, the penetration depth is limited as well by the diffraction phenomena.
Roennevik, H.C. [Saga Petroleum A/S, Forus (Norway)
1996-12-31
The paper evaluates exploration technology. Topics discussed are: Visions; the subsurface challenge; the creative tension; the exploration process; seismic; geology; organic geochemistry; seismic resolution; integration; drilling; value creation. 4 refs., 22 figs.
The first part of a study concerning innovative intervention techniques for dissipate a share of the input seismic energy compatible with the preservation of existing buildings, including historical and monumental constructions, is presented in this paper. The case of a typical scheme of a long-bay box-like masonry building fitted with a dissipative floating roof is analyzed. In the examined building a wide simulation analysis has shown the achievement of a very satisfying performance. Furthermore, the effectiveness of the system can be maximized by means of active or semi-active devices implemented in the floating roof and a significant reduction of the seismic impact on the building can be obtained compared with non-controlled or simply passively controlled structure. The results prove the remarkable increase of the energy dissipation capability of the system, as well as the reduction of structural damage, independently of any specific strengthening intervention
Romeo DI LEO
2012-03-01
Full Text Available This work presents a new semi-active friction damper, based on the piezoelectric technology, for the anti-seismic control of a civil structure. The device has been conceived and designed at D.I.A.S. (Department of Aerospace Engineering of University Federico II of Naples. It belongs to the family of the semi-active technologies of structural control for a civil structure. Damper is based on an external cylinder and an internal hollow piston that slips inside the cylinder. Device presents an original conceptual lay-out, developed at D.I.A.S and it is independent by any scheme, available in literature.
Inertial solvation in femtosecond 2D spectra
Hybl, John; Albrecht Ferro, Allison; Farrow, Darcie; Jonas, David
2001-03-01
We have used 2D Fourier transform spectroscopy to investigate polar solvation. 2D spectroscopy can reveal molecular lineshapes beneath ensemble averaged spectra and freeze molecular motions to give an undistorted picture of the microscopic dynamics of polar solvation. The transition from "inhomogeneous" to "homogeneous" 2D spectra is governed by both vibrational relaxation and solvent motion. Therefore, the time dependence of the 2D spectrum directly reflects the total response of the solvent-solute system. IR144, a cyanine dye with a dipole moment change upon electronic excitation, was used to probe inertial solvation in methanol and propylene carbonate. Since the static Stokes' shift of IR144 in each of these solvents is similar, differences in the 2D spectra result from solvation dynamics. Initial results indicate that the larger propylene carbonate responds more slowly than methanol, but appear to be inconsistent with rotational estimates of the inertial response. To disentangle intra-molecular vibrations from solvent motion, the 2D spectra of IR144 will be compared to the time-dependent 2D spectra of the structurally related nonpolar cyanine dye HDITCP.
Rocha, Antonio Carlos de Almeida
1998-12-01
The purpose of this work is to estimate thin reservoir properties even without counting on a good quality and a homogeneous database. Following a regional geological setting, well data such as logs, reports, cores had led to an interpretation of the depositional model in which the sandstone interval is inserted as an filling an incised valley system. This knowledge is essential to provide elements for a final work judgement. The main geological properties were then extracted from logs. The geophysical approach has counted on a 1D modeling of the main well acoustic parameters and a 2D Seismostratigraphic Inversion with a {alpha} priori acoustic impedance, which was able to enhance the frequency content of the original data. After the interpretation of the inverted data, seismic attributes were then extracted. A multivariate statistics was performed in order to establish which correlations between geological and seismic would be carried forward. An Ordinary Kriging was applied to the 2D seismic attributes. The External Drift Kriging was used to derive maps of the geological properties with the constraint of seismic variables. The final geological properties maps are similar in shape and coherent with the depositional model proposed. (author)
2D supergravity in p+1 dimensions
Gustafsson, H.; Lindstrom, U.
1998-01-01
We describe new $N$-extended 2D supergravities on a $(p+1)$-dimensional (bosonic) space. The fundamental objects are moving frame densities that equip each $(p+1)$-dimensional point with a 2D ``tangent space''. The theory is presented in a $[p+1, 2]$ superspace. For the special case of $p=1$ we recover the 2D supergravities in an unusual form. The formalism has been developed with applications to the string-parton picture of $D$-branes at strong coupling in mind.
Elena Purcaru; Cristian Toma
2012-01-01
The paper presents a solution for endcoding/decoding DNA information in 2D barcodes. First part focuses on the existing techniques and symbologies in 2D barcodes field. The 2D barcode PDF417 is presented as starting point. The adaptations and optimizations on PDF417 and on DataMatrix lead to the solution – DNA2DBC – DeoxyriboNucleic Acid Two Dimensional Barcode. The second part shows the DNA2DBC encoding/decoding process step by step. In conclusions are enumerated the most important features ...
Constraints on mantle convection from seismic tomography
Kárason, H.; Hilst, R.D. van der
2000-01-01
Since the advent of global seismic tomography some 25 years ago, advances in technology, seismological theory, and data acquisition have allowed spectacular progress in our ability to image seismic heterogeneity in Earth's mantle. We briefly review some concepts of seismic tomography, such as parame
Compressing and Coding Method of Seismic Data
赵学军; 郑宇; 宁书年; 郭俊霞; 岳俊梅
2002-01-01
Aiming at the characteristics of the seismic exploration signals, the paper studies the image coding technology, the coding standard and algorithm, brings forward a new scheme of admixing coding for seismic data compression. Based on it, a set of seismic data compression software has been developed.
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date
2D Saturable Absorbers for Fibre Lasers
Robert I. Woodward
2015-11-01
Full Text Available Two-dimensional (2D nanomaterials are an emergent and promising platform for future photonic and optoelectronic applications. Here, we review recent progress demonstrating the application of 2D nanomaterials as versatile, wideband saturable absorbers for Q-switching and mode-locking fibre lasers. We focus specifically on the family of few-layer transition metal dichalcogenides, including MoS2, MoSe2 and WS2.
Beltrami States in 2D Electron Magnetohydrodynamics
Shivamoggi, B. K.
2015-01-01
In this paper, the Hamiltonian formulations along with the Poisson brackets for two-dimensional (2D) electron magnetohydrodynamics (EMHD) flows are developed. These formulations are used to deduce the Beltrami states for 2D EMHD flows. In the massless electron limit, the EMHD Beltrami states reduce to the force-free states, though there is no force-free Beltrami state in the general EMHD case.
Time-lapse seismic within reservoir engineering
Oldenziel, T.
2003-01-01
Time-lapse 3D seismic is a fairly new technology allowing dynamic reservoir characterisation in a true volumetric sense. By investigating the differences between multiple seismic surveys, valuable information about changes in the oil/gas reservoir state can be captured. Its interpretation involves different disciplines, of which the main three are: reservoir management, rock physics, and seismics. The main challenge is expressed as "How to optimally benefit from time-lapse seismic". The chall...
In these lectures, I shall focus on the matrix formulation of 2-d gravity. In the first one, I shall discuss the main results of the continuum formulation of 2-d gravity, starting from the first renormalization group calculations which led to the concept of the conformal anomaly, going through the Polyakov bosonic string and the Liouville action, up to the recent results on the scaling properties of conformal field theories coupled to 2-d gravity. In the second lecture, I shall discuss the discrete formulation of 2-d gravity in term of random lattices, and the mapping onto random matrix models. The occurrence of critical points in the planar limit and the scaling limit at those critical points will be described, as well as the identification of these scaling limits with continuum 2-d gravity coupled to some matter field theory. In the third lecture, the double scaling limit in the one matrix model, and its connection with continuum non perturbative 2-d gravity, will be presented. The connection with the KdV hierarchy and the general form of the string equation will be discuted. In the fourth lecture, I shall discuss the non-perturbative effects present in the non perturbative solutions, in the case of pure gravity. The Schwinger-Dyson equations for pure gravity in the double scaling limit are described and their compatibility with the solutions of the string equation for pure gravity is shown to be somewhat problematic
2d index and surface operators
In this paper we compute the superconformal index of 2d (2,2) supersymmetric gauge theories. The 2d superconformal index, a.k.a. flavored elliptic genus, is computed by a unitary matrix integral much like the matrix integral that computes the 4d superconformal index. We compute the 2d index explicitly for a number of examples. In the case of abelian gauge theories we see that the index is invariant under flop transition and under CY-LG correspondence. The index also provides a powerful check of the Seiberg-type duality for non-abelian gauge theories discovered by Hori and Tong. In the later half of the paper, we study half-BPS surface operators in N=2 superconformal gauge theories. They are engineered by coupling the 2d (2,2) supersymmetric gauge theory living on the support of the surface operator to the 4d N=2 theory, so that different realizations of the same surface operator with a given Levi type are related by a 2d analogue of the Seiberg duality. The index of this coupled system is computed by using the tools developed in the first half of the paper. The superconformal index in the presence of surface defect is expected to be invariant under generalized S-duality. We demonstrate that it is indeed the case. In doing so the Seiberg-type duality of the 2d theory plays an important role
Automating Shallow Seismic Imaging
Steeples, Don W.
2004-12-09
This seven-year, shallow-seismic reflection research project had the aim of improving geophysical imaging of possible contaminant flow paths. Thousands of chemically contaminated sites exist in the United States, including at least 3,700 at Department of Energy (DOE) facilities. Imaging technologies such as shallow seismic reflection (SSR) and ground-penetrating radar (GPR) sometimes are capable of identifying geologic conditions that might indicate preferential contaminant-flow paths. Historically, SSR has been used very little at depths shallower than 30 m, and even more rarely at depths of 10 m or less. Conversely, GPR is rarely useful at depths greater than 10 m, especially in areas where clay or other electrically conductive materials are present near the surface. Efforts to image the cone of depression around a pumping well using seismic methods were only partially successful (for complete references of all research results, see the full Final Technical Report, DOE/ER/14826-F), but peripheral results included development of SSR methods for depths shallower than one meter, a depth range that had not been achieved before. Imaging at such shallow depths, however, requires geophone intervals of the order of 10 cm or less, which makes such surveys very expensive in terms of human time and effort. We also showed that SSR and GPR could be used in a complementary fashion to image the same volume of earth at very shallow depths. The primary research focus of the second three-year period of funding was to develop and demonstrate an automated method of conducting two-dimensional (2D) shallow-seismic surveys with the goal of saving time, effort, and money. Tests involving the second generation of the hydraulic geophone-planting device dubbed the ''Autojuggie'' showed that large numbers of geophones can be placed quickly and automatically and can acquire high-quality data, although not under rough topographic conditions. In some easy
The Earth Sciences and Resources Institute, University of South Carolina is conducting a 14 month proof of concept study to determine the location and distribution of subsurface Dense Nonaqueous Phase Liquid (DNAPL) carbon tetrachloride (CCl4) contamination at the 216-Z-9 crib, 200 West area, Department of Energy (DOE) Hanford Site, Washington by use of two-dimensional high resolution seismic reflection surveys and borehole geophysical data. The study makes use of recent advances in seismic reflection amplitude versus offset (AVO) technology to directly detect the presence of subsurface DNAPL. The techniques proposed are a noninvasive means towards site characterization and direct free-phase DNAPL detection. This report covers the results of Task 3 and change of scope of Tasks 4-6. Task 1 contains site evaluation and seismic modeling studies. The site evaluation consists of identifying and collecting preexisting geological and geophysical information regarding subsurface structure and the presence and quantity of DNAPL. The seismic modeling studies were undertaken to determine the likelihood that an AVO response exists and its probable manifestation. Task 2 is the design and acquisition of 2-D seismic reflection data designed to image areas of probable high concentration of DNAPL. Task 3 is the processing and interpretation of the 2-D data. Task 4, 5, and 6 were designing, acquiring, processing, and interpretation of a three dimensional seismic survey (3D) at the Z-9 crib area at 200 west area, Hanford
Research on metal atom evaporation with 2-D steady flows
Study of the evaporation is one of crucial technology in AVLIS (atomic vapor laser isotopic separation). The research work on physical parameters of atomic vapor in separation region such as the 2-D distributions of velocity, density and temperature provides some important scientific data for designing separator in AVLIS engineering. The distribution of density, velocity and temperature is presented and some related interpretations for them are also given on the basis of BGK equation, when many absorbing boards are considered
2-D DOA Estimation Based on 2D-MUSIC%基于2D-MUSIC算法的DOA估计
康亚芳; 王静; 张清泉; 行小帅
2014-01-01
This paper discussed the performance of classical two-dimensional DOA estimation with 2D-MUSIC, based on the mathematical model of planar array and 2D-MUSIC DOA estimation, Taking uniform planar array for example, comput-er simulation experiment was carried for the effect of three kinds of different parameters on 2-D DOA estimation, and the simulation results were analyzed. And also verification test about the corresponding algorithm performance under the differ-ent parameters was discussed.%利用经典的2D-MUSIC算法对二维阵列的DOA估计进行了研究，在平面阵列数学模型以及2D-MUSIC算法的DOA估计模型基础上，以均匀平面阵列为例，对3种不同参数的DOA估计进行了计算机仿真，分析了仿真结果。得出了在不同参数变化趋势下DOA估计的相应变化情况。
2-D Path Corrections for Local and Regional Coda Waves: A Test of Transportability
Mayeda, K M; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D S; Morasca, P
2005-07-13
Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. [2003] has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. We will compare performance of 1-D versus 2-D path corrections in a variety of regions. First, the complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Next, we will compare results for the Italian Alps using high frequency data from the University of Genoa. For Northern California, we used the same station and event distribution and compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7 {le} f {le} 8.0-Hz), the 2-D approach resulted in
A Brief Talk about the Technology of Seismic Exploration on Shale Gas%浅谈页岩气地震勘探技术
王万合
2014-01-01
This article tells us basic understanding about shale gas,and proposes us several aspects should be focused on about the technology of seismic exploration in shale gas, that is structure for shale area, reservoir calibration, the thickness forecast and depth calculation, optimalizes, analyses,and extracts sensitive properties about shale gas. Then obtains the relationship between seismic data volume and shale gas reservoirs, So as to achieve the prediction of“The dessert”on shale gas.%本文讲述了对页岩气的基本认识，提出了页岩气地震勘探勘探应着重解决的几个方面，即寻找页岩区构造，储层标定，页岩的厚度预测和埋深计算，并对页岩气敏感属性进行优选、分析和提取，获得页岩气藏与地震数据体间的相互关系，从而实现对页岩气“甜点”的预测。
Discussion on the Application of 3D Animation Technology in 2D Animation%三维动画技术在二维动画中的应用探讨
卢景峰
2014-01-01
With the development of computer technology, a combination of two-dimensional and three-dimensional animation techniques, whose re-spective strengths and advantages greatly have enhanced animation visual effects and artistic expression, has been used in many two-di-mensional animation films, instead of using single two-dimensional animation technique. According to combine the styles and techniques of the current primary animation, analyzes the development of two-dimensional animation and three dimensional animationas as well as the limitations to the presentation and visuals of two-dimensional animation. Through the analysis of advantages of three dimensional car-toon technology, describes how to combine the technology of two-dimensional animation and three-dimensional animation in the integra-tion process. Gives opinion about the prospects of two-dimensional animation and three-dimensional in the future.%随着计算机技术的发展，在许多二维动画片中不再采用单一的二维动画技术，而是采用了二维和三维结合应用的动画技术，通过各自的长处和优势大大提高动画片的视觉效果和艺术表现力。结合当前主流动画风格以及技术来分析二维动画和三维动画的发展，阐述二维动画在表现形式和视觉效果上的局限性。通过分析三维动画技术的优势，重点探讨二维动画技术和三维动画技术在相互融合过程的实现方法，提出未来二维动画发展的见解与思路。
Development of Vertical Cable Seismic System for Hydrothermal Deposit Survey (2) - Feasibility Study
Asakawa, E.; Murakami, F.; Sekino, Y.; Okamoto, T.; Mikada, H.; Takekawa, J.; Shimura, T.
2010-12-01
In 2009, Ministry of Education, Culture, Sports, Science and Technology(MEXT) started the survey system development for Hydrothermal deposit. We proposed the Vertical Cable Seismic (VCS), the reflection seismic survey with vertical cable above seabottom. VCS has the following advantages for hydrothermal deposit survey. . (1) VCS is an effective high-resolution 3D seismic survey within limited area. (2) It achieves high-resolution image because the sensors are closely located to the target. (3) It avoids the coupling problems between sensor and seabottom that cause serious damage of seismic data quality. (4) Various types of marine source are applicable with VCS such as sea-surface source (air gun, water gun etc.) , deep-towed or ocean bottom sources. (5) Autonomous recording system. Our first experiment of 2D/3D VCS surveys has been carried out in Lake Biwa, JAPAN. in November 2009. The 2D VCS data processing follows the walk-away VSP, including wave field separation and depth migration. The result gives clearer image than the conventional surface seismic. Prestack depth migration is applied to 3D data to obtain good quality 3D depth volume. Uncertainty of the source/receiver poisons in water causes the serious problem of the imaging. We used several transducer/transponder to estimate these positions. The VCS seismic records themselves can also provide sensor position using the first break of each trace and we calibrate the positions. We are currently developing the autonomous recording VCS system and planning the trial experiment in actual ocean to establish the way of deployment/recovery and the examine the position through the current flow in November, 2010. The second VCS survey will planned over the actual hydrothermal deposit with deep-towed source in February, 2011.
This volume covers the presentations dealing with both calculational models and experiments related to seismic response analysis of reactor components, reactor buildings, reactor cooling systems, testing of seismic isolation materials. Some of the papers are concerned with spent fuel storage pools from seismic risk point of view
Automatic Contour Extraction from 2D Image
Panagiotis GIOANNIS
2011-03-01
Full Text Available Aim: To develop a method for automatic contour extraction from a 2D image. Material and Method: The method is divided in two basic parts where the user initially chooses the starting point and the threshold. Finally the method is applied to computed tomography of bone images. Results: An interesting method is developed which can lead to a successful boundary extraction of 2D images. Specifically data extracted from a computed tomography images can be used for 2D bone reconstruction. Conclusions: We believe that such an algorithm or part of it can be applied on several other applications for shape feature extraction in medical image analysis and generally at computer graphics.
2D microwave imaging reflectometer electronics.
Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C
2014-11-01
A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program. PMID:25430247
2D microwave imaging reflectometer electronics
Spear, A. G.; Domier, C. W., E-mail: cwdomier@ucdavis.edu; Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C. [Electrical and Computer Engineering, University of California, Davis, California 95616 (United States); Tobias, B. J. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)
2014-11-15
A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.
Seismic testing of models and fragments of seismic isolated structures of NPS buildings
This report states the bases of original methodology and results of model and full-scale seismic testing on 3-component seismic platforms (load-carrying capacity up to 500 t). For simulation of loads and shakes of elements of structures of seismic isolated buildings on the structure of the stands the technology of buried underground explosions was used. (author). 3 figs., 2 tabs
Path integral quantization of 2 D- gravity
2 D- gravity is investigated using the Hamilton-Jacobi formalism. The equations of motion and the action integral are obtained as total differential equations in many variables. The integrability conditions, lead us to obtain the path integral quantization without any need to introduce any extra un-physical variables. (author)
Burcharth, Hans F.; Meinert, Palle; Andersen, Thomas Lykke
This report present the results of 2D physical model tests (length scale 1:50) carried out in a waveflume at Dept. of Civil Engineering, Aalborg University (AAU). The objective of the tests was: To identify cross section design which restrict the overtopping to acceptable levels and to record the...
Baby universes in 2d quantum gravity
Ambjorn, J.; S. Jain; G. Thorleifsson
1993-01-01
We investigate the fractal structure of $2d$ quantum gravity, both for pure gravity and for gravity coupled to multiple gaussian fields and for gravity coupled to Ising spins. The roughness of the surfaces is described in terms of baby universes and using numerical simulations we measure their distribution which is related to the string susceptibility exponent $\\g_{string}$.
Andersen, Thomas Lykke; Frigaard, Peter
This report present the results of 2D physical model tests carried out in the shallow wave flume at Dept. of Civil Engineering, Aalborg University (AAU), on behalf of Energy E2 A/S part of DONG Energy A/S, Denmark. The objective of the tests was: to investigate the combined influence of the pile...
National Oceanic and Atmospheric Administration, Department of Commerce — Seismic creep is the constant or periodic movement on a fault as contrasted with the sudden erupture associated with an earthquake. It is a usually slow deformation...
Seismic hazard determination of nuclear facilities in the Czech Republic
Seismic safety management strategy and seismic risk management strategy are in the Czech Republic based on the real seismic hazard knowledge and on the use of preventive measures (technological and organisational) that at a strong earthquake occurrence mitigate or even avert severe earthquake impacts. To be able to reduce a seismic risk we must know site seismic hazard, site, facility and technology seismic vulnerabilities. By legal rules and seismic design code in force we require: - determining the real site seismic hazard corresponding to time periods 100 and 10 000 years, determining the NPP seismic risk in dependence on NPP type and local conditions, - adhering the defined professional principles and procedures at site evaluation, designing, construction and operation, using the construction procedures, technical measures (materials, structural elements, equipment etc.) and operation procedures that reduce seismic vulnerability during construction and operation, - preparing the set of organisational measures for the case of strong earthquake occurrence. (authors)
BGP Started Shooting Its Largest Oversea Seismic Survey
无
2005-01-01
@@ At 5 a.m. on November 1, 2005 of Beijing time, BGP (Bureau of Geophysical Prospecting)formally began shooting the S-51 3D seismic acquisition project in Saudi Arabia, its largest oversea seismic survey project to date. At the same time, the SRAK 2D seismic survey project was also started in the country. These two projects mark the construction of BGP's another large oversea production base.
Use of seismic attributes for sediment classification
Fabio Radomille Santana
2015-04-01
Full Text Available A study to understand the relationships between seismic attributes extracted from 2D high-resolution seismic data and the seafloor's sediments of the surveyed area. As seismic attributes are features highly influenced by the medium through which the seismic waves are propagated, the authors can assume that it would be possible to characterise the geological nature of the seafloor by using these attributes. Herein, a survey was performed on the continental margin of the South Shetland Islands in Antarctica, where both 2D high-resolution seismic data and sediment gravity cores samples were simultaneously acquired. A computational script was written to extract the seismic attributes from the data, which have been statistically analysed with clustering analyses, such as principal components analysis, dendrograms and k-means classification. The extracted seismic attributes are the amplitude, the instantaneous phase, the instantaneous frequency, the envelope, the time derivative of the envelope, the second derivative of the envelope and the acceleration of phase. Statistical evaluation showed that geological classification of the seafloor's sediments is possible by associating these attributes according to their coherence. The methodologies here developed seem to be appropriate for glacio-marine environment and coarse-to-medium silt sediment found in the study area and may be applied to other regions in the same geological conditions.
Pytharouli, S.; Aspray, T. J.; Grojean, Q.; Steirou, E.
2013-12-01
In assessing brownfield sites for redevelopment, intrusive investigations are carried out to assess contamination, geology and hydrogeology. Such investigations are expensive, requiring the hire of expensive equipment, which incur standing charges when not in use. In addition, they provide information for discrete sample ';windows'. Non-intrusive methods have the ability to gather information across an entire area. Methods including electrical resistivity/conductivity and ground penetrating radar (GRP), and have been applied to brownfield sites. Their ability in detecting pollution e.g. buried canisters, is often restricted due to unfavourable on-site conditions e.g. GRP is not useful in cases where a layer of clay or reinforced concrete is present. This study is focused on the use, for the first time, of short period seismometers as an alternative, non-intrusive, passive seismic method to detect the presence of objects buried under the ground surface even when on-site conditions are not favourable. We used five low detection threshold seismometers with a flat response within the frequency range 1 - 80 Hz. We conducted experiments both in the lab and in the field. Three series of lab experiments were conducted in sand, under controlled conditions, using ambient noise as the only source of generating seismic waves. Results revealed that there is a distinct difference in the amplitude of the power density spectra of the recorded signals in cases where objects e.g. concrete block, polystyrene block, wood, were present. To validate these results in field scale, we conducted a series of experiments that took place in Heriot-Watt University campus on a field for which we had information for the subsurface from an electromagnetic survey. We used the same monitoring equipment to try and detect the presence of a 6m long PVC pipe buried 0.5m below the ground surface. Results were consistent with those obtained from lab experiments. This supports our initial hypothesis on the
ORION, Post-processor for Finite Elements Program NIKE2D and DYNA2D
Description of program or function: ORION is an interactive post- processor for the analysis programs NIKE2D (NESC 9923), DYNA2D (NESC 9910), TOPAZ, TOPAZ2D (NESC9801), GEM2D (NESC9679), and TACO2D. ORION reads the binary plot data files generated by the two- dimensional finite element programs used at LLNL. Contours and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has the capability to plot color fringes, contour lines, vector plots, principal stress lines, deformed meshes and material outlines, time histories, reaction forces along constraint boundaries, interface pressures along slide lines, and user-supplied labels
Ribault, Sylvain E-mail: ribault@mth.kcl.ac.uk; Schomerus, Volker
2004-02-01
We present a comprehensive analysis of branes in the Euclidean 2D black hole (cigar). In particular, exact boundary states and annulus amplitudes are provided for D0-branes which are localized at the tip of the cigar as well as for two families of extended D1 and D2-branes. Our results are based on closely related studies for the Euclidean AdS3 model and, as predicted by the conjectured duality between the 2D black hole and the sine-Liouville model, they share many features with branes in Liouville theory. New features arise here due to the presence of closed string modes which are localized near the tip of the cigar. The paper concludes with some remarks on possible applications to exact tachyon condensation and matrix models. (author)
Ribault, S; Ribault, Sylvain; Schomerus, Volker
2004-01-01
We present a comprehensive analysis of branes in the Euclidean 2D black hole (cigar). In particular, exact boundary states and annulus amplitudes are provided for D0-branes which are localized at the tip of the cigar as well as for two families of extended D1 and D2-branes. Our results are based on closely related studies for the Euclidean AdS3 model and, as predicted by the conjectured duality between the 2D black hole and the sine-Liouville model, they share many features with branes in Liouville theory. New features arise here due to the presence of closed string modes which are localized near the tip of the cigar. The paper concludes with some remarks on possible applications to exact tachyon condensation and matrix models.
We present a comprehensive analysis of branes in the Euclidean 2D black hole (cigar). In particular, exact boundary states and annulus amplitudes are provided for D0-branes which are localized at the tip of the cigar as well as for two families of extended D1 and D2-branes. Our results are based on closely related studies for the Euclidean AdS3 model and, as predicted by the conjectured duality between the 2D black hole and the sine-Liouville model, they share many features with branes in Liouville theory. New features arise here due to the presence of closed string modes which are localized near the tip of the cigar. The paper concludes with some remarks on possible applications to exact tachyon condensation and matrix models. (author)
2-D geometrical analysis of deformation
Engineering structures such as dams, bridges, high rise buildings, etc. are subject to deformation. Deformation survey is therefore necessary to determine the magnitude and direction of such movements for the purpose of safety assessment. In this study, a strategy for two-step analyses for deformation survey rising the two dimensional (2-D) geodetic method has been developed, consisting of independent least squares estimation (LSE) of each epoch followed by deformation detection. Important aspects on LSE include global and local testing. In deformation detection, the following aspects were implemented; datum definition by the user. determination of stable datum points, geometrical analysis of deformation and graphic presentation. The developed strategy has been implemented in three computer programs, COMPUT, DEFORM and STRANS. Tests carried out with simulated and known data show that the developed strategy and programs are applicable for 2-D geometrical detection of deformation. (Author)
Realistic and efficient 2D crack simulation
Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek
2010-04-01
Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.
2D materials: Graphene and others
Bansal, Suneev Anil; Singh, Amrinder Pal; Kumar, Suresh
2016-05-01
Present report reviews the recent advancements in new atomically thick 2D materials. Materials covered in this review are Graphene, Silicene, Germanene, Boron Nitride (BN) and Transition metal chalcogenides (TMC). These materials show extraordinary mechanical, electronic and optical properties which make them suitable candidates for future applications. Apart from unique properties, tune-ability of highly desirable properties of these materials is also an important area to be emphasized on.
Engineering light outcoupling in 2D materials
Lien, Derhsien
2015-02-11
When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.
Resolving 2D Amorphous Materials with Scanning Probe Microscopy
Burson, Kristen M.; Buechner, Christin; Lewandowski, Adrian; Heyde, Markus; Freund, Hans-Joachim
Novel two-dimensional (2D) materials have garnered significant scientific interest due to their potential technological applications. Alongside the emphasis on crystalline materials, such as graphene and hexagonal BN, a new class of 2D amorphous materials must be pursued. For amorphous materials, a detailed understanding of the complex structure is necessary. Here we present a structural study of 2D bilayer silica on Ru(0001), an insulating material which is weakly coupled to the substrate. Atomic structure has been determined with a dual mode atomic force microscopy (AFM) and scanning tunneling microscopy (STM) sensor in ultra-high vacuum (UHV) at low temperatures, revealing a network of different ring sizes. Liquid AFM measurements with sub-nanometer resolution bridge the gap between clean UHV conditions and the environments that many material applications demand. Samples are grown and characterized in vacuum and subsequently transferred to the liquid AFM. Notably, the key structural features observed, namely nanoscale ring networks and larger holes to the substrate, show strong quantitative agreement between the liquid and UHV microscopy measurements. This provides direct evidence for the structural stability of these silica films for nanoelectronics and other applications. KMB acknowledges support from the Alexander von Humboldt Foundation.
For better understanding of the specification for seismic instrumentation of a nuclear power plant, the lecture gives some fundamental remarks to the seismic risk in the Federal Republic of Germany and to the data characterizing an earthquake event. Coming from the geophysical properties of an earthquake, the quantities are explained which are used in the design process of nuclear power plants. This process is shortly described in order to find the requirements for the specification of the seismic instrumentation. In addition the demands of licensing authorities are given. As an example the seismic instrumentation of KKP-1, BWR, is shown. The paper deals with kind and number of instruments, their location in the plant and their sensitivity and calibration. Final considerations deal with the evaluation of measured data and with plant operation after an earthquake. Some experience concerning the earthquake behaviour of equipment not designed to withstand earthquake loads is mentioned. This experience has initiated studies directed to quantification of the degree of conservatism of the assumptions in the seismic design of nuclear power plants. A final garget of these studies are more realistic design rules. (RW)
2D/3D Synthetic Vision Navigation Display
Prinzel, Lawrence J., III; Kramer, Lynda J.; Arthur, J. J., III; Bailey, Randall E.; Sweeters, jason L.
2008-01-01
Flight-deck display software was designed and developed at NASA Langley Research Center to provide two-dimensional (2D) and three-dimensional (3D) terrain, obstacle, and flight-path perspectives on a single navigation display. The objective was to optimize the presentation of synthetic vision (SV) system technology that permits pilots to view multiple perspectives of flight-deck display symbology and 3D terrain information. Research was conducted to evaluate the efficacy of the concept. The concept has numerous unique implementation features that would permit enhanced operational concepts and efficiencies in both current and future aircraft.
Minegishi, M.; Nakagami, K.; Tanaka, H. [Japan National Oil Corp., Tokyo (Japan). Technology Research Center
1997-05-27
Difficult area in this context means an exploration-difficult area supposed to store oil/gas but retarded in exploration for the lack of knowledge about the geological structure due to poor quality of available seismic survey records. Discussed in this paper is a survey conducted into an area covering the southern part of Noshiro-shi, Akita-ken, and Yamamoto-cho, Yamamoto-gun, Akita-ken. An area size suitable for data collection at a target depth of 2500m is determined using an interpretation structure compiled on the basis of available well data and 2D seismic survey data. The plan for siting shock points and receiving points is modified case by case as restrictive factors come to the surface (resulting from the complicated hilly terrain, presence of pipes for agricultural water, etc.). The peculiarities of seismic waves in the terrain are studied through the interpretation of the available well data and 2D seismic survey data for the construction of a 3D velocity model for the confirmation of the appropriateness of the plan for siting shock points and receiving points. Efforts are exerted through enhanced coordination with the contractor to acquire data so that a technologically best design may be won within the limits of the budget. The quality of the data obtained from this experiment is in general better than those obtained from previous experiments, yet many problems remain to be settled in future studies about exploration-difficult areas. 4 refs., 4 figs., 1 tab.
李健宁; 虞庐松
2016-01-01
大跨度连续梁桥由于上部结构惯性力较大，导致传统延性抗震设计方法很难满足桥梁抗震性能需求，减隔震技术是解决这一问题的有效途径之一。采用液体粘滞阻尼器配合双曲面球型减隔震支座对某高烈度大跨连续梁桥进行了减隔震设计，结果表明：液体粘滞阻尼器减震效果明显，但固定墩地震力较大仍难以满足要求；采用双曲面球型减隔震支座，除边墩受地震力明显增大外其余墩较均匀的分担了地震荷载，墩身抗震性能充分发挥，且其具备自复位功能震后修复难度较低；液体粘滞阻尼器配合双曲面球型减隔震支座时减震效果明显优于仅设置阻尼器，且前者具备一定的自复位功能，与设置双曲面球型支座相比前者解决了边墩的抗震问题。本桥减隔震设计中此方法最优，该方法可为高烈度区大跨连续梁桥的抗震设计和抗震加固提供参考。%Because the inertial force of the superstructure of the large-span continuous girder bridge is larger,the traditional ductility seismic design method cannot meet the needs of seismic performance of bridge seismic design.The seismic isolation technology is one of the effective ways to solve the problem,so a large-span continuous girder bridge in a high intensity seismic area is taken as an example for seismic isolation design by adopting the fluid viscous damper with double spherical seismic bearing.The results show that the damping effect is obvious after using the damper,but it is still difficult to meet the requirements.In addition,it is hard to repair after the earthquake without the self-resetting function.After using the double spherical seismic bearing, the rest piers are increased to uniformly bear the earthquake load besides the side pier and give full play to the seismic behavior,and they are easy to repair after the earthquake with the self-re-setting function.However,when using fluid
R. Quittmeyer
2006-09-25
This technical work plan (TWP) describes the efforts to develop and confirm seismic ground motion inputs used for preclosure design and probabilistic safety 'analyses and to assess the postclosure performance of a repository at Yucca Mountain, Nevada. As part of the effort to develop seismic inputs, the TWP covers testing and analyses that provide the technical basis for inputs to the seismic ground-motion site-response model. The TWP also addresses preparation of a seismic methodology report for submission to the U.S. Nuclear Regulatory Commission (NRC). The activities discussed in this TWP are planned for fiscal years (FY) 2006 through 2008. Some of the work enhances the technical basis for previously developed seismic inputs and reduces uncertainties and conservatism used in previous analyses and modeling. These activities support the defense of a license application. Other activities provide new results that will support development of the preclosure, safety case; these results directly support and will be included in the license application. Table 1 indicates which activities support the license application and which support licensing defense. The activities are listed in Section 1.2; the methods and approaches used to implement them are discussed in more detail in Section 2.2. Technical and performance objectives of this work scope are: (1) For annual ground motion exceedance probabilities appropriate for preclosure design analyses, provide site-specific seismic design acceleration response spectra for a range of damping values; strain-compatible soil properties; peak motions, strains, and curvatures as a function of depth; and time histories (acceleration, velocity, and displacement). Provide seismic design inputs for the waste emplacement level and for surface sites. Results should be consistent with the probabilistic seismic hazard analysis (PSHA) for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground
This technical work plan (TWP) describes the efforts to develop and confirm seismic ground motion inputs used for preclosure design and probabilistic safety 'analyses and to assess the postclosure performance of a repository at Yucca Mountain, Nevada. As part of the effort to develop seismic inputs, the TWP covers testing and analyses that provide the technical basis for inputs to the seismic ground-motion site-response model. The TWP also addresses preparation of a seismic methodology report for submission to the U.S. Nuclear Regulatory Commission (NRC). The activities discussed in this TWP are planned for fiscal years (FY) 2006 through 2008. Some of the work enhances the technical basis for previously developed seismic inputs and reduces uncertainties and conservatism used in previous analyses and modeling. These activities support the defense of a license application. Other activities provide new results that will support development of the preclosure, safety case; these results directly support and will be included in the license application. Table 1 indicates which activities support the license application and which support licensing defense. The activities are listed in Section 1.2; the methods and approaches used to implement them are discussed in more detail in Section 2.2. Technical and performance objectives of this work scope are: (1) For annual ground motion exceedance probabilities appropriate for preclosure design analyses, provide site-specific seismic design acceleration response spectra for a range of damping values; strain-compatible soil properties; peak motions, strains, and curvatures as a function of depth; and time histories (acceleration, velocity, and displacement). Provide seismic design inputs for the waste emplacement level and for surface sites. Results should be consistent with the probabilistic seismic hazard analysis (PSHA) for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground motion at
Self-Noise of the MET Angular Motion Seismic Sensors
2015-01-01
Interest to angular motion seismic sensors is generated by an expectation that direct measurement of the rotations, associated with seismic signals, would allow obtaining more detailed and accurate information from them. Due to the seismic signals low intensity a self-noise of the sensors is one of the most crucial parameters, characterizing their performance. In seismic applications the molecular-electronic transfer (MET) technology is considered as one of the most promising technologies for...
Interparticle attraction in 2D complex plasmas
Kompaneets, Roman; Ivlev, Alexei V
2015-01-01
Complex (dusty) plasmas allow experimental studies of various physical processes occurring in classical liquids and solids by directly observing individual microparticles. A major problem is that the interaction between microparticles is generally not molecular-like. In this Letter, we propose how to achieve a molecular-like interaction potential in laboratory 2D complex plasmas. We argue that this principal aim can be achieved by using relatively small microparticles and properly adjusting discharge parameters. If experimentally confirmed, this will make it possible to employ complex plasmas as a model system with an interaction potential resembling that of conventional liquids.
2D vector-cyclic deformable templates
Schultz, Nette; Conradsen, Knut
1998-01-01
In this paper the theory of deformable templates is a vector cycle in 2D is described. The deformable template model originated in (Grenander, 1983) and was further investigated in (Grenander et al., 1991). A template vector distribution is induced by parameter distribution from transformation...... matrices applied to the vector cycle. An approximation in the parameter distribution is introduced. The main advantage by using the deformable template model is the ability to simulate a wide range of objects trained by e.g. their biological variations, and thereby improve restoration, segmentation and...
Limit theorems for 2D invasion percolation
Damron, Michael
2010-01-01
We prove limit theorems and variance estimates for quantities related to ponds and outlets for 2D invasion percolation. We first exhibit several properties of a sequence (O(n)) of outlet variables, the n-th of which gives the number of outlets in the box centered at the origin of side length 2^n. The most important of these properties describe the sequence's renewal structure and exponentially fast mixing behavior. We use these to prove a central limit theorem and strong law of large numbers for (O(n)). We then show consequences of these limit theorems for the pond radii and outlet weights.
Temple, Aidan
2013-01-01
Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. The step-by-step approach taken by this book will show you how to develop a 2D HTML5 platformer-based game that you will be able to publish to multiple devices.This book is great for anyone who has an interest in HTML5 games development, and who already has a basic to intermediate grasp on both the HTML markup and JavaScript programming languages. Therefore, due to this requirement, the book will not discuss the inner workings of either of these languages but will instead attempt to
Interparticle Attraction in 2D Complex Plasmas
Kompaneets, Roman; Morfill, Gregor E.; Ivlev, Alexei V.
2016-03-01
Complex (dusty) plasmas allow experimental studies of various physical processes occurring in classical liquids and solids by directly observing individual microparticles. A major problem is that the interaction between microparticles is generally not molecularlike. In this Letter, we propose how to achieve a molecularlike interaction potential in laboratory 2D complex plasmas. We argue that this principal aim can be achieved by using relatively small microparticles and properly adjusting discharge parameters. If experimentally confirmed, this will make it possible to employ complex plasmas as a model system with an interaction potential resembling that of conventional liquids.
Periodically sheared 2D Yukawa systems
We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates
Phase Engineering of 2D Tin Sulfides.
Mutlu, Z; Wu, RJ; Wickramaratne, D.; Shahrezaei, S; Liu, C; Temiz, S; Patalano, A; M Ozkan; Lake, RK; Mkhoyan, KA; Ozkan, CS
2016-01-01
Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase-selective growth of both hexagonal tin (IV) sulfide SnS2...
Astor Pass Seismic Surveys Preliminary Report
Louie, John [UNR; Pullammanappallil, Satish [Optim; Faulds, James; Eisses, Amy; Kell, Annie; Frary, Roxanna; Kent, Graham
2011-08-05
In collaboration with the Pyramid Lake Paiute Tribe (PLPT), the University of Nevada, Reno (UNR) and Optim re-processed, or collected and processed, over 24 miles of 2d seismic-reflection data near the northwest corner of Pyramid Lake, Nevada. The network of 2d land surveys achieved a near-3d density at the Astor Pass geothermal prospect that the PLPT drilled during Nov. 2010 to Feb. 2011. The Bureau of Indian Affairs funded additional seismic work around the Lake, and an extensive, detailed single-channel marine survey producing more than 300 miles of section, imaging more than 120 ft below the Lake bottom. Optim’s land data collection utilized multiple heavy vibrators and recorded over 200 channels live, providing a state-of-the-art reflection-refraction data set. After advanced seismic analysis including first-arrival velocity optimization and prestack depth migration, the 2d sections show clear fault-plane reflections, in some areas as deep as 4000 ft, tying to distinct terminations of the mostly volcanic stratigraphy. Some lines achieved velocity control to 3000 ft depth; all lines show reflections and terminations to 5000 ft depth. Three separate sets of normal faults appear in an initial interpretation of fault reflections and stratigraphic terminations, after loading the data into the OpendTect 3d seismic visualization system. Each preliminary fault set includes a continuous trace more than 3000 ft long, and a swarm of short fault strands. The three preliminary normal-fault sets strike northerly with westward dip, northwesterly with northeast dip, and easterly with north dip. An intersection of all three fault systems documented in the seismic sections at the end of Phase I helped to locate the APS-2 and APS-3 slimholes. The seismic sections do not show the faults connected to the Astor Pass tufa spire, suggesting that we have imaged mostly Tertiary-aged faults. We hypothesize that the Recent, active faults that produced the tufa through hotspring
Bottom-up design of 2D organic photocatalysts for visible-light driven hydrogen evolution
Wang, Peng; Jiang, Xue; Zhao, Jijun
2016-01-01
To design two-dimensional (2D) organocatalysts, three series of covalent organic frameworks (COFs) are constructed using bottom-up strategies, i.e. molecular selection, tunable linkage, and functionalization. First-principles calculations are performed to confirm their photocatalytic activity under visible light. Two of our constructed 2D COF models (B1 and C3) are identified as a sufficiently efficient organocatalyst for visible light water splitting. The controllable construction of such COFs from suitable organic subunit, linkage, and functional groups paves the way for correlating band edge alignments and geometry parameters of 2D organic materials. Our theoretical prediction not only provides essential insights into designing 2D-COF photocatalysts for water splitting, but also sparks other technological applications for 2D organic materials.
Bottom-up design of 2D organic photocatalysts for visible-light driven hydrogen evolution
To design two-dimensional (2D) organocatalysts, three series of covalent organic frameworks (COFs) are constructed using bottom-up strategies, i.e. molecular selection, tunable linkage, and functionalization. First-principles calculations are performed to confirm their photocatalytic activity under visible light. Two of our constructed 2D COF models (B1 and C3) are identified as a sufficiently efficient organocatalyst for visible light water splitting. The controllable construction of such COFs from suitable organic subunit, linkage, and functional groups paves the way for correlating band edge alignments and geometry parameters of 2D organic materials. Our theoretical prediction not only provides essential insights into designing 2D-COF photocatalysts for water splitting, but also sparks other technological applications for 2D organic materials. (paper)
Intermediate depth seismicity - a reflection seismic approach
Haberland, C.; Rietbrock, A.
2004-12-01
During subduction the descending oceanic lithosphere is subject to metamorphic reactions, some of them associated with the release of fluids. It is now widely accepted, that these reactions and associated dehydration processes are directly related with the generation of intermediate depth earthquakes (dehydration embrittlement). However, the structure of the layered oceanic plate at depth and the location of the earthquakes relative to structural units of the subducting plate (sources within the oceanic crust and/or in the upper oceanic mantle lithosphere?) are still not resolved yet. This is in mainly due to the fact that the observational resolution needed to address these topics (in the range of only a few kilometers) is hardly achieved in field experiments and related studies. Here we study the wavefields of intermediate depth earthquakes typically observed by temporary networks in order to assess their high-resolution potential in resolving structure of the down going slab and locus of seismicity. In particular we study whether the subducted oceanic Moho can be detected by the analysis of secondary phases of local earthquakes (near vertical reflection). Due to the irregular geometry of sources and receivers we apply an imaging technique similar to diffraction stack migration. The method is tested using synthetic data both based on 2-D finite difference simulations and 3-D kinematic ray tracing. The accuracy of the hypocenter location and onset times crucial for the successful application of stacking techniques (coherency) was achieved by the use of relatively relocated intermediate depth seismicity. Additionally, we simulate the propagation of the wavefields at larger distance (wide angle) indicating the development of guided waves traveling in the low-velocity waveguide associated with the modeled oceanic crust. We also present application on local earthquake data from the South American subduction zone.
Anderson, Don L.; Dziewonski, Adam M.
1984-01-01
Describes how seismic tomography is used to analyze the waves produced by earthquakes. The information obtained from the procedure can then be used to map the earth's mantle in three dimensions. The resulting maps are then studied to determine such information as the convective flow that propels the crustal plates. (JN)
Strinna, Elisa; Ferrari, Graziano
2015-04-01
The project started in 2008 as a sound installation, a collaboration between an artist, a barrel organ builder and a seismologist. The work differs from other attempts of sound transposition of seismic records. In this case seismic frequencies are not converted automatically into the "sound of the earthquake." However, it has been studied a musical translation system that, based on the organ tonal scale, generates a totally unexpected sequence of sounds which is intended to evoke the emotions aroused by the earthquake. The symphonies proposed in the project have somewhat peculiar origins: they in fact come to life from the translation of graphic tracks into a sound track. The graphic tracks in question are made up by copies of seismograms recorded during some earthquakes that have taken place around the world. Seismograms are translated into music by a sculpture-instrument, half a seismograph and half a barrel organ. The organ plays through holes practiced on paper. Adapting the documents to the instrument score, holes have been drilled on the waves' peaks. The organ covers about three tonal scales, starting from heavy and deep sounds it reaches up to high and jarring notes. The translation of the seismic records is based on a criterion that does match the highest sounds to larger amplitudes with lower ones to minors. Translating the seismogram in the organ score, the larger the amplitude of recorded waves, the more the seismogram covers the full tonal scale played by the barrel organ and the notes arouse an intense emotional response in the listener. Elisa Strinna's Seismic Symphonies installation becomes an unprecedented tool for emotional involvement, through which can be revived the memory of the greatest disasters of over a century of seismic history of the Earth. A bridge between art and science. Seismic Symphonies is also a symbolic inversion: the instrument of the organ is most commonly used in churches, and its sounds are derived from the heavens and
Photocurrent spectroscopy of 2D materials
Cobden, David
Confocal photocurrent measurements provide a powerful means of studying many aspects of the optoelectronic and electrical properties of a 2D device or material. At a diffraction-limited point they can provide a detailed absorption spectrum, and they can probe local symmetry, ultrafast relaxation rates and processes, electron-electron interaction strengths, and transport coefficients. We illustrate this with several examples, once being the photo-Nernst effect. In gapless 2D materials, such as graphene, in a perpendicular magnetic field a photocurrent antisymmetric in the field is generated near to the free edges, with opposite sign at opposite edges. Its origin is the transverse thermoelectric current associated with the laser-induced electron temperature gradient. This effect provides an unambiguous demonstration of the Shockley-Ramo nature of long-range photocurrent generation in gapless materials. It also provides a means of investigating quasiparticle properties. For example, in the case of graphene on hBN, it can be used to probe the Lifshitz transition that occurs due to the minibands formed by the Moire superlattice. We also observe and discuss photocurrent generated in other semimetallic (WTe2) and semiconducting (WSe2) monolayers. Work supported by DoE BES and NSF EFRI grants.
Comments on Thermalization in 2D CFT
de Boer, Jan
2016-01-01
We revisit certain aspects of thermalization in 2D CFT. In particular, we consider similarities and differences between the time dependence of correlation functions in various states in rational and non-rational CFTs. We also consider the distinction between global and local thermalization and explain how states obtained by acting with a diffeomorphism on the ground state can appear locally thermal, and we review why the time-dependent expectation value of the energy-momentum tensor is generally a poor diagnostic of global thermalization. Since all 2D CFTs have an infinite set of commuting conserved charges, generic initial states might be expected to give rise to a generalized Gibbs ensemble rather than a pure thermal ensemble at late times. We construct the holographic dual of the generalized Gibbs ensemble and show that, to leading order, it is still described by a BTZ black hole. The extra conserved charges, while rendering $c < 1$ theories essentially integrable, therefore seem to have little effect o...
Antenna-coupled microbolometer based uncooled 2D array and camera for 2D real-time terahertz imaging
Simoens, F.; Meilhan, J.; Gidon, S.; Lasfargues, G.; Lalanne Dera, J.; Ouvrier-Buffet, J. L.; Pocas, S.; Rabaud, W.; Guellec, F.; Dupont, B.; Martin, S.; Simon, A. C.
2013-09-01
CEA-Leti has developed a monolithic large focal plane array bolometric technology optimized for 2D real-time imaging in the terahertz range. Each pixel consists in a silicon microbolometer coupled to specific antennas and a resonant quarter-wavelength cavity. First prototypes of imaging arrays have been designed and manufactured for optimized sensing in the 1-3.5THz range where THz quantum cascade lasers are delivering high optical power. NEP in the order of 1 pW/sqrt(Hz) has been assessed at 2.5 THz. This paper reports the steps of this development, starting from the pixel level, to an array associated monolithically to its CMOS ROIC and finally a stand-alone camera. For each step, modeling, technological prototyping and experimental characterizations are presented.
Nuclear incidents/accidents data visualization with combined 2D/3D displays
Along with the development of IT technology, information on the Internet has been diversifying. A practical management of information on the Web is essential for the detailed understanding of them. In order to represent information efficiently, we developed a combined display system with both merits of 2D and 3D displays. We visualized nuclear incidents/accidents data, which need user-friendly interface for information sharing, by the developed 2D/3D displays. The effects of our system on information sharing were verified. Moreover, we showed effectiveness of the visualization system with combined 2D/3D displays. (author)
The Transition from 2-D Brachytherapy to 3-D High Dose Rate Brachytherapy
Brachytherapy is a major treatment modality in the treatment of common cancers including cervical cancer. This publication addresses the recent technological change in brachytherapy treatment planning with better access to 3-D volumetric patient imaging modalities including computed tomography (CT) and magnetic resonance (MR) as opposed to traditional 2-D planar images. In the context of 2-D and 3-D brachytherapy, the publication provides definitions, clinical indications, transitioning milestones, commissioning steps, quality assurance measures, and a related questionnaire. Staff training and resourcing are also addressed. The publication will serve as a guide to radiotherapy departments in Member States who wish to make the transition from 2-D to 3-D brachytherapy
Locality constraints and 2D quasicrystals
The plausible assumption that long-range interactions between atoms are negligible in a quasicrystal leaks to the study of tilings that obey constraints on the local configurations of tiles. The theory of such constraints (called matching rules) for 2D quasicrystal tilings is reviewed here. Different types of matching rules are defined and examples of tilings obeying them are given where known. The role of tile decoration is discussed and is shown to be significant in at least two cases (octagonal and dodecagonal duals of periodic 4-grids and 6-grids). A new result is introduced: a constructive procedure is described for generating weak matching rules for tilings with N-fold symmetry, for any N that is either a prime number or twice a prime number. The physics associated with weak matching rules, results on local growth rules, and the case of icosahedral symmetry are all briefly discussed. (author). 29 refs, 4 figs
Numerical Evaluation of 2D Ground States
Kolkovska, Natalia
2016-02-01
A ground state is defined as the positive radial solution of the multidimensional nonlinear problem \\varepsilon propto k_ bot 1 - ξ with the function f being either f(u) =a|u|p-1u or f(u) =a|u|pu+b|u|2pu. The numerical evaluation of ground states is based on the shooting method applied to an equivalent dynamical system. A combination of fourth order Runge-Kutta method and Hermite extrapolation formula is applied to solving the resulting initial value problem. The efficiency of this procedure is demonstrated in the 1D case, where the maximal difference between the exact and numerical solution is ≈ 10-11 for a discretization step 0:00025. As a major application, we evaluate numerically the critical energy constant. This constant is defined as a functional of the ground state and is used in the study of the 2D Boussinesq equations.
2-D Model Test of Dolosse Breakwater
Burcharth, Hans F.; Liu, Zhou
1994-01-01
The rational design diagram for Dolos armour should incorporate both the hydraulic stability and the structural integrity. The previous tests performed by Aalborg University (AU) made available such design diagram for the trunk of Dolos breakwater without superstructures (Burcharth et al. 1992). To...... extend the design diagram to cover Dolos breakwaters with superstructure, 2-D model tests of Dolos breakwater with wave wall is included in the project Rubble Mound Breakwater Failure Modes sponsored by the Directorate General XII of the Commission of the European Communities under Contract MAS-CT92......-0042. Furthermore, Task IA will give the design diagram for Tetrapod breakwaters without a superstructure. The more complete research results on Dolosse can certainly give some insight into the behaviour of Tetrapods armour layer of the breakwaters with superstructure. The main part of the experiment was on the...
Graphene suspensions for 2D printing
Soots, R. A.; Yakimchuk, E. A.; Nebogatikova, N. A.; Kotin, I. A.; Antonova, I. V.
2016-04-01
It is shown that, by processing a graphite suspension in ethanol or water by ultrasound and centrifuging, it is possible to obtain particles with thicknesses within 1-6 nm and, in the most interesting cases, 1-1.5 nm. Analogous treatment of a graphite suspension in organic solvent yields eventually thicker particles (up to 6-10 nm thick) even upon long-term treatment. Using the proposed ink based on graphene and aqueous ethanol with ethylcellulose and terpineol additives for 2D printing, thin (~5 nm thick) films with sheet resistance upon annealing ~30 MΩ/□ were obtained. With the ink based on aqueous graphene suspension, the sheet resistance was ~5-12 kΩ/□ for 6- to 15-nm-thick layers with a carrier mobility of ~30-50 cm2/(V s).
Area preserving diffeomorphisms and 2-d gravity
La, H S
1995-01-01
Area preserving diffeomorphisms of a 2-d compact Riemannian manifold with or without boundary are studied. We find two classes of decompositions of a Riemannian metric, namely, h- and g-decomposition, that help to formulate a gravitational theory which is area preserving diffeomorphism (SDiffM-) invariant but not necessarily diffeomorphism invariant. The general covariance of equations of motion of such a theory can be achieved by incorporating proper Weyl rescaling. The h-decomposition makes the conformal factor of a metric SDiffM-invariant and the rest of the metric invariant under conformal diffeomorphisms, whilst the g-decomposition makes the conformal factor a SDiffM scalar and the rest a SDiffM tensor. Using these, we reformulate Liouville gravity in SDiffM invariant way. In this context we also further clarify the dual formulation of Liouville gravity introduced by the author before, in which the affine spin connection is dual to the Liouville field.
A Low-noise front-end circuit for 2D cMUT arrays
Güler, Ülkühan; Guler, Ulkuhan; Bozkurt, Ayhan
2006-01-01
cMUT technology enables 2D array design with front-end electronic integration through flip-chip bonding or cMUT-on-CMOS process. The size of a 2D array element is constrained in both dimensions due to the aperture sampling criteria, and therefore should be less than or equal to the half of the wavelength in both dimensions. Considering large parasitic capacitances introduced by the interconnections, such small transducer elements necessitate integrated low noise frontends for achieving accept...
Metrology for graphene and 2D materials
Pollard, Andrew J.
2016-09-01
The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the
The seismic analysis of nuclear components is characterized today by extensive engineering computer calculations in order to satisfy both the component standard codes such as ASME III as well as federal regulations and guides. The current nuclear siesmic design procedure has envolved in a fragmented fashion and continues to change its elements as improved technology leads to changing standards and guides. The dominant trend is a monotonic increase in the overall conservation with time causing a similar trend in costs of nuclear power plants. Ironically the improvements in the state of art are feeding a process which is eroding the very incentives that attracted us to nuclear power in the first place. This paper examines the cause of this process and suggests that what is needed is a realistic goal which appropriately addresses the overall uncertainty of the seismic design process. (Auth.)
Time-lapse seismic within reservoir engineering
Oldenziel, T.
2003-01-01
Time-lapse 3D seismic is a fairly new technology allowing dynamic reservoir characterisation in a true volumetric sense. By investigating the differences between multiple seismic surveys, valuable information about changes in the oil/gas reservoir state can be captured. Its interpretation involves d
Optimal implicit 2-D finite differences to model wave propagation in poroelastic media
Itzá, Reymundo; Iturrarán-Viveros, Ursula; Parra, Jorge O.
2016-05-01
Numerical modeling of seismic waves in heterogeneous porous reservoir rocks is an important tool for the interpretation of seismic surveys in reservoir engineering. We apply globally optimal implicit staggered-grid finite-differences to model 2-D wave propagation in heterogeneous poroelastic media at a low-frequency range (waves (for a porous media saturated with fluid). The numerical dispersion and stability conditions are derived using von Neumann analysis, showing that over a wide range of porous materials the Courant condition governs the stability and this optimal implicit scheme improves the stability of explicit schemes. High order explicit finite-differences (FD) can be replaced by some lower order optimal implicit FD so computational cost will not be as expensive while maintaining the accuracy. Here we compute weights for the optimal implicit FD scheme to attain an accuracy of γ = 10-8. The implicit spatial differentiation involves solving tridiagonal linear systems of equations through Thomas' algorithm.
Updated Colombian Seismic Hazard Map
Eraso, J.; Arcila, M.; Romero, J.; Dimate, C.; Bermúdez, M. L.; Alvarado, C.
2013-05-01
The Colombian seismic hazard map used by the National Building Code (NSR-98) in effect until 2009 was developed in 1996. Since then, the National Seismological Network of Colombia has improved in both coverage and technology providing fifteen years of additional seismic records. These improvements have allowed a better understanding of the regional geology and tectonics which in addition to the seismic activity in Colombia with destructive effects has motivated the interest and the need to develop a new seismic hazard assessment in this country. Taking advantage of new instrumental information sources such as new broad band stations of the National Seismological Network, new historical seismicity data, standardized global databases availability, and in general, of advances in models and techniques, a new Colombian seismic hazard map was developed. A PSHA model was applied. The use of the PSHA model is because it incorporates the effects of all seismic sources that may affect a particular site solving the uncertainties caused by the parameters and assumptions defined in this kind of studies. First, the seismic sources geometry and a complete and homogeneous seismic catalog were defined; the parameters of seismic rate of each one of the seismic sources occurrence were calculated establishing a national seismotectonic model. Several of attenuation-distance relationships were selected depending on the type of seismicity considered. The seismic hazard was estimated using the CRISIS2007 software created by the Engineering Institute of the Universidad Nacional Autónoma de México -UNAM (National Autonomous University of Mexico). A uniformly spaced grid each 0.1° was used to calculate the peak ground acceleration (PGA) and response spectral values at 0.1, 0.2, 0.3, 0.5, 0.75, 1, 1.5, 2, 2.5 and 3.0 seconds with return periods of 75, 225, 475, 975 and 2475 years. For each site, a uniform hazard spectrum and exceedance rate curves were calculated. With the results, it is
Local 2D-2D tunneling in high mobility electron systems
Pelliccione, Matthew; Sciambi, Adam; Bartel, John; Goldhaber-Gordon, David; Pfeiffer, Loren; West, Ken; Lilly, Michael; Bank, Seth; Gossard, Arthur
2012-02-01
Many scanning probe techniques have been utilized in recent years to measure local properties of high mobility two-dimensional (2D) electron systems in GaAs. However, most techniques lack the ability to tunnel into the buried 2D system and measure local spectroscopic information. We report scanning gate measurements on a bilayer GaAs/AlGaAs heterostructure that allows for a local modulation of tunneling between two 2D electron layers. We call this technique Virtual Scanning Tunneling Microscopy (VSTM) [1,2] as the influence of the scanning gate is analogous to an STM tip, except at a GaAs/AlGaAs interface instead of a surface. We will discuss the spectroscopic capabilities of the technique, and show preliminary results of measurements on a high mobility 2D electron system.[1] A. Sciambi, M. Pelliccione et al., Appl. Phys. Lett. 97, 132103 (2010).[2] A. Sciambi, M. Pelliccione et al., Phys. Rev. B 84, 085301 (2011).
Seismic stimulation for enhanced oil recovery
Pride, S.R.; Flekkoy, E.G.; Aursjo, O.
2008-07-22
The pore-scale effects of seismic stimulation on two-phase flow are modeled numerically in random 2D grain0pack geometries. Seismic stimulation aims to enhance oil production by sending seismic waves across a reservoir to liberate immobile patches of oil. For seismic amplitudes above a well-defined (analytically expressed) dimensionless criterion, the force perturbation associated with the waves indeed can liberate oil trapped on capillary barriers and get it flowing again under the background pressure gradient. Subsequent coalescence of the freed oil droplets acts to enhance oil movement further because longer bubbles overcome capillary barriers more efficiently than shorter bubbles do. Poroelasticity theory defines the effective force that a seismic wave adds to the background fluid-pressure gradient. The lattice-Boltzmann model in two dimensions is used to perform pore-scale numerical simulations. Dimensionless numbers (groups of material and force parameters) involved in seismic stimulation are defined carefully so that numerical simulations can be applied to field-scale conditions. Using the analytical criteria defined in the paper, there is a significant range of reservoir conditions over which seismic stimulation can be expected to enhance oil production.
Seismic Isolation Working Meeting Gap Analysis Report
Justin Coleman; Piyush Sabharwall
2014-09-01
The ultimate goal in nuclear facility and nuclear power plant operations is operating safety during normal operations and maintaining core cooling capabilities during off-normal events including external hazards. Understanding the impact external hazards, such as flooding and earthquakes, have on nuclear facilities and NPPs is critical to deciding how to manage these hazards to expectable levels of risk. From a seismic risk perspective the goal is to manage seismic risk. Seismic risk is determined by convolving the seismic hazard with seismic fragilities (capacity of systems, structures, and components (SSCs)). There are large uncertainties associated with evolving nature of the seismic hazard curves. Additionally there are requirements within DOE and potential requirements within NRC to reconsider updated seismic hazard curves every 10 years. Therefore opportunity exists for engineered solutions to manage this seismic uncertainty. One engineered solution is seismic isolation. Current seismic isolation (SI) designs (used in commercial industry) reduce horizontal earthquake loads and protect critical infrastructure from the potentially destructive effects of large earthquakes. The benefit of SI application in the nuclear industry is being recognized and SI systems have been proposed, in the American Society of Civil Engineers (ASCE) 4 standard, to be released in 2014, for Light Water Reactors (LWR) facilities using commercially available technology. However, there is a lack of industry application to the nuclear industry and uncertainty with implementing the procedures outlined in ASCE-4. Opportunity exists to determine barriers associated with implementation of current ASCE-4 standard language.
Optimal 25-Point Finite-Difference Subgridding Techniques for the 2D Helmholtz Equation
Tingting Wu
2016-01-01
Full Text Available We present an optimal 25-point finite-difference subgridding scheme for solving the 2D Helmholtz equation with perfectly matched layer (PML. This scheme is second order in accuracy and pointwise consistent with the equation. Subgrids are used to discretize the computational domain, including the interior domain and the PML. For the transitional node in the interior domain, the finite difference equation is formulated with ghost nodes, and its weight parameters are chosen by a refined choice strategy based on minimizing the numerical dispersion. Numerical experiments are given to illustrate that the newly proposed schemes can produce highly accurate seismic modeling results with enhanced efficiency.
Face recognition method based on 2D-PCA and 2D-LDA%基于2D-PCA和2D-LDA的人脸识别方法
温福喜; 刘宏伟
2007-01-01
提出了基于2D-PCA、2D-LDA两种特征采用融合分类器的人脸识别方法.首先提取人脸图像的2D-PCA和2D-LDA特征,对不同特征在决策层对分类器进行融合.在ORL人脸库上的试验结果表明,分类器决策层融合方法在识别性能上优于2D-PCA和2D-LDA,更具有鲁棒性.
2D DIGITAL SIMPLIFIED FLOW VALVE
Ruan Jian; Li Sheng; Pei Xiang; Burton R; Ukrainetz P; Bitner D
2004-01-01
The 2D digital simplified flow valve is composed of a pilot-operated valve designed with both rotary and linear motions of a single spool,and a stepper motor under continual control.How the structural parameters affect the static and dynamic characteristics of the valve is first clarified and a criterion for stability is presented.Experiments are designed to test the performance of the valve.It is necessary to establish a balance between the static and dynamic characteristics in deciding the structural parameters.Nevertheless,it is possible to maintain the dynamic response at a fairly high level,while keeping the leakage of the pilot stage at an acceptable level.One of the features of the digital valve is stage control.In stage control the nonlinearities,such as electromagnetic saturation and hysteresis,are greatly reduced.To a large extent the dynamic response of the valve is decided by the executing cycle of the control algorithm.
Competing coexisting phases in 2D water
Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire
2016-05-01
The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules.
2D manifold-independent spinfoam theory
A number of background-independent quantization procedures have recently been employed in 4D nonperturbative quantum gravity. We investigate and illustrate these techniques and their relation in the context of a simple 2D topological theory. We discuss canonical quantization, loop or spin network states, path integral quantization over a discretization of the manifold, spin foam formulation and the fully background-independent definition of the theory using an auxiliary field theory on a group manifold. While several of these techniques have already been applied to this theory by Witten, the last one is novel: it allows us to give a precise meaning to the sum over topologies, and to compute background-independent and, in fact, 'manifold-independent' transition amplitudes. These transition amplitudes play the role of Wightman functions of the theory. They are physical observable quantities, and the canonical structure of the theory can be reconstructed from them via a C* algebraic GNS construction. We expect an analogous structure to be relevant in 4D quantum gravity
Ion Transport in 2-D Graphene Nanochannels
Xie, Quan; Foo, Elbert; Duan, Chuanhua
2015-11-01
Graphene membranes have recently attracted wide attention due to its great potential in water desalination and selective molecular sieving. Further developments of these membranes, including enhancing their mass transport rate and/or molecular selectivity, rely on the understanding of fundamental transport mechanisms through graphene membranes, which has not been studied experimentally before due to fabrication and measurement difficulties. Herein we report the fabrication of the basic constituent of graphene membranes, i.e. 2-D single graphene nanochannels (GNCs) and the study of ion transport in these channels. A modified bonding technique was developed to form GNCs with well-defined geometry and uniform channel height. Ion transport in such GNCs was studied using DC conductance measurement. Our preliminary results showed that the ion transport in GNCs is still governed by surface charge at low concentrations (10-6M to 10-4M). However, GNCs exhibits much higher ionic conductances than silica nanochannels with the same geometries in the surface-charge-governed regime. This conductance enhancement can be attributed to the pre-accumulation of charges on graphene surfaces. The work is supported by the Faculty Startup Fund (Boston University, USA).
Phase Engineering of 2D Tin Sulfides.
Mutlu, Zafer; Wu, Ryan J; Wickramaratne, Darshana; Shahrezaei, Sina; Liu, Chueh; Temiz, Selcuk; Patalano, Andrew; Ozkan, Mihrimah; Lake, Roger K; Mkhoyan, K A; Ozkan, Cengiz S
2016-06-01
Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase-selective growth of both hexagonal tin (IV) sulfide SnS2 and orthorhombic tin (II) sulfide SnS crystals with diameters of over tens of microns on SiO2 substrates through atmospheric pressure vapor-phase method in a conventional horizontal quartz tube furnace with SnO2 and S powders as the source materials. Detailed characterization of each phase of tin sulfide crystals is performed using various microscopy and spectroscopy methods, and the results are corroborated by ab initio density functional theory calculations. PMID:27099950
Competing coexisting phases in 2D water.
Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire
2016-01-01
The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018
Resolution Independent 2D Cartoon Video Conversion
MSF. Fayaza
2016-03-01
Full Text Available This paper describes a novel system for vectorizing 2D raster cartoon. The output videos are the resolution independent, smaller in file size. As a first step, input video is segment to scene thereafter all processes are done for each scene separately. Every scene contains foreground and background objects so in each and every scene foreground background classification is performed. Background details can occlude by foreground objects but when foreground objects move its previous position such occluded details exposed in one of the next frame so using that frame can fill the occluded area and can generate static background. Classified foreground objects are identified and the motion of the foreground objects tracked for this simple user assistance is required from those motion details of foreground object’s animation generated. Static background and foreground objects segmented using K-means clustering and each and every cluster’s vectorized using potrace. Using vectored background and foreground object animation path vector video regenerated.
2D and 3D heterogeneous photonic integrated circuits
Yoo, S. J. Ben
2014-03-01
Exponential increases in the amount of data that need to be sensed, communicated, and processed are continuing to drive the complexity of our computing, networking, and sensing systems. High degrees of integration is essential in scalable, practical, and cost-effective microsystems. In electronics, high-density 2D integration has naturally evolved towards 3D integration by stacking of memory and processor chips with through-silicon-vias. In photonics, too, we anticipate highdegrees of 3D integration of photonic components to become a prevailing method in realizing future microsystems for information and communication technologies. However, compared to electronics, photonic 3D integration face a number of challenges. This paper will review two methods of 3D photonic integration --- fs laser inscription and layer stacking, and discuss applications and future prospects.
Identification of novel CYP2D7-2D6 hybrids: non-functional and functional variants
Andrea Gaedigk
2010-10-01
Full Text Available Polymorphic expression of CYP2D6 contributes to the wide range of activity observed for this clinically important drug metabolizing enzyme. In this report we describe novel CYP2D7/2D6 hybrid genes encoding non-functional and functional CYP2D6 protein and a CYP2D7 variant that mimics a CYP2D7/2D6 hybrid gene. Five kb long PCR products encompassing the novel genes were entirely sequenced. A quantitative assay probing in different gene regions was employed to determine CYP2D6 and 2D7 copy number variations and the relative position of the hybrid genes within the locus was assessed by long-range PCR. In addition to the previously known CYP2D6*13 and *66 hybrids, we describe three novel non-functional CYP2D7-2D6 hybrids with gene switching in exon 2 (CYP2D6*79, intron 2 (CYP2D6*80 and intron 5 (CYP2D6*67. A CYP2D7-specific T-ins in exon 1 causes a detrimental frame shift. One subject revealed a CYP2D7 conversion in the 5’-flanking region of a CYP2D6*35 allele, was otherwise unaffected (designated CYP2D6*35B. Finally, three DNAs revealed a CYP2D7 gene with a CYP2D6-like region downstream of exon 9 (designated CYP2D7[REP6]. Quantitative copy number determination, sequence analyses and long-range PCR mapping were in agreement and excluded the presence of additional gene units. Undetected hybrid genes may cause over-estimation of CYP2D6 activity (CYP2D6*1/*1 vs *1/hybrid, etc, but may also cause results that may interfere with the genotype determination. Detection of hybrid events, ‘single’ and tandem, will contribute to more accurate phenotype prediction from genotype data.
Development of 2D casting process CAD system based on PDF/image files
Tang Hongtao; Zhou Jianxin; Wang Lin; Liao Dunming; Tao Qing
2014-01-01
A casting process CAD is put forward to design and draw casting process. The 2D casting process CAD, most of the current systems are developed based on one certain version of the AutoCAD system. However the application of these 2D casting process CAD systems in foundry enterprises are restricted because they have several deficiencies, such as being overly dependent on the AutoCAD system, and some part files based on PDF format can not be opened directly. To overcome these deficiencies, for the first time an innovative 2D casting process CAD system based on PDF and image format file has been proposed, which breaks through the traditional research and application notion of the 2D casting process CAD system based on AutoCAD. Several key technologies of this system such as coordinate transformation, CAD interactive drawing, file storage, PDF and image format files display, and image recognition technologies were described in detail. A practical 2D CAD casting process system named HZCAD2D(PDF) was developed, which is capable of designing and drawing the casting process on the part drawing based on the PDF format directly, without spending time on drawing the part produced by AutoCAD system. Final y, taking two actual castings as examples, the casting processes were drawn using this system, demonstrating that this system can significantly shorten the cycle of casting process designing.
Finite state models of constrained 2d data
Justesen, Jørn
2004-01-01
This paper considers a class of discrete finite alphabet 2D fields that can be characterized using tools front finite state machines and Markov chains. These fields have several properties that greatly simplify the analysis of 2D coding methods.......This paper considers a class of discrete finite alphabet 2D fields that can be characterized using tools front finite state machines and Markov chains. These fields have several properties that greatly simplify the analysis of 2D coding methods....
Few-layer III-VI and IV-VI 2D semiconductor transistors
Sucharitakul, Sukrit; Liu, Mei; Kumar, Rajesh; Sankar, Raman; Chou, Fang C.; Chen, Yit-Tsong; Gao, Xuan
Since the discovery of atomically thin graphene, a large variety of exfoliable 2D materials have been thoroughly explored for their exotic transport behavior and promises in technological breakthroughs. While most attention on 2D materials beyond graphene is focused on transition metal-dichalcogenides, relatively less attention is paid to layered III-VI and IV-VI semiconductors such as InSe, SnSe etc which bear stronger potential as 2D materials with high electron mobility or thermoelectric figure of merit. We will discuss our recent work on few-layer InSe 2D field effect transistors which exhibit carrier mobility approaching 1000 cm2/Vs and ON-OFF ratio exceeding 107 at room temperature. In addition, the fabrication and device performance of transistors made of mechanically exfoliated multilayer IV-VI semiconductor SnSe and SnSe2 will be discussed.
This article presents the manufacture of a 2D-fiber array coupler using UV-LIGA technology for the precise positioning of a two-dimensional (2D) optical fiber array. The precision of the alignment of the eight-by-eight fiber array was demonstrated to be less than 2 μm. The average concentricity error of the fibers to the positioning holes of the array coupler had a minimum and maximum error of 1.7 µm and 6.5 μm, respectively. The 2D fiber array coupler can fulfill the coupling and transmission requirements of 2D light spots for laser radar applications. The method developed here can easily be extended to the manufacture of larger arrays. (paper)
Polynomial solution of 2D Kalman-Bucy filtering problem
Sebek, M.
1992-01-01
The 2D version of the Kalman-Bucy filtering problem is formulated and then solved via 2D polynomial methods. The optimal filter is restricted to be a linear causal system. The design procedure is shown to consist of one 2D spectral factorization equation only. In fact, it works for n-D signals (n>2)
Polynomial solution of 2D Kalman-Bucy filtering problem
Sebek, M.
1992-01-01
The 2D version of the Kalman-Bucy filtering problem is formulated and then solved via 2D polynomial methods. The optimal filter is restricted to be a linear causal system. The design procedure is shown to consist of one 2D spectral factorization equation only. In fact, it works for n-D signals (n>2) as well.
Seismic Network Deployment Preparations
Allen Husker; Igor Stubailo; Monica Kohler; Paul Davis
2003-01-01
Technological and scientific preparations are occurring for the development of a multi-hop radio-linked seismic array (MHRLSA) of 50 broadband stations (GURALP 3ts) and its first few deployments. A ruggedized data relay device (DRD) is being fabricated using Intel’¡Çs new low power, small form factor stargate motherboard. A DRD will be placed at each node of the array and configured as a local area network (LAN) with station spacing up to 10 km. The objective is to use protocols that have bee...
FEM-2D, 2-D MultiGroup Diffusion in X-Y Geometry
1 - Nature of physical problem solved: FEM-2D solves the two-dimensional diffusion equation in x-y geometry. This is done by the finite elements method. 2 - Method of solution: FEM-2D uses triangular elements with first and second order Lagrange approximations. The systems equations are formulated in multigroup form and solved by Cholesky procedure which operates only on nonzero elements. Various acceleration techniques are available for the outer iteration. Fluxes along various lines and rates in arbitrary zones may be output. 3 - Restrictions on the complexity of the problem: The code uses variable dimensioning. Thus, the problem size is restricted by the largest array which usually is the systems matrix. Fluxes of all groups are kept in memory. This might become another restrictive data set for a large number of groups. The validity of the results is restricted by the approximations used. FEM-2D requires a finite element net which allows the approximation of fluxes by at most parabolas. The node distribution should be more dense in areas of heavy flux changes (near absorbers or the reflector)
DNTM/R2D, 2-D Transport in X-Y Geometry
1 - Description of program or function: DNTM/R2D solves the neutron transport equation in two-dimensional X-Y geometry by the discrete nodal transport method. Source and eigenvalue problems can be solved. As compared to the two-dimensional nodal transport code DNTM/2D, the following new improved features are included: - Anisotropic scattering is considered. The order of anisotropic scattering is from P0 to P3. - The cross section input format is the same as for ANISN. Multi- group cross section libraries such as DLC-37 and DLC-BUGLE-80 can be used. 2 - Method of solution: DNTM/R2D uses the discrete nodal transport method. Anisotropic scattering is treated using Legendre expansion. Order of interior flux approximation is 2. Plane leakage approximation of surface flux is used. 3 - Restrictions on the complexity of the problem: Maximum number of: anisotropic scattering order = 3; material composition = 20; energy groups = 2; angular quadrature = 8; zones = 30. When coarse-mesh re-balancing is used, the maximum number of coarse meshes is 12 in each direction. If the computer permits some arrays can be enlarged to reduce the above restrictions
Reprocessing seismic data: better results below diabase sills
Makler, Marisa [Halliburton Servicos Ltda., Rio de Janeiro, RJ (Brazil); Pellizzon, Marcela
2008-07-01
The effect of the diabase sills in the seismic data processing has been studied in the last twenty years. These rocks strongly influence the exploratory activities in a basin, because the diabase disturbs the sign and generates multiple and spherical divergence, increasing the exploratory risk in these areas. In the present work a method of 2D seismic reprocessing will be presented using Prestack Kirchhoff Time Migration in an older seismic data of Solimoes basin. The objective of this paper is to show the high results on the reprocessing seismic data below the diabase sills. The 2D lines processed give relevant improvement of the quality of signal, showing better the faults zones and preserving the geological structures than the older data. (author)
Operto, S.; VIRIEUX, J; Ribodetti, Alessandra; Anderson, J E
2009-01-01
A 2D finite-difference, frequency-domain method was developed for modeling viscoacoustic seismic waves in transversely isotropic media with a tilted symmetry axis. The medium is parameterized by the P-wave velocity on the symmetry axis, the density, the attenuation factor, Thomsen's anisotropic parameters delta and epsilon, and the tilt angle. The finite-difference discretization relies on a parsimonious mixed-grid approach that designs accurate yet spatially compact stencils. The system of l...
Seismic Velocity Study of the Rim Uplift of the Steen River Impact Crater
Niccoli, M.; Hildebrand, A. R.; Lawton, D. C.
2005-03-01
The structure of the rim uplift at the 25 km diameter Steen River has been explored by 2D and 3D seismic reflection and refraction techniques, constrained by downhole well surveys. A complicated deformation history is revealed.
Choun, Young Sun; Choi, In Kil; Kim, Min Kyu [KAERI, Daejeon (Korea, Republic of); Ohtori, Yasuki; Shiba, Yoshiaki; Nakajima, Masato [Central Research Institute of Electric Power Industry, Tokyo (Japan)
2006-12-15
We compiled the results of the source analysis obtained under the collaboration research. Recent construction scheme for source modeling adopted in Japan is described, and strong-motion prediction is performed assuming the scenario earthquakes occurring in the Ulsan fault system, Korea. Finally Qs values beneath the Korean inland crust are estimated using strong-motion records in Korea from the 2005 Off West Fukuoka earthquake (M7.0). Probabilistic seismic hazard for four NPP sites in Korea are evaluated, in which the site specific attenuation equations with Index SA developed for NPP sites are adopted. Furthermore, the uniform hazard spectra for the four NPP sites in Korea are obtained by conducting the PSHA by using the attenuation equations with the index of response spectra and seismic source model cases with maximum weights. The supporting tools for seismic response analysis, the evaluation tool for evaluating annual probability of failure, and system analysis program were developed for the collaboration. The tools were verified with theoretical results, the results written in the reference document of EQESRA, and so forth. The system analysis program was applied for the investigation of the effect of improving the seismic capacity of equipment. We evaluated the annual probability of failure of isolated and non-isolated EDG at Younggwang NPP site as the results of the collaboration. The input ground motion for generating the seismic fragility curve was determined based on the seismic hazard analysis. It was found that the annual probability of failure of isolated EDG is lower than that of non-isolated EDG.
Stability Test for 2-D Continuous-Discrete Systems
无
2002-01-01
Models of 2-D continuous-discrete systems are introduced, which can be used to describe some complex systems. Different from classical 2-D continuous systems or 2-D discrete systems, the asymptotic stability of the continuous-discrete systems is determined by Hurwitz-Schur stability (hybrid one) of 2-D characteristic polynomials of the systems. An algebraic algorithm with simpler test procedure for Hurwitz-Schur stability test of 2-D polynomials is developed. An example to illustrate the applications of the test approach is provided.
Correlated Electron Phenomena in 2D Materials
Lambert, Joseph G.
In this thesis, I present experimental results on coherent electron phenomena in layered two-dimensional materials: single layer graphene and van der Waals coupled 2D TiSe2. Graphene is a two-dimensional single-atom thick sheet of carbon atoms first derived from bulk graphite by the mechanical exfoliation technique in 2004. Low-energy charge carriers in graphene behave like massless Dirac fermions, and their density can be easily tuned between electron-rich and hole-rich quasiparticles with electrostatic gating techniques. The sharp interfaces between regions of different carrier densities form barriers with selective transmission, making them behave as partially reflecting mirrors. When two of these interfaces are set at a separation distance within the phase coherence length of the carriers, they form an electronic version of a Fabry-Perot cavity. I present measurements and analysis of multiple Fabry-Perot modes in graphene with parallel electrodes spaced a few hundred nanometers apart. Transition metal dichalcogenide (TMD) TiSe2 is part of the family of materials that coined the term "materials beyond graphene". It contains van der Waals coupled trilayer stacks of Se-Ti-Se. Many TMD materials exhibit a host of interesting correlated electronic phases. In particular, TiSe2 exhibits chiral charge density waves (CDW) below TCDW ˜ 200 K. Upon doping with copper, the CDW state gets suppressed with Cu concentration, and CuxTiSe2 becomes superconducting with critical temperature of T c = 4.15 K. There is still much debate over the mechanisms governing the coexistence of the two correlated electronic phases---CDW and superconductivity. I will present some of the first conductance spectroscopy measurements of proximity coupled superconductor-CDW systems. Measurements reveal a proximity-induced critical current at the Nb-TiSe2 interfaces, suggesting pair correlations in the pure TiSe2. The results indicate that superconducting order is present concurrently with CDW in
Abdel-Fattah, Mohamed I.; Hamed A. Alrefaee
2014-01-01
Seismic reflection techniques show an imperative role in imaging complex geological structures and are becoming more acceptable as data interpreting tools in 2D/3D view. These subsurface geological structures provide complex seismic signature due to their geometrical behavior. Consequently, it is extremely difficult to interpret these seismic sections in terms of subsurface configuration. The main goal of this paper is to introduce seismic attributes as a powerful tool to interpret complex ge...
CYP2D7 sequence variation interferes with TaqMan CYP2D6*15 and *35 genotyping
Amanda K Riffel
2016-01-01
Full Text Available TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35 which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696 SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe
Continuous recording of seismic signals in Alpine permafrost
Hausmann, H.; Krainer, K.; Staudinger, M.; Brückl, E.
2009-04-01
Over the past years various geophysical methods were applied to study the internal structure and the temporal variation of permafrost whereof seismic is of importance. For most seismic investigations in Alpine permafrost 24-channel equipment in combination with long data and trigger cables is used. Due to the harsh environment source and geophone layouts are often limited to 2D profiles. With prospect for future 3D-layouts we introduce an alternative of seismic equipment that can be used for several applications in Alpine permafrost. This study is focussed on controlled and natural source seismic experiments in Alpine permafrost using continuous data recording. With recent data from an ongoing project ("Permafrost in Austria") we will highlight the potential of the used seismic equipment for three applications: (a) seismic permafrost mapping of unconsolidated sediments, (b) seismic tomography in rock mass, and (c) passive seismic monitoring of rock falls. Single recording units (REFTEK 130, 6 channels) are used to continuously record the waveforms of both the seismic signals and a trigger signal. The combination of a small number of recording units with different types of geophones or a trigger allow numerous applications in Alpine permafrost with regard to a high efficiency and flexible seismic layouts (2D, 3D, 4D). The efficiency of the light and robust seismic equipment is achieved by the simple acquisition and the flexible and fast deployment of the (omni-directional) geophones. Further advantages are short (data and trigger) cables and the prevention of trigger errors. The processing of the data is aided by 'Seismon' which is an open source software project based on Matlab® and MySQL (see SM1.0). For active-source experiments automatic stacking of the seismic signals is implemented. For passive data a program for automatic detection of events (e.g. rock falls) is available which allows event localization. In summer 2008 the seismic equipment was used for the
Seismic full waveform inversion from compressive measurements
Ramirez, Ana; Arce, Gonzalo R.
2015-05-01
Traditional methods in seismic acquisition require sources and geophones that are uniformly located along a spatial line, using the Nyquist sampling rate. Depending on the area to be explored, it can be necessary to use seismic surveys with large offsets, or decrease the separation between adjacent geophones to improve the resolution, which generates very high volumes of data. It makes the exploration process more difficult and particularly expensive. This work presents the reconstruction of a compressive set of seismic traces acquired using the compressive sensing paradigm where the pair of sources and geophones are randomly located along the spatial line. The recovery of the wavefield from compressive measurements is feasible due to the capabilities of Curvelets on representing wave propagators with only a small set of coefficients. The method first uses the compressive samples to find a sparse vector representation of each pixel in a 2-D Curvelet dictionary. The sparse vector representation is estimated by solving a sparsity constrained optimization problem using the Gradient Projection for Sparse Reconstruction (GPSR) method. The estimated vector is then used to compute the seismic velocity profiles via acoustic Full Waveform Inversion (FWI). Simulations of the reconstructed image gathers and the resulting seismic velocity profiles illustrate the performance of the method. An improvement in the resulting images is obtained in comparison with traditional F-K filtering used in seismic data processing when traces are missing.
2D Path Solutions from a Single Layer Excitable CNN Model
Karahaliloglu, Koray
2007-01-01
An easily implementable path solution algorithm for 2D spatial problems, based on excitable/programmable characteristics of a specific cellular nonlinear network (CNN) model is presented and numerically investigated. The network is a single layer bioinspired model which was also implemented in CMOS technology. It exhibits excitable characteristics with regionally bistable cells. The related response realizes propagations of trigger autowaves, where the excitable mode can be globally preset and reset. It is shown that, obstacle distributions in 2D space can also be directly mapped onto the coupled cell array in the network. Combining these two features, the network model can serve as the main block in a 2D path computing processor. The related algorithm and configurations are numerically experimented with circuit level parameters and performance estimations are also presented. The simplicity of the model also allows alternative technology and device level implementation, which may become critical in autonomous...
Functional characterization of a first avian cytochrome P450 of the CYP2D subfamily (CYP2D49.
Hua Cai
Full Text Available The CYP2D family members are instrumental in the metabolism of 20-25% of commonly prescribed drugs. Although many CYP2D isoforms have been well characterized in other animal models, research concerning the chicken CYP2Ds is limited. In this study, a cDNA encoding a novel CYP2D enzyme (CYP2D49 was cloned from the chicken liver for the first time. The CYP2D49 cDNA contained an open reading frame of 502 amino acids that shared 52%-57% identities with other CYP2Ds. The gene structure and neighboring genes of CYP2D49 are conserved and similar to those of human CYP2D6. Additionally, similar to human CYP2D6, CYP2D49 is un-inducible in the liver and expressed predominantly in the liver, kidney and small intestine, with detectable levels in several other tissues. Metabolic assays of the CYP2D49 protein heterologously expressed in E. coli and Hela cells indicated that CYP2D49 metabolized the human CYP2D6 substrate, bufuralol, but not debrisoquine. Moreover, quinidine, a potent inhibitor of human CYP2D6, only inhibited the bufuralol 1'-hydroxylation activity of CYP2D49 to a negligible degree. All these results indicated that CYP2D49 had functional characteristics similar to those of human CYP2D6 but measurably differed in the debrisoquine 4'-hydroxylation and quinidine inhibitory profile. Further structure-function investigations that employed site-directed mutagenesis and circular dichroism spectroscopy identified the importance of Val-126, Glu-222, Asp-306, Phe-486 and Phe-488 in keeping the enzymatic activity of CYP2D49 toward bufuralol as well as the importance of Asp-306, Phe-486 and Phe-488 in maintaining the conformation of CYP2D49 protein. The current study is only the first step in characterizing the metabolic mechanism of CYP2D49; further studies are still required.
Torgoev, Almaz; Havenith, Hans-Balder
2016-01-01
A 2D elasto-dynamic modelling of the pure topographic seismic response is performed for six models with a total length of around 23.0 km. These models are reconstructed from the real topographic settings of the landslide-prone slopes situated in the Mailuu-Suu River Valley, Southern Kyrgyzstan. The main studied parameter is the Arias Intensity (Ia, m/sec), which is applied in the GIS-based Newmark method to regionally map the seismically-induced landslide susceptibility. This method maps the Ia values via empirical attenuation laws and our studies investigate a potential to include topographic input into them. Numerical studies analyse several signals with varying shape and changing central frequency values. All tests demonstrate that the spectral amplification patterns directly affect the amplification of the Ia values. These results let to link the 2D distribution of the topographically amplified Ia values with the parameter called as smoothed curvature. The amplification values for the low-frequency signals are better correlated with the curvature smoothed over larger spatial extent, while those values for the high-frequency signals are more linked to the curvature with smaller smoothing extent. The best predictions are provided by the curvature smoothed over the extent calculated according to Geli's law. The sample equations predicting the Ia amplification based on the smoothed curvature are presented for the sinusoid-shape input signals. These laws cannot be directly implemented in the regional Newmark method, as 3D amplification of the Ia values addresses more problem complexities which are not studied here. Nevertheless, our 2D results prepare the theoretical framework which can potentially be applied to the 3D domain and, therefore, represent a robust basis for these future research targets.
MAZE, Input Generator for Program DYNA2D and NIKE2D
Description of program or function: MAZE is an interactive input generator for two-dimensional finite element codes. MAZE has three phases. In the first phase, lines and parts are defined. The first phase is terminated by the 'ASSM' or 'PASSM' command which merges all parts. In the second phase, boundary conditions may be specified, slide-lines may be defined, parts may be merged to eliminate nodes along common interfaces, boundary nodes may be moved for graded zoning, the mesh may be smoothed, and load curves may be defined. The second phase is terminated by the 'WBCD' command which causes MAZE to write the output file as soon as the 'T' terminate command is typed. In the third phase, material properties may be defined. Commands that apply to the first phase may not be used in the second or third; likewise, commands that apply in the second may not be used in the first and third, or commands that apply in the third in the first and second. Nine commands - TV, Z, GSET, PLOTS, GRID, NOGRID, FRAME, NOFRAME, and RJET are available in all phases. Comments may be added anywhere in the input stream by prefacing the comment with 'C'. Any DYNA2D or NIKE2D material and equation-of- state model may be defined via the MAT and EOS commands respectively. Maze may be terminated after phase two; it is not necessary to define the materials
A simple model for 2D image upconversion of incoherent light
Dam, Jeppe Seidelin; Pedersen, Christian; Tidemand-Lichtenberg, Peter
2011-01-01
We present a simple theoretical model for 2 dimensional (2-D) image up-conversion of incoherent light. While image upconversion has been known for more than 40 years, the technology has been hindered by very low conversion quantum efficiency (~10-7). We show that our implementation compared to...
Improvement of seismic observation systems in JOYO
In the experimental fast reactor 'Joyo' in order to perform the seismic observation in and around the building block and ground, SMAC type seismographs had continuously been used for about 38 years. However, this equipment aged, and the 2011 off the Pacific Coast of Tohoku Earthquake on Mach 11, 2011 increased the importance of seismic data of the reactor facilities from the viewpoint of earthquake-proof safety. For these reasons, Joyo updated the system to the seismic observation system reflecting the latest technology/information, while keeping consistency with the observation data of the former seismographs (SMAC type seismograph). This updating improved various problems on the former observation seismographs. In addition, the installation of now observation points in the locations that are important in seismic safety evaluation expanded the data, and further improved the reliability of the seismic observation and evaluation on 'Joyo'. (A.O.)
2D and 3D CMOS MAPS with high performance pixel-level signal processing
Traversi, Gianluca, E-mail: gianluca.traversi@unibg.i [University of Bergamo and INFN Pavia, Via Marconi 5, Dalmine 24044 (Italy); Gaioni, Luigi; Manghisoni, Massimo [University of Bergamo and INFN Pavia, Via Marconi 5, Dalmine 24044 (Italy); Ratti, Lodovico [University of Pavia and INFN Pavia (Italy); Re, Valerio [University of Bergamo and INFN Pavia, Via Marconi 5, Dalmine 24044 (Italy)
2011-02-01
Deep N-well (DNW) MAPS have been developed in the last few years with the aim of building monolithic sensors with similar functionalities as hybrid pixels systems. These devices have been fabricated in a planar (2D) 130 nm CMOS technology. The triple-well structure available in such an ultra-deep submicron technology is exploited by using the deep N-well as the charge-collecting electrode. This paper intends to discuss the design features and measurement results of the last prototype (Apsel5T chip) recently fabricated in a 2D 130 nm CMOS technology. Recent advances in microelectronics industry have made 3D integrated circuits an option for High Energy Physics experiments. A 3D version of the Apsel5T chip has been designed in a 130 nm CMOS, two-layer, vertically integrated technology. The main features of this new 3D monolithic detector are presented in this paper.
Alkan, Engin; DeAngelo, Michael; Hardage, Bob; Sava, Diana; Sullivan, Charlotte; Wagner, Donald
2012-12-31
Research done in this study showed that P-SV seismic data provide better spatial resolution of geologic targets at our Appalachian Basin study area than do P-P data. This finding is important because the latter data (P-P) are the principal seismic data used to evaluate rock systems considered for CO{sub 2} sequestration. The increase in P-SV{sub 1} resolution over P-P resolution was particularly significant, with P-SV{sub 1} wavelengths being approximately 40-percent shorter than P-P wavelengths. CO{sub 2} sequestration projects across the Appalachian Basin should take advantage of the increased resolution provided by converted-shear seismic modes relative to P-wave seismic data. In addition to S-wave data providing better resolution of geologic targets, we found S-wave images described reservoir heterogeneities that P-P data could not see. Specifically, a channel-like anomaly was imaged in a key porous sandstone interval by P-SV{sub 1} data, and no indication of the feature existed in P-P data. If any stratigraphic unit is considered for CO{sub 2} storage purposes, it is important to know all heterogeneities internal to the unit to understand reservoir compartmentalization. We conclude it is essential that multicomponent seismic data be used to evaluate all potential reservoir targets whenever a CO{sub 2} storage effort is considered, particularly when sequestration efforts are initiated in the Appalachian Basin. Significant differences were observed between P-wave sequences and S- wave sequences in data windows corresponding to the Oriskany Sandstone, a popular unit considered for CO{sub 2} sequestration. This example demonstrates that S-wave sequences and facies often differ from P-wave sequences and facies and is a principle we have observed in every multicomponent seismic interpretation our research laboratory has done. As a result, we now emphasis elastic wavefield seismic stratigraphy in our reservoir characterization studies, which is a science based on the
Cost reduction through improved seismic design
During the past decade, many significnt seismic technology developments have been accomplished by the United States Department of Energy (USDOE) programs. Both base technology and major projects, such as the Fast Flux Test Facility (FFTF) and the Clinch River Breeder Reactor (CRBR) plant, have contributed to seismic technology development and validation. Improvements have come in the areas of ground motion definitions, soil-structure interaction, and structural analysis methods and criteria for piping, equipment, components, reactor core, and vessels. Examples of some of these lessons learned and technology developments are provided. Then, the highest priority seismic technology needs, achievable through DOE actions and sponsorship are identified and discussed. Satisfaction of these needs are expected to make important contributions toward cost avoidances and reduced capital costs of future liquid metal nuclear plants. 23 references, 12 figures
Surface Approximation Using the 2D FFENN Architecture
Panagopoulos S
2004-01-01
Full Text Available A new two-dimensional feed-forward functionally expanded neural network (2D FFENN used to produce surface models in two dimensions is presented. New nonlinear multilevel surface basis functions are proposed for the network's functional expansion. A network optimization technique based on an iterative function selection strategy is also described. Comparative simulation results for surface mappings generated by the 2D FFENN, multilevel 2D FFENN, multilayered perceptron (MLP, and radial basis function (RBF architectures are presented.
Maximizing entropy of image models for 2-D constrained coding
Forchhammer, Søren; Danieli, Matteo; Burini, Nino; Zamarin, Marco; Ukhanova, Ann
2010-01-01
This paper considers estimating and maximizing the entropy of two-dimensional (2-D) fields with application to 2-D constrained coding. We consider Markov random fields (MRF), which have a non-causal description, and the special case of Pickard random fields (PRF). The PRF are 2-D causal finite context models, which define stationary probability distributions on finite rectangles and thus allow for calculation of the entropy. We consider two binary constraints and revisit the hard square const...
The application of PDA and 2D bar code in material fuel storage management system
This paper extends a management system based on PDA and 2D bar code technology, system design and solutions concerned with domestic transfer, storehouse entry and setting, transfer among storehouses, physical inventory are described as well. The system fits business processes well and optimizes data acquisition and processing effectively by u sing the following key technologies: bar code material and paste stand under radioactive conditions, two dimensional storage space emulation, information cascade protection. (authors)
Maximizing entropy of image models for 2-D constrained coding
Forchhammer, Søren; Danieli, Matteo; Burini, Nino;
2010-01-01
This paper considers estimating and maximizing the entropy of two-dimensional (2-D) fields with application to 2-D constrained coding. We consider Markov random fields (MRF), which have a non-causal description, and the special case of Pickard random fields (PRF). The PRF are 2-D causal finite...... of the Markov random field defined by the 2-D constraint is estimated to be (upper bounded by) 0.8570 bits/symbol using the iterative technique of Belief Propagation on 2 £ 2 finite lattices. Based on combinatorial bounding techniques the maximum entropy for the constraint was determined to be 0.848....
Klassifikation von Standardebenen in der 2D-Echokardiographie mittels 2D-3D-Bildregistrierung
Bergmeir, Christoph; Subramanian, Navneeth
Zum Zweck der Entwicklung eines Systems, das einen unerfahrenen Anwender von Ultraschall (US) zur Aufnahme relevanter anatomischer Strukturen leitet, untersuchen wir die Machbarkeit von 2D-US zu 3D-CT Registrierung. Wir verwenden US-Aufnahmen von Standardebenen des Herzens, welche zu einem 3D-CT-Modell registriert werden. Unser Algorithmus unterzieht sowohl die US-Bilder als auch den CT-Datensatz Vorverarbeitungsschritten, welche die Daten durch Segmentierung auf wesentliche Informationen in Form von Labein für Muskel und Blut reduzieren. Anschließend werden diese Label zur Registrierung mittels der Match-Cardinality-Metrik genutzt. Durch mehrmaliges Registrieren mit verschiedenen Initialisierungen ermitteln wir die im US-Bild sichtbare Standardebene. Wir evaluierten die Methode auf sieben US-Bildern von Standardebenen. Fünf davon wurden korrekt zugeordnet.
Global Seismic Hazard Assessment Program - GSHAP legacy
Laurentiu Danciu
2015-04-01
Full Text Available Global Seismic Hazard Assessment Program - or simply GSHAP, when launched, almost two decades ago, aimed at establishing a common framework to evaluate the seismic hazard over geographical large-scales, i.e. countries, regions, continents and finally the globe. Its main product, the global seismic hazard map was a milestone, unique at that time and for a decade have served as the main reference worldwide. Today, for most of the Earth’s seismically active regions such Europe, Northern and Southern America, Central and South-East Asia, Japan, Australia, New Zealand, the GSHAP seismic hazard map is outdated. The rapid increase of the new data, advance on the earthquake process knowledge, technological progress, both hardware and software, contributed all in updates of the seismic hazard models. We present herein, a short retrospective overview of the achievements as well as the pitfalls of the GSHAP. Further, we describe the next generation of seismic hazard models, as elaborated within the Global Earthquake Model, regional programs: the 2013 European Seismic Hazard Model, the 2014 Earthquake Model for Middle East, and the 2015 Earthquake Model of Central Asia. Later, the main characteristics of these regional models are summarized and the new datasets fully harmonized across national borders are illustrated for the first time after the GSHAP completion.
Probabilistic seismic demand analysis of nonlinear structures
Shome, Nilesh
Recent earthquakes in California have initiated improvement in current design philosophy and at present the civil engineering community is working towards development of performance-based earthquake engineering of structures. The objective of this study is to develop efficient, but accurate procedures for probabilistic analysis of nonlinear seismic behavior of structures. The proposed procedures help the near-term development of seismic-building assessments which require an estimation of seismic demand at a given intensity level. We also develop procedures to estimate the probability of exceedance of any specified nonlinear response level due to future ground motions at a specific site. This is referred as Probabilistic Seismic Demand Analysis (PSDA). The latter procedure prepares the way for the next stage development of seismic assessment that consider the uncertainties in nonlinear response and capacity. The proposed procedures require structure-specific nonlinear analyses for a relatively small set of recorded accelerograms and (site-specific or USGS-map-like) seismic hazard analyses. We have addressed some of the important issues of nonlinear seismic demand analysis, which are selection of records for structural analysis, the number of records to be used, scaling of records, etc. Initially these issues are studied through nonlinear analysis of structures for a number of magnitude-distance bins of records. Subsequently we introduce regression analysis of response results against spectral acceleration, magnitude, duration, etc., which helps to resolve these issues more systematically. We illustrate the demand-hazard calculations through two major example problems: a 5story and a 20-story SMRF building. Several simple, but quite accurate closed-form solutions have also been proposed to expedite the demand-hazard calculations. We find that vector-valued (e.g., 2-D) PSDA estimates demand hazard more accurately. This procedure, however, requires information about 2
2D Four-Channel Perfect Reconstruction Filter Bank Realized with the 2D Lattice Filter Structure
Sezen S
2006-01-01
Full Text Available A novel orthogonal 2D lattice structure is incorporated into the design of a nonseparable 2D four-channel perfect reconstruction filter bank. The proposed filter bank is obtained by using the polyphase decomposition technique which requires the design of an orthogonal 2D lattice filter. Due to constraint of perfect reconstruction, each stage of this lattice filter bank is simply parameterized by two coefficients. The perfect reconstruction property is satisfied regardless of the actual values of these parameters and of the number of the lattice stages. It is also shown that a separable 2D four-channel perfect reconstruction lattice filter bank can be constructed from the 1D lattice filter and that this is a special case of the proposed 2D lattice filter bank under certain conditions. The perfect reconstruction property of the proposed 2D lattice filter approach is verified by computer simulations.
张海明; 陈晓非
2003-01-01
The development of seismic wave study in China in the past four years is reviewed. The discussion is divided into several aspects, including seismic wave propagation in laterally homogeneous media, laterally heterogeneous media, anisotropic and porous media, surface wave and seismic wave inversion, and seismic wave study in prospecting and logging problems. Important projects in the current studies on seismic wave is suggested as the development of high efficient numerical methods, and applying them to the studies of excitation and propagation of seismic waves in complex media and strong ground motion, which will form a foundation for refined earthquake hazard analysis and prediction.
Advanced Seismic While Drilling System
Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser
2008-06-30
. An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified
Chae, Dongho; Constantin, Peter; Wu, Jiahong
2014-09-01
We give an example of a well posed, finite energy, 2D incompressible active scalar equation with the same scaling as the surface quasi-geostrophic equation and prove that it can produce finite time singularities. In spite of its simplicity, this seems to be the first such example. Further, we construct explicit solutions of the 2D Boussinesq equations whose gradients grow exponentially in time for all time. In addition, we introduce a variant of the 2D Boussinesq equations which is perhaps a more faithful companion of the 3D axisymmetric Euler equations than the usual 2D Boussinesq equations.
Antenna coupled detectors for 2D staring focal plane arrays
Gritz, Michael A.; Kolasa, Borys; Lail, Brian; Burkholder, Robert; Chen, Leonard
2013-06-01
Millimeter-wave (mmW)/sub-mmW/THz region of the electro-magnetic spectrum enables imaging thru clothing and other obscurants such as fog, clouds, smoke, sand, and dust. Therefore considerable interest exists in developing low cost millimeter-wave imaging (MMWI) systems. Previous MMWI systems have evolved from crude mechanically scanned, single element receiver systems into very complex multiple receiver camera systems. Initial systems required many expensive mmW integrated-circuit low-noise amplifiers. In order to reduce the cost and complexity of the existing systems, attempts have been made to develop new mmW imaging sensors employing direct detection arrays. In this paper, we report on Raytheon's recent development of a unique focal plane array technology, which operates broadly from the mmW through the sub-mmW/THz region. Raytheon's innovative nano-antenna based detector enables low cost production of 2D staring mmW focal plane arrays (mmW FPA), which not only have equivalent sensitivity and performance to existing MMWI systems, but require no mechanical scanning.
Symmetries and solvable models for evaporating 2D black holes
Cruz Muñoz, José Luis; Navarro-Salas, José; Navarro Navarro, Miguel; Talavera, C. F.
1997-01-01
We study the evaporation process of a 2D black hole in thermal equilibrium when the ingoing radiation is suddenly switched off. We also introduce global symmetries of generic 2D dilaton gravity models which generalize the extra symmetry of the CGHS model. © Elsevier Science B.V
Cascading Constrained 2-D Arrays using Periodic Merging Arrays
Forchhammer, Søren; Laursen, Torben Vaarby
2003-01-01
We consider a method for designing 2-D constrained codes by cascading finite width arrays using predefined finite width periodic merging arrays. This provides a constructive lower bound on the capacity of the 2-D constrained code. Examples include symmetric RLL and density constrained codes....... Numerical results for the capacities are presented....
2D gravity, random surfaces and all that
I review the recent progress in 2d gravity and discuss the new numerical simulations for 2d gravity and for random surfaces in d>2. The random surface theories of interest in d>2 have extrinsic curvature terms, and for a finite value of the extrinsic curvature coupling there seems to be a second order phase transition where the string tension scales. (orig.)
Seismic Isolation Studies and Applications for Nuclear Facilities
Seismic isolation, which is being used worldwide for buildings, is a well-known technology to protect structures from destructive earthquakes. In spite of the many potential advantages of a seismic isolation, however, the applications of a seismic isolation to nuclear facilities have been very limited because of a lack of sufficient knowledge about the isolation practices. The most important advantage of seismic isolation applications in nuclear power plants is that the safety and reliability of the plants can be remarkably improved through the standardization of the structures and equipment regardless of the seismic conditions of the sites. The standardization of structures and equipment will reduce the capital cost and design/construction schedule for future plants. Also, a seismic isolation can facilitate decoupling of the design and development for equipment, piping, and components due to the use of the generic in-structure response spectra associated with the standardized plant. Moreover, a seismic isolation will improve the plant safety margin against the design basis earthquake (DBE) as well as a beyond design basis seismic event due to its superior seismic performance. A number of seismic isolation systems have been developed and tested since 1970s, and some of them have been applied to conventional structures in several countries of high seismicity. In the nuclear field, there have been many studies on the applicability of such seismic isolation systems, but the application of a seismic isolation is very limited. Currently, there are some discussions on the application of seismic isolation systems to nuclear facilities between the nuclear industries and the regulatory agencies in the U.S.. In the future, a seismic isolation for nuclear facilities will be one of the important issues in the nuclear industry. This paper summarizes the past studies and applications of a seismic isolation in the nuclear industry
Crescimbene, Massimo; La Longa, Federica; Camassi, Romano; Pino, Nicola Alessandro
2013-04-01
The perception of risks involves the process of collecting, selecting and interpreting signals about uncertain impacts of events, activities or technologies. In the natural sciences the term risk seems to be clearly defined, it means the probability distribution of adverse effects, but the everyday use of risk has different connotations (Renn, 2008). The two terms, hazards and risks, are often used interchangeably by the public. Knowledge, experience, values, attitudes and feelings all influence the thinking and judgement of people about the seriousness and acceptability of risks. Within the social sciences however the terminology of 'risk perception' has become the conventional standard (Slovic, 1987). The mental models and other psychological mechanisms which people use to judge risks (such as cognitive heuristics and risk images) are internalized through social and cultural learning and constantly moderated (reinforced, modified, amplified or attenuated) by media reports, peer influences and other communication processes (Morgan et al., 2001). Yet, a theory of risk perception that offers an integrative, as well as empirically valid, approach to understanding and explaining risk perception is still missing". To understand the perception of risk is necessary to consider several areas: social, psychological, cultural, and their interactions. Among the various research in an international context on the perception of natural hazards, it seemed promising the approach with the method of semantic differential (Osgood, C.E., Suci, G., & Tannenbaum, P. 1957, The measurement of meaning. Urbana, IL: University of Illinois Press). The test on seismic risk perception has been constructed by the method of the semantic differential. To compare opposite adjectives or terms has been used a Likert's scale to seven point. The test consists of an informative part and six sections respectively dedicated to: hazard; vulnerability (home and workplace); exposed value (with reference to
VIDEO OBJECT SEGMENTATION BY 2-D MESH-BASED MOTION ANALYSIS
无
2007-01-01
Video object extraction is a key technology in content-based video coding. A novel video object extracting algorithm by two Dimensional (2-D) mesh-based motion analysis is proposed in this paper. Firstly, a 2-D mesh fitting the original frame image is obtained via feature detection algorithm.Then, higher order statistics motion analysis is applied on the 2-D mesh representation to get an initial motion detection mask. After post-processing, the final segmenting mask is quickly obtained. And hence the video object is effectively extracted. Experimental results show that the proposed algorithm combines the merits of mesh-based segmenting algorithms and pixel-based segmenting algorithms, and hereby achieves satisfactory subjective and objective performance while dramatically increasing the segmenting speed.
Design of FBG En/decoders in Coherent 2-D Time-polarization OCDMA Systems
Hou, Fen-fei; Yang, Ming
2012-12-01
A novel fiber Bragg grating (FBG)-based en/decoder for the two-dimensional (2-D) time-spreading and polarization multiplexer optical coding is proposed. Compared with other 2-D en/decoders, the proposed en/decoding for an optical code-division multiple-access (OCDMA) system uses a single phase-encoded FBG and coherent en/decoding. Furthermore, combined with reconstruction-equivalent-chirp technology, such en/decoders can be realized with a conventional simple fabrication setup. Experimental results of such en/decoders and the corresponding system test at a data rate of 5 Gbit/s demonstrate that this kind of 2-D FBG-based en/decoders could improve the performances of OCDMA systems.
Can Full Duplex reduce the discovery time in D2D Communication?
Gatnau, Marta; Berardinelli, Gilberto; Mahmood, Nurul Huda;
2016-01-01
Device-to-device (D2D) communication is considered as one of the key technologies to support new types of services, such as public safety and proximity-based applications. D2D communication requires a discovery phase, i.e., the node awareness procedure prior to the communication phase. Conventional...... half duplex transmission may not be sufficient to provide fast discovery and cope with the strict latency targets of future 5G services. On the other hand, in-band full duplex, by allowing simultaneous transmission and reception, may complete the discovery phase faster. In this paper, the potential of...... full duplex in providing fast discovery for the next 5th generation (5G) system supporting D2D communication is investigated. A design for such system is presented and evaluated via simulations, showing that full duplex can accelerate the discovery phase by supporting a higher transmission probability...
Van der Waals stacked 2D layered materials for optoelectronics
Zhang, Wenjing; Wang, Qixing; Chen, Yu; Wang, Zhuo; Wee, Andrew T. S.
2016-06-01
The band gaps of many atomically thin 2D layered materials such as graphene, black phosphorus, monolayer semiconducting transition metal dichalcogenides and hBN range from 0 to 6 eV. These isolated atomic planes can be reassembled into hybrid heterostructures made layer by layer in a precisely chosen sequence. Thus, the electronic properties of 2D materials can be engineered by van der Waals stacking, and the interlayer coupling can be tuned, which opens up avenues for creating new material systems with rich functionalities and novel physical properties. Early studies suggest that van der Waals stacked 2D materials work exceptionally well, dramatically enriching the optoelectronics applications of 2D materials. Here we review recent progress in van der Waals stacked 2D materials, and discuss their potential applications in optoelectronics.
Influence of stress releasing ratio and boundary scope on 2D FEM simulate
ZHANG Xiao-ming; LIU Xiang-feng; HE Feng
2008-01-01
Give constrains of costs and technology in analysis,actual practice of 2D FEM is widely popular and demanded.In order to take advantage of 2D FEM to simulate 3Dstress state,the concept of stress releasing ratio was generally introduced to represent the 3D constraint effect.For example,the simulation analysis of tunnel excavation is based on the measured actual deformation to provide stress releasing ratio.In the engineering of open excavation,the construction is,most of the case,targeted on alluvial deposit with relatively soft stratum.However,the 2D FEM simulation lacks a clear and rational basis in how to represent the effects of 3D constraint.Thus,in order to investigate the problem above,the author analyzed same engineering using both 2D and 3D individually,and compared the corresponding results.Based on the 3D analysis,factors including the relationship between the model's scope,stress releasing ratio,and construction condition of 2D analysis were also examined.
Chia-Yu Chou
2014-09-01
Full Text Available In a previous study we provided analytical and experimental evidence that some materials are able to store entropy-flow, of which the heat-conduction behaves as standing waves in a bounded region small enough in practice. In this paper we continue to develop distributed control of heat conduction in these thermal-inductive materials. The control objective is to achieve subtle temperature distribution in space and simultaneously to suppress its transient overshoots in time. This technology concerns safe and accurate heating/cooling treatments in medical operations, polymer processing, and other prevailing modern day practices. Serving for distributed feedback, spatiotemporal H ∞ /μ control is developed by expansion of the conventional 1D-H ∞ /μ control to a 2D version. Therein 2D geometrical isomorphism is constructed with the Laplace-Galerkin transform, which extends the small-gain theorem into the mode-frequency domain, wherein 2D transfer-function controllers are synthesized with graphical methods. Finally, 2D digital-signal processing is programmed to implement 2D transfer-function controllers, possibly of spatial fraction-orders, into DSP-engine embedded microcontrollers.
DYNA-2D, 2-D Hydrodynamic Finite Elements Method Program with Interactive Rezoning
1 - Description of program or function: DYNA2D is an explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. A contact-impact algorithm permits gaps and sliding with friction along material interfaces. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning with no need for transition regions. Spatial discretization is achieved by the use of 4-node solid elements, and the equations-of-motion are integrated by the central difference method. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic elastic-plastic, thermo- elastic-plastic, soil and crushable foam, linear visco-elastic, rubber, isotropic elastic-plastic, and temperature-dependent elastic-plastic. The latter two models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state. 2 - Restrictions on the complexity of the problem - Maxima of: 60,000 elements (Cray 1), 5,000 elements (CDC7600)
Xie, Donghao; Ji, Ding-Kun; Zhang, Yue; Cao, Jun; Zheng, Hu; Liu, Lin; Zang, Yi; Li, Jia; Chen, Guo-Rong; James, Tony D; He, Xiao-Peng
2016-08-01
Here we demonstrate that 2D MoS2 can enhance the receptor-targeting and imaging ability of a fluorophore-labelled ligand. The 2D MoS2 has an enhanced working concentration range when compared with graphene oxide, resulting in the improved imaging of both cell and tissue samples. PMID:27378648
A synthetic seismicity model for the Middle America Trench
Ward, Steven N.
1991-01-01
A novel iterative technique, based on the concept of fault segmentation and computed using 2D static dislocation theory, for building models of seismicity and fault interaction which are physically acceptable and geometrically and kinematically correct, is presented. The technique is applied in two steps to seismicity observed at the Middle America Trench. The first constructs generic models which randomly draw segment strengths and lengths from a 2D probability distribution. The second constructs predictive models in which segment lengths and strengths are adjusted to mimic the actual geography and timing of large historical earthquakes. Both types of models reproduce the statistics of seismicity over five units of magnitude and duplicate other aspects including foreshock and aftershock sequences, migration of foci, and the capacity to produce both characteristic and noncharacteristic earthquakes. Over a period of about 150 yr the complex interaction of fault segments and the nonlinear failure conditions conspire to transform an apparently deterministic model into a chaotic one.
Quantitative Seismic Amplitude Analysis
Dey, A.K.
2011-01-01
The Seismic Value Chain quantifies the cyclic interaction between seismic acquisition, imaging and reservoir characterization. Modern seismic innovation to address the global imbalance in hydrocarbon supply and demand requires such cyclic interaction of both feed-forward and feed-back processes. Cur
Robotization in Seismic Acquisition
Blacquière, G.; Berkhout, A.J.
2013-01-01
The amount of sources and detectors in the seismic method follows "Moore’s Law of seismic data acquisition", i.e., it increases approximately by a factor of 10 every 10 years. Therefore automation is unavoidable, leading to robotization of seismic data acquisition. Recently, we introduced a new sour
2D vs. 3D mammography observer study
Fernandez, James Reza F.; Hovanessian-Larsen, Linda; Liu, Brent
2011-03-01
Breast cancer is the most common type of non-skin cancer in women. 2D mammography is a screening tool to aid in the early detection of breast cancer, but has diagnostic limitations of overlapping tissues, especially in dense breasts. 3D mammography has the potential to improve detection outcomes by increasing specificity, and a new 3D screening tool with a 3D display for mammography aims to improve performance and efficiency as compared to 2D mammography. An observer study using a mammography phantom was performed to compare traditional 2D mammography with this ne 3D mammography technique. In comparing 3D and 2D mammography there was no difference in calcification detection, and mass detection was better in 2D as compared to 3D. There was a significant decrease in reading time for masses, calcifications, and normals in 3D compared to 2D, however, as well as more favorable confidence levels in reading normal cases. Given the limitations of the mammography phantom used, however, a clearer picture in comparing 3D and 2D mammography may be better acquired with the incorporation of human studies in the future.
Barren Acidic Soil Assessment using Seismic Refraction Survey
Tajudin, S. A. A.; Abidin, M. H. Z.; Madun, A.; Zawawi, M. H.
2016-07-01
Seismic refraction method is one of the geophysics subsurface exploration techniques used to determine subsurface profile characteristics. From past experience, seismic refraction method is commonly used to detect soil layers, overburden, bedrock, etc. However, the application of this method on barren geomaterials remains limited due to several reasons. Hence, this study was performed to evaluate the subsurface profile characteristics of barren acidic soil located in Ayer Hitam, Batu Pahat, Johor using seismic refraction survey. The seismic refraction survey was conducted using ABEM Terraloc MK 8 (seismograph), a sledge hammer weighing 7 kg (source) and 24 units of 10 Hz geophones (receiver). Seismic data processing was performed using OPTIM software which consists of SeisOpt@picker (picking the first arrival and seismic configureuration data input) and SeisOpt@2D (generating 2D image of barren acidic soil based on seismic velocity (primary velocity, Vp) distribution). It was found that the barren acidic soil profile consists of three layers representing residual soil (Vp= 200-400 m/s) at 0-2 m, highly to completely weathered soil (Vp= 500-1800 m/s) at 3-8 m and shale (Vp= 2100-6200 m/s) at 9-20 m depth. Furthermore, result verification was successfully done through the correlation of seismic refraction data based on physical mapping and the geological map of the study area. Finally, it was found that the seismic refraction survey was applicable for subsurface profiling of barren acidic soil as it was very efficient in terms of time, cost, large data coverage and sustainable.
SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION
Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin
2003-12-01
We have developed and tested technology for a new type of direct hydrocarbon detection. The method uses inelastic rock properties to greatly enhance the sensitivity of surface seismic methods to the presence of oil and gas saturation. These methods include use of energy absorption, dispersion, and attenuation (Q) along with traditional seismic attributes like velocity, impedance, and AVO. Our approach is to combine three elements: (1) a synthesis of the latest rock physics understanding of how rock inelasticity is related to rock type, pore fluid types, and pore microstructure, (2) synthetic seismic modeling that will help identify the relative contributions of scattering and intrinsic inelasticity to apparent Q attributes, and (3) robust algorithms that extract relative wave attenuation attributes from seismic data. This project provides: (1) Additional petrophysical insight from acquired data; (2) Increased understanding of rock and fluid properties; (3) New techniques to measure reservoir properties that are not currently available; and (4) Provide tools to more accurately describe the reservoir and predict oil location and volumes. These methodologies will improve the industry's ability to predict and quantify oil and gas saturation distribution, and to apply this information through geologic models to enhance reservoir simulation. We have applied for two separate patents relating to work that was completed as part of this project.
The NH$_2$D hyperfine structure revealed by astrophysical observations
Daniel, F.; Coudert, L. H.; Punanova, A.; Harju, J.; Faure, A.; Roueff, E.; Sipilä, O.; Caselli, P.; Güsten, R.; Pon, A.; Pineda, J E
2016-01-01
The 1$_{11}$-1$_{01}$ lines of ortho and para--NH$_2$D (o/p-NH$_2$D), respectively at 86 and 110 GHz, are commonly observed to provide constraints on the deuterium fractionation in the interstellar medium. In cold regions, the hyperfine structure due to the nitrogen ($^{14}$N) nucleus is resolved. To date, this splitting is the only one which is taken into account in the NH$_2$D column density estimates. We investigate how the inclusion of the hyperfine splitting caused by the deuterium (D) n...
Materials for Flexible, Stretchable Electronics: Graphene and 2D Materials
Kim, Sang Jin; Choi, Kyoungjun; Lee, Bora; Kim, Yuna; Hong, Byung Hee
2015-07-01
Recently, 2D materials have been intensively studied as emerging materials for future electronics, including flexible electronics, photonics, and electrochemical energy storage devices. Among representative 2D materials (such as graphene, boron nitride, and transition metal dichalcogenides) that exhibit extraordinary properties, graphene stands out in the flexible electronics field due to its combination of high electron mobility, high thermal conductivity, high specific surface area, high optical transparency, excellent mechanical flexibility, and environmental stability. This review covers the synthesis, transfer, and characterization methods of graphene and 2D materials and graphene's application to flexible devices as well as comparison with other competing materials.
Introduction to game physics with Box2D
Parberry, Ian
2013-01-01
Written by a pioneer of game development in academia, Introduction to Game Physics with Box2D covers the theory and practice of 2D game physics in a relaxed and entertaining yet instructional style. It offers a cohesive treatment of the topics and code involved in programming the physics for 2D video games. Focusing on writing elementary game physics code, the first half of the book helps you grasp the challenges of programming game physics from scratch, without libraries or outside help. It examines the mathematical foundation of game physics and illustrates how it is applied in practice thro
Comparison of 2D and 3D gamma analyses
Pulliam, Kiley B.; Huang, Jessie Y.; Howell, Rebecca M.; Followill, David; Kry, Stephen F., E-mail: sfkry@mdanderson.org [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030 (United States); Bosca, Ryan [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030 (United States); O’Daniel, Jennifer [Department of Radiation Oncology, Duke University, Durham, North Carolina 27705 (United States)
2014-02-15
Purpose: As clinics begin to use 3D metrics for intensity-modulated radiation therapy (IMRT) quality assurance, it must be noted that these metrics will often produce results different from those produced by their 2D counterparts. 3D and 2D gamma analyses would be expected to produce different values, in part because of the different search space available. In the present investigation, the authors compared the results of 2D and 3D gamma analysis (where both datasets were generated in the same manner) for clinical treatment plans. Methods: Fifty IMRT plans were selected from the authors’ clinical database, and recalculated using Monte Carlo. Treatment planning system-calculated (“evaluated dose distributions”) and Monte Carlo-recalculated (“reference dose distributions”) dose distributions were compared using 2D and 3D gamma analysis. This analysis was performed using a variety of dose-difference (5%, 3%, 2%, and 1%) and distance-to-agreement (5, 3, 2, and 1 mm) acceptance criteria, low-dose thresholds (5%, 10%, and 15% of the prescription dose), and data grid sizes (1.0, 1.5, and 3.0 mm). Each comparison was evaluated to determine the average 2D and 3D gamma, lower 95th percentile gamma value, and percentage of pixels passing gamma. Results: The average gamma, lower 95th percentile gamma value, and percentage of passing pixels for each acceptance criterion demonstrated better agreement for 3D than for 2D analysis for every plan comparison. The average difference in the percentage of passing pixels between the 2D and 3D analyses with no low-dose threshold ranged from 0.9% to 2.1%. Similarly, using a low-dose threshold resulted in a difference between the mean 2D and 3D results, ranging from 0.8% to 1.5%. The authors observed no appreciable differences in gamma with changes in the data density (constant difference: 0.8% for 2D vs 3D). Conclusions: The authors found that 3D gamma analysis resulted in up to 2.9% more pixels passing than 2D analysis. It must
Optimization and practical implementation of ultrafast 2D NMR experiments
Luiz H. K. Queiroz Júnior
2013-01-01
Full Text Available Ultrafast 2D NMR is a powerful methodology that allows recording of a 2D NMR spectrum in a fraction of second. However, due to the numerous non-conventional parameters involved in this methodology its implementation is no trivial task. Here, an optimized experimental protocol is carefully described to ensure efficient implementation of ultrafast NMR. The ultrafast spectra resulting from this implementation are presented based on the example of two widely used 2D NMR experiments, COSY and HSQC, obtained in 0.2 s and 41 s, respectively.
Optimization and practical implementation of ultrafast 2D NMR experiments
Queiroz Junior, Luiz H. K., E-mail: professorkeng@gmail.com [Universidade Federal de Sao Carlos (UFSC), SP (Brazil). Departamento de Quimica; Universidade Federal de Goias (UFGO), Goiania, GO (Brazil). Inst. de Quimica; Ferreira, Antonio G. [Universidade Federal de Sao Carlos (UFSC), SP (Brazil). Departamento de Quimica; Giraudeau, Patrick [Universite de Nantes (France). CNRS, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation
2013-09-01
Ultrafast 2D NMR is a powerful methodology that allows recording of a 2D NMR spectrum in a fraction of second. However, due to the numerous non-conventional parameters involved in this methodology its implementation is no trivial task. Here, an optimized experimental protocol is carefully described to ensure efficient implementation of ultrafast NMR. The ultrafast spectra resulting from this implementation are presented based on the example of two widely used 2D NMR experiments, COSY and HSQC, obtained in 0.2 s and 41 s, respectively. (author)
Kalman Filter for Generalized 2-D Roesser Models
SHENG Mei; ZOU Yun
2007-01-01
The design problem of the state filter for the generalized stochastic 2-D Roesser models, which appears when both the state and measurement are simultaneously subjected to the interference from white noise, is discussed. The wellknown Kalman filter design is extended to the generalized 2-D Roesser models. Based on the method of "scanning line by line", the filtering problem of generalized 2-D Roesser models with mode-energy reconstruction is solved. The formula of the optimal filtering, which minimizes the variance of the estimation error of the state vectors, is derived. The validity of the designed filter is verified by the calculation steps and the examples are introduced.
2D electron cyclotron emission imaging at ASDEX Upgrade (invited)
Classen, I. G. J. [Max Planck Institut fuer Plasmaphysik, 85748 Garching (Germany); FOM-Institute for Plasma Physics, Rijnhuizen, 3430 BE Nieuwegein (Netherlands); Boom, J. E.; Vries, P. C. de [FOM-Institute for Plasma Physics, Rijnhuizen, 3430 BE Nieuwegein (Netherlands); Suttrop, W.; Schmid, E.; Garcia-Munoz, M.; Schneider, P. A. [Max Planck Institut fuer Plasmaphysik, 85748 Garching (Germany); Tobias, B.; Domier, C. W.; Luhmann, N. C. Jr. [University of California at Davis, Davis, California 95616 (United States); Donne, A. J. H. [FOM-Institute for Plasma Physics, Rijnhuizen, 3430 BE Nieuwegein (Netherlands); Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Jaspers, R. J. E. [Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Park, H. K. [POSTECH, Pohang, Gyeongbuk, 790-784 (Korea, Republic of); Munsat, T. [University of Colorado, Boulder, Colorado 80309 (United States)
2010-10-15
The newly installed electron cyclotron emission imaging diagnostic on ASDEX Upgrade provides measurements of the 2D electron temperature dynamics with high spatial and temporal resolution. An overview of the technical and experimental properties of the system is presented. These properties are illustrated by the measurements of the edge localized mode and the reversed shear Alfven eigenmode, showing both the advantage of having a two-dimensional (2D) measurement, as well as some of the limitations of electron cyclotron emission measurements. Furthermore, the application of singular value decomposition as a powerful tool for analyzing and filtering 2D data is presented.
SALE-2D, 2-D Fluid Flow, Navier Stokes Equation Using Lagrangian or Eulerian Method
1 - Description of problem or function: SALE2D calculates two- dimensional fluid flows at all speeds, from the incompressible limit to highly supersonic. An implicit treatment of the pressure calculation similar to that in the Implicit Continuous-fluid Eulerian (ICE) technique provides this flow speed flexibility. In addition, the computing mesh may move with the fluid in a typical Lagrangian fashion, be held fixed in an Eulerian manner, or move in some arbitrarily specified way to provide a continuous rezoning capability. This latitude results from use of an Arbitrary Lagrangian-Eulerian (ALE) treatment of the mesh. The partial differential equations solved are the Navier-Stokes equations and the mass and internal energy equations. The fluid pressure is determined from an equation of state and supplemented with an artificial viscous pressure for the computation of shock waves. The computing mesh consists of a two-dimensional network of quadrilateral cells for either cylindrical or Cartesian coordinates, and a variety of user-selectable boundary conditions are provided in the program. 2 - Method of solution: The basic hydrodynamic part of each cycle of SALE is divided into three phases. Phase 1 is a typical explicit Lagrangian calculation in which the velocity field is updated by the effects of all forces. Phase 2 is a Newton-Raphson iteration that provides time-advanced pressures and velocities. It is used for calculations in the low-speed and even completely incompressible regimes. Phase 3 performs all the advective flux calculations. It is required for runs that are Eulerian or contain some other form of mesh rezoning. A powerful feature of SALE is the ease with which different phases can be combined to suit the requirements of individual problems
CYP2D6 genotype dependent oxycodone metabolism in postoperative patients.
Ulrike M Stamer
functionally active CYP2D6 alleles had an impact on oxycodone metabolism. The genotype also impacted analgesic consumption, thereby causing variation of equianalgesic doses piritramide : oxycodone. Different analgesic needs by genotypes were met by PCA technology in this postoperative cohort.
Chakkalakkal Abdulla, S.M.; Kauppinen, L.J.; Dijkstra, M.; Boer, de M.J.; Berenschot, E.; Ridder, de R.M.; Krijnen, G.J.M.
2010-01-01
This paper presents the fabrication technology for a novel class of photonic devices. This technology integrates silicon 2-D photonic crystal (PhC) waveguides and electrostatically actuated bimorph cantilevers with tips that are self-aligned relative to the holes of the PhC. The bimorph cantilevers
Exploiting Lateral Resolution of Near-Surface Seismic Refraction Methods
Derecke Palmer
2009-01-01
The 1D τ-p inversion algorithm is widely employed to generate starting models with most computer programs that implement refraction tomography. However, this algorithm emphasizes the vertical resolution of many layers, and as a result, it frequently fails to detect even large lateral variations in seismic velocities, such as the decreases that are indicative of shear zones. This study presents a case that demonstrates the failure of the 1D τ-p inversion algorithm to define or even detect a major shear zone that is 50 m or ten stations wide. Furthermore, the majority of refraction tomography programs parameterize the seismic velocities within each layer with vertical velocity gradients. By contrast, the 2D generalized reciprocal method (GRM) inversion algorithms emphasize the lateral resolution of individual layers. This study demonstrates the successful detection and definition of the 50-m wide shear zone with the GRM inversion algorithms. The existence of the shear zone is corroborated by a 2D analysis of the head wave amplitudes and by numerous closely spaced orthogonal seismic profiles carried out as part of a later 3D refraction investigation. Furthermore, a 1D analysis of the head wave amplitudes indicates that a reversal in the seismic velocities, rather than vertical velocity gradients, occurs in the weathered layers. While all seismic refraction operations should aim to provide as accurate depth estimates as is practical, the major conclusion reached in this study is that refraction Inversion algorithms that emphasize the lateral resolution of individual layers generate more useful results for geotechnical and environmental applications. The advantages of the Improved lateral resolution are obtained with 2D profiles in which the structural features can be recognized from the magnitudes of the variations in the seismic velocities. Furthermore, the spatial patterns obtained with 3D investigations facilitate the recognition of structural features that do not
Implicit adaptive mesh refinement for 2D reduced resistive magnetohydrodynamics
Philip, Bobby; Chacón, Luis; Pernice, Michael
2008-10-01
An implicit structured adaptive mesh refinement (SAMR) solver for 2D reduced magnetohydrodynamics (MHD) is described. The time-implicit discretization is able to step over fast normal modes, while the spatial adaptivity resolves thin, dynamically evolving features. A Jacobian-free Newton-Krylov method is used for the nonlinear solver engine. For preconditioning, we have extended the optimal "physics-based" approach developed in [L. Chacón, D.A. Knoll, J.M. Finn, An implicit, nonlinear reduced resistive MHD solver, J. Comput. Phys. 178 (2002) 15-36] (which employed multigrid solver technology in the preconditioner for scalability) to SAMR grids using the well-known Fast Adaptive Composite grid (FAC) method [S. McCormick, Multilevel Adaptive Methods for Partial Differential Equations, SIAM, Philadelphia, PA, 1989]. A grid convergence study demonstrates that the solver performance is independent of the number of grid levels and only depends on the finest resolution considered, and that it scales well with grid refinement. The study of error generation and propagation in our SAMR implementation demonstrates that high-order (cubic) interpolation during regridding, combined with a robustly damping second-order temporal scheme such as BDF2, is required to minimize impact of grid errors at coarse-fine interfaces on the overall error of the computation for this MHD application. We also demonstrate that our implementation features the desired property that the overall numerical error is dependent only on the finest resolution level considered, and not on the base-grid resolution or on the number of refinement levels present during the simulation. We demonstrate the effectiveness of the tool on several challenging problems.
Technical Review of the UNET2D Hydraulic Model
Perkins, William A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richmond, Marshall C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2009-05-18
The Kansas City District of the US Army Corps of Engineers is engaged in a broad range of river management projects that require knowledge of spatially-varied hydraulic conditions such as velocities and water surface elevations. This information is needed to design new structures, improve existing operations, and assess aquatic habitat. Two-dimensional (2D) depth-averaged numerical hydraulic models are a common tool that can be used to provide velocity and depth information. Kansas City District is currently using a specific 2D model, UNET2D, that has been developed to meet the needs of their river engineering applications. This report documents a tech- nical review of UNET2D.
Illumination Compensation for 2-D Barcode Recognition Basing Morphologic
Jian-Hua Li
2013-04-01
Full Text Available Improvement of image quality has been highly demanded in digital imaging systems. This study presents a novel illumination normalization approach for 2-D barcode recognition under varying lighting conditions. MMs (Morphological transformations are employed to original images using big scale multiple SEs (structuring elements. Then we make use of entropy to fuse images. The performance of proposed methodology is illustrated through the processing of images with different kinds of 2-D barcodes under different backgrounds. The experimental results show that this approach can process different kinds of 2-D barcodes under varying lighting conditions adaptively. Compared with other conventional methods, our proposed approach does a better job in processing 2-D barcode under non-uniform illumination.
Chemical vapour deposition: Transition metal carbides go 2D
Gogotsi, Yury
2015-11-01
The unique properties of 2D materials, such as graphene or transition metal dichalcogenides, have been attracting much attention in the past decade. Now, metallically conductive and even superconducting transition metal carbides are entering the game.
A commentary on multi-component seismic technology in the 84th SEG annual meeting%第84届SEG年会多分量地震技术评述
孙丽霞; 杨春; 王赟; 张智
2016-01-01
综合分析2014年度美国SEG年会上多分量地震技术方面的学术论文，不难发现：在多波地震偏移成像研究中，叠前时间偏移仍是实际应用的主要方法；相比于 PS折射波初至拾取，径向-道域变换的射线路径一致性静校正方法效果更好；全波形反演在四维地震应用中具有诱人的前景，基于纵波反射系数的流体因子反演方法在稳定性、准确性方面显示出很大的优势，有望产生实际的应用效果。多分量地震技术的发展特点可归纳为“一批亮点，一个重点”，即：页岩的岩石物理实验与数值模拟分析、地震波的低频衰减气溶机理、六分量矢量波场特征的研究、多组多尺度裂缝系统的响应特征是该领域研究的亮点；综合利用海洋四分量压制鬼波及径向波、去除海底多次波、提高纵波的信噪比是海洋多分量地震技术发展的重点。%Through analysis of papers about multi-component seismic technology presented in the 84th SEG annual meeting, it is easy to find out that prestack time migration is still the major method used in multi-component migration imaging. Compared with the method based on S-wave refraction, static correction method using the radial-trace domain transform for ray path consistency can get the real reflection interface, the application of the full waveform inversion in 4D seismics has attractive perspective. Based on the advantages of stability and accuracy of the fluid factor of longitudinal wave, it is hopeful to produce practical effect. The development characteristics of the multi-component seismics can be summarized as “a lot of highlight spots and one emphasis”, the highlight spots include rock physical experiment and numerical simulation of shale, aerosol mechanism of low frequency attenuation of seismic wave, research on the characteristics six-component vector wave field, research on response characteristics of multi-group and
Modeling of two-storey precast school building using Ruaumoko 2D program
Hamid, N. H.; Tarmizi, L. H.; Ghani, K. D. [Faculty of Civil Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia)
2015-05-15
The long-distant earthquake loading from Sumatra and Java Island had caused some slight damages to precast and reinforced concrete buildings in West Malaysia such as cracks on wall panels, columns and beams. Subsequently, the safety of existing precast concrete building is needed to be analyzed because these buildings were designed using BS 8110 which did not include the seismic loading in the design. Thus, this paper emphasizes on the seismic performance and dynamic behavior of precast school building constructed in Malaysia under three selected past earthquakes excitations ; El Centro 1940 North-South, El Centro East-West components and San Fernando 1971 using RUAUMOKO 2D program. This program is fully utilized by using prototype precast school model and dynamic non-linear time history analysis. From the results, it can be concluded that two-storey precast school building has experienced severe damage and partial collapse especially at beam-column joint under San Fernando and El Centro North-South Earthquake as its exceeds the allowable inter-storey drift and displacement as specified in Eurocode 8. The San Fernando earthquake has produced a massive destruction to the precast building under viscous damping, ξ = 5% and this building has generated maximum building displacement of 435mm, maximum building drift of 0.68% and maximum bending moment at 8458kNm.
Modeling of two-storey precast school building using Ruaumoko 2D program
The long-distant earthquake loading from Sumatra and Java Island had caused some slight damages to precast and reinforced concrete buildings in West Malaysia such as cracks on wall panels, columns and beams. Subsequently, the safety of existing precast concrete building is needed to be analyzed because these buildings were designed using BS 8110 which did not include the seismic loading in the design. Thus, this paper emphasizes on the seismic performance and dynamic behavior of precast school building constructed in Malaysia under three selected past earthquakes excitations ; El Centro 1940 North-South, El Centro East-West components and San Fernando 1971 using RUAUMOKO 2D program. This program is fully utilized by using prototype precast school model and dynamic non-linear time history analysis. From the results, it can be concluded that two-storey precast school building has experienced severe damage and partial collapse especially at beam-column joint under San Fernando and El Centro North-South Earthquake as its exceeds the allowable inter-storey drift and displacement as specified in Eurocode 8. The San Fernando earthquake has produced a massive destruction to the precast building under viscous damping, ξ = 5% and this building has generated maximum building displacement of 435mm, maximum building drift of 0.68% and maximum bending moment at 8458kNm
2d quantum gravity and black hole formation
The quantum integral of generic 2d quantum gravity can be performed exactly. The equivalence of dilaton theories to 2d theories with torsion and the use of a light cone gauge are crucial. Scalar matter can be treated perturbatively. A generalization of the Polyakov action emerges. For scattering of scalars in a flat background already in the tree approximation for the first time the intermediate formation of a black hole is observed in an ab initio quantum gravity computation
Sparse Non-negative Matrix Factor 2-D Deconvolution
Mørup, Morten; Schmidt, Mikkel N.
2006-01-01
We introduce the non-negative matrix factor 2-D deconvolution (NMF2D) model, which decomposes a matrix into a 2-dimensional convolution of two factor matrices. This model is an extension of the non-negative matrix factor deconvolution (NMFD) recently introduced by Smaragdis (2004). We derive and ...... this form of factorization. The developed algorithms have been used for source separation and music transcription....
Excitation of 2D plasmons in Cs/W(110)
Benemanskaya, G V; Frank-Kamenetskaya, G E
2001-01-01
One studied the evolution of surface photoemission spectra for Cs/W(110) system at metastable Cs coatings exceeding monolayer. One showed possibility to observe 2D plasmons by means of threshold photoemission spectroscopy. One detected three photoemission peaks characterized by complicated behavior depending on Cd adsorption dose. The nature of peaks may be related to plasmon photoinduced excitation in quasi-2D Cs clusters, surface Cs plasmon and interface Cs-W plasmon
QSAR Models for P-450 (2D6) Substrate Activity
Ringsted, Tine; Nikolov, Nikolai Georgiev; Jensen, Gunde Egeskov;
2009-01-01
activity relationship (QSAR) modelling systems. They cross validated (leave-groups-out) with concordances of 71%, 81% and 82%, respectively. Discrete organic European Inventory of Existing Commercial Chemical Substances (EINECS) chemicals were screened to predict an approximate percentage of CYP 2D6...... substrates. These chemicals are potentially present in the environment. The biological importance of the CYP 2D6 and the use of the software mentioned above were discussed....
The Branching of Graphs in 2-d Quantum Gravity
Harris, M. G.
1996-01-01
The branching ratio is calculated for three different models of 2d gravity, using dynamical planar phi-cubed graphs. These models are pure gravity, the D=-2 Gaussian model coupled to gravity and the single spin Ising model coupled to gravity. The ratio gives a measure of how branched the graphs dominating the partition function are. Hence it can be used to estimate the location of the branched polymer phase for the multiple Ising model coupled to 2d gravity.
Illumination Compensation for 2-D Barcode Recognition Basing Morphologic
Jian-Hua Li; Yi-Wen Wang; Yi Chen; Meng Zhang
2013-01-01
Improvement of image quality has been highly demanded in digital imaging systems. This study presents a novel illumination normalization approach for 2-D barcode recognition under varying lighting conditions. MMs (Morphological transformations) are employed to original images using big scale multiple SEs (structuring elements). Then we make use of entropy to fuse images. The performance of proposed methodology is illustrated through the processing of images with different kinds of 2-D barcode...
The relation between Euclidean and Lorentzian 2D quantum gravity
Ambjørn, J.; Correia, J; Kristjansen, C.; Loll, R.
2006-01-01
Starting from 2D Euclidean quantum gravity, we show that one recovers 2D Lorentzian quantum gravity by removing all baby universes. Using a peeling procedure to decompose the discrete, triangulated geometries along a one-dimensional path, we explicitly associate with each Euclidean space-time a (generalized) Lorentzian spacetime. This motivates a map between the parameter spaces of the two theories, under which their propagators get identified. In two dimensions, Lorentzian quantum gravity ca...
Seismic hazard map of the western hemisphere
J. G. Tanner
1999-06-01
Full Text Available Vulnerability to natural disasters increases with urbanization and development of associated support systems (reservoirs, power plants, etc.. Catastrophic earthquakes account for 60% of worldwide casualties associated with natural disasters. Economic damage from earthquakes is increasing, even in technologically advanced countries with some level of seismic zonation, as shown by the 1989 Loma Prieta, CA ($ 6 billion, 1994 Northridge, CA ($ 25 billion, and 1995 Kobe, Japan (> $ 100 billion earthquakes. The growth of megacities in seismically active regions around the world often includes the construction of seismically unsafe buildings and infrastructures, due to an insufficient knowledge of existing seismic hazard. Minimization of the loss of life, property damage, and social and economic disruption due to earthquakes depends on reliable estimates of seismic hazard. National, state, and local governments, decision makers, engineers, planners, emergency response organizations, builders, universities, and the general public require seismic hazard estimates for land use planning, improved building design and construction (including adoption of building construction codes, emergency response preparedness plans, economic forecasts, housing and employment decisions, and many more types of risk mitigation. The seismic hazard map of the Americas is the concatenation of various national and regional maps, involving a suite of approaches. The combined maps and documentation provide a useful global seismic hazard framework and serve as a resource for any national or regional agency for further detailed studies applicable to their needs. This seismic hazard map depicts Peak Ground Acceleration (PGA with a 10% chance of exceedance in 50 years for the western hemisphere. PGA, a short-period ground motion parameter that is proportional to force, is the most commonly mapped ground motion parameter because current building codes that include seismic provisions
Yang, Jie; Rodriguez, Norma; Omedes, Olivier; Gennari, Frank; Lai, Ya-Chieh; Mankad, Viral
2010-03-01
As technology processes continue to shrink, standard design rule checking (DRC) has become insufficient to guarantee design manufacturability. DRCPlus is a powerful technique for capturing yield detractors related to complex 2D situations1,2. DRCPlus is a pattern-based 2D design rule check beyond traditional width and space DRC that can identify problematic 2D configurations which are difficult to manufacture. This paper describes a new approach for applying DRCPlus in a router, enabling an automated approach to detecting and fixing known lithography hotspots using an integrated fast 2D pattern matching engine. A simple pass/no-pass criterion associated with each pattern offers designers guidance on how to fix these problematic patterns. Since it does not rely on compute intensive simulations, DRCPlus can be applied on fairly large design blocks and enforced in conjunction with standard DRC in the early stages of the design flow. By embedding this capability into the router, 2D yield detractors can be identified and fixed by designers in a push-button manner without losing design connectivity. More robust designs can be achieved and the impact on parasitics can be easily assessed. This paper will describe a flow using a fast 2D pattern matching engine integrated into the router in order to enforce DRCPlus rules. An integrated approach allows for rapid identification of hotspot patterns and, more importantly, allows for rapid fixing and verification of these hotspots by a tool that understands design intent and constraints. The overall flow is illustrated in Figure 1. An inexact search pattern is passed to the integrated pattern matcher. The match locations are filtered by the router through application of a DRC constraint (typically a recommended rule). Matches that fail this constraint are automatically fixed by the router, with the modified regions incrementally re-checked to ensure no additional DRCPlus violations are introduced.
张超; 翁大根; 彭林海
2012-01-01
震损钢筋混凝土结构如何考虑损伤影响以进行减震加固设计是值得研究的问题.本文介绍了国内外相关建筑加固与减震设计的系列标准规范,基于震损结构的各种加固工况探讨了减震加固技术的适用范围,概括了国内外有关消能减震加固技术的发展及其应用于震损结构加固的研究现状,简述了灾后震损结构进行减震加固的几种设计方法,并列出了部分典型的减震加固工程实例.最后,在已有研究的基础上,指出了现阶段震损结构减震加固研究中仍存在的一些问题.%In the design process of earthquake-damaged RC buildings retrofitted with added damping system, how to take the structural damage influences into account is deemed to be a key issue worthy of further research. Pursuant to this, some standards and codes related to seismic retrofit and energy dissipating design of buildings around the world are introduced, and the scope for application of energy dissipation technology to seismic retrofit is discussed based on various retrofitting measures towards earthquake-damaged structures. Moreover, the research status of damping retrofit technology and its application to seismic retrofit of earthquake-damaged structures are summarized, and several retrofitting design methods of earthquake-damaged structures using added damping system are stated, as well as numbers of typical engineering samples. In the end, some questions in current research on retrofit of earthquake-damaged structures with added damping system are pointed out.
Buchheim, Jakob; Wyss, Roman M.; Shorubalko, Ivan; Park, Hyung Gyu
2016-04-01
We report experimentally and theoretically the behavior of freestanding graphene subjected to bombardment of energetic ions, investigating the capability of large-scale patterning of freestanding graphene with nanometer sized features by focused ion beam technology. A precise control over the He+ and Ga+ irradiation offered by focused ion beam techniques enables investigating the interaction of the energetic particles and graphene suspended with no support and allows determining sputter yields of the 2D lattice. We found a strong dependency of the 2D sputter yield on the species and kinetic energy of the incident ion beams. Freestanding graphene shows material semi-transparency to He+ at high energies (10-30 keV) allowing the passage of >97% He+ particles without creating destructive lattice vacancy. Large Ga+ ions (5-30 keV), in contrast, collide far more often with the graphene lattice to impart a significantly higher sputter yield of ~50%. Binary collision theory applied to monolayer and few-layer graphene can successfully elucidate this collision mechanism, in great agreement with experiments. Raman spectroscopy analysis corroborates the passage of a large fraction of He+ ions across graphene without much damaging the lattice whereas several colliding ions create single vacancy defects. Physical understanding of the interaction between energetic particles and suspended graphene can practically lead to reproducible and efficient pattern generation of unprecedentedly small features on 2D materials by design, manifested by our perforation of sub-5 nm pore arrays. This capability of nanometer-scale precision patterning of freestanding 2D lattices shows the practical applicability of focused ion beam technology to 2D material processing for device fabrication and integration.We report experimentally and theoretically the behavior of freestanding graphene subjected to bombardment of energetic ions, investigating the capability of large-scale patterning of
Inverse scattering of 2d photonic structures by layer-stripping
Andresen, Marte P Hatlo; Skaar, Johannes
2011-01-01
Design and reconstruction of 2d and 3d photonic structures are usually carried out by forward simulations combined with optimization or intuition. Reconstruction by means of layer-stripping has been applied in seismic processing as well as in design and characterization of 1d photonic structures such as fiber Bragg gratings. Layer-stripping is based on causality, where the earliest scattered light is used to recover the structure layer-by-layer. Our set-up is a 2d layered nonmagnetic structure probed by plane polarized harmonic waves entering normal to the layers. It is assumed that the dielectric permittivity in each layer only varies orthogonal to the polarization. Based on obtained reflectance data covering a suitable frequency interval, time-localized pulse data are synthesized and applied to reconstruct the refractive index profile in the leftmost layer by identifying the local, time-domain Fresnel reflection at each point. Once the first layer is known, its impact on the reflectance data is stripped off...
Acoustic backscatter and effective scatterer size estimates using a 2D CMUT transducer
Liu, W.; Zagzebski, J A; Hall, T.J.; Madsen, E L; Varghese, T.; Kliewer, M.A.; Panda, S.; Lowery, C; Barnes, S.
2008-01-01
Compared to conventional piezoelectric transducers, new capacitive microfabricated ultrasonic transducer (CMUT) technology is expected to offer a broader bandwidth, higher resolution and advanced 3D/4D imaging inherent in a 2D array. For ultrasound scatterer size imaging, a broader frequency range provides more information on frequency-dependent backscatter, and therefore, generally more accurate size estimates. Elevational compounding, which can significantly reduce the large statistical flu...
2D Traveling Wave Array Employing a Trapezoidal Dielectric Wedge for Beam Steering
Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranada, Felix A.
2014-01-01
This presentation addresses the progress made so far in the development of an antenna array with reconfigurable transmission line feeds connecting each element in series. In particular, 2D traveling wave array employing trapezoidal Dielectric Wedge for Beam Steering will be discussed. The presentation includes current status of the effort and suggested future work. The work is being done as part of the NASA Office of the Chief Technologist's Space Technology Research Fellowship (NSTRF).
High Resolution Seismic Reflection Survey for Coal Mine: fault detection
Khukhuudei, M.; Khukhuudei, U.
2014-12-01
High Resolution Seismic Reflection (HRSR) methods will become a more important tool to help unravel structures hosting mineral deposits at great depth for mine planning and exploration. Modern coal mining requires certainly about geological faults and structural features. This paper focuses on 2D Seismic section mapping results from an "Zeegt" lignite coal mine in the "Mongol Altai" coal basin, which required the establishment of major structure for faults and basement. HRSR method was able to detect subsurface faults associated with the major fault system. We have used numerical modeling in an ideal, noise free environment with homogenous layering to detect of faults. In a coal mining setting where the seismic velocity of the high ranges from 3000m/s to 3600m/s and the dominant seismic frequency is 100Hz, available to locate faults with a throw of 4-5m. Faults with displacements as seam thickness detected down to several hundred meter beneath the surface.
National Prociency Testing Result of CYP2D6*10 Genotyping for Adjuvant Tamoxifen Therapy in China.
Lin, Guigao; Zhang, Kuo; Yi, Lang; Han, Yanxi; Xie, Jiehong; Li, Jinming
2016-01-01
Tamoxifen has been successfully used for treating breast cancer and preventing cancer recurrence. Cytochrome P450 2D6 (CYP2D6) plays a key role in the process of metabolizing tamoxifen to its active moiety, endoxifen. Patients with variants of the CYP2D6 gene may not receive the full benefit of tamoxifen treatment. The CYP2D6*10 variant (the most common variant in Asians) was analyzed to optimize the prescription of tamoxifen in China. To ensure referring clinicians have accurate information for genotype-guided tamoxifen treatment, the Chinese National Center for Clinical Laboratories (NCCL) organized a national proficiency testing (PT) to evaluate the performance of laboratories providing CYP2D6*10 genotyping. Ten genomic DNA samples with CYP2D6 wild-type or CYP2D6*10 variants were validated by PCR-sequencing and sent to 28 participant laboratories. The genotyping results and pharmacogenomic test reports were submitted and evaluated by NCCL experts. Additional information regarding the number of samples tested, the accreditation/certification status, and detecting technology was also requested. Thirty-one data sets were received, with a corresponding analytical sensitivity of 98.2% (548/558 challenges; 95% confidence interval: 96.7-99.1%) and an analytic specificity of 96.5% (675/682; 95% confidence interval: 97.9-99.5%). Overall, 25/28 participants correctly identified CYP2D6*10 status in 10 samples; however, two laboratories made serious genotyping errors. Most of the essential information was included in the 20 submitted CYP2D6*10 test reports. The majority of Chinese laboratories are reliable for detecting the CYP2D6*10 variant; however, several issues revealed in this study underline the importance of PT schemes in continued external assessment and provision of guidelines. PMID:27603206
ANALISI DELLA RISPOSTA SISMICA LOCALE A SAN GIULIANO DI PUGLIA CON MODELLI 1D, 2D e 3D
Puglia, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Milano-Pavia, Milano, Italia; Klin, P.; Centro Ricerche Sismologiche, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, Trieste, Italia; Pagliaroli, A.; Dipartimento di Ingegneria Strutturale e Geotecnica, Università di Roma “La Sapienza”, Roma, Italia; Ladina, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Milano-Pavia, Milano, Italia; Priolo, E.; Centro Ricerche Sismologiche, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, Trieste, Italia; Lanzo, G.; Dipartimento di Ingegneria Strutturale e Geotecnica, Università di Roma “La Sapienza”, Roma, Italia; Silvestri, F.; Dipartimento di Ingegneria Idraulica, Geotecnica ed Ambientale, Università degli Studi di Napoli Federico II, Napoli, Italia
2009-01-01
The paper reports the comparison between 1D, 2D and 3D numerical simulations of seismic site response at San Giuliano di Puglia (Italy) and the amplification recorded in the aftershocks following the 31.X.2002 Molise earthquake (MW=5.7). The records were taken by mobile stations installed in the historical center on a soft rock outcrop and in the newer part of the town on a marly clay formation. The site response analyses by the 3D model involved a subsoil volume of about a 2000 x 2000 x 1500...
Buchheim, Jakob; Wyss, Roman M; Shorubalko, Ivan; Park, Hyung Gyu
2016-04-14
We report experimentally and theoretically the behavior of freestanding graphene subjected to bombardment of energetic ions, investigating the capability of large-scale patterning of freestanding graphene with nanometer sized features by focused ion beam technology. A precise control over the He(+) and Ga(+) irradiation offered by focused ion beam techniques enables investigating the interaction of the energetic particles and graphene suspended with no support and allows determining sputter yields of the 2D lattice. We found a strong dependency of the 2D sputter yield on the species and kinetic energy of the incident ion beams. Freestanding graphene shows material semi-transparency to He(+) at high energies (10-30 keV) allowing the passage of >97% He(+) particles without creating destructive lattice vacancy. Large Ga(+) ions (5-30 keV), in contrast, collide far more often with the graphene lattice to impart a significantly higher sputter yield of ∼50%. Binary collision theory applied to monolayer and few-layer graphene can successfully elucidate this collision mechanism, in great agreement with experiments. Raman spectroscopy analysis corroborates the passage of a large fraction of He(+) ions across graphene without much damaging the lattice whereas several colliding ions create single vacancy defects. Physical understanding of the interaction between energetic particles and suspended graphene can practically lead to reproducible and efficient pattern generation of unprecedentedly small features on 2D materials by design, manifested by our perforation of sub-5 nm pore arrays. This capability of nanometer-scale precision patterning of freestanding 2D lattices shows the practical applicability of focused ion beam technology to 2D material processing for device fabrication and integration. PMID:27043304
Sparse Non-negative Tensor 2D Deconvolution (SNTF2D) for multi channel time-frequency analysis
Mørup, Morten; Schmidt, Mikkel N.
2006-01-01
We recently introduced two algorithms for sparse non-negative matrix factor 2-D deconvolution (SNMF2D) that are useful for single channel source separation and music transcription. We here extend this approach to the analysis of the log-frequency spectrograms of a multichannel recording. The model...... algorithms are demonstrated to successfully identify the components of both artificially generated as well as real stereo music....
2-D Coda and Direct Wave Attenuation Tomography in Northern Italy
Morasca, P; Mayeda, K; Gok, R; Phillips, W S; Malagnini, L
2007-10-17
A 1-D coda method was proposed by Mayeda et al. (2003) in order to obtain stable seismic source moment-rate spectra using narrowband coda envelope measurements. That study took advantage of the averaging nature of coda waves to derive stable amplitude measurements taking into account all propagation, site, and Sto-coda transfer function effects. Recently this methodology was applied to micro earthquake data sets from three sub-regions of northern Italy (i.e., western Alps, northern Apennines and eastern Alps). Since the study regions were small, ranging between local-to-near-regional distances, the simple 1-D path assumptions used in the coda method worked very well. The lateral complexity of this region would suggest, however, that a 2-D path correction might provide even better results if the datasets were combined, especially when paths traverse larger distances and complicated regions. The structural heterogeneity of northern Italy makes the region ideal to test the extent to which coda variance can be reduced further by using a 2-D Q tomography technique. The approach we use has been developed by Phillips et al. (2005) and is an extension of previous amplitude ratio techniques to remove source effects from the inversion. The method requires some assumptions such as isotropic source radiation which is generally true for coda waves. Our results are compared against direct Swave inversions for 1/Q and results from both share very similar attenuation features that coincide with known geologic structures. We compare our results with those derived from direct waves as well as some recent results from northern California obtained by Mayeda et al. (2005) which tested the same tomographic methodology applied in this study to invert for 1/Q. We find that 2-D coda path corrections for this region significantly improve upon the 1-D corrections, in contrast to California where only a marginal improvement was observed. We attribute this difference to stronger lateral
Neto, F. A. P.; Franca, G.
2014-12-01
The purpose of this job was to study and document the Angola natural seismicity, establishment of the first database seismic data to facilitate consultation and search for information on seismic activity in the country. The study was conducted based on query reports produced by National Institute of Meteorology and Geophysics (INAMET) 1968 to 2014 with emphasis to the work presented by Moreira (1968), that defined six seismogenic zones from macro seismic data, with highlighting is Zone of Sá da Bandeira (Lubango)-Chibemba-Oncócua-Iona. This is the most important of Angola seismic zone, covering the epicentral Quihita and Iona regions, geologically characterized by transcontinental structure tectono-magmatic activation of the Mesozoic with the installation of a wide variety of intrusive rocks of ultrabasic-alkaline composition, basic and alkaline, kimberlites and carbonatites, strongly marked by intense tectonism, presenting with several faults and fractures (locally called corredor de Lucapa). The earthquake of May 9, 1948 reached intensity VI on the Mercalli-Sieberg scale (MCS) in the locality of Quihita, and seismic active of Iona January 15, 1964, the main shock hit the grade VI-VII. Although not having significant seismicity rate can not be neglected, the other five zone are: Cassongue-Ganda-Massano de Amorim; Lola-Quilengues-Caluquembe; Gago Coutinho-zone; Cuima-Cachingues-Cambândua; The Upper Zambezi zone. We also analyzed technical reports on the seismicity of the middle Kwanza produced by Hidroproekt (GAMEK) region as well as international seismic bulletins of the International Seismological Centre (ISC), United States Geological Survey (USGS), and these data served for instrumental location of the epicenters. All compiled information made possible the creation of the First datbase of seismic data for Angola, preparing the map of seismicity with the reconfirmation of the main seismic zones defined by Moreira (1968) and the identification of a new seismic
Chen, Yu [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gao, Kai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Huang, Lianjie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sabin, Andrew [Geothermal Program Office, China Lake, CA (United States)
2016-03-31
Accurate imaging and characterization of fracture zones is crucial for geothermal energy exploration. Aligned fractures within fracture zones behave as anisotropic media for seismic-wave propagation. The anisotropic properties in fracture zones introduce extra difficulties for seismic imaging and waveform inversion. We have recently developed a new anisotropic elastic-waveform inversion method using a modified total-variation regularization scheme and a wave-energy-base preconditioning technique. Our new inversion method uses the parameterization of elasticity constants to describe anisotropic media, and hence it can properly handle arbitrary anisotropy. We apply our new inversion method to a seismic velocity model along a 2D-line seismic data acquired at Eleven-Mile Canyon located at the Southern Dixie Valley in Nevada for geothermal energy exploration. Our inversion results show that anisotropic elastic-waveform inversion has potential to reconstruct subsurface anisotropic elastic parameters for imaging and characterization of fracture zones.
陈见伟; 庄锡进; 胡冰; 王兆旗; 张金陵
2012-01-01
As the complex topography in the South China Sea region, sea-bottom undulation, complex channels , high-dip structure, are maken a very poor seismic data quality. It could not satisfy the comprehensive seismic interpretation and geological research needs. The raw data of seismic acquisition are mainly in the following problems : ①streamer drift; ②serious surge noise; ③severe multiple wave interference, makes the seismic data processing a big problem. Conventional two-dimensional seismic data processing methods can not solve the problem of deep imaging. The drift of the streamer is focused on, used pseudo three-dimensional processing ideas ; First, three-dimensional griding of the original data; Second, regularization processing after the data on the grid; Third step, select the offset uniform distribution line re-merged back into a two-dimensional survey line, makes the coverage number uniform, reduces the total impact of cmp horizontal divergence,and is useful for the noise and multiple waves suppression, but also is conducive to the result of image processing. The final results show the effectiveness of this method, compared to the conventional treatment, those key technologies indeed improve the quelities of seimic data imaging.%南海地区的海底地貌复杂,起伏落差大,水道复杂、高角度构造发育,造成长期以来在该地区所获得的地震资料品质普遍偏低,不能满足后期地震解释及地质综合研究的需要.采集的原始地震资料主要存在以下问题:①拖缆漂移严重,羽角大；②涌浪噪声干扰强；③多次波发育严重,给处理带来很大的困难.常规的二维地震处理方法不能很好地解决中、深部成像问题.重点针对拖缆漂移问题,采用伪三维处理思路.首先,对原始数据进行三维网格化.其次,对网格化后的数据进行规则化处理.第三步,选取偏移距分布均匀的线段重新合并回一条二维测线.最终CDP道集内偏
Numerical simulation of ( T 2, T 1) 2D NMR and fluid responses
Tan, Mao-Jin; Zou, You-Long; Zhang, Jin-Yan; Zhao, Xin
2012-12-01
One-dimensional nuclear magnetic resonance (1D NMR) logging technology is limited for fluid typing, while two-dimensional nuclear magnetic resonance (2D NMR) logging can provide more parameters including longitudinal relaxation time ( T 1) and transverse relaxation time ( T 2) relative to fluid types in porous media. Based on the 2D NMR relaxation mechanism in a gradient magnetic field, echo train simulation and 2D NMR inversion are discussed in detail. For 2D NMR inversion, a hybrid inversion method is proposed based on the damping least squares method (LSQR) and an improved truncated singular value decomposition (TSVD) algorithm. A series of spin echoes are first simulated with multiple waiting times ( T W s) in a gradient magnetic field for given fluid models and these synthesized echo trains are inverted by the hybrid method. The inversion results are consistent with given models. Moreover, the numerical simulation of various fluid models such as the gas-water, light oil-water, and vicious oil-water models were carried out with different echo spacings ( T E s) and T W s by this hybrid method. Finally, the influences of different signal-to-noise ratios (SNRs) on inversion results in various fluid models are studied. The numerical simulations show that the hybrid method and optimized observation parameters are applicable to fluid typing of gas-water and oil-water models.
Underlay of low-rate machine-type D2D links on downlink cellular links
Pratas, Nuno K.; Popovski, Petar
2014-01-01
Wireless cellular networks feature two emerging technological trends: direct Device-to-Device (D2D) communications and Machine-Type Communications (MTC). MTC devices (MTDs) pose new challenges to the cellular network, such as low transmission power and massive access that can lead to overload of...... the radio interface. In this paper we explore the opportunity opened by D2D links for supporting Low-rate Low-power MTDs that are connected to a nearby device, such as an on-body MTD connected to a mobile phone that acts as a relay towards the Base Station (BS). The low-rate requirement for this D2D...... probability for the MTC link. The results show that SIC is an important enabler of low-power underlay D2D transmission for low-rate machine-type traffic; however, it may incur a significant rate penalty for the cellular users when trying to meet the outage requirements of the MTC link....
The NH$_2$D hyperfine structure revealed by astrophysical observations
Daniel, F; Punanova, A; Harju, J; Faure, A; Roueff, E; Sipilä, O; Caselli, P; Güsten, R; Pon, A; Pineda, J E
2016-01-01
The 1$_{11}$-1$_{01}$ lines of ortho and para--NH$_2$D (o/p-NH$_2$D), respectively at 86 and 110 GHz, are commonly observed to provide constraints on the deuterium fractionation in the interstellar medium. In cold regions, the hyperfine structure due to the nitrogen ($^{14}$N) nucleus is resolved. To date, this splitting is the only one which is taken into account in the NH$_2$D column density estimates. We investigate how the inclusion of the hyperfine splitting caused by the deuterium (D) nucleus affects the analysis of the rotational lines of NH$_2$D. We present 30m IRAM observations of the above mentioned lines, as well as APEX o/p-NH$_2$D observations of the 1$_{01}$-0$_{00}$ lines at 333 GHz. The hyperfine spectra are first analyzed with a line list that only includes the hyperfine splitting due to the $^{14}$N nucleus. We find inconsistencies between the line widths of the 1$_{01}$-0$_{00}$ and 1$_{11}$-1$_{01}$ lines, the latter being larger by a factor of $\\sim$1.6$\\pm0.3$. Such a large difference is...
Failure Mechanism of True 2D Granular Flows
Nguyen, Cuong T; Fukagawa, R
2015-01-01
Most previous experimental investigations of two-dimensional (2D) granular column collapses have been conducted using three-dimensional (3D) granular materials in narrow horizontal channels (i.e., quasi-2D condition). Our recent research on 2D granular column collapses by using 2D granular materials (i.e., aluminum rods) has revealed results that differ markedly from those reported in the literature. We assume a 2D column with an initial height of h0 and initial width of d0, a defined as their ratio (a =h0/d0), a final height of h , and maximum run-out distance of d . The experimental data suggest that for the low a regime (a 0.65), the ratio of a to (d-d0)/d0, h0/h , or d/d0 is expressed by power-law relations. In particular, the following power-function ratios (h0/h=1.42a^2/3 and d/d0=4.30a^0.72) are proposed for every a >0.65. In contrast, the ratio (d-d0)/d0=3.25a^0.96 only holds for 0.651.5. In addition, the influence of ground contact surfaces (hard or soft beds) on the final run-out distance and destru...
Ultrafast 2D NMR: An Emerging Tool in Analytical Spectroscopy
Giraudeau, Patrick; Frydman, Lucio
2014-06-01
Two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago, a so-called ultrafast (UF) approach was proposed, capable of delivering arbitrary 2D NMR spectra involving any kind of homo- or heteronuclear correlation, in a single scan. During the intervening years, the performance of this subsecond 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool experiencing an expanded scope of applications. This review summarizes the principles and main developments that have contributed to the success of this approach and focuses on applications that have been recently demonstrated in various areas of analytical chemistry—from the real-time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications.
KOREAN MOBILE OPERATORS' VALUE MAP FOR LTE D2D
Taisiya Kim
2015-04-01
Full Text Available Managing the wireless data traffic is a main concern for mobile network operators in Information of Things (IoT environment. Long Term Evolution Device to Device (LTE D2D is regarding as a solution for the spectrum problem. It will bring an impact on providers and the whole mobile environment. The main purpose of this study is to analyze the role of key players, who share spectrum with mobile operators, and to present the value map of relationship among Korean mobile operators and other key players in LTE D2D discovery (commercial channel, as complicated relationships of key players are expected. Then, this study suggests scenario for ‘Targeted Advertising’ service of LTE D2D. LTE D2D is early discussion stage and scenario has limitation of specific business model. However, results of this study are significant for the present stage and provide implications for future researches on strategies for LTE D2D environment.
Seismic Waveguide of Metamaterials
Kim, Sang-Hoon
2012-01-01
We have developed a new method of an earthquake-resistant design to support conventional aseismic designs using acoustic metamaterials. We suggest a simple and practical method to reduce the amplitude of a seismic wave exponentially. Our device is an attenuator of a seismic wave. Constructing a cylindrical shell-type waveguide that creates a stop-band for the seismic wave, we convert the wave into an evanescent wave for some frequency range without touching the building we want to protect.
2D materials for photon conversion and nanophotonics
Tahersima, Mohammad H.; Sorger, Volker J.
2015-09-01
The field of two-dimensional (2D) materials has the potential to enable unique applications across a wide range of the electromagnetic spectrum. While 2D-layered materials hold promise for next-generation photon-conversion intrinsic limitations and challenges exist that shall be overcome. Here we discuss the intrinsic limitations as well as application opportunities of this new class of materials, and is sponsored by the NSF program Designing Materials to Revolutionize and Engineer our Future (DMREF) program, which links to the President's Materials Genome Initiative. We present general material-related details for photon conversion, and show that taking advantage of the mechanical flexibility of 2D materials by rolling MoS2/graphene/hexagonal boron nitride stack to a spiral solar cell allows for solar absorption up to 90%.
Graphene based 2D-materials for supercapacitors
Palaniselvam, Thangavelu; Baek, Jong-Beom
2015-09-01
Ever-increasing energy demands and the depletion of fossil fuels are compelling humanity toward the development of suitable electrochemical energy conversion and storage devices to attain a more sustainable society with adequate renewable energy and zero environmental pollution. In this regard, supercapacitors are being contemplated as potential energy storage devices to afford cleaner, environmentally friendly energy. Recently, a great deal of attention has been paid to two-dimensional (2D) nanomaterials, including 2D graphene and its inorganic analogues (transition metal double layer hydroxides, chalcogenides, etc), as potential electrodes for the development of supercapacitors with high electrochemical performance. This review provides an overview of the recent progress in using these graphene-based 2D materials as potential electrodes for supercapacitors. In addition, future research trends including notable challenges and opportunities are also discussed.
Design and Realization of Dynamic Obstacle on URWPSSim2D
Xiao Chen
2013-07-01
Full Text Available Simulation system is charged with the strategy validation and dual team meets, and as the 2-dimensional simulation platform for underwater robotic fish game, URWPGSim2D is the assigned platform for Chinese underwater robot contest and Robot cup underwater program. By now on URWPGSim2D, there is only static obstacles，thus short of changeableness. In order to improve the changeableness and innovation of robotic fish contest, to extend the space for the programming of contest strategy, and to increase the interest, this paper study the design of dynamic obstacles on URWPGSim2D, and design and implement two kinds of dynamic obstacles, which are the evadible dynamic obstacle and the forcing dribbling obstacle.
CYP2D6 genotype determination in the Danish population
Brøsen, K; Nielsen, P N; Brusgaard, K;
1994-01-01
CYP2D6 genotyping was carried out by XbaI restriction fragment length polymorphism analysis and polymerase chain reaction in 168 healthy Danish volunteers, 77 extensive metabolizers (EM) and 91 poor metabolizers (PM) of sparteine. All EM were genotyped correctly as heterozygous or homozygous for.......11-9.10). The median difference was 0.09 (95% confidence interval: 0.02-0.16). CYP2D6 phenotyping is a promising tool in tailoring the individual dose of tricyclic antidepressants, some neuroleplics and some antiarrhythmics. However if the genotype test could be improved with regard to both sensitivity in PM...... and the ability to predict CYP2D6 activity in EM then it would be of even greater clinical value in therapeutic drug monitoring. Udgivelsesdato: 1994-null...
Statistical mechanics on a 2D-random surface
Various geometrical models first defined in the Euclidean plane or on a regular lattice have been briefly reviewed, including self-avoiding walks, random walk intersections, percolation and Ising clusters. These systems embody infinite sets of field operators defined in a natural way from the (fractal) geometry of these fluctuating critical systems. Their scaling behavior can be linked to that of associated conformal field theories. These systems can also all be redefined on a random lattice or surface, instead of on a regular 2D lattice. They are then coupled to ''quantum gravity'', and live on the ''world-sheet''. The fact that all their new exponents on a random surface can then be related to those in the usual 2D-plane, although now well known in string theory, is worth publicizing in this Physics in 2D conference. We illustrate it by some exact solutions in the case of polymers and branched polymers (animals) on a random fluid surface. (author)
Effective viscosity of 2D suspensions - Confinement effects
Peyla, Philippe; Priem, Stephane; Vincent, Doyeux; Farutin, Alexander; Ismail, Mourad
2014-11-01
We study the rheology of a sheared 2D suspension of non-Brownian disks in presence of walls. Although, it is of course possible today with modern computers and powerful algorithms to perform direct numerical simulations that fully account for multiparticle 3D interactions, the analysis of the simple case of a 2D suspension, provides valuable insights and helps to understand 3D results. For instance, we examine the role of particle-wall and particle-particle interactions in determining the rheology of confined sheared suspensions. In addition we evaluate the intrinsic viscosity as well as the contribution of hydrodynamic interactions to the dissipation as a function of a wide range of confinements. Thanks to the direct visualisation of the whole 2D Stokes flow, we are able to give a clear interpretation about the rheology of semi-dilute confined suspensions.
S-duality and 2d Topological QFT
Gadde, Abhijit; Rastelli, Leonardo; Razamat, Shlomo S
2009-01-01
We study the superconformal index for the class of N=2 4d superconformal field theories recently introduced by Gaiotto. These theories are defined by compactifying the (2,0) 6d theory on a Riemann surface with punctures. We interpret the index of the 4d theory associated to an n-punctured Riemann surface as the n-point correlation function of a 2d topological QFT living on the surface. Invariance of the index under generalized S-duality transformations (the mapping class group of the Riemann surface) translates into associativity of the operator algebra of the 2d TQFT. In the A_1 case, for which the 4d SCFTs have a Lagrangian realization, the structure constants and metric of the 2d TQFT can be calculated explicitly in terms of elliptic gamma functions. Associativity then holds thanks to a remarkable symmetry of an elliptic hypergeometric beta integral, proved very recently by van de Bult.
2D growth processes: SLE and Loewner chains
Bauer, Michel [Service de Physique Theorique de Saclay, CE-Saclay, 91191 Gif-sur-Yvette (France) and Laboratoire de Physique Theorique, Ecole Normale Superieure, 24 rue Lhomond, 75005 Paris (France)]. E-mail: michel.bauer@cea.fr; Bernard, Denis [Service de Physique Theorique de Saclay, CE-Saclay, 91191 Gif-sur-Yvette (France) and Laboratoire de Physique Theorique, Ecole Normale Superieure, 24 rue Lhomond, 75005 Paris (France)]. E-mail: denis.bernard@cea.fr
2006-10-15
This review provides an introduction to two dimensional growth processes. Although it covers a variety of processes such as diffusion limited aggregation, it is mostly devoted to a detailed presentation of stochastic Schramm-Loewner evolutions (SLE) which are Markov processes describing interfaces in 2D critical systems. It starts with an informal discussion, using numerical simulations, of various examples of 2D growth processes and their connections with statistical mechanics. SLE is then introduced and Schramm's argument mapping conformally invariant interfaces to SLE is explained. A substantial part of the review is devoted to reveal the deep connections between statistical mechanics and processes, and more specifically to the present context, between 2D critical systems and SLE. Some of the remarkable properties of SLE are explained, together with the tools for computing with it. This review has been written with the aim of filling the gap between the mathematical and the physical literature on the subject.
2D bifurcations and Newtonian properties of memristive Chua's circuits
Marszalek, W.; Podhaisky, H.
2016-01-01
Two interesting properties of Chua's circuits are presented. First, two-parameter bifurcation diagrams of Chua's oscillatory circuits with memristors are presented. To obtain various 2D bifurcation images a substantial numerical effort, possibly with parallel computations, is needed. The numerical algorithm is described first and its numerical code for 2D bifurcation image creation is available for free downloading. Several color 2D images and the corresponding 1D greyscale bifurcation diagrams are included. Secondly, Chua's circuits are linked to Newton's law φ ''= F(t,φ,φ')/m with φ=\\text{flux} , constant m > 0, and the force term F(t,φ,φ') containing memory terms. Finally, the jounce scalar equations for Chua's circuits are also discussed.
CH2D+, the Search for the Holy Grail
Roueff, Evelyne; Gerin, Maryvonne; Lis, Dariusz C.; Wootten, Alwyn; Marcelino, Nuria; Cernicharo, Jose; Tercero, Belen
2013-10-01
CH2D+, the singly deuterated counterpart of CH3+, offers an alternative way to mediate formation of deuterated species at temperatures of several tens of Kelvin, as compared to the release of deuterated species from grains. We report a longstanding observational search for this molecular ion, whose rotational spectroscopy is not yet completely secure. We summarize the main spectroscopic properties of this molecule and discuss the chemical network leading to the formation of CH2D+, with explicit account of the ortho/para forms of H2, H3+, and CH3+. Astrochemical models support the presence of this molecular ion in moderately warm environments at a marginal level.
CH2D+, the Search for the Holy Grail
Roueff, E; Lis, D C; Wootten, A; Marcelino, N; cernicharo, J; Tercero, B
2013-01-01
CH2D+, the singly deuterated counterpart of CH3+, offers an alternative way to mediate formation of deuterated species at temperatures of several tens of K, as compared to the release of deuterated species from grains. We report a longstanding observational search for this molecular ion, whose rotational spectroscopy is not yet completely secure. We summarize the main spectroscopic properties of this molecule and discuss the chemical network leading to the formation of CH2D+, with explicit account of the ortho/para forms of H2, H3+ and CH3+. Astrochemical models support the presence of this molecular ion in moderately warm environments at a marginal level.
Design of the LRP airfoil series using 2D CFD
This paper describes the design and wind tunnel testing of a high-Reynolds number, high lift airfoil series designed for wind turbines. The airfoils were designed using direct gradient- based numerical multi-point optimization based on a Bezier parameterization of the shape, coupled to the 2D Navier-Stokes flow solver EllipSys2D. The resulting airfoils, the LRP2-30 and LRP2-36, achieve both higher operational lift coefficients and higher lift to drag ratios compared to the equivalent FFA-W3 airfoils
Isotropic 2D quadrangle meshing with size and orientation control
Pellenard, Bertrand
2011-12-01
We propose an approach for automatically generating isotropic 2D quadrangle meshes from arbitrary domains with a fine control over sizing and orientation of the elements. At the heart of our algorithm is an optimization procedure that, from a coarse initial tiling of the 2D domain, enforces each of the desirable mesh quality criteria (size, shape, orientation, degree, regularity) one at a time, in an order designed not to undo previous enhancements. Our experiments demonstrate how well our resulting quadrangle meshes conform to a wide range of input sizing and orientation fields.
2D-ACAR investigations of PPT aramid fibres
2D-ACAR spectra of PPT (poly(p-phenylene terephthalamide)) fibres which contain structural elongated open spaces in the crystallographic unit cell show a p-Ps peak with an elliptical cross-section and side lobes. Peak broadening suggests dimensions of ∝14-17 by 7-9 A for the open spaces and indicates some penetration of Ps into the interlayer spacing. The side lobes can be related to projected reciprocal lattice points and indicate Ps delocalization. 2D-ACAR has also been used to study the evolution of water release from the open spaces. (orig.)
EEG simulation by 2D interconnected chaotic oscillators
Research highlights: → ANN of 2D interconnected chaotic oscillators is explored for EEG simulation. → An inverse problem solution (PRCGA) is proposed. → Good matching between the simulated and experimental EEG signals has been achieved. - Abstract: An artificial neuronal network composed by 2D interconnected chaotic oscillators is explored for brain waves (EEG) simulation. For the inverse problem solution a parallel real-coded genetic algorithm (PRCGA) is proposed. In order to conduct thorough comparison between the simulated and target signal characteristics, a spectrum analysis of the signals is undertaken. A good matching between the theoretical and experimental EEG signals has been achieved. Numerical results of calculations are presented and discussed.
Design of the LRP airfoil series using 2D CFD
Zahle, Frederik; Bak, Christian; Sørensen, Niels N.;
2014-01-01
This paper describes the design and wind tunnel testing of a high-Reynolds number, high lift airfoil series designed for wind turbines. The airfoils were designed using direct gradient- based numerical multi-point optimization based on a Bezier parameterization of the shape, coupled to the 2D...... Navier-Stokes flow solver EllipSys2D. The resulting airfoils, the LRP2-30 and LRP2-36, achieve both higher operational lift coefficients and higher lift to drag ratios compared to the equivalent FFA-W3 airfoils....
Quantum process tomography by 2D fluorescence spectroscopy
Pachón, Leonardo A. [Grupo de Física Atómica y Molecular, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138 (United States); Marcus, Andrew H. [Department of Chemistry and Biochemistry, Oregon Center for Optics, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403 (United States); Aspuru-Guzik, Alán [Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138 (United States)
2015-06-07
Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed.
Synthesis of 2D materials in arc plasmas
In this article we review recent efforts focused on synthesis of two-dimensional (2D) materials in an arc-plasma based process with particular focus on graphene. We present state-of-the-art experimental data on various attempts to employ the arc plasma technique for the graphene synthesis and consider growth mechanisms including precipitation, surface-catalyzed processes and a substrate-independent approach. The potential of arc synthesis for the growth of other types of 2D materials and future prospects are discussed. (review article)
Nomenclature for human CYP2D6 alleles.
Daly, A K; Brockmöller, J; Broly, F; Eichelbaum, M; Evans, W E; Gonzalez, F J; Huang, J D; Idle, J R; Ingelman-Sundberg, M; Ishizaki, T; Jacqz-Aigrain, E; Meyer, U A; Nebert, D W; Steen, V M; Wolf, C R; Zanger, U M
1996-06-01
To standardize CYP2D6 allele nomenclature, and to conform with international human gene nomenclature guidelines, an alternative to the current arbitrary system is described. Based on recommendations for human genome nomenclature, we propose that alleles be designated by CYP2D6 followed by an asterisk and a combination of roman letters and arabic numerals distinct for each allele with the number specifying the key mutation and, where appropriate, a letter specifying additional mutations. Criteria for classification as a separate allele and protein nomenclature are also presented. PMID:8807658
Quantum process tomography by 2D fluorescence spectroscopy
Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed
VALERO BALLESTER, AIDA AMPARO
2015-01-01
El siguiente Trabajo Final de Grado llamado “Skimo” consiste en un teaser de animación 2D enfocado a ser finalizado el próximo año durante la realización del Diploma en Animación de personajes 2D del Máster de animación. Realizado en solitario como reto personal durante el curso presente, siendo la primera vez que trabajaba la animación. Para este proyecto he realizado toda la preproducción (layout, animática, storyboard, diseño de personajes, fondos, etc), animación en pape...
Hosomichi, Kazuo; Lee, Sungjay
2015-01-01
We study the system of M2-branes suspended between parallel M5-branes using ABJM model with a natural half-BPS boundary condition. For small separation between M5-branes, the worldvolume theory is shown to reduce to a 2D super Yang-Mills theory with some similarity to q-deformed Yang-Mills theory. The gauge coupling is related to the position of the branes in an interesting manner. The theory is considerably different from the 2D theory proposed for multiple "M-strings". We make a detailed comparison of elliptic genus of the two descriptions and find only a partial agreement.
Hosomichi, Kazuo
2014-01-01
We study the system of M2-branes suspended between parallel M5-branes using ABJM model with a natural half-BPS boundary condition. For small separation between M5-branes, the worldvolume theory is shown to reduce to a 2D N=(4,4) super Yang-Mills theory with some similarity to q-deformed Yang-Mills theory. The gauge coupling is related to the position of the branes in an interesting manner. The theory is considerably different from the 2D theory proposed for multiple "M-strings". We make a detailed comparison of elliptic genus of the two descriptions and find only a partial agreement.
The seismic monitoring network of Mt. Vesuvius
Massimo Orazi
2013-11-01
Full Text Available Mt. Vesuvius (southern Italy is one of the most hazardous volcanoes in the world. Its activity is currently characterized by moderate seismicity, with hypocenters located beneath the crater zone with depth rarely exceeding 5 km and magnitudes generally less than 3. The current configuration of the seismic monitoring network of Mt. Vesuvius consists of 18 seismic stations and 7 infrasound microphones. During the period 2006-2010 a seismic array with 48 channels was also operative. The station distribution provides appropriate coverage of the area around the volcanic edifice. The current development of the network and its geometry, under conditions of low seismic noise, allows locating seismic events with M<1. Remote instruments continuously transmit data to the main acquisition center in Naples. Data transmission is realized using different technological solutions based on UHF, Wi-Fi radio links, and TCP/IP client-server applications. Data are collected in the monitoring center of the Osservatorio Vesuviano (Italian National Institute of Geophysics and Volcanology, Naples section, which is equipped with systems for displaying and analyzing signals, using both real-time automatic and manual procedures. 24-hour surveillance allows to immediately communicate any significant anomaly to the Civil Protection authorities.
Tønning, Erik; Polders, Daniel; Callaghan, Paul T.; Engelsen, Søren B.
2007-09-01
This paper demonstrates how the multi-linear PARAFAC model can with advantage be used to decompose 2D diffusion-relaxation correlation NMR spectra prior to 2D-Laplace inversion to the T2- D domain. The decomposition is advantageous for better interpretation of the complex correlation maps as well as for the quantification of extracted T2- D components. To demonstrate the new method seventeen mixtures of wheat flour, starch, gluten, oil and water were prepared and measured with a 300 MHz nuclear magnetic resonance (NMR) spectrometer using a pulsed gradient stimulated echo (PGSTE) pulse sequence followed by a Carr-Purcell-Meiboom-Gill (CPMG) pulse echo train. By varying the gradient strength, 2D diffusion-relaxation data were recorded for each sample. From these double exponentially decaying relaxation data the PARAFAC algorithm extracted two unique diffusion-relaxation components, explaining 99.8% of the variation in the data set. These two components were subsequently transformed to the T2- D domain using 2D-inverse Laplace transformation and quantitatively assigned to the oil and water components of the samples. The oil component was one distinct distribution with peak intensity at D = 3 × 10 -12 m 2 s -1 and T2 = 180 ms. The water component consisted of two broad populations of water molecules with diffusion coefficients and relaxation times centered around correlation pairs: D = 10 -9 m 2 s -1, T2 = 10 ms and D = 3 × 10 -13 m 2 s -1, T2 = 13 ms. Small spurious peaks observed in the inverse Laplace transformation of original complex data were effectively filtered by the PARAFAC decomposition and thus considered artefacts from the complex Laplace transformation. The oil-to-water ratio determined by PARAFAC followed by 2D-Laplace inversion was perfectly correlated with known oil-to-water ratio of the samples. The new method of using PARAFAC prior to the 2D-Laplace inversion proved to have superior potential in analysis of diffusion-relaxation spectra, as it
Watanabe, T.; Matsumoto, N. [Railway Technical Research Inst., Kokubunji, Tokyo (Japan)
1996-11-01
Seismic evaluation and reinforcement method for rigid frame bridges which have suffered great damages from the Hyogoken-Nanbu Earthquake as well as related future problems are discussed. Earthquake of the same magnitude as that of the Hyogoken-Nanbu Earthquake is assumed, and the antiseismatic target is set to the strength which can withstand the collapse of structures. For viaducts judged by seismic evaluation as requiring antiseismatic reinforcement, effective and efficient construction method is selected, and reinforcement design is made to improve the antiseismatic performance which satisfies the antiseismatic target. The procedure for antiseismatic reinforcement design of the existing viaducts may be different according to the employed reinforcement method, but the checking method is the same as that for new structures. The same kind of analytical model as that used for seismic evaluation is used for structural analysis. As the methods for retrofitting column members of rigid frame bridges, lining methods using steel plates, fiber sheet, RC, and resin have been proposed. It is advisable to investigate carefully the corrosion resistance, weather proof, and alkali resistance for each retrofitting method. 10 refs., 2 figs., 1 tab.
The Effects of Heterogeneities on Seismic Wave Propagation in the Climax Stock
Webb, C. H.; Snelson, C. M.; White, R. L.; Emmitt, R. F.; Barker, D. L.; Abbott, R. E.; Bonal, N. D.
2011-12-01
. The focus of this study is two-fold: (1) the geophone array that was focused over the SPE shot and (2) a high-resolution seismic profile that was recently acquired at the field site. The geophone array was placed radially around the SPE shot in five directions with 100m spacing and out to a distance of 2km. The high-resolution profile was about 475m in length with station and shot spacing of 5m using a 7000lb mini-vibe as a source. In both data sets, the first arrivals will be used to develop velocity models. For the geophone array, 1-D P-wave velocity models will be developed to determine an average apparent velocity of the Climax Stock. The high-resolution data will be used to develop a 2-D P-wave velocity model along the seismic profile. This is in an effort to elucidate the water table in more detail and provide additional information on the near-surface structure. These results will be used in the overall modeling effort to fully characterize the test bed and develop a physics-based model to simulate seismic energy from the SPE events. This work was done by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy.
朱冬飞; 习志强
2015-01-01
结合某工程实例，对层间隔震技术在高层建筑中的应用做了详细阐述。采用软件PKPM和ETABS分别建立模型，并运用ETABS对该结构进行动力时程分析。通过对隔震结构与非隔震结构的计算结果进行分析可知，采用隔震技术后，剪力和倾覆力矩以及层间位移角显著减小，降低了地震对结构的反应。从而进一步为层间隔震技术在类似的建筑中的广泛应用提供了一个良好的实例。%Based on engineering, the application of story isolation technology in the high-rise building is presented. The model made by PKPM and ETABS structure analysis software, The model time history analysis of the structure is investigated by ETABS. By isolation and the isolation of the structure of the calculation result is analyzed. After using story isolation technology, shear force and overturning moment and interlayer displacement angle is greatly reduced. Thus significantly reduce the seismic response of the structure .Further, the accuracy of calculation analysis and the security of story isolation structure are verified.
New 2-D dosimetric technique for radiotherapy based on planar thermoluminescent detectors
At the Inst. of Nuclear Physics of the Polish Academy of Sciences (IFJ) in Krakow, a two-dimensional (2-D) thermoluminescence (TL) dosimetry system was developed within the MAESTRO (Methods and Advanced Equipment for Simulation and Treatment in Radio-Oncology) 6 Framework Programme and tested by evaluating 2-D dose distributions around radioactive sources. A thermoluminescent detector (TLD) foil was developed, of thickness 0.3 mm and diameter 60 mm, containing a mixture of highly sensitive LiF:Mg,Cu,P powder and Ethylene Tetrafluoroethylene (ETFE) polymer. Foil detectors were irradiated with 226Ra brachytherapy sources and a 90Sr/90Y source. 2-D dose distributions were evaluated using a prototype planar (diameter 60 mm) reader, equipped with a 12 bit Charge Coupled Devices (CCD) PCO AG camera, with a resolution of 640 x 480 pixels. The new detectors, showing a spatial resolution better than 0.5 mm and a measurable dose range typical for radiotherapy, can find many applications in clinical dosimetry. Another technology applicable to clinical dosimetry, also developed at IFJ, is the Si microstrip detector of size 95 x 95 mm2, which may be used to evaluate the dose distribution with a spatial resolution of 120 μm along one direction, in real-time mode. The microstrip and TLD technology will be further improved, especially to develop detectors of larger area, and to make them applicable to some advanced radiotherapy modalities, such as intensity modulated radiotherapy (IMRT) or proton radiotherapy. (authors)
Walid Aydi
2014-08-01
Full Text Available The human iris recognition system is an attractive technology for identity authentication. This technology benefits from random variations in the features of the iris. Usually, an iris recognition system has 4 modules: segmentation, normalization, feature extraction and iris templates matching. This work is mainly focused on iris texture analysis and templates matching which are 2 essential processes in the iris recognition system. The proposed approach extracts robust phase information using filtering (both monogenic and 2D log Gabor. Then, two types of distance measures such as modified HD and Jaccard distances are chosen as metrics for recognition. We comparatively evaluate the performance of the proposed method and the fractal analysis using CASIA-V3.0 iris image databases. The obtained results with monogenic and 2D-Log Gabor filters were highly promising and led to significantly improved performance in speed and accuracy. With dissimilarity modified Hamming distance; we improved the accuracy of the iris recognition system, with a FAR equal to 3% and a speed at least 8 times..
Burar seismic station: evaluation of seismic performance
A new seismic monitoring system, the Bucovina Seismic Array (BURAR), has been established since July 2002, in the Northern part of Romania, in a joint effort of the Air Force Technical Applications Center, USA, and the National Institute for Earth Physics (NIEP), Romania. The small-aperture array consists of 10 seismic sensors (9 vertical short-period and one three-component broad band) located in boreholes and distributed in a 5 x 5 km2 area. At present, the seismic data are continuously recorded by the BURAR and transmitted in real-time to the Romanian National Data Center in Bucharest and National Data Center of the USA, in Florida. Based on the BURAR seismic information gathered at the National Data Center, NIEP (ROMNDC), in the August 2002 - December 2004 time interval, analysis and statistical assessments were performed. Following the preliminary processing of the data, several observations on the global performance of the BURAR system were emphasized. Data investigation showed an excellent efficiency of the BURAR system particularly in detecting teleseismic and regional events. Also, a statistical analysis for the BURAR detection capability of the local Vrancea events was performed in terms of depth and magnitude for the year 2004. The high signal detection capability of the BURAR resulted, generally, in improving the location solutions for the Vrancea seismic events. The location solution accuracy is enhanced when adding BURAR recordings, especially in the case of low magnitude events (recorded by few stations). The location accuracy is increased, both in terms of constraining hypocenter depth and epicentral coordinates. Our analysis certifies the importance of the BURAR system in NIEP efforts to elaborate seismic bulletins. Furthermore, the specific procedures for array data processing (beam forming, f-k analysis) increase significantly the signal-to-noise ratio by summing up the coherent signals from the array components, and ensure a better accuracy of
Optimizing Seismic Monitoring Networks for EGS and Conventional Geothermal Projects
Kraft, Toni; Herrmann, Marcus; Bethmann, Falko; Stefan, Wiemer
2013-04-01
In the past several years, geological energy technologies receive growing attention and have been initiated in or close to urban areas. Some of these technologies involve injecting fluids into the subsurface (e.g., oil and gas development, waste disposal, and geothermal energy development) and have been found or suspected to cause small to moderate sized earthquakes. These earthquakes, which may have gone unnoticed in the past when they occurred in remote sparsely populated areas, are now posing a considerable risk for the public acceptance of these technologies in urban areas. The permanent termination of the EGS project in Basel, Switzerland after a number of induced ML~3 (minor) earthquakes in 2006 is one prominent example. It is therefore essential for the future development and success of these geological energy technologies to develop strategies for managing induced seismicity and keeping the size of induced earthquakes at a level that is acceptable to all stakeholders. Most guidelines and recommendations on induced seismicity published since the 1970ies conclude that an indispensable component of such a strategy is the establishment of seismic monitoring in an early stage of a project. This is because an appropriate seismic monitoring is the only way to detect and locate induced microearthquakes with sufficient certainty to develop an understanding of the seismic and geomechanical response of the reservoir to the geotechnical operation. In addition, seismic monitoring lays the foundation for the establishment of advanced traffic light systems and is therefore an important confidence building measure towards the local population and authorities. We have developed an optimization algorithm for seismic monitoring networks in urban areas that allows to design and evaluate seismic network geometries for arbitrary geotechnical operation layouts. The algorithm is based on the D-optimal experimental design that aims to minimize the error ellipsoid of the linearized
The evaluation system of the 2-D scanning mirror based on CMOS sensor
Zeng, Gui-ying; Xie, Yuan; Chen, Jin-xing
2010-10-01
The high precision two-dimension scanning control technique is being developed for the next geosynchronous satellites FY-4 satellites which is using the three-axis stabilization stages. How to evaluate the point and scanning precision of the scanning mirror is one of the most important technologies. This paper describes the optoelectronic measure method based on CMOS sensors to evaluate the point and scanning precision of the scanning mirror in the laboratory, which is a 2-D dynamic angle measurement system. Some technologies, such as the sup-pixel orientation technology and the CMOS ROI technology, are used in the measurement system. The research shows that the angle measurement system based on IBIS-6600CMOS sensors can attain the 20°× 20° field of view, 2" accuracy, and 1Kframes/s speed. But the system is sensitive to the environment and it can only be worked in the laboratory.
CYP2D6基因与药物代谢%CYP2D6 gene and drug metabolism
施安国
2003-01-01
细胞色素P-450(CYP)中的CYP2D6酶在抗抑郁药、安定药及某些抗心律失常药的代谢中起重要作用,CYP2D6基因位于22号常染色体上为隐性遗传,CYP2D6基因呈多态性约有70余种等位基因变异型,也存在特异人群差别,因而导致所编码的酶活性不同,这些数据有助于理解药物代谢的个体差异、有助于预测药物之间的相互作用.
Kono, Akihiro; Sato, Toshinori; Shinohara, Masanao; Mochizuki, Kimihiro; Yamada, Tomoaki; Uehira, Kenji; Shinbo, Takashi; Machida, Yuuya; Hino, Ryota; Azuma, Ryosuke
2016-04-01
Off the Boso Peninsula, central Japan, where the Sagami Trough is in the south and the Japan Trench is in the east, there is a triple junction where the Pacific plate (PAC), the Philippine Sea plate (PHS) and the Honshu island arc (HIA) meet each other. In this region, the PAC subducts beneath the PHS and the HIA, and the PHS subducts beneath the HIA. Due to the subduction of 2 oceanic plates, numerous seismic events took place in the past. In order to understand these events, it is important to image structure of these plates. Hence, many researchers attempted to reveal the substructure from natural earthquakes and seismic experiments. Because most of the seismometers are placed inland area and the regular seismicity off Boso is inactive, it is difficult to reveal the precise substructure off Boso area using only natural earthquakes. Although several marine seismic experiments using active sources were conducted, vast area remains unclear off Boso Peninsula. In order to improve the situation, a marine seismic experiment, using airgun as an active source, was conducted from 30th July to 4th of August, 2009. The survey line has 216 km length and 20 Ocean Bottom Seismometers (OBSs) were placed on it. We estimated 2-D P-wave velocity structure from the airgun data using the PMDM (Progressive Model Development Method; Sato and Kenett, 2000) and the FAST (First Arrival Seismic Tomography ; Zelt and Barton, 1998). Furthermore, we identified the probable reflection phases from the data and estimated the location of reflectors using Travel time mapping method (Fujie et al. 2006). We found some reflection phases from the data, and the reflectors are located near the region where P-wave velocity is 5.0 km/s. We interpret that the reflectors indicate the plate boundary between the PHS and the HIA. The variation of the intensity of reflection along the upper surface of PHS seems to be consistent with the result from previous reflection seismic experiment conducted by Kimura et
NIE Shan-shan; CHU Tian-shu
2012-01-01
To figure out the influence of isotope effect on product polarizations of the N(2D)+D2 reactive system and its isotope variants,quasi-classical trajectory(QCT) calculation was performed on Ho's potential energy surfacc(PES) of 2A" state.Product polarizations such as product distributions ofP(θr),P(φr) and P(θr,φr),as well as the generalized polarization-dependent differential cross sections(PDDCSs) were discussed and compared in detail among the four product channels of the title reactions.Both the intermolecular and intramolecular isotope effects were proved to be influential on product polarizations.
2D Active Antenna Array Design for FD-MIMO System and Antenna Virtualization Techniques
Ioannis Tzanidis
2015-01-01
Full Text Available Full dimension MIMO (FD-MIMO is one of the key technologies presently studied in the 3GPP for the next generation long-term evolution advanced (LTE-A systems. By incorporating FD-MIMO into LTE/LTE-A systems, it is expected that system throughput will be drastically improved beyond what is possible in conventional LTE systems. This paper presets details on the 2D active antenna array design for FD-MIMO systems supporting 32 antenna elements. The FD-MIMO system allows for dynamic and adaptive precoding to be performed jointly across all antennas thus achieving more directional transmissions in the azimuth and elevation domains simultaneously, to a larger number of users. Finally, we discuss 2D antenna array port virtualization techniques for creating beams with wide coverage, necessary for broadcasting signals to all users within a sector, such as the CRS (Common Reference Signal.
Partially Loaded Cavity Analysis by Using the 2-D FDTD Method
A compact two-dimensional (2-D) finite-difference time-domain (FDTD) method is proposed to calculate the resonant frequencies and quality factors of a partially loaded cavity that is uniform in the z-direction and has an arbitrary cross section in the x—y plane. With the description of z dependence by kz, the three-dimensional (3-D) problem can be transformed into a 2-D problem. Therefore, less memory and CPU time are required as compared to the conventional 3-D FDTD method. Three representative examples, a half-loaded rectangular cavity, an inhomogeneous cylindrical cavity and a cubic cavity loaded with dielectric post, are presented to validate the utility and efficiency of the proposed method. (cross-disciplinary physics and related areas of science and technology)
Flap Gap Oscillatory Blowing on 2D and 2.5D Wing
Cătălin NAE
2009-12-01
Full Text Available Here we present preliminary results obtained in developing an active flow control system for highlift systems at advanced TRL level. The work is based on theoretical and experimental workperformed in AVERT EU FP6 project where the oscillatory flap gap blowing system was designedand tested on a INCAS F15 2D wing model. Pressure data and global loads have been recorded fora complex evaluation of the basic flow control mechanism. In 2.5D test cases this work has beenextended so that the proposed system may be selected as a mature technology in the JTI Clean Sky,Smart Fixed Wing Aircraft ITD. For this goal, new experimental setup was used and also updatedelectronics for the blowing system have been introduces. This was complemented by a newextension for the data acquisition system and visualization tools. Finally global correlations forbasic lift increments have been compared with the reference 2D case and analysed with respect tothe system efficiency.
Microstructure and mechanical properties of 2D woven Grf/Al composite
ZHANG Yun-he; WU Gao-hui; CHEN Guo-qin; XIU Zi-yang; ZHANG Qiang; WANG Chun-yu
2006-01-01
A 2D woven graphite fibers reinforced aluminum matrix composite with 50%Grf (volume fraction) was fabricated by the squeeze-casting technology, and its microstructure and mechanical properties were investigated. The results show that the composite is dense, the graphite fibers are distributed uniformly in the composite. TEM observation indicates the bonding between fiber and matrix is good and little interfacial reaction is found in the Grf/Al composite. This is attributed to the better stability of graphite fiber and the fabrication process minimizing the contact time between fiber with matrix at high temperatures. The 2D woven Grf/Al composite exhibites better mechanical properties with tensile strength, bending strength and elastic modulus of 366.2, 519.7 and 110.7 GPa, respectively. SEM images suggeste that the fracture is irregular and some pulled-out fibers are found, which indicats that the high strength of fiber is not degraded.
Creation of a scalar potential in 2D dilaton gravity
Behrndt, K.
1994-01-01
We investigate quantum corrections of the 2-d dilaton gravity near the singularity. Our motivation comes from a s-wave reduced cosmological solution which is classically singular in the scalar fields (dilaton and moduli). As result we find, that the singularity disappears and a dilaton/moduli potential is created.
ELLIPT2D: A Flexible Finite Element Code Written Python
The use of the Python scripting language for scientific applications and in particular to solve partial differential equations is explored. It is shown that Python's rich data structure and object-oriented features can be exploited to write programs that are not only significantly more concise than their counter parts written in Fortran, C or C++, but are also numerically efficient. To illustrate this, a two-dimensional finite element code (ELLIPT2D) has been written. ELLIPT2D provides a flexible and easy-to-use framework for solving a large class of second-order elliptic problems. The program allows for structured or unstructured meshes. All functions defining the elliptic operator are user supplied and so are the boundary conditions, which can be of Dirichlet, Neumann or Robbins type. ELLIPT2D makes extensive use of dictionaries (hash tables) as a way to represent sparse matrices.Other key features of the Python language that have been widely used include: operator over loading, error handling, array slicing, and the Tkinter module for building graphical use interfaces. As an example of the utility of ELLIPT2D, a nonlinear solution of the Grad-Shafranov equation is computed using a Newton iterative scheme. A second application focuses on a solution of the toroidal Laplace equation coupled to a magnetohydrodynamic stability code, a problem arising in the context of magnetic fusion research
Wilson loop in 2d noncommutative gauge theories
Valtancoli, Paolo
2009-01-01
We reconsider the perturbative expansion of the Wilson loop in 2d noncommutative gauge theories, using an improved integration method. For the class of maximally crossed diagrams in the $\\theta \\to \\infty$ limit we find an intriguing formula, easily generalizable to all orders in perturbation theory.
2D fluid simulations of interchange turbulence with ion dynamics
Nielsen, Anders Henry; Madsen, Jens; Xu, G. S.;
2013-01-01
In this paper we present a first principle global two-dimensional fluid model. The HESEL (Hot Edge SOL Electrostatic) model is a 2D numerical fluid code, based on interchange dynamics and includes besides electron also the ion pressure dynamic. In the limit of cold ions the model almost reduces to...
The 2dF Galaxy Redshift Survey: Preliminary Results
Maddox, S.
1997-01-01
Spectroscopic observations for a new survey of 250 000 galaxy redshifts are underway, using the 2dF instrument at the AAT. The input galaxy catalogue and commissioning data are described. The first result from the preliminary data is a new estimate of the galaxy luminosity function at =0.1.
H on He: sticking and 2d-superfluidity
The sticking coefficient, which governs the sticking time τs, is discussed for high surface-coverage conditions. We point out that τs must remain large compared to a characteristic vortex diffusion time, if the system is to display 2d-superfluidity
Lattice simulation of 2d Gross-Neveu-type models
Full text: We discuss a Monte Carlo simulation of 2d Gross-Neveu-type models on the lattice. The four-Fermi interaction is written as a Gaussian integral with an auxiliary field and the fermion determinant is included by reweighting. We present results for bulk quantities and correlators and compare them to a simulation using a fermion-loop representation. (author)
Interactive Exploratory Visualization of 2D Vector Fields
Isenberg, Tobias; Everts, Maarten H.; Grubert, Jens; Carpendale, Sheelagh
2008-01-01
In this paper we present several techniques to interactively explore representations of 2D vector fields. Through a set of simple hand postures used on large, touch-sensitive displays, our approach allows individuals to custom-design glyphs (arrows, lines, etc.) that best reveal patterns of the unde
The toroidal Hausdorff dimension of 2d Euclidean quantum gravity
Ambjorn, Jan; Budd, Timothy George
2013-01-01
The lengths of shortest non-contractible loops are studied numerically in 2d Euclidean quantum gravity on a torus coupled to conformal field theories with central charge less than one. We find that the distribution of these geodesic lengths displays a scaling in agreement with a Hausdorff dimension...
Resolution deconvolution method applied to 2D-ACAR measurements
An inexpensive way to achieve high resolution 2D-ACAR measurements is to utilize resolution deconvolution techniques. We developed a resolution deconvolution method which avoids noise amplification and is applicable to the 3D reconstruction method using Fourier-Bessel transforms. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Validation of minor species of the MIPAS2D database
Enzo Papandrea; Stefano Casadio; Enrico Arnone; Massimo Carlotti; Elisa Castelli; Marta De Laurentis; Bianca Maria Dinelli
2014-01-01
The MIPAS2D [Dinelli et al., 2010] database has been developed applying the tomographic analysis technique GMTR [Carlotti et al., 2001] to measurements acquired in the nominal observation mode of the complete MIPAS (Michelson Interferometer for Passive Atmosphere Sounding) [Fischer et al., 2008] mission. […
Validation of minor species of the MIPAS2D database
Enzo Papandrea
2014-01-01
Full Text Available The MIPAS2D [Dinelli et al., 2010] database has been developed applying the tomographic analysis technique GMTR [Carlotti et al., 2001] to measurements acquired in the nominal observation mode of the complete MIPAS (Michelson Interferometer for Passive Atmosphere Sounding [Fischer et al., 2008] mission. […
High resolution 2D image upconversion of incoherent light
Dam, Jeppe Seidelin; Pedersen, Christian; Tidemand-Lichtenberg, Peter
2011-01-01
An optimized method for continuous wave 2-dimensional (2-D) upconversion of incoherent or thermal light is demonstrated and quantified. Using standard resolution targets a resolution of 200×1000 pixels is obtained. The suggested method is viewed in scope of modern CCD cameras operating in the near...
On the phase diagram of 2d Lorentzian Quantum Gravity
Ambjørn, Jan; Anagnostopoulos, K. N.; Loll, R.
The phase diagram of 2d Lorentzian quantum gravity (LQG) coupled to conformal matter is studied. A phase transition is observed at c = c crit ( {1}/{2} < c crit < 4) which can be thought of as the analogue of the c = 1 barrier of Euclidean quantum gravity (EQG). The non-trivial properties of the quantum geometry are discussed.
2D kinematics of simulated disc merger remnants
Jesseit, Roland; Naab, Thorsten; Peletier, Reynier F.; Burkert, Andreas
2007-01-01
We present a 2D kinematic analysis for a sample of simulated binary disc merger remnants with mass ratios 1:1 and 3:1. For the progenitor discs we used pure stellar models as well as models with 10 per cent of their mass in gas. A multitude of phenomena also observed in real galaxies are found in th
On the sensitivity of the 2D electromagnetic invisibility cloak
A computational study of the sensitivity of the two dimensional (2D) electromagnetic invisibility cloaks is performed with the finite element method. A circular metallic object is covered with the cloak and the effects of absorption, gain and disorder are examined. Also the effect of covering the cloak with a thin dielectric layer is studied.
On the sensitivity of the 2D electromagnetic invisibility cloak
Kaproulias, S. [Department of Physics, University of Patras, 26504 Patras (Greece); Sigalas, M.M., E-mail: sigalas@upatras.gr [Department of Materials Science, University of Patras, 26504 Patras (Greece)
2012-10-15
A computational study of the sensitivity of the two dimensional (2D) electromagnetic invisibility cloaks is performed with the finite element method. A circular metallic object is covered with the cloak and the effects of absorption, gain and disorder are examined. Also the effect of covering the cloak with a thin dielectric layer is studied.
Strain Engineering of the Electronic Structure of 2D Materials
Frank, Otakar; del Corro, Elena; Pea-Álvarez, M.; Morales-García, A.; Bouša, M.; Řáhová, Jaroslava; Kavan, Ladislav; Kalbáč, Martin
Brno : Tanger Ltd., 2015. s. 33-33. ISBN 978-80-87294-59-8. [Nanocon 2015. International Conference /7./. 14.10.2015-16.10.2015, Ostrava] R&D Projects: GA ČR GA14-15357S Institutional support: RVO:61388955 Keywords : graphene * electronic structure * 2D materials Subject RIV: CF - Physical ; Theoretical Chemistry
A VARIATIONAL MODEL FOR 2-D MICROPOLAR BLOOD FLOW
He Ji-huan
2003-01-01
The micropolar fluid model is an essential generalization of the well-established Navier-Stokes model in the sense that it takes into account the microstructure of the fluid.This paper is devolted to establishing a variational principle for 2-D incompressible micropolar blood flow.
Detection of N$_2$D$^+$ in a protoplanetary disk
Huang, Jane
2015-01-01
Observations of deuterium fractionation in the solar system, and in interstellar and circumstellar material, are commonly used to constrain the formation environment of volatiles. Toward protoplanetary disks, this approach has been limited by the small number of detected deuterated molecules, i.e. DCO$^+$ and DCN. Based on ALMA Cycle 2 observations toward the disk around the T Tauri star AS 209, we report the first detection of N$_2$D$^+$ (J=3-2) in a protoplanetary disk. These data are used together with previous Submillimeter Array observations of N$_2$H$^+$ (J=3-2) to estimate a disk-averaged D/H ratio of 0.3--0.5, an order of magnitude higher than disk-averaged ratios previously derived for DCN/HCN and DCO$^+$/HCO$^+$ around other young stars. The high fractionation in N$_2$H$^+$ is consistent with model predictions. The presence of abundant N$_2$D$^+$ toward AS 209 also suggests that N$_2$D$^+$ and the N$_2$D$^+$/N$_2$H$^+$ ratio can be developed into effective probes of deuterium chemistry, kinematics, ...
NKG2D ligands mediate immunosurveillance of senescent cells.
Sagiv, Adi; Burton, Dominick G A; Moshayev, Zhana; Vadai, Ezra; Wensveen, Felix; Ben-Dor, Shifra; Golani, Ofra; Polic, Bojan; Krizhanovsky, Valery
2016-02-01
Cellular senescence is a stress response mechanism that limits tumorigenesis and tissue damage. Induction of cellular senescence commonly coincides with an immunogenic phenotype that promotes self-elimination by components of the immune system, thereby facilitating tumor suppression and limiting excess fibrosis during wound repair. The mechanisms by which senescent cells regulate their immune surveillance are not completely understood. Here we show that ligands of an activating Natural Killer (NK) cell receptor (NKG2D), MICA and ULBP2 are consistently up-regulated following induction of replicative senescence, oncogene-induced senescence and DNA damage - induced senescence. MICA and ULBP2 proteins are necessary for efficient NK-mediated cytotoxicity towards senescent fibroblasts. The mechanisms regulating the initial expression of NKG2D ligands in senescent cells are dependent on a DNA damage response, whilst continuous expression of these ligands is regulated by the ERK signaling pathway. In liver fibrosis, the accumulation of senescent activated stellate cells is increased in mice lacking NKG2D receptor leading to increased fibrosis. Overall, our results provide new insights into the mechanisms regulating the expression of immune ligands in senescent cells and reveal the importance of NKG2D receptor-ligand interaction in protecting against liver fibrosis. PMID:26878797
Seismic SMHD -- Rotational Sensor Development and Deployment
Laughlin, Darren [Applied Technology Associates; Pierson, Bob [Applied Technology Associates; Brune, Bob [Consultant
2016-06-20
The U.S. Department of Energy (DOE) and Applied Technology Associates (ATA) are funding development and deployment of a new generation of rotational sensors for validation of rotational seismic applications. The sensors employ Magnetohydrodynamic (MHD) principles with broadband response, high dynamic range, low noise floor, proven ruggedness, and high repeatability. This paper presents current status of sensor development and deployment opportunities.
New interactive software for seismic data processing
Doubravová, Jana; Horálek, Josef
Praha: Institute of Chemical Technology, 2013 - (Byron, P.) ISBN 978-80-7080-863-4. [Technical Computing Prague 2013. Praha (CZ), 13.11.2013] Institutional support: RVO:67985530 Keywords : MATLAB * seismic data processing * Seismon_WB Subject RIV: DC - Siesmology, Volcanology, Earth Structure
Rowley-Neale, Samuel J.; Fearn, Jamie M.; Brownson, Dale A. C.; Smith, Graham C.; Ji, Xiaobo; Banks, Craig E.
2016-08-01
Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm-2 modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR.Two-dimensional molybdenum disulphide nanosheets
Miah, K.; Bellefleur, G.; Schetselaar, E.
2013-12-01
are essential to determine whether any 2D/3D active survey would be worth conducting. In situ density and velocity logs, and thus, acoustic impedance provide first order control on reflectivity of various lithologies. In this abstract, we analyzed well logs from 12 drill holes geographically located in the northern Manitoba, Canada, in an attempt to characterize lithologies based on their seismic properties. Velocities, density, acoustic impedance and Poisson's ratio of major lithologies were compared among each other. Massive sulphide and Diorite have higher average acoustic impedance than the others. Our quantitative analysis suggests that alteration has considerable effect on overall acoustic impedance of Argillite, Felsic Volcanic and Stringer Sulphide rocks. This can be useful in selecting values of model parameters for seismic wave propagation simulation, which can be used to compare with seismic survey data. In addition, core sample analysis from the same drill holes aided our understanding of mineralization, alteration, and overall composition of different rocks under consideration.
2d-LCA - an alternative to x-wires
Puczylowski, Jaroslaw; Hölling, Michael; Peinke, Joachim
2014-11-01
The 2d-Laser Cantilever Anemometer (2d-LCA) is an innovative sensor for two-dimensional velocity measurements in fluids. It uses a micostructured cantilever made of silicon and SU-8 as a sensing element and is capable of performing mesurements with extremly high temporal resolutions up to 150 kHz. The size of the cantilever defines its spatial resolution, which is in the order of 150 μm only. Another big feature is a large angular range of 180° in total. The 2d-LCA has been developed as an alternative measurement method to x-wires with the motivation to create a sensor that can operate in areas where the use of hot-wire anemometry is difficult. These areas include measurements in liquids and in near-wall or particle-laden flows. Unlike hot-wires, the resolution power of the 2d-LCA does not decrease with increasing flow velocity, making it particularly suitable for measurements in high speed flows. Comparative measurements with the 2d-LCA and hot-wires have been carried out in order to assess the performance of the new anemometer. The data of both measurement techniques were analyzed using the same stochastic methods including a spectral analysis as well as an inspection of increment statistics and structure functions. Furthermore, key parameters, such as mean values of both velocity components, angles of attack and the characteristic length scales were determined from both data sets. The analysis reveals a great agreement between both anemometers and thus confirms the new approach.
赵曦; 姬建中; 常俊; 孙哲
2014-01-01
随着社会经济和信息化技术的快速发展，面向社会提供更为便捷有效的信息共享服务已成为政府和民众的普遍所需。在总结分析以往地震数据服务中存在的不足和问题的基础上，介绍了WebGIS在构建地震数据服务方面的优势和特点，并就基于WebGIS的地震数据服务系统的设计思路和主要功能，以及基于浏览器的大规模地震目录数据的地图发布、地震事件波形数据的快速读取和可视化展示、连续观测数据的图形化动态展示等关键技术进行说明和讨论。最后基于陕西省地震监测数据，建立了基于WebGIS的陕西省地震观测数据服务系统。%With the rapid development of social economy and information technology,providing more conven-ient and effective information sharing service to the community has become widely needed by the government and people.Based on summarizing and analyzing the problems and deficiencies of the previous seismic data in the serv-ice,advantages and characteristics of WebGIS in the construction of earthquake data services are introduced,Some related key technologies are meanwhile described and discussed,including the design idea and main functions of seismic data service system based on WebGIS,fast reading and visual display of earthquake waveform data,and the dynamic graphical display of continuous observation data.Finally,according to earthquake monitoring data of Shaanxi Province,a WebGIS-based Shaanxi earthquake observation data service system is built.
Seismic texture classification. Final report
Vinther, R.
1997-12-31
The seismic texture classification method, is a seismic attribute that can both recognize the general reflectivity styles and locate variations from these. The seismic texture classification performs a statistic analysis for the seismic section (or volume) aiming at describing the reflectivity. Based on a set of reference reflectivities the seismic textures are classified. The result of the seismic texture classification is a display of seismic texture categories showing both the styles of reflectivity from the reference set and interpolations and extrapolations from these. The display is interpreted as statistical variations in the seismic data. The seismic texture classification is applied to seismic sections and volumes from the Danish North Sea representing both horizontal stratifications and salt diapers. The attribute succeeded in recognizing both general structure of successions and variations from these. Also, the seismic texture classification is not only able to display variations in prospective areas (1-7 sec. TWT) but can also be applied to deep seismic sections. The seismic texture classification is tested on a deep reflection seismic section (13-18 sec. TWT) from the Baltic Sea. Applied to this section the seismic texture classification succeeded in locating the Moho, which could not be located using conventional interpretation tools. The seismic texture classification is a seismic attribute which can display general reflectivity styles and deviations from these and enhance variations not found by conventional interpretation tools. (LN)
2D-2D tunneling field-effect transistors using WSe2/SnSe2 heterostructures
Roy, Tania; Tosun, Mahmut; Hettick, Mark; Ahn, Geun Ho; Hu, Chenming; Javey, Ali
2016-02-01
Two-dimensional materials present a versatile platform for developing steep transistors due to their uniform thickness and sharp band edges. We demonstrate 2D-2D tunneling in a WSe2/SnSe2 van der Waals vertical heterojunction device, where WSe2 is used as the gate controlled p-layer and SnSe2 is the degenerately n-type layer. The van der Waals gap facilitates the regulation of band alignment at the heterojunction, without the necessity of a tunneling barrier. ZrO2 is used as the gate dielectric, allowing the scaling of gate oxide to improve device subthreshold swing. Efficient gate control and clean interfaces yield a subthreshold swing of ˜100 mV/dec for >2 decades of drain current at room temperature, hitherto unobserved in 2D-2D tunneling devices. The subthreshold swing is independent of temperature, which is a clear signature of band-to-band tunneling at the heterojunction. A maximum switching ratio ION/IOFF of 107 is obtained. Negative differential resistance in the forward bias characteristics is observed at 77 K. This work bodes well for the possibilities of two-dimensional materials for the realization of energy-efficient future-generation electronics.
Absorption and scattering 2-D volcano images from numerically calculated space-weighting functions
Del Pezzo, Edoardo; Ibañez, Jesus; Prudencio, Janire; Bianco, Francesca; De Siena, Luca
2016-08-01
Short-period small magnitude seismograms mainly comprise scattered waves in the form of coda waves (the tail part of the seismogram, starting after S waves and ending when the noise prevails), spanning more than 70 per cent of the whole seismogram duration. Corresponding coda envelopes provide important information about the earth inhomogeneity, which can be stochastically modeled in terms of distribution of scatterers in a random medium. In suitable experimental conditions (i.e. high earth heterogeneity), either the two parameters describing heterogeneity (scattering coefficient), intrinsic energy dissipation (coefficient of intrinsic attenuation) or a combination of them (extinction length and seismic albedo) can be used to image Earth structures. Once a set of such parameter couples has been measured in a given area and for a number of sources and receivers, imaging their space distribution with standard methods is straightforward. However, as for finite-frequency and full-waveform tomography, the essential problem for a correct imaging is the determination of the weighting function describing the spatial sensitivity of observable data to scattering and absorption anomalies. Due to the nature of coda waves, the measured parameter couple can be seen as a weighted space average of the real parameters characterizing the rock volumes illuminated by the scattered waves. This paper uses the Monte Carlo numerical solution of the Energy Transport Equation to find approximate but realistic 2-D space-weighting functions for coda waves. Separate images for scattering and absorption based on these sensitivity functions are then compared with those obtained with commonly used sensitivity functions in an application to data from an active seismic experiment carried out at Deception Island (Antarctica). Results show that these novel functions are based on a reliable and physically grounded method to image magnitude and shape of scattering and absorption anomalies. Their
Efficiency of Pareto joint inversion of 2D geophysical data using global optimization methods
Miernik, Katarzyna; Bogacz, Adrian; Kozubal, Adam; Danek, Tomasz; Wojdyła, Marek
2016-04-01
Pareto joint inversion of two or more sets of data is a promising new tool of modern geophysical exploration. In the first stage of our investigation we created software enabling execution of forward solvers of two geophysical methods (2D magnetotelluric and gravity) as well as inversion with possibility of constraining solution with seismic data. In the algorithm solving MT forward solver Helmholtz's equations, finite element method and Dirichlet's boundary conditions were applied. Gravity forward solver was based on Talwani's algorithm. To limit dimensionality of solution space we decided to describe model as sets of polygons, using Sharp Boundary Interface (SBI) approach. The main inversion engine was created using Particle Swarm Optimization (PSO) algorithm adapted to handle two or more target functions and to prevent acceptance of solutions which are non - realistic or incompatible with Pareto scheme. Each inversion run generates single Pareto solution, which can be added to Pareto Front. The PSO inversion engine was parallelized using OpenMP standard, what enabled execution code for practically unlimited amount of threads at once. Thereby computing time of inversion process was significantly decreased. Furthermore, computing efficiency increases with number of PSO iterations. In this contribution we analyze the efficiency of created software solution taking under consideration details of chosen global optimization engine used as a main joint minimization engine. Additionally we study the scale of possible decrease of computational time caused by different methods of parallelization applied for both forward solvers and inversion algorithm. All tests were done for 2D magnetotelluric and gravity data based on real geological media. Obtained results show that even for relatively simple mid end computational infrastructure proposed solution of inversion problem can be applied in practice and used for real life problems of geophysical inversion and interpretation.
TRENT2D WG: a smart web infrastructure for debris-flow modelling and hazard assessment
Zorzi, Nadia; Rosatti, Giorgio; Zugliani, Daniel; Rizzi, Alessandro; Piffer, Stefano
2016-04-01
Mountain regions are naturally exposed to geomorphic flows, which involve large amounts of sediments and induce significant morphological modifications. The physical complexity of this class of phenomena represents a challenging issue for modelling, leading to elaborate theoretical frameworks and sophisticated numerical techniques. In general, geomorphic-flows models proved to be valid tools in hazard assessment and management. However, model complexity seems to represent one of the main obstacles to the diffusion of advanced modelling tools between practitioners and stakeholders, although the UE Flood Directive (2007/60/EC) requires risk management and assessment to be based on "best practices and best available technologies". Furthermore, several cutting-edge models are not particularly user-friendly and multiple stand-alone software are needed to pre- and post-process modelling data. For all these reasons, users often resort to quicker and rougher approaches, leading possibly to unreliable results. Therefore, some effort seems to be necessary to overcome these drawbacks, with the purpose of supporting and encouraging a widespread diffusion of the most reliable, although sophisticated, modelling tools. With this aim, this work presents TRENT2D WG, a new smart modelling solution for the state-of-the-art model TRENT2D (Armanini et al., 2009, Rosatti and Begnudelli, 2013), which simulates debris flows and hyperconcentrated flows adopting a two-phase description over a mobile bed. TRENT2D WG is a web infrastructure joining advantages offered by the software-delivering model SaaS (Software as a Service) and by WebGIS technology and hosting a complete and user-friendly working environment for modelling. In order to develop TRENT2D WG, the model TRENT2D was converted into a service and exposed on a cloud server, transferring computational burdens from the user hardware to a high-performing server and reducing computational time. Then, the system was equipped with an
A brief review of the 2d/4d correspondences
Tachikawa, Yuji
2016-01-01
An elementary introduction to the 2d/4d correspondences is given. After quickly reviewing the 2d q-deformed Yang-Mills theory and the Liouville theory, we will introduce 4d theories obtained by coupling trifundamentals to SU(2) gauge fields. We will then see concretely that the supersymmetric partition function of these theories on S^3 x S^1 and on S^4 is given respectively by the q-deformed Yang-Mills theory and the Liouville theory. After giving a short discussion on how this correspondence may be understood from the viewpoint of the 6d N=(2,0) theory, we conclude the review by enumerating future directions. Most of the technical points will be referred to more detailed review articles.
Security Issues for 2D Barcodes Ticketing Systems
Cristian Toma
2011-03-01
Full Text Available The paper presents a solution for endcoding/decoding access to the subway public transportation systems. First part of the paper is dedicated through section one and two to the most used 2D barcodes used in the market – QR and DataMatrix. The sample for DataMatrix is author propietary and the QR sample is from the QR standard [2]. The section three presents MMS and Digital Rights Management topics used for issuing the 2D barcodes tickets. The second part of the paper, starting with section four shows the architecture of Subway Ticketing Systems and the proposed procedure for the ticket issuing. The conclusions identify trends of the security topics in the public transportation systems.
Characterization of steady solutions to the 2D Euler equation
Izosimov, Anton
2015-01-01
Steady fluid flows have very special topology. In this paper we describe necessary and sufficient conditions on the vorticity function of a 2D ideal flow on a surface with or without boundary, for which there exists a steady flow among isovorticed fields. For this we introduce the notion of an antiderivative (or circulation function) on a measured graph, the Reeb graph associated to the vorticity function on the surface, while the criterion is related to the total negativity of this antiderivative. It turns out that given topology of the vorticity function, the set of coadjoint orbits of the symplectomorphism group admitting steady flows with this topology forms a convex polytope. As a byproduct of the proposed construction, we also describe a complete list of Casimirs for the 2D Euler hydrodynamics: we define generalized enstrophies which, along with circulations, form a complete set of invariants for coadjoint orbits of area-preserving diffeomorphisms on a surface.
2D/3D Program work summary report
The 2D/3D Program was carried out by Germany, Japan and the United States to investigate the thermal-hydraulics of a PWR large-break LOCA. A contributory approach was utilized in which each country contributed significant effort to the program and all three countries shared the research results. Germany constructed and operated the Upper Plenum Test Facility (UPTF), and Japan constructed and operated the Cylindrical Core Test Facility (CCTF) and the Slab Core Test Facility (SCTF). The US contribution consisted of provision of advanced instrumentation to each of the three test facilities, and assessment of the TRAC computer code against the test results. Evaluations of the test results were carried out in all three countries. This report summarizes the 2D/3D Program in terms of the contributing efforts of the participants, and was prepared in a coordination among three countries. US and Germany have published the report as NUREG/IA-0126 and GRS-100, respectively. (author)
Calculation of wakefields in 2D rectangular structures
We consider the calculation of electromagnetic fields generated by an electron bunch passing through a vacuum chamber structure that, in general, consists of an entry pipe, followed by some kind of transition or cavity, and ending in an exit pipe. We limit our study to structures having rectangular cross-section, where the height can vary as function of longitudinal coordinate but the width and side walls remain fixed. For such structures, we derive a Fourier representation of the wake potentials through one-dimensional functions. A new numerical approach for calculating the wakes in such structures is proposed and implemented in the computer code ECHO(2D). The computation resource requirements for this approach are moderate and comparable to those for finding the wakes in 2D rotationally symmetric structures. Numerical examples obtained with the new numerical code are presented.
A SUBARRAY-SYNTHESIS BASED 2D DOA ESTIMATION METHOD
Xu Wenlong; Jiang Wei; Li Zengfu; Shang Yong; Xiang Haige
2006-01-01
In some satellite communications, we need to perform Direction Of Arrival (DOA) angle estimation under the restriction that the number of receivers is less than that of the array elements in an array antenna.To solve the conundrum, a method named subarray-synthesis-based Two-Dimensional DOA (2D DOA) angle estimation is proposed. In the method, firstly, the array antenna is divided into a series of subarray antennas based on the total number of receivers; secondly, the subarray antennas' output covariance matrices are estimated; thirdly, an equivalent covariance matrix is synthesized based on the subarray output covariance matrices; then 2D DOA estimation is performed. Monte Carlo simulations showed that the estimation method is effective.
Estimating 2-D Vector Velocities Using Multidimensional Spectrum Analysis
Oddershede, Niels; Løvstakken, Lasse; Torp, Hans;
2008-01-01
. Later, it was shown that this approach could also be used for finding the lateral velocity component by also including a lateral sampling. A single velocity component would then be concentrated along a plane in the 3-D Fourier space, tilted according to the 2 velocity components. This paper presents 2...... minimum variance approach. Based on this plane, the axial and lateral velocity components are estimated. Several phantom measurements, for flow-to-depth angles of 60, 75, and 90 degrees, were performed. Multiple parallel lines were beamformed simultaneously, and 2 different receive apodization schemes......Wilson (1991) presented an ultrasonic wide-band estimator for axial blood flow velocity estimation through the use of the 2-D Fourier transform. It was shown how a single velocity component was concentrated along a line in the 2-D Fourier space, where the slope was given by the axial velocity...
Two-Dimensional (2D) Polygonal Electromagnetic Cloaks
Transformation optics offers remarkable control over electromagnetic fields and opens an exciting gateway to design 'invisible cloak devices' recently. We present an important class of two-dimensional (2D) cloaks with polygon geometries. Explicit expressions of transformed medium parameters are derived with their unique properties investigated. It is found that the elements of diagonalized permittivity tensors are always positive within an irregular polygon cloak besides one element diverges to plus infinity and the other two become zero at the inner boundary. At most positions, the principle axes of permittivity tensors do not align with position vectors. An irregular polygon cloak is designed and its invisibility to external electromagnetic waves is numerically verified. Since polygon cloaks can be tailored to resemble any objects, the transformation is finally generalized to the realization of 2D cloaks with arbitrary geometries. (fundamental areas of phenomenology (including applications))
Interpretation of Magnetic Phase Anomalies over 2D Tabular Bodies
Subrahmanyam, M.
2016-05-01
In this study, phase angle (inverse tangent of the ratio of the horizontal to vertical gradients of magnetic anomalies) profile over two-dimensional tabular bodies has been subjected to detailed analysis for determining the source parameters. Distances between certain characteristic positions on this phase curve are related to the parameters of two-dimensional tabular magnetic sources. In this paper, I have derived the mathematical expressions for these relations. It has been demonstrated here that for locating the origin of the 2D tabular source, knowledge on the type of the model (contact, sheet, dyke, and fault) is not necessary. A procedure is evolved to determine the location, depth, width and magnetization angle of the 2D sources from the mathematical expressions. The method is tested on real field data. The effect of the overlapping bodies is also discussed with two synthetic examples. The interpretation technique is developed for contact, sheet, dike and inclined fault bodies.
Planar maps, circle patterns and 2d gravity
David, Francois
2013-01-01
Via circle pattern techniques, random planar triangulations (with angle variables) are mapped onto Delaunay triangulations in the complex plane. The uniform measure on triangulations is mapped onto a conformally invariant spatial point process. We show that this measure can be expressed as: (1) a sum over 3-spanning-trees partitions of the edges of the Delaunay triangulations; (2) the volume form of a K\\"ahler metric over the space of Delaunay triangulations, whose prepotential has a simple formulation in term of ideal tessellations of the 3d hyperbolic space; (3) a discretized version (involving finite difference complex derivative operators) of Polyakov's conformal Fadeev-Popov determinant in 2d gravity; (4) a combination of Chern classes, thus also establishing a link with topological 2d gravity.
Bulk correlation functions in 2D quantum gravity
Kostov, I K
2005-01-01
We compute bulk 3- and 4-point tachyon correlators in the 2d Liouville gravity with non-rational matter central charge c<1, following and comparing two approaches. The continuous CFT approach exploits the action on the tachyons of the ground ring generators deformed by Liouville and matter ``screening charges''. A by-product general formula for the matter 3-point OPE structure constants is derived. We also consider a ``diagonal'' CFT of 2D quantum gravity, in which the degenerate fields are restricted to the diagonal of the semi-infinite Kac table. The discrete formulation of the theory is a generalization of the ADE string theories, in which the target space is the semi-infinite chain of points.
Wave propagation in pantographic 2D lattices with internal discontinuities
Madeo, A; Neff, P
2014-01-01
In the present paper we consider a 2D pantographic structure composed by two orthogonal families of Euler beams. Pantographic rectangular 'long' waveguides are considered in which imposed boundary displacements can induce the onset of traveling (possibly non-linear) waves. We performed numerical simulations concerning a set of dynamically interesting cases. The system undergoes large rotations which may involve geometrical non-linearities, possibly opening the path to appealing phenomena such as propagation of solitary waves. Boundary conditions dramatically influence the transmission of the considered waves at discontinuity surfaces. The theoretical study of this kind of objects looks critical, as the concept of pantographic 2D sheets seems to have promising possible applications in a number of fields, e.g. acoustic filters, vascular prostheses and aeronautic/aerospace panels.
F2D: A two dimensional compressible gas flow code
The F2D computer code is a general-purpose, two-dimensional, fully compressible thermal-fluids code that models most phenomena found in experimental environments with coupled fluid flow and heat transfer. The code solves momentum, continuity, gas energy, and structure energy equations, simultaneously utilizing a predictor-corrector solution algorithm. The F2D code applied to a particle-bed reactor operating at 5 MW/L with a flow-control cold frit, revealed a skew in the temperature contours caused by two-dimensional flow effects. A thermal-fluid stability analysis of particle-bed and NERVA type reactors reveals similar behavior for the stability threshold
Stable 2D Feature Tracking for Long Video Sequences
Jong-Seung Park
2008-12-01
Full Text Available In this paper, we propose a 2D feature tracking method that is stable to long video sequences. To improve the stability of long tracking, we use trajectory information about 2D features. We predict the expected feature states and compute a rough estimate of the feature location on the current image frame using the history of previous feature states up to the current frame. A search window is positioned at the estimated location and similarity measures are computed within the search window. Once the feature position is determined from the similarity measures, the current feature states are appended to the history bu®er. The outlier rejection stage is also introduced to reduce false matches. Experimental results from real video sequences showed that the proposed method stably tracks point features for long frame sequences.
2D Models for Dust-driven AGB Star Winds
Woitke, P
2006-01-01
New axisymmetric (2D) models for dust-driven winds of C-stars are presented which include hydrodynamics with radiation pressure on dust, equilibrium chemistry and time-dependent dust formation with coupled grey Monte Carlo radiative transfer. Considering the most simple case without stellar pulsation (hydrostatic inner boundary condition) these models reveal a more complex picture of the dust formation and wind acceleration as compared to earlier published spherically symmetric (1D) models. The so-called exterior $\\kappa$-mechanism causes radial oscillations with short phases of active dust formation between longer phases without appreciable dust formation, just like in the 1D models. However, in 2D geometry, the oscillations can be out-of-phase at different places above the stellar atmosphere which result in the formation of dust arcs or smaller caps that only occupy a certain fraction of the total solid angle. These dust structures are accelerated outward by radiation pressure, expanding radially and tangen...
DEVELOPMENT OF 2D HUMAN BODY MODELING USING THINNING ALGORITHM
K. Srinivasan
2010-11-01
Full Text Available Monitoring the behavior and activities of people in Video surveillance has gained more applications in Computer vision. This paper proposes a new approach to model the human body in 2D view for the activity analysis using Thinning algorithm. The first step of this work is Background subtraction which is achieved by the frame differencing algorithm. Thinning algorithm has been used to find the skeleton of the human body. After thinning, the thirteen feature points like terminating points, intersecting points, shoulder, elbow, and knee points have been extracted. Here, this research work attempts to represent the body model in three different ways such as Stick figure model, Patch model and Rectangle body model. The activities of humans have been analyzed with the help of 2D model for the pre-defined poses from the monocular video data. Finally, the time consumption and efficiency of our proposed algorithm have been evaluated.
Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides
Mak, Kin Fai; Shan, Jie
2016-04-01
Recent advances in the development of atomically thin layers of van der Waals bonded solids have opened up new possibilities for the exploration of 2D physics as well as for materials for applications. Among them, semiconductor transition metal dichalcogenides, MX2 (M = Mo, W; X = S, Se), have bandgaps in the near-infrared to the visible region, in contrast to the zero bandgap of graphene. In the monolayer limit, these materials have been shown to possess direct bandgaps, a property well suited for photonics and optoelectronics applications. Here, we review the electronic and optical properties and the recent progress in applications of 2D semiconductor transition metal dichalcogenides with emphasis on strong excitonic effects, and spin- and valley-dependent properties.
MasterChem: cooking 2D-polymers.
Rodríguez-San-Miguel, D; Amo-Ochoa, P; Zamora, F
2016-03-01
2D-polymers are still dominated by graphene and closely related materials such as boron nitride, transition metal sulphides and oxides. However, the rational combination of molecules with suitable design is already showing the high potential of chemistry in this new research field. The aim of this feature article is to illustrate, and provide some perspectives, the current state-of-the-art in the field of synthetic 2D-polymers showing different alternatives to prepare this novel type of polymers based on the rational use of chemistry. This review comprises a brief revision of the essential concepts, the strategies of preparation following the two general approaches, bottom-up and top-down, and a revision of the promising seminal properties showed by some of these nanomaterials. PMID:26790817
Simulation of corium concrete interaction in 2D geometry
Benchmarking work was recently performed for the issue of molten corium concrete interaction (MCCI). A synthesis is given here. It concerns first the 2D CCI-2 test with a homogeneous pool and a limestone concrete, which was used for a blind benchmark. Secondly, the COMET-L2 and COMET-L3 2D experiments in a stratified configuration were used as a post-test (L2) and a blind-test (L3) benchmark. More details are given here for the recent benchmark considering a matrix of four reactor cases, with both a homogeneous and a stratified configuration, and with both a limestone and a siliceous concrete. A short overview is given on the different models used in the codes, and the consistency between the benchmark actions on experiments and reactor situations is discussed. Finally, the major uncertainties concerning MCCI are also pointed out. (authors)
Simulation of corium concrete interaction in 2D geometry
Cranga, M. [IRSN, DPAM, F-13115 St Paul Les Durance (France); Spindler, B.; Dufour, E. [CEA Grenoble, DEN, F-38000 Grenoble (France); Dimov, Dimitar [Bulgarian Acad Sci, Inst Nucl Res and Nucl Energy, NPPSAL, BU-1784 Sofia (Bulgaria); Atkhen, Kresna [EDF, SEPTEN, F-69628 Villeurbanne (France); Foit, Jerzy [Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Garcia-Martin, M. [Univ Politecn Madrid, E-28006 Madrid (Spain); Sevon, Tuomo [Tech Res Ctr Finland VTT, FI-02044 Helsinki (Finland); Schmidt, W. [AREVA, D-91058 Erlangen (Germany); Spengler, C. [Gesell Anlagen and Reaktorsicherheit GRS mbH, D-50667 Cologne (Germany)
2010-07-01
Benchmarking work was recently performed for the issue of molten corium concrete interaction (MCCI). A synthesis is given here. It concerns first the 2D CCI-2 test with a homogeneous pool and a limestone concrete, which was used for a blind benchmark. Secondly, the COMET-L2 and COMET-L3 2D experiments in a stratified configuration were used as a post-test (L2) and a blind-test (L3) benchmark. More details are given here for the recent benchmark considering a matrix of four reactor cases, with both a homogeneous and a stratified configuration, and with both a limestone and a siliceous concrete. A short overview is given on the different models used in the codes, and the consistency between the benchmark actions on experiments and reactor situations is discussed. Finally, the major uncertainties concerning MCCI are also pointed out. (authors)
Mohamed I. Abdel-Fattah
2014-01-01
Full Text Available Seismic reflection techniques show an imperative role in imaging complex geological structures and are becoming more acceptable as data interpreting tools in 2D/3D view. These subsurface geological structures provide complex seismic signature due to their geometrical behavior. Consequently, it is extremely difficult to interpret these seismic sections in terms of subsurface configuration. The main goal of this paper is to introduce seismic attributes as a powerful tool to interpret complex geological structures in different geological settings. In order to image these complex geological features, multiple seismic attributes such as coherence and curvature have been applied to the seismic data generated over the Shushan Basin (Egypt and Arkoma Basin (USA. Each type of geological structure event usually generates a unique seismic “signature” that we can recognize and identify by using these seismic attributes. In Shushan Basin (Egypt, they provide a framework and constraint during the interpretation and can help prevent mistakes during a 3D structural modeling. In Arkoma Basin (USA, the seismic attributes results provide useful information for broader analyses of the complex structural relations in the region where the Ouachita orogenic belt intersects with the southern Oklahoma aulacogen. Finally, complex geological structures provide dramatically diacritical seismic signatures that can be easily interpreted by collaborating conventional seismic interpretation techniques with multiple seismic attributes.
Energy level transitions of gas in a 2D nanopore
Grinyaev, Yurii V., E-mail: grn@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Chertova, Nadezhda V., E-mail: chertova@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Psakhie, Sergei G., E-mail: sp@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)
2015-10-27
An analytical study of gas behavior in a 2D nanopore was performed. It is shown that the temperature dependence of gas energy can be stepwise due to transitions from one size-quantized subband to another. Taking into account quantum size effects results in energy level transitions governed by the nanopore size, temperature and gas density. This effect leads to an abrupt change of gas heat capacity in the nanopore at the above varying system parameters.
2D imaging of functional structures in perfused pig heart
Kessler, Manfred D.; Cristea, Paul D.; Hiller, Michael; Trinks, Tobias
2002-06-01
In 2000 by 2D-imaging we were able for the first time to visualize in subcellular space functional structures of myocardium. For these experiments we used hemoglobin-free perfused pig hearts in our lab. Step by step we learned to understand the meaning of subcellular structures. Principally, the experiment revealed that in subcellular space very fast changes of light scattering can occur. Furthermore, coefficients of different parameters were determined on the basis of multicomponent system theory.
Transport properties of 2D graphene containing structural defects
Lherbier, Aurelien; Dubois, Simon M. -M.; Declerck, Xavier; Niquet, Yann-Michel; Roche, Stephan; Charlier, Jean-Christophe
2012-01-01
We propose an extensive report on the simulation of electronic transport in 2D graphene in presence of structural defects. Amongst the large variety of such defects in sp$^2$ carbon-based materials, we focus on the Stone-Wales defect and on two divacancy-type reconstructed defects. First, based on ab initio calculations, a tight-binding model is derived to describe the electronic structure of these defects. Then, semiclassical transport properties including the elastic mean free paths, mobili...
2-D constrained Navier-Stokes equation and intermediate asymptotics
Caglioti, E.; Pulvirenti, M.; F. Rousset
2008-01-01
We introduce a modified version of the two-dimensional Navier-Stokes equation, preserving energy and momentum of inertia, which is motivated by the occurrence of different dissipation time scales and related to the gradient flow structure of the 2-D Navier-Stokes equation. The hope is to understand intermediate asymptotics. The analysis we present here is purely formal. A rigorous study of this equation will be done in a forthcoming paper.
Spin dependent 2D ACAR measurements in gadolinium
The spin dependent momentum density of Gd was studied by two dimensional angular correlation of annihilation radiation (2D ACAR) measurements, using the spin polarized positron technique. The ''reduced momentum density'' and the ''reduced spin density'' density'' in k space for planes within the first Brillouin zone have been obtained, and qualitative agreement with a model proposed by Mattocks and Young to explain their de Haas-van Alphen (dHvA) measurements is found. (Auth.)
Modeling 2D and 3D Horizontal Wells Using CVFA
Chen, Zhangxin; Huan, Guanren; Li, Baoyan
2003-01-01
In this paper we present an application of the recently developed control volume function approximation (CVFA) method to the modeling and simulation of 2D and 3D horizontal wells in petroleum reservoirs. The base grid for this method is based on a Voronoi grid. One of the features of the CVFA is that the flux at the interfaces of control volumes can be accurately computed via function approximations. Also, it reduces grid orientation effects and applies to any shape of eleme...
Random 2D Composites and the Generalized Method of Schwarz
Vladimir Mityushev
2015-01-01
Two-phase composites with nonoverlapping inclusions randomly embedded in matrix are investigated. A straightforward approach is applied to estimate the effective properties of random 2D composites. First, deterministic boundary value problems are solved for all locations of inclusions, that is, for all events of the considered probabilistic space C by the generalized method of Schwarz. Second, the effective properties are calculated in analytical form and averaged over C. This method is relat...
2DBase: 2D-PAGE database of Escherichia coli
Vijayendran, Chandran; Burgemeister, Sebastian; Friehs, Karl; Niehaus, Karsten; Flaschel, Erwin
2007-01-01
We present a web-based integrated proteome database, termed 2DBase of Escherichia coli which was designed to store, compare, analyse, and retrieve various information obtained by 2D polyacrylamide gel electrophoresis and mass spectrometry. The main objectives of this database are (1) to provide the features for query and data-mining applications to access the stored proteomics data (2) to efficiently compare the specific protein spots present in the comparable proteome maps and (3) to analyse...
How to use 2D gel electrophoresis in plant proteomics.
Rabilloud, Thierry
2014-01-01
International audience Two-dimensional electrophoresis has nurtured the birth of proteomics. It is however no longer the exclusive setup used in proteomics, with the development of shotgun proteomics techniques that appear more fancy and fashionable nowadays.Nevertheless, 2D gel-based proteomics still has valuable features, and sometimes unique ones, which make it often an attractive choice when a proteomics strategy must be selected. These features are detailed in this chapter, as is the ...
Submicrometric 2D ratchet effect in magnetic domain wall motion
Strips containing arrays of submicrometric triangular antidots with a 2D square periodicity have been fabricated by electron beam lithography. A clear ratchet effect of 180° domain wall motion under a varying applied field parallel to the walls has been observed. The direction is determined by the direction of the triangle vertices. In contrast, no ratchet effect is observed when the antidot array is constituted by symmetric rhomb-shaped antidots
Conformal field theory and 2D critical phenomena. Part 1
Review of the recent developments in the two-dimensional conformal field theory and especially its applications to the physics of 2D critical phenomena is given. It includes the Ising model, the Potts model. Minimal models, corresponding to theories invariant under higher symmetries, such as superconformal theories, parafermionic theories and theories with current and W-algebras are also discussed. Non-hamiltonian approach to two-dimensional field theory is formulated. 126 refs
Energy level transitions of gas in a 2D nanopore
An analytical study of gas behavior in a 2D nanopore was performed. It is shown that the temperature dependence of gas energy can be stepwise due to transitions from one size-quantized subband to another. Taking into account quantum size effects results in energy level transitions governed by the nanopore size, temperature and gas density. This effect leads to an abrupt change of gas heat capacity in the nanopore at the above varying system parameters
Contributions to statistical image segmentation and 2D pattern Recognition
Derrode, Stéphane
2008-01-01
This dissertation follows 9 years of my research activities, including 7 years as an assistant professor at the École Centrale Marseille and as a researcher into the Multidimensional Signal Processing Group of Institut Fresnel (CNRS UMR 6133). Works which I present explore some aspects of the statistical segmentation of images for applications in space imagery and the invariant description of 2D shapes for object recognition in video imagery. More precisely, the first part of the manuscript s...
Vertical heterostructures based on graphene and other 2D materials
Antonova, I. V. [Rzhanov Institute of Semiconductor Physics, Russian Academy of Sciences, Siberian Branch (Russian Federation)
2016-01-15
Recent advances in the fabrication of vertical heterostructures based on graphene and other dielectric and semiconductor single-layer materials, including hexagonal boron nitride and transition-metal dichalcogenides, are reviewed. Significant progress in this field is discussed together with the great prospects for the development of vertical heterostructures for various applications, which are associated, first of all, with reconsideration of the physical principles of the design and operation of device structures based on graphene combined with other 2D materials.
Submicrometric 2D ratchet effect in magnetic domain wall motion
Castán-Guerrero, C., E-mail: ccastan@unizar.es [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC – Universidad de Zaragoza, E-50009 Zaragoza (Spain); Dpto. de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Herrero-Albillos, J. [Fundación ARAID, E-50004 Zaragoza (Spain); Centro Universitario de la Defensa, E-50090 Zaragoza (Spain); Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC – Universidad de Zaragoza, E-50009 Zaragoza (Spain); Sesé, J. [Instituto de Nanociencia de Aragón, Laboratorio de Microscopías Avanzadas, Universidad de Zaragoza, E-50018 Zaragoza (Spain); Dpto. de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Bartolomé, J.; Bartolomé, F. [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC – Universidad de Zaragoza, E-50009 Zaragoza (Spain); Dpto. de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Hierro-Rodriguez, A.; Valdés-Bango, F.; Martín, J.I.; Alameda, J.M. [Dpto. Física, Universidad de Oviedo, Asturias (Spain); CINN (CSIC – Universidad de Oviedo – Principado de Asturias), Asturias (Spain); García, L.M. [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC – Universidad de Zaragoza, E-50009 Zaragoza (Spain); Dpto. de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain)
2014-12-15
Strips containing arrays of submicrometric triangular antidots with a 2D square periodicity have been fabricated by electron beam lithography. A clear ratchet effect of 180° domain wall motion under a varying applied field parallel to the walls has been observed. The direction is determined by the direction of the triangle vertices. In contrast, no ratchet effect is observed when the antidot array is constituted by symmetric rhomb-shaped antidots.
Rule Based Selection of 2D Urban Area Map Objects
Jagdish Lal Raheja; Umesh Kumar
2010-01-01
The purpose of cartographic generalization is to represent a particular situation adapted to the needs of its users, with adequate legibility of the representation and perceptional congruity with the real situation. In this paper, a simple approach is presented for the selection process of building ground plans that are represented as 2D line, square and polygon segments. It is based on simple selection process from the field of computer graphics. It is important to preserve the overall chara...
BRST-antibracket cohomology in 2d conformal gravity
Brandt, F. [Nationaal Inst. voor Kernfysica en Hoge-Energiefysica (NIKHEF), Amsterdam (Netherlands). Sectie H; Troost, W. [Leuven Univ. (Belgium). Inst. voor Theoretische Fysica; Proeyen, A. van [Leuven Univ. (Belgium). Inst. voor Theoretische Fysica
1994-12-31
We present results of a computation of the BRST-antibracket cohomology in the space of local functionals of the fields and antifields for a class of 2d gravitational theories which are conformally invariant at the classical level. In particular all classical local action functionals, all candidate anomalies and all BRST-invariant functionals depending nontrivially on antifields are given and discussed for these models. (orig.).
Spacing effects on seismic responses of underground waste storage tanks
In this paper, an investigation is performed for determination of the effects of spacing on seismic response of grouped underground tank structures. The study is carried out using a 2-D Finite Element Method, and the key mechanisms for transmitting structure-soil-structure interaction (SSSI) effects are identified. A parametric analysis is performed to quantify the SSSI effects. Results of the study are presented
Design Application Translates 2-D Graphics to 3-D Surfaces
2007-01-01
Fabric Images Inc., specializing in the printing and manufacturing of fabric tension architecture for the retail, museum, and exhibit/tradeshow communities, designed software to translate 2-D graphics for 3-D surfaces prior to print production. Fabric Images' fabric-flattening design process models a 3-D surface based on computer-aided design (CAD) specifications. The surface geometry of the model is used to form a 2-D template, similar to a flattening process developed by NASA's Glenn Research Center. This template or pattern is then applied in the development of a 2-D graphic layout. Benefits of this process include 11.5 percent time savings per project, less material wasted, and the ability to improve upon graphic techniques and offer new design services. Partners include Exhibitgroup/Giltspur (end-user client: TAC Air, a division of Truman Arnold Companies Inc.), Jack Morton Worldwide (end-user client: Nickelodeon), as well as 3D Exhibits Inc., and MG Design Associates Corp.
Strings in a 2-d extremal black hole
String theory on 2-d charged black holes corresponding to (SL(2) x U(1)L)/U(1) exact asymmetric quotient CFTs are investigated. These backgrounds can be embedded, in particular, in a two dimensional heterotic string. In the extremal case, the quotient CFT description captures the near horizon physics, and is equivalent to strings in AdS2 with a gauge field. Such string vacua possess an infinite space-time Virasoro symmetry, and hence enhancement of global space-time Lie symmetries to affine symmetries, in agreement with the conjectured AdS2/CFT1 correspondence. We argue that the entropy of these 2-d black holes in string theory is compatible with semi-classical results, and show that in perturbative computations part of an incoming flux is absorbed by the black hole. Moreover, on the way we find evidence that the 2-d heterotic string is closely related to the N=(2,1) string, and conjecture that they are dual. (author)
Inversions for MT data in 2D symmetrical anisotropic media
YANG Chang-fu; LIN Chang-you; SUN Chong-chi; LI Qing-he
2005-01-01
In the paper, a 2D symmetrical anisotropic medium whose strike agrees with one of the horizontal principal axes is considered to develop a corresponding inversion technique. In the specified conditions, if we assume an equivalent conductivity anisotropy in both the vertical and dipping directions, i.e., σzz=σyy, the differential equations obtained are formally the same as that for TE and TM modes in the 2D isotropic geoelectrical media. The same inversion technique as that in the 2D isotropic media can be employed to obtain the anisotropic conductivities. It means that the TE and TM inversion results in the isotropic media can be respectively thought as the resistivities in the two principal directions of the symmetrically anisotropic media, which has offered a new approach and a theoretical guidance for interpreting magnetotelluric data. And the inversion technique developed here is used to test the magnetotelluric data in the area of Tianzhu and Yongdeng in Gansu Province, so that the crust anisotropic geoelectrical structures in this region can be obtained.
MAGNUM-2D computer code: user's guide
England, R.L.; Kline, N.W.; Ekblad, K.J.; Baca, R.G.
1985-01-01
Information relevant to the general use of the MAGNUM-2D computer code is presented. This computer code was developed for the purpose of modeling (i.e., simulating) the thermal and hydraulic conditions in the vicinity of a waste package emplaced in a deep geologic repository. The MAGNUM-2D computer computes (1) the temperature field surrounding the waste package as a function of the heat generation rate of the nuclear waste and thermal properties of the basalt and (2) the hydraulic head distribution and associated groundwater flow fields as a function of the temperature gradients and hydraulic properties of the basalt. MAGNUM-2D is a two-dimensional numerical model for transient or steady-state analysis of coupled heat transfer and groundwater flow in a fractured porous medium. The governing equations consist of a set of coupled, quasi-linear partial differential equations that are solved using a Galerkin finite-element technique. A Newton-Raphson algorithm is embedded in the Galerkin functional to formulate the problem in terms of the incremental changes in the dependent variables. Both triangular and quadrilateral finite elements are used to represent the continuum portions of the spatial domain. Line elements may be used to represent discrete conduits. 18 refs., 4 figs., 1 tab.
Implementation of 2-D Discrete Cosine Transform Algorithm on GPU
SHIVANG GHETIA, NAGENDRA GAJJAR, RUCHI GAJJAR
2013-07-01
Full Text Available Discrete Cosine Transform (DCT is a technique to get frequency separation. When DCT is applied on an image, it will give frequency segregation of an image since it is composed of DC value and range of low frequency values to high frequency values. DCT is very useful in image compression. When high frequency values are eliminated from image, it will give efficient compression at the cost of little degradation of image quality. But, the bottleneck is that when 2-Dimentional DCT is carried out on CPU, it takes much time since there is very high order of computation. To overcome this problem, Graphics Processing Unit (GPU has opened the door for parallel processing. In this paper, we have implemented 2-D DCT with parallel approach on NVIDIA GPU using CUDA (Compute Unified Device Architecture. By applying here presented 2-D DCT algorithm for image processing has narrowed down the time requirement and has achieved speed up by factor 97x including data transfer timing from CPU to GPU and again back to CPU. So, parallel processing of 2-D DCT algorithm on GPU has fulfilled the purpose of fast and efficient processing of an image.
On the effective shear speed in 2D phononic crystals
Kutsenko, A A; Norris, A N; Poncelet, O
2011-01-01
The quasistatic limit of the antiplane shear-wave speed ('effective speed') $c$ in 2D periodic lattices is studied. Two new closed-form estimates of $c$ are derived by employing two different analytical approaches. The first proceeds from a standard background of the plane wave expansion (PWE). The second is a new approach, which resides in $\\mathbf{x}$-space and centers on the monodromy matrix (MM) introduced in the 2D case as the multiplicative integral, taken in one coordinate, of a matrix with components being the operators with respect to the other coordinate. On the numerical side, an efficient PWE-based scheme for computing $c$ is proposed and implemented. The analytical and numerical findings are applied to several examples of 2D square lattices with two and three high-contrast components, for which the new PWE and MM estimates are compared with the numerical data and with some known approximations. It is demonstrated that the PWE estimate is most efficient in the case of densely packed stiff inclusio...
A 2-D ECE Imaging Diagnostic for TEXTOR
Wang, J.; Deng, B. H.; Domier, C. W.; Luhmann, H. Lu, Jr.
2002-11-01
A true 2-D extension to the UC Davis ECE Imaging (ECEI) concept is under development for installation on the TEXTOR tokamak in 2003. This combines the use of linear arrays with multichannel conventional wideband heterodyne ECE radiometers to provide a true 2-D imaging system. This is in contrast to current 1-D ECEI systems in which 2-D images are obtained through the use of multiple plasma discharges (varying the scanned emission frequency each discharge). Here, each array element of the 20 channel mixer array measures plasma emission at 16 simultaneous frequencies to form a 16x20 image of the plasma electron temperature Te. Correlation techniques can then be applied to any pair of the 320 image elements to study both radial and poloidal characteristics of turbulent Te fluctuations. The system relies strongly on the development of low cost, wideband (2-18 GHz) IF detection electronics for use in both ECE Imaging as well as conventional heterodyne ECE radiometry. System details, with a strong focus on the wideband IF electronics development, will be presented. *Supported by U.S. DoE Contracts DE-FG03-95ER54295 and DE-FG03-99ER54531.
Hope for slow positron 2D-ACAR
Positron is trapped by the hole type defect (localized) and vanished by pair annihilation with the electron. Atomic hole, cluster of atomic hole and complex materials of impurity can be detected by using this property of positron. The positron annihilation method determined the fine structure of hole and the electron structure. 2D-ACAR of positron trapped in defect gives the detailed distribution of momentum (the two-dimension map integrated in the direction of γ-annihilation) of positron and electron localized in the hole. It makes possible the detailed comparison with the calculation results of the first principle theory. The results of 2D-ACAR of cluster and hole in Si showed that about 60% positrons were trapped and annihilated by divacancy and 40% of it were vanished from the perfect crystal unless trapping. Very interest results were found that 2D-ACAR of neutral divacancy was very isotropic and that of negative divacancy (-1 or -2) was isotropic, too. (M.N.)
Photonic crystals to enhance light extraction from 2D materials
Noori, Yasir J; Roberts, Jonathan; Woodhead, Christopher; Bernardo-Gavito, Ramon; Tovee, Peter; Young, Robert J
2016-01-01
We propose a scheme for coupling 2D materials to an engineered cavity based on a defective rod type photonic crystal lattice. We show results from numerical modelling of the suggested cavity design, and propose using the height profile of a 2D material transferred on top of the cavity to maximise coupling between exciton recombination and the cavity mode. The photonic structure plays a key role in enhancing the launch efficiency, by improving the directionality of the emitted light to better couple it into an external optical system. When using the photonic structure, we measured an increase in the extraction ratio by a factor of 3.4. We investigated the variations in the flux spectrum when the radius of the rods is modified, and when the 2D material droops to a range of different heights within the cavity. We found an optimum enhancement when the rods have a radius equal to 0.165 times the lattice constant, this enhancement reduces when the radius is reduced or increased. Finally, we discuss the possible use...
2D Non-Abelian Theory: Some Novel Features
Srinivas, N; Kureel, B K; Malik, R P
2016-01-01
Within the framework of Becchi-Rouet-Stora-Tyutin (BRST) formalism, we discuss some novel features of a two (1+1)-dimensional (2D) non-Abelian 1-form gauge theory (without any interaction with matter fields). Besides the usual off-shell nilpotent and absolutely anticommutating (anti-)BRST symmetry transformations, we discuss the off-shell nilpotent and absolutely anticommutating (anti-)co-BRST symmetry transformations for this specific 2D theory. Particularly, we lay emphasis on the existence of the coupled (but equivalent) Lagrangian densities of the 2D non-Abelian theory in view of the presence of (anti-)co-BRST symmetry transformations where we pin-point some novel features associated with the Curci-Ferrari (CF) type restrictions. We demonstrate that these CF-type restrictions can be incorporated into the (anti-)co-BRST invariant Lagrangian densities through the fermionic Lagrange multipliers which carry specific ghost numbers. The modified versions of the Lagrangian densities respect some precise and perf...
Hunting down magnetic monopoles in 2D topological insulators?
He, Xugang; Cmpmsd At Bnl Team
Contrary to the existence of electric charge, magnetic monopole does not exist in nature. It is thus extraordinary to find that magnetic monopoles can be pictured conceptually in topological insulators. For 2D topological insulators, the topological invariant corresponds to the total flux of an effective magnetic field (the Berry curvature) over the reciprocal space. Upon wrapping the 2D reciprocal space into a compact manifold as a torus, the non-zero total flux can be considered to originate from magnetic monopoles with quantized charge. We will first illustrate the intrinsic difficulty via extending a 2D problem to a 3D reciprocal space, and then demonstrate that analytical continuation to the complex momentum space offers a natural solution in which 1) the magnetic monopoles emerge naturally in pairs each forming a string above and below the real axis possessing opposite charge, and 2) the total charge below the real axis gives exactly the topological invariant. In essence, the robustness of the topology is mapped to the robustness of the total charge in the lower complex plan, a mapping intriguing even mathematically. Finally, we will illustrate the evolution across the topological phase transition, providing a natural description of the metallic nature in the phase boundary, and offering a clear explanation why a change of global topology can be induced via a local change in reciprocal space. Work supported by US DOE BES DE-AC02-98CH10886.
Observations of 2D Doppler backscattering on MAST
Thomas, D A; Freethy, S J; Huang, B K; Shevchenko, V F; Vann, R G L
2015-01-01
The Synthetic Aperture Microwave Imaging (SAMI) diagnostic has conducted proof-of-principle 2D Doppler backscattering (DBS) experiments on MAST. SAMI actively probes the plasma edge using a wide (+-40 degrees vertical and horizontal) and tuneable (10-35.5 GHz) beam. The Doppler backscattered signal is digitised in vector form using an array of eight Vivaldi PCB antennas. This allows the receiving array to be focused in any direction within the field of view simultaneously to an angular range of 6-24 degrees FWHM at 10-34.5 GHz. This capability is unique to SAMI and is an entirely novel way of conducting DBS experiments. In this paper the feasibility of conducting 2D DBS experiments is explored. Initial measurements of phenomena observed on conventional DBS experiments are presented; such as momentum injection from neutral beams and an abrupt change in power and turbulence velocity coinciding with the onset of H-mode. In addition, being able to carry out 2D DBS imaging allows a measurement of magnetic pitch an...
Cytochrome P450-2D6 Screening Among Elderly Using Antidepressants (CYSCE)
2015-12-09
Depression; Depressive Disorder; Poor Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Intermediate Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Ultrarapid Metabolizer Due to Cytochrome P450 CYP2D6 Variant
HIRE seismic reflection survey in the Olkiluoto area
A seismic reflection survey comprising three vibroseismic lines (total length of 31.1 km) was carried out in the Olkiluoto area, western Finland, in July, 2008. The survey is a part of the project HIRE (High Resolution Reflection Seismics for Ore Exploration 2007-2010) of the Geological Survey of Finland (GTK). The Olkiluoto survey was done in co-operation with Posiva Oy. The HIRE seismic reflection survey in the Olkiluoto area revealed numerous previously unknown structures in the upper crust of the area. The most prominent structures observed are the subhorizontal strong reflectors which very probably represent Postjotnian diabase sills intruding both the Svecofennian gneisses as well as the rapakivi granites. These reflectors can be associated with the similar seismic structures recorded in marine seismic transects in the Bothnian Sea, and thus they represent a large-scale structure. The Mesoproterozoic rapakivi granites can be distinguished as homogeneous, seismically transparent domains which extend to a depth of at least 4 km. The interpreted rapakivi structures are in a good agreement with gravity modellings. On the Olkiluoto Island, reflectors could be correlated with drillhole based data on lithology and brittle fault zones. The main brittle fault zones detected in drillholes are represented as reflectors in the seismic sections, and several new structures have been interpreted. A synthetic seismogram constructed for a 1 km deep hole in the Olkiluoto Island using down-hole logs of density and P-wave velocity, suggests that the main brittle fault zones generate strong reflectors. Pegmatitic granite sometimes has a weak reflection contrast with the surrounding gneisses, and sometimes has no contrast. There seems to be a simultaneous correlation of reflectivity with fracture zones at the location of the pegmatitic granite occurrences. The HIRE 2D seismic reflection data agrees well with the earlier 3D reflection surveys in the Olkiluoto Island, and most of